When there is no risk of confusion, the symbols T, B and W are used without arguments.

The fourth chapter is dedicated to the validation of the proposed approaches by presenting some results with real examples. Finally, the fifth chapter concludes this thesis by synthesizing the most important points of the developed approaches and proposes some perspectives and future research directions to continue this work.
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Introduction

Hyperspectral imaging devices can record images with a very detailed spectral information for each pixel. The spectral information provided by these sensors been related to the biochemical properties of the measured sample, they have been used extensively for non-destructive measurement in the scientific and industrial fields for the last decades. At Irstea, and especially in the research unit ITAP, this spatialized spectral information allows to increase the characterization possibilities for environment and agrosystems already o↵ered by spectrometers and classical color cameras. Indeed, while the spectral dimension provides a detail source of information regarding crop state (e.g., physiological, pathological), the spatial information helps to retrieve structural information (development stage, presence of weed, ...). The implementation of HS technology and the processing of the obtained data are however complex and thus require adapted procedures.

In the framework of classification, the biochemical di↵erences of spectral pixels can be exploited to create a classification model that can assign each pixel of the HS image to a unique label. For supervised classification, training samples of known labels are required to define the assignment rule.

At the beginning of this thesis, the specific context of weed discrimination within wheat crops was investigated. In particular, a comparison of di↵erent spectral pretreatments with respect to classification methods was proposed in the context of infield proximal detection. However, it appeared that some of the issues encountered could be addressed in a more generic way.

As a result, in the second part of this thesis, some more general issues regarding supervised classification of hyperspectral image were studied and constitute the bulk of the present document. For instance, three main contributions are developed in the following of this thesis. The first one is a new supervised dimension reduction method that can deal with the high dimensionality and collinearity of spectral data. The second one is a spectral-spatial approach that uses a spatial regularization method in combination with a supervised dimension reduction in order to optimize its e↵ect on classification performances. The third and last one is an automatic method that allows radiance hyperspectral images to be classified even with varying lighting conditions and thus avoids the reflectance correction.

xvi
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Notice that other methods have also been investigated, that we have chosen not to include in the present document. In particular, a collaboration with Pr. Dinesh Kant Kumar and Dr. Marc Sarossy at the Royal Melbourne Institute of Technology of Melbourne, Australia, was accomplished in order to develop a multiresolution approach for spectral analysis. All these contributions can be found in This introductory chapter focuses on generic issues associated with classification of objects using hyperspectral imagery. We first give some background on hyperspectral imagery and explain the type of information it can bring in a general context.

We then give main vocabulary and definition of classification, and detail some popular classification methods. The main issues associated with classification of hyperspectral images are finally given, i.e., the high-dimensionality and collinearity of spectral data, the use of spatial information in the classification process and the image reflectance calibration.

1.1 Hyperspectral imaging

Light-matter interaction

The interaction between electromagnetic (EM) waves and matter has for a long time been used to retrieve information about objects. Depending on the wavelength, di↵erent information can be retrieved. For illustration, Figure 1.1 represents the electromagnetic spectrum classified by range of wavelengths. Most ranges of the EM spectrum are now widely used in everyday life. For example, X-ray waves due to their high penetration depth in objects are now used daily for medical diagnoses and in airport security to check luggage contents. Ultraviolet (UV) waves are used to reveal fake notes due to fluorescence that re-emits light in the visible domain. Human eyes use the response of objects in the visible domain to perceive di↵erent colors. Near-infrared (NIR) waves are used to distinguish between vegetation and soil in agricultural applications [START_REF] Brown | Site-specific weed management: sensing requirements-what do we need to see?[END_REF], measure fat content in food [START_REF] Osborne | Application of near infrared reflectance spectroscopy to the compositional analysis of biscuits and biscuit doughs[END_REF], inspect fruit quality [START_REF] Nicolaï | Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: A review[END_REF] and to measure the amount of oxygenated blood in retinal vessels [START_REF] Schweitzer | In vivo measurement of the oxygen saturation of retinal vessels in healthy volunteers[END_REF], etc. Far-infrared or thermal-infrared is used for atmosphere monitoring [START_REF] Clerbaux | Monitoring of atmospheric composition using the thermal infrared iasi/metop sounder[END_REF] and for target detection in defense applications [START_REF] Schwartz | Thermal multispectral detection of military vehicles in vegetated and desert backgrounds[END_REF]. Finally, because the atmosphere is very transparent in this domain, micro and radio waves are used for telecommunication and radar for target detection (Figure 1.1).

For our environmental and agricultural applications, we mostly focus on the visible and near-infrared (VNIR) part of the EM spectra that ranges from 400 nm to 2500 nm. Note that at these wavelengths, the term light is usually employed instead of EM wave. The VNIR spectral region is particularly interesting because most organic constituents have specific absorption bands [START_REF] Williams | Near-Infrared Technology in the Agricultural and Food Industries[END_REF]. For instance, [START_REF] Vigneau | Potentiel de l ' imagerie hyperspectrale de proximité comme outil de phénotypage : application à la concentration en azote du blé[END_REF] measured the nitrogen content in wheat leaves and [START_REF] Gorretta | Determining vitreousness of durum wheat kernels using near infrared hyperspectral imaging[END_REF] detected defaults of wheat kernels using a VNIR hyperspectral (HS) camera. For similar reasons, the VNIR region is also widely used in the food industry [START_REF] Nicolaï | Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: A review[END_REF] and medicine [START_REF] Lu | Medical hyperspectral imaging: a review[END_REF].

When light interacts with an object, three di↵erent interaction modes are usually described:

Transmission is when light passes through the object. The change in direction that occurs at the interface is governed by Fresnel equations and depends on the optical index of the object's material.

Reflection which can be either specular or di↵use depending on the nature of the interface. Di↵use reflection is when the incident light is reflected in all directions when it goes through a media composed of fine particles or when it is reflected on a rough surface. Specular reflection corresponds to the reflection of the incident light in a unique direction. The direction is governed by Descartes Law: that is the angle of incidence equals the angle of reflection with respect to the normal of the surface.

Absorption is when the object absorbs a part of the received energy. The absorption corresponds to molecular vibration, rotation, twisting and bending that involves specific energy levels (and thus wavelengths), which are characteristic of object chemical composition.

The proportion of each interaction mode depends on many parameters such as particle sizes, surface state, presence of absorbing compounds in the studied object. The fundamental uses of light-matter interaction in spectroscopy is through absorption. Indeed, from the Beer-Lambert Law, we know that absorption is related to the concentration of absorbing compounds. The Beer-Lambert Law expresses the absorption of a material at the wavelength as:

A( ) = log I( ) I 0 ( ) = ✏( ).l.C (1.1)
where the ratio I 0 ( ) and I( ) are respectively the incident and transmitted beam intensities as a function of the wavelength . The attenuation coe cient ✏( ) is an intrinsic property of the object, the path length l is the object's thickness, and C is the chemical concentration of absorbing species. This relation is very useful in analytical chemistry since by only knowing l and ✏( ), the concentration can be retrieved by measuring light intensity I( ) that goes through the material.

When there is no possible way of measuring through the object, the surface di↵use reflectance can also be used to retrieve the chemical concentration of absorbing species, but the relation is more complex as described in [START_REF] Dahm | The physics of near-infrared scattering[END_REF].

The reflectance or reflectivity of the surface is thus characteristic of the observed objects. Therefore, measuring the reflectivity of the object's surface in function of the wavelength defines a reflectance spectrum, which is often referred to as the object's spectral signature. For example, in Figure 1.3 are represented the reflectance spectra of four di↵erent objects. Note that it is these di↵erences in spectral reflectance that are used to classify objects through spectrometry or hyperspectral imaging. This representation is usually seen in two equivalent ways:

• From a spectrometric point of view, the HS image content is seen as spatialized spectral information: spectrometers are spatially resolved.

• From the image processing point of view, the HS image content is seen as spectralized spatial information: image pixels are spectrally resolved.

Either way, each spatial position in the HS image is associated to a spectrum that contains chemical information of the imaged object.

Note that originally HS imaging was developed for large scale remote sensing of environment using satellite as an improvement of multi-spectral imaging [Goetz , 1985]. Therefore, some definitions of hyperspectral imaging due to [START_REF] Kruse | Introduction to hyperspectral data analysis[END_REF] and [START_REF] Chang | Hyperspectral Data Exploitation: Theory and Applications[END_REF] generalized this concept of multi-spectral imaging: Multispectral devices can record bands of di↵erent spectral widths that can be irregularly distributed. HS imaging devices record contiguous, regularly distributed and narrow spectral bands, which leads to an almost continuous spectral measurement for each pixel. [START_REF] Grahn | Techniques and applications of hyperspectral image analysis[END_REF] similarly defined a HS image as a type of multivariate image that has these two properties:

• many wavelengths or other variable bands, often more than 100;

• the possibility to express a pixel as a spectrum with spectral interpretation, spectral transformation, spectral data analysis, etc [START_REF] Gowen | Hyperspectral imaging-an emerging process analytical tool for food quality and safety control[END_REF])
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Acquisition

There are four main HS image acquisition techniques that di↵er on the way to fill the data-cube. These four techniques, i.e., point-scanning, line-scanning, spectralscanning and non-scanning are schematically represented in Figure 1.6. Each has advantages and drawbacks that are context and application dependent.

Point-scanning or whisk-broom is a 2-dimensional spatial scanning technique that uses a spectrophotometer. With this technique, all wavelengths are acquired simultaneously but for only one pixel at a time. This measure is usually accurate in terms of spectral resolution but often less precise and slower in the spatial directions because of moving parts involved in the scanning. Spectral-scanning, also called staring or area imaging corresponds to the acquisition of several 2-dimensional images at di↵erent wavelengths. Mostly used in laboratories, the stationary object is spectrally scanned by exchanging one filter after another. Wavelength scanning can be made by using either a Fabry-Pérot interferometer or a tunable filter (Acousto Optical Tunable Filter or Liquid Crystal Tunable Filter) [START_REF] Gat | Imaging spectroscopy using tunable filters: a review[END_REF]. The main advantages of this technique are to be able to choose only the spectral bands of interest and to have a potentially high image resolution. However, if the object is not perfectly still during the acquisition, image channel misregistration creates spectral smearing.

Non-scanning, snapshot or one-shot imaging technique records all dimensions of the HS data cube simultaneously [START_REF] Hagen | Snapshot advantage: a review of the light collection improvement for parallel high-dimensional measurement systems[END_REF][START_REF] Hagen | Review of snapshot spectral imaging technologies[END_REF].

The data cube is acquired using the perspective projection of the data cube and reconstructed without any moving part involved in the process. The acquisition time is thus largely reduced, but the image resolution is usually worse than with the other approaches.

Supervised classification

In this section, we present the general context of classification, with its most important definitions and hypotheses. Some of the most popular classification approaches are also given. This thesis focuses only on supervised classification.

Definitions and hypotheses

The objective of classification is to identify the nature of objects in terms of classes based on some characteristics or features. In supervised classification, all classes are assumed to be known and mutually exclusive. Some observations for each class are also supposed to be available to train a model. These observations that form the so-called training samples are manually attributed, which necessitate the prior establishment of a ground truth (GT).

With a HS image, features can potentially take multiple forms, e.g., raw spectra, reduced spectral variables, object shapes, textures, or some combinations of these.

Let us define a feature space X 2 R P and a finite set of all possible classes Classification consists in assigning each feature vector to one of the C classes of interest using a function g : X 7 ! Y. The assignment is hoped to be made as accurately as possible using only the available data in the training set. The objective of classification is to generalize well so that any unseen feature vector

Y = {Y 1 , • • • , Y C },
x is also well classified. This corresponds to maximizing the posterior probability which is the probability to obtain a class given a feature vector Pr(Y c | x). Using the Bayes Theorem, the posterior class probability can be computed using the class conditional density P r(x | Y c ), the prior class probability P r(Y c ) and P r(x)

as: P r(Y c | x) = P r(x | Y c )P r(Y c ) P r(x) (1.2)
Note that the class conditional density taken as a function of Y c is also called likelihood function and is often noted f c (x). Similarly, the prior probability of being in class c is also often noted ⇡ c . The denominator P r(x) = P c P r(x | Y c )P r(Y c ) is the same for every class and is thus usually left apart for further computations. We thus have the classical relation:

posterior / likelihood ⇥ prior (1.
3)

The function g ⇤ that maximizes the posterior class probability:

g ⇤ (x) = arg max c P r(Y c | x) ( 1 . 4 )
is called Bayes classifier and is the best classifier over all measurable functions g for the zero-one loss function [START_REF] Fan | No Title. High-dimensional Data Analysis[END_REF]. This loss function given by

L y, g(x) = ( 0, g(x) = y 1, g(x) 6 = y (1.5)
is commonly used in classification since it corresponds to the computation of the misclassification rate.

The risk of misclassification is defined as:

risk(g) = E h L y, g(x) i (1.6)
where E is the mathematical expectation for every x. Because classes are assumed to be mutually exclusive, this risk is decomposed as:

risk(g) = E " C X c=1 L y, g(x) P r(Y c | x) # (1.7)
Using the zero-one loss function, the expected risk becomes:

risk(g) = 1 E P r(Y c | x) (1.8)
which means that the minimum risk is obtained for the Bayes classifier and is thus called Bayes risk. When g ⇤ can be computed, risk(g ⇤ ) is used as a benchmark for other classifiers .

The classification procedure is usually done in two successive stages [START_REF] Bishop | Pattern Recognition and Machine Learning[END_REF].

(1) The inference stage consists in learning the posterior class probability using the available training samples. It can be done in two di↵erent ways which are used to categorize classification methods [START_REF] Bishop | Generative or discriminative? getting the best of both worlds[END_REF]. Generative classifiers learn both the class likelihood and the class prior probability and use Bayes Theorem to retrieve the posterior probability whereas discriminative classifiers directly learn the class posterior probability.

(2) The decision stage uses this posterior class probability to make the optimal class assignment.

Classification methods di↵er on the choice for the inference model: linear vs. nonlinear, parametric vs. non-parametric and on the decision rule. The Naive Bayes Classifier makes a strong conditional assumption of independence of x variables for the estimation of the likelihood function.

Generative classifiers

P r(x | Y c ) = P r(x 1 , • • • , x P | Y c ) = P Y i=1 P r(x i | Y c ) ( 1 . 9 )
This is a very strong assumption, especially with spectral data that are smooth functions of the wavelength for which the variables are clearly not independent of one another. It however allows a drastic simplification of the complexity and can potentially be used with transformed variables. Using the independance assumption, the classification function is simply given by:

g(x) = arg max c ⇣ ⇡ c P Y i=1 P r(x i | Y c ) ⌘ (1.10)
Linear Discriminant Analysis (LDA) makes the assumption that class densities are multivariate Gaussian with class mean vectors

µ c = E ⇥ x | Y c ⇤ = ⇣ E ⇥ x 1 | Y c ⇤ , • • • , E ⇥ x P | Y c ⇤ ⌘ T and equal covariance matrices ⌃ = ⌃ c = E ⇥ x µ c | Y c ⇤ E ⇥ x µ c | Y c ⇤ T for every class c 2 Y.
For an observation x that belongs to the class c, its likelihood function is given by:

f c (x) = (2⇡) P/2 |⌃| 1/2 exp 1 2 (x µ c ) T ⌃ 1 (x µ c ) (1.11)
Because it is usually numerically more stable and does not change the outcome, the negative of the log-likelihood:

`c(x) = 2 log f c (x) = P • log(2⇡) + log |⌃| + (x µ c ) T ⌃ 1 (x µ c ) (1.12)
is usually minimized. The two first terms on the right hand side are constant with respect to the class c. Therefore, maximizing the likelihood corresponds to minimizing the Mahalanobis distance [START_REF] De Maesschalck | The mahalanobis distance[END_REF], which is given by:

d M (x, µ c , ⌃) = q (x µ c ) T ⌃ 1 (x µ c ) ( 1 . 1 3 )
Note that when the covariance matrix is the identity matrix ⌃ = I, the Mahalanobis distance is equivalent to the Euclidean distance between x and µ c :

d E (x, µ c ) = p (x µ c ) T (x µ c ) ( 1 . 1 4 )
It can be shown by expanding the term (x µ c ) T ⌃ 1 (x µ c ) that LDA defines linear class boundaries in the feature space [START_REF] Fukunaga | Introduction to statistical pattern recognition 2nd edition[END_REF].

To get the posterior probability, both the prior and the Gaussian parameters for the likelihood function have to be estimated from the training samples.

Class mean vectors and the covariance matrix are estimated from the training samples as:

b µ c = 1 N c Nc X j=1,Y j 2Yc x T j (1.15) b ⌃ = 1 N C X c=1 Nc X j=1,Y j 2Yc (x T j b µ c )(x T j b µ c ) T (1.16)
Minimizing the negative log-posterior probability gives the LDA classification function for any input vector x:

g LDA (x) = arg min c ⇣ (x c µ c ) T b ⌃ 1 (x c µ c ) 2 log( b ⇡ c ) ⌘ (1.17)
Note that g LDA is the best classifier for the zero-one loss function under the as-

sumption that P r(x | Y c ) follows a Normal distribution N (c µ c , b ⌃).
Quadratic Discriminant Analysis is similar to LDA but the constraint on equal class covariance matrix is relaxed. The likelihood and negative log-likelihood are thus written as:

f c (x) = (2⇡) P/2 |⌃ c | 1/2 exp 1 2 (x µ c ) T ⌃ 1 c (x µ c ) (1.18)
and,

`c(x) = 2 log f c (x) = P • log(2⇡) + log |⌃ c | + (x µ c ) T ⌃ 1 c (x µ c ) (1.19)
for which it can similarly be shown that the boundaries are quadratic functions in the feature space [START_REF] Fan | No Title. High-dimensional Data Analysis[END_REF]. The C class covariance matrices are estimated from the training samples as:

b ⌃ c = 1 N c Nc X j=1,Y j 2Yc (x T j b µ c )(x T j b µ c ) T (1.20)
Minimizing the negative log-posterior probability gives the QDA classification function for any input vector x:

g QDA (x) = arg min c ⇣ (x c µ c ) T c ⌃ c 1 (x c µ c ) + log | c ⌃ c | 2 log( b ⇡ c ) ⌘ (1.21)
which is the best classifier for the zero-one loss function under the assumption that

P r(x | Y c ) follows a Normal distribution N (c µ c , c ⌃ c ).
Note on Fisher's Linear Discriminant (FDA)

This discrimination approach developed by [START_REF] Fisher | The use of multiple measurements in taxonomic problems[END_REF] and extended by [START_REF] Rao | The Utilization of Multiple Measurements in Problems of Biological Classification[END_REF] does not require Normally distributed classes nor equal class covariances as in LDA. It was indeed developed as a dimension reduction method that finds the linear subspace that maximally separates the class centroids while minimizing the class spread. In this subspace, whose maximum dimension is given by min(C 1, P ), classes are thus better separated than in the original space, which in turn leads to higher classification performances [START_REF] Hastie | Discriminant analysis by gaussian mixtures[END_REF].

In the feature space, the directions D that best discriminate classes, maximize the variance ratio of between-to within-group scatter, i.e.,

D T BD D T WD , (1.22) with W = N b ⌃, B = P C c=1 N c (c µ c b µ)(c µ c b µ) T and where b µ = 1 N P N i=1
x T i is the mean vector over all samples. These directions are given by the min(C 1, P ) leading eigenvectors of the matrix W 1 B. It can however be shown [START_REF] Hastie | Discriminant analysis by gaussian mixtures[END_REF]] that maximizing the likelihood of LDA with some rank constraints on the mean vector matrix is equivalent to this Fisher's Linear Discriminant.

Discriminative model

Discriminative models learn the boundaries between classes without estimating class likelihood as illustrated in Figure 1.7b. K-Nearest Neighbors (KNN) [START_REF] Cover | Nearest neighbor pattern classification[END_REF] is one of the simplest non-parametric discriminative classifier. KNN tends to construct the posterior class probability P r(Y c | x) without making any statistical assumption on class distributions. KNN finds the K-closest neighbors of a given vector x and uses a majority of voting to assign the class label. K is set as a positive integer that is usually small, e.g., between 1 to 7 are typical values. Cross-validation procedure can help to chose the optimal value that depends on the required complexity of the classification frontier. Note that the term 'closest' depends on the chosen distance, which is usually either the Euclidean distance, or, more frequently with spectral data, the Spectral Angle [START_REF] Yuhas | Discrimination among semi-arid landscape endmembers using the spectral angle mapper(sam) algorithm[END_REF].

KNN naturally manages non-convex and non linearly separable classes but is however relatively slow and requires to store the whole training samples for classification.

The Support Vector Machine (SVM) is a linear binary classifier that aims at finding the furthest separating hyperplan to the closest point in both classes directly in the feature space [START_REF] Vapnik | Statistical Learning Theory[END_REF]. In SVM, class labels are noted Y i = ±1. The separating hyperplan H P 2 R P is defined by its normal vector w 2 R P and its bias b 2 R:

w T x + b = 0, 8x 2 H P (1.23)
The distance from x to H P is given by:

f (x) = | w T x + b | k w k (1.24)
In the linearly separable case, the optimal hyperplan parameters are given by: arg max

w,b ⇣ 1 k w k min i Y i (w T x i + b) ⌘ (1.25)
This complex optimization problem can be broken into a simpler quadratic optimization arg min

w,b 1 2 k w k 2 under the inequality constraints Y i (w T x i + b) > 1, i = 1, • • • , N.
The optimal solution is then computed using Lagrange multipliers [START_REF] Schölkopf | Learning with kernels: support vector machines, regularization, optimization, and beyond[END_REF].

Note that in some linearly non-separable cases, an additional term ⇠ i , i = 1, • • • , N is added to the optimization problem to allow some of the training vectors to lie in the 'wrong' side of the separating hyperplan [START_REF] Vapnik | Statistical Learning Theory[END_REF].

However, the key for the success of SVM is that in case of non-linearly separable classes, the use of the Kernel Trick (see Section 1.2.5) is directly applicable.

Multi-class

Binary classifiers such as SVM do not naturally enable multi-class classification problems to be solved. Two strategies are commonly considered to solve this issue: One-versus-one strategy creates C(C 1)/2 binary classifiers to distinguish each pair of class i and j. The classification is given by y = arg max i P j6 =i g i,j (x) .

One-versus-one strategy requires more classifiers to be trained but is usually preferred as C is rarely large enough to be computationally too demanding. Oneversus-one strategy also enables less complex class separators to be found.

The Kernel Trick

Linear classifiers cannot, by definition, properly classify non-linearly separable classes directly in the feature space. In such cases, if the classifier only depends on dot products, it can benefit from the so-called Kernel Trick [START_REF] Vapnik | Statistical Learning Theory[END_REF].

It consists in mapping the vector from the feature space to a higher dimensional space in which classes become linearly separable. The mapping is performed by a kernel function that has to respect Mercer conditions [START_REF] Vapnik | Statistical Learning Theory[END_REF]. The two most used Kernels are:

• Polynomial: (x, x 0 ) = x • x 0 + c a • Gaussian: (x, x 0 ) = exp k x x 0 k 2 /(2 2 )
where c, a, and correspond to the kernel parameters that have to be tuned. The great idea behind this Kernel Trick is that computations do not have to be made explicitly in the high dimensional space [START_REF] Schölkopf | Learning with kernels: support vector machines, regularization, optimization, and beyond[END_REF].

Training and assessing a classifier performance

When setting a classification model the question of complexity is a topic of major interest that has been discussed thoroughly in [START_REF] Esbensen | Principles of Proper Validation: use and abuse of re-sampling for validation[END_REF]. The core idea is that increasing the complexity of a model by only observing the error made with the training data is prone to overfitting and has to be avoided. A good model should be complex enough to fit well the training set as well as be generic enough to classify accurately also an independent test set that would be acquired in the same experimental conditions. This is illustrated in Figure The CV procedure is useful to find the optimal model complexity and to tune its parameters. However, in order to provide an estimation of the predictive ability of the trained classifier on future samples acquired in the same experimental conditions, it is highly recommended to use an independent test set that has not been used yet. 

Classification issues with HS data

The type and amount of information provided by HS data have to be considered when setting up a classification. For classification purposes, although the large number of spectral bands provided by the HS camera also means potentially more useful discriminatory information, there are some issues with high dimensional spaces. The spatial information also has to be considered for optimal results. The acquired image has to be corrected from di↵erent nuisance e↵ects before getting a reflectance image that is related only to the object chemistry.

Problems with the spectral dimension

There are several problems related to the use of spectral data for classification purposes, which are due to the fact that we try to model a low-dimensional 'structure' embedded in a high-dimensional space using only few observations. In practical applications, it is usually impossible to use generative classifiers because of the difficulty associated to the statistical estimation of P r(x | Y c ) as the dimension of x increases. Discriminative classifiers, although generally directly applicable to high dimensions, are a↵ected as well by the high dimensionality in terms of robustness because the space emptiness makes the class boundaries di cult to learn.

The high dimensionality of spectral data is subjected to the so-called curse of dimensionality, first named by [START_REF] Bellman | Dynamic programming and modern control theory[END_REF] to emphasize their dynamic search strategies for the estimation of multivariate functions. Bellman stated that, as the number of dimensions (P ) increases, the number of evaluations needed to estimate a function on a regular grid was correspondingly increasing to the power 2 P . An illustration from Bishop's book on pattern recognition [START_REF] Bishop | Pattern Recognition and Machine Learning[END_REF] illustrates this phenomenon on one to three dimensions (Figure 1.9).

A trivial example, in which x is a Boolean vector of dimension 30, requires the estimation of more than 3 billion parameters [START_REF] Tom | Chapter 1. Generative and Discriminative Classifiers: Naive Bayes and Logistic Regression[END_REF]. Typical HS classification problems involve vectors of dimensions of more than a hundred. The estimation thus requires an amount of observations that is unmanageable for any possible application. (from [START_REF] Bishop | Pattern Recognition and Machine Learning[END_REF]).

Reference papers that detail the high-dimension issues are: [START_REF] Donoho | High-dimensional data analysis: The curses and blessings of dimensionality[END_REF] from a general pattern recognition point of view; [START_REF] Jimenez | Supervised Classification in High-Dimensional Space : Geometrical , Statistical , and Asymptotical Properties of Multivariate Data[END_REF]] from a HS and multi-spectral point of view; [START_REF] Tormod | Understanding the collinearity problem in regression and discriminant[END_REF]] from a chemometrics point of view. In the following, we briefly state and illustrate the main problems:

Geometry in high dimensional spaces cannot directly be translated from the usual 3D space to higher dimensions [START_REF] Kendall | A Course in the Geometry of n-dimensions[END_REF]. Therefore, our intuition is often not right, which does not help in building new methods. A classical example is that the diagonals in high dimensional spaces tend to be orthogonal to the Euclidean coordinate axis as the space dimensionality increases (Figure 1.10a).

The cosine of this angle, given by cos(✓ P ) = ±(P ) 1/2 , approaches zero as P increases. Thus, projecting some spectra orthogonally to the diagonal vector, which is done when averaging a spectrum [START_REF] Boulet | Pretreatments by means of orthogonal projections[END_REF], projects them close to the zero coordinate [START_REF] Jimenez | Supervised Classification in High-Dimensional Space : Geometrical , Statistical , and Asymptotical Properties of Multivariate Data[END_REF], losing localization information in the original space.

Another geometrical phenomenon that happens in high-dimensional spaces is called the concentration of the measure, which states that high dimensional regions are mostly empty because data tend to concentrate in a thin layer at the boundary of the regions. For instance, it was demonstrated that as the dimensionality P of the space increases:

1) the volume of the hypercube concentrates in its corners (Figure 1.10b).

2) the volume of a hyperellipsoid concentrates in its outside shell (Figure 1.10c).

3) the Normally distributed data tend to concentrates in the tail of the distribution, thus losing its bell shape (Figure 1.10d).

Each observation neighborhood in the feature space is thus likely to be empty.

Hence, statistical density estimations have to be made using large bandwidths therefore losing fine spectral details. However, because high dimensional spaces are mostly empty, a lower dimensional structure containing the information is likely to exist.

Statistical estimations require an increasing number of training samples as the dimensionality increases. [START_REF] Hughes | On the mean accuracy of statistical pattern recognizers[END_REF] proved that with a limited number of available samples, the accuracy of statistical estimations started decreasing past some dimensions (see Figure 1.11). For a parametric classifier, the required number of training samples was estimated to be linearly related to the dimensionality and to the square for a quadratic classifier [START_REF] Fukunaga | E↵ects of sample size in classifier design[END_REF]. Similarly, for non-parametric classifiers, in order to get accurate estimations of multivariate densities, the required number of training samples is exponentially related to the dimensionality of the space. Because of the complexity involved in obtaining large ground truth information, it is often not possible to meet any of these criteria.

Collinearity among variables is a well known problem with spectral data. This problem, related to matrix conditioning, is due to the very high intercorrelation of the measured spectral variables. Therefore, even if the number of training samples was much larger than the number of variables, because of spectral 'smoothness', the actual dimension Q that captures all the spectral variability is smaller than P . The spectral matrix X is thus rank deficient leading to numerical stability

(a) (b) (c) (d)
Figure 1.10: Geometrical problems in high dimensional spaces. As the space dimensionality increases: (A) the diagonal becomes orthogonal to the basis vectors (✓ increases), (B) the volume of the hypercube is increasingly concentrated in its corners (the blue to red volume ratio tends toward zero), (C) the hyperellipsoid volume is concentrated in its outside shell (the blue to red volume ratio tends toward zero) and (D) (from [START_REF] Bishop | Pattern Recognition and Machine Learning[END_REF]) the probability density of a D-dimensional Gaussian distribution as a function of the radius r (distance from the mean).

problems for computations. The most problematic case is when the inverse of the covariance matrix (X T X) 1 has to be computed. Small eigenvalues that only correspond to measurement noise have a large e↵ect on the inversion leading to instability. Figure 1.12a represents the covariance matrix of a typical HS image as an image of P ⇥ P pixels for which low to high values are coded from blue to red. Vectors in this covariance matrix are clearly collinear, which is proven by the corresponding eigenvalues plot of Figure 1.12b.

For practical applications this instability directly a↵ects:

• Classical least squares methods: (X T X) 1 X T Y Normality after projection: it was demonstrated that as the dimensionality increases, the linear projection of any data set in a lower dimensional space is likely to be Normally distributed [START_REF] Diaconis | Asymptotics of graphical projection pursuit[END_REF]Freedman, 1984, Hall and[START_REF] Hall | On almost linearity of low dimensional projections from high dimensional data[END_REF]. This fact is highly useful in practice since it does not requires infinitely large space to observe this phenomenon. [START_REF] Jimenez | High dimensional feature reduction via projection pursuit[END_REF] confirmed that a uniformly distributed data in high dimension is Normally distributed after projection in low dimension. The implication for classification is that multi-modal classes can behave like a mono-modal class after projection. Figure 1.13 from [START_REF] Jimenez | High dimensional feature reduction via projection pursuit[END_REF] show the e↵ect of the projection of mono modal uniformly distributed data and bi-modal Normally distributed data in a lower dimensional space. 

Conclusion

In this section we have described problems related to high dimensionality of spectral data and noticed that thanks to space emptiness and variables collinearity, the data could be reduced with interesting properties. In particular, after dimension reduction, the Normal hypothesis required for QDA can be meet thus approaching the optimal Bayes classifier. Based on these considerations, some of the most important dimension reduction methods are described in the next chapter.

Using spatial information

Until now we have described classification methods applied directly on spectral data. For instance, using a so-called pixel-based or spectral classifier only treats the HS data as a list of spectral measurement without considering spatial relations of adjacent pixels, thus discarding important information. However, the classification results could be improved by using the contextual spatial information provided in the HS data in addition to the spectral information. As illustrated in Figure 1.14, depending on the acquisition scale, di↵erent sources of spectral variability are present within objects, which could be managed through spatial information. To this end, from the famous Extraction and Classification of Homogeneous Objects (ECHO) method developed by [START_REF] Kettig | Classification of multispectral image data by extraction and classification of homogeneous objects[END_REF],

a great deal of research have been carried out to find e↵ective spectral-spatial classifiers [START_REF] Fauvel | Advances in Spectral-Spatial Classification of Hyperspectral Images[END_REF].

These methods, depending on what type of information is more discriminatory for the objects to classify, fall into three categories:

(1) If the objects to classify have strong spatial discriminatory features, these spatial features are extracted and then used to feed a classifier.

(2) If objects to classify have strong spectral and spatial discriminatory features, both are extracted and then used simultaneously in a classifier through kernel techniques.

(3) If objects to classify have strong spectral discriminatory features, spectral information is first processed and the spatial pixels neighboring information is then used to enhance the classification results.

The two first approaches are usually employed to discriminate classes with a priori information on objects shapes or textures, e.g., buildings, houses, roads, row fields.

On the contrary, the third approach only assumes a certain homogeneity in the spatial neighborhoods of pixels. In the next chapter, some successfully developed spectral-spatial approaches of these three categories are reviewed .

Obtaining reflectance images

In the ideal scenario, each object to classify can be represented by its spectral signature. However, many uncontrollable variability sources such as the light source angle, the direction of view, the atmospheric condition and a number of other variables substantially a↵ect the measured spectral response [START_REF] Barrett | Introduction to environmental remote sensing[END_REF].

Three main correction or calibration stages are usually applied to the measured image to compensate these sources of variability (Figure 1.15): Radiometric calibration is a compulsory step before any further processing of the HS image. For each pixel, the recorded Digital Number (DN) obtained from the opto-electronic chain in the camera is converted into a physical measurement, i.e., radiance (W.m 2 .sr 1 µm 1 ). The spectral calibration identifies the exact wavelength value associated with each band. Then, in order to quantify the exact amount of radiance, the transfer function of each pixel of the camera has to be evaluated [START_REF] Gat | Imaging spectroscopy using tunable filters: a review[END_REF]. For airborne or satellite imaging, HS cameras are usually calibrated in the laboratory using integrating spheres. Because of the cost of this procedure, cameras are often calibrated using the two-point techniques. In this case, the radiometric calibration is L(

) = A( ) • DN ( )-DC( ) ,
where L is the radiance, A the pixel response , DN the recorder digital number and DC the dark current.

Geometric calibration mostly concerns images acquired with sensors that involved a scanning. These corrections focus on uncontrolled movement during the scanning, e.g., pitch, roll and yaw in airborne imaging and unequal speed for imaging using a conveyor belt. With staring systems, a registration between frames has to be performed if the objects were not perfectly still during the acquisition.

In satellite and large field of view imaging, geometric distortion due to earth curvature also has to be taken into consideration.

Atmospheric and lighting correction is a prerequisite to every outside HS image analysis when the object surface reflectance has to be retrieved. For example, when spectra have to be compared with reference libraries or when a classification model calibrated on one image has to be used on other images. In order to be independent from the atmospheric conditions HS radiance images have to be transformed into reflectance images. The perfect atmospheric correction is an unsolved problem because of the complexity involved in modeling all possible interactions between light and atmospheric molecules. However, for practical applications two main strategies, reviewed in the following chapter, are usually employed: Empirical corrections that measure the received energy using a reference surface.

Modelisation of the atmosphere radiative transfer that requires precise measures of the atmosphere at the acquisition time and solar spectrum estimation. 

Conclusion

In this chapter, after having seen some main classification methods, we have detailed the main issues that are specific to classification of HS data. For instance:

1) The high dimensionality and collinearity of spectral data have to be dealt with to enable classification.

2) The spatial information should be used to help the spectral information in the classification process, especially because most of the variability is due to spatial inhomogeneities.

3) The acquired images have to be corrected from the atmosphere and lighting conditions in order to retrieve spectra that are only related to the object reflectance.

The remainder of this thesis is as follows. For each of these topics, a state-of-theart is given in Chapter 3. In the previous chapter, some general issues involving HS images classification were mentioned: dealing with high dimensionality of the data, including the spatial information in the classification process and being insensitive to illumination changes. In this chapter we review the available methods that were developed in the literature in order to deal with these issues. We first focus on spectral dimension reduction methods that can handle the high dimensionality and collinearity of the data. Second, we explore some of the available techniques that use both the spectral and spatial information for classification purposes. Third, after a quick background on the reflectance model, the main atmospheric correction methods are mentioned.

Introduction

Hyperspectral (HS) sensors can record images with a very detailed spectral information at each pixel that is related to the chemical properties of the targeted object. For classification purposes, di↵erences in spectral responses are used to assign a label to each pixel of the HS image. In a supervised classification scheme, training samples with known labels are required to define the assignment rule.

These training samples are manually assigned and necessitate the prior establishment of a ground truth. However, the processing of the obtained HS data is complex and thus requires adapted procedures.

This chapter gives the state-of-the-art regarding three main HS data classification issues, i.e., spectral dimension reduction, combination of spectral and spatial information and reflectance correction.

The first issue is due to the high dimensionality and collinearity of spectral data that make the supervised classification problem ill-posed. Furthermore, because of the often limited availability of training samples with respect to the data dimension, specific processing methods have to be used.

The second issue is to design e↵ective ways to use the spatial information to increase the classification performances obtained using only spectral information.

The third issue is that, in order to be independent from the light source, HS radiance images first have to be transformed into reflectance images. In fact, in the general case, only a classification model calibrated with a reflectance image can be used to classify, other (also corrected) images.

The objective of the following sections is not to present an exhaustive survey of the available methods, but to give an overview of how researchers, from di↵erent communities (chemometrics, remote sensing and pattern recognition), have tackled these issues.

Dealing with the high-dimensionality of spectral data

Due to their ability to perform accurate and non-destructive measurements, hyperspectral imaging devices have been increasingly used in many scientific and industrial fields over the last decades. Spectral data acquired by these devices are often composed of more than a hundred narrow bands which make the classical classification techniques fail. In practice, because spectral variables are also highly correlated (which can be observed looking at the smoothness of the spectra observed as a function of the wavelength), their dimension can be reduced without loosing important information [START_REF] Geladi | Chemometrics in spectroscopy. Part 1. Classical chemometrics[END_REF][START_REF] Wold | PLS-regression: a basic tool of chemometrics[END_REF]. Therefore, most methods include a dimension reduction as a first processing step, which is usually followed by a classical multivariate statistical method such as Multiple Linear features that are relevant to classification [START_REF] Indahl | Multivariate strategies for classification based on NIR-spectra-with application to mayonnaise[END_REF][START_REF] Kemsley | Discriminant analysis of high-dimensional data: a comparison of principal components analysis and partial least squares data reduction methods[END_REF][START_REF] Nocairi | Discrimination on latent components with respect to patterns. Application to multicollinear data[END_REF].

Dimension reduction (DR) methods are usually designated into two categories, i.e., feature selection (FS) and feature extraction (FE):

(1) FS methods find features by selecting a subset of variables from the spectra.

(2) FE methods project the data into a lower dimensional subspace whose axes are defined as linear or non-linear combination of the input variables.

For some applications, by removing non-informative or noisy wavelengths, FS proved to perform well [START_REF] Xiaobo | Variables selection methods in near-infrared spectroscopy[END_REF]. The predictive ability of models obtained using all the available wavelengths can in fact be greatly reduced if some parts of the spectra are corrupted by noise [START_REF] Balabin | Variable selection in near-infrared spectroscopy: benchmarking of feature selection methods on biodiesel data[END_REF]]. An advantage of FS is that the extracted features are more easily understandable because they are actually related to the absorption properties of the studied media.

However, in the general cases, FE performs better. Moreover, similarly to classification methods, FE methods can benefit from the Kernel Trick if they only use dot products for computations. For example, Kernel PCA and Kernel LDA have been used in [START_REF] Fauvel | Spectral and spatial methods for the classification of urban remote sensing data[END_REF][START_REF] Schölkopf | Nonlinear component analysis as a kernel eigenvalue problem[END_REF]] and [START_REF] Baudat | Generalized discriminant analysis using a kernel approach[END_REF].

However, linear FE techniques still generally outperform non-linear ones for real data [START_REF] Van Der Maaten | Dimensionality Reduction: A Comparative Review[END_REF].

In the following we thus review both unsupervised and supervised linear FE techniques that are the most used with HS data.

The general idea behind linear FE approaches is to find the linear subspace that best summarizes the original data. Mathematically, this problem consists in the decomposition of X (N ⇥ P ) such that:

S = XD + E (2.1)
where X-scores S (N ⇥ Q ⌧ P ) on X-loadings D (P ⇥ Q) minimize the reconstruction error E (N ⇥ P ) in some sense. Di↵erent minimization choices lead to di↵erent methods.

Unsupervised approaches

Principal Component Analysis (PCA), also known as Karhunen-Loève transform and Hotelling transform, is undoubtedly the most common feature extraction method [START_REF] Jolli↵e | Principal Component Analysis[END_REF]. PCA reduces the spectral dimension by keeping the principal components that best capture the data variability and the projected variables are de-correlated to one another [START_REF] Wold | Principal component analysis[END_REF].

The first PCA axis noted d 1 maximizes the variance of data projection

d 1 = arg max kd 1 k=1
var Xd 1 = arg max

kd 1 k=1 trace d T 1 X T Xd 1 .
(2.2)

In the same way, the others axes are obtained by maximizing the captured variance and under some orthogonality constraints.

A solution is given by the eigenvectors of the symmetric 1 matrix X T X. In this context, this matrix is called total scatter matrix of X and is noted T(X).

The power of PCA is that this eigenvalue problem can be solved using the very e cient Singular Value Decomposition (SVD) [START_REF] Bishop | Pattern Recognition and Machine Learning[END_REF], which is defined as:

X = USV T (2.3)
where U (N ⇥ P ) and V (P ⇥ P ) are orthogonal matrices and S (P ⇥ P ) is a diagonal matrix that contains the singular values. Using this SVD decomposition on the scatter matrix gives

X T X = USV T T USV T = VSU T USV T = VS 2 V T (2.4)
where the eigenvectors are stored in V and the associated eigenvalues in S.

When used for dimension reduction, only the Q ⌧ P first principal components of X are retained. The Q first PCA scores are thus given by: S = XD, where D contains the Q first PCA components. By maximizing the captured variance, for a given Q, the PCA obtains the minimum reconstruction error in the least square sense, i.e., k E k 2 .

Minimum Noise Fraction (MNF) [START_REF] Green | A transformation for ordering multispectral data in terms of image quality with implications for noise removal[END_REF] proposed a method to find the most meaningful data variations 1 The scatter matrix is symmetric and thus diagonalizable with orthogonal eigenvectors.

without taking into account noise-related variations. In fact, because PCA captures the variability information it also captures noise-related variability that is not relevant to summarize the useful information. MNF thus finds the linear subspace that maximizes the signal to noise ratio. The X matrix is first decomposed

into X = X S + X N (2.5)
where X S and X N respectively contain signal and noise variations from X. The source of variations are assumed to be uncorrelated and thus the covariance matrix

⌃ = ⌃ S + ⌃ N .
MNF directions are found by maximizing the ratio arg max

d d T ⌃ S d d T ⌃ N d = arg max d d T ⌃d d T ⌃ N d (2.6)
which corresponds to the solution of the eigen-problem :

⌃⌃ 1 N d = d.
MNF is therefore an interesting alternative to PCA when noisy wavelengths are present in the HS image. However, its practical use is often limited because of the di culty involved in the estimation of the noise covariance matrix.

From unsupervised to supervised methods

Even though the previously described methods have been successfully implemented in many applications for classification purposes, they do not take into account the class information in the dimension reduction process. The optimal subspace is thus optimal in term of capturing the overall data variation but is not optimal from a classification point of view.

However, the aim of feature-reduction algorithms is not necessarily classification, but also representation. Several unsupervised algorithms are used to find a subspace to represent hyperspectral data, for visualization or processing.

PCA and MNF based methods produced a subspace in which each axis does not simply correspond to a single class but is generally a linear combination of spectral responses from several classes. To compensate this problem, [START_REF] Harsanyi | Hyperspectral image classification and dimensionality reduction: an orthogonal subspace projection approach[END_REF] proposed an approach using pure spectral signatures. Given these signatures, their method consists in removing the undesired e↵ect by projecting the data in a subspace that is orthogonal to their variations. At the same time, [START_REF] Lee | Feature extraction based on decision boundaries[END_REF] proposed a feature extraction method that focuses on class boundaries in the feature space in order to avoid the high dimensionality problem. Their method, called Feature Extraction Based on Decision Boundaries (DBFE), by modeling only the class boundary provided interesting results with fewer extracted features than methods that model the class probability densities.

Other approaches have received a lot of attention from the statistical pattern recognition and chemometric fields. Fisher Linear Discriminant Analysis (FDA) approaches tend to solve the computational issue of FDA in high dimensional space and Partial Least squares (PLS) based approaches use a covariance criteria in order to reduce the dimensionality.

PLS-like approaches

Original PLS Partial Least Squares (PLS) has been designed by [START_REF] Wold | Estimation of Principal Components and Related Models by Iterative Least squares[END_REF] to find a score subspace that takes into account the covariance between spectra and one or more responses (e.g., concentration of absorbing species). For this purpose, an iterative algorithm 'Non Linear Iterative Least Squares' was designed to give a set of axes called latent variables (LV) [START_REF] Wold | PLS-regression: a basic tool of chemometrics[END_REF]. When the responses are discrete (e.g., classes), using Fisher Discriminant Analysis (FDA or LDA) on PLS scores (PLS-DA) has proven its e cacy for spectral discrimination [START_REF] Barker | Partial least squares for discrimination[END_REF] and multivariate image analysis [START_REF] Chevallier | Application of PLS-DA in multivariate image analysis[END_REF].

PLS uses the covariance between the matrix of input vectors X and their class Y instead of just using the variance of X. The matrix X is of size (N ⇥ P ) ,

where N is the number of training samples and P the number of wavelengths in the digitalized spectrum; the matrix Y is of size (N ⇥ C) where each row codes the class membership (C classes) of the corresponding spectrum2 .

The aim of PLS is to transform the matrix X into a score matrix S (N ⇥ Q ⌧ P ) using a weight matrix D (model) of size (P ⇥ Q) such as:

S = XD. (2.7)
The capture of X variability is constrained by:

X = SP T + E, (2.8)
which means that the scores S summarize X by minimizing the residual reconstruction error E. The decomposition is also constrained on Y by:

Y = SC T + F.
(2.9)

The scores S also have to summarize Y with a minimum reconstruction error F.

The matrices P and C are called the loadings of X and Y respectively.

Orthogonal Projection to Latent Structure (O-PLS) [START_REF] Wold | Orthogonal signal correction of near-infrared spectra[END_REF] originally introduced Orthogonal Signal Correction (OSC) as a spectral pre-processing that removes systematic variations in X that are orthogonal to Y. The solution proposed by the authors performed well but su↵ered from computational complexity issues and sometimes failed to converge. [START_REF] Fearn | On orthogonal signal correction[END_REF] rapidly proposed an alternative approach that computes a similar correction by solving the eigenvalue problem of the matrix MX T X where:

M = I X T Y Y T XX T Y 1 Y T X.
(2.10)

Finally, [START_REF] Trygg | Orthogonal projections to latent structures (O-PLS)[END_REF] proposed an improved version of PLS that uses the power of OSC methods in order to clean the data before PLS.

From a classification point of view, OPLS-DA allows the separation of predictive from non-predictive variations as demonstrated in [START_REF] Bylesjö | OPLS discriminant analysis: Combining the strengths of PLS-DA and SIMCA classification[END_REF] and as illustrated in Figure 2.2. With OPLS-DA (right) the discriminatory direction t p1

is separated from the Y-orthogonal direction t o1 . The corresponding loading p p1 is thus easier to interpret and only one loading is necessary for perfect discrimination.

With PLS-DA (left), discriminative information is shared between both loadings leading to a more complex interpretability.

FDA-like approaches FDA background

In this section, we present some solutions to adapt The total scatter matrix previously defined with PCA can be seen as the sum of the between-and within-class scatter matrices defined by

B X, Y = X T Y Y T Y 1 Y T X (2.11) W X, Y = X T X X T Y Y T Y 1 Y T X (2.12)
Note that when no confusion is possible these matrices are simply noted T, B and

W. An illustration of this decomposition is given in Figure 2.3. Originally, [START_REF] Fisher | The use of multiple measurements in taxonomic problems[END_REF] developed a method to find the optimal discriminant vector which maximizes the ratio of the between-class distance to the within-class distance for a two-class problem. [START_REF] Sammon | An optimal discriminant plane[END_REF] generalized Fisher's idea by finding the optimal discriminant plane, and then [START_REF] Foley | An Optimal Set of Discriminant Vectors[END_REF] proposed a complete set of discriminant vectors. Their method called Foley-Sammon transform (FST) uses the so-called Fisher criterion [START_REF] Wilks | Mathematical Statistics[END_REF], defined as:

D F DA = arg max D,D T WD=I trace ⇣ D T WD 1 D T BD ⌘ . (2.13)
where D T WD = I corresponds to the orthogonality constraint. Although FST is considered as an optimum transformation, it su↵ers from many computational issues such as:

(1) The solution cannot be computed if the W matrix is singular.

(2) The number of optimal vectors is bounded by min(C 1, P ).

(3) The transformation is sub-optimal.

(4) The transformation is not orthogonal with respect to T.

These issues have attracted a lot of researchers' attention in the pattern recognition field and especially in the domain of Face recognition [START_REF] Duin | Recent submissions in linear dimensionality reduction and face recognition[END_REF]. Some of the original solutions to these problems are explained in the following.

Modified criterion LDA: In order to overcome the singularity problem of the within-class scatter matrix, [START_REF] Cheng | Optimal Fisher discriminant analysis using the rank decomposition[END_REF] proposed to use an alternative to the Fisher criterion that is defined by:

D MCLDA = arg max D,D T WD=I trace ⇣ D T TD 1 D T BD ⌘ , (2.14) 
which is proved to lead to the same discriminant vectors. This solution is only partial since it obviously requires the total scatter matrix to be non-singular, which is unfortunately not the case with many types of data and especially with spectral data.

Pseudo inverse LDA: [START_REF] Tian | Comparison of statistical patternrecognition algorithms for hybrid processing. II. Eigenvector-based algorithm[END_REF] proposed approximating the optimal Fisher criterion by replacing the inversion W 1 by its positive pseudo inverse W + . The positive pseudo inverse gives however only an approximation of the Fisher criterion.

Nullspace LDA: Chen et al. [2000] proposed computing the between-class maximization in the null space3 of the within-class scatter matrix. Their method corresponds to solving the following problem:

D NLDA = arg max D,D T WD=0 trace D T BD , (2.15)
where the null space constraint is given by D T WD = 0.

The inversion problem is thus implicitly solved and interesting performance can be achieved if the null space contains enough discriminant information. It thus requires that the projection of B in the null space is non-zero which means that B and W eigenvectors are not collinear. Another problem is that the W null space is often quite large and that several dimensions do not help with the discrimination. [START_REF] Huang | Solving the small sample size problem of LDA[END_REF] used the relation T = B + W to reduce this dimensionality issue. Indeed, they showed that the null space of T was not helping with the discrimination. Therefore, they proposed to compute the discriminant vectors using the [START_REF] Chen | A new LDAbased face recognition system which can solve the small sample size problem[END_REF] NLDA method but in a subspace excluding the null space of T. [START_REF] Guo | Null Foley-Sammon transform[END_REF] proved that in cases of small number of samples (N < P ) it is possible to find the C 1 projecting directions in the null space of W. This means that there exists a subspace in which no within-class variability is present as illustrated in Figure 2.4. However, in practice, the nullspace might not exists as N increases and it is not guaranteed that su cient information remains for discrimination after projection in the nullspace. Orthogonal LDA Discriminant vectors found by FST are in general not orthogonal. The only cases in which the obtained basis is orthogonal is when B and W have the same set of eigenvectors [START_REF] Hamamoto | On a theoretical comparison between the orthonormal discriminant vector method and discriminant analysis[END_REF]. To solve this problem, [START_REF] Okada | An optimal orthonormal system for discriminant analysis[END_REF] proposed a method that is able to find up to N 1 discriminant vectors that are orthogonal to one another. Their method, called Orthonormal Discriminant Vector (ODV), maximizes the Fisher criterion for each extracted feature under the constraint that features are orthogonal. This method was then proved to provide better results than conventional discriminant analysis in terms of the Fisher criterion [START_REF] Hamamoto | On a theoretical comparison between the orthonormal discriminant vector method and discriminant analysis[END_REF]. Another method proposed by [START_REF] Ye | A Two-Stage Linear Discriminant Analysis[END_REF], called Orthogonal LDA, uses the generalized LDA criterion in the optimization problem:

D OLDA = arg max D T D=I trace ⇣ D T TD + D T BD ⌘ .
(2.16)

The orthogonal constraint on the discriminant vector is given by D T D = I. The singularity problem is solved using the simultaneous diagonalization of the scatter matrices [START_REF] Ye | A Two-Stage Linear Discriminant Analysis[END_REF].

Regularized LDA: Hong and Yang [1991] used a regularization technique on the within-class matrix by adding a small perturbation to it. The regularization aims at increasing the rank of the singular matrix while keeping as much as possible the original information [Hastie et al., 1995, Witten and[START_REF] Witten | Penalized classification using Fisher's linear discriminant[END_REF]. It corresponds to giving some penalty to excessively large value in the discriminant vectors obtained because of singularity. [START_REF] Krzanowski | Discriminant analysis with singular covariance matrices: methods and applications to spectroscopic data[END_REF] nicely worded this regularization process as: If principal component analysis is viewed as providing the best r-dimensional approximation to a p-dimensional set of data, then our present objective can be seen as exactly the reverse, namely to provide the 'nearest' p-dimensional non-singular approximation to an r-dimensional singular set of data. The resulting matrix thus becomes non-singular and can be inverted. This is the basis of ridge regularization techniques [START_REF] Zhang | Regularized discriminant analysis, ridge regression and beyond[END_REF], which can be seen as the following optimization problem

D RLDA = arg max D T D=I trace ⇣ D T (W + kI)D 1 D T BD ⌘ .
(2.17) [START_REF] Roger | Discriminating from highly multivariate data by Focal Eigen Function discriminant analysis; application to NIR spectra[END_REF] proposed a continuum approach in order to solve this type of regularization problem for which they showed that the optimal solution was found in a space defined by union of the Kernels of:

B zT where z 2 [0, 1].
Another way of regularizing is to use a hierarchical model as the one developed in [START_REF] Brown | Discrimination with many variables[END_REF], where the authors proposed estimating the covariance matrix in a Bayesian framework.

PCA-LDA: Pre-reducing the dimension using PCA before LDA is a commonly used technique for dimension reduction [START_REF] Bertrand | Stepwise canonical discriminant analysis of continuous digitalized signals: Application to chromatograms of wheat proteins[END_REF][START_REF] Fearn | Principal component discriminant analysis[END_REF][START_REF] Naes | A user friendly guide to multivariate calibration and classification[END_REF]. Although PCA is not designed to help with the discrimination, it often works well in practice [START_REF] Grahn | Techniques and applications of hyperspectral image analysis[END_REF]] and should at least be tried before using more complex methods [START_REF] Fearn | Principal component analysis and classification[END_REF]. The advantage is that PCA reduced variables are already orthogonal which helps with the further LDA processing. Some theoretical insights of the use of PCA plus LDA are given in [START_REF] Yang | Why can LDA be performed in PCA transformed space?[END_REF] under the assumption of non-empty null space of W.

2.3 Using spatial information: Spectral-spatial approaches Every pixel-based classification method described in the first chapter usually performs well when the training set is representative enough and when classes to be discriminated are di↵erent enough in terms of spectral information. In other cases, in order to compensate for the lack of available spectral information, using spatial information provided by hyperspectral images has proved to be an important improvement [START_REF] Dalla Mura | Classification of Hyperspectral Images by Using Extended Morphological Attribute Profiles and Independent Component Analysis[END_REF], Gorretta et al., 2012, Tarabalka et al., 2010a].

Spectral-spatial methods for classification have had a short, but intense history and many papers have been published in the last decade, most of them being due to the remote sensing community [START_REF] Bioucas-Dias | Hyperspectral remote sensing data analysis and future challenges[END_REF][START_REF] Fauvel | Advances in Spectral-Spatial Classification of Hyperspectral Images[END_REF].

These methods were originally classified into two families by [START_REF] Gorretta | Proposition d ' une approche de segmentation d ' images hyperspectrales[END_REF] as:

(1) Pixel-based classification with spatial constraints

(2) Extension of classical image processing techniques to HS image: the main di culty with this kind of method is to define a metric that makes sense in this high dimensional space and to create an ordering.

With the rapid development of new methods, this separation is now less obvious.

It is preferred to define categories depending on the place where the spatial information is introduced in the classification chain, leading to three main categories [START_REF] Bioucas-Dias | Hyperspectral remote sensing data analysis and future challenges[END_REF]. A schematic view of these categories due to [START_REF] Valero | Arbre de partition binaire: Un nouvel outil pour la représentation hiérarchique et l'analyse des images hyperspectrales[END_REF] is represented in Figure 2.5.

Spatial information as an input parameter

In this approach, a feature vector that contains spatial information is constructed for each pixel. It can contain any contextual information such as: shape, texture, orientation, size... These features are usually extracted from the image using (from [START_REF] Valero | Arbre de partition binaire: Un nouvel outil pour la représentation hiérarchique et l'analyse des images hyperspectrales[END_REF])

classical image processing techniques that have either been adapted to work in higher dimensions or applied on a spectrally reduced image.

Region growing segmentation

The first spectral-spatial classification method, originally developed for multispectral images, is the well-known ECHO (Extraction and classification of homogeneous objects) [START_REF] Kettig | Classification of multispectral image data by extraction and classification of homogeneous objects[END_REF]Landgrebe, 1976, Landgrebe, 1980]. With this method, the image is first segmented into homogeneous regions that are found using a recursive partitioning, i.e., 1) The image is partitioned into small rectangular regions of pre-defined sizes; 2) Adjacent regions that are similar enough according to an homogeneity criterion are merged 3) Step 2 is repeated until no more merging is possible. Each segmented region is finally classified using a classical maximum likelihood classifier. [START_REF] Tilton | Image segmentation by region growing and spectral clustering with natural convergence criterion[END_REF][START_REF] Tilton | Split-remerge method for eliminating processing window artifacts in recursive hierarchical segmentation[END_REF] adapted a sequential segmentation algorithm for hyperspectral data and proposed a more advanced hierarchical segmentation method (HSEG).

Di↵erent similarity measures are used with spectral data. Successfully developed distances include -Spectral Angle Mapper (SAM):

d SAM (x, y) = cos 1 ⇣ x T y kxk•kyk ⌘ -Cross-entropy (Kullback-Leibler information measurement): d E (x k y) = P P i=1 a i log ⇣ a i b i ⌘ ,
where

a i = x i P P l=1 x l and b i = y i P P l=1 y l -Spectral Information Divergence (SID): d SID (x, y) = d E (x k y) + d E (y k x)
Mathematical morphology (MM) techniques were originally developed for binary image processing. Because of their potential , they have quickly been extended to work with grey-scaled and color images [START_REF] Soille | Morphological Image Analysis: Principles and Applications[END_REF]. A detailed review of MM processing that involves HS images can be found in [START_REF] Fauvel | Advances in Spectral-Spatial Classification of Hyperspectral Images[END_REF]]. In the following, after a short description of the principal MM operators, two of the most important usages of MM in the case of HS image are given, i.e., watershed segmentation and morphological profiles.

Every MM technique needs the definition of a structuring element, noted B, of known shape and size (e.g., a disk of radius 5 pixels). In practice MM is very e cient for image processing because it is only based on the computation of minimum and maximum operations between the image I and this 'small' structuring element (SE).

The two basic MM operators are dilatation (noted B ) whose e↵ect is to enlarge light areas compared to dark ones and erosion (noted ✏ B ) that corresponds to the dilatation of the negative of the image. For an image I, an erosion applied at pixel

x is given by:

✏ B I(x) = min x i I(x i ) 2 B x (2.18)
and the dilatation is given by:

B I(x) = max x i I(x i ) 2 B x (2.19)
where B

x is the structuring element centered at pixel x. The other two most important MM processing operators are opening and closing. The opening operator B is defined by an erosion of I by B followed by a dilatation by B. On the contrary, the closing operator B is defined by a dilatation of I by B followed by an erosion by B:

Because of the lack of ordering relation between vectors, the extension of these operators to HS image is challenging and no unique definition is available [START_REF] Aptoula | A comparative study on multivariate mathematical morphology[END_REF].

Watershed segmentation uses a topological representation of a grey-scale image in which region boundaries are defined by the crest of the gradient image norm.

The basic idea behind watershed segmentation is illustrated in Figure 2.6. The watershed algorithm defines the regions by simulating an elevation of the water level from the local minima in the image. When two neighboring regions are about to merge, a dam is added on top of the crest, the formed region are thus called catchment basins. The dams obtained at the end of the process correspond to the segmentation boundaries. Mathematically, watershed algorithm need the definition of a gradient image, which is not straightforward with HS images [START_REF] Tarabalka | Classification of Hyperspectral Data Using Spectral-Spatial Approaches[END_REF]. The simplest solution is to consider a one-band image gradient computed from all bands such as the color morphological gradient (CMG) proposed by [START_REF] Evans | A morphological gradient approach to color edge detection[END_REF]. The CMG is computed as:

CMG B (x p ) = max i,j2X k x i p x j p k 2 (2.20) where X = [x 1 p , • • • , x b p ]
is the set of b vectors contained within the structuring element B. CMG thus corresponds to the maximum of the distances between all pairs of vectors in the set X [START_REF] Fauvel | Advances in Spectral-Spatial Classification of Hyperspectral Images[END_REF]. The classical watershed [START_REF] Soille | Morphological Image Analysis: Principles and Applications[END_REF] is then directly applied on this one-band gradient image to obtain a segmentation of the image. Some more advanced watershed techniques developed for HS images are found in Tarabalka et al. [2010a].

Morphological profile, similarly to granulometry, is a technique that sorts the object present in the image by their sizes. A series of morphological openings and closings with structuring elements of increasing sizes are applied to the image [START_REF] Pesaresi | A new approach for the morphological segmentation of high-resolution satellite imagery[END_REF]. Closing thus suppresses small dark areas whereas opening suppresses small light areas.

A morphological profile thus results in a serie of images that contains objects of di↵erent sizes as illustrated in Figure 2.7, which can in turn be used as input of a classifier or combined with a spectral feature for enhanced processing [START_REF] Fauvel | Advances in Spectral-Spatial Classification of Hyperspectral Images[END_REF]. Another recent approach was developed by [START_REF] Ghamisi | Automatic spectral-spatial classification framework based on attribute profiles and supervised feature extraction[END_REF] as an improvement of morphological profiles called morphological attribute profile (MAP). They combined in a classifier the output of the MAP with spectral features that were extracted using supervised FE techniques as those detailed in the previous section. 

Regularization

Spatial filters that are commonly used in image processing to enhance visual image quality and signal to noise ratio (SNR) can be adapted to HS images. It is well known that in order to keep objects spatial boundaries, using a classical lowpass filter is not relevant because of the blurring induced by this kind of method.

Hence, [START_REF] Lennon | Nonlinear filtering of hyperspectral images with anisotropic[END_REF] and [START_REF] Duarte-Carvajalino | Scale-space in hyperspectral image analysis[END_REF] proposed the use of a non-linear filtering method that preserves object borders. These kinds of transformations that fall under the name of Edge Preserving Filtering (EPF)

have been commonly used in image and signal processing [START_REF] Weickert | A review of nonlinear di↵usion filtering. Scale-space theory in computer vision[END_REF][START_REF] Weickert | Anisotropic di↵usion in image processing[END_REF]].

One such EPF, due to [START_REF] Perona | Scale-space and edge detection using anisotropic di↵usion[END_REF], performs anisotropic di↵usion in order to filter grey-scale images. Anisotropic di↵usion filtering is a temporal process that mimics temperature di↵usion in a physical medium. The di↵usion process is written as:

@I(x, y, t) @t = div ⇣ c | rI(x, y, t) | rI(x, y, t) ⌘ (2.21)
where div and r are respectively the divergence and gradient operators. The condition at t = 0 corresponds to the initial image. When the function c is constant, the di↵usion is isotropic and corresponds to a classical low-pass Gaussian filtering process [START_REF] Lennon | Nonlinear filtering of hyperspectral images with anisotropic[END_REF]. However, if the function depends on the local gradient in the gray-scale image, the di↵usion process becomes anisotropic. With an adapted choice for c, the di↵usion process can be stronger when there are low gradient and stop close to the border of the objects where there are high gradient values. [START_REF] Perona | Scale-space and edge detection using anisotropic di↵usion[END_REF] proposed a discrete version of this di↵usion process:

I t+1 (i, j) = I t (i, j) + 1/4 4 X k=1 c t k (i, j)r k I t (i, j) ( 2 . 2 2 ) where c t k (i, j) = g(| r k I t (i, j) |).
The function has to be decreasing with respect to the gradient; they proposed:

g | r k I t (i, j) | = exp | r k I t (i, j) | ⌘ 2 (2.23)
where ⌘ is a Kernel width to be tuned. [START_REF] Perona | Scale-space and edge detection using anisotropic di↵usion[END_REF] implemented the discrete gradient using a 4-neighbors spatial connectivity [START_REF] Gonzalez | Digital image processing using MATLAB[END_REF],

the r k being defined by:

r 1 I(i, j) = I(i 1, j) I(i, j) r 2 I(i, j) = I(i + 1, j) I(i, j) r 3 I(i, j) = I(i, j + 1) I(i, j) r 4 I(i, j) = I(i, j 1) I(i, j) ( 2 . 2 4 )
By definition of the di↵usion described above, only scalar images can be filtered.

For an HS image, each channel can be processed individually or a vector-valued di↵usion has to be developed. This was first done by [START_REF] Whitaker | Vector-valued di↵usion[END_REF] in the case of isotropic di↵usion and was later extended to anisotropic di↵usion by [START_REF] Weickert | Anisotropic di↵usion in image processing[END_REF]:

@I i (x, y, t) @t = div g(✓)rI i (x, y, t) (2.25)
where ✓ corresponds to a vectorial measure of boundaries given by:

✓ = v u u t 1/P P X i=1 k rI ,i (x, y, t) k 2 (2.26)
where I ,i corresponds to a low pass filtered version of I i using a Gaussian Kernel of width .

In order to take into account the variability of spectral data due to illumination, [START_REF] Lennon | Nonlinear filtering of hyperspectral images with anisotropic[END_REF] used a modified vector-valued gradient that uses a combination of Euclidean distance and spectral angle for the similarity measure. They also performed the spatial regularization on a MNF reduced image so that the noise related spectral variations were not taken into account.

Recently, [START_REF] Wang | Anisotropic di↵usion for hyperspectral imagery enhancement[END_REF] used [START_REF] Weickert | Anisotropic di↵usion in image processing[END_REF] extensive work on tensor di↵usion for vector-valued images in order to filter HS images. In the proposed anisotropic filtering scheme, the HS image is seen as a 3D image:

@I(x, y, z, t) @t = div ⇣ D ⇤ rI (x, y, z, t) rI(x, y, z, t) ⌘ (2.27)
where D ⇤ corresponds to a 3 ⇥ 3 di↵usion tensor. With this method, authors showed that SNR is greatly increased and visual inspection is thus facilitated.

They also demonstrated an important improvement of classification results after regularization but their method su↵ers from a high complexity in parameter tuning.

Spatial information at the classification decision stage

Among spectral-spatial classification strategies that use simultaneously both sources of information, three main approaches have proved to be e↵ective, i.e., Kernel methods, Markov Random Fields and Cross-analysis.

Kernel methods

As previously explained, Kernel methods map the input data from the original space into a higher dimensional space in which data can be linearly separable. An interest of Kernel methods is that under certain mathematical conditions [START_REF] Fauvel | Spectral and spatial methods for the classification of urban remote sensing data[END_REF], Kernels of di↵erent types can be merged. Spatial Kernels adapted to the HS image have thus been computed and merged to spectral ones in [START_REF] Camps-Valls | Composite Kernels for Hyperspectral Image Classification[END_REF] and [START_REF] Fauvel | Spectral and spatial methods for the classification of urban remote sensing data[END_REF]. Indeed, since any linear combination of Kernels is still a Kernel [START_REF] Camps-Valls | Composite Kernels for Hyperspectral Image Classification[END_REF], a convenient composite Kernel that weighs the relative importance of spectral versus spatial information can be computed as: 

K(x, y) = µK spectral (x, y) + (1 µ)K spatial (x,

Markov Random Fields

When using Markov Random Fields (MRF) in images, the underlying assumption is usually that two neighboring pixels are likely to have the same class label. In particular a Markov Field is a Random Field that only depends on a neighborhood [START_REF] Bishop | Pattern Recognition and Machine Learning[END_REF]. In practice, the neighborhood is constrained to the 4-or 8-closest neighbors as illustrated in Figure 2.8. The assumed continuity of neighboring pixels is then exploited in a statistical sense and used for spatial modeling [Tarabalka et al., 2010b]. For instance, MRF can be used with a spectral classifier to encourage neighboring pixels to have the same label when using a probabilistic classifier [START_REF] Bioucas-Dias | Hyperspectral remote sensing data analysis and future challenges[END_REF][START_REF] Li | Discriminative Image Segmentation : Applications to Hyperspectral Data[END_REF]. Note that another important use of MRF is to model textured classes as explained in [START_REF] Rellier | Analyse de textures dans l'espace hyperspectral par des méthodes probabilistes[END_REF]. MRF despite its huge computational complexity is able to provide very good results in practice as demonstrated in [START_REF] Bioucas-Dias | Hyperspectral remote sensing data analysis and future challenges[END_REF] where in combination with a subspace MLR [START_REF] Li | Spectral-spatial hyperspectral image segmentation using subspace multinomial logistic regression and Markov random fields[END_REF] provided the best experimental results on a remote sensing data set.

Cross analysis

Recently, [START_REF] Gorretta | An iterative hyperspectral image segmentation method using a cross analysis of spectral and spatial information[END_REF] proposed a new framework for HS image segmentation using spectral and spatial information. In this framework, called butterfly, the analysis is done recursively by going 'back and forth' between the spectral and spatial representation of the data (see Figure 2.9). One of the interests of this approach comes from its flexibility since any dimension reduction (resp. segmentation) method can be plugged in the spectral (resp. spatial) analysis. Depending on the chosen methods, this framework even enables unsupervised segmentation of the HS image. Another advantage is that it leads to a more balanced use of these complementary sources of information as explained in [START_REF] Gorretta | Proposition d ' une approche de segmentation d ' images hyperspectrales[END_REF]. 

Spatial information as a post-processing stage

Using spatial information at a post-processing stage, in particular with a classification map, has received a lot of attention because of its simple implementation.

Indeed, classification maps are single channel images and can thus be processed with any image processing technique. For classification, it usually results in a decrease of the salt and pepper aspect of the classification map. A simple approach consists of using classical morphological operators or median filtering to reduce this classification noise but more advanced approaches have been developed: Tarabalka [2007] then proposed a more advanced segmentation technique using a Hierarchical Segmentation approach (HSEG). [START_REF] Li | Discriminative Image Segmentation : Applications to Hyperspectral Data[END_REF] proposed a segmentation of the probabilistic classification map they obtained from their multilevel logistic classification method.

Regularization

Edge Preserving Filtering (EPF) can also be used in order to regularize classification results at a post-processing stage. EPF has been implemented using for example Bilateral Filtering (BF) [START_REF] Tomasi | Bilateral Filtering for Gray and Color Images[END_REF] or Anisotropic Regularization (AR) [START_REF] Perona | Scale-space and edge detection using anisotropic di↵usion[END_REF]. As explained before, EPF aims at regularizing gray-level or color images by smoothing spatially homogeneous regions while keeping their borders sharp. With AR, the regularization procedure is based on an image gradient computation whereas BF usually requires a guidance image.

In [START_REF] Kang | Spectral-spatial hyperspectral image classification with edge-preserving filtering[END_REF], authors have developed a regularization approach that uses BF in order to regularize a SVM classification map as illustrated in 

Reflectance correction

In the previous sections, HS images were assumed to be reflectance HS images, i.e., compensated/corrected from the incoming light. Depending on the circumstances with which the classification model is made, di↵erent scenarios can be seen [START_REF] Ho↵beck | E↵ect of radiance-to-reflectance transformation and atmosphere removal on maximum likelihood classification accuracy of high-dimensional remote sensing data[END_REF]]:

(1) One HS image and one classification model: the correction is useful only for interpretation of spectral absorption bands but does not influence classification results.

(2) Di↵erent HS images and one model per image: similar to ( 1) and no interpretation of variation between images can be inferred.

(3) Di↵erent HS images, one model computed from spectra coming from one image: atmospheric correction is compulsory.

Reflectance correction is thus a prerequisite to most 'real world' HS data analysis and has therefore received a lot of attention over the years. The available methods are usually classified into physics-based (radiative transfer models), scene-based or image-based methods [START_REF] Shaw | Spectral Imaging for Remote Sensing[END_REF]. Recent comprehensive and comparative reviews of the available methods can be found in [Gao et al., 2009, Gri n andBurke, 2003].

Background

When the solar light goes through the atmosphere its spectrum is changed because of absorption and scattering phenomena that are wavelength dependent. The light source seen by the target depends on atmospheric conditions, which creates problems for further spectral processing. The gases that are mainly responsible for spectral variations in the atmosphere and their spectral responses are represented in Figure 2.12. [START_REF] Shaw | Spectral Imaging for Remote Sensing[END_REF] decomposes these atmospheric e↵ects into four categories:

(1) Because of its composition, the atmosphere modulates the spectrum of the solar illumination before it reaches the ground (see Figure 2.13).

(2) A part of the solar radiation is scattered by the atmosphere directly in the field of view of the camera without even reaching the target (path-radiance).

(3) Shadowed objects receive the di↵use sky illumination that is di↵erent from the (4) The light that leaves the target can still be absorbed by the atmosphere as it propagates toward the sensor thus changing its spectrum. 

Models

The general model/equation [Gao andGoetz, 1990, Hamm et al., 2012] from which all correction methods are based is given by:

L obs ( ) = ⇣ E # ( )T # ( ) cos ✓ + L # ( ) ⌘ T " ( )⇡ 1 ⇢( ) + L " ( ), (2.29)
where,

• ⇢( ) = surface reflectance (what needs to be estimated)

• L obs ( ) =observed radiance at-sensor

• L " ( ) = Upwelling radiance along the target-sensor path (path-radiance)

that is due to the atmosphere di↵use reflection toward the sensor

• L # ( ) = Downwelling irradiance (di↵use illumination)
• E # ( ) = Exo-atmospheric radiance onto the surface perpendicular to the incident beam

• ✓ = solar zenith angle relative to the surface

• T # ( ) = atmospheric transmission sun ! target • T " ( ) = atmospheric transmission target ! sensor
This formulation can be written as a function of the available solar radiance on the target [START_REF] Richter | Aspects of operational atmospheric correction of hyperspectral imagery[END_REF]:

L obs ( ) = E( )T " ( )⇡ 1 ⇢( ) + L " ( ), (2.30)
where E( ) corresponds to the available solar radiance on the scene:

E( ) = E # ( )T # ( ) cos ✓ + L # ( ).
(2.31)

In both expressions, one can see that there is a linear relation between the observed radiance and the surface reflectance:

L obs ( ) = a( )⇢( ) + b( ) ( 2 . 3 2 )
The goal of atmospheric correction methods is thus to give an accurate estimate of a( ) and b( ).

Physics-based transfer (model-based) correction

Radiative transfer based models simulate the solar irradiance spectrum, compute the scene radiance e↵ects of solar position (using the acquisition date) and measure or estimate the amount of atmospheric absorption and scattering [START_REF] Kruse | Introduction to hyperspectral data analysis[END_REF].

The two most widely used corrections are ATmospheric REMOval (ATREM) [START_REF] Gao | Derivation of scaled surface reflectances from AVIRIS data[END_REF] and Fast Line-of-Sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) [START_REF] Adler-Golden | FLAASH, A MODTRAN4 Atmo-spheric Correction Package for Hyperspectral Data Retrievals and Simulations[END_REF][START_REF] Cooley | FLAASH, a MODTRAN4-based atmospheric correction algorithm, its application and validation[END_REF]. These correction methods have been compared in [START_REF] Gao | Atmospheric correction algorithms for hyperspectral remote sensing data of land and ocean[END_REF][START_REF] Gri N | Compensation of hyperspectral data for atmospheric e↵ects[END_REF][START_REF] Kruse | Introduction to hyperspectral data analysis[END_REF].

While a proper description of these methods is out of the scope of the review, the main steps are illustrated as a schematic flow chart in Figure 2.14a and Fig 2 .14b.

Both methods estimate mixed gases such as O 2 , O 3 and CO 2 separately from water vapor. The former are indeed quite easy to estimate accurately while the latter is highly variable and more complex to estimate. The main di↵erence between these methods is that ATREM does not model the influence of adjacent pixels scattering into the computation.

Scene-based correction

Scene-based correction methods, use extra sources of information in order to estimate empirically the additive and multiplicative terms of equation B.2.

The Empirical Line Method (ELM) is the simplest correction method to be used [START_REF] Smith | The use of the empirical line method to calibrate remotely sensed data to reflectance[END_REF]. ELM consists in the estimation of a( ) and b( ) using classical linear regression between reflectance spectra measured in-field and the corresponding radiance spectra extracted from the HS image. The field reflectance spectra must be acquired on at least two surfaces that have a significantly di↵erent brightness. These surfaces also have to be homogeneous and large enough to cover at least a whole pixel in the HS data. These surfaces can be naturally present in the scene [START_REF] Vain | Use of Naturally Available Reference Targets to Calibrate Airborne Laser Scanning Intensity Data[END_REF] (Low brightness surface are asphalt, tar or water and high brightness sand or concrete) or manually introduced into the field of view [START_REF] Moran | Deployment and calibration of reference reflectance tarps for use with airborne imaging sensors[END_REF].

This correction has to be done for each wavelength and often requires a spectral resampling of the in-field spectrometer to match the HS sensor bands. An illustration of the ELM on three wavelengths of the HYDICE sensor is given in Figure 2.15. sensor simultaneously records the solar light measurement [START_REF] Lennon | Nonlinear filtering of hyperspectral images with anisotropic[END_REF].

The reflectance correction then simply corresponds to the ratio of the observed irradiance to the recorded sun light.

Image-based correction

Image-based correction methods only use information that can be retrieved from the image to perform the atmospheric correction. These corrections aim at estimating the available solar radiance on the scene E( ) (equation 2.30). With these corrections, the additive term b( ) is discarded and the atmospheric transmission variations are neglected because of their small influence at low altitude. (from [START_REF] Shaw | Spectral Imaging for Remote Sensing[END_REF])

Spectralon/ceramic correction

In the laboratory or in proximal detection a surface of known reflectivity is introduced into each image to perform the correction. The most commonly used surface is Spectralon (Lasphere, USA) which is a PTFE material that has a very flat and lambertian di↵use reflection [START_REF] Geladi | Hyperspectral imaging: calibration problems and solutions[END_REF]. For more constrained environments, a calibrated surface of relatively flat reflectance can also be used to serve the same purpose. For instance, [START_REF] Vigneau | Potentiel de l ' imagerie hyperspectrale de proximité comme outil de phénotypage : application à la concentration en azote du blé[END_REF], [START_REF] Vigneau | Potential of field hyperspectral imaging as a non destructive method to assess leaf nitrogen content in Wheat[END_REF] calibrated a ceramic plate which is used for in-field HS image acquisition (see Figure 2.16).

The correction thus become:

⇢( ) = L obs ( ) L s ( ) ⇢ s ( ) ( 2 . 3 3 )
where ⇢ s ( ) is known and L s ( ) is manually extracted from the image.

Flat field correction is the most widely used reflectance correction method in remote sensing. It requires that the image includes a uniform area that has a relatively flat spectral response. The spectral response also has to be relatively high so that the correction does not increase spectral noise. The mean spectrum of this area is then computed in order to increase the SNR. The entire scene is finally divided by this mean spectrum which leads to a 'relative' reflectance image.

In practice, flat field reference is obtained with desert scenes, dry lake beds and human-made material such as concrete. Note that in the case of a specific absorption peak of the supposed flat surface, unexpected variation can happen at these wavelengths in the corrected image due to low signals.

Average Relative Reflectance correction divides each spectrum by the whole image mean spectrum. This method assumes that the scene possesses a lot of di↵erent materials in nearly constant proportions, so that the mean spectrum is quite stable from one image to another. In practice, this method is very di cult to apply because of a lack of such scenes and should be avoided in presence of vegetation spectra.

Conclusion

In this chapter, we have detailed some of the main approaches developed to tackle the issues with HS data classification.

For spectral dimension reduction, when the objective is classification, unsupervised methods lead to sub-optimal scores by not taking advantage of the class information during the reduction process. Among the supervised approaches, PLS-like methods tend to model the class structure of the data by maximizing the capture of covariance between the variables and the classes in order to build the reduced scores.

These approaches are thus naturally prone to overfitting and their parameters have to be tuned with a cross-validation procedure. When not carefully made, these cross-validations can lead to over optimistic results and find a class structure when there is none.

On the other hand, Fisher-based methods tend to solve the within-class matrix inversion problem by using mathematical tricks such as pseudo inverse or inversion of the total scatter matrix instead of the within-class one. Another simple approach consists in using a PCA as a first step in order to obtain fewer variables on which a LDA can be performed. This is however sub-optimal, since the first step selects components that are not related to the class di↵erences, and usually tend to select too many components for a given problem. Finally, Nullspace LDA is mathematically very promising by perfectly responding to the LDA paradigm.

However, it requires that the nullspace of the within-class scatter matrix exists, which is only the case when the number of variables is greater than the number of observations. This means that in case of new observations acquired to enhance a model, NLDA cannot be used anymore and thus has few practical applications in hyperspectral classification. Also, in this nullspace, because the projections is orthogonal to all the within-class directions, the left-over information is very small and leads to noisy discriminant vectors.

In this thesis, we will propose an approach in which, contrary to NLDA, the removal of the within class variability is controlled and which also allows to preserve explicitly the most important discriminant axes.

Concerning spectral-spatial approaches, methods that use edge preserving filtering appear to be well adapted to HS image classification. In particular, being able to reduce the variability within classes by such filtering seems very interesting to complement the spectral within-class variability reduction. However, among the proposed approaches in the literature, this spatial regularization is only performed on either the original HS images or on score images obtained in an unsupervised way.

In both cases, the natural variability within each class can lead to very textured images. Thus, when using edge preserving filtering, edges are also preserved within the class that needs to be homogenized.

Therefore, we will propose in this thesis to use the EPF in a slightly di↵erent way: it is applied on a score image, which has been obtained from a supervised dimension reduction method. In fact, with the supervised method, within-class variability tends to be reduced and between class distance increased, which help the spatial regularization to find the edges only at class borders.

Finally, we have seen that in order to be independent from the light source and atmospheric conditions, radiance values in the HS images had to be transformed into reflectance values. This transformation requires the lighting to be known for each acquired image. As we have detailed, the light measurement on the scene can be performed by di↵erent means depending on the situation. However, this procedure often requires ground truth measurement, which is not always possible.

In this thesis, we will propose an automatic procedure to compensate for the lighting conditions that is adapted to the classification paradigm. Providing that objects to discriminate are Lambertian, we show that, after a logarithm transformation, the di↵erence in lighting corresponds to the same additive e↵ect for all the pixels in the image. We then propose a method that estimates this translation even when there are missing classes.

Chapter 3

Proposed approaches spectral data and provides score images. We then propose an approach to combine spectral and spatial information through supervised spectral score images and spatial regularization before classification. Finally, using the supervised scores,

we propose an approach that avoids reflectance correction through class densities registration. Although these approaches can be used separately to tackle specific HS classification issues, we also propose in this chapter a general classification framework that combines all of them.

Introduction

When using hyperspectral (HS) data for classification purposes, di↵erences in spectral responses are used to assign a label to each pixel of the HS image. Then if the classification is supervised, training samples with known labels are required in order to create the classification model. However, specific issues are raised when a reliable classification model has to be created with such complex data. In this chapter, we present three approaches in order to tackle some of these main issues, i.e, spectral dimension reduction, spectral/spatial combination and light source variability correction.

The high dimensionality and collinearity of spectral data requires a dimension reduction to be performed beforehand. In this context, methods that mimic Fisher

LDA have been proposed in the literature. The ones that tend to invert the withinclass scatter matrix cannot be performed with spectral data because of collinearity issues with such data. Other approaches, mostly used for face-recognition applications, require that the nullspace is non-empty which limits it practicability as the number of available sample increases. We tackle this problem as well by proposing an original spectral dimension reduction method, called Dimension Reduction by Orthogonal Projection for Discrimination (DROP-D), that uses orthogonal projections. On the contrary to previous approaches, the method does not try to invert the within-class scatter matrix, but projects the data orthogonal to its main directions. DROP-D is supervised because it uses the class information in order to extract the reduced variables. Therefore, the obtained reduced variables (scores)

tend to minimize the within-class scatter and to preserve the between-class scatter. One main advantage of DROP-D is that, by not attempting to model the class structure as is done with PLS-like approaches, overfitting can be prevented without the need for cross-validation.

The second issue is to define e↵ective ways to use the spatial information in order to increase the classification performances obtained using only spectral information.

The core idea of the approach proposed in this thesis is to use a spatial regularization on score image channels obtained from a supervised dimension reduction method such as DROP-D or PLS. Because these channels are built to enhance di↵erences between classes and to reduce the background variability, edges in the spatial domain correspond to actual class borders. Therefore, applying an edgepreserving spatial regularization on the channels of this score image reduces the remaining within-class variability due to the background and thus leads to an easier class decision.

The third issue is due to the dependency of radiance HS images with respect to lighting conditions. Thus, in order to be independent from the light source, HS radiance images first have to be transformed into reflectance images. In fact, only a classification model calibrated with a reflectance image can be used to classify other images. However, the classical reflectance correction technique implies that a surface of known reflectivity is introduced in the scene, and thus requires human intervention.

We propose an approach that avoids prior reflectance correction of HS radiance images before classification. Under the assumption that classes have Lambertian reflectance, we show that, after log-transformation, the di↵erence in lighting corresponds to a translation in the spectral space. Then, using a linear dimension reduction, this translation in the spectral space corresponds to a translation in the score space. Due to the use of a supervised dimension reduction such as DROP-D or PLS, classes form clusters in the low dimensional score space. Using these clusters, we propose a method to estimate the translation that is robust against unbalanced number of samples and missing classes between images.

These three approaches have been designed independently, but can be combined in a complete classification framework. This framework is illustrated in Figure 3.1.

In the following, each approach theory is detailed. 

Dimension reduction

Prerequisites

In the following we call the individual space, the N -dimensional space (one axis per observation) in which we can represent the variables (wavelengths) as vectors.

Conversely, the variable space is the P -dimensional space (one axis per variable) in which we can represent the observations as vectors.

Recall on orthogonal projection

For any column vector v, and for any subspace defined by its basis P, the orthogonal projection of v on P is given by

P ? P (v) = P P T P 1 P T v T (3.1)

Subspace decomposition: problem statement

Supervised classification consists, using a data matrix X and a class matrix Y based on training samples, in finding a model that is capable of predicting the class of any observation x using its P descriptors. With spectral data, classification is often done in two steps:

(1) projection of the observation in a lower-dimensional subspace;

(2) a↵ectation of the individual to a class.

The e cacy of the second step is highly influenced by the first one. Hence, we are looking for a subspace in which class centers are well separated and classes spread around their center are small. From a mathematical point of vue, it corresponds to finding the loadings D P ⇥Q such that the projection of X on D: (1) maximizes the between-class scatter given by

B XD, Y = XD T Y Y T Y 1 Y T XD (3.2)
and ( 2) minimizes the within-class scatter given by

W XD, Y = XD T XD XD T Y Y T Y 1 Y T XD . (3.3)
In addition, we are looking for a subspace of reduced dimensions, i.e., Q minimal.

These three constraints on the way to build the set of axes min(Q), max(B) and min(W) are illustrated in Figure 3.2. The general approach consists in minimizing the ratio of within-to total-class scatter given by the Wilk's Lambda

⇤ W ilks = | W | | T | = | W | | B + W | . (3.4)
In cases where the data are well conditioned, a solution is given by the Fisher Linear Discriminant Analysis paradigm, which can be expressed as:

D = arg max D ⇣ trace D T W 1 BD ⌘ = E Q W 1 B (3.5)
where for any diagonalizable square matrix A, the notation E Q A corresponds to the Q eigenvectors associated to its Q largest eigenvalues. However, for illconditioned data, the inversion of W is problematic. Thus, LDA is known to be unable to deal with spectral data and several solutions have been proposed in the literature to overcome this problem (see Chapter 2).

Nevertheless, the construction of a classification model corresponds to find a subspace of the variable space that 'copies' the class structure observed in the individual space of the sample set. The Fisher LDA does this by contracting the subspace carried by the within-class scatter and by focusing on the one carried by between-class scatter.

The method proposed in this thesis o↵ers another way to realize this copy. This idea is to use the between-and within-class scatter to decompose the variable space into di↵erent subspaces so that one of them carries a large part of between-class scatter and a small part of within-class scatter.

3.2.3

Variability decomposition in R N and R P Suppose we have a matrix X containing N spectra of P variables from C classes coded using with dummy variables and stored in a matrix Y. We can then define a mean per class using the matrix operation: We can also define X W as:

X B = Y Y T Y 1 Y T X. (3.6) (a) R p (b) R q
X W = X X B = I N Y(Y T Y) 1 Y T X.
(3.7)

The matrix X W thus contains the observations centered on their class centroid.

What happens in the individual space (R N )?

In this space, we can represent the Y matrix, i.e., each column of Y corresponds to one vertex of the unit N -dimensional hypercube.

In this condition, the operation

X 7 ! Y Y T Y 1 Y T X = X B projects the columns
of X (individuals) on the subspace defined by Y. The removed part corresponds to X W which is also an orthogonal projection, but on the orthogonal complement of Y.

X B = P Y (X) = Y(Y T Y) 1 Y T X (3.8) X W = P ? Y X = I N Y(Y T Y) 1 Y T X (3.9)
The subspaces spanned by these matrices, E B = R X B and E W = R X W , are orthogonal and complementary subspaces of E T in R N (equation 3.10).

E T = E B E W ✓ R N (3.10)
In this space (R N ), thanks to the orthogonality, we can thus completely eliminate X W without a↵ecting X B :

Proof. P ? X W X = P ? I N X B X = P X B X
However, we are in the individual space, which means that this operation can be applied to vectors expressed as combinations of individuals and only modify the spectral values of the N observations of the training set, i.e., it is not applicable to any incoming spectrum.

What happens in the variable space (R P )?

In this space, the operation X 7 ! X B defined by a matrix N ⇥N cannot be applied to a unique vector (spectrum). It is thus not a linear application.

However, in this space, we can use the subspaces spanned by X B and X W . We can show that the between-and within-class scatter matrices define an orthogonal basis for these subspaces and can therefore be used to copy the class structure from R N to R P . We thus have the following equations:

T X B = B X, Y (3.11) T X W = W X, Y (3.12) 
, i.e., the total scatter of X B and X W correspond to B and W respectively.

Proof.

T X B , ⇣ Y Y T Y 1 Y T X ⌘ T ⇣ Y Y T Y 1 Y T X ⌘ = ⇣ X T Y Y T Y 1 Y T ⌘⇣ Y Y T Y 1 Y T X ⌘ = X T Y Y T Y 1 Y T X (3.13) , B X, Y T X W , ⇣ I N Y(Y T Y) 1 Y T X ⌘ T ⇣ I N Y(Y T Y) 1 Y T X ⌘ = ⇣ X T X T Y(Y T Y) 1 Y T Y ⌘⇣ X Y(Y T Y) 1 Y T X ⌘ = X T X 2X T Y(Y T Y) 1 Y T X + X T Y(Y T Y) 1 Y T X = X T X X T Y(Y T Y) 1 Y T X (3.14) , W X, Y Noting that (Y T Y) 1 T = (Y T Y) 1 because (Y T Y) 1 is symmetric
Hence, the subspace spanned by X B is containing the between-class scatter while the subspace spanned by X W is containing the within-class scatter.

In the variable space R P , let us define these two subspaces F B = R X T B and F W = R X T W . Using the range property R A T = R A T A , these subspaces are expressed as:

F T = R X T = R X T X = R(T) ( 3 . 1 5 ) F B = R X T B = R X T B X B = R(B) ( 3 . 1 6 ) F W = R X T W = R X T W X W = R(W) ( 3 . 1 7 ) (3.18)
where we have by construction T = B + W. Figure 3.3 illustrates this decomposition in the feature space:

• The total subspace F T , whose dimension is bounded by dim F T  min(N, P ) represents the overall data variability in the variable space without considering classes

• The between-class subspace F

B is defined by the class centroids spread in the variable space. Its dimension is thus bounded by dim F B  min(C 1, P )

• The within-class subspace F W corresponds to the overall spread of the data removed of class centroids. Its dimension is bounded by dim F W  min(N, P ) Then, because the subspace dimension and matrix rank are linked by the funda-

mental relation dim R A = rank A = rank A T = dim R A T (3.19)
and since, dim

F T = dim E T , dim F B = dim E B and dim F W = dim E W , therefore F
B and F W define two subspaces of F T in the variable space such that

F T = F B + F W ✓ R p (3.20)
These subspaces F B and F W are however not orthogonal in R P and their intersection is not necessarily empty. The separation of the between-and within-class scatter is therefore less obvious than in the individual space. Hence, depending on the class configuration, removing within-class variability does not necessarily improves the separability as illustrated with Figure 3.4.

In the following (section 3.2.4), we propose a method, called DROP-D, that enables a controlled removal of the within-class scatter, i.e., by preserving its axes collinear with F B . The third step is to extract the Q principal directions of X clean which are given by: To summarize, DROP-D defines three subspaces F B , F W ⇤ and F D of R P , such that: 

D = E Q ⇣ T X clean ⌘ . ( 3 
• F B is

DROP-D algorithm

If the data is not already centered: xm mean(X) and X center(X, xm).

DROP-D algorithm is as follows:

Algorithm 

1: DROP-D B X T Y(Y T Y) 1 Y T X ; // Compute the between-class scatter B b E b (B) ; // Extract the b principal eigenvectors of B (via SVD(B)) X ? b X I P B b (B T b B b ) 1 B T b ; // Remove from X these b directions W ⇤ X ?T b X ? b X ?T b Y(Y T Y) 1 Y T X ? b ; //
X clean X I P W ⇤ w (W ⇤T w W ⇤ w ) 1 W ⇤T w ; // Remove from THE ORIGINAL X these w directions T ⇤ X T clean X clean ; // Compute the principal directions of X clean D E Q (T) ; // Extract the Q principal eigenvectors of T via SVD(T)
Optimize b, w and Q;

Any new vector x is projected on this new basis by computing s = x xm D T .

Spectral-spatial

In the previous chapter, we have seen several spectral-spatial approaches aiming at improving classification performances. Among them, Edge Preserving Filtering (EPF) proved its e cacy with di↵erent studies. In this thesis, we also propose a spectral-spatial approach that uses EPF spatial regularization in order to improve the pixel-wise classification results. The assumption made when using EPF spatial regularization to improve classification results is that edges are expected to be found only at the class borders and not within classes. However, with real images, edges are also found elsewhere than at class borders because of background variability caused by texture, non homogeneity of color and illumination within similar classes, etc. Therefore, applying EPF directly to a HS image preserves background edges and thus fails to reduce its variability. Applying it to a score image obtained by a non-supervised feature extraction method similarly fails because the extracted features also include the background as illustrated in To overcome this issue, we thus propose an approach in which the spatial regularization is applied on a score image obtained by a supervised dimension reduction method (such as DROP-D). The core idea is that, since the score image already describes the classes to be discriminated by minimizing the background variability, edges mostly correspond to class borders and the spatial regularization process is more e↵ective.

In the following, we assume that a linear supervised dimension reduction model, i.e., a matrix D of size P ⇥ Q, is available.

Construction of the score image

Any hyperspectral image H of size I ⇥ J ⇥ P , i.e., I rows, J columns and P wavelengths, can always be unfolded into a data matrix H of size M ⇥ P where

M = I • J.
The notation H i then refers to the i th channel of the HS image.

The reduced score image S of size I ⇥ J ⇥ Q is similarly obtained by re-folding the scores matrix S of size M ⇥ Q given by: S = HD.

(3.24)

Each channel S i of the score image thus corresponds to the i th score.

As DROP-D scores are computed from a PCA, both loadings and scores are orthogonal to one another. This way, the di↵erent channels of the score image are considered to be uncorrelated.

Anisotropic regularization

We implement our approach using the anisotropic di↵usion method from Perona

and [START_REF] Perona | Scale-space and edge detection using anisotropic di↵usion[END_REF] to enhance the within region homogeneity while keeping intact the borders between adjacent regions. This method was developed for de-noising gray-scale images by smoothing the image without removing the main edges.

The [START_REF] Perona | Scale-space and edge detection using anisotropic di↵usion[END_REF] method is an iterative process in which, at each iteration, the amount of smoothing is weighted by the intensity of the local gradient value. Considering a single channel image I (supposed continuous), the evolution equation @I x, y, t @t = div rI(x, y, t) =M I(x, y, t) ( 3 . 2 5 ) corresponds to the heat equation, where div and r are respectively the divergence operator and the gradient operator with respect to the space variables, and where t is the time used to define the evolution of the di↵usion process. The solution of this equation corresponds to a temporal Gaussian filtering, whose variance is 2 = 2t, given by I(x, y, t) = I(x, y, t 0 ) ⇤ G(x, y, t) where G(x, y, t) = 1 4⇡t exp x 2 + y 2 4t (3.26)

However, this Gaussian filtering can reduce noise in images, but it operates in an identical way in every direction and thus does not preserve the image discontinuities due to object transitions (see Figure 3.9b to 3.9d).

In order to provide sharp edges while smoothing within regions, [START_REF] Perona | Scale-space and edge detection using anisotropic di↵usion[END_REF] proposed to modulate the gradient as following:

@I x, y, t @t = div ⇥ g k rI x, y, t k rI x, y, t ⇤ (3.27)
where the function g has to be decreasing with respect to the local image gradient norm ↵ = k rI k. In [START_REF] Perona | Scale-space and edge detection using anisotropic di↵usion[END_REF], the authors have used a

Gaussian function only determined by one parameter, which corresponds to a smoothing kernel width ⌘. This function is given by:

g(↵) = exp ↵/⌘ 2 . (3.28)
This di↵usion process is then anisotropic which allows the conservation of main edges as represented in Figure 3.9e to 3.9g.

Score image regularization

Depending on the obtained scores, two regularization schemes can be considered:

With non-orthogonal scores, a multidimensional regularization scheme is preferred to avoid outliers as described in chapter 2.

With orthogonal scores, we can find homogeneous regions on one score while there is a class transition on another one.

In this latter case, each channel of the score image can be processed independently, leading to a very simple and parallel method. The di↵usion process is thus applied

individually to every channel S i of the score image i 2 [[1, • • • , Q]].
The process is initialized as S i,0 = S i . Then, at the iteration k + 1, the di↵usion process numerically applied to the channel S i,k is written as:

S i,k+1 = S i,k + ✏ • div ⇥ g k rS i,k k • rS i,k ⇤ (3.29)
where ✏ tunes the amount of change at each iteration of the di↵usion process.

Reflectance correction

In this section we propose an automatic method for reflectance correction which overcomes the use of a reference measurement in the case of classification.

Hypotheses

As a first hypothesis, we consider that a radiometric correction has been applied to all the images, i.e., the HS images provide radiance spectra. Also, the materials to be discriminated are supposed to be Lambertian. Then, the calibration set has to be representative of potential material in other images, i.e. every possible class has to be represented and class variability has to be large enough to include every potential future outcome. A ground truth is supposed to be available for the calibration image as the model is supervised.

Lambertian hypothesis

A hyperspectral image is a measure of the radiation emitted or reflected from a scene in a large number of contiguous spectral bands. The quantity measured by an hyperspectral sensor is, after radiometric correction, a spectral radiance L( ), i.e., an irradiance measured in a specific direction (in W.sr 1 .m 2 .nm 1 ). Note that in the following we only consider the case of Lambertian surfaces which means that the reflectance is independent from both the angle between the camera and the source and from the light incidence angle. With Lambertian materials, for a pixel i, j, the measured radiance is:

L i,j ( ) = r i,j ( )E( ) ( 3 . 3 0 )
where r i,j ( ) is the reflectance in radiance (also called remote sensing reflectance) and E( ) is the descending irradiance (in W.m 2 .nm 1 ) supposed identical for each pixel.

The usual reflectance correction method to retrieve r i,j ( ) from L i,j ( ) consists in estimating E( ). Then,

r i,j ( ) ' ri,j ( ) = L i,j ( ) E( ) Ê( ) (3.31)
where Ê( ) is either directly measured or retrieved using a reference surface in

each image by Ê( ) = L ref ( ) r ref ( ) .
The reference surface is usually a Spectralon R (r ref ( ) ' 1) or a calibrated surface of known reflectivity. L ref ( ) can then be (manually) extracted in each image and the correction computed on every pixel.

Discrimination model hypothesis

Let us consider a matrix X of dimensions (N ⇥ P ) that corresponds to N spectra of P wavelengths extracted from an hyperspectral image. Let us also define a matrix Y of dimension (N ⇥ C) that codes the class belonging for each spectra of

X.

Let us consider a classification method that first computes a set of reduced variables (such as DROP-D), and then use a discrimination rule on the obtained scores.

Recalling that projections from high-to low-dimensional spaces tend to increase Normality of the distribution 1 , in the following, we use the Bayes classifier on the reduced scores. We thus have the following discrimination model:

( (3) The class decision for a new observation (spectrum x) s = xD T is made using Bayes classifier defined as:

ĉ = arg max c 1 (2⇡) Q 2 | b ⌃ c | 1 2 exp 1 2 s μc T b ⌃ 1 c s μc (3.33) 1 (see Section 1.3.1)
be decomposed as:

S (L) = X (L) D = X (R) + X (E) D = X (R) D + X (E) D = S (R) + S (E) = S (R) + 1 N [ µ S (E) T (3.37)
which means that using a log-radiance image, the scores obtained through a linear model are only translated versions of the ones that are obtained with a logreflectance image.

E↵ect on the classification decision

The 

d µ (L) c , 1 N c X S i 2Yc S (L) i = 1 N c X S i 2Yc S (R) i + 1 N c X S i 2Yc S (E) i , d µ (R) c + d µ (E) (3.38) and, d ⌃ (L) c , 1 N c 1 X S i 2Yc S (L) i d µ (L) c S (L) i d µ (L) c T = 1 N c 1 X S i 2Yc S (R) i + S (E) i d µ (R) c d µ (E) S (R) i + S (E) i d µ (R) c d µ (E) T = 1 N c 1 X S i 2Yc S (R) i d µ (R) c S (R) i d µ (R) c T , d ⌃ (R) c (3.39)
Which proves that the only parameters that change in the Bayes classifier are the class mean vectors. Therefore, from a classification point of view, the reflectance correction can be avoided if we know the translation d µ (E) and by changing the decision rule considering μc + d µ (E) instead of μc .

By simple extension, represented in Figure 3.10, this approach can be applied to transfer the decision rule between two images that are corrected in reflectance or not. 

Translation estimation

In this section we present a method to retrieve the translation parameter that is robust against missing classes and number of samples in each class. A graphical framework of the method is given in Figure 3.11.

In the general case, the class information is known in the one image used for training the model and unknown for the other images. While the problem of finding a translation is obvious when the class information is known in both sets, it becomes more complex when it is not.

This problem is known as registration and several methods have been developed in the field of image processing [START_REF] Zitová | Image registration methods: a survey[END_REF]. When the transformation is simple such as a rigid transformation, a convenient tool is the normalized crosscorrelation. Cross-correlation uses the grey level information between two images as a measure of matching. One of the images is transformed (translated, rotated, ...) until the best matching is found.

In our score registration case, things are quite di↵erent because:

1) we are in a Q-dimensional space, 2) we do not have pixels and thus no grey-level to assess the matching.

Hence, before registration, a Q-dimensional image is created using the Q-dimensional scores. The image creation step is illustrated in Figure 3.11 using labeled training data, unlabeled data and unlabeled data with a missing class. It is based on the estimation of Gaussian distributions of classes in the Q space for every HS image.

In the following, the subscript 1 is used for the training data with a known class label and the subscript 2 for the unknown data.

In the first image, from which the labeled samples are known, the estimation of class parameters (which characterize their Gaussian distributions)

✓1 = { μ11 , μ12 • • • , μ1C , b ⌃ 11 , b ⌃ 12 , • • • , b ⌃ 1C } (3.40)
is straightforward. In the other images, the probability density function (pdf) of each class has to be estimated in the score space without the knowledge of the class. In the case of Normally distributed classes, as assumed here, a powerful tool is the Expectation Maximization (EM) algorithm [START_REF] Moon | The expectation-maximization algorithm[END_REF].

Using the EM algorithm, the parameters of the estimated Gaussian mixture are in our case2 noted

✓2 = { μ21 0 , μ22 0 • • • , μ2C 0 , b ⌃ 21 0 , b ⌃ 22 0 , • • • , b ⌃ 2C 0 } (3.41)
The problem is that there is no direct correspondence between the class indices c 2

{1, • • • , C} in the training set ✓1 and the indices c 0 2 {1, • • • , C 0 } issued from EM in ✓2 .
To overcome this problem, we chose to represent the pdf of the scores as Qdimensional images and then to match them using a cross-correlation registration.

For this purpose, we partition the Q dimensional space in a set of R pixels (of dimension Q). For a given set of parameters

✓ = { μ1 , μ2 • • • , μC , b ⌃ 1 , b ⌃ 2 , • • • , b ⌃ C },
the image intensity at a position w, where w is a vector of Q components, is given by the mixture of Gaussians:

g(w, ✓) = C X c=1 f (w, μc , b ⌃ c ). (3.42)
where f (w, µ, ⌃) is the value at w of the multivariate Gaussian probability function with mean vector µ and covariance matrix ⌃.

Using these equations and averaging over the R pixels {w 1 , w 2 , • • • , w R }, a global mismatch error between images is computed as:

Err( ✓1 , ✓2 ) = X w2R g(w, ✓1 ) g(w, ✓2 ) 2 (3.43)
In practice, the sum is bounded by plausible boundaries given by min/max scores on each axis. If Q is large, a subset of R of random vectors w can be selected.

Let us define a translation operator T on ✓:

T ( ✓, t) = { μ1 + t, μ2 + t, • • • , μC + t, b ⌃ 1 , b ⌃ 2 , • • • , b ⌃ C } (3.44)
The final registration step only consists in the estimation of a translation in a Q-dimensional spaces and is done by:

t = arg min t Err ✓1 , T ( ✓2 , t) . (3.45)
for which an important initial guess is given by the di↵erence of positions in each score image of the average observations. The objective of this chapter is to show the relevance of the developed approaches using hyperspectral images acquired in real outdoor conditions. Two data sets (called A and B) are used in order to illustrate the main steps of each part of the approaches and to give a better understanding of how the three approaches proposed in the previous chapter can be implemented together. The data sets that contain both reflectance and radiance images are described in the first section. In the second and third section, both DROP-D and the spectral-spatial approach are detailed using reflectance images. Finally, in the last section, we show that using the score registration on the log-radiance images provide similar results as when using the classical reflectance correction.

Data sets

For the purpose of this study, we will consider two data sets (called A and B).

These data sets, are represented in Figure 4.1 and 4.4 respectively.

In the remainder of this chapter, the notation used to describe the data sets are:

1 st character: letter R for reflectance and L for radiance (luminance); 2 nd character: letter A or B for the data set;

3 rd character: subset number within the data set.

Note that in every case, the models are calibrated using data 1.

Data set A: Proximal detection

For this data set, illustrated in Figure 4.1, short-range hyperspectral images were acquired using a Hyspex V-NIR 1600 camera (Norks Elektro Optikk, Norway).

The images were recorded in-field using a translation stage mounted on a tractor (see illustration in Figure 4.2). The acquisition device was formerly developed by Irstea to map the nitrogen content in a wheat crop (see [START_REF] Vigneau | Potentiel de l ' imagerie hyperspectrale de proximité comme outil de phénotypage : application à la concentration en azote du blé[END_REF] for details)

and with a very high spatial resolution. The images were thus captured at 1 meter above the ground, which led to a spatial resolution of 0.2 mm/pixel.

Using a calibrated reference surface in each image (gray plate seen Two acquisitions were performed at 1 hour interval at di↵erent places in the same field. From these two HS images, three sub-data sets were created: A1, A2 and A3.

Data set A1 was used to calibrate the models as detailed in Figure 4.3. The ground truth map is presented in Figure 4.3a and its associated class labels in These training spectra for each class are represented in Figure 4.3d. For consistency of the results with the final section, in which a logarithm transformation has to be performed, we used log-transformed spectra throughout the whole chapter.

The log-transformed spectra are presented in Figure 4.3e.

Data set A2 corresponds to the same field as data set A1 but acquired 1 hour later. A similar ground truth was manually created but is not represented here.

This data set is used in the final section to illustrate the translation problem occurring when using log-radiance images.

Data set A3 is extracted from the same image as data set A2. It corresponds to an area in which only two classes (wheat and soil) are represented. This data set is also only used in the final section to assess the robustness of the registration step when there is a missing class. peninsulas, France. Further information of the measurement campaign that contains 133 images and that maps 404 linear km are found in [START_REF] Smet | Evaluation des capacités de le télédétection hyperspectrale et développement de méthodes innovantes de traitement d'images pour des applications défense en zone littorale (hyplitt)[END_REF]. For our purpose we only used two images (B1 and B2) acquired at 650 m above the ground level with a spatial resolution of 0.5 m. We chose these images, represented in Figure 4.4, because they include a common region not a↵ected by any cloud shadow for which a ground truth could be manually created. To help with the ground truth creation, another image acquired at 500 m above the ground (spatial resolution of 0.4 m) was used.

Reflectance images were obtained through the atmospheric model ATCOR and then adjusted using spectroradiometric measurement on the ground using reference surfaces [START_REF] Smet | Evaluation des capacités de le télédétection hyperspectrale et développement de méthodes innovantes de traitement d'images pour des applications défense en zone littorale (hyplitt)[END_REF]. Because of low signal values below 442.3 nm, the ten first spectral bands were discarded. Then, because of saturation of vegetation spectra above 841.6 nm, spectral bands from 121 to 160 were discarded as well.

Finally, the oxygen absorption bands at around 750 nm, which corresponds to spectral bands 84 to 90 were also removed.

Note that the acquisition of B1 and B2 were performed at 6 days of interval at 14h56 and 13h23 respectively.

Data set B1 was used to calibrate the models and is represented in Figure 4.5.

The ground truth map is presented in Data set B2 corresponds to the same area as data set B1 but acquired 6 days later. A similar ground truth was manually created but is not represented here.

This data set is used in the final section to illustrate the translation problem when models are calibrated with data set B1.

Performance measurements

In order to provide numerical results, di↵erent measures were used.

Classification error corresponds to the ratio of pixels incorrectly classified expressed in percent.

Wilk's Lambda is a measure of the class separability. It is given by the following determinant ratio:

⇤ W ilks = | W | | T | = | W | | B + W | . (4.1)
It can take values between 0 (perfect discrimination) to 1 (no discrimination).

Cross-validation results are used to tune di↵erent methods parameters. In such cases, we used a 10-fold procedure on the training data [START_REF] Esbensen | Principles of Proper Validation: use and abuse of re-sampling for validation[END_REF]. For validation, results are presented on the overall ground truth minus the training data.

In the following, each part of the proposed approaches are detailed using these data sets. The eigenvector plots on the Figure 4.6 and Figure 4.7 illustrate well the noise captured by these eigenvectors. For RA1, the fifth eigenvector is already noisy and for RB1, noise is perceived starting from the fourth eigenvector.
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Observing the shape of the eigenvectors plotted as curves gives a first hint on the non-orthogonality of the eigenvectors: some of them are nearly identical between the di↵erent sets. This intuition is confirmed by the angles reported in Table : 4.1 andTable 4.2. With RA1, some eigenvectors are clearly non-orthogonal (angle < 90 degrees). In this particular case, most non-orthogonal eigenvectors have an angle of approximately 30 degrees. As we will see in the following, with this type of data, a compromise has to be made on removing or keeping these within-class eigenvectors using an orthogonal projection because of a potential loss in discrimination power.

With data set RB1, the non-orthogonality is still large for the within and total scatter matrices with approximately 25 degrees. However, for the between-class scatter matrix, only its two first eigenvectors are non-orthogonal to those of the within-class matrix. This third eigenvector is in addition, slightly collinear to the third to total scatter matrix eigenvector, which shows that it corresponds to an important direction for this data set. In the following we will show using DROP-D that preserving the two first between-class principal axes and removing one withinclass axis proves to be the optimal combination for this data set. Note that this is just an observation and this table in itself cannot be used to tuned DROP-D parameters. In particular, at every projection the angle between each eigenvector is changed and a new table would have to be analyzed the same way until an optimal combination is found. For example, in Table 4.3 we show the angle of the between-to within-class scatter eigenvector after removing the first between-class axis. In this space, the first between-class axis thus become perfectly orthogonal to all within-class axes. We also observe that the two most collinear vectors are the combination (w ⇤ , b) = (1, 2) and (w ⇤ , b) = (3, 3). Then, removing the second axis of the between-class (see Table 4.4), the third axis of the between-class scatter matrix becomes the most collinear to the first within-class axis.

Although this approach, which consists in observing the angle between eigenvectors is interesting to understand the class structure of the dataset, tuning DROP-D parameters looking at these tables is unmanageable as the number of classes increases. Therefore, in the following, we adopt a classical parameter tuning approach.
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Final remarks concern the 'shape' of the obtained eigenvectors. Indeed, for both data sets, the discrimination includes mostly vegetation spectra. As it was observed in the data sets presentation (Figure 4.3 and Figure 4.4), vegetation spectra have a strong reflectance feature at around 700 nm. This transition, situated at the edge of the red and infrared part of the electromagnetic spectrum is very distinctive for vegetation spectra and is often referred to as the red-edge. This red-edge is mostly due to a strong absorption of the chlorophyll within the vegetation and is thus characteristic of the type of plant. The structure of the red edge (position, slope) is thus naturally found as a discriminative feature by classifiers. At the end of the red-edge, another characteristic feature of the vegetation spectra is the NIR plateau. Finally, the greenness of the vegetation is also often discriminative between vegetation types and specific features are thus often found in the 500 to 600 nm range.

E↵ect of removing W on the class separability

As we have seen in the previous section, the between-and within-class scatter matrices can have some non-orthogonal principal directions. Also, in order to decrease the Wilk's Lambda and thus to increase class separability, a possible approach would be to suppress the within-class variability by removing the principal axis of the within-class scatter. However, because of this non-orthogonality, removing these directions may a↵ect the class separability as well. The idea of DROP-D, as presented in the previous chapter, is thus to prevent the suppression of too much between-class scatter. In the following we present, using the data set RA1, this e↵ect step by step for di↵erent numbers (w) of within-class axes removed and by preserving di↵erent numbers (b) of between-class directions.

With b = 0, no between-class direction is a priori preserved. With b = 1, the principal direction of the between-class scatter is preserved. As observed in Figure 4.9, a similar 'noisy' pattern is obtained, but only until w = 5.

In this case only the second axis of the between-class is a↵ected by the successive cleaning of the within-class directions. The clear minimum obtained for w = 5 is stable until w = 8. Then, removing more directions starts a↵ecting the class separability as well, e.g., see the Figure 4.9 at w = 12 where the wheat (green)

and weed (red) starts to cluster.

With b = 2, every between-class direction is preserved. With three classes, it corresponds to the limit case of DROP-D in which any cleaning does not change the class separability unless more discriminant axes (Q) are kept (results not shown). - -2 0 2 These results on class separability were all performed with Q = 2 in order to provide these two-dimensional scatter plots. In the general case, Q is another parameter to tune, which corresponds to the final number of discriminant vectors to be used. It actually corresponds to a PCA on the cleaned spectral matrix as explained in the previous chapter. Usually, with PCA, the correct number of components to retain is always subject to discussion because the error decreases only slowly and an optimal threshold is di cult to estimate. The rule of thumb in such cases is 'less is better'. Fortunately, we will see in the following figures that when cleaning the spectral matrix with DROP-D, this threshold appears to be easier to find.
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Model calibration

As we have seen in the previous section, with a careful selection of the between-and within-class principal axes to keep or to remove, various class separabilities can be obtained. Also, we have seen that owing to the DROP-D approach, which consists in removing information (contrary to PLS-LDA, which learns the class structure by modeling B), overfitting can be spotted directly on the training set by observing the class separability. In the following, we show that a similar 'behaviour' is obtained with the classification performance.

In figure 4.10, we show the classification error obtained with the training set (calibration error) and using a 10-fold cross-validation on the training set. This graph presents the classification error as a function of the number of final discriminant axes (Q) for di↵erent numbers of within-class axes removed (number inside the circle). With w = 0 (which corresponds to a classical PCA) both calibration and cross-validation error smoothly decrease without any clear minimum. Then, from w = 1 to w = 4, we obtain the similar noisy aspect, but in terms of classification performance. From w = 5 (optimal) to w = 7, the same classification error is obtained. In addition, a clear optimal value for Q emerged (Q = 2). Then, as we observed with the class separability, when removing one more axis, the error starts increasing. Therefore, w = 5 is chosen as an optimal value since it corresponds to the smallest value for which the optimal results are obtained. Also note a similar behavior obtained for both calibration and cross-validation curves.

Let us assess the optimal parameters b, w and Q for the data set RB1 using only the calibration error. Figure 4.11 shows the four sets of curves that correspond to every possible values for b. Without preserving the two first between-class axes, removing w always leads to worse results (Figure 4.11a and 4.11b). Note that in these cases, deciding for an optimal value for Q is not an easy task as explained before. When b = 2 (Figure 4.11c), a clear optimum is reached by removing only one within-class axis. In addition, the optimal value for Q also becomes more obvious to choose. In particular, removing more w or increasing Q both lead to worse results. Finally, when preserving the last possible between-class direction, classification results become slightly worse. The optimal parameters for this data set are thus b = 2, w = 1 and Q = 3. These values actually correspond to the one obtained with the 10-fold cross-validation (not represented here).

Finally, to illustrate that DROP-D cannot learn a class structure when there is none, we show in Figure 4.12 the classification error obtained with data set RA1 in which the class matrix has been randomly shu✏ed. For any number of removed within-class axis, no structure can be extracted and the classification results remain the same. On the other hand, with a PLS-LDA model trained on the same data, a class structure can be learned and is thus prone to overfitting. This main di↵erence comes from the fact that DROP-D removes W while PLS-LDA learns a class structure by modeling B [START_REF] Barker | Partial least squares for discrimination[END_REF]. Therefore, because of the high dimensionality, a class structure can always be learned, especially with a small training set. On the contrary, when removing information with DROP-D, if the information was useful for discrimination, even the training data is a↵ected by the loss.

Classification performances

As we have seen, a major interest of DROP-D is to provide a method relatively robust to overfitting. Let us now have a look at the classification performance that can provide this method on our data sets. We also compare the results with the most classically used dimension reduction methods, i.e., PCA-LDA, NLDA (setting w=15) and PLS-LDA. For all methods the class decision is made using a Quadratic Discriminant Analysis (QDA) on the obtained scores (see Chapter 1

for details on QDA).

A first classification performance assessment is qualitative and is made by observing the shape of the obtained discriminant vectors. Indeed, as every dimension reduction method used is linear, the obtained discriminant vectors can be plotted as spectra and can be analyzed in the same way.

Then, for practical uses, it is interesting to assess the classification performances for di↵erent numbers of training samples. For this purpose, we randomly selected among the training set from 10 to the whole (100) spectra per class, by step of 10.

Results are presented in Figure 4.13 and Figure 4.14 for data set RA1 and RB1 respectively. In these figures, we also provided the classification maps obtained for each method using the 100 spectra per class.

The obtained results in terms of classification peformance are very similar with these data sets. With our experience on other data sets using DROP-D (not represented here), the results highly depends on the data. DROP-D proves better than PLS-LDA in some cases only, but is generally better than PCA-LDA. In this sense, DROP-D o↵ers an alternative way of reducing dimension in a supervised way.

All these methods appear to be relatively not sensitive to the lack of training samples. In particular, above 20 samples per class, the classification stabilizes to its optimal value, which is of great interest for practical uses. In the following, we show that the relatively noisy aspect of classification maps can be dealt with using our spatial regularization approach.

Spatial regularization

In the previous chapter, we proposed a spatial regularization approach based on score images obtained in a supervised way. In a first first step, we show the interest of using a supervised dimension reduction by comparing the gradient images obtained with other methods. Then, for each data set, we show the influence of the tuning parameters of the spatial regularization on the classification outcome.

We also illustrate the e↵ect of this spatial regularization in both the image and the score space. Finally, using a benchmark data set, we compare our approach with other recently proposed spectral-spatial approaches. 

'When' to apply regularization

In order to validate quantitatively the proposed approach, in Table 4.5 we provide the classification results obtained using the training set on the RA1 data set.

In order to provide results also without dimension reduction, for this table we We first observe that the supervised approaches outperform the unsupervised ones.

Then, for every method, applying a regularization usually improves the classification outcomes. For PCA, only a slight improvement is noted by applying the regularization before or after dimension reduction. However, PLS-and DROP-Dbased results show that the regularization has to be performed after dimension reduction, which confirms the proposed approach detailed in the previous chapter. 

Tuning robustness

In Figure 4.17, the evolution of the classification error is represented as a function of both the di↵usion parameter (⌘) and the number of iterations using DROP-D-AR on data sets RA1 and RB1. The number of iterations ranged from 1 to 30, and ⌘ ranged from 0.01 to 1. Every DROP-D score was normalized to unit variance before regularization so that the di↵usion parameter varied within the same range.

For both data sets, optimal values were situated within a wide region, ranging from 0.4 to 0.6 for the di↵usion parameter and from 8 to 25 for the number of iterations. This illustrates that the method is relatively robust to parameter variations and easy to tune, which is convenient when di↵erent types of images need to be classified. The obtained regularized score images clearly indicate less variability within each class, which is confirmed by the images of di↵erences (see Figure 4.19 and 4.20). On the other hand, class borders are well preserved, which emphasizes the importance of using an edge-preserving filter. Observing the scatter plots before and after regularization validates this observation, since every class was less spread out around its mean value, which leads to an increased class discriminability.

Classification results

In Figure 4.21 are represented the classification maps obtained before and after regularization for both data sets. In both cases, the classification noise is greatly decreased leading to more homogeneous classes. At the border, especially for data set RA1 (Figure 4.21) with the wheat leaves border, the classification error at the edges is also reduced. 

Comparison with other approaches

We finally compare our approach with some of the latest spectral spatial approaches developed by the remote sensing community. To do so, we used one of the remotely sensed hyperspectral images that is now considered as a benchmark for testing classification methods. Results on other benchmark images have been published [START_REF] Hadoux | A spectral-spatial approach for hyperspectral image classification using spatial regularization on supervised score image[END_REF] using PLS as a supervised dimension reduction.

The Salinas data set was acquired by the AVIRIS sensor over Salinas Valley, California at a spatial resolution of 3.7 meters per pixel. The image comprised 512⇥217 pixels and the ground truth contained sixteen classes. We discarded twenty bands a↵ected by water absorption, in this case bands 108 to 112, 154 to 167 and 224.

The ground truth map, class names and number of samples per class for each image are displayed in Figure 4.22.

For each method, every parameter was tuned using 10-fold cross-validation. 

Reflectance correction

In this section we aim at proving that by using the log-radiance and by correctly estimating the translation in the feature space between images, radiance images can be used, avoiding the reflectance correction as detailed in the previous chapter.

To do so, we first illustrate the translation occurring between the reflectance and radiance image in the score space for both data sets. We also show the translation occurring between the radiance images of our data set. Then, using the method described in the previous chapter, we prove that the translation can be estimated even when there is a missing class in the data set. We finally show the classification maps obtained with the registered scores and compared them with those obtained with reflectance images.

Reflectance correction e↵ect on the reduced scores

In order to illustrate the translation occurring in the log-space between the reflectance spectra and the radiance spectra, we represented in Figure 4.25 the e↵ect of reflectance correction on log-image. The models calibrated using the log-reflectance data RA1 and RB1 are applied to the log-radiance data LA1 and LB1. For both data sets, the di↵erences clearly correspond to translations. There is therefore no loss of class separability when using the radiance image instead of a reflectance one. However, without a correct estimation of the translation, the classification model cannot be applied directly. Chapter 5

Conclusions and future work

The objective of this thesis was to propose and validate new approaches to deal with some of the main issues in supervised classification of hyperspectral data.

The focus was on three particular aspects: (1) spectral dimension reduction, (2) combination of spectral and spatial information and (3) compensation for variability in lighting conditions. In the next section we summarize the main contributions of the thesis. Then, we propose some research directions in order to continue and improve this work.

Conclusions

Hyperspectral image processing has been more and more used in many scientific and industrial fields over the last decades. Its growing interest comes from the possibility to obtain detailed spectral information for each pixel of the image.

Using this spectral information, which is linked to the biochemical properties of the target, many useful characteristics can be retrieved regarding the imaged objects.

HS images can therefore be used for environmental applications, earth monitoring, plant content mapping or even weed detection.

However, the counterpart of this very detailed spectral information is that the huge amount of data to process, in order to retrieve these characteristics, makes the usual processing techniques fail.

For example, in supervised classification, which is one of the main uses of HS imaging, the high dimensionality of the data leads to the failure of standard classifiers.

In addition, spectral data are highly correlated, which creates other conditioning problems for matrix computations. Fortunately, high collinearity also means high redundancy. Hence, methods that can summarize the spectral information have been investigated in order to deal with this type of data. For instance, in supervised classification, di↵erent methods have been proposed to reduce the dimensionality of the data. One classical approach is to model the class structure using statistical learning techniques such as Partial Least Squares. Although very e↵ective, this method is prone to overfitting and therefore needs extra data to be collected to compensate for this issue. Another classical way of finding the 'best' linear subspace is to use the Fisher approach, that is to minimize the Wilk's Lambda by minimizing the within-class variability and maximizing the distance between classes. Fisher's paradigm is however not directly applicable to high dimensional and collinear data because of matrix inversion issues. Much research has thus been conducted to adapt Fisher's idea for high dimensional spaces. Among these methods, Nullspace LDA o↵ers an interesting way to solve this issue but is dependent on the existence of this nullspace, which becomes empty as the number of observations increases. Another way is to perform a Principal Component Analysis prior to the Fisher LDA so that in the reduced space, the inversion problem is avoided.

However, this method uses in its first step all the data information without considering class information in the dimension reduction and is therefore not optimal for classification purposes. In this thesis, we propose an alternative approach that uses orthogonal projection to clean the data before dimension reduction. The data cleaning is performed using the within-class principal directions. In that sense, it mimics the LDA, but instead of weighting the projection by the within-class inversion, it directly removes the information due to this within class-variations. We also show that without being very careful when removing the within-class information, the class separability can be lost because of non-orthogonality of the withinand between-class principal directions. Therefore, in the method we proposed, called DROP-D, a first step consists in preserving the most important betweenclass directions so that no cleaning can be performed on them. Once the data is cleaned, a classical Principal Component Analysis is performed in order to provide reduced data. This method provides similar results to PLS in terms of classification performances. However, contrary to PLS, by the nature of the method, overfitting can be prevented without using the cross-validation procedure. Indeed, by cleaning the data instead of learning a class structure, DROP-D classification results are a↵ected if useful information is removed even during the training phase.

Another issue tackled in this thesis is the use of both spectral and spatial information to enhance classification performances. Contrary to pure spectrometric applications, the contextual spatial information provided by the hyperspectral image should not be ignored in the classification process. In this context, the hyperspectral community has recently been developing many di↵erent approaches in order to combine these complementary types of information. Among them, edge preserving filtering techniques have received much attention due to their ability to reduce spatial noise within homogeneous objects while preserving their borders.

The HS image quality is thus improved for visual analysis and for classification performance owing to the reduced noise. However, the existing approaches either use this spatial filtering directly on the hyperspectral image, and thus need to redefine high-dimensional gradients, or use the regularization on reduced variables obtained from unsupervised dimension reduction methods. In both cases, the variables used for regularization contain both the within-class natural variations as well as the information due to class di↵erences. Hence, spatial filtering is not optimal because the natural variability creates edges in the reduced image that are, by definition, preserved by the EPF. To compensate for this issue, we proposed in this thesis to use a supervised approach for dimension reduction before applying the spatial EPF. We show that, by having edges that are mostly due to the objects borders, within-object smoothing is increased. Therefore, it results in increased classification performances when compared with the other approaches.

Finally, the last issue tackled in this thesis concerns the reflectance correction necessary to model the transfer between images. In order to process data that do not vary with atmospheric and lighting conditions, hyperspectral images have first to be calibrated into reflectance images. This operation requires the measure of lighting conditions in each image and is thus constraining for some applications. For instance, at Irstea, a calibrated reference surface is positioned at each acquisition in the field of view of the camera. Then, because the reflectivity of this surface is known, the lighting condition on the scene can be estimated and the image corrected. Other techniques exist, but also require the measurement or the estimation of the light received by the objects at the moment of image acquisition. In this thesis, we show that in the framework of supervised classification this e↵ect can be corrected automatically without prior information if the surfaces are Lambertian. In particular, we show that the di↵erence in lighting can be expressed, after logarithm pre-treatment, as an additive e↵ect which is constant for each pixel within an image. This e↵ect remains additive after using linear dimension reduction method such as DROP-D and can thus be estimated in the low-dimensional space. We thus propose a method to estimate this translation that is based on class density estimation in the reduced space. Owing to the use of a supervised dimension reduction, the classes form clusters in this reduced space which can be retrieved by automatic methods such as Expectation Maximization.

Once the class distribution is modeled, we propose to use a classical image registration technique (cross-correlation) in order to estimate this translation, which is robust to missing classes. On the two data sets presented in this thesis, the obtained results o↵ered by this method are comparable to those obtained with a classical reflectance correction technique.

These three approaches can also be combined in a general hyperspectral processing framework: DROP-D can be first used as a spectral supervised dimension reduction method. Then, on the obtained scores, a spatial regularization technique that preserves spatial borders can be e↵ectively applied. Finally, without prior reflectance correction, other HS images can be classified as well using the score translation method.

Future work

In this thesis, we have tackled three main issues of hyperspectral image classification. For each proposed approach, di↵erent research directions can be taken and improvements can be made.

In the actual implementation of DROP-D, the eigenvectors associated to the largest eigenvalues are preserved. However, it would be interesting to chose some combinations of between and within axis to be kept or removed, not necessarily starting from the main ones. Although obvious when there are few classes, it would require optimization techniques to be implemented as the number of possible combinations increases.

Another approach would be to relax the orthogonality constraint on the projection. It is expected that non-orthogonal projection would be able to reduce better the within class variability without a↵ecting the between class distances.

Another possibility with DROP-D would be to use the cleaned data with some more complex classifier such as SVM in order to reduce the amount of support vectors to use. -Du point de vue de la spectrométrie, le contenu de l'image HS est considéré comme de l'information spectrale spatialisée : les spectromètres deviennent spatialement résolus.

-Du point de vue du traitement de l'image, le contenu de l'image de HS est considéré comme de l'information spatiale spectralisée : les pixels d'une image deviennent spectralement résolus.

Dans les deux cas, chaque position spatiale dans l'image HS est associée à un spectre qui contient l'information chimique de l'objet imagé.

L'objectif de la classification est d'identifier la nature des objets en termes de classes, sur la base de certaines caractéristiques [START_REF] Bishop | Pattern Recognition and Machine Learning[END_REF][START_REF] Fukunaga | Introduction to statistical pattern recognition 2nd edition[END_REF]. Les estimations statistiques nécessitent un nombre croissant d'échantillons d'apprentissage lorsque la dimensionnalité des données augmente [START_REF] Hughes | On the mean accuracy of statistical pattern recognizers[END_REF].

La colinéarité entre les variables est un problème bien connu avec des données spectrales. Ce problème, lié au conditionnement des matrices, est dû à la très forte inter-corrélation des variables spectrales mesurées.

Toutefois, du fait que les espaces de grande dimension sont presque vides, une structure de dimension inférieure contenant la même quantité d'information est susceptible d'exister. Pour compenser ces problèmes, une approche classique consiste donc à e↵ectuer une réduction de dimension avant la classification [START_REF] Geladi | Chemometrics in spectroscopy. Part 1. Classical chemometrics[END_REF][START_REF] Wold | PLS-regression: a basic tool of chemometrics[END_REF]. Pour la réduction de dimension spectrale, lorsque l'objectif est la classification, les méthodes non supervisées conduisent à des scores sousoptimaux car ne prenant pas en compte l'information de classe lors du processus de réduction [START_REF] Barker | Partial least squares for discrimination[END_REF].

Parmi les approches supervisées, les méthodes type moindres carrés partiels (PLS) [START_REF] Bylesjö | OPLS discriminant analysis: Combining the strengths of PLS-DA and SIMCA classification[END_REF][START_REF] Fearn | On orthogonal signal correction[END_REF][START_REF] Trygg | Orthogonal projections to latent structures (O-PLS)[END_REF][START_REF] Wold | PLS-regression: a basic tool of chemometrics[END_REF] tendent à modéliser la structure de classe des données en maximisant la capture de covariance entre les variables et les classes lors de la construction des scores. Ces approches ont donc naturellement tendance à "sur-apprendre" et leurs paramètres doivent être réglés en utilisant des procédures de validation croisées [START_REF] Esbensen | Principles of Proper Validation: use and abuse of re-sampling for validation[END_REF]. Sans prendre de précaution particulières, ces validations croisées peuvent conduire à des résultats trop optimistes et peuvent même trouver une structure de classe quand il n'y en a pas.

D'autre part, des méthodes type analyse discriminante de Fisher (LDA) [START_REF] Guo | Null Foley-Sammon transform[END_REF][START_REF] Witten | Penalized classification using Fisher's linear discriminant[END_REF][START_REF] Ye | A Two-Stage Linear Discriminant Analysis[END_REF] tendent à résoudre le problème d'inversion de la matrice de covariance en utilisant des astuces mathématiques comme la pseudo-inverse ou l'inversion de la matrice de variance totale à la place de la matrice de variance intra-classe. Une autre méthode consiste à utiliser une analyse en composantes principales (PCA) [START_REF] Grahn | Techniques and applications of hyperspectral image analysis[END_REF] 

B.2.2 Utilisation de l'information spatiale

Les classifieurs décris précédemment ne traitent les données HS que comme des listes de mesures spectrales sans tenir compte des relations spatiales entre pixels adjacents, écartant ainsi des informations importantes. En e↵et, les résultats de classification pourraient être améliorés en utilisant l'information contextuelle fournie par le spatial en plus de l'information spectrale [START_REF] Dalla Mura | Classification of Hyperspectral Images by Using Extended Morphological Attribute Profiles and Independent Component Analysis[END_REF], Gorretta et al., 2012, Tarabalka et al., 2010a]. Selon l'échelle d'acquisition, di↵érentes sources de variabilité spectrale sont présentes au sein des objets et pourraient être gérées en utilisant l'information spatiale [START_REF] Bioucas-Dias | Hyperspectral remote sensing data analysis and future challenges[END_REF]. À cette fin, depuis la méthode originale "extraction et classification des objets homogènes" (ECHO) développée par [START_REF] Kettig | Classification of multispectral image data by extraction and classification of homogeneous objects[END_REF], un grand nombre de recherches ont été menées pour trouver des classifieurs spectro-spatiaux e caces [START_REF] Fauvel | Advances in Spectral-Spatial Classification of Hyperspectral Images[END_REF].

Ces méthodes se répartissent en trois catégories [START_REF] Valero | Arbre de partition binaire: Un nouvel outil pour la représentation hiérarchique et l'analyse des images hyperspectrales[END_REF] :

(1) Si les objets à classer ont de fortes caractéristiques discriminatoires spatiales, ces caractéristiques sont extraites et utilisées comme variables pour un classifieur.

Par exemple, la segmentation d'image [START_REF] Tilton | Split-remerge method for eliminating processing window artifacts in recursive hierarchical segmentation[END_REF], la Morphologie Mathématique [START_REF] Aptoula | A comparative study on multivariate mathematical morphology[END_REF][START_REF] Soille | Morphological Image Analysis: Principles and Applications[END_REF][START_REF] Tilton | Split-remerge method for eliminating processing window artifacts in recursive hierarchical segmentation[END_REF], les filtres de régularisation à préservation de contours [START_REF] Lennon | Nonlinear filtering of hyperspectral images with anisotropic[END_REF][START_REF] Wang | Anisotropic di↵usion for hyperspectral imagery enhancement[END_REF].

(2) Si les objets à classer ont de fortes caractéristiques discriminatoires spectrales et spatiales, les deux sont extraites puis utilisées simultanément dans un classificateur par des techniques de noyaux [START_REF] Camps-Valls | Composite Kernels for Hyperspectral Image Classification[END_REF][START_REF] Fauvel | Spectral and spatial methods for the classification of urban remote sensing data[END_REF], des champs de Markov [START_REF] Rellier | Analyse de textures dans l'espace hyperspectral par des méthodes probabilistes[END_REF], Tarabalka et al., 2010b], ou à l'aide d'une analyse croisée [START_REF] Gorretta | Proposition d ' une approche de segmentation d ' images hyperspectrales[END_REF].

(3) Si les objets à classer ont de fortes caractéristiques spectrales discriminatoires, l'information spectrale est d'abord traitée et l'information spatiale des pixels voisins est ensuite utilisée pour améliorer les résultats de la classification par segmentation ou régularisation des cartes de classifications [START_REF] Kang | Spectral-spatial hyperspectral image classification with edge-preserving filtering[END_REF][START_REF] Li | Discriminative Image Segmentation : Applications to Hyperspectral Data[END_REF][START_REF] Tarabalka | Classification of Hyperspectral Data Using Spectral-Spatial Approaches[END_REF]. [START_REF] Shaw | Spectral Imaging for Remote Sensing[END_REF]. Des revues complètes concernant ces méthodes sont disponibles dans [Gao et al., 2009, Gri n andBurke, 2003].

Le modèle général [Gao andGoetz, 1990, Hamm et al., 2012] à partir duquel toutes les méthodes de corrections sont basées est donné par : L'objectif des méthodes de correction atmosphérique est donc de donner une estimation précise de a( ) et b( ). Les modèle de transferts radiatifs simulent le spectre de rayonnement solaire, calculent les e↵ets de scènes, la position du soleil et mesurent ou estiment le taux de particules absorbantes et di↵usantes de l'atmosphère [START_REF] Kruse | Introduction to hyperspectral data analysis[END_REF]. Les méthodes de corrections basées sur la scène utilisent des sources d'informations supplémentaires afin d'estimer empiriquement les termes additif et multiplicatif [START_REF] Moran | Deployment and calibration of reference reflectance tarps for use with airborne imaging sensors[END_REF][START_REF] Smith | The use of the empirical line method to calibrate remotely sensed data to reflectance[END_REF][START_REF] Vain | Use of Naturally Available Reference Targets to Calibrate Airborne Laser Scanning Intensity Data[END_REF]. Les méthodes de corrections basées sur l'image utilisent uniquement les informations qui peuvent être récupérées à partir de l'image pour e↵ectuer la correction atmosphérique. 

L obs ( ) = ⇣ E # ( )T # ( ) cos ✓ + L # ( ) ⌘ T " ( )⇡ 1 ⇢( ) + L " ( ), ( 

B.3.2 Réduction de dimension

La classification supervisée consiste, en utilisant une matrice de données X et une matrice de classe Y d'échantillons d'apprentissages, à trouver un modèle capable de prédire la classe de toute nouvelle observation x en utilisant ses P descripteurs.

Avec les données spectrales, la classification se fait généralement en deux étapes:

(1) projection de l'observation dans un sous-espace de dimension plus faible;

(2) a↵ectation de l'observation à une classe.

L'e cacité de la deuxième étape est fortement influencée par la première. Par conséquent, nous recherchons un sous-espace dans lequel les centres des classes sont bien séparés et la répartition des classes autour de leurs centres est faible.

D'un point de vue mathématique, cela correspond à trouver des facteurs D P ⇥Q tels que la projection de X sur D minimise le lambda de Wilk's:

⇤ W ilks = trace(W) trace(W + B) (B.3)
qui correspond au ratio de la variabilité intra-classe sur variabilité totale (somme de la variabilité inter-et intra-classes). Dans les cas "bien conditionnés", une solution est donnée par l'analyse factorielle de Fisher (LDA) : 

D = arg max D ⇣ trace D T W 1 BD ⌘ = E Q W 1 B (B.

Régularisation anisotropique

Nous mettons en oeuvre notre approche en utilisant la méthode de di↵usion anisotropique de Perona and Malik [1990] pour augmenter l'homogénéité au sein des régions tout en gardant intact les frontières entre régions adjacentes. Cette méthode a été développée pour débruiter des images en niveau de gris en lissant l'image sans en enlever les bordures principales.

La méthode de Perona and Malik [1990] est un processus itératif dans lequel, à chaque itération, la quantité de lissage est pondérée par l'intensité locale du gradient. @I x, y, t @t = div ⇥ g k rI x, y, t k rI x, y, t ⇤ (B.9) où la fonction g doit être décroissante par rapport à la norme du gradient ↵ = k rI k. Dans [START_REF] Perona | Scale-space and edge detection using anisotropic di↵usion[END_REF], les auteurs ont utilisés une fonction Gaussienne déterminée seulement par un paramètre, correspondant à une largeur de noyau de lissage ⌘. Cette fonction est donnée par : 

B.3.4 Correction en réflectance

Dans cette section, nous proposons un approche automatique de correction de l'éclairement qui, dans le cas de la classification, évite l'utilisation de mesures de références. L'hypothèse principale est que les matériaux à discriminer sont lambertiens.

Hypothèse lambertienne

La quantité mesurée par une caméra HS est, après correction radiométrique, une radiance spectrale L( ), c'est à dire, une irradiance mesurée dans une direction spécifique (en W.sr 1 .m 2 .nm 1 ). Avec des matériaux lambertiens, pour un pixel i, j, la radiance mesurée est :

L i,j ( ) = r i,j ( )E( ) ( B . 1 2 ) où r i,j ( ) est la réflectance en radiance et E( ) l'irradiance descendante (en W.m 2 .nm 1 ) supposée identique pour chaque pixel.

Hypothèse du modèle de discrimination

Considérons une matrice X de taille (N ⇥ P ) qui correspond aux N spectres de P Dans notre cas où la distribution des classes est supposée gaussienne, un outil puissant pour l'estimation est l'algorithme Espérance-Maximisation (EM) [START_REF] Moon | The expectation-maximization algorithm[END_REF]. Finalement, la corrélation croisée est utilisée comme mesure d'appariement pour estimer la translation des scores de chacune des images.

B.4 Résultats

L'objectif de cette section est de montrer la pertinence des approches développées à partir d'images hyperspectrales acquises dans des conditions extérieures réelles.

Dans l'ensemble de données1 , des images HS de proxi-détection ont été acquises avec une caméra Hyspex V-NIR 1600 (Norks Elektro Optikk, Norvège). Les images ont été acquises sur le terrain à l'aide d'un rail de translation monté sur un tracteur, à 1 mètre au-dessus du sol (résolution spatiale de 0, 2 mm/pixel). En utilisant une surface de référence calibrée dans chaque image, les images de radiance (LXX) ont été transformées en images de réflectance (RXX). Deux acquisitions ont été réalisées à une heure d'intervalle à des endroits di↵érents dans le même champ.

Ensemble de données A1 a été utilisé pour étalonner le modèle, dans lesquels trois classes doivent être discriminées : blé, adventices et sol. Pour l'étalonnage du modèle, 100 spectres par classe (300 au total) ont été extraits au hasard à partir de la carte de vérité terrain disponible (cela qui correspond à environ 0, 6% des données disponibles). Par souci de cohérence avec les résultats de la dernière section, dans laquelle une transformation logarithmique doit être e↵ectuée, nous avons utilisé les spectres transformés en logarithme dans toute la thèse. Les données A2 correspondent au même champ que les données A1 mais acquises une heure plus tard. Cet ensemble de données est utilisé dans la dernière section pour illustrer le problème de la transformation en réflectance.

L'erreur de classification correspond au ratio de pixels mal classifiés (en pourcentage). Les résultats de validation croisée sont utilisés pour le réglage des paramètres des di↵érents modèles. Dans ce cas, nous avons utilisé une procédure "10-fold" sur l'ensemble d'apprentissage [START_REF] Esbensen | Principles of Proper Validation: use and abuse of re-sampling for validation[END_REF]. Pour validation, les résultats sont présentés sur le jeu de données globales moins les données d'apprentissage. En comparant par rapport à d'autres approches spectro-spatiales récentes, notamment SVM-EPF [START_REF] Kang | Spectral-spatial hyperspectral image classification with edge-preserving filtering[END_REF], LORSAL Multilevel Logistic (LORSAL-MLL) [START_REF] Li | Spectral-spatial hyperspectral image segmentation using subspace multinomial logistic regression and Markov random fields[END_REF] notre approche o↵re des résultats au moins aussi bons sur les images classiquement utilisées pour comparer ce type de méthodes. Abstract This thesis presents three approaches to deal with di↵erent issues concerning supervised classification in hyperspectral (HS) images: spectral dimension reduction, spectral spatial combination and light source independence. The high dimensionality and collinearity of spectral variables necessitate specific processing methods to be used before classification. To tackle this issue, we propose an original supervised spectral dimension reduction method that uses orthogonal projections. The projection is performed so that the obtained scores minimize the within-class variability and preserve between-class distances. In addition, since the method is based on removing information, overfitting is prevented without the need for cross-validation. Then, in order to combine the spectral and spatial information, we propose using a spatial regularization on score image channels obtained with a supervised dimension reduction method. These channels, that are built to highlight class di↵erences, allow edges to be obtained, in the spatial domain, that correspond to the actual class borders and not to the background variability. Therefore, applying an edge-preserving spatial regularization to the channels of this score image reduces the remaining within-class variability and thus leads to an easier classification. Finally, we propose an approach that allows, in the context of supervised classification, the prerequisite reflectance correction of the HS images to be unblocked. Under the assumption that classes have Lambertian reflectance, we show that, after log-transformation, the di↵erence in lighting corresponds to a translation in the spectral space as well as in a score space obtained through linear supervised dimension reduction. Owing to the use of a supervised dimension reduction, classes form clusters in the low-dimensional score space. Using these clusters, we propose a method to estimate the translation that is robust against an unbalanced number of samples and missing classes. These three approaches have been evaluated and validated on two real HS datasets, i.e., classification of weeds in a wheat crop using close-range HS images, and classification of a rural area using remotely-sensed HS images. Keywords: Hyperspectral; Classification; Multivariate analysis; Dimension reduction; Spectral-spatial method; Reflectance correction
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 11 Figure 1.1: Electromagnetic spectrum [NASA, 2010].

Figure 1 . 2 :

 12 Figure 1.2: The three interaction modes between EM wave and matter
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 13 Figure 1.3: Four vegetation reflectance spectra plotted as a function of the wavelength in the VNIR domain.[Smith 2001 Microimage]

Figure 1 . 4 :

 14 Figure 1.4: Hyperspectral image concept. Multi-variate image with simultaneous access to spectral wavebands over a large area in a ground-based scene. The graphs in the figure illustrate the spectral variation in reflectance for soil, water, and vegetation. (from Shaw and Burke [2003])

Figure 1 . 5 :

 15 Figure 1.5: From multi-spectral images to hyperspectral images. (from http: //rst.gsfc.nasa.gov/)

Figure 1 . 6 :

 16 Figure 1.6: Illustration of the four main technologies for hyperspectral image acquisition.(from [Li et al., 2013b])

  where Y c denotes one of the C classes. The N observations of the training set are gathered in a feature matrix X = {x i 2 X } and its associated class or label matrix Y = {y i 2 Y}, where i = 1, • • • , N. With this notation, x i corresponds to the i th feature vector and y i to its associated class vector. The class vector is conveniently coded in 'dummy' or disjunctive fashion, e.g. , y = [0 0 1 0 0] T codes class 3 among 5.

( a )

 a Generative classifiers model each class probability density function (b) Discriminative classifiers directly model the posterior class probability.

Figure 1 . 7 :

 17 Figure 1.7: Conceptual visualisation of the two main classification approaches.

  Generative classifiers model the posterior class probability using Bayes rule; that is by modeling the likelihood function by making the assumption of the distribution for each class and estimating the class prior probability. The prior is usually estimated by either the empirical proportion b ⇡ c = N c /N , where N c is the number of training sample of class c, or, if no assumption on the proportion is preferred, given by b ⇡ c = 1/C. Depending on the classifier, di↵erent assumptions are made to estimate the likelihood function.

  One-versus-all strategy creates C binary classifiers g c , c = 1, • • • , C during the training phase which distinguish each class from all the other ones. A new observation x is then classified with the label of the class of highest score y = arg max c g c (x) .

Figure 1 . 8 :

 18 Figure 1.8: Illustration of the overfitting issue in classification.

Figure 1 . 9 :

 19 Figure 1.9: Illustration of the Curse of dimensionality, showing how the number of regions of a regular grid grows exponentially with the dimensionality D of the space. For clarity, only a subset of the cubical regions are shown for D =3.(from[START_REF] Bishop | Pattern Recognition and Machine Learning[END_REF]).
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 1111 Figure 1.11: Accuracy of statistical estimation as the dimensionality of the space increases for various training set sizes. (from [Hughes, 1968])

Figure 1 .

 1 Figure 1.12: Illustration of high collinarity in the covariance matrix of spectral data on a data set containing three classes: wheat, weed and soil.

Figure 1 .

 1 Figure 1.13: Normality after projection (from a space of dimension d) illustrated with generated data [Jimenez and Landgrebe, 1996]. (Left) one class with uniform distribution, (Right) two classes with Normal distribution.

  (a) Remotely-sensed HS image of a rural area. (b) Color representation of a high resolution short-range HS image of a wheat leaf.

Figure 1 .

 1 Figure 1.14: Illustration of the sources of spectral variability.

Figure 1 .

 1 Figure 1.15: Main correction stages.

Figure 1 .

 1 Figure 1.16: Schematic view of light interaction from source to sensor.

  Regression (MLR) when the responses are quantitative (concentrations) or LinearDiscriminant Analysis when the responses are qualitative (classes)[START_REF] Naes | A user friendly guide to multivariate calibration and classification[END_REF][START_REF] Nocairi | Discrimination on latent components with respect to patterns. Application to multicollinear data[END_REF]. For classification, in the lower dimensional space, data are hoped to be well separated, i.e., small class spread and large distance between classes as represented in Figure2.1.

( a )

 a Original space R P (b) Optimal space R Q

Figure 2 . 1 :

 21 Figure 2.1: Illustration of the optimal dimension reduction method from a classification perspective.

  Fisher's LDA (FDA) to high dimensional spaces. Because of the theoretical superiority of LDA-and QDA-based approaches for classification when classes are Normally distributed, Fisher-like dimension reduction methods that are based on a similar criterion have received particular attention in the pattern recognition field.

Figure 2 . 2 :

 22 Figure 2.2: Comparison of (left) PLS-DA and (right) OPLS-DA on a two-class simulated data-set. (from Bylesjö et al. [2006]).

Figure 2 . 3 :

 23 Figure 2.3: Space decomposition.

Figure 2 . 4 :

 24 Figure 2.4: Geometric representation of NullFoley-Sammon Transform (from [Guo et al., 2006]).

  Figure 2.5: Pixel-based classification with spatial constraints. (from[START_REF] Valero | Arbre de partition binaire: Un nouvel outil pour la représentation hiérarchique et l'analyse des images hyperspectrales[END_REF])

Figure 2 . 6 :

 26 Figure 2.6: Representation of the watershed segmentation technique. (Left) topographic representation of a one-band image. (Right) Example of segmentation in one dimension. (from [Tarabalka et al., 2010a])

Figure 2 . 7 :

 27 Figure 2.7: Morphological profile using a circular structuring element of size 2, 6 and 10. The left corresponds to the closings and the right to the openings. (from Fauvel et al. [2013])

Figure 2 . 8 :

 28 Figure 2.8: Illustration of the neighborhood using (left) a 4-connexity and (right) a 8-connexity. (from Gorretta [2009])

Figure 2 . 9 :

 29 Figure2.9: Framework of the butterfly approach proposed by[START_REF] Gorretta | An iterative hyperspectral image segmentation method using a cross analysis of spectral and spatial information[END_REF].

Segmentation

  Tarabalka et al. [2010a] proposed to combine the output of a pixel-wise SVM classifier with a watershed segmented map. The combination was made using a majority of voting strategy between both maps as illustrated in figure 2.10.

Figure 2 . 10 :

 210 Figure 2.10: Majority of voting between a pixel-wise classification and a segmented map. (modified from Tarabalka et al. [2010a])

  Figure 2.11. The guidance images needed for BF implementation were either a PCA score image or a RGB image reconstructed from the HS image. Their approach significantly decreased the classification noise, which proves the potential of EPF spatial regularization for such data in a classification context.

Figure 2 .

 2 Figure 2.11: Spectral-spatial framework using EPF regularization and SVM pixel-wise classifier. (from Kang et al. [2014])

Figure 2 .

 2 Figure 2.12: Simulated transmittance spectra of atmospheric water vapor, carbon dioxide, ozone, nitrous oxide, carbon monoxide, methane, oxygen, and nitrogen dioxide. (from Gao et al. [2009])

Figure 2 . 13 :

 213 Figure 2.13: Di↵erence between the solar spectral irradiance curves at the top of the atmosphere and at ground level. (from Shaw and Burke [2003])

Figure 2 . 14 :

 214 Figure 2.14: Comparison of the two main physics-based atmospheric correction methods. (from [Gri n and Burke, 2003])

Figure 2 .

 2 Figure 2.15: Illustration of the Empirical Line Method on three arbitrarily chosen wavelengths using low (4%) and high (32%) brightness reference surfaces.(from[START_REF] Shaw | Spectral Imaging for Remote Sensing[END_REF] 

Figure 2 .

 2 Figure 2.16: In-field reflectance correction using a calibrated ceramic plate. (from Vigneau et al. [2011])

Figure 3 . 1 :

 31 Figure 3.1: Illustration of the approaches presented in this thesis. (left) The spectral-spatial approach using first a supervised dimension reduction and then a spatial regularization. (left to right) The supervised model calibrated on the log-radiance image 1 applied to the log-radiance image 2. (right) The di↵erence in radiance between images (translation in the log subspace) estimated by the score registration approach.

Figure 3 . 2 :

 32 Figure 3.2: Dimension reduction for classification purposes, i.e., fewer axes (Q  P ), a small within-class scatter and a large distance between class centroids

  Figure 3.3: Decomposition in the feature space T = B+W. Note the possible collinearity between b i and w j .

1 Figure 3

 13 Figure 3.4: E↵ect of removing the within-class axis with di↵erent class configurations in R P

Figure 3 . 6 :

 36 Figure 3.6: DROP-D second step.

  .23) (a) Within-class scatter principal axes in the space orthogonal to b 1 (b) Original data cleaned using W ⇤ . Note that the direction b 1 is untouched.

Figure 3

 3 Figure 3.7: DROP-D third step.

  linked to the b principal directions of the between-class scatter • F W ⇤ contains the w principal directions of the within-class variance that are orthogonal to F B • F D contains the Q directions that include the b principal directions of the between-class scatter and the Q b principal directions that are orthogonal to the within-class scatter.In doing so, DROP-D eliminates the principal directions of the within-class scatter while preserving the most important directions of the between-class scatter. A rough projection orthogonal to W would bring the risk of removing important axes of B, because F B and F W can have a collinear part. In that sense, the step 1 of DROP-D guarantees to preserve at least the most important b axes of F B . In addition, axes of F B that were not included in step 1 preservation, but that are orthogonal to F W , are preserved as well.

  W ⇤ ) ; // Extract the w principal eigenvectors of W ⇤ (via SVD(W ⇤ )). These w directions are assured to be at least orthogonal to the b previously removed directions

Figure

  Figure 3.8.

  Figure 3.8: Single-channel images (top) and their gradients (bottom).

  Figure 3.9: E↵ect of the regularization of a noisy image (top) using: classical Gaussian filter (middle) and anisotropic regularization (AR) (bottom).

1 )

 1 The linear dimension reduction model D decomposes the spectral matrix into a score matrix S: S = XD (3.32) of dimension N ⇥ Q, with Q ⌧ P . (2) For each class c 2 [1, • • • , C] an estimate of the class mean μc and class covariance matrix b ⌃ c is computed using the samples available in the training set.

  score translation does not change the class separability but has a direct e↵ect on the classifier in terms of class decision. For instance, in the following we show that from the class parameters estimated from the training samples, only the class mean is changed. Let us define μc and b ⌃ c the mean vector and covariance matrix estimated using the training samples for class c, where c 2 [1, • • • , C]. Then, the class decision is computed as:

Figure 3 . 10 :

 310 Figure 3.10: Translation estimation scheme between two radiance images L 1 and L 2 .

  Figure 3.11: Creation of a 2-dimensional image from the score of the training set (left), unknown labels (middle) and unknown labels with one missing class (right).

  Figure 4.1), radiance images (LXX) were transformed into reflectance images (RXX).

Figure 4 . 1 :

 41 Figure 4.1: Presentation of the data set A: proximal detection

Figure 4 . 2 :

 42 Figure 4.2: Illustration of Irstea acquisition setup for in-field measurements.The Hyspex camera is in the red rectangle on the right figure.

Figure 4 .

 4 Figure 4.3b. The three classes to discriminate are wheat, weed and soil. These classes are represented in every figure with the color defined in Figure 4.3b.

4. 1 . 2

 12 Data set B: Remote-sensing This data set, illustrated in Figure 4.4, contains remotely-sensed hyperspectral images acquired with a camera (Hyspex V-NIR 1600, Norks Elektro Optikk, Norway) embedded in a plane Piper Seneca II PA 34. The data used for this study were extracted from a field measurement campaign carried out by Actimar within the exploratory research and innovation project named HypLitt over the Quiberon

  Figure 4.3: Presentation of the dataset RA1

Figure 4 . 4 :

 44 Figure 4.4: Presentation of the data set B: remote-sensing

Figure 4 .

 4 Figure 4.5b.

  RGB reconstruction (top) and manually created ground truth (bottom) Scores of the two principal components extracted from a PCA on the log-transformed (left) training set and (right) validation set (d) Training set spectra for each class (e) Log-transformed training set spectra for each class

Figure 4 . 5 :Figure 4 . 6 :Figure 4 . 7 :

 454647 Figure 4.5: Presentation of the dataset RB1

  Figure 4.8 show the Wilk's Lambda of the training data plotted as a function of the number of within-class directions removed. We also represent the obtained scatter plot for three specified values. At w = 0, the discriminant vectors correspond to the ones of the Principal Component Analysis (PCA) and we can observe the same scatter plot as in the data presentation of Figure 4.1. The two vegetation classes (wheat and weed) are poorly separated but distinct from the third class (soil). Then, until w = 9, the 'noisy' aspect of the obtained curve is due to the non-orthogonality of W and T. The discriminant vectors keep changing due to the removal of withinclass directions. Then, at around 9 or 10 removed axes, a clearer minimum is obtained. Removing more axis only degrades the class separability (even for the training set).

  Wilk's Lambda plotted as a function of the number of within-class principal axes removed.

  Scores on principal components 1 and 2 for the training (left) and validation (rigth) sets

Figure 4 . 8 :

 48 Figure 4.8: Dataset RA1: Class separability as a function of the number of within-class principal directions removed. (b = 0)

  b) Scores on principal components 1 and 2 for the training (left) and validation (right) sets

Figure 4 . 9 :

 49 Figure 4.9: Dataset RA1: Class separability as a function of the number of within-class principal directions removed. (b = 1)

Figure 4 .

 4 Figure 4.10: Dataset RA1: Representation of the classification error of calibration (A) and cross-validation (B) for di↵erent parameters for w and Q with b = 1.

Figure 4 .

 4 Figure 4.11: Dataset RB1: representation of the training error of classification for di↵erent parameters b,w and Q.

Figure 4 .

 4 Figure 4.12: DROP-D classification error on the training set with a random class matrix.

Figure 4 .Figure 4 .Figure 4 .

 444 Figure 4.13: Dataset A1

4. 3 . 1

 31 Validation of the approach 4.3.1.1 On 'what' to apply the regularization In order to justify the choice of applying the di↵usion process on a supervised score image, we represent in Figure 4.15 and Figure 4.16 the gradient images averaged over every channel for the data sets RA1 and RB1 respectively. These gradients were computed from the original HS image, from a PCA score image, from a PLS score image and from the DROP-D score image. As expected, there is a high similarity between the HS image gradient and the PCA score image gradient because PCA summarizes most of the original HS image information in fewer components. Even though these two gradient images show high values at region borders, high values are also obtained inside regions because of the background variability, which is present in the original HS image and captured by the PCA. On the contrary, the PLS and DROP-D score image gradients are di↵erent from the other two. By finding a trade-o↵ between capturing spectral information and class information, the gradient images have low values within regions and high values mostly at the region borders. Therefore, because spatial regularization is guided by the image gradient intensity, it is more e↵ectively used with a PLS or a DROP-D score image than with the original HS image or the PCA score image.

Figure 4 .

 4 Figure 4.15: Gradient images computed from dataset RA1

  used a K-nearest neighbor (KNN) classifier with K=3. This table thus shows the results obtained without regularization (KNN, PCA-KNN, PLS-KNN and DROP-D-KNN), applying the regularization first (AR-KNN, AR-PCA-KNN, AR-PLS-KNN and AR-DROP-D-KNN), and applying the regularization after dimension reduction (PCA-AR-KNN, PLS-AR-KNN and DROP-D-AR-KNN).

Figure 4 .

 4 Figure 4.16: Gradient images computed from dataset RB1

Figure 4 .

 4 Figure 4.17: Influence of the di↵usion parameters regarding the classification error (%)

Figure 4 .

 4 Figure 4.18 presents the e↵ects of AR in the spectral domain (scores) for both data sets. Similarly, Figure 4.19 and Fig. 4.20 present the e↵ects of AR in the spatial domains for data sets RA1 and RB1 respectively.

( a )

 a Figure 4.18: E↵ect of the regularization in the spectral domain. The two first score are represented before and after regularization

( a )

 a Before AR: First channel of the score image (b) After AR: First channel of the score image (c) Di↵erence between (A) and (B) (d) Before AR: Second channel of the score image (e) After AR: Second channel of the score image (f) Di↵erence between (D) and (E)

Figure 4 .Figure 4 .Figure 4 . 21 :

 44421 Figure 4.19: Dataset RA1: E↵ect of the regularization in the spatial domain

Figure 4 .Figure 4 . 23 :

 4423 Figure 4.22: Ground truth map with class labels of the Salinas data set.

Figure 4 .

 4 Figure 4.24: Classification maps of Salinas data set with 100 randomly selected training samples per class for (a) SVM, (b) LORSAL, (c) DROP-D, (d) SVM-EPF, (e) LORSAL-MLL, (f) DROP-D-AR.

( a )

 a Translation observed between RA1 and LA1 (b) Translation observed between RB1 and LB1

Figure 4 .

 4 Figure 4.25: E↵ect of the reflectance correction on the score space after logtransformation. For both data sets, scores 1 and 2 from the DROP-D models are plotted. The model is calibrated with a log-reflectance image (yellow) and applied to a log-radiance image (blue). The training set is also represented.
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 4264 Figure 4.26: Scores plot and classification map calibrated with LA1

Figure 4 .

 4 Figure 4.27: Scores plot and classification map calibrated with LB1

Figure 4 .

 4 Figure 4.28: Registration process on LA data set. A,B,C: distribution density functions estimate by EM. F,G: distribution density functions after translation correction.

  LB1 and translated LB2 scores

Figure 4 .Figure 4 . 30 :

 4430 Figure 4.29: Registration process on LB data set. From left to right axis (1,2), axes (1,3) and axes (2,3)

  En classification supervisée, toutes les classes sont supposées être connues et mutuellement exclusives. Quelques observations pour chaque classe sont également supposés être disponibles pour étalonner un modèle. Ces observations, qui forment ce qu'on appelle les échantillons d'apprentissages, sont attribuées manuellement, et nécessitent l'établissement préalable d'une vérité terrain. Avec une image HS, les caractéristiques peuvent prendre di↵érentes formes, par exemple spectres bruts, variables spectrales réduites, formes des objets, textures. Définissons un espace des caractéristiques X 2 R P et un jeu fini des classes possibles Y = {Y 1 , • • • , Y C }, où Y c représente l'une des C classes. Les N observations de l'ensemble d'apprentissage sont regroupées dans une matrice X = {x i 2 X } et les classes associées dans Y = {y i 2 Y}, où i = 1, • • • , N. Avec cette notation, x i correspond au i eme vecteur et y i à sa classe. Les classes sont généralement notées en codage disjonctif, par exemple y = [0 0 1 0 0] T code la classe 3 parmi 5. La classification consiste à assigner chaque vecteur à l'une des C classes d'intérêt en utilisant une fonction g : X 7 ! Y. B.2 Problématiques et état de l'art en classification des données HS Le type et la quantité d'informations fournies par les capteurs HS doivent être considérés lors de la mise en place d'une procédure de classification. En e↵et, bien que le grand nombre de bandes spectrales fournies par la caméra HS signifie également plus d'information potentiellement discriminatoire, cela pose également des problèmesB.2.1 Problèmes avec la dimension spectraleIl existe plusieurs problèmes liés à l'utilisation des données spectrales à des fins de classification, qui sont dues au fait que nous essayons de modéliser une structure de faible dimension contenue dans un espace de grande dimension et en utilisant seulement quelques observations[START_REF] Donoho | High-dimensional data analysis: The curses and blessings of dimensionality[END_REF][START_REF] Jimenez | Supervised Classification in High-Dimensional Space : Geometrical , Statistical , and Asymptotical Properties of Multivariate Data[END_REF][START_REF] Tormod | Understanding the collinearity problem in regression and discriminant[END_REF]. La concentration de la mesure stipule que les régions d'un espace de grande dimension sont presque vides parce que les données ont tendance à se concentrer dans une couche mince à la frontière des régions. Chaque voisinage des observations dans l'espace des caractéristiques est donc susceptible d'être vide. Par conséquent, les estimations de densités statistiques doivent être réalisées en utilisant une large bande passante et donc en perdant les détails spectraux.

  B.1) où, ⇢( ) est la réflectance de surface, L obs ( ) la radiance observée par le capteur, L " ( ) la radiance montante (trajet cible ! capteur) causé par la di↵usion de l'atmosphère, L # ( ) l'irradiance descendante (illumination di↵use), E # ( ) la radiance exo-atmosphérique, ✓ l'angle du soleil par rapport à la surface, T # ( ) la transmission atmosphérique soleil ! cible et T " ( ) la transmission cible ! capteur. On peut noter qu'une relation linéaire existe entre la radiance observée et la réflectance de surface : L obs ( ) = a( )⇢( ) + b( ). (B.2)

  Lorsque les données HS sont utilisées à des fins de classification, les di↵érences entre réponses spectrales sont utilisées pour attribuer un label à chaque pixel de l'image HS. Si la classification est supervisée, des échantillons d'apprentissage avec labels connus sont nécessaires afin d'étalonner le modèle de classification. Cependant, des questions spécifiques sont soulevées quand un modèle de classification fiable doit être créé avec ces données complexes. Dans cette thèse, nous présentons trois approches pour faire face à certaines de ces questions principales, à savoir, la réduction de la dimension spectrale, la combinaison des informations spectrale et spatiale et la correction en réflectance.

  4) où pour toute une matrice carré diagonalisable A, la notation E Q A correspond aux Q vecteurs propres associés à ses Q plus grandes valeurs propres. Cependant, avec des données mal conditionnées, l'inversion de W devient problématique. Par conséquent, La LDA est incapable de traiter des données spectrales directement, et plusieurs solutions ont été proposées dans la littérature pour résoudre ce problème. Néanmoins, la construction d'un modèle de classification correspond à trouver un sous-espace de l'espace des variables qui "copie" la structure de classe observée dans l'espace des individus. La LDA le fait en contractant le sous-espace porté par la variance intra-classe et en se focalisant sur celui porté par la variance interclasses. La méthode proposée dans cette thèse o↵re une autre façon de réaliser cette copie. L'idée est d'utiliser les variance inter-et intra-classes pour décomposer l'espace des variables en di↵érents sous-espaces, de sorte que l'un d'eux porte une grande partie de la variance inter-classes et une petite partie de l'intra-classe. Cependant, la séparation des sources de variance n'est pas évidente en raison de la colinéarité potentielle entre les sous-espaces F B et F W . Ainsi, selon la configuration des classes, la suppression de la variance intra-classe n'améliore pas nécessairement la séparabilité. Dans cette thèse, nous proposons une méthode, appelée DROP-D, qui permet une suppression contrôlée de la variabilité intra-classe, c'est à dire, en préservant ses axes colinéaires à F B . afin d'améliorer les résultats de la classification purement spectrale. L'hypothèse retenue lors de l'utilisation de la régularisation spatiale EPF pour améliorer les résultats de classification est que les bords sont supposés être présents seulement aux frontières des classes et non à l'intérieur des classes. Cependant, dans les images réelles, des bords sont également trouvés ailleurs qu'aux frontières des classes en raison du bruit de fond provoqué par la texture, les non homogénéités de couleur, d'éclairage, etc. Par conséquent, l'utilisation d'EPF directement sur une image HS conserve les bords dus au bruit de fond et ne parvient pas à en réduire la variabilité. L'EPF appliqué à une image de scores obtenus par une méthode de réduction de dimension non-supervisée échoue de manière similaire car les caractéristiques extraites comprennent également le bruit de fond. Pour compenser ce problème, nous proposons donc une approche dans laquelle la régularisation spatiale est appliquée à une image de scores obtenue par une méthode de réduction de dimension supervisée (comme DROP-D). L'idée de base est que, puisque l'image des scores décrit déjà les classes à discriminer en minimisant la variabilité due au bruit de fond, les bordures correspondent principalement aux frontières de classes et le processus de régularisation spatial est plus e cace. Construction de l'image des scores Une image hyperspectrale H de dimension I ⇥ J ⇥ P , c'est à dire, I lignes, J colonnes et P longueur d'ondes, peut être dépliée dans une matrice H de taille M ⇥ P où M = I • J. La notation H i correspond au i eme canal de l'image HS. L'image de scores S de taille I ⇥ J ⇥ Q est obtenue de manière similaire en repliant la matrice de scores S de taille M ⇥ Q donnée par : S = HD. (B.8) Chaque canal S i de l'image de scores correspond donc au i eme score. Notons que comme les scores de DROP-D sont obtenues à partir d'une PCA, les facteurs ainsi que les scores sont orthogonaux. Les di↵érents canaux de l'image de scores sont donc supposés non corrélés.

  di↵usion est donc anisotropique et permet donc de conserver les bordures principales.Régularisation des images de scoresEn fonction des scores obtenus, deux schémas de régularisation peuvent être envisagés. Avec des scores non-orthogonaux, une régularisation multidimensionnelle est préférable afin d'éviter les valeurs aberrantes. Avec des scores orthogonaux, on peut trouver des régions homogènes sur un score alors qu'il y a une transition de classe sur un autre. Dans ce cas, chaque canal de l'image des scores peut être traité de façon indépendante, ce qui conduit à une méthode très simple et parallèle.Le processus de di↵usion est donc dans notre cas appliqué individuellement sur chaque canal Si de l'image des scores i 2 [[1, • • • , Q]].Le processus est initialisé avec S i,0 = S i . Ensuite, à l'itération k+1, la di↵usion est appliquée numériquement au canal S i,k en suivant l'équation :S i,k+1 = S i,k + ✏ • div ⇥ g k rS i,k k • rS i,k ⇤ (B.11) où ✏ règle le taux de change à chaque itération du processus de di↵usion.

( 1 )

 1 longueurs d'ondes extraits de l'image HS. Définissons une matrice Y de dimension (N ⇥ C) qui code le degré d'appartenance de chaque spectre de X. Considérons également une méthode de classification qui calcule des scores (comme DROP-D) et qui les utilise ensuite pour la discrimination. Rappelons que les projections d'un espace de grandes dimensions vers un espace de dimensions plus faibles favorisent la Gaussianité des distributions, dans la suite, nous utilisons donc un classifieur de Bayes sur les scores réduits. On a donc un modèle de discrimination comme suit : Réduction de dimension linéaire D qui décompose la matrice de spectres en une matrice de scores S: S = XD (B.13) de dimensions N ⇥ Q, avec Q ⌧ P . (2) Pour chaque classe c 2 [1, • • • , C] une estimation du vecteur moyen μc et de la matrice de covariance b ⌃ c est calculée en utilisant les observations de l'ensemble d'apprentissage. (3) La décision de classification pour une nouvelle observation est faite en utilisant le classifieur de Bayes définie par : Nous avons vu que réflectance et radiance sont liés par un terme multiplicatif, constant pour chaque pixel de l'image, E( ). La clé de la méthode est de transformer l'équation B.12 en utilisant le logarithme : log(L i,j ( )) = log r i,j ( )E( ) = log r i,j ( ) + log E( ) . (B.15) On peut montrer que la seule di↵érence qui se produit dans le modèle en utilisant la log-réflectance par rapport à un modèle utilisant la log-radiance est l'estimation du vecteur moyen par classe, c'est à dire que la matrice de réduction de dimension ainsi que les matrices de covariances sont inchangées. D'un point de vue classification, la correction en réflectance peut être évitée si l'on connait la translation d µ (E) , en changeant la règle de décision par μc + d µ (E) à la place de μc . Estimation de la translation Nous proposons également dans cette thèse une méthode pour estimer la translation automatiquement. Cette méthode, basée sur une technique utilisée pour le recalage d'image est robuste aux classes manquantes ainsi qu'au nombre variable d'observations par classe. Avant recalage, une image de dimension Q doit être crée à partir des scores de dimension Q. La création de l'image est basée sur l'estimation de distribution de classes dans l'espace de dimension Q pour chaque image HS.

La figure B. 1 ,Figure B. 1 :

 11 Figure B.1: Jeu de données RA1: Erreur d'étalonnage (A) et de validation croisée (B) pour di↵érent paramètres pour w et Q et avec b = 1.

  Figure B.2: Résultats de classification avant et après régularisation.

  Dans cette section nous souhaitons montrer qu'en utilisant la log-radiance et en estimant correctement la translation, la correction en réflectance pouvait être évitée. Par exemple, la Figure B.3 montre les di↵érences de scores et les résultats de classification obtenus sur notre jeu de données avec des acquisitions à une heure d'intervalle. Comme cette translation est principalement selon l'axe (PC1) (figure c), la carte de classification obtenue est plus verte (figure d), même pour classifier du sol qui est normalement aisément discriminable de la végétation. Après combinaisons d'axes inter-et intra-classes à conserver, non nécessairement à partir des axes principaux. Ce choix est évident quand il y a très peu de classes. Il faudrait cependant mettre en oeuvre des techniques d'optimisation dès que le nombre de classes augmente. Une autre approche serait de relaxer la contrainte d'orthogonalité de la projection. On espère qu'une projection non-orthogonale serait capable de réduire davantage la variabilité intra-classe sans a↵ecter la distance entre classes. Une autre possibilité serait d'utiliser des données nettoyées par DROP-D avec d'autres méthodes de classification plus performantes comme les machines à vecteurs de support (SVM) afin de réduire le nombre de vecteurs de support à utiliser. Enfin, d'un point de vue plus théorique, il serait intéressant de comparer le nettoyage réalisé par DROP-D avec d'autres méthodes chimiométriques développées pour la régression, comme l'Orthogonal Signal Correction par exemple. Nous avons mis en oeuvre l'approche spectro-spatiale en utilisant la version originale de di↵usion anisotropique. Cependant, comme la communauté de traitement d'image a beaucoup travaillé dans le domaine de la régularisation spatiale, l'utilisation d'approches plus sophistiquées serait sûrement bénéfique. De plus, en observant les cartes des résidus (di↵érences avant/après régularisation), certains motifs obtenus semblent d'un intérêt potentiel, en termes d'analyse de texture, pour continuer à augmenter les performances de classification. Ces caractéristiques texturales pouvant être ajoutées comme entrée d'un classifieur de la même manière que les données spectrales.Finalement, pour l'estimation de la translation, plusieurs améliorations peuvent être apportées. Dans un premier temps, une alternative à la corrélation croisée (très coûteuse) afin d'estimer la translation serait bénéfique (en utilisant la transformée de Fourier par exemple). Puis, l'utilisation de l'information spatiale (ex: les formes obtenues dans la carte de classification comme feedback), en plus de l'information de corrélation, devrait aider à estimer la translation lorsque les classes ne sont pas évidentes à regrouper dans l'espace des scores.Enfin, une solution pour gérer les objets non-lambertiens serait très bénéfique, car même les corrections en réflectance classiques ne peuvent correctement traiter ce cas particulier. Nous pensons que cette approche utilisant une transformation logarithmique comme un pré-traitement pourrait également être applicable pour traiter les cas non-lambertiens. Dans ce cas, chaque classe se translaterait indépendamment l'une de l'autre, mais avec la même matrice de covariance. Ainsi,
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1: Comparison of RGB imaging, NIR spectroscopy (NIRS), multispectral imaging (MSI) and hyperspectral imaging (HSI). Yes (Y), Limited (L) and No (N). (Modified from

  The specific approaches developed in this thesis that address each of these topics are theoretically detailed in Chapter 4. Experimental results on real HS data as well as a detail discussion of the proposed approaches are given in Chapter 5. This thesis is concluded in Chapter 6 and future research directions are proposed.
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Table 4 .

 4 2: Dataset RB1: angle (in degree) between the principal eigenvectors of the scatter matrices T, B and W

	1	28	63	86	22	68	89	90	90
	w = 2	66	44	88	68	24	81	88	89
	w = 3	81	65	77	87	84	28	64	87
	w = 4	90	90	88	88	85	65	30	78
	w = 5	90	89	90	90	90	87	81	26
	w = 6	90	89	83	90	90	88	90	81
				b = 1	6	84	90	90	90
			E b (B)	b = 2	85	30	81	64	81
				b = 3	88	68	53	54	87

Table 4 .

 4 3: Dataset RB1: angle between the principal eigenvectors of the scatter matrices B and W ⇤ computed with E 1 (B) removed

	1	90	26	74
	w ⇤ = 2	90	79	88
	w ⇤ = 3	90	72	41
	w ⇤ = 4	90	79	78
	w ⇤ = 5	90	84	78
	w ⇤ = 6	90	88	79
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	1	90	90	52
	w ⇤ = 2	90	90	70
	w ⇤ = 3	90	90	69
	w ⇤ = 4	90	90	71
	w ⇤ = 5	90	90	78
	w ⇤ = 6	90	90	78

4: Dataset RB1: angle between the principal eigenvectors of the scatter matrices B and W ⇤ computed with E 2 (B) removed

Table 4
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	.5: Dataset RA1: Classification error (%) for di↵erent regularization
			procedures	
	Without regularization	Regularization first	Regularization second
	KNN	7.97	AR-KNN 7.62	n/a n/a
	PCA-KNN	7.35	AR-PCA-KNN 7.27	PCA-AR-KNN 7.26
	PLS-KNN	6.84	AR-PLS-KNN 6.62	PLS-AR-KNN 4.91
	DROP-D-KNN	7.14 AR-DROP-D-KNN 7.10	DROP-D-AR-KNN 5.37

  La troisième et dernière est une méthode automatique qui permet à des images HS en radiance d'être classifiées même avec des conditions di↵érentes d'éclairage, et évite donc la correction en réflectance. et une dimension spectrale ( ). Chaque pixel de l'image contient une mesure spectrale échantillonnée, qui peut être interprétée pour identifier les matériaux présents dans la scène. Cette représentation est généralement perçue de deux manières équivalentes :

	Introduction
	Une caméra hyperspectrale (HS) peut enregistrer des images avec une information
	spectrale très détaillée pour chaque pixel. L'information spectrale fournie par ces Notons que d'autres méthodes ont également été étudiées, que nous avons choisi capteurs est liée aux propriétés biochimiques de l'échantillon mesuré, et a donc été de ne pas inclure dans le présent document. En particulier, une collaboration avec largement utilisée pour la mesure non-destructive dans les domaines scientifiques le Pr. Dinesh Kant Kumar et le Dr. Marc Sarossy du Royal Melbourne Institute of et industriels ces dernières décennies. À Irstea, et en particulier dans l'unité de Technology, en Australie, a été accomplie afin de développer une approche multi-recherche ITAP (Information, Technologies, Analyse environnementale, Procédés résolution pour l'analyse spectrale. Toutes ces contributions sont disponibles en agricoles), cette information spectrale spatialisée permet d'augmenter les possi-bilités de caractérisation déjà o↵ertes par les spectromètres et les caméras couleurs annexe A.
	classiques pour les applications environnementales et agricoles. En e↵et, si la di-Ce manuscrit de thèse est organisé en cinq chapitres. Le premier chapitre présente
	mension spectrale fournit une source d'information sur l'état de la récolte (physi-le contexte de la classification d'images hyperspectrales. La description ainsi
	ologique ou pathologique, par exemple), l'information spatiale permet de récupérer que les plus importantes définitions concernant les images hyperspectrales y sont
	des informations de structure ( phase de développement, présence d'adventices, données. Le contexte spécifique de la classification supervisée y est ensuite détaillé.
	etc.). La mise en oeuvre de la technologie HS et le traitement des données obtenues À la fin de ce chapitre, les principaux enjeux concernant l'application des méthodes
	sont cependant complexes et nécessitent des procédures adaptées. de classification aux images hyperspectrales sont résumés, à savoir la dimension
	élevée et la colinéarité des données spectrales, la façon d'introduire l'information Dans le cadre de la classification, les di↵érences biochimiques entre pixels spectraux spatiale dans le processus de classification et les principales étapes de correc-peuvent être exploitées pour créer un modèle de classification qui permet d'a↵ecter tion pour obtenir une image HS en réflectance. Le deuxième chapitre dresse un chaque pixel de l'image HS à une catégorie unique. En classification supervisée, les état de l'art des méthodes principales qui répondent aux problèmes mentionnés échantillons d'apprentissage de catégories connues sont nécessaires afin de définir précédemment. Il permet enfin de statuer sur les inconvénients des approches ex-la règle d'a↵ectation. istantes. Dans le troisième chapitre, nous proposons trois contributions originales
	Au début de ce travail de thèse, le contexte spécifique de la discrimination des pour répondre à ces questions. Le quatrième chapitre est consacré à la validation
	adventices dans les cultures de blé a été étudié. En particulier, la comparaison des approches proposées par la présentation de résultats en utilisant des exemples
	de di↵érents pré-traitements spectraux en regard des méthodes de classification réels. Le cinquième chapitre conclut cette thèse en synthétisant les points les plus
	a été proposée dans le cadre de la proxi-détection au champ. Toutefois, il a été importants des approches développées et propose quelques perspectives ainsi que
	constaté que certains des problèmes rencontrés pourraient être abordés de manière de futures directions de recherche pour continuer ce travail.
	plus générique.
	Par conséquent, par la suite, des questions plus générales concernant la classi-fication supervisée des images hyperspectrales ont été étudiées, et constituent B.1 Classification en imagerie hyperspectrale
	l'essentiel du présent document. Trois contributions principales sont notamment L'imagerie hyperspectrale, également connue sous le nom d'imagerie chim-développées. La première est une nouvelle méthode supervisée de réduction de dimension, développée spécifiquement pour faire face à la dimension élevée et à la ique ou encore de spectro-imagerie, est une technologie d'imagerie relativement

colinéarité des données spectrales. La seconde est une approche spectro-spatiale qui consiste à utiliser une méthode de régularisation spatiale en combinaison avec une réduction supervisée de la dimension, dans le but d'optimiser son e↵et sur les performances de classification. récente qui permet à la fois l'acquisition de l'information spectrale et spatiale des objets ciblés. Les images hyperspectrales (HS) sont des images multivariées qui peuvent être représentées comme des cubes de données, avec deux dimensions spatiales (x, y)

  'intérieur des classes qui doivent être homogénéisées. Par conséquent, nous proposons dans cette thèse d'utiliser l'EPF de façon légèrement di↵érente : il est appliqué sur une image de scores, obtenue à partir d'une méthode de réduction de dimensions supervisée. En e↵et, en utilisant une méthode supervisée, la variabilité au sein des classes est réduite et la distance entre classes est augmentée,

	ce qui aide la régularisation spatiale à trouver des bords seulement aux frontières
	des classes.	
	B.2.3 Obtention d'images en réflectance	
	Concernant les approches spectro-spatiales, les méthodes qui utilisent des filtres
	à préservation de contours (EPF) semblent être particulièrement bien adaptées	à
	la classification des images HS. En e↵et, être en mesure de réduire la variabilité
	au sein des classes en utilisant un EPF semble très intéressant pour compléter
	la réduction de variabilité spectrale déjà obtenue par la méthode de réduction de
	dimension spectrale supervisée. Cependant, parmi les approches proposées dans
	la littérature, cette régularisation spatiale est e↵ectuée uniquement soit sur les im-

ages HS brutes soit sur des images de scores obtenues de manière non supervisée. Dans les deux cas, la variabilité naturelle au sein de chaque classe peut conduire à des images très texturées. Ainsi, en utilisant le filtrage EPF, des bords sont aussi préservés à lDans le scénario idéal, chaque objet à classer peut être représenté par sa signature spectrale. Cependant, de nombreuses sources de variabilité incontrôlables tels que l'angle de la source de lumière incidente, l'angle d'acquisition, les conditions atmosphériques et un certain nombre d'autres variables a↵ectent sensiblement la mesure spectrale [Barrett, 2013]. La correction en reflectance est donc indispensable pour chaque analyse d'image HS acquise en extérieur. Les méthodes disponibles sont généralement classés en trois catégories : modèles de transfert radiatifs, méthodes basées sur l'image et méthodes basées sur la scène

Table B . 1 :

 B1 RA1: erreur de classification (%) pour di↵érentes procédures de régularisation

	Without regularization	Regularization first	Regularization second
	KNN	7.97	AR-KNN 7.62	n/a n/a
	PCA-KNN	7.35	AR-PCA-KNN 7.27	PCA-AR-KNN 7.26
	PLS-KNN	6.84	AR-PLS-KNN 6.	

  Résumé Cette thèse présente trois approches pour gérer di↵érentes problématiques de la classification supervisée des images hyperspectrales (HS) : réduction de la dimension spectrale, combinaison de l'information spectrale et spatiale et indépendance vis-à-vis de l'éclairement. La grande dimension et forte colinéarité des données spectrales nécessitent un traitement adapté avant classification. Pour pallier à ce problème, nous proposons une approche originale de réduction de dimension supervisée utilisant les projections orthogonales. La projection est réalisée afin que les scores obtenus minimisent la variabilité intraclasse tout en préservant les distances entre classes. De plus, la méthode étant basée sur de la suppression d'information, le sur-apprentissage peut être empêché sans nécessiter une validation croisée. Ensuite, afin de combiner l'information spectrale et spatiale, nous développons une approche de régularisation spatiale sur les canaux d'images de scores obtenus de manière supervisée. Ces scores, mettant en évidence les di↵érences entre les classes, permettent dans le domaine spatial, d'obtenir des bordures correspondant aux variations entre classes et non au bruit de fond. Par conséquent, une régularisation spatiale qui préserve les contours, appliquée aux canaux de l'image des scores, réduit la variabilité intra-classe restant et facilite la classification. Enfin, nous présentons une démarche permettant, dans le contexte de classification supervisée, de s'a↵ranchir de la correction en réflectance préalable des images HS. En faisant l'hypothèse que les classes ont des réflectances lambertiennes, nous montrons que, après une transformation logarithmique, la di↵érence d'éclairement correspond à une translation dans l'espace spectral ainsi que dans l'espace des scores obtenu à partir d'une réduction de dimension supervisée linéaire. Grâce à l'utilisation de la méthode de réduction de dimension supervisée, les classes forment des clusters dans l'espace réduit. Nous proposons donc une méthode d'estimation de cette translation dans l'espace des scores, robuste aux variations du nombre d'individus par classe ainsi qu'aux aux classes manquantes. Ces trois approches ont été évaluées et validées sur deux jeux de données HS réels, i.e., classification d'adventices dans les champs de blé à partir d'image HS en proxi-détection et classification d'une zone rurale à partir de données HS en télédétection.

Mots clés: Hyperspectral; Classification; Analyse multivariée; Réduction de dimension; Méthode spectrale-spatiale; Correction en reflectance

e.g., [0, 0, 1, 0] corresponds to the third class among four.

The null space or Kernel of a matrix A is given by: {x 2 R P , Ax = 0} and its dimension is P rank(A)

Note that in our case, the mixture weights ⇡ c are omitted to enable classes having a di↵erent number of samples between two images to be dealt with in the following step.

Dans ce résumé, un seul jeu de données est présenté (jeu de données A). La notation utilisée pour décrire les jeux de données sont : 1 er caractère: lettre R pour réflectance et L pour un luminance;

eme caractère : lettre A ou B pour l'ensemble de données;

eme caractère : numéro du sous-ensemble

en utilisant des techniques de recalage non-rigides, en faisant correspondre les matrices de covariances, la correction pourrait être envisageable dans certains cas.

Acknowledgements

I would first like to thank the UMR ITAP from Irstea and its Director, Tewfik Sari,

Problem statement

We have seen that reflectance and radiance are linked by a multiplicative term, constant for each pixel in a given image, E( ). The bulk of our method is to transform equation 3.30 using the logarithm: log(L i,j ( )) = log r i,j ( )E( ) = log r i,j ( ) + log E( ) .

(3.34)

In the following of this section, we analyze which di↵erences occur in the model when using the log-reflectance and the log-radiance matrix to build the model.

Consider a matrix X (R) containing log-reflectance spectra and the matrix X (L) containing the corresponding, but uncorrected, log-radiance spectra. In both cases,

N spectra of P wavelengths have known labels and can be use to calibrate a supervised classification model.

E↵ect on the dimension reduction model

Let us consider the dimension reduction models D (L) and D (R) calibrated using X (L) and X (R) respectively. Under the hypothesis of similar lighting at each pixel, the mean centered spectral matrices g X (L) and ] X (R) are the same:

The last part of this equality holds because the lighting is supposed identical for each pixels and thus

Because the first step of (most) dimension reduction methods is to center these matrices (X (L) and X (R) ), the models obtained from either a centered log-radiance image or a centered log-reflectance image are the same:

E↵ect of the reflectance correction on the reduced scores

The scores obtained from the log-radiance spectra matrix X (L) using D can thus

Dimension reduction

In this section we present di↵erent aspects of the dimension reduction method DROP-D using data sets RA1 and RB1. We first illustrate the collinearity of the scatter matrices eigenvectors in the variable space. Secondly, we show DROP-D in action step by step and illustrate the e↵ect of removing the within-class variability on the class separability with data set RA1. Thirdly, we show, using data set RA1, that the number of within-class axes to remove can be tuned without crossvalidation by comparing calibration and cross validation results. Then, we show, using data set RB2, that only calibration data can be used to select every DROP-D parameters. We also illustrate, using an artificial data set, that by removing information DROP-D cannot learn a class structure when there is none. Finally, we compare DROP-D classification performances with PCA-LDA, Nullspace LDA (NLDA) and PLS-LDA.

Collinearity in R P

In order to assess the collinearity issue in the variable space, let us first have a look at the eigenstructure of the total, between-and within-class scatter matrices for both data sets. In Figure 4.6 and Figure 4.7 are represented the eigenvalue plot and the main eigenvectors for data set RA1 and RB1 respectively. The angle between each combination of these eigenvectors is also given is Table 4.1 and Table 4.2.

The eigenvalue plot illustrates that the maximum number of eigenvectors for B is C 1, where C is the number of di↵erent classes. For RA1, in which three classes have to be discriminated, there are thus only 2 non-zero eigenvalues (Figure 4.6).

Similarly, for RB1 there are only 3 non-zero eigenvalues (Figure 4.7).

For W and T, the number of non-zero eigenvalue is at maximum min(P 1, N),

where P is the number of variables and N the number of observations in the training set. In our case, for both data sets, we have more observations than variables. Therefore, these matrices ranks are numerically full. However, they cannot be inverted because of their bad conditioning (ratio of the maximum to minimum eigenvalue). The actual rank is thus only around 10 to 15, the remaining is only due to observation noise. We thus compared our approach with two of the leading state-of-the-art spectralspatial methods. Every method presented here uses spatial information in addition to a purely spectral classification method. Therefore, in order to assess the synergy of the conjoint use of spectral and spatial information, we also present the results obtained without using spatial information.

We thus compare Support Vector Machine (SVM), SVM with Edge Preserving Filtering (SVM-EPF) [START_REF] Kang | Spectral-spatial hyperspectral image classification with edge-preserving filtering[END_REF], Logistic Regression via Splitting and Augmented Lagrangian (LORSAL) [START_REF] Li | Discriminative Image Segmentation : Applications to Hyperspectral Data[END_REF], LORSAL Multilevel Logistic (LORSAL-MLL) [START_REF] Li | Spectral-spatial hyperspectral image segmentation using subspace multinomial logistic regression and Markov random fields[END_REF], and our methods DROP-D and DROP-D-AR.

We first compare these six methods in terms of classification error for an increasing number of training samples per class. Because classification results highly depend on the choice of the training set (especially for small sets), the selection was performed randomly and repeated 30 times for each number of training samples.

Then, for each selection and each number of training samples, every model was trained and tuned using cross-validation. The classification error was evaluated on the samples that were not used for training. Figure 4.23 shows the results obtained with this data set and the six tested classification methods, where solid lines are used for methods using both spectral and spatial information, and dashed lines are used for methods using only spectral information. Our method proved to use e↵ectively the spatial information: SVM gives better results than DROP-D, while DROP-D-AR is equivalent to SVM-EPF.

We also compare classification maps obtained by the six methods using 100 randomly selected samples per class in Figure 4.24. We observe that using spatial in- 

Using log-radiance image for classification

The translation illustrated between reflectance and radiance image is very large.

When dealing with radiance images, depending on weather conditions and hour of the day, the di↵erences in radiance images can be a lot smaller.

For example in Figure 4.26 we show the di↵erences between the two images of data set A that were acquired with one hour di↵erence. Recall that A2 and A3 come from the same image and thus the same translation versus A1 is obtained.

Note the class 'weed' (red) missing for data set 3 in the scatter plot. Because this translation is mostly along the soil-vegetation separation axis (PC1), classes tend to be more easily classified as wheat. As a result, the obtained classification map have green pixels even for the soil (which is normally easily discriminated).

In Figure 4.27 we similarly show the translation occuring between the log-radiance image LB1 and LB2. With this data there are only two images but the optimal number of discriminant DROP-D axes was 3. Here, pixels in the classification maps are shifted more toward the 'deciduous' class.

Translation estimation

In this section, we illustrate the di↵erent steps of the approach proposed in the previous chapter in order to estimate the translation. Every step of the method is represented for both data sets in Figure 4.28 and Figure 4.29 for data sets A and B respectively.

For data set A, the estimation of each class is correctly performed by the EM algorithm. For LA3, the missing class was not problematic for EM which found a third class with a large variance and center next to the soil mean.

Then, the cross correlation between LA1 and the two other images lead to a unique maximum in each case. Because LA2 and LA3 come from the same image, the same lighting di↵erence should be found with LA1. On these data, which were represented on a 200 ⇥ 200 pixel image, the di↵erence between LA2 and LA3 translation was only of 4 pixels horizontal and 1 pixel vertical. This shows the robustness of the method even in presence of a missing class.

Finally, from a theoretical point of view, it would be interesting to compare the cleaning made by DROP-D with the chemometric methods developed for regression analysis such as Orthogonal Signal Correction for example.

We implemented the spectral-spatial approach using the original version of Anisotropic Di↵usion in conjunction with the supervised dimension reduction. Hence, as the image processing community has worked extensively in the field of spatial regularization, investigating more sophisticated approaches would surely be beneficial.

Also, observing the residual maps (di↵erences before and after regularization), some obtained patterns in terms of textural analysis seem of potential interest to keep enhancing the use of spatial information in the classification process. These textural features could be added to the process as input of a classifier in the same way as spectral data.

Finally, with the translation estimation, several improvements can be made in the approach. For instance, as a first step, alternatives to the very costly crosscorrelation to find a translation would be beneficial (using Fourier Transform for example). Then, using the spatial information (i.e., shapes in the classification map as a feedback) in addition to the correlation information should help to find the translation when classes do not cluster well in the reduced space. Finally, solutions to deal with non-Lambertian objects would be highly beneficial since even reflectance correction cannot accurately deal with this particular case. We do believe that this approach using a logarithm transformation as a pre-processing could also be applicable to deal with non-Lambertian cases. In this case each class would translate independently from the other, but with the same covariance matrix. Thus, using non-rigid registration techniques by matching the covariance could possibly be performed on some cases. La première étape consiste à supprimer de X les b directions principales de la variabilité inter-classes, tel que :

Dans la seconde étape, la variabilité intra-classe est calculée sur X ? b , Y . Ensuite, les w directions principales liée à cette variabilité intra-classe (W ⇤ ) sont éliminées suivant l'équation :

La troisième étape consite à extraire les Q directions principales de X clean qui sont données par :