M. C. Abt, P. T. Mckenney, and E. G. Pamer, Clostridium difficile colitis: pathogenesis and host defence, Nat. Rev. Microbiol, vol.14, pp.609-620, 2016.
DOI : 10.1038/nrmicro.2016.108

URL : http://europepmc.org/articles/pmc5109054?pdf=render

D. An and M. R. Parsek, The promise and peril of transcriptional profiling in biofilm communities, Curr. Opin. Microbiol, vol.10, pp.292-296, 2007.

J. R. Andreesen, M. Wagner, D. Sonntag, M. Kohlstock, C. Harms et al., Various functions of selenols and thiols in anaerobic gram-positive, amino acids-utilizing bacteria, Biofactors, vol.10, pp.263-270, 1999.

A. Antunes, E. Camiade, M. Monot, E. Courtois, F. Barbut et al., Global transcriptional control by glucose and carbon regulator CcpA in Clostridium difficile, Nucleic Acids Res, vol.40, pp.10701-10718, 2012.
DOI : 10.1093/nar/gks864

URL : https://hal.archives-ouvertes.fr/pasteur-01370790

C. Beloin, J. Valle, P. Latour-lambert, P. Faure, M. Kzreminski et al., Global impact of mature biofilm lifestyle on Escherichia coli K-12 gene expression, Mol. Microbiol, vol.51, pp.659-674, 2004.
DOI : 10.1046/j.1365-2958.2003.03865.x

URL : https://hal.archives-ouvertes.fr/pasteur-02080937

E. Bordeleau, L. C. Fortier, F. Malouin, and V. Burrus, c-di-GMP turnover in Clostridium difficile is controlled by a plethora of diguanylate cyclases and phosphodiesterases, PLoS Genet, vol.7, p.1002039, 2011.

E. Bordeleau, E. B. Purcell, D. A. Lafontaine, L. C. Fortier, R. Tamayo et al., Cyclic di-GMP riboswitch-regulated type IV pili contribute to aggregation of Clostridium difficile, J. Bacteriol, vol.197, pp.819-832, 2015.

L. Bouillaut, T. Dubois, A. L. Sonenshein, and B. Dupuy, Integration of metabolism and virulence in Clostridium difficile, Res. Microbiol, vol.166, pp.375-383, 2015.
DOI : 10.1016/j.resmic.2014.10.002

URL : http://europepmc.org/articles/pmc4398617?pdf=render

L. Bouillaut, W. T. Self, and A. L. Sonenshein, Proline-dependent regulation of Clostridium difficile stickland metabolism, J. Bacteriol, vol.195, pp.844-854, 2013.
DOI : 10.1128/jb.01492-12

URL : https://jb.asm.org/content/195/4/844.full.pdf

A. Bridier, F. Dubois-brissonnet, A. Boubetra, V. Thomas, and R. Briandet, The biofilm architecture of sixty opportunistic pathogens deciphered using a high throughput CLSM method, J. Microbiol. Methods, vol.82, pp.64-70, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01204254

A. M. Buckley, J. Spencer, D. Candlish, J. J. Irvine, and G. R. Douce, Infection of hamsters with the UK Clostridium difficile ribotype 027 outbreak strain R20291, J. Med. Microbiol, vol.60, pp.1174-1180, 2011.

V. Cafardi, M. Biagini, M. Martinelli, R. Leuzzi, J. T. Rubino et al., Identification of a novel zinc metalloprotease through a global analysis of Clostridium difficile extracellular proteins, PLoS One, vol.8, 2013.

L. S. Cairns, L. Hobley, and N. R. Stanley-wall, Biofilm formation by Bacillus subtilis: new insights into regulatory strategies and assembly mechanisms, Mol. Microbiol, vol.93, pp.587-598, 2014.
DOI : 10.1111/mmi.12697

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1111/mmi.12697

J. P. Carlier and N. Sellier, Gas chromatographic-mass spectral studies after methylation of metabolites produced by some anaerobic bacteria in spent media, J. Chromatogr, vol.493, pp.257-273, 1989.

M. Chu, M. J. Mallozzi, B. P. Roxas, L. Bertolo, M. A. Monteiro et al., A Clostridium difficile cell wall glycopolymer locus influences bacterial shape. Polysaccharide production and virulence, PLoS Pathog, vol.12, p.1005946, 2016.
DOI : 10.1371/journal.ppat.1005946

URL : https://journals.plos.org/plospathogens/article/file?id=10.1371/journal.ppat.1005946&type=printable

M. M. Collery, S. A. Kuehne, S. M. Mcbride, M. L. Kelly, M. Monot et al., What's a SNP between friends: the influence of single nucleotide polymorphisms on virulence and phenotypes of Clostridium difficile strain 630 and derivatives, Virulence, vol.8, pp.767-781, 2017.

G. S. Crowther, C. H. Chilton, S. L. Todhunter, S. Nicholson, J. Freeman et al., Development and validation of a chemostat gut model to study both planktonic and biofilm modes of growth of Clostridium difficile and human microbiota, PLoS One, vol.9, p.88396, 2014.

T. Dapa, R. Leuzzi, Y. K. Ng, S. T. Baban, R. Adamo et al., Multiple factors modulate biofilm formation by the anaerobic pathogen Clostridium difficile, J. Bacteriol, vol.195, pp.545-555, 2013.

T. Dapa and M. Unnikrishnan, Biofilm formation by Clostridium difficile, Gut Microbes, vol.4, pp.397-402, 2013.

L. F. Dawson, E. Valiente, A. Faulds-pain, E. H. Donahue, and B. W. Wren, Characterisation of Clostridium difficile biofilm formation, a role for Spo0A, PLoS One, vol.7, p.50527, 2012.

M. Dembek, L. Barquist, C. J. Boinett, A. K. Cain, M. Mayho et al., High-throughput analysis of gene essentiality and sporulation in Clostridium difficile, vol.6, p.2383, 2015.

A. Dhalluin, I. Bourgeois, M. Pestel-caron, E. Camiade, G. Raux et al., Acd, a peptidoglycan hydrolase of Clostridium difficile with N-acetylglucosaminidase activity, Microbiology, vol.151, pp.2343-2351, 2005.

S. S. Dineen, S. M. Mcbride, and A. L. Sonenshein, Integration of metabolism and virulence by Clostridium difficile Cody, J. Bacteriol, vol.192, pp.5350-5362, 2010.

T. Dubois, M. Dancer-thibonnier, M. Monot, A. Hamiot, L. Bouillaut et al., Control of Clostridium difficile physiopathology in response to cysteine availability, Infect. Immun, vol.84, pp.2389-2405, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-01370880

A. N. Edwards, K. L. Nawrocki, and S. M. Mcbride, Conserved oligopeptide permeases modulate sporulation initiation in Clostridium difficile, Infect. Immun, vol.82, pp.4276-4291, 2014.
DOI : 10.1128/iai.02323-14

URL : https://iai.asm.org/content/82/10/4276.full.pdf

S. R. Elsden, H. , and M. G. , Volatile acid production from threonine, valine, leucine and isoleucine by clostridia, Arch. Microbiol, vol.117, pp.165-172, 1978.
DOI : 10.1007/bf00402304

R. P. Fagan and N. F. Fairweather, Clostridium difficile has two parallel and essential Sec secretion systems, J. Biol. Chem, vol.286, pp.27483-27493, 2011.
DOI : 10.1074/jbc.m111.263889

URL : http://www.jbc.org/content/286/31/27483.full.pdf

J. A. Ferreyra, K. J. Wu, A. J. Hryckowian, D. M. Bouley, B. C. Weimer et al., Gut microbiota-produced succinate promotes C. difficile infection after antibiotic treatment or motility disturbance, Cell Host Microbe, vol.16, pp.770-777, 2014.
DOI : 10.1016/j.chom.2014.11.003

URL : https://doi.org/10.1016/j.chom.2014.11.003

S. A. Frese, D. A. Mackenzie, D. A. Peterson, R. Schmaltz, T. Fangman et al., Molecular characterization of host-specific biofilm formation in a vertebrate gut symbiont, PLoS Genet, vol.9, p.1004057, 2013.

J. Ganeshapillai, E. Vinogradov, J. Rousseau, J. S. Weese, and M. A. Monteiro, Clostridium difficile cell-surface polysaccharides composed of pentaglycosyl and hexaglycosyl phosphate repeating units, Carbohydr. Res, vol.343, pp.703-710, 2008.
DOI : 10.1016/j.carres.2008.01.002

J. M. Ghigo, Natural conjugative plasmids induce bacterial biofilm development, Nature, vol.412, pp.442-445, 2001.
DOI : 10.1038/35086581

B. P. Girinathan, J. Ou, B. Dupuy, G. , and R. , Pleiotropic roles of Clostridium difficile sin locus, PLoS Pathog, vol.14, p.1006940, 2018.
DOI : 10.1371/journal.ppat.1006940

URL : https://journals.plos.org/plospathogens/article/file?id=10.1371/journal.ppat.1006940&type=printable

M. Gross, S. E. Cramton, F. Gotz, and A. Peschel, Key role of teichoic acid net charge in Staphylococcus aureus colonization of artificial surfaces, Infect. Immun, vol.69, pp.3423-3426, 2001.

L. Hall-stoodley and P. Stoodley, Evolving concepts in biofilm infections, Cell. Microbiol, vol.11, 2009.

P. J. Hensbergen, O. I. Klychnikov, D. Bakker, I. Dragan, M. L. Kelly et al., Clostridium difficile secreted Pro-Pro endopeptidase PPEP-1 (ZMP1/CD2830) modulates adhesion through cleavage of the collagen binding protein CD2831, FEBS Lett, vol.589, pp.3952-3958, 2015.

P. J. Hensbergen, O. I. Klychnikov, D. Bakker, V. J. Van-winden, N. Ras et al., A novel secreted metalloprotease (CD2830) from Clostridium difficile cleaves specific proline sequences in LPXTG cell surface proteins, Mol. Cell. Proteomics, vol.13, pp.1231-1244, 2014.

L. Hobley, C. Harkins, C. E. Macphee, and N. R. Stanley-wall, Giving structure to the biofilm matrix: an overview of individual strategies and emerging common themes, FEMS Microbiol. Rev, vol.39, pp.649-669, 2015.

G. A. James, L. Chesnel, L. Boegli, E. Delancey-pulcini, S. Fisher et al., Analysis of Clostridium difficile biofilms: imaging and antimicrobial treatment, J. Antimicrob. Chemother, vol.73, pp.102-108, 2017.

C. Janoir, Virulence factors of Clostridium difficile and their role during infection, Anaerobe, vol.37, pp.13-24, 2016.

C. Janoir, C. Deneve, S. Bouttier, F. Barbut, S. Hoys et al., Adaptive strategies and pathogenesis of Clostridium difficile from in vivo transcriptomics, Infect. Immun, vol.81, pp.3757-3769, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-01370786

S. Karlsson, L. G. Burman, A. , and T. , Induction of toxins in Clostridium difficile is associated with dramatic changes of its metabolism, Microbiology, vol.154, pp.3430-3436, 2008.

S. Karlsson, A. Lindberg, E. Norin, L. G. Burman, A. et al., , 2000.

, butyric acid, and other short-chain fatty acids are coordinately expressed and down-regulated by cysteine in Clostridium difficile, Infect. Immun, vol.68, pp.5881-5888

M. Köpke, M. Straub, D. , and P. , Clostridium difficile is an autotrophic bacterial pathogen, PLoS One, vol.8, p.62157, 2013.

A. Kovacs-simon, R. Leuzzi, M. Kasendra, N. Minton, R. W. Titball et al., Lipoprotein CD0873 is a novel adhesin of Clostridium difficile, J. Infect. Dis, vol.210, pp.274-284, 2014.

T. D. Lawley, S. Clare, A. W. Walker, M. D. Stares, T. R. Connor et al., Targeted restoration of the intestinal microbiota with a simple, defined bacteriotherapy resolves relapsing Clostridium difficile disease in mice, PLoS Pathog, vol.8, p.1002995, 2012.

B. A. Lazazzera, Lessons from DNA microarray analysis: the gene expression profile of biofilms, Curr. Opin. Microbiol, vol.8, pp.222-227, 2005.

D. A. Leffler, L. , and J. T. , Clostridium difficile Infection, N. Engl. J. Med, vol.373, pp.287-288, 2015.

K. J. Livak and T. D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2 ?CT method, Methods, vol.25, pp.402-408, 2001.

C. Y. Loo, K. Mitrakul, I. B. Voss, C. V. Hughes, and N. Ganeshkumar, Involvement of an inducible fructose phosphotransferase operon in Streptococcus gordonii biofilm formation, J. Bacteriol, vol.185, pp.6241-6254, 2003.

G. A. Maldarelli, K. H. Piepenbrink, A. J. Scott, J. A. Freiberg, Y. Song et al., Type IV pili promote early biofilm formation by Clostridium difficile, Pathog. Dis, vol.74, p.61, 2016.

I. Martin-verstraete, J. Peltier, and B. Dupuy, The regulatory networks that control Clostridium difficile toxin synthesis, Toxins, vol.8, p.153, 2016.

H. Mathur, M. C. Rea, P. D. Cotter, C. Hill, R. et al., The efficacy of thuricin CD, tigecycline, vancomycin, teicoplanin, rifampicin and nitazoxanide, independently and in paired combinations against Clostridium difficile biofilms and planktonic cells, Gut Pathog, vol.8, p.20, 2016.

S. M. Mcbride and A. L. Sonenshein, The dlt operon confers resistance to cationic antimicrobial peptides in Clostridium difficile, Microbiology, vol.157, pp.1457-1465, 2011.

S. Melville, C. , and L. , Type IV pili in Gram-positive bacteria. Microbiol, Mol. Biol. Rev, vol.77, pp.323-341, 2013.

T. Murata, M. Kawano, K. Igarashi, I. Yamato, and Y. Kakinuma, Catalytic properties of Na(+)-translocating V-ATPase in Enterococcus hirae, Biochim. Biophys. Acta, vol.1505, pp.75-81, 2001.

K. L. Nawrocki, A. N. Edwards, N. Daou, L. Bouillaut, and S. M. Mcbride, , 2016.

, CodY-dependent regulation of sporulation in Clostridium difficile, J. Bacteriol, vol.198, pp.2113-2130

K. M. Ng, J. A. Ferreyra, S. K. Higginbottom, J. B. Lynch, P. C. Kashyap et al., Microbiota-liberated host sugars facilitate postantibiotic expansion of enteric pathogens, Nature, vol.502, pp.96-99, 2013.

S. R. Palmer, P. J. Crowley, M. W. Oli, M. A. Ruelf, S. M. Michalek et al., YidC1 and YidC2 are functionally distinct proteins involved in protein secretion, biofilm formation and cariogenicity of Streptococcus mutans, Microbiology, vol.158, pp.1702-1712, 2012.

V. Pantaleon, S. Bouttier, A. P. Soavelomandroso, C. Janoir, C. et al., Biofilms of Clostridium species, Anaerobe, vol.30, pp.193-198, 2014.

V. Pantaleon, A. P. Soavelomandroso, S. Bouttier, R. Briandet, B. Roxas et al., The Clostridium difficile protease Cwp84 modulates both biofilm formation and cell-surface properties, PLoS One, vol.10, p.124971, 2015.

M. E. Pedrido, P. De-ona, W. Ramirez, C. Lenini, A. Goni et al., Spo0A links de novo fatty acid synthesis to sporulation and biofilm development in Bacillus subtilis, Mol. Microbiol, vol.87, pp.348-367, 2013.

J. Peltier, H. A. Shaw, E. C. Couchman, L. F. Dawson, L. Yu et al., Cyclic diGMP regulates production of sortase substrates of Clostridium difficile and their surface exposure through ZmpI proteasemediated cleavage, J. Biol. Chem, vol.290, pp.24453-24469, 2015.

L. J. Pettit, H. P. Browne, L. Yu, W. K. Smits, R. P. Fagan et al., Functional genomics reveals that Clostridium difficile Spo0A coordinates sporulation, virulence and metabolism, BMC Genomics, vol.15, p.160, 2014.

E. B. Purcell, R. W. Mckee, E. Bordeleau, V. Burrus, and R. Tamayo, Regulation of Type IV Pili contributes to surface behaviors of historical and epidemic strains of Clostridium difficile, J. Bacteriol, vol.198, pp.565-577, 2015.

E. B. Purcell, R. W. Mckee, D. S. Courson, E. M. Garrett, S. M. Mcbride et al., A nutrient-regulated cyclic diguanylate phosphodiesterase controls Clostridium difficile biofilm and toxin production during stationary phase, Infect. Immun, vol.85, pp.347-364, 2017.

E. B. Purcell, R. W. Mckee, S. M. Mcbride, C. M. Waters, and R. Tamayo, Cyclic diguanylate inversely regulates motility and aggregation in Clostridium difficile, J. Bacteriol, vol.194, pp.3307-3316, 2012.

C. W. Reid, E. Vinogradov, J. Li, H. C. Jarrell, S. M. Logan et al., Structural characterization of surface glycans from Clostridium difficile, Carbohydr. Res, vol.354, pp.65-73, 2012.

D. Ren, L. A. Bedzyk, P. Setlow, S. M. Thomas, R. W. Ye et al., Gene expression in Bacillus subtilis surface biofilms with and without sporulation and the importance of yveR for biofilm maintenance, Biotechnol. Bioeng, vol.86, pp.344-364, 2004.

S. Renier, C. Chagnot, J. Deschamps, N. Caccia, J. Szlavik et al., Inactivation of the SecA2 protein export pathway in Listeria monocytogenes promotes cell aggregation, impacts biofilm architecture and induces biofilm formation in environmental condition, Environ. Microbiol, vol.16, pp.1176-1192, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01204380

A. Resch, R. Rosenstein, C. Nerz, G. , and F. , Differential gene expression profiling of Staphylococcus aureus cultivated under biofilm and planktonic conditions, Appl. Environ. Microbiol, vol.71, pp.2663-2676, 2005.

A. R. Richardson, G. A. Somerville, and A. L. Sonenshein, Regulating the intersection of metabolism and pathogenesis in Gram-positive bacteria, 2015.

. Microbiol and . Spectr, , vol.3, pp.4-2014

L. Saujet, M. Monot, B. Dupuy, O. Soutourina, and I. Martin-verstraete, The key sigma factor of transition phase, SigH, controls sporulation, metabolism, and virulence factor expression in Clostridium difficile, J. Bacteriol, vol.193, pp.3186-3196, 2011.
URL : https://hal.archives-ouvertes.fr/pasteur-01370840

L. Saujet, F. C. Pereira, M. Serrano, O. Soutourina, M. Monot et al., Genome-wide analysis of cell type-specific gene transcription during spore formation in Clostridium difficile, PLoS Genet, vol.9, p.1003756, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-01370780

K. Schuchmann and V. Müller, Autotrophy at the thermodynamic limit of life: a model for energy conservation in acetogenic bacteria, Nat. Rev. Microbiol, vol.12, pp.809-821, 2014.

E. G. Semenyuk, M. L. Laning, J. Foley, P. F. Johnston, K. L. Knight et al., Spore formation and toxin production in Clostridium difficile biofilms, PLoS One, vol.9, p.87757, 2014.

E. G. Semenyuk, V. A. Poroyko, P. F. Johnston, S. E. Jones, K. L. Knight et al., Analysis of bacterial communities during Clostridium difficile infection in the mouse, Infect. Immun, vol.83, pp.4383-4391, 2015.

K. Shimazu, Y. Takahashi, Y. Uchikawa, Y. Shimazu, A. Yajima et al., Identification of the Streptococcus gordonii glmM gene encoding phosphoglucosamine mutase and its role in bacterial cell morphology, biofilm formation, and sensitivity to antibiotics, FEMS Immunol. Med. Microbiol, vol.53, pp.166-177, 2008.

W. K. Smits, D. Lyras, D. B. Lacy, M. H. Wilcox, and E. J. Kuijper, , 2016.

, Clostridium difficile infection, Nat. Rev. Dis. Primers, vol.2, p.16020

A. P. Soavelomandroso, F. Gaudin, S. Hoys, V. Nicolas, G. Vedantam et al., Biofilm structures in a mono-associated mouse model of Clostridium difficile, Infection. Front. Microbiol, vol.8, p.2086, 2017.

O. A. Soutourina, M. Monot, P. Boudry, L. Saujet, C. Pichon et al., Genome-wide identification of regulatory RNAs in the human pathogen Clostridium difficile, PLoS Genet, vol.9, p.1003493, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-01370770

C. M. Theriot, Y. , and V. B. , Interactions between the gastrointestinal microbiome and Clostridium difficile, Annu. Rev. Microbiol, vol.69, pp.445-461, 2015.

E. Valiente, L. Bouche, P. Hitchen, A. Faulds-pain, M. Songane et al., Role of glycosyltransferases modifying type B flagellin of emerging hypervirulent Clostridium difficile lineages and their impact on motility and biofilm formation, J. Biol. Chem, vol.291, pp.25450-25461, 2016.

J. Valle, A. Toledo-arana, C. Berasain, J. M. Ghigo, B. Amorena et al., SarA and not sigmaB is essential for biofilm development by Staphylococcus aureus, Microbiol. Spectr, vol.48, pp.1075-1087, 2003.

J. Walter, D. M. Loach, M. Alqumber, C. Rockel, C. Hermann et al., D-alanyl ester depletion of teichoic acids in Lactobacillus reuteri 100-23 results in impaired colonization of the mouse gastrointestinal tract, Environ. Microbiol, vol.9, pp.1750-1760, 2007.

S. E. Willing, T. Candela, H. A. Shaw, Z. Seager, S. Mesnage et al., Clostridium difficile surface proteins are anchored to the cell wall using CWB2 motifs that recognise the anionic polymer PSII, Mol. Microbiol, vol.96, pp.596-608, 2015.

Y. M. Zhang, R. , and C. O. , Membrane lipid homeostasis in bacteria, Nat. Rev. Microbiol, vol.6, pp.222-233, 2008.