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Chapter 1 Introduction

Individual-based models (IBMs) and aggregated mathematical models (AMMs) represent two dierent approaches for modeling ecological systems. There is a debate in ecology between those favoring simple AMMs containing only a few equations expressing a small number of general principles and those preferring complex IBMs that are more structurally realistic with a more detailed representation of the basic processes and interactions at the level of the individuals [Aumann 2007]. In this thesis we adopt a double-modeling strategy [Lobry 2003] [Deuant 2004] by using (simple) AMMs to check, analyze and approximate the complex dynamic of IBMs of microbial systems.

Individual-based perspective of microbial systems

There is an increasing awareness in natural and social sciences that ecological as well as socio-economic systems share common characteristics of complex systems built of interacting individual agents [Levin 1998] [Arthur 1997] [START_REF] Deuant | [END_REF] [ Rammel 2007]. A major challenge in the study of these complex systems is to understand how seemingly organized collective behavior emerges out of the smallscale interactions between the individuals. Complex system research tends to adopt a bottom-up approach, describing kinds of agents and environments and then experimentally nding out what kind of complex dynamics are exhibited by the system agents [Railsback 2001]. Bottom-up models that represent the individuals and their interactions explicitly are broadly called individual-based models (IBMs).

Microbial ecosystems exhibit many features of such complex systems [Crawford 2005]. They are basically formed with individual microbial cells that encapsulate action, information storage and processing [Kreft 1998]. Because of their small size compared to the size of their environment, microbial cells have a local perception of their world. They react and adapt only to their local environment. The collective behavior that results from these local interactions may, however, exhibit several macroscale regularities and emergent properties.

A Microbial biolm is one of the most remarkable examples of such a system. Biolms are thin slimy layers formed by bacteria and their extracellular products on hydrated surfaces. They are ubiquitous in nature and represent the preferential growth mode of many bacterial species. Using advanced microscopy and molecular technologies, researchers have shown that biolms represent a biological system with 2 Chapter 1. Introduction a high level of organization where bacteria form structured, coordinated, functional communities [O'Toole 2000]. The formation of these organized cities of microbes is however to a large part mediated by local interactions between the individual cells and with their immediate surrounding environment. By viewing such systems as complex systems formed with locally interacting individuals, microbial ecology can take benet from tools and approaches (like the individual-based modeling approach) developed to study comparable systems in other elds of science.

Individual-based modeling of microbial systems

The individual-based modeling approach attempts to capture the properties and dynamic of a population by describing all the actions of its constitutive individuals and their interaction with the environment and with each other. Since the individuals are represented explicitly in the model, the inherent heterogeneity of the population can be readily accounted for by explicitly modeling local dierences in the environment and between the individuals [Murphy 2008] [Kreft 1999]. Grimm [START_REF] Volker Grimm | Individual-based modelling and ecological theory: synthesis of a workshop[END_REF]] denes IBMs in the ecological context as simulation models that treat individuals as unique and discrete entities which have at least one property in addition to age that changes during the life cycle. Since microbe models do not include age (rather size) the denition is usually relaxed to include at least two independent properties (not counting position) [Hellweger 2009]. However, several bottom-up models used in ecology that do not entirely satisfy this denition are still referred to as IBM as long as they treat individuals as discrete entities [START_REF] Dieckmann | [END_REF]].

A survey of the literature on the use of IBMs in microbial ecology shows that the approach is gaining a certain acceptance among microbiologists (see [Hellweger 2009] [Ferrer 2008] for a review).

IBM approach has been applied for modeling bacteria systems that arise in wastewater treatment plants [START_REF] Kreft | [END_REF]] [Gujer 2002][Picioreanu 2004][Picioreanu 2005] [Xavier 2005], medical and industrial settings, bacteria in food and other environments [Ginovart 2002][Dens 2005][Emonet 2005]. Hellweger and Bucci [Hellweger 2009] reviewed 46 published papers dealing with IBM application for microbial and phytoplankton systems. They noticed that the use of IBM approach is often motivated by the importance of the population heterogeneity(46%), emergence of population level patterns (24%), discreteness of the individuals (5%) and other reasons (26%) [Hellweger 2009]. The rapidly growing interest in the individual-based modeling approach is to a major part encouraged by the rapid increase in computing power IBMs [START_REF] Kreft | [END_REF]] [Picioreanu 2004] or the adaptative and collaborating strategies of the individuals and their impact on the population level dynamics [Vlachos 2006].

Although IBMs enjoyed the claim of the latest generation models they face criticism as well [Laspidou 2009]. Some of the drawbacks of the IBM approach are simply due to the relatively young age of the approach which still misses a solid methodological framework for developing, implementing and validating IBMs. These issues have been addressed by several recent textbooks that proposed guidelines for building and using individual-based [START_REF] Volker Grimm | A standard protocol for describing individual-based and agentbased models[END_REF]] [Treuil 2008]. Other limitations however are inherent to the nature of the IBMs as stochastic simulation models. IBMs used in ecology often encompass the randomness of individual-level interactions and evolve in a large state and parameter space that can only be sampled. The complexity and limited generality are often quoted as the main limitations of individual-based modeling [START_REF] Uchmanski | [END_REF]]. Grimm noticed that IBMs usually make more realistic assumptions than simple aggregated mathematical models, but it should not be forgotten that the aim of individual-based modeling is not `realism' but modeling and that modeling must be guided by a problem or question about a real system, not just by the system itself [START_REF] Volker Grimm | A standard protocol for describing individual-based and agentbased models[END_REF]].

Aggregated mathematical modeling of microbial ecosystems

Traditionally, microbial systems are modeled using aggregated mathematical models. Aggregated mathematical models often take the form of a set of dierential and partial dierential equations that describe the dynamic of aggregated system-level state variables. The notion of aggregated state variable implies some averaging or grouping of the microscale variables of a system. For instance a system formed with N discrete individuals each characterized by a real-valued state variable X i , i = 1..N is entirely described by the vector (X i ) i=1..N . An aggregated mathematical model of this systems implies the reduction of the individual-based model to a smaller system described with new (aggregated) variables Y j , j = 1..M with M << N .

The aggregated mathematical model is then formed with the set of dierential (or partial dierential) equations of the variables Y j with the appropriate boundary and initial conditions.

A generic example of aggregated mathematical models used in microbial ecology can be derived for a simple system formed with N individuals each characterized with a mass m i , i = 1..N . Rather than tracking the dynamics of each individual one can dene a new aggregated variable Y j , j = 1 corresponding to the total mass of the individuals and derive a dierential equation that describe the dynamics of this Where φ(Y ) is a function that describes the net growth rate of the population.

Equations of this kind still play such a central role in microbial ecology, that many subsequent elaborations of theory have taken them as the starting point. Resource dynamics and spatial variation can be introduced and the models are sometimes interpreted as referring to individuals by assuming that the function Φ(Y ) also describes the interactions at the level of the individual [START_REF] Mckane | [END_REF]]. However in most situations these models are generally derived without the need of a detailed knowledge of the interactions between the individuals and rely instead on the assumption that the terms which arise in the governing equations represent the net eects of individual interactions in some generic way [START_REF] Mckane | [END_REF]].

The relative simplicity and genericity of aggregated mathematical models from one side and the availability of a solid mathematical and numerical framework to analyze them on the other side have contributed to their successful establishment as a standard for modeling ecological systems. Additionally, for decades microbial ecology struggled as a scientic discipline because of the lack of reliable experimental tools to observe the individual-level structure of microbial ecosystems.

Microbes were observed and quantied mainly at the population level [Hellweger 2009][Brehm-Stecher 2004]. For example the bacteria in a wastewater treatment bioreactor were quantied by measuring the volatile suspended solids.

Thus, simple aggregated mathematical models were sucient to exploit such data.

Debate between IBM and mathematical modeling

There is still an ongoing debate in ecology between those favoring simple systemlevel mathematical models containing only a few equations expressing a small number of general principles and those preferring complex simulation models that are more structurally realistic with a more detailed representations of the basic processes and interactions determining the system dynamic [Aumann 2007]. Grimm [START_REF] Grimm | Individual-based modeling and ecology[END_REF]] noticed that strengths and weakness of IBMs and system-level mathematical models are to a large degree inversely related. Mathematical models are transparent and easy to communicate as they are by denition, formulated in the universal and unambiguous language of mathematics. They can make predictions, require less data for parameter estimation and model validation, may be less prone to error propagation and since they embody only a few heuristic principles, may be likely to lead to general causal understanding [Aumann 2007]. Mathematical models, however, have very limited ability to answer question about how system level behavior emerge out of local interactions. On the other hand, IBMs are designed 1.5. Thesis scope 5 to answer such questions by explicitly representing the individuals and their interactions. They often encompass the randomness of individual-level interactions and thus yield realistic system-level patterns. However, one consequence of IBMs being less simple than classical mathematical models is that IBMs are not easy to communicate, analyze and learn from [START_REF] Grimm | Individual-based modeling and ecology[END_REF]]. IBMs evolve in a large parameter state space which can only be sampled [START_REF] Murrell | [END_REF]]. Consequently it is generally not known to what extent the outcome obtained for a set of parameters holds for other sets [START_REF] Murrell | [END_REF]]. Furthermore, if the simulations are stochastic, the ecological signal may only emerge after averaging over a series of realizations, even with a particular parameter set, which may become computationally very expensive [START_REF] Murrell | [END_REF]]. IBM advocate however claims that the approach is more than a new tool that adds to the toolbox of ecologists, but had a signicant implication on the way we look to these complex system. By using IBMs the focus is shifted from populations to individuals and several IBMs have demonstrated the potential signicance of individual characteristics to population dynamics and ecosystems processes [START_REF] Grimm | Individual-based modeling and ecology[END_REF]].

Thesis scope

In this thesis, we move beyond the debate of whether of mathematical models or IBMs are more appropriate for representing microbial ecosystems, and concentrate on how the benets of aggregated mathematical models can be combined with strengths of IBMs. We adopt a double-modeling strategy [Deuant 2004] by using mathematical models along with IBMs in modeling microbial systems. Such an approach can help bridging the perceived gap between individual-based and classical approaches to microbial system modeling. We provide simple illustrations of how mathematical models can be used to analyze and approximate the dynamic of IBMs of microbial systems and assess their potential and limits in reproducing the rich and complex dynamic of the IBM.

We consider an IBM as a virtual experimental system designed to encompass the complexity of a microbial system by including features like the discreteness of the individuals, the stochasticity of their interactions, the heterogeneity of their traits and the heterogeneity of their local environment. Once constructed an IBM can be sampled by running computer simulations and/or modeled (in the sens of approximated) using aggregated mathematical models. Grimm and Railsback [START_REF] Volker Grimm | A standard protocol for describing individual-based and agentbased models[END_REF] noticed that the approximation of the IBM dynamic using aggregated mathematical models attempts to bridge the perceived gap between individual-based and classical approaches to ecological modeling and expands the ecologists' toolbox by deriving new aggregated mathematical models in which individual-level interaction are acknowledged.
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Approximating spatially explicit IBMs with moment methods

We focus on approximating spatially explicit microbial IBM using moments approximation. Moment approximation has shown promise in deriving deterministic aggregated mathematical models that links individual-traits and local interactions to the population level dynamic [START_REF] Dieckmann | [END_REF]] [START_REF] Murrell | [END_REF]] [Bolker 1997]. The approach provides a general framework for building direct deterministic approximations of the dynamic of stochastic IBMs if the latter are adequately simplied. There are in the literature several good examples demonstrating that moment models can accurately approximate the dynamic of many stochastic IBMs with the advantages of being deterministic, evolve in a tractable state parameter space and are computationally less expensive than IBMs. One of the aims of this thesis is to investigate whether this approach can also apply to spatially explicit IBMs used in microbiology and assess the potential and limits of the moment approach in capturing the main features of the IBM simulated microbial spatial patterns.

The essence of the moment approach is in deriving the dynamics of spatial moments by considering the processes aecting the spatial patterns and dened at the level of the individuals. They provide an alternative (or extension) to the mean-eld approach as moment methods elegantly formalizes the notion of the individual'seye view of the spatial heterogeneity. Consider a population of N individuals each characterized with a spatial location x in the space. The vector (x i ) i=1..N denes the spatial pattern of the population. If the individuals are not located at random in the domain, we refer to the population as having a spatial structure. The spatial pattern change through the individual-level stochastic events (birth, death, movement, ..) and an individual-based model simulation basically provides a realization of this pattern, whereas spatial moments provide a statistical description of the spatial pattern and moment models approximate the dynamic of these statistical quantities in time by considering the eect of the individual-level events.

Spatial moments are usually expressed in term correlation densities functions.

The spatial pattern formed by the individuals can be dened by the list of the location of the individuals or in a continuous formulation using the density function p(x) that is peaked at all locations occupied by individuals and is zero elsewhere. For a given spatial pattern p the rst spatial moment is dened as:

N (p) = 1 A p(x)dx (1.2)
where A is the area of the considered domain. This corresponds to the mean density of individuals in the system. The second moment corresponds to the density of pairs formed by individuals that are vectorial distance ξ apart and is dened as:

C(ξ, p) = 1 A p(x)p(x + ξ)dx (1.3)
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The third moment, denoted T (ξ, ξ , p) corresponds to the density of triplet of individuals where the rst pair in the triplet is separated with a vectorial distance ξ and the second pair with a vectorial distance ξ . We can also dene additional higher order spatial moment, but usually the moment approximation is restricted to the these three spatial moments.

The derivation of a tractable deterministic moment model from the stochastic rules of the IBM requires some level of approximation which are veried by confronting the moment model to the IBM simulations. The main approximation needed for in deriving the moment model is related to the cascade of hierarchy of spatial moment which at some level need to be cut o using a closure equation. Often moment models are limited to the rst and second spatial moments and neglect the triple correlation between the positions of three individuals. The underlying assumption is that the probability of encountering a particular triplet conguration is fully given by pair densities [Van Baalen 2000]. Another important approximation is that the moment equation are based on the average neighborhood experienced by the individuals. Hence uctuations experienced by the individuals are not considered in moment approximation models.

1.6 Methods and tools [START_REF] Volker Grimm | A standard protocol for describing individual-based and agentbased models[END_REF]].

The protocol aims to structure the information about the IBM in a standard sequence (gure 5.1). The logic behind ODD is to provide rst the context and general information (Overview), followed by more strategic considerations (Design concepts) and nally more technical details [START_REF] Volker Grimm | A standard protocol for describing individual-based and agentbased models[END_REF]]. In this thesis we adopt the ODD framework to describe the IBMs.

IBM implementation

There 

Exploring the IBMs using SimExplorer

We use SimExplorer to manage numerical IBM experimentations. SimExplorer is a framework designed for managing simulation experiments (see:

www.simexplorer.org).

Report outline

The report is organized in six chapters (2)(3)(4)(5)(6)[START_REF] Van Schaik | [END_REF] with an introductory chapter (chapter 1) and a concluding chapter (chapter 8). In chapter 2-4 we focus on a simple individual-based model of immotile bacteria while in chapters 5-7 we investigate the eect of adding bacteria motility on the observed patterns. Our methodological strategy consists in starting with a detailed IBM that mimics the observed behavior of the individuals, then simplify it to derive to a level that allows the derivation of an approximating aggregated mathematical models. We focus mainly on the derivation of moment approximation models that capture the main features of the spatial pattern dynamic. Nevertheless, we provide a comparison to a diusionreaction models in chapter 2.

• In chapter 2 we compare a simple spatially-explicit individual-based (IBM)

for bacteria colony growth involving immotile bacteria with an equivalent diusion-reaction model. Both model are extracted from the literature [Kreft 1998] for the IBM and [Eberl 2001] for the diusion-reaction model.

Our aim behind this comparison is to illustrate the potential and limit of each approach.
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• In chapter 3 we simplify the colony growth IBM and approximate the simplied IBM with an aggregated mathematical moment model.

• In chapter 4 we investigate the stationary patterns that arise in a system with immotile bacteria and compare these patterns to those yielded by an approximating moment model. [Kreft 1998] and a diusion-reaction model described in [Eberl 2001]. Both models represent the core of several more complex microbial biolm models involving multiple microbial groups and metabolites [START_REF] Kreft | [END_REF]][Eberl 2001][Picioreanu 2004][Xavier 2005]. We use both models to simulate the growth of a microbial colony initiated with a single cell located at the center of a squared two-dimensional domain The chapter is organized in six sections. The rst section introduces the problem of modeling microbial spatial patterns using IBMs and DRMs. In the second section we present the IBM using the ODD (Overview, Design Concepts and Details) protocol recommended in [START_REF] Volker Grimm | A standard protocol for describing individual-based and agentbased models[END_REF]]. In the third section we simulate the growth of a colony in the 'reaction-limited' and the 'diusion-limited' regimes. In the fourth section we present the aggregated diusion-reaction model. In the fth section we compare the diusion-reaction model pattern to the average pattern yielded by the IBM. Finally we discuss the limitation and potential of each approach.

Modeling microbial spatial patterns

The problem of aggregation of microbial cells, in particular bacteria, is a central one in microbial ecology. Depending on the bacterial species and the culture conditions, individual cells can form colonies [Ben-Jacob 2000], ocs [Schmid 2003],

granules [START_REF] Morgenroth | [END_REF]] and biolms [Costerton 1995] that exhibit a great diversity of forms. Such patterns are often observable at the level of the population but are to a large extent mediated by the processes taking place at the level of the individual cells. Much eort is dedicated to explore the linkage between these levels. In particular how changes in individuals' responses to their environment translate into changes in observable patterns and conversely how the emergence of these spatial structures aect the dynamic of the individuals.

IBMs and aggregated mathematical models based on the diusion-reaction equation framework have both been extensively used to investigate how these spatial structures form and evolve in time [Grimson 1994[START_REF] Kreft | [END_REF]] [Picioreanu 2004] [Lacasta 1999][Eberl 2001][Cogan 2004[START_REF] Alpkvist | A multidimensional multispecies continuum model for heterogenuous biolm development[END_REF]].

While IBMs attempt to simulate the development of microbial patterns by specifying the behavioral and interactions rules at the level of the discrete individuals, diusion-reaction models represent the pattern as an entity (a density eld) and attempt to capture how this entity evolve in time. The diusion-reaction model is usually considered as the continuum limit of the IBM when the number of the individuals is large. This implies that the diusion-reaction model can be derived rigorously from the rules stated in the IBM. However in practice, the derivation of the diusion-reaction equation from rigorous considerations of the individual-level rules is often complex and feasible only for some ideal systems. Consequently, and as will be illustrated in this chapter (section 3), assumptions and simplications have to be made in the development of the diusion-reaction model and comparison of the diusion-reaction model to the IBM can be helpful to measure the impact of these simplications.
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Kreft et al. [Kreft 1998] proposed an original IBM (called Bacsim) involving discrete representation of the individual cells and an explicit description of their processes (growth, division, shoving). The shoving process, a mechanisms by which the individuals push each others to relax overlapping, is the main process responsible of the colony expansion. In the diusion-reaction mathematical model proposed in [Eberl 2001] the bacteria spatial distribution is represented with a biomass concentration eld which dynamic is given by a diusion-reaction mass balance equation.

The nutrient dynamic in both models is represented identically using a diusionreaction mass balance equation. The models dier essentially by the way they represent the biomass (discrete versus continuous) and the biomass-related processes, especially biomass redistribution. The growth of the bacteria increases the local density of the biomass which needs to be redistributed over space. In the IBM rules are set to place the newborn cell close to the mother cell and the nal distribution of bacteria results from the self-organization of the individuals through a shoving process. This mechanisms is described in the AMMs proposed in [Eberl 2001] as a density-dependent diusion. The biomass diusion increases with the increase of the local density of biomass.

We shall note that an alternative to the aggregated diusion-reaction mathematical model proposed in [Eberl 2001] is to consider the biomass as a viscous uid as in the Dckery-Klapper model [START_REF] Dockery | [END_REF]][Cogan 2004]. The biomass is then described with a density and a pressure elds. The growth of the biomass increases the local pressure inducing an advective transport of the biomass. The biomass advective vector u is linked to the local pressure gradient ∇p through the Darcy law:

u = -λ∇p (2.1)
where λ is the Darcy constant. Compared to the DRM proposed by Eberl [Eberl 2001], this model is much more accepted and has been extended to multiple microbial types [START_REF] Alpkvist | A multidimensional multispecies continuum model for heterogenuous biolm development[END_REF]] The Dockery-Klapper model [START_REF] Dockery | [END_REF]] however involves an additional state variable (pressure p) and more complex boundaries conditions at the biolm/bulk interface. For simplicity we consider the Eberl model in this chapter.

Individual-based model

We describe an IBM for a system initially formed with a bacterial cell located in the center a two dimensional squared domain. The model is a simplied version of Kreft's IBM Bacsim simulating the growth of a single Escherichia coli cell into a colony [Kreft 1998].

CemOA : archive ouverte d'Irstea / Cemagref patches (squares with a side ∆l). A bacterium with continuous coordinates x,y is contained in the patch i = f loor(x/∆l), j = f loor(y/∆l). The aim of the model is to investigate how colony patterns emerge from the local interactions between the individual cells.

Model description

State variables

The model is a two-dimensional representation of a domain and comprises two entities: bacterial cells and their local environment (patches) (gure 2.1). Bacterial cells are represented as discs. They are characterized by the state variables: continuous position (x, y), individual mass (m) and individual substrate uptake rate (r)(table

2.1).

A patch (i, j) is characterized by two state variables: substrate concentration (s(i, j)) and a substrate uptake rate (r s (i, j)). The later corresponds to the sum of uptake rates of the individual cells contained within the patch (table 2.1).

Process Overview and scheduling

We consider a virtual population of bacterial cells initiated with a single cell in the center of squared domain. We suppose that the domain holds an initial stock of a CemOA : archive ouverte d'Irstea / Cemagref 

Design Concepts

• Emergence: the spatial pattern of the colony emerges out of the local interaction between the individuals and between the individuals and their environment.

• Interaction: individuals interact with the environment by up-taking substrate. They compete with each others for substrate and for space.

• Stochasticity: the only stochastic process that we included in the model is the selection of the location of the newborn individual after a division event.

Details 2.3.3.1 Initialization

We initialize the model with a single individual N 0 = 1 located at the center of the domain x 0 = L/2, y 0 = L/2 and having an initial mass m 0 . Initially, the substrate is uniformly distributed over the domain. The initial substrate concentration is s 0 for all spatial patches (i, j).

Chapter 2. Microbial colony growth: comparison of an individual-based model and diusion-reaction model

Submodels

• Bacteria growth model: growth is modeled by allowing the individuals mass to increase proportionally to individuals nutrient uptake rate. As the nutrient has to be taken up through the cell's surface, it is straightforward to assume that uptake is proportional to surface area [Button 1993]

[ Kreft 1998]. The changes of surface-to-volume ratio during the cell cycle would result in non-exponentiality of the cell's growth curve if uptake limits growth [Kreft 1998]. However, after a long controversy, it is now generally assumed that the growth of a single cell does not deviate signicantly from the exponential growth law [Koch 1993]. Thus, we suppose that an individual cell uptakes substrate proportionally to its mass and according to Monod growth kinetic. The net growth rate of an individual cell is then given by:

dm dt = mµ max s s + k s (2.2)
where m is the mas of the individual, s is the substrate concentration in the spatial patch corresponding to the cell position, µ max is the maximum growth rate, k s is the anity factor or the half-saturation constant as k s corresponds to the substrate concentration for which the growth rate of the individual is µ max /2.

• Bacteria division: one of the simplest way to model bacteria division with any pretense to reality is to make the individual cell divide once its mass reaches a critical value (denoted m d c). The mother cell is divided into two daughter cells each having a mass corresponding to half of the mass of the mother cell. One of the daughter cells is placed at the position of the mother cell while the second one is placed randomly in an adjacent position.

• Shoving relaxation model: adjacent bacteria may overlap when their size increase or after a division event. The overlap of the individual is relaxed using an algorithm that mimics a shoving mechanism adapted from [Kreft 1998]. If a bacterium with radius a is overlapped with n neighboring cells, it is displaced with a shoving vector d calculated using the following equation adapted from [START_REF] Kreft | [END_REF]]:

d = k=1:n a + a k -d k 2 u k (2.3)
a k is the radius of the neighbor cell k, d k is the Euclidean distance from the center of the bacterium to the center the k th neighboring cell and u k is a vector directed from the center of neighbor bacterium k towards the center of the bacterium and having a unitary norm.

• Local reaction rate calculation: 

∂s ∂t = D s ∇ 2 s -r s (2.5)
where D s is the nutrient diusion factor and r s the nutrient consumption rate.

Equation eq:substrate is complemented with the a uniform initial conditions s(x, t, t = 0) = s 0 and imposed substrate concentration s bound on the boundary. Equation 2.5 cannot be solved analytically but rather is discretized with respect to time and space which yields the following set of algebraic equations:

s t+dt (i, j) = s t (i, j) + dtD ∆l 2 [s t (i -1, j) + s t (i + 1, j) + (2.6)
+s t (i, j -1) + s t (i, j + 1) -4s t (i, j)] -dtr(i, j)

where i, j are the coordinates of the internal patches, s t (i, j) and s t+dt (i, j) are the substrate concentrations within the patch (i, j) at time t and t + dt respectively. Equation gives the new spatial distribution of substrate as a function of the substrate spatial distribution and the bacteria uptake rates in the previous time-step. the growth of the bacteria is limited by the nutrient availability. In this regime, the bacteria experience low nutrient concentrations and their growth rate is much lower than their maximum growth rate (given by µ max ). The 'diusion-limited' regime can be obtained by setting the substrate diusion rate to a low value (D s = 10 -12 m 2 /s in our case). Figure 2.2 and gure 2.3 show the time evolution of the spatial pattern of the colony simulated by the IBM for 'reaction-limited' an 'diusion-limited' regimes respectively. In the case of the 'reaction-limited' regime the formed colony has a regular rounded shape while in the case of 'diusion-limited' regime the shape of the colony is irregular and shows the formation of 'ngers'. Cells that are closer to the boundary than their neighbors either due to stochastic positioning of daughter cells after a division event or due to the individuals shoving each others have a competitive advantage as they are likely to experience a higher substrate concentration than their neighbors and thus grow at a higher rate. It is interesting to note that the shape of the colony is not coded in the dynamic of the individuals but is an emergent population-level property. In the next sections of this chapter we investigate whether these patterns can be yielded by the aggregated mathematical model proposed by in [Eberl 2001].

Model parameters

Aggregated mathematical model

Eberl et al. [Eberl 2001] the individuals and the substrate with two density elds denoted respectively s(x, y) and c b (x, y).

Compared to the IBM that we presented above, the diusion-reaction model that we describe in this section is an aggregated mathematical model. The notion of aggregated model implies the use of aggregated state variables which provide a macroscale description of the state of the bacteria. In a diusion-reaction model the aggregated state variable is biomass density eld which determines the expected mass density of bacteria in any location x, y of the domain.

The diusion-reaction model for the bacteria has the following general form:

∂c b ∂t = ∇ 2 (D b c b ) + r b c b (2.7)
The rst term in the right-hand side accounts for the diusion of the biomass and the second term for the production of biomass. The rst term expresses how the mass of the bacteria is redistributed over neighboring patches. This term provides a rough approximation at the macro-level of the shoving process described in the IBM. The expansion of the colony depends on the local density of bacteria and takes place only if the biomass density approaches a prescribed maximum value which establishes an upper bound [Eberl 2001]. Elberl et al. [Eberl 2001] proposed a density-dependent expression for the diusion factor D b that satises this condition. The expression takes the following generic form:

D b = D 0 c α b (C bmax -c b ) β (2.8)
with α, β > 1 and D 0 three parameters and C bmax the maximum local density of biomass. The physical interpretation of this equation is that the biomass diusivity vanishes as c b becomes small but increases as c b grows due to substrate uptake.

Equation 2.7 is coupled to the following diusion-reaction equation of the substrate:

∂s ∂t = D s ∇ 2 s -r b (2.9)
where s is the concentration of substrate, D s the diusion factor of the substrate and r b the substrate uptake rate. Assuming a Monod kinetic as in the IBM, the substrate uptake rate is given by:

r b = µ max s s + k s c b (2.10)
where µ max is the maximum growth rate of the bacteria and k s the half- 

Comparing the IBM with the diusion-reaction model

We compare the simulation results of both models for the two colony growth regimes. The diusion-reaction model proposed in [Eberl 2001] is not derived rigorously from the microscale dynamic that we considered in the IBM. It uses an ad-hoc approximation of these microscale processes based on a density-dependent expression of the biomass diusion. This function requires four parameters α, β, D 0 and C bmax and one of the diculties that arises when we attempt to compare the DRM with the IBM is to assign appropriate values to these parameters. The parameter C bmax (the maximum local density of biomass) can be deduced from the IBM simulations by taking the maximum measured local density of biomass. For the parameters α and β we use the values suggested by Eberl et al. [Eberl 2001].

The parameter D 0 , which is the maximum value of the biomass diusion factor is calibrated (manually) to obtain the best t between the patterns yielded by both models. A high value of D 0 yields a simulated colony that expands faster than in the IBM. We compare the shape of the simulated colonies in the case of 'diusion-limited' regime. In this case, the individuals experience signicant heterogeneities in the substrate concentration and consequently grow at dierent rate depending on their location in the colony. Individuals located at the edge of the colony tend to have high growth rates in comparison to the individuals located at the center of the colony. Figure 2.5 compares snapshots of the simulated colony patterns. The IBM pattern is averaged over 20 IBM simulations run with with the same parameter and dierent seeds for the random number generator. In the diusion-reaction model the colony expands forming ngers that are directed towards the closest distances to the boundary of the domain where the substrate concentration is the highest. While 'ngers' are also formed in each of the IBM simulations, they are not observed in the average pattern and are not likely to be directed towards any preferential direction.

They seems to occur at random and the average pattern shows a round-shaped colony. The closest distance to the boundary is not necessary the one with the steepest nutrient gradient as the nutrient distribution is heterogeneous and can be aected with the irregular shape of the colony.

We assessed the sensitivity of the DRM pattern to the variation of the parameter D 0 . Figure 2.6 shows the average pattern obtained with the IBM at an intermediate time t = 71h and the pattern yielded by the DRM for three values of the parameter D 0 . The increases of D 0 increases the size of the colony and reduced it areal biomass density (vertical axis). The shape of the colony however still have the star-like shape with ngers directed towards the closest boundary.

Discussion

IBM and DRM are two commonly used modeling approaches for simulating microbial spatial patterns formation. In this chapter we compared these two approaches by considering a simple case of the a mono-species colony growing on a diusive substrate. Both models yield comparable results for the case of 'reaction-limited' regime but show signicant dierences in the case of 'diusion-limited' regime. While , int he 'diusion-limited' regime each realization of the IBM yields a pattern with an irregular shape and 'nger-like' structure the average pattern yields a round shaped colony suggesting the 'ngers' have no preferential direction. The direct averaging of spatial patterns obtained through the replication of a simulation is often an inappropriate approach as some important features of the pattern (irregular shape, nger formation) that has an impact on the local environment of the individuals are lost during the averaging exercise.

The DRM captures the formation of 'ngers' in the case of the 'diusion-limited' regime. The DRM pattern is symmetric and the ngers directed towards the closest Applying both approaches to a same problem may be very helpful. DRM provide a deterministic reference to which the IBM simulations can be compared while the IBM may help in assessing the quality of the approximations needed in the DRM and in the identiability of the DRM parameters.

Chapter 3

Moment approximation of a microbial IBM for colony growth Spatial moments models were originally developed in statistical physics and have been applied during the last decade to the approximation of individual-based models that arise in several ecological systems of plants and animals [START_REF] Dieckmann | [END_REF]]. In this chapter we discuss the extension of the approach to modeling microbial systems and illustrate with the example of microbial colony growth with a slight dierence compared to the previous chapter. Here we will consider systems initialized with n 0 > 1 individuals randomly distributed rather than with one individual located in the center of the domain.

Chapter 3. Moment approximation of a microbial IBM for colony growth

The derivation of the moment approximating model from the detailed IBM including individuals with variable sizes and complex shoving process is quiet dicult.

Thus our approach consist in rst simplifying the detailed IBM than approximate the simplied IBM using moment techniques.

The chapter in organized in three parts: the rst part is dedicated to the simplication of the colony growth IBM. In the second part we derive a moment approximation model of the simplied IBM. In the third part we compare the moment model and the simplied model to assess the quality of the approximations considered in the moment model. We conclude this chapter by discussing the relevance of the spatial moment method in approximating microbial IBMs and the possible extensions of the approach. and the explicit dynamic of the substrate. We also simplify the shoving process by using instead a uniform dispersion kernel. We assess how this simplication aect the shape of the colony. In this section we propose to describe the simplied IBM using the ODD protocol.

Overview 3.1.1.1 State variables and scales

We consider a sessile community of individual bacterial cells living in a twodimensional space. The individual cells are considered as point particles entirely characterized by their location x = (x 1 , x 2 ) in this plane. The abiotic environment is homogeneous in space.

Process overview

The community changes through two stochastic events acting on the individuals: division and lysis (or death). We suppose that individuals divide with a probability that decreases with the increase of the local density of individuals and die with a constant probability. The local density is measured using an interaction kernel During a division event we suppose that the parent individual generates an ospring which position is randomly selected within a neighborhood of its parent.

Scheduling

The temporal behavior of the simplied IBM is governed solely by the stochastic division and death events. To simulate the temporal evolution of such system we need to specify when the next event will occur, what kind of event it will be and which individual will be concerned with the event. [START_REF] Gillespie | A general method for numerically simulating the stochastic time evolution of coupled chemical reactions[END_REF] proposed a Monte Carlo procedure for simulating comparable stochastic processes that arise in chemical reaction research. The procedure can easily be extended to a stochastic birth-death model in which the individuals experience dierent birth and death probabilities [Dieckmann 1999]. The procedure iterate over the following steps:

1. Set the time to t = 0 

Design concepts

• Stochasticity: all the processes (division and death processes)are stochastic.

• Emergence: the spatial pattern emerges from the iteration of division and death processes of the individuals.

Chapter 3. Moment approximation of a microbial IBM for colony growth 3.1.3 Details

Initialization

The model is initialized with N 0 = 100 cells distributed uniformly over the domain.

Submodels

• Division: we suppose that the probability per unit of time that an individual i in position x i produces a new cell located in position x is given by:

B(x i , x ) = [b 1 -b 1 p loc (x i )]K ||x i -x || w b (3.1)
The parameters b 1 and b 1 are the density-independent and the density- dependant division rates respectively. The term p loc (x i ) is the local density (dened in more details below) perceived by the individual in x i . K(||x i -x ||/w b ) is a dispersion kernel (we call it also birth or division kernel).

The dispersion kernel gives the probability that the newly formed individual disperses instantaneously after the division event to the location x . For simplicity we use a uniform dispersion kernel. In some way, the dispersion kernel translates the observation that daughter cells are located randomly in the neighborhood of their mother cells.

• Calculation of the perceived local density: in a system containing N individuals, each individual has at maximum N -1 neighbors. However, as we suppose that individuals perceive only their local environment. They are likely to be aected only by the neighbors located in their immediate surrounding environment. In order to calculate this perceived local density of neighbors we use a uniform interaction kernel, denoted K(||x i -x j ||/w d ). The interaction kernel measures the contribution of the individual j in x j to the local density perceived by the individual i in x i . The perceived local density is then calculated using the following expression:

p loc (x) = j=n j=0,j =i K ||x i -x j || w d (3.2)
• Death process: we suppose that the individuals die at a constant rate d 1 .

The death probability of an individual per unit of time is supposed to be independent from the local density of individuals.

Parameters

The model parameters are summarized in table 1. • the average density of individuals, denoted N (t) (number of individuals divided by the area L 2 of the domain)

Parameters

• the pair correlation density function denoted C(ξ, p) and dened as the density of pairs of individuals separated with a vectorial distance ξ = (ξ 1 , ξ 2 ).

Comparison of the simplied IBM with the detailed IBM

We propose to assess the impact of simplifying the spatial extent of the individuals on the shape of the simulated colonies. In the detailed IBM that we presented previously (see chapter 2) we represented the individuals as discs shoving each others and having variable sizes. This is simplied in the IBM described in this chapter and the individuals are represented as particles without a spatial extent. By taking this simplifying assumption we also neglect the processes induced by the spatial extent of the bacteria like the shoving process. Consequently in the simplied IBM the only mechanism that makes the size of the colony to increase is the dispersion of daughter cells after division. We modeled this dispersion using a uniform dispersion kernel.

Another important dierence between the simplied model and the detailed one is 

(x 1 + ξ 1 , x 1 + ξ 1 + dξ 1 ) × (x 2 + ξ 2 , x 2 + ξ 2 + dξ 2 )
, using a suciently small spatial resolution dξ = (dξ 1 , dξ 2 ). We repeat this procedure for each individual in turn being the focal one and dividing the total count by the domain area L 2 and by dξ 1 dξ 2 yields the pair density at distance ξ. The result is a matrix. The central value of the matrix corresponds to the average density of individuals experienced by a focal individual at distances smaller than the spatial resolution dξ. The matrix can be understood by imagining that a virtual focal individual is located in the center.

The matrix than correspond to the average `individuals'eye view' of its environment. The dynamic of the rst moment (mean density of individuals) is given by the following equation:

dN dt = (b 1 -d 1 )N -b 1 C(ξ)K ||ξ|| w d dξ (3.3)
The rst term on the right-hand side is neighborhood-independent components of divisions and death, and the second term is the neighborhood-dependent components of divisions. The integral term involve the pair density function C(ξ) and the interaction kernel K(||ξ||/w d ). This term encompass the eect of the local environment on the mean density of individuals which is the result of the spatial structure, as given by C(ξ), and on the extent the individuals experience the eect of this structure as given by K(||ξ||/w d ). Note that if the side of the uniform interaction kernel, w d , is equal to the side L of the domain than equation 3.3 can be simplied to a simple non spatial Lotka-voltera equation [Law 2000]:

dN dt = (b 1 -d 1 )N -b 1 N 2 (3.4)
In this case the division rate of any individual is equally aected by all the other individuals. However in most microbial system the individuals perceive only their local environment. The dynamic of the second moment accounts for the processes (division and death) that aect the density of pairs separated with a vectorial distance ξ.

dC(ξ) dt = dC(ξ) dt division + dC(ξ) dt death (3.5)
The terms in the right-hand side denote respectively the eect of division and death events on the density of pairs C(ξ). The eect of the death is straightforward. Consider a pair of individuals separated with a distance ξ. If one of these two individual dies than we loose a pair of individuals separated with a distance ξ. The rate at which we loose pairs of individual separated with a distance ξ is given by:

dC(ξ) dt death = -2d 1 C(ξ) (3.6)
The eect of the individual division events on the density of pairs at distance ξ is more complicated and is given by the following equation: Chapter 3. Moment approximation of a microbial IBM for colony growth

dC(ξ) dt division = +2b 1 N K ||ξ|| w b -2b 1 K ||ξ|| w b K ||ξ || w d C(ξ )dξ +2b 1 C(ξ + ξ )K ||ξ || w b dξ -2b 1 K ||ξ || w b K (||ξ || w d T (ξ + ξ , ξ )dξ dξ -2b 1 C(ξ + ξ )K (||ξ + ξ || w d K (||ξ || w b dξ (3.7)
The right-hand side is formed with ve terms that describe the variation in the density of (i, j) pairs at vectorial distance ξ resulting from division events. To understand the precise interpretation of each term we proceed as in [START_REF] Dieckmann | [END_REF]] by focusing on the individual i of the (i, j) pair.

• the rst term accounts for the density-independent division of an individual i producing a new individual j located at a vectorial distance ξ. Multiplying the mean density of individuals N and by the independent per capita division rate b 1 gives the rate of of division events. Then we multiply by the probability that the newly formed cell is located at distance ξ from the parent position.

The factor 2 accounts for newly formed individuals that disperse to distance -ξ which also form a new pair (j, i) at distance ξ gives the density-dependent correction of the rst term.

•
• the third term also accounts for the density-independent division, but focuses on the new pair that the ospring of an individual i forms with and individual j located at a distance ξ + ξ from i. The per capita rate of density-independent rate of division is b 1 , the density of (i, j) pairs is C(ξ + ξ ) and the spatial density of ospring settling around the i parent is K(||ξ ||/w b ). Multiplying these three factors and integrating over all possible distances ξ of ospring dispersal yields the third term.

• the fourth term is a correction of the density independent third term to account for the eect of neighbors of the individual i that reduces its rate of producing new individuals. The division rate of the individual i in the pair (i, j) at distance ξ + ξ can be modied by the presence of a neighbor k located at distance ξ from i. The density of triplet of individuals (i, j, k) is T (ξ + ξ , ξ ), the interaction kernel for the (i, k) pair yields K(||ξ ||/w d ) and the spatial density of ospring around the individual i is K(||ξ ||/w b ). Multiplying these factors with the density dependent birth rate and integrating over all possible distances ξ and interaction distances ξ gives the forth term.

• the fth term accounts for the eect of triplet (i, j, k) but do not include the eect of the individual j on the division rate of the individual i. Thus the fth term adds this correction by multiplying the density of pairs (i, j) separated with a distance ξ + ξ with the interaction kernel K(||ξ + ξ ||/w d ).

The correction term is obtained by integrating over all possible distances ξ and by multiplying by the probability density K(||ξ ||/w b ) of having an ospring at distance ξ from i and the density dependent division rate b 1

In the three last terms we focused on the individual i. Analogous events can occur to the individual j. We take this in consideration by multiplying these terms by a factor 2. The dynamic of the rst moment involve the second moment, that of the second moment involves the density of triplet denoted T (ξ + ξ , ξ ). We can in principle continue with the dynamic of the third moment (triplet densities) which should involve the higher order moments. To escape this cascade of dependencies Dieckmann and Law [START_REF] Dieckmann | [END_REF]] proposed to truncate the moment hierarchy by expressing the third moment in terms of the second and rst moment. Such expression are called moment closures and should satisfy a number of conditions detailed in [START_REF] Dieckmann | [END_REF]]. The choice of the moment closure may have an impact on the quality of the approximation of the underlying individual processes. This is often assessed by comparing the moment model to the dynamic of the underlying individual-based model [START_REF] Dieckmann | [END_REF]]. We use the following approximation closure equation which expresses the third moment as a function of the second and rst moments:

T (ξ, ξ ) = C(ξ)C(ξ ) N (3.8)

Solving the moment approximation model

The system formed with equations 3.3, 3.7 and 3.8 can be solved assuming periodic boundary conditions and taking as initial conditions an initial density N (t = 0)

of individuals distributed uniformly which yields an initial pair correlation density function C(ξ, t = 0) = N 2 . The system can be solved in the Cartesian coordinates or in the radial coordinates (because of the isotropy of the domain and the radial symmetry of all the processes). For the radial formulation of these equations refer to the Annexe A of this chapter. We present here the procedure for solving the moment dynamic equation in the Cartesian coordinates.

Chapter 3. Moment approximation of a microbial IBM for colony growth • Spatial discretization We discretize the vectorial distance ξ = (ξ 1 , ξ 2 ) into ξ(i, j) = (ξ 1 (i), ξ 2 (j)) with i, j = -(n -1)/2..(n -1)/2 (see gure 3.6). The function C(ξ, t) is evaluated only in these discretized points and takes the form of a n × n square matrix C(i, j, t) with i, j = -(n -1)/2..(n -1)/2

For the calculation of the integral terms in equations 3.3 and 3.7 we need to discretize the kernels K(||ξ||/w b ) and K(||ξ||/w b d). We use the same spatial resolution dξ. Note that the spatial resolution dξ depends on the size of the interaction and dispersion kernels. As these kernels dene the spatial distance over which local interactions take place, the spatial resolution dξ should be small compared to the size of these kernels. A typical resolution to discretize Gaussian kernels is dξ = ((min(w b , w d )/5, min(w b , w d )/5) where min(w b , w d ) is smallest value between w b and w d . In this work we considered identical uniform kernels (see gure 3.7).

• Time discretization We discretize time derivatives in equation 3.3 and 3.7 using an explicit Euler scheme with a time step ∆t = 1
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Comparison of the moment model with the simplied IBM

We compare the simulation results the simplied IBM and the moment model or the case of density-independent growth (b 1 = 0) and density-dependant growth (b 1 > 0).

Density independent growth model (b 1 = 0)

The case of density independent growth implies that the spatial pattern has no impact on the average density of individuals. This can be seen from equation 3.3.

By setting the density-dependent growth parameter to zero b 1 = 0 the equation simplies to a classical non spatial mean eld equation:

dN dt = b 1 N -d 1 N (3.9)
As we assumed that b 1 = d 1 , the average density of individuals is constant (if N 0 is the initial density of individuals, than N (t) = N 0 ). Figure 3.10 compares the average densities of individuals yielded by both models for the case b 1 = 0 and shows The moment model and IBM encompass additional informations about the spatial pattern. As we mentioned before, the assumption that daughter cells are located in the neighborhood of the mother cells is sucient to produce spatial patterns. The comparison of gure 3.8(b) and 3.8(c) shows that the pattern is dynamic and that aggregates change continuously in size and position due to the stochastic division and detachment events. This simulation illustrates one of the limitation of the IBM approach. The ecological signal is often blurred by stochastic uctuations.

Thus checking the model or its implementation is a non trivial task.

We use the pair correlation function as a measure to characterize the aggregated patterns yielded by the IBM. The function, measuring the average density of bacteria located at dierent vectorial distance from a focal individual, takes the form of a matrix. The matrix is radially symmetric and the center of the matrix correspond to the average density of neighbors at a distance smaller than the spatial resolution dξ. 

Density dependant division model (b 1 > 0)

In the density-dependent division model, the division rate of the individuals is reduced by the formation of colonies. The spatial pattern is then expected to have an impact on the time course of the average density of individuals. In order to assess the impact of the spatial pattern, we use the non spatial mean-eld model as a reference to which we compare the results of the IBM and the moment model. The mean-eld limit is given by:

dN dt = (b 1 -d 1 )N -b 1 N 2 (3.10)
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Discussion

Our results on the density-dependent division-death model conrm that moment approximation can capture the deterministic average behavior of stochastic IBMs.

IBMs used in microbiology are often complex and include several details about the shape and dynamic of the individuals. They can only explored numerically and are dicult to approximate with deterministic mathematical models. There are certainly research questions that require such a level of details. For instance detailed IBM may be needed for simulating the ne scale structure of biolms and calculating Chapter 3. Moment approximation of a microbial IBM for colony growth The reduction of an IBM to a small set of equations require a number of approximation. Birch et al. [Birch 2006] showed that moment methods are reductions of the master equation. The master equation contains complete and detailed information concerning all of the statistical properties of an IBM but it is often very complicated to derive and to solve. Moment approximation is an alternative approach based on an unclosed hierarchy of spatial moments [Birch 2006]. Moment models are often limited to the rst and second spatial moments and use approximative closure relation expressing the third moment as a function of the second and rst moments.

The closure expression implies that the positions of triplet and higher number of individuals are not correlated. This is an approximation that need to be assessed 

Annexe A: expressing the moment model in radial coordinates

Solving the moment approximation moment involves the calculation of twodimensional convolutions having the following form:

(C m)(ξ) = ξ C(ξ + ξ )m(ξ )dξ (3.12)
As ξ and ξ are dened as vectorial distances which, when expressed in Cartesian coordinates write : ξ = (ξ 1 , ξ 2 ) and ξ = (ξ 1 , ξ 2 )), the integral over the ξ is a doubleintegral:

(C m)(ξ 1 , ξ 2 ) = ξ 1 ξ 2 C(ξ 1 + ξ 1 , ξ 2 + ξ 2 )m(ξ 1 , ξ 2 )dξ 1 dξ 2 (3.13)
The convolution can be also expressed in polar coordinates as: where a small number of cells develop into a multi-colonies biolm.

(C m)(r) =
The accumulation of the microorganisms on the colonized surface may be restricted by nutrient availability (treated in chapter 2 and 3) and/or counterbalanced by the detachment process.

The term detachment here refers to dierent mechanisms by which bacterial particles are transported from the (attached) biolm to the surrounding uid phase. Dierent processes are responsible for detachment of biomass from biolms and four categories can be distinguished [Morgenroth 2000][Stewart 1993]: (1) abrasion, (2) erosion, (3) sloughing and (4) predator grazing. Abrasion and erosion both refer to the removal of small groups of cells from the surface of the biolm while sloughing refers to the detachment of relatively large portions of the biolm [Morgenroth 2000].

In this section we describe a simplied IBM of biolm development under dierent growth and detachment conditions. The model is basically an extension of the IBM that we presented in chapter 3 with the following three modications:
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• we assume that the division rate of the individuals is balanced exclusively by the detachment process rather than by the competition on the nutrient. Thus in this model we assume that an individual located in x = (x 1 , x 2 ) divides at a constant probability rate b 1 . The probability that the individual in x produces a new born located in x is given by:

B(x, x ) = b 1 K ||x -x || w b (4.1)
where K(||x -x ||/w b ) is a birth kernel. As in chapter 3 we consider for simplicity a uniform kernel dened by:

K ||x -x || w b = 1/w b if ||x -x || < w b 0 else (4.2)
• we model the detachment process as a density-dependent process where the removal probability D(x) of an individual located in x increases with the increase of the local density of individuals. The removal probability D(x) is given by:

D(x) = d 1 + d 1 p loc (x, w d ) (4.3)
d 1 is a constant death rate and d 1 is the density dependent detachment rate. p loc (x, w d ) denotes the local density of individuals in x calculated using a uniform interaction kernel K(||x-x ||/w d ) with size w d . The interaction kernel measures how the individual in x perceives the eect of a neighbor individual located in x . We obtain the local perceived density if x by summing the eect of all the neighbors:

p loc (x, w d ) = N i=1 K ||x -x i || w d (4.4)
The birth kernel measures the instantaneous dispersion of the daughter cell at a certain distance from the location of the mother cell. Taking large birth kernels would yield a rapid extension of the colony because the newly divided cells disperse over large distances. For detachment, a small detachment kernel can be considered Gaussian interaction kernel would give a higher weight to the closest neighbors. This may have an eect on the observed patterns and on the dynamic of the population density. We discuss this briey in the last section of this paper.

Individual-based model parameters

The model parameters are summarized in table 4.2.1.

IBM simulation results

To explore the patterns yielded by the IBM described above we start by considering the mean-eld limit. In this case, all the individuals experience the same average conditions. This limit is obtained by setting the birth and detachment kernel sizes to relatively large values. A large birth kernel would mean that the individuals divide and disperse instantaneously over a large distance. This tends to prevent the formation of aggregates. Starting from this case, we progressively reduce the size of the birth kernel and explore the eect on the emergent spatial pattern. 

dN dt = b 1 N -d 1 N -d 1 K ||ξ|| w d C(ξ)dξ (4.5)
The rst and second terms on the right-hand side (RHS) are relative to the neighborhood-independent division and detachment processes. The third term in the RHS is the neighborhood-dependent component of the detachment process. The integral term involves the pair density function C(ξ) and the interaction kernel K(||ξ||/w d ). This term accounts for the eect of the local environment on the mean density of individuals which is the result of the spatial structure, as given by C(ξ),

and on the extent the individuals experience the eect of this structure as given by K(||ξ||/w d ). Note that if the side of the uniform interaction kernel, w d , is equal to the side L of the domain than equation 4.5 can be simplied to the mean-eld equation:

dN dt = (b 1 -d 1 )N -d 1 N 2 (4.6)
We suppose however that the detachment kernel is relatively small (w d = 3 to 31) compared to the size of the domain (L = 201). The dynamic of the pair correlation function is given by: 

dC(ξ) dt = 2b 1 N K ||ξ|| w b + 2b 1 K ||ξ || w b C(ξ + ξ )dξ (4.7) -2d 1 C(ξ) -2d 1 K ||ξ|| w d C(ξ) -d 1 K ||ξ || w d T (ξ, ξ )dξ - -d 1 K ||ξ || w d T (-ξ, ξ )dξ
The rst and second terms on the right-hand side account for the formation of new pairs at distance ξ through division events and are explained in the previous chapter. The third to sixth terms account for the eect of detachment. These last three terms are negative as detachment eliminates pairs. Following is a more detailed description of these six terms:

• the rst term accounts for the density-independent division of an individual i producing a new individual j located at a vectorial distance ξ. Multiplying the mean density of individuals N by the independent per capita division rate b 1 gives the rate of division events. Then we multiply by the probability that the newly formed cell is located at distance ξ from the parent position. The factor 2 accounts for newly formed individuals that disperse to distance -ξ which also form a new pair (j, i) at distance ξ.

• the second term also accounts for the density-independent division, but focuses on the new pair that the ospring of an individual i forms with and individual j located at a distance ξ+ξ from i. The per capita rate of density-independent division is b 1 , the density of (i, j) pairs is C(ξ + ξ ) and the spatial density of • the third term accounts for ij pairs that are lost due to the density-independent death of the individual i in the pair (respectively j).

• the fourth term corrects the death rate of the individual i in the pair ij by adding the eect of the individual j on the death rate of the individual i.

• the fth and sixth terms correct the death rate of the individual i in the pair ij by adding the eect of neighbors (other than j) located at a distance ξ from i.

The density of this triplet conguration is given by the triple density function T (ξ, ξ ) and T (-ξ, ξ ) We multiply by the detachment kernel calculated at distance ξ and integrate over all possible neighbors (or all distances ξ ).

The system formed with equations 4.5 and 4.7 involves the third spatial moment T (ξ, ξ ). To close this system we need to express the third moment as a function of the rst and the second moments. We use the following closure expressions [START_REF] Dieckmann | [END_REF]]: We solve the moment model formed with equations 4.5, 4.7, 4.8 and ??, as detailed in the previous chapter, by discretizing the vectorial distances ξ with a spatial resolution dξ = (dξ 1 , dξ 2 ) and time with a constant time step ∆t. We use an explicit Euler scheme for descritizing the time derivative. The resultant algebraic system is formed with n 2

T (ξ, ξ ) = C(ξ)C(ξ )C(ξ -ξ) N 3
x + 1 equation (where n x is the size of discretized C(ξ) expresses the density of individuals N and the pair correlation matrix C(ξ) at the instant t + ∆t as a function of N and C at the previous instant t.

Comparison of the moment model and the IBM

We compare the time course of the average density of individuals yielded by the IBM and the moment model (gure 4.5) and the stationary radial pair correlation function (gure 4.6). For a large birth kernel w b = 19, the IBM and the moment models yields comparable results to those obtained with the mean-eld limit (dashed line in gure 4.5(a)). In this case where the distribution of the individuals is uniform as can be seen from the pair density correlation functions in gure 4.6(a)which take values close to 1 in both models indicating that the local density of pairs is almost CemOA : archive ouverte d'Irstea / Cemagref Chapter 4. Moment approximation of a simplied biolm IBM with detachment equal to N 2 (the average density of pairs in the system) For small birth kernels however, the density of individuals increases in both models beyond the stationary value yielded by the mean-eld model. This is a counter intuitive result as one may expect that the formation of aggregates would increase the detachment rate of the individuals yielding lower equilibrium density than what would be obtained in the case of a uniform distribution. The organization of the individuals with a regular distance is likely to induce a lower average detachment rate as this arrangement seems to minimize the competition with regard to detachment between the colonies.

The pattern of isolated colonies yields an oscillating radial pair correlation function. The rst peak is due to the high density of neighbors within the colony (short distance). the waves are due to the regular arrangement of the colonies. The peaks in the IBM are lower than those yielded by the moment model and the wavy radial pair correlation function seems to vanish to 1 in the IBM for large distances. This is due to the uctuations around the colonies simulated by the IBM. The individuals are in majority enclosed within the colonies but some of them are still between the colonies due to the stochastic division and detachment process. This blurs the deterministic ecological signal as revealed by the moment model.

Discussion

We approximated the dynamic of a simplied IBM with a population of individuals inhabiting a two-dimensional domain. The individuals are subject to division events and a density-dependent detachment process. The numerical exploration of the IBM shows for large birth kernels the newborn cells disperse over large distances preventing the formation of colonies. In this case the average density yielded by the IBM evolve as in the mean-eld limits.

However when we reduce the size of the birth kernel, patterns with isolated microcolonies may emerge and can be observed especially when the size of the detachment kernel is higher than that of the birth kernel.

We IBMs have been widely used for modeling spatial organization of bacteria within colonies [START_REF] Kreft | [END_REF]] [Ginovart 2002] and biolms [START_REF] Kreft | [END_REF]][Xavier 2005] (for a review see [Ferrer 2008] and [Hellweger 2009]). Recently, an individual-based model of surface associated populations of P. aeruginosa has been presented [Picioreanu 2007]. The model involves a three-dimensional space and aims to provide a proof-of-principle of the implication of motility in the formation of biolm structure. It reproduces qualitatively the tendency of motile bacteria to form at biolms and that of immotile bacteria to form microcolonies by clonal growth, and proposes detachment and reattachment processes of the motile bacteria as possible mechanisms yielding the formation of complex mushroom-shaped microcolonies. In our model, we focus on the interplay between extracellular DNA production and bacterial motility. We show that a model where bacterial migration is stopped due to adherence to self-produced extracellular DNA can produce complex patterns of interconnected microcolonies.

Model description

We describe the model through the ODD protocol (Overview, Design concepts and Details) [START_REF] Volker Grimm | A standard protocol for describing individual-based and agentbased models[END_REF]]. At each time step the following processes are performed sequentially:

• Bacteria growth: for each individual cell we (1) calculate and individual substrate uptake rate (r) which depends on the mass of the cell and the local substrate concentration. (2) We use the calculated uptake rate to update the mass of the cell.

• Substrate uptake rates for patches: given the uptake rates of each individual cell, we calculate an uptake rate (r s ) for each patch by taking the sum of the uptake rates of the individual cells contained within it.

• Division: for each individual cell we compare the cell mass to a critical value.

If the cell mass is higher than the critical value than the cell is divided into two daughter cells. One the daughter cells takes the position of the mother cell while the second is placed at random around the mother cell position at a distance (d) corresponding to the diameter of the daughter cell.

• Surface motility: we model bacteria translocation as a Brownian process using an diusion factor (D f ) proper to each individual. For each individual cell, including newly formed cells, we calculate a diusion factor (D f ) using a decreasing function of the local product concentration and then move the individual cell accordingly.

• Shoving: bacteria division and motion may produce cells overlaps. In this case cells are displaced using an algorithm proposed by [START_REF] Kreft | [END_REF]]that mimics a shoving process.

Chapter 5. A detailed individual-based model of biolm formed with motile bacteria

• Substrate and excreted product mass balances: we modeled the substrate and the excreted product dynamics using two diusion-reaction equations discretized on the lattice formed by the patches. The reaction terms in these equations are calculated using the substrate uptake rate (r s ) previously calculated for each patch.

Design Concepts

• Emergence: the IBM is designed such that the spatial pattern of bacteria and product distribution emerge from local interactions.

• Sensing: in our model, a bacterium senses the substrate and product concentration within the patch corresponding to its position. The substrate concentration aects the growth rate of the bacterium whereas the product concentration aects the motility of the bacteria.

• Stochasticity: bacteria motility and the positioning of the daughter cells after a division event are the only stochastic processes that we considered in the IBM.

• Observation: at each time step the state variables for bacteria and patches are recorded.

Submodels 5.2.6.1 Bacteria growth

We calculate the individual substrate uptake rate (r(t)) of a cell located in (x, y) and having a mass m using the following Monod-like kinetic equation:

r(t) = µ max m s(i, j, t) s(i, j, t) + k s (5.1)
Where s(i, j, t) is the substrate concentration at patch (i, j) with i = f loor(x/∆l) and j = f loor(y/∆l) and µmax and ks are Monod kinetic parameters. The growth rate of the bacterium is given by:

dm dt = Y b r(t) (5.2)
Where Y b is the biomass yield (expressed in mass of bacteria per mass of consumed substrate). The time derivative is discretized using an Euler explicit scheme and the new mass of the cell is calculated by:

m(t + ∆t) = m(t) + ∆tY b r(t) (5.3)
With ∆t the time step. The product excretion rate rp(t) of the considered individual cell is given by: r p (t) = Y p r(t)

(5.4)
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For each patch we calculate a substrate uptake rate rs(t, i, j) by summing the individual substrate uptake rates of the cells contained within the patch:

r s (t, i, j) = 1 ∆l 2 k r k (t) (5.5)
where k is the number of cells in patch i, j.

Bacteria division

If the mass of a focal individual (a mother cell) becomes greater than twice the initial mass of an individual (2m 0 ≤ m) it divides into two daughter cells each with a mass m/2. The rst daughter cell takes the position of the mother cell while the second daughter cell is placed randomly at a distance d (distance between the centers of both cells) corresponding to the diameter of the daughter cells (both daughter cells have the same diameter).

Bacteria motility

The motility of the cells is modeled as a Brownian motion process with an apparent diusion factor (Df ) which is specic to each individual cell. For a given bacterium located at x, y at time t, the position of the bacterium at the instant t + ∆t is given by:

x(t + ∆t) = x(t) + 2D f (x, y)∆tN (0, 1)

(5.6)

y(t + ∆t) = y(t) + 2D f (x, y)∆tN (0, 1)
where N (0, 1) draws a number from a centered normal distribution of standard deviation 1 (generated using the Mersenne Twister pseudo-random number generator). As we assumed that bacteria motility was reduced by the excreted product, we calculate diusion factor (D f ) as a decreasing function of the excreted product concentration in the corresponding patch (i, j). We use the following function:

D f = D f max 1 1 + βp(i, j, t) (5.7)
Where D f max is the maximum diusion factor of the bacterium, β is a binding anity factor and p(i, j, t) is the product concentration at patch (i, j). The parameter β rules the sensitivity of Df to the variation of p(i, j, t) as shown by gure Bacteria shove each other when they overlap. If a bacterium with radius a is overlapped with n neighboring cells, it is displaced with a shoving vector d calculated using the following equation adapted from [START_REF] Kreft | [END_REF]]:

d = k=1:n a + a k -d k 2 u k (5.8)
a k is the radius of the neighbor cell k, d k is the Euclidean distance from the center of the bacterium to the center the kth neighboring cell and u k is a vector directed from the center of neighbor bacterium k towards the center of the bacterium and having a unitary norm.

Substrate and excreted product mass balance equation

The distribution of the substrate is the solution of the following continuous diusionreaction equation:

∂s ∂t = D s ∇ 2 s -r s (5.9)
with periodic boundary conditions: s(t, x = 0, y) = s(t, x = l, y)

(5.10) s(t, x, y = 0) = s(t, x, y = l)

(5.11) and having as initial conditions:

s(t = 0, x, y) = s 0

(5.12)

The excreted product dynamic is also given by a diusion-reaction equation:

∂p ∂t = D p ∇ 2 p + Y p r s (5.13)
with periodic boundary conditions: p(t, x = 0, y) = p(t, x = l, y)

(5.14) p(t, x, y = 0) = p(t, x, y = l)

(5.15)

and having as initial conditions p(t = 0, x, y) = 0

(5.16)

Y p in (equation 5.13) is the product yield expressed in mass of excreted product per mass of consumed substrate. We discretize substrate and product mass balance equations with respect to space on the lattice formed with the patches using a four-point scheme. The reaction term has already been calculated for each patch (equation 5). We discretize time derivative term in the substrate and the product mass balance equations using an implicit scheme for the diusion term. Note that the reaction term is calculated on the basis of an explicit scheme. The obtained discretized system is a sparse linear system that we solve using an explicit Euler method. This gives the new substrate and product concentrations in each patch. 

Initialization

We initialize all simulations with:

• a uniform initial substrate concentration s 0

• a uniformly null concentration of excreted product

• N 0 bacterial cells drawn at random in the domain each with the same initial mass m 0 .

Initial conditions are detailed in table 5.3.

Model implementation

We implemented the model using the Java programming language and the Mason framework. Mason is a discrete event multiagent simulation library code developed at the George Mason University for implementing multi-agent models [Luke 2004].
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Results

We simulate the patterns formed by the spatial distribution of bacteria and the excreted product displayed after 9 and 18 hours for dierent values of β (the parameter determining the impact of the excreted product on bacteria motility) and for the case of immotile bacteria. Two extreme cases can be identied. In the rst case, bacteria are motile and their motility is independent from the excreted product (β = 0) while in the second case bacteria are immotile D f max = 0. Figures 4 and5 show the patterns obtained in these limiting cases. Motile cells disperse over the spatial domain (Fig. 4) in contrast with immotile cells that form isolated microcolonies (Fig. 5). These results are consistent with previous theoretical [Picioreanu 2007] and experimental [Klausen 003b] studies of P. aeruginosa showing that motile cells tend to form at biolms while immotile bacteria form round shaped microcolonies.

We also simulated intermediate cases where the bacteria motility depends on the local concentration of the excreted product. Figure 6 and7 show examples of spatial pattern obtained after 9 and 18 hours for a small and a large value of the parameter β respectively. As the system evolves over time, the patterns of microcolony formation under the two parameterizations begin to diverge. A large value of β results in microcolonies that are more spatially discrete with higher densities of individuals within them (Figure 5.7), while the smaller value of β results in a pattern of microcolonies that are more amorphous in size and shape, are more connected with each other, and densities of bacteria within them are lower (Figure 5.6).

In our simulations, microcolony formation is initiated by the local accumulation of the product excreted by the cells along their Brownian trajectories. The product excretion rate is maximal (∼ Y p µ max , see Equations 5.1 and 5.7) at the beginning of the simulation when the substrate (S >> k s in Equation 1) is abundant and accumulates due to its low diusion factor. For large values of β bacteria are rapidly entrapped within the locations containing the excreted product and their daughter cells tend to accumulate locally yielding dense and discrete microcolonies. In the opposite for small values of β, bacteria and their daughter cells tend to disperse and the yielded microcolonies have amorphous shape. Analogously, simulation with dierent values of the product excretion ratio Y p (Equation 5.7), at a constant value of β, between the two extreme cases of Y p = 0 (no product excretion) and Y p = 1.0 (no growth, all the substrate is released back on the form of product) yields patterns that vary respectively from uniform distribution of the bacteria to the formation of isolated, round-shaped microcolonies (data not shown). This suggests that the binding anity factor (β) and the product excretion rate may have a signicant impact on the patterns of spatial distribution of the bacteria. In our model, the substrate concentration impacts the rate of product excretion. An initial low substrate level yields low rates of product excretion of the individuals which may not be sucient to reduce the motility of the bacteria and the formation of We investigate how the interconnections between the microcolonies form in the case of large value of binding anity parameter (β = 500). Figure 5.8 shows a zoomed view of the formation of the interconnection between two neighboring microcolonies.

The interconnection seems to be created by bacteria which go from a microcolony to a neighboring one, and which progressively accumulate excreted product on the path. The resultant pattern is formed with dense and discrete microcolonies interconnected with relatively thin strands of bacteria and excreted product. Furthermore, in some cases, these simulated microcolonies build interconnections, similar to interconnected microcolonies observed during the early stages of P. aeruginosa biolm development in ow chambers [START_REF] Allesen-Holm | A characterization of DNA release in Pseudomonas aeruginosa cultures and biolms[END_REF], and also in biolms formed by Pseudomonas species in marine environments [Dalton 1994][Dalton 1996].

Discussion

Several authors already explored the mechanisms yielding microcolonies in biolms [START_REF] Alpkvist | Three-dimensional biolm model with individual cells and continuum EPS matrix[END_REF]][Picioreanu 2007]. However, the pattern of interconnected microcolonies cannot be obtained with these usual mechanisms: immotile bacteria form isolated microcolonies and constantly motile bacteria form at biolms. Based on experimental data and computer simulations we suggest a mechanism that could be responsible for the observed patterns. Our model shows that microcolonies may result from bacteria motility reduction by self-produced macromolecules. The analysis of the simulation results suggests that cells on the edge of a microcolony occasionally detach and undergo a surface-associated motility until being captured by a neighboring microcolony. The path of the migrating cell is marked by the excreted macromolecules and is progressively reinforced by other migrating cells. This results in the formation of an interconnection between the neighboring microcolonies.

However, more investigation is necessary to strengthen or falsify this hypothesis.

This investigation could be important for a better understanding of biolm functions. Indeed, it is well accepted that the presence of dierent subpopulations in microcolonies can favor the survival of one or more subpopulations under adverse type of collaboration between distinct subpopulations within a biolm. This may be related to studies in landscape ecology where this pattern of interconnected habitats is recognized as particularly important [START_REF] Burel | Landscape ecology[END_REF] [Burel 2003].

Individual-based models are appealing to microbiologists because of the emphasis on the individual cell as the fundamental unit and the richness of their dynamic.

However when they are too complex they often become dicult to analyze which limits their practical payo [START_REF] Grimm | Individual-based modeling and ecology[END_REF]]. Therefore, we have attempted to keep our model as simple as possible and inspired by the phenomenological results mentioned in the introduction, but rich enough to produce patterns of interconnected microcolonies. Johnson [Johnson 2008] proposed a model based on the assumption of the direct interaction between individual cells through attractive (and repulsive) forces arguing that forces between cells can be a proxy for the behavior we expect to see due to chemotaxis in response to chemicals released by other cells [Johnson 2008].

The assumption simplies the model as the dynamic of the excreted product is not considered explicitly. This is a reasonable assumption when the dynamics of the chemical being produced is fast (high diusion) compared to the dynamic of the bacteria (motility and growth) [START_REF] Lee | [END_REF]]. Our model is based on the assumption that the excreted macromolecules like DNA and exopolymers diuse at low rates and persist on the path of the motile bacteria. This seems to play a role in the formation of the interconnected microcolonies as microcolonies yielded by

Johnson's model through attractive/repulsive forces seem not to be interconnected [Johnson 2008]. Our study included, however, some limitations that should be acknowledged for future research in this area. Examples, inherent to individual-based modeling approach, include the question of how to measure the goodness of an IBM. Grimm and Railsback [START_REF] Grimm | Individual-based modeling and ecology[END_REF]] suggested that testing an IBM against multiple observed patterns is a powerful way to assess the IBM capacity to capture system's essential characteristics. In this work we assessed the goodness of our IBM through comparison of an observed pattern (connected microcolonies in g.1)

to a simulated one (g.8). Despite the similarities between the experimental and simulated patterns (thin path of bacteria and product connecting neighboring microcolonies) there are still dierences. For example cells surrounded the thin path in gure 1 while they are contained in the area with high amount of product in gure 8.

Therefore, additional patterns should be identied and compared to the simulated ones in order to strengthen or falsify the hypothetical implication of self-excreted product in motility reduction and formation of interconnected microcolonies. Another limitation of our model is the determination of parameters like the binding anity factor (β) and cell diusion (D f ). These parameters may be dicult to obtain from experimental observations and their impact should be assessed through sensitivity analysis.
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Finally, the model can be extended to investigate the eect of other macromolecules like exopolymers on the bacteria motility and microcolonies formation.

Another potential extension is to include additional processes like bacteria detachment and substrate feeding which allow investigating the eect of the interactions between cell motility and excreted macromolecules on the architecture of mature biolms.

Chapter 6

Moment approximation of an individual-based model of a biolm formed with motile bacteria The chapter is organized in four sections: rst we start by simplifying the IBM presented in the previous chapter. Than we derive the moment approximation model of the simplied IBM in the second section. In the third section we compare the moment and simplied IBM simulations and we discuss the limits of the moment approach in coping with the uctuation of the local environment of the individuals.

6.1 Description of the simplied IBM 6.1.1 Overview 6.1.1.1 Purpose

The aim of the individual-based model is to investigate the patterns that arise formed by the aggregation of individual motile cells into microcolonies when their motility in reduced by a self-excreted polymer.

State variables

The system contains two types of discrete individuals: bacterial cells and polymeric particles. Each individual (bacterium or polymeric particle) is characterized by a continuous position in the two-dimensional domain.

Overview

We consider a population of discrete, identical individual bacterial cells inhabiting a two dimensional continuous environment. The bacteria undergo four stochastic processes: they move around the spatial domain, excrete polymeric particles, divide into two identical cells and get detached from the domain. The spatial domain is initially homogeneous but the progressive accumulation of the excreted polymeric particles introduces spatial heterogeneity that aect the detachment and motility rates of the bacteria. Our main assumption is that the accumulation of polymeric particles reduces the motility of the bacteria but increases their probability of being detached. This is a simplied description of the tendency of some bacteria colonizing a surface to excrete extracellular polymeric substances that hold the cells together and attach them to the surface. But when the local density of polymer increases, the microcolony grows in the vertical dimension and its structure is weakened by the hydrodynamic stresses. Finally we suppose that the polymeric particles can also detach from the system and that their detachment rate also increases with the increase of the local density of polymers.

Scheduling

The dynamic of the IBM is governed by the following events:
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• Division of a bacterial cell

• Production of a polymer particle

• Detachment of bacterial cell
• Detachment of a polymer particle

• Motility of a bacterial cell

We implemented the IBM in the continuous time. To simulate the temporal evolution of the system we need to specify when the next event will occur, what kind of event it will be and which individual will be concerned with the event. We use a procedure adapted from the algorithm of [START_REF] Gillespie | A general method for numerically simulating the stochastic time evolution of coupled chemical reactions[END_REF]] to simulate the evolution of the system. The procedure yields an asynchronous random execution of the events and suppose that one event occurs at a time. It iterates over the following steps:

1. Set the time to t = 0 4. Calculate the sums r 4 and r 5 which are respectively the sum of the individual division rates of the bacteria and the individual production rates of polymer 5. Calculate the overall rate of events : r = r 1 + r 2 + r 3 + r 4 + r 5 6. Choose the waiting time τ for the next event to occur according to τ = -1 r ln λ where 0 < λ ≤ 1 is a uniformly distributed random number 7. Choose an event with the following probabilities:

(a) a detachment of a bacterium with a probability r 1 /r (b) a detachment of a polymer with a probability r 2 /r (c) a division of a bacteria with a probability r 3 /r (d) a production of a polymer with a probability r 4 /r (e) a displacement of a bacterium with a probability r 5 /r

Select an individual:
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• Division: We suppose that the probability per unit of time that a bacterium i in position x i produces a new cell located in position x is given by:

B b (x i , x ) = b 1 K ||x i -x || w b (6.1)
The parameter b 1 is density-independent division rate of the bacteria and K(||x i -x ||/w b ) is a uniform dispersion kernel with a window side w b . The general form of this kernel for a window side w given by:

K ||x -x || w = 1/w if ||x -x || < w 0 else (6.2)
The dispersion kernel gives the probability that the newly formed individual disperses instantaneously after the division event to the location x . This probability depends on the distance ||x i -x || and the size of the dispersion kernel w b .

• Polymer production: We suppose that the probability per unit of time that a bacterium individual i in position x i produces a new polymeric particle in position x is given by:

B p (x i , x ) = b 2 K ||x i -x || w b (6.3)
The parameter b 2 is density-independent polymer production rate. We use the same dispersion kernel as for the bacteria division.

• Bacteria detachment: We suppose that the probability per unit of time that a bacterium i in position x i detaches depends on the local concentration of polymeric particles in x i denoted p loc (x i ). This probability is given by:

D b (x i ) = [d 1 + d 1 p loc (x i )]
(6.4)

The parameters d 1 and d 1 are the density-independent and the density- dependant detachment rates respectively. The term p loc (x i ) is the local density (dened in more details below) as perceived by the individual in x i .

• Polymer detachment: We suppose that the probability per unit of time that a polymeric particle j in position x j detach depends on the local concentration of polymeric particles in x j denoted p loc (x j ). This probability is given by:

D p (x j ) = [d 2 + d 2 (p loc (x j ))] (6.5) 
The parameters d 2 and d 2 are the density-independent and the density- dependant detachment rates respectively. The term p loc (x i ) is the local density (dened in more details below) as perceived by the individual in x j .

• Calculation of the perceived local density:

The contribution of a polymeric particle j located in x j to the local density of polymer perceived by an individual (bacteria or polymer) i located in x i is weighted by an interaction kernel K(||x i -x j ||/w d ). The local density of polymer perceived by the individual in x i is calculated by summing the weighted contributions of all the polymeric particles in the system:

p loc (x i ) = j=np j=0 K ||x i -x j || w d (6.6)
If the particle in x i is a polymeric particle its contribution to the perceived local density is not counted.

• Bacteria motility: The probability per unit of time that a bacterium i in

x i moves to a position x is given by:

M (x i , x ) = [m 1 -m 2 p loc (x i )]K ||x i -x || w m (6.7)
Where m 1 and m 2 are respectively the density-independent and the density dependent motility rates and K(||x i -x ||/w m ) a uniform motility kernel.

Initialization

The model is initialized with n b (t = 0) = 1000 bacterial cells distributed uniformly over the domain. Initially there are no polymer particles in the domain (n p (t = 0) = 0)

Model parameters

The individual-based model parameters are summarized in table 6.3. Unless explicitly specied, we use the default parameter values in table 6.3.

Moment approximation

We propose to develop a deterministic mathematical model that approximate the dynamic of the individual-based model described in the previous section using moment approximation techniques.

First moment dynamics

The dynamic of the rst moment (average densities of bacteria and polymer) is given by the following equations:

dN b dt = (b 1 -d 1 )N b -d 1 C bp (ξ)K ||ξ|| w d dξ (6.8) dN p dt = b 2 N b -d 2 N p -d 2 C pp (ξ)K ||ξ|| w d dξ (6.9)
Equations 6.8 and 6.9 describe respectively the dynamic of the average density of bacteria N b and polymer N p . The integral terms in the right-hand side are the neighborhood-dependent components of the detachment. They involve respectively the pair densities C bp (ξ) and C pp (ξ) and an interaction kernel K(||ξ||/w d ). These terms encompass the eect of the local density of polymer in the neighborhood of bacteria, as given by C bp (ξ), and in the neighborhood of a polymeric particle, as given by C pp (ξ), weighted by the uniform interaction kernel K(||ξ||/w d ). Note that if the size w d of uniform interaction kernel is equal to the side of the domain than a bacterium (respectively a polymeric particle) experiences equally the eect of all the polymeric particle within the domain. This reduces equations 6.8 and 6.9 to the following mean-eld system:

dN b dt = (b 1 -d 1 )N b -d 1 N b N p (6.10) dN p dt = b 2 N b -d 2 N p -d 2 N p N p (6.11)
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The mean-eld equations can also be obtained if the position of the bacterial cells (respectively the polymeric cells) are not correlated with the position of the polymeric particles. In this case the density of pairs formed with a focal bacterium (respectively a focal polymeric particles) with a polymeric particle located at a vectorial distance ξ from the focal particle is equal to the product of the average densities N b N p (respectively N p N p ). Spatial patterns formation and small interaction kernel may cause a departure from the mean-eld model. The system formed with equations 6.8 and 6.9 is not closed and need to be coupled to the dynamic of C bp (ξ) and C pp (ξ).

Second moment dynamics

The pair correlation functions C bb (ξ), C bp (ξ) and C pp (ξ) characterize the spatial pattern formed by the bacteria and the polymer. They measure respectively the densities of pairs formed with two bacteria, a bacterium and a polymeric particle or two polymeric particles at dierent vectorial distance ξ. The dynamic of these functions account for the ve processes: bacteria division, production of polymeric particles, bacteria detachment, polymer detachment and motility of the bacteria.

Dynamic of the bacteria-bacteria pair correlation function

The dynamic of the bacteria-bacteria pair correlation function C bb (ξ) is given by:

dC bb (ξ) dt = dC bb (ξ) dt division + dC bb (ξ) dt detachment + dC bb (ξ) dt motility (6.12)
The terms in the right hand side denotes for the eect of three processes that may modify the bacteria pattern and which are the bacteria division, detachment and motility events. The eect of division events on C bb (ξ) is given by the following equation:

dC bb (ξ) dt division = +2b 1 N b K ||ξ|| w b +2b 1 C bb (ξ + ξ )K ||ξ || w b dξ (6.13)
• The rst term in the right-hand side accounts for the division of a bacterium i producing a new cell j located at a vectorial distance ξ. This event yields a new pair of bacteria separated with a vectorial distance ξ. The rate at which such division events occur is obtained by multiplying the density of average bacteria N b by the division rate b 1 . Then we multiply by the probability K(||ξ||/w b ) that the newly formed cells are located at a distance ξ from the parent cell. The factor 2 accounts for newly formed cells at a vectorial distance -ξ which also form a new par (j, i) at distance ξ.

• The second term focuses on the new pair that the daughter cell of a parent bacterium i form with a bacterium j located at a distance ξ + ξ from i. The density of (i, j) pairs is C bb (ξ + ξ) and the division rate is b 1 . Multiplying these two factors with the probability K(||ξ ||/w b ) that the newly formed cells is located at a distance ξ from i and integrating over all possible distances ξ gives the second term. We also take into consideration that analogous event can occur to the individual j by multiplying the second term by a factor 2.

The contribution of the detachment events of bacteria to the dynamic of C bb (ξ)

is given by:

dC bb (ξ) dt detachment = -2d 1 C bb (ξ) -2d 1 K ||ξ || w d T bbp (ξ, ξ )dξ (6.14)
• The rst term in the right hand side accounts for the detachment of the cell i in the pair (i, j). Such events occur at a rate d 1 . Multiplying d 1 by the density C bb (ξ) of (i, j) pairs at distance ξ gives the resulting decrease in that density.

The factor 2 accounts that analogous event can occur for the individual j.

• The second term is the density-dependent detachment term that accounts for the presence of polymeric particles in the neighborhood of the bacteria. The detachment of a bacterium i of the (i, j) pair can result from the presence of polymer particle k at a distance ξ from i. Such triplet conguration occurs at a density T bbp (ξ, ξ ). The cumulative eect of the polymeric particles k situated at dierent distances ξ from the cell i is obtained by weighting the triplet density with K(||ξ ||/w d ) and integrating over all interaction distances ξ . Multiplying contribution of the local density of polymer with the densitydependent detachment rate of the bacteria d 1 gives the second term. The factor 2 accounts for the analogous event that can occur for the cell j in the the pair (i, j).

The contribution of the motility to the dynamic of C bb (ξ) is given by the following equation:

dC bb (ξ) dt motility = -2m 1 C bb (ξ) (6.15) +2m 1 K ||ξ || w m C bb (ξ + ξ )dξ +2m 2 K ||ξ || w d T bbp (ξ, ξ )dξ -2m 2 K ||ξ || w m K ||ξ || w d T bbp (ξ + ξ , ξ )dξ dξ
• When the individual i moves, the original pair (i, j) at distance ξ is destroyed.

The rst term in the right hand side accounts for this process by multiplying the density-independent motility rate of m 1 by the density of pairs C bb (ξ) of the original pair conguration.

• On the other hand a new (i, j) pair of bacteria is created at distance ξ when the cell i at originally at a distance ξ + ξ from the cell j moves a distance ξ . This eect is captured by the second term, which weights the density C bb (ξ + ξ ) of the original pair conguration with the motility kernel U K(||ξ ||/w m ) and integrating over all possible motility distances ξ .

• The third term corrects the rst term by accounting for the possible presence of polymeric particles in the neighborhood of the cell in the pair (i, j) originally at a distance ξ. The motility of i in the pair (i, j) is reduced by the presence of polymeric particle k located at a distance ξ from i. The density triplet formed with two cells separated with a distance ξ and a polymeric particle at a distance ξ from i is T bbp (ξ, ξ ). Weighting this density by the interaction kernel K(||ξ ||/w d ) and integrating over all distances ξ gives the third term. The factor 2 accounts for the analogous event that can occur for the cell j.

• The last term corrects the second term by accounting for motility reduction of the cell i originally at a distance ξ + ξ from the cell j due to the presence of a polymeric particle k at a distance ξ from i. The cumulative eect of the polymeric particles k is obtained by multiplying the triplet density T bbp (ξ + ξ , ξ ) by the interaction kernel K(||ξ ||/w d ) and integrating over all distances ξ . The result is then multiplied by the motility kernel K(||ξ ||/w m ), integrated over all distances ξ and multiplied by the density dependent motility rate m 2 . the factor 2 accounts for analogous event that may be experienced by the cell j in the pair (i, j).

Dynamic of the polymer-polymer pair correlation function

The dynamic of the density of pairs of polymeric particles separated with a distance ξ is given buy the following equation:

dC pp (ξ) dt = dC pp (ξ) dt production + dC pp (ξ) dt detachment (6.16)
The rst term in the right-hand side accounts for the contribution of polymer production events and the second term for polymer detachment events . Polymer production events contribute to the creation positively to C pp (ξ) according to the following equation:

dC pp (ξ) dt production = +2b 2 K ||ξ || w b C bp (ξ + ξ )dξ
(6.17)

• the right hand-side accounts for new pairs of polymers that are formed when the bacterial cell i situated at a distance ξ + ξ from a polymeric particle j produces a new polymeric particle k at a distance ξ . The density of pairs (i, j) is C bp (ξ + ξ ) and the probability that the newly formed polymer particles is located at a distance ξ from the cell i is given by K(||ξ ||/w b ). Multiplying these two factors with the polymer production rate b 2 and integrating over all possible distances ξ gives the term in the right-hand side.

The contribution of the detachment of polymer to the dynamic of C pp (ξ) is given by:

dC pp (ξ) dt detachment = -2d 2 C pp (ξ) -2d 2 C pp (ξ)K ||ξ|| w d -2d 2 K ||ξ || w d T ppp (ξ, ξ )dξ (6.18)
• The rst term in the right-hand side translates the destruction of pair of polymer (i, j) is one of the particles i or j detach.

• The second term accounts for the eect of the particle j in the pair (i, j) on the detachment rate of the particle i. This is obtained by multiplying the density of pairs C pp (ξ) by the interaction kernel K(||ξ||/w d ). Multiplying by d 2 gives the contribution of this process.

• The third term accounts for polymeric particles k that are neighbors of a particle i in the pair (i, j). The density of particles in this conguration is given by T ppp (ξ, ξ ). Where ξ is the distance between the particles k and i. This density is weighted by the interaction kernel K(||ξ ||/w d ) and multiplied by the density dependent detachment rate. Integrating over all distances ξ

gives the third term.

The factor 2 in the right hand side of equation 6.18 accounts for analogous detachment events that may be experienced by the particle j in the pair i, j.

Dynamic of the bacteria-polymer pair correlation function

The dynamic of the bacteria-polymer pair correlation function C bp (ξ) is more complex. All processes aecting the bacteria and the polymer contributes to this dynamic as can be shown from the following equation: The contribution of bacteria division to the dynamic of C bp (ξ) is given by:

dC bp (ξ) dt division = +b 1 K ||ξ || w b C bp (ξ + ξ )dξ (6.20)
• the term in the right-hand side accounts for the case where a new pair that a daughter cell k resultant from the division of a parent cell i forms with a polymeric particle j located at a distance ξ +ξ from i. The per capita bacteria division rate is b 1 , the density of (i, j) pairs is C bp (ξ+ξ ) and the spatial density of daughter cells at distance ξ is K(||ξ ||/w b ). Multiplying these factors and integrating over all distances ξ gives the term on the right-hand side.

The contribution of polymer production to the dynamic of C bp (ξ) is given by the following equation:

dC bp (ξ) dt production = +b 2 N b K ||ξ|| w b +b 2 K ||ξ || w b C bb (ξ + ξ )dξ (6.21)
• The rst term in the right-hand side accounts for new pairs (k, j) formed by a bacterium k and a produced polymer particle j located at a distance ξ. The polymer production rate is b 2 N b and the density of self-produced polymer particles at a distance ξ from a focal bacterium i is K(||ξ||/w b ). Multiplying these factors gives the rst term.

• In the second term we focus on pairs (i, j) formed with two bacteria at a distance ξ + ξ . If the bacteria i produces a polymer particle k at distance ξ than a new pair bacteria polymer (j, k) is formed at distance ξ. The density of pairs (i, j) is C bb (ξ+ξ ) and the probability that the polymer particle produced by the cell i is located at a distance ξ is K(||ξ ||/w b ). Multiplying these two factors by the per capita polymer production rate and integrating over all distances ξ gives the second term.
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The contribution of bacteria and polymer detachment processes is given respectively by the two following equations which have a comparable structure:

dC bp (ξ) dt detachment bact = -d 1 C bp (ξ) -d 1 K ||ξ || w d T bpp (ξ, ξ )dξ -d 1 K ||ξ|| w d C bp (ξ) (6.22) dC bp (ξ) dt detachment poly = -d 2 C bp (ξ) -d 2 K ||ξ || w d T bpp (ξ, ξ + ξ )dξ (6.23)
The rst two terms of the right-hand side of both equations are comparable:

• the rst term takes into account the eect of the neighborhood-independent detachment events of a bacterium (equation 6.22) or a polymeric particle (equation 6.23).

• the second term takes into account the eect of the neighborhood dependent detachment of a bacterium (equation 6.22) or a polymeric particle (equation 6.23). For the calculation of this term triplets of individuals formed with a pair bacterium-polymer (i, j) and a polymeric particle k need to be considered. In equation 6.22 we account for the eect of the polymer k on the bacterium detachment and use the density of triplet T bpp (ξ, ξ ) while in equation 6.23 we account for the eect of the polymer k on the detachment of the polymeric particle j in the pair (i,j) and use the density of triplet T bpp (ξ, ξ + ξ ).

• the third term in the right-hand side of equation 6.22 accounts for the eect of the polymer particle j in the bacterium-polymer pair (i, j) on the detachment rate of the bacterium i.

Finally the motility process of the bacteria also contributes to the dynamic of the pair correlation function C bp (ξ) according to the following equation:
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• When the bacterium i, in a bacterium-polymer pair (i, j) at distance ξ, moves, the original pair (i, j) is destroyed. This is accounted for with the rst term.

• On the other hand, when a new pair (i, j) at distance ξ is formed is the bacterium originally at a distance ξ + ξ from the polymeric particle j moves with a distance ξ . This process is considered by the second term.

• The third term corrects the rst term by accounting for the possible presence of polymeric particles in the neighborhood of the bacterium in the bacteriumpolymer pair (i, j) originally at a distance ξ. The motility of i in the pair (i, j) is reduced by the presence of polymeric particle k located at a distance ξ from i. The density triplet formed with the pair (i, j) separated with a distance ξ and a polymeric particle at a distance ξ from i is T bpp (ξ, ξ ). Multiplying this density by the per capita density dependent motility rate m 2 , weighting by the interaction kernel K(||ξ ||/w d ) and integrating over all distances ξ gives the third term.

• The fourth tern corrects the second term by accounting for motility reduction of the bacterium i originally at a distance ξ + ξ from the a polymeric particle j due to the presence of a polymeric particle k at a distance ξ from i.

The cumulative eect of the polymeric particles k is obtained by multiplying the triplet density T bpp (ξ + ξ , ξ ) by the interaction kernel U (||ξ ||/w d ) and integrating over all distances ξ . The result is then multiplied by the motility kernel K(||ξ ||/w m ), integrated over all distances ξ and multiplied by the density dependent motility rate m 2 .

• The fth term accounts for the eect of the polymeric particle in the bacterium-polymer pair (i, j) at a distance ξ on the motility of i. The density of pairs (i, j) is C bp (ξ). Weighted by the interaction kernel K(||ξ||/w d ) and multiplied by the density dependent per capita motility rate m 2 yields the fth term

• The sixth term corrects the second term in which a bacterium polymer pair originally at a distance ξ + ξ yields a new pair at a distance ξ after the bacterium has moved with a distance ξ . The sixth term account for the eect of the polymeric particle in this pair on the motility of the bacterium. The density of the original pairs is C bp (ξ + ξ) that we weight by the interaction kernel K(||ξ + ξ ||/w d ). Multiplying by K(||ξ ||/w m ) which represents the probability to move with a distance ξ and the per capita density dependent motility rates than integrating over all distances ξ yields the sixth term.

Closure of the moment hierarchy

The dynamic of the rst moment involves second moment terms and the dynamic of the second moment involves the third moment terms. To truncate the hierarchy of the moment we suppose that the position of triplet particles are not correlated and can be expressed as the product of the second moment terms. This yields the following closure expressions:

T ppp (ξ, ξ ) = C pp (ξ)C pp (ξ ) N p (6.25) T bpp (ξ, ξ ) = C bp (ξ)C bp (ξ ) N b (6.26) T bbp (ξ, ξ ) = C bb (ξ)C bp (ξ ) N b (6.27)

Solving the moment model

The state variables of the moment model are the average densities of bacteria (N b ) and polymer (N p ) and the three pair correlation functions C bb (ξ), C pp (ξ) and C bp (ξ).

The pair correlation function are discretized with regards to space with spatial resolution dξ = (dξ 1 , dξ 2 ) and they are transformed into three matrices. We discretize time derivatives according to an Euler explicit scheme and we use a xed time step ∆t = 0.1.

Results and discussion

In this section we compare the IBM and the moment model. All parameters take the values listed in table 6.1 unless otherwise stated. In the rst part we turn o all the density dependent processes and assess how density-independent motility aects the spatial pattern. We show that motility promotes the dispersion of the 

Density-independent model

In the absence of density-dependent processes (m 2 = 0, d 1 = 0, d 2 = 0) the spatial pattern has no eect on the average densities of bacteria and polymer. For a system formed with immotile bacteria (m 1 = 0) spatial pattern forms as a result of the short-range dispersion of the daughter cells. Figure 6.1 shows two snapshots of the state of the system for the cases of short-range (w b /L ∼ 0.05) and long-range dispersion (w b /L ∼ 0.1) of the daughter cells (L is the domain size). The formation of colonies is less marked for larger daughter cells dispersion. This result is well captured by the moment approximation function as can be seen in gure 6. Density-dependent detachment has an impact on the average-density of the bacteria and polymer. Figure 6.11 shows the time course of the density of bacteria and polymer calculated with the IBM and the moment model. For high densitydependent detachment rates, the equilibrium densities yielded by the IBM are lower than the densities that results from the moment model. The formation of colonies increases the detachment rate experienced by the bacteria which yields lower equilibrium densities. The dierence between both models vanishes for higher densitydetachment rates because of the absence of colonies formation.

Conclusion

We derived a moment approximation equations of a simplied IBM that describes colonies formation due to to bacteria motility reduction by a self-produced polymer.

Both models account for ve processes taking place at the level of the individuals. To analyze these models we proceed progressively starting with a density independent model obtained by setting the motility and detachment density dependent factors to zero. We show that in the absence of motility, colonies form as a result of the low dispersion of the daughter cells and that density-independent motility tend to increase this dispersion range preventing the formation of colonies. The chapter is organized in four sections: in the rst section we describe the simplied IBM. In the second section we explore the pattern yielded by the IBM and compare these patterns qualitatively to experimental biolm patterns and to the pattern obtained with the IBM including the polymer (chapter 6). Finally we discuss the approximation of the IBM using moment approach assess the technical diculties in solving moment equations with motility.

Simplied IBM for biolm formed with densitydependent motile bacteria

The IBM that we describe in this section is an extension of the IBM presented in chapter 4 that includes division and density dependent detachment. In addition to these processes , we include a density-dependent motility process. The resultant IBM considers the following three processes:
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• Division process: an individual in location x = (x 1 , x 2 ) has a probability (per unit of time) B(x, x ) to produce a newborn located in x given by: B(x, x ) = b 1

(7.1)
where b 1 is a constant division rate.

• Detachment process: an individual in location x detaches with a densitydependent probability D(x) given by:

D(x) = d 1 + d 1 p loc d (x) (7.2)
where d 1 and d 1 are the density-independent and the density-dependent detachment rates and p loc d (x) is the local density perceived by the individual in x. p loc d (x) measures the impact of the neighboring individuals on the detachment probability of the individual in x. We calculated this local density using the detachment kernel K(||x -x ||/w d ) given by:

K(||x -x || w d = 1/w d if ||x -x || < w d 0 else (7.
3)

• Motility: we model individuals motility as density-dependent process such that the probability per unit of time for an individual located in x to move to a location x decreases with the increase of the local density of individuals in x. Thus, in this model the neighbor of a focal individual tend to reduces its motility and increase its detachment rate. The probability per unit of time of an individual to move from x to x is given by: M (x, x ) = [m 1 -m 2 p loc (x, w v )]K((x -x )/w m ) (7.4) where m 1 and m 2 are respectively the density independent and the density dependent motility parameters, p loc (x, w v ) is the local density of bacteria perceived by an individual in x and calculated using a uniform interaction kernel with a size w v and m(x -x ). 

Numerical exploration of the IBM

Though simple, the IBM described above yields a diversity of patterns ranging from uniform distribution of the individuals to isolated colony and labyrinth-like patterns. In a recent paper Xavier et al. [Xavier 2009] showed that similar patterns arise in laboratory culture of the biolm forming strain P. aeruginosa (gure 7.1).

They explained the formation of these patterns by scale-dependent interactions between nutrient competition and mechanical pushing. At low nutrient densities the bacteria formed isolated colonies. The increase of the nutrient concentration induced a transition to the labyrinth-like patterns then to the dense biolm pattern.

Our simplied model can reproduce similar transitions from the isolated colony pattern to the labyrinth-like pattern, as illustrated in gures 7.2 and 7.3, either by increasing progressively the division rate of the individuals (gure 7.3) or by increasing the value of the density-dependent parameter m 2 . We identify bacteria motility and detachment as two potential processes that may yield labyrinth-like patterns. (Chapter 6). These results that the explicit consideration of the polymer may not be necessary for the formation of these spatial patterns.

In order to understand how these labyrinth-like patterns form in our model we propose to examine in details an IBM simulation through pattern observation and measuring spatial moments. The rst two terms on the right hand side have already been detailed in chapter 4. The rst terme accounts for the net variation of C(ξ) due to division events while the second term accounts for the net variation of C(ξ) due to detachment events.

The third term in the right hand side of equation 7.6 accounts for the net variation of density of pairs at distance ξ. This term is given by: The right-hand side is formed with 5 terms:

• the rst term denotes for the pairs ij lost due to the migration of the individual i

• the second term corrects the rst term by adding the eect of the individual j within the pair ij on the motility probability of the individual i

• the third term accounts for the eect of neighbors of a focal individual i on the its motility motility probability. This implies to consider the density of triplet formed with the pair ij and a neighbor k located at a distance ξ

• the fourth term accounts for pairs ij created when the individual i originally located at a distance ξ + ξ from j moves with a distance -ξ .

• the fth term corrects the fourth term by including the eect of neighbors of i (other than the individual j on its motility probability

• nally the sixth term account for the eect of the individual j in the pair ij at distance ξ + ξ on the motility of the individual i

We attempt to solve the moment model as in the previous chapter by discretizing the distances ξ with a spatial step dξ = (dξ 1 , dξ 2 ) and time with a constant timestep ∆t = 1 using an explicit Euler scheme. However the resultant discretized system diverged after few steps. The decrease of the time step to 0.1 and to 0.01 did not prevent the divergence of the algorithm nor did the implementation of Runge-Kutta scheme (RK4). We presume that the diculty in solving these equation is due to the rapid dynamic of the motility in comparison to division and detachment dynamic from one side and the discrepancy between the scale over which motility and birth occurs play.
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The detachment kernel seems to play a role in maintaining the strips of the labyrinth separated. This structure yielded a cartesian correlation matrix with a peak in the center (indicating the tendency of the individual to aggregate due to the reduction of their motility) and a wavy structure due to the labyrinth-like pattern.

There are few attempts in the literature of approximating individual-based models with density-dependent motility using moment models.

Murrell and Law [START_REF] Murrell | [END_REF]] approximated an IBM of Beetles migration in a fragmented woodland.

They considered a xed landscape pattern and assumed that beetles are attracted by the locations corresponding to woodland. In their model, Murrell and Law considered only the motility process(no birth and death processes). In their paper, the size of the migration kernel was relatively small compared to the size of the domain.

The interaction kernel (the equivalent of K(||ξ||/w v ) in our work) is not specied explicitly in their work as they assumed that interaction occur exclusively when an individual enters a woodland patch. Implicitly, they consider an interaction kernel with a size corresponding to the size of a patch (equivalent to the spatial resolution dξ in our work). Though simpler than our model, Murrell and Law highlighted that there may be practical problems in the numerical integration of the dynamical system due, in their work, to the discrepancy between the scale of movement and the space scale of the woodland patterns.

In this work we meet comparable diculties in the numerical integration of the moment model. We presume that in part the instability of our numerical scheme is due to the discrepancy between the spatial scales over which the dierent processes occur combined with the signicant dierence in the motility rate and birth and detachment rates. We hope to address these issues in a future work. IBMs expand the toolbox of theoretical ecologists providing a valuable means to investigate how system-level properties emerge out of local interactions. However several reviews and textbooks on the use of IBMs in ecology (but also in other elds) pointed out some of the limitation of the approach. The complexity and limited generality are often quoted as the main limitations of individual-based modeling [START_REF] Uchmanski | [END_REF][START_REF] Volker Grimm | Individual-based modelling and ecological theory: synthesis of a workshop[END_REF]]. IBMs evolve in a large state space as the description of the system requires the description of the state of all the individuals.

A key question is whether all these state variables are necessary for the purpose of an investigation. A smaller model with a small number of aggregated state variables wouldn't be more appropriate ?

In this work, we try to reconcile these opposite points of view. Indeed, we investigate how practical and productive it is to approximate the dynamic of IBMs used in microbial ecology with aggregated mathematical models involving a small number of state variables. In particular, we assess whether these 'simpler' models capture successfully the spatio-temporal patterns yielded by the IBM. Several aggregated models of the literature describe complex microbial systems without referring explicitly to individuals, and as a rst approach we compare in chapter 2 one of these models (a diusion-reaction model) to an IBM of bacterial colony growth. The IBM explicitly represents the individual microbial cells and their variability. Comparisons of this type can be helpful as the deterministic model can provide us with a reference to which the IBM results can be compared. However, we show that the comparison can be dicult (even meaningless) when the aggregated model is derived independently of the IBM. One of the main diculties is to assign appropriate values to the parameters of both models, especially when some of these parameters
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 11 Figure 1.1: The seven elements of the ODD protocol for the description of individualbased models. The elements are grouped into the three blocks: Overview, Design concepts, and Details (reproduced from [Grimm 2006])
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  In chapter 5 to 7 we focus on a new individual-based model that includes bacteria surface-associated motility. The originality of this model is in assuming that the excretion of exopolymeric substances by the bacteria tend to reduces their migration capacity yielding a rich variety of spatial patterns. In chapter 5 we present the detailed individual-based model

  . The cell grows by uptaking a diusive nutrient which concentration is imposed at the domain boundary. We propose to compare the spatial patterns of the simulated colonies yielded by both models in two dierent growth regimes: the 'reaction-limited' regime where the growth of the CemOA : archive ouverte d'Irstea / Cemagref Chapter 2. Microbial colony growth: comparison of an individual-based model and diusion-reaction model bacteria is limited by their nutriment uptake capacity and the 'diusion-limited' regime in which the bacteria growth is limited by the nutrient transport. Through this comparison, we aim to illustrate the potential and limitation of each approach.
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 221 Figure 2.1: Zoomed view of the IBM spatial domain: bacterial cells (discs) and

  proposed a continuum deterministic model based on the diusion-reaction framework for modeling microbial biolms. The model represents CemOA : archive ouverte d'Irstea / Cemagref 2.5. Aggregated mathematical model 19 (a) IBM time = 0h (b) IBM time = 10h (c) IBM time = 20h
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 22 Figure 2.2: Time evolution of the colony pattern simulated using the IBM in the case of a 'reaction-limited regime'. Simulation conducted with D s = 10 -10 m 2 /s and dt = 0.05s. The gray scale indicates the nutrient concentration (Dark gray: s = 1.0kg/m 2 , white: s = 0)
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 23 Figure 2.3: Time evolution of the colony pattern simulated using the IBM in the case of a 'diusion-limited regime'. Simulation conducted with D s = 10 -12m 2 /s and dt = 0.5s. The gray scale indicates the nutrient concentration(Dark gray: s = 1.0kg/m 2 , white: s = 0)
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 2 Figure 2.4 compares the snapshots of the colonies simulated with the IBM and the diusion-reaction model in the case of a 'reaction-limited' regime. Both models yield rounded shaped colonies that expand equally in all directions. The uctuations in the colony simulated with the IBM are due to the stochastic positioning the newborn individuals. The length scale of these uctuations is relatively small compared to the size of the colony, and a small number of simulations is sucient to extract the
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 2 Microbial colony growth: comparison of an individual-based model and diusion-reaction model (a) IBM time = 0 (b) DR time = 0 (c) IBM time = 10h (d) DR time = 10h (e) IBM time = 20h (f) DR time = 20h
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 24 Figure 2.4: Comparison of the colony pattern simulated by the IBM and by the diusion-reaction model in the case of a 'reaction-limited regime'. DRM simulation conducted with D 0 = 10 -14 m 2 /s
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 25 Figure 2.5: Comparison of the colony pattern simulated by the IBM and by the diusion-reaction model in the case of a 'diusion-limited regime'. DRM simulation conducted with D 0 = 10 -16 m 2 /s
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 26 Figure 2.6: Comparison of the average pattern yielded by the IBM (a) and the pattern simulated with DRM (b)-(d) for dierent values of D 0
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3. 1

 1 Description of the simplied individual-based model We describe in Chapter 2 an IBM for the growth of a colony in which the individual cells are represented as discs with variable diameters. The individuals grow and divide while uptaking a diusive substrate. They shove each others making the size of the colony to increase. The individuals compete for the nutrient and the increase of their local density decreases the level of nutrient and reduces their growth rate. This phenomena is somehow comparable to a density-dependent growth process. When the local density of the bacteria increases their individual growth rate decreases because of the decrease of the local substrate concentration perceived by the bacteria. We propose to construct a simple IBM that captures this density-dependant growth without considering the variability in individual size

1 .

 1 Description of the simplied individual-based model 31 specifying how neighboring individuals aect the division rate of a focal individual.

2 .

 2 Calculate the division and death rates b i (p) and d i of each individual i = 1..n where p is the spatial pattern at time t 3. Calculate the sums r b = n i=1 b i (p) and r d = n i=1 d i . The rate at which an event (division or death) occurs is given by r(t) = r b (t) + r d (t) 4. Choose the waiting time τ for the next event to occur according to τ = -1 r ln λ where 0 < λ ≤ 1 is a uniformly distributed random number 5. Choose a division or death event with a probability r b /r and r d /r respectively 6. Choose an individual k with a probability b k /r b (if the event is division) or d k /r d if the event is death, where b k and d k are the respectively the division and death rates of the individual k 7. Perform the selected event on the individual k 8. Update time according to t = t + τ 9. Continue from step 2 until t < t end

1 :

 1 Model parameters. (The # symbol denotes for the dimension on the number of individuals) 3.1.5 Model outputs The model output is a list containing the positions of the individuals. The list denes the spatial pattern and changes when an individual event (division or death) occurs. We analyze these spatial pattern by measuring two statistical quantities dening the rst and second spatial moments:
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 3132 Figures 3.1 and 3.2 show colony patterns simulated with both models in the case of a 'reaction-limited' and 'diusion-limited' regimes. We switch from the 'reactionlimited' regime to the 'diusion-limited' regime by decreasing the nutrient diusion factor in the detailed model and by increasing the value of the density-dependent growth parameter b 1 in the simplied model. The patterns yielded by both models shows similarities and dierences. First the simplied model reproduces quiet well the circular and irregular shapes observed in the detailed model. The distribution of the individuals within the colony are however dierent in the pattern yielded by both models. In the original model the individuals are tightly packed where as in the simplied model they are dispersed within the colony. This is due to the simplication of the mechanical pushing process (shoving process) considered in the detailed model. Shoving process rearranges the position of the individual in the colony simulated with the detailed IBM and relax overlapping of neighboring cells.In the detailed IBM the cells continuously shove each others and their position in slightly modied after each time step while in the simplied IBM the position of the daughter cell is xed after the division event and do not change in time. The eect of shoving can be included in the simplied IBM by adding a density-dependent motility process where individuals become motile when the local density of neighbors increases. However for simplicity we do not include this eect and consider that the simplied IBM already captures the main features of colony shape. Another form of density-dependent motility will be studied in more detail in chapter 5 to 7.
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 3 Figure 3.3 shows two snapshots of an IBM simulation of two colonies. The colonies show dierent shapes. The bacteria in the rst seems distributed uniformly where as they are organized in small groups in the second pattern. Figure 3.4 reports the corresponding pair correlation functions (C (ξ) matrices plotted using Matlab). The matrices should not be confused with the colony pattern itself. The matrices describes the average local environment experience by an individual within the colony at dierent distances. A peak in the center of the matrix indicates that the individuals experience a high density of neighbors at short distances. These densities tend to vanish at higher distances. The matrices are normalized such that a value of 1 corresponds to a Poisson-like patterns where the individuals are uniformly distributed over the domain. Values higher than one indicates an aggregated pattern meaning that the density experienced by the individuals is higher than what would be expected if the individuals were distributed uniformly. The comparison of the pair correlation matrices conrm that the individuals within the colonies in gure 3.3 experience dierent local conditions in term of neighbor densities. The proles of the Cartesian pair correlation function plotted in gure 3.4 that the pair correlation function takes values close to 1 for the rst colony indicating the absence of any spatial structure, whereas the second function peaked at short distance and vanished to one at large distances. The peak at short distances indicates that the individuals are likely to experience higher densities of neighbors than what would be experienced in the absence of any spatial structure. The pair correlation function

  Figure 3.3: Examples of colony patterns both initialized with a single cell in the center of the domain.

  the second term corrects the independent division rate calculated by the rst term by taking into account the negative eect of the possible presence of neighbors around the individual i. The average local density of neighbors experienced by the individual i is given by the integral K(||ξ ||/w d )C(ξ )dξ . Multiplying by the density-dependent division rate b 1 and by 2K(||ξ||/w b )

Figure 3

 3 Figure 3.6: Discretization of the vectorial distance ξ separating two individuals

Figure 3 . 7 :

 37 Figure 3.7: Discretization of interaction and dispersion kernels K(||ξ||/w b ) and K(||ξ||/w d ). Both kernels are uniform with a window width w b = w d = h = 5dξ

Figure 3

 3 Figure 3.9: Radial pair correlation function yielded by the IBM for b 1 = d 1 = 0.1, b 1 = 0.0

Figure 3 .

 3 Figure 3.8 shows an illustration of such patterns. The initial uniform distribution of individuals in gure 3.8(a) evolves towards and aggregated patterns (gure 3.8(b)).

Figure 3 .

 3 Figure 3.9 shows the radial pair correlation function (extracted from the central row of the Cartesian pair correlation function). As the initial distribution of individuals is uniform the initial pair correlation function takes values close to one. However

Figure 3 .

 3 Figure 3.11: Comparison of the moment approximation model to the individualbased model. The individual-based results are averaged over 5 simulations

  Figure 3.11 compares the time course of the average densities yielded by the IBM and the moment model for b 1 = 0.1, d 1 = 0.05 and b 1 = 0.2. The corresponding stationary solution obtained with the non spatial model is N * = 0.25.

  Figure 3.12 shows that both the IBM and the moment models yields equilibrium values of the density of individuals lower than that yielded by the non spatial model. The formation of colonies reduces the division rate of the individuals compared to the case of uniform distribution of individuals.

Figure 3 .

 3 Figure 3.13 shows the time evolution of the central element value of the Cartesian pair correlation function. The moment model captures well the dynamic of the local neighborhood simulated by the IBM.

Figure 3 . 12 :

 312 Figure 3.12: Time evolution of the average density of individuals : b 1 = 0.1, b 1 = 0.2 and d 1 = 0.05

  by comparing the moment model to the IBM simulation. Another important approximation relies on the use, in the moment model, of the average local environment of the individuals. In moment models the average local environment is often expressed with the integral of the pair correlation densities weighted with an interaction kernel: IBM the local environment of the individuals is variable. Thus if the local environment varies within a wide range individuals may experience local densities that are very dierent from the average. This may cause the failure of the moment model in capturing the individual-based dynamic as will be illustrated in chapter 6 CemOA : archive ouverte d'Irstea / Cemagref 52 Chapter 3. Moment approximation of a microbial IBM for colony growth Finally, the assessment of the quality of the approximation made in the moment model are often performed by comparing the IBM and the moment model simulations. The simulations are run for particular set of parameters and it is not clear whether a comparison of the results over a small set of parameters is sucient to assess the quality of the approximation.

2 CemOA

 2 Figure 4.1: The spatial structure in a developing biolm as revealed by advanced microscopy techniques (CSLM) [Tolker-Nielsen 2000]. The initial pattern formed with a small number of cells adsorbed on a surface (left) evolves toward a multicolonies pattern (middle and right)

  Figure 4.1 shows an example of biolm development process (under specic laboratory conditions)

1 :

 1 as a proxy to model small biolm fragment detachment as individuals separated with a short distance (with the order of the radii of the detachment kernel) are likely to experience the same the local density p loc and would detach with the same probabilityIndividual-based model parametersThe assumption that the biolm detachment probability (or rate) increases with the increase of the local density of individuals (or biolm thickness in some models) is encountered in many biolm detachment models. Implicitly we suppose that the biolm detachment rate increases when the biolm grows in the vertical dimension (though not considered explicitily in this model) due to an increased hydrodynamic shear stress.The choice of the birth and detachment kernels may have an eect on the system dynamics[START_REF] López | Clustering, advection and patterns in a mode of population dynamics with neighborhood-dependent rates[END_REF]][Birch 2006]. With regard to density-dependent processes, the use of a uniform kernel embodies the assumption that all the individuals within the kernel window have an equal eect on the focal individual. A

Figure 4 . 2

 42 shows the (quasi) stationary spatial patterns yielded by the IBM for a large birth kernel (w b = 19) and dierent sizes of the detachment kernel (w d = 3 and w d = 19). A large value of the birth kernel seems to prevent colony formation yielding a Poisson-like pattern where the individuals are uniformly distributed over the CemOA : archive ouverte d'Irstea / Cemagref 4.4. Deriving the moment approximation model 57 domain. However, for small birth kernels (gure 4.3) we observe the formation of colonies spaced with a regular distance. The distance between the colonies corresponds approximatively to the radii of the detachment kernel as illustrated in gure 4.4 showing the stationary patterns for a small birth kernel w b = 3 and two dierent detachment kernels w d = 19 and w d = 31. The increase of the size of the detachment kernel induced an increase in the spacing between the colonies. The pattern of isolated colonies in gure 4.4 is a typical example of a system-level behavior that emerges out of the local interactions. The pattern minimizes the competition between the colonies with regard to detachment. If the colonies were too close to each other, the individuals in each colony would experience a higher local density than the local densities experienced if the colonies were isolated. By keeping a distance between the individuals corresponding approximatively to the radii of the detachment kernel, the individuals within each colony experience only the eect of their neighbors in the colony.4.4 Deriving the moment approximation modelWe propose to approximate the dynamic of the average density of individuals and the pair correlation function using moment approximation technique and compare the results with those measured on the IBM patterns. The state variable of the moment model are the average density of individuals N (the rst spatial moment) and the pair correlation function C(ξ) (the second spatial moment) where ξ = (ξ 1 , ξ 2 ) is a vectorial distance. The dynamic of these variables is given by:

  Figure 4.2: (Quasi) stationary spatial patterns yielded by the IBM for w b = 19 and variable w d

Figure 4

 4 Figure 4.4: (Quasi) stationary spatial patterns yielded by the IBM for w b = 3 and large detachment kernels

4. 5 .

 5 Comparison of the moment model and the IBM 61 ospring settling around the i parent is K(||ξ ||/w b ). Multiplying these three factors and integrating over all possible distances ξ of ospring dispersal yields the second term.

  detailed in the next paragraph the choice of the closure expression can have a signicant impact on the simulated pattern. This choice is guided by the comparison of the moment and the individual-based model patterns. A good closure is the one that allows the moment model to capture the main features of the patterns and dynamics yielded by the individual-based model.

  approximated the IBM with a moment model. Moment model attempts to capture how the local environment of the individuals evolve in time and how it aects the average density of individuals. The derived moment model is globally in a good agreement with the IBM. Moment model predicts a Poisson-like distribution in the case of large birth kernels and an oscillating radial pair correlation function, in the case of small dispersion and large detachment kernel, with a period approximatively corresponding to the size of the detachment kernel. The peaks in the oscillating pair correlation function however are high in the moment model than in the IBM. This may be explained by the choice of the closure. The closure expresses the the third moment in term of rst and second moments. The moment model results can be very sensitive to the choice of the closure expression. For instance the classical second order closures (T (ξ, ξ ) = C(ξ )C(ξ)/N ) fails in predicting the wavy strcture of the pair correlation while the third order closure overestimates the hight of the CemOA : archive ouverte d'Irstea / Cemagref(a) w b = 19, w d = 19 (b) w b = 3, w d = 19

Figure 4 . 5 :

 45 Figure 4.5: Comparison of the average densities of individuals (rst spatial moment) calculated with the moment model and simulated with the IBM for dierent birth kernel sizes: w b = 19 and 3 (Domain size 201 × 201 and w d = 19)

Figure 4 . 6 :Figure 5 . 1 :

 4651 Figure 4.6: Comparison of the radial pair yielded by the IBM and the moment model for w d = 19 and dierent sizes of the dispersion kernel

  Figure 5.3: Motility dependence on the excreted product concentration for dierent values of β

  Figure 5.4: Overall and zoomed view of the spatial pattern formed by the bacteria (black dots) and the excreted macromolecules (gray scale) for motile bacteria (β = 0)

  nosa biolm development [Whitchurch 2002] [Klausen 003a] [Klausen 003b] [Allesen-Holm 2006][Barken 2008]in an individual-based model and investigate how bacteria motility reduction due to a self-produced substance yields dierent spatial patterns during the early stages of biolm development. Our simulation results suggest that self-produced substance-mediated motility reduction does play a role in microcolony formation.

Figure 5

 5 Figure 5.5: Overall and zoomed view of the spatial pattern formed by the bacteria (black dots) and the excreted macromolecules (gray scale) for immotile bacteria
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  the individual detachment rates of the bacteria (b) the individual detachment rates of the polymer (c) the individual motility rates of the bacteria 3. Calculate the sums r 1 , r 2 and r 3 which are respectively the sums of the individual rates of bacteria detachment, polymer detachment and bacteria motility.

  bacteria and prevents colony formation. In the second part we turn on the motility dependence on the local polymer density and compare the pattern to the previously obtained ones. We show that the reduction of motility due to the produced polymer promotes colony formation. Finally, we turn on the density-dependent detachment processes. The detachment rate increases with the increase of the local density CemOA : archive ouverte d'Irstea / Cemagref parameters of polymer. We investigate how this process aect the aggregated pattern formed by density-dependent motility. All along this section we compare the simulation of the IBM with the results of the moment model and assess the validity of the approximation made in the moment approach.

  2. For low dispersion of the daughter cells, the density of pairs of bacteria increases at short distances suggesting the existence of a bacteria-bacteria aggregation at these distances. Large dispersion range yields pairs density function that takes values close to 1, indicating a uniform pattern. The moment model captures well the dynamic of the pair correlation function. Now how density-independent bacteria motility aects the aggregated pattern yielded in the case of short range dispersion? Figure 6.3 shows snapshots of the simulated system when density-independent motility of the bacteria is added. The motility range is varied by varying the size w m of the motility kernel. Increasing the motility range of the bacteria disperse daughter cells and their parents preventing CemOA : archive ouverte d'Irstea / Cemagref

  (a) w b = 5 (b) w b = 11
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 61 Figure 6.1: IBM snapshots of the state of the system at time t = 100 for the case of immotile bacteria m 1 = 0.0. (a) short-range dispersion, (b) long-range dispersion. The value of the other parameters are b 1 = d 1 = 0.1, b 2 = d 2 = 0.1, d 1 = d 2 = m 2 = 0.0 (no density-dependent processes)

Figure 6 . 2 :

 62 Figure 6.2: Comparison of the radial pair correlation functions obtained by the IBM and the moment model at time t = 100 for the case of immotile bacteria m 1 = 0.0. (a) short-range dispersion, (b) long-range dispersion. The value of the other parameters are b 1 = d 1 = 0.1, b 2 = d 2 = 0.1 (no polymer), d 1 = d 2 = m 2 = 0.0 (no density-dependent processes)

Figure 6

 6 Figure 6.3: IBM snapshots of the state of the system at time t = 150 for the case of density-independent motile bacteria m 1 = 0.0. (a) short-range motility, (b) longrange motility. The value of the other parameters are b 1 = d 1 = 0.1, b 2 = d 2 = 0.1, d 1 = d 2 = m 2 = 0.0 (no density-dependent processes) and w b = 5

Figure 6 .

 6 Figure 6.5 shows snapshots of the state of the system for dierent values of m 2 . In the IBM, increasing the value of m 2 promotes the formation of colonies due to the decrease of the immobilization threshold. This can also be observed from gure 6.6 showing the radial pairs correlation function (at time t = 400) simulated with the IBM and withe moment model. The pair correlation function peaked at short distance with the increase of the value of m 2 . Surprisingly, comparison with the moment model shows that the later fail in capturing the formation of colonies (gure 6.6(b)). The pair correlation function yielded by the moment model remains close to 1 indicating a uniform pattern. To explain this dierence we extracted the time course of the local polymer densities experienced by the bacteria in the IBM and the moment model. The local density experienced by the bacteria in the IBM dier from an individual to another depending on the location of the individual and its neighborhood. At each time step we calculate the average local density of polymer and the maximum value experienced by the bacteria. In the moment model, only the average local polymeric density is considered in the model and is given by:

Figure 6 . 4 :6Figure 6 Figure 6 . 7 :

 64667 Figure 6.4: Comparison of the radial pair correlation functions obtained by the IBM and the moment model at time t = 150 for the case of motile bacteria m 1 = 1.0 (a) short-range motility, (b) long-range motility. The value of the other parameters are b 1 = d 1 = 0.1, b 2 = d 2 = 0.1, d 1 = d 2 = m 2 = 0.0 (no density-dependent processes) and w b = 5

Figure 6 . 8 :

 68 Figure 6.8: Eect of motility range w m on colony formation. Short-range corresponds to w m = 5 and long-range to w m = 15. Other parameters are b 1 = d 1 = 0.1, b 2 = d 2 = 0.1, d 1 = d 2 = 0.0 (no density-dependent detachment), m 2 = 2.0, w b = 5 and w d = 5

1 Figure 6 1 Figure 6 1 Figure 6

 161616 Figure 6.9: IBM snapshots of the state of the system at time t = 400 for the case of density-dependent detachment. b 1 = b 2 = 0.12, d 1 = d 2 = 0.1, m 1 = 1.0, m 2 = 2.0,w b = 5, w m = 15 and w d = 5

  The expression [m 1 -m 2 p loc (x, w v )] corresponds to the motion probability (per unit of time) of the individual in x. This expression should be positive. If the local perceived density p loc (x, w v ) is higher that the value of m 1 /m 2 than the motion probability of the individual in x is set to zero.A simulation is initialized with a number N 0 individual cells uniformly distributed over the domain. The model parameters are summarized in table 7.1. of this simplied IBM with the IBM presented in the previous chapter (Chapter 6) is that the detachment and the motility probabilities depend on the density of the individuals themselves rather than on the density of the excreted product. The implicit assumption behind this simplication is that the excreted products and the individuals spatial distributions are correlated such that the local accumulation of the rst induces (and/or results from) the accumulation of the second.

Figure 7 .

 7 Figure 7.4 shows the patterns yielded by the simplied model are comparable to those that may be obtained with the IBM including the dynamic of the polymer

Figure 7 .

 7 5 shows the snapshots of the formation of the labyrinth-like pattern. The simulation is initiated with n 0 = 100 individuals distributed uniformly. The individuals divide and disperse due to the large motility kernel. As the density of individuals increases in the systems the motility of the individuals decreases progressively and colonies start to form. The formation of colonies in not due to the total immobilization of the individuals but rather to local equilibrium between division which tend to promote the local accumulation due to the small birth kernel (w b = 3) and motility that tends to disperse the individuals.

Figure 7 .

 7 Figure 7.8 reports the time evolution of the average density of individuals and shows a rapid rst phase where the average density increases before decreasing towards an equilibrium value (0.25). The equilibrium average density of individuals yielded by the IBM is lower than the value calculated using the mean-eld model (0.35) indicating that the individuals in average detach at a higher rate than what would be expected in the absence of any spatial pattern.

Figure 7 . 2 :Figure 7 . 3 :Figure 7 . 4 :

 727374 Figure 7.2: Examples of patterns yielded by the simplied IBM and the IBM with extracellular product

Figure 7 . 5 :

 75 Figure 7.5: Snapshots of the spatial pattern yielded by the IBM at dierent times. The parameters are b 1 = 0.15, w b = 3, w d = 19, w m = 31, w v = 19, m 1 = 1.0 and m 2 = 3.0

Figure 7 .

 7 Figure 7.6: Time evolution of the cartesian pair correlation function. The parameters are b 1 = 0.15, w b = 3, w d = 19, w m = 31, w v = 19, m 1 = 1.0 and m 2 = 3.0

Figure 7 . 7 :Figure 7 . 8 :

 7778 Figure 7.7: Time evolution of the 'radial' pair correlation function. The parameters are b 1 = 0.15, w b = 3, w d = 19, w m = 31, w v = 19, m 1 = 1.0 and m 2 = 3.0

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 This thesis takes place in the context of the debate between complex individual based models (IBMs) and more traditional dierential equation models with a low number of variables. The use of individual-based models (IBMs) in microbial ecology has been growing rapidly during the last two decades, encouraged by the fast increase in computing power and advances in laboratory observation techniques.

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

Table 2 .

 2 

	1: State variables of the individual-based model
	Parameters	Description	Unit	Value
	s 0	Initial substrate concentration	kg/m 2	1.0
	N 0	Initial number of individuals		1
	m 0	Initial mass of the individual	kg	10 -9

Table 2 .

 2 

2: Individual-based model initialization diusive substrate consumed by the bacteria. In the model, an individual bacterial cell grows by uptaking substrate from its local environment at a rate that depends on the local substrate concentration and on its individual mass. If the mass of the individual becomes higher than a critical value, the individual divides into two identical adjacent individuals.

Table 5 .

 5 

1: State variables of the individual-based model teria movement is then slowed down through interactions with the excreted product yielding dierent patterns of microcolonies.

Table 5

 5 

	.3: Initial conditions of the individual-based model
	5.2.6.7 IBM parameters

Unless explicitly specied, we use the parameters values in table 5.2 for the individual-based model.

  128 Chapter 7. Exploring the labyrinth-like patterns in a simplied IBM of a microbial biolm formed with motile bacteria

	dC(ξ) dt	motility	=				(7.7)
			-m 1 C(ξ) + m 2 K	||ξ|| w v	C(ξ)	(7.8)
			+ m 2 K	||ξ || w v	T (ξ, ξ )dξ
			+ m 1 K	||ξ || w m	C bb (ξ + ξ )dξ
			-m 2	K	||ξ || w m	K	||ξ || w v	T (ξ + ξ , ξ )dξ dξ
			-m 2 K	||ξ + ξ || w v	K	||ξ || w m	C(ξ + ξ )dξ
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CemOA : archive ouverte d'Irstea / Cemagref 3.1. Description of the simplied individual-based model

(a) Time=0 (b) Time=50 (c) Time=100 Figure 3.8: Individual-based simulation of pattern formation for b 1 = d 1 = 0.1, b 1 = 0.0 CemOA : archive ouverte d'Irstea / Cemagref
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and patches (squares with a side ∆l). A bacterium with continuous coordinates x,y is contained in the patch i = f loor(x/∆l), j = f loor(y/∆l).

Purpose

The model we propose is intended to qualitatively explore the role of surfacemotility reduction by self-produced macromolecules in biolm pattern formation.

We address this question at a rather abstract level, and the model results are not compared to specic experimental results.

State variables and scales

The model is a two-dimensional representation of a biolm system and comprises two entities: bacterial cells and their local environment (patches) (gure 5. 

Scales

We simulated the rst day of the biolm development. We discretized time with a constant time step, denoted ∆t = 1s. A spatial patch has a size of 5 × 5 µm and the whole domain contains 400 × 400 patches (spatial domain side l = 2000µm).

Bacterial cells have variable diameters (∼ 2µm) depending on their masses.

Process overview and scheduling

In the IBM, bacteria move stochastically along a 2-D surface while consuming substrate, growing and reproducing by binary ssion and excreting a product. Bac-Chapter 8. Conclusion have no clear physical meaning. In our example, we had to tune the parameters of the diusion-reaction model empirically to obtain the best t with the IBM.

Then we adopted a general approach involving two steps: (i) simplifying IBMs to transform them into clearer mathematical objects and (ii) deriving deterministic mathematical models which approximate some aggregated dynamics of this simplied IBM. We focused on moment approximation techniques which provide a valuable means to derive deterministic models on the middle ground between oversimplied mean-eld models and intractable IBMs. In particular, this approach allows one to capture some important aspects of spatial dynamics. In this part, the moment approach provided some interesting insights on the studied dynamics, but we also encountered some of its limitations and also some practical diculties of implementation.

In chapter 6 we proposed a simplied version of the IBM obtained by neglecting the spatial extent of the bacteria and the dynamic of the nutrient. The excretion of extracellular product is considered in this rst simplied model. We approximated the resultant IBM using moment approach and compared the patterns dynamics In such a situation the aggregation of the IBM using rst and second moment measures as state variable may not be appropriate.

Chapter 7 illustrates some of the technical limitations that may be encountered when implementing and solving moment models. We simplify further the IBM with motile bacteria by dropping the polymer dynamics and assuming that the bacteria motility is reduced by the increase of their local density. The resultant model is simpler to analyze though numerical experimentation and still reproduces the rich patterns that can be observed with the polymer. We discretized the moment model using either Euler scheme and RK4 but both time discretization schemes are unstable for the parameters that we considered. The discrepancy between the motility and birth kernel size and the signicant dierence between the time scale and mobility and the other processes are probably at the origin of these instabilities.

We shall note however that the moment equations still miss a solid mathematical framework that allow the analysis of their properties.

Perspectives

The aggregation of individual-based models that arise in ecology, and microbial ecology in particular, is still in its infancy as a research eld. There are few attempts in the microbial ecological literature to simplify the detailed IBMs and approximate their dynamics using a small number of aggregated state variables. The approach is more encountered in physics through the derivation of the master equation and its further reduction to simpler models. The diculty to extend this approach to ecology lies in the richness and complexity of the ecological interactions. Living organisms, unlike inert interacting particles, have the capacity to adapt and evolve which may confer to the population new emergent properties. We believe that much research eort are still needed to develop reliable techniques for the aggregation and reduction of IBMs that arise in ecology.

Moment approximation can be useful in deriving new models where the local neighborhood of the individuals is considered explicitly as a state variable. They however have some limitations that may be overcome with an additional research eort. In particular tools and methods to analyze moment models are needed.

There are other techniques for deriving aggregated mathematical models that can be explored in future work. In particular, models of probability densities provide some average behaviors which are interesting to compare with the dierent runs of Finally IBM simplication may yield unrealistic models but it seems to us necessary if we would like to generalize the IBM results and elaborate new theories, and explore how complex structures can emerge form interactions. Moreover, we hope that our work brought some convincing evidences that dierential equation models approximating these IBMs can bring some insight about this process of emergence.
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