C. Llorens, R. Futami, L. Covelli, L. Dominguez-escriba, J. M. Viu et al., , p.139

G. Ripolles, G. P. Fuster, F. Bernet, A. Maumus, J. M. Munoz-pomer et al., The 140 Gypsy Database (GyDB) of mobile genetic elements: release 2.0, Nucleic Acids Res, vol.39, pp.70-74, 2011.

P. Ahlquist, Parallels among positive-strand RNA viruses, reverse-transcribing viruses and double-stranded RNA 142 viruses, Nat Rev Microbiol, vol.4, pp.371-82, 2006.

E. V. Koonin, V. V. Dolja, and M. Krupovic, Origins and evolution of viruses of eukaryotes: The ultimate modularity. 144 Virology 479-480:2-25, vol.145, 2015.
URL : https://hal.archives-ouvertes.fr/pasteur-01977389

A. D. Geering, Caulimoviridae (plant pararetroviruses), eLS, vol.146, 2014.

A. M. King, M. J. Adams, E. B. Carstens, and E. J. Lefkowitz, Virus taxonomy: Ninth report of the International 147 Committee on Taxonomy of Viruses, vol.148, 2011.

T. Eickbush, J. D. Boeke, S. B. Sandmeyer, and D. F. Voytas, , pp.457-466, 2011.

E. B. Adams, E. J. Carstens, and . Lefkowitz, Virus Taxonomy: Classification and Nomenclature of Viruses: Ninth Report 150 of the International Committee on Taxonomy of Viruses, vol.151

I. R. Arkhipova, Using bioinformatic and phylogenetic approaches to classify transposable elements and understand 152 their complex evolutionary histories, Mob DNA, vol.8, p.19, 2017.
DOI : 10.1186/s13100-017-0103-2

URL : https://mobilednajournal.biomedcentral.com/track/pdf/10.1186/s13100-017-0103-2

R. Hull and H. Will, Molecular biology of viral and nonviral retroelements, Trends Genet, vol.5, pp.357-366, 1989.
DOI : 10.1016/0168-9525(89)90151-0

C. Feschotte and C. Gilbert, Endogenous viruses: insights into viral evolution and impact on host biology, Nat Rev 155 Genet, vol.13, p.10, 2012.
DOI : 10.1038/nrg3199

URL : https://hal.archives-ouvertes.fr/hal-00679842

S. I. Diop, A. D. Geering, F. Alfama-depauw, M. Loaec, P. Y. Teycheney et al., Tracheophyte 157 genomes keep track of the deep evolution of the Caulimoviridae, Sci Rep, vol.8, p.11, 2018.

E. A. Gladyshev and I. R. Arkhipova, A widespread class of reverse transcriptase-related cellular genes, Proc Natl, vol.159, 2011.
DOI : 10.1073/pnas.1100266108

URL : http://www.pnas.org/content/108/51/20311.full.pdf

, Acad Sci U S A, vol.108, p.12

Y. Xiong and T. H. Eickbush, Origin and evolution of retroelements based upon their reverse transcriptase sequences, 1990.
DOI : 10.1002/j.1460-2075.1990.tb07536.x

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1002/j.1460-2075.1990.tb07536.x

, Embo J, vol.9, p.13

F. Benachenhou, G. O. Sperber, E. Bongcam-rudloff, G. Andersson, J. D. Boeke et al., Conserved 163 structure and inferred evolutionary history of long terminal repeats (LTRs), Mob DNA, vol.4, pp.5-164, 2013.
DOI : 10.1186/1759-8753-4-5

URL : https://mobilednajournal.biomedcentral.com/track/pdf/10.1186/1759-8753-4-5

J. Mayer and E. U. Meese, Presence of dUTPase in the various human endogenous retrovirus K (HERV-K) families, J 165 Mol Evol, vol.57, p.15, 2003.

F. Rodriguez, A. W. Kenefick, and I. R. Arkhipova, LTR-retrotransposons from bdelloid rotifers capture additional 167 ORFs shared between highly diverse retroelement types, Viruses, vol.9, p.16, 2017.
DOI : 10.3390/v9040078

URL : https://www.mdpi.com/1999-4915/9/4/78/pdf

O. S. Novikova and A. G. Blinov, dUTPase-containing metaviridae LTR retrotransposons from the genome of 169 Phanerochaete chrysosporium (Fungi: Basidiomycota), Dokl Biochem Biophys, vol.420, p.17, 2008.

P. Jern, G. O. Sperber, and J. Blomberg, Use of endogenous retroviral sequences (ERVs) and structural markers for 171 retroviral phylogenetic inference and taxonomy, Retrovirology, vol.2, p.50, 2005.

H. S. Malik and T. H. Eickbush, Modular evolution of the integrase domain in the Ty3/Gypsy class of LTR 173 retrotransposons, J Virol, vol.73, p.19, 1999.

P. Marmey, A. Rojas-mendoza, A. De-kochko, R. N. Beachy, and C. M. Fauquet, Characterization of the protease 175 domain of Rice tungro bacilliform virus responsible for the processing of the capsid protein from the polyprotein, Virol J, vol.2, p.33, 2005.

M. Krupovic and E. V. Koonin, Homologous capsid proteins testify to the common ancestry of retroviruses, 177 caulimoviruses, pseudoviruses, and metaviruses, J Virol, vol.91, pp.210-227, 2017.

J. N. Vo, P. R. Campbell, N. N. Mahfuz, R. Ramli, D. Pagendam et al., Characterization 179 of the banana streak virus capsid protein and mapping of the immunodominant continuous B-cell epitopes to the surface180 exposed N terminus, J Gen Virol, vol.97, p.22, 2016.

S. Sandmeyer, K. Patterson, and V. Bilanchone, Ty3, a position-specific retrotransposon in budding yeast, Microbiol 182 Spectr, vol.3, p.23, 2015.

A. C. Steven, J. F. Conway, N. Cheng, N. R. Watts, D. M. Belnap et al., , 2005.

, Structure, assembly, and antigenicity of hepatitis B virus capsid proteins, Adv Virus Res, vol.64, p.24

L. Menendez-arias, A. Sebastian-martin, and M. Alvarez, Hepatitis B viruses: reverse transcription a different way, Virus Res, vol.234, p.26, 2008.

R. Hull, Classifying reverse transcribing elements: a proposal and a challenge to the ICTV. International Committee on 188 Taxonomy of Viruses, Arch Virol, vol.146, p.27, 2001.

K. R. Richert-poggeler, F. Noreen, T. Schwarzacher, G. Harper, and T. Hohn, Induction of infectious petunia vein 190 clearing (pararetro) virus from endogenous provirus in petunia, Embo J, vol.22, p.28, 2003.

K. R. Richert-poggeler and R. J. Shepherd, Petunia vein-clearing virus: a plant pararetrovirus with the core 192 sequences for an integrase function, Virology, vol.236, p.29, 1997.

R. H. Miller and W. S. Robinson, Common evolutionary origin of hepatitis B virus and retroviruses, Proc Natl Acad, p.194, 1986.

U. Sci, , vol.83, p.30

S. Guindon, J. F. Dufayard, V. Lefort, M. Anisimova, W. Hordijk et al., New algorithms and methods to 196 estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0, Syst Biol, vol.59, pp.307-328, 2010.