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RÉSUMÉ

Cette thèse se compose de deux parties. Dans la première partie, nous étudions les stratégies de temps
minimum pour le traitement de la pollution dans de grandes ressources en eau, par exemple des lacs
ou réservoirs naturels, à l’aide d’un bioréacteur continu qui fonctionne à un état quasi stationnaire. On
contrôle le débit d’entrée d’eau au bioréacteur, dont la sortie revient à la ressource avec le même débit.
Nous disposons de l’hypothèse d’homogénéité de la concentration de polluant dans la ressource en pro-
posant trois modèles spatialement structurés. Le premier modèle considère deux zones connectées l’une
à l’autre par diffusion et seulement une d’entre elles connectée au bioréacteur. Avec l’aide du Principe
du Maximum de Pontryagin, nous montrons que le contrôle optimal en boucle fermée dépend seulement
des mesures de pollution dans la zone traitée, sans influence des paramètres de volume, diffusion, ou
la concentration dans la zone non traitée. Nous montrons que l’effet d’une pompe de recirculation qui
aide à homogénéiser les deux zones est avantageux si opérée à vitesse maximale. Nous prouvons que
la famille de fonctions de temps minimal en fonction du paramètre de diffusion est décroissante. Le
deuxième modèle consiste en deux zones connectées l’une à l’autre par diffusion et les deux connec-
tées au bioréacteur. Ceci est un problème dont l’ensemble des vitesses est non convexe, pour lequel il
n’est pas possible de prouver directement l’existence des solutions. Nous surmontons cette difficulté et
résolvons entièrement le problème étudié en appliquant le principe de Pontryagin au problème de con-
trôle relaxé associé, obtenant un contrôle en boucle fermée qui traite la zone la plus polluée jusqu’au
l’homogénéisation des deux concentrations. Nous obtenons des limites explicites sur la fonction valeur
via des techniques de Hamilton-Jacobi-Bellman. Nous prouvons que la fonction de temps minimal est
non monotone par rapport au paramètre de diffusion. Le troisième modèle consiste en deux zones con-
nectées au bioréacteur en série et une pompe de recirculation entre elles. L’ensemble des contrôles
dépend de l’état, et nous montrons que la contrainte est active à partir d’un temps jusqu’à la fin du
processus. Nous montrons que le contrôle optimal consiste à l’atteinte d’un temps à partir duquel il est
optimal de recirculer à vitesse maximale et ensuite ré-polluer la deuxième zone avec la concentration
de la première. Ce résultat est non intuitif. Les stratégies optimales obtenues sont testées sur des mod-
èles hydrodynamiques, en montrant qu’elles sont de bonnes approximations de la solution du problème
inhomogène. La deuxième partie consiste au développement et l’étude d’un modèle stochastique de
réacteur biologique séquentiel. Le modèle est obtenu comme une limite des processus de naissance et
de mort. Nous établissons l’existence et l’unicité des solutions de l’équation contrôlée qui ne satisfait
pas les hypothèses habituelles. Nous prouvons que pour n’importe quelle loi de contrôle la probabilité
d’extinction de la biomasse est positive. Nous étudions le problème de la maximisation de la probabil-
ité d’atteindre un niveau de pollution cible, avec le réacteur à sa capacité maximale, avant l’extinction.
Ce problème ne satisfait aucune des suppositions habituelles, donc le problème doit être étudié dans
deux étapes: en premier lieu, nous prouvons la continuité de la fonction de coût non contrôlée pour les
conditions initiales avec le volume maximal et ensuite nous développons un principe de programmation
dynamique pour une modification du problème original comme un problème de contrôle optimal avec
coût final sans contrainte sur l’état.

Mots clés: Contrôle optimal, temps minimal, contrôle stochastique, biorestauration, chemostat.
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ABSTRACT

This thesis consists of two parts. In the first part we study minimal time strategies for the treatment of
pollution in large water volumes, such as lakes or natural reservoirs, using a single continuous bioreactor
that operates in a quasi-steady state. The control consists of feeding the bioreactor from the resource,
with clean output returning to the resource with the same flow rate. We drop the hypothesis of ho-
mogeneity of the pollutant concentration in the water resource by proposing three spatially structured
models. The first model considers two zones connected to each other by diffusion and only one of them
treated by the bioreactor. With the help of the Pontryagin Maximum Principle, we show that the optimal
state feedback depends only on the measurements of pollution in the treated zone, with no influence of
volume, diffusion parameter, or pollutant concentration in the untreated zone. We show that the effect
of a recirculation pump that helps to mix the two zones is beneficial if operated at full speed. We prove
that the family of minimal time functions depending on the diffusion parameter is decreasing. The sec-
ond model consists of two zones connected to each other by diffusion and each of them connected to
the bioreactor. This is a problem with a non convex velocity set for which it is not possible to directly
prove the existence of its solutions. We overcome this difficulty and fully solve the studied problem
applying Pontryagin’s principle to the associated problem with relaxed controls, obtaining a feedback
control that treats the most polluted zone up to the homogenization of the two concentrations. We also
obtain explicit bounds on its value function via Hamilton-Jacobi-Bellman techniques. We prove that the
minimal time function is nonmonotone as a function of the diffusion parameter. The third model consists
of a system of two zones connected to the bioreactor in series, and a recirculation pump between them.
The control set depends on the state variable; we show that this constraint is active from some time up
to the final time. We show that the optimal control consists of waiting up to a time from which it is
optimal the mixing at maximum speed, and then to repollute the second zone with the concentration of
the first zone. This is a non intuitive result. Numerical simulations illustrate the theoretical results, and
the obtained optimal strategies are tested in hydrodynamic models, showing to be good approximations
of the solution of the inhomogeneous problem. The second part consists of the development and study
of a stochastic model of sequencing batch reactor. We obtain the model as a limit of birth and death
processes. We establish the existence and uniqueness of solutions of the controlled equation that does
not satisfy the usual assumptions. We prove that with any control law the probability of extinction is
positive, which is a non classical result. We study the problem of the maximization of the probability of
attaining a target pollution level, with the reactor at maximum capacity, prior to extinction. This prob-
lem does not satisfy any of the usual assumptions (non Lipschitz dynamics, degenerate locally Hölder
diffusion parameter, restricted state space, intersecting reach and avoid sets), so the problem must be
studied in two stages: first, we prove the continuity of the uncontrolled cost function for initial condi-
tions with maximum volume, and then we develop a dynamic programming principle for a modification
of the problem as an optimal control problem with final cost and without state constraint.

Keywords: Optimal control, minimum time, stochastic control, bioremediation, chemostat.
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RESUMEN

La tesis de compone de dos partes. En la primera parte estudiamos estrategias de tiempo mínimo para el
tratamiento de la contaminación en recursos acuíferos de gran volumen, tales como lagos o reservas nat-
urales, mediante el uso de un biorreactor continuo que opera en un estado cuasi-estacionario. El control
consiste en la alimentación del biorreactor desde el recurso, con un efluente más limpio siendo devuelto
al recurso con el mismo caudal. Eliminamos la hipótesis de homogeneidad en la concentración del
contaminante en el recurso proponiendo tres modelos espacialmente estructurados. El primer modelo
considera dos zonas conectadas entre ellas mediante difusión y donde sólo una de ellas es tratada por el
biorreactor. Con la ayuda el Principio del Máximo de Pontryagin probamos que el control retroalimen-
tado óptimo depende sólo de las mediciones del contaminante en la zona tratada, sin dependencia del
volumen, de la difusión, o de la concentración del contaminante en la zona no tratada. Mostramos que
el efecto de añadir una bomba de recirculación que ayuda a mezclar ambas zonas es benéfico si ésta se
opera a su máxima velocidad. El segundo modelo consiste en dos zonas conectadas entre sí por difusión
y cada una de ellas conectada al biorreactor. Este es un problema donde el conjunto de velocidades es
no convexo y para el cual no es posible probar directamente la existencia de soluciones. Superamos
esta dificultad y resolvemos completamente el problema estudiad aplicando el principio de Pontryagin
al problema asociado con controles relajados, obteniendo un control retroalimentado que trata le zona
más contaminada hasta la homogeneización de ambas zonas. También obtenemos cotas explícitas sobre
la función valor mediante técnicas de Hamilton-Jacobi-Bellman. Probamos que la función de tiempo
mínimo es no-monótona como función del parámetro de difusión. El tercer modelo consiste en un
sistema de dos zonas conectadas al biorreactor en serie, y una bomba de recirculación entre ellas. El
conjunto de controles depende de la variable de estado; mostramos que esta restricción es activa a partir
de cierto instante de tiempo hasta el final del proceso. Este es un resultado no intuitivo. Simulaciones
numéricas ilustran los resultados teóricos, y las estrategias obtenidas son testeadas en modelos hidrod-
inámicos, mostrando ser buenas aproximaciones de la solución del problema no homogéneo. La segunda
parte consiste en el desarrollo y estudio de un modelo estocástico de biorreactor secuencial por lotes.
Obtenemos el modelo como un límite de procesos de nacimiento y muerte. Establecemos la existencia
y unicidad de soluciones de la ecuación controlada que no satisface las hipótesis usuales. Probamos
que para cualquier control, la probabilidad de extinción es positiva, resultado que no es clásico. Estudi-
amos el problema de la maximización de la probabilidad de llegar al nivel deseado de contaminación,
con el reactor lleno, antes de la extinción. Este problema no satisface ninguna de las hipótesis usuales
(dinámica no Lipschitz, coeficiente de difusión degenerado localmente Hölder, restricciones de espacio
de estado, conjuntos objetivo y absorbente se intersectan), por lo que el problema debe ser estudiado
en dos etapas: primero, probamos la continuidad de la función de costo sin control para condiciones
iniciales con volumen máximo, y luego desarrollamos un principio de programación dinámica para una
modificación del problema como un problema de control óptimo con costo final y sin restricciones de
estado.

Palabras claves: Control óptimo, tiempo mínimo, control estocástico, bioremediacion, quimiostato.
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Chapter 1

Introduction

1.1 Bioprocesses and bioremediation

Bioremediation is the process that uses living organisms (usually microorganisms) or micro-
bial processes to produce molecular transformations or degradations on environmental contam-
inants (hazardous to soils, groundwater, sediments, surface water, or air) into products of less
toxic form. When these changes occur naturally without human intervention, the process is
called natural attenuation. Nevertheless, the speed of such changes is slow. By means of ap-
propriate control techniques these biological systems can be used to enhance the speed of the
changes or degradations, as well as to use them in places with high pollutant concentrations.

Microorganisms have the ability to biodegrade most of the organic contaminants and many
inorganic contaminats, for instance, hydrocarbon, pesticides, herbicides, petroleum, gasoil,
heavy metals among others. Biological treatments of organic contaminations are based on
the degradative abilities of the microorganisms [61].

Bioremediation technologies can be broadly classified as ex situ and in situ [8]. Ex situ
technologies are those treatments which involve the physical removal of the contaminated ma-
terial for treatment process. In situ techniques involve treatment of the contaminated material
in place. Examples of in situ and ex situ bioremediation are

• Land farming: Solid-phase treatment system for contaminated soils: may be done in situ
or ex situ.

• Composting: Aerobic, thermophilic treatment process in which contaminated material is
mixed with a bulking agent; can be done using static piles or aerated piles.

• Bioreactors: Biodegradation in a container or reactor; may be used to treat liquids or
slurries.

• Bioventing: Method of treating contaminated soils by drawing oxygen through the soil
to stimulate microbial activity.
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• Biofilters: Use of microbial stripping columns to treat air emissions.

• Bioaugmentation: Addition of bacterial cultures to a contaminated medium; frequently
used in both in situ and ex situ systems.

• Biostimulation: Stimulation of indigenous microbial populations in soils or ground water
by providing necessary nutrients.

• Intrinsic bioremediation: Unassisted bioremediation of contaminant; only regular moni-
toring is done.

• Pump and treat: Pumping ground water to the surface, treating, and reinjecting.

In the present work we are interested in the bioremediation of natural water resources with
ex situ technologies, in particular, using biorectors. A bioreactor is a device that supports a
biologically active environment, where chemical reactions (usually microbial fermentation or
biotransformation) take place as a result of microbial metabolism, and can be used for biore-
mediation, cell or tissue culture, or the generation of derivatives or end products of interest of
chemical processes, such as enzymes. The scheme of treatment of a water resource consists
roughly of three steps: primary, secondary and tertiary treatments.

• Primary or mechanical treatment is designed to remove gross, suspended and floating
solids from the effluent. It includes screening to trap solid objects and sedimentation by
gravity to remove suspended solids. This level is sometimes referred to as mechanical
treatment although chemicals are often used to accelerate the sedimentation process. Pri-
mary treatment can reduce the biochemical oxygen demand of the incoming wastewater
by 20-30% and the total suspended solids by some 50-60%. Primary treatment is usually
the first stage of wastewater treatment.

• Secondary or biological treatment removes the dissolved organic matter that escapes pri-
mary treatment. This is achieved by microorganisms consuming the organic matter as
food, and converting it to carbon dioxide, water, and energy for their own growth and
reproduction. The biological process is performed in bioreactor tanks, then followed
by additional settling tanks (secondary sedimentation) to remove more of the suspended
solids, or the excess of microorganisms. About 85% of the suspended solids and bio-
chemical oxygen demand can be removed by a plant with secondary treatment. Sec-
ondary treatment technologies include the basic activated sludge process, the variants
of pond and constructed wetland systems, trickling filters and other forms of treatment
which use biological activity to break down organic matter.

• Tertiary treatment is additional treatment beyond secondary. Tertiary treatment can re-
move more than 99% of all the impurities from sewage, producing an effluent of almost
drinking-water quality. The related technology can be very expensive, requiring a high
level of technical know-how and well trained treatment plant operators, a steady energy
supply, and chemicals and specific equipment which may not be readily available. An
example of a typical tertiary treatment process is the modification of a conventional sec-
ondary treatment plant to remove additional phosphorus and nitrogen.

(See [65] for an extensive description of these processes). The scheme of the water treatment
process is depicted in Figure 1.1. In the present thesis we focus on the optimization of the
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operation of the secondary treatment.

Tertiary

 treatment

Primary 

 treatment

Water resource

Biomass

Secondary treatment

Figure 1.1. Scheme of water treatment

Figure 1.2. Industrial bioreactor Figure 1.3. Scheme bioreactor-settler

From the point of view of mathematical modelling, biological reactors can be divided into
two major classes [26]:

• stirred tank reactors, such as chemostats, sequencing batch reactors, etc., for which the
reacting medium is homogeneous (this is achieved with an agitator) and the reaction is
described by ordinary differential equations;

• reactors with a spatial concentration gradient, such as fixed beds, fluidized beds, air lifts,
settlers, etc., for which the reactor is described by partial differential equations.

From the point of view of its operation, the biological reactors can be classified according
the way in which the liquid exchange is performed. We can distinguish three main modes.

1. Discontinuous or batch,
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2. Semi-continuous, sequencing-batch, or fed-batch,

3. Continuous or chemostat.

The batch reactor consists of an operation mode in which the culture medium with the
nutrient is introduced to the tank at the begining of the process. After that point, nothing is
added to or removed from the system, up to the end of the process, which is performed at a
constant volume.

The sequencing-batch reactor (SBR) consists of a tank which is fed with a supply of nutritive
elements at the beginning and during the process. This type of system is widely used in the
industrial and municipal wastewater treatment plants. Basic fill-and-draw treatment systems
such as the SBR have been used since the 19th century. According to [44, 45], the cycle of
operation of this type of systems consists of five basic stages:

• fill: water with nutrient is received in the tank,

• react: the desired reactions take place,

• settle: the microorganisms are separated from the treated water

• draw: the treated effluent is discharged,

• idle: period comprised between the discharge of the tank and its refilling.

The chemostat mode is the most widely used in wastewater treatment and bioremediation
of water resources. The main characteristic is that the culture volume is constant, water with
nutrient being added continuously to the system, and treated water being removed at the same
rate. The reactor is operated in such a way to keep the system in a steady state by adding a
constant nutrient concentration at a fixed rate, although the inflow rate can be controlled to
change the desired steady state. The chemostat was invented independently by Monod, and
Novick and Szilard in 1950, as a mean to study the steady behavior of microorganisms by
continuously adding a constant nutrient concentration, and since its invention it has been a key
tool to study microbial dynamics [59, 73].

1.2 Mathematical models of bioreactors and classical results

1.2.1 Mathematical models

Ever since their conception, bioreactors have been widely used to study microbial population
dynamics [58, 59, 63], and the use of bioreactors for wastewater treatment and bioremediation
has been widely studied for the last 40 years [3, 22, 23, 32, 42, 43, 50, 60, 71, 72, 76, 78]. Typ-
ically, there are three types of models for the analysis of the system bioreactor-water resource:
the simplest from the mathematical point of view, that relies on the hypotheses of homogeneity
of the concentrations in the resource and/or in the bioreactor as well as instant mixing (among
others), is a system of nonlinear ordinary differential equations (ODE) [22, 23, 73]. Later,
models with partial differential equations (PDE) that take into account fluid dynamics, mass
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conservation and pollutant diffusion have been introduced to address the inhomogeneity of the
pollutant in the resource [4] or the bioreactor vessel [24, 25]; this effect naturally appears due to
the speed of the reactions in the bioreactor and the slow diffusion speed as well as the slow mix-
ing in large water resources; this is typically the situation of large scale reactors or large scale
water resources, fluidized beds, settlers among others. The third kind of models are the stochas-
tic models, that take into account the uncertainty of different types of variables[14, 15, 20, 41].

Establishing a mathematical model for the dynamics in a bioreactor is not a simple task be-
cause of the large number of interconnected variables involved in the process, for instance, pH,
temperature, aereation, nutrient, different bacterial species and nutrient substances, end prod-
ucts, etc. Thus, the choice of the number of reactions to be considered and components which
intervene in these reactions is very important for modeling. It will be carried out based on the
knowledge that we have on the process and measurements which could have been carried out.
The reaction scheme conditions the structure of the model. It will thus have to be chosen with
parsimony, bearing in mind the objectives of the model and the precision which is expected.
The required number of reactions and the reaction scheme can be determined directly from a
set of available experimental data [26].

The mathematical model of the dynamics in the stirred tank reactor rely on the main concept
of mass balance [26, 27, 73], which can be broadly expressed as

Time variation
of the mass

of the component
in the tank

=
Mass of the

component entering
the tank

−
Mass of the

component leaving
the tank

+
Mass of the

component produced
by the reaction

−
Mass of the

component consumed
by the reaction

.

(1.1)

Suppose that X denotes a microbial species that will degrade a substrate denoted by S. This
reaction is schematically described in the following form:

S
r(·)−→ X. (1.2)

in which X plays the role of an autocatalyst, i.e., it is both a product and a catalyst. The rate
at which the process occurs is related to enzyme kinetics, and depends on the concentration
of substrate and biomass. Typically, the reaction rate r(·) is linear with respect to the biomass
X , and it is assumed that microorganisms have uniform access to the substrate. With these
assumptions, the reaction rate has the form r(S,X) = µ(S)X , where the function µ(·) is called
the specific growth rate [27]. In practice, growth rate functions are obtained experimentally in
laboratories.

There are two widely used expressions for the growth function µ(·). The first expression,
due experimental works of Monod [58, 59], is also called Michaelis-Menten formulation (from
enzyme dynamics), has the form

µ(s) =
µmaxs

KS + s
. (1.3)

In (1.3), µmax is the maximum specific growth rate (in units of [1/h]) and KS is the half-
saturation constant (in units of [g/l]). This formula models the saturation or limited growth
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with respect to the substrate.

The second expression for the growth function takes into account the effect of inhibition of
the growth of the microbial specie with respect to the excess of substrate. This expression is
called the Haldane growth law:

µ(s) =
µ̄s

KS + s+ s2

Kl

. (1.4)

In (1.4) the term Kl is the inhibition constant. This function has a unique maximum s† :=√
KsKl, and is increasing in [0, s†) and decreasing in the interval (s†,∞), as Figure 1.4 shows.

s [g/L]

[1/h] [1/h]

s [g/L]

Figure 1.4. Typical growth functions. On the left, the Monod uptake function; on the right, the Haldane uptake function.

The main assumptions for the stirred bioreactors are

• the culture vessel is well stirred, allowing to consider homogeneity of the nutrient and
micro-organisms distributions inside the reactor,

• all the other significant parameters (e.g., temperature) affecting growth are kept constant,

• the reaction scheme summarizes the distribution of mass and flows between various re-
actions intervening in the process

• reproduction is proportional to nutrient uptake.

Let sr(t), xr(t), and vr(t) denote the concentration of nutrient, concentration of microorgan-
isms, and the culture volume in the culture vessel at time t (in units of [g/l] and [l] respectively).
Thus sr(t)vr(t) denotes the amount of nutrient in the vessel at time t; analogously, xr(t)vr(t)
denotes the amount of biomass at time t. Denote by Qin and Qout the input and output flow
rates respectively. The mathematical equations that model the time evolution of the quantities
of interest in the system can be obtained by a mass balance of the form (1.1), whose expression
is 

d

dt
(srvr) = Qinsin −Qoutsr −

1

Y
µ(sr)xrvr,

d

dt
(xrvr) = µ(sr)xrvr −Qoutxr.

(1.5)

The term Y is the yield coefficient that reflects the conversion of nutrient to microorganism,
that is, the quantity of biomass which is produced when one unit of substrate is consumed by
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the reaction (1.2); it is assumed to be constant. Along with the mass balance equations we
consider the variation of culture volume given by the equation

d

dt
vr = Qin −Qout. (1.6)

Finally, the expression of the equations of the bioreactor is
ṡr = − 1

Y
µ(sr)xr +

Qin

vr

(sin − sr),

ẋr = µ(sr)xr −
Qin

vr

xr,

v̇r = Qin −Qout.

(1.7)

According to the operation mode, the inflow and outflow rates are

• Batch: Qin = Qout = 0.

• SBR: Qout = 0.

• Chemostat: Qin = Qout.

1.2.2 Classical results on chemostats

Chemostats have been the object of extensive studies since the early works of Monod in the
40’s [58] and its work La technique de la culture continue [59], the contributions of Novick
and Szilard [63] in 1950, and Herbert et al [37] in 1956. In [73] there is an extensive study of
the chemostat with the main mathematical results up to 1995.

Let us remind that for the chemostat the culture volume is constant, so the input flow rate
Qin and output flow rate Qout are equal at every time instant. Replacing in (1.2.2), we obtain
the simple model of chemostat

ẋr =

(
µ(sr)−

Qin

vr

)
xr,

ṡr = − 1

Y
µ(sr)xr +

Qin

vr

(sin − sr).

(1.8)

The quantity D := Qin/vr is called dilution rate or washout rate; it has units of 1/t. Under
an appropriate change of variable (x̃r = xr/Y , but we choose to keep xr instead of x̃r as
variable), the equations of the chemostat take the form{

ẋr = (µ(sr)−D)xr,

ṡr = −µ(sr)xr +D(sin − sr).
(1.9)
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A basic mathematical result on the chemostat concerns the asymptotic behavior of the sys-
tem. Depending on the behavior of the growth function and the dilution rate, there may exists
a unique or several equilibrium points. Suppose that the chemostat is operated at a constant
dilution rate D > 0. The trivial equilibrium point E0 := (0, sin) is called the washout. This
equilibrium, in which there are no microorganisms in the reactor, is not desirable from the point
of view of the depollution process. The other equilibrium points are the solutions of the system
of equations

µ(s?r ) = D, x?r = sin − s?r . (1.10)

We notice that all the equilibrium points rely on the straight line {xr +sr = sin}. Indeed, this is
stated by the second equation of (1.10), provided that D > 0. In Figure 1.5 we show the phase
portrait of the single species chemostat model with a Monod growth function with µmax = 1,
KS = 1, sin = 4, for different dilution coefficients D ∈ [0, 1].
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Figure 1.5. Trajectories on the phase portrait, depending on the diffusion parameterD. In green, the washout equilibrium; in red, the nontrivial
equilibrium.

The following proposition summarizes the properties of the equilibrium points.

Proposition 1.1 Suppose that the constant dilution rate D > 0 is such that the equation
µ(s?r ) = D has a solution s?r ∈ (0, sin).

• The equilibrium point E0 always exists (independently of D) and it is unstable.

• For all s?r < sin solution of µ(s?r ) = D there exists an equilibrium point E1 := (x?r , s
?
r ) =

(sin − s?r , s?r ). Any of these equilibrium points is locally asymptotically stable if µ′(s?r ) >
0; if µ′(s?r ) ≤ 0 the equilibrium point is unstable.

The proof of this proposition relies on the eigenvalues of the Jacobian matrix of the system
(1.9). Notice that we need to impose the condition s?r ∈ [0, sin] not just for mathematical
reasons but for the interpretation of the variables; indeed, the concentration of biomass at the
equilibrium is x?r = sin−s?r , which only has a biological meaning if it is a nonnegative quantity.

For different types of uptake functions µ(·), Proposition 1.1 gives different qualitative re-
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sults.

• For an increasing growth function (like the Monod’s law), if µ(sin) < D, the unique
locally asymptotically stable equilibrium point is the washout. On the other hand, for
D < µ(sin), there exits a unique solution to the equation µ(s?r ) = D in the interval
(0, sin); the washout becomes unstable, and the point (x?r , s

?
r ) = (sin−µ−1(D), µ−1(D))

is locally asymptotically stable (see Figure 1.6).

s [g/l]sin

[1/h]

D1

D2

(sin)

Figure 1.6. Equilibrium points for the Monod growth function. We see thatD1 < µmax, and then the concentration of substrate at equilibrium
is s†r = λ1. For D2, the equilibrium is the washout.

• For an increasing-decreasing growth function (like the Haldane’s law), there may exist 0,
1 or 2 solutions to the equation µ(s?r ) = D. Denote by s† the concentration of maximum
efficiency (the maximum of the Haldane growth function), and suppose that s† < sin.

– If D > µ(s†), there is no solution to the equation µ(s?r ) = D. In such case, the
washout is the only equilibrium point, and is is locally asymptotically stable.

– If D = µ(s†), there exist two equilibrium points: the washout (unstable), and the
point E1 = (sin − s†, s†) (unstable).

– IfD < µ(s†), there exist two solutions λ1 < s† and λ2 > s† to the equation µ(s?r ) =
D. If λ2 < sin, then there are two nontrivial equilibrium points E1 = (sin − λ1, λ1)
(locally asymptotically stable) and E2 = (sin − λ2, λ2) (unstable); If λ2 > sin, the
only nontrivial equilibrium point is E1. The washout is unstable.

The model can be extended in a natural way (obtained via the mass balance equations) to
a model with several species. The way to model the system depending on the interactions
between the different species in the chemostat. Suppose that the only interaction between a
system of n species is due to the competition for a single nutrient. The equations are

ẋr,i = (µi(sr)−D)xr,i, i = 1, . . . , n

ṡr = −
n∑
j=1

1

Yj
µj(sr)xr,j +D(sin − sr).

(1.11)

The constants Yi correspond to the yield coefficients of the transformation of substrate into
biomass of specie i. Suppose that the growth functions are increasing or increasing-decreasing
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Figure 1.7. Equilibrium points for the Haldane growth function. We see that for D1 < µ(s†) there exist two equilibrium points λ1 (locally
asymptotically stable) and λ2 (unstable) besides the washout (unstable). ForD2 = µ(s†) the equilibrium concentration is s?r = s† (unstable),
and the washout is unstable. For D3, the equilibrium is the washout (stable).

(like Monod’s or Haldane’s law). Define, for each i ∈ {1, . . . , n}, the set Λi(D) := {sr >
0 |µi(sr) > D}. Because of the assumptions on the growth functions, if Λi(D) is not empty,
then it is an interval Λi(D) = (λi, νi), where νi can take the value +∞. Suppose the particular
situation in which that all the λi’s that are finite and different, and without loss of generality, that
the numbers λ1, . . . , λn are ordered such that 0 < λ1 < · · · < λm < sin < λm+1 < · · · < λn
for some m ∈ {1, . . . , n}. The equilibrium points of this system are

• the washout: E0 = (s?r , x
?
r,1, . . . , x

?
r,n) = (sin, 0, . . . , 0);

• Ei = (s?r , x
?
r,1, . . . , x

?
r,n) = (λi, 0, . . . , Yi(sin − λi), . . . , 0) for i = 1, . . . ,m (in this case,

there is only substrate and specie i; this point exists because λi < sin); for i > m, Ei
does not exist.

• Ei = (s?r , x
?
r,1, . . . , x

?
r,n) = (νi, 0, . . . , Yi(sin − νi), . . . , 0) for i = 1, . . . ,m ; (only sub-

strate and specie i), that exists only if νi < sin and in such case it is unstable. For i > m,
Ei does not exist.

A well known result on the coexistence of several species in chemostats is the competitive
exclusion principle. This principle states that in a chemostat with constant operation parameters
D and sin, several species cannot coexist [36, 73] (in a more general way, it states that when
two species compete for the same critical resources within an environment, one of them will
eventually outcompete and displace the other). This principle has a mathematical sustent in the
work of [12] (as stated in [73]).

Theorem 1.2 ([12]) Define I = ∪i=1,...,m(λi, νi), with λi, νi as before. Suppose that I is a
non-empty open interval. Then I = (λi, νj), for some j.

1. If λ1 < sin < νj , then E1 attracts all solutions with xr,i(0) > 0.

2. If sin > νj , then E0 and E1 are local attractors, their basins of attractions are non-
empty open sets, and the complement of the union of the two basins of attraction has zero
Lebesgue measure.
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The first point of Theorem 1.2 corresponds to the competitive exclusion principle. The
second point of Theorem 1.2 states another phenomenon: the possibility that an excess of
nutrient can lead to the washout of all populations. Theorem 1.2 does not hold if some of the
λi’s coincide.

Control problems arise naturally in the contex of biochemical processes, biotechnology, and
wastewater treatment. Bioreactor control provides special challenges due to significant process
variability, the complexity of biological systems, the need, in many cases, to operate in a sterile
environment, and the relatively few real-time direct measurements available that help define
the state of the culture. The study of control of the bioreactor is based on suitable manipulation
of its operation parameters, the dilution rate, the input nutrient concentration, or the drop of the
well-mixed hypothesis. The first works on the control of chemostats address the problem of
coexistence of different species under periodic changes on the dilution rate, when a fraction of
the biomass and growing medium are periodically harvested, and when both the dilution rate
and the concentration of the substrate in the feed are varied simultaneously and in a periodic
manner [13, 79].

Since the work by [22], the optimization of bioreactor operation has received great attention
in the literature, see [2, 3, 67] for reviews of the different optimization techniques that have
been used in bioprocesses. Among them, the theory of optimal control has proven to be a
generic tool for deriving practical optimal rules [43, 71, 72].

Typically, the optimal control of continuous processes usually involves a two-step proce-
dure. First, the optimal steady state is determined as a nominal set point that maximizes a
criterion [76, 77]. The benefit of operating a periodic control about the nominal point can be
analyzed [1, 69]. Then, a control strategy that drives the state about the nominal set point from
any initial condition is searched for [50], possibly in the presence of model uncertainty using
extremum seeking techniques [6, 54, 84, 86].

1.2.3 Classical results on SBRs

SBRs are typically used to treat municipal and industrial wastewaters, particularly in areas
characterized by low or varying flow patterns. Improvements in equipment and technology,
especially in aeration devices and computer control systems, have made SBRs a viable choice
over the conventional activated-sludge system. These plants are very practical for a number of
reasons. For instance, in areas where there is a limited amount of space, treatment takes place in
a single basin instead of multiple basins, allowing for a smaller footprint. The treatment cycle
can be adjusted to undergo aerobic, anaerobic, and anoxic conditions in order to achieve bio-
logical nutrient removal, including nitrification, denitrification, and some phosphorus removal.
SBRs offer a cost-effective way to achieve lower effluent limits.

Flow-paced batch operation is generally preferable to time-paced batch or continuous inflow
systems. Under a flow-paced batch system, a plant receives the same volumetric loading and
approximately the same organic loading during every cycle. Under a time-paced mode, each
basin receives different volumetric and organic loading during every cycle, and the plant is
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not utilizing the full potential of this treatment method which is the ability to handle variable
waste streams. Time-paced operation can lead to under-treated effluent if the cycle time is not
adjusted. For an SBR to be effective, the plant must have proper monitoring, allow operators to
adjust the cycle time, and have knowledgeable operators who are properly trained to make the
necessary adjustments to the cycle [62].

Since the SBR is a time oriented system, the control objectives are usually to optimize
trajectories to attain a prescribed target in finite time [38, 45, 47, 51, 53, 70, 81] or to maximize
production at a given time [32, 55, 60, 78]. The single species model of SBR is

ṡr = − 1

Y
µ(sr)xr +

u

vr

(sin − sr),

ẋr = µ(sr)xr −
u

vr

xr,

v̇r = u,

(1.12)

where u is the inflow rate, that is usually the control variable and is bounded between 0 and
umax. This system has the constraint that vr ≤ vmax.

In [60] the problem of attaining a prescribed pollution level sout with the tank at its maxi-
mum capacity in minimal time is studied, for the single species case. The author considers a
varying inflow substrate concentration sin to be a function of time. By means of Green theo-
rem the optimal strategy is characterized in two cases depending on the behavior of the growth
function. In the case that the growth function is monotone (Monod type), the optimal control
consists on filling the tank at maximum speed u = umax until the tank is full v = vmax, and then
wait until sr ≤ sout. In the case that the growth function is nonmonotone with one maximum s†,
the optimal strategy consists on a feedback control such that brings the pollutant concentration
sr as fast as possible to s† and to keep the system in that state up to the time when vr = vmax,
and then wait.

In [32], the authors extend the previous work to the case of several species and allowing
impulsional controls, that is, adding arbitrarily large amounts of water in arbitrarily small time
instants. The SBR with impulse is modeled by a system of equations without impulse in a
fictitious time τ that allows to extend the real time t at the points where an impulse is made.

d

dτ
sr = −r

n∑
j=1

1

Yj
µj(sr)xr,j +

u

vr

(sin − sr),

d

dτ
xr,i = rµi(sr)xr,i −

u

vr

xr,i, i = 1, . . . , n,

d

dτ
vr = u,

(1.13)

Here, u is the control variable that represents the inflow rate, and r is a control variable that
takes the value 0 when there is an impulse (that lasts for the fictitious time intervals [τ0, τ1] such
that

∫ τ1
τ0
u(τ) = v+ − v− explains the difference of volumes before and after the impulse) and

takes the value 1 otherwise. The behavior of the real time t as a function of τ is shown in Figure
1.8
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Figure 1.8. Relation between fictitious time τ and real time t

The authors define the immediate one impulse (IOI) strategy as the control that consists of per-
forming an impulse that fills the tank in time zero, and then to wait; also, the singular arc (SA)
strategy to a level s? is introduced for the case in which the growth function has a nonmonotone
behavior, consisting on a feedback control such that brings the pollutant concentration sr to s?

in an impulse, then keeping the system in that state up to the time when vr = vmax, and then
wait, unless s? < sout, in which case there is a final impulse. With the Pontryagin’s Maximum
Principle and Hamilton-Jacobi-Bellman techniques, the authors characterize the cost of the one
impulse strategy, and then prove that for the single species case with monotonic growth func-
tion the IOI strategy is optimal; for the nonmonotonic growth function, the SA strategy to the
level s? = s† (the maximum of the growth function) is optimal. For the two species case, the
ratio of the derivatives of the growth functions is strictly monotone, the optimal control is also
characterized as the IOI strategy or the SA strategy to a level s? ∈ (sout, sin).

1.2.4 Stochastic models of bioreactors

Stochastic models for a bioreactor are those that incorporate the effect of uncertainty in the
behavior of the corresponding variables. The uncertainty in a model is due to a combination of

• uncertainty in input variables,

• uncertainty in parameter values,

• uncertainty on model structure.

Typically the models that can be found in the literature address the first type of incertainty
that typically correspond to random variations in the inflow rate Qin and/or the input pollutant
concentration sin, or to the second type of uncertainty, related to the uncertainty on the growth
function parameters, leading to studies on parameter estimation. Lately, the uncertainty on
model structure in the chemostat has called the attention of some authors [14, 20, 41]. The
uncertainty on model structure is related to the microscopic mechanism of replication of mi-
croorganisms.

In [16], the authors introduce a novelty approach to tackle the problem of random inputs in
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the model of chemostat, particularly the random nutrient supplying rate or the random input
nutrient concentration, with or without wall growth, from the mathematical point of view of
random dynamical systems and using the concept of random attractors. The authors obtain re-
sults of existence of uniformly bounded non-negative solutions, existence of random attractors,
and geometric details of random attractors for different values of parameters.

In [41], the authors model the influence of random fluctuations by setting up and analyz-
ing a stochastic differential equation, and show that random effects may lead to extinction in
scenarios where the deterministic model predicts persistence, and establish some stochastic
persistence results. The single species model presented in that article is{

dX0 = (r − δX0 − a(X0, X1))dt+ σ0X0dW0(t),

dX1 = (a(X0, X1)− s(X1))dt+ σ1X1dW1(t),
(1.14)

where X0 stands for substrate concentration, X1 denotes the biomass concentration of a mi-
crobe species feeding on the substrate; the substrate inflow rate r and the relative substrate
outflow rate δ are positive constants; the substrate uptake rate a(X0, X1) = µ(X0)X1, which is
equal to the microbe growth rate, is non-negative and strictly increasing in both variables, with
a(X0, 0) = a(0, X1) = 0 for all X0, X1 (this means that substrate uptake occurs only when
substrate and microbes are present); the microbe removal rate s(x1) is non-negative and strictly
increasing; and σ0, σ1 ≥ reflect the size of the stochastic effects. The derivation of said model
is performed as a limit of a family of discrete Markov Chains whose random effects depend
linearly on the respective variable. The authors prove that under suitable assumptions for every
initial condition the equation (1.14) has a strong solution defined for every time instant, path-
wise uniqueness holds, and with probability one the process stays in the interior of the positive
orthant.

In [14], the authors propose a model of chemostat where the bacterial population is individually-
based, each bacterium is explicitly represented and has a mass evolving continuously over
time. The substrate concentration is represented as a conventional ordinary differential equa-
tion. These two components are coupled with the bacterial consumption. Mechanisms acting
on the bacteria such as growth, division and washout, are explicitly described, and bacteria
interact via consumption. The authors prove the convergence of this process to the solution of
an integro-differential equation when the population size tends to infinity. The equations of the
model are

Yt =
1

vr

∫ mmax

0

xpt(x)dx,

Ṡt = D(sin − St)−
k

vr

∫ mmax

0

ρ(St, x)pt(x)dx,

∂

∂t
pt(x) +

∂

∂x
(ρ(St, x)pt(x)) + (λ(St, x) +D)pt(x) = 2

∫ mmax

0

λ(St, z)

z
q
(x
z

)
pt(z)dz,

for x ∈ [0,mmax]. Here pt(x) is the density of population with respect to its mass at a time t.
Hence

∫ m1

m0
pt(x)dx is the number of cells which mass is between m0 and m1 and the average

biomass concentration at time t is Yt; ρ(s, x) and λ(s, x) are respectively the growth func-
tion and the division rate of a bacterium of mass x with a substrate concentration s (typically
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ρ(s, x) = µ(s)x), the mass distribution of the daughter cells is represented by the probability
density function q(α) on [0, 1].

In [20], the authors introduce two stochastic chemostat models consisting of a coupled
population-nutrient process reflecting the interaction between the nutrient and the bacteria in
the chemostat with finite volume, where the nutrient concentration evolves continuously but
depends on the population size, while the population size is a birth-and-death process with co-
efficients depending on time through the nutrient concentration. The nutrient is shared by the
bacteria and creates a regulation of the bacterial population size. The latter and the fluctuations
due to the random births and deaths of individuals make the population go almost surely to
extinction. The authors study the long-time behavior of the bacterial population conditioned
to non-extinction, prove the global existence of the process and its almost-sure extinction; the
existence of quasi-stationary distributions is obtained based on a general fixed-point argument.
The authors also prove the absolute continuity of the nutrient distribution when conditioned to
a fixed number of individuals and the smoothness of the corresponding densities. The equation
of the substrate concentration is given by

d

dt
S(t) = D(sin − S(t))− b(S(t))N(t),

linked to the process of the population size by the infinitesimal generator [30] of the process
Z = (Z(t) := (N(t), S(t)), t ≥ 0) given by

L f(n, s) = b(s)nf(n+ 1, s) + (D + d(s))nf(n− 1, s)− (b(s) +D + d(s))nf(n, s)

+ (D(sin − s)− nb(s))
∂

∂s
f(n, s).

In this model b(d) is the birthe rate per individual (typically the Monod growth function) and
d(s) is the background death rate per individual, that depends on the nutrient. In this model it
is important to remark the fact that there is almost sure extinction of the biomass, which is a
result that does not hold for the deterministic models.

1.3 Model of inhomogeneous lake

This thesis studies the bioremediation of natural water reservoirs, such as lakes, ponds, lagoons,
underground waters, water tables, etc., with the use of a bioreactor. From a mathematical point
of view, this means that we couple the dynamics of a bioreactor with the dynamics of the
pollutant concentration in the water resource. We suppose that there is a settler that perfectly
separates the biomass from the effluent of the bioreactor in negligible time before returning the
treated water to the resource.

Since typically water resources have a large volume and spatial constraints, inhomogeneity
of the distribution of the pollutant in the resource naturally arises. The connection between the
bioreactor and the water reservoir induces water movements in the latter. We model the water
resource as a bounded open domain Ω ⊆ Rn, with n = 2 for lakes of small depth, or n = 3
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for a deep lake. We suposse that the velocity field ~v(t, x) depends only of the inflow/outflow
discharges from the bioreactor, the water viscosity is constant and homogeneous, and the fluid
is incompressible. Denote Γin ⊆ ∂Ω is the area that receives the effluent of the reactor and
Γout ⊆ ∂Ω is the area from which water is taken to the bioreactor. Denote p the pressure of the
fluid. The equations that model the velocity field in the resource are given by the Navier-Stokes
equations of an incompressible fluid [4]:

∂

∂t
~v + ~v · ∇~v +∇p− νv∆v = 0, (t, x) ∈ (0,∞)× Ω,

∇ · ~v = 0, (t, x) ∈ (0,∞)× Ω.
(1.15)

With this equations we provide the initial condition

~v(t = 0, x) = 0, x ∈ Ω,

and the boundary conditions for Γin, Γout, and Γ0 := ∂Ω\(Γin ∪ Γout):
~v(t, x) = Q(t)~vin(x), x ∈ Γin,

~v(t, x) = Q(t)~vout(x), x ∈ Γout,

~v(t, x) = 0, x ∈ Γ0.

The functions ~vin and ~vout are unitary parabolic vector fields that describe the velocity profile
on Γin and Γout parallel to the outwards normal n and satisfy

−
∫

Γin

~vin · ndS =

∫
Γout

~vout · ndS = 1.

The previous model allows to characterize the velocity field in the water resource as a func-
tion of the pumping speed Q(t). Numerical simulations can be performed to compute the ve-
locity field independently of the pollutant concentration (since we have assumed that changes
in the pollutant concentration do not affect the viscosity of the fluid). If the resource has a large
depth, a 3 dimensional model can be considered. This is numerically costly because of the size
as well as the geometry of the resource. If the depth is small, a 2 dimensional model gives good
results.

Now, denote by sl(t, x) the concentration of pollutant in the resource at the point x ∈ Ω in
the time instant t. Suppose that the diffusivity coefficient νs of the pollutant is constant and
homogeneous. The equation that models the time evolution of the concentration of pollutant
in the resource are composed by an equation of mass conservation of the pollutant (given the
velocity field ~v previously computed) are

∂

∂t
sl − νs∆sl + ~v · ∇sl = 0, (t, x) ∈ (0,∞)× Ω, (1.16)

with the initial condition
sl(t = 0, x) = s0

l (x), x ∈ Ω,
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and boundary conditions

νs
∂sl
∂n

(t, x) =
Q(t)

|Γin|
~vin(x) · n(sl(t, x)− sout

r (t)), x ∈ Γin,

∂sl
∂n

(t, x) = 0, x ∈ Γout,

∂sl
∂n

(t, x) = 0, x ∈ Γ0.

Numerical simulations of this model in [4] show that the inhomogeneity can be considered
as if there were two different zones: a first zone that is being actively treated by the bioreactor
in which there could be considered a gradient of concentrations, and another zone that is being
depolluted mainly by diffusion with the first zone. This amounts to consider simpler models for
treating the inhomogeneity of the pollutant, for instance, compartimental models that consider
the resource splitted into two or more zones, each of them with homogeneous concentration,
and connected between each other by advection or diffusion coefficients according to geometric
specifications.

Figure 1.9. Behavior of the inhomogeneous representation of a lake. From the homogeneous initial distribution of pollutant (on the left), the
system evolves up to a point in which two zones are clearly differentiated (on the right). Taken from [4]

The motivation of this part of the thesis is to establish optimal control rules for the depollu-
tion of water resources in minimal time, with the use of simpler ODE models as an approxima-
tion of the inhomogeneous model. In this regard, there exists a tradeoff between the pumping
speed and the quality of depollution. On the one hand, if the pumping speed Q is too low, the
quality of the depollution will be good but the treatment time will be long since it will take too
much time to recirculate the water through the bioreactor. On the other hand, if the pumping
speed is too high, the quality of the treatment in the reactor will be poor because the microor-
ganisms do not have enough time to process the pollutant, and it could even lead to the washout
in the reactor. Finding an optimal control for minimal time treatment has both a biological and
an economical sense. The problem of the depollution of water resources consists in treating the
resource by means of a bioreactor by controlling the inflow rate Q and making the pollutant
concentration in the resource to decrease under a certain level s considered safe.
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In this thesis, we consider three spatially distributed configurations to model the inhomo-
geneity. The first configuration, that we call the active-dead zones model. This configuration
considers the resource split into two zones that are connected to each other, and only one of
them is connected to the bioreactor, the other zone being depolluted only by diffusion with the
first one. This model applies to confinement in lakes due to geometry, or resources of large
proportions in which only a specific area is being treated, among other situations (see Figure
1.10).
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Figure 1.10. First model of inhomogeneity: the active-dead zones configuration

The second model consists of two clearly differentiated connected patches, similar to the
active-dead zone. The difference is that the resource is treated by means of a continuously
stirred bioreactor connected to each of the patches by independently operated pumps (see Fig-
ure 1.11)
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Figure 1.11. Second model of inhomogeneity: the model with two patches

The third configuration models the gradient of concentrations in the resource by means of
considering two separated zones connected in a series configuration. Examples of this config-
uration are two lakes situated at different heights connected by a water stream. Water is taken
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from the first zone to the bioreactor, where it is treated; cleaner water from the output of the
bioreactor is injected in the second zone, which connects with the first zone (see Figure 1.12).
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Figure 1.12. Third model of inhomogeneity: the configuration in series with recirculation

In [4] the authors give a justification of the possibility of considering simpler models of two
homogeneous zones as a mean to model the inhomogeneous behavior of the pollutant concen-
tration; the authors perform a parameter estimation of the active-dead zones model to fit the
output pollutant concentration of the inhomogeneous lake, showing that a two zones model ex-
plains well the inhomogeneity, and justify that this could be extended to several homogeneous
zones with different configurations.

We could also consider inhomogeneous models of the chemostat, but in this work it will not
be necessary, because of the different time scales that naturally arise in this kind of systems
(see Section 1.4). For further references on models of unstirred chemostat, see [7, 39, 73].

1.4 Singular perturbations

Coupled systems of compartimental water resources and bioreactors naturally present two time
scales. Since the bioreactor vessels are typically much smaller than the water resources that
they treat, the changes in the substrate concentration inside the bioreactors are much faster than
those in the water resources (see [26, 27]). This kind of systems in which there is a parameter
that introduces such behavior is called singular perturbation model. Singular perturbations
cause a multitime-scale behavior of dynamical systems characterized by the presence of slow
and fast transients in the system’s response.

Let us consider, as an example, the system homogeneous resource-bioreactor [31]. This
system consists of a water resource being depolluted by means of a continuous stirred reactor
operated at a pumping speedQ(t) and a settler that performs a perfect separation of the biomass
from the treated water at the effluent of the bioreactor, such that there is no biomass in the
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overflow of the settler. An important assumption that we make is that the separator operates in
a negligible time. This assumption can be made because the different time scales between the
reactors and the water resource, and would not be valid if the water resource, the bioreactor,
and the settler had a similar volume scale. For a more realistic model of the coupling we refer
to [24, 25]. Denote by sl and vl the pollutant concentration and water volume in the resource,
respectively. The equations that model the dynamics of the system are the chemostat equations
coupled with the bass balance for the substrate concentration in the resource (which is the input
concentration of the chemostat):

ẋr =

(
µ(sr)−

Q

vr

)
xr,

ṡr = −µ(sr)xr +
Q

vr

(sl − sr),

ṡl =
Q

vl
(sr − sl).

(1.17)

The reasonable assumption that the volume of the reactor is much smaller than the volume
of the resource generates two different time scales. Consider the time change τ = t/vl. Under
this new time scale, (1.17) becomes

ε
d

dτ
xr = (µ(sr)vr −Q)xr,

ε
d

dτ
sr = −µ(sr)xrvr +Q(sl − sr),

d

dτ
sl = Q(sr − sl).

(1.18)

where ε := vr/vl is a parameter that indicates the difference of scales bioreactor/resource. If ε
is small enough, in the natural time scale of the resource the changes in the reactor are almost
instantaneous. This effect is called a slow-fast dynamic. It is a well known effect in chemical
kynetics [82]. In the case that the variables (xr, sr) reach an equilibrium, this equilibrium
will depend on Q and sl. Such an equilibrium is called a quasi-steady-state. For (1.18), the
equilibrium concentrations in the bioreactor (supposing that we can discard the washout, which
is always possible by choosing an appropriate value of Q) are

s?r (sl, Q) = µ−1(Q/vr), x?r (sl, Q) = sl − s?r (sl, Q). (1.19)

We assume here that the value s?r (sl, Q) defined as a solution of equation (1.19) is well defined
and it is unique, for each sl > 0 and appropriate Q > 0. These assumptions are satisfied if
the growth function µ(·) is increasing in the interval [0, sl] and the bioreactor is operated in the
range of inflow rates Q such that Q/vr < µ(sl). For instance, this is satisfied by the Monod’s
law.

A reduction of order of the system (1.18) can be performed by replacing (1.19) in the dy-
namic of sr in the time scale of the resource, as if the reactor continuously operates at a quasi-
steady state. The reduced model is

d

dτ
s̄l = Q(s?r (s̄l, Q)− s̄l). (1.20)
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The reduced model (1.20) is much simpler in mathematical terms than the original model
(1.18) and can be seen as an approximation of the latter. The remaining question is relative to
the behavior of the approximated system with respect to the original one: Is it true that when
ε approaches to 0, the solution of (1.18) approaches to the trajectory (x̄r, s̄r, s̄l), where s̄l(t) is
solution of (1.20) and x̄r(t) = x?r (s̄l(t), Q), s̄r(t) = s?r (s̄l(t), Q)? The answer to that question
is given by Tychonnof theorem [49, Theorem 11.1]. This theorem states that the solution of a
system of the form {

ẋ = f(t, x, z, ε),

εż = g(t, x, z, ε),
(1.21)

can be approximated by the solution of the reduced system{
˙̄x = f(t, x̄, h(t, x̄), 0),

z̄ = h(t, x̄),
(1.22)

when the perturbation ε converges to 0, where h(t, x̄) is a solution of g(t, x, h(t, x), 0) =
0. More precisely, Tychonnof’s theorem states the following: consider any time interval
[t0, t1], the singular perturbation problem (1.21), and let z = h(t, x) be an isolated root of
g(t, x, h(t, x), 0) = 0. Assume that the following conditions are satisfied for all (t, x, z −
h(t, x), ε) ∈ [t0, t1] × Dx × Dy × [0, ε0], for some domains Dx ⊆ Rn convex and Dy ⊆ Rm

that contains the origin:

• the functions f , g, their first partial derivatives with respect to (x, z, ε), and the first
partial derivative of g with respect to t are continuous; the functions (t, x) 7→ h(t, x) and
(t, x, z) 7→ ∂g(t, x, z, 0)/∂z are differentiable with continuous derivatives;

• the reduced problem (1.22) has a unique solution x̄(t) ∈ S, t ∈ [t0, t1], with S compact
subset of Dx;

• the origin is an exponentially stable equilibrium of the equation

dy

dt
(τ) = g(t, x, y(τ) + h(t, x), 0). (1.23)

uniformly in (t, x); letRy ⊆ Dy be the region of attraction of (1.23), and Ωy be a compact
subset ofRy.

Then, there exists a positive constant ε? > 0 such that for all initial condition z(0)−h(t0, x0) in
Ωy and 0 < ε < ε?, the singular problem (1.21) has a unique solution x(t, ε), z(t, ε) on [t0, t1]
and

x(t, ε)− x̄(t) = O(ε),

z(t, ε)− h(t, x̄(t))− ŷ(t/ε) = O(ε)
(1.24)

holds uniformly for t ∈ [t0, t1], where ŷ(τ) is solution of (1.23) with initial condition ŷ(t0) =
z(t0) − h(t0, x(t0)). Moreover, given any tb > t0 there exists another ε?? ≤ ε? such that
uniformly for t ∈ [tb, t1]

z(t, ε)− h(t, x̄(t)) = O(ε) (1.25)

whenever ε < ε??.
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In Figure 1.13 (Figure 3.6 in Chapter 3) we present some numerical simulation of the tra-
jectories obtained by applying the optimal feedback obtained from the reduced dynamics to the
unreduced dynamics of the second spatially distributed model studied in this thesis, for differ-
ent values of ε. We see that the trajectories converge to the trajectory of the reduced model if ε
converges to zero.
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Figure 1.13. Total pollutant concentration in the resource of the full dynamics (3.6) with the strategy (3.25), for different values of ε.

An important remark for this kind of systems, that couple the large water resource with a
bioreactor, is that the equilibrium substrate concentration in the bioreactor only depends on the
inflow rate Q (as we will see in Chapters 2-4), this quantities being linked by the formula

s?r (Q) = µ−1(Q/vr). (1.26)

This allows to consider a change of control variable from Q to s?r (Q) (if the relation is uni-
voque), and then to control the equilibrium concentration in the bioreactor rather than the speed
of the pump. The second part of the equation (1.19) imposes a state constraint on the new
control variable: s?r (Q) ∈ [0, sl]. This constraint, if natural, poses problems when applying
optimization and optimal control tools to the problem, given that the constraint can be active or
not in a not negligible interval of time. This state constraint transforms the problem into a non
standard problem.

1.5 Contributions of the thesis

1.5.1 Deterministic optimal control for continuous bioremediation pro-
cesses

In the first part of this thesis we study minimal time strategies for the treatment of pollution in
large water volumes, such as lakes or natural reservoirs, using a single continuous bioreactor
that operates in a quasi-steady state. The control consists of feeding the bioreactor from the
resource, with clean output returning to the resource with the same flow rate. We drop the
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hypothesis of homogeneity of the pollutant concentration in the water resource by proposing
three spatially structured models, each consisting of configurations of two homogeneous zones
where the nature of the connections between them as well as the differentiation of the zones
may depend on the structure of the problem; for instance, if most of the water stream is pass-
ing from one zone to another, this effect can be seen as a transport term between two zones
interconnected in a series configuration; this type of configuration is also suitable to model
gradients of concentration. Other type of connection that models the effect of (mostly) pure
diffusion between two zones is a configuration in parallel. The confinement of one part of
the resource due to geography or reactor design also defines clearly differentiated zones that
lead to strong inhomogeneity. Naturally, in a highly inomogeneous resource, in which many
zones can be differentiated, a compartimental model can be implemented as an approximation
of the dynamics of the system. As it was mentioned in Section 1.3, the problem of the de-
pollution of water resources consists in treating the resource by means of a bioreactor leading
the pollutant concentration in the resource to decrease under a certain level s > 0 considered
safe in environmental terms. In any of the three studied spatial configurations the target of
the process will be leading the substrate concentration in both zones under s. If we define as
s = (s1, s2) ∈ R2

+ the spatial variable that denotes the pollutant concentrations in the first and
second zones respectively, the target set will be

T := {s = (s1, s2) ∈ R2
+ | s1 ≤ s, s2 ≤ s}. (1.27)

In Chapter 2, we study the first configuration, that we call the active-dead zones. This con-
figuration considers the resource split into two zones that are connected to each other, and only
one of them is connected to the bioreactor, the other zone being depolluted only by diffusion
with the first one. This model applies to confinement in lakes due to geometry, or resources
of large proportions in which only a specific area is being treated, among other situations (see
Figure 1.10). In this model the effect of adding a second pump which pumps water from one
zone to the other and viceversa, enhancing the mixing of the water in the two zones and en-
hancing the diffusion and mixing of the pollutant through the total resource. The mathematical
equations, considering that the bioreactor operates at equilibrium, are

ṡ1 =
vr

v1

µ(s?r )(s?r − s1) +

(
D

v1

+
QR

v1

)
(s2 − s1),

ṡ2 =

(
D

v2

+
QR

v2

)
(s1 − s2),

(1.28)

where the controls are the output concentration of pollutant in the reactor s?r and the recircula-
tion speed QR. Here s?r is connected with the inflow rate Q by the equation

µ(s?r ) =
Q

vr

,

and must satisfy the state constraint s?r (t) ∈ [0, s1(t)] for every time instant t up to the final time.
We first recall recent characterizations of optimal policies among feedback controls under the
assumption of a uniform concentration in the resource, in which the optimal flow rate decreases
with time. Then, we introduce a dead zone in the resource, considering two measurement
points. In the first part of this work we study the problem without the effect of recirculation
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(equivalently, QR = 0). We prove that the domain {s2 ≥ s1} is positively invariant for the
dynamics, allowing us to consider a simpler target set

T =
{
s = (s1, s2) ∈ R2

+ | s2 ≤ s
}
.

With the help of the Pontryagin Maximum Principle, we show that the variant of the dead
zone has no influence on the optimal control law. More precisely, the main result is

Proposition 1.3 (Chapter 2, Proposition 2.8) The optimal flow rate Q?, which solves the de-
pollution problem is given by Q?(s1) = vrµ(ŝ?r (s1)), where s?r (·) is the unique solution of the
optimal control problem (P). This solution is characterized by the feedback control defined by

ŝ?r (s1) := arg max
s?r∈(0,s1)

µ(s?r )(s1 − s?r ). (1.29)

In particular, the optimal feedback control s?r satisfies that s?r (t) ∈ (0, s1(t)), for all t ∈
[0, Topt], where Topt is the optimal treatment time.

It is important to remark that the obtained optimal state-feedback control has the same form
that the optimal control for the homogeneous problem as in [31] where there is no dead zone,
and only depends of the measurements on the active zone.

We also prove that when considering a non-null recirculation speed QR, the effect of im-
proving the mixing between the two zones by adding a new pump that connects the two zones
results in a lower time of treatment, being the ideal case to have a high mixing speed.

Proposition 1.4 (Chapter 2, Proposition 2.9) Suppose that (s?r , QR) is an optimal control for
the problem with recirculation. Then, for all t ∈ [0, Topt], the control s?r is given by the feedback
control defined in (1.29), and we have that QR(t) = Qmax

R .

We also prove that the minimal time function, as a function of the diffusion parameter, is
decreasing, and this result is independent of the optimal bioreactor’s inflow rate Q? previously
obtained. We perform numerical simulations that confirm the theoretical results.

Proposition 1.3 and other results of Chapter 2 are part of the published article [33].

In Chapter 3, we model the inhomogeneity of the concentration of pollutant in the resource
as two clearly differentiated connected patches. The resource is treated by means of a con-
tinuously stirred bioreactor connected to each of the patches by pumps. The speed of each
pump is controlled independently, which is equivalent to control the total pumping speed and
the proportion of the effluent directed towards each zone (see Figure 1.11). The equations that
model the dynamics of the pollutant concentration in the two zones, under the assumption that
the bioreactor operates at equilibrium, are

ṡ1 =
α

r
µ(s?r )(s?r − s1) +

d

r
(s2 − s1) ,

ṡ2 =
1− α
1− r

µ(s?r )(s?r − s2) +
d

1− r
(s1 − s2),

(1.30)
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with r = v1/(v1 + v2) and d = D/vr, and where α := q1/(q1 + q2) is the proportion of the
pump speed directed towards zone 1. In this problem, the target set is

T =
{
s = (s1, s2) ∈ R2

+ |max{s1, s2} ≤ s
}
.

The set where the control variable u = (α, s?r ) takes values is

U(s) = {(α, s?r ) |α ∈ [0, 1], s?r ∈ [0, αs1 + (1− α)s2]} , (1.31)

which is a state-dependent control set. Under this constraint, the velocity set is not everywhere
convex. Indeed, the dynamic (1.30) can be written as ṡ = F (s, u) + dG(s), and for each
s = (s1, s2) such that s1 6= s2, the set F (s, U(s)) := {F (s, u) |u ∈ U(s)} is non-convex:
the segment {θF (s, (1, ŝ?r(s1))) + (1 − θ)F (s, (0, ŝ?r(s2))) | θ ∈ (0, 1)} does not belong to
F (s, U(s)) (where ŝ?r(·) is defined in (1.33); see Figure 1.14). We study the relaxed problem
with a convexification of the control set for which we know there exists a solution, and we
prove that the solution of the relaxed control is a solution of the original problem, and it can be
characterized as a feedback control. The main results are the following:

s1

s2

Velocity set

Figure 1.14. Velocity set of the dynamic (1.30) when s1 6= s2

Proposition 1.5 (Chapter 3, Proposition 3.10) For d > 0, the following feedback control drives
any initial state in R2

+ \ T to the target T in minimal time:

u?[s] =

∣∣∣∣∣∣
(1, ŝ?r (s1)) when s1 > s2 ,
(r, ŝ?r (s1)) = (r, ŝ?r (s2)) when s1 = s2 ,
(0, ŝ?r (s2)) when s1 < s2 .

(1.32)

where ŝ?r (σ) is the unique solution to

ŝ?r (σ) = arg max
s?r≥0

µ(s?r )(σ − s?r ) (1.33)

In particular, we see that the optimal control satisfies that

sopt
r (t) ∈ (0, α(t)s1(t) + (1− α(t))s2(t)),
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for all t, therefore never attaining an extreme value. We also study the behavior of the optimal
treatment time as a function of the diffusion parameter by means of Hamilton-Jacobi-Bellman
techniques; it turns out that for some initial conditions in which one of the concentrations is
small enough a high diffusion is better than a low diffusion; for other initial conditions, a low
diffusion is desirable.

Proposition 1.5 and other results of Chapter 3 are part of the published article [66].

In Chapter 4, we model the gradient of concentrations in the resource by means of consid-
ering two separated zones connected in a series configuration. Examples of this configuration
are two lakes situated at different heights connected by a water stream. Water is taken from the
first zone to the bioreactor, where it is treated; cleaner water from the output of the bioreactor
is injected in the second zone, which connects with the first zone. We control the equilibrium
concentration of substrate in the bioreactor sr and the recirculation pump speed QR ∈ [0, Q̄R]
(see Figure 1.12). The mathematical model is given by the equations

ṡ1 =

(
vr

v1

µ(sr) +
QR

v1

)
(s2 − s1),

ṡ2 =
vr

v2

µ(sr)(sr − s2) +
QR

v2

(s1 − s2).

(1.34)

In [31] the authors consider this problem without recirculation (or equivalently Q̄R = 0)
and with a state constraint for the concentration at the output of the reactor given by sr(t) ∈
[0, s2(t)]. This is considered as a way to not repollute the water resource while treating it. In this
work we allow as a natural state constraint sr(t) ∈ [0, s1(t)], allowing the reactor concentration
to be lower than its input concentration instead of being lower than the concentration in the
zone at its effluent. The fact that the control variable can take an extreme value depending on
the state variable poses an extra difficulty, as we show that before arriving to the target set this
constraint must be active. We first prove that under the control constraints the set {s1 > s2} is
positively invariant, allowing us to consider a simpler target set:

T =
{
s = (s1, s2) ∈ R2

+ | s1 ≤ s
}
.

We prove the existence of functions γ (nonnegative, depending on the adjoint states) and ψ
(depending on s) that characterize the behavior of the optimal control. We prove the following
proposition.

Proposition 1.6 (Chapter 4, Proposition 4.8) Suppose that sopt is an optimal trajectory, asso-
ciated to the optimal control uopt = (sopt

r , Qopt
R ). Then, there exist time instants 0 ≤ t1 < t2 <

Topt such that

1. Qopt
R (t) = 0 and sopt

r (t) = ŝ?r (sopt(t), γ(t)), where ŝ?r (s, γ) satisfies

ŝ?r (s, γ) = arg max
sr∈(0,s1)

µ(sr)

[
1 + γ

s2 − sr

s1 − s2

]
, (1.35)

a.e. t ∈ [0, t1], where t1 is the first time that γ(t) ≤ 1 (it may occur that t1 = 0),
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2. Qopt
R (t) = Q̄R and sopt

r (t) = ŝ?r (sopt(t), γ(t)), where ŝ?r (s, γ) satisfies (4.15), a.e. t ∈
[t1, t2], where t2 is the first time in which ψ(t) ≥ 0;

3. Qopt
R (t) = Q̄R and sopt

r (t) = sopt
1 (t) a.e. t ∈ [t2, Topt].

We notice the different qualitative behavior of the optimal control law in this case with
respect to the parallel configurations. We perform numerical simulations in which we show
the benefits of considering an enlarged control set, as well as introducing the recirculation. We
show that the treatment time decreases with a larger recirculation upper limit.

In the three previous cases the study gives as a result an explicit formula for the optimal
control problem as a feedback function that depends on the pollutant concentrations of each
zone. These results allow decision makers to use simpler models to control their water treatment
systems that approximate relatively well the more complex problem of inhomogeneity.

The results of Chapter 4 are part of an ongoing work.

1.5.2 Study of stochastic modeling of sequencing batch reactors

The second part of this thesis concerns the modelling and study of a stochastic model of se-
quencing batch reactor. This model is obtained as a limit of a sequence of continuous time
Markov processes whose jump rates and jump laws are prescribed following the rules of repli-
cation and death of microorganisms, input and consumption of substrate, and input flow of
water to the tank, that is, processes whose jump law depend only on the current state of the
system. The obtained model is given by the controlled stochastic differential equation

dxt =

[
µ(st)−

ut
vt
− β

]
xtdt+ γ̃

√
xt
vt
dWt, x(0) = y,

dst =

[
−µ(st)xt +

ut
vt

(sin − st)
]
dt, s(0) = z,

dvt = utdt, v(0) = w,

(1.36)

where ut ∈ [0, umax] is a control process that satisfies a state constraint: ut = 0 if v(t) ≥
vmax, W = (Wt)t≥0 is a one-dimensional Brownian motion, and β ≥ 0 is an individual death
rate; this term is usually omitted in the deterministic model (see Section 1.2.3). We study
the existence and uniqueness of solutions of equation (1.36) with null death rate β = 0 and
yield coefficient Y = 1. The coefficients of this equation do not satisfy the usual assumptions
of Lipschitz and sublinear growth; nevertheless, we prove that for every initial condition ξ =
(y, z, w) ∈ (0,∞)× [0, sin]× [vmin, vmax] and admissible control u with respect to the brownian
W , that is, progressively measurable with respect to the Brownian filtration, there exists a
solution of equation (1.36) up to the extinction time τE = inf{t ≥ 0 |xt = 0}. We prove the
following result:

Proposition 1.7 (Chapter 5, Proposition 5.7) Let u = (ut)t≥0 be an admissible control with
respect to W = (Wt)t≥0 and Xu = (xu, su, vu) the solution of (1.36). The probability that
xu = (xut )t≥0 hits 0 at some time instant is positive.
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The typical problem of depollution consists in reaching the target set

C := {(x, s, v) ∈ R3
+ |x > 0, s ≤ sout, v = vmax},

where sout < sin is an acceptable level of pollution. With Proposition 1.7 in mind, the problem
of depollution of water in minimal time is not well posed, because once extinction occurs the
depollution process stops. We address the problem of the maximization of the probability of
hitting the target set before extinction of biomass:

V (ξ) = max
u

Pξ [τC ≤ τE ] .

In this problem, none of the usual assumptions are satisfied, i.e, there is no Lipschitzianity of
the coefficients of the equation, the diffusion coefficient is degenerate, the target set C and the
extinction set E := {(x, s, v) |x = 0, s ∈ [0, sin], v ∈ [vmin, vmax]} have intersecting closures,
the property of interior cone for the target set does not hold, the extinction set is absorbent, and
the cost function is discontinuous. We split the study of this problem in two parts.

In the first part, we characterize the value function ṽ(ξ) for initial conditions ξ in the set
V := (0,∞) × [sout, sin] × {vmax} where the control is constrained to be null, and we prove
that this function is continuous in V .

Later, we reformulate the original state-constrained problem by removing the constraint
v ≤ vmax and considering the cost in V as a final cost:

V (t, ξ) = max
u∈Ut

Et,ξ [1C(Xτu) + ṽ(Xτu)1V(Xτu)] .

where τu := τuC ∪ τuV ∪ τuE is the first time that the process hits C ∪ V ∪ E . We conjecture a
dynamic programming principle, and give the reasons why this is a non-standard and difficult
problem. We present numerical simulations that show the behavior of the function ṽ(ξ) on the
set V . This is an ongoing work.
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Chapter 2

Bioremediation of natural water resources
via Optimal Control techniques

Sections 2.1-2.3 correspond to the published article

Gajardo, P.; Ramírez C., H.; Riquelme, V.; Rapaport, A. Bioremediation of natural water
resources via optimal control techniques. BIOMAT 2011, 178-190, World Sci. Publ.,

Hackensack, NJ, 2012.

Section 2.4 is an additional material which has not been still submitted.

2.1 Introduction

Depollution of water resources is an important ecological issue in the fields of eutrophication’s
prevention and wastewater treatment. This problem has been often approached with the help
of fed-batch or continuous bioreactors, receiving an important attention in the literature of the
last 40 years [22, 31, 32, 38, 60]. Roughly speaking, in those bioremedation processes, biotic
agents process the pollutant until its concentration decrease to acceptable levels.

In this work, we consider a natural water resource (for instance, a lake, a creek, or a water
table) of volume v polluted with a toxic substrate. Our objective is to make the concentration
of this substrate decrease, as fast as possible, to a prescribed value s. This process is driven
by a continuous stirred bioreactor of volume vr. The bioreactor is fed from the resource with
a flow rate Q, and its output returns to the resource with the same flow rate Q, after a sepa-
ration of biomass and substrate due to a settler. The settler avoids the presence of excessive
biomass used for treatment in the natural resource, which could result in undesirable sludge
and possibly leads to an increase of eutrophication. We assume that during the entire treatment
the volume v of the resource does not change. This volume is also assumed to be much larger
than the bioreactor volume. As a first approach, one can assume that the toxic substrate is ho-
mogeneously distributed in the resource and is instantaneously mixing. This case was studied
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in Gajardo et al.[31]. Therein, optimal strategies among constant controls and feedback con-
trols were characterized. The last result is recalled in the next section. In this work we break
the assumption of homogenous distribution of the pollutant. Our approach consists in splitting
the lake into two zones, with volumes v1 and v2 and loaded with substrate concentrations s1

and s2, respectively. Both zones are assumed to be homogeneous and instantaneously mixed.
Moreover, those zones are connected one to each other via a fixed diffusion rate D > 0. The
first zone, called the active zone, is directly connected to the reactor, while the second one,
called dead zone, is only connected to the first zone (see Figure 3.1). This situation models
a depollution process where one can clearly identify a (dead) zone of difficult access. This is
typically due to the location of the bioreactor and to the large size of the water resource to be
treated. A similar situation was studied in Gajardo et al.[31], where a division of the water re-
source composed by two homogenous zones were also considered. However, both zones were
considered active therein, which led to very different results.

Q

s2 s1

1
v

2
v

r
v

s , xrr bioreactor

biomass

settler

D

dead zone active zone

Q

Q

Figure 2.1. Connections between active zone, dead zone and bioreactor.

In this work we characterize the optimal strategy which solves the situation described above,
and we compare it with the solution of the homogeneous case. We prove the somehow surpris-
ing result that both optimal strategies coincide.

The outline of the article is the following. In Section 2.2 we introduced our mathematical
model. For this, we split this section into three subsections. In the first one, we present the
dynamics of the bioprocess involved in our study. In the second one, we prove the first results
on those dynamics. These results are needed in order to establish our minimal time optimal
control problem in the third subsection. In Section 2.3, the Pontryagin maximum principle is
applied to our optimal control problem. This allows to state the optimality conditions and the
adjoint system. A fundamental analysis of the adjoint variables is carried out; at the end of this
section we state our main result, which is the characterization of the optimal feedback strategy
for our bioremediation problem. In Section 2.4 we study the effect of adding a pump to the
system in order to increase the diffusion between the two zones, which leads to the study the
behavior of the treatment time with respect to the diffusion parameter. Finally, in Section 2.5,
some numerical simulations are presented.
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2.2 Mathematical model

2.2.1 Description of the dynamics

We consider the usual chemostat model to describe the dynamics of the bioreactor [73]:
ẋr = µ(sr)xr −

Q

vr

xr,

ṡr = −µ(sr)xr +
Q

vr

(s1 − sr).

Here, sr and xr indicate the concentrations of substrate and biomass, respectively, and µ(·)
denotes the growth function of xr.

The time evolution of the concentrations si of the pollutants in the two zones (i = 1 for the
active zone and i = 2 for the dead zone) are given by the equations

ṡ1 =
Q

v1

(sr − s1) +
D

v1

(s2 − s1),

ṡ2 =
D

v2

(s1 − s2),

(2.1)

where the volumes v1 and v2 are assumed to be constant and much larger than vr (each), and D
denotes the diffusion rate coefficient between the active and dead zones. The control variable is
the flow rateQ of the pumps that take water from the active zone (with a pollutant concentration
s1) and reinject water to the active zone (with a smaller concentration sr).

Throughout this article, we assume that µ(·) fulfills the following conditions:

Assumption 2.1 The function µ(·) is well defined and nonnegative on R+ := [0,+∞), is
continuously differentiable on R++ := (0,+∞), is strictly increasing, concave and satisfies
that µ(0) = 0.

Typical examples of functions satisfying Assumption 2.1 are:

• Linear growth function µ(s) = As, for all s, where A > 0.

• Monod’s law growth function:

µ(s) =
µmaxs

K + s
, for all s, (2.2)

where µmax is called the maximum growth rate and K the half-saturation constant, both
are positive.

Since we have supposed the reasonable fact that v1 and v2 are considerably larger than vr, we
can suppose that our process has a slow-fast dynamic in which the slow variables are (s1, s2)
and the fast variables are (xr, sr). This implies that the substrate and biomass concentrations
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present in the bioreactor can be approximated in the slow time scale by a quasi-stationary state
(x?r , s

?
r ) = (x?r (s1, s2, Q), s?r (s1, s2, Q)) satisfying the following relations:

µ(s?r ) =
Q

vr

, x?r = s1 − s?r . (2.3)

Under Assumption 2.1, system (2.3) has unique solution for s?r ∈ [0, s1]. Hence, from now
on we can think of s?r as the control instead of the flow rate Q. Replacing (2.3) in (2.1), we get
the reduced dynamics: {

ṡ1 = αµ(s?r )(s?r − s1) + β1(s2 − s1),

ṡ2 = β2(s1 − s2),
(2.4)

where α :=
vr

v1

, β1 :=
D

v1

, and β2 :=
D

v2

.

Remark 2.1 Notice that condition s?r ∈ [0, s1] has both a mathematical purpose as well as a
physical meaning. Indeed, on the one hand, due to the adopted slow-fast approximation, this
condition implies that the biomass concentration x?r = s1−s?r is nonnegative, which is required
from a mathematical point of view. And, on the other hand, since the bioreactor is used here
as a cleaning device, it should maintain its substrate concentration lower than the substrate
concentration s1 of the treated water resource.

We define the set of admissible controls as follows:

A = {s?r : [0,∞)→ R | s?r measurable}. (2.5)

Note that we have not yet imposed the condition s?r ∈ [0, s1]. Of course, we need to operate our
bioprocess under that condition in order to work with the reduced dynamic (2.4). However, we
will try to impose this condition from a mathematical point of view via the results of Section
2.2.2.

We end this section by recalling the characterization of optimal strategies for the homoge-
neous case obtained in Gajardo et al.[31]. Notice that this case is simply a particular case of
(2.1) when dynamic of v2 is omitted (for simplicity, we say v2 = 0) and D = 0.

Proposition 2.2 Consider the homogeneous case (v2 = 0 and D = 0) and the minimal time
problem for which one drives s1 to reach, as fast as possible, a prescribed level s. Then, the
optimal feedback fulfills Qopt(s1) = vrµ(sopt(s1)) with

sopt(s1) ∈ arg max
s∈(0,s1)

µ(s)(s1 − s). (2.6)

The main purpose of this chapter is to show that this feedback strategy is also optimal for
our case with an active and a dead zone.
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2.2.2 Preliminary results on the dynamics

Throughout this article we assume the following relation on the initial conditions:

Assumption 2.3 Denote z = (z1, z2) ∈ R2
+ the initial condition of the dynamic (2.4). It holds

that 0 < z1 ≤ z2, that is, the dead zone is more polluted than the active zone at the beginning
of our depollution process.

Notice that this assumption can be made with out loss of generality. Indeed, if z1 > z2, when
we start the depollution process we should expect that, at some time t̄, we have s1(t̄) ≤ s2(t̄).
Then, it is enough to redefine the starting time of the dynamics as t̄.

Proposition 2.4 For any admissible control s?r satisfying s?r (t) ∈ [0, s1(t)] for all t, and any s1

and s2 generated by the dynamics (2.4), the set I = {s1 ≤ s2} is invariant.

Proof. It suffices to subtract the dynamics of s2 and s1:

ṡ2 − ṡ1 = −(s2 − s1)[β1 + β2] + αµ(s?r )(s1 − s?r ).

If the set {s1 = s2} is reached, then the difference s2 − s1 will be nondecreasing and,
consecuently, s2 remains greater than or equal to s1.

Proposition 2.5 For any admissible control s?r satisfying s?r (t) ∈ [0, s1(t)], for all t, and any
s1 and s2 generated by the dynamics (2.4), there exists K (depending on z, v1 and v2) such that
si(t) < K for all t, for i = 1, 2. Moreover, the target set is attained from any initial condition
z ∈ I .

Proof. Let us consider the dynamics of the total substrate mass present in the water resource.
Its derivative satisfies:

d

dt
(v1s1 + v2s2) = v1 (αµ(s?r )(s?r − s1) + β1(s2 − s1)) + v2β2(s1 − s2)

= −vrµ(s?r )(s1 − s?r )

So, since s1 − s?r ≥ 0, the total substrate mass present in the resource is a nonincreasing
function. Then, one has

visi(t) < v1s1(t) + v2s2(t) ≤ v1z1 + v2z2,

which implies that si(t) < v1z1+v2z2
vi

:= Ki for i = 1, 2. We conclude by setting K :=
max{K1, K2}.

Now, in order to see that the target set can be attained from any initial condition, consider a
constant control s?r(t) = s? to be determined. In this case, (2.4) is a linear system in s = (s1, s2)
that can be written as

ṡ(t) = A(s?)s(t) + b(s?), s(0) = z, (2.7)
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where

A(s?) =

(
−αµ(s?)− β1 β1

β2 −β2

)
, b(s?) =

(
αµ(s?)s?

0.

)
From the analysis of the trace and the determinant of the matrix A(s?), we conclude that

this is an invertible matrix with two different real negative eigenvalues. Then, the solution of
(2.7) converges to the equilibrium point s∞ = −A(s?)−1b(s?) = (s?, s?), concluding that s2(t)
converges to s? as t goes to infinity. We choose for the control the constant values s? = s/2 if
s1(0) ≥ s or s? ∈ (0, s1(0)) if s1(0) < s. Notice that the set I? := {s2 ≥ s1 ≥ s?} is positively
invariant. Indeed, for any t ≥ 0 such that s2(t) > s1(t) = s?, we have ṡ1(t) > 0, and for any
t ≥ 0 such that s2(t) = s1(t) > s? we can apply Proposition 2.4. Thus, the control s?r (t) = s?

satisfies s?r (t) ∈ [0, s1(t)] for all t up to the final time, and there exists a finite time t† > 0 such
that s2(t†) = s, concluding that this control leads the system to the target set in finite time.

2.2.3 Minimal time optimal control problem

In this section we describe our problem as a minimal time optimal control problem. For this,
first note that, thanks to Assumption 2.3 and Proposition 2.4, to know the time of depollution it
is enough to measure the dead zone pollutant’s concentration s2. Consequently, our target set
can be defined as

T = {(s1, s2) ∈ R2
+ | s2 ≤ s} = R+ × [0, s]. (2.8)

On the other hand, due to Proposition 2.5, we expect to deal with admissible bounded con-
trols. Since we are interested in controls s?r (·) ∈ A that satisfy s?r (t) ∈ [0, s1(t)] for all t ≥ 0,
our admissible control set will be restricted to

AU := {s?r ∈ A | s?r (t) ∈ [0, s1(t)], for all t ≥ 0}.

Hence, in this work, we consider the following optimization problem:

(P) inf
s?r∈AU

{T | s(0) = z, s(T ) ∈ T }.

In what follows will show that the optimal solution s?r of (P) is given by a feedback control
that coincides with the solution of the problem with the homogeneous zone.

We have the following proposition:

Proposition 2.6 For any initial condition z ∈ I there exists a unique solution for Problem (P).

Proof. The dynamics (2.4) are continuous with respect to (s, s?r ). Then, for fixed s ∈ R2
+,

the velocity set generated as the image of the compact and connected set [0, s1] by dynamics
(2.4) is a compact and connected set and, since the control variable s?r only acts in the first
component, the velocity set is a segment and thus convex. This result, along with Propositions
2.4 and 2.5, assure that hypotheses of Filippov’s theorem [17, Theorem 9.2.i] are satisfied, thus
proving the existence of an optimal control for problem (P).
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2.3 Application of Pontryagin maximum principle

The Hamiltonian of problem (P) is the mapping H : R2
+ × R2 × R+ → R given by

H(s, λ; s?r ) = −1 + λ1αµ(s?r )(s?r − s1) + (−λ1β1 + λ2β2)(s1 − s2).

According to the Pontryagin maximum principle [19], if s?r (·) is a solution of (P) with
corresponding optimal trajectory s(·) = (s1(·), s2(·)), then there exists an adjoint state λ(·) =
(λ1(·), λ2(·)), with no both components equal to zero at the same time, such that{

λ̇1 = (αµ(s?r ) + β1)λ1 − β2λ2,

λ̇2 = −β1λ1 + β2λ2,
(2.9)

and

H(s(t), λ(t); s?r (t)) = max
sr∈[0,s1(t)]

H(s(t), λ(t); sr). (2.10)

With these dynamics we can associate the transversality conditions

λ1(T ) = 0 and λ2(T ) < 0, (2.11)

where T denotes the optimal time (this notation is consistent with the definition of problem
(P)).

Remark 2.2 It is possible to write the maximum principle even though the control set depends
on the state s1(t), at each time instant t ≥ 0. Indeed, it suffices to do a change of variable u(t) ∈
[0, 1] to have a control u(·) whose control set is compact and convex and whose associated
s?r (t) = u(t)s1(t) is an admissible control, rewrite the dynamics accordingly, and restate the
maximum principle. The result is equivalent to our approach.

Condition (2.10) states that, for a fixed time t, s?r (t) maximizes the function

φ(t, s?r ) = −λ1(t)µ(s?r )(s1(t)− s?r ), (2.12)

Concerning the behavior of the adjoint state λ1(·), we have the following proposition.

Proposition 2.7 The adjoint state λ(·) associated with an optimal solution of problem (P)
satisfies that λ1(t) < 0 for all t ∈ [0, T ).

Proof. If one writes the adjoint equations (2.9) as λ̇i = φi(t, λ1, λ2) (i = 1, 2), one can notice
that the partial derivatives ∂jφi (i 6= j) are non-positive. From the theory of monotone dynam-
ical systems (see for instance [74]), the dynamics (2.9) are thus competitive or, equivalently,
cooperative in backward time. As the transversality conditions (2.11) give λi(T ) ≤ 0 (i = 1, 2),
we deduce by the property of monotone dynamics that one should have λi(t) ≤ 0 (i = 1, 2) for
any t ≤ T . Now, if there exists t < T such that λ1(t) = 0, then one should have λ2(t) < 0.
This implies λ̇1(t) > 0 (because β1 > 0), thus obtaining that the trajectory never returns to the
third quadrant, leading to a contradiction with the trasversality condition λ1(T ) = 0.
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Let us define, for s1 > 0, the value ŝ?r = ŝ?r (s1) as the solution s?r in (0, s1) of the problem

ŝ?r (s1) := arg max
s?r∈(0,s1)

µ(s?r )(s1 − s?r ), (2.13)

that is given by the unique solution of the equation

µ(s?r ) = µ′(s?r )(s1 − s?r ). (2.14)

For each s1 > 0 the solution of is unique. Indeed, if we define β(s1, s
?
r ) := µ(s?r )(s1 − s?r ),

thanks to Assumption 2.1, for fixed s1 > 0 the function s?r 7→ β(s1, s
?
r ) is positive in the interval

(0, s1), β(s1, 0) = β(s1, s1) = 0, and its second derivative is strictly negative, concluding that
it is strictly concave in (0, s1).

We also define the function

γ(s1) := max
s?r∈(0,s1)

µ(s?r )(s1 − s?r ) = µ(ŝ?r (s1))(s1 − ŝ?r (s1)). (2.15)

We are now in position to establish the main result of our article.

Proposition 2.8 The optimal flow rate Q?, which solves the depollution problem stated in
Section 1, is given by Q?(s1) = vrµ(s?r (s1)), where s?r (·) is the unique solution of the optimal
control problem (P). This solution is characterized by the feedback control defined in (2.3). In
particular, the optimal feedback control s?r satisfies that s?r ∈ [0, s1(t)], for all t ∈ [0, T ].

Proof. Let φ be the function defined in (2.12). Since λ1(t) < 0, for all t ∈ [0, T ) (by
Proposition 2.7), we notice s?r (t) maximizes the Hamiltonian with respect to sr, or equivalently,
maximizes ψ(t, sr) = µ(sr)(s1(t) − sr) with respect to sr on [0, s1(t)]. Then, s?r has to have
the form s?r (t) = ŝ?r (s1(t)), or equivalently, s?r is characterized by the feedback rule (2.3).
Moreover, at its maximum with respect to s?r , ψ satisfies Fermat’s theorem on minima and
maxima: ∂

∂s?r
ψ(t, s?r ) = 0, which exactly coincides with (2.14).

Remark 2.3 Proposition 2.8 shows us that the optimal feedback policy does not depend on s2.
However, the optimal time does.

Remark 2.4 In Remark 2.2 it was mentioned that the change of control s?r (t) = u(t)s1(t)
allows to deal with controls u(·) whose set is independent of the state variable s1. The complete
expression of the adjoint equations is{

λ̇1 = (αµ(us1) + β1)λ1 − β2λ2 + λ1αu(µ′(us1)s1(1− u)− µ(us1)),

λ̇2 = −β1λ1 + β2λ2,
(2.16)

These equations, along with the maximum principle, allow to prove that the adjoint state λ1 is
strictly negative in the whole interval [0, T ) in the same manner than in Proposition 2.7 and, in
particular, to conclude the equality (µ′(u(t)s1(t))s1(t)(1− u(t))− µ(u(t)s1(t))) = 0 along an
optimal pair (s(·), u(·)). For the sake of interpretation of the variables, we continued working
with s?r instead of u.
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As it was pointed out in Gajardo et al.[31], condition (2.14) gives explicit expressions for
the optimal policy when some explicit growth functions µ(·) are chosen. For instance:

1. For any linear growth function, we have that

s?r (s1) =
s1

2
.

2. For the Monod law described in (2.2) the unique maximum is computed as follows

s?r (s1) =
√
K2 +Ks1 −K.

2.4 The effect of recirculation

We consider now the previous problem, but now with the addition of two pumps that helps
the mixing of the two zones, as a procedure to help with the homogeneization of the substrate
concentration in the two zones (Figure 3.2). Suppose that the speed of this new pumps is
QR ∈ [Qmin

R , Qmax
R ], with 0 ≤ Qmin

R ≤ Qmax
R .

Q

s2 s1

1
v

2
v

r
v

s , xrr bioreactor

biomass

settler

dead zone active zone

Q

Q

Q
R

Q
R

D

Figure 2.2. Connections between active zone, dead zone and bioreactor, with the recirculation pumps.

The time evolution of the concentrations si of the pollutants in the two zones, after the
reduction of the system, is given by the equations

ṡ1 = αµ(s?r )(s?r − s1) +

(
β1 +

QR

v1

)
(s2 − s1)

ṡ2 =

(
β2 +

QR

v2

)
(s1 − s2),

(2.17)

where we recall that α = vr/v1, β1 = D/v1 and β2 = D/v2. In this case, the Hamiltonian of
problem is

H(s, λ; s?r , QR) = −1 + λ1αµ(s?r )(s?r − s1)

+ (−λ1β1 + λ2β2)(s1 − s2) +QR

(
−λ1

v1

+
λ2

v2

)
(s1 − s2).

(2.18)
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We say that a control (s?r , QR) is admissible if it satisfies for all t ≥ 0 that s?r (t) ∈ [0, s1(t)]
and QR(t) ∈ [Qmin

R , Qmax
R ]. We consider the same problem of minimum-time depollution.

Propositions 2.4 and 2.5 are still valid. The maximum principle states that if (s?r , QR) is a
solution of the problem, then there exist an adjoint state λ(·) non-null at every time that solves
the adjoint equations and transversality conditions

λ̇1 = αµ(s?r )λ1 − (D +QR)

(
−λ1

v1

+
λ2

v2

)
, λ1(T ) = 0,

λ̇2 = (D +QR)

(
−λ1

v1

+
λ2

v2

)
, λ2(T ) < 0,

(2.19)

and such that for each time t ∈ [0, T ] the Hamiltonian is maximized at the control value
(s?r , QR(t)). Notice that this is equivalent to the independent maximization of the functions
φ(t, sr) with respect to sr ∈ [0, s1(t)] and of the function

QR 7→ QR

(
−λ1

v1

+
λ2

v2

)
(s1 − s2).

Proposition 2.9 Suppose that (s?r , QR) is an optimal control for the problem with recirculation.
Then, for all t ∈ [0, T ], the control s?r is given by the feedback control defined in (2.3), and we
have that QR(t) = Qmax

R .

Proof. The proof that s?r (t) = ŝ?r (s1(t)) is the same as in Proposition 2.8; it relies in the facts
that the Hamiltonian is decoupled in the variables s?r and QR, and in the nonpositivity of the
adjoint state λ1, whose proof is the same as in Proposition 2.7.

Let us define the function

η(t) =
λ1(t)

v1

− λ2(t)

v2

. (2.20)

Notice that the maximimization of the Hamiltonian along the optimal trajectory and the invari-
ance of the set I implies that QR(t) maximizes the function QR 7→ QRη(t), for all t ∈ [0, T ].
We have that the time derivative of η(·) is

η̇ = λ1
α1

v1

µ(s?r ) + (D +QR)

(
1

v1

+
1

v2

)
η,

with final value η(T ) = −λ2(T )/v1 > 0. We prove that this function is positive for all t ∈
[0, T ). Suppose that for some time t† < T we have η(t†) = 0. Then, we have that η̇(t†) =
α1µ(s?r (t†))λ1(t†) < 0, and thus η(t) ≤ 0 for all t ∈ [t†, T ]. This contradicts the fact that at the
final time η(T ) > 0, concluding the statement.

Since η is positive along the optimal trajectory, then for all t ∈ [0, T ] the control value that
maximizes QR 7→ QRη(t) is QR = Qmax

R .

This last result states that if it is possible to add a recirculation to the process, it is better to
use the maximum speed of pumping during all the process. It seems natural to eliminateQR as a
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control parameter (since it will not change along the optimal trajectory), and to consider instead
its maximum value Qmax

R as a modification of the diffusion term. We can rename D + Qmax
R

simply as D (and, in consequence, return to the system (2.4)), and to study the behavior of the
minimal-time function with respect to this parameter. It seems natural to ask if the best possible
scenario is the homogeneous one, that is, the case with infinite diffusion.

Let us denote the minimal-time function by VD(·), indexed by the value of the diffusion
parameter D:

VD(z) = inf
s?r∈AU

{T ≥ 0 | sz,s?r ,D(T ) ∈ T },

where sz,s?r ,D(·) denotes the solution of with initial condition z = (z1, z2) ∈ I and admissible
control s?r . We have the following result.

Proposition 2.10 For any z ∈ I , the function D 7→ VD(z) is decreasing.

Proof. From Proposition 2.8, we know that for every D > 0 and initial condition z ∈ I , the
optimal control s?r (·) is given by s?r (t) = ŝ?r (s

z,s?r ,D
1 (t)) with ŝ?r (·) the feedback given in (2.3)

and sz,s?r ,D(·) the solution of (2.4) with initial condition z and control s?r . We split the proof in
two parts:

i. Notice that under the optimal feedback, sz,s
?
r ,D

2 (·) is decreasing; thus, we can define the
time change

τ(t) = z2 − sz,s
?
r ,D

2 (t).

The time τ ranges from 0 to τf := z2 − s (independent of D); from (2.4) we get the
formula for the final time (depending on D)

T = TD =
v2

D

∫ τf

0

dτ

s2(τ,D)− s1(τ,D)
.

Now, s1(·) is solution of the nonautonomous equation in time τ

d

dτ
s1 = fD(τ, s1) := −αv2

D

γ(s1)

z2 − τ − s1

+
v2

v1

. (2.21)

Notice that for D1 < D2 we have fD1(τ, s1) < fD2(τ, s1), which implies that for all
τ ∈ [0, τf ], s1(τ,D1) < s1(τ,D2). We conclude that sz,s

?
r ,D

1 (T ) is increasing with D.

ii. Now, the variable m(t) = v1s
z,s?r ,D
1 (t) + v2s

z,s?r ,D
2 (t) is also decreasing in time, with

ṁ(t) = −vrγ(s
z,s?r ,D
1 (t)). We define the time change

θ(t) = m0 −m(t), m0 = v1z1 + v2z2,

which ranges from θ = 0 to θDf := m0 − (v1s
z,s?r ,D
1 (T ) + v2s). From the point i. we see

that θDf is decreasing with D. Again, from (2.4), we obtain an expression for the final
time:

TD =
1

vr

∫ θDf

0

dθ

γ(s1(θ,D))
. (2.22)
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Now, s1(·) is solution of the nonautonomous equation in time θ

d

dθ
s1 = f̃D(θ, s1) := − 1

v1

+
D

v1v2vr

m0 − (v1 + v2)s1 − θ
γ(s1)

. (2.23)

For D1 < D2 we have f̃D1(θ, s1) < f̃D2(θ, s1), which implies that for all θ ∈ [0, θDf ],
s1(θ,D1) < s1(θ,D2).

The function s 7→ γ(s) is increasing. Indeed, if s > s′, we have s−sr > s′−sr, and then
µ(sr)(s − sr) > µ(sr)(s

′ − sr). Taking supremum on sr we conclude that s 7→ γ(s) is
increasing. This result proves that the integrand in (2.22) is decreasing with D and this,
along with the fact that θDf is decreasing with D, allows to conclude that the optimal time
VD(z) = TD is a decreasing function of D.

2.5 Numerical Simulations

Simulations have been run for the Monod law µmax = 1[h−1], K = 10[l−1], a diffusion rate
D = 0.1[l · h−1], and volumes v1 = v2 = 100[l] and vr = 1[l]. We perform the simulations for
three different values of initial substrate concentrations in the active zone (z1) and in dead zone
(z2). For each of these initial conditions, we chose three different values of the prescribed final
level of substrate; s = 1, 3 and 5[l−1]. For each of them, we compare the optimal time obtained
by using feedback strategies (denoted by Tfeedback; see (2.3)) with optimal time obtained by a
constant strategy sought in the fixed interval s?r ∈ [0, 5] (denoted by Tconstant). The results are
shown in Tables 2.1-2.3.

s Tfeedback Tconstant Gain
5 1.3204× 103 1.3245× 103 0.31%
3 3.1402× 103 3.1970× 103 1.77%
1 1.00644× 104 1.13642× 104 11.44%

Table 2.1. Comparison between optimal treatment time and the time given by the best constant
control, from initial condition z = (5, 8)

s Tfeedback Tconstant Gain
5 1.1680× 103 1.1765× 103 0.72%
3 2.9992× 103 3.0739× 103 2.43%
1 9.9235× 103 1.12667× 104 11.92%

Table 2.2. Comparison between optimal treatment time and the time given by the best constant
control, from initial condition z = (6, 7)

s Tfeedback Tconstant Gain
5 9.370× 102 9.3280× 102 0.11%
3 2.6976× 103 2.7086× 103 0.41%
1 9.6207× 103 1.05199× 104 8.54%
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Table 2.3. Comparison between optimal treatment time and the time given by the best constant
control, from initial condition z = (2, 10)

It can be seen that the gain obtained by feedback-type control strongly increases when the
value of s decreases. This shows that the importance of using feedback controls becomes more
relevant when we expect to depollute better our resource.

In Tables 2.4-2.6 we show the behavior of the value function or equivalently the optimal
treatment time (obtained using the feedback control ŝ?r ) with respect to the diffusion parameter
D ∈ {0.1, 1, 10} and different initial conditions. We can clearly see that the increasing the
diffusion parameter results in a much shorter treatment time, regardless of the target level s.
This shows the benefits of adding a pump to the system to help the mixing between the two
zones at maximum speed, resulting in a much shorter treatment time.

s D = 0.1 D = 1 D = 10
5 1.3204× 103 5.6069× 102 4.7702× 102

3 3.1402× 103 1.8718× 103 1.7450× 103

1 1.0064× 104 7.7433× 103 3.6877× 103

Table 2.4. Comparison of optimal times with respect to diffusion parameter D from initial
condition z = (5, 8)

s D = 0.1 D = 1 D = 10
5 1.1680× 103 5.4748× 102 4.7585× 102

3 2.9992× 103 1.8585× 103 1.7452× 103

1 9.9235× 103 7.7265× 103 3.5543× 103

Table 2.5. Comparison of optimal times with respect to diffusion parameter D from initial
condition z = (6, 7)

s D = 0.1 D = 1 D = 10
5 9.370× 102 4.5386× 102 3.4634× 102

3 2.6976× 103 1.7657× 103 1.6173× 103

1 9.6207× 103 7.1613× 103 3.5902× 103

Table 2.6. Comparison of optimal times with respect to diffusion parameter D from initial
condition z = (2, 10)

2.6 Conclusion

In this work, we have modeled the inhomogeneity of the pollutant concentration as two sepa-
rated zones, one of them connected to the treating device, called the active zone, and the other
one being depolluted by diffusion with the first zone, called dead zone. We obtained an optimal
state-feedback control for the problem of minimal time depollution, and this feedback turns
out to have the same form that the optimal control for the homogeneous case as stated in [31]
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where there is no dead zone, depending only of the measurements on the active zone. This has
some interesting features for practitioners, for instance it does not require the knowledge of the
volumes of the two zones or the diffusion parameter.

We have also shown that the optimal treatment time is decreasing with the diffusion param-
eter. We show this behavior by means of numerical simulations.
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Chapter 3

Optimal feedback synthesis and minimal
time function for the bioremediation of
water resources with two patches

This chapter corresponds to the published article

Ramírez C., H.; Rapaport, A.; Riquelme, V. Optimal Feedback Synthesis and Minimal Time
Function for the Bioremediation of Water Resources with Two Patches. SIAM J. Control

Optim. 54 (2016), no. 3, 1697-1718.

3.1 Introduction

Today, the decontamination of water resources and reservoirs in natural environments (lakes,
lagoons, etc.) and in industrial frameworks (basin, pools, etc.) is of prime importance. Due
to the availability of drinking water becoming scarce on earth, efforts have to be made to re-
use water and to preserve aquatic resources. To this end, biological treatment is a convenient
way to extract organic or soluble matter from water. The basic principle is to use biotic agents
(generally micro-organisms) that convert the pollutant until the concentration in the reservoir
decreases to an acceptable level. Typically, the treatment is performed with the help of con-
tinuously stirred or fed-batch bioreactors. Numerous studies have been devoted to this subject
over the past 40 years (see, for instance, [3, 22, 23, 32, 42, 43, 50, 60, 71, 72, 76, 78]).

The following main types of procedure are usually considered:

• The direct introduction of the biotic agents to the reservoir. This solution could lead to
the eutrophication of the resource.

• The draining of the reservoir to a dedicated bioreactor and the filling back of the water
after treatment. This solution attempts to eradicate various forms of life supported by the
water resource, that cannot survive without water (such as fish, algae, etc.).
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Alternatively, one can consider a side bioreactor that continuously treats the water pumped from
the reservoir and that injects it back with the same flow rate so that the volume of the reservoir
remains constant at all time. At the output of the bioreactor, a settler separates biomass from
the water so that no biomass is introduced in the resource. Such an operating procedure is
typically used for water purification of culture basins in aquaculture [21, 28, 64].

The choice of the flow rate presents a trade-off between the speed at which the water is
treated and the quality of decontamination. Recently, minimal-time control problems with sim-
ple spatial representations have been formulated and addressed [31]. Under the assumption that
the resource is perfectly mixed, an optimal state-feedback that depends on the characteristics of
the micro-organisms and on the on-line measurement of the pollutant concentration has been
derived. Later, an extension with a more realistic spatial representation was proposed in [33]
that considers two perfectly-mixed zones in the resource: an “active” zone, where the treatment
of the pollutant is the most effective, and a more confined or “dead” zone that communicates
with the active zone by diffusion of the pollutant. It has been shown that the optimal feedback
obtained for the perfectly mixed case is also optimal when one applies it on the pollutant con-
centration in the active zone only. The fact that this controller does not require knowledge of
the size of the dead zone or of the value of the diffusion parameter, neither of the online mea-
surement of the pollutant in the dead zone, is a remarkable property. Nevertheless, the minimal
time is impacted by the characteristics of the confinement.
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Figure 3.1. Modeling scheme of the treatment of two interconnected patches (definitions of the variables and parameters are given in Section
3.2)

In the present work, we consider that the treatment of the water resource can be split into
two zones i.e. the water is extracted from the resource at two different points (instead of one),
and the treated water returns to the resource (with the same flows) at two different locations. A
diffusion makes connection between the zones (see Fig. 3.1). Such a division into two patches
can represent real situations such as:

• natural environments where water tables or lagoons are connected together by a small
communication path (this modeling covers also the particular case of a null diffusion
when one has to treat two independent volumes),

• resource hydrodynamics that reveal influence zones for each pumping devices, depending
on the locations of the extraction and return points,
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• accidental pollution as an homogeneous strain diffusing into the complementary part of
the resource.

The control problem consists in choosing dynamically the total flow rate q and the flow distribu-
tion q1, q2 between the two patches, with the objective of having both of them decontaminated
in minimal time. Notice that a particular strategy consists in having all the time a flow dis-
tribution entirely with one zone, which amounts to the former problem with active and dead
zones mentioned above. We study here the benefit of switching dynamically the treatment to
the other patch or treating simultaneously both patches. The associated minimal-time problem
is significantly more complex, because there are two controls and the velocity set is non-convex
(this is shown in the next Section). Indeed, it is necessary to use different techniques to address
the cases of non-null diffusion between the two zones and the limiting case of null diffusion
between the two zones.

The paper is organized as follows. In the next section, definitions and assumptions are
presented. In Section 3.3, properties of the optimization problem with relaxed controls and
non-null diffusion are investigated. In Section 3.4, the optimal control strategy for the original
problem with non-null diffusion is given and proven. In Section 3.5, we address the particular
case of null diffusion and we provide explicit bounds on the minimal-time function. Finally,
we show numerical computations that illustrate the theoretical results, and give concluding
remarks.

3.2 Definitions and preliminaries

In what follows, we denote by R the set of real numbers, R+ and R?
+ the sets of non-negative

and positive real numbers respectively. Analogously, R− and R?
− are the sets of non-positive

and negative real numbers respectively. We set also R2
+ = R+ × R+ and R2

− = R− × R−.

The time evolution of the concentrations si (i = 1, 2) of pollutants in the two patches are
given by the equations


ds1

dt
=

q1

v1

(sr − s1) +
D

v1

(s2 − s1) ,

ds2

dt
=

q2

v2

(sr − s2) +
D

v2

(s1 − s2) ,
(3.1)

where the volumes vi (i = 1, 2) are assumed to be constant and D denotes the diffusion co-
efficient of the pollutant between the two zones. The control variables are the flow rates qi
of the pumps in each zone, which bring water with a low pollutant concentration sr from the
bioreactor and remove water with a pollutant concentration si from each zone i, with the same
flow rates qi.

The concentration sr at the output of the bioreactor is linked to the total flow rate q = q1 +q2
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by the usual chemostat model:
dsr

dt
= −µ(sr)xr +

q

vr

(sin − sr) ,

dxr

dt
= µ(sr)xr −

q

vr

xr ,
(3.2)

where xr is the biomass concentration, vr is the volume of the bioreactor and µ(·) is the specific
growth rate of the bacteria (without a loss of generality we assume that the yield coefficient
is equal to one). These equations describe the dynamics of a bacterial growth consuming a
substrate that is constantly fed in a tank of constant volume (see for instance [73]). The input
concentration sin is given here by the combination of the concentrations of the water extracted
from the two zones:

sin =
q1s1 + q2s2

q1 + q2

. (3.3)

We assume that the output of the bioreactor is filtered by a settler, that we assume to be perfect,
so that the water that returns to the resource is biomass free (see [24, 25] for considerations
of settler modeling and conditions that ensure the stability of the desired steady-state of the
settler).

The target to be reached in the minimal time is defined by a threshold s > 0 of the pollutant
concentrations, that is

T =
{
s = (s1, s2) ∈ R2

+ |max{s1, s2} ≤ s
}
. (3.4)

In the paper, we shall denote tf as the first time at which a trajectory reaches the target (when
it exists).

We make the usual assumptions on the growth function µ(·) in absence of inhibition.

Assumption 3.1 µ(·) is a C1 increasing concave function defined on R+ with µ(0) = 0.

Under this last assumption, we recall that under a constant sin, the dynamics (3.2) admit a
unique positive equilibrium (s?r , x

?
r ) that is globally asymptotically stable on the domain R+ ×

R?
+ provided that the condition q/vr ≤ µ(sin) is satisfied (see, for instance, [73]). Then, s?r is

defined as the unique solution of µ(s?r ) = q/vr and x?r = sin − s?r . Consequently, considering
expression (3.3), the controls q1 and q2 are chosen such that

q1 + q2 ≤ vrµ

(
q1s1 + q2s2

q1 + q2

)
. (3.5)

We assume that the resource to be treated is very large. This amounts to considering that the
bioreactor is small compared to both zones of the resource.

Assumption 3.2 v1 and v2 are large compared to vr.
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Let us define α = q1/q, r = v1/(v1 + v2), d = D/vr, and ε = vr/(v1 + v2). Then, the
coupled dynamics (3.1)-(3.2) with (3.3) can be written in the slow-fast form

dsr

dt
= −µ(sr)xr +

q

vr

(αs1 + (1− α)s2 − sr) ,

dxr

dt
= µ(sr)xr −

q

vr

xr ,

ds1

dt
= ε

(
α

r

q

vr

(sr − s1) +
d

r
(s2 − s1)

)
,

ds2

dt
= ε

(
1− α
1− r

q

vr

(sr − s2) +
d

1− r
(s1 − s2)

)
.

(3.6)

Provided that the initial conditions of the variables (sr, xr) belong to R+ × R?
+, applying Ty-

chonnof’s Theorem (see for instance [49]), the dynamics of the slow variables (s1, s2) can be
approached using the reduced dynamics

ṡ1 =
ds1

dτ
=

α

r
µ(s?r )(s?r − s1) +

d

r
(s2 − s1) ,

ṡ2 =
ds2

dτ
=

1− α
1− r

µ(s?r )(s?r − s2) +
d

1− r
(s1 − s2)

(3.7)

in the time scale τ = εt. In this formulation, the quasi-steady-state concentration s?r of the
bioreactor can be considered as a control variable that takes values in [0, αs1+(1−α)s2], which
is equivalent to choosing q ∈ [0, vrµ(αs1 +(1−α)s2)] when Assumption 3.1 is satisfied. In the
following, we shall consider the optimal control for the reduced dynamics only. Nevertheless,
we give some properties of the optimal feedback for the reduced dynamics when applied to the
un-reduced one, in Section 3.4 (Remark 3.2) and Appendix.

Notice that the control problem can be reformulated with the controls u = (α, s?r ) that
belong to the state-dependent control set

U(s) = {(α, s?r ) |α ∈ [0, 1], s?r ∈ [0, αs1 + (1− α)s2]} (3.8)

equivalently to controls q1 and q2. In what follows, a measurable function u(·) such that u(t) ∈
U(s(t)) for all t is called an admissible control.

Lemma 3.3 The domain R2
+ is positively invariant by the dynamics (3.7) for any admissible

controls u(·), and any trajectory is bounded. Furthermore, the target T is reachable in a finite
time from any initial condition in R2

+.

Proof. For s1 = 0 and s2 ≥ 0, one has ṡ1 ≥ 0. Similarly, one has ṡ2 ≥ 0 when s1 ≥ 0 and
s2 = 0. By the uniqueness of the solutions of (3.7) for measurable controls u(·), we deduce
that R2

+ is invariant. From equations (3.7), one can write

rṡ1 + (1− r)ṡ2 = µ(s?r )(s?r − (αs1 + (1− α)s2)) ≤ 0

for any admissible controls. One then deduces

rs1(t) + (1− r)s2(t) ≤M0 = rs1(0) + (1− r)s2(0), ∀t ≥ 0,
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which provides the boundedness of the trajectories.

Consider the feedback strategy

α = r , s?r =
rs1 + (1− r)s2

2
,

and we write the dynamics of m = rs1 + (1− r)s2 as follows:

ṁ = −µ
(m

2

) m
2
< 0 ,∀m > 0 .

Then, from any initial condition in R2
+, the solution m(t) tends to 0 when t tends to infinity.

Therefore, m(·) reaches the set [0,min(r, 1 − r)s] in a finite time, which guarantees that s =
(s1, s2) belongs to T at that time.

For simplicity, we define the function

β(σ, s?r ) = µ(s?r )(σ − s?r ) (3.9)

so that the dynamics (3.7) can be written in the more compact form

ṡ = F (s, u) + dG(s) (3.10)

where F (·) and G(·) are defined as follows:

F (s, (α, s?r )) = −


α

r
β(s1, s

?
r )

1− α
1− r

β(s2, s
?
r )

 , G(s) =

 s2 − s1

r
s1 − s2

1− r

 .

The dynamics can be equivalently expressed in terms of controls v = (α, ζ) that belong to the
state-independent set V = [0, 1]2 with the dynamics

ṡ = F (s, (α, ζ(αs1 + (1− α)s2))) + dG(s) (3.11)

which satisfy the usual regularity conditions for applying Pontryagin’s Maximum Principle for
deriving necessary optimality conditions. One can notice that the velocity set of the dynamics
(3.11) is not everywhere convex. Consequently, one cannot guarantee a priori the existence of
an optimal control v(·) in the set of time-measurable functions that take values in V but that
are among relaxed controls (see, for instance, [83, Sec. 2.7]). For convenience, we shall keep
the formulation of the problem with controls u. Because for any s the sets ∪u∈U(s)F (s, u) are
two-dimensional connected, the corresponding convexified dynamics can be written as follows
(see [68, Th. 2.29]):

ṡ = F̃ (s, ũ) + dG(s) (3.12)

with
F̃ (s, ũ) = pF (s, ua) + (1− p)F (s, ub) (3.13)
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where the relaxed controls ũ = (ua, ub, p) = (αa, s
?
ra, αb, s

?
rb, p) belong to the set

Ũ(s) = U(s)2 × [0, 1].

Thanks to Lemma 3.3, the hypotheses of Filippov’s existence theorem [17, Theorem 9.2.i]
are satisfied for the relaxed dynamics (that is, with relaxed controls) and thus, for any initial
condition there exists a solution of the relaxed problem. In the next section, we show that the
relaxed problem admits an optimal solution that is also a solution of the original (non-relaxed)
problem.

3.3 Study of the relaxed problem

Throughout this section, we assume that the parameter d is positive. The particular case of
d = 0 will be considered later in Section 3.5. Let us write the Hamiltonian of the relaxed
problem

H̃(s, λ, (αa, s
?
ra, αb, s

?
rb, p)) =

− 1 + pQ(s, λ, (αa, s
?
ra)) + (1− p)Q(s, λ, (αb, s

?
rb)) + d(s2 − s1)

(
λ1

r
− λ2

1− r

)
(3.14)

which is to be maximized w.r.t. (αa, s
?
ra, αb, s

?
rb, p) ∈ Ũ(s), where λ = (λ1, λ2), and we have

defined, for convenience, the function

Q(s, λ, (α, s?r )) = −
(
α
λ1

r
β(s1, s

?
r ) + (1− α)

λ2

1− r
β(s2, s

?
r )

)
. (3.15)

The adjoint equations are
λ̇1 = λ1

(
p
αa
r
µ(s?ra) + (1− p)αb

r
µ(s?rb) +

d

r

)
− λ2

d

1− r
,

λ̇2 = −λ1
d

r
+ λ2

(
p

1− αa
1− r

µ(s?ra) + (1− p)1− αb
1− r

µ(s?rb) +
d

1− r

)
,

(3.16)

with the following transversality conditions
s1(tf ) < s, s2(tf ) = s ⇒ λ1(tf ) = 0, λ2(tf ) < 0 ,
s1(tf ) = s, s2(tf ) < s ⇒ λ1(tf ) < 0, λ2(tf ) = 0 ,
s1(tf ) = s, s2(tf ) = s ⇒ λ1(tf ) ≤ 0, λ2(tf ) ≤ 0 with λ(tf ) 6= 0 .

(3.17)

As usual, a triple (s(·), λ(·), ũ?(·)) satisfying (3.12), (3.16), (4.7), and

H̃(s(t), λ(t), ũ?(t)) = max
ũ∈Ũ(s(t))

H̃(s(t), λ(t), ũ) (3.18)

is called an admissible extremal.
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Lemma 3.4 Along any admissible extremal, one has λi(t) < 0 (i = 1, 2) for any t < tf .

Proof. If one writes the adjoint equations (3.16) as λ̇i = φi(t, λ1, λ2) (i = 1, 2), one can notice
that the partial derivatives ∂jφi (i 6= j) are non-positive. From the theory of monotone dynam-
ical systems (see for instance [74]), the dynamics (3.16) are thus competitive or, equivalently,
cooperative in backward time. As the transversality conditions (4.7) gives λi(tf ) ≤ 0 (i = 1, 2),
we deduce by the property of monotone dynamics that one should have λi(t) ≤ 0 (i = 1, 2) for
any t ≤ tf . Moreover, λ = 0 is an equilibrium of (3.16) and λ(tf ) has to be different from 0 at
any time t ≤ tf . Then, λi(t) (i = 1, 2) cannot be simultaneously equal to zero. If there exists
t < tf and i ∈ {1, 2} such that λi(t) = 0, then one should have λj(t) < 0 for j 6= i. However,
d > 0 implies λ̇i(t) > 0, thus obtaining a contradiction with λi ≤ 0 for any time from t to the
final time tf .

For the following, we consider the function

γ(σ) = max
s?r≥0

β(σ, s?r ), σ > 0 , (3.19)

which satisfies the following property:

Lemma 3.5 Under Assumption 3.1, for any σ > 0, there exists a unique ŝ?r (σ) ∈ (0, σ) that
realizes the maximum in (3.19). Furthermore, the function γ(·) is differentiable and increasing
with

γ′(σ) = µ(ŝ?r (σ)) . (3.20)

Proof. Consider the function ϕ : (σ,w) ∈ R+ × [0, 1] 7→ β(σ,wσ) and the partial function
ϕσ : w ∈ [0, 1] 7→ ϕ(σ,w) for fixed σ > 0. Notice that ϕσ(0) = ϕσ(1) = 0 and that ϕσ(w) > 0
for w ∈ (0, 1). Simple calculation gives ϕ′′σ(w) = µ′′(wσ)(1 − w)σ3 − 2µ′(wσ)σ2, which is
negative. Therefore, ϕσ(·) is a strictly concave function on [0, 1] and consequently admits a
unique maximum w?σ on [0, 1]. We conclude that w?σ belongs to (0, 1) or, equivalently, that the
maximum of s?r 7→ β(σ, s?r ) is realized for a unique ŝ?r (σ) = w?σσ in (0, σ).

Furthermore, one has ϕ′σ(w) = σµ′(wσ)(σ − wσ)− σµ(wσ), and the necessary optimality
condition ϕ′σ(w?σ) = 0 gives the equality

µ(ŝ?r (σ)) = µ′(ŝ?r (σ))(σ − ŝ?r (σ)) . (3.21)

Simple calculation shows that for eachw ∈ [0, 1], the function σ 7→ ϕ(σ,w) is convex. Because
the maximizer w?σ of ϕσ(·) is unique for any σ, one can apply the rules of differentiability of
pointwise maxima (see, for instance, [19, Chap. 2.8]), which state that the function γ(σ) =
maxw∈[0,1] ϕ(σ,w) is differentiable with

γ′(σ) =
∂ϕ

∂σ
(σ,w?σσ) = w?σµ

′(w?σσ)(σ − w?σσ) + µ(w?σσ)(1− w?σ) .

Equation (3.21) provides the simpler expression (3.20), which shows that γ(·) is increasing.
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We now consider the variable

η =
−λ1

r
γ(s1)− −λ2

1− r
γ(s2) (3.22)

which will play the role of a switching function. Notice that this is not the usual switching
function of problems with linear dynamics w.r.t. a scalar control because our problem has
two controls α and s?r that cannot be separated, and the second control acts non-linearly in the
dynamics.

Lemma 3.6 For fixed (s, λ) ∈ R2
+ × R2

−, the pairs u? = (α, s?r) ∈ U(s) that maximize the
function Q(s, λ, ·) are the following:

i. when η > 0: u? = (1, ŝ?r (s1)),

ii. when η < 0: u? = (0, ŝ?r (s2)),

iii. when η = 0 and s1 = s2: u? ∈ [0, 1]× {ŝ?r} where ŝ?r = ŝ?r (s1) = ŝ?r (s2),

iv. when η = 0 and s1 6= s2: u? = (1, ŝ?r (s1)) or u? = (0, ŝ?r (s2)).

Proof. When η > 0, one can write, using Lemma 3.5 and λ1, λ2 < 0,

Q(s, λ, (1, ŝ?r (s1))) =
−λ1

r
γ(s1)

> α
−λ1

r
γ(s1) + (1− α)

−λ2

1− r
γ(s2) , ∀α ∈ [0, 1)

≥ α
−λ1

r
β(s1, s

?
r ) + (1− α)

−λ2

1− r
β(s2, s

?
r ) , ∀α ∈ [0, 1), ∀s?r ∈ [0, αs1 + (1− α)s2],

≥ Q(s, λ, (α, s?r )) , ∀α ∈ [0, 1), ∀s?r ∈ [0, αs1 + (1− α)s2],

and for α = 1, one has Q(s, λ, (1, ŝ?r (s1))) > Q(s, λ, (1, s?r )) ,∀s?r 6= ŝ?r (s1). Therefore, the
maximum of Q(s, λ, ·) is reached for the unique pair (α, s?r ) = (1, s?r (s1)).

Similarly, when η < 0, one can show that the unique maximum is (α, s?r ) = (0, s?r (s2)).

When η = 0, one has

−λ1

r
γ(s1) =

−λ2

1− r
γ(s2) > Q(s, λ, (α, s?r )) ,∀α ∈ [0, 1] ,∀s?r /∈ {ŝ?r (s1), ŝ?r (s2)}.

If s1 = s2, one necessarily has λ1/r = λ2/(1− r) 6= 0, and thus,

Q(s, λ, (α, s?r )) =
−λ1

r
β(s1, s

?
r ) <

−λ1

r
γ(s1) = Q(s, λ, (α, ŝ?r (s1))) ,∀s?1 6= ŝ?r (s1),

for any α ∈ [0, 1]. The optimal s?r is necessarily equal to ŝ?r (s1) = ŝ?r (s2).

If s1 6= s2, one has s̃?r (s1) 6= ŝ?r (s2), and consequently, using Lemma 3.5 and the fact that λ1

and λ2 are both negative,

Q(s, λ, (α, ŝ?r (s1))) = α
−λ1

r
γ(s1) + (1− α)

−λ2

1− r
β(s2, ŝ

?
r (s1)) <

−λ1

r
γ(s1) ,∀α ∈ [0, 1)

51



Q(s, λ, (α, ŝ?r (s2))) = α
−λ1

r
β(s1, ŝ

?
r (s2)) + (1− α)

−λ2

1− r
γ(s2) <

−λ2

1− r
γ(s2) ,∀α ∈ (0, 1]

Then, (α, s?r ) = (1, ŝ?r (s1)) and (α, s?r ) = (0, ŝ?r (s2)) are the only two pairs that maximize
Q(s, λ, ·).

Proposition 3.7 At almost any time, an optimal control ũ? of the relaxed problem satisfies the
following property:

1. when η 6= 0 or s1 = s2, one has F̃ (s, ũ?) = F (s, u?), where u? is given by Lemma 3.6
i.-ii.-iii.

2. when η = 0 and s1 6= s2, one has

ũ? ∈ {(1, ŝ?r (s1)), (0, ŝ?r (s2))} × U(s)× {1} ∪ U(s)× {(1, ŝ?r (s1)), (0, ŝ?r (s2))} × {0}
∪ {(1, ŝ?r (s1), 0, ŝ?r (s2))} × [0, 1] ∪ {(0, ŝ?r (s2), 1, ŝ?r (s1))} × [0, 1].

(3.23)

Proof. According to Pontryagin’s Maximum Principle, an optimal control ũ = (ua, ub, p) has
to maximize for a.e. time the Hamiltonian H̃ given in (3.14) or, equivalently, the quantity

(ua, ub, p) 7→ Q̃(s, λ, (ua, ub, p)) = pQ(s, λ, ua) + (1− p)Q(s, λ, ub)

where λ1 and λ2 are negative (from Lemma 3.4). Let us consider the maximization of the
function Q(s, λ, ·) characterized by Lemma 3.6.

In cases i and ii, the function Q(s, λ, ·) admits a unique maximizer u?. Thus, Q̃(s, λ, ·) is
maximized for ua = u? with p = 1 independent of ub (or, symmetrically, for ub = u? with
p = 0 independent of ua) or for ua = ub = u? independent of p ∈ [0, 1]. In any case, one has
F̃ (s, ũ?) = F (s, u?).

In case iii, the function Q(s, λ, ·) is maximized for a unique value of s?r = ŝ?r(s1) = ŝ?r(s2)
independent of α. Thus, Q̃(s, λ, ·) is maximized when s?ra is equal to this value with p = 1
independent of ub (and, symmetrically, when s?rb is equal to this value with p = 0 independent
of ua) or when both s?ra and s?rb are equal to this value independent of αa, αb and p. In any case,
one has F̃ (s, ũ?) = F (s, u?), where u? ∈ [0, 1]× {s?r}.

In case iv, the function Q(s, λ, ·) admits two possible maximizers. Thus, Q̃(s, λ, ·) is max-
imized when ua is equal to one of these maximizers with p = 1 independent of ub, when,
symmetrically, ub is equal to one of these maximizers with p = 0 independent of ua, or when
ua and ub are equal to the two different maximizers independent of p. All these cases appear in
the set-membership (3.23).

Remark 3.1 In case 2 of Proposition 3.7, a relaxed control ũ? with p ∈ (0, 1) can be ap-
proximated by a high-frequency switching between non-relaxed controls u = (1, ŝ?r (s1)) and
u = (0, ŝ?r (s2)) (see the “chattering control” in [9]). In practice, such a high-frequency switch-
ing between the two pumps is not desired.

The following Lemma will be crucial later at several places.
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Lemma 3.8 Along any extremal trajectory, one has at almost any time

η̇ = d

(
γ(s1)

r
+
γ(s2)

1− r

)(
λ2

1− r
− λ1

r

)
+ d

(
λ1

r2
µ(ŝ?r (s1)) +

λ2

(1− r)2
µ(ŝ?r (s2))

)
(s1 − s2) .

(3.24)

Proof. Let us write the time derivatives of the products λ1γ(s1) and λ2γ(s2) that appear in the
expression of the function η using expressions (3.12), (3.16) and (3.20):

d

dt
[λ1γ(s1)] =

λ1

r
δ1 + dγ(s1)

(
λ1

r
− λ2

1− r

)
+ d

λ1

r
µ(ŝ?r (s1))(s2 − s1)

where we put

δ1 = pαa [µ(s?ra)γ(s1)− µ(ŝ?r (s1))β(s1, s
?
ra)] + (1− p)αb [µ(s?rb)γ(s1)− µ(ŝ?r (s1))β(s1, s

?
rb)] .

One can easily check that for any optimal control ũ? given by Proposition 3.7, one has δ1 = 0.
Similarly, one can write

d

dt
[λ2γ(s2)] =

λ2

1− r
δ2 + dγ(s2)

(
λ2

1− r
− λ1

r

)
+ d

λ2

1− r
µ(ŝ?r (s2))(s1 − s2)

where

δ2 = p(1−αa) [µ(s?ra)γ(s2)− µ(ŝ?r (s2))β(s2, s
?
ra)]+(1−p)(1−αb) [µ(s?rb)γ(s2)− µ(ŝ?r (s2))β(s2, s

?
rb)] ,

with δ2 = 0 for any optimal control ũ? given by Proposition 3.7.

Then, one obtains the equality (3.24).

We now prove that the non-relaxed problem admits an optimal solution that is also optimal
for the relaxed problem.

Proposition 3.9 The optimal trajectories for the problem with the convexified dynamics (3.12)
are admissible optimal trajectories for the original dynamics (3.10). Furthermore, the optimal
control u?(·) satisfies the following property

s1(t) 6= s2(t) =⇒ u?(t) = (1, ŝ?r (s1)) or u?(t) = (0, ŝ?r (s2)), for a.e. t ∈ [0, tf ] .

Proof. We will prove that the set of times whereby the optimal relaxed strategy generates a
velocity that belongs to the convexified velocity set but not to the original velocity set has
Lebesgue measure zero. For this, consider s1 > s2 and η = 0. Because γ(·) is increasing
(see Lemma 3.5), γ(s1) > γ(s2). Additionally, η = 0 implies that λ1/r > λ2/(1 − r). From
equation (3.24) of Lemma 3.8, we deduce the inequality η̇ < 0 (where λ1 and λ2 are negative
by Lemma 3.4). Similarly, to consider s2 > s1 and η = 0 implies that η̇ > 0. We conclude
that case 2 of Proposition 3.7 can only occur at times in a set of null measure, from which the
statement follows.

Now, because the optimal strategy of the convexified problem is (at almost any time) an
admissible extremal for the original problem, and because the optimal time of the convexified
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problem is less than or equal to the optimal time of the original problem, the original problem
has a solution, and it is characterized by point 1 of Proposition 3.7.

The last statement of the proposition follows from point 1 of Proposition 3.7.

3.4 Synthesis of the optimal strategy

According to Proposition 3.9, we can now consider optimal trajectories of the original (non-
relaxed) problem, knowing that the optimal strategy is “bang-bang” except on a possible sin-
gular arc that belongs to the diagonal set ∆ := {s ∈ R2

+ s.t. s1 = s2}.

Proposition 3.10 For d > 0, the following feedback control drives any initial state in R2
+ \ T

to the target T in minimal time:

u?[s] =

∣∣∣∣∣∣
(1, ŝ?r (s1)) when s1 > s2 ,
(r, ŝ?r (s1)) = (r, ŝ?r (s2)) when s1 = s2 ,
(0, ŝ?r (s2)) when s1 < s2 .

(3.25)

Proof. From Pontryagin’s Maximum Principle, a necessary optimality condition for an admis-
sible trajectory is the existence of a solution to the adjoint system

λ̇1 = λ1
α

r
µ(s?r ) + d

(
λ1

r
− λ2

1− r

)
,

λ̇2 = λ2
1− α
1− r

µ(s?r ) + d

(
λ2

1− r
− λ1

r

)
,

(3.26)

with the transversality conditions (4.7) and where u? = (α, s?r ) maximizes the Hamiltonian

H(s, λ, u) = −1 +Q(s, λ, u) + d(s2 − s1)

(
λ1

r
− λ2

1− r

)
w.r.t. u.

Consider the set

I− =
{

(s, η) ∈ (R2
+ \ T )× R s.t. s1 > s2 and η < 0

}
.

From expression (3.24), one obtains the property

s1 > s2 and η < 0 ⇒ η̇ < 0

using the facts that λi (i = 1, 2) are negative (Lemma 3.4) and that γ(·) is increasing (Lemma
3.5). When η < 0, one has u? = (0, ŝ?r (s2)) from Lemma 3.6, and it is possible to write

ṡ1 − ṡ2 = − d

r(1− r)
(s1 − s2) +

γ(s2)

1− r
,
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which shows that s1 − s2 remains positive for any future time. Thus, the set I− is posi-
tively invariant by the dynamics defined by systems (3.7) and 3.26). We deduce that the ex-
istence of a time t < tf such that (s(t), η(t)) ∈ I− implies (s(tf ), η(tf )) ∈ I−, and from
the transversality condition (4.7), one obtains λ1(tf ) < λ2(tf ) = 0. Then, one should have
η(tf ) = −λ1(tf )γ(s1(tf ))/r > 0, thus obtaining a contradiction. Similarly, one can show that
the set

I+ =
{

(s, η) ∈ (R2
+ \ T )× R s.t. s1 < s2 and η > 0

}
is positively invariant and that the transversality condition implies that (s, η) never belongs to
I+ along an optimal trajectory. Because ∆ is the only possible locus of a singular arc, we can
form a conclusion about the optimality of (3.25) outside ∆.

Now, consider the function

L(s) =
1

2
(s1 − s2)2

and write its time derivative along an admissible trajectory s(·) as follows:

L̇ = 〈∇L, ṡ〉 =

(
−α
r
β(s1, s

?
r ) +

1− α
1− r

β(s2, s
?
r )

)
(s1 − s2)− 2d

r(1− r)
L .

Along an optimal trajectory, one has

L̇+
2d

r(1− r)
L =

∣∣∣∣∣∣∣
−γ(s1)

r
(s1 − s2) when s1 > s2,

γ(s2)

1− r
(s1 − s2) when s1 < s2,

and deduces that the inequality L̇+ 2d
r(1−r)L ≤ 0 is satisfied. Consequently, the set ∆ ⊂ L−1(0)

is positively invariant by the optimal dynamics. On ∆, the maximization of Q(s, λ, ·) gives the
unique s∗r = ŝ?r (s1) = ŝ?r (s2) because λ1, λ2 are both negative (see Lemmas 3.4, 3.5 and 3.6).
Finally, the only (non-relaxed) control that leaves ∆ invariant is such that α = r.

Remark 3.2 The feedback (3.25) has been proved to be optimal for the reduced dynamics
(3.7). In the Appendix, we prove that this feedback drives the state of the un-reduced dynamics
(3.6) to the target in finite time, whatever is ε > 0. In Section 3.6, we show on numerical
simulations how the time to reach the target is close from the minimal time of the reduced
dynamics when ε is small.

3.5 Study of the minimal-time function

Define the function

T (σ) = max(0, T (σ)) with T (σ) =

∫ σ

s

dξ

γ(ξ)
, σ > 0 .
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Lemma 3.11 T (·) is strictly concave on [s,+∞).

Proof. Lemma 3.5 allows one to claim that T (·) is twice differentiable for any σ > 0 and that
one has

T
′′
(σ) = − γ

′(σ)

γ(σ)2
< 0 , ∀σ > 0 .

The function T (·) is strictly concave on R+, and because T (·) coincides with T (·) on [s,+∞),
we conclude that T (·) is strictly concave on this interval.

Let us denote the minimal-time function by Vd(·), indexed by the value of the parameter d:

Vd(x) = inf
u(·)
{t > 0 | s(x, u, d, t) ∈ T } ,

where s(x, u, d, ·) denotes the solution of (3.10) with the initial condition s(0) = x = (x1, x2),
the admissible control u(·) and the parameter value d. Lemma 3.3 ensures that these functions
are well defined on R2

+.

Proposition 3.12 The value functions Vd(·) satisfy the following properties.

i. For any d ≥ 0, Vd(·) is Lipschitz continuous on R2
+.

ii. For d = 0, one has V0(x) = rT (x1) + (1 − r)T (x2) for any x ∈ R2
+, and the feedback

(3.25) is optimal for both relaxed and non-relaxed problems.

Proof. On the boundary ∂+T of the target that lies in the interior of the (positively) invariant
domain R2

+, the set N(·) of unitary external normals is

N(s) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

{(
0
1

)}
when s1 < s and s2 = s,{(

cos θ
sin θ

)}
θ∈[0,π/2]

when s1 = s2 = s,{(
1
0

)}
when s1 = s and s2 < s .

At any s ∈ ∂+T , one has

inf
u∈U(s)

inf
ν∈N(s)

〈F (s, u) + dG(s), ν〉 ≤ inf
u∈U(s)

inf
ν∈N(s)

〈F (s, u), ν〉 = −γ(s) < 0 .

Furthermore, the maps
s 7→ F (s, u) + dG(s)

are Lipschitz continuous w.r.t. s ∈ R2
+ uniformly in u. According to [5, Sect 1. and 4, Chap.

IV], the target satisfies then the small time locally controllable property, and the value functions
Vd(·) are Lipschitz continuous on R2

+.
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When d = 0, the feedback (3.25) provides the following dynamics

ṡ =

∣∣∣∣∣∣∣∣∣∣∣∣∣

−1
r

[
γ(s1)

0

]
when s1 > max(s2, s) ,

−
[
γ(s1)
γ(s2)

]
when s1 = s2 > s ,

− 1
1−r

[
0

γ(s2)

]
when s2 > max(s1, s) ,

and one can explicitly calculate the time to go to the target for any initial condition x ∈ R2
+,

which we denote as W0(x):

W0(x) =

∣∣∣∣∣∣∣∣∣
−r
∫ max(x2,s)

x1

ds1

γ(s1)
−
∫ s

max(x2,s)

ds1

γ(s1)
when x1 ≥ x2 ,

−(1− r)
∫ max(x1,s)

x2

ds2

γ(s2)
−
∫ s

max(x1,s)

ds2

γ(s2)
when x1 ≤ x2 .

One can check that W0 is Lipschitz continuous and that it can be written as W0(x) = rT (x1) +
(1 − r)T (x2). We now show that W0 is a viscosity solution of the Hamilton-Jacobi-Bellman
equation associated to the relaxed problem

H(x,∇W0(x)) = −1+ max
(ua,ub,p)∈Ũ(x)

pQ(x,−∇W0(x), ua)+(1−p)Q(x,−∇W0(x), ub) = 0, x /∈ T ,

(3.27)
(where Q is defined in (3.15)) with the boundary condition

W0(x) = 0, x ∈ T . (3.28)

Consider the C1 functions

W 0,1(x) = rT (x1) , W 0,2(x) = (1− r)T (x2) and W 0(x) = W 0,1(x) +W 0,2(x)

defined on R2
+. One has

∇W 0,1(x) =

 r

γ(x1)

0

 and ∇W 0,2(x) =

 0

1− r
γ(x2)


which are non-negative vectors. One can then use Lemma 3.6 to obtain the property

H(x,∇W 0,1(x)) = H(x,∇W 0,2(x)) = H(x,∇W 0(x)) = 0, x ∈ R2
+ ,

which shows that W 0,1, W 0,2 and W 0 are solutions of (3.27) in the classical sense.

At x /∈ T with xi 6= s (i = 1, 2), W0 is C1 and locally coincides with W 0. Then, it satisfies
equation (3.27) in the classical sense.
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At x /∈ T with x1 = s or x2 = s, W0 is not differentiable but locally coincides with
max(W 0,W 0,2) or max(W 0,W 0,1). From the properties of viscosity solutions (see, for in-
stance, [5, Prop 2.1, Chap. II]), one must simply check that W0 is a super-solution of (3.27).
At such points, the Fréchet sub-differential of W0 is

∂−W0(x) =

∣∣∣∣∣∣∣∣
[
0,

r

γ(s)

]
×
{

1− r
γ(x2)

}
when x1 = s ,{

r

γ(x1)

}
×
[
0,

1− r
γ(s)

]
when x2 = s .

Because any sub-gradient δ− ∈ ∂−W0(x) is a non-negative vector, one can again use Lemma
3.6 and obtain

H(x, δ−) = 0, ∀δ− ∈ ∂−W0(x) ,

which proves that W0 is a viscosity solution of (3.27). Moreover, W0 satisfies the bound-
ary condition (3.28). Finally, we use the characterization of the minimal-time function as the
unique viscosity solution of (3.27) in the class of Lipschitz continuous functions with boundary
conditions (3.28) (see [5, Th. 2.6, Chap IV]) to conclude that W0 is the value function of the
relaxed problem. Because the time W0(x) to reach the target from an initial condition x /∈ T is
obtained with the non-relaxed control (3.25), we also deduce that V0 and W0 are equal.

Remark 3.3 In the case d = 0, the control given by (3.25) is optimal but not the unique solu-
tion of the problem. Indeed, in Proposition 3.12, we proved that V0(·) is the unique viscosity
solution to equation (3.27), where one of the possible maximizers of the Hamiltonian given in
(3.27) is given by (3.25), but on the set (s,∞)2 \∆ there are more choices for u; for instance,

u?[s] =

∣∣∣∣∣∣∣∣∣∣
(1, ŝ?r (s1)) when s2 ≤ s < s1 ,
(0, ŝ?r (s2)) when s1 > s2 > s ,
(r, ŝ?r (s1)) = (r, ŝ?r (s2)) when s1 = s2 ,
(1, ŝ?r (s1)) when s < s1 < s2 ,
(0, ŝ?r (s2)) when s1 ≤ s < s2

satisfies (3.27).

Proposition 3.13 The functions Vd(·) satisfy the following properties:

i. Vd(x) = T (x1) = T (x2) for any x ∈ ∆ and d ≥ 0,

ii. V∞(x) = limd→+∞ Vd(x) = T (rx1 + (1− r)x2) for any x ∈ R2
+, and

iii. d 7→ Vd(x) is increasing for any x ∈ (s,+∞)2 \∆.

Proof. Consider an initial condition x in ∆ \ T . The optimal synthesis given in Proposition
3.10 shows that the set ∆ is invariant by the optimal flow and that the dynamics on ∆ are

ṡi = −γ(si), i = 1, 2

independent of d. We then conclude that Vd(x) = T (xi) for i = 1, 2.
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Consider d > 0 and x /∈ ∆ ∪ T . Denote for simplicity s(·) as the solution s(x, u?, d, ·)
with the feedback control u? given in Proposition 3.10, and tf = Vd(x). Define t∆ as the first
time t such that s(t) ∈ ∆ (here, we allow the solution s(·) to possibly enter the target T before
reaching ∆).

From equation (3.10) with control (3.25), one can easily check that the following inequalities
are satisfied

x1 > x2 ⇒ x1 > s1(t) ≥ s2(t) > x2, ∀t ∈ [0, t∆] ,

x1 < x2 ⇒ x1 < s1(t) ≤ s2(t) < x2, ∀t ∈ [0, t∆] .

Then, because the function γ(·) is increasing (Lemma 3.5), one can write, if the state s has not
yet reached ∆,

− d

r(1− r)
|s1 − s2|−M+ ≤

d

dt
|s1 − s2|≤ −

d

r(1− r)
|s1 − s2|−M− (3.29)

with M− = min(γ(x2)/r, γ(x1)/(1− r)) and M+ = max(γ(x1)/r, γ(x2)/(1− r)). Then, we
obtain an upper bound on the time t∆

t∆ ≤
r(1− r)

d
log

(
1 + d

|x1 − x2|
M−r(1− r)

)
(3.30)

which tends to zero when d tends to infinity. From (3.29), we can also write

|x1 − x2|−M+t∆ ≤
d

r(1− r)

∫ t∆

0

|s2(τ)− s1(τ)|dτ ≤ |x1 − x2|−M−t∆

and finally, one obtains from (3.10) the following bounds on si(t∆) (i = 1, 2):

rx1 + (1− r)x2−max(r, (1− r))M+t∆ ≤ si(t∆) ≤ rx1 + (1− r)x2−min(r, (1− r))M−t∆ .
(3.31)

Therefore, s1(t∆) = s2(t∆) converges to rx1 + (1 − r)x2 when d tends to +∞. Furthermore,
one has

tf = t∆ + T (s(t∆)) when s(t∆) /∈ T ,
tf < t∆ when s(t∆) ∈ T .

Because t∆ → 0 and because T (·) is continuous with T (rx1 + (1− r)x2) = 0 when rx1 + (1−
r)x2 ≤ s, we obtain the convergence

V∞(x) = lim
d→+∞

Vd(x) = T (rx1 + (1− r)x2) .

Now, consider the domain D+ = {s ∈ R2
+ | s1 ≥ s2 > s}, and let us show that any

trajectory of the optimal flow leaves D+ at (s, s) with the help of this simple argumentation on
the boundaries of the domain:

s2 = s ⇒ ṡ2 =
d

1− r
(s1 − s) ≥ 0 ,

s1 = s2 ⇒ ṡ1 = ṡ2 .
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It is convenient to consider the variable s̃ = rs1 + (1 − r)s2, whose optimal dynamics in D+

are simply
˙̃s(t) = −γ(s1(t)) , t ∈ [0, tf ] . (3.32)

Because s̃(·) is strictly decreasing with time, an optimal trajectory in D+ can be parameterized
by the fictitious time

τ(t) = rx1 + (1− r)x2 − s̃(t) , t ∈ [0, tf ] (3.33)

(where x is an initial condition in D+). The variable s1(·) is then a solution of the scalar
non-autonomous dynamics

ds1

dτ
= fd(τ, s1) =

∣∣∣∣∣∣ −
1

r
− ds1 + τ − (rx1 + (1− r)x2)

r(1− r)γ(s1)
when s1 + τ > rx1 + (1− r)x2 ,

−1 when s1 + τ = rx1 + (1− r)x2 ,

with the terminal fictitious time

τf = rx1 + (1− r)x2 − s .

Notice that τf is independent of d. One then deduces the inequalities

d1 > d2 and s1 + τ > rx1 + (1− r)x2 =⇒ fd1(τ, s1) < fd2(τ, s1)

and thus,

d1 > d2 and x ∈ D+ \∆ =⇒ s1(x, u?, d1, τ) < s1(x, u?, d2, τ) , ∀τ ∈ [0, τf ] . (3.34)

Finally, from equations (3.32) and (3.33), the time to reach the target can be expressed as

tf =

∫ τf

0

dτ

γ(s1(τ))
. (3.35)

Because the function γ(·) is increasing and because τf is independent of d, one can conclude
from (3.34) and (3.35) that

d1 > d2 and x ∈ D+ \∆ =⇒ Vd1(x) > Vd2(x) .

The case of initial conditions in D− \∆, with D− = {s ∈ R2
+ | s2 ≥ s1 > s}, is symmetric.

Remark 3.4 The tightness V∞−V0 of the bounds on the value function Vd on (s,+∞)2 \∆ is
related to the concavity of the function T (·) on (s,+∞) (the less the concavity maxσ∈[s,+∞)|T

′′
(σ)|

is, the tighter the bounds are).

The bounds V0 ≤ Vd < V∞ that are satisfied on the set (s,+∞)2 \ ∆ are not necessarily
satisfied outside this set: for x outside the target but such that rx1 + (1 − r)x2 < s, one has
V∞(x) = 0 and V0(x) > 0. Therefore, we conclude that a large diffusion negatively impacts
the time to treat the resource when both zones are initially polluted; however, when one of the
two zones is initially under the pollution threshold, a large diffusion could positively impact
the duration of the treatment.
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3.6 Numerical illustrations

We consider the Monod (or Michaelis-Menten) growth function, which is quite popular in bio-
processes and which satisfies Assumption 3.1:

µ(s) = µmax
s

Ks + s
,

with the parameters µmax = 1[h−1] and Ks = 1[gl−1]. The corresponding function γ(·) is
depicted in Fig. 3.2. The threshold that defines the target has been chosen as s = 1[gl−1].

s [g/L]

µ

1

0.8

[1/h]

1 s [g/L]

[g/L/h]

γ

1

Figure 3.2. Graphs of µ(·) and corresponding γ(·).

Several optimal trajectories in the phase portrait are drawn in Fig. 3.3 for small and large
values of the parameter d.
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Figure 3.3. Optimal paths for d = 0.1[h−1] (left) and d = 10[h−1] (right) with r = 0.3.

Finally, level sets of the value functions V0 and V∞ are represented in Fig. 3.4.
One can make the following observations concerning the influence of the diffusion on the

treatment duration, that we consider to be valuable from a practical viewpoint.

• When pollution is homogeneous, the best is to maintain it homogeneous, and the treat-
ment time is then independent of the diffusion.

• A high diffusion is favorable for having fast treatments when initial concentrations are
strongly different for the two zones. Typically, when the pollutant concentration is below
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Figure 3.4. Level sets (in hours) of V0 (left) and V∞ (right) for r = 0.3.

the threshold in one patch, a high diffusion can reduce significantly the treatment time
compared to a small diffusion.

• When initial concentrations in the two patches are close, a small diffusion leads to faster
treatment than a large diffusion.

For various initial condition s(0), we have also performed numerical comparisons of the
minimal time Vd(s(0)) given by the feedback strategy (3.25) against two other non-optimal
control strategies:

1. the best constant control that gives the smallest time T ?cst to reach the target among con-
stant controls,

2. the optimal one-pump feedback strategy obtained in the former work [33]. This last
control strategy considers that only one patch can be treated (that we called the “active
zone”). The problem amounts then to consider the same dynamics (3.7) but one seeks
the feedback s?r (·) that gives the minimal time T ?one when α is imposed to be constantly
equal to 1 (or 0 depending which patch is treated). In [33], it has been proved that the
feedback s1 7→ ŝ?r (s1) is optimal.

The results presented in Table 3.1 show first that the benefit of using the optimal feedback strat-
egy over the other strategies increases with the level of initial pollution. The simulations also
demonstrate the gain of using two pumps instead of one: for large concentrations of pollutant at
initial time, one can see on the tables that a constant two-pumps strategy can be even better that
the optimal feedback strategy restricted to the use of one pump only. This kind of situations
typically occurs when diffusion is low and the time required by the optimal strategy for using
simultaneously the two pumps is large compared to the overall duration. This is particularly
noticeable when the initial pollution is homogeneous and the use of two pumps allows to main-
tain the levels of concentrations equal in both patches. We conclude that, for small diffusion,
treating only one patch without the possibility to allocate the treatment in both patches could
be quite penalizing. Figure 3.5 illustrates the time history of the two feedback controllers.

Furthermore, the Table 3.1 illustrates the effect of diffusion on the treatment times. One
can first notice that the relative effect of the diffusion parameter d on the optimal time Vd is
decreasing with the threshold s. This can be explained by the fact that the proportion of the
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Vd T?
cst T?

one

d = 0.1 d = 10 d = 0.1 d = 10 d = 0.1 d = 10

s(0) = (1.5, 0) 0.42 0.01 0.42 0.01 0.42 0.01
Increase: (+ 1.45 %) (+ 0.00 %) (+ 0.00 %) (+ 0.00 %)

s(0) = (3, 0) 1.01 0.06 1.05 0.06 1.01 0.06
Increase: (+ 3.90 %) (+ 0.85 %) (+ 0.00 %) (+ 0.00 %)

s(0) = (4, 0.5) 1.33 2.17 1.39 2.23 1.37 2.21
Increase: (+ 4.68 %) (+ 2.62 %) (+ 2.73 %) (+ 1.55 %)

s(0) = (4, 1.5) 3.20 3.65 3.67 3.75 8.27 3.72
Increase: (+ 14.76 %) (+ 2.58 %) (+ 158.27 %) (+ 1.91 %)

s(0) = (4, 4) 5.45 5.45 5.74 5.71 18.25 5.53
Increase: (+ 5.43 %) (+ 4.90 %) (+ 235.01 %) (+ 1.59 %)

Vd T?
cst T?

one

d = 0.1 d = 10 d = 0.1 d = 10 d = 0.1 d = 10

s(0) = (1.5, 0) 25.95 34.12 38.65 38.81 34.03 34.14
Increase: (+ 48.93 %) (+ 13.74 %) (+ 31.14 %) (+ 0.05 %)

s(0) = (3, 0) 32.91 39.91 50.08 50.12 45.89 40.15
Increase: (+ 52.18 %) (+ 25.58 %) (+ 39.45 %) (+ 0.60 %)

s(0) = (4, 0.5) 41.08 42.86 58.65 58.02 61.51 42.94
Increase: (+ 42.77 %) (+ 35.37 %) (+ 49.74 %) (+ 0.1 %)

s(0) = (4, 1.5) 43.69 44.37 63.59 63.28 70.81 44.49
Increase: (+ 45.57 %) (+ 42.61 %) (+ 62.08 %) (+ 0.27 %)

s(0) = (4, 4) 45.94 45.94 71.67 71.04 81.58 46.17
Increase: (+ 56.02 %) (+ 54.64 %) (+ 77.60 %) (+ 0.51 %)

Table 3.1. Time comparisons (in hours) for r = 0.3 and target value s = 1 (top), 0.1 (bottom)
[g/l] (initial condition s(0) and diffusion parameter d are given in [g/l] and [1/h], respectively)

time spent on the set s1 = s2, that is independent of the parameter d, is larger when one begins
further away from the target. One can also see that the differences between strategies decrease
when the diffusion increases. Intuitively, a high diffusion makes the resource behave quickly
close to a perfectly mixed resource with one patch, leading consequently to less benefit of us-
ing more than one pump. Nevertheless, one can see that considering feedback controls remain
quite efficient compared to constant ones when initial pollution is high.

Finally, we illustrate on Fig. 3.6 the effect of approximating the original dynamics (3.6) by
the reduced one (3.7), when applying the feedback (3.25).

As proven in the Appendix, the feedback (3.25) drives the state to the target in finite time
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Figure 3.5. Trajectories and controls generated by the two-pumps and one-pump optimal feedback, for r=0.3, s=1 [g/l] and s(0)=(3,10) [g/l].
On the left d=0.1[1/h], and on the right d=10[1/h].
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Figure 3.6. Total pollutant concentration in the resource of the full dynamics (3.6) with the strategy (3.25), for different values of ε.

for any ε > 0.

3.7 Conclusion

In this work, we have shown that although the velocity set of the control problem is not con-
vex, there exists an optimal solution with ordinary controls that is also optimal among relaxed
controls. The optimal strategy consists in the most rapid approach to the homogenized con-
centration of pollutant in both patches. For the particular case of null diffusion, the most rapid
approach path is not the unique solution of the problem. This optimal state-feedback has some
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interesting features for the practitioners and controllers:

1. it does not require knowledge of the diffusion parameter D to be implemented, and

2. if the ratio r of the volumes of the two patches is not known, the optimal trajectory can
be approximated by a regularization of the bang-bang control about the neighborhood of
the set s1 = s2 that keeps the trajectory in this neighborhood.

Furthermore, is has been shown in simulations that the benefit of using two pumps instead of
one can be significant when the diffusion is low. We have also proposed explicit bounds on
the minimal-time function, characterizing the extreme cases d = 0 and d = +∞. We have
shown that a large diffusion rate increases the treatment time when the pollution concentration
is above the desired threshold in both zones, while in contrast, it can be beneficial when the
concentration in one of the two zones is below the desired threshold. This remarkable feature
could serve practitioners in the choice of pump positioning in an originally clean water resource
that is suddenly affected by a local pollution. Such an investigation could be the matter of future
work.

Appendix

Proposition 3.14 For any ε > 0, the feedback strategy (3.25) applied to the full dynamics (3.6)
with xr(0) > 0 drives the state to the target in finite time.

Proof. Without any loss of generality, we assume that s1(0) ≥ s2(0) (the proof is similar when
s1(0) ≤ s2(0)).

If s1(0) > s2(0), we prove that s1 = s2 is reached in finite time. If not one, one should
have s1(t) > s2(t) with s1(t) ≥ s for any t > 0. This implies to have α?(t) = 1 and
s?r (t) = ŝ?r (s1(t)) at any time t > 0 and one has from equations (3.6):

rṡ1 + (1− r)ṡ2 + εṡr + εẋr = −εµ(s?r )xr < 0 ,

which implies that the trajectories are bounded. For any σ ≥ s, ŝ?r (σ) being the unique maxi-
mizer of the function β(σ, ·), one has

σ − ŝ?r (σ) =
µ(ŝ?r (σ))

µ′(ŝ?r (σ))
.

The function µ(·) being increasing and concave, one obtains the inequality

σ − ŝ?r (σ) ≥ η :=
µ(ŝ?r (s))

µ′(ŝ?r (s))
> 0 , ∀σ ≥ s .

Furthermore, one can write

rṡ1 + εṡr = −dε(s1 − s2)− µ(sr)xr < 0 .
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Thus rs1 + εsr is decreasing and has a limit when t tends to +∞. Since the trajectories are
bounded, rṡ1 + εṡr is uniformly continuous, and we conclude by Barbalat’s Lemma (see for
instance [49]) that rṡ1+εṡr converges to 0, which implies that the positive quantities s1−s2 and
µ(sr)xr have to converge also to 0. Notice that sr = 0 implies ṡr = µ(s?r )s1 > µ(ŝ?r (s))s > 0.
So sr cannot tend to 0 and xr has necessarily to converge to 0. Write now the dynamics

d

dt
(s1 − sr) = −

(
1 +

ε

r

)
µ(s?r )(s1 − sr)− d

ε

r
(s1 − s2)− µ(sr)xr ,

where µ(s?r ) > µ(ŝ?r (s)) > 0 and d ε
r
(s1 − s2) − µ(sr)xr tends to 0. Thus, there exists a time

T > 0 large enough such that

sr(t) > s1(t)− η ≥ s?r (t) , ∀t > T ,

which implies to have µ(sr)− µ(s?r ) > 0 for large t, thus a contradiction with the convergence
of xr to 0.

Clearly the feedback (3.25) leaves the set {s1 = s2} invariant. Denote for simplicity sl =
s1 = s2, and write

ṡl + εṡr + εẋr = −εµ(s?r )xr < 0 .

Trajectories are thus bounded, and by Barbalat’s Lemma one obtains that µ(s?r )xr tends to 0.
We prove now that sl has to reach s in finite time. If not, µ(s?r (t)) > µ(s) for any time and xr

tends to zero. Write the dynamics

d

dt
(sl − sr) = −(1 + ε)µ(s?r )(sl − sr) + µ(sr)xr .

As before, we deduce that there exits a time T ′ > 0 such that

sr(t) > sl(t)− η ≥ s?r (t) , ∀t > T ′ ,

leading to a contradiction with the convergence of xr to 0.
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Chapter 4

Minimal-time bioremediation of natural
water resources with gradient of pollutant

This chapter corresponds to an ongoing work.

4.1 Introduction

The fight against eutrophication of lakes and natural reservoirs (that is, the excessive develop-
ment of phytoplankton associated with an excess of nutrients) constitutes a major challenge.
This ecological issue has given rise to many studies over the last 30 years (see, for instance, the
surveys [34] or [75] and the references herein). To remediate eutrophication, various techniques
such as bio-manipulation or ecological control have been proposed for mitigation. A common
point across the proposed remediation approaches is that they are usually based on "biotic" ac-
tions on the lake trophic chain dedicated to the restoration of equilibrium in local ecosystems.
To do so, most studies are based on empirical knowledge. However, since the 1970s, the use of
eutrophication models (ranging from heuristic data-based models at a steady state to more re-
cent dynamic mass-balance-based models) together with optimal control techniques have been
proposed ([29] and references herein).

Since the pioneering work by [22], the optimization of bioreactor operation has received
great attention in the literature; see [2, 3, 67] for reviews of the different optimization techniques
that have been used in bioprocesses. Among them, the theory of optimal control has proven
to be a generic tool for deriving practical optimal rules [43, 71, 72]. The optimal control of
continuous processes usually involves a two-step procedure. First, the optimal steady state
is determined as a nominal set point that maximizes a criterion [76, 77]. The benefit of o-
perating a periodic control about the nominal point can be analyzed [1, 69]. Then, a control
strategy that drives the state about the nominal set point from any initial condition is searched
for [50], possibly in the presence of model uncertainty using extremum seeking techniques
[6, 54, 84, 86].
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It is assumed that a small continuously stirred bioreactor is available to treat the polluted
water by removing a substrate considered to be in excess. Particularly, we consider a natural
water resource of volume v polluted with a substrate of concentration sl. As underlined above,
typical examples of natural water resources in need of treatment are lakes or water tables that
have been contaminated with diffused pollutants, such as organic matter or nutrients. The
objective of the treatment is to make the concentration of the pollutant sl decrease as quickly as
possible to a prescribed value s, with the help of a continuous stirred bioreactor of volume vr.
The reactor is fed from the resource with a flow rate Q, and its output returns to the resource
with the same flow rate Q after separation of biomass and substrate in a settler. The settler
avoids the presence of excessive biomass used for treatment in the natural resource, which could
result in undesirable sludge and possibly lead to an increase of eutrophication. We assume that
during the entire treatment, the volume V of the resource does not change.

Q

r
v

s , xrr

biomass

Q

Q

bioreactor

settler

s2

1
v

2
v

Q QR

s1

QR

Figure 4.1. Modeling scheme of the nonhomogeneity of concentrations in the resource as two zones, and a recirculation pump.

In [31] the authors address the problem of the nonhomogeneity of the pollutant concentra-
tion in the resource, by means of a model of two compartments of volumes v1, v2 such that
v = v1 + v2, connected in series to the bioreactor. The connection in series represents a gradi-
ent of concentration in the resource (see Figure 4.1). They assume the volumes to be large with
respect to vr. Water is pumped from the first one while the clean one is rejected in the second
one. One of the key assumption is that every admissible control law should satisfy that the
pollutant concentration that is reinjected in the second zone must be smaller than the present
pollutant concentration in said zone, in order to not repollute it. Under the previous constraint,
the authors prove that the optimal control law consists on the maximization of a certain non-
linear function up to the moment when the substrate concentration in the reactor reaches the
concentration in the second zone, moment from which is optimal to keep them even, and from
the model dynamics it is concluded that in this stage the optimal control is constant.

In this paper we revisit the previously mentioned work, but considering two main changes
in the model. The first change is that we drop the constraint of the output concentration of
the reactor being smaller than the concentration in the second zone. The second change is that
we add to the system a pump that introduces a recirculation of water from the first zone to the
second zone, helping the system to mix. Two extreme cases are remarkable: if the speed of
this pump is small, we should recover the results shown in [31] for the series configuration; on
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the other hand, if the speed of this pump is too high, we should recover the homogeneous case
(also studied in [31]). We consider the speed of the pump QR as a new control parameter.

This paper is organized as follows. In Section 4.2, we introduce the mathematical model,
and definitions and assumptions are presented. In Section 4.3 the minimal time optimal con-
trol problem is introduced and the optimal control is charaterized. Section 4.4 is devoted to
numerical simulations and discussion.

4.2 Definitions and preliminaries

In what follows, we denote by R the set of real numbers, R+ and R?
+ the sets of nonnegative

and positive real numbers respectively. Analogously, R− and R?
− are the sets of nonpositive

and negative real numbers respectively.

For the time evolution of the concentrations of pollutant si, i = 1, 2, in the two zones of the
resource, by means of a mass balance we obtain the equations:

ṡ1 =
Q+QR

v1

(s2 − s1),

ṡ2 =
Q

v2

(sr − s2) +
QR

v2

(s1 − s2),

(4.1)

where the volumes vi, i = 1, 2 are assumed to be constant, Q is the flow rate of the pump that
connects the first zone with the bioreactor, and QR is the flow rate of the pump that reinjects
water from the zone 1 to the zone 2 (see Figure 4.1).

We consider the usual chemostat model to describe the dynamics of the bioreactor [73]:
ṡr = −µ(sr)xr +

Q

vr

(s1 − sr),

ẋr = µ(sr)xr −
Q

vr

xr

(4.2)

where sr and xr indicate the concentrations of substrate and biomass inside the bioreactor,
respectively.

The growth rate function µ(·) fulfills the following properties.

Assumption 4.1 The growth function µ(·) is defined on R+, continuously differentiable on R?
+,

increasing, concave, and satisfies µ(0) = 0.

Since we have supposed that v1 and v2 are considerably larger than vr, the process has a slow-
fast dynamic in which the slow variables are (s1, s2) and the fast variables are (xr, sr). This
implies that the substrate and biomass concentrations present in the bioreactor can be approxi-
mated in the slow time scale by a quasi-stationary state (x?r , s

?
r ) = (x?r (s1, s2, Q), s?r (s1, s2, Q))
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satisfying the following relations:

µ(s?r ) =
Q

vr

, x?r = s1 − s?r . (4.3)

Under Assumption 4.1, system (4.3) has unique solution for s?r ∈ [0, s1]. Notice that this
imposes a constraint on s?r for the positivity of the biomass concentration in the bioreactor. For
simplicity, we keep the notation sr instead of s?r for the concentration of equilibrium in the
bioreactor. Denoting αi = vr/vi (i = 1, 2) results in the following dynamics:

ṡ1 =

(
α1µ(sr) +

QR

v1

)
(s2 − s1)

ṡ2 = α2µ(sr)(sr − s2) +
QR

v2

(s1 − s2).

(4.4)

From now on, we work with the dynamics (4.4). Notice that the problem can be reformu-
lated with the controls (sr, QR) instead of (Q,QR), but this formulation has the inconvenient
that the set where the control takes values depends of the state variable. Nevertheless, we can
make a change of variable of the form sr = ws1, with w ∈ [0, 1] and take (w,QR) as the control
variable instead of (Q,QR). We keep sr as variable when there is no confusion, always keeping
in mind that sr = ws1. Define the set of admissible controls

U =
{
u = (w,QR) : R+ → R2

+ |w(t) ∈ [0, 1], QR ∈ [0, Q̄R] for all t ∈ R+

}
.

Lemma 4.2 The setD := {s ∈ R2
+ | s1 ≥ s2} is positively invariant for any admissible control

u ∈ U .

Proof. Suppose s = (s1, s2) ∈ D and a control u ∈ U . By the continuity of the solutions of
(4.4), the only way to leave the set D is through s1 = s2. The equation that s1 − s2 satisfy is

ṡ1 − ṡ2 = −
(
α1µ(sr) +QR

(
1

v1

+
1

v2

))
(s1 − s2)− α2µ(sr)(sr − s2).

Then, if s1 = s2, we have

ṡ1 − ṡ2 = −α2µ(sr)(sr − s2) = α2µ(sr)(s1 − sr) > 0,

so the set D cannot be abandoned.

4.3 Optimal control problem

Due to Lemma 4.2 we may suppose that the initial condition for the process belongs to the set
D. Consequently, the target set can be considered as

T := {(s1, s2) ∈ R2
+ | s1 ≤ s}. (4.5)
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The optimization problem consists of driving down the concentration of the resource to a
prescribed value s > 0 from an initial condition z ∈ D in minimal time:

(P) min
u∈U
{t ≥ 0 | s(t) ∈ T , s(0) = z} .

The Hamiltonian of the problem is

H(s, λ;u) = −1 + µ(ws1) [α1λ1(s2 − s1) + α2λ2(ws1 − s2)] +QR(s1 − s2)

[
−λ1

v1

+
λ2

v2

]
,

that is maximized along the optimal trajectory; if uopt = (wopt, Qopt
R ) is a solution of problem

(P), the adjoint state λ = (λ1, λ2) satisfies

λ̇1 = λ1

(
α1µ(wopts1) +

Qopt
R

v1

+ α1w
optµ′(wopts1)(s1 − s2)

)
−λ2

(
Qopt

R

v2

+ α2w
optµ(wopts1) + α2w

optµ′(wopts1)(wopts1 − s2)

)
,

λ̇2 = −λ1

(
α1µ(wopts1) +

Qopt
R

v1

)
+ λ2

(
α2µ(wopts1) +

Qopt
R

v2

)
,

(4.6)

with the transversality conditions

λ1(Topt) < 0 , λ2(Topt) = 0. (4.7)

Regarding the behavior of the adjoint states, we have the following lemma.

Lemma 4.3 Along any admissible extremal, one has λ1(t) < 0 for any t ≤ Topt, and λ2(t) < 0
for any t < Topt.

Proof. If one writes the adjoint equations (4.6) as λ̇i = φi(t, λ1, λ2) (i = 1, 2), one can no-
tice that the partial derivatives ∂jφi (i 6= j) are non-positive. From the theory of monotone
dynamical systems (see for instance [74]), the dynamics (4.6) is thus competitive or, equiva-
lently, cooperative in backward time. As the transversality conditions (4.7) gives λi(Topt) ≤ 0
(i = 1, 2), we deduce by the property of monotone dynamics that one should have λi(t) ≤ 0
(i = 1, 2) for any t ≤ Topt. Moreover, λ = 0 is an equilibrium of (4.6) and λ(Topt) has to be
different from 0 at any time t ≤ Topt. Then, λi(t) (i = 1, 2) cannot be simultaneously equal to
zero. If there exists t < Topt and i ∈ {1, 2} such that λi(t) = 0, then one should have λj(t) < 0
for j 6= i. However, µ(·) being positive and QR ≥ 0 implies λ̇i(t) ≥ 0; moreover, if λ1(t) = 0,
then λ̇1(t) ≥ 0 and we contradict the transversality condition λ1(Topt) < 0; in the same way, if
λ2(t) = 0, then λ̇2(t) > 0 and we contradict the transversality condition λ2(Topt) = 0.

Consider the following function

γ(t) =
α2λ2(t)

α1λ1(t)
, (4.8)
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whose time derivative γ̇ fulfills

γ̇ =µ(wopts1) ((α2 − α1)γ − α2) +
Qopt

R

v1

(
α2

α1

+ γ

)
(−1 + γ)

+ woptα1γ
(
−µ′(wopts1)(s1 − s2) + γµ(wopts1) + γµ′(wopts1)(wopts1 − s2)

)
,

(4.9)

with final condition γ(Topt) = 0. Also note that γ = 0 implies γ̇ < 0 and therefore γ(t) > 0
for any t ∈ [0, Topt). With this new variable, we can rewrite the Hamiltonian as

H(s, λ1, γ;u) = −1− α1λ1(s1 − s2)µ(ws1)

[
1 + γ

s2 − ws1

s1 − s2

]
+QR(s1 − s2)

−λ1

v1

[1− γ] ,

(4.10)
For s1 > s2 > 0, w ∈ [0, 1], and γ > 0, we define the following functions

φ(s1, s2, γ, w) = µ(ws1)

[
1 + γ

s2 − ws1

s1 − s2

]
, (4.11)

ψ(s1, s2, γ) = µ′(s1)(1− γ)− γ µ(s1)

s1 − s2

. (4.12)

Notice that ψ(s1, s2, γ) = 1
s1

∂
∂w
φ(s1, s2, γ, w)|w=1. When s1 > s2 and γ > 0, the max-

imization of the Hamiltonian with respect to (w,QR) ∈ [0, 1] × [0, Q̄R] is equivalent to the
maximization of the functions w 7→ φ(s1, s2, γ, w) with w ∈ [0, 1] and QR 7→ (1− γ)QR with
QR ∈ [0, Q̄R]. Such maximum wopt is unique, as we see in Lemma 4.4.

Lemma 4.4 Under Assumption 4.1, for s1 > s2 > 0 and γ > 0, the function φ(s1, s2, γ, ·) is
strictly concave on the interval

[
0, s1−s2

γs1
+ s2

s1

]
.

Proof. Notice that the function φ can be written as

φ(s1, s2, γ, w) =
γ

s1 − s2

µ(ws1) (c− ws1) , c :=
s1 − s2

γ
+ s2. (4.13)

Define the function β(s, sr) := µ(sr)(s − sr), (s, sr) ∈ R2
+. This is a twice differentiable

function, and for fixed s > 0, the function sr 7→ β(s, sr) is positive on the interval (0, s),
negative on (s,∞), and it is strictly concave in the interval [0, s]. Indeed,

∂2

∂s2
r

β(s, sr) = µ′′(sr)(s− sr)− 2µ′(sr), (4.14)

which thanks to Assumption 4.1 in strictly negative. Taking s = c = s1−s2
γ

+ s2, we see that
β(c, ·) is strictly concave in the set [0, c], and using that sr = ws1 is a linear increasing function
of w we conclude that the function w 7→ β(c, ws1) is strictly concave in [0, c/s1].

The previous lemma allows to perform an analysis of the necesary conditions for the optimal
control values. In the following lemma we characterize the possible values for an optimal
control u? dependig on the functions ψ and γ.
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Lemma 4.5 For fixed (s, λ1, γ) ∈ R2
+ × R− × R+, with s1 > s2 > 0 and γ > 0, the value

u? = (w?, Q?
R) that maximizes the function u 7→ H(s, λ1, γ;u) (with H as in (4.10)) are the

following:

1. when γ ≥ 1, Q?
R = 0 and w? is the unique solution of

∂

∂w
φ(s1, s2, γ, w

?) = 0, (4.15)

2. when γ < 1 and ψ(s, γ) < 0, Q?
R = Q̄R and w? is the solution of (4.15),

3. when γ < 1 and ψ(s, γ) ≥ 0, Q?
R = Q̄R and w? = 1.

Proof. Consider again the function β defined in Lemma 4.4. The maximization of φ(s1, s2, γ, ·)
is equivalent to the maximization of w 7→ β(c, ws1) in [0, 1], with c as in (4.13).

Consider first the case γ ≥ 1. This implies that s1 ≥ c, and then w? belongs to the interval
(0, c/s1) (because in the interval (c/s1, 1] the function w 7→ β(c, ws1) is negative). In this
interval the function w 7→ β(c, ws1) is differentiable and strictly concave (Lemma 4.4) and
then the maximizer w? is unique and satisfies w? < 1. We conclude that w? satisfies (4.15).

Now, we look at the case γ < 1. This implies that s1 < c, and we cannot straightforwardly
ensure that w? < 1; nevertheless, depending on the sign of ψ(s1, s2, γ) we can distinguish two
situations: if ψ(s1, s2, γ) ≤ 0 we have that φ(s1, s2, γ, ·) is decreasing in the interval [1, c/s1]
and consequently its maximum w? belongs to the interval (0, 1); in particular w? is unique and
satisfies (4.15). On the other hand, if ψ(s1, s2, γ) > 0, that means that in the interval [0, 1] the
function φ(s1, s2, γ, ·) is increasing, being maximized in the extreme point w? = 1 (which is
again unique).

The variable Q?
R maximizes a linear function which only depends on the sign of 1 − γ

(because s1 > s2 and by Lemma 4.3 we have λ1 < 0). If γ > 1, then 1− γ is negative and the
maximum is the extreme point Q?

R = 0; if γ < 1, then 1 − γ is positive and the maximum is
the extreme point Q?

R = Q̄R. Notice that singular arcs with respect to QR do not exist, because
γ = 1 and γ̇ = 0 imply s?r = 0, which can only happen if s1 = 0.

Remark 4.1 The previous lemma can be expressed in terms of the equilibrium substrate con-
centration at the output of the bioreactor sr as

1. when γ ≥ 1, Q?
R = 0 and s?r is the unique solution of

∂

∂sr

H(s1, s2, γ, s
?
r ) = 0, (4.16)

2. when γ < 1 and ψ(s, γ) < 0, Q?
R = Q̄R and s?r is the solution of (4.16),

3. when γ < 1 and ψ(s, γ) ≥ 0, Q?
R = Q̄R and s?r = s1.
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In order to characterize the behavior of the optimal control uopt = (wopt, Qopt
R ) along time,

we need then to study the behavior of the function ψ as a function of time. The time derivative
of ψ is

ψ̇ =

(
µ′′(s1)(1− γ)− µ′(s1)

γ

s1 − s2

)
ṡ1 − µ(s1)

d

dt

[
γ

s1 − s2

]
− µ′(s1)γ̇,

where a straightforward calculation provides

d

dt

[
γ

s1 − s2

]
=
α2µ(wopts1)

s1 − s2

[
γ

(
1− s2 − wopts1

s1 − s2

)
− 1

]
+

Qopt
R

v1(s1 − s2)

(
γ2 + 2

α2

α1

γ − α2

α1

)
+ γ

α1w
opt

s1 − s2

(
−µ′(wopts1)(s1 − s2) + γµ(wopts1) + γµ′(wopts1)(wopts1 − s2)

)
.

The full expression for ψ̇ can be written as ψ̇ = I1 + I2 + I3 + I4, where

I1 =

(
−µ′′(s1)(1− γ) + µ′(s1)

γ

s1 − s2

)(
α1µ(wopts1) +

Qopt
R

v1

)
(s1 − s2),

I2 = −µ(s1)

(
α2µ(wopts1)

s1 − s2

[
γ

(
1− s2 − wopts1

s1 − s2

)
− 1

]
+

Qopt
R

v1(s1 − s2)

(
γ2 + 2

α2

α1

γ − α2

α1

))
,

I3 = −µ′(s1)

(
µ(wopts1) ((α2 − α1)γ − α2) +

Qopt
R

v1

(
γ2 +

(
α2

α1

− 1

)
γ − α2

α1

))
,

I4 = −γ α1w
opt

s1 − s2

(
−µ′(wopts1)(s1 − s2) + γµ(wopts1) + γµ′(wopts1)(wopts1 − s2)

)
× (µ(s1) + µ′(s1)(s1 − s2)).

(4.17)

At the final time we have γ(Topt) = 0 (thus Qopt
R (Topt) = Q̄R) and ψ(Topt) = µ′(s) > 0

(thus wopt(Topt) = 1); so there exists a time t? < Topt such that for all t ∈ (t?, Topt], we have
γ(t) < 1 and ψ(t) > 0. In terms of the optimal control uopt, by Lemma 4.5 this translates
into Qopt

R (t) = Q̄R and wopt(t) = 1 (equivalently sopt
r (t) = s1(t)) for all t in a time interval

(t?, Topt] before the final time.

Remark 4.2 The control Qopt
R takes its maximum value before wopt can reach its maximum

value. Indeed, if for some t > 0 we have γ(t) = 1, then ψ(t) < 0, so wopt(t) still belongs to the
interval (0, 1) (Lemma 4.5). In term of the substrate concentration at the output of the reactor,
sopt

r (t) still belongs to the interval (0, s1(t)).

We have the two following lemmas concerning the behavior of the switching functions γ
and ψ.

Lemma 4.6 Suppose that at a certain time t† < Topt we have γ(t†) = 1. Then, for all t ∈
(t†, Topt] we have γ(t) < 1.
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Proof. Suppose that γ = 1. Then, evaluating in the expression of γ̇ given in (4.9), we have
γ̇ = −µ(sopt

r )α1 < 0. We conclude that once the set {γ ≤ 1} is reached, it is never left.

Lemma 4.7 Suppose that at a certain time t† < Topt we have ψ(t†) = 0. Then, for all
t ∈ (t†, Topt] we have ψ(t) > 0.

Proof. Supposeψ ≥ 0. Then γ belongs to the set [0, γmax(s)] where γmax(s) := µ′(s1)(s1−s2)
µ′(s1)(s1−s2)+µ(s1)

<

1. According to the control rule given in Lemma 4.5, wopt = 1 and Qopt
R = Q̄R. In this case,

the formula for ψ̇ is

ψ̇ =

(
−µ′′(s1)(1− γ) + µ′(s1)

γ

s1 − s2

)(
α1µ(s1) +

Q̄R

v1

)
(s1 − s2)

− µ(s1)

(
α2µ(s1)

s1 − s2

(2γ − 1) + µ′(s1) ((α2 − α1)γ − α2)

)
− Q̄R

v1

(
µ(s1)

s1 − s2

(
γ2 + 2

α2

α1

γ − α2

α1

)
+ µ′(s1)

(
γ2 +

(
α2

α1

− 1

)
γ − α2

α1

))
− γ α1

s1 − s2

(µ′(s1)(s1 − s2)(−1 + γ) + γµ(s1)) (µ(s1) + µ′(s1)(s1 − s2))

(4.18)

The previous expression corresponds to a concave function of second degree as function of γ;
let us denote it by hs(γ). So, if we prove that hs is positive for γ = 0 and γ = γmax(s), we
conclude that ψ̇ ≥ 0. First, we take γ = 0, and compute

hs(0) = −µ′′(s1)

(
α1µ(s1) +

Q̄R

v1

)
(s1 − s2) +

α2

α1

(
µ(s1)

s1 − s2

+ µ′(s1)

)(
α1µ(s1) +

Q̄R

v1

)
,

which is positive. Now, we evaluate γ = γmax(s) in the formula of hs given by (4.18) (for ease
we write γmax(s) as γmax), which gives as result hs(γmax) = I1 + I2 + I3 + I4, with

I1 =

(
−µ′′(s1)(1− γmax) + µ′(s1)

γmax

s1 − s2

)(
α1µ(s1) +

Q̄R

v1

)
(s1 − s2),

I2 = −µ(s1)

(
α2µ(s1)

s1 − s2

(2γmax − 1) + µ′(s1) ((α2 − α1)γmax − α2)

)
,

I3 = −Q̄R

v1

(
µ(s1)

s1 − s2

(
γ2

max + 2
α2

α1

γmax −
α2

α1

)
+ µ′(s1)

(
γ2

max +

(
α2

α1

− 1

)
γmax −

α2

α1

))
I4 = −γmax

α1

s1 − s2

(µ′(s1)(s1 − s2)(−1 + γmax) + γmaxµ(s1)) (µ(s1) + µ′(s1)(s1 − s2)).

Since γmax < 1, we conclude that I1 > 0. Now, for the analysis of I2, we notice that

2γmax − 1 = 2
µ′(s1)(s1 − s2)

µ′(s1)(s1 − s2) + µ(s1)
− 1 =

µ′(s1)(s1 − s2)− µ(s1)

µ′(s1)(s1 − s2) + µ(s1)
< 0,

the last inequality obtained from the fact that µ(·) is strictly concave and positive. We also have

(α2 − α1)γmax − α2 = α2(γmax − 1)− α1 < 0,
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concluding that I2 > 0. For I3 we develop the quadratic expressions

γ2
max + 2

α2

α1

γmax −
α2

α1

=
1

α1

(α1 + α2)µ′(s1)2(s1 − s2)2 − α2µ(s1)2

(µ′(s1)(s1 − s2) + µ(s1))2
,

and

γ2
max +

(
α2

α1

− 1

)
γmax −

α2

α1

= −µ(s1)

α1

α2µ(s1) + (α1 + α2)µ′(s1)(s1 − s2)

(µ′(s1)(s1 − s2) + µ(s1))2
,

concluding that

I3 = Q̄R
α2

v1α1

1

s1 − s2

µ(s1)2

µ′(s1)(s1 − s2) + µ(s1)
,

is positive. Now, I4 can be written as

I4 = −γmax
α1

s1 − s2

(µ(s1) + µ′(s1)(s1 − s2))J,

with
J = µ′(s1)(s1 − s2)(−1 + γmax) + γmaxµ(s1)

= µ′(s1)(s1 − s2)

(
−1 +

µ′(s1)(s1 − s2)

µ′(s1)(s1 − s2) + µ(s1)

)
+

µ′(s1)(s1 − s2)

µ′(s1)(s1 − s2) + µ(s1)
µ(s1) = 0.

Thus, we conclude that if γ ∈ [0, γmax], then ψ̇ > 0.

Lemmas 4.6 and 4.7 summarize the behavior of any optimal control strategy uopt = (wopt, Qopt
R )

in terms of the state variable sopt, the adjoint variable γ, and the function ψ. We state this result
in the following proposition.

Proposition 4.8 Suppose that sopt is an optimal trajectory, associated to the optimal control
uopt = (wopt, Qopt

R ). Then, there exist time instants 0 ≤ t1 < t2 < Topt such that

1. Qopt
R (t) = 0 and wopt(t) = ŵ(sopt(t), γ(t)) a.e. t ∈ [0, t1], where ŵ(s, γ) satisfies (4.15),

where t1 is the first time that γ(t) ≤ 1 (it may occur that t1 = 0),

2. Qopt
R (t) = Q̄R and wopt(t) = ŵ(sopt(t), γ(t)) a.e. t ∈ [t1, t2], where ŵ(s, γ) satisfies

(4.15), where t2 is the first time in which ψ(t) ≥ 0;

3. Qopt
R (t) = Q̄R and wopt(t) = 1 a.e. t ∈ [t2, Topt].

Proof. According to Pontryagin’s Maximum Principle, an optimal control uopt has to maximize
for a.e. t ∈ [0, Topt] time the Hamiltonian H given in (4.10) or, equivalently, since λ(t) ≤ 0
and γ(t) ≥ 0 (Lemma 4.3), maximize the functions w 7→ φ(sopt(t), γ(t), w) with w ∈ [0, 1]
and QR 7→ (1 − γ(t))QR with QR ∈ [0, Q̄R]. Suppose γ(0) > 1 (otherwise, t1 = 0). Since γ
is continuous with γ(Topt) = 0, there exist a time instant t1 ≥ 0 such that γ(t1) = 1. For a.e.
t ∈ [0, t1], point 1. of Lemma 4.5 is satisfied. For t > t1 Lemma 4.6 states that γ(t) < 1 and
then Lemma 4.5 states that for t ≥ t1, Qopt

R . Now, Remark 4.2 states that ψ(t1) < 0 and we
know that ψ(Topt) > 0, so there exists a time instant t2 < Topt such that ψ(t2) > 0 and t1 < t2.
Lemma 4.7 says that a.e. t ∈ [t1, t2] point 2. of Lemma 4.5 holds, and a.e. t ∈ [t2, Topt] the
point 3. of Lemma 4.5 holds.
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4.4 Numerical simulations

We consider the Monod growth function, widely used in bioprocesses and satisfies Assumption
4.1

µ(s) = µmax
s

Ks + s
, (4.19)

with parameters µmax = 1[h−1] and Ks = 1[gl−1], and volumes v1 = v2 = 500[l], vr = 1[l].
The threshold level is set to s = 1[gl−1]. In Table 4.1 we compare the treatment time of the
strategy presented in this work, that is, with the constraint sr ∈ [0, s1] and without recirculation,
with the strategy presented in [31], with the constraint sr ∈ [0, s2] and without recirculation. We
see that the effect of allowing the second zone to repollute is benefical over the treatment time
(in units of [h]), and its effect is even more notorious for initial conditions such that the second
zone has a small concentration with respect to the threshold. This effect can be attributed to
the fact that under the constraint sr ∈ [0, s2] the variable s2 can only be decreasing, providing
a much more restricted control set than the constraint sr ∈ [0, s1], notoriously for the initial
conditions s2(0) close to 0. For a more mixed resource, this effect is not too notorious.

Initial condition Optimal time in [31] Topt Improving
(2.5, 0.1) 2696.40 739.25 72, 58%
(2.5, 0.5) 1039.20 951.33 8, 45%
(2.5, 1.5) 1513.43 1504.33 0, 60%

Table 4.1. Comparison of treatment times for the optimal strategies

In Table 4.2 we show the effect of the recirculation in the time of treatment, with the optimal
strategy described in Proposition 4.8. We compare the improving of the time with respect to the
time obtained without recirculation. We can see that increasing the recirculation upper limit is
benefical for the treatment time, and again the better results are obtained for initial conditions
such that the pollution in the second zone is low compared to the threshold.

Initial condition Topt Topt Topt

(z1, z2) (Q̄R = 0) (Q̄R = 1) (Q̄R = 10)

(2.5, 0.1) 739.25 545.00 (−26.0%) 336.47 (−54.5%)
(2.5, 0.5) 951.33 761.63 (−19.9%) 570.49 (−40.0%)
(2.5, 1.5) 1504.33 1327.03 (−11.8%) 1160.94 (−22.8%)

Table 4.2. Comparison of optimal times with respect to maximum recirculation parameter Q̄R

for different initial conditions

Several optimal trajectories in the phase portrait are shown in Figures 4.2-4.4, obtained
by backward integration. We represent in blue the part of the trajectory in which there is no
saturation of any of the controls, related to the point 1. of Proposition 4.8; in green we represent
the part in which QR takes its maximum value, related to the point 2. of Proposition 4.8; in red,
QR takes its maximum value and sr is equal to s1, related to the point 3. of Proposition 4.8.
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Phase portrait of optimal trajectories, QR = 0

Figure 4.2. Backward integration of the extremals, with Q̄R = 0.
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Phase portrait of optimal trajectories, QR = 1

Figure 4.3. Backward integration of the extremals, with Q̄R = 1.
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Phase portrait of optimal trajectories, QR = 10

Figure 4.4. Backward integration of the extremals, with Q̄R = 10.

4.5 Conclusions

In this work we extend the results of [31] by adding two changes to the proposed model. First,
we consider that the concentration at the effluent of the bioreactor can be larger that the con-
centration in the second zone, allowing it to be repolluted; it is bounded by the concentration
from where the bioreactor is fed. We prove that this enlargement of the control set is positive
for the treatment, which is not an intuitive result. The second change is the introduction of a
recirculation pump that helps the concentrations in the two zones to mix. We prove that every
optimal control is composed of at most three steps, that involve the knowledge of an adjoint
variable. In the first part of the treatment the recirculation pump is not active, up to a moment
in which it is activated up to the final time. After this, at some moment the constraint sr ≤ s1

becomes active, up to the final time. In this final period the pollution in zone 2 increases, which
can be interpreted as the fact that an overdepollution of the second zone is performed to finish
with a strong diffusion between both concentrations. For such a method to be appicable it is
necessary to perform measurements at different places of the resource and of the initial speed
of the variation in concentration at two remote locations in the resource for the identification of
the inhomogeneity parameter of the model. Also, the control do not take the form of a feedback
strategy, but with a proper estimation of the parameters of the model it is not difficult to per-
form the backwards integration to have the knowledge of the adjoint function and the switching
times.
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Chapter 5

Stochastic modelling of sequencing batch
reactors for wastewater treatment

This chapter corresponds to an ongoing work.

5.1 Introduction

Sequencing batch reactors (SBR) are a biological water treatment system. They are widely used
for industrial and municipal wastewater. They are a time-oriented system with flow, energy
input, and tank volume varying according to some prescribed strategy. In its most basic form,
the SBR system consists of one or many tanks that operate in a fill-and-draw basis: the tank
is filled during a discrete period of time and then operated as a batch reactor. The essential
difference between the SBR and a conventional continuous bioreactor is that inside each tank
functions as equalization, aeration, and sedimentation can be performed in a time sequence
rather than a spatial sequence. This kind of waste-water treatment system is well described in
[44, 45].

The cycle of operation for each tank in an SBR system consists of five basic operating
modes performed in a time sequence: fill, react, settle, draw, and idle modes. During fill mode
the wastewater is received in the tank; during react mode the desired reactions take place;
in settle mode the microorganisms are separated from the treated water; in draw mode the
treated effluent is discharged, and idle mode corresponds to the period comprised between the
discharge of the tank and its refilling. The time of a cycle is the total time between the beginning
of fill up to the end of idle. The necessary time to achieve the total cycle may be long, and this
may be economically expensive. On the other hand, one should expect that a longer treatment
time leads to a better depollution level.

The problem consists in the minimization of the time of the treatment in each cycle of
operation, in which the time associated to draw and idle modes is fixed. Then, by changing
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the input flow rate it is possible to control the time of treatment, in particular, the duration
time of the fill mode. The tank has a maximum volume, and it is reasonable to establish as
one of the goals to treat the maximum possible amount of wastewater in each cycle. This
problem was studied in [60] for the single-species case with monotonic and nonmonotonic
kinetics using techniques in the plane such as Green’s theorem. For the case of monotonic
growth functions as the Monod law (see [73]) the optimal solution is the strategy called the
most rapid approach strategy, which consists in filling the tank as fast as possible up to its
maximum capacity and then wait until the target level of pollution is reached. For the case
of nonmonotonic growth functions, the optimal solution consist in leading the system as fast
as possible to a singular arc, that consists of maintaining the pollutant concentration in the
level that maximizes the efficiency of the bacterial growth, and remain in the singular arc for
as long as possible. In [32] the authors study the problem of depollution in minimal time
with several species of microorganism and monotonic and nonmonotonic growth functions and
allowing impulse strategies. In the mentioned work the authors proved with techniques such
as Pontryagin’s maximum principle and Hamilton-Jacobi-Bellman equation that the previously
mentioned strategies are optimal, but now with an impulse at the beginning of the process that
takes the system instantaneously to a state in which the tank is full for the case of monotonic
growth function, and in which the substrate concentration coincides with the maximum of the
growth function in the case of nonmonotonic growth function.

Stochastic models for water treatment have been introduced for the continuously stirred
bioreactors [15, 20, 41]. The models in these articles are obtained as an answer to the problem
that the standard assumptions on the behavior of microbial population at the macroscopic time
scale do not hold when considering a small number of individuals. Then, an analysis of the be-
havior of the population must be performed at a microscopic scale considering the demographic
and environmental sources of randomness into the model. To the best or our knowledge, there
is no literature for stochastic SBR models.

The outline of the present work is as follows. In Section 2 we develop a stochastic model of
SBR as a limit of multidimensional birth-death processes. In Section 3 we study the existence
of solutions of the controlled stochastic differential equation obtained. In Section 4 we discuss
the problem of the maximization of the probability of reaching the target before extinction.

5.2 Stochastic SBR model

In what follows, we denote by R the set of real numbers, N and Z the sets of natural and integer
numbers respectively, R+ and R?

+ the sets of non-negative and positive real numbers respec-
tively. For a set A and n ∈ N we denote An := {x = (x1, . . . , xn)|xi ∈ A, i = 1, . . . , n}. For
two real numbers a, b we define a ∧ b := min{a, b}. For A ⊆ Rm, we denote by C k(A;Rn)
(C k

b (A;Rn)) the set of k−times differentiable (bounded) functions f : A → Rn with contin-
uous k−th derivatives, and C k(A) = C k(A;R) (C k

b (A) = C k
b (A;R)); D([0,∞);Rn) denotes

the set of right continuous functions f : [0,∞) → Rn with left limits everywhere. For a
topological space (X, τ) we denote by B(X) its Borel σ−algebra, and for a measurable space
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(S,S) we define P(S,S) (or simply P(S)) the set of probability measures on (S,S).

Denote by x, s, and v the biomass and substrate concentration, and culture volume inside
the bioreactor vessel. We suppose that water with a constant concentration of nutrient sin

and without bacteria is poured into the bioreactor at an inflow rate u ∈ [0, umax]. We adopt
the usual assumptions that the growth rate of microorganisms is proportional to the mass of
microorganisms and it depends of the substrate concentration by means of the uptake function
µ(·) [73]. We introduce an individual microbial death rate β ≥ 0. We suppose that the yield
coefficient of the reaction, which is the amount of biomass produced by the bacterial specie
when one unit of substrate is consumed by the reaction, is a constant Y > 0. We suppose that
the culture volume is bounded between a minimum volume vmin assumed to be the lower level
to which the tank is emptied during the draw mode, and a maximum volume vmax given by the
maximum operative capacity of the tank. For the growth function µ(·) we make the following
assumption:

Assumption 5.1 The growth function µ(·) is defined in [0,∞), µ(0) = 0, is non-negative,
bounded by above by a constant µmax > 0, and is Lipschitz continuous.

Our aim in this section is to develop a stochastic population process describing the dy-
namics of a bacterial specie, substrate, and volume inside the SBR. For this, we consider an
individual-based tridimensional birth and death process that represents the discretized total
number of microbial cells, substrate molecules, and the water molecules, scaled by scale param-
eters Kx, Ks, Kv > 0 that represent the change of units from number of molecules into grams
for a large population. We suppose that two of the following events cannot occur at the same
time: the division of a microbial cell, the death of a cell, the entry of a unit of substrate into the
tank (and at the same time the entry of unit of water), and the consumption of a unit of substrate
by a cell. Let us define x̂Kt the amount of cells composing the biomass scaled by the parameter
Kx, ŝKt the amount of substrate molecules scaled by the parameter Ks, and v̂Kt the amount of
water molecules scaled by the parameter Kv at the time instant t. At the same time, we intro-
duce demographic randomness by introducing a perturbation parameter γ ≥ 0 in the birth and
death rates of biomass, following [56]. This procedure generates a pure jump Markov process
ηKt := (x̂Kt , ŝ

K
t , v̂

K
t ) that takes values in the state space D3

K := (Z/Kx) × (Z/Ks) × (Z/Kv).
Denote by ξ̂ = (x̂, ŝ, v̂) a generic element in D3

K and ei (i = 1, 2, 3) the components of the
canonical basis of R3. The scheme of jumps of the process ηK can be summarized as follows:

• ξ̂ → ξ̂ +
e1

Kx

with rate x̂Kx

[
µ

(
ŝ

v̂

)
+ γKx

]
,

• ξ̂ → ξ̂ − e1

Kx

with rate x̂Kx [β + γKx],

• ξ̂ → ξ̂ +
e2

Ks

+
e3

Kv

with rate uKv,

• ξ̂ → ξ̂ − e2

Ks

with rate x̂Kxµ

(
ŝ

v̂

)
.
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This process is characterized by its infinitesimal generator L K defined as follows: for ξ̂ =
(x̂, ŝ, v̂) ∈ D3

K and φ ∈ C (R3),

L Kφ(ξ̂) = lim
h↘0

E(φ(ηKh ) | ηK0 = ξ̂)− φ(ξ̂)

h
,

that in this case has the explicit formula

L Kφ(ξ̂) := x̂Kx

[
µ

(
ŝ

v̂

)
+ γKx

] [
φ

(
ξ̂ +

e1

Kx

)
− φ(ξ̂)

]
+ x̂KKx [β + γKx]

[
φ

(
ξ̂ − e1

Kx

)
− φ(ξ̂)

]
+Kvu

[
φ

(
ξ̂ +

e2

Ks

+
e3

Kv

)
− φ(ξ̂)

]
+Kxx̂µ

(
ŝ

v̂

)[
φ

(
ξ̂ − e2

Ks

)
− φ(ξ̂)

]
,

(5.1)

An explicit pathwise representation of ηK as a semimartingale process can be obtained by
applying L K to the projections px(ξ̂) = x̂, ps(ξ̂) = ŝ and pv(ξ̂) = v̂ [46]:

x̂Kt = x̂K0 +

∫ t

0

[
x̂Kr µ

(
ŝKr
v̂Kr

)
− x̂Kr β

]
dr +M

K,(x)
t ,

ŝKt = ŝK0 +

∫ t

0

[
Kv

Ks

u− Kx

Ks

x̂Kr µ

(
ŝKr
v̂Kr

)]
dr +M

K,(s)
t ,

v̂Kt = v̂K0 +

∫ t

0

udr +M
K,(v)
t ,

(5.2)

where MK = (MK,(x),MK,(s),MK,(v)) is a discontinuous local martingale associated to the
process ηK whose quadratic variation terms can be explicitly computed:

〈MK,(x)〉t =

∫ t

0

2γx̂Kr dr +
1

Kx

∫ t

0

x̂Kr

[
µ

(
ŝKr
v̂Kr

)
+ β

]
dr,

〈MK,(s)〉t =
1

Ks

∫ t

0

[
Kv

Ks

u+
Kx

Ks

x̂Kr µ

(
ŝKr
v̂Kr

)]
dr,

〈MK,(v)〉t =
1

Kv

∫ t

0

udr,

〈MK,(s,v)〉t =
1

Ks

∫ t

0

udr,

〈MK,(x,s)〉t = 〈MK,(x,v)〉t = 0.

(5.3)

Notice that Ks/Kx = 1/Kx
1/Ks

denotes the amount of biomass generated by the consumption
of one unit of substrate, which is by definition the yield coefficient Y ; in the same manner,
Kv/Ks = 1/Ks

1/Kv
denotes the increase of substrate due to the addition of one unit of water to the

system, which is sin by definition. The scale parameters Ks and Kv can be expressed in terms
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of just one scale parameter K := Kx and two parameters sin and Y as Kx = K, Ks = Y K,
Kv = Y sinK. The system (5.2) can be rewritten as

x̂Kt = x̂K0 +

∫ t

0

[
x̂Kr µ

(
ŝKr
v̂Kr

)
− x̂Kr β

]
dr +M

K,(x)
t ,

ŝKt = ŝK0 +

∫ t

0

[
usin −

1

Y
x̂Kr µ

(
ŝKr
v̂Kr

)]
dr +M

K,(s)
t ,

v̂Kt = v̂K0 +

∫ t

0

udr +M
K,(v)
t ,

(5.4)

and we can replace the scale parameters in (5.3) accordingly. The only term that is not divided
by the scale parameter K is the first term of 〈MK,(x)〉. The model of bioreactor (5.4) is well
defined, is non explosive, and when K tends to infinity, the limit process η := (x̂t, ŝt, v̂t)t≥0 is
a weak solution to the stochastic differential equation

dx̂t =

(
µ

(
ŝt
v̂t

)
− β

)
x̂tdt+

√
2γx̂tdWt,

dŝt =

(
− 1

Y
µ

(
ŝt
v̂t

)
x̂t + usin

)
dt,

dv̂t = udt,

(5.5)

where (Wt)t≥0 is an standard Brownian motion in R. This result is stated in the next proposi-
tion:

Proposition 5.2 Suppose Assumption 5.1 holds. The sequence of processes (ηK)K∈N with in-
finitesimal generator (5.1) and deterministic initial condition ηK0 = ξ̂0 = (ŷ, ẑ, ŵ) is tight in
P(D([0,∞);R3)) and converges in distribution to a weak solution η of the stochastic differ-
ential equation (5.5) with the same initial condition η0 = ξ̂0.

Proof. The proof consists of various steps. First of all, the rate function λK(·) and jump
function νK(·) are defined for ξ̂ = (x̂, ŝ, v̂) ∈ D3

K as

λKx+(ξ̂) = x̂Kx

[
µ

(
ŝ

v̂

)
+ γKx

]
; νKx+(ξ̂) = 1

Kx
e1,

λKx−(ξ̂) = x̂Kx [β + γKx] ; νKx−(ξ̂) = − 1
Kx
e1,

λKsv+(ξ̂) = uKv; νKsv+(ξ̂) = 1
Ks
e2 + 1

Kv
e3,

λKs−(ξ̂) = x̂Kxµ

(
ŝ

v̂

)
; νKs−(ξ̂) = − 1

Ks
e2.

(5.6)

For any K > 0, the components of the process ηK only take nonnegative values. Indeed, the
underlying Markov chain takes values on D3

K ∩R3
+, and it is not difficult to see for any point of

D3
K ∩ R3

+ with at least one component equal to zero, the probability of jumping to a state with
a negative component is zero.

For any K > 0 the processes are well defined. This can be seen because for any point
ξ̂ = (x̂, ŝ, v̂), the jump rate λK(ξ̂) =

∑
θ λ

K
θ (ξ̂) is positive, and∑

j

λKj (ξ̂)|νKj (ξ̂)|2≤ x̂2 +

[
1

K

(
µmax

(
1 +

1

Y 2

)
+ β

)]2

+
u

Y K

(
sin +

1

sin

)
.
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So, according to [35, Corollary 2], ηKt has finite moments of order two, and then it is well
defined and it is non explosive. To prove the tension of the family (PK)K of the laws of
the processes ηK on D([0,∞);R3) it is enough to check hypotheses (H1), (H2), and (H3) of
[46, Section 3.2]. For this, define (according to notation of [46]) AK(t) = t, C = Cb(R3),
L K(φ, ξ̂, t, ω) = L Kφ(ξ̂), and

bK(ξ̂, t, ω) =

 x̂µ(ŝ/v̂)− x̂β
usin − 1

Y
x̂µ(ŝ/v̂)
u


and

aK(ξ̂, t, ω) =


2γx̂+ 1

K
x̂
(
µ
(
ŝ
v̂

)
+ β

)
0 0

0 1
Y K

(
usin + x̂

Y
µ
(
ŝ
v̂

))
u
Y K

0 u
Y K

u
Y sinK

 .

• (H1) The point i. of this hypothesis is satisfied. Indeed, we have

|bK(ξ̂)|2 =

(
x̂µ

(
ŝ

v̂

)
− x̂β

)2

+

(
usin −

1

Y
x̂µ

(
ŝ

v̂

))2

+ u2

≤ u2(1 + 2s2
in) + 2x̂2

(
µ2

max(1 +
1

Y 2
) + β2

)
,

trace(aK(ξ̂)) = 2γx̂+
1

K
x̂

[
µ

(
ŝ

v̂

)
+ β

]
+

1

Y K

(
usin +

1

Y
x̂µ

(
ŝ

v̂

))
+

1

Y sinK
u

≤ γ2 + x̂2

(
1 +

1

2K

)
+

1

2K

(
µmax

(
1 +

1

Y 2

)
+ β

)2

+
u

Y K

(
sin +

1

sin

)
.

Defining

CK
1 = γ2 +

1

2K

(
µmax

(
1 +

1

Y 2

)
+ β

)2

+
u

Y K

(
sin +

1

sin

)
+ u2(1 + 2s2

in),

CK
2 =

(
1 +

1

2K

)
+ 2

(
µ2

max(1 +
1

Y 2
) + β2

)
,

then

|bK(ξ̂)|2+ trace(aK(ξ̂)) ≤ CK
1 + x̂2CK

2 ≤ CK
2

(
CK

1

CK
2

+ |ξ̂|2
)
.

We can find uniform bounds on CK
2 y DK := CK

1 /C
K
2 (independent of K):

CK
2 ≤ 2

[
1 +

(
µ2

max(1 +
1

Y 2
) + β2

)]
:= C,

and

DK ≤
γ2 +

(
µmax

(
1 + 1

Y 2

)
+ β

)2
+ u

Y

(
sin + 1

sin

)
+ u2(1 + 2s2

in)

1 + 2
(
µ2

max(1 + 1
Y 2 ) + β2

) := D.
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Finally, for all K ∈ N,

|bK(ξ̂)|2+ trace(aK(ξ̂)) ≤ C
(
D + |ξ̂|2

)
,

where D is a deterministic constant independent of t, which proves point ii. of this
hypothesis.

• (H2) The initial condition of each process ηK is deterministic and independent of K, so
(H2) is satisfied.

• (H3) Taking α(t) = t y ρK = 0, (H3) is satisfied.

Thus, for each T > 0 there exists a constant CT and K0 such that for all K ≥ K0,

EK

(
sup
t≤T
|ηKt |2

)
≤ CT (1 + EK |ηK0 |2), (5.7)

(from [46, Lemma 3.2.2]), and the family (ηK)K∈N is tight (from [46, Proposition 3.2.3]),
and then there exists a limit probability law P on D([0,∞);R3

+). Also, for any T > 0,
E supt≤T |ηKt −ηKt−|≤ 1/K holds, concluding that P is supported on C ([0,∞);R3

+). It remains
to show that P solves the martingale problem associated to equation (5.5) (for the martingale
problem, see [48]).

Consider Ω = C ([0,∞);R3
+), the σ−field F = B(Ω), and the system (Ω,F , (Ft)t≥0, P ),

where Ft = σ
({
ω(s), 0 ≤ s ≤ t, ω ∈ C ([0,∞);R3

+)
})

. We define for φ ∈ C 2
b (R3) y ξ̂ =

(x̂, ŝ, v̂),

L φ(ξ̂) =
∂

∂x
φ(ξ̂)

[
µ

(
ŝ

v̂

)
− β

]
x̂+

∂

∂s
φ(ξ̂)

[
− 1

Y
µ

(
ŝ

v̂

)
x̂+ usin

]
+
∂

∂v
φ(ξ̂)u+

1

2

∂2

∂x2
φ(ξ̂)2γx̂;

(5.8)
for ω ∈ Ω, t ≤ 0, the function Mtφ : Ω 7→ R3

+ defined by

Mtφ(ω) = φ(ω(t))− φ(ω(0))−
∫ t

0

L φ(ω(r))dr,

and the canonical process on Ω given by ηt(ω) = ω(t). We have to prove that ∀φ ∈ C 2
b (R3),

the process (Mtφ(η))t≥0 is an (Ft)−local martingale under P .

From (5.1) and (5.8),

|L Kφ(ξ̂)−L φ(ξ̂)| ≤ γK2x̂

∣∣∣∣φ(ξ̂ +
e1

K

)
+ φ

(
ξ̂ − e1

K

)
− 2φ(ξ̂)− 1

K2

∂2

∂x2
φ(ξ̂)

∣∣∣∣
+Kx̂µ

(
ŝ

v̂

) ∣∣∣∣φ(ξ̂ +
e1

K

)
− φ(ξ̂)− 1

K

∂

∂x
φ(ξ̂)

∣∣∣∣
+Kβx̂

∣∣∣∣φ(ξ̂ − e1

K

)
− φ(ξ̂) +

1

K

∂

∂x
φ(ξ̂)

∣∣∣∣
+Y sinKu

∣∣∣∣φ(ξ̂ +
e2

Y K
+

e3

Y sinK

)
− φ(ξ̂)− 1

Y K

∂

∂s
φ(ξ̂)− 1

Y Ksin

∂

∂v
φ(ξ̂)

∣∣∣∣
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+Kx̂µ

(
ŝ

v̂

) ∣∣∣∣φ(ξ̂ − e2

Y K

)
− φ(ξ̂) +

1

Y K

∂

∂s
φ(ξ̂)

∣∣∣∣ .
Considering Taylor expansions of first and second order on φ in the previous formula,

|L Kφ(ξ̂)−L φ(ξ̂)| ≤ γK2x̂o

(
1

K2

)
+Kx̂µmaxo

(
1

K

)
+Kβx̂o

(
1

K

)
+ uY sinKo

(
1

K

)
+Kx̂µmaxo

(
1

K

)
≤C(1 + |ξ̂|2)O

(
1

K

)
.

Define for φ ∈ C 2
b (R3), y ∈ D([0,∞);R3), n ∈ N, 0 < s1 ≤ s2 ≤ . . . ≤ sn ≤ s ≤ t, y

Fs1 , . . . , Fsn ∈ Cb,

MK
t φ(y) =φ(y(t))− φ(y(0))−

∫ t

0

L Kφ(y(s))ds,

GK
t,sφ(y) =MK

t φ(y)−MK
s φ(y),

Gt,sφ(y) =Mtφ(y)−Msφ(y),

Hn(y) =F1(y(s1)) . . . Fn(y(sn)).

We have to prove that under P , (Mtφ(η))t≥0 is a martingale, this is,

E (Gt,sφ(η)F1(ηs1) . . . Fn(ηsn)) = 0.

Notice that for fixed K,

EK
(
Gt,sφ(ηK)Hn(ηK)

)
= EK

(
[Gt,sφ(ηK)−GK

t,sφ(ηK)]Hn(ηK)
)
+EK

(
GK
t,sφ(ηK)Hn(ηK)

)
,

(5.9)
where the second term of the right-hand side of (5.9) is zero because (MK

t φ(ηK))t≥0 is a
martingale under PK . It is easy to see that for 0 < s < t,

Gt,sφ(ηK)−GK
t,sφ(ηK) = [Mtφ(ηK)−Msφ(ηK)]− [MK

t φ(ηK)−MK
s φ(ηK)]

=

∫ t

s

L Kφ(ηKr )dr −
∫ t

s

L φ(ηKr )dr.

Then,

EK
(
|Gt,sφ(ηK)−GK

t,sφ(ηK)|Hn(ηK)
)

=EK

[[∫ t

s

|L Kφ(ηKr )−L φ(ηKr )|dr
]
Hn(ηK)

]
≤O

(
1

K

)
EK

[∫ t

s

(1 + |ηKr |2)drHn(ηK)

]
.
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Since ηKt has bounded moments of second order, uniformly bounded on finite intervals (from
(5.10)), the previous expression converges to zero when K → ∞. On the other side, since for
any t the function y(·) 7→ L φ(y(t)) is continuous, the weak convergence of P n to P allows to
say

EK
(
Gt,sφ(ηK)F1(ηKs1) . . . Fn(ηKsn)

) K→∞−→ E (Gt,sφ(η)F1(ηs1) . . . Fn(ηsn)) .

Then, taking limits when K →∞ in equation (5.9), we conclude that

E (Gt,sφ(η)Hn(η)) = 0, (5.10)

which means that L satisfies the martingale problem under the law P .

Now, with the previous result it is possible to prove that the process η is a solution of (5.5).
The process ηt = (x̂t, ŝt, v̂t) has the integral representation



x̂t = x̂0 +

∫ t

0

[
µ

(
ŝr
v̂r

)
x̂r − βx̂r

]
dr +M

(x)
t ,

ŝt = ŝ0 +

∫ t

0

[
− 1

Y
µ

(
ŝr
v̂r

)
x̂r + usin

]
dr +M

(s)
t ,

v̂t = v̂0 +

∫ t

0

udr +M
(v)
t ,

where M (x), M (s), M (v) are local martingales with quadratic variation

〈M (x)〉t =

∫ t

0

2γx̂rdr, 〈M (s)〉t = 〈M (v)〉t = 0, 〈M (i),M (j)〉t = 0 i 6= j.

Consider (Ω′,F ′, (F ′
t )t≥0, P

′) a probability space on which is defined an (F ′
t )t≥0−Brownian

motion W ′ independent of M (x). Define Ω∗ = Ω× Ω′, F ∗ = F ⊗F ′, P ∗ = P ⊗ P ′, and on
(Ω∗,F ∗, P ∗), the process

Wt(ω, ω
′) =

∫ t

0

1√
2γx̂r

1{x̂r 6=0}dM
(x)
r (ω) +

∫ t

0

1{x̂r=0}dW
′
r(ω
′).

We state that W is a Brownian motion. Indeed, is a continuous process and its quadratic
variation is

〈W 〉t =

∫ t

0

1

2γx̂r
1{x̂r 6=0}d〈M (x)〉r +

∫ t

0

1{x̂r=0}d〈W ′〉r +

∫ t

0

2√
2γx̂r

1{x̂r 6=0}1{x̂r=0}d〈M (x),W ′〉r

=

∫ t

0

1

2γx̂r
1{x̂r 6=0}2γx̂rdr +

∫ t

0

1{x̂r=0}dr = t,
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concluding thanks to Lévy’s Theorem [48, Theorem 3.3.16]. Now, notice that

E∗
[
M

(x)
t −

∫ t

0

√
2γx̂rdWr

]2

= E∗

[(
M

(x)
t −

∫ t

0

[
1{x̂r 6=0}dM

(x)
r +

√
2γx̂r1{x̂r=0}dW

′
r

])2
]

= E∗

[(∫ t

0

1{x̂r=0}dM
(x)
r

)2
]

= E∗
[∫ t

0

1{x̂r=0}d〈M (x)〉r
]

= E∗
[∫ t

0

1{x̂r=0}2γx̂rdr

]
= 0.

Then, M (x) has the brownian representation

M
(x)
t =

∫ t

0

√
2γx̂rdWr, M

(s)
t = 0, M

(v)
t = 0.

Define γ̃ =
√

2γ. We define the limit process of concentrations (Xt)t≥0 = (xt, st, vt)t≥0,
where xt := x̂t/v̂t, st := ŝt/v̂t and vt := v̂t. Using Itô’s formula [85, Theorem 1.5.5], we
obtain that the dynamics of (Xt)t≥0 are characterized by the following SDE:

dxt =

[(
µ(st)− β −

u

vt

)
xt

]
dt+ γ̃

√
xt
vt
dWt,

dst =

[
− 1

Y
µ(st)xt +

u

vt
(sin − st)

]
dt,

dvt = udt.

(5.11)

Remark 5.1 If we consider a null demographic stochasticity parameter γ̃ = 0 and a null mor-
tality rate β = 0, the model given in (5.11) coincides with the deterministic model (1.12). Then,
(5.11) extends the deterministic model of SBR. We can also see that the diffusion coefficient in
(5.11) shows that the amplitude of the variations of the biomass decrease with the increase of
the volume. This is an interesting behavior that cannot be observed in the chemostat models,
since in the chemostat the culture volume is maintained constant.

5.3 Existence of solutions of the controlled stochastic model

From now on, we consider u as a control parameter in the model instead of a constant parameter.
In this section, we assume that the death rate β is null and, without loss of generality, the yield
coefficient will be assumed Y = 1. Let (Ω,F ,P) be a complete probability space that supports

89



a one-dimensional Brownian motion W = (Wt)t≥0. The set where the control variable takes
values is U = [0, umax], and let u be an U−valued measurable proces defined on (Ω,F ,P),
which we call control process. We say that the control u = (ut)t≥0 is admissible with respect
to W = (Wt)t≥0 (or simply admissible) if u(·) is adapted with respect to the natural filtration
of the Brownian W , that we denote by (Ft)t≥0, and u(t, ω) ∈ U a.a (t, ω). The purpose of
this section is to study the existence and uniqueness of solutions of the controlled stochastic
differential equation 

dxt =

[
µ(st)−

ut
vt

]
xtdt+ γ̃

√
xt
vt
dWt,

dst =

[
−µ(st)xt +

ut
vt

(sin − st)
]
dt,

dvt = utdt.

(5.12)

for u admissible control. Define the coefficients of the stochastic differential equation (5.12):

b(x, s, v;u) =

 µ(s)x− u
v
x

−µ(s)x+ u
v
(sin − s)

u

 and σ(x, s, v) =

 γ̃
√
x√
v

0
0

 . (5.13)

These coefficients do not satisfy the Lipschitz condition (not even locally Lipschitz con-
dition) and in consequence, existence of solutions of (5.12) is not guaranteed by the usual
theorems (for instance, [85, Theorem 1.6.16]). In order to study existence of solutions to (5.12)
we consider a regularization and a truncation on the coefficients b(·) and σ(·). Let us define,
for n ∈ N, the functions pn, qn by

pn(x) = −n1(−∞,n)(x) + x1[−n,n](x) + n1(n,∞)(x),

qn(x) =
√
n|x|1[0,1/n)(|x|) +

√
|x|1[1/n,n](|x|) +

√
n1(n,∞)(|x|),

and the following stochastic differential equations:
dxnt =

[
µ(snt )− ut

vt

]
pn(xnt )dt+ γ̃

qn(xnt )
√
vt

dWt,

dsnt =

[
−µ(snt )pn(xnt ) +

ut
vt

(sin − snt )

]
dt,

dvt = utdt,

(5.14)

whose coefficients we denote by bn(x, s, v;u) and σn(x, s, v), and solution Xn. The parameter
n controls the regularization of the square root near zero in the diffusion coefficients, and sets
a bound on the variable x, turning the coefficients of (5.14) bounded and Lipschitz continuous
and with sublinear growth with respect to (x, s) under some assumptions on the growth func-
tion µ(·). Under Assumption 5.1, the coefficients of the equation (5.14) satisfy the Lipschitz
condition and the sublinear growth condition in (x, s), but not in (x, s, v). Nevertheless, we
have the following lemma:

Lemma 5.3 For any admissible control u, for each n ∈ N there exists a unique solution of the
equation (5.14).
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Proof. Given u = (ut)t≥0 admissible control, the volume process v = (vt)t≥0 has the explicit
representation

vt(ω) = w +

∫ t

0

ur(ω)dr. (5.15)

Define the process X̄n = (xnt , s
n
t )t≥0 as the solution of the following stochastic differential

equation with random coefficients b̄n(t, x, s;ω) and σ̄n(t, x, s;ω) given by
dxnt =

[
µ(snt )− ut

vt
(ω)

]
pn(xnt )dt+ γ̃

qn(xnt )√
vt(ω)

dWt,

dsnt =

[
−µ(snt )pn(xnt ) +

ut
vt

(ω)(sin − snt )

]
dt.

(5.16)

We notice that given the control u(·), for each (x, s) ∈ R2, t ≥ 0, and ω ∈ Ω,

bn(x, s, vt(ω);ut(ω)) =

(
b̄n(t, x, s;ω)

vt(ω)

)
, σn(x, s, vt(ω)) =

(
σ̄n(t, x, s;ω)

0

)
, (5.17)

hence, on (Ω,F , (Ft)t≥0,P), with control u, Brownian motion W , and initial condition ξ0,
the solutions of (5.14) and (5.16) are the same. The coefficients b̄n(·) and σ̄n(·) are Lipschitz
continuous in (x, s) and have sublinear growth in (x, s), uniformly in t:

|b̄(t, x, s, ω)− b̄(t, x′, s′, ω)| ≤
(
µmax +

umax

vmin

)
|x− x′|+nLµ|s− s′|,

|σ̄(t, x, s, ω)− σ̄(t, x′, s′, ω)| ≤ γ̃√
vt(ω)

|qn(x)− qn(x′)|≤ γ
√
vmin

|x− x′|,

where Lµ is the Lipschitz constant of µ, and

b̄(t, x, s, ω) ≤
(

2µmax +
umax

vmin

)
x+

umax

vmin

s+
umax

vmin

sin,

σ̄(t, x, s, ω) ≤ γ̃
√
vmin

(1 + |x|).

Consequently, according to [85, Theorem 1.6.16], for all n ∈ N the equation (5.16) has a
unique solution; then, for all n ∈ N, equation (5.14) has a controlled solution Xn = (Xn

t )t≥0.

Let us define for each n ∈ N the stopping time τn := inf{t > 0 | |xnt |> n ∨ |xnt |< 1/n},
which is the first time when the dynamics (5.14) are truncated, and τ := supn∈N τ

n. The
stopping time τ is well defined, because it is the limit of a sequence of increasing stopping
times, and thanks to the pathwise uniqueness, for m > n it is not difficult to see that Xm

t = Xn
t

in the set {t ≤ τn}.

Lemma 5.4 The process Zn
·∧τn = (Zn

t∧τn)t≥0, where Zn
t is defined by

Zn
t = (xnt + snt − sin)vt, (5.18)

is a continuous local martingale with respect to (Ft)t≥0.
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Proof. Using Itô’s formula for Zn, we get

Zn
t = Zn

0 +

∫ t

0

[xnr − pn(xnr )]urdr +

∫ t

0

γ̃qn(xnr )
√
vrdWr,

with Zn
0 = (xn0 + sn0 − sin)v0 = (y + z − sin)w. In the set {r ≤ τn} we have pn(xnr ) = xnr and

qn(xnr ) =
√
xnr ; then, we can write

Zn
t∧τn = Zn

0 + γ̃

∫ t∧τn

0

√
xnr vrdWr, (5.19)

from which the result follows.

Lemma 5.5 For all T ≥ 0, we have

sup
n>0

E
[
sup
t≤T
|Xn

t∧τn|
]
<∞.

Proof. We analyze, as a first step, the behavior of snt . The process snt has paths of finite
variation, so it can be studied in terms of its infinitesimal variations. It is non-negative, because
if at some time instant t > 0 we have snt = 0, the equation of sn reads

dsnt =
ut
vt
sindt ≥ 0,

so sn will be increasing. The process snt is also bounded. Indeed, thanks to pathwise unique-
ness, xnt is always nonnegative. If at some time instant t ≥ 0 we have that snt ≥ sin, then

dsnt =

[
−µ(snt )pn(xnt ) +

ut
vt

(sin − snt )

]
dt ≤ 0,

so snt will be decreasing. Now, consider the process Zn defined by (5.18). Thanks to (5.19), we
can write

[xnt∧τn + snt∧τn − sin] vt∧τn = [y + z − sin]w +

∫ t∧τn

0

γ̃
√
xnr vrdWr. (5.20)

The process sn = (snt )t≥0 is always non-negative, and (vt)t≥0 is non-decreasing and bounded
from above by vmax, so

xnt v0 = xnt vt + snt vt − sinvt + sinvt

≤ [xnt + snt − sin] vt + sinvmax.
(5.21)

Replacing (5.20) in (5.21), with v0 = w,

xnt∧τnw ≤ [y + z − sin]w + sinvmax +

∫ t∧τn

0

γ̃
√
xnr vrdWr.
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Define κ := [y + z − sin]w + sinvmax. Taking supremum on [0, T ] and expectation,

E
[
w sup

t≤T
xnt∧τn

]
≤ κ+ E

[
sup
t≤T

∫ t∧τn

0

γ̃
√
xnr vrdWr

]
.

Using the Burkholder-Davis-Gundy inequality [48, Theorem 3.3.28], we obtain the exis-
tence of a constant C > 0 independent of n such that

E
[
sup
t≤T

∫ t∧τn

0

γ̃
√
xnr vrdWr

]
≤ CE

[(∫ T∧τn

0

γ̃2xnr vrdr

) 1
2

]
,

hence

E
[
sup
t≤T

xnt∧τn

]
≤ κ

w
+

1

w
CE

[(∫ T∧τn

0

γ̃2xnr vrdr

) 1
2

]

≤ 1

w
κ+

1

w
Cγ̃E

[
1 +

∫ T∧τn

0

xnr vrdr

]
≤ 1

w
[κ+ Cγ̃] + γ̃C

vmax

w
E
[∫ T

0

sup
r′≤r

xnr′∧τndr

]
.

Using Gronwall’s inequality [48, Problem 5.2.7], and taking supremum over n > 0, we
conclude that

sup
n>0

E
[
sup
t≤T

xnt∧τn

]
<∞.

We define the process X = (x, s, v) in the following way: for n ≥ 1, n ∈ N,

Xt = Xn
t , in the set {t ≤ τn}.

It is easy to see that P−a.s., for all t ≥ 0,

Xt∧τn = ξ +

∫ t∧τn

0

b(Xr, ur)dr +

∫ t∧τn

0

σ(Xr)dWr, (5.22)

where b(·) and σ(·) are the coefficients defined in (5.13). The process X is defined up to the
final time τ , and then, equation (5.12) in its integral form (5.22) has a solution defined in the
time interval [0, τ ]. It remains to prove that τ is the first time that xt reaches 0 (possibly infinite).

Proposition 5.6 P−almost surely, τ = τE := inf{t ≥ 0 : xt = 0}.

Proof. Suppose that P(τ 6= τE) > 0, and define A = {ω ∈ Ω | τ(ω) 6= τE(ω)}. Notice that if
τ = ∞, then τE = ∞, so necessarily A ⊆ {τ < ∞}. Then, for almost all ω ∈ A there exists
an increasing sequence (nk(ω))k∈N ↗∞ such that xτnk(ω)(ω) = nk(ω)↗∞.
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Notice that there must exist a T > 0 such that P(A ∩ {τ ≤ T}) > 0. Indeed, if such T
does not exist, for every N ∈ N we have P(A ∩ {τ ≤ N}) = 0. Notice that the sequence
of sets A ∩ {τ ≤ N} is increasing with N and converges to A ∩ {τ < ∞}, concluding that
P(A ∩ {τ <∞}) = 0, which contradicts the initial assumption.

Now, consider the T such that P(A∩ {τ ≤ T}) > 0. For almost each ω ∈ A∩ {τ ≤ T} we
have that supt∈[0,T ] xt∧τnk (ω)(ω) = nk(ω), and then

sup
n∈N

E

[
sup
t∈[0,T ]

xt∧τn

]
≥ sup

k∈N
E

[
sup
t∈[0,T ]

xt∧τnk (ω)(ω)1A∩{τ≤T}

]
=∞,

which contradicts Lemma 5.5.

The last proposition shows that the equation (5.12) has a solution up to τ , and that pathwise
uniqueness holds. Now, we present a result that shows the behavior of the process with respect
to extinction of the biomass. In the deterministic case the extinction time is infinite unless
the initial condition is such that x(0) = 0, but in the stochastic framework the possibility of
extinction must be considered (see [15, 41]). This is a serious issue in terms of the depollu-
tion process, because extinction of the biomass before reaching the target stops the treatment,
making it impossible to reach the target without considering other types of strategies such as
adding biomass to the system when a critical level is reached. For equation (5.12), we have the
following result:

Proposition 5.7 Let u = (ut)t≥0 be an admissible control with respect to W = (Wt)t≥0 and
Xu = (xu, su, vu) the solution of (5.12). The probability that xu = (xut )t≥0 hits 0 at some time
instant is positive.

Proof. Consider the continuous local martingale

Mu
t =

∫ t∧τ

0

1
√
vur
dWr,

whose quadratic variation is

〈Mu〉t =

∫ t∧τ

0

1

vur
dr.

Since (vut )t≥0 es positive, non-decreasing and bounded up to τ , then S := limt→∞〈Mu〉t =∫ τ
0

1
vur
dr, P− a.s. Let us define, for r ∈ [0,∞), the stopping time

T (r) =

{
inf{t ≥ 0 | 〈Mu〉t > r}, r < S,

∞, r ≥ S.

According to [40, Theorem II.7.2’], defining Br = Mu
T (r), Gr = FT (r), it is possible to con-

struct an extension of (Ω,F , (Ft)t≥0,P), namely (Ω̃, F̃ , (F̃t), P̃) on which there is a Brownian
motion B′ independent of (Nr,Gr) such that the process

B̃r = Br +B′r −B′r∧S
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is a standard unidimensional Brownian motion defined in (Ω̃, F̃ , (F̃t), P̃). Then, Xu (the
solution of (5.12)) can be written in terms of the new time r and new Brownian motion (B̃r)r≥0

(in (Ω̃, F̃ , (F̃t), P̃)) as follows: renaming x̃r = xT (r), s̃r = sT (r), ṽr = vT (r) and ũr = uT (r),
X̃ ũ = (x̃ũ, s̃ũ, ṽũ) solves 

dx̃r = [µ(s̃r)ṽr − ũr] x̃rdr + γ̃
√
x̃rdB̃r,

ds̃r = [−µ(s̃r)ṽrx̃r + ũr(sin − s̃r)] dr,
dṽr = ũrṽrdr,

(5.23)

with initial condition ξ = (y, z, w), for 0 ≤ r ≤ S (the process is stopped at r = S). We notice
that

Pξ (∃t ∈ [0,∞) : xut = 0) = P̃ξ
(
∃r ∈ [0,∞) : x̃ũr = 0

)
.

Now, consider the process x̄ = (x̄r)r≥0 defined as the solution of

dx̄r = µmaxvmaxx̄rdr + γ̃
√
x̄rdB̃r, x̄0 = y. (5.24)

Strong existence and pathwise uniqueness hold for the equation (5.24) (from [52, Theorem 6.2.3]),
and it is defined for r ∈ [0,∞). Since µ(·) is bounded, then for any r ≥ 0, µ(s̃r) ≤ µmax and
ṽr ≤ vmax. Then, thanks to comparison principles (for instance, see [40, Theorem VI.1.1], with
β

(1)
r = (µ(s̃r)ṽr − ũr)x̃r, β(2)

r = µmaxvmaxx̄r, b1(r, x) = b2(r, x) = µmaxvmaxx), we get

P̃ξ
(
xũr ≤ x̄r, ∀r ∈ [0,∞)

)
= 1.

Comparing the CIR model in [52, Proposition 6.2.4] and (5.24) (with a = 0, b = −µmaxvmax

y σ = γ̃), the probability that x̄ hits zero belongs to (0, 1). We conclude then

Pξ (∃t ∈ [0,∞) : xut = 0) = P̃ξ
(
∃r ∈ [0,∞) : x̃ũr = 0

)
≥ P̃y (∃r ∈ [0,∞) : x̄r = 0)

> 0.

Thus, the probability of extinction of biomass is positive.

5.4 The optimal reach-avoid problem

Consider the domainD := [0,∞)×[0, sin]×[vmin, vmax], the target set C := (0,∞)×[0, sout]×
{vmax}, the full tank set V := (0,∞)×[sout, sin]×{vmax}, the extinction set E := {0}×[0, sin]×
[vmin, vmax], and an initial condition ξ ∈ D. Consider a probability space (Ω,F ,P) on which a
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one-dimensional Brownian motionW = (Wt)t≥0 is defined, and consider the Brownian natural
filtration F := (Ft)t≥0. We define the set of admissible controls

U = {u : [0,∞)× Ω→ [0, umax] | u is F− progresively measurable} ,

and denote Xξ,u the solution of the controlled stochastic differential equation (5.12) with con-
trol u ∈ U and initial condition ξ. This process takes values on the set D. For a Borel
measurable set A ⊆ R3 define the hitting times τuA = inf {t ≥ 0 |Xu

t ∈ A}. Consider, for
ξ ∈ D and u ∈ U , the cost functional given by the probability of reaching the target set before
extinction of the biomass:

J(ξ;u) := Pξ [τuC ≤ τuE ] , (5.25)

and the value function
(P) V (ξ) := sup

u∈U
J(ξ;u). (5.26)

Remark 5.2 Notice that the value function is bounded between 0 and 1 since it is defined
as the supremum of probabilities of events, and it is discontinuous at the boundary of the
domain. Indeed, for ξ ∈ C the value function takes the value V (ξ) = 1, for ξ ∈ E we have
V (ξ) = 0, and cl(C) ∩ E 6= φ. The problem is that the reach set C and the avoid set E cannot
be separated by nonintersecting open sets. The fact that the control on the set V is forced to
take the value 0 poses another problem with respect to the standard formulation of the problem
as a reach-avoid problem, since we have a state constraint. Nevertheless, for initial conditions
ξ0 = (x0, s0, vmax) in the set V it is possible to explicitly compute the probability of hitting the
target before extinction.

Indeed, in the set V the constraints of the problem impose u ≡ 0, and then the process
satisfies the SDE  dxt = µ(st)xtdt+

γ̃
√
vmax

√
xtdWt, t ∈ [0, τE ∧ τC],

dst = −µ(st)xtdt,

(5.27)

Notice that t 7→ st is decreasing up to τE ∧ τC P−a.s., thus we can define the time-change
functions

θt := s0 − st =

∫ t

0

µ(sr)xrdr, Tr := inf{t ≥ 0 : θt > r},

(that depend of (x0, s0)) where the new time will be denoted by r. Denoting x̃r = xTr ,
W̃r = N

(1)
Tr

, with N
(1)
t =

∫ t
0

√
µ(sr)xrdWr, the law of this process satisfies the following

SDE independent of st:

dx̃r = dr +
γ̃

√
vmax

1√
µ(s0 − r)

dW̃r, x̃0 = x0. (5.28)

for r ∈ [0, θτ ], with θτ = θτC ∧ θτE . In this new time scale, in the event {τC < τE} the time to
the target is θτC = s0 − sout (constant, depending only of s0), and the time to extinction is θτE .
The coefficient that accompanies the brownian part in equation (5.28) does not explode, and
this equation provides an explicit expression for x̃r:

x̃r = x0 + r ∧ θτE ∧ (s0 − sout) +
γ̃

√
vmax

∫ r∧θτE∧(s0−sout)

0

1√
µ(s0 − h)

dW̃h.
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We make another time-change (that depends of s0) in order to absorb the diffusion coeffi-
cient in (5.28). Define

ϕs0r = ϕr :=
γ̃2

vmax

∫ r

0

1

µ(s0 − h)
dh, T̃ s0h = T̃h := inf{r ≥ 0 : ϕr > h},

In the time h, defining x̄h = x̃T̃h and W̄h = N
(2)

T̃h
, with N (2)

r = γ√
vmax

∫ r
0

1√
µ(s0−h)

dW̃h, x̄h
solves

dx̄h =
vmax

γ̃2
µ(s0 − T̃h)dh+ dW̄h, x̃0 = x0. (5.29)

for h ∈ [0, ϕθτ ]. Define for simplicity, T̄ s0 = T̄ := ϕs0θC , T̄E = ϕs0θτE
. Notice that in the set

{τC < τE} we have T̄ s0 = ϕs0−sout . Define also As0h = Ah := vmax

γ̃2

∫ h
0
µ(s0 − T̃α)dα. For

a process M denote M?
t = maxs∈[0,t] Ms. In these terms, hitting the target before extinction

corresponds to the event {T̄E > T̄, x̄T̄ > 0}.
Pξ0 [τC < τE ] = P

[
T̄E > T̄, x̄T̄ > 0

]
= P

[
min
h∈[0,T̄ ]

x0 + Ah + W̄h > 0, T̄E > T̄

]
= P

[
min
h∈[0,T̄ ]

Ah + W̄h > −x0

]
.

Consider the probability law Q under which the process W̄h−Ah is an F̄h-Brownian motion
(where F̄h = FT̃Th

), which has density with respect to P given by

Mh = exp

{
vmax

γ̃2

∫ h

0

µ(s0 − T̃α)dW̄α −
1

2

v2
max

γ̃4

∫ h

0

µ(s0 − T̃α)2dα

}
.

Then,

Pξ0 [τC < τE ] = P
[
∀h ∈ [0, T̄ ], W̄h > −x0 − Ah

]
= Q

[
∀h ∈ [0, T̄ ], W̄h − Ah > −x0 − Ah

]
= EQ

[
1{min

h∈[0,T̄ ]
W̄h>−x0}

]
= E

[
1{min

h∈[0,T̄ ]
W̄h>−x0}MT̄

]
= E

[
1{min

h∈[0,T̄ ]
W̄h>−x0} exp

{
vmax

γ̃2

∫ T̄

0

µ(s0 − T̃α)dW̄α −
1

2

v2
max

γ̃4

∫ T̄

0

µ(s0 − T̃α)2dα

}]

Finally, we get the expression for the cost on V:

Pξ0 [τC < τE ] = exp

{
−1

2

v2
max

γ̃4

∫ T̄

0

µ(s0 − T̃α)2dα

}

× E

[
1{W̄ ?

T̄
<x0} exp

{
−vmax

γ̃2

∫ T̄

0

µ(s0 − T̃α)dW̄α

}]
.

(5.30)
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Proposition 5.8 The function V 3 ξ 7→ ṽ(ξ) := Pξ [τuC ≤ τuE ] is continuous.

Proof. We study formula (5.30). First, the function s0 7→ ϕs0r is continuous:

|ϕs1r − ϕs2r | ≤
1

µ(s1 − r)µ(s2 − r)

∫ r

0

|µ(s1 − h)− µ(s2 − h)|dh

≤ r

µ(s1 − r)µ(s2 − r)
max
h∈[0,r]

|µ(s1 − h)− µ(s2 − h)|

Then, s0 7→ T̃ s0r and s0 7→ T̄ s0 = ϕs0s0−sout
are continuous, which proves the continuity of the

first term in (5.30). For the continuity of the second term of the right-hand side, define

F (x0, s0) = 1{
W̄ ?

T̄
<x0

}, G(s0) = exp

{
−vmax

γ̃2

∫ T̄ s0

0

µ(s0 − T̃ s0α )dW̄α

}
.

Then, for ξ = (x, s, vmax) ∈ V ,

E|F (x0, s0)G(s0)− F (x, s)G(s)| ≤E [|F (x0, s0)− F (x, s)|G(s0)]

+ E [F (x, s)|G(s0)−G(s)|]

≤E
[
|F (x0, s0)− F (x, s)|2

] 1
2 E
[
G(s0)2

] 1
2

+ E [|G(s0)−G(s)|] .

(5.31)

where the last inequality comes from Cauchy-Schwartz inequality and the fact that F (x, s) ≤ 1.
Notice that the exponent in the definition of G is a Gaussian variable with null mean and
variance equal to v2

max

γ̃4

∫ T̄ s0
0

µ(s0 − T̃ s0α )2dα, so G(s0) is finite (depending on s0). Indeed, with
an appropriate change of variables, we can write for any p ≥ 1

E [G(s0)p] = exp

{
p2

2

vmax

γ̃2

∫ s0

sout

µ(r)dr

}
≤ exp

{
p2

2

vmax

γ̃2
(s0 − sout)µ(s0)

}
<∞. (5.32)

From the previous expression, we can see that for any s ≤ sin it holds E [G(s)p] ≤ E [G(sin)p] <
∞, and we conclude that {G(s)}s∈[sout,sin] is uniformly integrable. To prove the convergence
of G(s) to G(s0) in L1 when s 7→ s0 it is enough to prove that

∆ :=

∫ T̄ s

0

µ(s− T̃ sα)dW̄α −
∫ T̄ s0

0

µ(s0 − T̃ s0α )dW̄α → 0 in L2 if s→ s0.

From the Itô isometry, we have

E |∆|2 ≤ 2E

[∫ T̄ s

0

|µ(s− T̃ sα)− µ(s0 − T̃ s0α )|2dα

]
+ 2E

[∫ T̄ s

T̄ s0
|µ(s0 − T̃ s0α )|2dα

]

≤ 4L2
µE

[∫ T̄ s

0

(|s− s0|2+|T̃ sα − T̃ s0α |2)dα

]
+ 2µ2

maxE|T̄ s
0 − T̄ s|,

(5.33)
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where we know that the terms inside the integrand converge to zero pointwise and are bounded;
the term inside the expectation also converges to zero pointwise and is bounded. We conclude
by the dominated convergence theorem that ∆ converges to zero in L2 if s→ s0 .

Now,

|F (x0, s0)− F (x, s)| ≤
∣∣∣∣1{

W̄ ?

T̄s0
<x0

} − 1{
W̄ ?

T̄s
<x0

}∣∣∣∣+

∣∣∣∣1{
W̄ ?

T̄s
<x0

} − 1{
W̄ ?

T̄s
<x

}∣∣∣∣
≤ 1{

W̄ ?

T̄s0∧T̄ s
≤x0<W̄ ?

T̄s0∨T̄ s

} + 1{
x0∧x≤ W̄ ?

T̄s
<x0∨x

}.
Then,

E|F (x0, s0)− F (x, s)|2 ≤ P
[

max
h∈[0,T̄ s0∧T̄ s]

W̄h ≤ x0 < max
h∈[0,T̄ s0∨T̄ s]

W̄h

]
+ P

[
x0 ∧ x ≤ max

h∈[0,T̄ s]
W̄h < x0 ∨ x

]
.

(5.34)

When (x, s) → (x0, s0), the first term of (5.34) converges to P
[
maxh∈[0,T̄ s0 ] W̄h = x0

]
, which

is null because the running maximum of a Brownian motion has density. The second term of
(5.34) has an explicit formula:

P
[
x0 ∧ x ≤ max

h∈[0,T̄ s]
W̄h < x0 ∨ x

]
=

2√
2π

∫ x0∨x
¯
Ts

x0∧x
¯
Ts

e−
y2

2 dy ≤ (x0 ∨ x)− (x0 ∧ x)

T̄ s
,

that converges to 0 as (x, s)→ (x0, s0), concluding the proof.

Now, we restate the problem (P) as a problem without state constraints. For this purpose,
we consider the cost function ṽ(·) on V introduced in Proposition 5.8, and we define the set
Γ := C ∪ V ∪ E . For every t ≥ 0, define Ft = (F t

r)r≥0 where F t
r is the σ−field σ(Wθ −Wt :

t ≤ θ ≤ r ∨ t). We define the set of admissible controls

Ut =
{
u : [0,∞)× Ω→ [0, umax] | u is Ft − progresively measurable

}
, U := U0,

and denote X t,ξ,u the solution of the controlled stochastic differential equation (5.12) with
control u ∈ Ut and initial condition ξ at initial time t. Define τu := τuΓ = τuC ∧ τuV ∧ τuE , the
cost function

J(t, ξ;u) = Et,ξ;u [1C(X
u
τu) + ṽ(Xu

τu)1V(Xu
τu)] . (5.35)

and the new value function

(Pt,ξ) V (t, ξ) = sup
u∈Ut

J(t, ξ;u). (5.36)

Notice that the cost function can be written as

J(t, ξ;u) = Et,ξ
[
g
(
X t,ξ;u
τu

)]
, (5.37)
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where g : Γ→ R defined by
g(ξ) = 1C(ξ) + ṽ(ξ)1V(ξ)

is a lower semicontinuous function in its domain. We introduce, as in [80, Section 3.2], the
lower and upper semicontinuous envelopes of V ,

V?(t, ξ) = lim inf
(t′,ξ′)→(t,ξ)

V (t′, ξ′), and V ?(t, ξ) = lim sup
(t′,ξ′)→(t,ξ)

V (t′, ξ′).

We are interested in developing a dynamic programming principle for the value function.
Our conjecture is the following:

Conjecture 5.9 (Dynamic Programming Principle) Let (t, ξ) ∈ D be fixed. For every Ft-
stopping time h, the value function V (·) satisfies the dynamic programming inequalities:

V (t, ξ) ≤ sup
u∈Ut

E
[
V ?(h ∧ τu, X t,ξ,u

h∧τu)
]
, (5.38)

V (t, ξ) ≥ sup
u∈Ut

E
[
V?(h ∧ τu, X t,ξ,u

h∧τu)
]
. (5.39)

We expect to prove Conjecture 5.9 by following the approach given in [11, 57]. For this, we
need to establish the following steps:

1. To prove that for every control u ∈ U , the function (t, ξ) 7→ τ t,ξ;u is continuous in
probability.

2. To prove that for every control u ∈ U , the function (t, ξ) 7→ X t,ξ;u
τ t,ξ,u

is continuous in
probability.

3. To prove that the function (t, ξ) 7→ J(t, ξ;u) = Et,ξ [g(Xu
τu)] is lower semicontinuous.

4. To prove a Markov property of the type: for every control u ∈ U and Ft-stopping time
h,

Et,ξ [g(Xu
τu)|Fh∧τu ] (ω) = Eh∧τu(ω),Xt,ξ;u

h∧τu (ω)

[
g(Xuω,h∧τ

u

τu
ω,h∧τu )

]
, P− a.s.,

where a.a (ω, t), uω,t(ω′, ·) are the controls that coincide with u(ω, ·) in the interval [0, t]
(as in [18]).

The proof of the previous steps is non-standard, because of the particularities of the problem.
Indeed, the first difficulty is the treatment of the extinction, since once extinction occurs, the
system is frozen in the state in which extinction occurred. We need to prove for a fixed control
u ∈ U the continuity in probability of the hitting times τ t,ξ;uE and of the hitting times τ t,ξ;uC∪V
with respect to the initial conditions (t, ξ). But since the set E is absorbent and its closure
intersects the closure of the set C ∪ V , the analysis of the continuity of the hitting times is
more complicated than the usual case where the diffusion parameter is nondegenerate. Also,
the constraints of the problem as well as measurability issues impose that the convergence of
initial conditions (t, η) to a prescribed initial condition (t0, ξ0) must satisfy t < t0, t↗ t0, and
v(η) > v(ξ0), v(η) ↘ v(ξ0). Indeed, for any initial condition (t0, ξ0) the control u defined as
u(r) = umax1[t,t+(vmax−v(ξ0))/umax](r) leads either to extinction or to the set C ∪ V , but it does
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not lead any initial condition with volume v < v(ξ0) to the set C ∪ V because the volume will
never reach its maximum value vmax. The assumptions of works as [10, 11, 57] are not satisfied
in this problem. However, we were able to prove the point 3. provided that the point 2. is
fulfilled:

Lemma 5.10 Suppose that for every fixed control u ∈ U , the function (t, ξ) 7→ X t,ξ,u
τ t,ξ,u

is
continuous in probability. Then, the function (t, ξ) 7→ J(t, ξ;u) is lower semicontinuous.

Proof. Consider (t0, ξ0) ∈ [0, T ] × D and a sequence (tn, ξn)n∈N ⊆ [0, T ] × D converging to
(t0, ξ0) that realizes the lim inf, this is, l(t0, ξ0) = limn→∞ J(tn, ξn, u) = lim inf(t,ξ)→(t0,ξ0) J(t, ξ, u).
Denote τn := τ tn,ξn,u and Xτn := X tn,ξn,u

τn . Since Xτn converges in probability to Xτ0 ,
then there exists a subsequence (tnk , ξnk)k∈N such that Xτnk ∈ Γ converges almost surely
to Xτ0 ∈ Γ. Since g : Γ→ [0, 1] is lower semicontinuous, and using Fatou’s lemma,

J(t0, ξ0) = E [g(Xτ0)] = E
[
lim inf
k→∞

g (Xτnk )
]

≤ lim
k→∞

Etnk ,ξnk [g(Xτnk )]

= lim
n→∞

Etn,ξn [g(Xτn)] = l(t0, ξ0) = lim inf
(t′,ξ′)→(t0,ξ0)

J(t′, ξ′, u).

5.5 Numerical simulations and conclusions

We consider the Monod (or Michaelis-Menten) growth function, which is quite popular in bio-
processes and which satisfies Assumption 3.1:

µ(s) = µmax
s

Ks + s
,

with the parameters µmax = 2[h−1] and Ks = 1[gl−1]. The threshold that defines the target
has been chosen as sout = 1[gl−1]. The input concentration of substrate is sin = 5[gl−1].
We compute numerically the function ṽ defined in Proposition 5.8, which is the probability of
reaching the target before extinction occurs starting from an initial configuration in which the
tank is full (v = vmax), when it is not possible to control the system. The results are shown in
Figures 5.1-5.3.

Cost function 

x

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5 0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0

0.2

0.4

0.6

0.8

1

v
~

s

s
out

101



Figure 5.1. Plot of the function ṽ for γ̃ = 1
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Figure 5.2. Plot of the function ṽ for γ̃ = 5
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Figure 5.3. Plot of the function ṽ for γ̃ = 10

We see that the probability of hitting the target before extinction decreases with the param-
eter γ̃. For really γ̃, the probability of hitting the target before extinction is almost one, for
initial conditions (x0, s0) such that x0 is far from 0. For large values of γ̃ the effect of the
demographic stochasticity is notorious, and the probability of extinction becomes large.

We also notice that ṽ(·) is discontinuous on the set {x = 0}, and it is non-smooth on the
set {s = sout}. We see then the necessity to work with the lower and upper semicontinuous
envelopes of the value function V (·).

In this work we propose a stochastic model of sequencing batch reactor. This model is
obtained as the limit of an individual-based pure jump Markov processes, and it extends the
deterministic model in the sense that when the parameter of demographic stochasticity is null
we recover the deterministic dynamic. The obtained model is given by a degenerate stochastic
differential equation whose diffusion coefficient only acts directly on the biomass component.
We obtain a result that states that the probability of extinction of the biomass is positive, which
gives an important message to practitioners that may work with this model. The extinction
of biomass does not allow to define the problem of depollution of water in minimal time, and
then the maximization of the probability of reaching the target before the extinction is a natural
problem to study. This problem does not satisfy any of the usual assumptions, giving as a
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result a discontinuous value function. We conjecture a Dynamic Programming Principle for
this problem. This is an ongoing work.
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Chapter 6

Conclusions and perspectives

The purpose of this thesis is the mathematical study of optimal control problems of bioremedi-
ation of water resources. The main contributions of this thesis are:

• Chapter 2

– When there exists an active-dead zones scheme, the optimal control is a feedback
law that depends only of the pollutant concentration of the active zone, that is, the
zone that is treated directly by the reactor, and of the parameters of the growth
function; it does not depend on the diffusion parameter or the volumes of the two
zones. Nevertheless, the optimal treatment time depends of the diffusion parameter
and the concentration of pollutant in the dead zone.

– The addition of a recirculation pump as a mean of enhancing the diffusion between
the two zones is proved to be beneficial for the treatment.

• Chapter 3

– When we consider a scheme of two patches depolluted by the same bioreactor, the
optimal control is again a feedback law that depends of the pollutant concentration
of the most polluted zone. When pollution os homogeneous, the best is to maintain
it homogeneous up to the final time, and the treatment time is independent of the
diffusion.

– A high diffusion is favorable for the treatment when the initial concentrations are
strongly different for the two zones. This is the case when one of the two concen-
trations is small compared to the threshold.

– For initial conditions in the two zones close to each other, a small diffusion param-
eter leads to faster treatment than a large diffusion.

– The possibility of treating two zones of the resource instead of one (as in the active-
dead model) increases the efficiency of the depolluting process, allowing to treat the
most polluted zone as opposed to the active-dead zone that treates the less polluted
one.
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• Chapter 4

– The consideration of a gradient of concentrations by means of a configuration of
two zones in series shows that the depollution process must be carried out in a
way to over depollute the zone at the effluent of the bioreactor (which is the less
polluted zone), in order to repollute it at some point of the process near the end of
the process.

– A recirculation pump that helps to homogeneize the two zones is good. This re-
circulation pump is always optimally activated before the end of the process, and
makes the repollution of the second zone to occur faster.

– A good estimation of the parameters of the system must be carried out in order to
apply the optimal control, that in this case is not a feedback control, contrary to
what happens in Chapters 2 and 3.

• Chapter 5

– We present a new stochastic model of sequencing batch reactor, which is a kind of
model that has not been explored in the literature.

– We present a result of extinction of biomass regardless of the feeding strategy. This
is an important message for practitioners to devise different alternatives to address
the stop of the depollution process such as adding biomass to the tank when the
biomass level is too low.

– We derive a dynamic programming principle for the problem of reaching the target
concentration before that extinction of biomass occurs. This is an ongoing work.

The perspectives of future work of this thesis are the following.

• In Chapter 2 we proved that the optimal control law does not depend on the diffusion
parameter D or the repartition of volumes v1, v2, for the case when these parameters are
constant. We would like to study the effect of considering a diffusion parameter and a
repartition of volumes that depends of the time. Our guess is that the main result remains
true.

• The study of the effect of splitting the resource into several zones connected in different
configurations. In Chapter 3 we proved that when considering two patches connected to
the bioreactor, it is optimal to treat the most polluted zone at the optimal flow rate up to
the moment in which the two concentrations are even (if this happens before reaching the
desired pollutant concentration), and from that moment it is optimal to keep them equal
up to the time in which the pollutant concentration reaches the threshold. If we consider
an extension of several zones interconnected to each other by diffusion and some (or
all) of them connected to the bioreactor, a natural candidate to the optimal control is to
consider that the most polluted zone will be treated until its concentration reaches the
same level of the second most polluted zone, and then treat both of them keeping the
concentrations even until the level of pollution of the third most polluted zone is reached,
and so on.
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Consider a simple extension that consists of adding a third zone in the two patches model
studied in Chapter 3. This third zone is adjacent to the other two zones that have access
to the bioreactor and is connected by diffusion with them, as Figure 6.1 shows.
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Figure 6.1. First extension: model with three patches and two pumps

In this problem, we see that there is no direct way to depollute the intermediate zone,
it must be depolluted in an indirect way through the control of the pollution in zones
1 and 3. This is a problem whose velocity set is not convex, bringing the same issues
that the problem studied in Chapter 3; it also has controllability issues, in the sense that
depending on the parameters of the system, the configuration s1 = s2, s1 = s3, s2 = s3

cannot be maintained. It is also not clear what to do when the intermediate zone is the
most polluted one. We would like to extend the results of Chapters 2-4 to several zones
connected in different configurations, and to explore the effects of combining the parallel
and series configurations to generate a more accurate model of inhomogeneity in the
resource.

• In Chapter 3 we proved that despite of the velocity set being not convex, the solution of
the relaxed problem is a non-convexified control. This is due to the particular structure
of the dynamic that depends of two control parameters α and s?r , where α acts linearly
and s?r not.

– whenever s1 6= s2, the velocity set is not convex. Nevertheless, its extreme points
are given by points parametrized by values α = 0 and s?r = ŝ?r (s2), or α = 1 and
s?r = ŝ?r (s1), or s?r = 0 and α ∈ [0, 1]. This last option is not admissible.

– when s1 = s2, the velocity set becomes convex, so in this case there is no need of
convexification.

An interesting possible future work can be to obtain results of Chapter 3 for systems
whose dynamics are governed by equations such that the velocity set is non-convex but
satisfy the previous property.

• Another natural extension of the work presented in this thesis concerns the study of the
depollution of a water resource polluted by two substrates. The water is treated by using
a continuous stirred bioreactor consisting of two zones. In the first zone the substrate of
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type a is treated by a specific species of microorganism that degrades it and produces as
a byproduct substrate of type b at a rate c ≥ 0. The substrate of type b is treated in the
second zone by another microorganism species, and the treated effluent is returned to the
resource, as in Figure 6.2. The problem consists of the treatment of the two substrates in
the resource in minimal time by controlling the flow rate Q.

Q

Q

Q

Q

Q

resource

bioreactor

Aerobic

   zone

Anaerobic

   zone

settler

biomass

Figure 6.2. Second extension: problem with two pollutants

In this problem it is also possible to suppose that the volume of the resource is large
compared to the volume of the reactor, which leads to a quasi-steady-state approximation
of the dynamics. Here it is convenient to keepQ as a control variable instead of replacing
it by the concentration of equilibrium in each zone of the bioreactor (as it was done in
Chapters 2-4). The equations that model the time evolution of this problem are given by{

ṡa = Q (s?a1(Q, sa)− sa) ,
ṡb = Q (s?b2(Q, sa, sb)− sb) ,

where s?a1(Q, sa) and s?b2(Q, sa, sb) are the corresponding concentrations of equilibrium
inside each zone of the bioreactor, given by the formulas

s?a1(Q, sa) := min

{
µ−1

1

(
Q

v1

)
, sa

}
,

s?b2(Q, sa, sb) := min

{
µ−1

2

(
Q

v2

)
, c(sa − s?a1(Q, sa)) + sb

}
,

In this problem the velocity set is non-convex, and the Hamiltonian is non-smooth. Then,
a relaxation of the problem must be performed, and tools such as the extended maximum
principle of Pontryagin with subdifferentials must be used. We would like to study in a
first step the minimal time optimal control problem with constant volumes, and then, as a
second step, to extend the result to obtain the best initial repartition of volumes depending
of the initial state to perform the treatment in minimal time.

• In Chapter 5 we study and derive a dynamic programming principle for the problem of
the maximization of the probability of attaining a target prior to extinction of biomass.
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This is an ongoing work, and the next steps for this problem are to derive the Hamilton-
Jacobi-Bellman (HJB) equation satified by the value function, to establish if the obtained
equation characterizes the value function, that is, if the value function is the unique vis-
cosity solution of the HJB equation. This is a non-standard problem, because we work
in an unbounded domain, with a differential operator that is degenerate and not elliptic,
and the value function is discontinuous at the boundary of the domain. We expect to
be able to give some information about the optimal control and to solve numerically the
Hamilton-Jacobi-Bellman equation of the problem. Also, we expect to be able to prove
the existence of solutions of the optimal control problem (Filippov’s like theorem).

• We intend to extend the study of the stochastic bioreactor model to the case of the chemo-
stat. It will be interesting to compare a stochastic model of the chemostat obtained by
means of the methods described in this thesis, taking into account demographic stochas-
ticity, with those existing in the literature. We are also interested in the study of the
optimal control problem of maximizing the probability of reaching a target level of de-
pollution prior to the extinction of the biomass, and to derive a dynamic programming
principle for this problem.
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