A. Pichlmair and C. Reis-e-sousa, Innate recognition of viruses, Immunity, vol.27, pp.370-383, 2007.

A. Baum, R. Sachidanandam, and A. Garcia-sastre, Preference of RIG-I for short viral RNA molecules in infected cells revealed by next-generation sequencing, Proc. Natl. Acad. Sci. U. S. A, vol.107, pp.16303-16308, 2010.

H. Kato, O. Takeuchi, S. Sato, M. Yoneyama, M. Yamamoto et al., Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses, Nature, vol.441, pp.101-105, 2006.

M. J. De-veer, M. Holko, M. Frevel, E. Walker, S. Der et al., Functional classification of interferon-stimulated genes identified using microarrays, J. Leukoc. Biol, vol.69, pp.912-920, 2001.

J. W. Schoggins, S. J. Wilson, M. Panis, M. Y. Murphy, C. T. Jones et al., A diverse range of gene products are effectors of the type I interferon antiviral response, Nature, vol.472, pp.481-485, 2011.

M. Munir, TRIM proteins: another class of viral victims, Sci. Signal, vol.3, p.2, 2010.

A. J. Sadler and B. R. Williams, Interferon-inducible antiviral effectors, Nat. Rev. Immunol, vol.8, pp.559-568, 2008.

M. J. Kim, S. Y. Hwang, T. Imaizumi, and J. Y. Yoo, Negative feedback regulation of RIG-I-mediated antiviral signaling by interferon-induced ISG15 conjugation, J. Virol, vol.82, pp.1474-1483, 2008.

K. Ozato, D. M. Shin, T. H. Chang, H. C. Morse, and I. , TRIM family proteins and their emerging roles in innate immunity, Nat. Rev. Immunol, vol.8, pp.849-860, 2008.

T. Saitoh, T. Satoh, N. Yamamoto, S. Uematsu, O. Takeuchi et al., Antiviral protein Viperin promotes Toll-like receptor 7-and Toll-like receptor 9-mediated type I interferon production in plasmacytoid dendritic cells, Immunity, vol.34, pp.352-363, 2011.

D. C. Blomstrom, D. Fahey, R. Kutny, B. D. Korant, E. Knight et al., Molecular characterization of the interferon-induced 15-kDa protein. Molecular cloning and nucleotide and amino acid sequence, J. Biol. Chem, vol.261, pp.8811-8816, 1986.

B. D. Korant, D. C. Blomstrom, G. J. Jonak, E. Knight, and J. , Interferoninduced proteins. Purification and characterization of a 15,000-dalton protein from human and bovine cells induced by interferon, J. Biol. Chem, vol.259, pp.14835-14839, 1984.

E. Knight, . Jr, D. Fahey, B. Cordova, M. Hillman et al., A 15-kDa interferon-induced protein is derived by COOH-terminal processing of a 17-kDa precursor, J. Biol. Chem, vol.263, pp.4520-4522, 1988.

A. L. Haas, P. Ahrens, P. M. Bright, and H. Ankel, Interferon induces a 15-kilodalton protein exhibiting marked homology to ubiquitin, J. Biol. Chem, vol.262, pp.11315-11323, 1987.

K. R. Loeb and A. L. Haas, The interferon-inducible 15-kDa ubiquitin homolog conjugates to intracellular proteins, J. Biol. Chem, vol.267, pp.7806-7813, 1992.

E. Knight, . Jr, and B. Cordova, IFN-induced 15-kDa protein is released from human lymphocytes and monocytes, J. Immunol, vol.146, pp.2280-2284, 1991.

M. Recht, E. C. Borden, E. Knight, and J. , A human 15-kDa IFN-induced protein induces the secretion of IFN-gamma, J. Immunol, vol.147, pp.2617-2623, 1991.

J. D'cunha, E. Knight, . Jr, A. L. Haas, R. L. Truitt et al., Immunoregulatory properties of ISG15, an interferon-induced cytokine, Proc. Natl. Acad. Sci. U. S. A, vol.93, pp.211-215, 1996.

J. D'cunha, S. Ramanujam, R. J. Wagner, P. L. Witt, E. Knight et al., In vitro and in vivo secretion of human ISG15, an IFN-induced immunomodulatory cytokine, J. Immunol, vol.157, pp.4100-4108, 1996.

Y. J. Jeon, H. M. Yoo, and C. H. Chung, ISG15 and immune diseases, Biochim. Biophys. Acta, vol.1802, pp.485-496, 2010.

J. Narasimhan, J. L. Potter, and A. L. Haas, Conjugation of the 15-kDa interferon-induced ubiquitin homolog is distinct from that of ubiquitin, J. Biol. Chem, vol.271, pp.324-330, 1996.

B. Skaug and Z. J. Chen, Emerging role of ISG15 in antiviral immunity, Cell, vol.143, pp.187-190, 2010.

C. Zhao, C. Denison, J. M. Huibregtse, S. Gygi, and R. M. Krug, Human ISG15 conjugation targets both IFN-induced and constitutively expressed proteins functioning in diverse cellular pathways, Proc. Natl. Acad. Sci. U. S. A, vol.102, pp.10200-10205, 2005.

Y. J. Jeon, J. S. Choi, J. Y. Lee, K. R. Yu, S. M. Kim et al., ISG15 modification of filamin B negatively regulates the type I interferon-induced JNK signalling pathway, EMBO Rep, vol.10, pp.374-380, 2009.

F. Okumura, W. Zou, and D. E. Zhang, ISG15 modification of the eIF4E cognate 4EHP enhances cap structure-binding activity of 4EHP, Genes Dev, vol.21, pp.255-260, 2007.

H. X. Shi, K. Yang, X. Liu, X. Y. Liu, B. Wei et al., Positive regulation of interferon regulatory factor 3 activation by Herc5 via ISG15 modification, Mol. Cell. Biol, vol.30, pp.2424-2436, 2010.

N. V. Giannakopoulos, E. Arutyunova, C. Lai, D. J. Lenschow, A. L. Haas et al., ISG15 Arg151 and the ISG15-conjugating enzyme UbE1L are important for innate immune control of Sindbis virus, J. Virol, vol.83, pp.1602-1610, 2009.

D. J. Lenschow, N. V. Giannakopoulos, L. J. Gunn, C. Johnston, A. K. O'guin et al., Identification of interferonstimulated gene 15 as an antiviral molecule during Sindbis virus infection in vivo, J. Virol, vol.79, pp.13974-13983, 2005.

D. J. Lenschow, C. Lai, N. Frias-staheli, N. V. Giannakopoulos, A. Lutz et al., IFNstimulated gene 15 functions as a critical antiviral molecule against influenza, herpes, and Sindbis viruses, Proc. Natl. Acad. Sci. U. S. A, vol.104, pp.1371-1376, 2007.

T. Y. Hsiang, C. Zhao, and R. M. Krug, Interferon-induced ISG15 conjugation inhibits influenza A virus gene expression and replication in human cells, J. Virol, vol.83, pp.5971-5977, 2009.

C. Lai, J. J. Struckhoff, J. Schneider, L. Martinez-sobrido, T. Wolff et al., Mice lacking the ISG15 E1 enzyme UbE1L demonstrate increased susceptibility to both mouseadapted and non-mouse-adapted influenza B virus infection, J. Virol, vol.83, pp.1147-1151, 2009.

Y. Tang, G. Zhong, L. Zhu, X. Liu, Y. Shan et al., Herc5 attenuates influenza A virus by catalyzing ISGylation of viral NS1 protein, J. Immunol, vol.184, pp.5777-5790, 2010.

C. Zhao, T. Y. Hsiang, R. L. Kuo, and R. M. Krug, ISG15 conjugation system targets the viral NS1 protein in influenza A virus-infected cells, Proc. Natl. Acad. Sci. U. S. A, vol.107, pp.2253-2258, 2010.

O. A. Malakhova and D. E. Zhang, ISG15 inhibits Nedd4 ubiquitin E3 activity and enhances the innate antiviral response, J. Biol. Chem, vol.283, pp.8783-8787, 2008.

A. Okumura, P. M. Pitha, and R. N. Harty, ISG15 inhibits Ebola VP40 VLP budding in an L-domain-dependent manner by blocking Nedd4 ligase activity, Proc. Natl. Acad. Sci. U. S. A, vol.105, pp.3974-3979, 2008.

M. S. Kunzi and P. M. Pitha, Role of interferon-stimulated gene ISG-15 in the interferon-omega-mediated inhibition of human immunodeficiency virus replication, J. Interferon Cytokine Res, vol.16, pp.919-927, 1996.

A. Okumura, G. Lu, I. Pitha-rowe, and P. M. Pitha, Innate antiviral response targets HIV-1 release by the induction of ubiquitin-like protein ISG15, Proc. Natl. Acad. Sci. U. S. A, vol.103, pp.1440-1445, 2006.

A. Pincetic, Z. Kuang, E. J. Seo, and J. Leis, The interferon-induced gene ISG15 blocks retrovirus release from cells late in the budding process, J. Virol, vol.84, pp.4725-4736, 2010.

S. W. Werneke, C. Schilte, A. Rohatgi, K. J. Monte, A. Michault et al., ISG15 is critical in the control of Chikungunya virus infection independent of UbE1L mediated conjugation, PLoS Pathog, vol.7, p.1002322, 2011.
URL : https://hal.archives-ouvertes.fr/pasteur-01402061

N. Arnaud, S. Dabo, D. Akazawa, M. Fukasawa, F. Shinkai-ouchi et al., Hepatitis C virus reveals a novel early control in acute immune response, PLoS Pathog, vol.7, p.1002289, 2011.
URL : https://hal.archives-ouvertes.fr/pasteur-00635743

M. J. Kim and J. Y. Yoo, Inhibition of hepatitis C virus replication by IFN-mediated ISGylation of HCV-NS5A, J. Immunol, vol.185, pp.4311-4318, 2010.

S. Guerra, A. Caceres, K. P. Knobeloch, I. Horak, and M. Esteban, Vaccinia virus E3 protein prevents the antiviral action of ISG15, PLoS Pathog, vol.4, p.1000096, 2008.

W. Yuan and R. M. Krug, Influenza B virus NS1 protein inhibits conjugation of the interferon (IFN)-induced ubiquitin-like ISG15 protein, EMBO J, vol.20, pp.362-371, 2001.

M. D. Arguello and J. Hiscott, Ub surprised: viral ovarian tumor domain proteases remove ubiquitin and ISG15 conjugates, Cell Host Microbe, vol.2, pp.367-369, 2007.

M. A. Clementz, Z. Chen, B. S. Banach, Y. Wang, L. Sun et al., Deubiquitinating and interferon antagonism activities of coronavirus papain-like proteases, J. Virol, vol.84, pp.4619-4629, 2010.

N. Frias-staheli, N. V. Giannakopoulos, M. Kikkert, S. L. Taylor, A. Bridgen et al., Ovarian tumor domaincontaining viral proteases evade ubiquitin-and ISG15-dependent innate immune responses, Cell Host Microbe, vol.2, pp.404-416, 2007.

H. A. Lindner, V. Lytvyn, H. Qi, P. Lachance, E. Ziomek et al., Selectivity in ISG15 and ubiquitin recognition by the SARS coronavirus papain-like protease, Arch. Biochem. Biophys, vol.466, pp.8-14, 2007.

E. R. Verrier, C. Langevin, A. Benmansour, and P. Boudinot, Early antiviral response and virus-induced genes in fish, Dev. Comp. Immunol, vol.35, pp.1204-1214, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01000200

J. Zou and C. J. Secombes, Teleost fish interferons and their role in immunity, Dev. Comp. Immunol, vol.35, pp.1376-1387, 2011.

O. J. Hamming, G. Lutfalla, J. P. Levraud, and R. Hartmann, Crystal structure of zebrafish interferons I and II reveals conservation of type I interferon structure in vertebrates, J. Virol, vol.85, pp.8181-8187, 2011.

C. O'farrell, N. Vaghefi, M. Cantonnet, B. Buteau, P. Boudinot et al., Survey of transcript expression in rainbow trout leukocytes reveals a major contribution of interferon-responsive genes in the early response to a rhabdovirus infection, J. Virol, vol.76, pp.8040-8049, 2002.

M. Liu, R. Reimschuessel, and B. A. Hassel, Molecular cloning of the fish interferon stimulated gene, 15 kDa (ISG15) orthologue: a ubiquitin-like gene induced by nephrotoxic damage, Gene, vol.298, pp.129-139, 2002.

Y. B. Zhang, Y. L. Wang, and J. F. Gui, Identification and characterization of two homologues of interferon-stimulated gene ISG15 in crucian carp, Fish Shellfish Immunol, vol.23, pp.52-61, 2007.

G. W. Baeck, J. W. Kim, and C. I. Park, Identification and expression analysis of an interferon stimulated gene 15 (ISG15) from black rockfish, Sebastes schlegeli, Fish Shellfish Immunol, vol.25, pp.679-681, 2008.

M. Yasuike, H. Kondo, I. Hirono, and T. Aoki, Identification and characterization of Japanese flounder, Paralichthys olivaceus interferonstimulated gene 15 (Jf-ISG15), Comp. Immunol. Microbiol. Infect. Dis, vol.34, pp.83-91, 2011.

C. S. Liu, Y. Sun, M. Zhang, and L. Sun, Identification and analysis of a Sciaenops ocellatus ISG15 homologue that is involved in host immune defense against bacterial infection, Fish Shellfish Immunol, vol.29, pp.167-174, 2010.

T. P. Rokenes, R. Larsen, and B. Robertsen, Atlantic salmon ISG15: expression and conjugation to cellular proteins in response to interferon, double-stranded RNA and virus infections, Mol. Immunol, vol.44, pp.950-959, 2007.

C. Furnes, O. Kileng, C. H. Rinaldo, M. Seppola, I. Jensen et al., Atlantic cod (Gadus morhua L.) possesses three homologues of ISG15 with different expression kinetics and conjugation properties, Dev. Comp. Immunol, vol.33, pp.1239-1246, 2009.

M. Seppola, J. Stenvik, K. Steiro, T. Solstad, B. Robertsen et al., Sequence and expression analysis of an interferon stimulated gene (ISG15) from Atlantic cod (Gadus morhua L.), Dev. Comp. Immunol, vol.31, pp.156-171, 2007.

W. Wang, M. Zhang, Z. Z. Xiao, and L. Sun, Cynoglossus semilaevis ISG15: a secreted cytokine-like protein that stimulates antiviral immune response in a LRGG motif-dependent manner, PLoS One, vol.7, p.44884, 2012.

S. Biacchesi, M. Leberre, A. Lamoureux, Y. Louise, E. Lauret et al., Mitochondrial antiviral signaling protein plays a major role in induction of the fish innate immune response against RNA and DNA viruses, J. Virol, vol.83, pp.7815-7827, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02663722

K. Brzozka, S. Finke, and K. K. Conzelmann, Identification of the rabies virus alpha/beta interferon antagonist: phosphoprotein P interferes with phosphorylation of interferon regulatory factor 3, J. Virol, vol.79, pp.7673-7681, 2005.

K. Brzozka, S. Finke, and K. K. Conzelmann, Inhibition of interferon signaling by rabies virus phosphoprotein P: activation-dependent binding of STAT1 and STAT2, J. Virol, vol.80, pp.2675-2683, 2006.

M. K. Chelbi-alix, A. Vidy, E. Bougrini, J. Blondel, and D. , Rabies viral mechanisms to escape the IFN system: the viral protein P interferes with IRF-3, Stat1, and PML nuclear bodies, J. Interferon Cytokine Res, vol.26, pp.271-280, 2006.
URL : https://hal.archives-ouvertes.fr/inserm-00091617

M. K. Choi, C. H. Moon, M. S. Ko, U. H. Lee, W. J. Cho et al., A nuclear localization of the infectious haematopoietic necrosis virus NV protein is necessary for optimal viral growth, PLoS One, vol.6, p.22362, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02650885

M. S. Kim and K. H. Kim, Effects of NV gene knock-out recombinant viral hemorrhagic septicemia virus (VHSV) on Mx gene expression in Epithelioma papulosum cyprini (EPC) cells and olive flounder (Paralichthys olivaceus), Fish Shellfish Immunol, vol.32, pp.459-463, 2012.

M. I. Thoulouze, E. Bouguyon, C. Carpentier, and M. Bremont, Essential role of the NV protein of novirhabdovirus for pathogenicity in rainbow trout, J. Virol, vol.78, pp.4098-4107, 2004.
URL : https://hal.archives-ouvertes.fr/hal-02676164

A. Vidy, M. Chelbi-alix, and D. Blondel, Rabies virus P protein interacts with STAT1 and inhibits interferon signal transduction pathways, J. Virol, vol.79, pp.14411-14420, 2005.
URL : https://hal.archives-ouvertes.fr/hal-02682512

A. Vidy, J. Bougrini, M. K. Chelbi-alix, and D. Blondel, The nucleocytoplasmic rabies virus P protein counteracts interferon signaling by inhibiting both nuclear accumulation and DNA binding of STAT1, J. Virol, vol.81, pp.4255-4263, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-00170762

M. U. Gack, Y. C. Shin, C. H. Joo, T. Urano, C. Liang et al., TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity, Nature, vol.446, pp.916-920, 2007.

P. Boudinot, L. M. Van-der-aa, L. Jouneau, D. Pasquier, L. Pontarotti et al., Origin and evolution of TRIM proteins: new insights from the complete TRIM repertoire of zebrafish and pufferfish, PLoS One, vol.6, p.22022, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00831143

A. Reymond, G. Meroni, A. Fantozzi, G. Merla, S. Cairo et al., The tripartite motif family identifies cell compartments, EMBO J, vol.20, pp.2140-2151, 2001.

L. A. Durfee, N. Lyon, K. Seo, and J. M. Huibregtse, The ISG15 conjugation system broadly targets newly synthesized proteins: implications for the antiviral function of ISG15, Mol. Cell, vol.38, pp.722-732, 2010.

P. Boudinot, P. Massin, M. Blanco, S. Riffault, and A. Benmansour, vig-1, a new fish gene induced by the rhabdovirus glycoprotein, has a virusinduced homologue in humans and shares conserved motifs with the MoaA family, J. Virol, vol.73, pp.1846-1852, 1999.
URL : https://hal.archives-ouvertes.fr/hal-02697891

D. J. Lenschow, Antiviral properties of ISG15, Viruses, vol.2, pp.2154-2168, 2010.

A. Osiak, O. Utermohlen, S. Niendorf, I. Horak, and K. P. Knobeloch, ISG15, an interferon-stimulated ubiquitin-like protein, is not essential for STAT1 signaling and responses against vesicular stomatitis and lymphocytic choriomeningitis virus, Mol. Cell. Biol, vol.25, pp.6338-6345, 2005.

K. I. Kim, M. Yan, O. Malakhova, J. K. Luo, M. F. Shen et al., Ube1L and protein ISGylation are not essential for alpha/beta interferon signaling, Mol. Cell. Biol, vol.26, pp.472-479, 2006.

D. Bogunovic, M. Byun, L. A. Durfee, A. Abhyankar, O. Sanal et al., Mycobacterial disease and impaired IFNgamma immunity in humans with inherited ISG15 deficiency, vol.337, pp.1684-1688, 2012.

J. B. Fan and D. E. Zhang, ISG15 regulates IFN-? immunity in human mycobacterial disease, Cell Res, vol.23, pp.173-175, 2013.

M. W. Woods, J. N. Kelly, C. J. Hattlmann, J. G. Tong, L. S. Xu et al., Human HERC5 restricts an early stage of HIV-1 assembly by a mechanism correlating with the ISGylation of Gag, Retrovirology, vol.8, p.95, 2011.

J. A. Pulit-penaloza, S. V. Scherbik, and M. A. Brinton, Type 1 IFNindependent activation of a subset of interferon stimulated genes in West Nile virus Eg101-infected mouse cells, Virology, vol.425, pp.82-94, 2012.

B. Sun, I. Skjaeveland, T. Svingerud, J. Zou, J. Jorgensen et al., Antiviral activity of salmonid gamma interferon against infectious pancreatic necrosis virus and salmonid alphavirus and its dependency on type I interferon, J. Virol, vol.85, pp.9188-9198, 2011.