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Resumé en français

Une nouvelle approche optique pour améliorer la caractérisation des sols par spectrométrie visible et proche infrarouge ix x Contexte de la thèse L'un des dés majeurs de ce XXI ème siècle est le changement climatique et ses con- séquences sociales, économiques et environnementales. L'attention portée au réchauement global et à l'augmentation des concentrations en gaz à eet de serre (GES) dans l'atmosphère, principalement le dioxyde de carbone (C O 2 ), le méthane (C H 4 ), et l'oxyde nitreux (N 2 O), a conduit à s'interroger sur le rôle des sols en tant que source ou puits de carbone (C). Les sols seuls constituent le plus grand réservoir de carbone organique de l'écosystème terrestre, approximativement trois fois le stock de la biomasse continentale et deux fois celui de l'atmosphère.

Le stock de carbone du sol étant fortement dépendant du mode d'usage des terres ou des pratiques culturales, une modication de ceux-ci peut conduire à des changements importants des stocks des horizons de surface (entre 0 et 30 cm de profondeur), dans le sens d'une diminution ou d'une augmentation. La question de la comptabilisation des stocks de carbone dans les sols agricoles et forestiers fait l'objet de nombreuses discussions, à la fois dans le cadre des négociations internationales sur le climat sous l'égide des Nations-Unies, mais aussi dans le cadre des marchés volontaires, en plein essor.

Dans ce contexte, il devient nécessaire de pouvoir comptabiliser précisément les stocks de carbone et leur évolution dans le temps. Les méthodes actuelles, basées sur des campagnes d'échantillonnage associées à des méthodes analytiques de laboratoires longues et couteuses, constituent un frein pour le développement de ces actions en faveur de la séquestration de carbone dans les sols.

La spectroscopie proche-infrarouge (SPIR), technique connue depuis plus de 40 ans pour mesurer la qualité et la composition des produits agricoles et alimentaires, présente un potentiel indéniable pour remplacer les campagnes de mesure couteuses. Cependant, alors qu'elle est depuis plusieurs décennies utilisée en routine dans l'industrie laitière ou céréalière, ou en ligne -en agro-alimentaire et plus récemment pour le tri des déchets-, elle reste, en ce qui concerne le sol, encore du domaine de la recherche. Si la quantication de diérents constituants ou certaines fonctions (teneur pondérale en carbone organique et inorganique, en azote, capacité d'échange cationique, granulométrie) a fait l'objet de nombreuses publications, plusieurs verrous méthodologiques et technologiques doivent être levés pour en faire une méthode d'analyse de routine pour la comptabilité des crédits C.

Principes et limites de la SPIR appliquée aux sols

La loi de Beer-Lambert constitue le cadre théorique qui régit les principes analytiques de la spectroscopie proche-infrarouge. Elle établit le lien linéaire entre l'absorbance de la lumière et la concentration c d'un élément chimique constituant le milieu analysé, son coecient d'extinction ε(λ) et le trajet l parcouru par la lumière dans le milieu:

A(λ) = -log I T (λ) I 0 (λ) = ε(λ) • c • l
Cependant, cette loi ne s'applique que dans le cas de milieux translucides faiblement concentrés (donc peu absorbants). Dans le cas des sols, qui sont des milieux particulaires hétérogènes, l'interaction de la lumière avec la matière est beaucoup plus complexe. L'analyse multivariée en spectroscopie proche infrarouge consiste à trouver un modèle capable de relier les spectres d'absorbance à une variable d'intérêt, la concentration par exemple. Les modèles sont principalement construits à partir de méthodes d'analyse multivariées linéaires, du fait de la loi de Beer-Lambert. La méthode la plus couramment utilisée étant la régression PLS.

Dans le cas des sols, et plus généralement des milieux très diusants, les modèles chimiométriques construits à partir de spectres d'absorbance dont la linéarité avec la concentration est remise en cause du fait de la diusion, ne sont pas toujours de qualité optimale, ni robustes.

Des prétraitements mathématiques sont généralement appliqués sur les spectres pour limiter l'impact de la diusion et rétablir, dans une certaine mesure, cette linéarité. Mais ces prétraitements ne susent pas toujours.

Objectifs de la thèse

Dans cette thèse, nous proposons une démarche alternative aux prétraitements mathématiques en nous focalisant sur la première étape de la méthode analytique par spectroscopie proche infrarouge: la formation du signal.

L'objectif est de mesurer un signal d'absorbance de qualité optimale, c'est à dire, le moins impacté possible par les phénomènes de diusion de la lumière. L'hypothèse que nous posons est que la qualité du modèle de prédiction du carbone du sol est fortement liée à la qualité du signal d'absorbance à partir duquel il est construit.

Ainsi, nous avons apporté des réponses originales aux questions scientiques suivantes:

1. Comment réduire l'eet de la diusion sur le signal spectroscopique ?

2. Comment, à partir de ces signaux, modéliser l'absorbance chimique du milieu?

xii PoLiS, une méthode optique pour réduire l'impact de la diusion sur le signal spectroscopique Principes théoriques de la correction par polarisation Le dispositif de mesure optique développé ici, et dénommé PoLiS, utilise les propriétés ondulatoires et les principes de polarisation de la lumière pour sélectionner la part du signal qui aura été moins diusée par le milieu. Lorsqu'un ux lumineux incident, linéairement polarisé, interagit avec le milieu, il perd progressivement, mais assez rapidement, son état de polarisation initial. Ainsi, au moyen d'un analyseur placé devant le détecteur, il est possible de mesurer les deux composantes de ce ux : celle qui a conservé son état de polarisation initial, I (λ) et celle qui l'a perdue I ⊥,Ω (λ) (cf. gure

2). R BS (λ) = R (λ) + R ⊥ (λ)

Low scattering conditions

En faisant la diérence de ces deux composantes, nous avons mesuré une réectance corrigée des eets de la diusion:

R SS (λ) = R (λ) -R ⊥ (λ)
Principes théoriques de la modélisation de l'absorbance

Les deux types de signaux mesurés par le dispositif optique PoLiS ont été implémentés dans la fonction d'absorption et de rémission A(R, T ) proposée par Dahm et Dahm dans leur cadre théorique de la couche représentative (Representative Layer Theory).

A(R, T ) = (1 -R) 2 -T 2 R = a r • (2 -a -2r)
Cette fonction relie la réectance R et la transmittance T mesurées sur un échantillon, à la fraction absorbée (a) et réémise (r) d'une couche hypothétique de faible épaisseur xiii mais représentative de l'échantillon. Dahm et Dahm stipulent que l'absorbance calculée à partir de a, la fraction de lumière absorbée par cette couche représentative, est une bonne approximation de la vraie absorbance (selon la loi de Beer-Lambert) :

A = -log(1 -a)

Nous nous sommes placés dans ce cadre théorique pour résoudre la fonction A(R,T) en posant les hypothèses suivantes :

-La réectance R totale de l'échantillon peut être approximée par R BS (λ), la réectance totale mesurée avec le dispositif PoLiS;

-La fraction réémise (r) par la couche représentative théorique peut être approximée par R SS (λ), la part du signal n'ayant subi que peu de diusion par le milieu étudié.

La résolution de cette équation nous a permis de proposer une expression de l'absorbance de milieux diusants, fonction des mesures permises par le dispositif PoLiS, R BS (λ) et R SS (λ):

Abs P o (λ) = -log R SS (λ) + (1 -R SS (λ)) 2 - R SS (λ) R BS (λ) (1 -R BS (λ)) 2
Cette absorbance, obtenue par la méthode de mesure PoLiS est, en théorie, moins impactée par la diusion et plus linéairement reliée à la concentration. -Des échantillons liquides, mélangeant du lait, dont les micelles et particules de gras jouent le rôle de diuseur, avec du colorant alimentaire, E141, l'absorbant dont on connait la concentration;

Matériel et méthodes

-Des échantillons poudreux, mélangeant du sable de Fontainebleau (diuseur) avec le même colorant E141 en poudre à diérentes concentrations;

-52 échantillons de sols, provenant de la région du Vercors dont la variable d'intérêt est le carbone organique total. Chaque échantillon a été préparé selon trois tailles de particules diérentes: grossiers (agrégats <5mm), tamisés à 2 mm et broyés à 0.2 mm.

Analyse multivariée

Sur les échantillons de sol, des modèles PLS de prédiction de la teneur en carbone organique ont été construits à partir du spectre de réectance totale R BS (λ), Pathlength estimation and correction), qui sont classiquement appliqués pour réduire l'impact de la diusion sur les signaux spectroscopiques.

Résultats

Diminution de l'eet de la diusion sur les spectres L'analyse des spectres d'absorbance obtenus avec la méthode PoLiS a montré, dans un premier temps, que la réduction de l'eet de la diusion sur le signal se traduisait par signatures spectrales plus marquées. La gure 4 illustre ce résultat sur les poudres mélangeant du sable et un colorant. Carbone Organique Total g.kg ), à λ = 405nm et λ = 630nm en fonction de la concentration en colorant E141 en g.L -1 et sur les sols (e. et f.), à λ = 600nm, en fonction de la teneur en carbone organique en g.kg -1 . R est le coecient de Pearson.

Les propriétés des spectres d'absorbance modélisés par la méthode PoLiS se rapprochent de celles de l'absorbance de la loi de Beer-Lambert: la quantité de lumière absorbée par le milieu est linéairement proportionnel à la concentration.

xvi

Amélioration des prédictions

Les modèles construits à partir des spectres d'absorbance PoLiS Abs P o (λ) se sont avérés être toujours de meilleure qualité que ceux construits à partir de la réectance R BS (λ) ou de l'absorbance totale Abs BS (λ), même lorsque ces derniers ont été prétraités.

Nous avons pu observer également que les prétraitements n'avaient aucun eet positif sur l'absorbance PoLiS. La gure 6 présente les indicateurs de qualité de tous les modèles construits dans cette étude, le coecient de détermination R 2 et l'erreur standard de cross-validation (SECV). Les modèles ont été construits sur les trois types préparation des sols: grossiers, tamisés et broyés. 
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x N 2 O) have led to questions on the role of soils as a source or sink of carbon (C). Soil is the largest surface carbon pool, almost three times the quantity stored in the terrestrial biomass and twice the amount stored in the atmosphere [START_REF] Eswaran | Global carbon stocks. Global climate change and pedogenic carbonates[END_REF][START_REF] Bernoux | Cropping systems, carbon BIBLIOGRAPHY sequestration and erosion in Brazil, a review[END_REF]. Carbon sequestration in soil is a real winwin strategy: it restores degraded soils, increases the production of biomass, puries surface and ground waters, and reduces the rate of enrichment of atmospheric CO 2 by osetting emissions due to fossil fuels (Lal, 2004b). From an economic perspective, as carbon sequestration in soil has become relevant to reduce the amount of greenhouse gas emissions, policymakers have made carbon trading markets emerge (Lal, 2004a;[START_REF] Gehl | Emerging technologies for "in situ" measurement of soil carbon[END_REF]. It is therefore of utmost importance to assess soil carbon stocks and uxes in terrestrial systems to understand the global dynamics of carbon.

Collecting soil at suciently high spatial and temporal resolution to meet soil C verication needs, and analyzing them using traditional laboratory-based methods, may be prohibitively expensive [START_REF] Smith | Monitoring and verication of soil carbon changes under Article 3.4 of the Kyoto Protocol[END_REF]. Thus, new methods are required to rapidly and accurately measure soil C at eld-and landscape-scales to improve eld, regional and global soil C stock and ux estimates [START_REF] Gehl | Emerging technologies for "in situ" measurement of soil carbon[END_REF].

Visible and Near Infrared Spectroscopy (VisNIRS) has become an extremely important analytical technique over the past 50 years as evidenced by the high number of dierent applications and products analyzed by NIRS [START_REF] Williams | Near-Infrared Technology in the Agricultural and Food Industries[END_REF]. And, a little later than for agricultural and food products, NIRS has been naturally considered as a potential and credible substitute for the traditional analytical methods used for soil properties assessment [START_REF] Reeves | Near-versus mid-infrared diuse reectance spectroscopy for soil BIBLIOGRAPHY analysis emphasizing carbon and laboratory versus on-site analysis: Where are we and what needs to be done?[END_REF]Stenberg et al., 2010;Bellon-Maurel & McBratney, 2011). A new community of research targeting NIR as a rapid tool for soil analysis, either in the laboratory or in the eld, has emerged among the soil science community.

NIR-scientists have progressively joined the soil community because studying a complex and heterogeneous material like soils entails new NIR-related research opportunities, in General Introduction elds like instrumentation, lightmatter interactions, chemometrics or sampling strategies [START_REF] Bellon-Maurel | NIR and Soil Science : A teenage love-story[END_REF]. Bridging the two communities (Soil and NIR) is probably the best strategy to reach the Grail : a portable low-cost NIR sensor providing precise information about (many) soil properties.

Contributing to this common endeavor is the core objective of this thesis. Thus, our approach is based on the following sub-objectives:

1. Analyzing the challenges Vis-NIR spectroscopy applied to soils faces in order to identify the key factors inuencing the quality of the measurement and the possible paths of improvement;

2. Designing an original optical setup dedicated to measure a spectroscopic signal of optimal quality and to model the chemical absorbance of scattering materials;

3. Testing the feasibility and assessing the added value of the proposed method to predict total organic carbon content of soils.

Outline of the thesis

Each sub-objective is addressed by a chapter of the thesis referring to a scientic publication (Art I -IV, listed p vii), forming the spine of this manuscript. Chapter 2 reviews the major issues that NIR applied to soil is facing and oers a panorama of the mathematical solutions implemented by soil scientists. Light scattering is the main source of problems as it impacts directly the quality of the signal and thus, the reliability of the calibration model. Hence, developing new optical methods to increase the signal quality is a new research path that has to be invested. This chapter is the reproduction of Art. I published in the book series Advances in Agronomy in 2014.

Following the conclusions drawn by the review paper, we present the scientic issues addressed in this thesis.

General Introduction

Chapter 3 and chapter 4 develop an original approach to circumvent the issue of light scattering impacting a spectroscopic signal to model the absorbance of highly scattering materials.

First, chapter 3 focuses on the design of an optical setup, based on light polarization spectroscopy. The output of the method is a reectance signal freed from multiscattering.

Reproducing Art. II, published in Applied Spectroscopy in 2014, the chapter presents the theory which underlies the method and which is then experimentally validated on simple model media. 

Preamble

In this chapter, with the objective of being both pedagogical and practical, we review and discuss why the basic theoretical concepts underpinning NIR spectroscopy and linear chemometric modeling may be questioned in the specic context of soil: (i) light scattering due to soil particles causes departure in the assumed linear relationship between the spectrum and the carbon content and (ii) the other classical linear regression assumptions (constant residual variance, normal error distribution . . . ) are also put into question.

With reference to these specic issues, the dierent chemometric methods presented as possible solutions to perform better calibration models are discussed. We focus on classical linear methods associated with various preprocessing, local methods and nally non linear methods.

Based on the concluding remarks of this chapter, the scientic issues addressed in this research are presented.

Major Issues of Diffuse Reflectance NIR Spectroscopy in the Specific Context of Soil Carbon Content Estimation: A Review 1

Introduction

Soil carbon sequestration is one possible way of reducing greenhouse gas emissions in the atmosphere (Lal, 2004a). However, to evaluate the real benets oered by these methods (new agricultural practices, reforestation . . . ), large scale estimations of the carbon stock in the soils are necessary. Therefore, chemical analysis of a large amount of samples must be performed and this requires rapid, precise and low-cost analytical tools [START_REF] Morgan | Simulated in situ characterization of soil organic and inorganic carbon with visible near-infrared diuse reectance spectroscopy[END_REF][START_REF] Reeves | Near-versus mid-infrared diuse reectance spectroscopy for soil BIBLIOGRAPHY analysis emphasizing carbon and laboratory versus on-site analysis: Where are we and what needs to be done?[END_REF][START_REF] Kuang | Chapter four -Sensing Soil Properties in the Laboratory, In Situ, and On-Line: A Review[END_REF].

Near infrared spectroscopy (NIRS) entails acquiring and processing spectra on materials in the 700 nm -2500 nm wavelength range. This technology enables rapid analysis and is optimized for chemical compound determination. Today it is widely used for the characterization of organic materials such as agricultural and food products or for petrochemicals and pharmaceuticals [START_REF] Williams | Near-Infrared Technology in the Agricultural and Food Industries[END_REF]. For several years there has been a growing interest in NIRS among soil scientists [START_REF] Bellon-Maurel | NIR and Soil Science : A teenage love-story[END_REF], which is now commonly used to measure dierent physical and chemical parameters of soils, including carbon content. In this eld, the potential of this technology is very high. It oers rapid cost-eective acquisition requiring a minimum sample preparation and measurement can be performed directly in the eld. However, prediction model accuracy is insucient for NIRS to replace routine laboratory analysis and/or to make in-situ measurements, whatever the type of soil [START_REF] Reeves | Near-versus mid-infrared diuse reectance spectroscopy for soil BIBLIOGRAPHY analysis emphasizing carbon and laboratory versus on-site analysis: Where are we and what needs to be done?[END_REF].

Several recent review papers (Bellon-Maurel & McBratney, 2011;Stenberg et al., 2010;[START_REF] Reeves | Near-versus mid-infrared diuse reectance spectroscopy for soil BIBLIOGRAPHY analysis emphasizing carbon and laboratory versus on-site analysis: Where are we and what needs to be done?[END_REF][START_REF] Cécillon | Assessment and monitoring of soil quality using near-infrared reectance spectroscopy (NIRS)[END_REF] have detailed the latest improvements made by the community but also highlighted the research avenues that need to be pursued if NIRS is to become a reference technique for the measurement of soil carbon content.

1 Alexia Major issues of NIR spectroscopy in Soil Science One of the biggest issues that needs to be addressed concerns the calibration process: how does the mathematical method or the sample selection inuence the model quality?

In most cases, there is not a lot of thoughts put into the choice of the mathematical method, which is often made empirically (test and try). This is especially due to the fact that analytical devices used generally include software that allows users to quickly and easily apply most of the multivariate analysis methods, without being aware of the underlying theories. This reduces the relevance of the calibration.

It is therefore essential to return to fundamental laws governing spectrum formation and in particular to understand light/matter interaction in order to optimize calibration.

The aim of this paper is to review the basic theoretical assumptions underpinning NIRS and classical linear chemometric modeling and to confront them with the actual phenomena during light/matter interaction. In the specic context of soil carbon content measurement, there is an enormous gap between reality and theory. Our objective is not to quantify this gap but to evaluate its impact on the metrological quality of the measurement. This will be of signicant pedagogical and practical use.

The rst part of this paper presents the theoretical concepts supporting NIRS and linear chemometrics and introduces the assumptions that have to be fullled to build a linear model. Then, the question of NIRS compliance with these assumptions in soil related application to evaluate the resulting metrological quality of the prediction is addressed. Finally, the mathematical solutions that the authors have proposed to overcome these model quality issues are reviewed and discussed.

2.2 Theoretical concepts underlying multivariate calibration based on Near infrared spectra 2.2.1 Spectroscopy and Beer -Lambert's law in diuse media Beer's law is the cornerstone of quantitative analysis with Near Infrared Spectroscopy.

The rst assumption based on Beer's law in spectroscopy is that there is a relationship Major issues of NIR spectroscopy in Soil Science between spectrometric response and the concentration of an analyte in a sample. It assumes that the ratio (I T (λ)/I 0 (λ)) of the transmitted intensity I T (λ) and the incident beam intensity I 0 (λ) is equivalent to:

T (λ) = I T (λ) I 0 (λ) = 10 -ε(λ)•c•l (2.1)
where T (λ) is the transmittance at wavelength λ, ε(λ) is the molar extinction coe-

cient (in L • mol -1 • cm -1 ), c is the concentration (in mol • L -1
), and l is the path length (in cm) [START_REF] Workman | Applied Spectroscopy: A Compact Reference for Practitioners[END_REF].

Absorbance is a more standard form used in spectrometry, where the logarithm is applied to linearize the relationship between spectrophotometer response and concentration:

A(λ) = -log I T (λ) I 0 (λ) = ε(λ) • c • l (2.2)
ε(λ) • c characterizes the absorption capacity of the analyzed sample and may be replaced by the absorption coecient:

µ a (λ) = ε(λ) • c (2.3)
µ a (λ) is the probability per length unit that has a photon of wavelength λ to be absorbed by the material with which it interacts. If the purpose of the measurement is to determine the concentration of a compound, the absorption coecient of the material becomes the key parameter, because it is related to concentration [START_REF] Dahm | The physics of near-infrared scattering[END_REF].

This law is fundamental to spectroscopy but is strictly applicable only to transmission measurements on low concentrated transparent materials. If the sample is turbid, particulate or solid, another phenomenon, called scattering, occurs along with absorption.

The scatter eect characterizes photon path changing phenomenon when it encounters a particle or when the refractive index changes [START_REF] Ciani | Light penetration in soil and particulate minerals[END_REF]. The photons may not only be absorbed or transmitted, but they can also be reected, refracted or diracted.

BeerLambert's law is also frequently applied to diuse reectance measurement of light scattering media, replacing I T (λ) by I R (λ), the intensity of the remitted radiation [START_REF] Dahm | The physics of near-infrared scattering[END_REF].

Through analogy with the absorption coecient µ a (λ), µ s (λ) is the scattering probability of a photon per length unit. The analytical expression of the scattering coecient µ s is not straightforward, because the changes of direction of the photons depend not only on the size and shape of the particles, but also on their wavelength, the direction of the incident light and changes of refractive indices. Scattering has a direct impact on absorbance because the more photons are scattered, the more likely they are to be absorbed by the medium as the optical path-length increases [START_REF] Dahm | The physics of near-infrared scattering[END_REF]. In addition to a multiplicative eect, light scattering occurring in the analyzed material is responsible for an additive eect on the absorbance value. Theoretical models like

Beer-Lambert or Kubelka-Munk [START_REF] Kubelka | Ein Beitrag zur Optik der Farbanstriche[END_REF] assume that all the scattered Major issues of NIR spectroscopy in Soil Science light is collected. But optical instruments are built in such a way that only a fraction 1/α of light is detected.

I measured (λ) = 1/α • I R (λ) (2.4)
A measured (λ) = -log (I measured(λ) /I 0 (λ)))

(2.5)

= log α + log (I 0 (λ)/I R (λ)) (2.6) = f a + A(λ) (2.7)
The additive term log α = f a is closely related to the scattering properties of the material and depends on the wavelength and the thickness l of the sample. Thus, log α = f a (µ s (λ), λ, l), which depends on the conguration of the measuring system, is sample specic, implying inter-sample variability resulting in baseline drifts of the ideal absorption spectrum. The observed absorbance in the case of scattering samples, is no longer a linear function of concentration. Based on the above, we propose an expression of the absorbance. It integrates multiplicative and additive eects due to radiation scattering by the medium:

A(λ) = µ a (λ) • l • f m (λ, µ s (λ)) + f a (µ s (λ), λ, l) (2.8)
with f m (λ, µ s (λ)) the multiplicative function and f a (µ s (λ), λ, l) the additive function resulting in a departure from the linear relationship between the absorbance spectrum A(λ) and the concentration c of the analyte of interest.

When a medium is complex and scatters, the useful part of the information of the signal (in our case, µ a (λ), which is related to the concentration) is relatively small compared to what we can call useless information, which is due to scattering eect. Moreover, in addition to scattering, other factors, such as interactions between chemicals, may be responsible for nonlinearities [START_REF] Bertran | Handling intrinsic non-linearity in near-infrared reectance spectroscopy[END_REF]. As the relationship between the spectrum and the concentration is not linear, it requires complex mathematical treatments to Major issues of NIR spectroscopy in Soil Science extract useful information. This is the purpose of multivariate analysis in chemometrics. [START_REF] Martens | Light Scattering and Light Absorbance Separated by Extended Multiplicative Signal Correction. Application to Near-Infrared Transmission Analysis of Powder Mixtures[END_REF].

When the data are centered or when it is assumed that there is no intercept, the model can be written as:

y = x T b + e (2.9)
With b the model coecient to be estimated and the residual e, representing the deviation of the measurement y from its value ŷ predicted by x T b.

From a classical statistical point of view, one supposes that the model exists. The aim of the regression is to estimate the best model coecient b. Several methods exist, the simplest and most popular one being the Ordinary Least Squares (OLS) method.

In order to use the OLS estimator, the following basic assumptions must hold [START_REF] Massart | Chapter 8 Straight line regression and calibration[END_REF]:

-H 1 : Condition of linearity: the relation between x and y is linear in the parameter;

-H 2 : Condition of no-multicollinearity : The regressors x i must all be linearly independent;

-H 3 : The number of observations is greater than the number of independent variables;

Major issues of NIR spectroscopy in Soil Science -H 4 : Condition of homoscedasticity: The residuals e i all have the same variance var(e i ) = σ 2 ; -H 5 : Condition of normality: For each individual i the residual e i is normally distributed with mean zero, N (0, σ). Consequently, it is assumed that for each specic

x i , the probability distribution function of y i is also normal;

The hypothesis H 1 , H 2 and H 3 have to be fullled in order for the OLS method to give meaningful results. The hypothesis H 4 and H 5 concern the residuals and mainly condition the quality of the estimates. These assumptions can only be tested once the regression has been performed.

If the assumptions hold, the estimated OLS parameter are the best one from the point of view of their statistical properties (convergent, non biased and of minimal variance).

They are called BLUE (Best Linear Unbiaised Estimators) [START_REF] Allen | Assumptions of ordinary least-squares estimation Understanding Regression Analysis[END_REF]. Unfortunately, this is rarely the case in NIR Spectroscopy, which requires other approaches.

Chemometric approach of Multiple linear regression

The hypothesis H 1 is assumed to be met because the Beer-Lambert's law underlies the relationship between x and y and which is supposed to be linear but we showed in section 2.2.1 that is was false. Moreover, in spectroscopy, the spectral variable space (X) is multidimensional, suggesting the existence among this space of a subspace where the relationship can be linear. However, the hypothesis H 2 is systematically violated: the predictors x, composed by the absorbance measured at dierent wavelengths, are highly correlated with each other. Consequently, the variance of the model parameters can be very large [START_REF] Bertrand | La spectroscopie infrarouge et ses applications analytiques[END_REF]. Furthermore, assumption H 3 is not satised when spectral data are used as predictor variables: the number of predictor variables are generally more important than the number of available individuals. This poses a problem for computing the OLS regression coecients b OLS (equation 2.10) because a matrix inversion is required (X X) and which is not possible if H 2 et H 3 are not fullled.

Major issues of NIR spectroscopy in Soil Science (dimensionality problem and ill-condition of X X) [START_REF] Naes | A User-Friendly Guide to Multivariate Calibration and Classication[END_REF].

b OLS = (X X) -1 X y

(2.10)

In chemometrics, the approach of multiple linear regression is a little bit dierent from that of classical statistics. In classical statistics, one assumes a priori that the model exist and the objective is to nd the best model parameter. In chemometrics, the model is built from the available data (a calibration set (X, y)), and then tested, if possible on an independent set or by cross validation [START_REF] Geladi | Multiple regression for environmental data: nonlinearities and prediction bias[END_REF] Furthermore, to overcome the problems posed by the violation of assumptions H 2 and H 3 , chemometricians have developed new methods. To reduce the number of explanatory variables and limit the risk of collinearity, the linear regression is performed in a spectral space of limited dimension. To reduce the spectral space dimension, it is possible to select a certain number of variables assuming that the excluded ones do not signicantly improve the model. Stepwise Multiple Linear Regression (MLR) [START_REF] Martens | Multivariate Calibration[END_REF] or CovSel [START_REF] Roger | CovSel: Variable selection for highly multivariate and multi-response calibration: Application to IR spectroscopy[END_REF] are some examples of variable selection methods. One limitation to this approach is that the variable selection can be arbitrary (in stepwise MLR for example) and highly dependent on the available data set [START_REF] Williams | Near-Infrared Technology in the Agricultural and Food Industries[END_REF].

Another way to reduce the spectral space dimension is to build new variables from linear combinations of descriptors x i .

T = XP

(2.11)

With T the constructed latent variables and P the loadings.

The regression is performed between the variable to predict (y) and so called la-Major issues of NIR spectroscopy in Soil Science tent variables (or scores). This approach is among the most used in chemometrics and the principal algorithms are Principal Component Regression (PCR) and Partial Least Squares regression (PLS), the latter being developed by Wold [START_REF] Wold | PLS-regression: a basic tool of chemometrics[END_REF].

With PLS, the regression model based on these new variables can still be written in a simple form like equation 2.12 and the OLS method is used to predict the model coecient q OLS because assumptions H 2 and H 3 become fullled: the latent variables are not correlated one with another (by construction, they are orthogonal) and they are fewer than the number of observations. y = Tq OLS + e

(2.12)

With T containing t k latent variables (or scores) and q OLS the regression coecients to be estimated by OLS.

q OLS = (T T) -1 T y

(2.13) ŷ = T * (T T) -1 T y = XP(P X XP) -1 P X y = Xb P LS (2.14)
with b P LS = P(P X XP) -1 P X y.

However, the PLS (or PCR) remains within the paradigm of linear regression, and is therefore subject to the same constraints of the assumptions regarding the residuals (assumptions H 4 and H 5 ). If the conditions are strongly violated, the lower quality of the model parameter estimates will directly impact the prediction quality (accuracy and robustness). This may be the case if the residuals are heteroscedastic (their variance is not constant) or if the distribution of e i is not normal [START_REF] Fearn | Do my data need to be normally distributed?[END_REF].

Major issues of NIR spectroscopy in Soil Science The carbon content of a given set of samples does usually not follow a normal distribution. Some authors maintain that it is positively skewed [START_REF] Vistelius | The Skew Frequency Distributions and the Fundamental Law of the Geochemical Processes[END_REF][START_REF] Reimann | Normal and lognormal data distribution in geochemistry: death of a myth. Consequences for the statistical treatment of geochemical and environmental data[END_REF] with a high occurrence in low carbon concentrations and other state that the distribution is lognormal [START_REF] Ahrens | The lognormal distribution of the elements (A fundamental law of geochemistry and its subsidiary)[END_REF][START_REF] Parkin | Evaluation of statistical estimation methods for lognormally distributed variables[END_REF][START_REF] Clark | Spectroscopy of rocks and minerals and principles of spectroscopy[END_REF][START_REF] Brejda | Distribution and Variability of Surface Soil Properties at a Regional Scale[END_REF]. According to [START_REF] Reimann | Normal and lognormal data distribution in geochemistry: death of a myth. Consequences for the statistical treatment of geochemical and environmental data[END_REF], this asymmetry is frequent for many environmental variables of low values as they can not be given negative values and are thus truncated at 0. Also, the important spatial dependence of these type of variables may reect the existence of several subpopulations, which is inconsistent with a strictly
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It is essential to know the distribution function of a variable to be able to characterize a given data set. Describing a population when the distribution is symmetric is unambiguous because the mean, median and mode coincide and all can be taken as the center. In most studies applied to soils, the statistics provided are insucient to adequately describe the variables. Very often, only the mean and standard deviation are shown with sometimes the extreme values (min, max), although the two rst values are of little interest if the data are not normally distributed, which is usually the case.

As a consequence of this asymmetric distribution of carbon content in soils, there is a high probability that residuals neither satisfy the condition of homoscedasticity (H 4 )

nor the condition of normality (H 5 ). The causes of heteroscedasticity are dicult to identify, but authors agree that the variation of the residual variance is a by-product of the violation of other assumptions [START_REF] Osborne | Four assumptions of multiple regression that researchers should always test[END_REF] like an asymmetric distribution of y. Measurement errors of x can also contribute to the residual error term.

Consequently, an increase of the residual error as a function of y is often observed [START_REF] Geladi | Multiple regression for environmental data: nonlinearities and prediction bias[END_REF].

Impacts on the metrological quality of the prediction

In metrology, several indicators are usual to characterize the properties of a method or an instrument: reproducibility, repeatability, sensitivity, precision, accuracy or uncertainty. [START_REF] Zeaiter | Dynamic orthogonal projection. A new method to maintain the on-line robustness of multivariate calibrations. Application to NIR-based monitoring of wine fermentations[END_REF] recalls the denitions of these terms. How are these parameters, specically signal quality and prediction model quality, aected when NIRS is applied to estimate the carbon concentration of soils?
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Signal quality

The quality of a spectroscopic signal determines the quality of the resulting measurement. This quality can be assessed using the signal to noise ratio (SNR). Technological advances in instrumentation have reduced optical noise and improved signal quality. But in scattering materials such as soils, only a part of the signal contains relevant information related to the absorbance and therefore useful for calibration. The remaining information, which results from scattering, contributes to noise. Signal sensitivity decreases as the scattering eect increases compared to chemical absorbance (µ s >> µ a ).

In addition, scattering changes the optical path of the photon in a random manner, which in turn, impacts another metrological quality criterion, i.e measurement reproducibility.

Model quality

As seen above, building a linear model to directly estimate soil carbon content from a soil spectrum will probably be lacking in performance as the ideal conditions are not met: non-linearity of the spectra -concentration relationship, non-normal distribution of y, which leads to biased estimation of the model parameter and to heteroscedasticity.

Fearn (2012) discusses the possible consequences of non-normally distributed data on robustness of the least square t, the validity of signicance tests and the relevance of statistics used to assess the t such the Standard Error of Calibration (SEC).

However, as these optimal conditions are rarely met the BLUE can not be found and the overall quality of the model has to be evaluated through a validation step. To perform it, the model is tested on an independent data set in order to calculate performance indicators, of which the following are the most frequently used in soil science:

- Whatever the expression, one term is common: ( xx c ), with x the measured spectrum and x c the spectrum at the center of the model. This term, which reects the distance of the spectrum x to the center x c of the model is called leverage (Cook & Major issues of NIR spectroscopy in Soil Science [START_REF] Cook | Residuals and Inuence in Regression[END_REF]. Prior to regression, the data are centered in relation to a xed point.

This helps to compare the scales of both dependent and independent variables. Thus, analysis of the deviation from the center and the distribution around this point becomes possible , thereby facilitating the interpretation of the regression model. The further the sample is from the center of the model, the higher the prediction uncertainty.

In most cases, the models are mean-centered. Hence, x c = x, which coincides with the mode, if the dataset is symmetrically distributed. Close to the mean, the predictions will have a smaller variance. This phenomenon, which is called Dunne eect, leads to an overall improvement of model performance when most of the samples to be predicted are close to the distribution mean [START_REF] Martens | Multivariate Calibration[END_REF].

The SEP can be written SEP 2 = SEP 2 c = Σvar(y i )P (y i ). In order to minimize it, it is necessary to have the maximum of the distribution of y, P (y i ), coincide with the minimal uncertainty var( y i ). If the center of the model x c is close to the mode, then the leverage eect will be reduced. Major issues of NIR spectroscopy in Soil Science will be directly aected as there will be more predicted samples with high uncertainty (because of high leverage) in the lower values of y;

-The mode determination is not straightforward to achieve. For statisticians, the geometric mean ( n y i ) is less sensitive to high values in a positively skewed dataset than the arithmetic mean ( 1n Σy i ). It gives, therefore, another more accurate data centrality in the case of positively skewed distributions. Thus, the geometric mean, zero [START_REF] Seasholtz | The eect of mean centering on prediction in multivariate calibration[END_REF] or even the median are alternatives worth considering when choosing the center of the model, these values being closer to the mode than the mean.

Data pretreatment help to fulll the assumptions of linear multivariate calibrations

Preprocessing methods provide mathematical transformation of the signal in order to amplify the useful (i.e chemically related) part of the signal and reduce the irrelevant (i.e the scattered) information. A rst approach involves applying transformations on spectral variables (spectral preprocessing) in order to remove the scattering eect and to restore, to a certain extend, the linear relationship between the spectrum and concentration, which tends to satisfy H 1 . The other approach is to restore the symmetry of the distribution of y by applying statistic transformations [START_REF] Martens | Multivariate Calibration[END_REF]).

Spectral preprocessing

The performance of linear calibration depends on the degree of linearity between the independent variables and the predicted variables. Sources of spectral variations explained in section 2.2.1 are identied causes of nonlinearities and can be partly corrected with pretreatments. Thus, based on the proposed expression of the absorbance (equation 2.8), the spectral pretreatments are designed to reduce the impact of multiplicative and additive eects while maintaining a sucient amount of useful information to ensure an Major issues of NIR spectroscopy in Soil Science ecient prediction model. Ideally, the corrected absorbance spectrum should look like the absorbance coecient µ a (λ).

Geometric spectral pre-processing methods

A rst group of widely used methods, eectively remove the additive and multiplicative eects due to scattering from the spectra. Among them: Multiplicative Signal Correction (MSC) [START_REF] Geladi | Linearization and Scatter-Correction for Near-Infrared Reectance Spectra of Meat[END_REF], Extended MSC (EMSC) [START_REF] Martens | Extended multiplicative signal correction and spectral interference subtraction: New preprocessing methods for near infrared spectroscopy[END_REF], Standard

Normal Variate (SNV), Detrend [START_REF] Barnes | Standard Normal Variate Transformation and De-trending of Near-Infrared Diuse Reectance Spectra[END_REF] and normalization.

These methods all correct the measured spectrum by describing the multiplicative and the additive eect based on explicit functions like those introduced in equation 2.8.

x corr = x org -f a f m (2.15)
where x corr is the corrected spectra, x org the measured spectra, f m and f a the function describing the multiplicative and additive eect of scattering on the original spectra respectively.

These preprocessing methods dier in the parameter estimation of the explicit functions. For example, in the MSC method, the corrective parameter are the regressors (intercept and slope) of the ordinary least squares regression line between a reference spectrum and the spectrum to be corrected. The f a function corresponds to the intercept and f m to the slope. The reference spectra commonly used is the mean spectra of the calibration set. This choice is open to discussion when used with skewed population as the mean spectrum is not necessarily the most representative spectrum of the database.

SNV method has been introduced by [START_REF] Barnes | Standard Normal Variate Transformation and De-trending of Near-Infrared Diuse Reectance Spectra[END_REF] in order to reduce the multiplicative eect of scattering. Each spectrum is centered and reduced. Therefore, in equation 2.15, f a corresponds to the mean value of the spectrum to be corrected and f m to its standard deviation. With this approach, a reference spectrum in not required to estimate the corrective parameter.

With these two methods, the corrective functions are quite simple but are based on the hypothesis that the multiplicative eect is not wavelength dependent. However, in section 2.2.1, we stated that the additive function depends on (i) the structure of the material, which can be characterized by the scattering coecient µ s (λ), (ii) the volume traveled by the photons (or the thickness of the sample) and (iii) the wavelength.

In order to get more closely the physical realities of the scattering phenomenon, some methods introduce more complexity in the corrective function of the additive eect.

Detrend, often associated to SNV, removes the baseline curvature by adjusting it with polynomial function of the wavelength λ (for example of a second order). EMSC, an extended version of MSC, is comprised of a second order adjustment of the reference spectra, a quadratic function of the wavelength or also pure spectra of the chemical compounds of the studied material. There is, in theory, no mathematical limitation to an increase in the complexity of the corrective functions [START_REF] Rinnan | Review of the most common preprocessing techniques for near-infrared spectra[END_REF]. Thus, [START_REF] Thennadil | Empirical preprocessing methods and their BIBLIOGRAPHY impact on NIR calibrations: a simulation study[END_REF] substitute the wavelength dependent term in EMSC (d i λ + e i λ 2 ) by d i log(λ). Their reasoning is based on the fact that, for small-particulate media, the scattering intensity is proportional to λ -4 (Rayleigh approximation). By extension, they suppose that light scattering can be expressed using the form αλ β , which becomes proportional to log(λ) when transformed in absorbance units. The introduction of a semi-empirical model based on the physics of the scattering phenomenon produced better calibration models on simulated data [START_REF] Thennadil | Empirical preprocessing methods and their BIBLIOGRAPHY impact on NIR calibrations: a simulation study[END_REF].

Derivative methods are other very popular pretreatment techniques used in chemometrics. The rst derivative removes an additive constant and the second derivative removes also the slope of the baseline. In other words, these methods suppose that the additive function, f a has a null derivative (rst and second), which eliminates the non-informative parameter. Among the most popular methods, the Savistzky-Golay algorithm (SG) [START_REF] Savitsky | Smoothing and dierentiation of data by simplied least-squares procedures[END_REF] associates the derivative with a smoothing step to reduce (i) the random noise of the measurements and (ii) its amplication by the dierentiation step. The derivative methods have the advantage of accentuating the spectral resolution but it is a deep spectral transformation which runs the risks of removing part of the useful information for the calibration process.
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Orthogonal projections

Another preprocessing strategy consists in identifying a sub-space of the total spectral space, which supports variability caused by the non-informative part of the signal. This subspace is then subtracted by orthogonal projection so that the resulting space is, in theory, independent of the scatter -or any other -eect. Dierences between the various orthogonal projection methods exist and mainly concern the method used to identify the sub-pace to be orthogonalized. The Orthogonal signal correction (OSC) method, proposed by [START_REF] Wold | Orthogonal signal correction of near-infrared spectra[END_REF], extracts and remove the useless sub-space by selecting the principal components that contain most of the spectral variability and are not correlated to y. The main drawback of this approach is that the calibration set does not necessarily contain all the variability due to the scatter eect. Moreover, the PLS algorithm is subject to the same constraint so OSC does not add any value to the calibration quality if it is based on a PLS [START_REF] Verron | Some theoretical properties of the O-PLS method[END_REF].

Another approach called External Parameter Orthogonalization (EPO) was developed by [START_REF] Roger | EPO-PLS external parameter orthogonalisation of PLS application to temperature-independent measurement of sugar content of intact fruits[END_REF]. It consists in building the subspace containing the inuence factor using a dedicated experimental design where spectra, with and without perturbation, are collected. The spectral inuences are then removed from the total spectral space by orthogonal projection. The identied subspace contains, for example, the additive eect due to scattering, but also all the linear combinations of this eect. On the other hand, if y and the spectral variation due to the inuence factor are correlated, EPO will remove some useful information and therefore impoverish the calibration database.

Discussion

In the NIRS publications applied to soils, on the shelf pretreatments like MSC or SNV are almost systematically used as they have the advantage of being widely implemented in multivariate analysis software. On the other hand, orthogonal projection methods are not so popular, although promising for materials as complex as soils. Minasny et al.

(2011) tested the EPO method to overcome the moisture eect on the spectra. In this Major issues of NIR spectroscopy in Soil Science case, it would seem appropriate to set up a dedicated experimental design to characterize the scattering eect on the spectra by varying the physical characteristics of the soil.

Preys et al. ( 2008) also propose a method, that combines EPO and OSC and which seems particularly suited to soil related spectroscopy. In an approach similar to EPO, a spectral database is built by making the factor of inuence vary and then OSC is used to select the principal components that carry a maximum spectral variability while remaining orthogonal to y. These identied directions are then used to remove the useless subspace from an existing dataset.

Restoration of y distribution symmetry

The spectral preprocessing methods presented above do not solve the problem arising from the skewed soil carbon content distribution which impacts H 4 and H 5 . Statisticians [START_REF] Webster | Statistics to support soil research and their presentation[END_REF][START_REF] Kleinbaum | Applied Regression Analysis and Other Multivariable Methods[END_REF], recommend a variable transformation to restore its symmetry. Thus, Vasques et al. ( 2008) log transform the Total Carbon and [START_REF] Bartholomeus | Spectral reectance based indices for soil organic carbon quantication[END_REF] apply (SOC) 1/4 to reduce the skewness index of the soil organic carbon (SOC ) distribution from 2.85 to 0.91.

Mathematically, this approach makes sense and contributes to the reduction of the model prediction error by lowering leverage (the mode is closer to the model center).

After back transformation (i.e. the inverse transformation), the most probable values (in the mode neighborhood) are predicted with less uncertainty, which improves the quality of the model (cf section 2.4.2).

However, these statements lead us to make the following comments:

-If the objective is model comparison, it is possible to provide model quality indexes without back transformation, as in [START_REF] Minasny | Removing the eect of soil moisture from NIR diuse reectance spectra for the prediction of soil organic carbon[END_REF], but if the purpose is to assess absolute prediction quality, it is mandatory to back transform the predicted result, in order not only to be able to assess the weight of the extreme values but also to retrieve the original units in the performance indexes of the model.

-One may ask the question of the relevance of these transformations in spectrometry.
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The modeling process is based on the existence of a relationship dictated by physical law (Beer-Lambert's law or others) between variables. How do these variable transformation oset the non-linearities of the signal/variable relationship?

-If the objective of variable transformation is to restore its distribution symmetry in order to lessen the total uncertainty of model prediction, then precautions must be taken to avoid hazardous conclusions from these results.

To conclude, linear methods, and in particular PLS are, by far, the most used calibration methods to predict soil parameters [START_REF] Viscarra Rossel | Visible, near infrared, mid infrared or combined diuse reectance spectroscopy for simultaneous assessment of various soil properties[END_REF]. These methods comply with the theoretical framework of the Beer-Lambert law, are easy to implement, and the model parameters can be interpreted from a spectroscopic point of view.

However, the PLS method often fails to circumvent all the diculties exposed above because basic assumptions are not satised. Therefore, PLS should be associated with other mathematical techniques such as pretreatments (2.5.1), wavelets, Neural Networks [START_REF] Mouazen | Comparison among principal component, partial least squares and back propagation neural network analyses for accuracy of measurement of selected soil properties with visible and near infrared spectroscopy[END_REF], which may help approaching these assumptions.

And even then, the predictions are sometimes not satisfactory or the interpretation of the model signicance theoretically dicult. Thus, new calibration strategies not based on linear model may be used for soils. We will study the ones discussed in NIRS literature related to soil science. 

Sub-set selection based on auxiliary information

The sub-set selection of spectra in order to build a local model can be based on expert knowledge or information related to the data. The type of soils, geology or geographic location [START_REF] Sankey | Comparing local vs. global visible and near-infrared (VisNIR) diuse reectance spectroscopy (DRS) calibrations for the prediction of soil clay, organic C and inorganic C[END_REF] can be used to select proximal samples and thus reduce, to a certain degree, the spectral variability between samples [START_REF] Stevens | Measuring soil organic carbon in croplands at regional scale using airborne imaging spectroscopy[END_REF]. The concentration range of the soil carbon content can be narrower and, consequently, the distribution of y more symmetric [START_REF] Janik | The prediction of soil chemical and physical properties from mid-infrared spectroscopy and combined partial least-squares regression and neural networks (PLS-NN) analysis[END_REF]. Some of the basic assumptions of multiple linear regression will be better fullled.

Although this strategy has not been subject to a lot of testing, this approach seems interesting in the case of NIRS applied to soils as there is a large number of auxiliary information [START_REF] Mcbratney | On digital soil mapping[END_REF] that could be used to perform intelligent sampling designed to create this sub-calibration set.

Sub-set selection based on the spectral characteristics of the neighborhood samples

The selection of the sub-set based on the spectral characteristics of the samples is a more commonly used technique in soil science. These approaches originates from the K-NN (K-nearest neighbor) classication method [START_REF] Kowalski | 31 Pattern recognition in chemistry[END_REF]. A set of spectra that are spectrally similar to the unknown sample to be predicted is selected from a larger database. The so created sub-set is used to build a calibration model specically dedicated to the prediction of the new sample.

The three main local methods found in the literature are LWR (Locally Weighted Regression) [START_REF] Cleveland | Locally Weighted Regression: An Approach to Regression Analysis by Local Fitting[END_REF][START_REF] Naes | Locally weighted regression and scatter correction for near-infrared reectance data[END_REF], the LOCAL algorithm [START_REF] Shenk | Investigation of a LOCAL calibration procedure for near infrared instruments[END_REF] and CARNAC methods (Davies & Fearn, 2006b). They dier in their approaches to select the neighboring samples. LOCAL and LWR use an euclidean dis-Major issues of NIR spectroscopy in Soil Science tance between samples while CARNAC uses local averaging instead of local regression for prediction and performs data compression (Fast Fourier Transformation) before the distances are computed.

These methods are very attractive for complex and heterogeneous matrices such as soils. The spectral similarity between the selected samples suggests a certain homogeneity with regards to the structure [START_REF] Fernández Pierna | Soil parameter quantication by NIRS as a Chemometric challenge at [`]Chimiométrie 2006[END_REF].

However, implementation of local methods within soil spectral databases raise some diculties. In its basic principle, the selection of local samples within the database should be related to the spectral absorbance feature, i.e. related to the analyte of interest concentration. In a soil spectrum, the impact of scattering is greater than absorbance (µ s >> µ a ). Therefore, the subset selection step in local methods will be mainly based on the physical properties of the soil rather than it's chemical content. As a consequence, the local model will probably not meet the expected quality. Performing the best strategy to select the local samples still remains an open question in soil science. The ideal case would be to be able to compare the samples regarding their absorbance coecient µ a .

Several solutions can solve, to a certain extent, this issue:

-In order to homogenize the scatter eect between the samples and therefore enhance the chemical absorbance compared to scattering, soil samples are dried, sieved at 2mm and sometimes grounded at a smaller particle size (< 0.2mm). Sample preparation before spectral measurement is a way to control the eects of the physical inuence factors such as moisture, particle size, bulk density . . . (Stenberg & Viscarra-Rossel, 2010). Soil sample preparation is a very common procedure. If it is suited for laboratory analysis, it is not possible if the spectral acquisition is performed in-eld, on bulk samples.

-Spectral pretreatment (section 2.5.1) have, in a certain way, the same objective than the sample preparation as both aims at reducing the impact of the scatter eect against the chemical absorbance. If the method has proven its eciency, it does not always solve the problem as the scatter eect is very complex and multidimensional.
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Part of µ s eect can still remain, even after preprocessing. Furthermore, selection of the best preprocessing method is generally based on the model performance and not in order to optimize the sample subset selection for local methods [START_REF] Igne | Evaluation of spectral pretreatments, partial least squares, least squares support vector BIBLIOGRAPHY machines and locally weighted regression for quantitative spectroscopic analysis of soils[END_REF].

-Another possibility is to perform the local sample selection within an exhaustive database, i.e. containing all the possible variability regarding the carbon concentration (which is usually expected from a dataset) but also all the possible variability due to the physical properties of the samples. If some soil scientists actively work on building an global soil spectral library [START_REF] Viscarra Rossel | The Soil Spectroscopy Group and the development of a global soil spectral library[END_REF], it is far from achieved. An alternative approach consists in spiking (i.e. completing) global datasets with some local (geographically) samples (Wetterlind & Stenberg, 2010;[START_REF] Brown | Using a global VNIR soil-spectral library for local soil characterization and landscape modeling in a 2nd-order Uganda watershed[END_REF]. 2012) apply the LWR method on 2500 soil samples representative of the entire french territory. An analysis of the auxiliary characteristics of these samples show a strong relationship between these samples and the geology of their respective sites. These ndings merit deeper analysis but provide arguments for the use auxiliary information to improve the similar samples selection.

Results

Despite

Non-linear processing methods

To overcome the non-linear relationship between the spectrum and the reference value, the use of nonlinear methods is becoming increasingly popular in soil science [START_REF] Stenberg | Eects of soil sample pretreatments and standardised rewetting as interacted with sand classes on Vis-NIR predictions of clay and soil organic carbon[END_REF]. [START_REF] Breiman | Classication and regression trees[END_REF]. The same procedure is applied in turn to the descendant nodes, sometimes called recursive partitioning. Usually, the trees are grown until a stopping criterion is met, for example, all nodes contain fewer than some xed number of cases, then pruned back to prevent over-tting [START_REF] Breiman | Classication and regression trees[END_REF]. Once a tree has been grown and possibly pruned, it will have some non-partitioned nodes called terminal nodes. Predicted values are obtained by computation of the terminal node outputs in order to have an unique value.

The CART algorithm [START_REF] Breiman | Classication and regression trees[END_REF] underpins theses methods which dier in the way of calculating the nal output. The main methods found in the soil related literature are MARS and BRT [START_REF] Friedman | Multivariate adaptive regression splines[END_REF], Random Forest [START_REF] Breiman | Random forests[END_REF],

Cubist [START_REF] Quinlan | Learning with continuous classes[END_REF].

Articial Neural Network:

The design and the basic concept of Articial Neural Networks (ANN) have been adopted from data processing in biological nervous system: a group of cells receives information, others forwards or stores it and a last group processes it before releasing it. In a modeling process, input variables of the network undergo non-linear transformations (sigmoid or logistic function), run through several layers where information is combined (often weighted) and the output value obtained will be assigned to the target parameter. ANN are very exible functions with many parameters to be determined. They are adaptive and possess the ability to model almost any relationship (linear or not). However, in NIRS, as the input data (x) are generally the spectral variables and therefore,very numerous, the network will be large and the parametrization tricky with no experience. To overcome this issue, some authors use principal components or latent variables as inputs [START_REF] Mouazen | Comparison among principal component, partial least squares and back propagation neural network analyses for accuracy of measurement of selected soil properties with visible and near infrared spectroscopy[END_REF][START_REF] Janik | The prediction of soil chemical and physical properties from mid-infrared spectroscopy and combined partial least-squares regression and neural networks (PLS-NN) analysis[END_REF]. But ANN remain a black box -type approach where the network architecture does not give clues to
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3. Support Vector Machine: SVM are kernel-based learning methods. Initially a classication method, the concept has been extended to multivariate regression [START_REF] Cogdill | Least-squares support vector machines for chemometrics: an introduction and evaluation[END_REF]. A hyperplane describing as precisely as possible the spectral data set is dened using a kernel function. The model reduces the complexity of the data by the construction of subset of support vectors. The parameters to be dened are (i) the distance between the hyperplane and the dataset and (ii) the kernel function. Computational times are huge [START_REF] Vohland | Comparing dierent multivariate calibration methods for the determination of soil organic carbon pools with visible to near infrared spectroscopy[END_REF][START_REF] Igne | Evaluation of spectral pretreatments, partial least squares, least squares support vector BIBLIOGRAPHY machines and locally weighted regression for quantitative spectroscopic analysis of soils[END_REF] and this method has not yet much applied on soil data.

As shown in Table 2.1, the prediction model for these applications can be of very good quality. In theory, the methods are capable to model the relationship between the spectrum and the variable of interest, even if it is nonlinear. Moreover, they presuppose nothing about the distribution of y. These are advantages in favor of using non-linear methods for the calibration of soil parameters using NIRS. Predictions of forage compounds using this method are better than with PLS and similar in terms of quality to local methods, with advantages such that (i) of not requiring any calibration set to build the model and (ii) to be able to aect, in addition to a value for y, a prediction interval [START_REF] Chen | Toward Bayesian chemometrics. A tutorial on some recent advances[END_REF].
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General conclusions

The purpose of this review paper was to oer a focus on the basic theoretical concepts supporting NIRS and the use of linear multivariate calibration in soil applications especially related to soil carbon content measurement. Compared to other studied materials, soil does present some specic features that needed to be highlighted regarding their inuence on these theoretical concepts:

-soils are highly diuse materials where the scattering eect dominates in the spectra and introduces non-linearities in the relation with the carbon content;

-soils are extremely complex in terms of chemical composition and physical structure, which present a high variability between samples, especially in-eld;

-soil carbon content presents a highly skewed distribution.

Because of this, the spectral measurement conditions (including sample preparation)

and the choice of calibration methods will directly impact the quality of the prediction model. We showed that on the one hand, the optical phenomena, and especially the scatter of photons and on the other hand, the data structure are limiting factors to build good and robust calibrations.

New approaches are emerging in the soil literature, mostly in chemometrics, such as nonlinear or local methods, but their added value has still to be conrmed.

To conclude, the main goal of this study was to make soil scientists fully aware of the critical point of using classical chemometric methods without completely being aware of the underlying theory. It is also an opportunity to show that specic developments are needed to adapt NIRS and chemometrics to soil applications:

-A need in better understanding the light-soil interaction in order to better express the absorbance as a function of µ a and µ s ;

-A need in new optical acquisition methods capable of overcoming the issues of scattering, especially in the case of in-eld measurements;

-A need in adapted preprocessing methods and chemometric calibration methods.

Investing, simultaneously or not, these paths of research will allow to take an important step in the metrological quality of the soil carbon content measurement by NIRS.

Scientic issues at stake

According to the analysis carried out in this chapter, the main issue faced by NIR Spectroscopy applied to soil is the negative impact of light scattering on the signal quality, which directly aects the quality of the prediction models. Although a considerable eort has been made in the empirical scattering correction techniques, they are not sucient to solve the problem of multiple scattering completely.

The conclusions drawn from this chapter lead us to investigate this issue through the prism of signal quality. In other terms, to provide answers to the following question as the scientic heart of this thesis:

How can we measure an absorbance signal of optimal quality on highly scattering materials ?

The signal formation is the rst stage of the whole analytical method which also includes the calibration step. When light interacts with matter, it picks up both physically and chemically related information about the material. Hence, improving the quality of the signal means increasing its sensitivity and selectivity to the analyte of interest.

The gures of merit of the analytical method such as precision and robustness will be positively impacted. In the case of highly scattering materials such as soils, the challenge is mainly to restore the linearity between the absorbance and the chemical property of interest, which is aected by light scattering. 

Preamble

The main problem, in quantitative analysis of highly scattering samples using Vis-NIR spectroscopy, is that multivariate calibration models built on conventional spectroscopic Anderson [START_REF] Shi | Pharmaceutical applications of separation of absorption and scattering in near-infrared spectroscopy (NIRS)[END_REF] as samples exhibiting multiple scattering events.

Scattering can be several orders of magnitude larger than absorption and may invalidate the use of such data processing methods, which are themselves based on the underlying assumption of a linear Beer-Lambert law relationship between absorbance spectra and chemical concentration. It is therefore necessary for VIS-NIR spectroscopists working on highly scattering media to use strategies to release Vis-NIR spectra from scattering eects. The most common strategy is spectral pre-treatment. These preprocessing step is specically designed to reduce multiplicative and additive eects caused by variations in sample physical properties [START_REF] Rinnan | Review of the most common preprocessing techniques for near-infrared spectra[END_REF][START_REF] Martens | Extended multiplicative signal correction and spectral interference subtraction: New preprocessing methods for near infrared spectroscopy[END_REF] . Among them, standard normal variate (SNV) often associated to detrend, multiplicative signal correction (MSC) [START_REF] Geladi | Linearization and Scatter-Correction for Near-Infrared Reectance Spectra of Meat[END_REF], Extended MSC (EMSC) [START_REF] Martens | Extended multiplicative signal correction and spectral interference subtraction: New preprocessing methods for near infrared spectroscopy[END_REF], normalization or Optical Path Length Estimation and Correction (OPLEC) [START_REF] Chen | Extracting Chemical Information from Spectral Data with Multiplicative Light Scattering Eects by Optical Path-Length Estimation and Correction[END_REF][START_REF] Jin | Quantitative Spectroscopic Analysis of Heterogeneous Mixtures: The Correction of Multiplicative Eects Caused by Variations in Physical Properties of Samples[END_REF].

However, these approaches remain questionable : they consider that scattering is nearly constant over the wavelengths, which is not the case3; they may eliminate chemicalrelated information, which is very small with regard to scattering eects [START_REF] Martens | Light Scattering and Light Absorbance Separated by Extended Multiplicative Signal Correction. Application to Near-Infrared Transmission Analysis of Powder Mixtures[END_REF]; they are inappropriate when light scattering varies greatly from sample to sample [START_REF] Steponavicius | Extraction of Chemical Information of Suspensions Using Radiative Transfer Theory To Remove Multiple Scattering Eects: Application to a Model Multicomponent System[END_REF].

Another option is to acquire the spectrum in a way that separates the part related to absorption from the part related to scattering. Specic experimental techniques, related to the application of light propagation theory and resolution of the Radiative Transfer Equation [START_REF] Shi | Pharmaceutical applications of separation of absorption and scattering in near-infrared spectroscopy (NIRS)[END_REF] have been proposed, including adding-doubling set-ups [START_REF] Steponavicius | Extraction of Chemical Information of Suspensions Using Radiative Transfer Theory To Remove Multiple Scattering Eects: Application to a Model Multicomponent System[END_REF][START_REF] Prahl | The adding-doubling method[END_REF][START_REF] Steponavicius | Extraction of Chemical Information of Suspensions Using Radiative Transfer Theory to Remove Multiple Scattering Eects: Application to a Model Two-Component System[END_REF], spatially-resolved spectroscopy [START_REF] Farrell | A diusion theory model of spatially resolved, steady-state diuse reectance for the noninvasive determination of tissue optical properties in vivo[END_REF], time-resolved spectroscopy [START_REF] Chauchard | MADSTRESS: A linear approach for evaluating scattering and absorption coecients of samples measured using time-resolved spectroscopy in reection[END_REF]Abrahamsson et al., 2005b) and frequency-resolved spectroscopy [START_REF] Martens | Extended multiplicative signal correction and spectral interference subtraction: New preprocessing methods for near infrared spectroscopy[END_REF].

Although powerful, these methods have their limitations, particularly when applied on highly scattering samples. First, they may require complex and sometimes expensive optical implementations, which may not be compatible with conventional spectrometers Optical methodology for reducing scattering eects on the spectroscopic signal or with highly turbid samples (for which transmission measurement is not possible). Secondly, as they rely on the estimation of absorption and scattering coecients achieved by model inversion, parameters describing the studied medium (sample thickness, refractive index, particle size and shape...) must be known or approximated, which may be a troublesome task as they are often unknown in complex media [START_REF] Steponavicius | Extraction of Chemical Information of Suspensions Using Radiative Transfer Theory To Remove Multiple Scattering Eects: Application to a Model Multicomponent System[END_REF][START_REF] Swartling | Comparison of spatially and temporally resolved diuse-reectance measurement systems for determination of biomedical optical properties[END_REF].

Whereas separating absorption and scattering from a Vis-NIR signal is still an open research issue on highly turbid samples, the main demand from Vis-NIR spectroscopists is merely for spectra with reduced impact of scattering in order to better t Beer-Lambert's Law conditions [START_REF] Hebden | Optical imaging in medicine: I. Experimental techniques[END_REF][START_REF] Lu | Comparison of Methods for Reducing the Eects of Scattering in Spectrophotometry[END_REF]. Light polarization subtraction is a simple technique to reduce directly the eects of multi-scattering on the measured signal [START_REF] Lu | Comparison of Methods for Reducing the Eects of Scattering in Spectrophotometry[END_REF][START_REF] Backman | Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ[END_REF]. This approach has been based on the fact that, when light interacts with matter, a small number of scattering events do not signicantly modify the polarization status of the beam whereas multiple scattering leads to depolarization [START_REF] Swartling | Comparison of spatially and temporally resolved diuse-reectance measurement systems for determination of biomedical optical properties[END_REF]Abrahamsson et al., 2005a). Polarization subtraction technique [START_REF] Hebden | Optical imaging in medicine: I. Experimental techniques[END_REF][START_REF] Schmitt | Use of polarized light to discriminate short-path photons in a multiply scattering medium[END_REF][START_REF] Morgan | Polarization properties of light backscattered from a two layer scattering medium[END_REF][START_REF] Demos | Optical polarization imaging[END_REF] was used to select light beams that retain initial polarization and which are therefore less impacted by multiple scattering events.

Although this technique has gained interest in the eld of biomedical [START_REF] Lu | Comparison of Methods for Reducing the Eects of Scattering in Spectrophotometry[END_REF][START_REF] Backman | Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ[END_REF][START_REF] Demos | Temporal gating in highly scattering media by the degree of optical polarization[END_REF], where it is used to optically target subsurface organelles (particles suspended in water) and tissues (layered samples), it is either poorly understood or not used by NIR spectroscopists working with agricultural, food, pharmaceutical and other industrial samples. To our knowledge, polarized NIRS techniques have never been applied to routine or in-line analysis to reduce scattering eects on spectra on turbid media.

In this paper, the eectiveness of this multi-scattering correction based on the polarization subtraction is evaluated using a two-component model powder system. The objectives of this paper were to assess the eect of multi-scattering correction (i) on the performances of a calibration model and (ii) on the robustness of the prediction model Optical methodology for reducing scattering eects on the spectroscopic signal built from the corrected spectra for predicting the absorber's concentration of powder samples.

Theoretical Model : Polarization subtraction

Capital bold characters will be used for matrices, e.g. X; non bold characters will be used for column vectors, e.g. x.

Polarization subtraction technique [START_REF] Schmitt | Use of polarized light to discriminate short-path photons in a multiply scattering medium[END_REF][START_REF] Morgan | Polarization properties of light backscattered from a two layer scattering medium[END_REF][START_REF] Demos | Optical polarization imaging[END_REF] is based on the polarization-maintaining property of weakly scattered light. When polarized light illuminates a scattering medium, weakly scattered light will emerge in its original polarization state [START_REF] Backman | Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ[END_REF][START_REF] Demos | Temporal gating in highly scattering media by the degree of optical polarization[END_REF][START_REF] Sokolov | Reectance spectroscopy with polarized light: isit sensitive to cellular and nuclear morphology[END_REF][START_REF] Yoo | Time resolved depolarization of multiple backscattered light from random media[END_REF], while multiple scattered light will emerge with random polarization. In the case of linearly polarized source, the light that is remitted in the same polarization channel as the input illumination is composed by light that has maintained its original polarization state plus a component from the randomly polarized heavily scattered light (cf equation 3.1). Light that emerges in the orthogonal polarization channel contains only randomly polarized light, approximately equal to the randomly polarized component in the original polarization state (cf equation 3.2). Optical methodology for reducing scattering eects on the spectroscopic signal Since all light undergoes scattering :

I (λ) = Ω 2π • I 0 (λ) • S(λ) + Ω 2π • I 0 (λ) • α(λ) • M (λ) (3.1) I ⊥ (λ) = Ω 2π • I 0 (λ) • β(λ) • M (λ) (3.
S(λ) + M (λ) = 1 (3.3)
Finally, α(λ) and β(λ) are the multiple light scattered ratio by the media with the parallel and perpendicular polarization respect to the polarization of the illumination light. The sum α(λ) and β(λ) must be one :

α(λ) + β(λ) = 1 (3.4)
By subtracting 3.1 to 3.2, the intensity of light undergoing single scattering (I ss (λ))

is equal to :

I ss (λ) = I (λ) -I ⊥ (λ) = Ω 2π • I 0 (λ) • [S(λ) + (α(λ) -β(λ)) • M (λ)] (3.5)
In conclusion, the part of the single-scattering eect in the signal is preserved and the multi-scattering eect is highly reduced.

Materials and Methods

Instrumentation

In the experimental setup (gure. 

Experimental design and sample preparation

Powdered samples mixing sand (Fontainebleau sand VWR International) and coloring dyes (brilliant blue FCF-E133 and chlorophyllin E141, purchased from Colorey, respectively named E133 and E141 in the text) were prepared. Two sand particle size classes were used : S 1 with a diameter less than 250 µm and S 2 with a diameter greater than 250 µm. Sand plays the role of a scattering but non absorbing matrix. One or both of the coloring dyes have been added at dierent densities to the sand, playing the role of absorbing substance in the mixture. Note that absorbers in powdered form also have scattering properties. Particle sizes of the coloring powders were less than 50 µm, with E133 being about three times smaller than E141.

Overall, 42 samples were prepared for spectral acquisition composing a calibration set and 12 samples were prepared, afterward and with the same procedure to create an independent test set. The range of sample's colorant densities (in g • L -1 ) are specied in Figure 3.2.

Each sample was directly prepared in an airtight plastic container of 100 mL by Optical methodology for reducing scattering eects on the spectroscopic signal adding the precisely weighted corresponding amount of colorant in 20 g of sand using an analytical balance (Kern 770). The maximum dye volume added was not higher than 4% of the total sand volume. Considering that the pore volume for sand is about 40%, and that the dye particles are between 5 to 10 times smaller than the sand, one can make the assumption that the dye would ll the interstices between the sand particles and therefore not increase the initial volume of sand. The density of dye (d dye ) in a sample was obtained from :

d dye = m dye • d sand m sand (3.6)
with m dye the added mass of dye, d sand the density of sand (which dier for S 1 and S 2 )

and m sand the mass of sand (here 20g). The colorant density ranged from [0 -18 g • L -1 ].

To ensure homogeneity of the mixture, the sample was agitated after preparation and again just before it was carefully transferred in an adapted 5 cm of diameter cup to get an even and horizontal surface.

Optical methodology for reducing scattering eects on the spectroscopic signal

Spectral acquisition

For each sample, light was measured with the polarized spectrometer with parallel and perpendicular respect to the polarization of the illumination light. Dark current (I b )

was recorded from all measured spectra and subtracted.

A broadband dielectric mirror (BB3-E02, Thorlabs) was used as a reference (I 0 ) to standardize spectra from non-uniformities of all components of the instrumentation (light source, bers, lens, polarizer and spectrometer).

From these measurements and the equation (3.5), a raw reectance (R W ) and a corrected reectance (R C ), for each sample, were calculated : 

R W (λ) = (I (λ) -I b (λ)) + (I ⊥ (λ) -I b⊥ (λ)) (I 0 (λ) -I b (λ)) (3.

Multivariate analysis

All computations and multivariate data analysis were performed with Matlab software v. R2012b (The Mathworks Inc., Natick, MA,USA).

Optical methodology for reducing scattering eects on the spectroscopic signal

Linear unmixing

The rst step of Classical Least Square (CLS) [START_REF] Geladi | Chemometrics in spectroscopy. Part 1. Classical chemometrics[END_REF] was used to extract the reectance pure spectra of the absorbers from the reectance spectra of the mixtures.

Also called K-matrix, this linear unmixing assumes that a spectrum is a linear combination of the pure component's spectra. The whole calibration set R (42 samples mixing the absorbers at dierent concentrations) and C, the matrix of sample components concentrations, were used to compute the linear least square estimated K-matrix of the two pure active components (E133 and E141) composing K knowing that:

K = RC T (CC T ) -1 (3.9)
Both the raw reectance spectra (R W ) and the corrected reectance spectra (R C )

were used to compute respectively K w and K c containing the demixed pure spectra of E133 and E141.

Calibration

Partial Least Square (PLS) [START_REF] Wold | PLS-regression: a basic tool of chemometrics[END_REF] algorithm was used to model the chemical composition of the powder mixture using R W and R C . A general PLS model was built using the whole calibration set (42 samples) to predict the samples of the independent test set (12 samples). Secondly, to assess the robustness of the prediction models regarding sand particle size, a PLS model was built with the samples set S 2 and tested on the independent test set S 1 (gure 3.2). The number of latent variables was determined by comparing performances by leave-one-out cross-validation [START_REF] Wold | Cross-validatory estimation of the number of components in factor and principal components models[END_REF]. First comment is that the polarization subtraction reduces the global reectance intensity of the measured signal (by 10 times). It is an expected result as only a small part of the signal is selected: the single-scattered one. Despite this reectance loss, the corrected spectrum is not noisy and contains information about the sample.

Performances (R 2 
Between 400 nm and 700 nm, the raw spectrum and the corrected spectrum have similar shapes. For example, the spectroscopic signature of the colorant E133 appears to be purple (as seen in powdered form), mixing a reectance peak at 450 nm (Blue) and at 650 nm (Red). However, these peaks are more marked on the corrected spectra. For the raw spectrum, crushing peaks can be explained by a strong increase in reectance above 750 nm. This sharp increase in reectance, in a spectral range where the colorant does not absorb, is due to the multi-scattering. However, this eect seems to be less important for E141 than for E133. In the corrected spectra, this eect is strongly reduced (Figure

(b)).

Sand and dye mixtures Optical methodology for reducing scattering eects on the spectroscopic signal scattering is not wavelength dependent and depends on the number of scatterers in the sample. Therefore, the more dye, the more scatterers and, consequently the higher the reectance. The order of the raw spectra is consistent with the dye's concentration, but for a physical reason. By applying the correction, the spectral features of the colorant are enhanced as it can be seen on gure 3.3 (d). The signature of the corrected spectra is similar to the spectral signal of the colorant E133 in powdered form (gure 3.3 (b)). The reectance peaks at 450 nm and at 650 nm clearly appear, but more important, because linked to the dye's concentration, the wavelength regions where absorbance occurs (400 430 nm and 500 650 nm) are now visible. In these regions, the spectrum ordering is consistent with the dye concentration, contrary to the other areas where low absorbance occurs and reveals more complex reectance patterns. the level of R w (λ) is two-times higher for E133 than for E141. As stated in section 3.3.2, the particle size of E141 is, at least, three-times larger than E133. This dierence in particle diameter has a direct impact on the elastic scattering phenomenon occurring during light-matter interaction. First, for the same density of dye, small particles scatter more than larger particles [START_REF] Backman | Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ[END_REF]. Secondly, the scattering angle dier between small and larges particles: the larger the diameter, the smaller the scattering angle. Combining these two properties, the overall reectance intensity will be higher for smaller particles, which is the case of raw reectance of the Sand-E133 mixture.

For the corrected spectra R C (λ), there is no signicant dierence in the intensity level between sand E133 mixtures ( This is coherent with the fact that the method corrects the spectra form multi-scattering, which is mainly due to the sand particles but also, and in a signicant manner, to the powdered colorant.

Optical methodology for reducing scattering eects on the spectroscopic signal 3.4.2 Extraction of the absorber's pure spectra 

K C_E133 K C_E141 R C_E133 R C_E141
Wavelength (nm) ^F igure 3.4: Comparison of the raw and the corrected spectra acquired on the two coloring powders (R W _E133 (λ), R W _E141 (λ) and R C_E133 (λ), R C_E141 (λ)) with the demixed pure spectrum ( K W _E133 (λ), K W _E141 (λ) and K C_E133 (λ), K C_E141 (λ)) extracted respectively from (R W ) and (R C ) with Linear unmixing. Figure 3.4 presents the demixed pure spectra K extracted from the reectance spectra (R W and R C ). The linear unmixing (gure 3.4.a) applied to raw spectra (R W ) provided estimated pure spectra ( K W _E133 (λ) and K W _E141 (λ)) that a very dierent from the raw spectra R W _E133 (λ) and R W _E141 (λ) measured directly on the powders. The shape of these spectra are not matching and the correlation coecients, between K W _E133 (λ) and R W _E133 (λ) and between K W _E141 (λ) and R W _E141 (λ), are respectively equal to 0.59 and 0.74.

Linear unmixing assumes that a spectrum is a linear combination of the pure components spectra. From these results, the failure to recover the absorber's pure spectrum from the raw reectance spectra, support the fact that interactions in the mixture are responsible of non-linearities which are directly responsible of the non-linearities in the relationship between the Absorbance and the absorbing power of the sample. It is well known [START_REF] Lu | Comparison of Methods for Reducing the Eects of Scattering in Spectrophotometry[END_REF][START_REF] Stockford | Reduction of Error in Spectrophotometry of Scattering Media Using Polarization Techniques[END_REF] that scattering and absorbance are not independent phenomenon. Scatter increases the mean free path of photons, increasing the chances of being absorbed.

On the contrary, the computation of the K C_E133 (λ) -matrix is successful and matches Optical methodology for reducing scattering eects on the spectroscopic signal the pure colorant corrected reectance spectrum. Estimated pure spectra ( K C_E133 (λ) and K C_E141 (λ)) are very close to R C_E133 (λ) and R C_E141 (λ) measured directly on the powder and corrected. The correlation coecients are respectively 0.98 and 0.93.

As the method corrects the signal from a physical phenomenon (multi-scattering), one can arm that the observed interactions in the raw spectra are of optical nature (and not chemical interactions). Regarding these results and this consideration, polarization subtraction correction induces, by reducing the multi-scattering eect, a better linear relationship between the light attenuation and the absorption the dyes. The recovered spectra ( K C_E133 (λ)) are corrected from the physical interactions occurring in the mixture.

Calibration models

General model First, with the raw spectra R w (λ), the quality of the E133 prediction model is distinctly poorer than the quality of the E141 prediction model. The number of latent variables is much higher for E133 as well as the SEP c . On the contrary, the gures of merit for the E141 model are good. Again, E133 and E141 behave dierently. As stated before, multiscattering eect is more important when E133 is present in the mixture (with or without E141) because of a smaller particle diameter. Hence, non-linearities between absorbance and absorber's concentration are more important and the PLS model is limited in building a performant linear prediction model for E133.

Optical methodology for reducing scattering eects on the spectroscopic signal When the models are built with the corrected reectance spectra R c (λ), the gure of merit of the absorber's density prediction models are good and of the same level for E133 and E141. In both cases, the number of latent variables is decreasing. The improvement is less important for E141 but signicant for E133. And both models have a lower standard error of prediction compared to the R w (λ) prediction models for the two colorants. In section 3.4.1, we stated that the proposed method mainly reduced the eect of multiscattering due to sand particles, enhancing the part of the signal related to chemical absorbance. In R w (λ), while this information is present, it is masked by the multi-scattering and the PLS needs more latent variable to extract this chemically related information to build a model.

Here, the dierent behavior of the two dyes is not obvious anymore. This agrees with the hypothesis that the correction method equalizes the mean free photon path between all the samples, regardless of the particle size and shape of the sample's constituents. For the two absorbers, the number of latent variables, which is an indicator of the complexity of the models, is still high (respectively 5 and 4 for E133 et E141 with the corrected spectra R c (λ)) for samples mixing only two dierent absorbers. Theoretically, two PLS components should be sucient. This agrees with the initial assumption that the polarization subtraction method highly reduces the multi-scattering but does not remove it completely. In addition, these results are consistent with the conclusions of section 'Extraction of the absorber's pure spectra, stating that the correction method restores, in a signicant manner, the linear relationship between the spectra and the absorber's density in the powdered samples. To conclude, as the PLS models using the corrected spectra show good prediction capacities, it fullls the assumption that even if the corrected signal intensity is highly reduced, the remaining information is of better quality in terms of signal sensitivity.

Robustness assessment

Table 3.2 presents the results of the calibration model built with samples of one particle size (S 2 ) and tested on samples with another particle size (S 1 ). First, the models built with R W (λ) show, as previously observed, better predictions for E141 than for E133, but, in overall, lower quality than in table 3.1. This conrms a dierent behavior of E133 and E141, but also that the sand particle size has an eect in the quality of the predictions. A change in the physical structure of the samples usually leads to low prediction performances because of the scattering impact on the signal.

When built with the corrected spectra R C (λ), again, the prediction of E133 highly improves, while the gain is less signicant for E141, which is also consistent with the previous conclusions. But overall, the predictions are good, conrming that the corrected spectra, composed by the single scattered part of the total reectance signal, becomes less dependent to physical changes in the sample.

The polarization subtraction method selects by optical means only, part of information related to the powdered absorbers concentration, while discarding the unwanted eect of multi-scattering on the signal. The measured signal becomes less dependent of the particle size changes of the samples and therefore improves both quality and robustness of the prediction models.

Conclusion

This study demonstrates the eectiveness of the polarized light subtraction method, applied to a two component model powder system, which improves the performance of multivariate calibration models.

By selecting only the light which has conserved the initial polarization and therefore being less impacted by scattering events, a better linear correlation between the spectra Optical methodology for reducing scattering eects on the spectroscopic signal and the absorbers of the powder is observed. Only photons, that all have the same path length, are present. Then it's possible, by using the extracted pure spectrum from the calibration set with CLS, to have a good prediction of the absorbers concentrations in the samples.

When the corrected spectra are used to build the PLS models (more powerful than the CLS method), all the general quality parameters and the parsimony signicantly improve. Although the overall signal intensity is reduced after optical correction, the remaining information in the corrected signal is sucient and of better quality to build a good prediction model, thus meaning that the signal sensitivity increases. Inevitably there is a trade-o between making more accurate measurements and a reduction of SNR.

After the polarization correction, the measured signal becomes less dependent to physical changes (particle sizes) which also improves the robustness of the prediction models.

This plug and play optical method oers the potential to be easy to implement to a commercial spectrophotometry system and does not signicantly increase the measurement time.

Preamble

The output of the PoLiS optical method, described in the previous chapter, is a reectance signal corrected from multiscattering eects. Although this signal present a good SNR and contains relevant information related to the sample's chemical content, it only interrogates a small volume of the sample. Therefore, it is necessary to link these optical measurements to the absorbing properties of the whole sample.

We found the frame of the Representative Layer Theory (RLT) developed by Dahm & Dahm adapted to provide a link between the PoLiS measurements and the absorbing power of highly scattering samples. This chapter details the underpinning theories of this combined approach and presents the experimentation conducted to evaluate the method on scattering samples in liquid and powdered form.

To avoid the reader some redundancies between the two stand-alone chapters (chapter 3 and chapter 4), part of the introduction has been grayed. In addition, between the two chapters, the following symbols changed:

-the raw reectance R W (λ) becomes the backscattered reectance R BS (λ)

-the corrected reectance R C (λ) becomes the low scattered (or single scattered) reectance R SS (λ)

Combining linear polarization spectroscopy and the Representative Layer Theory to measure the Beer-Lambert's Law Absorbance of highly scattering media 1

Introduction

Visible and Near Infrared (VisNIR) Spectroscopy has been widely accepted as a rapid, nondestructive analytical technique for a huge number of media and products.

Today, it plays a major role in many sectors such as agricultural and food products or for petrochemicals and pharmaceuticals, as a routine laboratory, in-vivo or in-line monitoring system [START_REF] Williams | Near-Infrared Technology in the Agricultural and Food Industries[END_REF]. The spectrometric signal is used to extract chemically related information from dierent materials, usually by means of chemometric modeling. This is made possible because, according to BeerLambert Law, absorbance is linearly related to the concentration of the chemicals composing the samples.

This ideal case occurs only in transmission measurements of low concentration in non turbid media where the derived absorbance {Abs = -log T } is a good estimation of the BeerLambert law absorbance, here referred as the absorbing power [START_REF] Dahm | Interpreting Diuse Reectance and Transmittance: A Theoretical Introduction to Absorption Spectroscopy of Scattering Materials[END_REF]. In other cases, especially when highly turbid samples are dealt with, measuring the absorbing power of samples is far from trivial. As soon as the material contains scattering centers, accounting for all the photons that have entered the sample becomes a real challenge. Some of them are absorbed, some of them reach the detector directly; some after having traveled a certain distance in the media; and, at last, some of the photons exit the sample without striking the (transmission) detector. In diuse reectance, the detector measures the backscattered signal R. Traditionally, a simili-absorbance is computed from R for an innitely thick sample : {Abs = -log R} . This computed absorbance is a bad approximation of the BeerLambert law absorbance, because the path-length through the sample is dependent on both absorption and scatter in the 1 Alexia Gobrecht, Ryad Bendoula, Jean-Michel Roger, Véronique Bellon-Maurel, Combining linear polarization spectroscopy and the Representative Layer Theory to measure the Beer-Lambert's Law Absorbance of highly scattering media. Accepted in Analytica Chimica Acta, October, 2014.

Modeling the absorbance of highly scattering materials sample. This gives rise to additive and multiplicative eects, generating non-linearity in the absorbance-concentration relationship. When this phenomenon dominates the spectra formation, the chemically related absorbance can be severely overlapped by the physically related information, making the calibration step more critical.

It is therefore necessary for NIR spectroscopists working on highly scattering materials to use strategies to free NIR spectra from scattering eects. The most common strategy is spectral pre-processing, with treatments specically dedicated to reduce multiplicative and additive eects caused by variations in sample's physical properties [START_REF] Rinnan | Review of the most common preprocessing techniques for near-infrared spectra[END_REF][START_REF] Martens | Extended multiplicative signal correction and spectral interference subtraction: New preprocessing methods for near infrared spectroscopy[END_REF]. While they may be sucient in some practical situations, they may not be able to integrate the whole complexity of non-linear multiple scattering effects in many situations. This may be because they consider that scattering is nearly constant over the wavelengths, which is not the case [START_REF] Shi | Pharmaceutical applications of separation of absorption and scattering in near-infrared spectroscopy (NIRS)[END_REF]; they may eliminate chemical-related information, which is very weak with regard to scattering eects [START_REF] Martens | Light Scattering and Light Absorbance Separated by Extended Multiplicative Signal Correction. Application to Near-Infrared Transmission Analysis of Powder Mixtures[END_REF]; they are inappropriate when sample-to-sample light scattering variations are large [START_REF] Steponavicius | Extraction of Chemical Information of Suspensions Using Radiative Transfer Theory To Remove Multiple Scattering Eects: Application to a Model Multicomponent System[END_REF]. Hence, preprocessing the spectra may revert some simple variations like additive or multiplicative eects, but as scattering and absorption are not two independent phenomena [START_REF] Dahm | The physics of near-infrared scattering[END_REF], their eect on the spectrum can be mathematically irreversible.

Another option is to acquire the spectrum so that one can separate the signal related to absorption from the one related to scattering. Specic experimental techniques, related to the application of light propagation theory and resolution of the Equation ofRadiative Transfer (ERT) [START_REF] Shi | Pharmaceutical applications of separation of absorption and scattering in near-infrared spectroscopy (NIRS)[END_REF] have been proposed, including adding-doubling set-ups [START_REF] Steponavicius | Extraction of Chemical Information of Suspensions Using Radiative Transfer Theory To Remove Multiple Scattering Eects: Application to a Model Multicomponent System[END_REF][START_REF] Prahl | The adding-doubling method[END_REF][START_REF] Steponavicius | Extraction of Chemical Information of Suspensions Using Radiative Transfer Theory to Remove Multiple Scattering Eects: Application to a Model Two-Component System[END_REF], spatially-resolved spectroscopy [START_REF] Farrell | A diusion theory model of spatially resolved, steady-state diuse reectance for the noninvasive determination of tissue optical properties in vivo[END_REF], time-resolved spectroscopy (Abrahamsson et al., 2005b;[START_REF] Chauchard | MADSTRESS: A linear approach for evaluating scattering and absorption coecients of samples measured using time-resolved spectroscopy in reection[END_REF] and frequency-resolved spectroscopy [START_REF] Torrance | Impact of excipient particle size on measurement of active pharmaceutical ingredient absorbance in mixtures using frequency domain photon migration[END_REF]. Though powerful, these methods have limitations particularly when applied to highly scattering samples. First, they may require complex and sometimes expensive optical implementation, which may not be compatible with conventional spectrometers or with opaque samples (transmission measurement may be Modeling the absorbance of highly scattering materials impossible). Secondly, as they rely on the estimation of absorption and scattering coecients achieved by model inversion, they require knowing or approximating the parameters describing the studied medium (sample thickness, refractive index, particle size and shape), which may be critical [START_REF] Steponavicius | Extraction of Chemical Information of Suspensions Using Radiative Transfer Theory To Remove Multiple Scattering Eects: Application to a Model Multicomponent System[END_REF][START_REF] Swartling | Comparison of spatially and temporally resolved diuse-reectance measurement systems for determination of biomedical optical properties[END_REF].

Simpler approaches of the ERT like N-ux models [START_REF] Kubelka | Ein Beitrag zur Optik der Farbanstriche[END_REF][START_REF] Thennadil | Relationship between the Kubelka-Munk scattering and radiative transfer coecients[END_REF][START_REF] Kessler | Using scattering and absorption spectra as MCR-hard model constraints for diuse reectance measurements of tablets[END_REF] have been tested to separate absorption and scattering coecients. Among them, the Kubelka-Munk theory [START_REF] Kubelka | Ein Beitrag zur Optik der Farbanstriche[END_REF] is the simplest and therefore most popular one. However, these approaches assume a continuous sample but fail when the media include spatial discontinuities such as powdered samples presenting dierent particles and voids [START_REF] Pasikatan | Near infrared reectance spectroscopy for online particle size analysis of powders and ground materials[END_REF][START_REF] Coello | Application of representative layer theory to nearinfrared reectance spectra of powdered samples[END_REF]. Aware of these limitations, Dahm & Dahm (2004a) derived a more general expression of the 2-ux Kubelka-Munk equation, in the frame of plane parallel mathematics, the Representative Layer Theory (RLT) [START_REF] Dahm | Representative Layer Theory for Diuse Reectance[END_REF][START_REF] Brown | Using a global VNIR soil-spectral library for local soil characterization and landscape modeling in a 2nd-order Uganda watershed[END_REF]. The sample is, as in the KM theory, considered as a superposition of n representative layers of thickness small enough so that there is no scatter between material in the same layer. This present the advantage that absorption and scattering occur independently in the layer and can therefore be theoretically separated. The frame of RLT has been already been used to study highly scattering materials such as milk [START_REF] Bogomolov | Technical note: Fat globule size eect on visible and shortwave near infrared spectra of milk[END_REF][START_REF] Dahm | Review: Explaining some light scattering properties of milk using representative layer theory[END_REF] or powdered mixtures [START_REF] Coello | Application of representative layer theory to nearinfrared reectance spectra of powdered samples[END_REF]. Whereas separating absorption and scattering from VisNIR signal is still an open research issue on highly scattering samples, the main demand from VisNIR spectroscopists is at least to get an absorbance spectra with a reduced eect of scattering in order to better approximate BeerLambert conditions [START_REF] Hebden | Optical imaging in medicine: I. Experimental techniques[END_REF][START_REF] Lu | Comparison of Methods for Reducing the Eects of Scattering in Spectrophotometry[END_REF].

In this study, we propose to use a Polarized Light Spectroscopy setup (PoLiS ), adapted from [START_REF] Bendoula | Improvement of the chemical content prediction of a model powder system by reducing multiple scattering using polarized light spectroscopy[END_REF], to optically select photons that have undergo very few interactions with matter, i.e. photon of which paths have not been aected by multiscattering [START_REF] Bendoula | Improvement of the chemical content prediction of a model powder system by reducing multiple scattering using polarized light spectroscopy[END_REF]. Although light polarization has gained interest in the eld of biomedical spectroscopy [START_REF] Lu | Comparison of Methods for Reducing the Eects of Scattering in Spectrophotometry[END_REF][START_REF] Backman | Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ[END_REF][START_REF] Sokolov | Reectance spectroscopy with polarized light: isit sensitive to cellular and nuclear morphology[END_REF] and imaging [START_REF] Demos | Optical polarization imaging[END_REF][START_REF] Arimoto | Multispectral Polarization Imaging for Observing Blood Oxygen Saturation in Skin Tissue[END_REF], for example to optically Modeling the absorbance of highly scattering materials target subsurface organelles and tissues, it is still not used by VisNIR spectroscopists.

We propose to combine the PoLiS spectral information with the Absorption-Remission function A(R, T ) dened by [START_REF] Dahm | Representative Layer Theory for Diuse Reectance[END_REF] in their Representative Layer Theory to compute a new absorbance spectra fullling BeerLambert law conditions. This is the aim of this paper, which rst introduces the theoretical aspects underpinning this approach and second, studies experimentally its validity for scattering samples in liquid and powdered form in the 350 nm to 850 nm range corresponding to the Visible and Very-Short-Near-Infrared range (Vis-VSNIR).

Theory

Polarization subtraction spectroscopy

Light emitted by a source with an intensity I 0 (λ) is an electromagnetic wave vibrating in all the planes randomly, when unpolarized. By means of a linear polarizer, it is possible to select the light's electric eld oscillation plane, either parallel or perpendicular to the plane dened by the direction of the incident and the reected beam. After reection, an analyzer placed before the detector makes it possible to measure the two components I ,Ω (λ) and I ⊥,Ω (λ) of the backscattered light intensity I BS,Ω (λ), where Ω is the solid collection angle of the optical setup:

I BS,Ω (λ) = I ,Ω (λ) + I ⊥,Ω (λ) (4.1)
I ,Ω (λ) is the intensity of light measured with the analyzer orientated in parallel to the polarizer. I ⊥,Ω (λ) is the light collected with the analyzer oriented perpendicularly to the polarizer.

When linearly polarized incident light penetrates a scattering medium, the remitted signal looses its initial polarization state because of the multiple scattering (including reection) events. This is a gradual process and photons that have undergone a few scattering events maintain their initial polarization status [START_REF] Stockford | Reduction of Error in Spectrophotometry of Scattering Media Using Polarization Techniques[END_REF][START_REF] Sokolov | Reectance spectroscopy with polarized light: isit sensitive to cellular and nuclear morphology[END_REF][START_REF] Backman | Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ[END_REF][START_REF] Demos | Optical polarization imaging[END_REF].

Let I M S,Ω (λ) be the multiscattered part and I SS,Ω (λ) the low scattered part of backscattered light intensity I BS,Ω (λ) such as :

I BS,Ω (λ) = I M S,Ω (λ) + I SS,Ω (λ) (4.2)
Multiscattered light is isotropically unpolarized and half of its intensity passes through the analyzer when oriented parallel to the polarizer and the other half when oriented perpendicular. Therefore,

I ⊥,Ω (λ) = 1 2 I M S,Ω (λ) (4.3) I ,Ω (λ) = I SS,Ω (λ) + 1 2 I M S,Ω (λ) (4.4)
From these relations, it is possible to select the intensity of light undergoing very few scattering events (I SS,Ω (λ)) :

I SS,Ω (λ) = I ,Ω (λ) -I ⊥,Ω (λ) (4.5)
Polarization subtraction technique enables us to select the light conserving the initial polarization and therefore being less impacted by multiscattering events [START_REF] Bendoula | Improvement of the chemical content prediction of a model powder system by reducing multiple scattering using polarized light spectroscopy[END_REF][START_REF] Stockford | Reduction of Error in Spectrophotometry of Scattering Media Using Polarization Techniques[END_REF][START_REF] Hebden | Optical imaging in medicine: I. Experimental techniques[END_REF][START_REF] Schmitt | Use of polarized light to discriminate short-path photons in a multiply scattering medium[END_REF].

Absorbance of scattering samples

According to the Glossary of Terms used in Vibrational Spectroscopy compiled by John Bertie [START_REF] Bertie | Glossary of Terms used in Vibrational Spectroscopy[END_REF], Absorbance (here abbreviated Abs) expressed by the Beer Lambert law, in the case of non turbid liquids, is the product of the extinction coecient (ε) (also called the BeerLambert absorption coecient), the absorber's concentration

Modeling the absorbance of highly scattering materials (c) and path length of light through the sample (dx) :

Abs(λ) = ε(λ) c dx (4.6)
In transparent liquids with no scatterers, light is either absorbed (with a probability A, also called absorptance) or transmitted (T or transmittance) through the sample so that A(λ) + T (λ) = 1. Therefore, the absorbance value, by BeerLambert Law, can be expressed by the absorbance function :

Abs(λ) = -log T (λ) = -log (1 -A(λ)) (4.7)
In the case of a scattering media, light is composed of three fractions, the absorbed (A), the transmitted (T) and the remitted (R or reectance) one, with A + T + R = 1.

Hence, the absorption function can be similarly used to calculate the absorbance Abs from the measurements of R and T :

Abs(λ) = -log (R(λ) + T (λ)) = -log (1 -A(λ)) (4.8)
This absorbance value is however a bad approximation of the BeerLambert law absorbance because in scattering samples, absorbance and scattering are not independent phenomena [START_REF] Dahm | Review: Explaining some light scattering properties of milk using representative layer theory[END_REF]. One consequence is that the relationship between absorbance and concentration is not linear anymore.

Absorbance of a representative layer of the sample

Based on their Representative Layer Theory, [START_REF] Dahm | Interpreting Diuse Reectance and Transmittance: A Theoretical Introduction to Absorption Spectroscopy of Scattering Materials[END_REF] propose an estimate for the BeerLambert law absorbance, which is corrected from scattering. In this theoretical approach, a sample is considered as a superposition of n plane parallel layers being representative of the sample, i.e. layers that are considered to have the same average chemical and physical properties. This layer, named Representative Layer (RL) is thin enough so that absorption, transmission and remission occur independently: a pho-Modeling the absorbance of highly scattering materials ton interacting with the representative layer can either be absorbed (with a probability a), transmitted (with a probability t) or remitted (with a probability r). The Representative Layer absorbance value computed for these fractions (a, r, t) can be considered as freed from scattering. Hence, the BeerLambert law absorbance can be approximated by the absorbance of the representative layer Abs RL :

Abs RL (λ) = -log (1 -a(λ)) (4.9)
with a the absorbed fraction of light of a representative layer. This absorbance Abs RL is linearly related to the sample's extinction coecient, the analyte's concentration and sample thickness as a conventional absorbance value is, for non scattering samples [START_REF] Dahm | Review: Explaining some light scattering properties of milk using representative layer theory[END_REF].

In addition, the Absorption-Remission A(R, T ) function [START_REF] Dahm | Representative Layer Theory for Diuse Reectance[END_REF] relates the fractions of light absorbed, remitted and transmitted by a representative layer to the spectroscopic measurements (R and T ) made on the whole sample. This function is constant for any number of layers making up the sample:

A(R, T ) = (1 -R) 2 -T 2 R = a r • (2 -a -2r) (4.10)
In order to resolve equation 4.10 to compute the absorbed fraction of light in the representative layer a, the total reectance R, total transmittance T and remitted fraction of the representative layer r have to be measured or approximated. This is the purpose of the next section.

Estimation of the PoLiS absorbance combining polarized light spectroscopy and the Representative Layer Theory

For optically thick samples, the transmitted fraction of light is null, T = 0. The total reectance R can be approached by the remitted fraction of light R BS,Ω computed from:

R BS,Ω (λ) = I BS,Ω (λ) I 0,Ω (λ) (4.11) with I 0,Ω (λ) the intensity if the light source.

According to Dahm, r, the remitted fraction of a representative layer of sample is, in theory, independent of any multi-scattering event. As I SS,Ω (λ) is the intensity of light not being inuenced by multiscattering, the assumption can be made that it can be used to approximate the remitted fraction of light r, by computing the related low scattered reectance R SS,Ω (λ):

r(λ) ≈ R SS,Ω (λ) = I SS,Ω (λ) I 0,Ω (λ) 
(4.12)

Considering this, equation 4.10 becomes :

A(R BS,Ω (λ), 0) = (1 -R BS,Ω (λ)) 2 R BS,Ω (λ) = a(λ) R SS,Ω (λ) • (2 -a(λ) -2 R SS,Ω (λ)) (4.13)
Therefore, by resolving equation 4.13, the absorbed fraction a of a representative layer can be expressed as:

a(λ) = 1 -R SS,Ω (λ) -(1 -R SS,Ω (λ)) 2 - R SS,Ω (λ) R BS,Ω (λ) (1 -R BS,Ω (λ)) 2 (4.14)
With R SS,Ω (λ) and R BS,Ω (λ) measured with (PoLiS ), it is possible to compute the absorbance spectrum Abs P o (λ) from equation 4.9 presenting the same properties, regarding

Modeling the absorbance of highly scattering materials the BeerLambert Law, as the Absorbance of a representative layer, Abs RL (λ): 

Abs P o (λ) = -log R SS,Ω (λ) + (1 -R SS,Ω (λ)) 2 - R SS,Ω (λ) R BS,Ω (λ) (1 -R BS,Ω (λ))

Samples preparation

Liquid samples

Liquid samples were composed of half-fat milk mixed with 6 dierent concentrations of chlorophyllin E141, a common food colouring (Colorey) : 0, 0.025, 0.050, 0.10 and 0.20 and 0.30 g • L -1 .

Aliquots of 75 mL of each sample were conditioned in a beaker so that the height of liquid was about 3 cm, though optically thick.

Powdered samples

A series of 6 powdered samples was prepared mixing sand of 250 µm mean particle size (Fontainebleau sand, VWR International ) with the same dye E141 in powdered form, at dierent concentrations. Each sample was directly prepared in a 100 mL airtight plastic container by adding the precisely weighted corresponding amount of dye in 20 g of sand using an analytical balance (Kern 770, Kern Gmbh). Considering that the dye, presenting a particle size of less than 50 µm, would ll the interstices between the sand particles and therefore not increase the total volume, the concentration of the colorant Modeling the absorbance of highly scattering materials analyzer was coupled to an optical ber (N.A = 0.25, Sedi & ATI) by an aspheric lens (F220SMA-B -Thorlabs). This ber was connected to a spectrometer (MMS1, Zeiss).

Spectral data were collected in the 350 850 nm wavelength range at 3 nm intervals, resulting in measurements at 151 discrete wavelengths per spectrum. The illumination arm was placed at the zenith so that the beam of light hit the sample perpendicularly.

The collection arm was oriented at 45 o zenith angle in order to avoid specular reections.

The irradiated surface was about 1.8 cm 2 . From the diuse reectance (R) and transmittance (T) Jasco measurements, the three fractions of light (transmitted, reected and absorbed) are known for samples of 1 mm thickness. Following Dahm & Dahm's procedure to compute an absorbance of a representative layer as presented in [START_REF] Dahm | Review: Explaining some light scattering properties of milk using representative layer theory[END_REF], the following set of Benford equations (4.17 4.19) [START_REF] Benford | Radiation in a Diusing Medium[END_REF], have been repeatedly applied to compute the three fractions (A, R and T) for a thinner and thinner layer : From these iteratively computed fractions, the absorbance for each layer of thickness d/n has been computed using equation 4.8, with n the number of representative layers composing the sample :

Sample Broadband Light Source

R d/2 = R d 1 + T d (4.17) T d/2 = T d (1 -R 2 d ) 0.5 (4.18) A d/2 = 1 -R d/2 -T d/2
Abs RL,d/n = -log(1 -A d/n ) (4.20)
According to [START_REF] Dahm | Review: Explaining some light scattering properties of milk using representative layer theory[END_REF], when a minimal thickness is reached, absorbance is directly proportional to sample thickness: if the thickness is doubled, so does the absorbance, in accordance with BeerLambert's Law. Therefore, iterations have been stopped for the condition :

Abs RL,d/n Abs RL,d/2n ≈ 2 (4.21)

PoLiS spectral acquisitions

For each type of sample (powdered and liquid), remitted light intensity was measured with the PoLiS setup with the analyzer set parallel (I ,Ω (λ)) and perpendicular (I ⊥,Ω (λ))

with respect to the polarization of the illumination light. Dark current (I b (λ)) (i.e.

Modeling the absorbance of highly scattering materials current without light) was recorded for all measured spectra and subtracted.

A diuse reectance white standard (Spectralon SRS-99-010, Labsphere) was used to collect a reference spectrum (I 0,Ω (λ)) to standardize spectra from non-uniformities of all components of the instrumentation (light source, bers, lens, polarizer and spectrometer).

From these measurements and the equations (4.1) and (4.5), the backscattering reectance (R BS,Ω (λ)) and the low scattered reectance (R SS,Ω (λ)), has been calculated

for each sample :

R BS,Ω (λ) = I ,Ω (λ) -I b (λ) + [I ⊥,Ω (λ) -I b⊥ (λ)] [I 0,Ω (λ) -I b0 (λ)] (4.22) R SS,Ω (λ) = I ,Ω (λ) -I b (λ) -[I ⊥,Ω (λ) -I b⊥ (λ)] [I 0,Ω (λ) -I b0 (λ)] (4.23) 
From the measurements performed with the Jasco on the liquid samples and the PoLiS setup on both type of samples, dierent absorbance spectrum have been computed and compared :

-Abs RL (λ), the absorbance of the representative layer of liquid samples computed from its absorbed fraction of light (A d/n ), obtained from the Jasco measurements (c.f. equation 4.20). ;

-Abs BS (λ), the absorbance computed from the total backscattered reectance signal The transmission measurement performed with the Jasco laboratory spectrometer of a sample mixing E141 coloring dye in low concentration with distilled water, allowed us to compute the E141 extinction coecient ε 141 (λ) from equation 4.6, with the assumption that there is no scattering in a low concentrated sample. Figure 4.2 shows the spectral signature of the extinction coecient ε 141 (λ) over the wavelength range 250 800 nm.

R BS,Ω (λ) measured with PoLiS. Abs BS (λ) = -log R BS,Ω (λ) 
The dye shows two absorbance peaks at 405 nm and 630 nm. Abs RL (λ) (gure 4.3 a.) show similar spectral features to those of ε 141 (λ) (c.f. gure 4.2), with two narrow peaks at 405 nm and 630 nm. By measuring both the transmittance and the reectance with the Jasco spectrometer, the goal is to collect all the photons interacting with the sample within the integration sphere, including those scattered by the fat globules present in milk [START_REF] Cattaneo | Contribution of light scattering to near infrared absorption in milk[END_REF]. However, a baseline is present, even when there is no colorant added to the milk. This baseline can be explained by a non negligible loss of photons (in transmission for example), which leads to overestimate the absorbance over the whole studied wavelength range. In addition we observe that for the high concentrated sample (c E141 = 0.3 g.L -1 ), at 405 nm, the absorbance value is lower than expected. The Absorbance value of the whole sample (1 mm thick) can be Modeling the absorbance of highly scattering materials retrieved from Abs RL (λ):

Abs j (λ) = n • Abs RL (λ) (4.24)
with n the number of layers composing the sample. Hence, for n = 256, the Absorbance Abs j = 4.5 Abs at 405 nm which is just outside the upper limit of the photometric range of the Jasco (section 4.3.2), which can explain the ceiling reached by this sample. But inside the linear photometric range of the Jasco, Abs RL (λ) can be considered as a reliable reference measurement of the absorbing power of the liquid samples studied.

For the absorbance computed from the PoLiS measurements (Abs BS (λ) and Abs P o (λ)), the path length is not known, although it is supposed to approximate the mean particle size for Abs P o (λ) [START_REF] Dahm | Review: Explaining some light scattering properties of milk using representative layer theory[END_REF]. However, a visual analysis can be carried out on the shapes of these dierent spectra to compare with the Jasco absorbance (gure 4.3).

The absorbance Abs BS (λ) computed from only the backscattered diuse reectance R BS,Ω (λ) (gure 4.3 b.) shows the same absorbance peaks at 405 nm and 630 nm. The overall shape is also similar to the shape of E141 colorant without milk. It is known that diuse reectance measurements do provide relatively coherent information about the studied material. However, compared to the Jasco measurements, here considered as the laboratory reference measurement, some qualitative dierences can be observed: an important base line, larger peaks and an overall intensity dynamic (i.e. the dierence between absorbing and non absorbing zones) which is reduced compared to the one seen for the Jasco measurements. This is typical of scattering which increases the light path length, especially in the non or low absorbing wavelength ranges. The longer the path in the medium, the higher the probability of the photon to be absorbed. This results in larger peaks in the highly absorbing ranges and an increase of the absorbance level in the low absorbing ranges.

The PoLiS absorbance Abs P o (λ) spectrum (gure 4.3 c.) also presents two distinct peaks at 405 nm and 630 nm. The baseline is highly reduced as the absorbance for raw milk is close to zero. Compared to Abs BS (λ), Abs P o (λ) shows narrower absorbance

Modeling the absorbance of highly scattering materials features. The absorbance intensity at 405 nm is lower than expected for all concentrations (comparing the the higher peak with the Jasco). This can be a direct consequence of the computation of Abs P o (λ). One hypothesis is that at 405 nm, where the absorbance is high, the R SS (λ) component is less scattered and therefore, underestimated compared to 630 nm. At 405 nm, the light is rapidly absorbed by the absorbing liquid before reaching any scattering center. At 630 nm, as the absorbing power is lower, the light is more able to reach a scattering center and can be remitted. However, this hypothesis would need further investigations to be conrmed.

The visual inspection of the three dierent types of spectra shows that with the absorbance obtained with the PoLiS optical setup combined to the Absorption Remission function of the representative layer theory, it is possible to retrieve a signal less impacted by multiscattering than the one of mere reectance and therefore better revealing its chemically related information.

Does the linearity with the concentration improves ?

In BeerLambert law theory, absorbance is linearly related to the concentration of the absorber, the optical path traveled by the photons and the extinction coecient (c.f. equation 4.6). The latter is the same for all the samples as milk is not absorbing in this wavelength range and only one absorber (E141) has been added. For Abs P o (λ), the optical path length can also be considered as constant for all the samples, as the PoLiS setup selects the photons that have been weakly scattered, by the scatterers contained in the supercial layer. Therefore, concentration in E141 (C E141 ) is the only changing parameter and should linearly aect the absorbance. the highly concentrated sample which absorbance value is clearly reaching a limit as already observed in gure 4.3 (a.).

The backscattered absorbance Abs BS (630) show a less linear relation with the concentration, with a Pearson's coecient of 0.94. Although the shape of the backscattered absorbance spectra Abs BS (λ) appeared very similar to the extinction coecient ε E141 (λ), the multiscattering is responsible of a certain degree of non-linearity as shown in gure 4.4 (b.).

The Pearson's coecient between the PoLiS absorbance Abs P o (630) and the concentration is higher than 0.99, comparable to the performances of the Jasco measurements. For both absorbance spectra, the characteristic spectral features of E141 are present, with peaks at 405 nm and 630 nm. For the raw absorbance Abs BS (λ) spectra (g. 4.5 a.), the peaks are large, which is characteristic of the multiscattering occurring in the samples. On the contrary, the shape for the PoLiS absorbance Abs P o (λ) spectra (g. 4.5 c.) are very close to the spectral signature of the colorant E141 characterized by ε E141 (λ)

(gure 4.2). At 405 nm and 630 nm, the peaks are narrow. More, the baseline is highly reduced though not completely removed. On the contrary to what we observed on the liquid samples, the absorbing peak at 405 nm is higher than at 630 nm and more consistent with ε E141 (λ). This conrms the assumption made in section 4. Modeling the absorbance of highly scattering materials linearity of the relationship between the dye concentration (C E141 ) and the two computed absorbance Abs BS (λ) and Abs P o (λ) have been compared at λ = 405nm and λ = 630nm

(respectively Figure 4.5 b. and d.). At 405 nm and 630 nm, Abs P o (λ) show a better linear correlation with concentration than Abs BS as highlighted by the Pearson's coecient. It is known that a mixture of particles of dierent sizes (here 250 µm for the sand and less than 50 µm for the dye) may produce a non linear behavior when absorbance is measured in reectance mode, as it is here for Abs BS [START_REF] Dahm | Interpreting Diuse Reectance and Transmittance: A Theoretical Introduction to Absorption Spectroscopy of Scattering Materials[END_REF]. This can explain the curve in gure 4.5 (b.). The fact that PoLiS absorbance is linear with the concentration shows that the eect of dierences in particle size is negligible. We nd ourselves in conditions close to those of representative layer conditions where the eect of particle size has no foundation [START_REF] Dahm | Interpreting Diuse Reectance and Transmittance: A Theoretical Introduction to Absorption Spectroscopy of Scattering Materials[END_REF]. This helps to validate our hypothesis of using the polarization components, R (λ) and R ⊥ (λ) to solve the Absorption/Remission function A(R,T).

By selecting the weakly scattered photons, the PoLiS method homogenizes the photon pathlengths and lessens the multiplicative and additive eects, leading to a more accurate signal. The computed absorbance value Abs P o (λ) combining the PoLiS spectral measurements with the representative layer theory, approximates, also for powdered samples, an absorbance which is more linearly related to the extinction coecient (ε), the dye's concentration (c) and the path length (dx).

Conclusions

In turbid or particulate samples, scattering is strongly and negatively impacting the spectroscopic signature when it comes to extract chemically relevant information, i.e. the absorbance. Preprocessing methods are used to reduce the scattering eect the spectra, but they sometimes fail because the eect of multiscattering is deep and complex and can not always be revert mathematically. This is why it is crucial to measure a signal as free as possible from scattering eects prior calibration.

In this work, we propose a method which can be used as an alternative to select, Modeling the absorbance of highly scattering materials by optical means only, the spectral information related to chemical absorbance of highly scattering samples, while discarding the unwanted eect of multi-scattering on the signal.

Combining the PoLiS signal with the Representative Layer Theory (RLT) we computed an absorbance spectra being a reasonable approximation of the BeerLambert absorbance of a representative layer of the sample.

Applied on liquid and powdered samples, the results conrmed the following assumptions:

- PoLiS method presents a high potential to increase the diuse reectance signal quality on highly scattering media, in solid form (soils, waste, pharmaceutical tablets)

or liquid form (algae, sludge). Building calibration models using high quality signals will

increase their overall quality and robustness.

Contributions of chapter 4 and outlook

This chapter presents an original approach to meet the challenge of modeling the absorbance of highly scattering materials. This approach combines optimized optical measurements and the theoretical concept of the Representative Layer.

The theoretical framework of the Representative Layer proved to be useful to establish our approach. The RLT models a sample as a series of identical layers and is based on discontinuous theories which are more appropriate to describe and to understand the optical properties of highly scattering and absorbing samples (Dahm & Dahm, 2004b).

Here, the signals measured by PoLiS found their counterpart in the expression of Absorption/Remission function which could then be solved to compute a, the absorbed fraction of light by the representative layer. From this absorptance, the discontinuous mathematics allow us to derive the absorption of the whole sample, provided that it is homogenous.

At this point, only simple mixtures (in liquid and powdered form) were considered.

The next chapter intends to validate the results of chapter 4 in a more complex application, which is the objective of this thesis: prediction of total organic carbon content (TOC) in soils.

The main interrogations are:

-Is the PoLiS method adapted to highly complex materials such as soils? In other terms, does the polarized light have the same behavior after interacting with soils?

-Are the measured signals of sucient intensity and quality to be processed?

-Does the PoLiS method improve the linearity between the absorbance and a more Chapter 5

Application of the PoLiS method to predict soil carbon content Contents Preamble Soil are highly scattering and absorbing samples. Scattering is due to particles, which are large compared to the wavelength and which can either exclusively scatter (quartz for example) or both scatter and absorb (organic-mineral complex). To add complexity, the analyte of interest, here the carbon content, is itself a complex chemical parameter to be studied in soils. In this chapter, we test the PoLiS method (described in chapter 3

and 4) on a set of real soil samples to predict Total Organic Content. First, the ambition is to validate the whole PoLiS process in a more complex situation and also to conrm the assumption that the quality of the calibration models directly depend on the quality of the spectroscopic signals. Therefore, we benchmarked the models built with the PoLiS spectra against models built from classically preprocessed spectra.

Improvement of soil carbon content prediction by reducing multiple scattering using polarized light spectroscopy 1

Introduction

Although Visible and Near Infrared Spectroscopy (VisNIRS) is becoming a very popular analytical technology in soil science, it is still steps away from being used as a routine analytical tool, both in eld and laboratory. One of the reasons is that calibration models lack of robustness as soon as inuence factors, which are numerous in soils, interfere. One of the main issues is that soils are highly scattering materials. As a direct consequence, the measurement conditions are far from the ideal conditions stated by Beer-Lambert's law where the absorbance should be linearly related to the chemical concentration (Gobrecht et al., 2014a). Light scattering depends on the physical structure of the soil samples and directly contributes to the shape of the measured spectrum by hiding (or overlapping) the chemically related information. The absorbance at wavelength λ is not linear with concentration and there is a real contradiction in building calibration models based on linear multivariate methods such as the commonly-used Partial Least Squares Regression (PLS). Overcoming this signal quality issue is of great interest because the accuracy of the prediction is directly related to the quality of the measured signal [START_REF] Macdougall | Guidelines for data acquisition and data quality evaluation in environmental chemistry[END_REF].

The most common strategy to reduce scattering eects is spectral pretreatment. This preprocessing step is specically designed to reduce multiplicative and additive eects caused by variations of physical properties [START_REF] Rinnan | Review of the most common preprocessing techniques for near-infrared spectra[END_REF][START_REF] Martens | Extended multiplicative signal correction and spectral interference subtraction: New preprocessing methods for near infrared spectroscopy[END_REF]. Among them, standard normal variate (SNV) often associated to detrend [START_REF] Barnes | Standard Normal Variate Transformation and De-trending of Near-Infrared Diuse Reectance Spectra[END_REF], multiplicative signal correction (MSC) [START_REF] Geladi | Linearization and Scatter-Correction for Near-Infrared Reectance Spectra of Meat[END_REF], Extended MSC (EMSC) [START_REF] Martens | Extended multiplicative signal correction and spectral interference subtraction: New preprocessing methods for near infrared spectroscopy[END_REF], normalization or Optical Path Length Estimation and Correction (OPLEC) [START_REF] Chen | Extracting Chemical Information from Spectral Data with Multiplicative Light Scattering Eects by Optical Path-Length Estimation and Correction[END_REF][START_REF] Jin | Quantitative Spectroscopic Analysis of Heterogeneous Mixtures: The Correction of Multiplicative Eects Caused by Variations in Physical Properties of Samples[END_REF]. However, these approaches remain questionable: they consider that scattering is nearly constant allover the wavelengths, which is not the case [START_REF] Shi | Pharmaceutical applications of separation of absorption and scattering in near-infrared spectroscopy (NIRS)[END_REF]; they may eliminate chemical-related information, which is very small with regard to scattering eects [START_REF] Martens | Light Scattering and Light Absorbance Separated by Extended Multiplicative Signal Correction. Application to Near-Infrared Transmission Analysis of Powder Mixtures[END_REF]; they are inappropriate when light scattering varies greatly from sample to sample [START_REF] Steponavicius | Extraction of Chemical Information of Suspensions Using Radiative Transfer Theory To Remove Multiple Scattering Eects: Application to a Model Multicomponent System[END_REF].

As a consequence, the model may sometimes fail when applied on a new set of samples.

Another option is to acquire the spectrum in a way that separates the part related to chemical absorption from the part related to scattering. Specic experimental techniques, based on the application of the light propagation theory or resolution of the Radiative Transfer Equation [START_REF] Shi | Pharmaceutical applications of separation of absorption and scattering in near-infrared spectroscopy (NIRS)[END_REF] have been proposed: adding-doubling set-ups [START_REF] Steponavicius | Extraction of Chemical Information of Suspensions Using Radiative Transfer Theory To Remove Multiple Scattering Eects: Application to a Model Multicomponent System[END_REF][START_REF] Prahl | The adding-doubling method[END_REF][START_REF] Steponavicius | Extraction of Chemical Information of Suspensions Using Radiative Transfer Theory to Remove Multiple Scattering Eects: Application to a Model Two-Component System[END_REF], spatially-resolved spectroscopy [START_REF] Farrell | A diusion theory model of spatially resolved, steady-state diuse reectance for the noninvasive determination of tissue optical properties in vivo[END_REF], time-resolved spectroscopy [START_REF] Chauchard | MADSTRESS: A linear approach for evaluating scattering and absorption coecients of samples measured using time-resolved spectroscopy in reection[END_REF]Abrahamsson et al., 2005b) and frequency-resolved spectroscopy [START_REF] Martens | Extended multiplicative signal correction and spectral interference subtraction: New preprocessing methods for near infrared spectroscopy[END_REF]. Although powerful, these methods have their limitations, particularly when applied on highly scattering samples. First, they may require complex and sometimes expensive optical implementations, which may not be compatible with conventional spectrometers or with highly scattering samples (for which transmission measurement is not possible). Secondly, as they rely on the estimation of absorption and scattering coefcients achieved by model inversion, parameters describing the studied medium (sample thickness, refractive index, particle size and shape...) must be known or approximated, which may be a troublesome task as they are often unknown in complex media [START_REF] Steponavicius | Extraction of Chemical Information of Suspensions Using Radiative Transfer Theory To Remove Multiple Scattering Eects: Application to a Model Multicomponent System[END_REF][START_REF] Swartling | Comparison of spatially and temporally resolved diuse-reectance measurement systems for determination of biomedical optical properties[END_REF]. [START_REF] Bendoula | Improvement of the chemical content prediction of a model powder system by reducing multiple scattering using polarized light spectroscopy[END_REF] proposed to combine light polarization and VIS-NIR reectance spectra acquisitions. The Polarized Light Spectroscopy (PoLiS) method is an original technique to reduce directly the eects of multi-scattering on the measured signal by using the wave theory of light [START_REF] Lu | Comparison of Methods for Reducing the Eects of Scattering in Spectrophotometry[END_REF][START_REF] Backman | Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ[END_REF]. When linearly polarized light interacts with a scattering material, the backscattered light progressively looses its initial polarization and oscillates randomly in all the planes. Using the principle of Theory [START_REF] Dahm | Interpreting Diuse Reectance and Transmittance: A Theoretical Introduction to Absorption Spectroscopy of Scattering Materials[END_REF] to propose a model of the absorbing power. The method has been successfully tested on model particulate samples (sand + dye) showing that the newly computed absorbance signal is more linearly related to the concentration of dye in the sample.

The aim of this study is to test the PoLiS method on real soil samples to predict Total Organic Carbon (TOC) content in order to:

-validate that PoLiS absorbance measured on soil samples is more linearly related to TOC ;

-evaluate the benet of using the PoLiS absorbance in TOC calibration models ;

-compare this optical preprocessing method to commonly used mathematical preprocessing methods.

Material and Methods

Instrumentation

The PoLiS optical setup, schematized in gure 5.1, was composed of a halogen light 5.1).

Each sample has been prepared to get dierent particle sizes, namely:

-The Coarse form obtained by hand crushing the air-dried soil to get aggregates Application of the PoLiS method to predict soil carbon content smaller than 5 mm. This preparation conducted to a large variety of particle and aggregate sizes within and between samples, depending on the type of soil;

-The Sieved form at 2 mm, which is the classical soil preparation prior to spectral acquisition;

-The nely Ground form at 0.25 mm.

Each sample was carefully transferred in an adapted 5cm diameter petri dish and moved in circles to get an even and horizontal surface before spectral analysis. A diuse reectance gray standard (Spectralon SRS-60, Labsphere) was used to collect a reference spectrum, I 0 (λ), to standardize spectra from non-uniformities of all components of the instrumentation (light source, bers, lens, polarizer and spectrometer).

From these measurements, the backscattered reectance, R BS (λ), and the weakly scattered reectance, R SS (λ), have been computed for each sample according to Bendoula et al. ( 2014):

R BS (λ) = I (λ) -I b (λ) + [I ⊥ (λ) -I b⊥ (λ)] [I 0 (λ) -I b0 (λ)] (5.1) R SS (λ) = I (λ) -I b (λ) -[I ⊥ (λ) -I b⊥ (λ)] [I 0 (λ) -I b0 (λ)]
(5.2)

PoLiS absorbance Abs P O

As proposed in Gobrecht et al. (2014b), the PoLiS absorbance Abs P O (λ) has been computed from the backscattered reectance R BS (λ) and low scattered reectance R SS (λ)

as :

Abs P O (λ) = -log R SS (λ) + (1 -R SS (λ)) 2 - R SS (λ) R BS (λ) (1 -R BS (λ)) 2 (5.3)
For comparison, the backscattered absorbance Abs BS (λ) has also been computed from the total backscattered reectance signal R BS (λ) measured with PoLiS.

Abs BS (λ) = -log R BS (λ)

(5.4)

Multivariate Analysis

Principal Component Analysis 

Results and discussion

Spectral analysis

The dierent meanperquartile spectra measured for samples having dierent particle sizes are plotted in gure 5.3. In the studied wavelength range (400 nm -800 nm), soil spectra do not show characteristic spectral features and appear at. Hence, the dierences in the intensity level are related to the brightness of the samples. The reectance intensity is consistent with the total organic carbon content (TOC) of the studied samples, showing that the darker the sample, the higher the TOC content. This observation concerns all particle sizes classes.

The wavelength range of the PoLiS setup is limited to 400 nm -800 nm by the range of the polarizer used. This range is not the optimal Vis-NIR region for soil carbon calibration but Viscarra Rossel et al. (2008), for example, suggest that the visible portion of the spectrum contains more information on the absorbance characteristics of soil organic carbon than the shortwave NIR (700 1100 nm) content. In regard of the objectives of this study, this range is sucient.

Sample preparation, i.e. particle size, has an impact in the intensity level of the backscattered reectance R BS (λ). As commonly seen in NIR diuse reection [START_REF] Pasikatan | Near infrared reectance spectroscopy for online particle size analysis of powders and ground materials[END_REF], the smaller the particles, the higher the reectance. As a consequence, the absorbance computed as Abs BS (λ) = -log R BS (λ) shows a lower level for ground samples. Therefore, the dierences in the intensity levels are due to the combined eect of the physical structure and the brightness of the soil samples.

For the PoLiS absorbance Abs P O (λ), the intensity is about ten times smaller than for per quartile of TOC concentration for the three dierent particle sizes (a.) coarse < 5mm, (b.) sieved < 2 mm and (c.) ground < 0.25 mm backscattered absorbance Abs BS (λ). This is partly due to the fact that the PoLiS optical set up selects only a small part of the signal (the single scattered one). The shape is also slightly dierent, with a small shoulder at 600 nm.

For coarse samples, the absorbance spectra Abs BS (λ) of the highly concentrated samples (quartiles Q3 and Q4) are not clearly separated, meaning that the variance due to particle size dierences, and therefore scattering, dominates the chemically related information in the spectra. On the contrary, the PoLiS absorbance spectra Abs P O (λ) for quartiles Q3 and Q4 are clearly separated. This indicates that part of the spectral information due to the physical structure has been removed. Chemically related information, characterized by the brightness, becomes more visible.

Figure 5.4 shows the score plots of the PCA performed on dierently centered spectral datasets (Abs BS (λ) and Abs P O (λ)) according to section 5.2.5.

On the mean-centered data and for both Abs BS (λ) and Abs P O (λ), PC1 explains more than 98 % of the variability. Because of a multiplicative eect, the spectra appear to be The score plot converges both to a minima close to zero and spreads on the opposite side. This conic pattern represented on gure 5.4, is characteristic of a multiplicative eect caused by variables of inuence.

For Abs BS , nely ground samples are clearly separated from the two other particle size classes. For Abs P O (λ), this separation is less obvious. The summit of the cone contains the darker samples of dierent particle size classes. The multiplicative eect is due to TOC content as scattering is supposedly lessen.

The score plot of the data centered per sample location conrms the previous observation: for Abs BS (λ), the ground soils are clearly separated from the two other classes (sieved and coarse) as for Abs P O (λ), the classes appear more confounded. The values of the Wilk's lambda, computed on the scores of the PCA conrm these statements. When particle size classes are separated, the Wilk's lambda is lower.

The PoLiS method corrects, to a certain extent, the eect of scattering on the signal, leading to an absorbance less sensitive to the physical structure of the samples.

Linearity between Absorbance and TOC Concentration

The assumption that, by correcting the signal from part of the multiscattering eect, For coarse and sieved samples, the Pearson's coecient R between the absorbance and the TOC concentration is always higher for Abs P O (λ) that preparing the samples (sieving or grinding) has a direct impact on the signal quality and consequently on the quality of the calibration models [START_REF] Morgan | Simulated in situ characterization of soil organic and inorganic carbon with visible near-infrared diuse reectance spectroscopy[END_REF][START_REF] Bellon-Maurel | Critical review of chemometric indicators commonly used for assessing the quality of the prediction of soil attributes by NIR spectroscopy[END_REF]. Here, PoLiS method leads to an additional improvement of the correlation between the Absorbance signal and TOC.

Another way to visualize this observation is to plot TOC versus the absorbance value at the optimal wavelength of Abs BS (λ), respectively 450 nm for the coarse samples, 600 nm for the sieved samples and 570 nm for the ground samples (gure 5.6).

The degree of linearity between Abs P O (λ) and TOC is improved for coarse and sieved samples, but this eect is lessen for ground samples, for which the linear correlation coecient for Abs BS (λ) and Abs P O (λ) are very similar and high (>0.87).

To conclude, this analysis shows that Abs P O (λ) is more linearly related to the TOC concentration (Figure 5.6) and additionally that the particle size has less impact on its spectral signature (Figure 5.4). Therefore, calibration conditions are more appropriate for Abs P O (λ) than for Abs BS (λ) to use linear methods like PLS in order to predict TOC in soils.

Model analysis

Quality of the calibration models First, the prediction models built with the backscattered reectance R BS (λ) are not satisfying. They show a characteristic banana shaped regression curve, typical of nonlinearity. However, ground and sieved samples produce better predictions than coarse samples. The latter present a high structural variability which aects the spectra. The scattering eect dominates in the spectral information but in a dierent manner for all the samples. This conrms the discussion of the previous section: sieving or grinding soils improves the PLS models.

The logtransformation of the backscattered reectance R BS (λ) into backscattered absorbance, {Abs BS (λ) = -log R BS (λ)}, improves the quality of the models. Theoretically, the linear relation is between absorbance and concentration and not between reectance and the concentration. In our case, the log also plays the role of a mathematical preprocessing method as it transforms multiplicative eects (due to scattering) into addi- Predicted TOC (g.kg )
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-1 R =0.84 SECV=19.3 g.kg LV=5 and PoLiS Absorbance (Abs P O (λ)) for the three dierent particle sizes: (a.) coarse < 5mm , (b.) sieved < 2 mm and (c.) nely ground < 0.25 mm) . R 2 : coecient of determination; SECV: standard error of cross validation; LV: number of latent variables tive eects [START_REF] Hadoux | Comparison of the ecacy of spectral pre-treatments for wheat and weed discrimination in outdoor conditions[END_REF]. The PLS algorithm is capable to discard this additive eect in the regression process. R 2 and SECV are improved but need a high number of latent variables to build the models (10 for the ground samples and 8 for the sieved samples). According to the principle of parsimony, there is a risk that models will lack in robustness (Bellon-Maurel & McBratney, 2011;[START_REF] Seasholtz | The parsimony principle applied to multivariate calibration[END_REF].

The models built with Abs P O (λ) outperform all the other models built with R BS (λ)

and Abs BS (λ), whatever the particle size. R 2 and SECV are improved and, in addition, the number of latent variables decreases. However, soil sample preparation still impacts the results. PoLiS method also takes benet from sample preparation (ground or sieved).

For coarse samples, predictions are not so good, although improved compared to the predictions of the models built with the backscattered absorbance Abs BS .

Comparison of optical and mathematical spectral preprocessing

The PoLiS method can be considered as an optical preprocessing method: prior to the calibration step, the dierent components of the total spectra are selected in order to compute an absorbance spectrum. The main objective of this optical preprocessing step is to enhance the quality of the signal by reducing the eect of multiscattering.

We compared the calibration results using the PoLiS method with three mathematical preprocessing methods (SNV, MSC and modied OPLEC) usually applied on spectra to reduce the multiplicative and additive eects due to scattering. The TOC prediction models built with the PoLiS absorbance spectra Abs P O (λ) always show better gures of merit than for the models built with R BS (λ) and Abs BS (λ), even when they are preprocessed.

The backscattered reectance spectra R BS (λ) are highly impacted by light scattering.

Hence, the preprocessing methods improve the performances of the prediction models, in particular for the sieved and ground samples. SNV and MSC have almost the same behavior on these spectral data, which is often stressed out by authors [START_REF] Fearn | On the geometry of SNV and MSC[END_REF].

Modied OPLEC gives good results and seems to be a promising preprocessing method as it specically removes the multiplicative eect. For coarse samples however, none of the preprocessing methods applied do signicantly increase the quality parameters. These samples present a high sampletosample heterogeneity and as a consequence, dierent levels of light matter interactions, which are more dicult to capture and correct by the dierent preprocessing method. Preprocessing the backscattered absorbance spectra

Abs BS does not signicantly changes the quality of the models, although the number of latent variables decreases from 10 to 7.

For Abs P O (λ), none of the preprocessing methods have a positive impact on the gures of merit compared to the raw absorbance spectra. On the contrary, preprocessing the PoLiS absorbance Abs P O (λ) highly degrades the quality of the models. It is known that mathematical preprocessing methods suppresses part of the spectral information, sometimes not exclusively due to physical inuence but which can also be related to chemical information.

As a conclusion, the PoLiS method produces an optimal absorbance signal, which does not need to be preprocessed prior calibration as the models built from Abs P O (λ)

always outperform the other models, for all the particle sizes.

Behaviour of the PoLiS method regarding particle size

The main assumption made for the PoliS method is that it reduces the multiscattering eect on the absorbance spectra. Yet, multiscattering is dependent of the particle size of the sample. In section 5.3.1, the PCA analysis on the data concluded that Abs P O (λ)

is less impacted by the preparation of the samples than Abs BS (λ), although, the ground samples still behave dierently. worse. We previously observed that for ground samples, Abs BS (λ) and Abs P O (λ) show a very similar correlogram, meaning that both absorbance signals show a relative linearity with TOC. Here, the PoLiS method seems to reach its limits when the particle size of the particulate samples are very small. Grinding nely the samples aects the way light travels in the samples and probably also the depolarization process. As a consequence, the backscattered reectance R BS (λ) and the low scattered reectance R SS (λ) used to compute the PoliS absorbance Abs P O (λ) (equation 5.3) are not completely reliable.

When particle sizes are higher that 2 mm, i.e. sieved or coarse, the models built with

Abs P O (λ) always produce better results than with Abs BS (λ), as shown in gure 5.9.

Although the PoLiS calibration model built on coarse samples was the less performant in cross-validation (see gure 5.7), the prediction are not degraded when it is applied on the sieved samples. Moreover, the bias, which is a good indicator of robustness, remains small. On the other way, when the model built on sieved samples is applied on coarse samples, the gures of merit are not as good as in cross validation, but still, the results are much better with Abs P O (λ) than with Abs BS (λ). And again, the bias is very small for Abs P O (λ) compared to the high bias value for Abs BS (λ). These results show that PoLiS is a promising measurement technique in the perspective of reducing the sample preparation as it is less sensitive to changes of the physical structure of the samples and well adapted to low processed samples.

Conclusions

For the rst time, the issue of light scattering in Vis-NIR spectroscopy applied to soils has been studied from an optical point of view. In this study, PoLiS, an original optical setup based on light polarization spectroscopy, has been used to select backscattered light being less impacted by multiscattering eects due to particles composing soil samples.

The absorbance signal computed from the PoLiS measurements has been compared to the absorbance traditionally computed by taking the log of the backscattered reectance.

The aim of this study was to verify the assumptions underpinning the PoLiS method.

We can make following statements and concluding remarks :

Application of the PoLiS method to predict soil carbon content -On soil samples, the method produced spectral signatures of good quality, with no noise, despite the low intensity in the PoLiS wavelength range;

-Removing part of the multiscattering improved the degree of linearity between the PoLiS absorbance and the TOC, over all the wavelength range (400 -800 nm) for coarse and sieved samples.

-TOC prediction models build with the PoLiS absorbance always outperformed the models built with the backscattered absorbance, even when mathematically preprocessed. This is an important result conrming that a signal of better quality improves the quality of the prediction models.

-The PoLiS absorbance is less impacted by a change of particle size of the samples but an eect is still visible, particularly for ground samples. As a consequence, the predictive potential of the PoLiS absorbance when only the physical structure of the sample changes is higher than the backscattered absorbance, when the particle size is > 2 mm. For nely ground samples, PoLiS seems to reach it limits.

This study conrms the high potential of the PoLiS method for the spectral analysis of soil properties. Solving the technical limits which would make the PoLiS method work beyond 800 nm, would allow to take an important step in the metrological quality of the soil carbon content measurement by NIRS.

Contributions and Perspectives harmful spectral information (section 2.2).

To overcome these limitations, the main eorts have been concentrated on the development or adaptation of chemometric methods. The strategy is to either restore the linearity between signal and concentration, by preprocessing the spectra for example (section 2.5.1) or to circumvent the problem by using local and non-linear approaches (section 2.6). If the latter present a certain potential, linear approaches such as PLS remain, by far, the number one calibration method in NIR analysis. PLS is simple to implement (sometimes even already implemented in spectral analysis software), rapid and simple to interpret. However, as it is a linear method, it is also the most impacted one, in case of high level of scattering.

The conclusions drawn at the end of the review insist on the fact that overcoming the issue of signal quality should improve the performances of NIR spectroscopy as an analytical tool for soil analysis. 

Contributions and Perspectives

In soil samples, the distance traveled by the photons is very short before they are absorbed, that it is neither possible to measure a transmittance or a reectance on an optically thin sample (like in [START_REF] Kessler | Using scattering and absorption spectra as MCR-hard model constraints for diuse reectance measurements of tablets[END_REF]) nor to have dierent spectral signatures with SRS. In highly scattering and absorbing samples, on which transmission measurements are not possible to perform, the optical analysis must rely on reectance measurements.

This conducted us to nd alternative ways to measure this set of dierent spectral information : we used light polarization properties. Based on the theoretical principles of polarization subtraction we designed an optical architecture aiming at decomposing a remitted signal in two complementary components: a multiscattered reectance and a low scattered reectance (section 3.2). This optical setup is fully adapted to highly scattering materials as the measurements are performed only in reectance on optically thick samples.

We rst tested the PoLiS setup on powdered model samples mixing sand and two coloring dyes. We observed that when corrected from multiscattering, the reectance signal becomes a linear combination of the pure components spectra. On the contrary, the classical reectance spectrum tends to be a non-linear mixture of the two colorant spectra (section 3.4.1). This preliminary result showed the potential of the PoLiS method to correct the spectrum of physical interactions.

In addition, whatever the type of sample, powder or liquid form (section 4.4), the spectra (multiscattered and low scattered component) showed a good signal to noise ratio in the studied wavelength range (350 nm to 800 nm).

Based on the principles of light polarization, the PoLiS method outputs two dierent types of signals: a classical backscattered reectance and a corrected reectance, which proved to be less impacted by multiscattering.

A model of the absorbance of highly scattering materials

According to Beer-Lambert law, it is the absorbance that is linearly related to concentration. Here, the objective is to provide a better approximation of the true absorbance of

Contributions and Perspectives

The feasibility of the method to be applied on soil samples has been tested to predict total organic carbon content. Again, the linearity between the PoLiS absorbance and the concentration of TOC improved compared to the classical absorbance {-log R(λ)}. But more importantly, the PLS models built from the PoLiS absorbance outperformed the models built from the classical absorbance, this, even when the signals were mathematically preprocessed to reduce scattering. The standard errors of cross validation decreased from 20.8 g.kg -1 to 17.6 g.kg -1 and the coecient of determination R 2 improved from 0.82 to 0.87 on ground samples, although the wavelength range was not the optimal range for soil carbon analysis.

This work conrmed that by optical means, it is possible to signicantly improve the quality of a spectroscopic signal. It also conrmed that, when the absorbance signal is more linearly related the analyte of interest concentration, the linear model is improved.

These ndings allow us to see the great potential of this method, both for the characterization of soils and more generally, for all materials presenting the common characteristic of being complex from the physical structure and chemical composition point of view.
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 6 Figure 6: Qualité des prédictions réectance totale, absorbance totale et absorbance PoLiS, Prétraitements none: aucun, SNV: standard Normal Variate, MSC: multiple scatter correction, OPLEC: optical pathlength estimation and correction, R2 cocient de détermination, SECV erreur standard de cross validation
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  Figure 2.1: Representation of additive and multiplicative eects in diuse material

Figure 2 .

 2 Figure 2.1 illustrates and decomposes the eects of scattering on the absorbance

  The SEP (Standard Error of Prediction) is the root mean square average error recorded on a independent dataset (validation set). It can be broken down as follows: SEP 2 = biais 2 + SEP 2 c . The bias reects systematic error, related to systematic variations of inuence factors (e.g instrument, the analysis methodology . . . ). SEP c (for SEP corrected for biais) is the residual variance (Davies & Fearn, Major issues of NIR spectroscopy in Soil Science 2006a). -The RPD (Ratio of Performance to Deviation), RP D = SD/SEP , is a popular indice used in soil science. It standardizes the value of the SEP with respect to sample population dispersion (i.e the standard deviation). Bellon-Maurel et al. (2010) oers a critical overview on the use of these indicators in the specic case of spectroscopy applied to soils analysis. In particular, RDP based on skewed data is considered irrelevant since it is calculated from the standard deviation of the dataset (RP D = SD/SEP ), whereas SD is not a good indicator to correctly describe the dispersion of a skewed dataset. They propose to improve this indicator by introducing a more representative distribution parameter of y based on the interquartile distance Q1-Q3. With the same objective, Limpert et al. (2001) oer another alternative to characterize the log normal data with the geometric mean. Beyond the overall performance assessment of the model, a new analytical technique should be able to predict a value for a new sample with the least uncertainty. Calculating the SEP is insucient, because (i) it contains a part of systematic error (bias), (ii) its value does not provide any information about an individual sample, and (iii) because uncertainty will vary from one sample to another. It is necessary to compute var( ŷ), i.e. the uncertainty attached to the estimated sample i. Several expressions of linear model uncertainty, which can be expressed as var(ŷ), can be found in the literature. Zhang & Garcia-Munoz (2009) review most of them. They are based on the theoretical error propagation framework, which identies and assesses the contribution of all sources of uncertainty associated to the model parameters. The terms of these expressions dier depending on the simplifying assumptions made. Fernandez-Ahumada et al. (2012) discuss these assumptions and propose a general expression of the uncertainty based on least restrictive assumptions.

Figure 2 . 2 :

 22 Figure 2.2: Mode, Median and Mean in (a) normally distributed and (b) positively skewed data and representation of the leverage eect on the prediction uncertainty when the model is mean centered

  these obstacles, local methods generally give good results (Igne et al. (2010) and Gogé et al. (2012) with LWR and Fernández Pierna & Dardenne (2008) with LO-CAL). In their study, Gogé et al. (

  measurements such as Transmittance or Reectance are adversely aected by variations arising from non-linear multiple light scattering eects. Because these variations are not necessarily related to changes in the chemical composition, it makes the extraction of chemical information from such samples challenging.Instead of spectral pre-processing, which is commonly used by Vis NIR spectroscopists to deal with undesirable scattering eects, this chapter presents an optical methodology to reduce multiple scattering. A new optical setup, based on polarized light spectroscopy is specically designed to select photons that have been only weakly scattered. When tested in Visible range (400-800 nm) on powdered samples mixing scattering and absorbing particles, the set-up provides signicant improvements in the capacity to predict the absorber's concentration. This optical pretreatment allows us to retrieve linear and steady conditions for spectral analysis.Improvement of the chemical content prediction of a model powder system by reducing multiple scattering using polarized infrared spectroscopy (Vis-NIRS) is a well-known technique used for measuring the chemical composition of a wide variety of media and products. Although Vis-NIRS has been quoted in articles for approximately 50 years[START_REF] Hart | Determination of the Moisture Content of Seeds by Near-Infrared Spectrophotometry of Their Methanol Extracts[END_REF][START_REF] Massie | Spectral reectance and transmittance properties of grain in the visible and near infrared[END_REF] with this purpose, it really took o in the late 80's in agricultural and food applications (jumping from around 10 publications per year in the late 80's to 150 publications per year in the turn of century), and then in the 90's for pharmaceutical and biomedical applications. Today, it plays a major role in these sectors, as a routine laboratory method for in-vivo or in-line monitoring system. On the one hand Vis-NIRS presents several advantages: Vis-NIR extinction coecients are small compared to midinfrared (MIR) ones, which allows light to penetrate deeper into objects and avoids timeconsuming sample preparation; Vis-NIR light scattering makes it possible to analyze bulk samples with a retro-diusion optical conguration, thus turning it into a nondestructive technique. In addition Vis-NIR optical components are low cost and with high Signal-to-Noise Ratio (SNR). On the other hand, VIS-NIRS has several drawbacks: the VIS-NIR spectrum is poorly resolved as it is made up of scattering eects and of wide low-intensity harmonics and combinations of MIR fundamental absorption bands.Consequently, retrieving chemical information from Vis-NIR spectra is quite painstaking and requires advanced chemometrics: it is based on calibration models to be built between VIS-NIR spectra and known concentrations of a set of calibration samples. Traditionally, linear multivariate calibration methods such as Principal Component Regression (PCR) and Partial Least Square Regression (PLS) are used in Vis-NIRS. However, scattering 1 Ryad Bendoula, Alexia Gobrecht, Benoit Moulin, Jean-Michel Roger, Véronique Bellon-Maurel, Improvement of the chemical content prediction of a model powder system by reducing multiple scattering using polarized light spectroscopy, Accepted in Applied Spectroscopy, June 2014 Optical methodology for reducing scattering eects on the spectroscopic signal eects are troublesome in the VIS-NIR spectra of turbid media, dened byShi and 

2 )

 2 Where I (λ) and I ⊥ (λ) are the light scattered by the media with parallel and perpendicular polarization respect to the polarization of the illumination light. I 0 (λ) is the intensity of the illumination light. Ω is the collection solid angle, residual term of the integration on the solid angle[START_REF] Schmitt | Use of polarized light to discriminate short-path photons in a multiply scattering medium[END_REF][START_REF] Morgan | Polarization properties of light backscattered from a two layer scattering medium[END_REF][START_REF] Demos | Optical polarization imaging[END_REF], of the optical device. S(λ) and M (λ) are the probabilities of light undergoing single and multiple scattering respectively.
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 31 Figure 3.1: Schematic diagram of polarized light spectroscopy system.
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 32 Figure 3.2: Experimental design presenting the dye densities g • L -1 of 42 samples for the calibration set and 12 samples for the independent test set.

  λ) -I b (λ)) -(I ⊥ (λ) -I b⊥ (λ)) (I 0 (λ) -I b (λ)) = Iss(λ) -(I b (λ) + I b⊥ (λ)) (I 0 (λ) -I b (λ)) (3.8) With I (λ) and I ⊥ (λ), the intensities of light scattered by the media with parallel and perpendicular polarization respect to the polarization of the illumination light and I 0 (λ) and I 0⊥ (λ), the intensities of light reected by the standard mirror with parallel polarization respect to the polarization of the illumination light (as the perpendicular component emerging from the mirror is zero). I b (λ) and I b⊥ (λ) are the dark current intensities recorded for each measurement.

  , Standard Error of cross-validation (SECV)) and number of latent variables of the dierent prediction models built with uncorrected and corrected signals of the dierent models were compared. Optical methodology for reducing scattering eects on the spectroscopic signal 3(R W (λ)) and the corrected spectra (R C (λ)) of the pure powder colorant E133 and E141 are represented in gure 3.3 (a) and (b).
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 3 Figures 3.3 (c) and (d) show respectively the raw spectra and the corrected spectra

Figure 3 . 3 :

 33 Figures 3.3 (c) and (d) show respectively the raw spectra and the corrected spectra of sand S 1 mixing coloring powder E133 at dierent densities. When mixed with the colorant, sand is responsible for high multi-scattering as it is not absorbing the light. This

Figures 3. 3

 3 Figures 3.3 (e) and (f ) show respectively the raw spectra and the corrected spectra

  Figures 3.3(e) and (f ) show respectively the raw spectra and the corrected spectra of sand S 1 mixing coloring powder E141 at dierent densities. By comparing the raw reectance intensities for of the sand -E133 mixtures (Figure 3.3 (c)) and sand -E141

  Figure 3.3 (d)) and sand -E141 mixtures (Figure3.3(f )).
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 41 Figure 4.1: Schematic diagram of polarized light spectroscopy system (PoLiS).
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 33 Spectral acquisitions and computation of the absorbance Dahm's representative layer absorbance Abs RL on liquid samples A sample of colorant E141 dissolved in distilled water (at 0.156 g.L -1 ) has been measured with the Jasco V670 in transmission to computed the extinction coecient ε E141 from equation 4.6.

( 4 .

 4 19) with d the thickness of the sample and d/2 half of this thickness. And R d , T d and A d the reected, transmitted and absorbed fractions of light of a sample of thickness d.

;-

  Abs P o (λ), the PoLiS absorbance computed from I ,Ω (λ) and I ⊥,Ω (λ), measured with PoLiS and implemented in equations 4.22 and 4.23, to retrieve a, the absorbed fraction of a representative layer of the samples using equation 4.15. Modeling the absorbance of highly scattering materials 4.4 Results and discussion 4.4.1 E141 extinction coecient ε 141 (λ)

Figure 4 . 2 :

 42 Figure 4.2: Extinction coecient ε 141 (λ) of E141 dye obtained from the collimated transmittance measured with the Jasco on a sample having low concentration

Figure 4 .

 4 Figure 4.3 shows the three dierent absorbance signals computed according to the dierent types of measurements made on the milk + dye samples: Abs RL (λ), Abs BS (λ) and Abs P o (λ). For Abs RL (λ), the number of representative layers composing the sample has been set at n = 256 for which the condition of equation 4.21 is fullled.

Figure 4 . 3 :

 43 Figure 4.3: Absorbance spectra of milk + E141 sample; a. Abs RL (λ) computed from the Jasco measurements combined with the Representative Layer Theory (RLT); b. Abs BS (λ) computed from the backscattered reectance measured with the PoLiS setup and c. Abs P o (λ) computed from the backscattered and low scattered reectance measured with PoLiS and combined with the RLT.

Figure 4 .

 4 3 a. shows the absorbance for a RL of 1000/256 = 3.9 µm since the samples have been measured in a 1 mm cuvette. This value is in accordance with the average size (3 -4 µm) of fat globules in milk, which are responsible of scattering[START_REF] Cabassi | Estimation of fat globule size distribution in milk using an inverse light scattering model in the near infrared region[END_REF].
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 444 Figure 4.4: Absorbance at 405 nm and 630 nm of Abs RL (λ) computed from the Jasco measurements (a.), Abs BS (λ) (b.) and Abs P o (λ) (c.) computed form the PoLiS measurements vs. the concentration of E141 in g.L -1

Figure 4 .

 4 Figure 4.4 (c.) shows the good alignment of the points for both wavelengths (λ = 405nm and λ = 630nm) and they nearly pass through zero. The improvement of the linearity between Abs P o (λ) and the concentration of the dye is due to the fact that the optical setup architecture of PoLiS allowed us to select only the weakly scattered photons which

4. 4 . 3

 43 Powdered samplesPowdered samples used in our experiment are highly scattering and absorbing samples. Hence it is not possible to perform the transmission measurement necessary to compute a reference absorbance value on a representative layer, as it has be done on liquid samples with the Jasco. The backscattered absorbance Abs BS (λ) = -logR BS (λ)signal is usually the one used in multivariate analysis, even knowing that it can be strongly aected by multiscattering eects and therefore far from the BeerLambert law conditions. Here, the performance of the PoLiS method on powdered samples is assessed by comparing the backscattered absorbance Abs BS (λ) and the PoLiS absorbance Abs P o (λ) signals (gure 4.5), both computed from PoLiS measurements I (λ) and I ⊥ (λ), respectively implemented in equations 4.22 and 4.23 . 

  photons are absorbed in the continuous phase, and therefore the low scattering component R SS (λ) in highly absorbing regions (around 405 nm) is slightly underestimated, and consequently so does the absorbance. In particulate samples, absorbance occurs within

Figure 4 . 5 :

 45 Figure 4.5: Backscattered absorbance spectra Abs BS (λ)(a.) and PoLiS absorbance Abs P o (λ) (c.) of powder samples mixing sand with E141 at dierent concentrations. Relationship between E141 concentration and the absorbance level at 405 nm and 630 nm for Abs BS (λ) (b.) and Abs P o (λ) (d.)

  The backscattered reectance R BS (λ) measured with PoLiS on innitely thick samples is a good approximation of total reectance of samples of innite optical thickness;-The low scattered reectance R SS (λ), measuring the light being weakly scattered, is a satisfying approximation of the remitted fraction r of a representative layer; -The combination the PoLiS measurements with the Representative Layer Theory allows us to compute a good estimation of an absorbance spectrum, Abs P o (λ), being freed from scattering eects and peaks of which are linearly related to the concentration of the absorber.The PoLiS optical setup allows to perform reectance measurements, on optically thick samples, which presents a real advantage comparing to methods like Kubleka-Munk, which need dierently prepared samples (dierent thickness for example) or dierent optical setups (Transmission and Reectance).

  polarization subtraction, Bendoula et al. (2014) measured a reectance spectra that has been less impacted by multiscattering. In Gobrecht et al. (2014b), the signals measured with the PoLiS method have been processed in the frame of Dahm's Representative Layer
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 5 Figure 5.1: Schematic diagram of polarized light spectroscopy system (PoLiS).

5. 2 . 3 Figure 5 . 2 :

 2352 Figure 5.2: Principle of the measurement of the two components I (λ) and I ⊥ (λ) of the totally backscattered light by means of linear light polarization
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 53 Figure 5.3: Mean reectance R BS (λ), backscattered absorbance Abs BS (λ), PoLiS absorbance Abs P O (λ) per quartile of TOC concentration for the three dierent particle sizes (a.) coarse < 5mm, (b.) sieved < 2 mm and (c.) ground < 0.25 mm
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 54 Figure 5.4: Scores plots of the two principal components of the Principal Component Analysis performed on the absorbance spectra Abs BS (λ) (rst line) and Abs P O (λ) (second line) for dierent data centering (mean centering and centering per sample location) methods.

the

  PoLiS absorbance Abs P O (λ) is more linearly related to TOC content can be assessed through the Pearson's correlation coecient between the absorbance and the TOC content. The correlograms presented in gure 5.5 show the correlation between the two absorbance signals (Abs BS (λ) and Abs P O (λ)) and TOC as a function of the wavelength and for each sample preparation.
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 55 Figure 5.5: Correlogram between Absorbance and TOC for the wavelength range 400 -800 nm. Vertical line indicates the wavelength at which the correlation coecient for Abs BS (λ) is the highest.

Figure 5 .Figure 5 . 6 :

 556 Figure 5.7 shows the quality of the models calibrated on the spectra obtained with the dierent methods : the backscattered reectance spectra (R BS (λ)), the backscattered

Figure 5 . 7 :

 57 Figure 5.7: Predicted vs measured total organic carbon content from leave-one-out cross validation models calibrated with backscattered reectance spectra (R BS ), backscattered absorbance (Abs BS (λ)) and PoLiS Absorbance (Abs P O (λ)) for the three dierent particle sizes: (a.) coarse < 5mm , (b.) sieved < 2 mm and (c.) nely ground < 0.25 mm) . R 2 : coecient of determination; SECV: standard error of cross validation; LV: number of latent variables
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 5 Figure 5.8 present the R 2 and the SECV values for each models built.

Figure 5 . 8 :

 58 Figure 5.8: Comparison of the determination coecient R 2 and the Standard Error of cross validation (SECV) of the prediction models built on the three types of samples. Dotted lines correspond to the performances of the models built with Abs P o (λ).

Figure 5 . 9 :

 59 Figure 5.9: Predicted vs measured total organic carbon content. Models were calibrated with the backscattered absorbance (Abs BS (λ)) and the PoLiS Absorbance (Abs P O (λ)) on one particle size class and tested on another particle size class. (upperline: coarse < 5 mm on sieved < 2 mm and lower line: sieved < 2 mm on coarse <5 mm ). R 2 : coecient of determination, SEP c : standard error of Prediction corrected from the bias in g.kg -1 .
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 22 PoLiS: an original optical setup to reduce the scattering eect Optical methods aiming at separating the absorbing coecient from the scattering coecients in NIR spectra already exist (section 3.1) but we found out that they are not adapted to highly scattering and absorbing materials such as soil samples. Their common principle is to solve (directly or by model inversion) a system of equations with two unknown parameters, i.e. the scattering and the absorption coecients. Hence, it is necessary to collect at least two dierent type of spectral information about the studied material. The most common set of measurements is the Transmission and the Reectance performed on the same sample (in the Inverse Adding-Doubling methods or more simple 2-Flux methods such as the Kubelka-Munk model). An alternative is to measure a reectance on a optically innite sample and a reectance on a optically nite sample. In methods such as spatially or time resolved spectroscopy additional spectral data are acquired as a function of space or time.

  La xi lumière n'est plus simplement transmise ou absorbée mais elle est également diusée dès qu'elle rencontre une particule et que l'indice de réfraction change. Le chemin optique de la lumière est fortement dévié et rallongé. Cela impacte directement la qualité du signal d'absorbance qui n'est plus linéairement reliée à la concentration de la variable d'intérêt du fait d'eets additifs et multiplicatifs se superpose au signal (cf. gure 1).

	Sensor	Sensor	Sensor
	IT	IT	
	Source	Source	Source
	I0	I0	I0
	A(λ) = µa(λ) . l	. fm(λ, µs(λ))	+ fa(µs(λ),λ,l)
	a. Beer-Lambert Law	b. Multiplicative effect	c. Additive effect

Figure 1: Représentation des eets additifs et multiplicatifs de la diusion sur le signal d'absorbance. µ a est le coecient d'absorbance et µ s est le coecient de diusion. λ est la longueur d'onde.

  on one particle size class and tested on another particle size class. (upperline: coarse < 5 mm on sieved < 2 mm and lower line: sieved < 2 mm on coarse <5 mm ). R 2 : coecient of determination, SEP c : standard error of Prediction corrected from the bias in g.kg -1 . . .
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Predicted vs measured total organic carbon content. Models were calibrated with the backscattered absorbance (Abs BS (λ)) and the PoLiS Absorbance (Abs P O (λ))
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  proximity of the samples in terms of their spectral characteristics. The global model built on all the created local models is capable of modeling the non-linear structure of the data set[START_REF] Gogé | Optimization criteria in sample selection step of local regression for quantitative analysis of large soil NIRS database[END_REF].

	2.6 Other calibration strategies as an alternative to
	linear models
	2.6.1 Local strategies

Local methods, although considered as non-linear methods, take advantage of the simplicity associated with linear methods. The common principle of local methods is to select a sub-set of samples from a training set in order to build a local linear model used to predict an unknown sample. The sample selection can either be based on auxiliary information or on

Table 2

 2 

.1 divides the references in three main categories of methods. 1. Tree based regression: Tree-based methods for classication and regression were introduced from a statistical perspective by Breiman (1984) (CART, classication

Table 2 .

 2 1: A review of non-linear methods used to predict soil carbon content with NIR diuse reectance spectroscopy ). Regression trees are used when the response variable is continuous, while classication trees are used for a categorical response. The fundamental idea is to split the data into subsets giving a splitting criteria. Examples of splitting criteria are given in

	Calibration methods 1 Parameter	n	R 2	RMSE/SEP	Reference
	MARS MARS BRT BRT regressions CART Tree based Cubist Treenet OC % OC g • kg -1 OC % OC g • kg -1 OC g • kg -1 OC g • kg -1 OC % RF OC %	300 R 2 val = 0.8 1104 R 2 cv = 0.8 3793 R 2 cv = 0.82 52 R 2 val = 0.96 SEP = 3.8 RM SE = 3.1 RM SE = 1.02 Viscarra Rossel & Behrens (2010) Shepherd & Walsh (2002) RM SE = 9 Brown et al. (2006) Sankey et al. (2008) 30 R 2 RM SE = 2.64 Ballabio (2009) cv = 0.48 157 R 2 test = 0.96 RM SE = 0.35 Minasny & McBratney (2008) 257 R 2 test = 0.71 RM SE = 0.76 Minasny & McBratney (2008) 1104 R 2 cv = 0.8 RM SE = 1.23 Viscarra Rossel & Behrens (2010)
	Articial neural network	ANN PLS-NN OC % OC % ANN OC % BPNN OC % BPNN OC % ANN SOM mg • g -1 10 214 R 2 cv = 0.94 256 R 2 test = 0.94 RM SE = 0.5 RM SE = 0.89 Udelhoven & Schütt (2000) Janik et al. (2009) 1104 R 2 cv = 0.89 RM SE = 0.75 Viscarra Rossel & Behrens (2010) 45 R 2 test = 0.94 RM SE = 0.54 Mouazen et al. (2010) 157 R 2 test = 0.71 RM SE = 0.76 Fernández Pierna & Dardenne (2008) R 2 val = 0.86 Daniel et al. (2003) MLP SOM % 60 R 2 test = 0.88 RM SE = 0.35 Fidêncio et al. (2002) RBFN SOM % 60 R 2 test = 0.92 RM SE = 0.25 Fidêncio et al. (2002)
	Support Vector Machine	LS-SVM OC % SVMR OC g • kg -1 SVMR OC g • kg -1 LS-SVM OC % SVMR OC % LS-SVM OC g • kg -1	40 30 102 R 2 R 2 val = 0.89 RM SE = 0.5 R 2 cv = 0.61 RM SE = 2.35 Ballabio (2009) Vohland et al. (2011) val = 0.83 RM SE = 5.37 Stevens et al. (2010) 157 R 2 test = 0.89 RM SE = 0.56 Fernández Pierna & Dardenne (2008) 1104 R 2 cv = 0.84 RM SE = 0.92 Viscarra Rossel & Behrens (2010) 106 R 2 val = 0.6 SEP ≈ 0.8 Igne et al. (2010)

1: Abbreviations: MARS=multivariate adaptative regression splines; BRT= boosted regression trees; CART= Classication and regression trees; RF=random forest; ANN = articial neural network; PLS-NN= Partial least squares neural network; BPNN = backpropagation neural network; MLP= Multiple layer perceptron; RBFN = Radial basis function network; LS-SVM=least squares support vector machine; SVMR=support vector machine regression; OC=organic carbon; SOM = Soil organic matter; RMSE = root mean square error; SEP= standard error of prediction and regression trees

  ) of the reference measurement y knowing the spectra x. This term describes the variability of y for samples with the same spectra. A kernel function (kernel density estimate) is used to model p(x|y). The Bayes theorem gives:

	Major issues of NIR spectroscopy in Soil Science
	Whereas previously described methods involve regression, linear or nonlinear, between
	reference values and spectral data (inverse regression) Bayesian estimation methods com-
	bine prediction model distribution and a a priori distribution describing the population
	of samples to be predicted (Fearn et al., 2010).
	With Bayesian approaches, a prediction consists in computing the distribution proba-
	bility (p(y|x)
	2.6.3 Bayesian methods
	To our knowledge, Bayesian methods have not yet been applied to soil data. Chen
	et al. (2007) provide a theoretical perspective on the value of using Bayesian methods in
	chemometrics, in comparison with more traditional methods. The Bayesian framework
	seems relevant when addressing a number of issues posed by NIRS applied to soil. Fearn
	et al. (2010) and Pérez-Marín et al. (2012) used the Bayesian framework to predict the

However, their use remains still marginal in soil science because the algorithms are not present in commercial NIR spectrometers and are sometimes considered as black boxes. Training and structure optimization may require long computation time. composition of materials showing some similarities with soils, i.e. forages. Forages have got similar spectral signal behavior with soils (scattering, heterogeneity of composition and structure). In addition, these authors identify both nonlinearity problems and issues related to the non-gaussian distribution of variables to predict.

p(y|x) = p(x|y)p(y)/p(x) (2.16) If the distribution is normal, equation 2.16 can be solved analytically. However, in order to be able to apply this method in a more general situation, specically with skewed p(y) distribution, Fearn et al. (2010) use a discrete set I of y 1 , . . . , y I values for y. Thus, equation 2.16 becomes:

p(y i |x) = p(x|y i )p(y i )/p(x) for i = 1, . . . , I (2.17)

As an output, a discrete distribution of p(y|x) is obtained. The mean of this distribution can be used to assign a value to y, but the other characteristics of this distribution (i.e the median) can also be used if necessary. This is of high interest because it becomes possible to calculate a prediction interval for ŷ, from this distribution, which informs in another way about the quality (or uncertainty) of the model

[START_REF] Pérez-Marín | Improving NIRS predictions of ingredient composition in compound feedingstus using Bayesian nonparametric calibrations[END_REF]
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Table 3 .

 3 1 shows the quality parameter of the prediction models of the test set absorber's densities comparing the raw and the corrected spectra.

		Cal set (n)	Test set (n)	Spectra	Predicted absorber	PLS factors	R 2	SEP c (%g/l)
	General	S1+S2	S1	R w	E133 E141	8 5	0.75 0.91	2.52 1.3
	model	(42)	(12)	R c	E133 E141	5 4	0.91 0.93	1.41 1.12

Table 3 .

 3 

1: Figure of merit of the calibration models

Table 3 .

 3 2: Figure of merit of the calibration model built with samples of one particle size (S 2 ) and tested on samples with another particle size (S 1 )

	Optical methodology for reducing scattering eects on the spectroscopic signal	
		Cal set (n)	Test set (n)	Predicted absorber	Spectra	PLS factors	R 2	SEP c (%v/v)
	Robustness	S 2	S 1	E133	R w R C	5 4	0.69 0.94	1.61 0.71
	assessment	(21)	(12)	E141	R W R C	5 3	0.83 0.86	0.8 0.8

Table 5 .

 5 1: Total Organic Carbon (g.kg -1 ) descriptive statistics for the whole dataset. Q1, Q2 and Q3 correspond respectively to the rst quartile, the median and the upper quartile. SD: standard deviation

  R 2 and the Standard Error of Cross-Validation (SECV) and Standard error of prediction (SEP) corrected from the bias (Bellon-Maurel et al., 2010).

	All the computations have been performed with Matlab software (Matlab R2012b,
	Mathworks).

An exploratory analysis of the backscattered absorbance spectra Abs BS (λ) and the PoLiS absorbance spectra Abs P O (λ), has been carried out using Principal Component determination

Table 5 .

 5 2 show the quality parameter (R 2 , bias and Standard Error of Prediction corrected from the bias (SEP c ) and slope) of the models built on a particle size class and applied to another particle size class.First, each time nely ground samples (< 0.25 mm) are involved, either in the calibration set or in the test set, PoLiS method do not produce better predictions. R 2 is lower with Abs P O (λ) than with Abs BS (λ) and the SEP c , the bias and the slope are

	Particle size of the		Signal	L.V.	R 2	SEP c Bias Slope
	Calibration set	Particle size of					
		the Test set					
	Coarse	Sieved Ground	Abs BS (λ) 5 Abs P O (λ) 5 Abs BS (λ) 5 Abs P O (λ) 5	0.64 0.76 24 29 0.67 28 0.62 31	-6.5 0.74 -5.7 0.86 -44 0.70 -33 0.50
	Sieved	Coarse Ground	Abs BS (λ) 8 Abs P O (λ) 5 Abs BS (λ) 8 Abs P O (λ) 5	0.53 0.67 28 37 0.75 24 0.70 28	24.5 6.0 0.72 0.78 -20 0.72 -34 0.54
	Ground	Coarse Sieved	Abs BS (λ) 10 Abs P O (λ) 4 Abs BS (λ) 10 Abs P O (λ) 4	0.45 0.50 0.70 0.69	44 52 27 43	12 23 11 31	0.8 1.1 0.84 1.28

Table 5 .

 5 2: Performance of the models built with Abs BS (λ) and Abs P O (λ) on one particle size sample set and tested on another particle size sample set. L.V. is the number of latent variables used for the calibration model, R 2 is the coecient of determination, SEP c is standard error of prediction corrected form the bias in g.kg -1 .
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Major issues of NIR spectroscopy in Soil Science

In this context, the objective of the thesis is to provide an original approach solving the following two scientic questions:

1. How to optically reduce the impact of light scattering on the spectroscopic signal ?

2. How to model the chemical absorbance of highly scattering materials ?

The rst question, addressed in following chapter, requires to invoke optical theories to act on the quality of the spectroscopic signal. Based on the principles of light polarization, we design an original optical setup, which selects light being less impacted by multiscattering. The chapter rst present the theoretical aspects underlying the proposed optical approach, which is then experimentally validated on model samples in powdered form.

The second question is addressed in chapter 4. Here it is about comprehension of the information contained in the signals measured with the new method and their link with the chemical absorbance. We combine the optimized signals with the Absorption/Remission function of Dahm's Representative Layer Theory (RLT) [START_REF] Dahm | Representative Layer Theory for Diuse Reectance[END_REF] to model the absorption which becomes, in theory, linearly proportional to concentration of constituents. This approach, named PoLiS (for Polarized Light Spectroscopy), is tested on liquid and particulate model samples in the visible range.

In chapter 5, we validate the method for the estimation of Total Organic Carbon content in soils by applying it on real soil samples and benchmark the results (i.e. the prediction accuracy) with the ones achieved using empirical preprocessing.

Contributions of chapter 3 and outlook

In this chapter, we showed a way of acting on the rst stage of any spectroscopic analytical method: the signal formation. Therefore, we developed an original optical methodology to remove multiscattering from reectance signals.

This method is original because it is based on light polarization principles, which are rarely implemented in NIR spectroscopy, except from some experiments conducted in the eld of biomedical optics. Actually, polarization techniques are considered to present high SNR issues as the intensities of the signals are lower than for conventional spectroscopy.

So, this method overcomes these SNR issues and provides signals of improved quality.

Moreover, correcting the spectrum from non-linear physical eects, the signal becomes a linear combination of the pure component spectra. This is an essential prerequisite for multivariate analysis.

To evaluate this optical approach, we have built models from the corrected spectra to predict the concentration of dyes. The models have proven better quality compared to ones built from the raw reectance. However, according to Beer-Lambert's law, it is the absorbance which is linearly proportional to the constituents concentrations, and not the reectance. This raises the following questions:

-Which information has been extracted from the samples by the corrected reectance spectra R C (λ)?

-How are these measurements linked to the Beer-Lambert's law chemical absorbance?

In the following chapter, we will provide answers to these questions. Starting with the measurements made by the optical method (named PoLiS method) developed here, we propose a method to model the absorbance which has the same properties as the Beer-Lambert absorbance of non-scattering media.

c E141 in a sample was obtained from m E141 the added mass of dye, d sand the bulk density of sand and m sand the mass of sand:

The colorant concentrations ranged from [0 -18 g • L -1 ].

To ensure homogeneity of the mixture, the sample was thoroughly mixed after preparation and again just before it was carefully transferred in a layer 5 cm diameter cup.

The powder was then leveled in order to get an even and horizontal surface.

Instrumentation

Jasco spectrophotometer

On the liquid samples, total diuse reectance (R) and transmittance (T) have been measured using a double beam spectrophotometer (V670, Jasco) equipped with a 60 mm diameter integrating sphere (ISN-723, Jasco). The Jasco presented a linear photometric range of . Spectral data was collected in the wavelength region 350-850 nm at 1 nm interval. For each sample, a 1 mm path length quartz cuvette (100-QS, Hellma) was used. The baseline was measured with a white reference (Spectralon , Labsphere) to ensure a simultaneous baseline correction during the reectance and transmission measurements.

PoLiS setup

The PoLiS optical setup (gure 4.1) is composed of a halogen light source (150 W, Leica Cls) coupled with a 940 µm core diameter optical ber of numerical aperture (N.A) of 0.25 (Sedi & ATI) . The light delivered by the ber was collimated by an aspheric lens (F220SMA-B -Thorlabs). The incident beam was a 1.5 cm diameter circular spot with 1 • divergence. The incident and reected beam were polarized through two broad-band (400 nm -800nm) polarizers (NT52-557, Edmunds Optics). Incident light was linearly polarized and reected light was collected in a narrow cone ( 1 • ). The output from the complex variable of interest such as TOC ?

-Is the TOC calibration model of better quality when built with the PoLiS Absorbance ? And does the PoLis method present an added value compared to preprocessing methods?

Analysis (PCA). In order to evaluate the impact of the soil preparation on the spectra, the spectral data have been centered in two dierent ways:

-Mean centered, meaning that the mean spectrum of the entire data set (global mean) is removed from all samples (Coarse, sieved and ground) to analyze the global variance of the dataset;

-Centered according to the location: the mean of the three spectra (one for each particle size preparation) measured for each sample collected at one location is subtracted. This centering allows us to examine the variance within samples having the same TOC content but presenting dierent physical structure.

The Wilk's lambda criterion (Λ w ) has been applied on the scores of the PCA. Wilk's Lambda is the ratio of the between class variance to the total variance [START_REF] Roger | Discriminating from highly multivariate data by focal eigen function discriminant analysis; application to NIR spectra[END_REF]. Λ w ranges from 0 to 1. For a value close to one, the classes are well separated and a value close to zero indicates that the classes are confounded.

Calibration with Partial Least Squares Regression

Calibration models have been built using PLS [START_REF] Wold | Cross-validatory estimation of the number of components in factor and principal components models[END_REF], considered as the benchmark chemometric technique used for quantitative analysis of diuse reectance spectra.

The dierent types of signals computed, R BS (λ), Abs BS (λ) and Abs P O (λ), were compared on the basis of the performances of leave-one-out cross-validation models built on the each particle size sample set to predict soil Total Organic Content (TOC).

Preprocessing methods such as Standard Normal Variate (SNV), Multiplicative Scatter Correction (MSC) and modied Optical Pathlength Estimation and Correction (OPLECm) have been applied to the dierent spectra.

Finally, the best models obtained for each particle size class have been applied on the other particle size sets.

The performances of the cross-validation models and validation models have been assessed through the number of latent variables used in the models, the coecient of

Contributions of chapter 5 and outlook

In this chapter we tested the PoLiS method, which combines an optical setup based on light polarization spectroscopy and the Representative Layer Theory to model the absorbance signal of soils. This absorbance signal tends to be more linearly related to the concentration of organic carbon, which is an important pre-requisite to perform linear multivariate modeling.

In a second step, we showed that the method leads to calibration model which perform appreciably better than models based on preprocessed reectance spectra.

The results of this preliminary study on soils should be conrmed on a larger soil database. In addition, the wavelength range of the actual version of the PoliS method is not the most relevant for the study of chemical soil properties. Therefore, technical improvements are needed to conrm the high potential of the PoLiS method to characterize soils.

Contributions and Perspectives

Introduction

In this thesis we aim at developing an optical method based on light polarization spectroscopy to measure the absorbance of highly scattering materials. The operational problem that initiated this work was to measure soil carbon content with Vis-NIR spectroscopy and while the classical methods faced some limitations mainly due to light scattering. We proposed therefore an optical architecture capable of reducing the eect of multiscattering on the spectra, posing the assumption that the calibration models built with these spectra would be more precise and robust.

While the goal of this undertaking was very focused on a particular application, it opened new alleys of research. This nal chapter synthesizes the major ndings and results of the current thesis. It summaries the assumptions, capabilities and constraints of the PoLiS method.

The scientic perspectives, that have emerged during this work, are also presented, as a testimony of the bright future of light polarization spectroscopy serving multivariate analysis of complex materials.

6.2 Summary of the main contributions of the work 6.2.1 A pedagogical review : back to basics !

The rst contribution of this work is a pedagogical review mainly addressed to soil scientists. We focused on the causal link between the theoretical concepts underpinning NIR and linear chemometric modeling and the question why such a promising technique, NIR, is still not largely widespread in soil analysis.

The review highlights that light scattering is an important source of limitations: it negatively impacts the NIR spectrum, which itself is not a very selective signal. As a consequence, extracting the relevant information, being usually the chemical absorbance, becomes a much bigger challenge than for non scattering materials. Indeed, the useful information is overlapped, both linearly and non linearly, by useless, and even sometimes Contributions and Perspectives scattering materials than the almost exclusively used expression {-log R BS (λ)}, which is inherently non linear with concentration. The main reason is that applying Beer-Lambert Law to reectance measurements is based one wrong assumptions: (i) the path-length of light is constant and (ii) the scattering coecient for the sample is independent of absorption [START_REF] Dahm | The physics of near-infrared scattering[END_REF].

In this thesis, we used the frame of the Representative Layer Theory proposed by

Dahm & Dahm because they explicitly raise the question of an equivalent to the Beer-Lambert Law for scattering materials (Dahm & Dahm, 2007, p. 34).The RLT allows for a layer to contain particle types of multiple materials and diameters, as well as voids between the particles so long as each layer is identical in its composition with relation to the volume and surface area ratio between particle types [START_REF] Dahm | Interpreting Diuse Reectance and Transmittance: A Theoretical Introduction to Absorption Spectroscopy of Scattering Materials[END_REF]. Because of the initial assumptions about a sample, this technique is particularly applicable to the optical characterization of powdered samples, which may be contain multiple chromophores .

We put forward the hypothesis that the set of PoLiS reectance measurements can be implemented in the Absorption Remission function to model the absorbing power of a scattering sample (section 4.2.4).

We validate these assumptions experimentally for liquid and powdered samples by conrming that the PoLiS absorbance showed a better linear relation with the absorber concentration (section 4.4.2) than the classical backscattered absorbance {-log R BS (λ)}.

Application on soils

The samples studied to validate experimentally the PoLiS method are simple samples, mixing a scattering but non absorbing matrix (milk or sand) with a unique absorber (a coloring dye). Applying the PoLiS method on real soil samples intent to conrm that the method could be applied on more complex samples (soil is a sort of ideal complex sample) to predict more complex variables of interest (e.g. Total Organic Carbon).

First, from a practical point of view, the PoLiS optical setup is fully adapted to the measurement of air dried and sieved soil samples. The collected spectra showed a good
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S/N ratio in the 350 -800 nm range. Next, the linearity between the PoLiS absorbance Abs P O with TOC is improved compared to Abs BS (section 5.3.2).

More important, we conrmed that building a calibration model with PLSR using the PoLiS absorbance to predict the TOC content outperforms the model built with Abs BS , even when mathematical pretreatments were applied to it (section 5.3.3). Here, in our experiment, we found out that preprocessing the PoLiS absorbance degraded the model.

This leads us to believe that PoLiS is an optical preprocessing method that discards only the useless information from the absorbance spectra which reaches an optimal quality regarding linear multivariate analysis.

Technical limits and areas of improvements

The application of the Polis method on soil did highlight some limits, which are presented, and discussed. As these limits are mainly of technical order, we propose some technical improvements.

Limits of the actual optical setup

The wavelength range of the PoLiS setup, i.e. 350 -800 nm, tend not to be a limiting factor to study coloring dyes, which absorb in the visible range. To study soil chemical properties, however, this restricted range is a clear limitation, although for carbon, there is clearly a link between soil color and soil carbon content.

The main reason that we can not measure in the near infrared range is related to the detector of the spectrometer. The quality of the signal depends on the responsivity of the detector. In the Vis-VNIR range (350 nm 1100 nm), the spectrometer includes a silicon detector, which present the advantage of having a high responsivity. Over 1000 nm, (SWIR -NIR), the spectrometer is generally composed of an InGaAs (Indium Gallium Arsenide) detector, which show a lower responsivity. So if the signal is to low in intensity, the noise will be relatively high. The PoLiS measurements, as they result from the dierence between the two signals R and R ⊥ , are too noisy to be used.

Contributions and Perspectives

Areas of improvements

To overcome these limits, some technical adaptation of the PoLiS method should be tested:

-To augment the signal intensity , one can use a more powerful light source. In the PoliS optical setup, the light source used is an halogen lamp (150 W, Leica Cls). A lot of power is lost by collimating the beam. Using a supercontinuum source (laser), which is already collimated, will concentrate the available energy on a small surface of the sample. As a consequence, the remitted intensity will increase and therefore also the selected low scattered component. Another lever would be to rethink the architecture of the collecting part of the device, with the objective to increase the quantity of photons reaching the detector. The optical components must be chosen so as to maintain the intensity at its maximum. The right lenses have to be chosen and the use of optical bers have to be limited, as they attenuate light.

-To build the whole spectrometer integrating a source, optical components, a monochromator (wavelength range) and a detector. Each component can be adapted to optimize the signal quality. This is a necessary stage to dene the technical specications of a fully optimized sensor.

Contributions and Perspectives 6.4 Scientic perspectives

Increasing knowledge about the studied material

The PoLiS method is combining various theoretical elds such as light polarization principles, the BeerLambert physical law and the Representative Layer Theory. This coupling allows us to study lightmatter interactions at two dierent, but complementary levels: the macroscopic and the microscopic one.

-From a macroscopic point a view, the light is considered as a corpuscular element and dierent properties of the material can be extracted from the quantity of photons reaching (or not) the detector. The frame of the Representative Layer

Theory is very promising to understand how light travels in the material and how it is absorbed. But the added-value is the combination of the RLT with the Po-liS method. Indeed, the optical setup can implement dierent polarization status that are dierent of linear one : the the elliptic or circular ones. The wave will interact dierently with the material. For example, circular polarized light penetrated deeper in the material before it looses its polarization status [START_REF] Voit | Multiple scattering of polarized light: comparison of Maxwell theory and radiative transfer theory[END_REF]. The reectance signals measured could be accordingly interpret and provide new knowledge about the material, a better understanding of the lightmatter interaction and the mechanism of light absorption..

-From a microscopic point a view: The fraction of light that is reected by a surface can be computed with the Fresnel equations. This fraction is a function of the complex refractive index {n -ik} of the material and the state of polarization of the incident beam; k is known as the absorption index and it is related to the absorbing power of the material [START_REF] Wendlandt | Reectance spectroscopy[END_REF]. The PoLiS method allows us to measure all the polarization states of light. Polarized light with its electric eld along the plane of incidence is denoted p-polarized, while light electric eld of which is normal to the plane of incidence is called s-polarized. When these wave interact with the material, their reectance R s (λ) and R p (λ) have a dierent

Contributions and Perspectives expression. From them, it may be possible to calculate analytically, by using model inversion, the complex refractive index {n -ik} of the medium. These values are of high interest for a several complex materials. Among them soils, for which published information on refractive indices is very scarce.

Assessing the signal quality prior calibration

All through this research, we were confronted to the question of assessing the quality of the signals produced by each method. This was particularly the case when we had to optimize the architecture of the optical set up. Here, we consider that a signal is of good quality, if it is suciently selective and sensitive to predict the variable of interest. In other terms, if it contains suciently information to be captured by the model.

Usually, to assess the impact of a signal, we assess the quality of the model: the model is built and gures of merit (FOM) of the prediction model are compared [START_REF] Dardenne | Multivariate calibration and chemometrics for near infrared spectroscopy: which method?[END_REF]. Among them, the correlation coecient R 2 , the standard error of prediction (SEP) and the bias. However, this procedure needs many available samples, each with a known reference value to build, validate and test the model. In addition, the FOM assess the whole analytical process (i.e. comprising the measurement and the calibration) and it is dicult to know which of the measurement stage or the model calibration stage has the higher impact on the prediction uncertainty.

Several FOM exist, dedicated to signal comparison. They mainly come from the frame of the Net Analyte Signal (NAS), a concept introduced by Lorber et al. (1997). The NAS is the part of the measured signal that a calibration model relates to the property of interest (e.g. analyte concentration) [START_REF] Boelens | Performance optimization of spectroscopic process analyzers[END_REF]. The remaining part contains the contribution from other components. Several gures of merit are computed from the NAS, such as the selectivity, the sensibility, the signal to noise ratio and limit of detection [START_REF] Olivieri | Uncertainty estimation and gures of merit for multivariate calibration (IUPAC Technical Report)[END_REF]. In simple mixtures, where the pure spectra are known, the real NAS can be computed. However, if the samples are more complex or if the pure spectra are not available (which is, in NIR spectroscopy, the usual case), NAS has to be estimated. Several methods exist to estimate the NAS, depending on the available Contributions and Perspectives information about the analyte of interest and the interferent. The main method is to estimate the NAS from the b coecient of a PLS model [START_REF] Faber | Ecient computation of net analyte signal vector in inverse multivariate calibration models[END_REF].

If the purpose of the gure of merit is to assess the signal quality, the there is no real added value in computing FOM from an estimated NAS using the model coecient in comparison to computing the traditional FOM of model quality from the same database:

R 2 , RMSEP, bias. In addition, gures of merit are computed for each sample.

Therefore, knowing about the signal quality before (and independently of ) the calibration step is of practical interest when dierent optical setups have to be benchmarked.

As far as we know, there is no such a quality parameter, which could assess the prediction capacity of a spectra without building a model.

General conclusion

The aim of the present thesis was to provide an optical methodology to measure, with Vis-NIR spectroscopy, an absorbance signal of optimized quality to characterize soils. Two main scientic questions have driven this work:

1. How to optically reduce the impact of light scattering on the spectroscopic signal ?

2. How to model the chemical absorbance of highly scattering materials ?

The rst step was to design an optical setup, named PoLiS, dedicated to remove scattering from reectance signals measured on highly absorbing and scattering materials. Using the wave theory of light, this approach was based on the fact that, when linearly polarized light interacts with a scattering medium, the remitted signal looses its initial polarization state because of the multiple scattering events. By light polarization subtraction, it was possible to select light beams that were less impacted by multiple scattering events.