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« Since all models are wrong the scientist cannot obtain a "correct"

one by excessive elaboration. [. . . ] Just as the ability to devise simple

but evocative models is the signature of the great scientist so overelab-

oration and overparameterization is often the mark of mediocrity. »
— Box 1976*

«But all evolutionary biologists know that variation itself is natures

only irreducible essence. Variation is the hard reality, not a set of

imperfect measures for a central tendency. Means and medians are the

abstractions.» — Jay Gould, 1991**

* Box, G.E.P 1976. Science and Statistics. — Journal of the American Statistical Association 71(356):

791- 799.
** Jay Gould, S. 1991 — Bully for Brontosaurus: Reflections in Natural History, W. W. Norton &

Company, Inc.
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Foreword

My thesis about salmon lasted two years and three months, while thesis are usually planned for three

years in France. My first subject dealt with the mating behaviour of Allis shad (Alosa alosa). However,

we were able to catch a too low number of individuals for the experiment to produce a reliable thesis.

I decided with my thesis directors to change the subject and to work on Atlantic salmon during the

remaining time of my thesis. Do not hesitate to ask me for a published version or a more recent version

of any chapter of my thesis.
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Summary

Habitat fragmentation and reduction in the availability of suitable habitats are significant threats to

ecosystems in particularly for freshwater ones. For instance, accessibility, availability, and quality

of breeding sites of Atlantic salmon, Salmo salar, can be restricting in some rivers due to human

activities and dams. Such threats may affect the distribution of potential breeders because, after their

up-river migration, salmon females distribute within available breeding sites. Spatial distribution of

females determines the spatial distribution of breeder males. Dominant males try to monopolise several

females, whereas subordinate males adopt a sneaky behaviour. Access to females by males depends on

the spatial distribution of females and on males’ movements within a river. The spatial distribution of

females generates the spatial distribution of juveniles, aggregating them at some breeding sites. The

latter aggregation of juveniles may raise the density-dependent mortality with potential consequences

on population dynamics. The thesis aims to assess how space use of potential breeders, namely mature

individuals able to spawn or fertilise eggs, influence population dynamics and sexual selection.

I combined different approaches and different temporal and spatial scales to potential effects of space

use of potential breeders. Time series of stock (deposited eggs) and of recruitment (juveniles) for the

salmon population of the Nivelle River were combined with measures of spatial aggregation of nests.

The effects of displacements and spatial distribution of potential breeders on their participation in

reproduction were tested through inferring the sexual network of the population.

I found that spatial aggregation of nests diminished the recruitment variability. The spatial aggregation

of nests resulting from female aggregation affected the number of effective breeders through a U-shaped

curve. Such relationships suggested mate monopolisation dependent on the spatial aggregation of

females. The negative effects of the spatial isolation of females on their number of mates also suggest such

mate monopolisation. Then, the inferred sexual network enabled me to highlight a local social structure

within the population. The latter structure and social competitors impacted the reproductive success

of anadromous males. The participation of mature parr increased the sexual competition faced by

anadromous males. Spatial behaviours of mature parr were linked to their participation in reproduction.

Altogether my results show that space use of potential breeders affected both population dynamics and

sexual selection. Then, spatial aggregation of females can be beneficial for population dynamics as

shown by combining different temporal and spatial scales. Females seemed to aggregate within the

best breeding sites with better environmental stability. The spatial distribution of females affected the

ability of males to monopolise several females and participation of sneaky males. The availability of
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suitable good breeding habitats seemed restricting in the Nivelle, potentially due to the presence of

impassable upstream dams. The lack of suitable breeding sites seemed to impact the mating system of

the population and the sexual selection operating in. Some management actions to improve the quality

of breeding sites and their availability could be planned.

Keywords: Atlantic salmon, breeding sites, habitat fragmentation, mature parr, mating system,

sexual network, sexual competition, social competition, spatial aggregation, stock-recruitment
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Résumé

La fragmentation des habitats ainsi que la réduction de leur disponibilité sont des menaces importantes

pour les écosystèmes, notamment aquatiques. La disponibilité et la qualité des sites de fraie du saumon

Atlantique peut donc être limitante dans certaines rivières. Après la migration en rivière, les femelles

saumon vont chercher à s’établir dans un des sites de fraie disponibles. La distribution spatiale des

femelles va alors influer sur la distribution spatiale des mâles reproducteurs qui vont chercher soit à

monopoliser plusieurs femelles (pour les mâles dominants), soit à les approcher en adoptant un com-

portement "furtif" (pour les mâles satellites). L’accès des mâles aux femelles va donc dépendre de la

distribution spatiale des femelles et des déplacements des mâles dans la rivière. La distribution des

femelles va également jouer sur la distribution spatiale des juvéniles, les concentrant à certains endroits.

Cette concentration peut augmenter la mortalité densité-dépendante qui modifie la dynamique de la

population. Cette thèse avait pour but d’évaluer comment l’utilisation de l’espace des potentiels re-

producteurs, c’est à dire les individus matures, influence la dynamique de la population et la sélection

sexuelle.

Des séries temporelles de stock (œufs déposés) et de recrutement (juvéniles) pour la population de

saumon de la Nivelle ont été associées à des mesures de l’agrégation spatiale des nids creusés par les

femelles. L’effet des déplacements et de la distribution des reproducteurs sur leur participation à la

reproduction a notamment été testé via la reconstruction du réseau d’interactions sexuelles dans la

Nivelle.

J’ai ainsi démontré que l’agrégation spatiale des nids diminua sur la variabilité du recrutement. Cette

agrégation résultante de celles des femelles influait sur le nombre effectif de reproducteurs par une

parabole positive. Le réseau d’interactions sexuelles a permis de mettre en évidence une structure so-

ciale locale au sein de la population. Cette structure et les compétiteurs présents diminuaient le succès

reproducteur des mâles. Notamment, les tacons matures qui participent à la reproduction avant de

migrer en mer renforçaient la compétition sexuelle dont les mâles dominants faisaient l’objet. Les com-

portements spatiaux des tacons matures impactaient leur participation à la reproduction, l’étendue des

domaines de vie et les déplacements vers l’amont augmentant la probabilité de rencontrer une femelle.

Mes résultats m’ont permis de mettre en évidence l’effet de l’utilisation de l’espace des potentiels re-

producteurs sur la dynamique de la population et sur la sélection sexuelle. Ainsi, il a été montré que

l’agrégation des femelles pouvait être bénéfique pour la dynamique de la population. Il semble que

les femelles tendent à s’agréger d’abord sur les meilleurs sites de fraie avec une plus forte stabilité en-
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vironnementale. Cette distribution des femelles affecta la capacité des mâles à monopoliser plusieurs

femelles, une agrégation modérée permettant une monopolisation. La participation des mâles furtifs

anadromes ou tacons matures était également dépendante de l’agrégation des femelles. Il apparait que

la disponibilité d’habitats adéquats pour la reproduction semble limitante dans la Nivelle et notamment

du fait de la présence de barrages. Ce manque semble affecter le système d’appariement de la popula-

tion et la sélection sexuelle y opérant. Des mesures visant à améliorer la qualité des sites de fraie déjà

disponibles ainsi que leur accessibilité pourraient être envisagées.

Mots-clés : Agrégation spatiale, compétition sexuelle, compétition sociale, fragmentation de l’habitat,

habitats de reproduction, saumon Atlantique, système d’appariement, réseau sexuel, stock-recrutement
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General context

A∫ STUDYING INDIVIDUALS AND POPULATIONS WITHIN THEIR ENVIRONMENT:

FROM HUNTERS TO THE DESCRIPTION OF ECOLOGICAL NICHE

Ecologists try to understand how and why individuals and populations interact with their

environment. In this way, prehistoric men were probably the first ecologists. Hunter-

gatherers, as predators, interacted with other species by hunting them and by observing

them, thus developing exploitation of resources. Observations and descriptions of entities

is a prerequisite to the description of interactions between these entities. After a long

time gap, de Buffon (1749) and Linnæus (1753) tried to lay the foundations for a rigorous

study of life and for the description of entities (i.e. taxa). These first works in ecology

looked at interactions between taxa through the prism of consumers and resources.

Malthus (1798) laid the concept of carrying capacity when the number of consumers

raises more sharply than available resources by looking through this prism.

Studying laws and processes regulating populations was the early stage of ecology.

The regulation of populations was deeply investigated and discussed by Darwin (1859).

In his introduction to The origin of species, Darwin said: “This is the doctrine of Malthus

applied to the whole animal and vegetable kingdom”. He also said:
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« It is interesting to contemplate an entangled bank, clothed with

many plants of many kinds, with birds singing on the bushes, with

various insects flitting about, and with worms crawling through the

damp earth, and to reflect that these elaborately constructed forms, so

different from each other, and dependent on each other in so complex

a manner, have all been produced by laws acting around us. » —

Darwin 1859

The laws identified by Darwin were notably growth with reproduction (as Malthus),

inheritance, variability, struggle for life, divergence of character, and extinction. The

quotation of Darwin is a good illustration of observations of different taxa interacting

and being linked together. Interactions between species were highlighted as a cornerstone

of ecology by Haeckel in 1866: “By ecology we mean the body of knowledge concerning

the economy of nature the investigation of the animal both to its inorganic and to its

organic environment; including, above all, its friendly and inimical relations with those

animals and plants with which it comes directly and indirectly into contact.”. Ever

since these works interactions between a species and its environment became a standard

question in ecology aiming to understand why a species occupies an area, while another

not.

Interactions between species were the definition of the ecological niche as formulated

by Elton (1927): “The ‘niche’ of an animal means its place in the biotic environment,

its relations to food and enemies”. Elton determined the niche by what an animal is

“doing” and its “food habits”: “A fox carries on the very definite business of killing and

eating rabbits and mice and some kinds of birds. Lions feed on large ungulates. . . ”, for

example. The latter definition given by Elton only accounted for biotic environments

of individuals. Before Elton, Grinnell defined the niche concept by focusing on abiotic

environments of individuals. Hutchinson (1957) formulated the most widely accepted

definition of the ecological “fundamental niche” drawing on works of Elton and Grinnell:

« The niche is the set of biotic and abiotic conditions in which a

species is able to persist and maintain stable population sizes. » —

Hutchinson 1957
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Hutchinson went further by defining the “realised niche”, a subset of the “fundamental

niche”, as the conditions experienced by individuals.

B∫ RESOURCE DISTRIBUTION AS DETERMINISM OF SPACE USE: WHY IS THERE IN-

DIVIDUAL HETEROGENEITY IN SPACE USE?

a. SCALES IN ECOLOGY

The notion of niche raises the question of scales. Defining how a species, a population, or

an individual interacts with its environment requires to define a spatial scale1. The con-

cern of spatial scales in ecology was notably highlighted by Levin (1992). For instance, a

trendy current topic is to assess the impact of climate change on species or populations.

Such a topic necessarily links two different spatial scales with a worldwide phenomenon

and a finer scale when studying a species or a population. It is also probable that two

researchers raise the same question by adopting two different approaches based on two

different scales, leading to different results (Wiens 1989). Although Darwin (1859) or

Humboldt & Bonpland (1814) described where species distribute during their explo-

rations, Levin (1974) was the first accounting for spatial considerations when he defined

the concept of “patches” in his paper discussing of competition in patchy environments

of two species.

Spatial considerations in ecology arose from insular zoogeography. MacArthur &

Wilson (1963) explained the number of species distributed in islands by the size of is-

lands and distance to other islands. Their theory enabled to estimate an equilibrium

balancing immigration and extinction rates of species. In this way, MacArthur contin-

ued to work on spatial scales in ecology and developed a model explaining the use of

patchy environments (MacArthur & Pianka 1966). As islands, species’ environment is

constituted by several patches of suitable resources. MacArthur & Pianka adopted an

adaptationist view based on economy (i.e. “an activity should be enlarged as long as the

resulting gain in time spent per unit food exceeds the loss”) to highlight an optimal use

of this patchy environment.

1Here, I develop the idea of spatial scale, while the same may occur with time scale.



6 �. General context

GLOSSARY I.i: Habitat and patches— from Morris (2003)
dzad

Habitat — A spatially-bounded area, with a subset of physical

and biotic conditions, within which the density of

interacting individuals, and at least one of the pa-

rameters of population growth, is different than an

adjacent subsets.

Habitat selection — The process whereby individuals preferentially use,

or occupy, a non-random set of available habitats

Patch — Spatial subset of habitat that is treated as a single

homogeneous unit by the behaviour of an individual.

A patch can be an artificial delimitation to better de-

scribe a behaviour or a real one leading to territories

for example.

The work of MacArthur & Pianka (1966) was one of the first considering that

species may have different abilities in exploiting resources. Authors linked different

abilities among species to various strategies in resource utilisation. Before MacArthur

& Pianka (1966), Skellam (1951) introduced the concept of critical patch size (see Box

Glossary I.i). Skellam demonstrated the size of a patch is critical for the persistence of

a species or a population living in. Yet, Skellam accounted for diffusion of individuals

through boundaries of patches without accounting for the quantity of resources. More

recently, Fahrig (2013) rediscussed the effects of patch size and isolation by proposing

the habitat amount hypothesis: the species richness should increase with the amount of

habitat in the local landscape. Whereas this hypothesis can be discussed, it goes back

to the idea that heterogeneity occurs in the way of how species, populations, individuals

use their habitats and subsequent patches.

The question about ultimate mechanisms driving habitat selection (see Box Glos-

sary I.i) arose by combining ideas of patches, effects of patch size and optimal use of

a patchy environment. Morris (1987) linked the local density of two Temperate Zone

rodents to macrohabitat variations but not to microhabitat variations. Within each

habitat type — e.g. foraging ones—, a habitat corresponds to the minimum area where
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an individual performs an activity — e.g. forage in foraging habitats, Figure. I.i—.

Within a macrohabitat, environmental characteristics (physical, chemical, biotic) dis-

tinguishing microhabitats may influence in time or energy allocated by an individual to

each microhabitat (Morris 1987). In his study, Morris advocated to carefully separate

the effects of macro and microhabitats in habitat selection because processes acting at

these two spatial scales may be different. Usually in such models habitat use is evaluated

by correlating abundance (or other similar metrics) to environmental variables defining

each patch. Morris also argued that other factors may affect habitat selection. More

recently, Morris reviewed habitat selection by adopting an evolutionary view which deals

with the fitness gains or losses of each habitat as well as density effect (Morris 2003;

2011).

1
2

3 4

5
6

7
8

environment

foraging habitats

x patches of ≠ quality

Figure. I.i: Scheme illustrating the diference in spatial scale between habitats and
patches. The distinction between habitats and patches highlights processes that may
act at macro- and micro-spatial scales.

b. SPACE USE THROUGH A BEHAVIOURAL POINT OF VIEW

Habitat selection, as in recent papers of Morris (2003; 2011), accounts for an evolutionary

approach. An animal is supposed to condition its habitat choice to its expected fitness;

the latter statement being the basis of behavioural ecology. Unlike the traditional ethol-

ogy, behavioural ecology adopts an adaptationist point of view by attributing a central

place to fitness (or other performance measurements) and a potential effect of selection

on individuals and genes (Danchin et al. 2008, Krebs & Davies 2009). MacArthur & Pi-

anka (1966) or Charnov (1976) adopted the adaptationist point of view in their approach

when investigating how individuals use a patchy environment. Their work assumed that

1) individuals maximise their energy acquisition per time unit and 2) energy acquisition

is directly linked to their evolutionary fitness. Selection should, thus, favour an optimal

use of patchy environment in terms of the amount of food patches (i.e. where food is

available) and of the amount of food types (i.e. different species).
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Resource matching was the first determinant to explain distribution of individu-

als. Accounting for fitness or performances depending on available resources leads to

consider Ideal Distributions. Whereas Charnov (1976) and MacArthur & Pianka (1966)

identified this idea of resource matching, the first clear theory was the Ideal Free Distri-

bution (IFD, Fretwell & Lucas 1969). As conceptualised by Fretwell & Lucas, individual

distributions should match resource distributions and sometimes may lead to spatial ag-

gregation of individuals (Sutherland 1983). Yet, individuals do not necessarily express

the same abilities. These differences among individuals lead to accounting for individual

heterogeneity as questioned by Parker & Sutherland (1986). This issue was notably dealt

by Fretwell (1972) who defined the Ideal Despotic Distribution (IDD). First arrival or

dominant individuals secure habitats whose the best and force other individuals (subor-

dinate or late arrival) to distribute in less favourable habitats under IDD. Distributions

such as the IDD assume differences between individuals.

C∫ CONSEQUENCES OF INDIVIDUAL HETEROGENEITY IN SPACE USE DURING RE-

PRODUCTION

a. SPACE USE DURING REPRODUCTION

Habitat selection and habitat use correspond to a subset of individual space use. In

both IFD and IDD, the term ”ideal” denotes that individuals are able to assess patch

quality, something difficult for individuals. For instance, individuals may assess patch or

habitat quality by copying choices of other individuals which can generate aggregation

(Boulinier & Danchin 1997, Danchin & Wagner 1997, Doligez et al. 2003). Habitat

selection generating habitat use of species, populations, or individuals is not the only

component of how individuals use space.

Space use can be viewed as species distribution or habitat selection, namely where

are individuals but also how individuals move within and among habitats. The pattern of

spatial distribution of individuals, their habitat preferences (Long et al. 2009, Starking-

Szymanski et al. 2018), their movements between habitats (Starking-Szymanski et al.

2018), their movements within their habitats (Steingrímsson & Grant 2008), their home

range (Moorcroft & Barnett 2008), or the covered distances (Long et al. 2009, Tentelier

et al. 2016a) may be assessed by studying how individuals use space.

How individuals use space is often studied in relation to foraging. Foraging con-
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text leads to questions about species co-existence, trophic networks, competition for

resources. IFD, IDD or other concepts previously exposed were first defined concerning

foraging resources. Yet, the same concept was defined by Parker (1970; 1974) in a re-

productive context in parallel to the definition of IFD. Optimal uses of resources under

a reproductive context was also dealt by Emlen & Oring (1977), or more recently by

Shuster & Wade (2003). Emlen & Oring notably highlighted abilities of males to monop-

olise mates may drive the spatial distribution of breeders. Reproductive context leads

to consider mating systems, sexual competition and selection, and recruitment. Individ-

uals may, thus, exhibit specific space use in relation to reproduction. The most notable

specific spatial behaviour in relation to reproduction is breeding migration occurring in

a wide range of taxa (Pomeroy et al. 1994).

Different processes may modify individual space use in a reproductive context. First,

breeding activity during breeding season may favour spatial aggregation in some species

such as numerous marine mammals (Boulinier & Danchin 1997, Danchin & Wagner 1997,

Pomeroy et al. 1994). Second, reproductive states may impact space use of individuals

(Long et al. 2009). Third, searching mates rather than food may also modify home

ranges of individuals (Preatoni et al. 2005, Quirici et al. 2010). Finally, individuals may

adjust different spatial behaviours such as roamers and strayers (Sandell & Liberg 1992).

All these examples highlight the modification of space use by reproduction. Feedbacks,

which are effects of space use on reproduction, are also possible making it necessary to

investigate how individuals use space during reproduction.

b. SOCIAL ENVIRONMENT AND REPRODUCTION

Space use may affect the participation of individuals in reproduction. As a first element,

some individuals disperse while other exhibit philopatry in some taxa. Dispersal is ben-

eficial in some conditions even if costs are associated (Coulton et al. 2011). However,

dispersers and philopatric individuals may also exhibit similar reproductive success com-

plicating identification of dispersion motivation (Davidian et al. 2016). At a narrower

scale, movements among or within suitable breeding habitats may reduce or enhance

probabilities finding a mate (South & Kenward 2001). Potential mates being a resource,

individuals may express a diversity of behaviours to find them (Louâpre et al. 2015,

Whitehead 1998). Overall, space use may affect the social environment of individuals

(Formica et al. 2010) which consists in individuals encountered as either potential mates
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or potential competitors. Social environments may affect mate choice (Callander et al.

2013, Formica et al. 2011) or sexual competition (Croft et al. 2005, McDonald et al.

2013) because both are relative processes. Sexual selection is operating when the value

of an inheritable trait enhances success in sexual competition or in mate choice (Kui-

jper et al. 2012). Here, individuals participate in reproduction by i) being in the social

environment of another individuals impacting, and ii) by producing juveniles. Space

use of potential breeders may, thus, have consequences on their own participation to

reproduction but also on the participation of other individuals.

c. A SPATIAL DISTRIBUTION OF BREEDERS GENERATING POPULATION REGULATION

Whereas resource demand and partitioning is usually applied to explain population regu-

lation, space use of breeders may also affect population regulation. Dense populations are

rarely stable in species requiring large home ranges; an effect highlighted a long time ago

(McNab 1963). Such effects of home ranges on population regulation can be exacerbated

when the distribution of breeders is under IDD, with some individuals monopolising best

habitats and, thus, exhibiting a better reproductive success (Andren 1990). The distri-

bution of produced juveniles is shaped by the distribution of potential breeders at least

in species where juveniles exhibit low displacement abilities (Foldvik et al. 2010). In this

case, high densities of juveniles engendered by aggregation of breeders may exacerbate

local density-dependent mortality (Einum & Nislow 2005, Foldvik et al. 2010) regulating

population. Space use may, thus, be used as a conservation tool because it may affect

population regulation and individuals’ participation in reproduction.

D∫ INTRAPOPULATION SPACE USE DURING REPRODUCTION AS A TOOL FOR MAN-

AGEMENT OF POPULATIONS

Loss of breeding habitats and connectivity may be a strong pressure for a population.

For instance, habitat loss may impose a relocation modifying home range of individuals

(Judas & Henry 1999), while habitat connectivity may play a key role in viability of pop-

ulations (Cushman 2006). In their study, Baldwin et al. (2006) advocates accounting for

movements and migration between connected habitat elements to improve conservation

planning for amphibian species. Fahrig (1998) demonstrated habitat fragmentation is

problematic for species where breeding habitats cover less than 20 % of landscape, or for

species exhibit high fidelity to breeding sites. Sutherland (1996) used a game-theoretical

approach to estimate that a loss of 1 % of breeding habitat produces a population decline

of the oystercatcher (Haematopus ostralegus) at 0.31 %. Examining habitat selection
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and movements among habitats during reproduction is an essential current question due

to habitat loss and fragmentation.

Studying space use during reproduction allows researchers to improve management

policies. Studying space use during reproduction may highlight which habitats should be

restored. Hunt et al. (2018) compared nest success and chick survival of Piping Plover

(Charadrius melodus) between natural breeding habitats and habitats engineered to

dampen habitat loss. Authors showed that newly created breeding habitats did not

offer a better survival or a better nest success. Spatial distribution of individuals among

habitats is a key parameter which should be accounted as shown by López-Sepulcre

et al. (2010) on the Seychelles magpie robin, Copsychus sechellarum. Authors shown

that increasing resource quantity within habitats where individuals already aggregated

raised competition among individuals for high quality breeding sites. As the study of

López-Sepulcre et al. (2010) and based on the work of Emlen & Oring (1977), aggregation

of potential breeders among some breeding habitats may increase competition between

potential breeders. Offering new breeding habitats may, thus, diminish aggregation and

competition of potential breeders which can increase genetic diversity (Bacles et al. 2018)

and reduce competition for resources in juveniles López-Sepulcre et al. (2010).

Migratory species using specific habitats to reproduce can be valuable organisms to

study effects of habitat loss or fragmentation because individuals have to select habitats

and move among them. Habitat loss or fragmentation may impact their migration and

their subsequent use of available habitats to breed (Meixler et al. 2009, Sutherland 1996).

Constrains of habitat loss or fragmentation may result in a skewed spatial distribution

but also in constrained movements of individuals. Studying space use of individuals and

the repercussions at both an individual and a population level may provide valuable

information for conservation and population management. At an individual level, space

use of potential breeders may shape individuals’ participation in reproduction in terms

of inclusion in the social environment of conspecific and reproductive success. At a

population level, space use of potential breeders may affect the genetic diversity of the

population and population dynamics.

Here, I propose the Atlantic salmon, Salmo salar, as species to investigate how space

use of potential breeders affects population dynamics and sexual selection through the
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participation of individuals in reproduction. Elements justifying the choice of Atlantic

salmon will be presented with the thesis aims and hypotheses in a last section (page 31).

I will firstly present the species (page 13) and the studied population (page 25).



An aquatic nomad as a
biological model: Atlantic

salmon2

Atlantic salmon Salmo salar, belonging in the Salmonidae family, was first described

by Linnæus in 1758. The Web of Science database listed 16, 8913 publications concerning

Atlantic salmon with at least 800 items per year since 2010. Most of these publications

concern fisheries or marine freshwater biology (Figure. I.i). The economic value as an

exploited species for many decades triggered this high number of scientific publications.

The strong studying pressure leads to a large amount of knowledge concerning biology,

ecology, or population dynamics in Atlantic salmon.

2this title was adapted from the chapter 1 in Aas et al. (2011), the term ”aquatic nomad” being well
appropriated for atlantic salmon, especially in a thesis talking about space.

3Research ”Salmo salar” was performed September 26, 2018
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Figure. I.i: The irst 25 categories assigned to the 16, 891 publications in the Web
of Science© database concerning Atlantic salmon. The research ”Salmo salar” was
performed September 26, 2018.

E∫ LIFE CYCLE

Atlantic salmon exhibits a complex and variable life history. Variations in life history and

phenology occur between individuals and between populations accordingly to latitude.

Individual heterogeneity in life history leads to consider Atlantic salmon as a suitable

biological model in ecology and evolution. Atlantic salmon usually uses two different

environments: ocean and river. Yet, landlocked populations with migration in lakes

exist; some are located in the Southern Hemisphere (MacCrimmon & Gots 1979). One

of the southernmost populations is located in the French Kerguelen Islands (Lecomte

et al. 2013). Few landlocked populations without migration in lakes and with a complete

freshwater cycle also exist (Kazakov 1992).

The usual life cycle (Figure. I.ii) involves a reproduction in rivers and a growth

at sea leading to name as anadromous individuals salmon accomplishing such life cycle.

Growth at sea has multiple advantages such as bringing out a large growth and a higher

fecundity. Such advantages are achieved due to a large amount of foraging resources

at sea in comparison to river productivity (Gross 1987). Marine phase also has high

associated costs (Gross 1987). Individuals struggle to maintain a healthy homoeostasis

leading to high energetic costs associated with their osmoregulation (Gross 1987, Hansen

& Quinn 1998). Shifts of environments involve two osmoregulatory adaptations through-

out an anadromous life cycle. Marine phase is also associated with survival costs due

to a high number of predators and the rising sea surface temperature (Hansen & Quinn

1998).
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Anadromous (Figure. I.iii — d), which exhibit schooling and pelagic behaviour at

sea, migrate to their home rivers (homing) after a period varying between one and four

sea winters (Aas et al. 2011, Hansen & Quinn 1998). Variations in duration of the marine

phase are potentially specific to each river population (Aas et al. 2011, Hansen & Quinn

1998). Southern populations of the Atlantic salmon (Figure. I.iv) exhibit only one and

two sea winters individuals. Homing behaviour is strong in Atlantic salmon with less than

10 % of individuals straying to other rivers (Jonsson et al. 2003). Homing phenomena

may spatially isolate small populations leading to a local adaptation (Taylor 1991).

Homing migration could involve an orientation phase from feeding areas to coasts and

after a more precise orientation phase near estuaries (Hansen & Quinn 1998). Despite

little knowledge about homing mechanisms, homing migration denotes high abilities of

Atlantic salmon to orientate and navigate in space.

Timing of the upstream migration in rivers varies between rivers depending on ge-

netic component (Hansen & Jonsson 1991). For instance, salmon in Norway migrate

from May to October, while Scottish populations exhibit migration during all months of

the year (Hansen & Quinn 1998). Southern populations in France, exhibit two peaks of

migration: one in spring and one in late autumn. In populations with two peaks, mul-

tiple sea winters individuals usually migrate before one sea winter individuals (Jonsson

et al. 1990). Although breeding season occurs in winter, multiple sea winter individuals

may, thus exhibit advantages being first arrival individuals at future breeding sites. In

all cases, such individual variation in timing of arrival may generate a specific structure

in encounters and in settlement at breeding sites. Upstream migration involves three dif-

ferent phases affecting displacements of individuals (Finstad et al. 2005): 1) a migration

phase during which individuals cover the longer distance to potential spawning sites; 2) a

search phase during which individuals exhibit short and repeated upstream and down-

stream movements at or close to the future selected spawning site; and 3) a holding

phase without displacements until spawning. The second phase generates displacements

at small scale leading to potential different space use between individuals.

Atlantic salmon usually spawn in rivers from September to February depending

on latitude. Southern populations spawn later than northern ones. Egg development

becomes faster as water temperature raises (Aas et al. 2011). Females spawn in a

nest (a redd) and recover eggs with gravels. Eggs hatch in the following spring after
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(Dumas & Darolles 1999). Hatching fish, named alevins (Figure. I.iii —

a) and measuring 15-25 mm, remain in the surface layer of gravels during the first 3-8

weeks until the complete resorption of their yolk sac. Fish emerge from the gravel during

March or April in the southern populations ��� − ���� ∘
day

(Dumas & Darolles 1999).

Emerged individuals — called fry — start to feed on drifting invertebrates and face to a

critical period during which the low survival leads to a bottleneck (Nislow et al. 2004).

This bottleneck is directly linked to a strong density-dependent mortality due to food

availability and differences in body length. Competition between individuals is strong

and is dependent of local density, directly associated to local aggregation. At the fry

stage, aggregation of individuals is directly linked to aggregation of redds due to the

weak swimming abilities of individuals. The emerging date is under a strong selection.

Early-emerging individuals are bigger than late-emerging individuals and, thus, exhibit

an advantage in competition increasing their survival (Einum & Fleming 2000). At

the opposite, early-emerging individuals are also more likely to face a mismatch with

resources, thereby decreasing their survival (Kennedy et al. 2008).

Fry stay near redds during their first 10 days after emergence (Gustafson-Greenwood

& Moring 1990) and, then, disperse downstream between 20 m to 100 m (Beall 1994,

Crisp 1995, Einum & Nislow 2005). Individuals called parr compete to establish their

feeding territories. High aggregation of individuals may, thereby, exacerbate density-

dependent competition. Salmon parr are multiple-central foragers and move between

different feeding stations within their feeding territories. For instance, Steingrímsson &

Grant (2008) found that individuals use around 12 stations (median) within a territory

of around 0.9 m2 by studying 50 Atlantic salmon 0+. The terms "0+" or Young of the

Year (YOY) define individuals in their first year of life.

At the next spring, the majority of one year parr (1+, Figure. I.ii & Figure. I.iii —

b) leave the river and smoltify but some stay in the river to smoltify the next year (2+).

In some populations, individuals may stay in the river for eight years (Aas et al. 2011).

Individuals usually measure between 10 and 20 cm (range: 7-30 cm Aas et al. 2011) when

they smoltify (Figure. I.ii & Figure. I.iii — c). This physiologically and morphologically

transformation into smolts is energetically costly; the short period after smoltification

being another bottleneck (Aas et al. 2011). Atlantic salmon being an iteroparous species,

anadromous individuals also migrate at sea after spawning (named kelt, Figure. I.ii).
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LIFE CYCLE OF
SALMO SALAR

open ocean

estuary

river
SPAWNERS

SMOLTS

PARR

FRY

EGG

�
10 - 20 cm

GRILSE
1 Sea Winter

ADULT
2 - 4 SW

GROWTH
Multiple Sea Winters

UPSTREAM migration
Summer / Autumn

REPRODUCTION
Autumn - early Winter

DOWNSTREAM migration
early Summer

�.≈ 50 - 100 cm

NATURAL DEATH
post-spawning

KELT

Figure. I.ii: Life cycle of Atlantic salmon. Individuals surviving to reproduction are
called ”kelt” ( ), while one sea winter fresh runners are named ”grilse” ( ). Some
parr mature before the smolt stage and participate in reproduction ( ).

Yet, in southern populations, the majority of individuals are semelparous and die after

spawning (Aas et al. 2011). Mating success and reproductive success are determining

factors of fitness for these semelparous individuals.

(a) Salmon alevin (≈ 15-25 mm). (b) Salmon parr (≈ 10-20 cm).

(c) Salmon smolt (≈ 10-20 cm). (d) Female anadromous salmon (≈ 50-100 cm).

Figure. I.iii: Photographs of salmon at diferent life stages. ©INRA — S. Glise
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F∫ DISTRIBUTION RANGE

a. NATURAL RANGE

The distribution range of Atlantic salmon corresponds to the North Atlantic Ocean with

populations in the west coasts of Europe, Greenland, Canada and the United States

(MacCrimmon & Gots 1979, Figure. I.iv). Yet, almost 90 % of known sustainable

populations are found in only four countries: Norway, Island, Scotland, and Ireland

(WWF 2001); whereas 85 % of the populations are categorised as vulnerable, endangered

or critical (WWF 2001). Little is known about distribution in the open ocean despite the

strong economic value and the high number of publications. A recent study highlighted

diversity in migration routes and foraging areas either in Norwegian sea or Barents sea

with individuals originating from the same river (Strøm et al. 2018).

Figure. I.iv: Distribution range of Atlantic salmon from Aas et al. (2011). The map
displays the countries that hold natural spawning populations of Atlantic salmon (given
with names) and the assumed marine distribution of the Atlantic salmon in the North
Atlantic Ocean. Atlantic salmon occur in watersheds both along the east coast of North
America and the west coast of Europe, and feed over large areas of the North Atlantic
Ocean. (Figure designed by Kari Sivertsen.)

b. COLONISATION, INTRODUCTION AND FARMS

One natural colonisation occurred in the Faroe Islands, while lots of introductions failed

in establishments of anadromous sustainable populations in the Southern Hemisphere

(MacCrimmon & Gots 1979). Escapements of individuals from fish farms occur and
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Figure. I.v: Eggs inside the body of a female anadromous salmon in the Nivelle. ©INRA
— S. Glise

are probably underestimated (Skilbrei et al. 2015, Zhang et al. 2013). Farm salmon

may reproduce in natural populations but exhibit a lower reproductive success which

may affect population recruitment (Fleming et al. 2000). Mature parr originated from

farms are good vehicles for introgression of farm salmon traits in natural populations

(Garant et al. 2003). Despite the potentially lower fitness of farm salmon, recent river

colonisations by farm pink salmon (Mo et al. 2018) raise the question about similar

future colonisations by Atlantic salmon.

G∫ REPRODUCTION

a. REPRODUCTION PROCESS

Reproduction occurs from late autumn to February depending on the river’s latitude

(Aas et al. 2011). Once females become mature, time is counted to spawn their stock of

eggs (Figure. I.v) which depends on their body mass (Fleming 1996). Mortality and mal-

formations increase as the number of days since maturation increases (de Gaudemar &

Beall 1998). The short duration of the spawning season generates temporal aggregation

of spawning females that may raise competition for breeding sites.

Females select breeding sites according to morphodynamic characteristics (Louhi

et al. 2008, Moir et al. 2004; 2006). Suitable breeding habitats correspond to the up-

stream side of riffles or gravel bars (Aas et al. 2011). The short duration of the breeding

season associated with such necessary characteristics of breeding sites raise competition

for breeding sites generating spatial aggregation of potential breeders at available breed-

ing sites (Moir et al. 1998). The shallow water and the accelerating current through

the gravel enables oxygenation of future deposited eggs as well as a low deposition of

sediments (Aas et al. 2011, Moir et al. 2004; 2006). Multiple females usually clump their

nests despite the high number of potential suitable breeding habitats (Aas et al. 2011,

Moir et al. 1998). Redd superimposition or overdigging occurs when the same female

or another one digs its redd over another redd (Taggart et al. 2001) raising the spatial
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Figure. I.vi: Scheme of a female digging in the gravel to spawn. The dome due to previous
diggings is visible, as well as three previous egg depositions. Dashed line indicates the
initial level of gravels.

aggregation of nests.

Females use the accelerating current to dig a nest4 in river bed through movements

of their caudal (Figure. I.vi, de Gaudemar & Beall 1999). The caudal movements

associated with the current move gravel and pebbles. Females deposit their eggs in the

nest while male(s) fertilise(s) them (de Gaudemar & Beall 1999). After this spawning

event, females cover eggs also by creating a depression through movements of their caudal

(Figure. I.vi, de Gaudemar & Beall 1999). A redd is composed by an upstream "pot"

and a downstream dome (Figure. I.vi) and can measure until 3 m long and around 1

m wide (de Gaudemar et al. 2000, Moir et al. 1998). Eggs are deposited at a depth

between 10 cm to 30 cm (de Gaudemar et al. 2000, Moir et al. 1998). A female may

spawn until 11 times in a single redd or in different redds (de Gaudemar & Beall 1999,

de Gaudemar et al. 2000).

b. REPRODUCTIVE TACTICS & MATING SYSTEM

The major part of individuals is semelparous in southern populations even though At-

lantic salmon is an iteroparous species. Differences in life history traits between popu-

lations also happen in age at maturity. In Atlantic salmon, age at maturity ranges from

one year to ten years when considering both mature parr and anadromous (Hutchings &

Jones 1998). Differences between populations also occur when focusing on anadromous

individuals. The youngest average age at maturity is found in southern populations

(3.21 in the Nivelle River, France) whereas the oldest is found in northern populations

4As a simpliication, the term ”nest” may deine a redd after in the thesis while here it deines one
egg deposition.
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(8.80 years in George River, Quebec, Hutchings & Jones 1998).

Variations in age at maturity are likely based on genetic components (Aas et al.

2011) indicating adaptive differentiation among populations and a potential local adap-

tation (Garcia de Leaniz et al. 2007). Local environment seems to play an important role

in Atlantic salmon selection. For instance, distance of migration select stronger individ-

uals due to the high expenditures of migration in large river systems (Aas et al. 2011).

Flow conditions may also affect selection by selecting small individuals in tributaries or

rivers where discharges are less than 40 m3.s-1 (Aas et al. 2011).

Body size is a preponderant individual character in mating system of Atlantic

salmon. In females, larger individuals exhibit higher fecundity and a better access in

best breeding sites. Larger females may select breeding sites deeper and faster-flowing

waters as well as with coarser substrates (Aas et al. 2011, Moir et al. 1998) Larger fe-

males also exhibit advantages in agonistic interaction when competing for breeding sites

(Aas et al. 2011). Atlantic salmon males, which migrate 1-5 days before females, in-

vest less in reproduction than females and the operational sex ratio is often male-biased

(Aas et al. 2011). Males, thus, compete to access and secure females. In males, body

size also confers an advantage in agonistic interaction leading to an establishment of a

dominance hierarchy around a nesting female (Fleming 1996, Järvi 1990). A dominant

male may, therefore, increase its mating success (see Box Glossary I.ii) by mating with

the same female and/or with other females when it secures several females. Male-male

competition leads to females not directly choosing their partners. Yet, females seem to

exhibit indirect choices by, for instance, adapting the number of released eggs depending

on the sperm depletion level which varies with mating history (Aas et al. 2011, Weir &

Grant 2010).

Anadromous males may secure several females, especially because several females

may clump their nests (Moir et al. 1998). Aggregation of females may favour or con-

strain such mate monopolisation. Females may also mate with different males along the

breeding season leading to a polygynandrous mating system in Atlantic salmon (Aas

et al. 2011, Garant et al. 2001, Taggart et al. 2001). Degree of polyandry (see Box Glos-

sary I.ii) is also affected by the participation of anadromous satellite males. Despite the

establishment of a dominance hierarchy, some anadromous males may stay downstream
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an anadromous couple (i.e. a dominant male and a female) until the gamete emission

(Fleming 1996, Järvi 1990). In this way, satellite males may be able to fertilise several

eggs due to the duration of a spawning event (5-10 seconds, Figure. I.vii). Fertilisa-

tion success is notably dependent on mating history through sperm depletion, as well

as proximity with females (Mjølnerød et al. 1998). Participation of satellite males may

raise the sperm competition (see Box Glossary I.ii) faced by males. The mating system

of Atlantic salmon is, thus, complex, variable, and potentially influenced by their space

use and encounters between potential breeders.

(a) Anadromous pair. (b) A satellite male joins the pair.

Figure. I.vii: Photographs of a spawning anadromous salmon pair before and after the
coming of a satellite male. ©Anders Lamberg

Participation of satellite males leads to a poor explanation of individual reproductive

success (see Box Glossary I.ii) by body size for males (Fleming 1998). The participation

of mature parr that are individuals maturing before their smoltification also explains

the poor relationship between males body length and reproductive success (Figure. I.ii).

Like anadromous satellite males, mature parr can have access to females, especially

when they have the possibility to hide among pebbles (Aas et al. 2011, Jordan et al.

2007). Body size may enhance reproductive success of mature parr like in anadromous

(Grimardias et al. 2010a), but habitat complexity and presence of pebbles favouring

participation of mature parr (Grimardias et al. 2010b) diminishes the size advantage

(Grimardias et al. 2010a).
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GLOSSARY I.ii: Mating terms
dzad

Mating success — Number of mating events during which an in-

dividual has fertilised at least one egg. In this

thesis such data was not available due to the

sampling method of juveniles. Mating success

was, thus, defined as the number of sexual part-

ners (in the chapter 5).

Reproductive success — Number of juveniles sired by an individual.

Sperm competition — Here and thereafter, sperm competition denotes

that several males may mate with a same fe-

male. Due to the lacking temporal dimension

in parentage analysis, sperm competitors may

define two males who mated with a same fe-

male during two different spawning events. Yet,

males compete to fertilise eggs whose the num-

ber spawned by each female being a finite re-

source.



24 �. An aquatic nomad as a biological model



The Nivelle population

Contents

Keywords: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

H∫ THE RIVER SYSTEM

The Nivelle River is a 39 km long river situated in the south west of France near the

Spanish border (Figure. I.viii). The Nivelle watershed has an area of 238 km2 mainly

occupied by pastoral activities. The source of the Nivelle River is situated at 600 m

height in Spain and the river flows into the Atlantic Ocean in the Bay of Saint-Jean de

Luz (64, Figure. I.ix — a). Over the 39 km of the river, 7.5 km are subject to tidal

influence. Water quality diminishes downstream from Saint-Pée sur Nivelle in the lower

part of the Nivelle (Dumas & Darolles 1999, Dumas & Haury 1995, Dumas & Prouzet

2003).

Over the 39 km only around 20 km are available for salmon due to the presence of

an impassable upstream dam (Figure. I.viii, Figure. I.ix — f). Along the 20 km, salmon

may encounter two passable dams equipped with fish passes (Figure. I.viii): Uxondoa

(Figure. I.ix — b) and Olha dams. At these two dams, all individuals passing through

the fish pass are caught to be measured (body length and weight) and sampled (scales for

age determination and a fin clip for genetic analyses). Some tributaries are also available
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Figure. I.viii: Map of the Nivelle River. The dams “Uxondoa” and “Olha” are now
equipped with a ish pass. The Olha dam marked the limit between the Upper Nivelle
(“UN”) and the Lower Nivelle (“LN”). The red dots correspond to the 22 sites where
salmon juveniles are yearly sampled. The Lurgorrieta is the main tributary. Saint-Pée
sur Nivelle is the urbanised area between Uxondoa and Olha dams. The yellow star
indicates the geographic position of the UMR ECOBIOP.

for salmon: the Sorrimenta (Figure. I.ix — d), the Opalazio, and the Lurgorrieta which

is the main tributary. Around 5 km (i.e. 4.7 km) are available for salmon in the

Lurgorrieta but an impassable dam also constrains fish upstream displacements. The

presence of dams enables to divide the Nivelle into three parts: i) the “Lower Nivelle” —

LN — from the river mouth to the Olha dam; ii) the “Upper Nivelle” — UN — from the

Olha dam to the upstream impassable dam on the main stream; iii) the “Lurgorrieta”,

the main tributary (Figure. I.viii). Such a small river system with a few tributaries

enables researchers to easily work along the river and to set up monitoring, samplings,

and experiments in natura.
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(a) River mouth (b) Uxondoa dam with the entry of the ish pass
at the left (white arrow)

(c) Part of the Upper Nivelle with the low con-
trol dam

(d) Conluence with the Sorrimenta (right side)
in the Upper Nivelle

(e) Part of the Upper Nivelle with river banks
showing the source rock

(f) Upstream dam on the Nivelle River which is
impassable for salmon

Figure. I.ix: Photographs of some points of interest of the Nivelle River (France).©C.
Bouchard
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I∫ HISTORY OF THE POPULATION

The Nivelle population of salmon is monitored since 1984 by the UMR ECOBIOP based

at Saint-Pée sur Nivelle. Only the Lower Nivelle was accessible for salmon until 1992,

the Olha dam being equipped in 1992 by a fish pass. In 1990 and 1991 some anadromous

salmon were released in the Upper Nivelle, while juveniles were released in non-accessible

parts from 1986 to 1995 (Brun 2011, Dumas & Prouzet 2003). Since 1992, the 20

km in the Nivelle and the 5 km in the Lurgorrieta are available, as well as the other

tributaries. From 1996 to 2008 some juveniles were also released by the UMR ECOBIOP

to compensate catches of anadromous individuals for experiments.

Since 1984, the number of anadromous breeders are moniroted in the Nivelle by

accounting for catching probability at dams (chapter 2 for details). Since 1985 — corre-

sponding to spawners in 1984 —, the recruitment in juveniles (number of 0+ or Young

of the Year, see page 16) is monitored in the Nivelle by accounting for stocking and

catching probability of juveniles during electro fishing (chapter 2 for details). Recruit-

ment is assessed through electro fishings at 22 sites in the Nivelle (dots in Figure. I.viii,

page 26). The number of anadromous breeders are available for the Upper Nivelle and

the Lower Nivelle by means of Uxondoa and Olha dams (Figure. I.viii). Since 1985,

the UMR ECOBIOP also monitors breeding activity through a redd mapping along the

Nivelle. Number and location of redds in the Nivelle are, thus, monitored in parallel

with the number of breeders (chapter 2 for details). The monitoring of the Nivelle popu-

lation offers, thus, adequate time series data to work on population dynamics and where

individuals spawn.

Number of anadromous salmon migrating in the Nivelle exhibits a strong drop-off

since 2003. Since 2003, all the years displayed a number of returning individuals lower

than the average yearly number at around 200 individuals (Figure. I.x). More worrying,

the yearly number of returning anadromous is near 100 individuals for all years apart

for 2010. Recreational fishing is probably not an important pressure for the population,

only few individuals being caught. In contrast, the impact of professional fisheries in the

Bay of Saint-Jean de Luz was never assessed, data being non-existent. Recent studies

highlighted that upstream dams seem constraint both displacements of breeders and nest

distribution (Tentelier et al. 2016a, Tentelier & Piou 2011), but the effects on population

dynamics have never been assessed.
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Figure. I.x: Yearly estimated numbers of anadromous breeders migrating in the Nivelle
River (France) since 1984. The dashed line indicates the average value over the time
series.
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Thesis aims & outlines

J∫ KEY ASSUMPTIONS

My thesis aims to assess the effects of space use of potential breeders, namely mature

individuals able to spawn or fertilise eggs, on population dynamics and on sexual selec-

tion (Figure. I.viii). Quantifying such effects involves working at different scales, i.e.

local versus at population scale and individual versus population, leading to consider

them separately. I merge different temporal and spatial scales to link individual space

use to population dynamics as well as to sexual selection. I choose the Atlantic salmon

population of the Nivelle which offers a suitable model to investigate such effects.

The use of specific habitats to spawn and the spatial distribution of potential breed-

ers generate specific spatial distributions of nests and subsequent juveniles in Atlantic

salmon (Einum et al. 2008, Foldvik et al. 2010). High densities of juveniles, increasing

with their aggregation, lead to density compensation, namely density-dependent mor-

tality for this species (Einum & Nislow 2005). A patchy distribution of nests may force

juveniles to move over longer distances some weeks after they have emerged due to their

territorial behaviour (Einum et al. 2006). The forced longer movements may affect the

survival of juveniles increasing density-dependent mortality of juveniles. Spatial distri-

bution of nests within a river could, thus, affect population dynamics by exacerbating

the density-dependent mortality and diminishing survival. Increasing density-dependent

mortality necessarily modifies the relationship between the number of eggs spawned in

the river and the resulting number of juveniles.

However, females may select breeding sites according to habitat quality — i.e. quantity

of resources and environmental stability — and aggregate their nests in best habitats.

Aggregation of nests in habitats of high quality may buffer density-dependent mortal-

ity. Mortality should also be dampened in best habitats when environmental stability
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comes into play in habitat quality. The first aim of my thesis is thus to test how

the spatial aggregation of nests affect the population dynamics. I hypothesise

that spatial aggregation should 1) diminish recruitment by raising density-dependent

mortality and 2) stabilise recruitment depending on the habitat quality where females

aggregate.

The use of specific habitats to spawn may generate clumping of salmon nests (Moir

et al. 1998). Pre-copulatory competition between anadromous males occurs to access

females and some males are able to monopolise several females (Fleming 1996, Järvi

1990). Post-copulatory competition happens when releasing of gametes, some anadro-

mous males adopting a sneaky behaviour (Fleming 1996, Järvi 1990). High spatial

aggregation of salmon females may favour the participation of sneaky males, whereas

an intermediate value may enable anadromous males to monopolise females. Spatial

aggregation of females should raise pre- and post-competition between males decreasing

the number of males who access females.

The spatial distribution of females should also affect the displacements of males because

males look for females. Movements of potential breeders determine their encounters be-

cause shaping their home range (Robert et al. 2012). Social environment relies on the

number and the sex of encountered individuals. For males, other males in their social

environment are competitors. The sexual selection looks for testing whether phenotypes

or values of phenotypic traits affect accessing females and reproductive success (Kuijper

et al. 2012). Such effects of a phenotype or trait values are relative, and the ones of

neighbours may impact them (Gasparini et al. 2013). Sexual selection may, thus, be im-

pacted by which competitors are present in social environment of individuals. Overall,

the strength of sexual competition (i.e. pre- and post-copulatory competition) as well

as sexual selection can be dependent of social environment. Hence, the second aim

is to test how spatial aggregation and movements of potential breeders influ-

ence the sexual competition and the sexual selection. I hypothesise that 1) the

participation of males in reproduction should vary with aggregation of females, and

2) the phenotype of competitors, belonging in the social environment of an individual,

influences its reproductive success.

Atlantic salmon also offers the possibility to work on individuals exhibiting an al-

ternative reproductive tactic. Mature parr exhibit sneaky behaviour and have to remain
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hidden among pebbles (Aas et al. 2011, Jordan et al. 2007). Participation of mature

parr in reproduction can sometimes reach high levels but is often assessed within some

nests or in experimental facilities (Jordan et al. 2007, Martinez et al. 2000, Tentelier

et al. 2016b, Thomaz et al. 1997). Aggregation of females could enhance participation

of mature parr by raising the number of anadromous that compete with each other

anadromous to access females. The participation of mature parr, which leads to egg

fertilisation by them and not anadromous, should also raise sexual competition faced by

anadromous through the post-copulatory competition.

Despite the potentially high participation of mature parr in reproduction, their move-

ments throughout a breeding season remain unknown. In comparison, anadromous males

exhibit various spatial behaviours with some individuals adopting a roaming tactic while

others favour a staying tactic (Tentelier et al. 2016a), something usual when looking

males’ movements during reproduction (Forchhammer & Boomsma 1998, Sandell &

Liberg 1992). The third aim is to assess the influence of the participation of

mature parr on sexual competition faced by anadromous, and the impact

of the space use of mature parr on their participation in reproduction. I

hypothesise that 1) the participation of mature parr in reproduction should increase the

sexual competition faced by anadromous, and 2) the space use of mature parr, which

is engendered by their maturity states and variable among individuals, should influence

their participation in reproduction.

Atlantic salmon, as a migratory species, offers a valuable opportunity to assess the

effects of habitat fragmentation and habitat loss on space use by breeders. Whether

anadromous females, anadromous males, or mature parr seek a resource: breeding habi-

tats or females. The distribution of resources shapes spatial distribution and movements

of individuals (MacArthur & Pianka 1966). However, the presence of dams may con-

strain movements of breeders and access to breeding habitats for females (Forget et al.

2018, Meixler et al. 2009). Remaining dams in the Nivelle may constrain movements of

breeders. The dam opening during the monitoring of the Nivelle population offers the

opportunity to evaluate how dams restrict breeders’ movements. A satellite hypothesis

of my thesis is that dams in such a small river system affect population dynamics by

constraining breeders movements and nest placements.
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Figure. I.viii: Flow chart of the three parts of this thesis.
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K∫ THESIS ORGANISATION

Five different parts make up the manuscript. The first one is the current part introducing

the work done during the thesis. The three following parts (parts II, III, and IV) are

each organised in three chapters: one main chapter — identified with this symbol: �
— and two satellite chapters (one before and one after the main chapter). Satellite

chapters bring contextual information and other points of view or analyses to go further

in the thinking. Because each part may focus or use specific tools, their bibliography is

separated. The page corresponding to the next part is displayed before each bibliography

to facilitate the reading: "Next section: ⇒ page 49"5.

Part II (page 49) focuses on how spatial distribution of nests affects population

dynamics. The first chapter of this part (chapter 1, page 57) is a methodological chap-

ter raising the question of the measurement and appreciation of the spatial distribution

through spatial aggregation. The central chapter of this part (chapter 2, page 65) incor-

porates the spatial aggregation of salmon nests within models relating the population

recruitment (number of juveniles) to the population stock (number of eggs). The central

chapter, corresponding to a published article in Ecosphere, discusses how the spatial ag-

gregation influences the recruitment at the population level. To go further, the following

chapter (chapter 3, page 101) reuses the same approaches at a finer spatial scale within

Nivelle parts (Figure. I.viii).

The next part (part III, page 145) focuses on the local social structure of potential

anadromous breeders created by their space use. The chapter 4 (page 153) links the

spatial aggregation of nests to the effective numbers of breeders in the population. The

following chapter (chapter 5, page 161), corresponding to an article in preparation, uses

different sources of data to infer the sexual network of the population and the resulting

sexual selection. Finally, the last chapter (chapter 6, page 199) adopts the females’ point

of view to assess how their spatial isolation notably influences their reproductive success.

Part IV (page 233) deals with the mature parr, their participation in reproduction,

and their space use to access females. First, chapter 7 (page 241) discusses their in-

fluence on sexual selection and the mating system. Chapter 8 (page 257), which was

submitted, evaluates their space use involved by their maturity level and links it to

5This indication, as well as all other, are clickable in the pdf ile.
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their potential participation in reproduction. Finally, the last chapter (chapter 9, page

283) compares their movements between the different habitat types with movements of

immature individuals.

The last part (part V, page 315) corresponds to the general discussion of this work.

The part opens by a criticism of the methodology used in the thesis. This final part

discusses the principal findings of my thesis by connecting different chapters belonging to

different parts. Finally, I discuss the potential implications within the small population

of the Nivelle and the perspectives offered by my findings.

The numbering of floating objects (figures, tables, equations, boxes) incorporates

the chapter number like Figure. 1.2. Floating objects displayed outside chapters (intro-

duction and discussion of parts, general introduction, general discussion) are numbered

within the part and with roman numbers like: Figure. I.iii. All along this manuscript

some boxes (like the Box Glossary I.ii, page 23) are displayed. The different types of

boxes are displayed below with their meaning.

GLOSSARY I.iii: Example
dzad

Glossary box.

BESIDE I.i: Example
dzad

Box to present an idea of further possible analyses with the data used in

the thesis and in relation with aims of the thesis.

TOOLS I.i: Example
dzad

Box to deeply explain an analysis or a method.

DEEPER I.i: Example i
dzad

Box to present a satellite analysis to go further and bring interesting infor-

mation.

Next part: ⇒ page 49
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Introduction of Part II

POPULATION REGULATION: FROM STOCK TO RECRUITMENT

In a wide range of taxa, population dynamics exhibit yearly variations. A key question

in ecology and conservation is understanding whether and how to vary population dy-

namics. Indeed, identifying such variations in population dynamics and their causes

allows highlighting potential conservation issues and implementing management plans

(Dobson & Lees 1989, Milner-Gulland et al. 2003, Sydeman & Allen 1999). Demographic

models constitute key instruments for managing populations as universally recognised

(Morris et al. 2002, Norris 2004). For example, Elliott et al. (2011) highlighted a negative

abundance impact on survival of bald eagle (Haliaeetus leucocephalus) due to the salmon

depletion. Population size fluctuates according to variation in recruitment induced by

variation either in stock or processes impacting the stock.

Recruitment as a result of processes acting on a stock. Processes either density-dependent

or density-independent may positively or negatively affect the relationship between the

stock (e.g. number of breeders or eggs, . . . ) and the recruitment (e.g. number of eggs,

juveniles, or future breeders, . . . ), namely stock-recruitment models. Sometimes, a same

environmental factor can affect recruitment through density-dependent and density-

independent process. For example, temperature may decrease egg survival as found

by Du & Ji (2006) in the northern grass lizard (Takydromus septentrionalis) by im-

pacting embryonic development through density-independent cellular processes. On the

other hand, temperature may lead to a mismatch with resource availability (Durant et al.

2007) by affecting phenology. A mismatch may exacerbate competition for resources, a

density-dependent process. Density-dependent processes may also have positive effects

on recruitment. Indeed, positive density-dependence arises when the density enhances

survival or fecundity of individuals, whereas negative density-dependence happens when
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the survival or fecundity decreases as abundance increases (Elliott et al. 2011, Herrando-

Pérez et al. 2012, Neave 1953). Stock-recruitment models account for density-dependent

and independent processes when linking recruitment to stock (box Tools II.i).

TOOLS II.i: Stock-recruitment models
dzad

Stock-recruitment models are a group of models linking the abundance

of the reproductive stock — e.g. breeders or eggs — and the number of

recruits — e.g. eggs or juveniles named 0+ or Young Of the Years (YOY,

see 16) —. Indeed, they provide identification of some stock reference

points such as the one maximising the recruitment (Ԉճֈռ֓), or maximising

a sustainable yield (Ԉծմ� ). These models also provide an estimate of the

carrying capacity, namely the abundance of recruits that can be supported

by a given environment. Hence, fishery scientists or stakeholders widely

used stock-recruitment models.
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Figure. II.i: Example of stock-recruitment curves from the four mainly used
models.

The most used models are those of Beverton & Holt (1957), Cush-

ing (1973), Ricker (1954), and Shepherd (1982). Different assumptions on

the density-dependent mortality differentiate the first three models. In-

deed, stock-recruitment models link the recruitment to the stock by ac-

counting for a density-independent term and density-dependent one. The
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differences of assumptions are clearly visible when looking at the curve

shapes generated by the models (Figure. II.i). The model of Cushing

(1973) assumes a weak density-dependent mortality leading to an infinitely

increasing curve. At the opposite, the model of Ricker (1954) assumes a

weak density-dependent mortality at low density but a strong one when the

stock reaches a threshold biomass. This model generates a dome-shaped

curve. Between these two models, the one of Beverton & Holt (1957)

gives an asymptotic curve. In Ricker’s model the density compensation

(increased mortality at high densities) was exacerbated compared to Bev-

erton & Holt’s model or to Cushing’s one. Finally, the model of Shepherd

(1982) enables to generate the three previous curves through another pa-

rameter ᅬ (Figure. II.i): i) ᅬ � � gives a Cushing-shaped curve, ii) ᅬ � �
gives a Beverton-Holt-shaped curve, and iii) ᅬ � � gives a Ricker-shaped

curve.

HABITAT SELECTION GENERATES POPULATION REGULATION AFFECTING POPULA-

TION DYNAMICS

Breeding habitat selection generates spatial aggregation of potential breeders. Spatial

aggregation occurs when individuals, or more generally items, are not regularly dis-

tributed in space (Figure. II.ii). Aggregation occurs even if individuals exhibit a ran-

dom and uniform distribution (Figure. II.ii). Conspecific attraction, choice copying,

colonial living, . . . , are some processes generating aggregation in time or space in a

wide range of taxa (Danchin & Wagner 1997, Doligez et al. 2003, Evans et al. 2016).

Habitat choice related to reproduction also generates spatial aggregation in species us-

ing a specific breeding habitat (Doligez et al. 2003, Evans et al. 2016). Although the

most visual example of such aggregation during reproduction remains harems and leks,

some species exhibit aggregation of potential breeders due to the spatial distribution of

the breeding sites. For example, Almada et al. (1994) linked the spatial aggregation of

potential breeders in Salaria pavo (Blenniidae) to the spatial distribution of available

breeding sites. Produced juveniles usually stay at breeding sites during a variable period

before to shift to another niche. Aggregation of juveniles at breeding sites already ex-

isted in dinosaurs (Forster 1990) and is common in fishes (Macpherson 1998). In fishes

with external fecundation, mating, spawning, hatching and first stages of development
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occur at the same location. The habitat choice of potential breeders may, thus, lead to

aggregation of their juveniles.

INDIVIDUAL
DISTRIBUTION

REGULARLY
distributed

RANDOMLY &
UNIFORMLY
distributed

AGGREGATED
individuals

aggregation

Figure. II.ii: Three patterns of individual spatial distribution. Positions denoting a
random and uniform distribution were sampled from a uniform distribution.

Aggregation as a cause of population regulation. Spatial aggregation may affect recruit-

ment by impacting the survival of eggs and juveniles. As in metapopulations, aggregated

nests may compensate for losses of recruitment in a nest meaning that aggregation of

nests stabilises population recruitment (Murdoch et al. 1992). In contrast, recruitment

may be more variable when aggregated nests suffer environmental stochasticity so that

local perturbations with positive or negative impacts hits many nests at a time (Engen

et al. 1998, Lande 1993, Sæther 1997). Concerning a loss of recruitment, aggregation

may exacerbate density-dependent compensation or mortality (Clotfelter & Yasukawa

1999, Griffiths et al. 2003). Aggregation may increase recruitment when kins form the

major part of aggregated individuals as such an aggregation of kins favours antipredator

responses in some fishes (Ward & Hart 2003). Spatial aggregation of nests may, thus,

generates a loss or a gain of recruitment but also stabilises or varies the recruitment.
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STOCK-RECRUITMENT AND SPATIAL AGGREGATION

Atlantic salmon is a good candidate to study effects of aggregation on recruitment. At-

lantic salmon exhibit habitat choice for breeding sites (Louhi et al. 2008) which may

favour nest aggregation. Some environmental factors such as floods may also favour

nest aggregation by diminishing the number of suitable habitats which are accessible

(Moir et al. 1998, Parry et al. 2018, and Figure. II.iii page 125). Stock-recruitment

models have been mainly used to study population dynamics (Brun 2011, Jonsson et al.

1998, Prevost 2003, Prévost et al. 1996, Rivot et al. 2004). Whereas the spatial structure

has been studied at small scale (e.g. at the nest scale, Einum & Nislow 2005, Finstad

et al. 2009), the effects of local spatial aggregation on population recruitment remain

poorly appreciated.

Accounting for spatial aggregation in stock-recruitment models supplements account-

ing for density-dependent processes. The current part aims to test whether spatial

aggregation of nests modifies population dynamics by impacting stock-recruitment re-

lationships. Chapter 1 (page 57) compares mean density to two spatial aggregation

indices by simulating nest distribution to test whether spatial aggregation indices bring

another information than mean density accounted in stock-recruitment models. Chapter

2 (page 65) implements the spatial aggregation of nests computed for the entire popula-

tion into stock-recruitment models. I assessed the potential effects of aggregation either

on the mean or the variability of the recruitment at a population level. Finally, density-

dependent processes linked to the spatial distribution of nests may act at a narrower

scale than the population level. The same method was, thus, applied within river zones

(Lower Nivelle, Upper Nivelle, and Lurgorrieta) in chapter 3 (page 101).
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Within populations, some individuals may aggregate in space even if they exhibit

uniform and random distribution (Figure. II.ii). Investigating the causes of spatial

aggregation remains difficult, aggregation involving both costs and benefits (Danchin

& Wagner 1997). However, some authors tried to quantify the spatial aggregation of

individuals to link it with their environment. Although the conceptualisation and the

formulation of aggregation remain difficult (Gokhale 1975), Lloyd (1967) was one of the

first trying to assess spatial aggregation. He justified his work by saying:

« . . . there is one thing about the habitat that can be measured and is

undoubtedly important to the centipedes [of Wytham Woods], namely,

the other centipedes in their immediate vicinity. » — Lloyd 1967

His main idea was to investigate how the number of competitors was significant for indi-

viduals. In this way, a measure of the number of competitors experienced by an average

individual is a better way to assess competition and interactions than the mean density

(Lloyd 1967, Wade et al. 2018). The idea developed by Lloyd on the importance of the

number of competitors was one of the justifications of the current chapter. Another

justification was that mean density is already accounted for in stock-recruitment rela-

tionships through density-dependent compensation. Aggregation pattern and density

may carry different information on the distribution of individuals.

I selected two different indices measuring spatial aggregation: space selectivity from

Petitgas (1998) and patchiness as defined by Lloyd (1967). These two indices enable me

to assess spatial aggregation within an environment divided into patches. Although some

indices use distances between items to assess aggregation, the data concerning salmon

nests did not allow me to utilise them (chapter 2, page 2). This short methodological
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chapter aims to graphically compare these two indices to ensure that one of these indices

could be used to assess the spatial aggregation of salmon nests. In addition, these indices

were compared to mean density what highlighted mean density did not well depict spatial

distribution of redds (salmon nests).

1.1 SPATIAL AGGREGATION INDICES

1.1.1 SPACE SELECTIVITY

Space selectivity (Ss) has been firstly defined for mineral exploitation (Mathéron 1981).

In his study, Petitgas (1998) generalised this index to assess aggregation of pelagic fishes

from their spatio-temporal distribution. This index was based on :

• ԩ�ԧ) the fish density at point ԧ and � the total area occupied by the fish population,

• ԉ : proportion of A where the number of fish is � to ԩ�ԧ) (from 0 to 1),

• Ԇ: density of fish found into T compared to A.

ԉ and Ԇ allow users to generate aggregation curves enabling a better understanding and

to visualise fish aggregation. The Ss was computed from the area under the curve Ԇ�ԉ )
(Figure. 1.1). In my case, fish were replaced by redds and � by the total number of

patches where redds were found.

1.1.2 PATCHINESS

Patchiness was defined by Lloyd (1967) from the mean number of neighbours per in-

dividual in the same patch, the "mean crowding" — Ԝ⃰, Figure. 1.2. Patchiness was

simply the ratio ֈ⃰ֈ , where Ԝ is the mean density (general formula page 73). The ref-

erence value of 1 indicates a uniform and random distribution (Figure. II.ii, page 54)

while values upper 1 indicate an aggregated one.
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Figure. 1.1: Graphical construction of the geostatistical aggregation curve Q(T) with the
curves Q(z) and T(z) for a schematic spatial distribution. Density values are denoted
by z. T(z) is the proportion of the total ish presence area where the density is greater
than z. Q(z) is the ish biomass that is on the area T(z) where density is higher than
z. The curve Q(T) relates Q(z) to T(z) and gives the maximum biomass that can be in
any proportion T of the total area. The hatched zone under the Q(T) curve represents
half of the space selectivity (concentration) index Ss (from Petitgas 1998).

�� � �������
1, 1 0

3,3,3,32,2,2

Figure. 1.2: Examples of individual distribution among patches to compute the mean
number of neighbours in the same patch. The number of neighbours per individual is
displayed for each patch where at least one individual is present (�).
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Table. 1.1: Table of the diferent scenarii used to depict the diference between two
spatial aggregation indices (space selectivity and patchiness) and mean density.

Scenario Available patches N redds Spatial distribution of redds
1 ԧ1 � �� ԝ1 � ��� same number of redds per patch
2 ԧ2 � �� ԝ2 � ��� same number of redds per patch
3 ԧ2 � �� ԝ1 � ��� same number of redds per patch
4 ԧ2 � �� ԝ3 � �� same number of redds per patch
5 ԧ1 � �� ԝ1 � ��� random distribution of redds among all patchs
6 ԧ1 � �� ԝ1 � ��� random distribution of redds among 14 patchs
7 ԧ2 � �� ԝ3 � �� random distribution of redds among 14 patchs
8 ԧ1 � �� ԝ3 � �� random distribution of redds among 14 patchs
9 ԧ1 � �� ԝ1 � ��� 14 , 12 , 18 , 18 individuals in four patchs
10 ԧ1 � �� ԝ3 � �� 14 , 12 , 18 , 18 individuals in four patchs

1.2 TEN SCENARII TO DEPICT DIFFERENCES

I defined ten different theoretical scenarii to depict differences between Ss, patchiness

(and the mean crowding), and mean density. The different scenarii were based on two

different numbers of available patches (ԧ1 � �� and ԧ2 � ��), as well as three different

numbers of redds (ԝ1 � ���, ԝ2 � ���, and ԝ3 � �� — Table. 1.1). ԧ1 corresponds to

the number of patches in the Nivelle (under a threshold length of 50 m, see methods of

chapter 2 at page 73 for details) and ԧ2 is the number of patches in the Lower Nivelle (see

chapter 3). The number of redds corresponds to the minimal number of redds found in

the Nivelle (ԝ3), the maximal number (ԝ1), and an intermediate value (ԝ2). The spatial

distribution of redds varied among patches to depict contrasted situations (Figure. 1.3).

For a considered number of available patches (ԧ1) and a considered number of redds (ԝ1),
spatial aggregation should be higher for the scenario 9 where redds are distributed in

only four patches than for the scenarii 1, 5, and 6. Scenarii exhibiting the same patterns

of distribution of redds should also exhibit similar values of aggregation. In this way,

similar values of spatial aggregation should be found for: i) scenarii one, two, three, and

four; ii) scenarii six, seven, and eight; and iii) scenarii nine and ten. Scenario five should

exhibit values of spatial aggregation near the values of scenarii one, two, three, and four.

For each scenario, Ss, mean crowding, patchiness, mean density and variance of

density were computed. First, the highest values of mean density were found for sce-

nario one, two, and three when the redds were uniformly distributed among patches

(Figure. 1.4). Variance of density was highly dependent on the number of redds (see

scenario 9, Figure. 1.4). Spatial aggregation gave, thus, more information than the only
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Figure. 1.3: Repartition of redds among available patches under the ten theoretic scenarii
(Table. 1.1).

mean density and this whatever the index (mean crowding, patchiness, or Ss — Figure.

1.4). The mean number of neighbours is also a better metric than density (mean or

variance) to describe each spatial distribution between scenarii. Second, mean crowding

and space selectivity varied in the same way between scenarii. Patchiness well exhibited

the fact that redds were concentrated within four patches under the scenarii 9 and 10.

In addition, under the scenarii 9 and 10, only the number of redds was different, and

patchiness was the only measure giving similar aggregation values between these two

scenarii. In this way, the scenarii 9 and 10 enabled to see that Ss and mean crowding

seemed influenced by the number of redds.

Density (mean and variance) provides very little information when the question is

about to characterise the spatial distribution of individuals among patches. All other
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Figure. 1.4: a) Aggregation values computed with the Space selectivity and the patchi-
ness under the ten theoretic scenarii (Table. 1.1). b) Mean density values and variance
of density (c) under the same scenarii.

indices displayed variations between scenarii and can be used to characterise spatial

distribution among patches. Mean crowding and Ss were influenced by the number of

redds which logically increased the number of neighbours. The space selectivity (Ss) is

dependent of the density due to the way of its calculation (Figure. 1.1). At the opposite,

patchiness seemed less influenced by the number of redds because it divides the average

number of neighbours per the mean density which accounts for the total number of

individuals.

Beyond this work, the current chapter raises the question of using mean density in

ecological studies to depict heterogeneous spatial distribution. In addition, the rare use

of patchiness since the study of Lloyd (1967) also remains an open question. Indeed,

some studies and books discussed the use of different aggregation measures some years

after the work of Lloyd (Gokhale 1975, Simon et al. 1981, Young & Young 1998), but

most of the recent studies use the term "spatial aggregation" without properly assessing
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it. Indeed, 68% of papers citing the Lloyd’s patchiness really investigated the spatial

distribution of one species or taxon (Wade et al. 2018). Despite this, a new study for the

50-year anniversary of Lloyd’s work, rediscusses measures of spatial aggregation (Wade

et al. 2018).

« We have shown that Lloyds formulation of mean crowding is in-

trinsic to some of the most important metrics and processes in ecology

and evolutionary biology. » — Wade et al. 2018

To my concerns, patchiness seems to be the best way to investigate patterns of

aggregation of salmon’s nests. Density is already considered in stock-recruitment models

through density compensation terms and should not be implemented in such models to

prevent having two times the same information. The current chapter also clearly justifies

why density cannot give a good overview of the spatial distribution and, therefore, cannot

be employed to investigate such questions.

HIGHLIGHTS OF CHAPTER 1▶ The widely used mean density failed to discriminate among ten simulated

scenarii of redd distribution…▶ …whereas mean crowding, patchiness, and space selectivity provided valu-

able information to characterise the different scenarii.▶ The total number of redds influenced the mean crowding, the space selec-

tivity and the mean density.▶ Patchiness seems to be the best metric to measure accurately spatial ag-

gregation of redds among different patches.
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Authors: Bouchard, C., A. Bardonnet, M. Buoro, and C. Tentelier

Abstract: Spatial aggregation within a population is a widespread phenomenon which

may both exacerbate local competition and the stochastic effect of local environmen-

tal perturbations. In particular, the spatial aggregation of nests may strongly affect

recruitment and hence population dynamics. Although the negative effect of local den-

sity on local recruitment has often been theoretically extended to population dynamics,

very few studies have demonstrated the effect of local aggregation on the whole pop-

ulation recruitment. Using a long-term survey of a small Atlantic salmon population,

we tested the effect of spatial aggregation on the whole population recruitment and

whether accounting for population stock is important or not when explaining the popu-

lation recruitment. We found that accounting for population stock is necessary and that

spatial aggregation of nests improved estimates of population recruitment. The spa-

tial aggregation of nests did not impact the average population recruitment; however, a

https://esajournals.onlinelibrary.wiley.com/doi/10.1002/ecs2.2178
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stronger aggregation diminished the variability of population recruitment. Our findings

suggest that the aggregation of nests among some breeding areas does not necessarily

impair the whole population recruitment, and significantly reduces the stochasticity of

the recruitment. In addition, the aggregation of nests seems to be the result of an Ideal

Distribution of females, selecting the best-breeding sites. Our results also indicate that

females select breeding sites on environmental risk to spawn within the safest sites. This

study warns against the extrapolation of local density-dependence observations to the

population level, and advocates for investigating the effect of aggregation on the demo-

graphic and evolutionary population dynamics; a clear contribution of aggregation on

population dynamic processes being found in the Nivelle population.

Keywords: Beverton-Holt, breeding site, clustering, density compensation, environ-

mental stochasticity, patchiness, population dynamic, spatial distribution, spatial het-

erogeneity

Citation: Bouchard, C., A. Bardonnet, M. Buoro, and C. Tentelier. 2018. Effects of

spatial aggregation of nests on population recruitment: the case of a small population

of Atlantic salmon. Ecosphere 9(4):e02178. 10.1002/ecs2.2178

2.1 INTRODUCTION

Individuals within populations are rarely randomly or uniformly distributed over space

but tend to aggregate in the most favorable habitats among available ones. Spatial

aggregation arises in many taxa such as mammals (Moll et al. 2016), birds (Clotfelter

& Yasukawa 1999), crustaceans (Broly et al. 2012), fishes (Hoare et al. 2004), or plants

(Lara-Romero et al. 2016). Although density is a widely and preferentially used metric

in ecology, the concept of spatial aggregation has been defined in two different ways, i.e.

the number of neighbors within a habitat unit (Lloyd 1967) or on the distance to the

nearest neighbor (Clark & Evans 1954). Assessing if individuals are clumped in space is

the main use of aggregation indexes and this despite the potential effects of aggregation

on population processes; such effects remaining rarely investigated.

Spatial aggregation of individuals may notably arise when they feed or breed in

specific habitats (Clotfelter & Yasukawa 1999, Danchin & Wagner 1997, Sergio et al.

2003 , Tregenza 1995, Wagner & Danchin 2003). Individuals select such habitats by

assessing either the habitat quality in term of resources (Boulinier & Danchin 1997),
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environmental perturbations (Doligez et al. 2003) and the safety of a site (Winandy

et al. 2017), or the density of conspecifics (Doligez et al. 2003, Falcy 2015) to maximize

their fitness leading to adaptive choices (Hendry et al. 2001, Morris 2003). However,

these choices may be constrained by agonistic interactions between individuals, social

status, site accessibility and limited information on habitat quality (Falcy 2015, Hendry

et al. 2001, López-Sepulcre et al. 2010, Morris 2003, Tentelier & Piou 2011). Because

these constraints are dynamic, the resulting aggregation pattern at the population level

can vary in space and time.

Spatial aggregation may affect population dynamic and recruitment at the popula-

tion level through density-dependence of recruitment. Reasons are twofold and closely

related. First, the aggregation of breeders diminishes breeder survival or parental in-

vestment by exacerbating competition between them (e.g. to settle in breeding sites;

Adkison et al. (2014), McPeek et al. (2001), Wong et al. (2007)). Second, the aggregation

of nests leads to aggregation of early life stages (recruits) with limited dispersal abilities,

thereby raising local competition for resources and diminishing their survival (Einum

& Nislow 2005, Finstad et al. 2009, Steingrimsson & Grant 1999). However, competi-

tion between juveniles, caused by aggregation, may be compensated by habitat quality

(Fretwell & Lucas 1969, Hendry et al. 2001, Schlaepfer et al. 2002), or exacerbated by

it when breeders select an ecological trap leading to a mismatch between quality and

attractiveness (Schlaepfer et al. 2002, Weldon & Haddad 2005). Therefore, the effect

of nest aggregation on recruitment through local competition is context-dependent, the

intensity of aggregation and habitat quality where breeders distribute themselves being

key factors.

Spatial aggregation might also modify the variability of population recruitment

through the effect of spatial environmental stochasticity. If individuals choose breeding

sites irrespective of environmental stability, the aggregation of individuals may dampen

the effects of environmental perturbations occurring randomly in space (Kallimanis et al.

2005) or exacerbate these effects when perturbations are auto-correlated (Kallimanis

et al. 2005). Thereby, random local perturbations such as a scouring of fish nests (Gau-

they et al. 2017) or a falling of a tree supporting hollow-dependent marsupial (Linden-

mayer et al. 1997) may either affect many individuals if occurring in an aggregate or

none if occurring in an empty patch. The resulting recruitment at the population level
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is thus, more variable over time (Murdoch et al. 1992). On the contrary, if individuals

can forecast local disturbances and choose the safest sites, or have cues of habitat qual-

ity, aggregation on these sites may buffer against environmental stochasticity and then

dampen recruitment variability.

Atlantic salmon (Salmo salar) is a relevant biological model to investigate the effects

of aggregation on population dynamic processes. The choices of breeding sites depen-

dent on physical characteristics of habitat, and a short duration of the reproductive

season (from November to January) lead to spatial aggregation of nests dug by females

(de Gaudemar et al. 2000, Louhi et al. 2008). Spatial aggregation of nests reflects ag-

gregation of breeders and competition for breeding sites and mates; this competition

being costly in terms of fecundity and survival (Jonsson et al. 1998). Nest aggregation

also affects both the aggregation of eggs and emerging fry, diminishing their survival

through density-dependent and independent processes. Such density-dependent pro-

cesses correspond to nest over-digging by other females, competition for oxygen under

gravel substrate, disease spread, and competition for feeding territories (Aas et al. 2011,

Armstrong & Nislow 2006, Crisp 1995, Gustafson-Greenwood & Moring 1990, Nislow

et al. 2004). On the other hand, aggregation may exaggerate or dampen the effect of

random local perturbations such as nest scouring or predation of young stages (Lapointe

et al. 2000, Palm et al. 2009).

However, the potential effects of spatial aggregation on the whole population recruit-

ment remain poorly appreciated and rarely investigated. Indeed, the existing literature

on the nest distribution of Atlantic salmon correlates the local density of nests in a river

stretch to either local environmental variables (Louhi et al. 2008, Parry et al. 2018) or

local recruitment (Foldvik et al. 2010); this in order to respectively infer ecological deter-

minants of nest placement and to test negative density-dependence. The potential effects

of spatial aggregation on the whole population recruitment remain to be investigated

empirically (Einum et al. 2007 for a simulation-based approach). An explanation of

this rare investigation may be the extensive amount of data required to investigate these

effects: long time series of spatial aggregation and population recruitment. This is unfor-

tunate because assessing the influence of aggregation on recruitment should improve our

understanding of population dynamics and resilience to environmental perturbations.
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The main goal of this study was to test the effects of nest spatial aggregation on the

yearly recruitment of a small Atlantic salmon population. In this way, we capitalized

on a long-term dataset (31 years) collected in the Nivelle river, France, consisting of the

spatial distribution of nests, the expected number of deposited eggs (stock), and the

abundance of juvenile individuals in nursery stretches (recruitment, Dumas & Prouzet

2003). We used a hierarchical model testing direct effects of aggregation on the whole

population recruitment. Because the recruitment is primarily dependent on the stock

(Prévost & Chaput 2001, chap. 2), we also evaluated the influence of nest aggregation

on demographic processes using stock-recruitment models (Iles 1994, Prévost & Chaput

2001). Such models take into account the density-dependent (competition) and the in-

dependent (environmental stochasticity) mortality occurring on a stock. Here we tested

two alternative hypothesis. First, we predicted that a strong aggregation should dimin-

ish recruitment according to the negative density-dependence theory (Einum & Nislow

2005, Finstad et al. 2009, Foldvik et al. 2010, Steingrimsson & Grant 1999). Alter-

natively, we predicted that aggregation should not modify recruitment level if females

aggregated their nests in the best and safest breeding sites (Fretwell & Lucas 1969,

Hendry et al. 2001, Schlaepfer et al. 2002), but should lead to steadier recruitment by

buffering environmental stochasticity (Kallimanis et al. 2005).

2.2 METHODS

2.2.1 STUDY AREA AND DATA COLLECTION

The Nivelle is a 39 km long river, with a drainage area of 238 km2 located in France

near the Spanish border, and flowing into the Bay of Biscay (Figure. 2.1). The study

area corresponds to the river portion starting from the estuary to 19 km, plus 4.5 km

on the main tributary (the Lurgorrieta). The river is a typical succession of pools and

riffles, with an average depth of 48 cm, an average width of 10 m, and an average annual

discharge of 5.4 m3/s1 (Dumas & Prouzet 2003). The study area was divided into 624

stretches of different lengths, defined by habitat features such as dams, bridges, conflu-

ences, or river morphodynamic changes (Tentelier et al. 2016). Two dams are equipped

with fish-passes and traps: Uxondoa dam (12 km from the river mouth) equipped in

1984, and Olha dam (16.7 km from the river mouth) in 1992 (Figure. 2.1). The area of

suitable and available river habitats for salmon reproduction (ℎ) was therefore smaller

before 1992 (ℎ � ��� ��� Ԝ2 against ℎ � �6� ��� Ԝ2 after 1992, Dumas & Prouzet

(2003)). Suitable river habitats correspond to the favorable areas for the production of
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juveniles (nursery stretches), namely shallow running water flowing over a coarse bot-

tom substrate (Marchand et al. 2017), wherein available ones define those accessible for

salmon (Prévost et al. 1996).

Figure. 2.1: Maps of the Nivelle river system available for Atlantic salmon. Four dams
are indicated, including those equipped with ish passes: Uxondoa and Olha. Gray
areas correspond to the major urbanised areas near the Nivelle. (a) Nest distribution in
1986 which corresponds to the year with the lowest aggregation under a 50 m threshold
length: 4.20. (b) Nest distribution in 2012, the year with the higher aggregation: 27.46.
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We used a long-term (31 years: 1984-2015) monitoring program to assess yearly

recruitment and yearly stock, and nest mapping that we used to compute the spatial

aggregation of nests. This monitoring has been carried out by the Environmental Re-

search Observatory (ERO) on Diadromous Fish in Coastal rivers (DiaPFC) 1. First, the

recruitment, i.e. the yearly juvenile number, was estimated from electrofishing within

suitable river habitats for juveniles, previously described as shallow running water flow-

ing over a coarse bottom substrate (Marchand et al. 2017). Twelve sites were yearly

sampled from 1985 to 2002, and 22 from 2003 to 2015. The area sampled on these 22

sites represents more than 21% of suitable river habitats available for salmon juveniles

in the Nivelle (Appendix S1: Table. 2.5, Marchand et al. (2017)). The estimates of

juvenile densities at each sampling site permitted the quantification of the relationship

between juvenile density and the area of suitable river habitat at each sample site. Ju-

venile density for the whole river was thereafter estimated from the total area of suitable

habitats in the river. Second, the stock, i.e. the yearly number of deposited eggs in the

Nivelle, was estimated from the abundance of females in each age class. In this way, the

two fish-traps allow the capture and mark of anadromous salmon on both sites in the

Nivelle. This generates a capture-mark-recapture dataset allowing the estimate of the

number of anadromous salmon in each age class (1 or 2 sea winters) and each sex from

a N-mixture model using hierarchical Bayesian modeling approach (Brun et al. 2011,

Servanty & Prevost 2016). These estimates of abundance encompass catch probability,

which was estimated at 0.9 (Appendix S1, Servanty & Prevost 2016). Then, fecundities

were attributed to each age class: 4500 eggs/kg and 7200 eggs/kg for one and two sea-

winters respectively (Appendix S1, Servanty & Prevost 2016). The estimates of stock

and recruitment are based on standardized sampling protocols and hierarchical Bayesian

models taking explicitly into account assessments of uncertainties such as capture or de-

tection probabilities (Brun et al. 2011, Dauphin et al. 2009, Prévost & Baglinière 1995,

Servanty & Prevost 2016). Here, the estimates of deposited eggs were considered from

1984 to 2014, and the estimates of juveniles from 1985 to 2015 (juveniles from year ԙ
stem from eggs of year ԙ − �).

Finally, the nest survey was repeated two or three times per spawning season (from mid-

December to January). Because of the length of the study site, each complete survey

was carried out directly in the water in 1-3 walking days. Over a decade, surveys were

conducted by a same duo of observers after training; experience and training shrink-

1ero diapfc: https://www6.inra.fr/diapfc

https://www6.inra.fr/diapfc
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ing nest count errors (Dunham et al. 2001). Nests were visually detected as a typical

depression-dome succession where algae and silt were removed during digging by the

females. The location of each nest was recorded as the id number of the stretch where

the nest was discovered.

2.2.2 AGGREGATION OF NESTS

Nest aggregation of the spawning season of year ԙ was assessed by computing the patch-

iness index developed by Lloyd (1967). Patchiness is a spatial aggregation index com-

puted by dividing the "mean crowding" (Ԝ⃰օ) by the mean density (noted Ԝօ, Eq. 2.2).

The mean crowding (Ԝ⃰օ) is defined as the mean number of neighbors per nest in the

same patch (Eq. 2.2), while the mean density (Ԝօ) is the total number of nests divided

by the total number of patches. Then, according to Lloyd (1967):

Ԝ⃰օ � ∑կ�ք�1 ԍք,օԃօԜ⃰օ � Ԝօ � ( ᅼ2Ԝօ − �) � (Eq. 2.1)

Patchinessօ � ԅօ � Ԝ⃰օԜօ (Eq. 2.2)

with ԃօ: the total of nests discovered during the spawning season of year ԙ, ԍք,օ: the

number of nests found in the same patch as nest Ԙ during the spawning season of yearԙ, Ԝ⃰օ: the mean crowding of the spawning season of year ԙ. When the number of

neighboring nests (Ԝ⃰օ) is similar to the mean density (Ԝօ), patchiness equals 1, the

only reference value of this index. Yearly nest aggregation, noted ԅօ for Patchiness, was

computed from 1984 to 2014 (31 years).

We grouped the 624 initial stretches to buffer fine scale changes in habitat through-

out the study period. In this way, each patch was defined as a group of stretches including

at least one nest during the study period, and that was separated from other stretches

by a defined threshold length of habitat never used for spawning (Appendix S1: Figure.

2.7). We varied the threshold length of unused habitat for separating patches from 20

m to 500 m, reflecting the biological low probability that salmon fry cross such a length

of unfavorable habitat during their first weeks of life (Beall 1994, Crisp 1995, Einum &

Nislow 2005, Einum et al. 2006, Garcia de Leaniz et al. 2000, Gustafson-Greenwood &

Moring 1990). Aggregation of nests was computed with patches defined as 624 initial



74 �. 2. Effects of aggregation of nests on population recruitment�
stretches but also patches defined under threshold lengths varying from 20 m to 500 m

(Appendix S1 for details).

2.2.3 EFFECTS OF AGGREGATION ON POPULATION RECRUITMENT

Two approaches were used to meet the main objective of this study, namely to test

the effect of aggregation of nests on recruitment. First, the direct effect of aggregation

on population recruitment was tested regardless of the stock. Second, the aggregation

effect on recruitment was tested within a stock-recruitment relationship to assess whether

accounting for population stock is important or not.

In this study, yearly stock was the estimated number of deposited eggs (noted Ӻօ),
and yearly recruitment was the estimated number of juveniles in September (noted Ԏօ).
Since the suitable and available river habitat (noted ℎ) was different before and after

1992 (opening of Olha), Ӻօ and Ԏօ were divided by ℎ to obtain the density of deposited

eggs (Ӻ∗օ ), and of juveniles (Ԏ ∗օ ) per river habitat area ℎ.

Population recruitment as a function of aggregation The direct effect of nest aggregation

on recruitment at population level was firstly tested by modeling yearly recruitment (Ԏ ∗օ )

as a function of the yearly aggregation of nests (ԅօ). Four different models were tested

(Table. 2.1):

• a null model without effect of aggregation on mean and variance (noted ℳ0),
• a model with both simple and quadratic effects of aggregation on the mean ᅷօ

(noted ℳ1),
• a heteroscedastic model with an effect of aggregation on variance ᅼօ (noted ℳ2),

and

• a complete model combining ℳ1 and ℳ2 (noted ℳ3).
Stock-recruitment models Stock-recruitment models were mainly developed for fish-

eries (e.g. Cushing (1973), Ricker (1954), Beverton & Holt (1957)). Shepherd’s (1982)

model is a versatile model that can imitate curves of Beverton-Holt, Ricker, or Cushing

through a specific parameter. Simulations were firstly done with Shepherd’s model for

two reasons. First, this model allows data to drive the curve and not the opposite be-

cause the model is versatile. Second, this allowed us to avoid setting a specific a priori
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model. Estimates of Shepherd’s model corresponded to Beverton-Holt’s curve, thus us-

ing Beverton-Holt’s model allowed to save one parameter (Appendix S2: Table. 2.8). In

addition, Beverton-Holt’s model is widely used in studies on Atlantic salmon and was

therefore chosen to run our analyzes (Brun 2011, Michielsens & McAllister 2004, Prévost

& Chaput 2001).

Recruitment was modelled with a log-normal distribution where ᅷօ corresponded

to the mean of recruitment, and ᅽ to the precision parameter (inverse of variance) of

recruitment: Ԏ ∗օ ∼ ԁԞԖ� (log (ᅷօ) � �ᅽ ) � (Eq. 2.3)

A simple Beverton-Holt model was considered as the null model (ℬℋnull) because

the question addressed here was whether aggregation affected the stock-recruitment

dynamic. Therefore, ᅷօ in the Eq. 2.3 corresponded to:ᅷօ � Ԑ × Ӻ∗օ� � �∗�լ (Eq. 2.4)

where ԙ is the considered year, Ԑ the parameter for density-independent contribution to

fish mortality, 1լ the density-dependent contribution to fish mortality.

Effects of aggregation were computed in two ways. First, the direct effect of ag-

gregation on recruitment, i.e. mean (ᅷօ), was assessed by elevating yearly aggregation

(noted ԅօ) at power Ԡ (Eq. 2.5): ᅷօ � Ԑ × Ӻ∗օ� � �∗�լ × ԅ ֌օ � (Eq. 2.5)

Second, the effect of aggregation on recruitment variability, i.e. dispersion parameter

(ᅽ , inverse of the variance), was estimated by elevating yearly aggregation (noted ԅօ) at

power ᅱ (Eq. 2.6): ᅽ � ᅮ × ԅ �օ � (Eq. 2.6)

where, ᅮ is the intercept of ᅽ calculation. A complete model, noted ℬℋcomplete, with

effects of aggregation on mean (Eq. 2.5) and variance (Eq. 2.6) was fitted. In addition,

semi-models were also fitted with an effect either on ᅷօ or on ᅽ , by replacing ᅷօ with

Eq. 2.5 (ℬℋ�) or ᅽ with Eq. 2.6 (ℬℋ�), respectively. Effects of spatial aggregation were
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modeled through multiplicative forms because an additive integration was biologically

unrealistic, co-variables can only modulate recruitment (Aas et al. 2011, Iles 1994).

All models in this study were fitted under a Bayesian framework using hmc sampling

applied by Stan through the R package RStan (Carpenter et al. 2016, Stan Development

Team 2017). Little informative prior distributions were applied to parameters Ԑ, Ԁ, Ԡ,

and ᅱ (Table. 2.2, Prevost 2003). Gamma distributions, which are more informative,

were chosen for scale parameters ᅮ and ᅽ (Gelman et al. 2014, Prevost 2003). For

each model, four independent chains were run to save 6,400 iterations after a warm-up

of 2,000 iterations (per chain), and with a thin of 5. As all Bayesian models, chain

convergence was assessed by visual checking, and parameter convergence was assessed

with the Gelman & Rubin (1992) scale reduction factor: r̂. Prior actualization by data

was evaluated by comparing parameter posteriors and priors. Simulations of recruitment

with the parameter estimates were made to test the accuracy of parameter estimates.

A sample of 2,000 values over the 6,400 of each parameter estimates were extracted for

each model. From these samples, 2,000 estimates of recruitment were computed for each

value of stock to ensure the quality of the model. Parameter statistics are subsequently

reported using median and Credible Interval at 95 % (Ӹ�95%). Assessment of models

was done with the Widely Applicable Information Criterion (waic, Vehtari et al. 2017),

a relevant criterion to rank stock-recruitment models (Subbey et al. 2014, Wang & Liu

2006) under a Bayesian framework.

Table. 2.1: Equations of the mean and variance of the four hierarchical models linking
the yearly recruitment (Ԏ ∗օ ) of the Atlantic salmon population to the spatial aggregation
of nests (ԅօ). ℳ0 was a null model. ℳ1 was a model with a simple (parameter ᅫ) and
a quadratic efect (parameter ᅬ) of aggregation on the mean of the recruitment (ᅷօ).ℳ2 was a model with an efect of aggregation on the variance of the recruitment (ᅼօ,
parameter ᅭ). ℳ3 was a complete model combining ℳ1 and ℳ2.
Model Mean Variance Distributionℳ0 ᅷօ � intercept ᅼօ � intercept฀ Ԏ ∗օ ∼ � (ᅷօ� ᅼօ)ℳ1 ᅷօ � intercept � ᅫ × ԅօ � ᅬ × ԅ 2օ ᅼօ � intercept฀ Ԏ ∗օ ∼ � (ᅷօ� ᅼօ)ℳ2 ᅷօ � intercept ᅼօ � intercept฀ � ᅭ × ԅօ Ԏ ∗օ ∼ � (ᅷօ� ᅼօ)ℳ3 ᅷօ � intercept � ᅫ × ԅօ � ᅬ × ԅ 2օ ᅼօ � intercept฀ � ᅭ × ԅօ Ԏ ∗օ ∼ � (ᅷօ� ᅼօ)
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Table. 2.2: Summary of the main parameters and their prior distributions. ParameterԀ corresponds to the threshold biomass which indicates the carrying capacity when Ԁ is
multiplied by Ԑ, the slope at origin. Parameters ᅽ and ᅮ are involved in the modelisation
of the precision of Beverton model. Parameters Ԡ and ᅱ correspond to the efect of
aggregation on the mean and the precision of Beverton model.

Parameter Deinition Prior distributionԐ Eq. 2.4 and Eq.
2.5

ԁԞԖ���� �)Ԁ Eq. 2.4 and Eq.
2.5

ԁԞԖ���� ��)ᅽ Eq. 2.4 Γ������ ���)Ԡ Eq. 2.5 ���� ��)ᅮ Eq. 2.6 Γ������ ���)ᅱ Eq. 2.6 ���� ��)
2.2.4 EFFECTS OF POPULATION SIZE ON MEAN DENSITY AND AGGREGATION OF NESTS

We also tested if the aggregation of nests (ԅօ) and the mean density of nests (Ԝօ)
was dependent of the anadromous population size (ԃpop) using a linear regression (Eq.

2.7). Aims of this model were to assess i) whether aggregation solely reflects or not the

anadromous population size so as to not put the same information in the stock-recruit-

ment models twice (stock being dependent of ԃpop), and ii) to know how aggregation

varies with ԃpop. ᅷօ � ԘԝԣԔԡԒԔԟԣ � ᅰ × ԃpop�Ԝօ or ԅօ ∼ � (ᅷօ� ᅼ) � (Eq. 2.7)

Weakly informative priors were applied to parameters ԘԝԣԔԡԒԔԟԣ, ᅰ, and ᅼ with a

Cauchy distribution (���� ���), Gelman et al. (2008)). Four independent chains were

fitted to save 6,400 iterations after a warm-up of 2,000 iterations, and with a thin of

5 values. The model was fitted to data of mean density and aggregation under each

threshold length. We evaluated the confidence of whether the effect is positive or negative

by calculating the proportion of the posterior values with a different sign as the median

(noted "Bayesian ԟ֑ռև֐ր").
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2.3 RESULTS

2645 nests were reported in the Nivelle river from 1984 to 2014. The yearly number of

nests varied from 20 in 1985 to 233 in 1993, with approximately 80 nests per year over

the last decade (Figure. 2.2). The number of adults varied from 72 individuals in 2009

to 516 in 1993 leading the adult density to fluctuate between 0.0013 adults/m2 in 2009

and 0.0251 adults/m2 in 1986. The stock varied between 3.34 eggs/m2 in 2008 and 40.84

eggs/m2 in 1990 (Figure. 2.6). Recruitment was steadier than stock, ranging between

0.04 juveniles/m2 in 2006, and 0.28 juveniles/m2 in 2012.
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Figure. 2.2: (a) Plot of the yearly number of nests (N = 32 years and 2645 nests). (b)
Yearly aggregation value (patchiness) as a function of the yearly number of nests (N =
32 years). Triangles indicate years before the opening of Olha, a dam equipped with a
ish pass in 1992, and dots years after the opening.

2.3.1 AGGREGATION OF NESTS

Concerning aggregation of nests (patchiness), we displayed only results obtained with

a threshold length of 50 m because 1) other threshold lengths provided qualitatively

similar results (Appendix S2) and 2) previous studies found salmon fry disperse within

a range of distances close to 50 m (Beall 1994, Einum & Nislow 2005). Therefore, we
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decided that 50 m was a good candidate for resolving the trade-off between the num-

ber of patches and their lengths. The threshold length of 50 m led to 93 new patches

(average length = 255.33 m, minimum length = 7.00 m, maximum length = 2929.60 m,

Appendix S1: Table. 2.6).

Aggregation of nests (patchiness) was always higher than the reference value (equals to

one) varying between 4.20 in 1986, and 27.46 in 2012 (Figure. 2.2). In addition, aggre-

gation value was not linearly dependent of the number of nests (Figure. 2.2, Spearman:ԡℎԞ � �����, Ԉ֑ռև֐ր � ����, ԟ֑ռև֐ր � ����, ԃ � ��). But, a negative trend was

found between aggregation and the number of anadromous individuals (ᅰ � −������,Ӹ�95% � [−������� ������], Bayesian ԟ֑ռև֐ր � ���6, Figure. 2.3), while mean density

of nests within occupied patches increased significantly as the number of anadromous

individuals increased (ᅫ � ������, Ӹ�95% � [������� ������], Bayesian ԟ֑ռև֐ր � ����,

Figure. 2.3). No significant relationship was found between aggregation and flow (av-

erage, maximum, minimum, range or standard deviation) between September and De-

cember. Years with lowest aggregations were always before 1992, even though the yearly

nest counts were not always lower and the available river habitat increased in 1992 due

to the opening of Olha (Figure. 2.2). The proportion of used patches over available

patches increased with the yearly number of nests, and the slope was steeper before

1992 than after, with a median estimated at ������ (Ӹ�95% � [������� ������]) against������ (Ӹ�95% � [������� ������], Figure. 2.4).

2.3.2 EFFECTS OF AGGREGATION ON POPULATION RECRUITMENT

Accounting for population stock and model selection The four models of Beverton-Holt

taking the population stock into account (ℬℋnull, ℬℋ�, ℬℋ� and ℬℋcomplete) had a

lower waic than models without the stock (ℳ0, ℳ1, ℳ2, ℳ3 - Table. 2.3) indicating

models of Beverton-Holt were therefore better than models without the population stock

(lowest waic is better). The model ℬℋ� taking the population stock and an effect of

aggregation on the variance of the population recruitment displayed the lowest waic, and

was thus the best of all models tested in this study. Furthermore, the second best model

was a model with a non-significant effect of the aggregation on the mean: ℬℋcomplete

(Ԡ � −����6�, Ӹ�95% � [−���6��� ������], ����� % of Ԡ estimates lower than �). Finally,

the ranking of the best model was similar among each group of models. The model with

just the effect of aggregation on the variance was the best model among those without

the population stock. Because all models laid consistent results (Table. 2.3), we only
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Figure. 2.3: Aggregation (patchiness) and mean density of nests as a function of the
yearly number of anadromous salmon of the Nivelle. Triangles indicate years before the
opening of Olha, a dam equipped with a ish pass in 1992, and dots years after the
opening.

present the results of the best model −ℬℋ�− in the rest of this section.

Efects of aggregation on demographic processes The ℬℋ� model laid out a significant

effect of aggregation on ᅽ , parameter ᅱ being estimated at ᅱ � ���� (Ӹ�95% � [����� ����]
with 2.09 % of negative estimates of ᅱ over the 6,400) indicating a positive effect of ag-

gregation on precision, corresponding to a decrease in variability (precision is the inverse

of variance) when aggregation (ԅօ) increased (Figure. 2.5). According to parameters es-

timated with ℬℋ� (best model), a two- or five-fold increase in aggregation did not have

a direct effect on recruitment (median = 0.11 for each aggregation values, Table. 2.4),

but really decreased the variability of recruitment. The range between lower and upper

boundaries of the credible interval of recruitment diminished from 0.53 at minimum of

aggregation, to 0.28 at twice times the minimum of aggregation, and 0.19 at five times

this aggregation value (Table. 2.4).

The parameter Ԑ of fitted Beverton-Holt models (density-independent mortality) was

estimated at Ԑ � ���� (Ӹ�95% � [����� �6��6]) for ℬℋnull, and Ԑ � ���� (Ӹ�95% �[����� �6���]) for the best model with aggregation (ℬℋ�). Parameter Ԁ (inverse of

the density-dependent mortality) was estimated at Ԁ � ���6 (Ӹ�95% � [����� ����]) for
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Figure. 2.4: Yearly proportion of patches used as a function of the yearly number of
nests of the Nivelle. The yearly proportion of used patches corresponded to the number
of patches where at least one nest was found divided by the number of patches in the
available zone. Triangles indicate years before the opening of Olha, a dam equipped
with a ish pass in 1992, and dots years after the opening.

ℬℋnull, and Ԁ � ���� (Ӹ�95% � [����� ����]) for ℬℋ� . These two parameters (Ԑ andԀ) allowed to compute the carrying capacity: Ԑ × Ԁ estimated at ���� juveniles/m2

(Ӹ�95% � ����� ���6]) for ℬℋnull and ���� juveniles/m2 (Ӹ�95% � [����� ����]) for the

best model with aggregation (ℬℋ� , Figure. 2.5). There was no significant difference

between the two carrying capacities (��� of differences between all the 6,400 estimates

were lower than 0). With the best model (ℬℋ�) which took into account the aggregation

effect on recruitment variability, the majority of yearly recruitment was well estimated,

observed points being inside or close to the 95% credibility interval of estimates (Figure.

2.5).

Efects of the opening of Olha dam To test for the potential effect of the opening of

Olha dam, we compared residuals of stock-recruitment models before and after 1992, for

the null model without aggregation (ℬℋnull) and the best one (ℬℋ�). No particular

pattern was graphically detected for residuals of both models before and after 1992

(Figure. 2.6). In addition, no significant difference in the yearly average residuals before

and after the opening of Olha was detected (Wilcoxon: Ԍ � �6, ԟ֑ռև֐ր � ����, same

results for ℬℋnull and ℬℋ�).
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Table. 2.3: Summary of the parameter estimates of the four models (ℳ0, ℳ1, ℳ2,ℳ3) explaining recruitment by the yearly aggregation of nests (patchiness).

Model WAIC ᅫ ᅬ ᅭℳ0 −����6� - - -ℳ1 −����6� ������ ± ������ −������ ± ������ -ℳ2 −������ - - −������ ± ������ℳ3 −���6�� �����6 ± ������ −������ ± ������ −������ ± ������Ԡ ᅱ ᅮ Ԑ Ԁ
Value Test ≤ � Value Test ≤ � Value Value Valueℬℋnull −���� - - - - ���� 6��� ���6ℬℋ� −���� ������ ����� - - ������ �����6 ���6��ℬℋ� −���� - - ������ ����� ������ 6.4497 ������ℬℋcomplete −���� −������ ����� ������ ����� ������ 6���6� ������

Notes: ᅫ was the simple efect and ᅬ was the quadratic efect of aggregation on the mean of the yearly
recruitment. ᅭ was the simple efect of aggregation on the variance of the yearly recruitment. Results
for the four Beverton-Holt models (ℬℋnull, ℬℋ�, ℬℋ� , ℬℋcomplete): the null model with no efect of
aggregation, the model including the efect of aggregation on recruitment mean only, the model including
the efect of aggregation on recruitment variance only, the model including the efect of aggregation
on both recruitment mean and variance. The value corresponds to the estimated mean of parameter,
and the column ”test” to the percentage of parameter values which were ≤ � to test the parameter
signiicance.

Table. 2.4: Efects of aggregation increase on the recruitment (median with credible
interval at 95 %, and mean) with the best Beverton-Holt model. Recruitment was
computed with the average observed stock in the Nivelle: around 12 eggs per square
meter. The three values of aggregation corresponded to the minimal value of aggregation,
two times this value (around the mean), and ive time this value (around the max).

Aggregation Median Ӹ�95% Mean������ ������ Ӹ�95% � [����−04� ������] ������������ ������ Ӹ�95% � [������� ������] ����6������6� ������ Ӹ�95% � [������� ������] ������
2.4 DISCUSSION

Using stock-recruitment models we demonstrated the effect of the spatial aggregation

of nests on population dynamics in two ways. First, spatial aggregation diminished

the variability of the whole population recruitment, whereas no effect was found on

the average recruitment. Second, aggregation did not modify the stock-recruitment
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Figure. 2.5: (a) Stock-recruitment relationship of the Atlantic salmon population of
the Nivelle river with the best Beverton-Holt model incorporating the efect of nest
aggregation (patchiness) on the recruitment variability. Recruitment was the juvenile
density in the river while the stock was the estimated density of deposited eggs. Black
squares indicate the observed values of recruitment while black points and bars indicate
the estimates of the model and corresponding credibility interval at 95 percent. (b) Plot
of the recruitment of the Atlantic salmon population of the Nivelle river as a function
of the aggregation (patchiness: ԅօ) acting on the variance. This plot displays the neg-
ative efect of aggregation on the recruitment variability within the stock-recruitment
relationship.

relationship of the population, and the effects of spatial aggregation on the recruitment

variability remained similar whatever the stock level. Moreover, we found a negative

trend of anadromous population size on aggregation of nests, while the mean density of

nests increased with population size. Altogether, these results suggest that i) aggregation

is a way to dampen environmental stochasticity, and ii) salmon females choose their

breeding sites on habitat quality and risk of disturbances.

2.4.1 CONSTRAINT OF DAMS

The most notable environmental change for the 31 years, the opening of Olha dam,

did not impact stock-recruitment relationships. This opening in 1992 multiplied the

length of river accessible to salmon by 1.5 and the available river habitat for spawning

by four (Figure. 2.3). The surprising lower aggregation before than after 1992 could

be explained by the more homogeneous distribution of nests among accessible spawning
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Figure. 2.6: Plot of the residuals of the stock-recruitment relationship (Beverton-Holt
model) of the Atlantic salmon population of the Nivelle. The null model was the modelℬℋ�, a Beverton-Holt model without aggregation (patchiness). The best model was
the model ℬℋ� , a Beverton-Holt model with the aggregation of nests acting on the
recruitment variance. Recruitment was the juvenile density in the river while the stock
was the estimated density of deposited eggs. Bars indicate the corresponding credibility
interval at 95 percent.
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sites before 1992. This is consistent with the stronger proportion of used patches found

before than after 1992. In addition, the increase of available breeding sites resulting

from the dam opening did not seem to modify stock-recruitment relationship. This was

supported by the absence of a particular pattern of stock-recruitment residuals, as well

as the non-significant difference in the yearly average residuals before and after 1992.

Altogether, this indicates that females loosened the potential negative pressure of the

dam, by spreading their nests on all sites available near the dam and not necessarily the

best ones (Tentelier & Piou 2011).

The upstream part of the Nivelle is probably the zone supporting the major part of

the population recruitment after the dam opening. Indeed, in years of strong aggrega-

tion, nests tended to be found mostly in the upstream part of the Nivelle (Figure. 2.1),

probably more suitable for salmon (Dumas & Haury 1995), with cooler water, less pol-

lution and larger areas of habitat suitable for juveniles (Brun 2011), enhancing survival

of juveniles. Therefore, females probably preferentially settle in this zone of the Niv-

elle. Another impassable dam corresponding to the upper limit of the available zone for

salmon in the Nivelle may constrain the distribution of anadromous breeders (Tentelier

et al. 2016). This additional constraint is probably another explanation for the lack of

difference between recruitment before and after the opening of Olha, the breeders being

still constrained.

2.4.2 ORIGINALITY OF THE METHOD AND NECESSITY TO ACCOUNT FOR STOCK

The originality of this work lies in the temporal and spatial scales of analysis. By linking

spatial aggregation of nests to the whole population recruitment over a 31-year period,

our results indicate that local aggregation does not seem to directly affect the average

population recruitment. These results may challenge the transfer of local mechanisms

such as density-dependence to higher operating scales (Einum & Nislow 2005, Einum

et al. 2008; 2006, Foldvik et al. 2010). Indeed, generalizing such local results to the

whole population may lead to erroneous conclusions or misinterpretations when density

or habitat quality varies along a river (Einum & Nislow 2005, Gauthey et al. 2017). In

addition, although stock-recruitment models are commonly used (Govoni 2005), integra-

tion of co-variables assessing local distribution is rarely done (Iles 1994, Jonsson et al.

1998, Michielsens & McAllister 2004, Rivot et al. 2004, Subbey et al. 2014.)
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Although the population recruitment is firstly dependent on the stock (Prévost &

Chaput 2001), we tested the necessity for accounting for the stock or not when testing

aggregation effect on the recruitment. Linear models with direct effects of aggregation on

recruitment were poorer than stock-recruitment models indicating the necessity to take

the population stock into account. However, both methods assessing the aggregation

effects on the whole population recruitment provided consistent results.

2.4.3 EFFECTS OF AGGREGATION ON DEMOGRAPHIC PROCESSES AND LINK WITH

BREEDING SITES SELECTION

A major result of this study is that increasing local aggregation did not decrease the

population recruitment. The first explanation of this result is that aggregation occurs

in the best-breeding sites in terms of habitat quality. In this way, even if the density-

dependent competition is strong, the quality of the sites may still sustain an average

recruitment. This explanation is consistent with previous results found by Tentelier

et al. (2016), where breeders had a better reproductive success in term of produced off-

springs when settled in best-breeding habitats. Indeed, breeding in best quality sites

enables sustaining a good survival by compensating for density-dependent competition

when individuals are able to evaluate habitat quality and this quality matches with cues

(Fretwell & Lucas 1969, Hendry et al. 2001, Schlaepfer et al. 2002). The recruitment is

then sustained by this choice of the best-breeding sites, which is in accordance with the

ideal distribution already found for salmon (Falcy 2015, Hendry et al. 2001).

Alternatively, the lack of decrease in average recruitment with increasing aggregation

might also be due to the already high average juvenile density. In this case, aggregation

does not likely matter because the population is already at carrying capacity, a situation

in which each individual undergoes a maximum density of neighbors, whatever its loca-

tion. Estimated parameters of the Beverton-Holt model gave a carrying capacity (������
juveniles/m2) much lower than the density observed for 14 years of the time series. In

addition, the median of the threshold biomass, 1լ , was estimated at ����� eggs/m2 sug-

gesting that density-dependent mortality was exacerbated at stocks exceeding this value.

Then, local competition between juveniles was very intense for most years. In addition,

the asymptotic shape of the stock-recruitment relationship clearly advocates for this

hypothesis. At low stock levels, lower than the thresold biomass, density-compensation

is low. Therefore at stock levels exceeding the threshold biomass, the effects of spatial

aggregation through local competition could reduce whole population recruitment at the
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margin, making this effect undetectable or hardly detectable.

Aggregation of nests increased at low adult density, something expected under ideal

distributions. The negative trend between the number of breeders and the aggregation

of nests is consistent with the negative effect of aggregation on the number of effective

breeders at low aggregation found by Bacles et al. (2018) in the same population. Our

results indicate that when few individuals are present they all fit in the best patches,

whereas they have to spill out to lower quality patches when density increases. In this

way, first arrival breeders can aggregate and secure best sites (Falcy 2015).

Besides the selection of breeding sites on habitat quality, we found that the recruit-

ment variability was reduced by nest aggregation indicating that aggregation buffers

the effect of environmental stochasticity on recruitment. Recruitment variability results

from density-independent factors such as environmental stochasticity leading to local

perturbations such as scouring or emersion (Gauthey et al. 2017, Malcolm et al. 2004).

Thus, our results suggest Atlantic salmon females assess environmental risk when select-

ing breeding sites like other salmonids (Gauthey et al. 2017). Indeed, the effects of these

perturbations may be reduced by females selecting temporally stable breeding sites or

sites where effects should be dampened such as sites with low temporal flow variability

(Moir et al. 2006, Soulsby et al. 2012), high shear stress (Gauthey et al. 2017, Moir et al.

2004), or with high intra-gravel flow (Geist & Dauble 1998). Unfortunately, no data

are available to predict perturbation occurrence along the Nivelle river, and there is no

clear longitudinal gradient of flow predictability in rivers in general (Larned et al. 2011).

Although aggregation cannot be linked with such perturbations, this highlights a lack

of knowledge on the role and selection of breeding sites by females; a topic that deserves

attention.

In addition to the effects of aggregation on demographic processes, aggregation of

nests may also modify genetic diversity within populations (Bacles et al. 2018, Falcy

2015, (Lara-Romero et al. 2016, Tentelier et al. 2016, Winandy et al. 2017)). Indeed,

some individuals could have most of their nests destroyed within aggregates due to

scouring or nest superimposition, future offsprings of conspecifics being able to colonize

empty habitats (Gharrett et al. 2013). Finally, strong aggregation should intensify local

competition, thereby steepening selection gradients, a corollary of which is skewed re-
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productive success and a low effective number of breeders (Chesson & Neuhauser 2002,

Ives 1988, Murrell et al. 2002, Rejmánek 2002, Tilman 1994). Such effects are ripe areas

for future investigation and would require a time series of both genetic and spatial data,

which might be available in model populations (Pemberton 2008).
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HIGHLIGHTS OF CHAPTER 2▶ Spatial aggregation of salmon females leads to spatial aggregation of their

nests.▶ Spatial aggregation of nests may diminish the recruitment by exacerbating

the density-dependent mortality, but may also enhance the stability of the

recruitment if females are aggregated in best-spawning sites.▶ Spatial aggregation of nests was implemented within stock-recruitment mod-

els and improved their estimations.▶ The average recruitment was not impacted by the spatial aggregation of

nests but its variability decreased as aggregation increased.▶ Effect on the recruitment variability suggests that early arriving or dominant

females select the best-spawning sites and forced other females to aggre-

gate in other sites.

SUPPLEMENTARY---S1

DATA COLLECTION OF EGGS AND JUVENILES

Eggs deposition is routinely estimated by the Environmental Research Observatory

(ERO) on Diadromous Fish in Coastal rivers (DiaPFC, ero diapfc:

https://www6.inra.fr/diapfc) from the number of anadromous females in the Nivelle and

their number of sea winters affecting their fecundities. Anadromous females are caught

at two dams equipped with fish passes (Uxondoa dam and Olha dam, at 12 km and 16.7
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km from the river mouth). Probability of capture taking into account the number of

sea winters, was assessed at 0.88 for one sea winter, and 0.82 for multiple sea winters

(Servanty & Prevost 2016).

Young of the year (0+) are caught by standardized procedure of electrofishing

(Marchand et al. 2017). Until 2005, the data collection procedure consisted of the

successive removal sampling method. This method consists of multiple passages (2 or

3 in most cases) on each sampling site (Nsite = 12), catch probability being estimated

at 0.52, 0.38, and 0.26 for the first, second, and third passage (Servanty & Prevost

2016). Since 2003, another method has been used, based on the number of juveniles

fished during 5 min of effective fishing on favorable habitats for them, i.e. abundance

index (Prévost & Baglinière 1995). This method consists of a single pass in favorable

habitats for juveniles (Nsite = 22, Table. 2.5) for 5 min of effective fishing (i.e. of electric

field application in the water) with a portable electrofishing device, and was assessed

by Dauphin et al. (2009). Approximately 2 km of suitable habitat for juveniles (25 km

available for salmon) were sampled along the river (Table. 2.5), the entire width of the

river being sampled at each sampling sites. In this way, the total suitable area which

was sampled corresponded to more than 12 000 m2 over the 56 575 m2 (more than 21 %)

available for the salmon. A relationship was built to estimate the juvenile density over

the river from the abundance index determined among sampling sites (Brun et al. 2011,

Dauphin et al. 2009, Servanty & Prevost 2016). The relation between the abundance

index and the estimated juvenile density does not vary as the length of sample sites

changes (Servanty & Prevost 2016). In 2003 and 2004, the two methods were carried

out, allowing the building of an abacus based on the correspondence between the two

methods (Brun et al. 2011). As indicated by Brun et al. (2011), modification of the

method did not change the quality of the estimations, and the current used sampling

method allows to identify yearly variations of juvenile abundance. Overdispersion of

abundance estimations, due to the probability of capture varying between sites and the

non-random distribution of fry, was taken into account by modelling the fry density

with Negative Binomial distribution (Brun et al. 2011, Dauphin et al. 2009, Servanty &

Prevost 2016).
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Table. 2.5: Average sampled length in the 22 sampling sites in the Nivelle. At each site,
Atlantic salmon juveniles were caught during 5 min of efective electroishing over the
entire width of the river (around 10 m). For each site, the average sampled length is
displayed as well as the sampled area. Area values displayed with a * are approximate
values, no juveniles being caught at these sites. At the opposite other values are exact
measures, corresponding sites are those where juveniles are caught on the main stream
and the main tributary.

Site River / tribu-
tary

Site name Average sampled length (m) Sampled area (m2)

01 Main stream Pont romain
Ascain

50 500*

02 Main stream Ascain 40 449
03 Main stream Zumabia 50 341
04 Main stream INRA 140 462
05 Main stream Olha 130 1 462
06 Main stream Ile d’Amotz 110 629
07 Main stream Pont romain

Amotz
90 777

08 Main stream Ustagabea 100 858
09 Main stream Le couillut 120 479
10 Main stream Betriena 80 523
11 Main stream Grand chêne 100 68
12 Main stream Conluence

Sorrimenta
140 1 138

13 Main stream Petit chêne 100 458
14 Main stream Moulin Zahara 110 1 542
15 Main stream Aval Darguy 80 660
16 Tributary -

Sorrimenta
Sorrimenta 170 510*

17 Tributary -
Opalazio

Opalazio 200 400*

18 Main tributary
- Lurgorrieta

Lyonnaise 90 230

19 Main tributary
- Lurgorrieta

Ohaldea 100 325

20 Main tributary
- Lurgorrieta

Conserverie 130 931

21 Zone not acces-
sible

Amont Darguy 190 1 330*

22 Zone not acces-
sible

Amont Harri-
eta

200 1 400*

Total 2 520 15 471
Total in ac-
cessible zone

2 130 12 741

DIMINISHING NUMBER OF STRETCHES

For each of the 624 river stretches (Ԛ), the number of years from 1984 to 2015 when

at least one nest was found in this stretch was computed (Ԏ��). The probability ᅲֆ
that no nest has been found was independently estimated for each initial stretch from a

Binomial distribution: Ԏ�� ∼ ℬ�ᅲֆ� ��). If the ᅲֆ was lower than 0.05, the stretch Ԛ was

considered as a "blank stretch". Each blank stretch, or each succession of blank stretches

was defined as a blank zone if this zone was longer than a threshold length (Figure. 2.7).

Five threshold lengths were tested: 20, 50, 100, 200, or 500 m. Stretches not included
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in blank zones and not separated from each other by blank zones are grouped together.

For each threshold length, the final number of new zones was respectively equal to: 164,

93, 43, 11, and 5 (Table. 2.6). Initial stretch definition with 624 stretches was noted

as threshold length "00". Logically, when the threshold length increases, the number of

new zones decreases and the average length of zone increases (Table. 2.6).

Table. 2.6: Average, minimum, and maximum length of new patches for each threshold
length.

Threshold
(m)

Average
Length
(m)

Min
Length
(m)

Max
Length
(m)

Number
of new
patches

00 100.19 6.00 1 854.50 624
20 144.79 7.00 1 922.00 164
50 255.33 7.00 2 929.60 93
100 552.22 24.00 3 980.70 43
200 2 158.69 242.00 5 014.00 11
500 4 749.12 1 315.50 12

640.10
5

SHEPHERD'S STOCK-RECRUITMENT MODEL

As a preliminary approach, Shepherd (1982) stock-recrutment model was used (Eq. 2.8).

This model is versatile and can reproduce stock-recruitment curves of Beverton-Holt,

Cushing, or Ricker through the parameter ᅬ. Advantage of this model is thus the

no-choice a priori of the curve shape: data drive the curve. But, the model has one

additional parameter compared to Beverton-Holt. With the Shepherd model, the density

of juveniles (Ԏ ∗օ ) as a function of egg density (Ӻ∗օ ) for the year ԙ was:ᅷօ � Ԑ × Ӻ∗օ� � (�∗�լ )� �
Ԏ ∗օ ∼ ԁԞԖ� (log (ᅷօ) � �ᅽ ) � (Eq. 2.8)

Spatial aggregation of year ԙ (patchiness noted ԅ ) was added in the same way as
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Figure. 2.7: Scheme of the building of new stretches. According to the nests found over
the study period, each stretch had a theta probability that at least one nest was found. If
this probability was lower 0.05, the strech was deined as ”blank” stretch. Each ”blank”
stretch or row of ”blank” stretches longer than a threshold length was considered as
”blank” zone. All stretch between ”blank” zone were grouped together.

for Berverton: ᅷօ � Ԑ × Ӻ∗օ� � (�∗�լ )� × ԅ ֌օ �ᅽ � ᅮ × ԅ �օԎ ∗օ ∼ ԁԞԖ� (log (ᅷօ) � �ᅽ ) (Eq. 2.9)

Prior distributions of Shepherd were the same as those used for Beverton; a Log-

Normal distribution was used for ᅬ ∼ Log� ��� �).
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SUPPLEMENTARY --- S2

NEST COUNTS, AND AGGREGATION VALUE

Aggregation value (patchiness) of nests varied between 2.24 (upper than reference value

of 1), in 1984 with threshold lengths of 200 m and 500 m, to 27.46 in 2012 with a threshold

length of 50 meters (Figure. 2.8). Increasing of threshold length implied a decrease of

aggregation (Figure. 2.8, Anova Type II: ӹԕ � �� ӻ֑ռև֐ր � ������ ԟ֑ռև֐ր � ����), the

number of zones decreasing too. As noted in the main document, aggregation values

were higher for a threshold length of 50 m.

The year with lowest nest count (1985), the year with highest nest count (1993), and

2014 (recent year with small residuals with Beverton-Model) were chosen to illustrate

the link between spatial distribution of nests, threshold length, and aggregation value

(Figure. 2.9). In 1985, aggregation values were similar for lengths of 200 and 500 m

(2.37), the number of used zones and total zones was similar between 200 and 500 m

(two and four zones - Figure. 2.9). Although number of nests was higher in 1993 (233

against 79 in 2014 - Figure. 2.9), aggregation in 2014 was higher than aggregation in

1993 regardless the threshold lengths. If, aggregation had been assessed by the mean

distribution in used stretches (number of nests divided by number of used stretches),

the values would have been 1.72 in 2014, and 2.33 in 1993.

STOCK-RECRUITMENT MODELS

Beverton-Holt with all threshold lengths

Waic of the 48 models with aggregation ranged from - 93.9 to - 88.5 (Figure. 2.10). For

complete models (effect on the mean and variability), 19 over 36 were more efficient than

the "null model" (with no aggregration) whose waic was equal to - 90.4. No semi-model

including effect of aggregation on the mean was more efficient than the "null model",

while all the six semi-models with effect only on variability were more efficient. Among

the 15 best models, 11 were complete models, but the three best were semi-models with

aggregation affecting only the variance of recruitment around the stock-based prediction

(Table. 2.7).

Seven of fifteen best models were fitted with aggregation effect on ᅽ computed under a

threshold length of 50 m (ԁ� � ��). The two best models were the semi-models with

aggregation under the threshold length of 50 m and 200 m for ᅱ (ԁ� � �� and ԁ� � ���)

and with no effect on the mean.
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Figure. 2.8: Aggregation value (patchiness) of nests as a function of the yearly nest
count, and grouped by threshold length (N = 32 years for each threshold length). Thresh-
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Figure. 2.9: Aggregation value (patchiness) of nests as a function of the threshold
length for years 1985 (with the lowest number of nests), 1990 (with the highest number
of nests), and 2014 (recent year). For each year, the number of nests found, and the
number of stretches (of the 624 initial stretches) where at least one nest was found were
displayed below the plot.
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Complete models (best was ranked 4) exhibited no significant aggregation effect

on the average recruitment (for the model 4: Ԡ � −���� [−���6� ����], Table. 2.7) with

between 36 to 79 % of Ԡ estimations lower than � (over the 6,400 parameter estimations).

The 10 best models (complete and semi-models) laid out significant positive effect of

aggregation on precision. 2.1 % (model) and 1.9 % (model 4) of the 6,400 ᅱ estimations

were evaluated lower than 0.

90

92

94

0 10 20 30 40 50

Model rank

−
W

A
IC

Effect Null 2 effects Effect on mu Effect on tau

Figure. 2.10: Waic values obtained for the Beverton-Holt models with aggregation
efects on ᅷ (parameter Ԡ), efects on ᅽ (parameter ᅱ), and both efects (parameters Ԡ
and ᅱ).
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Table. 2.7: Table of simulations obtained for the Beverton-Holt models with aggregation efects on ᅷ (parameter Ԡ), efects onᅽ (parameter ᅱ), and both efects (parameters Ԡ and ᅱ). ԁ� and ԁ� were the threshold length used to compute the patchiness
applied on parameters ᅷ and ᅽ . The value corresponds to the estimated mean of parameter, and the column test to the percentage
of parameter value ≤ � in %.

Rank Length ᅷ Length ᅽ waic Ԡ ᅱ ᅮ Ԑ Ԁ
Value Test ≤ � Value Test ≤ � Value Value Value

null - - - 90.4 - - - - 1.95 6.88 0.26
01 - 50 - 93.9 - - 0.71 02.09 0.54 6.45 0.24
02 - 200 - 93.9 - - 1.50 01.69 0.51 6.06 0.27
03 - 20 - 92.8 - - 0.61 02.77 0.70 7.99 0.24
04 200 50 - 92.7 - 0.28 79.66 0.75 01.64 0.49 7.32 0.25
05 500 50 - 92.4 - 0.29 76.36 0.68 02.09 0.56 6.28 0.28
06 200 200 - 92.4 - 0.23 76.50 1.52 02.11 0.51 7.53 0.28
07 500 200 - 92.3 - 0.24 73.39 1.40 02.11 0.56 7.23 0.32
08 20 50 - 92.1 - 0.07 67.22 0.73 01.78 0.51 8.16 0.24
09 00 200 - 92.0 - 0.06 66.56 1.45 02.16 0.54 7.61 0.28
10 - 100 - 92.0 - - 0.71 04.55 0.68 6.64 0.27
11 100 50 - 91.9 - 0.04 57.56 0.73 02.22 0.52 7.74 0.25
12 20 200 - 91.8 - 0.06 65.81 1.48 02.44 0.53 7.76 0.26
13 00 50 - 91.8 - 0.02 53.55 0.68 02.44 0.56 6.70 0.26
14 50 200 - 91.7 0.00 49.56 1.44 02.73 0.56 7.98 0.26
15 200 20 - 91.6 - 0.27 79.03 0.66 02.77 0.65 7.46 0.26
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Shepherd with all threshold lengths

Shepherd models displayed waic ranging from -92.3 to -86.1 (Figure. 2.11). The two

best models with aggregation were very closed to the waic of the null one. Among

the fifteen best models, all exhibited a significant positive value of the parameter Ԡ
(effect on variability) as Beverton models (Table. 2.8). The ᅬ parameter of the model

distinguishes the type of curve: Cushing (ᅬ � �), Beverton-Holt (ᅬ � �), and Ricker

(ᅬ � �). All models displayed parameter ᅬ with a mean around 1.1. This value is closed

to the reference value distinguishing Beverton-Holt model because 1 was incuded in the

confidence interval of the parameter (Figure. 2.12).
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Figure. 2.11: Waic values obtained for the Shepherd models with aggregation efects onᅷ (parameter Ԡ), efects on ᅽ (parameter ᅱ), and both efects (parameters Ԡ and ᅱ).
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Figure. 2.12: Plot of the prior and estimates of ᅬ parameter for the best model of
Shepherd with aggregation.
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Table. 2.8: Table of simulations obtained for the Shepherd models with aggregation efects on ᅷ (parameter Ԡ), efects on ᅽ
(parameter ᅱ), and both efects (parameters Ԡ and ᅱ). ԁ� and ԁ� were the threshold length used to compute the patchiness applied
on parameters ᅷ and ᅽ . The value corresponds to the estimated mean of parameter, and the column test to the percentage of
parameter value ≤ � in %.

Rank Length ᅷ Length ᅽ waic Ԡ ᅱ ᅮ Ԑ Ԁ ᅬ
Value Test ≤ � Value Test ≤ � Value Value Value Value

null - - - 92.3 - - - - 0.54 4.96 1.10 1.11
01 - 50 - 92.1 - - 0.68 02.17 0.56 5.17 1.09 1.11
02 - 200 - 92.1 - - 1.40 02.23 0.56 5.46 0.84 1.06
03 - 20 - 91.2 - - 0.58 03.59 0.74 5.30 1.05 1.11
04 200 50 - 91.2 - 0.36 84.31 0.72 02.00 0.53 4.76 1.29 1.17
05 200 200 - 90.7 - 0.28 78.67 1.38 02.72 0.58 5.25 1.12 1.11
06 20 50 - 90.5 - 0.12 74.17 0.69 02.63 0.56 5.29 1.19 1.16
07 00 50 - 90.4 - 0.04 60.56 0.64 02.61 0.61 5.27 1.21 1.14
08 500 50 - 90.4 - 0.33 78.56 0.64 02.48 0.60 8.53 1.35 1.14
09 200 20 - 90.3 - 0.36 85.11 0.62 03.19 0.69 5.07 1.28 1.17
10 - 100 - 90.1 - - 0.69 04.73 0.70 5.20 1.14 1.11
11 500 200 - 90.1 - 0.28 75.16 1.29 03.69 0.64 5.64 1.10 1.08
12 50 50 - 90.1 - 0.06 64.47 0.67 02.88 0.58 4.91 1.19 1.14
13 00 200 - 90.0 - 0.08 69.05 1.33 03.75 0.62 5.26 1.05 1.09
14 100 50 - 90.0 - 0.10 64.52 0.70 02.11 0.54 5.93 1.25 1.15
15 20 200 - 89.9 - 0.08 67.77 1.32 03.70 0.62 5.89 0.94 1.09
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3.1 CONTEXT

Spatial aggregation may affect recruitment through habitat quality and environmental

stability. In salmon, the timing of arrival, as well as the dominance hierarchy, are factors

modifying habitat choice. In this way, individuals may not necessarily aggregate in best

habitats (Falcy 2015, Hendry et al. 2001). Individuals can assess habitats on the number

of resources or environmental stability (Doligez et al. 2004, Morris 2003). Aggregation

of breeders in breeding habitats increases the density-dependent mortality acting on

juveniles.

Contrasted results at different scales indicate the importance of spatial scales in

population dynamics processes. At the population level, spatial aggregation of nests di-

minishes the recruitment variability without impacting the average recruitment (chapter

2). These results contradict the findings that highlighted local density-dependent mor-

tality and the resulting negative impact on local recruitment (Einum & Nislow 2005,

Einum et al. 2008). These different results at different scales suggest that the interplay

between recruitment and aggregation results in multiscale effects: from nests to the

population. Variability of environment may also exacerbate such effects. For example,
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in the upstream main tributary of the Nivelle, egg survival is lower than in the Nivelle

River because nests are more clogged (Dumas & Marty 2006) which may lead to a higher

negative effect of aggregation.

Rivers are not uniform continuum from their spring to their estuary. Habitat qual-

ity is usually better upstream than downstream (An et al. 2002, Dumas & Haury 1995,

Harding et al. 1999) due to the influence of land use on rivers (Allan 2004). Urbanisation

and farming activities diminish water quality downstream Figure. 3.1. The relationship

between the stock (the number of eggs) and the recruitment (the number of juveniles)

may, thus, vary along river or between river zones (Brun 2011, chapter VI). Some mi-

gratory species such as salmon tend to migrate upstream to find suitable breeding sites

which are patchily distributed along rivers (Finstad et al. 2005). Density of individuals

tends, thus, to increase upstream. Yet, dams or weirs diminish accessibility to upstream

breeding sites to migratory species (Meixler et al. 2009) leading to spatial aggregation

of breeders to vary along a river (Tentelier & Piou 2011).

Aggregation effect on recruitment may vary along a river. In the Nivelle, one

explanation of results at the population level is a possible aggregation in the upstream

zone of the Nivelle which may be of better quality (chapter 2). Dumas & Haury (1995)

found a better water quality in the upstream zone of the Nivelle than in the downstream

zone. A better quality of breeding sites in the Upper Nivelle may lead potential breeders

to spawn in this zone rather than in another zone. Distribution of potential breeders

and their nests within each zone may be different according to the number of potential

breeders within each zone and the quality of available breeding sites. Spatial aggregation

of nests can, thus, be computed separately for each river zone. In addition, by applying a

stock-recruitment model to different zones of the Nivelle, Brun (2011, chapter VI) found

that the upstream one exhibited the highest carrying capacity, whereas the stock of eggs

was the lowest. The results of Brun (2011, chapter VI) suggest a low density-dependent

mortality in the upstream zone of the Nivelle (Upper Nivelle, Figure. I.viii page 26).

The current chapter aims to compare aggregation and the effects of spatial aggre-

gation on stock-recruitment relationships between river zones. Water quality, carrying

capacity, and spatial aggregation can vary among zones, then I hypothesised that effects

of spatial aggregation on recruitment vary among Nivelle network zones. In addition, the
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Figure. 3.1: Scheme of factors varying along a river denoting the heterogeneity that can
exist between river zones.

time-series allow me testing if these effects of spatial aggregation are affected by a dam

opening resulting in the opening of new habitats. I used time-series of stock (number

of deposited eggs), recruitment (number of produced juveniles), and redd mapping to

build a stock-recruitment model accounting for aggregation of nests for each of the three

Nivelle zones.

3.2 METHODS

3.2.1 PARTITIONING OF THE NIVELLE, STOCK-RECRUITMENT DATA AND SPATIAL AG-

GREGATION

The Nivelle can be partitioned in three zones as done by Brun (2011, chapter VI):

i) the "Lower Nivelle" — LN — from the river mouth to the Olha dam; ii) the "Upper

Nivelle" — UN — from the Olha dam to the upstream impassable dam on the main

stream; iii) the "Lurgorrieta", the main tributary (Figure. I.viii). A unique surface,

noted ℎzone, of available and suitable area for juvenile productivity characterises each

Nivelle zone. The surface for the LN corresponds to the total surface available before

the opening of Olha: ℎխկ � ��� ��� m2 (chapter 2, page 65). The Lurgorrieta exhibits

the lowest surface, ℎխ֐֍ւ֊֍֍քր֏ռ � �� ��� m2. Finally, the UN is the best river zone when

considering the suitable and available area: ℎնկ � ��� ��� m2. The total of these three

surfaces corresponds to the total surface of suitable area available after the opening of
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Olha (ℎ֏֊֏ռև � �6� ��6 m2, chapter 2, page 65).

Stock-recruitment data corresponded to the yearly number of deposited eggs and

the yearly number of juveniles. Both are routinely estimated by the ORE DiaPFC (see

section 2.2.1, page 70) for the entire river1. Juveniles are estimated from juveniles caught

at 22 sampling sites distributed in the three river zones. These 22 sites associated to

the surface of available and suitable habitats for spawning in each river zone enable

ORE DiaPFC estimating the number of juveniles produced in each river zone. Number

of deposited eggs are estimated from the number of females migrating into the Nivelle

network. Fish passages at the Uxondoa dam and the Olha dam are associated with the

number of redds found in each river zone to estimate the part of females spawning in

each river zone. The latter estimation allows to estimate the number of eggs deposited

in each river zone. These number of estimated deposited eggs and produced juveniles

for each zone of the Nivelle allowed me to fit a stock-recruitment curve with parameters

varying among river zones. Following the same process that in the previous chapter, the

stock was computed as the yearly number of eggs divided by ℎzone and the recruitment as

the yearly number of juveniles divided by ℎzone. The time-series for the LN concerned 31

years (1984 to 2014), while 25 years were available for the UN (1990 to 2014) and 21 years

for the Lurgorrieta (1993 to 2014 without 2006). The Upper Nivelle and the Lurgorrieta

were accessible since 1992 but anadromous were released in the Upper Nivelle in 1990

and 1991.

3.2.2 SPATIAL AGGREGATION

The spatial aggregation of redds was computed with the patchiness index from the redd

mapping data like in the previous chapter (see page 73). Here, the aggregation was

independently computed for each river zone by dividing the mean density (the average

number of nests in the considered zone) over the number of zone’s patches. The initial

stretches were grouped following the same process that for the previous chapter within

each Nivelle zone. (see section 2.2.2, page 73). However, only the threshold length of 50

m was used here.

I compared the spatial aggregation of nests between each river zone (ԩ) by account-

ing for a zone effect (ᅫ), a year random effect (ᅮ), and an interaction between zone and

1More details about collection of juveniles and ORE estimations are displayed in the previous chapter:
section 2.2.1, page 70.
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year (ᅬ). The spatial aggregation of the zone ԩ for the year ԙ was:

aggregation֕,օ � � ∼ (ᅷ֕,օ� ᅼ֕)ᅷ֕,օ � ԘԝԣԔԡԒԔԟԣ � ᅫ֕ � ᅬօ � ᅮ֕ × ԙ (Eq. 3.1)

The model was fitted under a Bayesian framework by calling Stan in R. A total of 5,700

iterations was saved after a burn-in of 1,000 iterations and with a thinning interval of

10. The total number of iterations were cumulated from four chains. Chain convergence

was graphically checked and also assess through the scale reduction factor: r̂ (Gelman

& Rubin 1992).

3.2.3 STOCK-RECRUITMENT MODELS

I firstly considered the model of Shepherd because the shape of the stock-recruitment

curve characterising each zone may be different. This versatile model allows data to

drive the shape of the curve through the parameter ᅬ (box Tools II.i). In this way, the

curve may tend to be similar to either a Cushing curve (ᅬ � �), a Ricker curve (ᅬ � �),

or a Beverton-Holt one (ᅬ � �). The models of Beverton & Holt (1957), Cushing (1973),

Ricker (1954), and Shepherd (1982) were also tested. The yearly recruitment in each

zone was modelled from a log-normal distribution:Ԏ ∗֕,օ ∼ ԁԞԖ� (log (ᅷ֕,օ) � �ᅽ֕ ) � (Eq. 3.2)

with Ԏ ∗֕,օ the recruitment corrected by ℎ for the zone ԩ and the year ԙ. The variance,

i.e. the inverse of ᅽ֕ was estimated for each zone ԩ. Formula of the average recruitment

(ᅷ֕,օ) in Eq. 3.2 without aggregation effect was for each model:
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Model ᅷ֕,օ �
Beverton & Holt (1957)

Ԑ֕ × Ӻ ∗֕,օ� � (�∗�,�լ� ) (Eq. 3.3)

Cushing (1973) Ԑ֕ × Ӻ ∗֕,օ × (Ӻ ∗֕,օԀ֕ )−��
(Eq. 3.4)

Ricker (1954) Ԑ֕ × Ӻ ∗֕,օ × exp−Ӻ ∗֕,օԀ֕ (Eq. 3.5)

Shepherd (1982)

Ԑ֕ × Ӻ ∗֕,օ� � (�∗�,�լ� )�� (Eq. 3.6)

Ԁ indicates the threshold biomass from which density-dependent compensation occurs.

The values of Ԁ for the Upper Nivelle and the Lurgorrieta was estimated from the value

for the Lower Nivelle as: Ԁ֕ � ԥUpper Nivelle or Lurgorrieta × Ԛ (Eq. 3.7)

with Ԛ being the threshold biomass for the Lower Nivelle. The same process was used

to estimate Ԑ֕, the slope at origin, for each zone. Null models (ℳԞԓԔԛԢnull) without

aggregation effect were fitted by replacing ᅷ֕,օ in Eq. 3.2 by the Eq. 3.6.

Complete models (ℳԞԓԔԛԢcomplete) accounted for an effect of the spatial aggregation

on ᅷ֕,օ and ᅽ֕ were fitted like for the ℬℋcomplete in the previous chapter. The equations

of ᅷ֕,օ was then:
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Model ᅷ֕,օ �
Beverton & Holt (1957)

Ԑ֕ × Ӻ ∗֕,օ� � (�∗�,�լ� ) × ԅ ֌�օ (Eq. 3.8)

Cushing (1973) Ԑ֕ × Ӻ ∗֕,օ × (Ӻ ∗֕,օԀ֕ )−�� × ԅ ֌�օ (Eq. 3.9)

Ricker (1954) Ԑ֕ × Ӻ ∗֕,օ × exp−Ӻ ∗֕,օԀ֕ × ԅ ֌�օ (Eq. 3.10)

Shepherd (1982)

Ԑ֕ × Ӻ ∗֕,օ� � (�∗�,�լ� )�� × ԅ ֌�օ (Eq. 3.11)

with a value of Ԡ, the parameter estimating the effect of spatial aggregation on the

average recruitment, estimated for each zone ԩ. The effect of aggregation on ᅽ֕ was

assessed for each zone through the parameter ᅱ:ᅽ֕ � ᅮ֕ × ԅ ��օ (Eq. 3.12)

Semi-models with just an effect on ᅷ֕,օ (ℳԞԓԔԛԢ�) or ᅽ (ℳԞԓԔԛԢ�) were also fitted

like in the previous chapter. All models were fitted under a Bayesian framework by

calling Stan in R. A total of 6,400 iterations was saved after a burn-in of 2,000 iterations

and with a thinning interval of 5. The total number of iterations were cumulated from

four chains. Chain convergence was graphically checked and also assess through the

scale reduction factor: r̂ (Gelman & Rubin 1992). Assessment of models was done with

the Widely Applicable Information Criterion (waic, Vehtari et al. 2017).

3.3 RESULTS

3.3.1 SPATIAL AGGREGATION IN EACH NIVELLE ZONE

The spatial aggregation in the Upper Nivelle (UN) was more variable than other zones

(ᅼ in Figure. 3.3 — ᅼնկ � ���� [���6� ��66], ᅼխկ � ���� [����� ����], and ᅼխնճ � ���6����� ����). The Upper Nivelle also exhibited higher values than other zones, raising up

to around 40 (Figure. 3.2) but no difference was found in average (ᅫ in Figure. 3.3).

Surprisingly, the Lower Nivelle displayed values not much higher than the Lurgorrieta.
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Table. 3.1: Summary of the prior distributions of parameters of the stock-recruitment
models ℬԔԥԔԡԣԞԝnull, ℬԔԥԔԡԣԞԝ�, ℬԔԥԔԡԣԞԝ� , and ℬԔԥԔԡԣԞԝcomplete. Parameter Ԁ cor-
responds to the threshold biomass which indicates the carrying capacity when Ԁ is
multiplied by Ԑ, the slope at origin. Parameters ᅽ and ᅮ are involved in the modeli-
sation of the recruitment variability. Parameters Ԡ֕ and ᅱ֕ correspond to the efect of
aggregation on the mean and the variability of the Shepherd models for the Nivelle zoneԩ. ᅬ֕ is the parameter driving the stock-recruitment curve. Models of Cushing, Ricker,
and Shepherd used the same priors.

Parameter Deinition Prior distributionԐ Eq. 3.3 and Eq.
3.8

ԁԞԖ���� �)Ԁ—Ԛ Eq. 3.3 and Eq.
3.8

ԁԞԖ���� ��)ᅬ֕ Eq. 3.3 and Eq.
3.8

ԁԞԖ���� �)ԥ Eq. 3.7 ���� ���)ᅽ Eq. 3.3 Γ������ ���)ᅮ Eq. 2.6 Γ������ ���)Ԡ֕ Eq. 3.8 ���� ��)ᅱ֕ Eq. 3.8 ���� ��)
The recent years displayed the higher values of aggregation in the Upper Nivelle; the pos-

itive interaction found for the Upper Nivelle verified this effect: ᅬնկ � ����[����� ����]2
(ᅬ in Figure. 3.3). The interaction effects (ᅬ) for the LN and the Lurgorrieta were not

significant (Figure. 3.3). No significant year effect was found (Figure. 3.3). In the Lower

Nivelle and the Upper Nivelle, the higher values of aggregation were not found at a high

number of redds.

295% Highest Posterior Density



110 �. 3. Zonal stock-recruitment in the Nivelle

● ●●●

●

●

●

●

●

●
●●●

●

●
●●

●

●

●
●

●
●

●

●
●●

●●

● ●

●
●

●
●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

L
o
w

e
r 

N
ive

lle
U

p
p
e
r 

N
ive

lle
L
u
rg

o
rrie

ta

0 25 50 75

5

10

15

10

20

30

40

2

4

6

8

Yearly number of redds

P
a
tc

h
in

e
s
s

1985 1995 2005 2015
Year

Figure. 3.2: Spatial aggregation of nests (patchiness) computed for the three zones in the
Nivelle: Lower Nivelle (31 years), Upper Nivelle (25 years), and Lurgorrieta (21 years)
which is the main tributary. The Upper Nivelle and the Lurgorrieta were accessible
since 1992 (dots), but anadromous were released in the Upper Nivelle in 1990 and 1991.
Triangles correspond to years before 1992.
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Figure. 3.3: Estimates of the model Eq. 3.1 testing the diferences in spatial aggregation
between the three zones in the Nivelle. The model accounted for a zone efect (ᅫ), a
year random efect (ᅮ), and an interaction (ᅬ) on ᅷ : ᅷ֕,օ � ԘԝԣԔԡԒԔԟԣ�ᅫ֕ �ᅬօ �ᅮ֕ ×ԙ.
The model also accounted for an efect of zone on the variability (ᅼ). Data correspond
to the spatial aggregation within each zone since 1993, the irst year during which nests
were found in all zones.
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Figure. 3.4: Estimates of the model Eq. 3.1 testing the diferences in spatial aggregation
between the three zones in the Nivelle. The model accounted for a zone efect (ᅫ), a
year random efect (ᅮ), and an interaction (ᅬ) on ᅷ : ᅷ֕,օ � ԘԝԣԔԡԒԔԟԣ�ᅫ֕ �ᅬօ �ᅮ֕ ×ԙ.
The model also accounted for an efect of zone on the variability (ᅼ). Data correspond
to the spatial aggregation within each zone since 1993, the irst year during which nests
were found in all zones.
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3.3.2 STOCK AND RECRUITMENT

The Lurgorrieta exhibited the highest stock (around 60 eggs.m-2, Figure. 3.5), whereas

the Upper Nivelle displayed the lowest one (around 25 eggs.m-2) when standardizing the

stock and the recruitment by ℎ. Recruitment was globally similar between zones apart

during one year for the Lurgorrieta (Figure. 3.5). In addition, before the 2000s the

recruitment seems synchronous between the three zones whereas the stock varied. After

the 2000s, the Lurgorrieta seems more variable in regards to the two other zones.
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Figure. 3.5: Stock and recruitment values in the three zones in the Nivelle: Lower Nivelle
(31 years), Upper Nivelle (25 years), and the Lurgorrieta (21 years). The Upper Nivelle
and the Lurgorrieta were accessible since 1992 (dots), but anadromous were released in
the Upper Nivelle in 1990 and 1991. Triangles correspond to years before 1992.

3.3.3 EFFECTS OF ACCOUNTING FOR AGGREGATION ON MODELS OF STOCK RECRUIT-

MENT

Beverton-Holt models were the best models (lowest waic). The waic of the stock-

recruitment models was higher when considering spatial aggregation of nests (waicℬր֑ր֍֏֊։null
� −���, waic ℬր֑ր֍֏֊։� � −��6, waic ℬր֑ր֍֏֊։� � −���), and waicℬր֑ր֍֏֊։complete

� −���. Although the model ℬԔԥԔԡԣԞԝ� exhibited the lowest waic,

I only present the results of the complete model (ℬԔԥԔԡԣԞԝcomplete) because it has a

waic very closed to the best one and allows me discussing all effects of aggregation.

The model was compared to the null model (ℬԔԥԔԡԣԞԝnull).
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Figure. 3.6: Density plot of the parameter estimates involved in the stock-recruitment
models in the three zones in the Nivelle: LN (31 years), UN (25 years), and the Lurgor-
rieta (21 years). Only parameters varying between the three zones are displayed. The
model ℬԔԥԔԡԣԞԝnull is a simple Shepherd model, while the model ℬԔԥԔԡԣԞԝcomplete tested
the efect of aggregation of nests on its variability (ᅱ parameter). Blue areas represent
the values between the quantiles 5 % and 95%. Red areas represent the values between
the quantiles 0 and 2.5 % and the values between the quantiles 97.5 % and 1. Green
areas represent the values between the quantiles 2.5 and 5 % and the values between the
quantiles 95 % and 97.5 %.
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Table. 3.2: Parameter estimates for the stock-recruitment models ℬԔԥԔԡԣԞԝnull and ℬԔԥԔԡԣԞԝcomplete itted to the three zones of
the Nivelle: Lower Nivelle (LN), Upper Nivelle (UN), and Lurgorrieta. The model ℬԔԥԔԡԣԞԝnull was a simple Beverton-Holt model,
while the model ℬԔԥԔԡԣԞԝcomplete was a Beverton-Holt model including an efect of aggregation of nests on the average recruitment
(parameter Ԡ) and its variability (parameter ᅱ). Each parameter estimate was displayed with its mean and the Highest Posterior
Density interval at ��� from 6, 400 iterations. ”*” denotes parameters signiicantly diferent from zero. Similar letters indicate no
signiicant diferences between zones for a parameter.

Model Nivelle zone
LN UN LurgorrietaԐ ℬԔԥԔԡԣԞԝnull ��6�∗,ռ [���6� �����] ���6∗,ռ [���6� 6����] 6���∗,ռ [����� �����]ℬԔԥԔԡԣԞԝcomplete ���6∗,ռ [����� �6���] �����∗,ռ [����� �����] ����6∗,ռ [����� ������]Ԁ ℬԔԥԔԡԣԞԝnull ����∗,ռ [������� ������] ����∗,ռ [������� ������] ����∗,ռ [������� ������]ℬԔԥԔԡԣԞԝcomplete ����∗,ռ [�����6� ������] ����∗,ռ [������� ������] ����∗,ռ [�����6� ������]Ԡ ℬԔԥԔԡԣԞԝnull /ℬԔԥԔԡԣԞԝcomplete ������∗,ռ [−������� ��6���] ������ռ [−������� ������] −��6�6�ռ [−������� ����6�]ᅱ ℬԔԥԔԡԣԞԝnull /ℬԔԥԔԡԣԞԝcomplete ������ռ [−������� ������] ������ռ [−������� ������] ���6�6∗,ռ [������� ������]ᅮ ℬԔԥԔԡԣԞԝnull ����∗,ռ [����� ���6] ���6∗,ռ [����� ����] ����∗,ռ [����� ����]ℬԔԥԔԡԣԞԝcomplete ������∗,ռ [������� ������] ������∗,ռ [������� ������] ������∗,ռ [������� ����6�]
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Table. 3.3: Carrying capacity estimated for the stock-recruitment models ℬԔԥԔԡԣԞԝnull and ℬԔԥԔԡԣԞԝcomplete itted to the three
zones of the Nivelle: LN, UN, and Lurgorrieta. The carrying capacity in juvenile.m-2 was computed as: ӸԒ֕ � Ԑ֕ ×Ԁ֕. The modelℬԔԥԔԡԣԞԝnull was a simple model of Beverton-Holt, while the model ℬԔԥԔԡԣԞԝcomplete was a model of Beverton-Holt accounting for
an afect of aggregation of nests on the average recruitment and its variability. Each value was computed from 6, 400 iterations
of the parameters Ԑ and Ԁ, mean being displayed with the Highest Posterior Density interval at ���. Similar letters indicate no
signiicant diferences between zones for a parameter. b. indicates that the diference was quasi signiicant (0.06).

Model Nivelle zone
LN UN LurgorrietaℬԔԥԔԡԣԞԝnull ������∗,ռ [������� �����6] ������∗,ռ [������� ������] ������∗,ռ [����6�� ���6��]ℬԔԥԔԡԣԞԝcomplete ���6��∗,ռ,վ [������� ������] ������∗,ռ,ս. [������� ������] ������∗,ս.,վ [���66�� �����6]
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When not accounting for aggregation, in the model ℬԔԥԔԡԣԞԝnull, the parameter Ԑ
and Ԁ did not vary between river zones (Table. 3.2, Figure. 3.6). River zones displayed,

thus, similar stock-recruitment curves (Figure. 3.7). Yet, the Upper Nivelle displayed

the highest value of Ԑ and the Lower Nivelle the lowest (Table. 3.2, Figure. 3.6). The

Lurgorrieta exhibited the highest value of Ԁ, but the model seemed to have difficulties

estimating it (Figure. 3.6). The Lower Nivelle was the zone with the highest value of ᅮ
and the Lurgorrieta displayed the lowest value of ᅮ, the inverse of variance. The carrying

capacity — computed by multiplying the 6, 400 iterations of the parameters of Ԑ by Ԁ —

estimated for the Lurgorrieta was the lowest one at around 0.1054 juvenile.m-2 (mean),

whereas the Lower Nivelle exhibited the highest one at around 0.1140 juvenile.m-2 (Table.

3.3). The three zones were characterised by closed values of carrying capacity.
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Figure. 3.7: Stock-recruitment curves in the three zones in the Nivelle: LN (31 years),
UN (25 years), and the Lurgorrieta (21 years). The Upper Nivelle and the Lurgorrieta
were accessible since 1992 (dots), but anadromous were released in the Upper Nivelle
in 1990 and 1991. Triangles correspond to years before 1992. Points without range
correspond to the observed values, while points with range correspond to the estimated
recruitment values with the Credible Interval at ��� from 6, 400 iterations of the modelℬԔԥԔԡԣԞԝnull.

Considering aggregation did not significantly modify the parameters Ԑ and Ԁ (Ta-

ble. 3.2). These two parameters did not vary between river zones as when not accounting

for aggregation (Figure. 3.6). The difference in average values are due to difficulties in

estimating the parameters as clearly visible on the Figure. 3.6. For the Upper Nivelle,
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the carrying capacity was similar when considering spatial aggregation than when not

accounting for it (Table. 3.3). The Lower Nivelle exhibited the lowest carrying capac-

ity, half as much as when not considering spatial aggregation (changing from 0.1140 to

0.0672 juvenile.m-2).

The Lower Nivelle exhibited a significantly positive value of Ԡ measuring the effect of

aggregation on the average recruitment, whereas the two other zones did not exhibit

a significant parameter value. Concerning the effect of aggregation on the recruitment

variability, the parameter ᅱ tended to be positive for the LN and the UN and was signif-

icantly positive for the Lurgorrieta (Table. 3.2). The Upper Nivelle was the zone with

the highest value of ᅮ at 1.36, whereas the Lurgorrieta exhibited the lowest value at 0.30

(Table. 3.2).
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Figure. 3.8: Stock-recruitment curves in the three zones in the Nivelle: LN (31 years),
UN (25 years), and the Lurgorrieta (21 years) when accounting for aggregation efects.
The Upper Nivelle and the Lurgorrieta were accessible since 1992 (dots), but anadromous
were released in the Upper Nivelle in 1990 and 1991. Triangles correspond to years before
1992. Efects of the spatial aggregation of nests on the average recruitment, as well as
on the recruitment variability were accounted. Points without range correspond to the
observed values, while points with range correspond to the estimated recruitment values
with the Credible Interval at ��� from 6, 400 iterations.

3.4 DISCUSSION

The current chapter aimed to test how the spatial aggregation of nests affected the

recruitment within each Nivelle zone. The spatial aggregation of nests significantly

raised the average recruitment in the Lower Nivelle but not in other zones. Spatial

aggregation also diminished recruitment variability for a given level of stock in the

Lurgorrieta, whereas a trend transpired in other zones. A model of Beverton-Holt was

the best model among all tested models allowing me to compare parameters to those

estimated by Brun (2011, chapter VI) who used a Beverton-Holt model. I first discuss

differences between zones in stock-recruitment relationships and aggregation, and then

the aggregation impacts on stock-recruitment relationships.
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Spatial aggregation within each zone varies between river zones. The spatial aggre-

gation of nests was computed for each zone, thus, I focused on how nests were distributed

in each zone independently to the other zones. Spatial aggregation was stronger in the

Upper Nivelle (UN) than in the Lower Nivelle (LN) for which values were similar to

those of the Lurgorrieta. The higher aggregation of nests found for the Upper Nivelle

compared to the values found for the other zones may, thus, be due either to a most het-

erogeneous quality of breeding sites in the UN than in other zones, or to constraints in

nest distribution (dams or environmental factors). More interesting is the recent increase

in aggregation within the Upper Nivelle, while the number of redds is not increasing.

Quality and/or availability of breeding sites could, then, diminish year after years.

The upstream migration behaviour (Finstad et al. 2005) leads to a higher number

of potential breeders in the Upper Nivelle and Lurgorrieta. Yet, the stock was higher

in the Lurgorrieta than in the Upper Nivelle, whereas the Upper Nivelle has the higher

area suitable for breeding (ℎ). Breeders are also constrained by an upstream dam in the

Lurgorrieta. Breeders seem, thus, to distribute their nests between all suitable habitats

in the Lurgorrieta leading to a weak aggregation in this zone. In the Upper Nivelle, the

dam constraint could interplay with a more heterogeneous quality of habitats. In their

study, Tentelier & Piou (2011) found that the upstream dam in the Nivelle constrained

nest location. In the Upper Nivelle, dominant potential breeders could use the best

breeding sites, whereas subordinate should aggregate their nests in other sites.

Carrying capacity tended to vary among river zones when accounting for aggrega-

tion. In the null model the carrying capacity of the three zones were similar at around

0.11 juvenile.m-2. Carrying capacity changed to 0.51 juvenile.m-2 for the Lurgorrieta

when accounting for aggregation. The highest carrying capacity for the Lurgorrieta

was surprising because Dumas & Marty (2006) found that redds were more clogged in

the Lurgorrieta than in other river zones and redd clogging diminishes egg survival. In

addition, Brun (2011, chapter VI) found a similar carrying capacity between the Lur-

gorrieta and the Lower Nivelle, whereas Dumas & Haury (1995) highlighted the lowest

water quality in these zones compared to the Upper Nivelle. The high value for the

Lurgorrieta may be explained by the negative trend between aggregation and average

recruitment found for this zone. In addition, the density plot indicates that the param-

eter estimation was more difficult for the Lurgorrieta. Carrying capacity of the UN and



120 �. 3. Zonal stock-recruitment in the Nivelle

the LN were must lower than the values estimated by Brun (2011, chapter VI). I esti-

mated it at 0.11 juvenile.m-2 compared to the 0.28 juvenile.m-2 of Brun (2011, chapter

VI) for the Upper Nivelle. For the Lower Nivelle, I estimated it at 0.06 juvenile.m-2

compared to the 0.14 juvenile.m-2 of Brun (2011, chapter VI). The differences between

the values estimated by Brun (2011, chapter VI) and my values may be explained by

the different models used, the number of new years accounted in my work, but also the

accounting for aggregation. Nonetheless, my values appeared as relevant when looking

the stock-recruitment curves (Figure. 3.7 and Figure. 3.8).

A strong density-dependent mortality characterises the Nivelle. The low values of

carrying capacity when accounting or not aggregation indicate a low survival of juveniles

and an already strong density-dependent mortality, especially since survival of salmon

decreases at high densities (Einum & Nislow 2005). The slopes at origin were steeper

than the values estimated by Brun (2011, chapter VI) indicating a better survival at

low stocks. Yet, I estimated lower threshold biomasses meaning a density-mortality

occurring at lowest densities. My work accounted for more years than the work of Brun

(2011, chapter VI) and recent years exhibited low stocks what can explain the difference

between Brun’s results and mine. In addition, threshold biomasses (Ԁ) were below the

lowest stock observed for each zone with or without accounting for aggregation.

Spatial aggregation may compensate the density-dependent mortality. In the Lower

Nivelle, spatial aggregation increases the average recruitment. Same effect was not found

for the two other zones. In the Lower Nivelle, high values of aggregation was found

for low numbers of redds (Figure. 3.2), a pattern less pronounced in the two other

zones. Aggregation of a few numbers of redds in best spawning sites without affecting

the density-dependent mortality may explain the positive impact of aggregation on the

average recruitment. Accounting for aggregation tended to increase the survival at low

densities (Ԑ), agreeing with a potential aggregation in best habitats. In this case, the

observed high aggregation for low numbers of redds can be explained either by the

dominance of some females to secure the best sites (Hendry et al. 2001), the availability

of sites which are not available during other years, or because some sites were available

only for large females (Gauthey et al. 2017). Atlantic salmon demonstrate ability to

discriminate their kin (Brown & Brown 1992, Moore et al. 1994), and preferences for

kin related (Brown & Brown 1992), something diminishing their aggressiveness and
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increasing their weight gain (Brown & Brown 1996). Yet, Griffiths & Armstrong (2001)

found an advantage to avoid kin in winter and an advantage to increase genetic diversity.

Aggregate in the Lower Nivelle could increase the number of potential mates searching

for females in the Lower Nivelle that raises the genetic diversity within each egg batch

through multiple paternity. It could be more difficult for females to have partners in

the Lower Nivelle because less potential breeders remain in the Lower Nivelle since the

Upper Nivelle and the Lurgorrieta are available.

Spatial aggregation decreased recruitment variability. Recruitment variability for a

considered level of stock may arise from redd scouring, overdigging, or redd emerging for

example which impact egg survival (Gauthey et al. 2017, Lapointe et al. 2000). Although

only trends existed for the Lower Nivelle and the Upper Nivelle, the Lurgorrieta exhib-

ited a significant effect. Aggregate in safer breeding habitats should be advantageous

for salmon, especially in Lurgorrieta which is an upstream tributary. Perturbations,

occurring after fry emergence and until recruitment assessment in September, may also

play an influential role. For example, Jensen & Johnsen (1999) found that floods in-

creased the mortality of salmon alevins. The effect of spatial aggregation on recruitment

variability was less pronounced in the UN indicating either that this zone seems the less

impacted by environmental perturbations, or that all salmon in the UN spawn in safe

sites.

Spatial aggregation of nests varied in the three zones of the Nivelle potentially

through variations in habitat quality. The temporal effect in habitat quality seems also

coming into play to explain yearly increase in aggregation within the Upper Nivelle.

Considering spatial aggregation did not improve models, but the expanding number of

parameters is not negligible. Nonetheless, spatial aggregation diminished recruitment

variability within the Lurgorrieta and improved recruitment in the Lower Nivelle. The

Upper Nivelle seemed less subject to effects of spatial aggregation and exhibited steadier

recruitment. The Upper Nivelle also displayed the highest stocks but not the highest

recruitments. The Upper Nivelle also displayed the highest spatial aggregation while

the suitable area to breed is the highest one. The Upper Nivelle also exhibited low

carrying capacity. The Upper Nivelle is probably the zone where management actions

should be favoured such as the enhancement of habitat quality or the opening of the

upstream dam. Finally, the current chapter highlights differences between river zones
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and stresses the need to deeply investigate the spatial aggregation of nests, its effects

on local recruitment. Processes acting on females’ choices of breeding habitats should

also be deeply investigated to explain differences of spatial aggregation of nests between

river zones.

HIGHLIGHTS OF CHAPTER 3▶ Spatial aggregation of nests varies between the three zones of the Nivelle:

Lower Nivelle (LN), Upper Nivelle (UN), and Lurgorrieta (main tributary).▶ Spatial aggregation decreased recruitment variability in the Lurgorrieta, while

trends were found in the LN and the UN.▶ The Lurgorrieta exhibited the highest carrying capacity despite the potential

lowest habitat quality…▶ …and the Upper Nivelle exhibited a low carrying whereas the available suit-

able are was the highest one in this zone.▶ The higher spatial aggregation of nests in the UN and its low carrying ca-

pacity stress the need to improve habitat quality in the UN…▶ …and to identify mechanisms leading to spatial aggregation.



Discussion of Part II

The current part aimed to assess the spatial aggregation of nests and to test its poten-

tial effect on the population recruitment. Chapter 1 (page 57) highlighted that spatial

aggregation provides valuable information about the spatial distribution of nests. Chap-

ter 1 emphasized that patchiness was the most appropriate measure of aggregation to

test the effect of spatial distribution of nests on population regulation. Chapter 2 (page

65) showed that at the population scale, average recruitment was not linked to spatial

aggregation but it was less variable as aggregation increased. In addition, this chapter

highlighted the improvement of stock-recruitment models when accounting for aggrega-

tion. The last chapter (chapter 3, page 101) applied the same analysis at a more local

scale: the river zone. Consequences of spatial aggregation on the recruitment varied in

intensity between zones and differences in spatial aggregation exist between river zones.

Finally, the three chapters indicated that i) spatial aggregation of nests is an impor-

tant population characteristic which ii) affects population and river zones’ recruitment,

and iii) interplays with habitat quality, environmental perturbations, and constraints of

dams.

SPATIAL AGGREGATION AS AN INDICATOR OF SPATIAL DISTRIBUTION

Spatial aggregation and not density. Chapter 1 (page 57) showed the inability of the

mean and the variance of density to discriminate well spatial distribution of nests. The

mean or the variance of density is, by definition, affected by the number of nests. At

the opposite, chapter 2 (page 65) provided new insight by indicating that patchiness

is more independent on the number of nests and therefore on the number of breeders

(i.e. a negative trend was found). Using spatial aggregation prevented a skew of spatial

distribution measure caused by an increase in the number of breeders. Like the work of

Lloyd (1967), the current part advocated emphasising the mean number of neighbours
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through an index of spatial aggregation rather than mean density when looking to spatial

distribution effects.

Aggregation of nests arises from the habitat choice of salmon females. Chapter 2 (page

65) suggested that females tend to preferentially aggregate in best breeding sites and to

repel other females into low-quality sites (Falcy 2015). Chapter 3 (page 101) supported

such assumptions but also gone further by suggesting that such interactions between

females may vary between river zones. For instance, spatial aggregation within each

river zone was stronger in the Upper Nivelle, the Nivelle zone with the highest number

of available sites and the highest habitat quality (Dumas & Haury 1995, Dumas & Marty

2006). It appears that females have to face other factors that the unique presence of

other females and the availability of breeding sites when choosing them.

Environmental factors cause spatial aggregation to be variable. Spatial aggregation

varied between years either at population scale (chapter 2, page 65) or at the river zone

scale (chapter 3, page 101). Yearly variations in nest placements have already been

observed in salmon (Parry et al. 2018, Soulsby et al. 2012). Environmental factors such

as floods, water levels, or available suitable breeding habitats likely constrain females’

choices generating variations in spatial aggregation. For example, Parry et al. (2018)

found that flow levels condition the accessibility to some breeding habitats. The high

flow levels during the last breeding season in the Nivelle (2017-2018) forced some females

to spawn in unsuitable sites (Figure. II.iii). Causes of nest spatial aggregation should

be studied especially in the context of habitat fragmentation or climate change since

spatial aggregation of nests affects population dynamics. Climate change could increase

the magnitude of floods in autumn and winter and diminish dry weather flows for such

latitudes (IPCC 2014). Environmental perturbations could thus more influence the

availability of breeding sites leading to a variable competition for breeding sites and

aggregation of nests. In this way, females abilities to assess environmental stability

could be a factor promoting spatial aggregation in safest and more stable sites (Doligez

et al. 2003).
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(a) A de-watered redd where only the depres-
sion is still under water.

(b) A redd in the Nivelle where the dome is
beginning to emerge. Eggs are buried under
this dome.

Figure. II.iii: Photo of a de-watered redd (a) and a redd (b) in the Nivelle during the
breeding season 2017-2018. These two redds were dug during a lood forcing females to
spawn near the river banks. ©C.Bouchard

AGGREGATION MODULATES POPULATION REGULATION THROUGH ENVIRONMEN-

TAL PREDICTABILITY

The best fit of a Beverton-Holt model rather than a Ricker one (chapter2 page 65 and

chapter 3 page 101) meant that density-compensation (i.e. density-dependent mortality

at high stocks) is strong but not variable whatever the spatial scales (population or river

zones). Ricker’s curve images a high survival at low stock, something less marked for a

Beverton-Holt’s curve (box Tools II.i). Stock levels exceeded the carrying capacity in all

models fitted to the population or to each zone. These findings agree with those of previ-

ous stock-recruitment models fitted to the Nivelle population (Brun 2011). Altogether,

results indicate that density-compensation was seemingly not the predominant cause of

recruitment variations at the juveniles stages in the Nivelle. Variations in habitat qual-

ity (quantity of resources and environmental stability), availability of suitable breeding

sites, and distribution of nests within them seem important reasons causing fluctuations

in recruitment. Raise the availability of breeding sites and enhance their environmental

stability in order to diminish spatial aggregation between the best habitats could be a

suitable management action.

Environmental stochasticity as a major regulation for the Nivelle population. In their

study, Honkanen et al. (2018) suggested that environmental stochasticity overrides density-

dependence in Atlantic salmon recruitment. Here, environmental stochasticity pooled

together impacts of environmental perturbations against eggs such as nest scouring (Gau-
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they et al. 2017, Lapointe et al. 2000, Steen & Quinn 1999), and against juveniles such

as variability in habitat quality due to floods, for instance (Gauthey et al. 2017, Jensen

& Johnsen 1999). The period after emergence is critical for salmon juveniles (Einum &

Fleming 2000, Nislow et al. 2004) because they tend to stay near their nests (Close &

Anderson 1992, Garcia de Leaniz et al. 2000, Gustafson-Greenwood & Moring 1990) and

are unable to hold station during high flows (Aas et al. 2011). Hence, environmental

stochasticity may considerably alter the population recruitment.

Spatial aggregation of nests interplays with environmental stochasticity. Although gen-

erating density-dependent mortality, spatial aggregation of nests cannot exacerbate

density-compensation because stocks overwhelmed the carrying capacity in all years.

Spatial aggregation of nests diminished recruitment variability at the population scale.

The Lurgorrieta displayed the latter effect, whereas the Lower and the Upper Nivelle

exhibited only a trend. The recruitment in the Upper Nivelle was also the least variable.

The river zones seem, thus, interplay as a metapopulation stabilising recruitment in the

Upper Nivelle and at the population level (Carlson & Satterthwaite 2011, Schindler et al.

2015). The Upper Nivelle exhibits the highest habitat quality (Dumas & Haury 1995,

Dumas & Marty 2006), and the Lurgorrieta flows into it (Figure. I.viii, page 26). At the

population level, redds aggregating within the Upper Nivelle as aggregation increased is

beneficial for the population recruitment. When a perturbation affects nests aggregated

in the Upper Nivelle, the recruitment of the UN can be compensated by juveniles of the

Lurgorrieta. Terui et al. (2018) observed that branching complexity has a stabilising

effect (i.e. here the Lurgorrieta is branched to the Nivelle River in the Upper Nivelle).

The Nivelle population seems thus to cope with environmental perturbations occurring

at the river zone scale depending on where nests are aggregated. Hence, spatial ag-

gregation of nests seems to interplay with environmental stochasticity when influencing

recruitment (Figure. II.iv).
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Figure. II.iv: Efects of spatial aggregation of nests on recruitment at the population level. Spatial aggregation is caused by the
habitat selection of females interplaying with environmental factors. Spatial aggregation of nests involves density-compensation,
but also diferences in occurrence probability of environmental perturbations depending where nests are aggregated. Yet, spatial
aggregation in diferent zones enables dispersal of juveniles which may mitigate losses due to environmental perturbations or density
compensation. Altogether this suggests potential balancing efects stabilising the recruitment at the population level.



128 �. 3. Discussion of Part II

CONCLUSION

Implications for the Nivelle population. Results of the current part vindicate to better

account for spatial aggregation of nests when investigating population recruitment at

the population level, but also at the river zone one. Indeed, spatial aggregation seemed

to interplay with density-dependent processes (e.g. density-compensation) and density-

independent ones (e.g. environmental perturbations) to stabilise the population recruit-

ment. The latter impact depended on the level of aggregation, as well as, the location

of aggregates (Figure. II.iv). The presence of impassable dams constrains anadromous

movements (Tentelier et al. 2016), and nest placement (Tentelier & Piou 2011), favouring

spatial aggregation of nests. Equipping dams with fish pass could enhance the habitat

available for females and, in fine the populations dynamic. For example, Forget et al.

(2018) predicted a threefold extension of the breeding area after dam removal in the

Sélune River (France) leading to a possible expansion of the salmon population. The

positive impact of aggregation on the recruitment stability was less pronounced in the

Upper Nivelle than in the Lurgorrieta. A management action could create new suitable

breeding sites in the Upper Nivelle to reduce aggregation in the Upper Nivelle which

appeared less beneficial.

Opening. The concept of mean crowding and the impact of neighbours should be priori-

tised when investigating density-dependent processes as proved in the actual part (Wade

et al. 2018). More generally, my work raises the question of the mechanisms linking spa-

tial aggregation of nests and recruitment at multiple scales: from nests to populations.

Processes driving breeding habitat choices by females could also be studied to identify

why females aggregate. The assessment of environmental stability by females could be

a potential workstream. How females abilities to assess environmental stability drive

their reproductive success and therefore recruitment could be investigated. For exam-

ple, Gauthey et al. (2017) suggested that tactics enabling to reduce shear stress and

nest scouring should be favoured in brown trout, Salmo trutta. Finally, how aggregation

of several females in best sites which forces others to aggregate in lower suitable sites

affects the reproductive success of females could be investigated. Tentelier et al. (2016)

found that the reproductive success of females increased with habitat quality in their

home range which itself decreased with their arrival order. It could be interesting to

investigate how neighbourhood affects the reproductive success of individuals because

spatial aggregation also involved neighbours.
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Introduction of Part III

Breeding in specific environmental conditions leads to habitat choices. Individuals select

their breeding habitats according to the availability and quality of habitats. The main

theories about the distribution of individuals among breeding sites remain the Ideal Free

Distribution of Fretwell & Lucas (1969) expressed in a breeding context (Parker 1970;

1974), and the Ideal Despotic Distribution (Andren 1990, Calsbeek & Sinervo 2002).

Individuals usually chose the best breeding site that they can select, generating costs of

aggregation (Doligez et al. 2003). The preceding part examined the effects of the spatial

distribution of potential breeders on population dynamics. More specifically, Part II

(page 49) emphasised that the spatial aggregation of nests, resulting from the spatial

distribution of females and their habitat choices, reduces the variability of recruitment.

The spatial distribution of potential breeders also shapes encounters between potential

breeders (see Box Glossary III.i).

Spatial distribution and movements of potential breeders may influence their possi-

bility to mate. In systems where sexual reproduction occurs, the fertilisation of gametes

with low mobility (e.g. internal fertilisation, immobile eggs, or eggs settling to the bot-

tom) requires i) an encounter between potential sexual partners and that ii) these two

partners access each other (Jones 2009, Kokko & Rankin 2006, Kuijper et al. 2012).

Sexual selection arises when the reproductive success varies among phenotypes or the

phenotypic trait value, which is inheritable (Kuijper et al. 2012). Such selection acts,

thus, on the processes influencing the encounters and accesses potential mates (see Box

Glossary III.i), namely the pre-copulatory competition. For instance, several males may

compete to have access to the same female as in Birds-of-paradise (Kirkpatrick & Ryan

1991). The pre-copulatory competition involves either direct interactions (Hunt et al.

2009, Jones 2009, Kokko & Rankin 2006, Kuijper et al. 2012) or indirect ones through
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the mate choice of individuals of the other sex (Andersson & Simmons 2006, Hunt et al.

2009, Kokko & Rankin 2006). In polygynous species, sexual selection may also realise

through post-copulatory competition which happened when several individuals mate

with the same individual (Kuijper et al. 2012). All of these processes — mate choice,

direct interactions, post-copulatory competition — have usually a density-dependent

component and, above all, are relative (Gasparini et al. 2013, Kokko & Rankin 2006).

SPATIAL DISTRIBUTION OF POTENTIAL BREEDERS, MATING SYSTEM, AND EFFEC-

TIVE BREEDERS

The spatial distribution of potential breeders shapes the mating system. The spatial

distribution of potential breeders is one among factors affecting the Operational Sex

Ratio (Figure. III.i, Shuster & Wade 2003), the sex ratio of individuals participating in

the reproduction (i.e. potential breeders). Intuitively, a local skewed OSR experienced

by individuals can modify the competition that they suffer to access potential mates

(Chuard et al. 2016, Weir et al. 2011). The Operational Sex Ratio is one of the factors

shaping sexual selection occurring on the sex competing for potential mates (Janicke &

Morrow 2018, Wacker et al. 2013). The Operational Sex Ratio and the spatial distri-

bution of potential breeders influence the Environmental Potential for Polygamy (EPP,

Emlen & Oring 1977) that is the opportunity of individuals to access multiple sexual

partners (e.g. individuals near several potential mates). The Environmental Potential

for Polygamy associated with individuals ability to access several potential mates (e.g.

tall individuals may have an advantage in competitive interactions) drives the mating

system (Figure. III.ii, Emlen & Oring 1977).

GLOSSARY III.i: Who are concerned by mating?
dzad

Potential breeders — All mature individuals in the population who

can participate in reproduction.

Potential mates — Among potential breeders, individuals of the op-

posite sex.

Potential competitors — Among potential breeders, individuals of the same

sex.

Breeders — Individuals who actively participate in repro-
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duction. Because no information were available

on behavioural matings, individuals are consid-

ered as breeders when they produced juveniles.

Thus effective breeders and breeders define the

same individuals.

Mates — Individuals with whom a focal individual shared

juveniles.

Sexual competitors — Individuals of the same sex who had at least one

mate in common with a focal individual.

The spatial distribution of potential breeders affects the number of effective breeders by

modifying the mating system. Typically, OSR and the resulting EPP were conceptu-

alised to explain mate monopolisation in harems and leks (Emlen & Oring 1977).

« The OSR provides an empirical measure of the degree of monopo-

lizability of mates. The greater the degree of imbalance in the OSR, the

greater the expected variance in reproductive success among members

of the limited sex. . .» — Emlen & Oring 1977

According to the work of Emlen & Oring (1977), spatial aggregation of females should

influence the capacity of males to monopolise them. Variability in such abilities should

impact the variance in mating success among individuals of the monopolising sex. A

moderate spatial aggregation could support mate monopolisation and polygyny. For

instance, Pérez-González & Carranza (2011) observed that the spatial aggregation of

females raises the mean harem size in red deer (Cervus elaphus). However, a high level of

aggregation may lead to a costly monopolisation of potential mates due to a high number

of competitors or satellite males attempting to access these potential mates (Kokko

& Rankin 2006, Shuster & Wade 2003). At the opposite, a weak spatial aggregation

of potential mates should favour monogamy because individuals can not monopolise

potential mates that are too far (Shuster & Wade 2003). Spatial aggregation of potential

breeders can, thus, influence mating behaviour and ultimately the reproductive success

at an individual level, while it can affect the number of effective breeders (i.e. individuals
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contributing to the recruitment) at the population level.

SPATIAL DISTRIBUTION OF POTENTIAL MATES AFFECTS THE INDIVIDUAL SOCIAL

ENVIRONMENT AND SEXUAL SELECTION

At the individual level, spatial distribution influences mate choice. Encounters of indi-

viduals, i.e. number and sex, depend on individual locations and individual movements

in space and time (i.e. temporal dimension in movements/location3). For example,

Robert et al. (2012) linked home-range overlaps and contact rates in raccoons (Procyon

lotor). Mate choice is fundamentally dependent on encounters, spiritual matings not

existing. When mate choice implies preferences, variations in characters between in-

dividuals reveal their performance. For example, the handicap principle precepts that

females’ preferences evolve because these preferences allow females to mate with males

exhibiting high fitness (Zahavi 1975). Either choice or preference is relative (i.e. indi-

vidual chooses an individual and not another, and individual prefers one trait value to

another) and necessarily involved simultaneous or sequential encounters. Spatial distri-

bution of potential mates shapes encounters between them, and, may ultimately affect

their mate choice.

Spatial distribution drives sexual selection by shaping encounters. During the breed-

ing season, social encounters with mature individuals involve either potential mates

or potential competitors and define the social environment of individuals. The social

environment may affect the individual number of mates and the mating success of indi-

viduals (i.e number of matings producing juveniles) by influencing mate choices, OSR,

and mate monopolisation. In this way, the social environment may change the intra-

sexual competition (Procter et al. 2012). The social environment may also affect how

males share their mates with competitors (Shuster & Wade 2003). When social selection

or multilevel selection occurs, the reproductive success of a focal individual is affected

by its phenotype but also by the phenotype of its social competitors (McDonald et al.

2013, Muniz et al. 2015). For example, in forked fungus beetles (Bolitotherus cornutus),

Formica et al. (2011) found disruptive selection acting on body size between a focal male

and its social competitors. Formica et al. (2011) found a positive selection on the size of

focal males and a negative one on the size of social competitors. Social environment may,

3you can go to the best French bakery to buy a delicious “chocolatine” — and not “bread with
chocolate” — , but if you go in front of this bakery during night your hands will be your best friends
to cry
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thus, affect sexual selection through pre-copulatory competition (mate choice, direct an-

tagonist interactions) and post-copulatory (cryptic mate choice, sperm competition due

to mate sharing).

A females' point of view: must individuals aggregate or isolate? Ordinarily, females do

not compete to access potential mates due to their high parental investments. Never-

theless, their social environment and especially the presence of other females may affect

their reproductive success. First, the breeding habitat choices may favour the spatial

aggregation of females (Doligez et al. 2003, Fretwell & Lucas 1969) but females may also

aggregate to diminish sexual harassment (Cassini 2000, Trillmich & Trillmich 1984),

favour genetic diversity through promiscuity (e.g. when several males fertilise eggs in a

laying event, Moran & Garcia-Vazquez 1998), and decrease kinship. Second, spatial iso-

lation of females, the opposite of their aggregation, may lead to an Allee effect when no

males find them. Then, spatially isolated females may encounter few males what modi-

fies their mate preferences and mate choices (Tinghitella et al. 2013). Hence, the spatial

distribution of females may ultimately influence their reproductive success, their mating

success, and their number of sexual partners by changing their social environment and

their spatial isolation.

The current part aims to examine the consequences of the spatial distribution of

potential breeders on the mating system and the reproductive success of individuals.

The choice of breeding sites in Atlantic salmon generates spatial aggregation of nests,

a proxy of the spatial aggregation of females, as viewed in the previous part (Part II,

page 49). In chapter 4 (page 153) I aim to test the relationship between the spatial

aggregation and the number of effective breeders according to the idea that the spatial

aggregation of females drives their potential monopolisation by males. The next chapter

(chapter 5, page 161) concentrates on the local social structure produced by the spatial

distribution of potential breeders, as well as on the consequences of such a structure

on sexual selection faced by anadromous males. Many studies in Atlantic salmon have

investigated the genetic structure of populations, while sometimes highlighting a sub-

population structure in a salmon population (Garant et al. 2000). Nevertheless, the

social structure at a fine scale has been less studied. Moreover, the links found between

the OSR and intrasexual competition in salmon (Weir et al. 2011) justify making the

hypothesis that social environment may influence sexual selection operating in salmon.
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Figure. III.i: Scheme of factors inluencing the Operational Sex Ratio, from Emlen &
Oring 1977.
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Figure. III.ii: Scheme of factors inluencing the Environmental Potential for Polygamy
and the mating system, from Emlen & Oring 1977.

Finally, the last chapter (chapter 6, page 199) adopts a females’ view investigating how

their spatial isolation influence their reproductive success, as well as their number of

anadromous mates.
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The present chapter corresponds to a collaboration with C. Bacles and O. Lepais

published in the Journal of Fish Biology. The article evaluated whether estimating the

number of effective breeders — ԃս� — from the Young Of the Year sampled during the

yearly surveys of juveniles abundance in the Nivelle is possible. The reason for the study

was to reduce the costs associated with analysis usually required to estimate ԃս� . My

work was to link ԃս� to the spatial aggregation of nests calculated in the previous part

(Part II, page 49), a proxy of the spatial aggregation of salmon females. Because the

major part of the paper is the work of C. Bacles and O. Lepais, I only present here the

only parts corresponding to my work.

Nevertheless, the full paper is accessible either by scanning the following QR-code with

your smartphone or by directly clicking on the QR-code in the pdf file. I modified the

layout of the text and figures to better incorporation in the thesis. All the text added to

improve the understanding and facilitate the incorporation in the thesis is displayed in

italic and in grey, like these few lines.

�.

 

 

�.

Citation: Bacles, C. F., Bouchard, C. , Lange, F. , Manicki, A. , Tentelier, C. and

Lepais, O. (2018), Estimating the effective number of breeders from single parr samples

for conservation monitoring of wild populations of Atlantic salmon Salmo salar. J Fish

Biol, 92: 699-726. doi:10.1111/jfb.13537

https://onlinelibrary.wiley.com/doi/abs/10.1111/jfb.13537
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4.1 CONTEXT

Effective breeders define individuals who participate in the production of offsprings. Indi-

viduals of the dominant sex (i.e. in number) have to compete to access potential mates

in species with sex-biases in parental investment and exhibiting biases of sex-ratio. Nev-

ertheless, the spatial distribution of potential breeders may influence the capacity of indi-

viduals to access mates (Emlen & Oring 1977, Shuster & Wade 2003). According to Emlen

& Oring (1977), the spatial distribution of potential breeders modifies their Environmental

Potential for Polygamy because the local spatial aggregation of potential mates enables

monopolisation of them by an individual of the other sex. Such monopolisation is typi-

cally exacerbated in harems, where an individual secure numerous potential mates from

competitors. However, a too large harem (i.e. a too high aggregation), or the proximity

to other harems, raises the competition caused by sneaky males (Muniz et al. 2015).

In salmon, anadromous males compete to access polyandrous females who select

their breeding sites on environmental characteristics (Hendry et al. 2001, Louhi et al.

2008). The spatial distribution and the size of breeding sites cause aggregation of fe-

males which varies among years (chapter 2, page 65). Hence, we assessed whether

spatial aggregation of females determined the number of effective breeders. We hypoth-

esised spatial aggregation influence the intensity of the competition among males lead-

ing to variations in the number of effective breeders. Weak spatial aggregation should

promote monogamy, whereas strong spatial aggregation should favour polygamy and

participation of sneaky males. A moderate spatial aggregation should lead to mate mo-

nopolisation by dominant males. A positive parabola between the effective number of

breeders and the spatial aggregation could, thus, be hypothesised.

4.2 METHODS

The workgroup ORE DiaFC (https://www6.inra.fr/ore-pfc/) carried redd monitor-

ing since 1984. The zone accessible for Atlantic salmon was entirely covered by walking

directly in the water, two or three times per breeding season. A same duo of observers

carried out the survey during the study period, their experience and training diminishing

redd survey errors (Dunham et al. 2001). Observers visually detect nests as a typical

depression-dome sequence where algae and silt were removed by females when digging.

Spatial aggregation of redds was also quantified, in order to test its effect on ԃս,

https://www6.inra.fr/ore-pfc/
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through competition for mates between adults and competition for feeding territories for

YOY. Redd aggregation was computed following the patchiness index (�� ; Lloyd 1967)

as:

�� � Ԝ̄ � (�2̄ֈ − �)Ԝ̄ (Eq. 4.1)

with Ԝ̄ and ᅼ2 the mean and variance of number of redds in each of the 93 known

spawning patches. Then, for each year ԣ, the mean of the estimated number of effective

breeders ԃս� was regressed against the yearly redd aggregation (patchiness, ���). Be-

cause ԃս� is a discrete variable, a Poisson distribution was used. Aggregation may not

have a monotonic effect on ԃս and thus a quadratic term was included in the model:

ԃս� ∼ ԅԞԘԢԢԞԝ�ᅶ)ᅶ � exp�ԛԟ)ԛԟ � ԘԝԣԔԡԒԔԟԣ � ᅫ × ��� � ᅬ × �2�� (Eq. 4.2)

The Poisson regression was fitted using a Bayesian framework to improve the ro-

bustness of parameter estimates. Posterior distributions of parameters were obtained by

hybrid Monte-Carlo sampling using the package rstan for R (Stan Development Team

2016). Weakly informative priors were applied to each parameter: ԘԝԣԔԡԒԔԟԣ� ᅫ� ᅬ ∼ӸԐԤԒℎԨ ��� ���), as advised by Gelman et al. (2008). Four independent chains were runs

to save 10, 000 iterations with a thin equal to three and after a warm-up of 2, 000 itera-

tions. Chain convergence was assessed visually and parameter convergence was assessed

with the scale reduction factor r̂ (Gelman & Rubin 1992). A sample of 2, 000/10, 000

values of each parameter estimates was extracted to compute 2, 000 estimations of ԃս�
for each value of ��� to ensure the quality of the model.

4.3 RESULTS

The relationship between ԃս� and redd aggregation displayed a U-shaped pattern (Fig-

ure. 4.1) with a significant quadratic term �ᅬ � ����6 ��� C.I.: �����������). Intercept

was estimated at ���� (� · �������) and simple effect ᅫ at −����6 (−����� to −�����).
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Figure. 4.1: Relationship between nest aggregation (Patchiness) and the number of efec-
tive breeders (ԃս) across ten years in S. salar Nivelle population. Triangles correspond
to yearly observed data of ԃս, and dots correspond to the estimates with the Credibility
Interval at ���. Color of dots is the yearly number of used breeding sites in the Nivelle.

The model accurately estimated ԃս, all the observed data being within the 95% C.I. for

each year. High and low levels of redds aggregation correspond to high estimates of ԃս,
while years with intermediate redds aggregation showed low ԃս estimates (Figure. 4.1).

For a given effective number of mates, levels of aggregation were negatively linked with

the number of used spawning patches. Indeed, a weak aggregation was linked to a high

number of used spawning patches (Figure. 4.1).

4.4 DISCUSSION

The S. salar mating system is polygynandrous and characterized by high variability in

individual reproductive success, which affects the number of effective breeders. Females

may dig several redds (up to 7; Taggart et al. 2001), on which they can lay several egg

batches (up to 11; de Gaudemar et al. 2000), each potentially fertilized by several males

(up to 16 males per redd; Grimardias et al. 2010, Weir et al. 2010). Throughout the

season, males can sequentially mate with several females (up to 16; Garant et al. 2001).

Beside these high numbers, one important characteristic of S. salar mating success is

its individual variability. Accounting for all potential anadromous mates in the River

Nivelle upstream of Olha, Tentelier et al. (2016b) found that half of the males and

one third of the females had no offspring detected in spring, even though sampling

was intensive. High mating variance is potentially affected by environmental conditions
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which fluctuate among years, explaining the variability of ԃս ∶ ԃվ1. One example of

this environmental variation can be observed in the effect of redd aggregation. The

significant U-shaped relationship between ԃս and redd aggregation may be interpreted

through the environmental potential for polygamy (EPP; Emlen & Oring 1977). When

males compete to access females, the capacity of a male to secure mating with multiple

females depends on his competitiveness and on the spatial distribution of sexually active

females, which depends itself of their breeding sites selectivity (Hendry et al. 2001, Louhi

et al. 2008). At low levels of aggregation, individuals and redds are distributed among

many breeding sites, such that males cannot monopolize females, resulting in an even

mating success hence a high ԃս. As aggregation strengthens, the EPP increases resulting

in a stronger male competition to monopolize females, skewing mating success towards

more competitive males (Tentelier et al. 2016a) and lowering ԃս. When females focus

on few breeding sites, aggregation of breeders is so strong that competition for mates

turns from contest to scramble, resulting in more even mating success and a high ԃս.
In the current chapter, we wanted to test the effect of aggregation of females on their

monopolisation by males. The potential effect of aggregation (patchiness) on ԃս was,

thus, tested leading to having patchiness in horizontal-axis in Figure. 4.1. The potential

effect of the number of potential breeders (ԃվ) on aggregation was tested in the chapter

2 (page 65) and no effect was found (Figure. 2.3, page 80).

HIGHLIGHTS OF CHAPTER 4▶ U-shaped relationship linked the spatial distribution of females through their

spatial aggregation to the effective number of breeders in the population.▶ The Environmental Potential for Polygamy and the Operational Sex Ratio

provides a context to explain the relationship.▶ Thereby, the spatial aggregation of females allows a male to monopolise

several females and expels other males, diminishing the effective number

of breeders.▶ At low spatial aggregation, a monopolisation is impossible due to the spa-

tial isolation of females. At the opposite, a high aggregation raises the num-

ber of competitors what increases the cost of competition and favours the

1ԃվ corresponds to the yearly estimated number of returning adults
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sneaky behaviour of other males. These two situations raise the effective

number of breeders.
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CHAPTER5

Evaluating the local social structure
and its effects on the pre-copulatory
selection acting on Atlantic salmon
males by inferring the population

sexual network

-161-
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This chapter is based on a collaboration with Tommaso Pizzari and Grant McDon-
ald from the Edward Grey Institute (University of Oxford) with whom I had the chance
to exchange for two months at Oxford. The following chapter is an early version of a
manuscript in preparation.

Abstract: Space use of individuals may affect their encounters and their sexual net-

works. In polygynandrous species, males may mate with females for which sperm com-

petition is intense. Moreover, the outcome of intrasexual competition and mate choice

depends on an individual’s phenotype relative to that of its competitors’. Accounting

for the social structure is crucial for a reliable description of sexual selection.

This study aimed to infer encounters and sexual network of a small population of At-

lantic salmon during two breeding seasons. Sexual networks enabled testing the potential

existence of a local social structure and its effects on the pre-copulatory competition on

sperm competition and sexual selection. The effects of the social structure and the social
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environment on sexual selection were also tested.

No individual occupied a central position in the network and a local social structure

emerged. The local structure varied between years as show by a sexual network more

nested during the first season. The mating system of the first season displayed a more

negative assortment which increased the Bateman gradient. The correlation between

the mating success of individuals and the sperm competition that they suffered was

more variable during the first season. Finally, male body length had a positive effect on

reproductive success. The arrival date of males in the breeding area also had a positive

effect during the first season but not the second. This yearly difference was also found

concerning the effect of the group phenotype. Indeed, a positive effect of the body length

of local competitors was found during the first season and a negative effect during the

second. Opposite signs were found concerning the arrival date.

This study highlights the importance of accounting for the local social structure in

natura when investigating sexual selection and pre-copulatory competition. Further-

more, the mating system of Atlantic salmon seems to be highly dynamic among years

even in a small river. The potential variable participation of males displaying a sneaky

behaviour may explain the yearly differences in sperm competition. Finally, the group

phenotype may have opposite effects on reproductive success compared to the effects of

the individual phenotype. The latter result vindicates the need of new studies about the

competitors’ phenotype effect on individual reproductive success in salmon.

Keywords: Assortative mating, Bateman gradient, hierarchical bayesian model, mul-

tilevel selection, network analysis, probabilistic networks, Salmo salar, sneaker males,

sperm competition intensity

5.1 INTRODUCTION

Movements of individuals affect their social network when encounters are regarded as in-

teractions between individuals. While networks correspond to edges linking nodes, social

networks link individuals according to their interactions depending on social interactions

researchers consider (see box Tools III.i). Social networks depict either a present/absent

interaction between individuals or weighted interactions. In weighted networks, a weight

(e.g. number of antagonist interactions) characterises interactions between individuals.

Depending on how much and where it moves, each individual may not encounter all in-

dividuals, interacting only with a subset of individuals within the population. Studying
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such social networks permit to better understand social organisation (Quevillon et al.

2015), group living (Wey et al. 2008, Wolf et al. 2007), or to explain infectious disease

dynamics in humans (De et al. 2004) but also in animals (Farine 2017, Perkins et al.

2009).

Recently, several authors have focused on how space use shapes sexual networks.

Sexual networks are a subclass of social networks focusing on potential breeders and

depicting who mated with whom either by visual observations of copulation or genetic

parentage analyses. Then, sexual networks link potential breeders by considering either

whether they mate together or not, or the number of mating events between them, or the

number of sired juveniles between them, for instance. Spatial distribution of potential

breeders through their home range affects their access to potential mates and therefore

their mating success (Fisher & Lara 1999). A social structure (i.e. the formation of

groups via connections among individuals) may appear in sexual networks because all

individuals do not encounter all potential mates (Krause et al. 2007, Montiglio et al.

2018). For instance, Muniz et al. (2015) argued that the spatial distribution of Ser-

racutisoma proximum affects the males’ sexual network. Therefore, such local social

structure may have great importance by shaping the spread of sexually transmitted dis-

eases (De et al. 2004), modifying genetic diversity (Cunningham et al. 2018, Montiglio

et al. 2018), or impacting the mating system through the Environmental Potential for

Polygamy (EPP, Emlen & Oring 1977). Each individual, encountering different subsets

of competitors and potential mates may, thus, face different local Operational Sex Ratio

(OSR) leading to variation in EPP between individuals (Emlen & Oring 1977, Shuster

& Wade 2003).

The local sexual structure may affect sexual competition faced by individuals. In-

deed, knowing who interact with whom is the first step of evaluating sexual competition

(Kamath & Losos 2018). Sperm competition determines how males share their repro-

ductive success with competitors who mated with the same females (Shuster & Wade

2003). Such sharing with other males diminish their reproductive success affecting the

Bateman gradient, namely the slope of the relationship between mating success and

reproductive success (McDonald et al. 2013, Muniz et al. 2015). The structure of sex-

ual networks leads to a positive or negative assortment, i.e. the correlation between an

individual’s and his mates’ mating success, a key parameter to study sexual selection.
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Thus, assortative mating can flatten or steepen the Bateman gradient by shaping the

relationship between the intensity of sperm competition faced by males and their mating

success (McDonald & Pizzari 2016; 2017). By shaping the local OSR and EPP expe-

rienced by each individual, the spatial distribution of potential breeders may affect the

structure of sexual networks (Muniz et al. 2015, Silk et al. 2018) and the intensity of

sperm competition suffered by individuals (Muniz et al. 2015). The spatial distribution

of potential breeders may, thereby, drive sexual competition.

Moreover, the spatial distribution of potential breeders shapes phenotypes of com-

petitors faced by males. The local social environment can have strong implications for

patterns of sexual selection when populations are structured. The strength of sexual

selection on males is not only shaped by the intensity of sperm competition but also by

the phenotypes of the competitors that males face. For example, Oh & Badyaev (2010)

found that males of wild house finches may adjust their social environment including

less attractive males and increasing their reproductive success. Moreover, Formica et al.

(2011), found antagonist selection on body size on forked fungus beetles (Bolitotherus

cornutus) favouring larger males with small competitors in their social group. The phe-

notype of competitors may, thus, affect the reproductive success of a focal individual

through sexual competition (West-Eberhard 1983). Phenotypes expressed in a social

environment may also modify the reproductive success of a focal individual through In-

direct Genetic Effects which are modifications of individual phenotype by the phenotype

of other individuals (Wolf et al. 1998). The phenotype of mates may also modify the

phenotype of a focal individual (Teplitsky et al. 2010). Nevertheless, we only focused on

the impact of the competitors’ phenotype. Analyses that estimate the contribution of

the phenotypic composition of a male local socio-competitive environment may be cru-

cial in understanding how social structure shapes sexual selection (McDonald et al. 2013,

Okasha 2004). Multilevel selection analyses enable accounting for the effect of individual

phenotype but also of the social-competitive phenotype (McDonald et al. 2013).

Although sexual networks provide useful information to understand mating systems

and especially patterns of assortative mating, they only refer to a mating layer. Inte-

grating social information (potential competitors) and spatial information to the mating

layer may enhance our understanding of mating behaviour and mating system (Silk et al.

2018). For instance, Schlicht et al. (2015) used a spatially explicit model to assess the
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probability of extra-pair mating in birds and improve understanding of the effects of

breeding distance on extra-pair mating. However, applying such multilayer and explicit

spatial approach in natura requires a large amount of data but also involves different

types of data to have different layers (Silk et al. 2018). Moreover, another challenge in

natura remains to obtain information about all possible nodes in the considered network

in order to not bias assortativity for example (Kossinets 2003).

TOOLS III.i: Social network analysis
dzad

Usually, biologists build social networks by linking individuals — nodes —

and either by categorising individuals according to sex for example — bi-

partite network — or not (Figure. 5.1). Links between individuals — edges

— are either directed (e.g. A attacks B) or undirected (e.g. A reproduces

with B). A weighted network corresponds to a network where each edge is

distinguished by the number or the strength of interactions between nodes

(Figure. 5.1). Social networks have been recently used in ecological and

behavioural studies resulting in several recent reviews, opinion, or book

(Blüthgen 2010, Butts 2009, Croft et al. 2011, Farine & Whitehead 2015,

Krause et al. 2007, Pinter-Wollman et al. 2014).

As justified by Farine & Whitehead (2015), networks analysis provides a

useful way to describe social systems at the species level (e.g. to describe

predator-prey interaction) or at the population level (e.g. which individual

interact which whom). In addition, social analyses may be used to link indi-

vidual behaviour to individual fitness (Formica et al. 2010). Networks per-

mit describing interactions between nodes by viewing the presence/absence

of interactions (e.g. whether a pair has copulated or not, McDonald et al.

2013). However, a weighted network permits to fully capture the richness

of the information contained in data (Opsahl & Panzarasa 2009).

Network analyses permit highlighting that individual heterogeneity and

connections between individuals may modify group and individuals out-

comes (Sih et al. 2009). Considerations of a spatial dimension is notably

a potential way of improvements of network analyses (Sih et al. 2009, Silk

et al. 2018). Accounting for connections between individuals may be en-

hanced by accounting for other layers of information (temporal, spatial,
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. . . , Silk et al. 2018). However, incorporated different data types and in-

complete data can be damageable in such analysis (James et al. 2009).

Bayesian Hierarchical models can be a solution to estimate probabilities of

encountering and mating from different data types. Working with proba-

bilities also permits estimating interactions between individuals for whom

some data are not available. Bayesian Hierarchical models can also link

different networks (e.g. encounter network and mating network in my the-

sis).

Ellis et al. (2017) found that male’s sociality in killer whales, Orcinus orca,

enhanced their survival in years of low salmon abundance. In humans, De

et al. (2004) highlighted that the position in networks of individuals was

more important in infectious transmission than the number of interactions.

Network analyses could give valuable information about effects of the so-

cial structure, especially in colonial species where dominance, or rank, for

example, may affect the survival or recruitment such as in kittiwake (Rissa

tridactyla, Cam et al. 2003).

UNDIRECTED BIPARTITE network DIRECTED WEIGHTED network

3

3

2

11

2

1

Figure. 5.1: Two examples of social networks.

Atlantic salmon (Salmo salar) is a relevant species to investigate the influence of

breeders’ spatial distribution on local structure and the resultant effects on sexual se-

lection. After growth at sea, salmon migrate to freshwater to reproduce. After a "mi-

gration phase" to go up the river, individuals exhibit a "search phase" during which

they research a breeding site, as well as potential mates (Finstad et al. 2005, Økland

et al. 2001). The "search phase" may favour the appearance of a structure in encoun-

ters. Moreover, spatial aggregation of nests and thus of females varies among years
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(Bouchard et al. 2018), suggesting a potentially fluctuating social network. Although

salmon is a model of sexual selection and notoriously polygynandrous species (Garant

et al. 2001), sexual selection has never been looked through the prism of networks, only

at the scale of the spawning act (behavioural observations of male-male and male-female

interactions, Järvi 1990, Mjølnerød et al. 1998, Myers & Hutchings 1987) or the whole

population pooled in parentage analyses (Bacles et al. 2018, Taggart et al. 2001). In

addition, some studies have investigated the spatial dimension but either on the location

of breeding sites (Hendry et al. 2001), the habitat quality in their home range (Tentelier

et al. 2016a), or on the resultant density of offspring (Einum et al. 2008, Foldvik et al.

2010). Finally, previous studies have suggested a within-population local structure when

studying population dynamics at the juvenile level in salmon (Finstad et al. 2009).

We used data of individual movements and parentage analyses from Tentelier et al.

(2016a) and Tentelier et al. (2016b) to infer a spatially explicit sexual network in a

small population of Atlantic salmon (Salmo salar) during two breeding seasons. The

present study aimed to evaluate the effects of the spatial distribution and movements

of potential breeders affect the strength of sexual selection. We tested whether spatial

distribution and movements of potential breeders i) shape mating assortativity and the

subsequent sperm competition, and ii) affect sexual selection through the effects of so-

cial-competitive phenotypes on reproductive success in Atlantic salmon. The approach

developed here bridges the gap between behavioural studies at the spawning act scale

and genetic studies at the population scale, looking at the individual sexual environment

and accounting for who encounters whom. We firstly inferred the encounters and sexual

networks linking potential mates according to their encounter probability and to their

mating probability. Then, we assessed mating assortativity and the subsequent sperm

competition. The phenotypes of mated males were compared to those of encountered

males and to those of all males in the population to test the importance of accounting for

encounters when investigating sexual selection. Finally, previous studies observed the

influences of body size and arrival date on salmon’s reproductive success (Seamons et al.

2004, Tentelier et al. 2016a). We, thereby, evaluated the impacts of the local socio-

competitive environment on the individual reproductive success through a multilevel

selection analysis, no studies have tested for it in salmon.
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5.2 METHODS

5.2.1 DATA

Data came from the studies of Tentelier et al. (2016a) and Tentelier et al. (2016b).

Authors monitored in natura the daily movements of anadromous salmon within the

upstream part of the Nivelle River (France) during two breeding seasons (Figure. 5.2).

The upstream limit of the studied area was an impassable dam (Figure. 5.2), while the

downstream limit was a dam equipped with a fish trap (“Olha” dam in Figure. 5.2). The

fish trap provides a passage for fish and allows researchers to tag all individual entering

in the studied are. The number of tracked individuals changed between the two years:

15 females and 17 males the first year (2009) and 45 females and 46 males the second

one (2010). The observed difference is due to a yearly variation in returning adults in

the Nivelle (Bacles et al. 2018). Authors monitored the daily positions of all tagged

individuals within the study area and throughout the breeding season (Tentelier et al.

2016a).

Beside the described monitoring, authors also mapped all redds, which are the nests

of Atlantic salmon. After each breeding season, juvenile sampling along the study area

permitted to perform genetic parentage analysis giving a male-female matrix filled with

the number of common offspring (Tentelier et al. 2016b). Parentage analyses provided

the necessary data to compute the individual reproductive success corresponding to the

number of sired juveniles (effective breeders: 10 fathers and 13 mothers in 2009 — 22

fathers and 27 mothers in 2010). Parentage analyses also permitted to compute the

mating success of individuals as the number of different mates. The high number of

caught juveniles (1677 juveniles in 2009 and 1350 in 2010) diminished the probability to

miss an anadromous parent (Bacles et al. 2018). However, missing some of anadromous

remained possible, especially when their true reproductive success was low. Hence, some

matings were unnoticed by the parentage analysis which convinced us to prefer working

with the probability of mating which uses information from the encounter process rather

than the mating success for some analyses. Likewise, the daily position of all individuals

allows building a three-dimension array, male-female-day, filled with the daily distance

for each day of the season. The latter array was wrapped to another male-female matrix

to have a quantitative appreciation of the fidelity between individuals and an estimate

of a true encounter during the season (Eq. 5.2).
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Figure. 5.2: Map of the Nivelle River. The dams “Uxondoa” and “Olha” are now
equipped with a ish pass. The Olha dam marked the limit between the Upper Nivelle
(“UN”) and the Lower Nivelle (“LN”). The red dots correspond to the 22 sites where
salmon juveniles are yearly sampled. The Lurgorrieta is the main tributary. Saint-Pée
sur Nivelle is the urbanised area between Uxondoa and Olha dams. The yellow star
indicates the geographic position of the UMR ECOBIOP.
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5.2.2 INFERRING THE SEXUAL NETWORK

The bipartite and undirected sexual network of anadromous salmon in the Nivelle River

was based on the mating probability, the probability that a female — ԕ — and a male —Ԝ — sired at least one juvenile. Inferring this probability used four types of information:

1) the juveniles sired by each anadromous couple and obtained by the parentage analysis

(Tentelier et al. 2016b), 2) the encounters obtained from the daily positions (Tentelier

et al. 2016a), 3) the encounters near a redd obtained from the daily positions and redd

mapping (Tentelier et al. 2016a), and 4) female body size affecting its fecundity which

may affect the number of mating events. The challenge lies in how to combine such

different sources of information which are also incomplete. Parentage analysis may miss

some parents because electrofishing does not sample all juveniles in the river. Moreover,

all encounters cannot be noticed by monitoring the individual positions once a day, and

all redds cannot be found (Dunham et al. 2001). Bayesian hierarchical models permit

to combine different sources of information which can be incomplete (Brun et al. 2011).

In addition, working with probabilities allowed us estimating encounters or matings

between all individuals even if any offspring in common was sampled.

Let Ԃց−ֈ the mating success of the pair formed by the female ԕ and the maleԜ. Ԃց−ֈ is either equal to 0, or to 1 when the pair ԕ − Ԝ sired at least one juvenile.

The probability to obtain Ԃց−ֈ � �, namely the success probability referred to as

the mating probability, is estimated from the encounter probability — Ӻց−ֈ —, the

probability that a salmon pair visit the same redd — ԇց−ֈ —, and a term — �ց —

accounting for the female body size.Ԃց−ֈ ∼ ℬԔԡԝԞԤԛԛԘ �ԟ) �
Pr [Ԃց−ֈ � ԧ ∣ Ӻց−ֈ� ԇց−ֈ� �ց] � ⎧{⎨{⎩ԟ� if ԧ � �� − ԟ� if ԧ � �

� ⎧{{⎨{{⎩
Ԕԧԟ (ԑԐԢԔ � ᅫ1 × Ӻց−ֈ � ᅫ2 × ԇց−ֈ � ᅫ3 × �ց)Ԕԧԟ (ԑԐԢԔ � ᅫ1 × Ӻց−ֈ � ᅫ2 × ԇց−ֈ � ᅫ3 × �ց) � �� − Ԕԧԟ (ԑԐԢԔ � ᅫ1 × Ӻց−ֈ � ᅫ2 × ԇց−ֈ � ᅫ3 × �ց)Ԕԧԟ (ԑԐԢԔ � ᅫ1 × Ӻց−ֈ � ᅫ2 × ԇց−ֈ � ᅫ3 × �ց) � �

(Eq. 5.1)

Probabilities were estimated under a Bayesian framework by calling Stan in R (Stan
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Development Team 2018). The model, like the following ones, was separately fitted for

each breeding year. Three chains were fitted, each one containing ��� ��� iterations,

and permitted to save �� ��� iterations with a thinning interval of �� iterations and

after a warm-up of �� ��� iterations. Graphical examinations, the scale reduction factor:

r̂, as well as the effective sample size and the autocorrelation of parameter estimates,

permitted to assess chain convergence. The model used all tracked individuals during

the two breeding seasons: 17 males - 15 females in 2009, and 46 males - 45 females in

2010.

5.2.2.1 Encounter probability --- Ӻց−ֈ
The daily distances between each male — Ԝ — and each female — ԕ — permitted the

computation of their encounter probability — Ӻց−ֈ. From these daily distances between

male — Ԝ — and female — ԕ —, we extracted the number of days during which this

distance was shorter than 500 m (this day count was noted ӹց−ֈ). The threshold

distance, which is similar to the distance used by Tentelier et al. (2016a), corresponds to

the distance at which a male may stay from a redd before participating in reproduction

at this redd. The number of inverted positions between a male and a female was also

accounted to diminish the number of omissions of potential encounters. Then, we count

an inverted position if two individuals invert their positions between two days (e.g. a

male is upstream from a female one day and downstream from this female the next day)

and if the distance between them was longer than 500m during the two days in order

to do not count a day two times. An inverted position necessarily tended to a highly

probable encounter due to the narrow width and the shallow depth of the Nivelle. Thus,

relative positions of individuals allowed us to compute the number of inverted positions

for each pair — �ԅց−ֈ — which was implemented in the estimation of the encounter

probability to improve it. Because all individuals did not enter the same day in the

study area, ӹց−ֈ and �ԅց−ֈ were standardised by the number of days during which a

female and a male were both in the study area (noted Ԉց−ֈ to define the Season length

of potential encounters between ԕ and Ԝ). Hence, the encounter probability — Ӻց−ֈ
— between a male — Ԝ — and a female — ԕ — corresponded to:

Ӻց−ֈ � ⎧{⎨{⎩
ӹց−ֈ � ᅬ × �ԅց−ֈԈց−ֈ � if Ԉց−ֈ ≠ ��� if Ԉց−ֈ � � (Eq. 5.2)
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Because the relative importance of �ԅց−ֈ in encounter probability is unknown, the effect

of �ԅց−ֈ was modulated through a parameter: ᅬ. No constrains were directly applied

to ᅬ but an indirect because the fraction was constrain to be lower than one and upper

than zero.

5.2.2.2 Probability to visit a redd --- ԇց−ֈ
The redd mapping associated with the daily positions of anadromous permitted com-

puting the daily distances between each redd — ԡ — and each anadromous, male and

female. Like for the encounter probability for each anadromous pair, a threshold length

of 500 m was chosen. The number of days during which the distance between a redd —ԡ — and an anadromous (male or female) was shorter than this threshold length was

thus extracted (noted ӹ֍−ց or ֈ). ӹ֍−ց or ֈ was standardised by the number of days

during which the focal anadromous was able to visit the redd (Ԉ֍−ց or ֈ). Ԉ֍−ց or ֈ
corresponds to the number of days between the previous redd survey and the redd sur-

vey during which the redd was found. The average number of days was 5.9 days. The

probability that a male and a female visited the same redd (ԇց−ֈ) was, therefore:

Pr [ԇց−ֈ ∣ ӹ֍−ց � ӹ֍−ֈ� Ԉ֍−ց � Ԉ֍−ֈ] � ⎧{⎨{⎩
�� � Ԕԧԟ �−ԧ)� if Ԉ֍−ց & Ԉ֍−ֈ ≠ ��� if Ԉ֍−ց or Ԉ֍−ֈ � �

with ԧ � կ֍�∑֍�1 ӹ֍−ցԈ֍−ց × ӹ֍−ֈԈ֍−ֈ � if Ԉ֍−ց & Ԉ֍−ֈ ≠ �
(Eq. 5.3)

with ԃԡօ the number of redds found during the breeding season ԙ.
5.2.2.3 Accounting for female fecundity --- ԟℎԘց
In salmon, fecundity is dependent on the body size which affects the number of eggs

females can lay (Thorpe et al. 1984). Females may adjust the number of eggs that they

laid during a mating event in relation to the sperm depletion level of males (Weir et al.

2010). Fecundity, which depends on body size, may thus influence the laying probability.

The laying probability shapes the number of mating events of females. The fecundity

may influence the number of mating events of females, only because if a low number of

eggs are spawn, the probability to sample juveniles diminishes. Finally, larger females

usually spawn larger eggs and with a burial deeper of nests. These two effects enhance

egg survival (Berghe & Gross 1984, Kazakov 1981, Steen & Quinn 1999). However, in

other salmonid, eggs of smaller females may exhibit an enhanced survival (Holtby &
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Healey 1986). The effect of body size on the mating probability should, consequently,

be accounted for. �ց � �� � Ԕԧԟ�−ӻԁց) (Eq. 5.4)

with ӻԁց the fork length of the female ԕ .

5.2.2.4 Formation of binary and weighted networks

The model Eq. 5.1 permits estimating of an encounter probability (Ӻց−ֈ) and a mating

probability (Pr [Ԃց−ֈ � �]) between each potential pair of breeders (ԕ − Ԝ). The en-

counter and sexual networks are bipartite networks linking all individuals to all opposite-

sex individuals. The links between individuals are weighted either with the encounter

probability (Ӻց−ֈ) in the case of the encounter network or with the mating probability

(Pr [Ԃց−ֈ � �]) in the case of the sexual network. Closeness centrality measures the

position of individuals within a network with the idea that an individual exhibiting short

distance to other individuals can productively spread information through the network

(Beauchamp 1965). For weighted networks, especially in our cases, the distance be-

tween two individuals (ԓ�Ԙ� ԙ)) corresponds to the encounter or the mating probability

between them because all potential mates are connected. The closeness centrality of the

individual Ԙ is thus computed as (Wei et al. 2013):ӸԒք � �∑կ֓ ԓ�Ԙ� ԙ) (Eq. 5.5)

With ԃ the total number of potential mates. A low ӸԒք, due to a high denominator

(∑կ֓ ԓ�Ԙ� ԙ)), indicates that the individual Ԙ is highly connected to potential mates and

occupies a "central position".

Based on these networks and all links, we can isolate links which are "probable". A

male was, then, considered as encountered by a female when the encounter probability

between the female and the male, Ӻց−ֈ, was upper than ����. It means that the weight

of the edge linking the female ԕ to the male Ԝ was upper than ���� to consider the

link as likely. Then sexual partners were recognised through the mating probability —

higher than 0.05 like for the encounter probability.
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5.2.3 MATING ASSORTATIVITY & THE BATEMAN GRADIENT

5.2.3.1 Nestedness

The nestedness, a concept originated from metacommunity study, is a measure of the

mating assortativity. Recent studies quantified the pattern of assortativity in sexual

networks through the nestedness (McDonald & Pizzari 2016). A nested network arises

when males with low mating success, and then a few mating partners, preferentially

mate with the most polyandrous females. In this way, males with the highest mating

success also mate with less polyandrous females. In terms of assortativity, a nested

network corresponds to a negative assortment between the male mating success and

the female mating success. Patterns of assortativity are easily visible through matrix

representation of sexual networks with males as rows and ranked from top to bottom

in order of decreasing mating success, and females as columns ranked from left to right

also according to decreasing mating success. The ordered matrices of sexual network

permit assessing the nestedness of the population through the NODF, the acronym of

nestedness metric based on overlap and decreasing fill, and defined by Almeida-Neto

et al. (2008). From an ordered matrix, and for each pair of males — Ԙ and ԙ rows — we

computed the Decreasing Fill (DF) and the Percentage Overlap (PO). DF is calculated

by comparing the mating success (Ԃ) of the upper ranked male (row Ԙ) to the mating

success of the other male (row ԙ). If Ԃք � Ԃօ, then ӹӻքօ � ��� and if Ԃք ≤ Ԃօ,
then ӹӻքօ � �.The Percentage Overlap of the pair of rows Ԙ − ԙ was calculated as

the percentage of male ԙ’s mating partners shared with the male Ԙ. Same calculations

between column pairs permit assessing DF and PO for females with the female Ԙ, the

leftmost female. Individual nestedness — ԃքօ — then be calculated as:

If ӹӻքօ � �� then ԃքօ � �
If ӹӻքօ � ���� then ԃքօ � ԅԄքօ (Eq. 5.6)

Then, the nestedness characterising the whole network can be calculated as:ԃԄӹӻ � ∑ ԃքօ[ց�ց−1)2 ] � [ֈ�ֈ−1)2 ] (Eq. 5.7)

ԕ and Ԝ correspond to the number of females and males in the network, respectively.

NODF may range from 0 to 100, 0 indicating no nestedness and 100 a perfect nestedness

(Almeida-Neto et al. 2008). Besides the computation of the NODF based on the mating
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success (Ԃ) and thus the matrices of sired juveniles, NODF was also computed by

replacing the mating success by the mating probability estimated in the equation Eq.

5.1. For this second computation, we compared the cumulative mating probability of the

male or female Ԙ to the cumulative mating probability of the male or female ԙ instead

of comparing mating success. In this case, ӹӻքօ � � when the cumulative mating

probability of the individual Ԙ was lower than that of the individual ԙ. ӹӻքօ � � was

then the percentage of male ԙ’s partners with which he had an higher mating probability

than the male Ԙ had. For example, if the male ԙ had just one partner, if the mating

probability between this female and ԙ was 0.7 and 0.2 with a male Ԙ, therefore ԅԄ � ���.

For the first calculation, we considered just tracked individuals that sired at least one

juvenile: 9 males / 8 females in 2009 and 13 males / 13 females in 2010. For the second

calculation, the mating probability enabled to consider all individuals: 17 males / 15

females in 2009 and 46 males / 45 females in 2010, which diminishes potential bias in

the estimation of the nestedness due to missing nodes (Kossinets 2003).

5.2.3.2 Sperm competition and the Bateman gradient

Salmon females being polyandrous, males compete to access to them and face sperm

competition. Indeed, several males may participate in the fertilisation of a laying event

of one female. The number of sperm competitors, therefore, diminishes the reproductive

success of a focal male. According to Shuster & Wade (2003), the sperm competition

intensity (sci) suffered by a male can be assessed through the harmonic mean of the

mating success of male’s partners. The sperm competition intensity faced by males

informs on patterns in assortative mating at a population level. Let a focal male that

mates with three females: 1) one female which does not remate and no competitors are

present, 2) one female which does not remate but one competitor also fertilises some eggs,

3) one female which remates with two males. For the first female, the focal male faces no

sperm competition. But for the two other females, the focal male must compete with the

sperm of other males. Direct competition occurs when a competitor also fertilises some

eggs during the same laying event while an indirect sperm competition occurs when the

female remate with other males. The average paternity share of this focal male across

its three partners is then: 13 × (11 � 12 � 13) � ��6��. Then, this focal male must face10.611 � ��6� competitors. This computation may be generalised for the Ԝ֏ℎ male as:

sciֈ,օ � �1ծ�,� × ∑ծ�,�ց�1 1ֆ�,� (Eq. 5.8)
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with Ԃֈ,օ the mating success of the male Ԝ during the breeding season ԙ, and Ԛց,օ the

mating success of the female ԕ during the same season ԙ.
Strength of selection on mating success is usually assessed through the Bateman

gradient (ᅬ) measuring the relation between the mating success of an individual and its

reproductive success: ԉֈ,օ � ᅬ × Ԃֈ,օ. In addition to the pre-copulatory competition,

sperm competition may also modulate the reproductive success of an individual. Ac-

cording to McDonald & Pizzari (2016), sci was incorporated in the equation linking the

mating success to the reproductive success of individuals:ԉֈ,օ ∼ � (ԘԝԣԔԡԒԔԟԣ � ᅬծ�մ�� × Ԃֈ,օ � ᅬմ���ծ × ԈӸ�ֈ,օ� ᅼյ ) (Eq. 5.9)

with ᅬծ�մ�� the Bateman gradient controlling for variation in sci and ᅬմ���ծ mea-

suring the effect of sperm competition on reproductive success. The model accounted

for all individuals having a no-null reproductive success (ԉֈ,օ � �) and all variables

(ԉֈ,օ, Ԃֈ,օ, ԈӸ�ֈ,օ) were standardised like this:
յ�,�−ֈրռ։�յ�)2×֎տ�յ�) . The model (Eq. 5.9)

was fitted under Bayesian framework like previous models in the current study. A total

of ��� ��� iterations were saved from three chains with a thinning interval of 5 iterations

and a warm-up of �� ��� iterations. Convergence was assessed in the same way those

previous models. In this model, we also computed the Sperm Competition Intensity

Correlation — scic — corresponding to the link between the mating success (Ԃ) and

the sperm competition intensity (sci, McDonald & Pizzari 2016; 2017):ԈӸ�ֈ,օ � � (ԘԝԣԔԡԒԔԟԣմ��� � ԈӸ�Ӹ × Ԃֈ,օ� ᅼմ���) (Eq. 5.10)

A male who mates with polyandrous females, then facing to numerous sperm com-

petitors, will, therefore, have positive scic. In this model, the mating success, the

reproductive success, and the sci were standardised like in the previous model.

5.2.4 PHENOTYPIC SELECTION

5.2.4.1 Phenotype of mated males compared to phenotype of potential breeders

Phenotype of mated males is usually compared to the average phenotype in the popula-

tion to test if females mate with a particular phenotype. However, mate choice, whether

direct or indirect, is a relative process. A female may choose a male only in encountered

ones and by comparing encountered ones. In order to test the effect of encounters be-
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tween potential mates, we suggested to also compare the phenotype of mated males to

the phenotype of encountered males. Encounters matter if the two comparisons, namely

with the population phenotype and with the encountered phenotypes, provide different

results.

Then, one normal distribution was fitted to model the phenotypes (body length and

date of arrival) of all males in the population estimating the average phenotype and the

corresponding standard deviation:ԅℎԔԝԞԣԨԟԔֈ ∼ � (ᅷpopulation� ᅼpopulation) (Eq. 5.11)

For each female, a normal distribution was also fitted to model the phenotypes of males

this female ԕ encountered and another normal distribution was fitted for the phenotypes

of males this female mated:

if Ӻց−ֈ � ���� ∶ ԅℎԔԝԞԣԨԟԔֈ,ց ∼ � (ᅷencountered−ց � ᅼencountered−ց) (Eq. 5.12)

if Pr [Ԃց−ֈ � ����] ∶ ԅℎԔԝԞԣԨԟԔֈ,ց ∼ � (ᅷmated−ց � ᅼmated−ց) (Eq. 5.13)

Then, for each female, the average phenotype of its sexual partners — ᅷmated−ց —

was compared to the average phenotype of all males in the population — ᅷpopulation —

and to the average phenotype of males encountered by each female — ᅷencountered−ց . The

values of ᅷpopulation and ᅼpopulation estimated in Eq. 5.11 were replaced in the equation ofΔpop, while the values of ᅷencountered−ց , ᅼencountered−ց and ᅷmated−ց estimated in Eq. 5.12

and Eq. 5.13 were replaced in the equation of Δencountered.

Δpop−ց � ᅷpopulation − ᅷmated−ցᅼpopulationΔencountered−ց � ᅷencountered−ց − ᅷmated−ցᅼencountered−ց (Eq. 5.14)

A positive value of Δencountered−ց indicates that the female ԕ mated with the larger males

she encountered.
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A hierarchical Bayesian model was used to estimate the parameters of the three

equations Eq. 5.11, Eq. 5.12, and Eq. 5.13, and thereafter the subsequent comparisons: Δpop,Δencountered. Hence, this hierarchical model enabled to estimate the average phenotype of

encountered and mated males for each female. This model also allowed us to compare the

average phenotype of mated males to phenotype of encountered males and to the average

phenotype in the population. Since we hypothesised that each female may encounter

and mate a different subset of males, ᅼencountered−ց was modelled for each female from

the ᅼpopulation as: ᅼencountered−ց � ᅱց × ᅼpopulation; and ᅼmated−ց was estimated fromᅼencountered−ց as: ᅼmated−ց � ᅾց × ᅼencountered−ց . Three chains were fitted enabling to

save a total of �� ��� iterations from ��� ��� iterations per chains after a warm-up of�� ��� iterations and with a thinning interval of 5 iterations. Convergence was assessed

in the same way as for the model Eq. 5.1.

5.2.4.2 Assessing the effect of the social environment on reproductive success

The reproductive success of salmon males is usually explained by their body length

(Tentelier et al. 2016b). Yet, the local socio-competitive environment may also affect

the sexual selection. We performed a multilevel selection analysis accounting for the ef-

fect of individual phenotype but also of the social-competitive phenotype on individual

reproductive success. The social-competitive phenotype was assessed through a neigh-

bour analysis. In neighbour analysis, the phenotype of a group (Ԗ) where is a focal

individual (Ԝ) is computed as the mean trait value for all neighbours of Ԝ belonging

in this group including the focal individual (McDonald et al. 2013, Okasha 2004). We

used a neighbour analysis rather a contextual one — where the phenotype of the group

is the mean value of neighbours and focal male — to prevent collinearity between the

focal phenotype and the group phenotype in small groups. Then for each focal male

(Ԝ) we extracted the identity of its competitors to compute the phenotype of its group.

Competitors are other males who encountered (Ӻց−ֈ � ���� in Eq. 5.1) the females

with whom the focal male mated. For instance, lets a male who has mated with two

females. The first female has encountered a male while the second female has encoun-

tered two males. The group phenotype of the focal male is then the mean trait value of

its three neighbours. Each male was, thus, characterised by its reproductive success, its

phenotype, and the phenotype of its group. The multilevel selection linking individual

reproductive success (ԉֈ,ւ) to individual phenotype (ԩֈ,ւ) and group phenotype (ԏֈ,ւ)
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through a Poisson regression was:ԉֈ,ւ ∼ � (Ԕԧԟ (ԘԝԣԔԡԒԔԟԣ֎֊վքռև � ᅫ × ԩֈ,ւ � ᅬւ֍֊֐֋ × ԏֈ,ւ)) (Eq. 5.15)

We did not use a network based on males encounters because we considered competitors

on the basis of encounters between males that have involved females. Such considera-

tions motivated us to used the encounter and sexual networks previously defined. Indeed,

encounters between males without involving females have not necessarily lead to com-

petition between males either direct (e.g. on male chasing other males) or indirect (e.g.

their own presence). A total of 6�� ��� iterations were saved from three chains with a

thinning interval of 10 iterations and a warm-up of �� ��� iterations.

5.3 RESULTS

5.3.1 INFERRING THE SEXUAL NETWORK & THE ENCOUNTER PROBABILITY

Inferring the sexual network from the parentage analysis, redd mapping, and individual

tracking enabled to estimate the encounter probability, as well as the mating probability.

In 2009, one male displayed an encounter probability and a mating probability lower than���� with all females (Figure. 5.3). Some patterns appear in agencement of encounters

and matings within the population. Some males exhibited high encounter probabilities

with several females, while some males exhibited low probabilities also with several

females. No female or male displayed a high probability to encounter all individuals

of the other sex (Figure. 5.3 a). The closeness centrality for males and based on the

encounter probability (ӸԒք, Eq. 5.5) varied from 0.21 to 0.95, while it varied from 0.29

to 1.12 when accounting for the mating probability. In females, ӸԒք varied from 0.21

to 1.26 when accounting for the encounter probability, and from 0.31 to 1.08 when

accounting for the mating probability. For the two sexes and the two probabilities the

values were not relatively low indicating that no individual occupied a "central position".

We simulated 1000 networks with 17 males interacting with 15 females by simulating

encounter probabilities from a uniform distribution between 0 and 1, the ӸԒք ranged in

average from 0.09 to 0.25. The low centrality exhibited by individuals led to have three

subgroups emerging from the matrix representation (Figure. 5.3 c). Similar observations

can be made from the network and matrix representation of the mating probability:

females and males displaying high probabilities with only some individuals. In 2010, the

high number of anadromous individuals makes the networks difficult to graphically read

(Figures in Supplementary). However, the networks seemed more homogeneous in 2010
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Figure. 5.3: Bipartite networks of males (red) and females (blue) based on their en-
counter probability (a & c) and their mating probability (b & d) in 2009. In network
plots, probabilities lower than 0.05 are not displayed. The width of nondirectional edges
increases with the corresponding probability. In matrix plots, males with the highest
cumulative sum of encounter probability in c) or of mating probability in d) is displayed
at the top. For females, individuals are ordered from left to right with a decreasing
cumulative sum of probability. A total of 17 anadromous salmon males and 15 females
was tracked during a breeding season which enabled by coupling with parentage analysis
and redd mapping to rebuild this sexual network.

than in 2009.

5.3.2 MATING ASSORTATIVITY & THE BATEMAN GRADIENT

5.3.2.1 Nestedness

Matrices of the number of juveniles sired by each anadromous pair enabled to discover

a negative assortment pattern during the first breeding season ( Figure. 5.4). For this

breeding season, the nestedness accounting individuals for whom at least one juvenile

was found, was computed at 43.81 which indicates a negative assortment (Table. 5.1).

Concerning the second breeding season, a pattern of assortative mating appears in the

top left corner of the matrix while the rest of the matrix shows a more homogeneous
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Figure. 5.4: Matrices of the number of juveniles (expressed in ԛԞԖ�NJuvenile� �)) sired
by each anadromous pair in the Nivelle during two breeding seasons — 2009 (a) and
2010 (b). Only individuals who have sired at least one juvenile are displayed in matrices.
Males are rows and females columns. To enable the computations of nestedness deined
by Almeida-Neto et al. (2008), both matrices were ordered of left to right (females) and
top to bottom (males) in order of decreasing mating success.

pattern (Figure. 5.4). A value of 28.11 was computed for the second breeding season,

almost twice lower than for the first one. Nestedness computed on the basis of juveniles

sired by individuals and not the mating probability gave similar results for the second

season but a more high value (62.61) during the first season. With both methods, the

network of the first season was more nested than the network of the second season.
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Table. 5.1: Table of the nestedness (NODF, according to Almeida-Neto et al. (2008))
computed for two breeding seasons in an anadromous salmon population. Nestedness was
computed as usual through the number of mates (mating success) but also through their
probability of mating. For the irst calculation, we considered just tracked individuals
that sired at least one juvenile: 9 males / 8 females in 2009 and 13 males / 13 females
in 2010. For the second calculation, the mating probability enabled to consider more
individuals: 17 males / 15 females in 2009 and 46 males / 45 females in 2010.

Year Type Nestedness (NODF)
2009 Number of juveniles 43.81
2009 Probability of mating 62.61
2010 Number of juveniles 28.11
2010 Probability of mating 29.14

5.3.2.2 Sperm competition and the Bateman gradient

The sperm competition intensity of males (sci) was more variable and also higher in

2009 than in 2010 despite the lower number of individuals during the first year (mean± standard deviation: ���� ± ��� and ��� ± 6�� in 2009 and in 2010 respectively). This

yearly difference is visible on the Figure. 5.5, but two-times more individuals are plotted

in 2010 than in 2009. The relationship between the SCI and the reproductive success

seems to be positive in 2009, while in 2010, all individuals having a sci higher than ten

exhibited low reproductive success (Figure. 5.5).

For the two breeding seasons, the Bateman gradient controlling for variation in

sperm competition, ᅬծ�մ�� , was positive (Figure. 5.7). The gradient was steeper during

the first season: 0.84 against 0.55. The sci (parameter ᅬմ���ծ in the Eq. 5.9) had a

positive but not significant effect in 2009 (ᅬմ���ծ � ���, 93% of parameter estimates

upper than zero). In 2010, a null effect was found (ᅬմ���ծ � −����, "Beta-SCI" in

Figure. 5.7). Finally, a negative trend was estimated for the scic in 2009 (-0.36, 55%

of parameter estimates lower than zero, Figure. 5.7). In 2010, the scic was clearly less

variable and was significantly negative (-0.49, 2% of parameter estimates upper than

zero). The negative trend in 2009 and the negative effect found in 2010 were clearly

visible in the Figure. 5.6.
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Figure. 5.5: Relationship between the reproductive success and the sperm competition
intensity of Atlantic salmon males in a small population during two breeding seasons.
Data correspond to 9 anadromous males in 2009 and 22 in 2010 which sired at least one
juvenile.
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Figure. 5.6: Relationship between the mating success and the sperm competition in-
tensity of Atlantic salmon males in a small population during two breeding seasons.
Data correspond to 9 anadromous males in 2009 and 22 in 2010 which sired at least one
juvenile.
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Figure. 5.7: Plot of the estimated Bateman gradient (ᅬ −Bateman), as well as the efect
of the sperm competition (ᅬ−SCI) on the reproductive success of Atlantic salmon males
in a small population during two breeding seasons. The Sperm Competition Intensity
Correlation (SCIC) measures the correlation between the mating success and the SCI of
individuals. Each parameter distribution corresponds to ��� ��� iterations. Blue areas
represent the values between the quantiles 5 % and 95%. Red areas represent the values
between the quantiles 0 and 2.5 % and the values between the quantiles 97.5 % and
1. Green areas represent the values between the quantiles 2.5 and 5 % and the values
between the quantiles 95 % and 97.5 %.
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5.3.3 PHENOTYPIC SELECTION

5.3.3.1 Phenotype of mated males compared to phenotype of potential breeders

A negative sign indicates that the average body size of mated males was higher than

the average body size of the subset (population or encountered males). In 2009 and

for each female, with the exception of the female 15, the average body size of mated

males was similar to the average body size of encountered ones (Figure. 5.8). Instead,

comparisons of mated males to the males in the population was more variable. Indeed,

some comparisons tend to be negative (for females 6, 7 or 13 for example) while others

tend to be positive (females 11 and 12 for example). In addition, for these females (6,

7, 11, 12, and 13) the two comparisons displayed a different sign. In 2010, differences

between the two comparisons were also found (Fig. in Supplementary). For most of the

females, the average body size of mated males was closer to the average body size of

encountered males than to the average body size in the population. However, in 2010,

a majority of females displayed an average body size of mated males different to the

average body size in the population or in the subset of encountered males.

5.3.3.2 Assessing the effect of the social environment on reproductive success

First, the individual body length had a positive effect on the individual reproductive suc-

cess during the two breeding seasons (Figure. 5.9), but a stronger effect was highlighted

in 2009. Concerning the group selection, the average body length of the competitors

increased the reproductive success of a focal males in 2009, whereas the opposite effect

was found in 2010. Second, the date of arrival of individuals did not impact their re-

productive success in 2009 but diminished it in 2010. A negative effect signifies that

a late arrival male displayed a lower reproductive success. Opposite effects were found

for the effect of the group phenotype, a negative effect being estimated in 2009 and a

positive one in 2010. Regarding the date of arrival, the group effect was stronger than

the individual effect which was not the case for the body length (Figure. 5.9).
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Figure. 5.9: Boxplot of the results of a neighbour analysis concerning the reproductive
success of male anadromous salmon. Like classical analyses, the efects of male phenotype
(fork length or date of arrival at breeding sites) on its reproductive success was tested
(individual). The efects of the phenotype of its group (neighbour competitors of the focal
male) on its reproductive success was also tested to assess a potential group selection.
Each box represents the distribution of 6�� ��� iterations, red dots highlighting the mean
values.
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5.4 DISCUSSION

Differences in spatial behaviours involve the potential emergence of a local social struc-

ture. The network representation, as well as the matrix one, highlighted the existence

of such a local social structure in groups of Atlantic salmon potential breeders. In-

deed, no individual seemed to occupy a central position in the encounter network and

no individual encountered all potential mates. In addition, the network seems more

homogeneous during the second season indicating a less marked local social structure.

The year difference in social structure may be explained by a yearly difference in home

ranges exhibited by anadromous males. Indeed, using the same data set, Tentelier et al.

(2016a) found that salmon males tended to exhibit broader home ranges during the

second breeding season, which favours encounters between individuals. In their studies

on racoons, Robert et al. (2012) also found a positive correlation between home range

overlap and encounter rates.

Mating of males with females depends on the subset of encountered males by fe-

males. The comparisons of females mates to encountered males and to all males do not

suggest that large males always have increased access to females. It seems that it was

particularly true during the first breeding season when males exhibited smaller home

ranges (Tentelier et al. 2016a), the selectivity (Δencounter � �encounter−�mated�encounter−� ) being near

zero for all females. This was clearly not the case in the second season, the average

phenotype of mated males being smaller than the phenotype of encountered ones for a

lot of females. Our results agree with the results of Taggart et al. (2001) who found

that larger females mated with larger males for one season over three. For the two

other years, the maximum distance between redds of the same parent was more variable

suggesting that some individuals exhibited broader home ranges. Our results can also

explain why Jones & Hutchings (2002) did not find a positive effect of anadromous size

on individual reproductive success.

The local social structure may obscure local patterns of sexual selection on phe-

notypic traits if not accounted for. Sexual selection acts on a phenotypic trait when

this trait plays a role in access to mates. In salmon, the body size may play such a

role when anadromous males compete to access to females (Järvi 1990). However, our

results about the size of encountered and mated males, as well as the various findings

of other studies Jones & Hutchings (2002), Taggart et al. (2001) suggest that the sexual
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selection on body size is probably less pronounced than supposed and highly dependent

of the subset of encountered males, hence, dependent to the social environment. In any

case, this vindicates in accounting for local social structure when assessing the effect of

sexual selection on phenotypic traits.

The assortative mating of sexual network informs on the participation of anadro-

mous sneaker males. Salmon population in the Nivelle exhibited a higher nestedness in

2009 than in 2010 indicating a more nested network and a more negative assortment in

2009 (Almeida-Neto et al. 2008, McDonald & Pizzari 2016). The more negative assort-

ment pattern found in 2009 was highlighted with the two methods including the one ac-

counting all individuals which reduces bias in calculations of network metrics (Kossinets

2003). Biologically, this result means that males with low mating success mated with

females with high mating success. Here, the more negative assortment found in 2009

compared with 2010 may be due to higher participation of anadromous sneaker males

that have to compete with guarder males to access to females. Indeed, spatial aggrega-

tion of redds and therefore of females was higher in 2009 than in 2010 (Bouchard et al.

2018), stronger aggregation enabling an easier monopolization of females by guarder

males (Emlen & Oring 1977, Shuster & Wade 2003). However, when aggregation is too

high, anadromous sneaker males may be concentrated around aggregated females allow-

ing them to fertilise more eggs (Bacles et al. 2018). Such participation of anadromous

sneaker males was previously suggested by Weir et al. (2011) in salmon when the OSR

was strongly skewed towards males but also in other fishes (Chuard et al. 2016). In

addition, using the same data set, (Tentelier et al. 2016a) found that males move less

during the first season resulting in small groups. Hence, the nestedness of the sexual

network in Atlantic salmon may result from the participation of anadromous sneaker

males.

Yearly sperm competition variation also indicates variation in the participation of

anadromous males exhibiting an alternative reproductive tactic. The sperm competition

intensity was higher in average and more variable in 2009 than in 2010, agreeing with a

potentially higher participation of anadromous sneaker males in 2009. In a species with

alternative reproductive tactics, Muniz et al. (2015) found that territorial breeders faced

a more variable sperm competition than sneakers. In 2010 individuals exhibiting high

sperm competition exhibited low reproductive success, while individuals having high
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reproductive success also faced to high sperm competition. The hypothesis of a higher

participation of sneaker males in 2009 is also supported by the results of Bacles et al.

(2018) who found a higher ratio of effective breeders over the number of returning adults

(կ�կ� ). Indeed, the participation of sneaker males raises the number of effective breeders,

the multiple paternity increasing the effective size of salmon populations (Martinez et al.

2000). This pattern can also be found by looking at the same ratio with the effective

anadromous males and the number of caught individuals: 1017 � ���� and 2246 � ���� in

2009 and 2010, respectively.

Anadromous sneaker males may obscure the global pattern of positive assortment

in sexual networks. The negative scic — the correlation between males’ mating success

and the sperm competition that they faced — was similar between the two breeding

seasons but was more variable in 2009. McDonald & Pizzari (2017) have shown that

a more polyandrous network usually produces a less variable scic and a negative scic

indicates a negative assortment. Thus, the less variable scic in 2009 suggested a less

polyandrous network compared with 2010. Yet, no difference in pre-copulatory selection

(Bateman gradient) on males was found, the two years displaying positive gradient.

Yearly variations in the sexual network seem not to affect the pre-copulatory selection

but may generate a more variable sperm competition. The more variable scic in 2009

can, thus, resulted from the fewer males available in 2009 compared with 2010 leading

to more extreme absolute values. Finally, the scic values estimated here for Atlantic

salmon are similar to other taxa (McDonald & Pizzari 2017), reflecting a global pattern

of negative assortment. Hence, the participation of males exhibiting an alternative

reproductive tactic diminished the assortativity of the sexual network, which, therefore,

increased pre-copulatory selection via the Bateman gradient (McDonald & Pizzari 2015).

Individual body size was found to increase the reproductive success as previously

found by Tentelier et al. (2016b) but not by Garant et al. (2001), Jones & Hutchings

(2002). This positive effect paired with our results about selectivity for each female and

results of Garant et al. (2001), Jones & Hutchings (2002) or Seamons et al. (2004) in

another salmon species, indicate that some females may mate with small males depend-

ing on which males they have encountered. Such effect may dampen the positive effects

found in some studies between males’ size and their reproductive success. Furthermore,

this body size effect was stronger during the first breeding season, supporting the hy-
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pothesis of a higher participation of anadromous sneaker males who are smaller, the

individual size raising the fertilisation success when simultaneous spawning (Mjølnerød

et al. 1998). Hence, the global effect of individual phenotype on reproductive success

may be dependent on the participation of males exhibiting an alternative mating tactic.

The social environment was found to impact the reproductive success in a con-

trasting way to the individual phenotype, which may be linked to the mating system

varying each year. During the first breeding season, no effect of arrival date of males

on their reproductive success was found, whereas the date of arrival diminished the re-

productive success in 2010. In comparison, Tentelier et al. (2016a) found contrasting

results, while Seamons et al. (2004) found a weak positive relationship between male

reproductive success and their timing of arrival. In addition, a positive social effect on

size and a negative one on arrival date during the first season was highlighted. The

opposite was found for the second season. These social effects highlight the influence

of the competitors’ phenotype on the reproductive success of individuals. Our results

may be due to the higher aggregation of redds and, therefore, of females in 2009 than in

2010 (Bouchard et al. 2018). During the second season, the lowest aggregation enabled

first arrived males or bigger ones to access females and to secure them (Seamons et al.

2004, Tentelier et al. 2016a). In this case, it was best for the focal males to have smaller

competitors arriving after it. This generated a negative group phenotype effect on body

size but a positive one on arrival date. At the opposite, during the first year, the higher

aggregation of females favoured males arriving later to avoid a strong level of competi-

tion. In this way, it was better for a male to have large and earlier arriving competitors

joining the shuffle. In this case, having larger competitors may increase the number of

eggs to fertilise (Makiguchi et al. 2016). Hence, the phenotype of competitors may also

affect the reproductive success of a focal male. The way of this effect depends on the

mating system which clearly appears to be dynamic among years.

Inferring the sexual network of a small population of Atlantic salmon enabled to

highlight the existence of a local social structure. The local social structure, even in

such a small population, varied between two breeding seasons. Our results highlight

the importance of a sexual network approach when investigating sexual selection act-

ing on a phenotypic trait. In addition, the year-to-year variations in social structure

seems to be linked to fluctuations of the mating system and, more specifically, in the
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frequency of alternative reproductive tactics. Furthermore, we found the mating system

of salmon globally exhibited a negative assortment with two different methods. The

latter result agrees with previous studies finding that two or three anadromous males

may sire juveniles in the same nest (Garant et al. 2002, Taggart et al. 2001, Weir et al.

2010). Finally, investigate such pattern of assortative mating is important, the negative

assortment may have several effects at the population level such as an increase in phe-

notypic diversity (Takahashi & Hori 2008). Finally, a multilevel selection analyses show

a strong and variable effect of the local social environment on individual reproductive

success. Indeed, the way in which the social environment affects the reproductive success

of individuals seems to vary depending on the mating system, also varying among years.

The multilevel selection may demonstrate an opposite effect of the social environment to

individual effect on individual phenotype, vindicating the necessity to better appreciate

the effects of competitors’ phenotype.
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HIGHLIGHTS OF CHAPTER 5▶ Spatial distribution of potential breeders affects their encounters which mod-

ifies the local Operational Sex Ratio faced by each individual and finally sex-

ual competition that they suffer.▶ Using different data type, the sexual network of the salmon population was

inferred to assess effects of the spatial structure on the sexual competition

and selection.▶ A spatial structure varying each year was highlighted in the encounter net-

work and in the mating network.▶ Spatial distribution of potential breeders modified the subset of encountered

males by each female, accounting for it enabled to advocate that the spa-

tial structure may lead to erroneous conclusions in mate choice and sexual

selection.▶ Spatial distribution of potential breeders also influenced the social environ-
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ment of males as the phenotype of competitors influenced their reproduc-

tive success.

SUPPLEMENTARY

PARAMETERS' PRIORS AND POSTERIORS



5.4
D

iscussion
� .

195

Table. 5.2: Table of the priors of the diferent parameters estimated through Bayesian models. Posteriors correspond to the 95%
credible interval for the two breeding seasons. � corresponds to the efect of the fork length and � to the efect of the arrival date.

Eq. Parameter Prior Posterior (95%CI)

Symbol Signiication 2009 2010

Eq. 5.1

ԑԐԢԔ � ∼ ��� �) [−������ ����] [−������ ����]ᅫ1 Accounting for encounter probability � ∼ ��� �) [����� ����] [����� ����]ᅫ2 Accounting for probability to visit a redd � ∼ ��� �) [−��6�� ����] [−����� ���6]ᅫ3 Accounting for female fecundity � ∼ ��� �) [−������ ����] [−������ ����]
Eq. 5.2 ᅬ Accounting for inverted positions � ∼ ��� �) [����� ����] [����� ����]
Eq. 5.11 ᅷpopulation Average phenotype of ฀ population � ∼ ��� �) [������� 6�����] [6������ 6�����]ᅼpopulation � ∼ ��� �) [������ �����] [������ ���6�]
Eq. 5.12 ᅷencounter Average phenotype of encountered ฀ � ∼ ��� �)ᅱց � ∼ ��� �)
Eq. 5.13 ᅷmated Average phenotype of mated ฀ � ∼ ��� �)ᅾց � ∼ ��� �)
Eq. 5.9

ԘԝԣԔԡԒԔԟԣ � ∼ ��� �) [−����� ����] [−����� ����]ᅬծ�մ�� Bateman gradient for | � ∼ ��� �) [����� ���6] [����� ���6]ᅬմ���ծ Sperm competition efect on reproductive success � ∼ ��� �) [−���6� ����] [−��6�� ����]ᅼյ � ∼ ��� �) [����� ����] [����� ��6�]
Eq. 5.10 ԘԝԣԔԡԒԔԟԣմ��� � ∼ ��� �) [−����� ����] [−����� ����]ԈӸ�Ӹ Correlation between Ԃ and sci � ∼ ��� �) [����� ����] [����� ����]
Eq. 5.15

ԘԝԣԔԡԒԔԟԣ֎֊վքռև � ∼ ��� �) [−�������� −������6]† [������� 6�����6]†[�������� �������]‡ [−������� −������]‡ᅫ Efect of focal ฀ � ∼ ��� �) [����6�� ������]† [������� ����66]†[������� ����6��]‡ [−������� ������]‡ᅬւ֍֊֐֋ Efect of group � ∼ ��� �) [������� ������]† [−������� −������]†[−������� �� − ����6�]‡ [������� ���6��]‡
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INFERRING THE SEXUAL NETWORK & ENCOUNTER PROBABILITY
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Figure. 5.10: Bi-partite networks of males (red) and females (blue) based on their
encounter probability (a-c) and their mating probability (b-d) in 2010. Width of nondi-
rectional edges increases with the corresponding probability. Relationships between
individuals are also displayed in matrices. 45 anadromous salmon males and 46 fe-
males were tracked during a breeding season enabling with parentage analysis and redd
mapping to rebuild these sexual network.



5.4
D

iscussion
� .

197
SEXUAL SELECTION ON MALE PHENOTYPE & ASSORTATIVE MATING
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Figure. 5.11: Plot of the salmon female selectivity in male body size during the second breeding season. The average body size of
males with whom a female mated has been compared to the average body size of males in the population (subset ”Population”)
or to encountered males (subset ”Encountered”) for two breeding seasons: Δ � �subset−�mated�subset

. Only these 36 females, among the 46
tracked females, exhibited encounter probability and mating probability higher than 0.05 with at least one male.
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CHAPTER6

Spatial isolation of females to other
females diminishes their number of

mates
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6.1 INTRODUCTION

The number of mates of females matters. The number of mates of females has been

neglected mainly due to the work of Bateman (1948). Bateman advocated that females

had a low Bateman gradient, namely that their reproductive success is weakly related to

their number of mates compared to males. However, females reproductive success may be

enhanced through an increasing genetic diversity of juveniles (Bernasconi & Keller 2001,

Martinez et al. 2000, Moran & Garcia-Vazquez 1998) or through an increasing sperm

competition of cryptic choice (McDonald & Pizzari 2016; 2017). Number of mates of

females may also exacerbate sexual selection faced by males (McDonald et al. 2013,

McDonald & Pizzari 2017). Hence, Bateman gradient in females may vary between

individuals and population because the mating system may affect it. For example,

promiscuous species should have a strong and similar gradient between sex (Bergeron

et al. 2012).

Space use may affect the number of mates of females through the distribution of

females. Females usually compete to access breeding sites driving spatial distribution

of females between breeding sites (Falcy 2015, Kokko et al. 2004, López-Sepulcre et al.

2010). In some cases, early arriving females or dominant ones may secure best-breeding

sites and exclude subordinate or late arriving females (Falcy 2015). For example, Andren

(1990) found that despotic Jays, Garrulus glandarius, enhanced their breeding success

by occupying the best breeding sites characterised by older trees. Females should, thus,

exhibit various spatial isolation to other females. Spatial isolation may diminish the
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probability to find a sexual partner like it occurs when females are temporally isolated

(Calabrese & Fagan 2004, Calabrese et al. 2008). Weak isolation may also allow sneaker

males to participate in reproduction due to the increasing size of harems of dominant

males. For example, Pérez-González & Carranza (2011) found that Red deer males,

Cervus elaphus, raised their harem size as the spatial aggregation of females increased.

Participation of sneaker males enhances genetic diversity of juveniles (Garant et al.

2005, Martinez et al. 2000). The effects of female space use on their number of mates

and the subsequent effects on their reproductive success were rarely investigated. The

consequences of female space use on their reproductive success have mainly been analysed

in terms of offspring survival linked to the breeding habitat chose by females.

Atlantic salmon, S. salar, is a relevant species to assess the effects of females’ spatial

isolation on their number of mates and their reproductive success. The typical story is

that females choose breeding sites according to physical characteristics to maximise off-

spring survival, early arriving individuals having access to better habitats (Falcy 2015).

Males move from female to female, courting and fighting (intrasexual competition is

considered to override female mate preference). In this context, the classical female dis-

tribution/EPP point of view has already been analysed (Tentelier et al. 2016a). However,

the number of mates matters in salmon females because it affects their reproductive suc-

cess (Garant et al. (2005), and also sexual selection in males — chapter 5). The current

chapter aims to test whether the space use of females and particularly their spatial isola-

tion affect their number of anadromous mates and their reproductive success originating

from anadromous males. I hypothesised that spatial isolation 1) may vary between indi-

viduals due to their phenotype or space use behaviour, 2) negatively affects the number

of mates; and 3) modifies the reproductive success of females. However, I did not hy-

pothesise the direction of the last effect because of previous findings on habitat quality

in females’ home range and the density-dependent mortality acting on salmon juveniles.

6.2 METHODS

Like for the previous chapter (chapter 5, page 161), I used the data of Tentelier et al.

(2016a) and Tentelier et al. (2016b). Data corresponded to the radio tracking of anadro-

mous males and females during two breeding seasons (2009 and 2010). Parentage anal-

ysis of juveniles caught after these two breeding seasons were available, as well as redd

mapping. In this chapter, I used the data from the radio tracking of anadromous, the
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parentage analysis and the mating probabilities.

6.2.1 SPATIAL ISOLATION OF FEMALES

Spatial isolation of females from other females was assessed from the radio tracking data

of anadromous (Tentelier et al. 2016a). The daily distance between each pair of females

was stored in a female × female × day array. This array was then reduced to female ×
female matrices containing respectively the average and the minimum distances between

each pair of females over the whole breeding season. Therefore, one average value and

one minimum value characterised each pair of females. Each female had one vector of

average distances to other females and one vector of minimal distances to other females.

For each female the average value of its two vectors was computed leading to characterise

each female by two values: its average isolation and its minimal isolation. For example,

let one female for which the daily distance to two other females is available during three

days. The Figure. 6.1 details the method to compute the average and the minimal

spatial isolation of this female.

�. �. �. �.

Daily distances120 /15 / 166 17 / 360 / 480

Average:
67

Minimum:
15

Average:
285.3

Minimum:
17

Spatial isolation
of

�.

Average:
176.17

Minimal:
16

Figure. 6.1: Scheme of the computation of the spatial isolation of one female �.

from two other females ( �. , �. ). The spatial isolation was deined by the ”average
isolation” and the ”minimal isolation” and computed from the daily distances between
three days.

The spatial isolation of each female was defined by the average value of 1) the
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average distance to each other females (i.e. the "average isolation") and 2) the minimal

distance to each other females (i.e. the "minimal isolation"). These two values were then

available for 15 females in 2009 and 42 females in 2010. The correlation between these

two variables was tested through a Spearman’s correlation test. This test was applied

on each year separately, as well as by merging the data of the two years.

The effects of four individual variables on the spatial isolation were tested to identify

the determinant(s) of the spatial isolation of females. The effects of body length (ӻԁց,օ),
arrival date (�ԡԡԘԥԐԛց,օ), as well as covered distance (ӹԘԢԣԐԝԒԔց,օ) and home range

(�ԇց,օ) were assessed. Body length and arrival date define the phenotype of each female,

whereas covered distance and home range define their space use behaviour. The arrival

date corresponds to the Julian day on which the female ԕ was tagged when arriving in

the study area (Tentelier et al. 2016a). The covered distance corresponded to the sum

of the absolute daily distance covered by each female throughout the breeding seasonԙ. The four effects were tested through a unique model (Eq. 6.2), therefore, variables

were standardised. A Student distribution modelled the spatial isolation of the femaleԕ which was the "average isolation" or the "minimal isolation".�ԢԞԛԐԣԘԞԝց,օ � � (ᅸ� ᅷց,օ� ᅼ)ᅷց,օ � ԘԝԣԔԡԒԔԟԣ � ᅫ1 × ӻԁց,օ � ᅫ2 × �ԡԡԘԥԐԛց,օ
(Eq. 6.1)�ᅫ3 × ӹԘԢԣԐԝԒԔց,օ � ᅫ4 × �ԇց,օ (Eq. 6.2)

This model was fitted under a Bayesian framework by calling Stan in R (Stan Develop-

ment Team 2018). A Cauchy distribution centred on 0 and with a standard deviation

equalled to 5 was used as prior for the five parameters. A total of 30, 000 iterations were

saved from three chains with a thinning interval of 5 iterations and a warm-up of 2, 000

iterations. Chains convergence was assessed through graphical examinations, as well as

with the scale reduction factor: r̂. The effective sample size and the auto-correlation

were also checked for each estimated parameter. The following models of this chapter

were fitted with similar MCMC settings and the model convergence was assessed in a

similar way.



204 �. 6. Spatial isolation of females

6.2.2 INFLUENCE OF SPATIAL ISOLATION OF FEMALES ON THEIR NUMBER OF MATES

The number of males with whom a female ԕ mated was extracted from data of the

previous chapter (chapter 5, see page 169 for methods) and noted Ԃց . The number of

mates used in the current chapter corresponds only to anadromous males. The number

of males with whom a female mated was modelled through a Binomial distribution:Ԃց � ℬ (ԃֈռևր,օ� ᅲԕ� ԙ)ᅲց,օ � �� � exp (ԘԝԣԔԡԒԔԟԣ � ᅮ × �ԢԞԛԐԣԘԞԝց,օ) (Eq. 6.3)ԃֈռևր,օ is the number of effective anadromous male breeders, i.e. the males for whom

at least one juvenile was found.

The parentage analysis also permitted to extract the reproductive success of each

female — ԉց,օ — originating from anadromous males. The reproductive success was

modelled as the same model than the previous one: Eq. 6.3, but with the total number

of juveniles (ԃօ֑֐,օ) replacing the number of effective male breeders (ԃֈռևր,օ). The

yearly effective sizes were similar to those for polyandry with 15 females in 2009 and 42

in 2010.

6.3 RESULTS

6.3.1 SPATIAL ISOLATION OF FEMALES

In 2009, the minimal isolation ranged from 17.81 m to 176.77 m, while the average

isolation varied between 82.39 and 361.06 m. During the second season, the minimal

isolation ranged from 31.94 m to 871.40 m and the average isolation from 105.4 m to

958.9 m. The two variables displayed highly significant correlation when accounting years

separately (Spearman for 2009 and 2010 respectively: Ԉ2009 � ��� and Ԉ2010 � �����,�2009 � ���� and �2010 � �����, ԟvalue−2009 � ����� and ԟvalue−2010 � �����) or when

merging the two years (Spearman: Ԉ � �6��, � � ����� and ԟvalue � ����� — Figure.

6.2).

Because of the correlation between the average and the minimal isolation, only the

results focused on the second one are displayed. Then, none of the parameters testing

the different effects were significant (Table. 6.1). However, some general trends arose,

in particular, the negative effects of the body length, the covered distance and the home
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Figure. 6.2: Plot of the average spatial isolation of salmon females to the other females as
a function of their minimal spatial isolation during two breeding seasons. Data concerned
15 females in 2009 (blue points) and 42 in 2010 (red points). The spatial isolation was
assessed by computing the average daily distance for each pair of females and the minimal
daily distance. The mean of each of these values was extracted for each female.

range. The date of arrival displayed the only one positive trend in 2009 but not in

2010. These trends are clearly visible when plotting the observed values of the minimal

isolation as a function of the four variables (Figure. 6.3). The positive effect of the

arrival date is also clearly visible, and the patterns in 2009 were more pronounced than

in 2010 (Figure. 6.3).

6.3.2 SPATIAL ISOLATION DIMINISHED NUMBER OF MATES IN FEMALES

Number of mates ranged from zero to five during the first season and from zero to seven

during the second breeding season. In 2009, only a negative trend was found between

the spatial isolation of females and their number of mates (effect: -0.0035, CI95 %=[-

0.0129;0.0050], 22 % of estimates upper than 0 over the 30,000 values saved). In 2010

a negative significant effect was found (effect: -0.0017, CI95%=[-0.0039;0.0001], 3 % of

estimates upper than 0 over the 30,000 values saved). The significant negative effect

was notably due to the fact that no females exhibiting high isolation had high number

of mates (Figure. 6.4).

6.3.3 REPRODUCTIVE SUCCESS

Concerning the reproductive success, it varied from zero to 143 juveniles in 2009 and

from zero to 272 juveniles in 2010 (Figure. 6.5). In 2010, one female displayed a 2.5

times higher reproductive success compared to those of other females (272 against 102),

something which was not found in 2009. In 2010, a negative effect of spatial isolation
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Table. 6.1: Table of the parameter estimates for the model testing the efect of the
females body length, date of arrival, covered distance and home range on their minimal
spatial isolation (Eq. 6.2). This model was itted with data of 15 females in 2009 and
42 in 2010. The Bayesian ԅ֑ռև֐ր is the percentage of positive values over the 30, 000
estimated for each parameter.

Parameter Year Bayesian ԅ֑ռև֐րԘԝԣԔԡԒԔԟԣ 2009 0.45
2010 0.00ᅫ1 — body length 2009 0.12
2010 0.06ᅫ2 — date of arrival 2009 0.63
2010 0.25ᅫ3 — covered distance 2009 0.25
2010 0.14ᅫ4 — home range 2009 0.17
2010 0.16
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Figure. 6.3: Plot of the minimal spatial isolation of salmon females from other females
as a function of their body length (cm), date of arrival (Julian day), covered distance
(m), and home range (m) during two breeding seasons. Data concerned 15 females in
2009 (blue points) and 42 in 2010 (red points). The minimal spatial isolation of each
female was assessed by computing the mean of the minimum daily distance between this
female and the other females.
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Figure. 6.4: Plot of the number of males with whom females mated as a function
of their spatial isolation from the other females in the Nivelle population of Atlantic
salmon. Data concerned 15 females in 2009 (blue points) and 42 in 2010 (red points).
The spatial isolation of each female was assessed by computing the mean of the minimum
daily distance between this female and the other females.

on reproductive success was found (�� of parameter iterations being positive — Figure.

6.6). Yet, in 2009, a positive trend was found (������ of parameter iterations being

positive).
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Figure. 6.5: Plot of the reproductive success of anadromous salmon females as a function
of their spatial isolation from the other females. Data concerned 15 females in 2009 (blue
points) and 42 in 2010 (red points). The spatial isolation of each female was assessed by
computing the mean of the minimum daily distance between this female and the other
females.
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Figure. 6.6: Plot of the spatial isolation efect on the female reproductive success es-
timated through the model Eq. 6.3. This model describes the reproductive success of
anadromous females from a Binomial distribution with the number of efective anadro-
mous male breeders and a probability of success depending of the spatial isolation of
females. Data concerned 15 females in 2009 and 42 in 2010 and 30, 000 iterations of the
parameter are displayed. Gray areas denote the quantiles 2.5% and 97.5%, while the
red areas correspond to the 5% and 95% quantiles.

6.4 DISCUSSION

The current chapter aimed to quantify the spatial isolation of salmon females and to

identify its impact in terms of breeding. I found that the spatial isolation varied be-

tween individuals and among years. The arrival date of females tended to increase the

spatial isolation of females, while their home range did not seem to affect their spatial

isolation. I found a negative effect of the spatial isolation of females on their number of

mates validating my hypothesis. The spatial isolation of females tended to increase the

reproductive success in 2009, whereas the spatial isolation diminished the reproductive

success in 2010.

Spatial isolation of females during the breeding season varied between individuals.

During the first breeding season, a positive trend was found between the arrival date and

the spatial isolation. When the number of individuals increases (e.g. during the second

season), the trend disappears. However, only late arrival individuals displayed high

values of spatial isolation during the two years. Such findings can be explained by the

fact that early arriving individuals aggregate in the best spawning sites. Consequently,

some individuals aggregate in lower quality sites while the other individuals disperse

to other quality sites where density is low. This explanation agrees with Falcy (2015)

who found that early arriving females secure the best-spawning sites. Tentelier et al.
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(2016a) found similar results in Atlantic salmon. In the Nivelle, the best breeding sites

correspond to river part of more than several tens of metres which could explain why

females in best-spawning sites are aggregated and not isolated.

The spatial isolation of females diminished their number of mates. Females aggre-

gated with others exhibit weak values of spatial isolation. Monopolisation of females

by dominant salmon males can be favoured when females are aggregated generating

monogamy in females. However, a strong aggregation of females may favour sneaky

males and also make the direct competition between males for females too costly (Weir

et al. 2011). When females are also too scarcely distributed and isolated, it becomes too

difficult for a male to secure females generating polygamy (Debuse et al. 2003). Hence,

spatial isolation of females may diminish their Environmental Potential for Polygamy

(Emlen & Oring 1977).

Despite the observed variations, spatial isolation of females remained weak over

these two years. Indeed, apart for two females in 2010, the minimal isolation was lower

than 200 m which is two times lower than 500 m, the distance at which a male may

stay before to participate in reproduction at a redd as noted by Tentelier et al. (2016a).

The weak spatial isolation of salmon females potentially originates from their choice

to breed at the same location either in relation to the habitat quality or also due to

social facilitation and copying (Broly et al. 2012, Wagner & Danchin 2003). In all cases,

the weak isolation makes the females easily detectable by males which can be another

explanation of the absence of effects on their number of mates.

The date of arrival interacts with the breeding site quality and the spatial isolation.

A significant negative effect of the spatial isolation of females on their reproductive suc-

cess was found in 2010, while a positive trend was found in 2009. In 2010, Tentelier

et al. (2016a) found that early arriving females exhibited best habitat quality in their

home range and that habitat quality enhanced their reproductive success. At the op-

posite, Tentelier et al. (2016a) found no effect in 2009. My results, those of Tentelier

et al. (2016a) and those of Falcy (2015) suggest that when a lot of females are present

(in 2010 compared to 2009 here), those arriving early can secure and aggregate in best-

breeding sites (i.e. low spatial isolation). The high quality of the secured sites enhanced

their reproductive success. Late arriving females are forced to disperse into low-quality
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sites (high isolation) diminishing their reproductive success. In 2009, the low number of

females allowed early or late arriving females to secure the best sites. Spatial isolation

seemed to result from the breeding choices of females which were conditioned by the

density of females and their arrival date.

However, the relationship between the spatial isolation and reproductive success

remains not strongly pronounced in 2009 and seems to be asymptotic in 2010. The

asymptotic pattern could explain why Tentelier et al. (2016a) did not find that the

habitat quality in the females’ home range enhanced their reproductive success in 2010.

At the opposite, Tentelier et al. (2016a) found that early arriving females displayed a

higher habitat quality in their home which improves their reproductive success. Results

of Tentelier et al. (2016a), those of Falcy (2015) and my results suggest that early

arriving females occupy and aggregate (i.e. their spatial isolation decreases) in the

best sites. Even if they are in lower quality breeding sites, late arrival females exhibit

spatial isolation enabling to dampen the density-dependent mortality which could not

be counterbalanced by the habitat quality. The fact that spatial isolation was not

higher in 2009 when the number of females was quite lower than in 2010 advocates for

aggregation of females in best sites. The positive trend found in 2009 (mean ± standard

deviation: ������ ± ������ juvenileֈ ) indicates that around 830 m are required to increase

the reproductive success of a female by one juvenile. This necessary distance is almost

the double of the dispersal distance of salmon juveniles usually found in literature (Beall

1994, Einum & Nislow 2005, Garcia de Leaniz et al. 2000). This weak positive effect

and the negative effect in 2010 also suggest that carrying capacity or habitat availability

(concerning best sites researched by females) could be too low in the Nivelle.

The current chapter demonstrated that spatial isolation of females varies between

individuals. The arrival date of females increased their spatial isolation suggesting that

early arriving females may secure the best sites. These aggregated females also had

a higher number of mates probably because their aggregation favoured sneaky males

and polygamy. At the opposite, isolated females seemed to be late arriving individuals

choosing habitats of lower quality. Such isolated females demonstrated a lower reproduc-

tive success indicating that choosing a lower quality site to diminish density-dependent

mortality acting on juveniles (Milner et al. 2003, Nislow et al. 2004) seemed not to be

an adaptive strategy. The spatial distribution of females could, thereby, play a more im-
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portant role in larger populations within larger river systems. The approach developed

here could be applied and generalised to other salmon populations where the spatial

structure could be more pronounced.

HIGHLIGHTS OF CHAPTER 6▶ A major part of studies about sexual selection adopts a male's view because

in most taxa males have to compete to access females so that sexual se-

lection is mainly acting on them.▶ The spatial isolation of females from other females tended to increase with

their date of arrival in the river suggesting that early arriving females occupy

the best breeding sites and chase other females.▶ The spatial isolation of females diminished their number of mates suggesting

that aggregation of females favour sneaky males.▶ Finally, the weak positive effect of isolation on reproductive success in 2009

and the negative effect in 2010 tend to suggest that availability of good

breeding sites are restricting in the Nivelle.
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Discussion of Part III

Spatial distribution and local social structure within a population generated yearly varia-

tion in mating system and in sexual selection. The spatial aggregation of nests, informing

on female aggregation, influenced the effective size of the population (chapter 4, page

153), potentially through the Environmental Potential for Polygamy of males (EPP).

The generated local social structure suggests that the mating system of anadromous

Atlantic salmon is highly plastic (chapter 5, page 161) especially from the males’ view.

At the opposite, females exhibited number of anadromous mates which did not vary

with their spatial isolation (chapter 6, page 199). The local structure skews encounters

between individuals and informs that the subset of encountered individuals modifies the

mating system, as well as the social competitive environment (chapter 5, page 161).

Finally, my results of the three chapters indicate the local social structure affects the

participation of anadromous sneaker males in reproduction.

A LOCAL SOCIAL STRUCTURE WITHIN A SMALL POPULATION

A plastic and local structure within the Nivelle population. Chapter 6 highlights that

early arriving females exhibited lowest spatial isolation from other females; the spatial

isolation varied between females indicating a local social structure. Chapter 5 strength-

ens the idea of a local social structure by accounting encounters for matings and between

opposite-sex individuals. The structure seemed more pronounced in 2009 agreeing with

the smaller home ranges exhibited in 2009 (Tentelier et al. 2016a). Spatial isolation was

higher on average in 2010 than in 2009 whereas the number of individuals was twice as

high in 2010 as in 2009. However, the higher spatial isolation in 2010 was only due to

some individuals, the isolation pattern of other individuals was similar to the isolation

pattern found in 2009 (Figure. 6.2, page 205). The effect of yearly spatial aggregation

of nests on the number of effective breeders in the population also agrees with the idea
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of a local social structure (chapter 4).

A stronger structure could be hypothesised in larger and more complex systems. The

Nivelle River remains a small river system compared to many systems hosting Atlantic

salmon populations. In the Nivelle, only 25 km are available for salmon. The small size

of the Nivelle River system could explain why the encounter network between individuals

was not strongly nested (chapter 5), as well as the spatial isolation of females from other

females which remained weak (chapter 6). In more complex river systems with a higher

suitable area for Atlantic salmon (Prevost 2003), the spatial distribution of anadromous

individuals could lead to more spatially structured social interactions illustrated by

nested networks. For example, in the Sainte-Marguerite River (Canada) exhibiting a

"principal branch" of 101.4 km long and a "Northeast branch" of 85 km long, a sub-

population structure was already found through a genetic analysis (Garant et al. 2000).

Some evidence for a genetic substructure within a population was also found in the River

Tamar (UK) where multiple tributaries are used by salmon (Ellis et al. 2011). Applying

a similar approach in such river system should highlight a spatially structured social

network around several cores as a determinant of the observed genetic structure.

The spatial distribution of potential breeders generates this structure. The three chap-

ters took three different approaches, either focused at the population level (chapter 4), or

at the individual level clustering both sex (chapter 5) or focusing on only one sex (chap-

ter 6). These approaches were all based on the spatial distribution of potential breeders:

either on their resultant spatial aggregation (chapter 4) or spatial isolation (chapter

6), or their daily positions (chapter 5). In these chapters, all approaches permitted to

suggest that the spatial distribution of potential breeders generated the local structure.

Such findings agree with studies focusing on different taxa where authors linked spatial

distribution or space use to social interactions (Fisher & Lara 1999, Formica et al. 2010,

Muniz et al. 2015, Robert et al. 2012). In addition, isolated females seem to encounter

fewer males, which supports that the spatial distribution of potential breeders generates

local social structure (box Deeper III.i).
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DEEPER III.i: Spatial isolation of females & encountered
males

i
dzad

The influence of the spatial distribution of potential breeders on encounters

is the main idea of this part. The spatial isolation of females from other

females computed in the chapter 6 was, therefore, linked to the number

of encountered males. This number was determined from the encounter

probability between each female and each male computed in chapter 5. A

male was considered as encountered by a female when the probability was

upper than 0.05. A Poisson regression was used to test the effect of the

minimal isolation of the female ԕ on the number of encountered males ԃ :ԃց,օ ∼ � (exp (intercept � ᅫ × Isolationց,օ)). This model was separately

fitted on each breeding season ԙ.
A similar negative effect was found for the both year (mean and confidence

interval at 95%): ᅫ2009=−���� [−����� ����] and ᅫ2010=−���� [−����� −����]
(Figure below).

This relationship clearly supports that the spatial distribution of potential

breeders affects their encounters. Interestingly, it seems that a threshold

around 250 m was present.
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i

Figure. III.iii: Plot of the number of encountered males estimated from
chapter 5 as a function of the minimal isolation of females to other females.
Data corresponded to 15 females / 17 males in 2009 and 42 females / 46
males in 2010.

THE SPATIAL DISTRIBUTION AS A DETERMINANT OF SEXUAL COMPETITION

The spatial distribution of potential breeders drives the EPP. As a first element, the

spatial aggregation of females affected the effective size of the population through a

U-shape relationship (chapter 4). A hypothesis based on Emlen & Oring (1977) is that

the spatial aggregation of females impacts the ability of males to monopolise females

as shown in the Figure. III.iv. The number of mates in females diminished as their

spatial isolation to other females (opposite of aggregation) increased (chapter 6). The

latter analysis highlighted the effects of spatial isolation, although it based on only two

breeding seasons exhibiting close values of spatial aggregation compared to other years

(chapter 4). Thus, the result of this analysis agrees with the results of the chapter 4.

Thereby, aggregation of females enables a monopolization of them by a male up to a

threshold from which the competition is too strong (Figure. III.iv).

The spatial distribution of potential breeders impacts the sexual selection suffered by

males. The spatial distribution of potential breeders such as the aggregation of females

leads to variations in local Operational Sex Ratio experienced by individuals. A skewed

OSR usually implies stronger competition and sexual selection (Emlen & Oring 1977,

Shuster & Wade 2003), something also found in fish (Wacker et al. 2013). Mating

assortativity was weaker in 2009 than in 2010, and males in 2009 faced stronger sperm

competition intensity (chapter 5). This argues for a lower pre-copulatory selection in

2009 than in 2010 due to a too high aggregation of females and leading to male scrums

around females (Figure. III.iv).

A PLASTIC AND COMPLEX MATING SYSTEM

A variable mating success. Garant et al. (2001), as well as Taggart et al. (2001) demon-

strated the complexity of the mating system of Atlantic salmon and its variability. Re-

sults of chapters 5 and 6 agree with these studies and are in accordance with Tentelier

et al. (2016a). Indeed, chapter 5 highlighted variability in mating success of males by

inferring the sexual network (Figure. 5.3, page 181). However, in chapter 5 the mating
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success corresponded to the number of partners with which at least one juvenile was

sired. Spatial isolation of females diminished their number of mates and generated vari-

ability in the number of mates (chapter 6). Variability in the number of mates found for

males (chapter 5) and females (chapter 6) suggest that true mating success (i.e. the num-

ber of matings producing juveniles) varies among individuals in both sex as advocated

by Garant et al. (2001). Thereby, although assessment of the true mating success of

males and females remains difficult, obtaining it could be a valuable information source

to identify causes of variations in polygamy.

The participation of sneaker males also varies with the spatial distribution of potential

breeders. Another complexity of the mating success of Atlantic salmon arises from the

participation of sneaker anadromous males. Results of the chapters 4 and 5 suggest that

the spatial aggregation of females seems to allow anadromous satellite males to access to

eggs by adopting a sneaky behaviour (Figure. III.iv). Indeed, antagonistic interactions

diminish when aggregation of females become too high with a strongly skewed OSR(Weir

et al. 2011). Such findings suggest that some satellite anadromous males may have access

to females by adopting a sneaky behaviour as hypothesised by Weir et al. (2011) and

illustrated by the Figure. III.iv. Such findings were also found in other fishes such as

guppies when the OSR becomes skewed (Chuard et al. 2016).
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Figure. III.iv: Scheme of three scenarii of spatial aggregation of females — �. . At weak aggregation (left), males cannot monopolise
females, hence numerous males — �. — have access to females. When aggregation increases (middle), a male may monopolise and
secure several females. However a strong aggregation (right) enables several sneaker males — �. — to participate in reproduction.
This scheme illustrates the relation between the spatial aggregation and females and the resultant Environmental Potential for
Polygamy of anadromous males, as well as with the efective size of the population.
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CONCLUSION

The main approach of the current part was to combine analyses at the population level

but also at the individual level to investigate interactions between individuals during

the breeding season. In this way, the current part highlighted that the mating system

of the Atlantic salmon is highly dynamic and plastic due to the spatial distribution of

potential breeders. In addition, I advocate for better accounting for the local structure

in encounters between individuals during the reproduction, something which can be

especially true in more complex river systems.

However, as exposed previously, the mating success was either estimated or ap-

proximated with the number of sexual partners. Succeeding in the assessment of the

true mating success (i.e. the number of matings producing juveniles) could be useful

to improve the description of the mating system and to determine factors affecting this

mating success. A promising approach to investigate these questions could also be to

obtain the spawning activity, as well as the parentage analyses at the redd level in the

Nivelle and to combine them to the spatial displacements of individuals. However, one

remaining factor to really describe mating and sexual competition is the temporal di-

mension even if a temporal dimension was accounted in the chapter 5. Indeed, like the

spatial dimension, the temporal one may generate aggregation and skewed OSR (Cal-

abrese & Fagan 2004). Finally, I have discussed the participation of the anadromous

sneakers but salmon exhibit another Alternative Reproductive Tactic siring up to 65%

of juveniles within a redd (Martinez et al. 2000): mature parr.

Next part: ⇒ page 233
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Introduction to Part IV

The previous part highlighted that the space use of anadromous breeders influences the

sexual selection and their reproductive success. More precisely at the individual level,

spatial isolation of females diminished the number of their sexual partners (chapter 4).

The spatial aggregation of females also influences the effective number of breeders in the

population through a U-shaped relationship (chapter 6). The two chapters suggested

that mate monopolisation by dominant males and the participation of satellite males

are dependent on the spatial distribution of females. Individuals explore and move

within their environment to find potential mates during reproduction. Then, space

use of salmon should be determined by the spatial distribution of females to maximise

encounters. At least partly, because some individual traits such as body length may

influence space use tactics in salmon Baglinière et al. (1991), Finstad et al. (2005). Space

use of individuals also influenced their social environment that affects the reproductive

success of individuals (chapter 5). Nevertheless, chapters 5 and 6 focused on anadromous

salmon and did not account for individuals exhibiting an alternative reproductive tactic.

AN ALTERNATIVE REPRODUCTIVE TACTIC

Salmon exhibit complex life histories. Besides anadromous individuals, some Atlantic

salmon deploy an alternative reproductive tactic by maturing at the parr stage before

their seaward migration (Bagliniere & Maisse 1985, Kazakov 1981, Myers 1984). Early

maturation involves a threshold size, mature parr inheriting this life history trait through

inheritance of the juvenile growth (Garant et al. 2003a, Lepais et al. 2017). Then, early

maturation usually concerns individuals belonging in the upper size mode (Simpson

1992). Early maturing individuals therefore display usually the highest growth rate

(Berglund 1995), as well as the highest Mesenteric Fat Index (Simpson 1992), but these

factors are not inescapable (Berglund 1995) and vary between studies (Kristinsson et al.
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1985, Myers et al. 1986). Since the gonadal maturation requires high levels of energy

(Brokordt & Guderley 2004), female maturation usually involves a higher expenditure

than male maturation (Fleming 1996). For that reason, only a few early maturing fe-

males have been found in the southern part of the Atlantic salmon distribution including

some in France (Bagliniere & Maisse 1985). In addition, environmental factors may also

affect early maturation. For example, Letcher & Terrick (1998) found that flood may

increase the proportion of early maturing males by raising food availability. Early matu-

ration causes a drop-off in survival probability until the smoltification (Buoro et al. 2010,

Myers 1984), the stage before seaward migration. Early maturation in salmon does not

exclude anadromy, anadromous males may have previously been a mature parr.

Mature parr as sneaker. Alternative reproductive tactics usually involve different phe-

notypes and behaviours (Taborsky et al. 2008). Such differences are exacerbated in

Atlantic salmon between anadromous males and mature parr 1. Emlen (1997) linked

the size differences between males in dung beetles (Onthophagus acuminatus) to alterna-

tive reproductive tactics and different behaviours. Smaller males developed rudimentary

horns and adopted a sneaky behaviour, whereas larger males developed longer horns and

guarded tunnels containing females. The dichotomy of breeding behaviours — guarding

versus sneaking — is typically the dichotomy of behaviours observed between anadro-

mous salmon males and mature parr (Fleming 1996). The extremely lower body size of

mature parr compared to anadromous — Figure. IV.i — favours such sneaky behaviour

(Fleming 1996).

PARTICIPATION IN REPRODUCTION FOR MATURE PARR: FROM TACTIC LEVEL TO

AN INDIVIDUAL LEVEL

Mature parr may have strong genetic effects within populations. In their recent study,

Tentelier et al. (2016b) found that mature parr fathered at least 14% of juveniles caught

in a river, while Martinez et al. (2000) found that mature parr viewed as a group sired

65.1% of eggs in several redds. The last study demonstrated the strong effect of mature

parr on genetic variability in small populations of Atlantic salmon. Indeed, the partic-

ipation in reproduction of mature parr raises the effective population size ԃր (Ardren

& Kapuscinski 2003, Saura et al. 2008) amplifying the genetic variability between ju-

veniles and ultimately the fitness of females (Garant et al. 2005). In addition, Garant

1here and thereafter I refer to male mature parr
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et al. (2002) found juveniles fathered by mature parr demonstrated higher growth rates

than juveniles sired by anadromous. At the opposite, mature parr diminish gene flows

between populations by the absence of migration and may also decrease the number

of returning anadromous. Moreover, reproduction of mature parr favours introgression

of hatchery fish in wild populations (Garant et al. 2003b), something which can be in

concern with recent aquaculture escapements. Finally, mature parr may break fecundity

selection on arrival date because increasing variance on arrival date (Arnaud et al. 2013)

and may also mitigate natural selection operating at sea.

Success is more complicated at an individual level. The individual reproductive success

of mature parr is weaker than the one of anadromous. Until the 2000s, a majority of

studies focused on mature parr as a group. For example, Hutchings & Myers (1988)

found that mature parr fertilised less than 25% (5% - 23%) of eggs in a redd. Recent

studies have used polymorphic genetic markers to isolate individual participation in

reproduction. In this way, Martinez et al. (2000) found an individual fertilised 46.7% of

eggs in a redd 2. However, individual reproductive success of mature parr varies a lot

between individuals. Tentelier et al. (2016b) found a variance of individual reproductive

success at 67.62 (number of offspring2) within a river, while Thomaz et al. (1997) found

an average reproductive success varying from 5% to 25% of eggs fertilised in egg pocket.

The variations between studies relate to the level of analysis: redds, egg pockets, rivers,

experiments. (for more examples see Jordan et al. 2007).

A LACK OF KNOWLEDGE ABOUT SEXUAL SELECTION AND SPACE USE

The sexual competition faced by mature parr remains an opened question. Mature parr

are seldom considered in studies about salmon sexual selection despite their influence

within small populations and the variability in their reproductive success. Some stud-

ies focused on differences in individual reproductive success between the two alterna-

tive reproductive tactics (Garcia-Vazquez et al. 2001, Tentelier et al. 2016b). In their

study, Tentelier et al. (2016b) found a stronger opportunity for selection in mature parr

compared to anadromous but without accounting for variations in sperm competition

between reproductive tactics. Anadromous males compete with each other to access

females, causing sexual selection (Fleming 1996, Järvi 1990). In comparison, mature

parr compete with anadromous by sneaking. Mature parr also struggle with other ma-

2This percentage is for one mature parr, while the percentage of 65.1% in the previous paragraph is
the overall parr reproductive success.



238 �. Introduction to Part IV

ture parr because dominance hierarchy influences distance to nest (Myers & Hutchings

1987). Salmon females are polyandrous what exacerbates sperm competition. Indeed,

males have to compete to access females but also to fertilise the most of eggs at each

laying event. Therefore, males are concerned by i) the sexual competition impacting

their mating success and ii) the sperm competition impacting the number of fertilised

eggs, both affecting their reproductive success. Hence, sexual selection may differ be-

tween reproductive tactics and selection operating on mature parr might be linked to

competition among anadromous.

Early maturation may lead to a specific space use. Like sexual selection, space use of

mature parr related to breeding activity is under-investigated. The differences in their

body size and in their breeding behaviour compared to anadromous might lead them to

opt for a specific space use tactic. Since mature parr are smaller than anadromous, they

have a lower search efficiency raising the question about how they move to maximise their

probability to encounter females. Mature parr might opt for a staying behaviour rather

than a cruising one because of their smaller body size and their limited resources. Never-

theless, they should also leave their natal habitats (i.e. foraging habitats of salmon parr)

to go to breeding ones to maximise their encounter probability with females, whereas

immature should stay in their natal habitats to feed. Such habitat shifts should spatially

segregate immature parr and mature parr in terms of habitat use.

Three different chapters constitute the current part (Figure. IV.ii). Chapter 7

(page 241) aimed to compare sexual selection between reproductive tactics by using

data of Tentelier et al. (2016b). Chapter 8 (page 257) intended to assess the space use of

mature parr caused by breeding activity and their maturity level. To do this, I compared

their space use to those of immature parr in order to detect a potential modification of

their space by their maturity level. Finally, chapter 9 (page 283) aimed to test whether

maturity involves a shift of habitats for Atlantic salmon parr.
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Figure. IV.i: Photograph of a male anadromous Atlantic salmon and a mature male parr
in the Nivelle River — ©INRA—O. Lepais
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sexual selection operating on the two diferent reproductive tactic (anadromous male vs mature parr). The chapter 8 assessed the
space use of salmon parr related to breeding activity by comparing mature parr and immature ones. The chapter 9 assessed the
efect of maturity on the habitat use of salmon parr. *: drifting invertebrates.



CHAPTER7

Salmon parr as hackers of sexual
networks

-241-



242 �. 7. Salmon parr as hackers of sexual networks

Contents

Spatial aggregation and not density. . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

Aggregation of nests arises from the habitat choice of salmon

females. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

Environmental factors cause spatial aggregation to be variable. 124

Environmental stochasticity as a major regulation for the Nivelle

population. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

Spatial aggregation of nests interplays with environmental stochas-

ticity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7.1 CONTEXT

The Nivelle River remains a small river network and its salmon population as a small

salmon population in comparison to populations in North America or in Norway. Several

authors have emphasised the potential importance of mature parr in participation in

reproduction in such small populations (Bagliniere & Maisse 1985, Garcia-Vazquez et al.

2001, Jones & Hutchings 2001; 2002, Juanes et al. 2007). Moreover, most of the studies

working on salmon reproduction focused on mature parr as a group without accounting

for individual variability (Jordan et al. 2007).

A recent study by Tentelier et al. (2016b) emphasised individual variability in partic-

ipation in reproduction by mature parr within the Nivelle population. Authors showed

that the reproductive success of mature parr was weak and variable (2.24 offspring± 6��6�) depending on their mating success (83% having no mate) but not on their

body size. Other studies found the individual reproductive success of parr varying with

their body size (Myers & Hutchings 1987, Thomaz et al. 1997). But participation in re-

production by mature parr usually varies between 25% to 87% (Grimardias et al. 2010b).
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Although such a level of contributions is hard to put aside, studies rarely discuss effects

on the resulting competition experienced by anadromous.

Anadromous salmon males compete between each other to access to multiple fe-

males (up to 16: Garant et al. 2001). The dominant male which can be the larger one

(Järvi 1990), the one with the larger "kype" — elongation of the jaws in males — (Flem-

ing 1996), or the more aggressive one (Hendry & Beall 2004), usually chase other males

(Fleming 1996). Mature parr also compete between each other to access redds, a hierar-

chical dominance existing between them (Myers & Hutchings 1987). Sexual competition

between males related to a skewed operational sex-ratio modulates the relation between

the mating success and the reproductive success of individuals (Bateman gradient).

Aggregation of females (Bacles et al. 2018), as well as heterogeneity in male size,

may favour sneaking behaviour by other anadromous males. Additionally to competition

between anadromous, mature parr may actively participate in reproduction (Hutchings

& Myers 1988), their size giving them an advantage of exhibiting a sneaky behaviour.

Thus, male reproductive success strongly depends on sperm competition. Indeed, the

number of sneaker males may impact the number of eggs fertilised by a focal male during

a laying event. In this way, the sperm competition intensity (sci) corresponds to the

harmonic mean of a males partners mating success which may impact the reproductive

success of an individual (McDonald & Pizzari 2016). The sperm competition and the

resultant effect on reproductive success may, therefore, vary between reproductive tac-

tics and fertilisation of eggs by mature may significantly increase the sci suffered by

anadromous males.

How the sci is linked to the mating success of individuals is critical for individuals.

The "sperm competition intensity correlation" (scic) is the measure of the correlation

between the sci and the mating success of individuals (McDonald & Pizzari 2016).

The scic can be view as a measure of the trade-off between mate-searching and mate-

guarding. Comparing the scic between individuals or tactics is equivalent to comparing

the ability of individuals or tactics in guarding mates. Mature parr exhibit a sneaky

behaviour, therefore, they may have a sci increasing as their mating success increases.

If numerous sneakers are present, the cost of having multiple females for an anadromous

male is to have also a lot of sneakers which increases its scic.
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The current chapter aimed to compare the sexual competition between two repro-

ductive tactics and to evaluate how mature parr influence the competition faced by

anadromous. First, I tested the importance of accounting for mature parr or not when

calculating the sperm competition through the sci and the scic that anadromous faced

by using the data of Tentelier et al. (2016b). Second, I compared the sexual competi-

tion experienced by each reproductive tactic (i.e. mature parr vs anadromous males).

I hypothesised differences in sexual selection between the two reproductive tactics be-

cause mature parr exclusively exhibit sneaky behaviour which necessarily involves sperm

competition at each mating event.

7.2 METHODS

7.2.1 VARIATIONS IN THE SCI WHEN ACCOUNTING OR NOT INDIVIDUALS EXHIBITING

THE OTHER REPRODUCTIVE TACTIC

Data of Tentelier et al. (2016b) allowed me to compute the reproductive success and

the mating success of anadromous females, anadromous males, and mature parr during

the two breeding seasons: 2009 and 2010 — for details see Part III, page 145. The

current section describes analyses to test if accounting for the other reproductive tactic

significantly modify the values of sperm competition faced by anadromous males and

mature parr.

The sperm competition intensity — sci (McDonald & Pizzari 2016) — was com-

puted for each anadromous male — Ԝ — for the two breeding seasons — ԙ:
sciֈ,օ � �1ծ�,� × ∑ծ�,�ց�1 1ֆ�,� (Eq. 7.1)

with Ԃֈ,օ the mating success of the focal male Ԝ during the breeding season ԙ, and Ԛց,օ
the mating success of the female ԕ during the same season ԙ. The model only included

individuals with no-null mating success (Ԃֈ,օ � �). I computed the sci for each repro-

ductive tactic: 9 anadromous individuals in 2009, 22 anadromous individuals in 2010, 18

mature parr in 2009, and 21 mature parr in 2010. Two values of sci characterised each

focal male: one value by accounting only individuals exhibiting the same reproductive

tactic in the mating success of females (Ԛց,օ in Eq. 7.1) and one value by accounting all

individuals in the mating success of females. For instance, one value of sci accounted for

all individuals and one value of sci accounted for only mature parr if the focal male is
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a mature parr. In the latter case, the focal mature parr could have only mature parr as

competitors. In this way, I was able to test whether accounting for individuals belonging

in the other reproductive tactic significantly alter the values of the sperm competition,

but also to compare the sci between reproductive tactics. Then, four different levels

denoted the context of the sci computation as shown in the Table. 7.1:

Table. 7.1: Table of the diferent levels characterising the context when computing the
Sperm Competition Intensity as deined by McDonald & Pizzari (2016).

Reproductive tacticLevel
Focal Male Competitors

Ana-Ana Anadromous
Ana-All

Anadromous
All

Parr-Parr Mature parr
Parr-All

Mature parr
All

A normal distribution modelled the distribution of the ԛԞԖ�sciֈ,օ):ԛԞԖ (sciֈ,օ) ∼ � (ᅷ[ԁԔԥԔԛ[Ԝ]]օ� ᅼ[ԁԔԥԔԛ[Ԝ]]) (Eq. 7.2)

Then, ᅷ[ԁԔԥԔԛ[Ԝ]]օ denoted the average value of sci for the breeding season ԙ, the

"Level" characterising the focal male Ԝ, and the context of the sci computation (see

Table. 7.1). The model was fitted two times: once for anadromous individuals for the

levels Ana-Ana and Ana-All, and once for mature parr for the levels Parr-Parr and

Parr-All.

Weak informative priors (Cauchy distribution) were used for ᅷ and ᅼ. A total of 12,000

iterations were saved from three chains. An overlap (noted Bayesian ԅ֑ռև֐ր) lower than

0.05 representing 5% of overlapping between the distributions of estimated values for

different levels indicated a significant difference.

7.2.2 DIFFERENCES IN SEXUAL SELECTION BETWEEN REPRODUCTIVE TACTICS

The current part describes analyses comparing the effects of sexual competition on re-

productive success of anadromous males and mature parr. Another model linked the

reproductive success of individuals (ԉֈ,օ) to their mating success (Ԃֈ,օ) and the sci
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that they faced (ԈӸ�ֈ,օ):ԉֈ,օ � � (ԘԝԣԔԡԒԔԟԣ � ᅬծ�մ�� × Ԃֈ,օ � ᅬմ���ծ × ԈӸ�ֈ,օ� ᅼ) (Eq. 7.3)ᅬծ�մ�� in Eq. 7.3 represents the usual male Bateman gradient controlling for variations

in sci (McDonald & Pizzari 2016), while the parameter ᅬմ���ծ assessing the effect ofԈӸ�ֈ,օ. The model Eq. 7.3, like the others models, included only individuals with no-null

mating success and was fitted for anadromous and for mature parr separately. Values of

sci (ԈӸ�ֈ,օ) corresponded to those computed in the previous paragraph for the different

levels. Within each level context, the reproductive success (ԉֈ,օ), the mating success

(Ԃֈ,օ), and the sci (ԈӸ�ֈ,օ) were standardised by dividing each individual value by

the population mean (either anadromous males or mature parr McDonald & Pizzari

2016). Such standardisation enabled me to compare parameters estimated between each

level context. Data on 9 anadromous and 18 mature parr were used in 2009, while 22

anadromous and 21 mature parr were incorporated in analyses in 2010.

The sperm competition intensity (ԈӸ�ֈ,օ) may increase as the mating success of

individuals (Ԃֈ,օ) raised. A last model tested the effect of Ԃֈ,օ on ԈӸ�ֈ,օ.ԈӸ�ֈ,օ � � (ԘԝԣԔԡԒԔԟԣմ��� � ԈӸ�Ӹ[ԇԉֈ,օ] × Ԃֈ,օ� ᅼմ���) (Eq. 7.4)

scic in Eq. 7.4 assesses the relationship between a male mating success (Ԃֈ,օ) and

the sperm competition he faced which represents the partners’ polyandry (sci, Eq. 7.1,

McDonald & Pizzari 2017). A Cauchy distribution (� ��� �)) was used as prior for

parameters of both models Eq. 7.4 and Eq. 7.3. The three parameters: ᅬծ�մ�� , ᅬմ���ծ ,

and ԈӸ�Ӹ had specific prior distributions � (�� ᅼparameter), "parameter" being one of

the three. As the model Eq. 7.2, 6,000 iterations were saved and the test of significance

was also the same. ԉֈ,օ, ԈӸ�ֈ,օ, and Ԃֈ,օ were standardized by then population

mean within each level context (McDonald & Pizzari 2017). Data on 9 anadromous

and 18 mature parr were used in 2009, while 22 anadromous and 21 mature parr were

incorporated in analyses in 2010.
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7.3 RESULTS

7.3.1 VARIATIONS IN THE SPERM COMPETITION INTENSITY

7.3.1.1 Effects of accounting for the competitors exhibiting the other reproductive tactic

In 2009, the log(sci) of anadromous (N=9) ranged from 1.64 to 05.00 when not account-

ing for mature parr in sexual competitors (level: Ana-Ana), whereas the values varies

between 5.40 to 30.00 when accounting for them (Ana-All). The log(sci) estimated by

the model (Eq. 7.2) were significantly lower (Bayesian ԅ֑ռև֐ր � �����) but not less vari-

able (Bayesian ԅ֑ռև֐ր � ��6) when not accounting for mature parr than when accounting

for them ((a) in Figure. 7.1). During the same season, mature parr (N=16) exhibited

values of log(sci) ranging from 1.97 to 10.00 when not accounting for anadromous com-

petitors (level: Parr-Parr) and from 4.55 to 30.00 when accounting for them (level:

Parr-All). The difference was significant (Bayesian ԅ֑ռև֐ր � �����) and the log(sci)

varied similarly between the both cases (Bayesian ԅ֑ռև֐ր � ��� for ᅼ, (c) in Figure. 7.1).

In 2010, anadromous (N=22) exhibited a log(sci) varying between 1.67 and 07.00

when not accounting for mature parr (level: Ana-Ana), whereas the values varies be-

tween 3.11 to 26.00 when accounting for them (Ana-All). The difference was significant

(Bayesian ԅ֑ռև֐ր � �����) and the log(sci) tended to vary more when accounting for

mature parr (Bayesian ԅ֑ռև֐ր � ���� for ᅼ, (b) in Figure. 7.1). Mature parr (N=21)

displayed values of log(sci) ranging from 1.50 to 07.00 when not accounting for anadro-

mous competitors (level: Parr-Parr) and from 2.86 to 26.00 when accounting for them

(level: Parr-All). The log(sci) was significantly lower when not accounting for anadro-

mous (Bayesian ԅ֑ռև֐ր � ����� but not less variable (Bayesian ԅ֑ռև֐ր � ��� for ᅼ, (d)

in Figure. 7.1).

7.3.1.2 Differences between reproductive tactics when accounting all sperm competi-

tors

During the two seasons, the variability of the log(sci) was similar between reproductive

tactics when accounting all sperm competitors (levels Ana-All and Parr-All, Bayesianԅ֑ռև֐ր � ��� in 2009 and ��� in 2010). Anadromous and mature parr exhibited similar

values of log(sci) in 2009, whereas anadromous tended to display lower values of log(sci)

than mature parr in 2010 (Bayesian ԅ֑ռև֐ր � ���, Figure. 7.1).
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Figure. 7.1: Density plots of the mean (parameter ᅫ) and deviation (parameter ᅼ) of
the normal distribution estimated for the Sperm Competition Intensity computed like in
McDonald & Pizzari (2016) (Eq. 7.1). The SCI was separately computed for anadromous
salmon (N=9 in 2009 and N=22 in 2010) and mature parr (N=16 in 2009 and N=21
in 2010) while accounting for only individuals exhibiting the same reproductive tactic
(“Ana-Ana” and “Parr-Parr”) or all individuals (“Ana-All” and “Ana-All”, see Table.
7.1). Blue areas represent the values between the quantiles 5% and 95%. Red areas rep-
resent the values between the quantiles 0 and 2.5% and the values between the quantiles
97.5% and 1. Green areas represent the values between the quantiles 2.5% and 5% and
the values between the quantiles 95% and 97.5%.

7.3.2 DIFFERENCES IN SEXUAL SELECTION BETWEEN REPRODUCTIVE TACTICS

In 2009, mature parr tended to exhibit lower and less variable values of ᅬմ���ծ (Eq.

7.3) than anadromous (Bayesian ԅ֑ռև֐ր � ��� when considering all individuals as sperm

competitors, Table. 7.2). The values estimated for the two reproductive tactics were

not significantly different to zero (Table. 7.2). Mature parr exhibited positive Bateman

gradient that was similar to the one displayed by anadromous individuals (Bayesianԅ֑ռև֐ր � ��6). Finally, the correlation between the mating success of individuals and
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the sperm competition suffered by them — scic (Eq. 7.3), was not significantly different

between reproductive tactics but anadromous tended to have lower values (scic: -0.33

for anadromous against -0.12 for mature parr, Bayesian ԅ֑ռև֐ր � ��6).

For the second breeding season, mature parr exhibited similar values of ᅬմ���ծ but

more variable than anadromous (Bayesian ԅ֑ռև֐ր � ��� when considering all individuals

as sperm competitors, Table. 7.2). The values estimated for the two reproductive tactics

were not significantly different to zero (Table. 7.2). Both reproductive tactics exhibited

positive Bateman gradient at strongly similar values (Bayesian ԅ֑ռև֐ր � ���). Finally,

the correlation between the mating success of individuals and the sperm competition

suffered by them — scic (Eq. 7.3), was not significantly different between reproductive

tactics (scic: -0.45 for anadromous against -0.42 for mature parr, Bayesian ԅ֑ռև֐ր ����6).

The two previous paragraphs compared the values when accounting all individuals

as sperm competitors. Accounting for only individuals exhibiting a similar reproductive

tactic did not significantly modify the parameter estimates. Concerning yearly differ-

ences, the values of ᅬմ���ծ for anadromous tended to be lower in 2009 than in 2010

(Bayesian ԅ֑ռև֐ր � ���, Figure. 7.2), whereas mature parr exhibited similar values be-

tween years (Bayesian ԅ֑ռև֐ր � ��6). The Bateman gradient tended to diminish between

2009 and 2010 for the two reproductive tactics (Bayesian ԅ֑ռև֐ր � ���� for mature parr

and ���� for anadromous). Finally, the scic tended to decrease between 2009 and 2010

for the two reproductive tactics (Bayesian ԅ֑ռև֐ր � ���� for mature parr and ��6� for

anadromous).



250 �. 7. Salmon parr as hackers of sexual networks

B
a
te

m
a

n
 (β

M
.S

C
I )

S
C

I (β
S

C
I.M )

S
C

IC

−2.5 0.0 2.5 5.0

2009

2010

2009

2010

2009

2010

(a) Anadromous males

B
a
te

m
a

n
 (β

M
.S

C
I )

S
C

I (β
S

C
I.M )

S
C

IC

−2 0 2 4

2009

2010

2009

2010

2009

2010

(b) Mature parr

Figure. 7.2: Density plots of Bateman gradient (ᅬծ�մ��) and the efects of the Sperm
Competition Intensity (sci — parameter ᅬմ���ծ) on the reproductive success either of
anadromous males (a, N=9 in 2009 and N=22 in 2010) or mature parr (b, N=16 in 2009
and N=21 in 2010). The sci was computed like in McDonald & Pizzari(2016, Eq. 7.1) and
separately for anadromous salmon (N=9 in 2009 and N=22 in 2010) and mature parr
(N=16 in 2009 and N=21 in 2010). The scic corresponds to the correlation between
the mating success of individuals and the sci they face. Blue areas represent the values
between the quantiles 5% and 95%. Red areas represent the values between the quantiles
0 and 2.5% and the values between the quantiles 97.5% and 1. Green areas represent
the values between the quantiles 2.5% and 5% and the values between the quantiles 95%
and 97.5%.
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Table. 7.2: Table of the parameters estimated in the models Eq. 7.4 and Eq. 7.3 enabling
to characterised pre-copulatory competition between salmon males. The mean and the
95% Highest Posterior Density interval were displayed for each parameter. Symbol “*”
indicates that a parameter was signiicantly diferent than zero. Data on 9 anadromous
and 18 mature parr were used in 2009, while 22 anadromous and 21 mature parr were
incorporated in analyses in 2010. Either all individuals or only individuals exhibiting the
same reproductive tactic was accounted in the computation of the sperm competition
intensity of focal males. The level indicates the reproductive tactic of the focal male
(“Ana” for anadromous individuals and “Parr” for mature parr) and the reproductive
tactic of sperm competitors (“All” or the same reproductive tactic than the focal male).

Year Parameter Level Mean 95%HPD

2009

Ana-Ana −����∗[−����� −����]
Ana-All −����[−����� ����]

Parr-Parr −����[−��6�� ����]scic — Eq. 7.4

Parr-All −����[−���6� ����]
Ana-Ana ����∗[−����� ����]
Ana-All ����∗[����� ����]

Parr-Parr ����∗[���6� ��66]ᅬծ�մ�� — Eq. 7.3

Parr-All ����∗[����� ��6�]
Ana-Ana ����[−����� ����]
Ana-All ����[−��6�� ����]

Parr-Parr ����[−����� ���6]ᅬմ���ծ — Eq. 7.3

Parr-All −����[−���6� ����]

2010

Ana-Ana −����∗[−����� −����]
Ana-All −����∗[−����� −���6]

Parr-Parr −����∗[−��6�� −����]scic — Eq. 7.4

Parr-All −����∗[−����� ����]
Ana-Ana ����∗[����� ���6]
Ana-All ����∗[����� ��6�]

Parr-Parr ����∗[���6� ����]ᅬծ�մ�� — Eq. 7.3

Parr-All ����∗[−����� ����]
Ana-Ana ����[−����� ����]
Ana-All −����[−����� ���6]

Parr-Parr ���6[−����� ����]ᅬմ���ծ — Eq. 7.3

Parr-All ����[−����� ���6]
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7.4 DISCUSSION

The current chapter aimed to compare the sexual competition between anadromous

males and mature parr but also to test the importance of accounting for individuals ex-

hibiting the other reproductive tactic when assessing sperm competition. Accounting for

mature parr may strongly increase the computed values of sci than when not considering

them, especially during years where their participation is high. Sperm competition suf-

fered by males diverged between reproductive tactics and can be linked to their spawning

behaviour. Nevertheless, the way that the pre- and post-copulatory competition affect

the reproductive success was similar between reproductive tactics. Nonetheless, some

trends could be identified.

The average value of the sperm competition intensity (sci) that anadromous males

faced differ when accounting or not for mature parr. The sci when considering mature

parr was more than twice as high than when not accounting for mature parr. The

difference was less pronounced in 2010 which can be due to the lower proportion of

juveniles fathered by a mature parr compared to 2009. Indeed, Tentelier et al. (2016b)

found that 123733�123 � ��� of juveniles were sired by a mature parr, while in 2010 the

proportion dropped off to 451006�45 � ��. In addition, the number of juveniles whose

father was not known was higher in 2009 (821 offsprings in 2009 against 299 in 2010). A

high proportion of this number is likely to be mature parr (anadromous being caught at

two fish passes). The difference in sci is, thus, probably under-estimated in two years

and especially in 2009.

Anadromous salmon and mature parr exhibited similar values of scic. The Sperm

Competition Intensity Correlation measures how the number of sperm competitors in-

creases with the mating success of individuals. Negative scic indicates disassortative

mating on mating success (McDonald & Pizzari 2017). Although the scic was not sig-

nificantly different between reproductive tactics, anadromous tended to exhibit lower

values of scic than mature parr in 2009. The number of sperm competitors tended to

increase less as mating success raised for anadromous than for mature parr. A higher

value for mature parr can be explained by their sneaky behaviour implying sperm com-

petitors (the sneaked males), whereas anadromous males can mate without having sperm

competitors if they secure females.
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Ignoring individuals exhibiting the other reproductive tactic may blur the measures

of sexual competition. The scic was not significantly different when accounting or not

for individuals expressing the other reproductive tactic. Nevertheless, anadromous males

exhibited significant negative values of scic in 2009 when not accounting for mature parr

as sperm competitors. The scic was not different to zero when accounting for mature in

2009. Which individuals accounted as sperm competitors greatly impacted the Sperm

Competition Intensity. Accounting for all individuals in the population significantly

increased the sci for both tactics. Not considering mature parr in computations of

post-copulatory competition faced by anadromous, may, therefore, lead to erroneous

conclusions.

The effect of the number of sperm competitors on their reproductive success was not

different to zero for both reproductive tactics and during the two seasons. Nevertheless,

the values of ᅬմ���ծ tended to be higher in 2009 indicating a “benefit” to have sperm

competitors on the reproductive success. One explanation could be that most of the

sperm competitors in 2009 could be mature parr because mature parr sired a low number

of juveniles (Tentelier et al. 2016b). The non-negative values of ᅬմ���ծ for mature parr

were surprising. Indeed, Garant et al. (2003b), Hutchings & Myers (1988), Thomaz et al.

(1997) found negative effect of the number of implicated mature parr on their individual

reproductive success. Some authors found the opposite and have suggested that a high

number of mature parr favours their participation in reproduction (Hutchings & Myers

1988, Weir et al. 2005). An explanation of differences could be the level of the studies,

especially because the current chapter was at the river scale while others were at egg

nest, egg pocket or an experimental treatment.

Mature parr exhibited a negative scic in 2010 but a scic not different to zero

in 2009 suggesting a more positive assortment in 2009 than in 2010. Then, mature

parr mated with less polyandrous females in 2010 than in 2009. The participation of

mature parr in 2009 was higher than in 2010 (Tentelier et al. 2016b). A low number

of competitors may increase the dominance hierarchy between individuals and therefore

the competition. Myers & Hutchings (1987) found that mature parr size influenced their

position in dominance hierarchy as well as proximity to the nest. Their participation is

also favoured by the high number of anadromous competitors weakening aggression by

guarding males due to costs of competition which increase as the number of competitors
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increased (Weir et al. 2011). The number of competitors was higher because of the high

number of other mature parr competitors to access females in 2009. Yearly variations

of scic for mature parr could then be linked to their participation in the reproduction.

For anadromous, the scic in 2009 was not different to zero, while in 2010, it was lower

than zero suggesting a negative assortment in 2010 (McDonald & Pizzari 2017). The

lower value of scic in 2010 indicates that the number of sperm competitors increased

less with mating success than in 2009, suggesting that dominant anadromous males were

more able to guard and monopolise females in 2010 than in 2009.

For anadromous, scic was lower in 2010 than in 2009, while sci was higher in 2009

than in 2010. Theory predicts that negative values of scic accentuate the slope of the

male Bateman gradient (Wolf et al. 1999), and therefore increase the pre-copulatory

competition. Hence, pre-copulatory competition suffered by anadromous was stronger

in 2010 than in 2009. One explanation could be the lower number of anadromous com-

petitors in 2009, or the opposite, namely a too high number of anadromous competitors

exacerbating costs of competition. Weir et al. (2011) suggested that antagonist inter-

actions decrease as the number of competitors increased. The second hypothesis seems

right because i) the number of sperm competitors was higher in 2009 (higher sci), ii) the

positive effect of sci on their reproductive success in 2009 (positive value ᅬմ���ծ , Shus-

ter & Wade 2003), and iii) the higher participation of mature parr in 2009.. Again,

results agree with a higher participation of mature parr in 2009.

During the two years, mature parr exhibited values of pre-copulatory competition

(ᅬծ�մ��) similar to those of anadromous. The similar effect was quite surprising because

mature parr usually fertilised fewer eggs than anadromous males during a laying event.

Moreover, some studies have demonstrated the potential existence of sperm depletion

during spawning, their reproductive success within a nest decreased as the order of nest

construction increased (Hutchings & Myers 1988, Thomaz et al. 1997). Both tactics

exhibited a lower Bateman gradient in 2010 than in 2009 suggesting a pre-copulatory

competition tending to be lower in 2010 than in 2009. For anadromous, a lower pre-

copulatory competition indicates a potentially facilitated mate monopolisation in 2010.

The current chapter is the first study comparing measures of sexual competition

among reproductive tactics (anadromous against mature parr) in natura. Years’ effect
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and reproductive tactics’ one seem to interact depending on the mating system. The two

reproductive tactics had similar Bateman gradients (ᅬծ�մ��) indicating that multiplying

mating events was also advantageous for mature parr. However, raising the number of

mating events increased the number of sperm competitors. Effect of having sperm

competitors on reproductive success tend to vary between years and among tactics but

seemed not impacting the reproductive success. Nevertheless, the presence of sperm

competitors seemed beneficial for individuals in terms of reproductive success suggesting

that most of the competitors were mature parr because they usually fertilise fewer eggs

than anadromous males. Year variations in this effect for anadromous indicated that

anadromous shared mated females with mature parr in 2009 and other anadromous in

2010. The mating system of salmon appeared to tend to vary among years and resulted

in variable sexual competition among reproductive tactics. Environmental factors may

have strong effects on sexual selection among reproductive tactics because mate guarding

for anadromous and sneaking ability for mature parr may depend on environmental

factors (Grimardias et al. 2010b, Part II).

HIGHLIGHTS OF CHAPTER 7▶ Despite their high participation in population reproduction, mature parr are

rarely accounted in studies about sexual competition in salmon.▶ How operate sexual competition on mature parr is also rarely investigated,

although they exhibit sneaky behaviour, and, therefore, compete to access

females.▶ Accounting for mature parr increased the number of sperm competitors

faced by anadromous males. Not accouting for them may lead to erroneous

conclusions about sperm competition.▶ Number of mature parr competitors and number of anadromous interplay

to favour or not the participation of mature parr in reproduction.▶ Sexual competition faced by mature parr corresponds to their sneaky be-

haviour and, therefore, tend to differ to the sexual competition faced by

anadromous salmon.
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Abstract:

1. The space use of mobile organisms is linked to the spatio-temporal distribution

of their focal resources. Focal resources include territories, food and potential

mates and may differ between developmental stages. In particular, individuals

have to consider the probability of mate encounter which affects their space use

and behaviour when becoming mature.

2. Space use of immature and mature animals should be compared between individu-

als of the same cohort to control for a potential age effect. Atlantic salmon Salmo

salar are a good model for this study because of the facultative early maturation

of male parr. The early maturation in salmon parr permits comparing space use

between mature and immature individuals belonging in the same cohort.
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3. Space use of 40 one-year old Atlantic salmon parr (immature and mature) was

monitored throughout the breeding season. The link between the space use of

mature individuals and their probability to encounter redds (female nests) was

also tested.

4. Mature individuals were more mobile than immature ones. Overall, they covered

greater upstream distances and absolute distances than immature individuals and

had wider home ranges. Mature individuals also exhibited more heterogeneity in

space use.

5. Space use tactics of mature individuals impacted their probability to participate

in reproduction. Among mature parr, those that exploited a wider home range or

those favouring to move upstream exhibited a higher probability of encountering

redds. Covering greater upstream distances potentially increases the reproductive

success of mature individuals but also potentially involves higher energetic costs

and a greater risk of predation compared to immature parr.

6. By monitoring space use of salmon parr we identify that dams may constrain

displacements of mature individuals like for anadromous individuals. Improving

the understanding of distribution of individuals provide valuable information to

enhance management of populations, especially when this distribution is modified

by a developmental stage (i.e. maturity here).

Keywords: Alternative reproductive tactic, Atlantic salmon, individual heterogeneity,

maturity, radio-tagging, spatial movements, spatial distribution, telemetry

8.1 INTRODUCTION

The developmental stage of individuals may plays an important role in the spatio-

temporal distributions of individuals within their populations. An organisms devel-

opmental status can be characterised at different scales. Life stage or developmental

stage refers to the distinct phase in an organisms life cycle, e.g. embryo, young of the

year or adult. Mobile organisms select one or more focal resources such as food, territo-

ries, shelter, or potential mates; each resource having a specific distribution with both a

spatial and a temporal component (Kamath & Losos 2018, Moorcroft & Barnett 2008,

Moorcroft et al. 2006, Silk et al. 2018). As individuals grow and develop, their need for

certain focal resources changes and they move around according to their new priorities.
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In this way, the spatio-temporal distribution of focal resources drives the spatio-temporal

distribution of individuals within populations (Moorcroft & Barnett 2008).

The relationship between individual distribution and their required resources con-

stitutes the central idea of several "optimal theories" such as the optimal foraging theory

or the ideal free distribution (Fretwell & Lucas 1969, MacArthur & Pianka 1966). Nu-

merous studies have used such relationships between animal distribution and the distri-

bution of their resources to extrapolate and better predict the distribution of individuals

based on resource distribution (Moorcroft & Barnett 2008, Moorcroft et al. 2006, Potts

& Lewis 2014). Knowing individual distribution enables improving species management

by mitigating the potential specific threats to each environment.

Individual variability within developmental stages exacerbates the diversity of spa-

tial distributions among individuals. Accounting for individual variability both in life

histories and in spatial distributions is a growing area of research (Gimenez et al. 2018,

Hamel et al. 2018, Kamath & Losos 2018, Maldonado-Chaparro et al. 2018). Repro-

ductive stage contributes greatly to individual variability due to the changes of focal

resources related to development (Long et al. 2009, Veilleux et al. 2004). In Woodland

caribou, for example, females have been shown to adapt their habitat selection according

to their reproductive stage (Viejou et al. 2018). Females with calves selected habitats

maximising predator avoidance, while females without calves chose habitats according

to food availability. The reproductive stage of females influenced their consideration of

predator risk and therefore their focal resource: habitat. While reproductive stage is

an indication of availability as a breeder, sexual maturity, however, has only two levels:

mature and immature. Whether or not an individual is sexually mature being the only

factor considered.

Maturation involves switches of focal resources by adding mates to the set of cov-

eted resources, as does reproductive stage progression (Jonsson & Jonsson 1993, Lucifora

et al. 2009). In this way, maturation may lead to the divergence of space use as well as

an individual variability in space use of mature individuals because mating systems can

involve different space use tactics (Forchhammer & Boomsma 1998, Sandell & Liberg

1992). For instance, Hoyos-Padilla et al. (2016) found that adult white sharks Carchar-

odon carcharias presented larger home ranges than juveniles in Guadalupe Island.
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Comparing the effect of maturity levels on spatial distribution and space use across

species with variable life histories enables the isolation of maturity effects from mere age

effects. Reproductive stages usually follow each other in time. This temporal succession

of stages may confound the pure effects of maturity with season or age effects (Péron &

Grémillet 2013). A similar issue arises when all individuals of the same cohort mature at

once, age effects consequently mixing with maturity effects (Lucifora et al. 2009). Testing

the effects of sexual maturity on space use usually consists of comparing the space use

of juveniles to that of adults, which therefore implies that age possibly masks maturity

effects (Hoyos-Padilla et al. 2016, Péron & Grémillet 2013). Disentangling maturity

effects from these co-effects requires studying a species with a life history varying among

individuals, so that both mature and immature individuals belong within the same

cohort.

Atlantic salmon Salmo salar parr are relevant biological models for the investigation

of the effects of maturity on distribution and space use. In salmonids, some individuals

mature at the parr stage in rivers, while the major part of individuals mature at sea

(Myers et al. 1986). The early maturation in river which is an alternative reproductive

tactic allows us to test the effects of sexual maturity on space use within the same

cohort, avoiding a potential bias. Salmon parr, as multiple central-place foragers, occupy

and defend small feeding territories in which they move and stay at feeding stations

(Steingrímsson & Grant 2003; 2008). Numerous studies have also explored how they

move within small scales (Roy et al. 2013a;b), which territories they choose (Dolinsek

et al. 2007, Kim et al. 2011), as well as their circadian and seasonal activity patterns

(Fraser & Metcalfe 1997, Hiscock et al. 2002, Metcalfe et al. 1999, Robertson et al. 2003).

In an experimental elliptic flume, Thorpe et al. (1988) detected that mature individuals

moved more than immature ones in November, just before the breeding season. In

a comparable setting, Armstrong et al. (2001) highlighted differences of detectability

between mature and immature individuals around one nest. However, to our knowledge,

no study has investigated how maturity affects individual space use in natura and during

the breeding season in salmon.

The main purpose of this study was to test whether sexual maturity impacts the

space use of Atlantic salmon parr at an individual level. To do this, the space use of

radio tagged mature and immature individuals belonging in the same cohort (one-year
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old individuals) was monitored in a river throughout the breeding season. Firstly, we

hypothesised that the space use of mature individuals would be significantly different

to that of immature individuals due to switching to, or at least coveting a new focal

resource: anadromous females. Secondly, we hypothesised that this new focal resource

would increase the heterogeneity of space use among mature individuals compared to the

heterogeneity among immature individuals. Several studies highlight variable behaviours

among mature parr trying to gain access to nests as well as high variations in individual

reproductive success (Garant et al. 2002, Grimardias et al. 2010b, Jones & Hutchings

2002, Myers & Hutchings 1987, Tentelier et al. 2016b). All of these studies highlight a

more heterogeneous space use in mature individuals. Finally, we linked individual space

use of mature parr was linked to their probability to participate in reproduction. A

good understanding of the distribution of mature parr may improve salmon population

management by identifying human-induced constraints in their displacements, as well

as how their displacements influence their participation in population reproduction.

8.2 METHODS

8.2.1 STUDY AREA, CATCHING AND TAGGING

This study was conducted in a 2.4 km section in the 39 km long Nivelle River situated in

the south west of France (Figure. 8.1). An impassable dam defined the upstream limit of

the study area. This dam formed the upper limit of the available area for the population

of Atlantic salmon in the river. A flood control dam, defined the downstream limit of our

study area. Although the flood control dam can be crossed by the salmon, the riverbed

along the 500 m downstream of it does not constitute a suitable breeding area. The

study area has supported a significant yearly number of redds (salmon spawning nests)

over recent years: 19 nests (representing �� � of the nests found in the whole river), 34

nests (�� �), 51 nests (�6 �), 21 nests (�� �), and 34 nests (�� �) respectively from

2011 to 2015 (Bouchard et al. 2018, Tentelier et al. 2016a). The study area was chosen

because of the abundance of breeding activity, the ability to monitor the river section

by walking along it and the presence of an impassable upstream limit. The section of

river studied has an average width of �� m ± � m, an average depth of �� cm ± �6 cm

and an average velocity of �� cm.s−1 ± �� cm.s−1, and contains a succession of riffles,

pools and runs.

One-year-old salmon parr (N=72) were caught by electro-fishing along the study
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Figure. 8.1: Map of the study area in grey where space use by one-year old Atlantic
salmon parr was monitored in the Nivelle River (France). Triangles indicate the location
of each radio-tagged individual: black triangles for mature individuals and green trian-
gles for immature individuals (n = 40). Squares indicate the location of caught but not
radio-tagged individuals (n = 32). Of the 72 individuals caught, 40 were tagged with
radio transmitters.
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Figure. 8.2: One-year-old Atlantic salmon parr (measuring 134 mm and 26.30 g)
tagged with an external radio transmitter in sub-dorsal position (ref: F1945 by ATS
™, ©INRA/S. Glise).

area over three days in November 2017 (20th, 21st and 22nd). The fishing period was

just before the breeding season (in December with an activity peak around the 15th),

allowing us to discriminate between mature and immature individuals by the presence or

absence of milt when gently stripped (Lepais et al. 2017). The caught individuals were

anaesthetised with benzocaine at 20 mg.L-1 before we weighted them, measured their fork

length, took a fin clip sample, and checked their maturity state. Of the 72 individuals,

40 one-year old individuals belonging in the same cohort (30 mature and 10 immature)

were tagged with external radio transmitters (ref: F1945 ATSTM, 1.1 g, 40 ppm) in a

sub-dorsal position (Figure. 8.2). The 40 that were tagged were selected to depict a

representative sample of the distributions of weight and of body size in the population.

These distributions were assessed by sampling 77 individuals in the study area one

month earlier. The catching point of each parr during the electro-fishing was marked

and each individual was released at its catching point after handling. This precaution

was taken in order to limit the disturbance of capture on subsequent territorial and space

use behaviour. To prevent a sex effect when comparing mature and immature parr, the

genetic sex of the radio-tagged immature individuals was determined by genotyping at

one sex-specific locus — sd-Y (Yano et al. 2013) — following the methods used by Lepais

et al. (2017). The 10 tagged immatures were all genetic males.

The location of each individual was recorded daily from the 24th of November 2017

to the 9th of January 2018. Locations accurate to 5 m were determined by manual radio-

tracking using a mobile receiver (R2100 ATSTM) and a loop antenna while walking along

the river (there were two days without data). Each GPS position was recorded using a

mobile GPS tablet (Trimble R⃝YumaTM). An accurate redd survey was not possible for

this year due to unfavourable weather conditions and resultant poor water visibility.
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8.2.2 THE EFFECT OF MATURITY ON SPACE USE

Space use can be defined by two determinants: the distances covered and the resulting

area used. We represented the covered distances from individual positions by computing

the sum of the upstream distances covered by each individual throughout the breeding

season, as well as the sum of the absolute distances (Figure. 8.3). The vital area of an

individual was defined by their individual home range (shortest distance containing 95%

of their positions), centroid position (average position), and relocation distance (absolute

distance between the catching point and the centroid position). The model described in

Eq. 8.1 was fitted to the data under a Bayesian framework to explain these five variables

(noted Ԏ ) according to the maturity level of each individual Ԙ. This model allowed us

to test whether the distribution of Ԏ was similar between the two groups both in terms

of location parameter (ᅷ) and in terms of variability (ᅼ).ᅷք � ᅫ [Maturityք] �ᅼք � ᅬ [Maturityք] �Ԏք ∼ � �ᅸ� ᅷք� ᅼք) � (Eq. 8.1)

The fork length and weight of individuals were also compared between maturity lev-

els with a similar model. A generalised Student distribution was chosen to deal with

potential outliers, while a Cauchy distribution (���� ����)) — a weakly informative dis-

tribution — was used as prior of the ᅷ parameter as recommended by Gelman et al.

(2008). A more informative gamma distribution (Γ������ ���)) was used as prior of theᅼ parameter (Gelman et al. 2014). After a burn-in of 1,000 iterations, a total of 6,000

iterations were saved from three chains by calling MC Stan with the R package RStan
(Stan Development Team 2018). Chain convergence was assessed by graphical exam-

inations and the scale reduction factor, r̂, as well as the effective sample size and the

autocorrelation of parameter estimates. The overlap percentages between the posterior

distributions of ᅫ or ᅬ for the two maturity levels were computed with the R package

overlapping (Pastore 2017) and defined our Bayesian ԅ֑ռև֐ր to test the maturity effect.

An overlap percentage lower than 5% indicated a significant effect. The Bayesian mod-

els that followed were analysed similarly. The number of days during which locations

of individuals were recorded in the study area did not differ between maturity levels

(Wilcoxon: W=85, ԟ֑ռև֐ր � ����, N=30 and 9 mature and immature individuals, re-

spectively), thus this variable was not included in models comparing maturity levels (Eq.
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8.1).

The effect of fork length on the upstream distance (Ԏք) covered by each mature

individual Ԙ, was tested with the following model:ᅷք � ᅫ0 � ᅬ × distance startք � ᅮ × body sizeք � ᅭ × NDayք�Ԏք ∼ � �ᅸ� ᅷք� ᅼ) � (Eq. 8.2)

Here distance startք represents the distance at catching of individual Ԙ, therefore

individuals caught higher upstream had a lower distance to cover to reach the upstream

dam. The variable NDayք corresponds to the number of days during which the individualԘ was located in the study area. Indeed, individuals could exit through the downstream

limit and potentially re-enter in the study area. Yet, all individuals that exited the study

area did not re-enter in. For this model, the thinning interval was increased to 10 to

prevent autocorrelation in parameter estimates. The percentage of parameter estimates

lower than � for a negative parameter and greater than � for a positive parameter defined

the Bayesian ԅ֑ռև֐ր.
8.2.3 SPACE USE TACTICS IN MATURE INDIVIDUALS AND PROBABILITY OF REDD EN-

COUNTERS

The 30 mature individuals were separated in three categories based on their space use

tactics. The three groups allowing us to discriminate individuals in two dimensions

and ensuring an adequate number of individuals per group. After scaling and centring

variables, we used the function discrimin from the R package ade4 for discrimination.

The five variables used in the previous steps (upstream and absolute distances, home

range, centroid position, relocation distance) were combined with the number of direction

switches and the sum of covered distances. The latter two variables were not compared

between maturity levels to avoid having too many tested variables but were included in

this discrimination analysis. In the computation of the sum of the covered distances,

upstream distances were assigned to be positive and downstream distances negative

(Figure. 8.3). A one direction switch occurred when an individual went upstream one

day and downstream the following day or vice versa (for example between position 2 and

3 or 3 and 4 in Figure. 8.3). In this analysis, the individual number of direction switches

made per individual was normalised by the number of days during which the individual

was found in the study area to prevent a potential bias, since these two variables were
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Figure. 8.3: Scheme of the diferent distances computed in the study to deine space use
of one-year old Atlantic salmon parr. Numbers indicate temporal positions along the
river from position 1 to position 4. The river lows from right to left. Three movements
are displayed, arrow direction corresponds to the movement direction. The blue and
green movements correspond to a ish moving upstream.

correlated (Spearman: S � �����, � � ����, ԟ֑ռև֐ր � �����). The same normalisation

was done for the upstream distance, since the correlation was also significant (Spearman:

S � ������, � � ����, ԟ֑ռև֐ր � ����). The other variables did not correlate to the number

of days that individuals were present in the river. Immature individuals were included in

this analysis as a control group. We applied a Monte-Carlo test with 1000 permutations

allowed us to test the significance of the discrimination between the four groups.

The positions of redds recorded between 2011 and 2015 along the study area allowed

us to predict locations of breeding activity during the 2017 breeding season. Habitat

quality of breeding sites were assumed to have remained constant between 2011-2015

and our study period. The density of redds was then computed along the study area

as well as the density of each parr from their daily positions. From these densities, it

was possible to plot the density curves of each of the parr’s positions and redd positions

along the study area (Figure. 8.4). The individual cumulative probability to encounter

redds, Pr [Encounter redd] was defined by the area under the intersecting curve between

the redd density curve and the parr density curve. These probabilities provided a proxy

of an individual’s participation in reproduction (Figure. 8.4).

The individuals probabilities of encountering redds were compared between the

three space use groups of matures. Immature individuals were included in this anal-

ysis again as a control group. The overlap percentage between the estimated average

value of this probability in each group defined the Bayesian ԅvalue of the comparison:
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Figure. 8.4: Density curves of one Atlantic salmon parr’s positions (red line) and redd
positions (blue line) monitored in the study area. An external radio transmitter enabled
the daily recording of the parr’s positions throughout the breeding season in the Nivelle
population. Redd positions were based on data from 2011 and 2015. The area of inter-
section below both density curves, indicated in green, deines the individual’s probability
to encounter redds.

Pr [Encounter redd]ք ∼ � �ᅸ� ᅫ [Groupք] � ᅼ). The Pr [Encounter redd] was standardised

in this model to enable a better model fit. This comparison allowed us to test the link

between the space use tactics and the probability to encounter redds of each individualԘ. This method was used in order to test variables direct effect on the probability and

in order to prevent multiple comparisons. This analysis also allowed us to account for

possible paired effects of variables and provided a comprehensive understanding of the

effect of space use on the probability of encountering redds.

8.3 RESULTS

No spatial segregation or specific pattern was found between maturity levels at catching

in November (Figure. 8.1). Weight and fork length did not significantly differ between

mature (mean ± standard deviation: ����� g ± ��� g and ����� mm ± ��� mm) and

immature parr (���6 g ± ��� g and ����� mm ± ���� mm) — Bayesian ԅ֑ռև֐ր � ����
and ����. Tags weighed between ���6 � and ���6 � of the total fish mass.

During radio-tracking, eight different individuals reached the impassable dam at

the upstream limit of the study zone. On the last day, the 47th day after tagging, 22

individuals (eight immature) among the 40 tagged individuals were still in the study area.

The other individuals had either moved out of the study area or became untraceable

(a battery life of 27 days is guaranteed for the tags). One immature individual, the

smallest of the parr caught (129 mm) and the one caught furthest downstream (20 m
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Figure. 8.5: Boxplots of (a) upstream covered distance, (b) absolute covered distance,
(c) home range, (d) centroid position , and (e) relocation distance — distance between
catch sites and centroid — of Atlantic salmon parr. Parr from the population in the
Nivelle River were tagged with radio transmitters and their positions were monitored
daily throughout breeding season. Thirty mature individuals (red) and nine immature
individuals (grey) were tagged. The mean value of each variable for each maturity state
is displayed in green.

upstream the downstream limit of the study area), moved out the study area on the first

day of tracking. Only nine immature individuals were therefore included in subsequent

analysis.

8.3.1 THE EFFECT OF MATURITY ON SPACE USE

Mature individuals covered longer upstream distances than immature individuals (mean

of parameter estimates and 95% credible interval: ᅷ � ������� m [�6����� ���6���]
against �6���� m [�6����� �6��6�], Bayesian ԅ֑ռև֐ր � ����� — Figure. 8.5), and travelled

longer absolute distances (������� m [�������� �������] against ������ m [������� �������],
Bayesian ԅ֑ռև֐ր � �����). Mature individuals also had wider home ranges (������� m[������� �������] against �6���6 m [������� �6����], Bayesian ԅ֑ռև֐ր � �����) com-

pared to immature ones. No significant differences were found for the centroid po-

sitions (������� m [�������� �6�����] against �6�6��� m [�������� �����6�], Bayesianԅ֑ռև֐ր � ����) and relocation distances (���� m [�� ����6] against ����� m [���6�� �����],
Bayesian ԅ֑ռև֐ր � ����).

Upstream and absolute distances were significantly more variable for mature indi-

viduals than immature ones (ᅼ � ������ m [������� ����66] against ������ m [������ ������],
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Figure. 8.6: Plot of the upstream distance covered by radio-tagged salmon parr in the
Nivelle population as a function of their fork length. Thirty mature individuals were
tagged. Black dots represent observed values and red symbols indicate estimates of the
model with the credible interval at 95%.

Bayesian ԅ֑ռև֐ր � ���� for upstream distance; ������� m [6�6���� �������] against�6���� m [������� ������], Bayesian ԅ֑ռև֐ր � ���� for absolute distance — Figure.

8.5). The variance of the normal distributions (absolute and upstream distances) was

three times greater in mature individuals than immature individuals, while three times

as many mature individuals were tagged. Home ranges and centroid positions were

not more variable in mature parr than immature ones. Relocation distances were ten

times more variable among mature individuals than among immature ones (������ m[������� ������] against ���66 m [������ �����], Bayesian ԅ֑ռև֐ր � �����). We tested

whether the upstream distances covered by mature individuals were dependent on their

fork length in order to explain this higher variability. The upstream distance was nor-

malised by the number of days during which individuals were detected. Individual fork

length had a significant but weak positive effect (ᅮ � ���� m
day

�mm−1 ± ���� m
day

�mm−1,
Bayesian ԅ֑ռև֐ր � ����, Eq. 8.2).

8.3.2 SPACE USE TACTICS IN MATURE INDIVIDUALS AND PROBABILITY OF REDD EN-

COUNTERS

The discrimination of the 30 mature individuals into different groups on the basis of

their space use was significant (pvalue � ����� — Figure. 8.7 c). In Figure. 8.7 a, axis 1

carries information about home range while axis 2 represents other variables. Centroid

position, number of position switches, and sum of covered distances had little influence

on the discrimination (Figure. 8.7 a). The first group of parr had higher values of

covered distances (individuals favouring upstream movement) and absolute distances

covered (Figure. 8.7 a and b). The second group had lower home range values and
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Figure. 8.7: Plots of the discriminant analysis according to the space use of mature
and immature salmon parr throughout the breeding season (Ngroup= 15, 9, 6, and 9
respectively for groups 1, 2, 3, and immature parr). Immature parr are included as a
control group. (a) The relative importance of each variable on the two selected axes.
(b) The groups resulting from the discrimination of the 30 mature individuals and 9
immature ones. (c) The Monte-Carlo test output of the discriminant analysis testing if
the groups were similar or not (signiicant test) to random groups.

lower average values of covered distances. The third group had broader home ranges

and longer relocation distances. The control group, immature parr, held a "central"

position with the three groups of mature around (Figure. 8.7 b). There was a notable

overlap between group 2 and the immature group.

The probabilities of encountering redds were similar for groups 1 and 3 (Bayesianԅ֑ռև֐ր 1−3 � ����, Figure. 8.8), both of which were significantly higher than group 2

(Bayesian ԅ֑ռև֐ր 1−2 � ����� and Bayesian ԅ֑ռև֐ր 2−3 � ����, Figure. 8.8). Immature

individuals, representing "control" probabilities, displayed significantly lower probabil-

ities of encountering redds than groups 1 and 3 (Bayesian ԅvalue immature−1 � ���� andԅvalue immature−3 � �����), but there was no significant difference between the control

and group 2 (Bayesian ԅvalue immature−2 � ����).

8.4 DISCUSSION

The monitoring of individual displacements of Atlantic salmon parr throughout the

breeding season enabled us test the effect of maturity on space use. As hypothesised,

maturity affected the displacements of individuals throughout the breeding season. Ma-
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Figure. 8.8: Plots of the probability of redd encounter for mature salmon parr (groups 1
to 3) and for the immature salmon parr during the breeding season. The 30 individuals
were discriminated on the basis of their space use (Ngroup= 15, 9, 6 and 9 respectively
for groups 1, 2, 3, and immature parr). Groups with diferent letters are signiicantly
diferent.

ture individuals displayed both a higher average mobility and a larger inter-individual

variability in space use tactics. Between mature individuals, those which had broader

home ranges or those which favoured travelling upstream to moving downstream (posi-

tive sum of the covered distances) exhibited higher probabilities of encountering redds.

Obtaining similar distributions of age, size (fork length) and weight between ma-

turity levels was a challenging methodological issue. The length and weight was homo-

geneous between maturity levels, which ensured that differences in space use between

mature and immature individuals were not related to difference in size. In addition, tag

mass was below �� of body weight in all cases, much lower than the �� limit recom-

mended by Lacroix et al. (2004). Despite the relatively low tag mass, we recognise that

external tagging could still have had a negative impact on the movement and hydrody-

namics of individuals. If the tags affected the movement and behaviour of individuals,

the observed differences in space use between maturity levels would have then been un-

derestimated and not overestimated. This tag effect may have encouraged downstream

movements rather than upstream ones (constraints against flow are higher) and may

have negatively impacted the length of covered distances.



8.4 Discussion �. 273

8.4.1 THE EFFECT OF MATURITY ON SPACE USE IN RELATION TO DIFFERENT FOCAL

RESOURCES

Maturity involves a switch to broader home ranges as well as an exacerbated mobility in

relation to different focal resources. In this study, mature individuals exhibited broader

home ranges and covered longer upstream distances than immature individuals, which

was linked to a higher probability of encountering redds. The difference in probability

of encountering redds between maturity levels is consistent with the expectation that

immature individuals focus predominantly on food while for mature individuals, females

and breeding activity are greater priorities. The smaller home ranges and the smaller

covered distances of immature parr are consistent with the fact that salmon parr are

territorial feeders (Steingrímsson & Grant 2003). Mature individuals, however, move

in search of anadromous females, a sparsely distributed and mobile resource (Tentelier

et al. 2016a). Greater mobility and a higher probability to encounter redds in mature

individuals, associated with redd searching agrees with some previous results obtained

in experimental elliptical flumes. Thorpe et al. (1988) found that mature parr moved

more than immature ones in November, and Armstrong et al. (2001) found that mature

individuals stayed near a redd for longer than immature ones. The extreme variability

in relocation distances of mature individuals that we found supports these findings.

Some individuals dispersed from their feeding territories (assumed from their location

at catching) to another river zone to search for a new resource: females. Hence, these

results indicate that individuals with different maturity states adopt different space use

tactics due to focusing on different resources.

Multiple central-place foragers may move within wider home ranges than expected.

Immature salmon parr like other multiple central-place foragers defend feeding terri-

tories, moving and staying at feeding stations within these territories (Steingrímsson

& Grant 2008). Steingrímsson & Grant (2003; 2008) found an average territory size of

around 1 m2 for young of the year salmon. Roy et al. (2013a) found an average of 28.2 m

(maximum at 43 m) for one-year-old parr monitored from 24 July to 30 October. In our

study, immature individuals had home ranges varying from 50 m to 1 km, much larger

territory sizes than previously reported for immature Atlantic salmon. Differences with

Steingrímsson & Grant (2003; 2008) may be due to the different ages — young of the

year in their studies and parr in ours —, while differences with Roy et al. (2013a) may

be due to the season of the study — summer against autumn. These findings suggest
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that the feeding territory size of salmon parr may be strongly dependent on season and

age.

8.4.2 SPACE USE AS A BEHAVIOURAL TRAIT

The higher variability in distances covered by mature individuals compared to distances

covered by immature ones suggests that a diversity of behavioural traits exists in mature

individuals. The lower variability in distances covered by immature individuals was

despite the fact that they experienced the same environmental conditions as the mature

ones. This suggests that maturity level is responsible for the heterogeneity, probably

reflecting a diversity of behavioural traits in mature parr as is the case for anadromous

males (Tentelier et al. 2016a). Some individuals may have stayed near one female or a

group of females at one site, adopting a staying behaviour; others may have moved a

lot to find several females or groups favouring a roaming behaviour (Forchhammer &

Boomsma 1998, Sandell & Liberg 1992). An intermediate tactic may also be to use a

few nearby breeding sites, like multiple central-place foragers.

The discrimination of mature individuals into three groups based on their space use

revealed a similar variability. It is also interesting to note that the group of immatures

occupied a central place with the three groups of matures dispatched around. Space

use tactics of mature individuals could radiate from a "basic" space use displayed by

immatures. Some individuals may favour a similar tactic to multiple central-place for-

agers (group 2 — Figure. 8.8), others a broader home range (group 3), and others could

favour upstream displacements over downstream displacements (group 1).

8.4.3 LINKS BETWEEN SPACE USE AND PARTICIPATION IN REPRODUCTION

Heterogeneity in individual space use arising from maturity could also be linked to

heterogeneity in participation in reproduction. The three space use groups displayed

significant differences in probabilities of encountering redds. Wider home ranges and

the favouring of upstream movements seem to be reproductively beneficial for mature

individuals. Despite the lack of temporal dimension, and despite inferring redd positions

from recent years, these results are in accordance with previous studies. This type

of relationship between space use and participation in reproduction, or at least the

probability of encountering a mate, is known to exist in anadromous Atlantic salmon

(Tentelier et al. 2016a) and in other species (Fisher & Lara 1999, Formica et al. 2010,

Kamath & Losos 2018). Recent studies have focused on the links between space use and
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social or sexual networks (Cunningham et al. 2018, McDonald et al. 2013, Silk et al.

2018). New studies are needed to monitor successful encounters of redds by mature parr

and their actual participation in reproduction. Such monitoring was planned to do in

this study but could not be due to the unusually high flow conditions preventing us from

accurately mapping redds.

The decision to participate in reproduction or adopting a particular space use tactic

relative to the participation in reproduction may depend of individual body size. Fork

length was positively correlated to upstream distances covered: the larger the mature

parr, the longer the covered upstream distance. A potential explanation for this is that

larger parr have better swimming abilities, one probable mechanistic cause of space

use diversity (Webb et al. 1973, Weihs 1973). In addition, some individuals increased

their probability to encounter redds by favouring to upstream displacements rather than

downstream ones (positive sum of covered distance). The effect of size on mobility

lines up with size effects already reported in mature parr. Myers & Hutchings (1987)

previously described the effect of mature parr size on their dominance in gaining access

to redds, while Garant et al. (2002), Grimardias et al. (2010a), Jones & Hutchings (2002)

have reported that size has an affect on the reproductive success of mature parr.

8.4.4 POTENTIAL IMPLICATIONS FOR SURVIVAL AND BEHAVIOURAL DIVERSITY

Individual heterogeneity in space use brought on by maturity may lead to differences in

survival rates. Individuals adopt tactics and movement behaviours which require varying

amounts of energetic resources. Displacement heterogeneity, for instance, should cause

heterogeneity in energetic costs. Under the principle of energy allocation (Cody 1966),

any energetic costs related to the various behaviour and space use tactics would be addi-

tional to the existing energetic demands associated with gonadal maturation (Brokordt

& Guderley 2004). Heterogeneity in space use potentially further drive heterogeneity in

survival probabilities for mature individuals (Buoro et al. 2010, Myers 1984). Moreover,

longer displacements and potential changes of habitats induced by maturity may lead

to potential higher predation risks but something which was impossible to assess with

the tags employed in this study.

The different space use groups indicated that the space use of mature parr can be

considered as an expression of behavioural traits (Dingemanse et al. 2003). The space
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use of may be directly influenced by parental behaviour (although this is probable for

salmon) or by a modification of their phenotype (e.g. via genes, Dingemanse et al. 2003).

Further studies are needed to test whether the variability of behaviours and resulting

reproductive success within early maturing individuals may impact the evolution of

behaviours under a game-theoretic approach as suggested by Smith & Blumstein (2008).

Understanding how maturity shapes spatial distribution, either in usual matura-

tion or in early maturation, provides useful information to improve species management.

Identifying potential threats due to space use or factors reducing survival among devel-

opmental stages enables establishments of new management directives. In their study,

Starking-Szymanski et al. (2018) provided valuable information about a management

program by monitoring displacements and habitat use of Blandings turtle Emydoidea

blandingii. Additionally, identifying whether and how individuals move in habitats

threatens by human-induced disturbances also enables to improve management direc-

tives. For instance, Rio-Maior et al. (2018) found that breeders in Iberian wolves Canis

lupus may be affected by human activities during breeding seasons.

8.5 CONCLUSION

Maturity has an important effect on space use and displacements of Atlantic salmon

parr. Mature individuals covered longer distances than immature individuals implying

potential costs for their survival. Maturity may, therefore, affect individual survival also

by modifying their spatial distribution. Space use of mature individuals was linked to

their probability to participate in reproduction suggesting also an effect of space use

on their fitness. Further studies in salmon may investigate the true link between space

use reproductive success of early maturing salmon which may impact genetic diversity

and the effective population size of a population (Ne, Jones & Hutchings 2001; 2002,

Juanes et al. 2007, Saura et al. 2008). Impacts of displacements and space use tactics

in terms of energetic costs and survival probability also remain to be studied. Finally, a

possible extrapolation of our results to other taxa might be useful to identify proximal

and ultimate causes of space use tactics in relation to age at first reproduction.
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DEEPER IV.i: First elements of the space use of mature parr
during the breeding season

i
dzad

Alternative reproductive tactics should also cause a divergent dispersal

of juveniles. A strong size difference exists between the two alternative

reproductive tactics (Bagliniere & Maisse 1985, Kazakov 1981). The strong

size difference generates weaker swimming abilities (Webb et al. 1973, Weihs

1973), as well as lower energetic reserves for mature parr compared to

anadromous males. According to the principle of allocation, mature parr

should have a spatially constrained participation in reproduction. The

spatial distribution of juveniles fathered by each individual should, thereby,

be reduced for mature parr in comparison to anadromous.

Parentage data and capture location of juveniles of Tentelier et al.

(2016b) — for details see Part III, page 145 — permitted computing the

distance between the two furthest juveniles fathered by each male. A value

of the distance range characterised each anadromous male and each mature

parr which sired at least two juveniles. The capture location of each juve-

nile, as well as of each mature parr, allowed us to know if juveniles were

upstream or downstream their father mature parr. In 2009, 18 mature parr

fathered 475 juveniles, while in 2010, 21 mature parr sired 148 juveniles.

11 anadromous males produced 735 juveniles in 2009, while 24 anadromous

males fathered 1015 juveniles in 2010 (Tentelier et al. 2016b).

To better understand how varied the distance between the two fur-

thest juveniles of the same father, we modelled it by the number of mated

females (mating success) and the number of produced juveniles (reproduc-

tive success). A simple generalised linear model was fitted for each year

(ԙ) with the reproductive tactic (ԇԉֈ,օ) of the male ԙ as a fixed effect and

with the mating success (Ԃֈ,օ) or the reproductive success (ԉֈ,օ) as an

explanatory variable:ӹԘԢԣԐԝԒԔֈ,օ ∼ ��ᅸ� ԇԉ � Ԃֈ,օ � ԇԉ × Ԃֈ,օ� ᅼ) (Eq. 8.3)ӹԘԢԣԐԝԒԔֈ,օ ∼ ��ᅸ� ԇԉ � ԉֈ,օ � ԇԉ × ԉֈ,օ� ᅼ) (Eq. 8.4)
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The variable ӹԘԢԣԐԝԒԔօ was standardised (each year separately) to increase

the efficiency of these models.

The range between the two furthest juveniles fathered by the same

father displayed a similar pattern between the two reproductive tactics

(Figure. 8.9). Over the two years, four mature parr displayed a range

longer than seven kilometres.
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Figure. 8.9: Plot of the distance between the two furthest juveniles fathered
by a male mature parr (left) or an anadromous male (right) during two
breeding seasons in the Nivelle River. Data concerned 18 and 21 mature
parr in 2009 and 2010, respectively, while data on 11 and 24 anadromous
were used in 2010.

When looking at the position of the juveniles fathered by a mature

parr, most of the juveniles were found upstream from the position of their

father (Figure. 8.10 a). It was especially true when the distance between a

mature parr and its juveniles increased. At the individual level, the propor-

tion of juveniles at an upstream position from their father was extremely

variable between each mature parr. Indeed, some individuals displayed a

high proportion of juveniles either upstream or downstream, whereas some

individuals displayed similar proportions of juveniles upstream and down-

stream (Figure. 8.10 b).
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Figure. 8.10: Histogram of the distance between each mature parr and its
juveniles (left) and proportion of juveniles found upstream or downstream
to each parr father (right) during two breeding seasons in the Nivelle River
(2009 and 2010). Data concerned 18 and 21 mature parr in 2009 and 2010,
respectively, while data on 11 and 24 anadromous were used in 2010.

Over both breeding seasons, the distance between the two furthest

juveniles increased as the mating success raised (Table. 8.1). Reproductive

tactics had no effect on this relationship through the fixed effect or the

interaction (Table. 8.1), reproductive tactics clearly exhibiting the same

pattern (Figure. 8.11). The reproductive success did not affect the distance

in 2009 but a positive trend appeared in 2010. Interaction effect with

reproductive tactics appeared significant for the second year (Table. 8.1).
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Figure. 8.11: Plot of the distance between the two furthest juveniles fathered
by a mature parr (in red) or an anadromous male (in blue) as a function of
the number of mated females (a) or the number of produced juveniles (b).
A simple linear model was itted for each couple of variables with a ixed
efect of the reproductive tactic, lines correspond to estimated median with
the conidence interval at 95%.

Table. 8.1: Results of the generalised models Eq. 8.3 and Eq. 8.4 to test
the efects of the mating success (Ԃֈ,օ), the reproductive success (ԉֈ,օ)
and reproductive tactic (ԇԉֈ) on the distance between the two furthest
juveniles fathered by a same anadromous males or mature parr.

Model Year Variable ԟ֑ռև֐ր

ӹԘԢԣԐԝԒԔֈ,օ ∼ ԇԉֈ,օ � Ԃֈ,օ � ԇԉ × Ԃֈ,օ
2009

ԇԉ ����Ԃֈ,օ � �����ԇԉ × Ԃֈ,օ ����
2010

ԇԉ ��6�Ԃֈ,օ � �����ԇԉ × Ԃֈ,օ ���6
ӹԘԢԣԐԝԒԔ ∼ ԇԉ � ԉֈ,օ � ԇԉ × ԉֈ,օ

2009

ԇԉ ����ԉֈ,օ ����ԇԉ × ԉֈ,օ ����
2010

ԇԉ ����ԉֈ,օ � �����ԇԉ × ԉֈ,օ ����
Mature parr and anadromous exhibited similar dispersal patterns of their

juveniles. Both tactics displayed range between the two furthest juveniles

of the same male which may exceed 7 km. In addition, both tactics exhib-

ited high variability between father individuals. Even if juveniles have been

caught after potentially small dispersal, this distance reflects the space use

of the father. Indeed, a lot of studies have worked on the juvenile dispersal

in Atlantic salmon. Usually, salmon fry stay near the redd from which

they emerged for one week or two (Garcia de Leaniz et al. 2000, Gustafson-

Greenwood & Moring 1990). Even if some authors found various dispersal
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distances and a dispersal speed estimated at around five m.day-1 (Garcia de

Leaniz et al. 2000), dispersal distances remain in a similar range of vari-

ability from 20 m downstream to less than 100 m downstream (Beall 1994,

Crisp 1995, Einum & Nislow 2005, Gustafson-Greenwood & Moring 1990).

However, salmon fry may disperse to 400 m downstream (Beall 1994, Webb

et al. 2001) and 50 m upstream the redd (Einum et al. 2006) at late emer-

gence season because of competition to settle in feeding territories. These

scales of variations remaining small in comparison to dispersal ranges found

here, and especially when father was found downstream than its juveniles

(for mature parr). Hence, ranges found here suggest that mature parr ex-

hibited a diversity in space use during the breeding season like anadromous

males.
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HIGHLIGHTS OF CHAPTER 8▶ Maturity involves a switch of focal resources or at least may involve new

focal resources.▶ Maturity may therefore affects the space use of individuals.▶ Indeed, mature individuals covered longer distances which can increase the

predation risk.▶ Maturity also increased diversity of space use between individuals which

can favour appearance in a diversity of energetic costs.▶ Space use tactic of mature individuals was linked to their probability to par-

ticipate in reproduction.
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space use of individuals.
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9.1 CONTEXT

The previous chapter discussed the modification of individual space use by maturity.

Individual space use may be determined by covered distances, home ranges and centroid

positions (Armstrong et al. 1999, Moorcroft et al. 2006, Tentelier et al. 2016a). Never-

theless, individuals may also differentially use space in terms of habitat use (Cameron

et al. 2018, Dinkins et al. 2017, Morris 1987). A habitat corresponds to a portion of

a species’ ecological niche whose characteristics, biotic and/or abiotic, satisfy needs of

individuals accomplishing specific activities such as feeding, breeding, harvesting, . . .

In a recent special issue in Oïkos (Hamel et al. 2018), several authors stressed the

necessary inclusion of individual heterogeneity in population modelling and in Capture-

Mark-Recapture modelling. Individual heterogeneity may arise from different causes,

either measurable traits or states (e.g. individual size, sex, or age) or unobservable

sources as discussed by Gimenez et al. (2018). Maturity levels (immature vs mature)

can generate such heterogeneity in space use as found in the previous chapter (chapter

8, page 257).

Maturity levels (immature vs mature) might also cause such individual heterogene-

ity in habitat use. Searching for anadromous females, mature individuals should be found

near breeding habitats. At the opposite, immature parr, continuing to feed (Fraser &

Metcalfe 1997), should be found in foraging habitats. However, breeding habitats and

feeding habitats of salmon parr may overlap. Indeed, both habitats are characterised by
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close values in terms of velocity (�� − 6� cm�s−1 vs 6� − �� cm�s−1 for breeding habitat

and feeding habitat respectively) and depth (�� − �� cm vs 6� − �� cm for breeding

habitat and feeding habitat respectively, Louhi et al. 2008, Nislow et al. 1999, Roy et al.

2013a).

DEEPER IV.ii: Longitudinal gradient of maturity within a river i
dzad

One question relating both to space and to Atlantic salmon mature parr

is to know if there is a longitudinal gradient of maturation within a popu-

lation. Indeed, food availability may vary along a river as well as habitat

complexity. These two factors affect the growth of individuals, one impor-

tant determinant of early maturation. However, studies found divergent

results. In the Ste. Marguerite River (Québec, Canada), Aubin-Horth

et al. (2006) found that the frequency of mature individuals increases as

the upstream distance. At the opposite, Bagliniere & Maisse (1985) found

that the maturation was higher downstream in the Scorff River (France).

I then assessed if such longitudinal gradient occurs in the Nivelle River.

We used the population monitoring in the Nivelle River (Chapter 2, page

65) consisting of young of the year caught at 22 sites along the river from

2003 to 2015. The probability that a caught individual (Ԙ) was mature at

each site (Ԣ) in a year (Ԩ) was computed under a Bayesian framework as

follows:

Pr[Mat. � �|i, y, s] � �� � Ԕԧԟ (− (intercept � ᅫ֔,ք � ᅬ֎,ք � ᅮ × LFք))
(Eq. 9.1)

with LFք the fork length of individual Ԙ.
Although the more upstream site displayed the higher positive effect on the

probability that the individual Ԙ was mature (Figure. 9.1), no clear pattern

appeared.
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Figure. 9.1: Plot of the probability that a Atlantic salmon parr caught
along the Nivelle river was a mature parr.

Maturity might also generate more movements between habitats. Immature in-

dividuals still feeding in winter (Fraser et al. 1995), while maturation did not affect

appetite of mature parr (Simpson et al. 1996) suggesting that mature individuals also

keep feeding. Maturity may, therefore, increase movements between feeding habitats

and breeding ones.

In salmon parr, some studies have worked on activity rhythms (Fraser et al. 1995,

Hiscock et al. 2002, Metcalfe et al. 1999, Roy et al. 2013a, Simpson et al. 1996), as

well as on habitat use (Robertson et al. 2003, Roy et al. 2013a, Steingrímsson & Grant

2008). However, most of studies were focused on immature or did not account for

maturity levels (Fraser & Metcalfe 1997, Fraser et al. 1995, Hiscock et al. 2002, Metcalfe

et al. 1999, Roy et al. 2013a). Most of studies about habitat use were also only to

describe the preferred habitat or how individuals move within them. How salmon parr

use habitat in a dynamic way, movements among habitats, was never assessed at fine

scale (e.g. Robertson et al. 2003 compared movements among lacustrine and fluvial

habitats), especially when accounting for maturity effect.

Hypothesising a clear different habitat uses between maturity levels of salmon parr

would be an assumption too strong. Nevertheless, I can hypothesise that mature and

immature individuals display different movement probabilities between habitat types in

a river. Similar movement probabilities would be assigned to different habitat types for

mature parr due to their shifts in habitats to breed and feed. At the opposite, immature
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would exhibit a higher movement probability to go to one habitat type. To test this, a

capture-mark-recapture (CMR) approach was used to estimate movement probabilities

between habitat types with the data of the previous chapter (chapter 8, page 257).

9.2 METHODS

9.2.1 DATA

During the study of Tentelier et al. (2016a), the upper zone of the Nivelle (upstreal Olha

dam, Figure. I.viii) was divided in 618 stretches based on morpho dynamic changes of

habitat, dams, bridges for instance. Each stretch was characterised according to five

different types of morpho dynamic habitats: riffles, rapids, flat-flowing, flats (or runs or

glides), pools, with increasing depths and reducing velocities (Prevost & Chaput 2001,

page 100). For each stretch, the proportion of area defined by each flow pattern was

noted, the higher proportion defining the stretch. A habitat type "mixed" was also

considered when two or more proportion were equivalent for the considered stretch. The

stretch delimitation was a more precise and more contemporary delimitation than the

division by stretches used in the Part II (page 49).

I used the daily positions obtained during the field study described in the previous

chapter (chapter 8, page 257). A type of habitat was associated to each individual daily

position. Because some individuals left the study area, a seventh type of habitat was

also defined to notify a position outside the study area: "out".

9.2.2 ESCAPEMENT AND MOVEMENT PROBABILITY

The escapement probability (leave the study area), as well as the movement probabilities

between habitat types, were assessed with a multistate Hidden Markov Model (HMM).

Observed states were defined as either one of the habitat types or "not seen". Previous

chapter (chapter 8, page 257) shown that maturity levels ("immature" vs "mature")

has modified space use of individuals. Therefore, the model developed here assessed the

effect of maturity on survival, escapement and movement probability between habitats.

The usual survival probability in such CMR models, �, depicted here the probabil-

ity to remain detectable, combining tag issue, tag battery life, survival, . . . rather than

to purely survive (Figure. 9.2). Some models of radio tags change their pulse rate after

hours of complete immobility offering possibility to detect dead individuals. Tags used

in this study did not have this option so dead individuals could not be discriminated
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detectable undetectable

� − �
�

n states−1
� � − ᅹ

Figure. 9.2: Diagram of the probabilities to be undetectable or not in the multistate Hid-
den Markov Model written to explain the habitat use of Atlantic salmon parr throughout
a breeding season. The undetectable state replaces the usually dead state. The state
“alive” displayed here, pools multiple states (Figure. 9.3) but allow to simply represent
the probability to remain detectable (�) and the probability to remain undetectable
(� − ᅹ).
from living individuals. The probability � − ᅹ defined the probability to remain unde-

tectable (Figure. 9.2). Indeed, the state "undetectable", replacing the state "dead",

pooled individuals not found due to a radio-transmitter error but remaining within the

study area and individuals not found and being outside the study area. Therefore, an

individual can be detected after not being found; ᅹ estimating this probability. Recap-

ture probability, ԟ, estimated the probability of observation at day d — Ԅ�ԓ) — given

the state Ԉ�ԓ) (Figure. 9.3). Thus the observation matrix of the model was:

⎛⎜⎜⎜⎜⎜⎜⎜⎝
out k undetectable

out ԟ � � − ԟ
k � ԟ � − ԟ
undetectable � � �

⎞⎟⎟⎟⎟⎟⎟⎟⎠ (Eq. 9.2)

Here, Ԛ indicates any habitat within the study area and ԞԤԣ a position outside the study

area.

One state of the model represented individuals alive outside the study area. This

state enabled to estimate the movement probability between habitats in the study area

to outside the study area: the escapement probability — �k−out, Figure. 9.3. The

movement probability also estimated the probability to move between each other habitat

types noted Ԛ: �k−k.

The model accounts for a potential effect of maturity (immature vs mature parr)
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on the probability to remain detectable (�maturity), as well as the movement probability

(�maturity
k−k ), and the escapement probability (�maturity

k−out — Figure. 9.3). The differences of

mobility observed in chapter 8 (page 257) motivated incorporation of a potential effect

of maturity on �. Therefore, the following matrix corresponds to the state-transition

matrix of the model:⎛⎜⎜⎜⎜⎜⎜⎜⎝
out k undetectable

out �maturity × �maturity
out−out �maturity × �maturity

out−k � − �maturity

k �maturity × �maturity
k−out �maturity × �maturity

k−k � − �maturity

undetectable �
n states−1 �

n states−1 � − ᅹ
⎞⎟⎟⎟⎟⎟⎟⎟⎠ (Eq. 9.3)

Weakly informative prior was assigned to �: ԛԞԖԘԣ��maturity) ∼ � ��� ԢԠԡԣ�����)).
Analyses were performed by calling MC Stan with the R package RStan (Stan Develop-

ment Team 2018). A total of 4,002 iterations were saved from three chains with a thin

of 3, and after a warm-up of 1,000 iterations. Graphical examinations and the scale

reduction factor — r̂ — allowed us to assess chain convergence. The overlap percentages

between the posterior distributions of �mature and �immature or between � estimates were

computed with the R package overlapping (Pastore 2017) and defined our Bayesianԅ֑ռև֐ր, 5% of overlap defining a significant effect.
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out Type k undetectable

out Habitat k not seen

� − ᅹ� × �out−out

� × �k−k

� × �out−k

� × �k−out

� − �
� − �

�
n states−1

�
n states−1

1ԟԟ

out

� − �Hidden states:Ԉ�ԓ)
Observed states:Ԅ�ԓ)

Figure. 9.3: Diagram of the daily observed (Ԅ�ԓ)) and hidden states (Ԉ�ԓ)) of our
multistate Hidden Markov Model written to explain the habitat use of Atlantic salmon
parr throughout a breeding season. The model takes into account a potential efect of
the maturity state (immature vs mature) on the probabilities � (remaining detectable
probability) and � (movement probability). This efect was not display in this diagram
to lighten writing. The state “Type k” represents six diferent types of morpho-dynamic
habitat in the river where an individual is located: riles, rapids, lat-lowing, lat, pool
and mixed. The state “out” concerned individuals seen and being outside the study
area.



9.3 Results �. 291

9.3 RESULTS

The model estimated a high value for the recapture probability at ԟ � ������ [������� ������]
as well as for the probability to remain undetectable at � − ᅹ � ������ [������� ������]
(Table. 9.1). The probability to remain detectable did not differ between mature and

immature parr (�immature � ������ and �mature � ������ —Bayesian ԅ֑ռև֐ր � ���� —

Table. 9.1).

Table. 9.1: Table of three diferent probabilities of our multistate Hidden Markov Model
written to explain the habitat use of Atlantic salmon parr throughout a breeding season.
The model incorporated a potential efect of maturity (immature vs mature) on the
probabilities � (remaining detectable probability). For each probability, the Credible
Interval at 95% accompanied the estimated average value.

Parameter Mean [CI 95%] Bayesian ԅ֑ռև֐ր
Name Symbol
Recapture probability ԟ ������ [������� ������] /

Probability to remain detectable �immature ������ [������� ������] �����mature ������ [������� ������]
Probability to remain undetectable � − ᅹ ������ [������� ������] /

The following matrices display the average values of estimated movement probabil-

ities for immature individuals �immature
k−k (Eq. 9.4), and mature individuals �mature

k−k (Eq.

9.5). The symbol “∗” in both matrices indicates significant differences between immature

and mature.
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�immature
k−k �

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

mixed riffles rapids flat flowing flat pool out
mixed 0.16∗ 0.16 0.17∗ 0.17∗ 0.17 0.18 0.02
riffles 0.00 0.81 0.00 0.06 0.12 0.00 0.00
rapids 0.17∗ 0.18 0.16 0.17 0.14 0.17∗ 0.02
flat 0.00 0.57 0.05 0.33 0.05 0.00 0.00

flowing flat 0.00 0.16 0.00 0.00 0.82∗ 0.00∗ 0.00
pool 0.00 0.98∗ 0.00 0.00 0.00 0.00 0.00
out 0.00 0.00 0.00 0.00 0.00 0.00 0.98

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(Eq. 9.4)

�mature
k−k �

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

mixed riffles rapids flat flowing flat pool out
mixed 0.00∗ 0.50 0.00∗ 0.00∗ 0.16 0.33 0.00
riffles 0.00 0.74 0.00 0.11 0.11 0.03 0.00
rapids 0.00∗ 0.21 0.45 0.04 0.31 0.00∗ 0.00
flat 0.01 0.33 0.01 0.56 0.07 0.01 0.01

flowing flat 0.00 0.24 0.03 0.05 0.65∗ 0.03∗ 0.00
pool 0.05 0.28∗ 0.00 0.19 0.19 0.27 0.00
out 0.00 0.00 0.00 0.00 0.00 0.00 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(Eq. 9.5)

Few differences appeared between the two maturity levels. However, the estimated

probabilities shown that mature individuals stayed in rapids while immature moved to

another habitat defined by a lower flow velocity (�immature
rapids−mixed or pool � �mature

rapids−mixed or pool).

At the opposite, immature individuals stood in flowing flats while mature went to another

habitat, preferentially riffles characterised by a higher flow velocity (�immature
flowing flat−flowing flat ��mature

flowing flat−flowing flat). Immature displayed a strong probability to move from pools to

riffles, while mature moving from pools went to multiple habitat types. Apart these

points, the resulting patterns of movement probabilities did not clearly differ between

maturity levels (Eq. 9.4 and Eq. 9.5). The cumulative probabilities to move into each

habitat type did not differ between maturity levels and varied in same ways (Figure.

9.4) with the higher value of cumulative probability was to move in riffles. Despite the

visual similarity, the movement probabilities seem split into habitats (Figure. 9.4).
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Figure. 9.4: Plot of the movement probability (�k−k) of immature (a) and mature (b)
Atlantic salmon parr between diferent types of habitat. Each daily position of each
individual throughout the breeding season was translated into an habitat type where
the ish was. The type “outside” corresponded to individuals located outside the study
area while the type “mixed” denoted habitat with undiferentiated type. The column at
the right of the graphical matrix indicated the cumulative probabilities to migrate into
each habitat type.

9.4 DISCUSSION

The purpose of this chapter was to test whether maturity implied a different habitat use

in salmon parr. In the previous chapter (chapter 8, page 257) an effect of maturity on

space use was found, mature parr covering longer distances. Despite this difference in

movements, no differences in probability to remain detectable emerged. The multistate

HMM’s results suggested that both maturity levels displayed broadly similar patterns of

movements between habitat types. However, maturity levels exhibited some differences

in movements between some habitat types.

The cumulative probability to move into each habitat type did not differ between

mature and immature individuals. For both maturity levels, individuals move more to

go to riffles characterised by high flow velocity and shallow depth. Breeding activity

of Atlantic salmon occurs at riffles (Louhi et al. 2008) and mature parr move more
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than immature (chapter 8). The research of anadromous females during the breeding

season could explain the preference for riffles expressed by mature parr, while riffles also

correspond to potentially suitable feeding habitats for immature parr (Boavida et al.

2017, Roy et al. 2013a). Mature parr seemed to move more among habitats only at the

margin, no clear difference with immature parr was found.

Salmon parr exhibited variable habitat uses. In their studies, Boavida et al. (2017),

Roy et al. (2013a) found similar habitat uses in terms of velocity and depth. However,

individuals in these studies demonstrated variable habitat uses. For example, in the

study of Boavida et al. (2017), mean water velocity experienced by individual varied

from ���� m�s−1 to ���� m�s−1 and mean depth from to ���� m to ���� m. Then, even if

salmon immature parr prefer habitats characterised by a shallow depth and high velocity,

some individuals may display more variable habitat uses. The matrix of movement

probabilities with no strong patterns and movements between all habitat types agrees

with these variable habitat uses found in other systems. In addition, seasons, as well

as floods, may involve such variations of habitats chosen by salmon parr (Boavida et al.

2017, Nislow et al. 1999). At the opposite, mature individuals stayed in habitats when

the flow velocity in these habitats was high, while immature sometimes preferred to

stay in deeper habitats with slower flow velocity in accordance to their drifting foraging

abilities (Nislow et al. 1999).

Yet, some limitations should be pointed out. First, the positions of immature parr

only originated from 10 immature individuals compared to the 30 mature individuals.

The low number of immature individuals could have overestimated some movement

probabilities for this maturity level. In addition, the stretch and habitat scale did not

match with the radio-tracking precision scale which was more accurate. A study at

the micro-habitat scale could be preferential even if this study provides some valuable

information as a complement to the previous chapter (chapter 8).

The temporal dimension could also be a lack of this study. Salmon parr exhibit

nycthemeral and seasonal rhythms leading to a foraging activity at night in winter (Fraser

et al. 1995). Monitoring positions at the same hour at day was not a limitation because

salmon parr are central place foragers and, therefore, occupy a small feeding territory

(Steingrímsson & Grant 2008). The issue can be for mature parr because breeding
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activity also occurs at night (Beall & De Gaudemar 1999). Absence of differences in

movement probabilities may be due to this lack of temporal dimension. Redoing this

study with one point at night may had valuable information concerning this issue. Yet,

some fixed station to monitor fish near them were positioned at two locations, and

individuals detected at day were also detected at night and vice versa (unreported data).

Maturity seems not to imply a strong different habitat use by Atlantic salmon

parr. However, some differences caused by maturity have been pointed out such as

immature individuals staying in flowing flats while mature preferentially went to riffles

characterised by a higher flow velocity. Accounting for individual heterogeneity when

investigating habitat use by salmon parr should involve working at the microhabitat

scale. In addition, maturity levels materialised individual heterogeneity in this model.

However, accounting for individual fork length or swimming abilities could be useful to

better characterised individual heterogeneity in habitat uses by salmon parr and identify

mechanistic causes of this heterogeneity.

HIGHLIGHTS OF CHAPTER 9▶ Although mature and immature parr have different focal resources the feed-

ing habitats and breeding habitats may overlap.▶ Movement probabilities between habitat types were compared between

maturity levels.▶ Similar probabilities of movements between habitat types were found for

the two maturity levels.▶ Mature parr did not move more among habitat types than immature.▶ Yet, mature parr tended to favour habitats with higher flow velocity, while

immature tended to stay in flowing flats.
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Discussion to Part IV

Sexual selection may differ between reproductive tactic especially through different lev-

els of sperm competition. Mature parr tended to exhibit a higher mating assortment

than anadromous which can be linked to their sneaky behaviour (chapter 7, page 241).

Mature parr faced, thus, to a higher sperm competition but displayed a similar pre-

copulatory competition to that of anadromous. Despite the differences in body length,

these alternative reproductive tactics displayed similar ranges of juvenile dispersal (box

Deeper IV.i). In salmon parr, maturity involves a modification of space use (chapter 8,

page 257). Individual space use affected the probability to encounter redds, individuals

having a broader home range increasing their probability. Finally, despite this change in

space use, no clear differences emerged in terms of habitat use between maturity levels

in salmon parr (chapter 9, page 283).

DENSITY OF ANADROMOUS AFFECTS HOW MATURE PARR MAY HACK MATING

SYSTEM

A density-dependent participation of mature parr. Competition between males and

mate acquisition trait are frequency dependent (Kokko & Rankin 2006). Here, mature

parr participated more in reproduction in 2009 when anadromous-anadromous compe-

tition tended to be higher (chapter 7, page 241). Indeed, the Bateman gradient without

accounting for parr tended to diminish between 2009 and 2010 (ᅬծ�մ�� level Ana-Ana
in Table. 7.2, 251). In addition, dispersal distance of their juveniles was longer at

low anadromous-anadromous competition (box Deeper IV.i, page 277). The effect of

the anadromous density on the parr participation results from high costs of competi-

tion associated with a too high number of competitors (Weir et al. 2011, chapter 7).

Mature parr’s participation in reproduction is also density-dependent in regard of their

own density (Hutchings & Myers 1988, Weir et al. 2005). Nevertheless, some studies
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found opposite results Garant et al. (2003b), Hutchings & Myers (1988), Thomaz et al.

(1997). The differences between studies should be the result of an interaction between

the density-dependent effect of the parr density with the density-dependent effect of the

anadromous salmon density.

Space use of mature parr seemed also dependent of the density of anadromous. Po-

tentially covered distances and home ranges of mature parr seemed dependent of the

density of anadromous. The distance range between the two furthest juveniles of a ma-

ture parr displayed a bi-modal distribution in 2009 and a unimodal one in 2010 (Figure.

8.9, 278). Some individuals displayed, thus, high mobility during the breeding season

with the stronger competition between anadromous which resulted in harder accesses to

females for mature parr (Box Deeper IV.i, page 277). Such density-dependent variations

of space use are common in predator-prey interactions. For example, predators exhibit

long relocation distances and small steps when exploiting sparsely distributed resources

(Humphries et al. 2010, Sims David W. et al. 2011). Such density-dependent variations

could be generalised with potential mates as resources.

MATURE PARR EXHIBIT VARIOUS RANGES OF DISPLACEMENTS

Mature parr exhibit wide sexual home ranges. The space use of mature parr suggested

by the range between their two furthest juveniles (box Deeper IV.i) supported the re-

sults of chapter 8. Nevertheless, I found an average home range at one kilometre long

during the field study, whereas the dispersal distance of juveniles was higher than seven

kilometres for some individuals in 2009 and 2010. The observed difference could result

from the spatial scale of the study, here fieldwork monitored displacements in a small

part of the river, whereas the study of Tentelier et al. (2016b) was at the river scale.

Another explanation could be the upstream dam constraining mature parr’s upstream

displacements during my field study while Tentelier et al. (2016b) also sampled more

downstream redds in 2009-2010.

Roaming versus staying. The trade-off on covering long distances or not for mature parr

should vary throughout the breeding season and may also depend on whether they have

already spawned or not. Mature parr displayed various space use during the fieldwork

(chapter 8) but also in 2009 and 2010 (Box Deeper IV.i, page 277). The size of their home

range increased their probability to encounter redds (chapter 8) and their reproductive
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success was positively linked to the distance between their two furthest juveniles, a proxy

of their space use in 2009-2010 (Box Deeper IV.i). Mature parr should, thus, favour a

roaming tactic to raise their reproductive success. Nevertheless, several Atlantic salmon

females usually spawn at the same breeding site (Hendry et al. 2001), and a female may

also spawn several times at the same site (de Gaudemar et al. 2000) giving numbers

possibilities to mature parr to mate without having to move. The latter possibility

and the costs associated of covering long distances (e.g. high predation risk, energetic

demand) should favour a staying tactic. In the early breeding season, the benefit to

move to find females should overpass the costs of moving, whereas stay at breeding sites

should be beneficial at the end of the season, especially because sperm depletion occurs

in mature parr (Hutchings & Myers 1988, Thomaz et al. 1997), staying behaviour of

mature parr after their first mates. Such results have been already found concerning the

temporal dynamic of the movements by anadromous males. For example, Rich et al.

(2006) found that movements of anadromous male sockeye salmon (Oncorhynchus nerka)

decreased as a function of time spent on the breeding grounds.

CONCLUSION

Mature parr may affect genetic structure within the population. The effects of mature

parr participation on population genetic received a lot of attention in literature (Ardren

& Kapuscinski 2003, Martinez et al. 2000, Saura et al. 2008). In their study on another

salmonid, Rich et al. (2006) hypothesised from their results that homing to precise na-

tal locations may generate genetic structures of populations at fine spatial scale. The

absence of a distinct pattern in habitat use by mature parr from immature ones was

paired with the absence of a gradient of maturation along the river (box Deeper IV.ii).

Associated with the high mobility of mature parr throughout the breeding season, these

absences suggested potential participation of mature parr in all parts of the Nivelle.

The Nivelle River is a small and simple system compared to the one studied by Rich

et al. (2006) which suggests a low population viscosity in the Nivelle. The pervasive

participation of mature parr along the Nivelle may mitigate the gene flows triggered by

anadromous coming from other populations. Such effects of mature parr were hypothe-

sised by Jordan & Youngson (1992) and could be exacerbated in small populations like

the Nivelle.
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Mature parr may have a complex effect on demography. The wide space use of ma-

ture parr and their variable participation in reproduction raises the question about the

importance of mature parr in kin selection in such small populations. Our findings

suggest parr tend to better access females when anadromous males guarding females

chase other anadromous males. Then, mature parr may diminish kinship levels within

redd. Moreover, Atlantic salmon parr are able to recognise and discriminate kin from

non-kin parr (Brown & Brown 1992, Moore et al. 1994). However, several studies found

a fitness benefit aggregating with kin rather than non-kin for mature parr (Brown &

Brown 1996, Ward & Hart 2003). This general effect is modulated by environmental

conditions especially in winter (Griffiths et al. 2003), avoiding kin-related individuals

becoming advantageous (Griffiths & Armstrong 2001). Hence, mature parr may mod-

ify kin relations between juveniles which complicates the understanding of their overall

effects on demography. Indeed, this effect combines with the negative effects on their

own survival (Buoro et al. 2010, Myers 1984), on the survival of juveniles (Garant et al.

2002), or on the number of returning anadromous for example.

A substantial number of questions remain to investigate. Indeed, the link between in-

dividual reproductive success and space use of mature parr could be investigated to

highlight the best space use tactic in terms of fitness. However, many factors may be in-

volved in such a question. Environmental conditions and individual states — condition,

metabolism, swimming abilities — may influence the costs of different space use tactics.

Is it better for an individual to diminish its covered distance and its reproductive success

at parr stage in order to increase its probability to survive and to participate in repro-

duction as an anadromous increasing its lifetime reproductive success? The response of

this question is probably frequency-dependent, depending on the density of anadromous,

their sex-ratio, and the density of mature parr. A first work by applying a best-of-n-rule

within simulations could permit to point out the first response elements.

BESIDE IV.i: Transposition of Lévy flight foraging hypothesis
dzad

Effects of maturity on space use, as well as on habitat use, were assessed

in this part. However, daily movements between maturity levels were not

compared. Immature Atlantic salmon parr still feed drifting invertebrates

in the water column in winter (Fraser & Metcalfe 1997, Fraser et al. 1995),



�. 301

a feeding resource which can be considered as a widely distributed. At the

opposite, mature parr have to find anadromous females to breed, a mobile

and scarcely distributed resource especially in small populations like in the

Nivelle River (Bouchard et al. 2018, Tentelier et al. 2016a).

Some studies have assessed the link between the distribution of foraging re-

sources and individual displacements. Thus, individuals opt for Brownian

motions, defined by small and random steps, when feeding on abundant

and predictable resources (Humphries et al. 2010, Sims David W. et al.

2011). At the opposite, Lévy flights characterised by many small steps

connected by longer relocation distances, are favoured when resources are

sparsely distributed (Humphries et al. 2010, Sims David W. et al. 2011).

A hypothesis could be that mature parr tend to exhibit such Lévy flights,

while immature favour Brownian motions. Mature individuals and imma-

ture ones showed clear different patterns of distance from previous obser-

vation (figure below). Mature exhibited longer relocation distances which

might characterise Lévy flight while immature clearly exhibited small steps

in comparison. This analysis could be done in another work to test this

hypothesis.
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Figure. IV.iii: Plot of the individual distance covered from the last obser-
vation throughout the breeding season for immature and mature Atlantic
salmon parr.

Next part: ⇒ page 315
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PART V
General discussion

The present thesis aimed to assess the impacts of space use of potential breeders on sexual

selection through their participation in reproduction and on population dynamics. How

individuals are distributed within available breeding habitats, how individuals move

among habitats, how spatiotemporal distribution of individuals affects their encounters,

mating system and participation of mature parr, were various underpinning questions.

Dealing with the general aim and underlying questions required combining multiple

approaches and working at different levels, sometimes combined: from individuals to

the population, including river zones and breeding habitats.

I will first discuss the methodology used in the thesis (page 317). I will also discuss

the originality and limits of approaches applied. Secondly, I will discuss the findings of

the thesis in relation to the different questions raised for this work (page 323). Finally, I

will highlight potential implications and perspectives generated by the thesis (page 329)

before to conclude (page 333).

thesis manuscript -315- C. Bouchard
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A∫ ORIGINALITY OF APPROACHES USED IN THE THESIS

Combining multiple scales. One originality of my thesis was combining different spatio-

temporal extents and different grains. Spatial extents of the thesis, namely the overall

area encompassed (Wiens 1989), navigated from a 10 m scale (chapter 8) to the whole

river (chapter 2), by way of river zones (chapter 3), habitat types (chapter 9) or indi-

vidual home range (chapters 5 and 6). Temporal extent varied from the day (chapter 8)

to a yearly time series (chapters 2 and 3) by way of the breeding season (chapters 5 and

8). Grain defined in the thesis, namely the size of the individual unit (Wiens 1989), also
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varied, being either individual (e.g. chapter 5), individuals exhibiting a same alternative

reproductive tactic (e.g. chapters 7 or 8), a subpopulation of a river zone (chapter 3), a

network of potential breeders (chapter 5), or the whole Nivelle population (chapter 2).

Combining different spatial and temporal extents together and with different grains en-

abled to better understand some processes. Concerning spatial scale, it has clearly been

defined as a characteristic of ecological studies since the work of MacArthur & Wilson

(1963). Some authors have pointed out the necessary shift between scales to understand

unpredictable phenomena (Levin 1992) and the importance of spatial scaling in ecology

(Fahrig 2013, Wiens 1989). Lack of consideration of scale differences among studies may

lead to erroneous conclusions (Wiens 1989). Same can be said about temporal dimen-

sion, temporal scales may differently affect populations (Desharnais et al. 2018). Using

various scales, in time and space, enabled complementary approaches and findings.

Combining multiple methods as complementary approaches. The choice was made to

use different methods and, sometimes, to combine them in order to improve how to

respond to the thesis aims. For instance, incorporation of environmental co-variables

(here spatial aggregation) in stock-recruitment models is rarely done (Fargo 1994, Iles

1994), whereas it can improve model efficiency (chapter 2— page 65, Fargo 1994, Iles

1994). Probably the most original approach was used in chapter 5 (page 161) when I

combined spatial data with parentage ones into a hierarchical Bayesian model in order

to infer the sexual network of the population (Eq. 5.1, page 171). The difficulty to obtain

true encounters in natura motivated this approach to infer the sexual network. The

developed model permitted estimating probabilities and, thus, obtaining estimates for

all individuals. Using different approaches may, however, also generate difficulties both

in linking them and in incorporating them within a general framework. For instance,

the model Eq. 5.1 has necessitated considering different data types for all individuals and

between two different seasons. Standardising data and defining a hierarchical proba-

bilistic model allowed to deal with such difficulties. Such analyses necessitated taking

care when associating different data types to not generate more variability and to have

reliable data between individuals and among seasons.

Theory modelling, or experimenting in natura, or both? The latter sentence may corre-

spond to feelings of some scientists. However 1, all models no matter how good they are,

1this paragraph is a personal point of view which has been strengthened by doing this thesis
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need data either to estimate parameters or to compare models to reality. Confronting

model results (e.g. observed phenomena, data, . . . ) to reality is necessary even for theo-

retical models, forecasting models, or explanatory models. At the opposite, statistics are

mandatory to explain data except in descriptive studies (which are sadly increasingly

rare). The global philosophy of my thesis was to combine descriptive data (e.g. chapter

8), statistical models (most of the chapters), and theoretical simulations when neces-

sary (e.g chapter 1). The difficulty of doing some experiments, especially monitoring

in natural populations, may lead scientists to shift to theoretical modelling. Shifting to

purely theoretical work may be motivated by the avoidance of ethical or administrative

constraints, or field stress, to obtain broader results, or to reduce costs, for instance.

Encountering difficulties when doing in natura monitoring only add value to these data2

but also reflect that theoretical models remain simplification. However, simplifications

are sometimes required either through theoretical modelling or experiments in labora-

tories to better understand or isolate phenomena or processes. Combining theoretical

models, explanatory models, experiments in laboratories and experiments in natura is

probably a good way to do science3, or at least, the way I would like to do science.

B∫ LIMITS OF APPROACHES USED

The temporal dimension was a limit. An important limit of my work was the temporal

dimension of chapters 8 and 9. Chapter 8 assessed how maturity affects space use and

chapter 9 how maturity affects movement probabilities between habitat types. Both

chapters used daily positions with one point per individual per day. Breeding activity

mostly occurs at night in salmon (Beall & De Gaudemar 1999) and foraging activity of

salmon parr usually also occurs at night (Fraser & Metcalfe 1997, Fraser et al. 1995).

Discriminating these two activities by using accelerometers (Broell et al. 2013, Kawabata

et al. 2014, Moreau et al. 2009) in order to associate each activity to a specific space

use under a nycthemeral extent could be a relevant improvement of the work done in

chapters 8 and 9. Increasing field presence or establish continuous monitoring over the

entire study area could overcome this limit.

Parentage analyses may fail to identify all parents. Chapters 5, 6, and 7 use parentage

analyses to infer sperm competition intensity. Sperm competitors were, thus, defined

as males that sired juveniles with common mates. Identification of sperm competitors

2and sometimes may involve a few or numerous pints of Guinness®, or a thesis on salmon
3personal point of view
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may have been skewed by the fact that these juveniles were caught during the following

spring. A father who sired few juveniles may had not been detected due to mortality

of juveniles and catching probability. Thus, all individuals participating in fertilisation

of the same batch of eggs were not necessarily detected. Addressing which individuals

participate in reproduction at each redd (salmon nest) is a difficult task in natura.

For example, Mjølnerød et al. (1998) used videos and genetic parentage analyses to

identify Atlantic salmon in mating at each redd and assess sperm competition in an

experimental stream. However, acquiring such data (videos) in rivers remains difficult.

One solution could be to combine genetic parentage analysis on eggs sampled just after

the spawning season (and not on juveniles) with encounters between individuals. Genetic

analyses on eggs could allow having more reliable data on sperm competition compared to

those used in the thesis. Encounters could be assessed with proximity loggers (Tentelier

et al. 2016a) providing more reliable data on encounters. Acquiring such data for the

entire sub-population in the Upper Nivelle could enable estimating sperm competition

at a finer grain. Such data could also enable disentangling effects of female choices,

agonistic competition between males, and fertilisation success on reproductive success

of individuals. For instance, Gage et al. (2004) found that selection should favour faster

sperm and Mjølnerød et al. (1998) found that sperm precedence or spawning history

may affect fertilisation success and, therefore, reproductive success when sneakers males

or sperm competitors are present.

Parentage analyses and encounters at redds: how define reproduction? Genetic anal-

yses provide identification of genetic mates who fertilise eggs, whereas encounters may

permit identifying behavioural mates who emit gametes. The definition level of re-

production, between genetic one and behavioural one, to which scientists position the

cursor is necessarily dependent on methods employed. In my thesis, reproduction was

addressed in multiple ways like recruitment, encounters, sexual selection, and effective

breeders. The analysis linking the number of effective breeders to the spatial aggrega-

tion of eggs used parentage analysis (chapter 4, page 153). Reproduction was, then,

defined as genetic matings. The analysis inferring the sexual network (Eq. 5.1, 171)

used genetic matings through mating probability but also potential behavioural matings

through encounter probability. The resulting mating probability of the model Eq. 5.1,

thus, accounting for the two types of mating (behavioural and genetic) to define repro-

duction. Combining different data may lead to a contrasting definition of reproduction,
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whereas using only one type of data allows having a simple definition of reproduction

and of mating. As the model Eq. 5.1, the improvement suggested in the previous para-

graph, namely combining genetic analyses and data of proximity loggers, may allow to

better identify genetic competitors while accounting for behavioural competitors.
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C∫ FEMALES' SPACE USE

Habitat choices of females as a characteristic of their space use. Chapter 2 suggested

that females distribute among available habitats according to an Ideal Despotic Distri-

bution (IDD, Fretwell & Lucas 1969). Such IDD has been found in Chinook salmon

(Falcy 2015) and seems logical since individuals are phenotypically different and choices

of breeding sites are adaptive in salmon (Hendry et al. 2001). For instance, body length

of females may affect their choices of breeding sites in salmon (Hendry et al. 2001)

which may, therefore, impact the survival of their juveniles (Gauthey et al. 2017a, Steen

& Quinn 1999). The arrival time of individuals also affected their choices of breeding

habitats (chapter 6) additionally to their phenotype. Competition in females for best-

breeding sites happens in other salmonids and occurs in the establishment at breeding

sites and during redd digging due to redd superimposition (Dodson et al. 2013, Fleming

& Gross 1994, Quinn & McPhee 1998). Competition between females may force individ-

uals to go into another breeding site, at least one pool away, modifying the distribution

of females on a broader scale. Hence, habitat choices of females determine their spatial

distribution and can be influenced by intra-sexual competition.

Specifically, space use of salmon females generated their spatial aggregation. Breeding

habitat choice commonly generates such spatial aggregation (Almada et al. 1994, Doligez

et al. 2003, Pomeroy et al. 1994). Here, Part II clearly demonstrated that spatial aggre-

gation of females varied among years and independently to the number of individuals.

Although spatial aggregation of females was assessed through aggregation of their redds

(chapter 2), aggregation of females agreed with weak values of spatial isolations found

in chapter 6 from their daily locations. Using spatial distribution of salmon redds ap-

peared, thus, a simple method to assess the spatial aggregation of females, especially

because salmon females move less than males (Tentelier et al. 2016b).

Other factors than competition and space use impacted aggregation of females. Ag-

gregation of females may also be selected to diminish sexual harassment as advocated

for seals (Cassini 2000). Diminishing kinship in further juveniles may also be an expla-

nation of aggregation of females in breeding sites. Aggregation of females could diminish

kinship by having a pool of juveniles with different mothers but also because a strong

aggregation may favour multiple paternity in a batch of eggs. Chapter 6 highlighted

that isolated females tended to have or had a lower number of mates depending on the



D∫ Spatial aggregation of females modifies population dynamics �. 325

number of females. The negative effect of spatial isolation of females on their number of

mates may increase kinship in their juveniles. Yet, kinship in salmon juveniles generate

either benefits (Brown & Brown 1996) or costs (Griffiths et al. 2003). Habitat availabil-

ity, the timing of arrival, competitive abilities, expected sexual harassment and offspring

kinship are factors potentially interacting when females settle at breeding habitats.

D∫ SPATIAL AGGREGATION CAUSED BY FEMALES' SPACE USE MODIFIES POPU-

LATION DYNAMICS AND DIVERSITY

Distribution of females stabilised population dynamics through their aggregation. In

their study, Foldvik et al. (2010) suggested that females’ habitat choice generated spatial

heterogeneity in juvenile densities. The theoretical study of Nonaka et al. (2013) high-

lighted that spatial aggregation may stabilise population dynamics and reduce growth

rates. My thesis agrees with the findings of Foldvik et al. (2010) and of Nonaka et al.

(2013) because spatial aggregation, stock (number of eggs deposited by females) and

recruitment (number of juveniles) varied between zones in the Nivelle population (chap-

ter 3) agreeing also with previous results (Brun 2011). Spatial distribution of females

and, especially their spatial aggregation, impacted the recruitment through its variabil-

ity (chapters 2 and 3). The similar effects of aggregation on recruitment variability at

the river zone scale and the population scale suggested that environmental perturbations

occur at river scale and impact all river zones. The Upper Nivelle (Figure. I.viii, page

26) seems to be the best suitable zone in the Nivelle (chapters 2 and 3, Brun 2011, Du-

mas & Haury 1995), its recruitment also being potentially enhanced by the Lurgorrieta

(chapter 3). Hence, spatial aggregation of females affected the population dynamics de-

pending on the resulting juvenile densities, environmental quality of breeding sites and

connectivity with other breeding sites. Spatial aggregation of females also means the

resource of males is aggregated.

Aggregation of females modified the mating system. The spatial aggregation of females

either facilitated their monopolisation by guarder males or facilitated participation of

satellite males (chapters 4, 5, and 7). For instance, Pérez-González & Carranza (2011)

highlighted that ability of a male to monopolise females in its harem decreased as harem

size raised in Red Deer. Spatial aggregation of females necessarily impacts the local

operational sex ratio influencing the costs of competition between males and, therefore,

ability of other males to participate in reproduction (Emlen & Oring 1977, Sandell &
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Liberg 1992, Shuster & Wade 2003, Weir et al. 2011). Variations in female aggregation

modify the number of potential breeders that can access potential mates. Then, aggre-

gation of females affected the number of effective breeders in the population through

a U-shaped curve (chapter 4). Among potential breeders, individuals exhibiting an

alternative reproductive tactic (sneaker males) also tended to access potential mates ac-

cording to the aggregation of females (Parts III and IV). Females seemed also affected by

their aggregation because their number of mates diminished as their spatial isolation to

other females increased (chapter 6). Concerning mature parr, their ability to participate

in reproduction also depended on their mobility. Such a relationship between mobility

and participation in reproduction was in line with the results obtained for anadromous

breeders in salmon (Tentelier et al. 2016b) or theoretical predictions (Sandell & Liberg

1992). Space use of females and males whatever their reproductive tactics seemed to

interplay together and, probably with environmental factors.

E∫ A LOCAL STRUCTURE IMPACTING SEXUAL SELECTION

Space use of potential breeders brought out a social selection. Tanner & Jackson (2012)

highlighted an emerging social structure from individual behaviour and synchronised

movements between individuals in the European shore crab (Carcinus maenas). In my

thesis, the modification of the mating system happened due to the appearance of a

local social structure involved by the spatial distribution of breeders (chapters 5 and

6). Encounters between potential mates depended on their displacements (chapters 5,

6, and 8). In chapter 8, space use of mature parr influenced their participation in

reproduction. Their participation was assessed from redds’ location that indicated by

the same potential encounters with females. The local social structure involved potential

competitors leading to antagonistic direct or indirect interaction. The result was that the

phenotype of neighbours affected the reproductive success of individuals (chapter 5). The

social environment of individuals in Atlantic salmon may, thereby, affect reproductive

success of individuals.

A local structure as a determinant of sexual selection. Effects of local structure on

sexual selection is something well known in birds (McDonald et al. 2013, McDonald

& Pizzari 2016; 2017, Oh & Badyaev 2010). In my thesis, social environment, and

therefore local structure, affected the reproductive success of individuals through the

relative attractiveness of individuals (Callander et al. 2013, Gasparini et al. 2013), but
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also through the relative ability to fertilise egg batches (Burness et al. 2004, Gage et al.

2004). Trait selection operated by sexual selection may, thus, be affected by the local

structure as theoretically suggested by McDonald et al. (2013). Local structure is nec-

essarily linked to the spatial aggregation of females because local structure depended

on the distribution of potential breeders. Participation of sneakers increased the sperm

competition intensity faced by guarder males (chapters 5 and 7). The Bateman gradient

indicating the mating benefit on the reproductive success also depended on the repro-

ductive success and the participation of sneaker males (chapter 7) and aggregation of

females (chapter 5). Hence, local structure affected sexual selection by modifying sexual

network of the salmon population.

An alternative tactic modified sexual selection. Participation of mature parr modified

sexual selection operating on anadromous salmon (chapter 7). Such effects of sneakers

on sexual selection were observed in marine fish such as the sand goby, Pomatoschistus

minutus, where the presence of sneaky males favours sexual selection of males building

small nest-openings. Participation of mature parr also increased the number of effective

breeders in the population (chapter 4, Bacles et al. 2018, Saura et al. 2008) which

may raise the genetic diversity in the population (Juanes et al. 2007). The effects of

mature parr on sexual selection may raise the question of the definition of this tactic

as an alternative. The effects of mature parr on the topology of the sexual network,

and the sexual selection operating in it is far from anecdotal. Additionally, the early

maturation is not homogeneous because mature parr exhibited a broad diversity of

space use behaviours (chapter 8 and box Deeper IV.i, page 277). Rather than putting

all mature parr in the same bucket, investigating diversity among them and accounting

for the effects of such diversity on the population could be further handled. For instance,

diversity in their participation in reproduction can be affected by their relatively small

size and by habitat complexity (Grimardias et al. 2010).
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F∫ CONSTRAINS OF DAMS & HABITAT CHOICES

Dams are obstacles for migration and displacements of potential breeders. Dams con-

stitute obstacles to migration for salmon and other migratory species even if fish passes

or ladders are arranged (Antonio et al. 2007, Gowans et al. 2003, Kareiva et al. 2000,

Levin & Tolimieri 2001, Meixler et al. 2009). Usually, salmon migration or fish passage

is associated with large dams (Gowans et al. 2003, Levin & Tolimieri 2001). However,

small weirs (<5m) equipped with fish passes, such as Uxondoa and Olha dams in the

Nivelle, may delay the arrival of breeders (Gowans et al. 2003, Newton et al. 2017). Ar-

rival date was linked to spatial isolation of females (chapter 6) and to the reproductive
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success of males (chapter 5). Delays in arrival due to small weirs may, therefore, affect

reproduction and reproductive success of individuals. Such small weirs may also con-

strain displacements of mature parr whereas they may highly participate in reproduction

and have high importance in small populations (Juanes et al. 2007, Saura et al. 2008,

Tentelier et al. 2016c). Although it seems not to be the case in the Nivelle, small weirs

may prevent accesses of mature parr to some locations where reproduction takes places

in some rivers. Small weirs may, thus, generate local structure in sexual networks.

Constraints of dams may also exacerbate female-female competition. Weirs affected

reproduction by diminishing availability of breeding sites (II) and displacements of breed-

ers (part IV). The observed weak spatial isolation of females (chapter 6), as well as the

low carrying capacities found in chapters 2 and 3 suggested that dam removals could

also release competition between females when securing breeding sites, and, therefore,

aggregation of females. For instance, in the Selune River (France), a dam removal could

allow the return of more than 1,000 anadromous breeders and could decrease redd ag-

gregation in the Oir River, a tributary of the Selune, downstream from the dam.(Forget

et al. 2018). Chapters 2 and 6 suggested that early arriving females or most competitive

ones may secure best breeding sites according to an Ideal Despotic Distribution (Andren

1990, Fretwell & Lucas 1969, Kokko et al. 2004, Parker & Sutherland 1986). Dams may,

thus, exacerbate competition among females due to the reduced availability of breeding

sites and of effects of weirs on arrival time of females at breeding sites. Removal of the

upstream dam in the Nivelle could be an adequate management action to raise the sur-

face of breeding habitats available for salmon. However, aggregation of females seemed

not to have been affected by the opening of Olha in 1992. After the Olha opening, the

number of anadromous salmon also increased and nests distributed in the Upper Nivelle

and the Lurgorrieta. To release competition among females, an important part of fe-

males should continue to spawn in already available sites. Aggregation and competition

among females should remain similar if all females distribute in newly available sites

after a dam removal depending on the number of newly available breeding sites.

Habitat restoration is a temporary solution before dam removal. The high aggregation

in the Upper Nivelle despite the high surface of available breeding habitats could suggest

a poor quality of numerous potential breeding sites (chapter 3). Availability and quality

of spawning sites may restrict the density of juveniles (Palm et al. 2007) or availability
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of favourable foraging habitats for juveniles (Nislow et al. 1999). Habitat restoration of

breeding habitats and foraging ones could be prioritised as suggested by Fahrig (1997).

Battin et al. (2007) also shown a benefit in the restoration of habitats used by juveniles

and especially to mitigate the effects of climate change. Restoring breeding habitats in

the Upper Nivelle and the Lurgorrieta could allow females to select better breeding habi-

tats less subjected to environmental perturbations. Such restoration could also diminish

aggregation of nests within each river zone leading to increasing recruitment (chapter

3). Finally, restoration of breeding habitats could release sexual competition between

males by diminishing aggregation of females and, thus, monopolisation according to the

U-shape relationships found in chapter 4.

G∫ SPACE USE CAUSES MISINTERPRETATION OF SEXUAL SELECTION

Local social structure is a source of raising choosiness. My thesis permitted highlighting

that local social structure impacts sexual competition and sexual selection and could

be better accounted. Local structure in encounters between potential mates appeared

from the spatial use of individuals (chapters 5, 6, and 8). These findings raised the

question about how to model the choosiness of individuals in Atlantic salmon. Courtiol

et al. (2016) found that mutual mate choice only evolves when both females and males

exhibit long latency between matings. Anadromous males should not exhibit weak

choosiness due to their potentially short latency between matings. The faster life history

of mature parr, which may participate in fertilisation of several egg batches, should

favour a non-choosiness to capitalise on early mating opportunities. At the opposite,

females should exhibit stronger choosiness due to their high parental investment during

spawning (i.e. redd digging). High costs of breeding were also pointed out as factors

promoting choosiness by Kokko & Johnstone (2002). Authors also suggested that low

costs of mate searching and highly variable mate quality can also favour choosiness. The

local social structure may, thus, influence choosiness as advocated by Kokko & Rankin

(2006) who highlighted density-dependent effects in mating systems. For instance, a

female encountering just a few males should be more or less choosy depending on the

phenotypic variability between males.

Preferences and choices of females. Additionally to choosiness, preferences exhibited

by females should be affected by local social structures. Phenotypic preferences may

be modelled through a threshold value from which a male is chosen (Fukui 1995), a
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probability according to a male’s trait (absolute preference), or a probability according

to a male’s trait compared to other males encountered (relative preference, Wagner

1998). The difference between the last two possibilities is the accounting for which

males are encountered by females in the relative preference. Testing relative preferences

remain difficult because preferences may be confounded with female sampling behaviours

(Wagner 1998). Because the current thesis highlighted a local social structure (chapter

5), deeply working on females’ choosiness in salmon could be interesting. The potential

effect of local social structure on females’ preferences and choosiness could be assessed.

For instance, Gauthey et al. (2017b) use parentage analyses and behavioural monitoring

with video to infer the effects of phenotypes of both sexes on encounters and matings

in Brown trout (Salmo trutta). Authors found the body size of females negatively

affected their probability of being visited by males, while the body size of males affected

neither visit or reproductive success. To go further, encounters between individuals

could be monitored with proximity loggers (Tentelier et al. 2016a) and mating events

with accelerometers detecting "jerking" movements of their body (Broell et al. 2013)

when gametes are released. Such data could permit to identify the local structure and

true mating events. In this way, chosen phenotypes could be compared to encountered

ones, the diversity of local structures between females enabling us to identify the effects of

density and diversity of males on choosiness. Such work could also permit disentangling

females’ choosiness to males-males competition to access females.



Conclusion

Habitat availability and quality interplay in shaping the spatial distribution of females.

The present thesis highlighted the spatial distribution of potential breeders i) impacted

population dynamics by stabilising population recruitment and ii) exacerbated sexual se-

lection by impacting mating system (Figure. V.i). The latter effect reflected that guarder

males had difficulties to monopolise several females at a strong aggregation of females,

whereas satellite males — anadromous and mature parr — could fertilise egg batches

by adopting a sneaky behaviour. The space use of potential breeders either anadromous

or mature parr shaped the mating system and the sexual network of the population.

In males, consequences at the individual level were notably that competitors’ pheno-

types influenced reproductive success depending on the aggregation of females. The

local structure and the social environment should be accounted for when investigating

sexual selection in salmon, especially in wider river systems where sub-structure could

be more pronounced. Mature parr should be accounted for in local structure and social

environment.

Results of the thesis also suggested that dams and habitat availability were factors

impacting the population. Dams and small weirs constrained displacements of anadro-

mous individuals and mature parr during the breeding season. Such constraints may

intensified competition for breeding sites — redds aggregated in the Upper Nivelle and

the Lurgorrieta —. Small weirs may also exacerbate or produce local structure by ag-

gregating mature parr participation in reproduction at some locations and preventing

their participation in other locations. Habitat availability was also highlighted as a fac-

tor that can generate aggregation of females increasing the subsequent sexual selection.

Aggregation of females also impacted the number of effective breeders. Increasing the

number of breeding sites to diminish the spatial aggregation of females could enhance
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the genetic diversity in such a small population. Improving habitats to raise the number

of breeding sites available and dam removal could be targeted management actions for

the Nivelle population.

The local social structure highlighted in the thesis implied that preferences and

choosiness of salmon females could be further research questions. Preferences and

choosiness of females express for two key processes: habitat choice and mate choice.

Mechanisms involved in these choices could be examined. The consequences of environ-

mental perturbations, female density and encountered habitats on habitat choice could

be studied rather than to identify the size of pebbles where females dig their nests. The

resultant impacts of habitat choices on the spatial distribution of females could then be

highlighted. In the case of mate choices, the way of the expression of females’ prefer-

ences could be assessed. Such preferences could influence their mate choice depending

on which males they have in their social environment.
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ductivity: the case of a small population of Atlantic salmon (Salmo salar).

Presented at NowPaS 2017▶ Poster --- chapter 2: Bouchard, C., Bardonnet, A., Buoro, M., Tentelier, C.

(2018). Effects of spatial aggregation of nests on population recruitment:
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The first 9 months of my thesis were devoted in studying the mating behaviour of

Allis shad (Alosa alosa). A first breeding season and a too low number of breeders in

the population forced me to change my thesis subject. C. Tentelier has continued the

work on Allis shad and submitted a paper in bioR�iv where I am in co-author.
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