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Pr. Grégoire Mercier Telecom Bretagne Rapporteur

Pr. Jocelyn Chanussot INP Grenoble Examinateur

Dr. Aoife Gowen University College Dublin Examinatrice

Dr. Olivier Strauss Université Montpellier 2 Examinateur

Dr. Jean-Michel Roger Irstea, UMR ITAP Examinateur

Dr. Nathalie Gorretta Irstea, UMR ITAP Encadrante

Dr. Gilles Rabatel Irstea, UMR ITAP Directeur





“Be as you wish to seem.”

Aristote





Acknowledgements

I would first like to thank the UMR ITAP from Irstea and its Director, Tewfik Sari,

for providing such an amazing working environment for research. This PhD thesis

was directed by Gilles Rabatel, co-directed by Olivier Strauss and supervised on

a day-to-day basis by Nathalie Gorretta, I really want to thank all of you to have

trusted and supported me in order to achieve this PhD.

I also want to thank the other members of my PhD committee, Jean-Michel Roger,

Ryad Bendoula, Bruno Tisseyre and Tewfik Sari, who, thanks to their knowledge,

discussion and understanding, helped me in formalising and orientating this thesis

work. The working environment would not have been the same without the team

spirit that we had in the COMIC team, wonderfully managed by Alexia Gobrecht.

I would like to thank Tom Fearn (University College London) and Grégoire Mercier
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Introduction
Hyperspectral imaging devices can record images with a very detailed spectral

information for each pixel. The spectral information provided by these sensors

been related to the biochemical properties of the measured sample, they have been

used extensively for non-destructive measurement in the scientific and industrial

fields for the last decades. At Irstea, and especially in the research unit ITAP, this

spatialized spectral information allows to increase the characterization possibilities

for environment and agrosystems already o↵ered by spectrometers and classical

color cameras. Indeed, while the spectral dimension provides a detail source of

information regarding crop state (e.g., physiological, pathological), the spatial

information helps to retrieve structural information (development stage, presence

of weed, ...). The implementation of HS technology and the processing of the

obtained data are however complex and thus require adapted procedures.

In the framework of classification, the biochemical di↵erences of spectral pixels can

be exploited to create a classification model that can assign each pixel of the HS

image to a unique label. For supervised classification, training samples of known

labels are required to define the assignment rule.

At the beginning of this thesis, the specific context of weed discrimination within

wheat crops was investigated. In particular, a comparison of di↵erent spectral pre-

treatments with respect to classification methods was proposed in the context of in-

field proximal detection. However, it appeared that some of the issues encountered

could be addressed in a more generic way.

As a result, in the second part of this thesis, some more general issues regarding

supervised classification of hyperspectral image were studied and constitute the

bulk of the present document. For instance, three main contributions are devel-

oped in the following of this thesis. The first one is a new supervised dimension

reduction method that can deal with the high dimensionality and collinearity of

spectral data. The second one is a spectral-spatial approach that uses a spatial

regularization method in combination with a supervised dimension reduction in

order to optimize its e↵ect on classification performances. The third and last one

is an automatic method that allows radiance hyperspectral images to be classified

even with varying lighting conditions and thus avoids the reflectance correction.

xvi
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Notice that other methods have also been investigated, that we have chosen not

to include in the present document. In particular, a collaboration with Pr. Dinesh

Kant Kumar and Dr. Marc Sarossy at the Royal Melbourne Institute of Tech-

nology of Melbourne, Australia, was accomplished in order to develop a multi-

resolution approach for spectral analysis. All these contributions can be found in

Annex A.

This PhD manuscript is organized in five chapters. The first chapter introduces

the background of supervised classification of hyperspectral images. The most

important descriptions and definitions related to hyperspectral images are given.

Then, the specific background regarding supervised classification is detailed. At

the end, the main issues hyperspectral image classification methods have to face

are summarized, i.e., the high dimensionality and collinearity of spectral data, the

way of introducing spatial information in the classification process and the main

correction stages to obtain a reflectance hyperspectral image. The second chapter

gives a state-of-the-art of the main methods that tackle the previously mentioned

issues. It finally allows to statuate on the drawbacks in existing approaches. In

the third chapter, we propose three original contributions to tackle these issues.

The fourth chapter is dedicated to the validation of the proposed approaches by

presenting some results with real examples. Finally, the fifth chapter concludes

this thesis by synthesizing the most important points of the developed approaches

and proposes some perspectives and future research directions to continue this

work.
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This introductory chapter focuses on generic issues associated with classification of

objects using hyperspectral imagery. We first give some background on hyperspec-

tral imagery and explain the type of information it can bring in a general context.

We then give main vocabulary and definition of classification, and detail some

popular classification methods. The main issues associated with classification of

hyperspectral images are finally given, i.e., the high-dimensionality and collinearity

of spectral data, the use of spatial information in the classification process and the

image reflectance calibration.

1.1 Hyperspectral imaging

1.1.1 Light-matter interaction

The interaction between electromagnetic (EM) waves and matter has for a long

time been used to retrieve information about objects. Depending on the wave-

length, di↵erent information can be retrieved. For illustration, Figure 1.1 repre-

sents the electromagnetic spectrum classified by range of wavelengths.

Figure 1.1: Electromagnetic spectrum [NASA, 2010].

Most ranges of the EM spectrum are now widely used in everyday life. For exam-

ple, X-ray waves due to their high penetration depth in objects are now used daily

for medical diagnoses and in airport security to check luggage contents. Ultra-

violet (UV) waves are used to reveal fake notes due to fluorescence that re-emits

light in the visible domain. Human eyes use the response of objects in the visible

domain to perceive di↵erent colors. Near-infrared (NIR) waves are used to distin-

guish between vegetation and soil in agricultural applications [Brown and Noble,
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2005], measure fat content in food [Osborne et al., 1984], inspect fruit quality

[Nicoläı et al., 2007] and to measure the amount of oxygenated blood in retinal

vessels [Schweitzer et al., 1999], etc. Far-infrared or thermal-infrared is used for

atmosphere monitoring [Clerbaux et al., 2009] and for target detection in defense

applications [Schwartz et al., 1996]. Finally, because the atmosphere is very trans-

parent in this domain, micro and radio waves are used for telecommunication and

radar for target detection (Figure 1.1).

For our environmental and agricultural applications, we mostly focus on the vis-

ible and near-infrared (VNIR) part of the EM spectra that ranges from 400 nm

to 2500 nm. Note that at these wavelengths, the term light is usually employed

instead of EM wave. The VNIR spectral region is particularly interesting because

most organic constituents have specific absorption bands [Williams and Norris,

2001]. For instance, Vigneau [2010] measured the nitrogen content in wheat leaves

and Gorretta et al. [2006] detected defaults of wheat kernels using a VNIR hyper-

spectral (HS) camera. For similar reasons, the VNIR region is also widely used in

the food industry [Nicoläı et al., 2007] and medicine [Lu and Fei, 2014].

When light interacts with an object, three di↵erent interaction modes are usually

described:

Transmission is when light passes through the object. The change in direction

that occurs at the interface is governed by Fresnel equations and depends on the

optical index of the object’s material.

Reflection which can be either specular or di↵use depending on the nature of the

interface. Di↵use reflection is when the incident light is reflected in all directions

when it goes through a media composed of fine particles or when it is reflected on

a rough surface. Specular reflection corresponds to the reflection of the incident

light in a unique direction. The direction is governed by Descartes Law: that is

the angle of incidence equals the angle of reflection with respect to the normal of

the surface.

Absorption is when the object absorbs a part of the received energy. The ab-

sorption corresponds to molecular vibration, rotation, twisting and bending that

involves specific energy levels (and thus wavelengths), which are characteristic of

object chemical composition.

The proportion of each interaction mode depends on many parameters such as par-

ticle sizes, surface state, presence of absorbing compounds in the studied object.
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Figure 1.2: The three interaction modes between EM wave and matter

The fundamental uses of light-matter interaction in spectroscopy is through ab-

sorption. Indeed, from the Beer-Lambert Law, we know that absorption is related

to the concentration of absorbing compounds. The Beer-Lambert Law expresses

the absorption of a material at the wavelength � as:

A(�) = � log
I(�)

I0(�)
= ✏(�).l.C (1.1)

where the ratio I0(�) and I(�) are respectively the incident and transmitted beam

intensities as a function of the wavelength �. The attenuation coe�cient ✏(�) is

an intrinsic property of the object, the path length l is the object’s thickness, and

C is the chemical concentration of absorbing species. This relation is very useful

in analytical chemistry since by only knowing l and ✏(�), the concentration can be

retrieved by measuring light intensity I(�) that goes through the material.

When there is no possible way of measuring through the object, the surface di↵use

reflectance can also be used to retrieve the chemical concentration of absorbing

species, but the relation is more complex as described in [Dahm and Dahm, 2001].

The reflectance or reflectivity of the surface is thus characteristic of the observed

objects. Therefore, measuring the reflectivity of the object’s surface in function of

the wavelength defines a reflectance spectrum, which is often referred to as the ob-

ject’s spectral signature. For example, in Figure 1.3 are represented the reflectance

spectra of four di↵erent objects. Note that it is these di↵erences in spectral re-

flectance that are used to classify objects through spectrometry or hyperspectral

imaging.
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Figure 1.3: Four vegetation reflectance spectra plotted as a function of the
wavelength in the VNIR domain.[Smith 2001 Microimage]

1.1.2 Definitions

Hyperspectral imaging, also known as chemical imaging and imaging spectroscopy,

is a relatively recent imaging technology that enables the acquisition of both spec-

tral and spatial information of targeted objects. Hyperspectral (HS) images are

multivariate images than can be represented as data-cubes with two spatial di-

mensions (x, y) and one spectral dimension (�) (Figure 1.4). Each spectral pixel

in the resulting image contains a sampled spectral measurement of radiance, which

can be interpreted to identify the material presents in the scene.

This representation is usually seen in two equivalent ways:

• From a spectrometric point of view, the HS image content is seen as spatial-

ized spectral information: spectrometers are spatially resolved.

• From the image processing point of view, the HS image content is seen as

spectralized spatial information: image pixels are spectrally resolved.

Either way, each spatial position in the HS image is associated to a spectrum that

contains chemical information of the imaged object.

Note that originally HS imaging was developed for large scale remote sensing of

environment using satellite as an improvement of multi-spectral imaging [Goetz
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Figure 1.4: Hyperspectral image concept. Multi-variate image with simulta-
neous access to spectral wavebands over a large area in a ground-based scene.
The graphs in the figure illustrate the spectral variation in reflectance for soil,

water, and vegetation. (from Shaw and Burke [2003])

et al., 1985]. Therefore, some definitions of hyperspectral imaging due to [Kruse,

2000] and [Chang, 2007] generalized this concept of multi-spectral imaging: Multi-

spectral devices can record bands of di↵erent spectral widths that can be irregu-

larly distributed. HS imaging devices record contiguous, regularly distributed and

narrow spectral bands, which leads to an almost continuous spectral measurement

for each pixel.

Grahn and Geladi [2007] similarly defined a HS image as a type of multivariate

image that has these two properties:

• many wavelengths or other variable bands, often more than 100;

• the possibility to express a pixel as a spectrum with spectral interpretation,

spectral transformation, spectral data analysis, etc
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Figure 1.5: From multi-spectral images to hyperspectral images. (from http:

//rst.gsfc.nasa.gov/)

Gowen et al. [2007] summarized the possibilities o↵ered by HS images compared

with classical vision techniques and spectroscopy measures. This summary is

presented in Table 1.1.

Table 1.1: Comparison of RGB imaging, NIR spectroscopy (NIRS), multi-
spectral imaging (MSI) and hyperspectral imaging (HSI). Yes (Y), Limited (L)

and No (N). (Modified from [Gowen et al., 2007])

Feature RGB NIRS MSI HSI
Spatial information Y N Y Y
Spectral information N Y L Y
Multi-constituent information L Y L Y
Sensitivity to minor components N N L Y

1.1.3 Acquisition

There are four main HS image acquisition techniques that di↵er on the way to fill

the data-cube. These four techniques, i.e., point-scanning, line-scanning, spectral-

scanning and non-scanning are schematically represented in Figure 1.6. Each has

advantages and drawbacks that are context and application dependent.

Point-scanning or whisk-broom is a 2-dimensional spatial scanning technique

that uses a spectrophotometer. With this technique, all wavelengths are acquired

simultaneously but for only one pixel at a time. This measure is usually accurate

in terms of spectral resolution but often less precise and slower in the spatial

directions because of moving parts involved in the scanning.

http://rst.gsfc.nasa.gov/
http://rst.gsfc.nasa.gov/
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Figure 1.6: Illustration of the four main technologies for hyperspectral image
acquisition.(from [Li et al., 2013b])

Line-scanning or push-broom corresponds to a 1-dimensional spatial scanning

technique that uses a 2-dimensional sensor. This sensor records one spatial and

one spectral dimension at a time. The acquisition of other lines is performed

either by moving the sensor over the objects (plane, drone or satellite in remote

sensing) or by moving the objects (conveyor belt, translation stage in laboratory

or industries).

Spectral-scanning, also called staring or area imaging corresponds to the ac-

quisition of several 2-dimensional images at di↵erent wavelengths. Mostly used in

laboratories, the stationary object is spectrally scanned by exchanging one filter

after another. Wavelength scanning can be made by using either a Fabry–Pérot in-

terferometer or a tunable filter (Acousto Optical Tunable Filter or Liquid Crystal

Tunable Filter) [Gat, 2000]. The main advantages of this technique are to be able

to choose only the spectral bands of interest and to have a potentially high im-

age resolution. However, if the object is not perfectly still during the acquisition,

image channel misregistration creates spectral smearing.

Non-scanning, snapshot or one-shot imaging technique records all dimensions of

the HS data cube simultaneously [Hagen et al., 2012, Hagen and Kudenov, 2013].

The data cube is acquired using the perspective projection of the data cube and

reconstructed without any moving part involved in the process. The acquisition
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time is thus largely reduced, but the image resolution is usually worse than with

the other approaches.

1.2 Supervised classification

In this section, we present the general context of classification, with its most

important definitions and hypotheses. Some of the most popular classification

approaches are also given. This thesis focuses only on supervised classification.

1.2.1 Definitions and hypotheses

The objective of classification is to identify the nature of objects in terms of classes

based on some characteristics or features. In supervised classification, all classes

are assumed to be known and mutually exclusive. Some observations for each class

are also supposed to be available to train a model. These observations that form

the so-called training samples are manually attributed, which necessitate the prior

establishment of a ground truth (GT).

With a HS image, features can potentially take multiple forms, e.g., raw spectra,

reduced spectral variables, object shapes, textures, or some combinations of these.

Let us define a feature space X 2 RP and a finite set of all possible classes

Y = {Y1, · · · ,YC}, where Yc denotes one of the C classes. The N observations of

the training set are gathered in a feature matrix X = {xi 2 X} and its associated

class or label matrix Y = {yi 2 Y}, where i = 1, · · · , N . With this notation, xi

corresponds to the ith feature vector and yi to its associated class vector. The

class vector is conveniently coded in ‘dummy’ or disjunctive fashion, e.g. , y =

[0 0 1 0 0]T codes class 3 among 5.

Classification consists in assigning each feature vector to one of the C classes

of interest using a function g : X 7! Y . The assignment is hoped to be made

as accurately as possible using only the available data in the training set. The

objective of classification is to generalize well so that any unseen feature vector

x is also well classified. This corresponds to maximizing the posterior probability

which is the probability to obtain a class given a feature vector Pr(Yc | x). Using
the Bayes Theorem, the posterior class probability can be computed using the
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class conditional density Pr(x | Yc), the prior class probability Pr(Yc) and Pr(x)

as:

Pr(Yc | x) = Pr(x | Yc)Pr(Yc)

Pr(x)
(1.2)

Note that the class conditional density taken as a function of Yc is also called

likelihood function and is often noted fc(x). Similarly, the prior probability of

being in class c is also often noted ⇡c. The denominator Pr(x) =
P

c Pr(x |
Yc)Pr(Yc) is the same for every class and is thus usually left apart for further

computations. We thus have the classical relation:

posterior / likelihood⇥ prior (1.3)

The function g⇤ that maximizes the posterior class probability:

g⇤(x) = arg max
c

Pr(Yc | x) (1.4)

is called Bayes classifier and is the best classifier over all measurable functions g

for the zero-one loss function [Fan et al., 2011]. This loss function given by

L
�
y, g(x)

�
=

(
0, g(x) = y

1, g(x) 6= y
(1.5)

is commonly used in classification since it corresponds to the computation of the

misclassification rate.

The risk of misclassification is defined as:

risk(g) = E
h
L
�
y, g(x)

�i
(1.6)

where E is the mathematical expectation for every x. Because classes are assumed

to be mutually exclusive, this risk is decomposed as:

risk(g) = E
"

CX

c=1

L
�
y, g(x)

�
Pr(Yc | x)

#
(1.7)

Using the zero-one loss function, the expected risk becomes:

risk(g) = 1� E
�
Pr(Yc | x)

�
(1.8)
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which means that the minimum risk is obtained for the Bayes classifier and is thus

called Bayes risk. When g⇤ can be computed, risk(g⇤) is used as a benchmark for

other classifiers .

The classification procedure is usually done in two successive stages [Bishop, 2007].

(1) The inference stage consists in learning the posterior class probability using the

available training samples. It can be done in two di↵erent ways which are used to

categorize classification methods [Bishop et al., 2007]. Generative classifiers learn

both the class likelihood and the class prior probability and use Bayes Theorem to

retrieve the posterior probability whereas discriminative classifiers directly learn

the class posterior probability.

(2) The decision stage uses this posterior class probability to make the optimal

class assignment.

Classification methods di↵er on the choice for the inference model: linear vs. non-

linear, parametric vs. non-parametric and on the decision rule.

(a) Generative classifiers model
each class probability density func-

tion

(b) Discriminative classifiers di-
rectly model the posterior class

probability.

Figure 1.7: Conceptual visualisation of the two main classification approaches.

1.2.2 Generative classifiers

Generative classifiers model the posterior class probability using Bayes rule; that is

by modeling the likelihood function by making the assumption of the distribution

for each class and estimating the class prior probability. The prior is usually

estimated by either the empirical proportion b⇡c = Nc/N , where Nc is the number

of training sample of class c, or, if no assumption on the proportion is preferred,

given by b⇡c = 1/C.
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Depending on the classifier, di↵erent assumptions are made to estimate the likeli-

hood function.

The Naive Bayes Classifier makes a strong conditional assumption of indepen-

dence of x variables for the estimation of the likelihood function.

Pr(x | Yc) = Pr(x1, · · · , xP | Yc) =
PY

i=1

Pr(xi | Yc) (1.9)

This is a very strong assumption, especially with spectral data that are smooth

functions of the wavelength for which the variables are clearly not independent of

one another. It however allows a drastic simplification of the complexity and can

potentially be used with transformed variables. Using the independance assump-

tion, the classification function is simply given by:

g(x) = argmax
c

⇣
⇡c

PY

i=1

Pr(xi | Yc)
⌘

(1.10)

Linear Discriminant Analysis (LDA) makes the assumption that class densi-

ties are multivariate Gaussian with class mean vectors µc = E
⇥
x | Yc

⇤
=

⇣
E
⇥
x1 |

Yc

⇤
, · · · ,E⇥xP | Yc

⇤⌘T

and equal covariance matrices ⌃ = ⌃c = E
⇥
x � µc |

Yc

⇤
E
⇥
x�µc | Yc

⇤T
for every class c 2 Y . For an observation x that belongs to the

class c, its likelihood function is given by:

fc(x) = (2⇡)�P/2|⌃|�1/2 exp
�� 1

2
(x� µc)

T⌃�1(x� µc)
�

(1.11)

Because it is usually numerically more stable and does not change the outcome,

the negative of the log-likelihood:

`c(x) = �2 log
�
fc(x)

�
= P · log(2⇡) + log

�|⌃|�+ (x� µc)
T⌃�1(x� µc) (1.12)

is usually minimized. The two first terms on the right hand side are constant

with respect to the class c. Therefore, maximizing the likelihood corresponds to

minimizing the Mahalanobis distance [De Maesschalck et al., 2000], which is given

by:

dM(x,µc,⌃) =
q
(x� µc)T⌃

�1(x� µc) (1.13)
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Note that when the covariance matrix is the identity matrix ⌃ = I, the Maha-

lanobis distance is equivalent to the Euclidean distance between x and µc:

dE(x,µc) =
p

(x� µc)T(x� µc) (1.14)

It can be shown by expanding the term (x � µc)
T⌃�1(x � µc) that LDA defines

linear class boundaries in the feature space [Fukunaga, 1990].

To get the posterior probability, both the prior and the Gaussian parameters for

the likelihood function have to be estimated from the training samples.

Class mean vectors and the covariance matrix are estimated from the training

samples as:

bµc =
1

Nc

NcX

j=1,Yj2Yc

xT
j (1.15)

b⌃ =
1

N

CX

c=1

NcX

j=1,Yj2Yc

(xT
j � bµc)(x

T
j � bµc)

T (1.16)

Minimizing the negative log-posterior probability gives the LDA classification func-

tion for any input vector x:

gLDA(x) = argmin
c

⇣
(x�cµc)

T b⌃
�1
(x�cµc)� 2 log( b⇡c)

⌘
(1.17)

Note that gLDA is the best classifier for the zero-one loss function under the as-

sumption that Pr(x | Yc) follows a Normal distribution N (cµc, b⌃).

Quadratic Discriminant Analysis is similar to LDA but the constraint on equal

class covariance matrix is relaxed. The likelihood and negative log-likelihood are

thus written as:

fc(x) = (2⇡)�P/2|⌃c|�1/2 exp
�� 1

2
(x� µc)

T⌃�1
c (x� µc)

�
(1.18)

and,

`c(x) = �2 log
�
fc(x)

�
= P · log(2⇡) + log

�|⌃c|
�
+ (x� µc)

T⌃�1
c (x� µc) (1.19)

for which it can similarly be shown that the boundaries are quadratic functions in

the feature space [Fan et al., 2011]. The C class covariance matrices are estimated
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from the training samples as:

b⌃c =
1

Nc

NcX

j=1,Yj2Yc

(xT
j � bµc)(x

T
j � bµc)

T (1.20)

Minimizing the negative log-posterior probability gives the QDA classification

function for any input vector x:

gQDA(x) = argmin
c

⇣
(x�cµc)

Tc⌃c

�1
(x�cµc) + log

�|c⌃c|
�� 2 log( b⇡c)

⌘
(1.21)

which is the best classifier for the zero-one loss function under the assumption that

Pr(x | Yc) follows a Normal distribution N (cµc,c⌃c).

Note on Fisher’s Linear Discriminant (FDA)

This discrimination approach developed by Fisher [1936] and extended by Rao

[1948] does not require Normally distributed classes nor equal class covariances

as in LDA. It was indeed developed as a dimension reduction method that finds

the linear subspace that maximally separates the class centroids while minimiz-

ing the class spread. In this subspace, whose maximum dimension is given by

min(C � 1, P ), classes are thus better separated than in the original space, which

in turn leads to higher classification performances [Hastie and Tibshirani, 1996].

In the feature space, the directions D that best discriminate classes, maximize the

variance ratio of between- to within-group scatter, i.e.,

DTBD

DTWD
, (1.22)

with W = N b⌃, B =
PC

c=1 Nc(cµc � bµ)(cµc � bµ)T and where bµ = 1
N

PN
i=1 x

T
i is the

mean vector over all samples.

These directions are given by the min(C�1, P ) leading eigenvectors of the matrix

W�1B. It can however be shown [Hastie and Tibshirani, 1996] that maximizing

the likelihood of LDA with some rank constraints on the mean vector matrix is

equivalent to this Fisher’s Linear Discriminant.
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1.2.3 Discriminative model

Discriminative models learn the boundaries between classes without estimating

class likelihood as illustrated in Figure 1.7b.

K-Nearest Neighbors (KNN) [Cover and Hart, 1967] is one of the simplest

non-parametric discriminative classifier. KNN tends to construct the posterior

class probability Pr(Yc | x) without making any statistical assumption on class

distributions. KNN finds the K-closest neighbors of a given vector x and uses a

majority of voting to assign the class label. K is set as a positive integer that is

usually small, e.g., between 1 to 7 are typical values. Cross-validation procedure

can help to chose the optimal value that depends on the required complexity of the

classification frontier. Note that the term ‘closest’ depends on the chosen distance,

which is usually either the Euclidean distance, or, more frequently with spectral

data, the Spectral Angle [Yuhas et al., 1992].

KNN naturally manages non-convex and non linearly separable classes but is how-

ever relatively slow and requires to store the whole training samples for classifica-

tion.

The Support Vector Machine (SVM) is a linear binary classifier that aims

at finding the furthest separating hyperplan to the closest point in both classes

directly in the feature space [Vapnik, 1998]. In SVM, class labels are noted Yi =

±1. The separating hyperplan HP 2 RP is defined by its normal vector w 2 RP

and its bias b 2 R:
wTx+ b = 0, 8x 2 HP (1.23)

The distance from x to HP is given by:

f(x) =
| wTx+ b |
k w k (1.24)

In the linearly separable case, the optimal hyperplan parameters are given by:

argmax
w,b

⇣ 1

k w k min
i

�
Yi(w

Txi + b)
�⌘

(1.25)

This complex optimization problem can be broken into a simpler quadratic opti-

mization argmin
w,b

�
1
2 k w k2

�
under the inequality constraints Yi(wTxi + b) >

1, i = 1, · · · , N . The optimal solution is then computed using Lagrange multipli-

ers [Schölkopf and Smola, 2002].
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Note that in some linearly non-separable cases, an additional term ⇠i, i = 1, · · · , N
is added to the optimization problem to allow some of the training vectors to lie

in the ‘wrong’ side of the separating hyperplan [Vapnik, 1998].

However, the key for the success of SVM is that in case of non-linearly separable

classes, the use of the Kernel Trick (see Section 1.2.5) is directly applicable.

1.2.4 Multi-class

Binary classifiers such as SVM do not naturally enable multi-class classification

problems to be solved. Two strategies are commonly considered to solve this issue:

One-versus-all strategy creates C binary classifiers gc, c = 1, · · · , C during the

training phase which distinguish each class from all the other ones. A new ob-

servation x is then classified with the label of the class of highest score y =

argmaxc
�
gc(x)

�
.

One-versus-one strategy creates C(C�1)/2 binary classifiers to distinguish each

pair of class i and j. The classification is given by y = argmaxi
�P

j 6=i gi,j(x)
�
.

One-versus-one strategy requires more classifiers to be trained but is usually pre-

ferred as C is rarely large enough to be computationally too demanding. One-

versus-one strategy also enables less complex class separators to be found.

1.2.5 The Kernel Trick

Linear classifiers cannot, by definition, properly classify non-linearly separable

classes directly in the feature space. In such cases, if the classifier only depends

on dot products, it can benefit from the so-called Kernel Trick [Vapnik, 1998].

It consists in mapping the vector from the feature space to a higher dimensional

space in which classes become linearly separable. The mapping is performed by

a kernel function that has to respect Mercer conditions [Vapnik, 1998]. The two

most used Kernels are:

• Polynomial: �(x,x0) =
�
x · x0 + c

�a

• Gaussian: �(x,x0) = exp
�� k x� x0 k2 /(2�2)

�
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where c, a, and � correspond to the kernel parameters that have to be tuned. The

great idea behind this Kernel Trick is that computations do not have to be made

explicitly in the high dimensional space [Schölkopf and Smola, 2002].

1.2.6 Training and assessing a classifier performance

When setting a classification model the question of complexity is a topic of major

interest that has been discussed thoroughly in [Esbensen and Geladi, 2010]. The

core idea is that increasing the complexity of a model by only observing the error

made with the training data is prone to overfitting and has to be avoided. A good

model should be complex enough to fit well the training set as well as be generic

enough to classify accurately also an independent test set that would be acquired

in the same experimental conditions. This is illustrated in Figure 1.8. As the

model complexity increases better performances are obtained in both the training

and the test set until a certain trade-o↵ complexity region is reached. In this

region, a minimum error is obtained for the test set while the training set error

keeps decreasing. This particular region corresponds to the best trade-o↵ between

fitting to the training set and generalizability to unseen data. A more complex

model loses in generalizability because the training set ‘noise’ is learned instead of

real discriminatory features. In this figure, examples of classification boundaries

are also given for a low, optimal and too complex models.

As it is often di�cult to get independent test samples, internal cross-validation

(CV) is often used to assess the model complexity using only the training sam-

ples. The simplest CV is to keep a part of the training set apart and use it as a

validation set. Another technique, called leave-p-out is a CV technique for which

p observations are left out to test the model that is build on the N � p remaining

training observations. This process is repeated with p other observations until all

observations have been left out only once.

The CV procedure is useful to find the optimal model complexity and to tune its

parameters. However, in order to provide an estimation of the predictive ability of

the trained classifier on future samples acquired in the same experimental condi-

tions, it is highly recommended to use an independent test set that has not been

used yet.
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Figure 1.8: Illustration of the overfitting issue in classification.

1.3 Classification issues with HS data

The type and amount of information provided by HS data have to be considered

when setting up a classification. For classification purposes, although the large

number of spectral bands provided by the HS camera also means potentially more

useful discriminatory information, there are some issues with high dimensional

spaces. The spatial information also has to be considered for optimal results. The

acquired image has to be corrected from di↵erent nuisance e↵ects before getting a

reflectance image that is related only to the object chemistry.

1.3.1 Problems with the spectral dimension

There are several problems related to the use of spectral data for classification pur-

poses, which are due to the fact that we try to model a low-dimensional ‘structure’

embedded in a high-dimensional space using only few observations. In practical

applications, it is usually impossible to use generative classifiers because of the dif-

ficulty associated to the statistical estimation of Pr(x | Yc) as the dimension of x

increases. Discriminative classifiers, although generally directly applicable to high
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dimensions, are a↵ected as well by the high dimensionality in terms of robustness

because the space emptiness makes the class boundaries di�cult to learn.

The high dimensionality of spectral data is subjected to the so-called curse of

dimensionality, first named by Bellman and Kalaba [1965] to emphasize their

dynamic search strategies for the estimation of multivariate functions. Bellman

stated that, as the number of dimensions (P ) increases, the number of evaluations

needed to estimate a function on a regular grid was correspondingly increasing to

the power 2P . An illustration from Bishop’s book on pattern recognition [Bishop,

2007] illustrates this phenomenon on one to three dimensions (Figure 1.9).

A trivial example, in which x is a Boolean vector of dimension 30, requires the

estimation of more than 3 billion parameters [Tom M., 2005]. Typical HS clas-

sification problems involve vectors of dimensions of more than a hundred. The

estimation thus requires an amount of observations that is unmanageable for any

possible application.

Figure 1.9: Illustration of the Curse of dimensionality, showing how the num-
ber of regions of a regular grid grows exponentially with the dimensionality D
of the space. For clarity, only a subset of the cubical regions are shown for D

=3. (from [Bishop, 2007]).

Reference papers that detail the high-dimension issues are: [Donoho, 2000] from

a general pattern recognition point of view; [Jimenez et al., 1998] from a HS and

multi-spectral point of view; [Tormod and Bjorn-Helge, 2001] from a chemometrics

point of view. In the following, we briefly state and illustrate the main problems:

Geometry in high dimensional spaces cannot directly be translated from the

usual 3D space to higher dimensions [Kendall, 1961]. Therefore, our intuition is

often not right, which does not help in building new methods. A classical example

is that the diagonals in high dimensional spaces tend to be orthogonal to the

Euclidean coordinate axis as the space dimensionality increases (Figure 1.10a).
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The cosine of this angle, given by cos(✓P ) = ±(P )�1/2, approaches zero as P

increases. Thus, projecting some spectra orthogonally to the diagonal vector,

which is done when averaging a spectrum [Boulet and Roger, 2012], projects them

close to the zero coordinate [Jimenez et al., 1998], losing localization information

in the original space.

Another geometrical phenomenon that happens in high-dimensional spaces is called

the concentration of the measure, which states that high dimensional regions are

mostly empty because data tend to concentrate in a thin layer at the boundary

of the regions. For instance, it was demonstrated that as the dimensionality P of

the space increases:

1) the volume of the hypercube concentrates in its corners (Figure 1.10b).

2) the volume of a hyperellipsoid concentrates in its outside shell (Figure 1.10c).

3) the Normally distributed data tend to concentrates in the tail of the distribu-

tion, thus losing its bell shape (Figure 1.10d).

Each observation neighborhood in the feature space is thus likely to be empty.

Hence, statistical density estimations have to be made using large bandwidths

therefore losing fine spectral details. However, because high dimensional spaces

are mostly empty, a lower dimensional structure containing the information is

likely to exist.

Statistical estimations require an increasing number of training samples as the

dimensionality increases. Hughes [1968] proved that with a limited number of

available samples, the accuracy of statistical estimations started decreasing past

some dimensions (see Figure 1.11). For a parametric classifier, the required number

of training samples was estimated to be linearly related to the dimensionality and

to the square for a quadratic classifier [Fukunaga and Hayes, 1989]. Similarly,

for non-parametric classifiers, in order to get accurate estimations of multivariate

densities, the required number of training samples is exponentially related to the

dimensionality of the space. Because of the complexity involved in obtaining large

ground truth information, it is often not possible to meet any of these criteria.

Collinearity among variables is a well known problem with spectral data. This

problem, related to matrix conditioning, is due to the very high intercorrelation of

the measured spectral variables. Therefore, even if the number of training samples

was much larger than the number of variables, because of spectral ‘smoothness’,

the actual dimension Q that captures all the spectral variability is smaller than

P . The spectral matrix X is thus rank deficient leading to numerical stability
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(a) (b) (c)

(d)

Figure 1.10: Geometrical problems in high dimensional spaces. As the space
dimensionality increases: (A) the diagonal becomes orthogonal to the basis vec-
tors (✓ increases), (B) the volume of the hypercube is increasingly concentrated
in its corners (the blue to red volume ratio tends toward zero), (C) the hy-
perellipsoid volume is concentrated in its outside shell (the blue to red volume
ratio tends toward zero) and (D) (from [Bishop, 2007]) the probability density
of a D-dimensional Gaussian distribution as a function of the radius r (distance

from the mean).

problems for computations. The most problematic case is when the inverse of

the covariance matrix (XTX)�1 has to be computed. Small eigenvalues that only

correspond to measurement noise have a large e↵ect on the inversion leading to

instability. Figure 1.12a represents the covariance matrix of a typical HS image

as an image of P ⇥ P pixels for which low to high values are coded from blue to

red. Vectors in this covariance matrix are clearly collinear, which is proven by the

corresponding eigenvalues plot of Figure 1.12b.

For practical applications this instability directly a↵ects:

• Classical least squares methods: (XTX)�1XTY
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Figure 1.11: Accuracy of statistical estimation as the dimensionality of the
space increases for various training set sizes. (from [Hughes, 1968])

• Covariance matrix inversion for LDA: b⌃
�1

• Covariance matrices inversion for QDA: c⌃c

�1
, c = 1, · · · , C

• Fisher’s Linear Discriminant axes computation: W�1B

Normality after projection: it was demonstrated that as the dimensionality

increases, the linear projection of any data set in a lower dimensional space is

likely to be Normally distributed [Diaconis and Freedman, 1984, Hall and Li,

1993]. This fact is highly useful in practice since it does not requires infinitely

large space to observe this phenomenon. Jimenez and Landgrebe [1996] confirmed

that a uniformly distributed data in high dimension is Normally distributed after

projection in low dimension. The implication for classification is that multi-modal

classes can behave like a mono-modal class after projection. Figure 1.13 from

[Jimenez and Landgrebe, 1996] show the e↵ect of the projection of mono modal

uniformly distributed data and bi-modal Normally distributed data in a lower

dimensional space.
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(a) (b)

Figure 1.12: Illustration of high collinarity in the covariance matrix of spectral
data on a data set containing three classes: wheat, weed and soil.

Figure 1.13: Normality after projection (from a space of dimension d) illus-
trated with generated data [Jimenez and Landgrebe, 1996]. (Left) one class

with uniform distribution, (Right) two classes with Normal distribution.

Conclusion

In this section we have described problems related to high dimensionality of spec-

tral data and noticed that thanks to space emptiness and variables collinearity, the

data could be reduced with interesting properties. In particular, after dimension

reduction, the Normal hypothesis required for QDA can be meet thus approach-

ing the optimal Bayes classifier. Based on these considerations, some of the most

important dimension reduction methods are described in the next chapter.



Chapter 1. Introduction 24

1.3.2 Using spatial information

Until now we have described classification methods applied directly on spectral

data. For instance, using a so-called pixel-based or spectral classifier only treats

the HS data as a list of spectral measurement without considering spatial re-

lations of adjacent pixels, thus discarding important information. However, the

classification results could be improved by using the contextual spatial information

provided in the HS data in addition to the spectral information. As illustrated

in Figure 1.14, depending on the acquisition scale, di↵erent sources of spectral

variability are present within objects, which could be managed through spatial

information. To this end, from the famous Extraction and Classification of Ho-

mogeneous Objects (ECHO) method developed by Kettig and Landgrebe [1976],

a great deal of research have been carried out to find e↵ective spectral-spatial

classifiers [Fauvel et al., 2013].

These methods, depending on what type of information is more discriminatory for

the objects to classify, fall into three categories:

(1) If the objects to classify have strong spatial discriminatory features, these spa-

tial features are extracted and then used to feed a classifier.

(2) If objects to classify have strong spectral and spatial discriminatory features,

both are extracted and then used simultaneously in a classifier through kernel

techniques.

(3) If objects to classify have strong spectral discriminatory features, spectral in-

formation is first processed and the spatial pixels neighboring information is then

used to enhance the classification results.

The two first approaches are usually employed to discriminate classes with a priori

information on objects shapes or textures, e.g., buildings, houses, roads, row fields.

On the contrary, the third approach only assumes a certain homogeneity in the

spatial neighborhoods of pixels. In the next chapter, some successfully developed

spectral-spatial approaches of these three categories are reviewed .

1.3.3 Obtaining reflectance images

In the ideal scenario, each object to classify can be represented by its spectral

signature. However, many uncontrollable variability sources such as the light
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(a) Remotely-sensed HS image of a rural area.

(b) Color representation of a high resolution short-range HS image of
a wheat leaf.

Figure 1.14: Illustration of the sources of spectral variability.

source angle, the direction of view, the atmospheric condition and a number of

other variables substantially a↵ect the measured spectral response [Barrett, 2013].

Three main correction or calibration stages are usually applied to the measured

image to compensate these sources of variability (Figure 1.15):
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Figure 1.15: Main correction stages.

Radiometric calibration is a compulsory step before any further processing of

the HS image. For each pixel, the recorded Digital Number (DN) obtained from

the opto-electronic chain in the camera is converted into a physical measurement,

i.e., radiance (W.m�2.sr�1µm�1). The spectral calibration identifies the exact

wavelength value associated with each band. Then, in order to quantify the exact

amount of radiance, the transfer function of each pixel of the camera has to be

evaluated [Gat, 2000]. For airborne or satellite imaging, HS cameras are usually

calibrated in the laboratory using integrating spheres. Because of the cost of this

procedure, cameras are often calibrated using the two-point techniques. In this

case, the radiometric calibration is L(�) = A(�) · �DN(�)–DC(�)
�
, where L is

the radiance, A the pixel response , DN the recorder digital number and DC the

dark current.

Geometric calibration mostly concerns images acquired with sensors that in-

volved a scanning. These corrections focus on uncontrolled movement during the

scanning, e.g., pitch, roll and yaw in airborne imaging and unequal speed for imag-

ing using a conveyor belt. With staring systems, a registration between frames

has to be performed if the objects were not perfectly still during the acquisition.

In satellite and large field of view imaging, geometric distortion due to earth cur-

vature also has to be taken into consideration.

Atmospheric and lighting correction is a prerequisite to every outside HS im-

age analysis when the object surface reflectance has to be retrieved. For example,

when spectra have to be compared with reference libraries or when a classification

model calibrated on one image has to be used on other images. In order to be

independent from the atmospheric conditions HS radiance images have to be trans-

formed into reflectance images. The perfect atmospheric correction is an unsolved

problem because of the complexity involved in modeling all possible interactions

between light and atmospheric molecules. However, for practical applications two
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main strategies, reviewed in the following chapter, are usually employed: Em-

pirical corrections that measure the received energy using a reference surface.

Modelisation of the atmosphere radiative transfer that requires precise measures

of the atmosphere at the acquisition time and solar spectrum estimation.

Figure 1.16: Schematic view of light interaction from source to sensor.

1.4 Conclusion

In this chapter, after having seen some main classification methods, we have de-

tailed the main issues that are specific to classification of HS data. For instance:

1) The high dimensionality and collinearity of spectral data have to be dealt with

to enable classification.

2) The spatial information should be used to help the spectral information in the

classification process, especially because most of the variability is due to spatial

inhomogeneities.

3) The acquired images have to be corrected from the atmosphere and lighting con-

ditions in order to retrieve spectra that are only related to the object reflectance.

The remainder of this thesis is as follows. For each of these topics, a state-of-the-

art is given in Chapter 3. The specific approaches developed in this thesis that
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address each of these topics are theoretically detailed in Chapter 4. Experimental

results on real HS data as well as a detail discussion of the proposed approaches

are given in Chapter 5. This thesis is concluded in Chapter 6 and future research

directions are proposed.
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In the previous chapter, some general issues involving HS images classification

were mentioned: dealing with high dimensionality of the data, including the spa-

tial information in the classification process and being insensitive to illumination

changes. In this chapter we review the available methods that were developed in

the literature in order to deal with these issues. We first focus on spectral dimen-

sion reduction methods that can handle the high dimensionality and collinearity

of the data. Second, we explore some of the available techniques that use both the

spectral and spatial information for classification purposes. Third, after a quick

background on the reflectance model, the main atmospheric correction methods are

mentioned.

2.1 Introduction

Hyperspectral (HS) sensors can record images with a very detailed spectral in-

formation at each pixel that is related to the chemical properties of the targeted

object. For classification purposes, di↵erences in spectral responses are used to

assign a label to each pixel of the HS image. In a supervised classification scheme,

training samples with known labels are required to define the assignment rule.

These training samples are manually assigned and necessitate the prior estab-

lishment of a ground truth. However, the processing of the obtained HS data is

complex and thus requires adapted procedures.

This chapter gives the state-of-the-art regarding three main HS data classifica-

tion issues, i.e., spectral dimension reduction, combination of spectral and spatial

information and reflectance correction.

The first issue is due to the high dimensionality and collinearity of spectral data

that make the supervised classification problem ill-posed. Furthermore, because

of the often limited availability of training samples with respect to the data di-

mension, specific processing methods have to be used.

The second issue is to design e↵ective ways to use the spatial information to in-

crease the classification performances obtained using only spectral information.

The third issue is that, in order to be independent from the light source, HS ra-

diance images first have to be transformed into reflectance images. In fact, in the

general case, only a classification model calibrated with a reflectance image can

be used to classify, other (also corrected) images.
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The objective of the following sections is not to present an exhaustive survey of

the available methods, but to give an overview of how researchers, from di↵erent

communities (chemometrics, remote sensing and pattern recognition), have tackled

these issues.

2.2 Dealing with the high-dimensionality of spec-

tral data

Due to their ability to perform accurate and non-destructive measurements, hy-

perspectral imaging devices have been increasingly used in many scientific and

industrial fields over the last decades. Spectral data acquired by these devices are

often composed of more than a hundred narrow bands which make the classical

classification techniques fail. In practice, because spectral variables are also highly

correlated (which can be observed looking at the smoothness of the spectra ob-

served as a function of the wavelength), their dimension can be reduced without

loosing important information [Geladi, 2003, Wold et al., 2001]. Therefore, most

methods include a dimension reduction as a first processing step, which is usu-

ally followed by a classical multivariate statistical method such as Multiple Linear

Regression (MLR) when the responses are quantitative (concentrations) or Linear

Discriminant Analysis when the responses are qualitative (classes) [Naes et al.,

2002, Nocairi et al., 2005]. For classification, in the lower dimensional space, data

are hoped to be well separated, i.e., small class spread and large distance between

classes as represented in Figure 2.1.

(a) Original space RP
(b) Optimal space RQ

Figure 2.1: Illustration of the optimal dimension reduction method from a
classification perspective.

Dimension reduction (DR) methods can be performed either in a supervised or

unsupervised way. Unsupervised DR methods find a new set of variables (also
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called features or scores) only by analyzing the spectral matrix X of size (N ⇥P )

without any knowledge about the class membership of the spectrum. On the

contrary, supervised methods also use the class membership matrix Y of size

(N ⇥ C) to perform the reduction. The latter are thus usually preferred to find

features that are relevant to classification [Indahl et al., 1999, Kemsley, 1996,

Nocairi et al., 2005].

Dimension reduction (DR) methods are usually designated into two categories,

i.e., feature selection (FS) and feature extraction (FE):

(1) FS methods find features by selecting a subset of variables from the spectra.

(2) FE methods project the data into a lower dimensional subspace whose axes

are defined as linear or non-linear combination of the input variables.

For some applications, by removing non-informative or noisy wavelengths, FS

proved to perform well [Xiaobo et al., 2010]. The predictive ability of models

obtained using all the available wavelengths can in fact be greatly reduced if some

parts of the spectra are corrupted by noise [Balabin and Smirnov, 2011]. An

advantage of FS is that the extracted features are more easily understandable

because they are actually related to the absorption properties of the studied media.

However, in the general cases, FE performs better. Moreover, similarly to classi-

fication methods, FE methods can benefit from the Kernel Trick if they only use

dot products for computations. For example, Kernel PCA and Kernel LDA have

been used in [Fauvel, 2007, Schölkopf et al., 1998] and [Baudat and Anouar, 2000].

However, linear FE techniques still generally outperform non-linear ones for real

data [Van Der Maaten et al., 2009].

In the following we thus review both unsupervised and supervised linear FE tech-

niques that are the most used with HS data.

The general idea behind linear FE approaches is to find the linear subspace that

best summarizes the original data. Mathematically, this problem consists in the

decomposition of X (N ⇥ P ) such that:

S = XD+ E (2.1)

where X-scores S (N ⇥ Q ⌧ P ) on X-loadings D (P ⇥ Q) minimize the recon-

struction error E (N ⇥ P ) in some sense. Di↵erent minimization choices lead to

di↵erent methods.
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2.2.1 Unsupervised approaches

Principal Component Analysis (PCA), also known as Karhunen–Loève trans-

form and Hotelling transform, is undoubtedly the most common feature extraction

method [Jolli↵e, 2005]. PCA reduces the spectral dimension by keeping the princi-

pal components that best capture the data variability and the projected variables

are de-correlated to one another [Wold et al., 1987].

The first PCA axis noted d1 maximizes the variance of data projection

d1 = arg max
kd1k=1

var
�
Xd1

�
= arg max

kd1k=1
trace

�
dT
1X

TXd1

�
. (2.2)

In the same way, the others axes are obtained by maximizing the captured variance

and under some orthogonality constraints.

A solution is given by the eigenvectors of the symmetric1 matrix XTX. In this

context, this matrix is called total scatter matrix of X and is noted T(X).

The power of PCA is that this eigenvalue problem can be solved using the very

e�cient Singular Value Decomposition (SVD) [Bishop, 2007], which is defined as:

X = USVT (2.3)

where U (N ⇥ P ) and V (P ⇥ P ) are orthogonal matrices and S (P ⇥ P ) is a

diagonal matrix that contains the singular values. Using this SVD decomposition

on the scatter matrix gives

XTX =
�
USVT

�T�
USVT

�
= VSUTUSVT = VS2VT (2.4)

where the eigenvectors are stored in V and the associated eigenvalues in S.

When used for dimension reduction, only the Q ⌧ P first principal components

of X are retained. The Q first PCA scores are thus given by: S = XD, where D

contains the Q first PCA components. By maximizing the captured variance, for

a given Q, the PCA obtains the minimum reconstruction error in the least square

sense, i.e., k E k2.

Minimum Noise Fraction (MNF)

Green et al. [1988] proposed a method to find the most meaningful data variations

1The scatter matrix is symmetric and thus diagonalizable with orthogonal eigenvectors.
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without taking into account noise-related variations. In fact, because PCA cap-

tures the variability information it also captures noise-related variability that is

not relevant to summarize the useful information. MNF thus finds the linear sub-

space that maximizes the signal to noise ratio. The X matrix is first decomposed

into

X = X
S

+X
N

(2.5)

where X
S

and X
N

respectively contain signal and noise variations from X. The

source of variations are assumed to be uncorrelated and thus the covariance matrix

⌃ = ⌃
S

+ ⌃
N

. MNF directions are found by maximizing the ratio

argmax
d

dT⌃
S

d

dT⌃
N

d
= argmax

d

dT⌃d

dT⌃
N

d
(2.6)

which corresponds to the solution of the eigen-problem : ⌃⌃�1
N d = �d.

MNF is therefore an interesting alternative to PCA when noisy wavelengths are

present in the HS image. However, its practical use is often limited because of the

di�culty involved in the estimation of the noise covariance matrix.

From unsupervised to supervised methods

Even though the previously described methods have been successfully implemented

in many applications for classification purposes, they do not take into account the

class information in the dimension reduction process. The optimal subspace is

thus optimal in term of capturing the overall data variation but is not optimal

from a classification point of view.

However, the aim of feature-reduction algorithms is not necessarily classification,

but also representation. Several unsupervised algorithms are used to find a sub-

space to represent hyperspectral data, for visualization or processing.

PCA and MNF based methods produced a subspace in which each axis does not

simply correspond to a single class but is generally a linear combination of spec-

tral responses from several classes. To compensate this problem, Harsanyi and

Chang [1994] proposed an approach using pure spectral signatures. Given these

signatures, their method consists in removing the undesired e↵ect by projecting

the data in a subspace that is orthogonal to their variations. At the same time,

Lee and Landgrebe [1993] proposed a feature extraction method that focuses on

class boundaries in the feature space in order to avoid the high dimensionality

problem. Their method, called Feature Extraction Based on Decision Boundaries
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(DBFE), by modeling only the class boundary provided interesting results with

fewer extracted features than methods that model the class probability densities.

Other approaches have received a lot of attention from the statistical pattern

recognition and chemometric fields. Fisher Linear Discriminant Analysis (FDA)

approaches tend to solve the computational issue of FDA in high dimensional

space and Partial Least squares (PLS) based approaches use a covariance criteria

in order to reduce the dimensionality.

2.2.2 PLS-like approaches

Original PLS

Partial Least Squares (PLS) has been designed by Wold [1966] to find a score

subspace that takes into account the covariance between spectra and one or more

responses (e.g., concentration of absorbing species). For this purpose, an iterative

algorithm ‘Non Linear Iterative Least Squares’ was designed to give a set of axes

called latent variables (LV) [Wold et al., 2001]. When the responses are discrete

(e.g., classes), using Fisher Discriminant Analysis (FDA or LDA) on PLS scores

(PLS-DA) has proven its e�cacy for spectral discrimination [Barker and Rayens,

2003] and multivariate image analysis [Chevallier et al., 2006].

PLS uses the covariance between the matrix of input vectors X and their class

Y instead of just using the variance of X. The matrix X is of size (N ⇥ P ) ,

where N is the number of training samples and P the number of wavelengths in

the digitalized spectrum; the matrix Y is of size (N ⇥ C) where each row codes

the class membership (C classes) of the corresponding spectrum2.

The aim of PLS is to transform the matrix X into a score matrix S (N ⇥Q⌧ P )

using a weight matrix D (model) of size (P ⇥Q) such as:

S = XD. (2.7)

The capture of X variability is constrained by:

X = SPT + E, (2.8)

2e.g., [0, 0, 1, 0] corresponds to the third class among four.
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which means that the scores S summarize X by minimizing the residual recon-

struction error E. The decomposition is also constrained on Y by:

Y = SCT + F. (2.9)

The scores S also have to summarize Y with a minimum reconstruction error F.

The matrices P and C are called the loadings of X and Y respectively.

Orthogonal Projection to Latent Structure (O-PLS)

Wold et al. [1998] originally introduced Orthogonal Signal Correction (OSC) as a

spectral pre-processing that removes systematic variations in X that are orthogo-

nal to Y. The solution proposed by the authors performed well but su↵ered from

computational complexity issues and sometimes failed to converge. Fearn [2000]

rapidly proposed an alternative approach that computes a similar correction by

solving the eigenvalue problem of the matrix MXTX where:

M = I�XTY
�
YTXXTY

��1

YTX. (2.10)

Finally, Trygg and Wold [2002] proposed an improved version of PLS that uses

the power of OSC methods in order to clean the data before PLS.

From a classification point of view, OPLS-DA allows the separation of predictive

from non-predictive variations as demonstrated in Bylesjö et al. [2006] and as

illustrated in Figure 2.2. With OPLS-DA (right) the discriminatory direction tp1

is separated from the Y-orthogonal direction to1. The corresponding loading pp1 is

thus easier to interpret and only one loading is necessary for perfect discrimination.

With PLS-DA (left), discriminative information is shared between both loadings

leading to a more complex interpretability.

2.2.3 FDA-like approaches

FDA background

In this section, we present some solutions to adapt Fisher’s LDA (FDA) to high

dimensional spaces. Because of the theoretical superiority of LDA- and QDA-based

approaches for classification when classes are Normally distributed, Fisher-like

dimension reduction methods that are based on a similar criterion have received

particular attention in the pattern recognition field.
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Figure 2.2: Comparison of (left) PLS-DA and (right) OPLS-DA on a two-class
simulated data-set. (from Bylesjö et al. [2006]).

The total scatter matrix previously defined with PCA can be seen as the sum of

the between- and within-class scatter matrices defined by

B
�
X,Y

�
= XTY

�
YTY

��1
YTX (2.11)

W
�
X,Y

�
= XTX�XTY

�
YTY

��1
YTX (2.12)

Note that when no confusion is possible these matrices are simply noted T, B and

W. An illustration of this decomposition is given in Figure 2.3.

(a) Total (b) Between-class (c) Within-class

Figure 2.3: Space decomposition.

Originally, Fisher [1936] developed a method to find the optimal discriminant vec-

tor which maximizes the ratio of the between-class distance to the within-class

distance for a two-class problem. Sammon [1970] generalized Fisher’s idea by

finding the optimal discriminant plane, and then Foley and Sammon [1975] pro-

posed a complete set of discriminant vectors. Their method called Foley-Sammon

transform (FST) uses the so-called Fisher criterion [Wilks, 1962], defined as:

DFDA = arg max
D,DT

WD=I

trace
⇣�

DTWD
��1

DTBD
⌘
. (2.13)
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where DTWD = I corresponds to the orthogonality constraint. Although FST

is considered as an optimum transformation, it su↵ers from many computational

issues such as:

(1) The solution cannot be computed if the W matrix is singular.

(2) The number of optimal vectors is bounded by min(C � 1, P ).

(3) The transformation is sub-optimal.

(4) The transformation is not orthogonal with respect to T.

These issues have attracted a lot of researchers’ attention in the pattern recognition

field and especially in the domain of Face recognition [Duin et al., 2006]. Some of

the original solutions to these problems are explained in the following.

Modified criterion LDA: In order to overcome the singularity problem of the

within-class scatter matrix, Cheng et al. [1992] proposed to use an alternative to

the Fisher criterion that is defined by:

DMCLDA = arg max
D,DT

WD=I

trace
⇣�

DTTD
��1

DTBD
⌘
, (2.14)

which is proved to lead to the same discriminant vectors. This solution is only

partial since it obviously requires the total scatter matrix to be non-singular, which

is unfortunately not the case with many types of data and especially with spectral

data.

Pseudo inverse LDA: Tian et al. [1988] proposed approximating the optimal

Fisher criterion by replacing the inversion W�1 by its positive pseudo inverse

W+. The positive pseudo inverse gives however only an approximation of the

Fisher criterion.

Nullspace LDA: Chen et al. [2000] proposed computing the between-class max-

imization in the null space3 of the within-class scatter matrix. Their method

corresponds to solving the following problem:

DNLDA = arg max
D,DT

WD=0
trace

�
DTBD

�
, (2.15)

where the null space constraint is given by DTWD = 0.

3The null space or Kernel of a matrix A is given by: {x 2 RP ,Ax = 0} and its dimension is
P � rank(A)
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The inversion problem is thus implicitly solved and interesting performance can

be achieved if the null space contains enough discriminant information. It thus

requires that the projection of B in the null space is non-zero which means that B

and W eigenvectors are not collinear. Another problem is that the W null space is

often quite large and that several dimensions do not help with the discrimination.

Huang et al. [2002] used the relation T = B + W to reduce this dimensionality

issue. Indeed, they showed that the null space of T was not helping with the

discrimination. Therefore, they proposed to compute the discriminant vectors

using the Chen et al. [2000] NLDA method but in a subspace excluding the null

space of T. Guo et al. [2006] proved that in cases of small number of samples

(N < P ) it is possible to find the C � 1 projecting directions in the null space of

W. This means that there exists a subspace in which no within-class variability is

present as illustrated in Figure 2.4. However, in practice, the nullspace might not

exists as N increases and it is not guaranteed that su�cient information remains

for discrimination after projection in the nullspace.

Figure 2.4: Geometric representation of Null Foley-Sammon Transform (from
[Guo et al., 2006]).

Orthogonal LDA

Discriminant vectors found by FST are in general not orthogonal. The only cases

in which the obtained basis is orthogonal is when B and W have the same set of

eigenvectors [Hamamoto et al., 1993]. To solve this problem, Okada and Tomita

[1985] proposed a method that is able to find up to N�1 discriminant vectors that

are orthogonal to one another. Their method, called Orthonormal Discriminant

Vector (ODV), maximizes the Fisher criterion for each extracted feature under the

constraint that features are orthogonal. This method was then proved to provide

better results than conventional discriminant analysis in terms of the Fisher crite-

rion [Hamamoto et al., 1993]. Another method proposed by Ye et al. [2005], called
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Orthogonal LDA, uses the generalized LDA criterion in the optimization problem:

DOLDA = arg max
D

T
D=I

trace
⇣�

DTTD
�+

DTBD
⌘
. (2.16)

The orthogonal constraint on the discriminant vector is given by DTD = I. The

singularity problem is solved using the simultaneous diagonalization of the scatter

matrices [Ye et al., 2005].

Regularized LDA: Hong and Yang [1991] used a regularization technique on the

within-class matrix by adding a small perturbation to it. The regularization aims

at increasing the rank of the singular matrix while keeping as much as possible

the original information [Hastie et al., 1995, Witten and Tibshirani, 2011]. It

corresponds to giving some penalty to excessively large value in the discriminant

vectors obtained because of singularity. Krzanowski and Jonathan [1995] nicely

worded this regularization process as: If principal component analysis is viewed

as providing the best r-dimensional approximation to a p-dimensional set of data,

then our present objective can be seen as exactly the reverse, namely to provide the

‘nearest’ p-dimensional non-singular approximation to an r-dimensional singular

set of data. The resulting matrix thus becomes non-singular and can be inverted.

This is the basis of ridge regularization techniques [Zhang et al., 2010], which can

be seen as the following optimization problem

DRLDA = arg max
D

T
D=I

trace
⇣�

DT(W + kI)D
��1

DTBD
⌘
. (2.17)

Roger et al. [2005] proposed a continuum approach in order to solve this type of

regularization problem for which they showed that the optimal solution was found

in a space defined by union of the Kernels of: B� zT where z 2 [0, 1].

Another way of regularizing is to use a hierarchical model as the one developed in

[Brown et al., 1999], where the authors proposed estimating the covariance matrix

in a Bayesian framework.

PCA-LDA: Pre-reducing the dimension using PCA before LDA is a commonly

used technique for dimension reduction [Bertrand et al., 1990, Fearn, 2008, Naes

et al., 2002]. Although PCA is not designed to help with the discrimination,

it often works well in practice [Grahn and Geladi, 2007] and should at least be

tried before using more complex methods [Fearn, 2011]. The advantage is that
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PCA reduced variables are already orthogonal which helps with the further LDA

processing. Some theoretical insights of the use of PCA plus LDA are given in

Yang and Yang [2003] under the assumption of non-empty null space of W.

2.3 Using spatial information: Spectral-spatial

approaches

Every pixel-based classification method described in the first chapter usually per-

forms well when the training set is representative enough and when classes to

be discriminated are di↵erent enough in terms of spectral information. In other

cases, in order to compensate for the lack of available spectral information, using

spatial information provided by hyperspectral images has proved to be an impor-

tant improvement [Dalla Mura et al., 2011, Gorretta et al., 2012, Tarabalka et al.,

2010a].

Spectral-spatial methods for classification have had a short, but intense history

and many papers have been published in the last decade, most of them being due

to the remote sensing community [Bioucas-Dias et al., 2013, Fauvel et al., 2013].

These methods were originally classified into two families by Gorretta [2009] as:

(1) Pixel-based classification with spatial constraints

(2) Extension of classical image processing techniques to HS image: the main

di�culty with this kind of method is to define a metric that makes sense in this

high dimensional space and to create an ordering.

With the rapid development of new methods, this separation is now less obvious.

It is preferred to define categories depending on the place where the spatial infor-

mation is introduced in the classification chain, leading to three main categories

[Bioucas-Dias et al., 2013]. A schematic view of these categories due to Valero

[2011] is represented in Figure 2.5.

2.3.1 Spatial information as an input parameter

In this approach, a feature vector that contains spatial information is constructed

for each pixel. It can contain any contextual information such as: shape, texture,

orientation, size... These features are usually extracted from the image using
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(a) Spatial information as an input parameter

(b) Spatial information inside the classification decision

(c) Spatial information as a post-processing stage

Figure 2.5: Pixel-based classification with spatial constraints. (from [Valero,
2011])

classical image processing techniques that have either been adapted to work in

higher dimensions or applied on a spectrally reduced image.

Region growing segmentation

The first spectral-spatial classification method, originally developed for multi-

spectral images, is the well-known ECHO (Extraction and classification of ho-

mogeneous objects) [Kettig and Landgrebe, 1976, Landgrebe, 1980]. With this

method, the image is first segmented into homogeneous regions that are found us-

ing a recursive partitioning, i.e., 1) The image is partitioned into small rectangular

regions of pre-defined sizes; 2) Adjacent regions that are similar enough accord-

ing to an homogeneity criterion are merged 3) Step 2 is repeated until no more
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merging is possible. Each segmented region is finally classified using a classical

maximum likelihood classifier.

Tilton [1998, 2010] adapted a sequential segmentation algorithm for hyperspectral

data and proposed a more advanced hierarchical segmentation method (HSEG).

Di↵erent similarity measures are used with spectral data. Successfully developed

distances include

- Spectral Angle Mapper (SAM): dSAM(x,y) = cos�1
⇣

x

T
y

kxk·kyk

⌘

- Cross-entropy (Kullback-Leibler information measurement): dE(x k y) =
PP

i=1 ai log
⇣

ai
bi

⌘
,

where ai =
xiPP
l=1 xl

and bi =
yiPP
l=1 yl

- Spectral Information Divergence (SID): dSID(x,y) = dE(x k y) + dE(y k x)

Mathematical morphology (MM) techniques were originally developed for bi-

nary image processing. Because of their potential , they have quickly been ex-

tended to work with grey-scaled and color images [Soille, 2003]. A detailed review

of MM processing that involves HS images can be found in [Fauvel et al., 2013]. In

the following, after a short description of the principal MM operators, two of the

most important usages of MM in the case of HS image are given, i.e., watershed

segmentation and morphological profiles.

Every MM technique needs the definition of a structuring element, noted B, of

known shape and size (e.g., a disk of radius 5 pixels). In practice MM is very

e�cient for image processing because it is only based on the computation of min-

imum and maximum operations between the image I and this ‘small’ structuring

element (SE).

The two basic MM operators are dilatation (noted �B) whose e↵ect is to enlarge

light areas compared to dark ones and erosion (noted ✏B) that corresponds to the

dilatation of the negative of the image. For an image I, an erosion applied at pixel

x is given by:

✏B
�
I(x)

�
= min

xi

�
I(xi) 2 B

x

�
(2.18)

and the dilatation is given by:

�B
�
I(x)

�
= max

xi

�
I(xi) 2 B

x

�
(2.19)

where B
x

is the structuring element centered at pixel x. The other two most im-

portant MM processing operators are opening and closing. The opening operator
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�B is defined by an erosion of I by B followed by a dilatation by B. On the

contrary, the closing operator �B is defined by a dilatation of I by B followed by

an erosion by B:

Because of the lack of ordering relation between vectors, the extension of these

operators to HS image is challenging and no unique definition is available [Aptoula

and Lefèvre, 2007].

Watershed segmentation uses a topological representation of a grey-scale image

in which region boundaries are defined by the crest of the gradient image norm.

The basic idea behind watershed segmentation is illustrated in Figure 2.6. The

watershed algorithm defines the regions by simulating an elevation of the water

level from the local minima in the image. When two neighboring regions are about

to merge, a dam is added on top of the crest, the formed region are thus called

catchment basins. The dams obtained at the end of the process correspond to the

segmentation boundaries. Mathematically, watershed algorithm need the defini-

tion of a gradient image, which is not straightforward with HS images [Tarabalka,

2007]. The simplest solution is to consider a one-band image gradient computed

from all bands such as the color morphological gradient (CMG) proposed by Evans

and Liu [2006]. The CMG is computed as:

CMGB(xp

) = max
i,j2X

� k xi
p � xj

p k2
�

(2.20)

where X = [x1
p, · · · ,xb

p] is the set of b vectors contained within the structuring

element B. CMG thus corresponds to the maximum of the distances between

all pairs of vectors in the set X [Fauvel et al., 2013]. The classical watershed

[Soille, 2003] is then directly applied on this one-band gradient image to obtain a

segmentation of the image. Some more advanced watershed techniques developed

for HS images are found in Tarabalka et al. [2010a].

Morphological profile, similarly to granulometry, is a technique that sorts the object

present in the image by their sizes. A series of morphological openings and closings

with structuring elements of increasing sizes are applied to the image [Pesaresi and

Benediktsson, 2001]. Closing thus suppresses small dark areas whereas opening

suppresses small light areas.

A morphological profile thus results in a serie of images that contains objects of

di↵erent sizes as illustrated in Figure 2.7, which can in turn be used as input of
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Figure 2.6: Representation of the watershed segmentation technique. (Left)
topographic representation of a one-band image. (Right) Example of segmen-

tation in one dimension. (from [Tarabalka et al., 2010a])

a classifier or combined with a spectral feature for enhanced processing [Fauvel

et al., 2013]. Another recent approach was developed by Ghamisi et al. [2014]

as an improvement of morphological profiles called morphological attribute profile

(MAP). They combined in a classifier the output of the MAP with spectral fea-

tures that were extracted using supervised FE techniques as those detailed in the

previous section.

Figure 2.7: Morphological profile using a circular structuring element of size
2, 6 and 10. The left corresponds to the closings and the right to the openings.

(from Fauvel et al. [2013])

Regularization

Spatial filters that are commonly used in image processing to enhance visual image

quality and signal to noise ratio (SNR) can be adapted to HS images. It is well

known that in order to keep objects spatial boundaries, using a classical low-

pass filter is not relevant because of the blurring induced by this kind of method.

Hence, Lennon et al. [2002] and Duarte-Carvajalino et al. [2006] proposed the

use of a non-linear filtering method that preserves object borders. These kinds

of transformations that fall under the name of Edge Preserving Filtering (EPF)

have been commonly used in image and signal processing [Weickert, 1997, 1998].

One such EPF, due to Perona and Malik [1990], performs anisotropic di↵usion

in order to filter grey-scale images. Anisotropic di↵usion filtering is a temporal
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process that mimics temperature di↵usion in a physical medium. The di↵usion

process is written as:

@I(x, y, t)

@t
= div

⇣
c
� | rI(x, y, t) | �rI(x, y, t)

⌘
(2.21)

where div and r are respectively the divergence and gradient operators. The con-

dition at t = 0 corresponds to the initial image. When the function c is constant,

the di↵usion is isotropic and corresponds to a classical low-pass Gaussian filter-

ing process [Lennon et al., 2002]. However, if the function depends on the local

gradient in the gray-scale image, the di↵usion process becomes anisotropic. With

an adapted choice for c, the di↵usion process can be stronger when there are low

gradient and stop close to the border of the objects where there are high gradi-

ent values. Perona and Malik [1990] proposed a discrete version of this di↵usion

process:

I t+1(i, j) = I t(i, j) + 1/4
4X

k=1

ctk(i, j)rkI
t(i, j) (2.22)

where ctk(i, j) = g(| rkI t(i, j) |). The function has to be decreasing with respect

to the gradient; they proposed:

g
� | rkI

t(i, j) | � = exp
�� | rkI t(i, j) |

⌘

�2
(2.23)

where ⌘ is a Kernel width to be tuned. Perona and Malik [1990] implemented the

discrete gradient using a 4-neighbors spatial connectivity [Gonzalez et al., 2009],

the rk being defined by:

r1I(i, j) = I(i� 1, j)� I(i, j)

r2I(i, j) = I(i+ 1, j)� I(i, j)

r3I(i, j) = I(i, j + 1)� I(i, j)

r4I(i, j) = I(i, j � 1)� I(i, j) (2.24)

By definition of the di↵usion described above, only scalar images can be filtered.

For an HS image, each channel can be processed individually or a vector-valued

di↵usion has to be developed. This was first done by Whitaker and Gerig [1994]

in the case of isotropic di↵usion and was later extended to anisotropic di↵usion

by Weickert [1998]:
@Ii(x, y, t)

@t
= div

�
g(✓)rIi(x, y, t)

�
(2.25)
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where ✓ corresponds to a vectorial measure of boundaries given by:

✓ =

vuut1/P
PX

i=1

k rI�,i(x, y, t) k2 (2.26)

where I�,i corresponds to a low pass filtered version of Ii using a Gaussian Kernel

of width �.

In order to take into account the variability of spectral data due to illumination,

Lennon et al. [2002] used a modified vector-valued gradient that uses a combination

of Euclidean distance and spectral angle for the similarity measure. They also

performed the spatial regularization on a MNF reduced image so that the noise

related spectral variations were not taken into account.

Recently, Wang et al. [2010] used Weickert [1998] extensive work on tensor di↵usion

for vector-valued images in order to filter HS images. In the proposed anisotropic

filtering scheme, the HS image is seen as a 3D image:

@I(x, y, z, t)

@t
= div

⇣
D⇤�rI�(x, y, z, t)

�rI(x, y, z, t)
⌘

(2.27)

where D⇤ corresponds to a 3 ⇥ 3 di↵usion tensor. With this method, authors

showed that SNR is greatly increased and visual inspection is thus facilitated.

They also demonstrated an important improvement of classification results af-

ter regularization but their method su↵ers from a high complexity in parameter

tuning.

2.3.2 Spatial information at the classification decision stage

Among spectral-spatial classification strategies that use simultaneously both sources

of information, three main approaches have proved to be e↵ective, i.e., Kernel

methods, Markov Random Fields and Cross-analysis.

Kernel methods

As previously explained, Kernel methods map the input data from the original

space into a higher dimensional space in which data can be linearly separable. An

interest of Kernel methods is that under certain mathematical conditions [Fauvel,

2007], Kernels of di↵erent types can be merged. Spatial Kernels adapted to the

HS image have thus been computed and merged to spectral ones in [Camps-Valls
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et al., 2006] and Fauvel [2007]. Indeed, since any linear combination of Kernels is

still a Kernel [Camps-Valls et al., 2006], a convenient composite Kernel that weighs

the relative importance of spectral versus spatial information can be computed as:

K(x, y) = µKspectral(x, y) + (1� µ)Kspatial(x, y) (2.28)

Camps-Valls et al. [2006] used a Gaussian spectral Kernel based on the Euclidean

distance and a spatial Kernel based on the mean and standard deviation on a

small square window around each pixel. Similarly, a spectral Kernel was proposed

in [Mercier and Lennon, 2003] where the authors demonstrated that a Kernel

based on a spectral angle can outperform a standard Kernel that is based on the

Euclidean distances. Later, Fauvel [2007] proposed a spatial Kernel with a non-

fixed neighborhood that uses morphological operators. Recently, Li et al. [2013a]

proposed a general framework for mixing multiple Kernels through Multinomial

Logistic Regression (MLR) and Extended Morphological Profiles (EMAPs). This

framework is less restrictive than those previously developed in the literature since

it relaxes the constraint on convexity of Kernels.

Markov Random Fields

When using Markov Random Fields (MRF) in images, the underlying assumption

is usually that two neighboring pixels are likely to have the same class label. In

particular a Markov Field is a Random Field that only depends on a neighborhood

[Bishop, 2007]. In practice, the neighborhood is constrained to the 4- or 8- closest

neighbors as illustrated in Figure 2.8.

Figure 2.8: Illustration of the neighborhood using (left) a 4-connexity and
(right) a 8-connexity. (from Gorretta [2009])

The assumed continuity of neighboring pixels is then exploited in a statistical

sense and used for spatial modeling [Tarabalka et al., 2010b]. For instance, MRF
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can be used with a spectral classifier to encourage neighboring pixels to have

the same label when using a probabilistic classifier [Bioucas-Dias et al., 2013, Li,

2011]. Note that another important use of MRF is to model textured classes as

explained in [Rellier, 2002]. MRF despite its huge computational complexity is

able to provide very good results in practice as demonstrated in [Bioucas-Dias

et al., 2013] where in combination with a subspace MLR [Li et al., 2012] provided

the best experimental results on a remote sensing data set.

Cross analysis

Recently, Gorretta et al. [2012] proposed a new framework for HS image segmen-

tation using spectral and spatial information. In this framework, called butterfly,

the analysis is done recursively by going ‘back and forth’ between the spectral and

spatial representation of the data (see Figure 2.9). One of the interests of this

approach comes from its flexibility since any dimension reduction (resp. segmen-

tation) method can be plugged in the spectral (resp. spatial) analysis. Depending

on the chosen methods, this framework even enables unsupervised segmentation

of the HS image. Another advantage is that it leads to a more balanced use of

these complementary sources of information as explained in [Gorretta, 2009].

Figure 2.9: Framework of the butterfly approach proposed by Gorretta et al.
[2012].
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2.3.3 Spatial information as a post-processing stage

Using spatial information at a post-processing stage, in particular with a classifi-

cation map, has received a lot of attention because of its simple implementation.

Indeed, classification maps are single channel images and can thus be processed

with any image processing technique. For classification, it usually results in a de-

crease of the salt and pepper aspect of the classification map. A simple approach

consists of using classical morphological operators or median filtering to reduce

this classification noise but more advanced approaches have been developed:

Segmentation

Tarabalka et al. [2010a] proposed to combine the output of a pixel-wise SVM

classifier with a watershed segmented map. The combination was made using a

majority of voting strategy between both maps as illustrated in figure 2.10.

Figure 2.10: Majority of voting between a pixel-wise classification and a seg-
mented map. (modified from Tarabalka et al. [2010a])

Tarabalka [2007] then proposed a more advanced segmentation technique using a

Hierarchical Segmentation approach (HSEG). Li [2011] proposed a segmentation
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of the probabilistic classification map they obtained from their multilevel logistic

classification method.

Regularization

Edge Preserving Filtering (EPF) can also be used in order to regularize clas-

sification results at a post-processing stage. EPF has been implemented using

for example Bilateral Filtering (BF) Tomasi and Manduchi [1998] or Anisotropic

Regularization (AR) Perona and Malik [1990]. As explained before, EPF aims

at regularizing gray-level or color images by smoothing spatially homogeneous re-

gions while keeping their borders sharp. With AR, the regularization procedure is

based on an image gradient computation whereas BF usually requires a guidance

image.

In [Kang et al., 2014], authors have developed a regularization approach that uses

BF in order to regularize a SVM classification map as illustrated in Figure 2.11.

The guidance images needed for BF implementation were either a PCA score

image or a RGB image reconstructed from the HS image. Their approach signifi-

cantly decreased the classification noise, which proves the potential of EPF spatial

regularization for such data in a classification context.

Figure 2.11: Spectral-spatial framework using EPF regularization and SVM
pixel-wise classifier. (from Kang et al. [2014])
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2.4 Reflectance correction

In the previous sections, HS images were assumed to be reflectance HS images,

i.e., compensated/corrected from the incoming light. Depending on the circum-

stances with which the classification model is made, di↵erent scenarios can be seen

[Ho↵beck and Landgrebe, 1994]:

(1) One HS image and one classification model: the correction is useful only for

interpretation of spectral absorption bands but does not influence classification

results.

(2) Di↵erent HS images and one model per image: similar to (1) and no interpre-

tation of variation between images can be inferred.

(3) Di↵erent HS images, one model computed from spectra coming from one im-

age: atmospheric correction is compulsory.

Reflectance correction is thus a prerequisite to most ‘real world’ HS data analysis

and has therefore received a lot of attention over the years. The available methods

are usually classified into physics-based (radiative transfer models), scene-based

or image-based methods [Shaw and Burke, 2003]. Recent comprehensive and com-

parative reviews of the available methods can be found in [Gao et al., 2009, Gri�n

and Burke, 2003].

2.4.1 Background

When the solar light goes through the atmosphere its spectrum is changed because

of absorption and scattering phenomena that are wavelength dependent. The light

source seen by the target depends on atmospheric conditions, which creates prob-

lems for further spectral processing. The gases that are mainly responsible for

spectral variations in the atmosphere and their spectral responses are represented

in Figure 2.12. Shaw and Burke [2003] decomposes these atmospheric e↵ects into

four categories:

(1) Because of its composition, the atmosphere modulates the spectrum of the

solar illumination before it reaches the ground (see Figure 2.13).

(2) A part of the solar radiation is scattered by the atmosphere directly in the

field of view of the camera without even reaching the target (path-radiance).

(3) Shadowed objects receive the di↵use sky illumination that is di↵erent from the
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Figure 2.12: Simulated transmittance spectra of atmospheric water vapor,
carbon dioxide, ozone, nitrous oxide, carbon monoxide, methane, oxygen, and

nitrogen dioxide. (from Gao et al. [2009])

direct solar illumination.

(4) The light that leaves the target can still be absorbed by the atmosphere as it

propagates toward the sensor thus changing its spectrum.

Figure 2.13: Di↵erence between the solar spectral irradiance curves at the top
of the atmosphere and at ground level. (from Shaw and Burke [2003])

Models

The general model/equation [Gao and Goetz, 1990, Hamm et al., 2012] from which

all correction methods are based is given by:

Lobs(�) =
⇣
E#(�)T#(�) cos ✓ + L#(�)

⌘
T"(�)⇡

�1⇢(�) + L"(�), (2.29)
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where,

• ⇢(�) = surface reflectance (what needs to be estimated)

• Lobs(�) =observed radiance at-sensor

• L"(�) = Upwelling radiance along the target-sensor path (path-radiance)

that is due to the atmosphere di↵use reflection toward the sensor

• L#(�) = Downwelling irradiance (di↵use illumination)

• E#(�) = Exo-atmospheric radiance onto the surface perpendicular to the

incident beam

• ✓ = solar zenith angle relative to the surface

• T#(�) = atmospheric transmission sun ! target

• T"(�) = atmospheric transmission target ! sensor

This formulation can be written as a function of the available solar radiance on

the target [Richter et al., 2002]:

Lobs(�) = E(�)T"(�)⇡
�1⇢(�) + L"(�), (2.30)

where E(�) corresponds to the available solar radiance on the scene:

E(�) = E#(�)T#(�) cos ✓ + L#(�). (2.31)

In both expressions, one can see that there is a linear relation between the observed

radiance and the surface reflectance:

Lobs(�) = a(�)⇢(�) + b(�) (2.32)

The goal of atmospheric correction methods is thus to give an accurate estimate

of a(�) and b(�).
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2.4.2 Physics-based transfer (model-based) correction

Radiative transfer based models simulate the solar irradiance spectrum, compute

the scene radiance e↵ects of solar position (using the acquisition date) and measure

or estimate the amount of atmospheric absorption and scattering [Kruse, 2000].

The two most widely used corrections are ATmospheric REMOval (ATREM) [Gao

et al., 1993] and Fast Line-of-Sight Atmospheric Analysis of Spectral Hypercubes

(FLAASH) [Adler-Golden et al., 1994, Cooley et al., 2002]. These correction meth-

ods have been compared in [Gao et al., 2009, Gri�n and Burke, 2003, Kruse, 2000].

While a proper description of these methods is out of the scope of the review, the

main steps are illustrated as a schematic flow chart in Figure 2.14a and Fig 2.14b.

Both methods estimate mixed gases such as O2, O3 and CO2 separately from water

vapor. The former are indeed quite easy to estimate accurately while the latter is

highly variable and more complex to estimate. The main di↵erence between these

methods is that ATREM does not model the influence of adjacent pixels scattering

into the computation.

2.4.3 Scene-based correction

Scene-based correction methods, use extra sources of information in order to esti-

mate empirically the additive and multiplicative terms of equation B.2.

The Empirical Line Method (ELM) is the simplest correction method to be

used [Smith and Milton, 1999]. ELM consists in the estimation of a(�) and b(�) us-

ing classical linear regression between reflectance spectra measured in-field and the

corresponding radiance spectra extracted from the HS image. The field reflectance

spectra must be acquired on at least two surfaces that have a significantly di↵erent

brightness. These surfaces also have to be homogeneous and large enough to cover

at least a whole pixel in the HS data. These surfaces can be naturally present in

the scene [Vain et al., 2009] (Low brightness surface are asphalt, tar or water and

high brightness sand or concrete) or manually introduced into the field of view

[Moran et al., 2001].

This correction has to be done for each wavelength and often requires a spectral re-

sampling of the in-field spectrometer to match the HS sensor bands. An illustration

of the ELM on three wavelengths of the HYDICE sensor is given in Figure 2.15.
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(a) ATREM

(b) FLAASH

Figure 2.14: Comparison of the two main physics-based atmospheric correc-
tion methods. (from [Gri�n and Burke, 2003])

Irradiance Light Sensor correction is an interesting alternative which has been

implemented in the CASI sensor [O’Neill et al., 2014]. It only requires that another

sensor simultaneously records the solar light measurement Lennon et al. [2002].

The reflectance correction then simply corresponds to the ratio of the observed

irradiance to the recorded sun light.

2.4.4 Image-based correction

Image-based correction methods only use information that can be retrieved from

the image to perform the atmospheric correction. These corrections aim at esti-

mating the available solar radiance on the scene E(�) (equation 2.30). With these

corrections, the additive term b(�) is discarded and the atmospheric transmission

variations are neglected because of their small influence at low altitude.
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Figure 2.15: Illustration of the Empirical Line Method on three arbitrarily
chosen wavelengths using low (4%) and high (32%) brightness reference surfaces.

(from [Shaw and Burke, 2003])

Spectralon/ceramic correction

In the laboratory or in proximal detection a surface of known reflectivity is intro-

duced into each image to perform the correction. The most commonly used surface

is Spectralon (Lasphere, USA) which is a PTFE material that has a very flat and

lambertian di↵use reflection [Geladi et al., 2004]. For more constrained environ-

ments, a calibrated surface of relatively flat reflectance can also be used to serve

the same purpose. For instance, Vigneau [2010], Vigneau et al. [2011] calibrated

a ceramic plate which is used for in-field HS image acquisition (see Figure 2.16).

The correction thus become:

⇢(�) =
Lobs(�)

Ls(�)
⇢s(�) (2.33)

where ⇢s(�) is known and Ls(�) is manually extracted from the image.

Flat field correction is the most widely used reflectance correction method in

remote sensing. It requires that the image includes a uniform area that has a

relatively flat spectral response. The spectral response also has to be relatively

high so that the correction does not increase spectral noise. The mean spectrum

of this area is then computed in order to increase the SNR. The entire scene is

finally divided by this mean spectrum which leads to a ‘relative’ reflectance image.

In practice, flat field reference is obtained with desert scenes, dry lake beds and

human-made material such as concrete.
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Figure 2.16: In-field reflectance correction using a calibrated ceramic plate.
(from Vigneau et al. [2011])

Note that in the case of a specific absorption peak of the supposed flat surface,

unexpected variation can happen at these wavelengths in the corrected image due

to low signals.

Average Relative Reflectance correction divides each spectrum by the whole

image mean spectrum. This method assumes that the scene possesses a lot of

di↵erent materials in nearly constant proportions, so that the mean spectrum is

quite stable from one image to another. In practice, this method is very di�cult

to apply because of a lack of such scenes and should be avoided in presence of

vegetation spectra.

2.5 Conclusion

In this chapter, we have detailed some of the main approaches developed to tackle

the issues with HS data classification.

For spectral dimension reduction, when the objective is classification, unsupervised

methods lead to sub-optimal scores by not taking advantage of the class informa-

tion during the reduction process. Among the supervised approaches, PLS-like

methods tend to model the class structure of the data by maximizing the capture

of covariance between the variables and the classes in order to build the reduced

scores.

These approaches are thus naturally prone to overfitting and their parameters have

to be tuned with a cross-validation procedure. When not carefully made, these
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cross-validations can lead to over optimistic results and find a class structure when

there is none.

On the other hand, Fisher-based methods tend to solve the within-class matrix

inversion problem by using mathematical tricks such as pseudo inverse or inver-

sion of the total scatter matrix instead of the within-class one. Another simple

approach consists in using a PCA as a first step in order to obtain fewer variables

on which a LDA can be performed. This is however sub-optimal, since the first

step selects components that are not related to the class di↵erences, and usually

tend to select too many components for a given problem. Finally, Nullspace LDA

is mathematically very promising by perfectly responding to the LDA paradigm.

However, it requires that the nullspace of the within-class scatter matrix exists,

which is only the case when the number of variables is greater than the number

of observations. This means that in case of new observations acquired to enhance

a model, NLDA cannot be used anymore and thus has few practical applications

in hyperspectral classification. Also, in this nullspace, because the projections is

orthogonal to all the within-class directions, the left-over information is very small

and leads to noisy discriminant vectors.

In this thesis, we will propose an approach in which, contrary to NLDA, the re-

moval of the within class variability is controlled and which also allows to preserve

explicitly the most important discriminant axes.

Concerning spectral-spatial approaches, methods that use edge preserving filtering

appear to be well adapted to HS image classification. In particular, being able

to reduce the variability within classes by such filtering seems very interesting to

complement the spectral within-class variability reduction. However, among the

proposed approaches in the literature, this spatial regularization is only performed

on either the original HS images or on score images obtained in an unsupervised

way.

In both cases, the natural variability within each class can lead to very textured

images. Thus, when using edge preserving filtering, edges are also preserved within

the class that needs to be homogenized.

Therefore, we will propose in this thesis to use the EPF in a slightly di↵erent

way: it is applied on a score image, which has been obtained from a supervised

dimension reduction method. In fact, with the supervised method, within-class

variability tends to be reduced and between class distance increased, which help

the spatial regularization to find the edges only at class borders.
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Finally, we have seen that in order to be independent from the light source and

atmospheric conditions, radiance values in the HS images had to be transformed

into reflectance values. This transformation requires the lighting to be known for

each acquired image. As we have detailed, the light measurement on the scene

can be performed by di↵erent means depending on the situation. However, this

procedure often requires ground truth measurement, which is not always possible.

In this thesis, we will propose an automatic procedure to compensate for the

lighting conditions that is adapted to the classification paradigm. Providing that

objects to discriminate are Lambertian, we show that, after a logarithm transfor-

mation, the di↵erence in lighting corresponds to the same additive e↵ect for all

the pixels in the image. We then propose a method that estimates this translation

even when there are missing classes.
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The objective of this chapter is to propose new approaches to deal with some hy-

perspectral classification issues. We thus propose a new supervised dimension re-

duction method that can handle the high dimensionality and high collinearity of

spectral data and provides score images. We then propose an approach to com-

bine spectral and spatial information through supervised spectral score images and

spatial regularization before classification. Finally, using the supervised scores,

we propose an approach that avoids reflectance correction through class densities

registration. Although these approaches can be used separately to tackle specific

HS classification issues, we also propose in this chapter a general classification

framework that combines all of them.

3.1 Introduction

When using hyperspectral (HS) data for classification purposes, di↵erences in spec-

tral responses are used to assign a label to each pixel of the HS image. Then if

the classification is supervised, training samples with known labels are required in

order to create the classification model. However, specific issues are raised when

a reliable classification model has to be created with such complex data. In this

chapter, we present three approaches in order to tackle some of these main issues,

i.e, spectral dimension reduction, spectral/spatial combination and light source

variability correction.

The high dimensionality and collinearity of spectral data requires a dimension re-

duction to be performed beforehand. In this context, methods that mimic Fisher

LDA have been proposed in the literature. The ones that tend to invert the within-

class scatter matrix cannot be performed with spectral data because of collinearity

issues with such data. Other approaches, mostly used for face-recognition applica-

tions, require that the nullspace is non-empty which limits it practicability as the

number of available sample increases. We tackle this problem as well by proposing

an original spectral dimension reduction method, called Dimension Reduction by

Orthogonal Projection for Discrimination (DROP-D), that uses orthogonal projec-

tions. On the contrary to previous approaches, the method does not try to invert

the within-class scatter matrix, but projects the data orthogonal to its main di-

rections. DROP-D is supervised because it uses the class information in order to

extract the reduced variables. Therefore, the obtained reduced variables (scores)
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tend to minimize the within-class scatter and to preserve the between-class scat-

ter. One main advantage of DROP-D is that, by not attempting to model the

class structure as is done with PLS-like approaches, overfitting can be prevented

without the need for cross-validation.

The second issue is to define e↵ective ways to use the spatial information in order

to increase the classification performances obtained using only spectral informa-

tion.

The core idea of the approach proposed in this thesis is to use a spatial regular-

ization on score image channels obtained from a supervised dimension reduction

method such as DROP-D or PLS. Because these channels are built to enhance

di↵erences between classes and to reduce the background variability, edges in the

spatial domain correspond to actual class borders. Therefore, applying an edge-

preserving spatial regularization on the channels of this score image reduces the

remaining within-class variability due to the background and thus leads to an eas-

ier class decision.

The third issue is due to the dependency of radiance HS images with respect

to lighting conditions. Thus, in order to be independent from the light source, HS

radiance images first have to be transformed into reflectance images. In fact, only

a classification model calibrated with a reflectance image can be used to classify

other images. However, the classical reflectance correction technique implies that

a surface of known reflectivity is introduced in the scene, and thus requires human

intervention.

We propose an approach that avoids prior reflectance correction of HS radiance

images before classification. Under the assumption that classes have Lambertian

reflectance, we show that, after log-transformation, the di↵erence in lighting cor-

responds to a translation in the spectral space. Then, using a linear dimension

reduction, this translation in the spectral space corresponds to a translation in the

score space. Due to the use of a supervised dimension reduction such as DROP-

D or PLS, classes form clusters in the low dimensional score space. Using these

clusters, we propose a method to estimate the translation that is robust against

unbalanced number of samples and missing classes between images.

These three approaches have been designed independently, but can be combined

in a complete classification framework. This framework is illustrated in Figure 3.1.

In the following, each approach theory is detailed.
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Figure 3.1: Illustration of the approaches presented in this thesis. (left) The spectral-spatial approach using first a supervised
dimension reduction and then a spatial regularization. (left to right) The supervised model calibrated on the log-radiance image 1
applied to the log-radiance image 2. (right) The di↵erence in radiance between images (translation in the log subspace) estimated by

the score registration approach.
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3.2 Dimension reduction

3.2.1 Prerequisites

In the following we call the individual space, the N -dimensional space (one axis

per observation) in which we can represent the variables (wavelengths) as vectors.

Conversely, the variable space is the P -dimensional space (one axis per variable)

in which we can represent the observations as vectors.

Recall on orthogonal projection

For any column vector v, and for any subspace defined by its basis P, the orthog-

onal projection of v on P is given by

P?
P

(v) = P
�
PTP

��1
PTvT (3.1)

3.2.2 Subspace decomposition: problem statement

Supervised classification consists, using a data matrix X and a class matrix Y

based on training samples, in finding a model that is capable of predicting the class

of any observation x using its P descriptors. With spectral data, classification is

often done in two steps:

(1) projection of the observation in a lower-dimensional subspace;

(2) a↵ectation of the individual to a class.

The e�cacy of the second step is highly influenced by the first one. Hence, we are

looking for a subspace in which class centers are well separated and classes spread

around their center are small. From a mathematical point of vue, it corresponds to

finding the loadings D
�
P ⇥Q

�
such that the projection of X on D: (1) maximizes

the between-class scatter given by

B
�
XD,Y

�
=

�
XD

�T
Y
�
YTY

��1
YT

�
XD

�
(3.2)

and (2) minimizes the within-class scatter given by

W
�
XD,Y

�
=

�
XD

�T�
XD

�� �
XD

�T
Y
�
YTY

��1
YT

�
XD

�
. (3.3)
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In addition, we are looking for a subspace of reduced dimensions, i.e., Q minimal.

These three constraints on the way to build the set of axes min(Q), max(B) and

min(W) are illustrated in Figure 3.2. The general approach consists in minimizing

the ratio of within- to total-class scatter given by the Wilk’s Lambda

⇤Wilks =
| W |
| T | =

| W |
| B+W | . (3.4)

In cases where the data are well conditioned, a solution is given by the Fisher

Linear Discriminant Analysis paradigm, which can be expressed as:

D = argmax
D

⇣
trace

�
DTW�1BD

�⌘
= EQ

�
W�1B

�
(3.5)

where for any diagonalizable square matrix A, the notation EQ

�
A
�
corresponds

to the Q eigenvectors associated to its Q largest eigenvalues. However, for ill-

conditioned data, the inversion of W is problematic. Thus, LDA is known to be

unable to deal with spectral data and several solutions have been proposed in the

literature to overcome this problem (see Chapter 2).

Nevertheless, the construction of a classification model corresponds to find a sub-

space of the variable space that ‘copies’ the class structure observed in the in-

dividual space of the sample set. The Fisher LDA does this by contracting the

subspace carried by the within-class scatter and by focusing on the one carried by

between-class scatter.

The method proposed in this thesis o↵ers another way to realize this copy. This

idea is to use the between- and within-class scatter to decompose the variable space

into di↵erent subspaces so that one of them carries a large part of between-class

scatter and a small part of within-class scatter.

3.2.3 Variability decomposition in RN and RP

Suppose we have a matrix X containing N spectra of P variables from C classes

coded using with dummy variables and stored in a matrix Y. We can then define

a mean per class using the matrix operation:

XB = Y
�
YTY

��1
YTX. (3.6)
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(a) Rp
(b) Rq

Figure 3.2: Dimension reduction for classification purposes, i.e., fewer axes
(Q  P ), a small within-class scatter and a large distance between class cen-

troids

Thanks to the dummy variable coding, each of XB row contains, instead of the

original spectrum, the mean spectrum of its own class. The operation X 7!
Y
�
YTY

��1
YTX thus defines a new sample in which each observation is replaced

by the mean of its class (centroid).

We can also define XW as:

XW = X�XB

=
�
IN �Y(YTY)�1YT

�
X. (3.7)

The matrix XW thus contains the observations centered on their class centroid.

What happens in the individual space (RN)?

In this space, we can represent the Y matrix, i.e., each column of Y corresponds

to one vertex of the unit N -dimensional hypercube.

In this condition, the operation X 7! Y
�
YTY

��1
YTX = XB projects the columns

of X (individuals) on the subspace defined by Y. The removed part corresponds

to XW which is also an orthogonal projection, but on the orthogonal complement

of Y.

XB = P
Y

(X) = Y(YTY)�1YTX (3.8)

XW = P?
Y

�
X
�
=

�
IN �Y(YTY)�1YT

�
X (3.9)
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The subspaces spanned by these matrices, EB = R�
XB

�
and EW = R�

XW

�
, are

orthogonal and complementary subspaces of ET in RN (equation 3.10).

ET = EB � EW ✓ RN (3.10)

In this space (RN), thanks to the orthogonality, we can thus completely eliminate

XW without a↵ecting XB:

Proof. P?
XW

�
X
�
= P?

IN�XB

�
X
�
= P

XB

�
X
�

However, we are in the individual space, which means that this operation can be

applied to vectors expressed as combinations of individuals and only modify the

spectral values of the N observations of the training set, i.e., it is not applicable

to any incoming spectrum.

What happens in the variable space (RP )?

In this space, the operation X 7! XB defined by a matrix N⇥N cannot be applied

to a unique vector (spectrum). It is thus not a linear application.

However, in this space, we can use the subspaces spanned by XB and XW . We

can show that the between- and within-class scatter matrices define an orthogonal

basis for these subspaces and can therefore be used to copy the class structure

from RN to RP . We thus have the following equations:

T
�
XB

�
= B

�
X,Y

�
(3.11)

T
�
XW

�
= W

�
X,Y

�
(3.12)

, i.e., the total scatter of XB and XW correspond to B and W respectively.
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Proof.

T
�
XB

�
,

⇣
Y
�
YTY

��1
YTX

⌘T⇣
Y
�
YTY

��1
YTX

⌘

=
⇣
XTY

�
YTY

��1
YT

⌘⇣
Y
�
YTY

��1
YTX

⌘

= XTY
�
YTY

��1
YTX (3.13)

, B
�
X,Y

�

T
�
XW

�
,

⇣�
IN �Y(YTY)�1YT

�
X
⌘T⇣�

IN �Y(YTY)�1YT
�
X
⌘

=
⇣
XT �XTY(YTY)�1YTY

⌘⇣
X�Y(YTY)�1YTX

⌘

= XTX� 2XTY(YTY)�1YTX+XTY(YTY)�1YTX

= XTX�XTY(YTY)�1YTX (3.14)

, W
�
X,Y

�

Noting that
�
(YTY)�1

�T
= (YTY)�1 because (YTY)�1 is symmetric

Hence, the subspace spanned by XB is containing the between-class scatter while

the subspace spanned by XW is containing the within-class scatter.

In the variable space RP , let us define these two subspaces FB = R�
XT

B

�
and

FW = R�
XT

W

�
. Using the range property R�

AT
�
= R�

ATA
�
, these subspaces are

expressed as:

FT = R�
XT

�
= R�

XTX
�
= R(T) (3.15)

FB = R�
XT

B

�
= R�

XT
BXB

�
= R(B) (3.16)

FW = R�
XT

W

�
= R�

XT
WXW

�
= R(W) (3.17)

(3.18)

where we have by construction T = B+W. Figure 3.3 illustrates this decompo-

sition in the feature space:

• The total subspace F
T

, whose dimension is bounded by dim
�F

T

�  min(N,P )

represents the overall data variability in the variable space without consid-

ering classes

• The between-class subspace F
B

is defined by the class centroids spread in the

variable space. Its dimension is thus bounded by dim
�F

B

�  min(C� 1, P )
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• The within-class subspace F
W

corresponds to the overall spread of the

data removed of class centroids. Its dimension is bounded by dim
�F

W

� 
min(N,P )

(a) Total (b) Between-class (c) Within-class

Figure 3.3: Decomposition in the feature space T = B+W. Note the possible
collinearity between bi and wj .

Then, because the subspace dimension and matrix rank are linked by the funda-

mental relation

dim R�
A
�
= rank

�
A
�
= rank

�
AT

�
= dim R�

AT
�

(3.19)

and since, dim F
T

= dim E
T

, dim F
B

= dim E
B

and dim F
W

= dim E
W

,

therefore F
B

and F
W

define two subspaces of F
T

in the variable space such that

F
T

= F
B

+ F
W

✓ Rp (3.20)

These subspaces F
B

and F
W

are however not orthogonal in RP and their inter-

section is not necessarily empty. The separation of the between- and within-class

scatter is therefore less obvious than in the individual space. Hence, depending

on the class configuration, removing within-class variability does not necessarily

improves the separability as illustrated with Figure 3.4.

In the following (section 3.2.4), we propose a method, called DROP-D, that enables

a controlled removal of the within-class scatter, i.e., by preserving its axes collinear

with F
B

.
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(a) B and W collinear (b) Any B and W

(c) B and W orthogonal

Figure 3.4: E↵ect of removing the within-class axis with di↵erent class con-
figurations in RP

3.2.4 DROP-D

Dimension Reduction by Orthogonal Projection for Discrimination method (DROP-

D) is in three steps.

The first step consists in removing from X the b principal directions of the

between-class scatter, as expressed in equation 3.21.

X?
b = P?

B,b

�
X
�

(3.21)

(a) Initial classes and the first
between-class axis b1

(b) Initial classes projected orthog-
onal to b1

Figure 3.5: DROP-D first step
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In a second step, the within-class scatter matrix is computed with
�
X?

b ,Y
�
.

Then, the w principal directions linked to this within-class scatter (W⇤) are elim-

inated according to the equation 3.22.

Xclean = P?
W

⇤
�
X

?
b ,Y

�
,w

�
X
�

(3.22)

(a) Within-class scatter principal
axes in the space orthogonal to b1

(b) Original data cleaned using
W⇤. Note that the direction b1 is

untouched.

Figure 3.6: DROP-D second step.

The third step is to extract the Q principal directions of Xclean which are given

by:

D = EQ

⇣
T
�
Xclean

�⌘
. (3.23)

(a) Within-class scatter principal
axes in the space orthogonal to b1

(b) Original data cleaned using
W⇤. Note that the direction b1 is

untouched.

Figure 3.7: DROP-D third step.
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To summarize, DROP-D defines three subspaces FB, FW ⇤ and FD of RP , such

that:

• FB is linked to the b principal directions of the between-class scatter

• FW ⇤ contains the w principal directions of the within-class variance that are

orthogonal to FB

• FD contains the Q directions that include the b principal directions of the

between-class scatter and the Q� b principal directions that are orthogonal

to the within-class scatter.

In doing so, DROP-D eliminates the principal directions of the within-class scatter

while preserving the most important directions of the between-class scatter. A

rough projection orthogonal to W would bring the risk of removing important

axes of B, because FB and FW can have a collinear part. In that sense, the step 1

of DROP-D guarantees to preserve at least the most important b axes of FB. In

addition, axes of FB that were not included in step 1 preservation, but that are

orthogonal to FW , are preserved as well.

3.2.5 DROP-D algorithm

If the data is not already centered: xm mean(X) and X center(X,xm).
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DROP-D algorithm is as follows:

Algorithm 1: DROP-D

1 B XTY(YTY)�1YTX ; // Compute the between-class scatter

2 Bb  Eb(B) ; // Extract the b principal eigenvectors of B (via

SVD(B))

3 X?
b  X

�
IP �Bb(BT

bBb)�1BT
b

�
; // Remove from X these b directions

4 W⇤  X?T
b X?

b �X?T
b Y(YTY)�1YTX?

b ; // Compute the within-class

scatter with X?T
b and Y

5 W⇤
w  Ew(W⇤) ; // Extract the w principal eigenvectors of W⇤ (via

SVD(W⇤)). These w directions are assured to be at least

orthogonal to the b previously removed directions

6 Xclean  X
�
IP �W⇤

w(W
⇤T
w W⇤

w)
�1W⇤T

w

�
; // Remove from THE ORIGINAL X

these w directions

7 T⇤  XT
cleanXclean ; // Compute the principal directions of Xclean

8 D EQ(T) ; // Extract the Q principal eigenvectors of T via

SVD(T)

9 Optimize b, w and Q;

Any new vector x is projected on this new basis by computing s =
�
x� xm

�
DT.



Chapter 3. Proposed approaches 75

3.3 Spectral-spatial

In the previous chapter, we have seen several spectral-spatial approaches aiming

at improving classification performances. Among them, Edge Preserving Filtering

(EPF) proved its e�cacy with di↵erent studies. In this thesis, we also propose

a spectral-spatial approach that uses EPF spatial regularization in order to im-

prove the pixel-wise classification results. The assumption made when using EPF

spatial regularization to improve classification results is that edges are expected

to be found only at the class borders and not within classes. However, with real

images, edges are also found elsewhere than at class borders because of back-

ground variability caused by texture, non homogeneity of color and illumination

within similar classes, etc. Therefore, applying EPF directly to a HS image pre-

serves background edges and thus fails to reduce its variability. Applying it to

a score image obtained by a non-supervised feature extraction method similarly

fails because the extracted features also include the background as illustrated in

Figure 3.8.

(a) Ideal (b) Ideal + noise (c) Ideal + noise + back-
ground

Figure 3.8: Single-channel images (top) and their gradients (bottom).

To overcome this issue, we thus propose an approach in which the spatial regular-

ization is applied on a score image obtained by a supervised dimension reduction

method (such as DROP-D). The core idea is that, since the score image already

describes the classes to be discriminated by minimizing the background variability,

edges mostly correspond to class borders and the spatial regularization process is

more e↵ective.
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In the following, we assume that a linear supervised dimension reduction model,

i.e., a matrix D of size P ⇥Q, is available.

3.3.1 Construction of the score image

Any hyperspectral image H of size I ⇥ J ⇥ P , i.e., I rows, J columns and P

wavelengths, can always be unfolded into a data matrix H of size M ⇥ P where

M = I · J . The notation Hi then refers to the ith channel of the HS image.

The reduced score image S of size I ⇥ J ⇥ Q is similarly obtained by re-folding

the scores matrix S of size M ⇥Q given by:

S = HD. (3.24)

Each channel Si of the score image thus corresponds to the ith score.

As DROP-D scores are computed from a PCA, both loadings and scores are or-

thogonal to one another. This way, the di↵erent channels of the score image are

considered to be uncorrelated.

3.3.2 Anisotropic regularization

We implement our approach using the anisotropic di↵usion method from Perona

and Malik [1990] to enhance the within region homogeneity while keeping intact

the borders between adjacent regions. This method was developed for de-noising

gray-scale images by smoothing the image without removing the main edges.

The Perona and Malik [1990] method is an iterative process in which, at each

iteration, the amount of smoothing is weighted by the intensity of the local gradient

value. Considering a single channel image I (supposed continuous), the evolution

equation
@I�x, y, t�

@t
= div

�rI(x, y, t)� =M I(x, y, t) (3.25)

corresponds to the heat equation, where div and r are respectively the divergence

operator and the gradient operator with respect to the space variables, and where

t is the time used to define the evolution of the di↵usion process.
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(a) Noisy image

(b) Gaussian 5 iterations (c) Gaussian 30 iterations (d) Gaussian 100 iterations

(e) AR 5 iterations (f) AR 30 iterations (g) AR 100 iterations

Figure 3.9: E↵ect of the regularization of a noisy image (top) using: classical
Gaussian filter (middle) and anisotropic regularization (AR) (bottom).

The solution of this equation corresponds to a temporal Gaussian filtering, whose

variance is �2 = 2t, given by

I(x, y, t) = I(x, y, t0) ⇤G(x, y, t) where G(x, y, t) =
1

4⇡t
exp

�� x2 + y2

4t

�
(3.26)

However, this Gaussian filtering can reduce noise in images, but it operates in an

identical way in every direction and thus does not preserve the image discontinu-

ities due to object transitions (see Figure 3.9b to 3.9d).

In order to provide sharp edges while smoothing within regions, Perona and Malik

[1990] proposed to modulate the gradient as following:

@I�x, y, t�

@t
= div

⇥
g
� k rI�x, y, t� k �rI�x, y, t�⇤ (3.27)

where the function g has to be decreasing with respect to the local image gradient

norm ↵ = k rI k. In [Perona and Malik, 1990], the authors have used a

Gaussian function only determined by one parameter, which corresponds to a



Chapter 3. Proposed approaches 78

smoothing kernel width ⌘. This function is given by:

g(↵) = exp
�� �

↵/⌘
�2�

. (3.28)

This di↵usion process is then anisotropic which allows the conservation of main

edges as represented in Figure 3.9e to 3.9g.

3.3.3 Score image regularization

Depending on the obtained scores, two regularization schemes can be considered:

With non-orthogonal scores, a multidimensional regularization scheme is preferred

to avoid outliers as described in chapter 2.

With orthogonal scores, we can find homogeneous regions on one score while there

is a class transition on another one.

In this latter case, each channel of the score image can be processed independently,

leading to a very simple and parallel method. The di↵usion process is thus applied

individually to every channel Si of the score image i 2 [[1, · · · , Q]]. The process

is initialized as Si,0 = Si. Then, at the iteration k + 1, the di↵usion process

numerically applied to the channel Si,k is written as:

Si,k+1 = Si,k + ✏ · div ⇥g� k rSi,k k
� ·rSi,k

⇤
(3.29)

where ✏ tunes the amount of change at each iteration of the di↵usion process.
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3.4 Reflectance correction

In this section we propose an automatic method for reflectance correction which

overcomes the use of a reference measurement in the case of classification.

3.4.1 Hypotheses

As a first hypothesis, we consider that a radiometric correction has been applied

to all the images, i.e., the HS images provide radiance spectra. Also, the materials

to be discriminated are supposed to be Lambertian. Then, the calibration set

has to be representative of potential material in other images, i.e. every possible

class has to be represented and class variability has to be large enough to include

every potential future outcome. A ground truth is supposed to be available for

the calibration image as the model is supervised.

3.4.2 Lambertian hypothesis

A hyperspectral image is a measure of the radiation emitted or reflected from a

scene in a large number of contiguous spectral bands. The quantity measured by

an hyperspectral sensor is, after radiometric correction, a spectral radiance L(�),

i.e., an irradiance measured in a specific direction (in W.sr�1.m�2.nm�1). Note

that in the following we only consider the case of Lambertian surfaces which means

that the reflectance is independent from both the angle between the camera and

the source and from the light incidence angle. With Lambertian materials, for a

pixel i, j, the measured radiance is:

Li,j(�) = ri,j(�)E(�) (3.30)

where ri,j(�) is the reflectance in radiance (also called remote sensing reflectance)

and E(�) is the descending irradiance (in W.m�2.nm�1) supposed identical for

each pixel.

The usual reflectance correction method to retrieve ri,j(�) from Li,j(�) consists in

estimating E(�). Then,

ri,j(�) ' r̂i,j(�) = Li,j(�)
E(�)

Ê(�)
(3.31)
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where Ê(�) is either directly measured or retrieved using a reference surface in

each image by Ê(�) =
Lref (�)

rref (�)
.

The reference surface is usually a Spectralon R� (rref (�) ' 1) or a calibrated

surface of known reflectivity. Lref (�) can then be (manually) extracted in each

image and the correction computed on every pixel.

3.4.3 Discrimination model hypothesis

Let us consider a matrix X of dimensions (N ⇥P ) that corresponds to N spectra

of P wavelengths extracted from an hyperspectral image. Let us also define a

matrix Y of dimension (N ⇥C) that codes the class belonging for each spectra of

X.

Let us consider a classification method that first computes a set of reduced vari-

ables (such as DROP-D), and then use a discrimination rule on the obtained scores.

Recalling that projections from high- to low-dimensional spaces tend to increase

Normality of the distribution1, in the following, we use the Bayes classifier on the

reduced scores. We thus have the following discrimination model:

(1) The linear dimension reduction model D decomposes the spectral matrix into

a score matrix S:

S = XD (3.32)

of dimension N ⇥Q, with Q⌧ P .

(2) For each class c 2 [1, · · · , C] an estimate of the class mean µ̂c and class

covariance matrix b⌃c is computed using the samples available in the training set.

(3) The class decision for a new observation (spectrum x) s = xDT is made using

Bayes classifier defined as:

ĉ = argmax
c

1

(2⇡)
Q
2 |b⌃c| 12

exp
�

1
2

�
s�µ̂c

�T
b
⌃

�1
c

�
s�µ̂c

��
(3.33)

1(see Section 1.3.1)
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3.4.4 Problem statement

We have seen that reflectance and radiance are linked by a multiplicative term,

constant for each pixel in a given image, E(�). The bulk of our method is to

transform equation 3.30 using the logarithm:

log(Li,j(�)) = log
�
ri,j(�)E(�)

�
= log

�
ri,j(�)

�
+ log

�
E(�)

�
. (3.34)

In the following of this section, we analyze which di↵erences occur in the model

when using the log-reflectance and the log-radiance matrix to build the model.

Consider a matrix X(R) containing log-reflectance spectra and the matrix X(L)

containing the corresponding, but uncorrected, log-radiance spectra. In both cases,

N spectra of P wavelengths have known labels and can be use to calibrate a

supervised classification model.

E↵ect on the dimension reduction model

Let us consider the dimension reduction models D(L) and D(R) calibrated using

X(L) and X(R) respectively. Under the hypothesis of similar lighting at each pixel,

the mean centered spectral matrices gX(L) and ]X(R) are the same:

Proof.

gX(L) = X(L) � 1N [µ
X

(L)
T

=
�
X(R) +X(E)

�� �
1N\µ

X

(R)
T
+ 1N\µ

X

(E)
T�

(3.35)

= ]X(R) (3.36)

The last part of this equality holds because the lighting is supposed identical for

each pixels and thus X(E) = 1N\µ
X

(E)
T
.

Because the first step of (most) dimension reduction methods is to center these

matrices (X(L) and X(R)), the models obtained from either a centered log-radiance

image or a centered log-reflectance image are the same: D(L) = D(R) = D

E↵ect of the reflectance correction on the reduced scores

The scores obtained from the log-radiance spectra matrix X(L) using D can thus
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be decomposed as:

S(L) = X(L)D

=
�
X(R) +X(E)

�
D

= X(R)D+X(E)D

= S(R) + S(E)

= S(R) + 1N [µ
S

(E)
T

(3.37)

which means that using a log-radiance image, the scores obtained through a lin-

ear model are only translated versions of the ones that are obtained with a log-

reflectance image.

E↵ect on the classification decision

The score translation does not change the class separability but has a direct e↵ect

on the classifier in terms of class decision. For instance, in the following we show

that from the class parameters estimated from the training samples, only the class

mean is changed.

Let us define µ̂c and b⌃c the mean vector and covariance matrix estimated using

the training samples for class c, where c 2 [1, · · · , C]. Then, the class decision is

computed as:

d
µ(L)

c , 1

Nc

X

Si2Yc

S(L)
i

=
1

Nc

X

Si2Yc

S(R)
i +

1

Nc

X

Si2Yc

S(E)
i

, d
µ(R)

c + dµ(E) (3.38)

and,

d⌃(L)
c , 1

Nc � 1

X

Si2Yc

�
S(L)
i � d

µ(L)
c

��
S(L)
i � d

µ(L)
c

�T

=
1

Nc � 1

X

Si2Yc

�
S(R)
i + S(E)

i � d
µ(R)

c � dµ(E)
��
S(R)
i + S(E)

i � d
µ(R)

c � dµ(E)
�T

=
1

Nc � 1

X

Si2Yc

�
S(R)
i � d

µ(R)
c

��
S(R)
i � d

µ(R)
c

�T

, d⌃(R)
c (3.39)
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Which proves that the only parameters that change in the Bayes classifier are the

class mean vectors. Therefore, from a classification point of view, the reflectance

correction can be avoided if we know the translation dµ(E) and by changing the

decision rule considering µ̂c +
dµ(E) instead of µ̂c.

By simple extension, represented in Figure 3.10, this approach can be applied to

transfer the decision rule between two images that are corrected in reflectance or

not.

Figure 3.10: Translation estimation scheme between two radiance images L1

and L2.

3.4.5 Translation estimation

In this section we present a method to retrieve the translation parameter that is

robust against missing classes and number of samples in each class. A graphical

framework of the method is given in Figure 3.11.

In the general case, the class information is known in the one image used for

training the model and unknown for the other images. While the problem of

finding a translation is obvious when the class information is known in both sets,

it becomes more complex when it is not.

This problem is known as registration and several methods have been developed in

the field of image processing [Zitová and Flusser, 2003]. When the transformation

is simple such as a rigid transformation, a convenient tool is the normalized cross-

correlation. Cross-correlation uses the grey level information between two images

as a measure of matching. One of the images is transformed (translated, rotated,

...) until the best matching is found.
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In our score registration case, things are quite di↵erent because:

1) we are in a Q-dimensional space,

2) we do not have pixels and thus no grey-level to assess the matching.

Hence, before registration, aQ-dimensional image is created using theQ-dimensional

scores. The image creation step is illustrated in Figure 3.11 using labeled training

data, unlabeled data and unlabeled data with a missing class. It is based on the

estimation of Gaussian distributions of classes in the Q space for every HS image.

In the following, the subscript 1 is used for the training data with a known class

label and the subscript 2 for the unknown data.

In the first image, from which the labeled samples are known, the estimation of

class parameters (which characterize their Gaussian distributions)

✓̂1 = {µ̂11, µ̂12 · · · , µ̂1C , b⌃11, b⌃12, · · · , b⌃1C} (3.40)

is straightforward. In the other images, the probability density function (pdf) of

each class has to be estimated in the score space without the knowledge of the

class. In the case of Normally distributed classes, as assumed here, a powerful tool

is the Expectation Maximization (EM) algorithm [Moon, 1996].

Using the EM algorithm, the parameters of the estimated Gaussian mixture are

in our case2 noted

✓̂2 = {µ̂210 , µ̂220 · · · , µ̂2C0 , b⌃210 , b⌃220 , · · · , b⌃2C0} (3.41)

The problem is that there is no direct correspondence between the class indices c 2
{1, · · · , C} in the training set ✓̂1 and the indices c0 2 {1, · · · , C 0} issued from EM

in ✓̂2. To overcome this problem, we chose to represent the pdf of the scores as Q-

dimensional images and then to match them using a cross-correlation registration.

For this purpose, we partition the Q dimensional space in a set of R pixels (of di-

mension Q). For a given set of parameters ✓̂ = {µ̂1, µ̂2 · · · , µ̂C , b⌃1, b⌃2, · · · , b⌃C},
the image intensity at a position w, where w is a vector of Q components, is given

by the mixture of Gaussians:

g(w, ✓̂) =
CX

c=1

f(w, µ̂c, b⌃c). (3.42)

2 Note that in our case, the mixture weights ⇡c are omitted to enable classes having a di↵erent
number of samples between two images to be dealt with in the following step.
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where f(w,µ,⌃) is the value at w of the multivariate Gaussian probability func-

tion with mean vector µ and covariance matrix ⌃.

Using these equations and averaging over the R pixels {w1,w2, · · · ,wR}, a global

mismatch error between images is computed as:

Err(✓̂1, ✓̂2) =
X

w2R

�
g(w, ✓̂1)� g(w, ✓̂2)

�2
(3.43)

In practice, the sum is bounded by plausible boundaries given by min/max scores

on each axis. If Q is large, a subset of R of random vectors w can be selected.

Let us define a translation operator T on ✓̂:

T (✓̂, t) = {µ̂1 + t, µ̂2 + t, · · · , µ̂C + t, b⌃1, b⌃2, · · · , b⌃C} (3.44)

The final registration step only consists in the estimation of a translation in a

Q-dimensional spaces and is done by:

t̂ = argmin
t

Err
�
✓̂1, T (✓̂2, t)

�
. (3.45)

for which an important initial guess is given by the di↵erence of positions in each

score image of the average observations.
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(a) Scores

(b) Class density estimation (EM)

(c) Image sampling

Figure 3.11: Creation of a 2-dimensional image from the score of the training
set (left), unknown labels (middle) and unknown labels with one missing class

(right).
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The objective of this chapter is to show the relevance of the developed approaches

using hyperspectral images acquired in real outdoor conditions. Two data sets

(called A and B) are used in order to illustrate the main steps of each part of

the approaches and to give a better understanding of how the three approaches

proposed in the previous chapter can be implemented together. The data sets that

contain both reflectance and radiance images are described in the first section. In

the second and third section, both DROP-D and the spectral-spatial approach are

detailed using reflectance images. Finally, in the last section, we show that using

the score registration on the log-radiance images provide similar results as when

using the classical reflectance correction.

4.1 Data sets

For the purpose of this study, we will consider two data sets (called A and B).

These data sets, are represented in Figure 4.1 and 4.4 respectively.

In the remainder of this chapter, the notation used to describe the data sets are:

1st character: letter R for reflectance and L for radiance (luminance);

2nd character: letter A or B for the data set;

3rd character: subset number within the data set.

Note that in every case, the models are calibrated using data 1.

4.1.1 Data set A: Proximal detection

For this data set, illustrated in Figure 4.1, short-range hyperspectral images were

acquired using a Hyspex V-NIR 1600 camera (Norks Elektro Optikk, Norway).

The images were recorded in-field using a translation stage mounted on a tractor

(see illustration in Figure 4.2). The acquisition device was formerly developed by

Irstea to map the nitrogen content in a wheat crop (see [Vigneau, 2010] for details)

and with a very high spatial resolution. The images were thus captured at 1 meter

above the ground, which led to a spatial resolution of 0.2 mm/pixel.

Using a calibrated reference surface in each image (gray plate seen Figure 4.1),

radiance images (LXX) were transformed into reflectance images (RXX).
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Figure 4.1: Presentation of the data set A: proximal detection
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Figure 4.2: Illustration of Irstea acquisition setup for in-field measurements.
The Hyspex camera is in the red rectangle on the right figure.

The acquired spectra were composed of 160 spectral bands ranging from 415.11 nm

to 993.54 nm. Due to low sensitivity of the sensor in the NIR, the 20 spectral bands

above 920.78 nm were discarded. Then, because of the high absorption of oxygen

at around 750 nm, bands 93 to 96 were discarded as well.

Two acquisitions were performed at 1 hour interval at di↵erent places in the same

field. From these two HS images, three sub-data sets were created: A1, A2 and

A3.

Data set A1 was used to calibrate the models as detailed in Figure 4.3. The

ground truth map is presented in Figure 4.3a and its associated class labels in

Figure 4.3b. The three classes to discriminate are wheat, weed and soil. These

classes are represented in every figure with the color defined in Figure 4.3b.

For training the models, 100 spectra per class (300 in total) were randomly ex-

tracted from the available ground truth map, which corresponds to approximately

0.6% of the available data. The amount of available data for training versus

validating the model are represented as a principal component scatter plot in Fig-

ure 4.3c.

These training spectra for each class are represented in Figure 4.3d. For consis-

tency of the results with the final section, in which a logarithm transformation has

to be performed, we used log-transformed spectra throughout the whole chapter.

The log-transformed spectra are presented in Figure 4.3e.

Data set A2 corresponds to the same field as data set A1 but acquired 1 hour

later. A similar ground truth was manually created but is not represented here.

This data set is used in the final section to illustrate the translation problem

occurring when using log-radiance images.
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Data set A3 is extracted from the same image as data set A2. It corresponds

to an area in which only two classes (wheat and soil) are represented. This data

set is also only used in the final section to assess the robustness of the registration

step when there is a missing class.

4.1.2 Data set B: Remote-sensing

This data set, illustrated in Figure 4.4, contains remotely-sensed hyperspectral

images acquired with a camera (Hyspex V-NIR 1600, Norks Elektro Optikk, Nor-

way) embedded in a plane Piper Seneca II PA 34. The data used for this study

were extracted from a field measurement campaign carried out by Actimar within

the exploratory research and innovation project named HypLitt over the Quiberon

peninsulas, France. Further information of the measurement campaign that con-

tains 133 images and that maps 404 linear km are found in [Smet et al., 2010].
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(a) RGB reconstruction (top) and Manually created ground truth (bottom)

None : 1

Wheat : 2

Weed : 3

Soil : 4

(b) (c) Scores of the two principal components extracted from a PCA
on the log-transformed (left) training set and (right) validation set

(d) Training set spectra for each class

(e) Log-transformed training set spectra for each class

Figure 4.3: Presentation of the dataset RA1
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Figure 4.4: Presentation of the data set B: remote-sensing
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For our purpose we only used two images (B1 and B2) acquired at 650 m above the

ground level with a spatial resolution of 0.5 m. We chose these images, represented

in Figure 4.4, because they include a common region not a↵ected by any cloud

shadow for which a ground truth could be manually created. To help with the

ground truth creation, another image acquired at 500 m above the ground (spatial

resolution of 0.4 m) was used.

Reflectance images were obtained through the atmospheric model ATCOR and

then adjusted using spectroradiometric measurement on the ground using reference

surfaces [Smet et al., 2010]. Because of low signal values below 442.3 nm, the ten

first spectral bands were discarded. Then, because of saturation of vegetation

spectra above 841.6 nm, spectral bands from 121 to 160 were discarded as well.

Finally, the oxygen absorption bands at around 750 nm, which corresponds to

spectral bands 84 to 90 were also removed.

Note that the acquisition of B1 and B2 were performed at 6 days of interval at

14h56 and 13h23 respectively.

Data set B1 was used to calibrate the models and is represented in Figure 4.5.

The ground truth map is presented in Figure 4.5a and its associated class labels

in Figure 4.5b. The four classes to discriminate are grass, deciduous, conifer

and sand. These classes are represented in every figure with the color defined in

Figure 4.5b.

For training the models, 100 spectra per class (400 in total) were randomly ex-

tracted from the available ground truth map, which corresponds to approximately

4.2% of the available data. The amount of available data for training and for

validating the model are represented as a principal component scatter plot in Fig-

ure 4.5c.

These training spectra for each class are represented in Figure 4.5d. For consis-

tency of the results with the final section in which a logarithm transformation has

to be performed, we used log-transformed spectra throughout the whole chapter.

The log-transformed spectra are presented in Figure 4.5e.

Data set B2 corresponds to the same area as data set B1 but acquired 6 days

later. A similar ground truth was manually created but is not represented here.

This data set is used in the final section to illustrate the translation problem when

models are calibrated with data set B1.
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4.1.3 Performance measurements

In order to provide numerical results, di↵erent measures were used.

Classification error corresponds to the ratio of pixels incorrectly classified ex-

pressed in percent.

Wilk’s Lambda is a measure of the class separability. It is given by the following

determinant ratio:

⇤Wilks =
| W |
| T | =

| W |
| B+W | . (4.1)

It can take values between 0 (perfect discrimination) to 1 (no discrimination).

Cross-validation results are used to tune di↵erent methods parameters. In such

cases, we used a 10-fold procedure on the training data [Esbensen and Geladi,

2010]. For validation, results are presented on the overall ground truth minus the

training data.

In the following, each part of the proposed approaches are detailed using these

data sets.
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(a) RGB reconstruction (top) and manually created ground truth (bot-
tom)

None : 1

Grass : 2

Deciduous : 3

Conifer : 4

Sand : 5

(b) (c) Scores of the two principal components extracted from a PCA on
the log-transformed (left) training set and (right) validation set

(d) Training set spectra for each class

(e) Log-transformed training set spectra for each class

Figure 4.5: Presentation of the dataset RB1
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4.2 Dimension reduction

In this section we present di↵erent aspects of the dimension reduction method

DROP-D using data sets RA1 and RB1. We first illustrate the collinearity of the

scatter matrices eigenvectors in the variable space. Secondly, we show DROP-D in

action step by step and illustrate the e↵ect of removing the within-class variability

on the class separability with data set RA1. Thirdly, we show, using data set

RA1, that the number of within-class axes to remove can be tuned without cross-

validation by comparing calibration and cross validation results. Then, we show,

using data set RB2, that only calibration data can be used to select every DROP-

D parameters. We also illustrate, using an artificial data set, that by removing

information DROP-D cannot learn a class structure when there is none. Finally,

we compare DROP-D classification performances with PCA-LDA, Nullspace LDA

(NLDA) and PLS-LDA.

4.2.1 Collinearity in RP

In order to assess the collinearity issue in the variable space, let us first have a look

at the eigenstructure of the total, between- and within- class scatter matrices for

both data sets. In Figure 4.6 and Figure 4.7 are represented the eigenvalue plot and

the main eigenvectors for data set RA1 and RB1 respectively. The angle between

each combination of these eigenvectors is also given is Table 4.1 and Table 4.2.

The eigenvalue plot illustrates that the maximum number of eigenvectors for B is

C � 1, where C is the number of di↵erent classes. For RA1, in which three classes

have to be discriminated, there are thus only 2 non-zero eigenvalues (Figure 4.6).

Similarly, for RB1 there are only 3 non-zero eigenvalues (Figure 4.7).

For W and T, the number of non-zero eigenvalue is at maximum min(P � 1, N),

where P is the number of variables and N the number of observations in the

training set. In our case, for both data sets, we have more observations than

variables. Therefore, these matrices ranks are numerically full. However, they

cannot be inverted because of their bad conditioning (ratio of the maximum to

minimum eigenvalue). The actual rank is thus only around 10 to 15, the remaining

is only due to observation noise.
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Figure 4.6: Dataset RA1: Eigenvalues and the principal eigenvectors of the
scatter matrices T, B and W

Eb(B) EQ(T)
b = 1 b = 2 Q = 1 Q = 2 Q = 3 Q = 4 Q = 5 Q = 6

Ew(W)

w = 1 63 30 29 62 88 89 90 90
w = 2 34 61 62 30 80 90 88 90
w = 3 90 90 85 83 28 64 88 89
w = 4 89 88 87 87 65 27 89 82
w = 5 89 89 89 88 88 90 8 89
w = 6 89 89 90 90 87 86 89 23

Eb(B) b = 1 34 56 88 89 90 90
b = 2 58 38 77 77 89 88

Table 4.1: Dataset RA1: angle (in degree) between the principal eigenvectors
of the scatter matrices T, B and W
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Figure 4.7: Dataset RB1: Eigenvalues and the principal eigenvectors of the
scatter matrices T, B and W

Eb(B) EQ(T)
b = 1 b = 2 b = 3 Q = 1 Q = 2 Q = 3 Q = 4 Q = 5 Q = 6

Ew(W)

w = 1 28 63 86 22 68 89 90 90 90
w = 2 66 44 88 68 24 81 88 89 90
w = 3 81 65 77 87 84 28 64 87 88
w = 4 90 90 88 88 85 65 30 78 89
w = 5 90 89 90 90 90 87 81 26 74
w = 6 90 89 83 90 90 88 90 81 31

Eb(B)
b = 1 6 84 90 90 90 90
b = 2 85 30 81 64 81 86
b = 3 88 68 53 54 87 76

Table 4.2: Dataset RB1: angle (in degree) between the principal eigenvectors
of the scatter matrices T, B and W
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The eigenvector plots on the Figure 4.6 and Figure 4.7 illustrate well the noise

captured by these eigenvectors. For RA1, the fifth eigenvector is already noisy

and for RB1, noise is perceived starting from the fourth eigenvector.

Observing the shape of the eigenvectors plotted as curves gives a first hint on the

non-orthogonality of the eigenvectors: some of them are nearly identical between

the di↵erent sets. This intuition is confirmed by the angles reported in Table: 4.1

and Table 4.2.

With RA1, some eigenvectors are clearly non-orthogonal (angle < 90 degrees). In

this particular case, most non-orthogonal eigenvectors have an angle of approx-

imately 30 degrees. As we will see in the following, with this type of data, a

compromise has to be made on removing or keeping these within-class eigenvec-

tors using an orthogonal projection because of a potential loss in discrimination

power.

With data set RB1, the non-orthogonality is still large for the within and total

scatter matrices with approximately 25 degrees. However, for the between-class

scatter matrix, only its two first eigenvectors are non-orthogonal to those of the

within-class matrix. This third eigenvector is in addition, slightly collinear to the

third to total scatter matrix eigenvector, which shows that it corresponds to an

important direction for this data set. In the following we will show using DROP-D

that preserving the two first between-class principal axes and removing one within-

class axis proves to be the optimal combination for this data set. Note that this

is just an observation and this table in itself cannot be used to tuned DROP-D

parameters. In particular, at every projection the angle between each eigenvector

is changed and a new table would have to be analyzed the same way until an

optimal combination is found. For example, in Table 4.3 we show the angle of the

between- to within-class scatter eigenvector after removing the first between-class

axis. In this space, the first between-class axis thus become perfectly orthogonal

to all within-class axes. We also observe that the two most collinear vectors are

the combination (w⇤, b) = (1, 2) and (w⇤, b) = (3, 3). Then, removing the second

axis of the between-class (see Table 4.4), the third axis of the between-class scatter

matrix becomes the most collinear to the first within-class axis.

Although this approach, which consists in observing the angle between eigenvec-

tors is interesting to understand the class structure of the dataset, tuning DROP-

D parameters looking at these tables is unmanageable as the number of classes
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Eb(B)
b = 1 b = 2 b = 3

E⇤
w(W

⇤)

w⇤ = 1 90 26 74
w⇤ = 2 90 79 88
w⇤ = 3 90 72 41
w⇤ = 4 90 79 78
w⇤ = 5 90 84 78
w⇤ = 6 90 88 79

Table 4.3: Dataset RB1: angle between the principal eigenvectors of the
scatter matrices B and W⇤ computed with E1(B) removed

Eb(B)
b = 1 b = 2 b = 3

E⇤
w(W

⇤)

w⇤ = 1 90 90 52
w⇤ = 2 90 90 70
w⇤ = 3 90 90 69
w⇤ = 4 90 90 71
w⇤ = 5 90 90 78
w⇤ = 6 90 90 78

Table 4.4: Dataset RB1: angle between the principal eigenvectors of the
scatter matrices B and W⇤ computed with E2(B) removed

increases. Therefore, in the following, we adopt a classical parameter tuning ap-

proach.

Final remarks concern the ‘shape’ of the obtained eigenvectors. Indeed, for both

data sets, the discrimination includes mostly vegetation spectra. As it was ob-

served in the data sets presentation (Figure 4.3 and Figure 4.4), vegetation spec-

tra have a strong reflectance feature at around 700 nm. This transition, situated

at the edge of the red and infrared part of the electromagnetic spectrum is very

distinctive for vegetation spectra and is often referred to as the red-edge. This

red-edge is mostly due to a strong absorption of the chlorophyll within the veg-

etation and is thus characteristic of the type of plant. The structure of the red

edge (position, slope) is thus naturally found as a discriminative feature by classi-

fiers. At the end of the red-edge, another characteristic feature of the vegetation

spectra is the NIR plateau. Finally, the greenness of the vegetation is also often

discriminative between vegetation types and specific features are thus often found

in the 500 to 600 nm range.



Chapter 4. Results 102

4.2.2 E↵ect of removing W on the class separability

As we have seen in the previous section, the between- and within-class scatter

matrices can have some non-orthogonal principal directions. Also, in order to

decrease the Wilk’s Lambda and thus to increase class separability, a possible

approach would be to suppress the within-class variability by removing the prin-

cipal axis of the within-class scatter. However, because of this non-orthogonality,

removing these directions may a↵ect the class separability as well. The idea of

DROP-D, as presented in the previous chapter, is thus to prevent the suppression

of too much between-class scatter. In the following we present, using the data

set RA1, this e↵ect step by step for di↵erent numbers (w) of within-class axes

removed and by preserving di↵erent numbers (b) of between-class directions.

With b = 0, no between-class direction is a priori preserved. Figure 4.8 show

the Wilk’s Lambda of the training data plotted as a function of the number of

within-class directions removed. We also represent the obtained scatter plot for

three specified values. At w = 0, the discriminant vectors correspond to the ones

of the Principal Component Analysis (PCA) and we can observe the same scatter

plot as in the data presentation of Figure 4.1. The two vegetation classes (wheat

and weed) are poorly separated but distinct from the third class (soil). Then, until

w = 9, the ‘noisy’ aspect of the obtained curve is due to the non-orthogonality of

W and T. The discriminant vectors keep changing due to the removal of within-

class directions. Then, at around 9 or 10 removed axes, a clearer minimum is

obtained. Removing more axis only degrades the class separability (even for the

training set).

With b = 1, the principal direction of the between-class scatter is preserved. As

observed in Figure 4.9, a similar ‘noisy’ pattern is obtained, but only until w = 5.

In this case only the second axis of the between-class is a↵ected by the successive

cleaning of the within-class directions. The clear minimum obtained for w = 5

is stable until w = 8. Then, removing more directions starts a↵ecting the class

separability as well, e.g., see the Figure 4.9 at w = 12 where the wheat (green)

and weed (red) starts to cluster.

With b = 2, every between-class direction is preserved. With three classes, it

corresponds to the limit case of DROP-D in which any cleaning does not change the

class separability unless more discriminant axes (Q) are kept (results not shown).
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(a) Wilk’s Lambda plotted as a function of the number of
within-class principal axes removed.
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Figure 4.8: Dataset RA1: Class separability as a function of the number of
within-class principal directions removed. (b = 0)
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(a) Wilk’s Lambda plotted as a function of the number of
within-class principal axes removed.
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Figure 4.9: Dataset RA1: Class separability as a function of the number of
within-class principal directions removed. (b = 1)
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These results on class separability were all performed with Q = 2 in order to

provide these two-dimensional scatter plots. In the general case, Q is another

parameter to tune, which corresponds to the final number of discriminant vectors

to be used. It actually corresponds to a PCA on the cleaned spectral matrix

as explained in the previous chapter. Usually, with PCA, the correct number of

components to retain is always subject to discussion because the error decreases

only slowly and an optimal threshold is di�cult to estimate. The rule of thumb

in such cases is ‘less is better’. Fortunately, we will see in the following figures

that when cleaning the spectral matrix with DROP-D, this threshold appears to

be easier to find.

4.2.3 Model calibration

As we have seen in the previous section, with a careful selection of the between- and

within-class principal axes to keep or to remove, various class separabilities can be

obtained. Also, we have seen that owing to the DROP-D approach, which consists

in removing information (contrary to PLS-LDA, which learns the class structure by

modeling B), overfitting can be spotted directly on the training set by observing

the class separability. In the following, we show that a similar ‘behaviour’ is

obtained with the classification performance.

In figure 4.10, we show the classification error obtained with the training set (cali-

bration error) and using a 10-fold cross-validation on the training set. This graph

presents the classification error as a function of the number of final discriminant

axes (Q) for di↵erent numbers of within-class axes removed (number inside the

circle). With w = 0 (which corresponds to a classical PCA) both calibration and

cross-validation error smoothly decrease without any clear minimum. Then, from

w = 1 to w = 4, we obtain the similar noisy aspect, but in terms of classification

performance. From w = 5 (optimal) to w = 7, the same classification error is

obtained. In addition, a clear optimal value for Q emerged (Q = 2). Then, as we

observed with the class separability, when removing one more axis, the error starts

increasing. Therefore, w = 5 is chosen as an optimal value since it corresponds to

the smallest value for which the optimal results are obtained. Also note a similar

behavior obtained for both calibration and cross-validation curves.

Let us assess the optimal parameters b, w and Q for the data set RB1 using only

the calibration error. Figure 4.11 shows the four sets of curves that correspond to
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(a) Calibration error
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(b) Cross-validation error

Figure 4.10: Dataset RA1: Representation of the classification error of cali-
bration (A) and cross-validation (B) for di↵erent parameters for w and Q with

b = 1.

every possible values for b. Without preserving the two first between-class axes,

removing w always leads to worse results (Figure 4.11a and 4.11b). Note that in

these cases, deciding for an optimal value for Q is not an easy task as explained

before. When b = 2 (Figure 4.11c), a clear optimum is reached by removing only

one within-class axis. In addition, the optimal value for Q also becomes more

obvious to choose. In particular, removing more w or increasing Q both lead to

worse results. Finally, when preserving the last possible between-class direction,

classification results become slightly worse. The optimal parameters for this data

set are thus b = 2, w = 1 and Q = 3. These values actually correspond to the one

obtained with the 10-fold cross-validation (not represented here).

Finally, to illustrate that DROP-D cannot learn a class structure when there is

none, we show in Figure 4.12 the classification error obtained with data set RA1

in which the class matrix has been randomly shu✏ed. For any number of removed

within-class axis, no structure can be extracted and the classification results re-

main the same. On the other hand, with a PLS-LDA model trained on the same

data, a class structure can be learned and is thus prone to overfitting. This main

di↵erence comes from the fact that DROP-D removes W while PLS-LDA learns

a class structure by modeling B [Barker and Rayens, 2003]. Therefore, because of

the high dimensionality, a class structure can always be learned, especially with a

small training set. On the contrary, when removing information with DROP-D,

if the information was useful for discrimination, even the training data is a↵ected
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(b) b = 1

2 4 6 8 10

0

5

10

15

20

25

0

0

0

0

0
0

0 0 0 0

1

1

1
1

1
1 1

1 1 1

2

2 2

2

2 2
2

2
2 2

3

3

3
3 3 3 3 3 3 3

4

4

4
4 4 4

4 4 4 4

5

5

5
5 5 5 5

5
5 5

6

6
6 6

6 6 6 6 6 6

Number of Total axes (Q)

E
r
r
o
r
 
(
i
n
 
%
)

b=2

 

 

w=0

w=1

w=2

w=3

w=4

w=5

w=6

(c) b = 2
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Figure 4.11: Dataset RB1: representation of the training error of classification
for di↵erent parameters b,w and Q.

by the loss.

4.2.4 Classification performances

As we have seen, a major interest of DROP-D is to provide a method relatively

robust to overfitting. Let us now have a look at the classification performance

that can provide this method on our data sets. We also compare the results with

the most classically used dimension reduction methods, i.e., PCA-LDA, NLDA

(setting w=15) and PLS-LDA. For all methods the class decision is made using
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Figure 4.12: DROP-D classification error on the training set with a random
class matrix.

a Quadratic Discriminant Analysis (QDA) on the obtained scores (see Chapter 1

for details on QDA).

A first classification performance assessment is qualitative and is made by observ-

ing the shape of the obtained discriminant vectors. Indeed, as every dimension

reduction method used is linear, the obtained discriminant vectors can be plotted

as spectra and can be analyzed in the same way.

Then, for practical uses, it is interesting to assess the classification performances

for di↵erent numbers of training samples. For this purpose, we randomly selected

among the training set from 10 to the whole (100) spectra per class, by step of 10.

Results are presented in Figure 4.13 and Figure 4.14 for data set RA1 and RB1

respectively. In these figures, we also provided the classification maps obtained

for each method using the 100 spectra per class.

The obtained results in terms of classification peformance are very similar with

these data sets. With our experience on other data sets using DROP-D (not

represented here), the results highly depends on the data. DROP-D proves better

than PLS-LDA in some cases only, but is generally better than PCA-LDA. In this

sense, DROP-D o↵ers an alternative way of reducing dimension in a supervised

way.

All these methods appear to be relatively not sensitive to the lack of training

samples. In particular, above 20 samples per class, the classification stabilizes to

its optimal value, which is of great interest for practical uses.
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Figure 4.13: Dataset A1

For the discriminant vectors, only those of DROP-D and NLDA are orthogonal

since they correspond to the eigenvectors of symmetric matrices. However, al-

though it leads to high classification performances, the ‘shapes’ of NLDA discrim-

inant vectors are not interpretable in practice, which probably explains the lack

of interest from the chemometrics community. The DROP-D discriminant vectors

that come from preserved between-class principal directions appear less noisy due

to the averaging involved in the computation of these eigenvectors. However, the
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Figure 4.14: Dataset RB1

discriminant vectors obtained by removing within-class axes are naturally nois-

ier, but o↵er a di↵erent type of information from PLS-LDA or PCA-LDA (see

Figure 4.13 for example).

In the following, we show that the relatively noisy aspect of classification maps

can be dealt with using our spatial regularization approach.
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4.3 Spatial regularization

In the previous chapter, we proposed a spatial regularization approach based on

score images obtained in a supervised way. In a first first step, we show the inter-

est of using a supervised dimension reduction by comparing the gradient images

obtained with other methods. Then, for each data set, we show the influence of

the tuning parameters of the spatial regularization on the classification outcome.

We also illustrate the e↵ect of this spatial regularization in both the image and

the score space. Finally, using a benchmark data set, we compare our approach

with other recently proposed spectral-spatial approaches.

4.3.1 Validation of the approach

4.3.1.1 On ‘what’ to apply the regularization

In order to justify the choice of applying the di↵usion process on a supervised score

image, we represent in Figure 4.15 and Figure 4.16 the gradient images averaged

over every channel for the data sets RA1 and RB1 respectively. These gradients

were computed from the original HS image, from a PCA score image, from a PLS

score image and from the DROP-D score image.

As expected, there is a high similarity between the HS image gradient and the

PCA score image gradient because PCA summarizes most of the original HS im-

age information in fewer components. Even though these two gradient images

show high values at region borders, high values are also obtained inside regions

because of the background variability, which is present in the original HS image

and captured by the PCA.

On the contrary, the PLS and DROP-D score image gradients are di↵erent from

the other two. By finding a trade-o↵ between capturing spectral information and

class information, the gradient images have low values within regions and high

values mostly at the region borders. Therefore, because spatial regularization is

guided by the image gradient intensity, it is more e↵ectively used with a PLS or a

DROP-D score image than with the original HS image or the PCA score image.
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(a) HS image

(b) PCA score

(c) PLS score

(d) DROP-D score

Figure 4.15: Gradient images computed from dataset RA1

4.3.1.2 ‘When’ to apply regularization

In order to validate quantitatively the proposed approach, in Table 4.5 we provide

the classification results obtained using the training set on the RA1 data set.

In order to provide results also without dimension reduction, for this table we

used a K-nearest neighbor (KNN) classifier with K=3. This table thus shows the

results obtained without regularization (KNN, PCA-KNN, PLS-KNN and DROP-

D-KNN), applying the regularization first (AR-KNN, AR-PCA-KNN, AR-PLS-

KNN and AR-DROP-D-KNN), and applying the regularization after dimension

reduction (PCA-AR-KNN, PLS-AR-KNN and DROP-D-AR-KNN).
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Figure 4.16: Gradient images computed from dataset RB1

We first observe that the supervised approaches outperform the unsupervised ones.

Then, for every method, applying a regularization usually improves the classifi-

cation outcomes. For PCA, only a slight improvement is noted by applying the

regularization before or after dimension reduction. However, PLS- and DROP-D-

based results show that the regularization has to be performed after dimension

reduction, which confirms the proposed approach detailed in the previous chapter.

Table 4.5: Dataset RA1: Classification error (%) for di↵erent regularization
procedures

Without regularization Regularization first Regularization second

KNN 7.97 AR-KNN 7.62 n/a n/a
PCA-KNN 7.35 AR-PCA-KNN 7.27 PCA-AR-KNN 7.26
PLS-KNN 6.84 AR-PLS-KNN 6.62 PLS-AR-KNN 4.91

DROP-D-KNN 7.14 AR-DROP-D-KNN 7.10 DROP-D-AR-KNN 5.37

4.3.2 Tuning robustness

In Figure 4.17, the evolution of the classification error is represented as a function

of both the di↵usion parameter (⌘) and the number of iterations using DROP-D-

AR on data sets RA1 and RB1. The number of iterations ranged from 1 to 30, and

⌘ ranged from 0.01 to 1. Every DROP-D score was normalized to unit variance

before regularization so that the di↵usion parameter varied within the same range.

For both data sets, optimal values were situated within a wide region, ranging

from 0.4 to 0.6 for the di↵usion parameter and from 8 to 25 for the number

of iterations. This illustrates that the method is relatively robust to parameter
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variations and easy to tune, which is convenient when di↵erent types of images

need to be classified.

(a) Dataset RA1 (b) Dataset RB1

Figure 4.17: Influence of the di↵usion parameters regarding the classification
error (%)

4.3.3 E↵ect on score versus spatial

Figure 4.18 presents the e↵ects of AR in the spectral domain (scores) for both

data sets. Similarly, Figure 4.19 and Fig. 4.20 present the e↵ects of AR in the

spatial domains for data sets RA1 and RB1 respectively.

The obtained regularized score images clearly indicate less variability within each

class, which is confirmed by the images of di↵erences (see Figure 4.19 and 4.20). On

the other hand, class borders are well preserved, which emphasizes the importance

of using an edge-preserving filter. Observing the scatter plots before and after

regularization validates this observation, since every class was less spread out

around its mean value, which leads to an increased class discriminability.

4.3.4 Classification results

In Figure 4.21 are represented the classification maps obtained before and after

regularization for both data sets. In both cases, the classification noise is greatly

decreased leading to more homogeneous classes. At the border, especially for data

set RA1 (Figure 4.21) with the wheat leaves border, the classification error at the

edges is also reduced.
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(a) Dataset RA1: before AR (b) Dataset RA1: after AR

(c) Dataset RB1: before AR (d) Dataset RB1: after AR

Figure 4.18: E↵ect of the regularization in the spectral domain. The two first
score are represented before and after regularization

4.3.5 Comparison with other approaches

We finally compare our approach with some of the latest spectral spatial ap-

proaches developed by the remote sensing community. To do so, we used one of

the remotely sensed hyperspectral images that is now considered as a benchmark

for testing classification methods. Results on other benchmark images have been

published [Hadoux et al., 2014] using PLS as a supervised dimension reduction.

The Salinas data set was acquired by the AVIRIS sensor over Salinas Valley, Cali-

fornia at a spatial resolution of 3.7 meters per pixel. The image comprised 512⇥217
pixels and the ground truth contained sixteen classes. We discarded twenty bands

a↵ected by water absorption, in this case bands 108 to 112, 154 to 167 and 224.

The ground truth map, class names and number of samples per class for each

image are displayed in Figure 4.22.

For each method, every parameter was tuned using 10-fold cross-validation.
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(a) Before AR: First channel of the score image

(b) After AR: First channel of the score image

(c) Di↵erence between (A) and (B)

(d) Before AR: Second channel of the score image

(e) After AR: Second channel of the score image

(f) Di↵erence between (D) and (E)

Figure 4.19: Dataset RA1: E↵ect of the regularization in the spatial domain
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Figure 4.20: Dataset RA1: E↵ect of the regularization in the spatial domain
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(d) Data set RB1: After AR: Error
7%

Figure 4.21: Classification results before and after regularization on the two
data sets
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Figure 4.22: Ground truth map with class labels of the Salinas data set.
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Figure 4.23: Comparison of classification methods for an increasing number of
training samples using Salinas data set. Curves represent mean values obtained
for a random selection repeated 30 times and error bars represent the standard

deviations.
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Figure 4.24: Classification maps of Salinas data set with 100 randomly se-
lected training samples per class for (a) SVM, (b) LORSAL, (c) DROP-D, (d)

SVM-EPF, (e) LORSAL-MLL, (f) DROP-D-AR.
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We thus compared our approach with two of the leading state-of-the-art spectral-

spatial methods. Every method presented here uses spatial information in addition

to a purely spectral classification method. Therefore, in order to assess the synergy

of the conjoint use of spectral and spatial information, we also present the results

obtained without using spatial information.

We thus compare Support Vector Machine (SVM), SVM with Edge Preserving Fil-

tering (SVM-EPF) [Kang et al., 2014], Logistic Regression via Splitting and Aug-

mented Lagrangian (LORSAL) [Li, 2011], LORSAL Multilevel Logistic (LORSAL-

MLL) [Li et al., 2012], and our methods DROP-D and DROP-D-AR.

We first compare these six methods in terms of classification error for an increasing

number of training samples per class. Because classification results highly depend

on the choice of the training set (especially for small sets), the selection was

performed randomly and repeated 30 times for each number of training samples.

Then, for each selection and each number of training samples, every model was

trained and tuned using cross-validation. The classification error was evaluated on

the samples that were not used for training. Figure 4.23 shows the results obtained

with this data set and the six tested classification methods, where solid lines are

used for methods using both spectral and spatial information, and dashed lines

are used for methods using only spectral information. Our method proved to use

e↵ectively the spatial information: SVM gives better results than DROP-D, while

DROP-D-AR is equivalent to SVM-EPF.

We also compare classification maps obtained by the six methods using 100 ran-

domly selected samples per class in Figure 4.24. We observe that using spatial in-

formation improved the classification results at least by reducing the classification

noise. Interestingly, both SVM-EPF and DROP-D-AR-based methods obtained

well defined borders and few misclassified regions. LORSAL-MLL uses a graph

cut technique, resulting in whole misclassified areas when the cut is not properly

made, which explains the large variability observed in Figure 4.23. SVM-EPF in-

creases the SVM classification rate by using neighboring information provided by a

spatially regularized map (using PCA) in a majority of voting fashion. Therefore,

if most pixels are misclassified within a region, after EPF, the region might be ho-

mogeneous but possibly with a wrong class label. With DROP-AR, however, since

spatial information is used before class decision, some areas that are completely

misclassified before regularization can be correctly classified afterwards (see the

yellow region in the center of the Figure 4.24 for example) .
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4.4 Reflectance correction

In this section we aim at proving that by using the log-radiance and by correctly

estimating the translation in the feature space between images, radiance images

can be used, avoiding the reflectance correction as detailed in the previous chapter.

To do so, we first illustrate the translation occurring between the reflectance and

radiance image in the score space for both data sets. We also show the translation

occurring between the radiance images of our data set. Then, using the method

described in the previous chapter, we prove that the translation can be estimated

even when there is a missing class in the data set. We finally show the classification

maps obtained with the registered scores and compared them with those obtained

with reflectance images.

4.4.1 Reflectance correction e↵ect on the reduced scores

In order to illustrate the translation occurring in the log-space between the re-

flectance spectra and the radiance spectra, we represented in Figure 4.25 the

e↵ect of reflectance correction on log-image. The models calibrated using the

log-reflectance data RA1 and RB1 are applied to the log-radiance data LA1 and

LB1. For both data sets, the di↵erences clearly correspond to translations. There

is therefore no loss of class separability when using the radiance image instead of

a reflectance one. However, without a correct estimation of the translation, the

classification model cannot be applied directly.

(a) Translation observed between RA1 and
LA1

(b) Translation observed between RB1 and
LB1

Figure 4.25: E↵ect of the reflectance correction on the score space after log-
transformation. For both data sets, scores 1 and 2 from the DROP-D models
are plotted. The model is calibrated with a log-reflectance image (yellow) and
applied to a log-radiance image (blue). The training set is also represented.
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4.4.2 Using log-radiance image for classification

The translation illustrated between reflectance and radiance image is very large.

When dealing with radiance images, depending on weather conditions and hour of

the day, the di↵erences in radiance images can be a lot smaller.

For example in Figure 4.26 we show the di↵erences between the two images of

data set A that were acquired with one hour di↵erence. Recall that A2 and A3

come from the same image and thus the same translation versus A1 is obtained.

Note the class ‘weed’ (red) missing for data set 3 in the scatter plot. Because this

translation is mostly along the soil-vegetation separation axis (PC1), classes tend

to be more easily classified as wheat. As a result, the obtained classification map

have green pixels even for the soil (which is normally easily discriminated).

In Figure 4.27 we similarly show the translation occuring between the log-radiance

image LB1 and LB2. With this data there are only two images but the optimal

number of discriminant DROP-D axes was 3. Here, pixels in the classification

maps are shifted more toward the ‘deciduous’ class.

4.4.3 Translation estimation

In this section, we illustrate the di↵erent steps of the approach proposed in the

previous chapter in order to estimate the translation. Every step of the method is

represented for both data sets in Figure 4.28 and Figure 4.29 for data sets A and

B respectively.

For data set A, the estimation of each class is correctly performed by the EM

algorithm. For LA3, the missing class was not problematic for EM which found a

third class with a large variance and center next to the soil mean.

Then, the cross correlation between LA1 and the two other images lead to a unique

maximum in each case. Because LA2 and LA3 come from the same image, the

same lighting di↵erence should be found with LA1. On these data, which were

represented on a 200 ⇥ 200 pixel image, the di↵erence between LA2 and LA3

translation was only of 4 pixels horizontal and 1 pixel vertical. This shows the

robustness of the method even in presence of a missing class.
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(a) LA1 and training data (b) LA1 and LA2 (c) LA1 and LA3 (missing
class weed)
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(f) LA3 (missing class weed)

Figure 4.26: Scores plot and classification map calibrated with LA1

Observing the translation directly on the score plot shows satisfying results as the

cloud points are now well overlapping. The resulting classification map shown in

Figure 4.30 gives similar results as those obtained with the classical reflectance

correction technique.

For data set B, the class estimation is less obvious because of the class ‘sand’

which is represented in only a very limited amount in the images. However, because
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the method is robust to missing classes, the further processing still proves to

perform accurately to estimate the translation. The obtained cross-correlation

presents a few local minima but the correct estimation of the translation can still

be performed without any doubt by choosing the maximum. As with data set A,

the registered score correctly overlaps the original ones.



Chapter 4. Results 125

(a) LB1 and training data (b) LB1 and LB2
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(d) LB2

Figure 4.27: Scores plot and classification map calibrated with LB1
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Figure 4.28: Registration process on LA data set. A,B,C: distribution density
functions estimate by EM. F,G: distribution density functions after translation

correction.
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Figure 4.29: Registration process on LB data set. From left to right axis
(1,2), axes (1,3) and axes (2,3)
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Figure 4.30: Comparison of the classification results obtained on the re-
flectance images and on the translated radiance images.
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Conclusions and future work

The objective of this thesis was to propose and validate new approaches to deal

with some of the main issues in supervised classification of hyperspectral data.

The focus was on three particular aspects: (1) spectral dimension reduction, (2)

combination of spectral and spatial information and (3) compensation for variabil-

ity in lighting conditions. In the next section we summarize the main contributions

of the thesis. Then, we propose some research directions in order to continue and

improve this work.

5.1 Conclusions

Hyperspectral image processing has been more and more used in many scientific

and industrial fields over the last decades. Its growing interest comes from the

possibility to obtain detailed spectral information for each pixel of the image.

Using this spectral information, which is linked to the biochemical properties of the

target, many useful characteristics can be retrieved regarding the imaged objects.

HS images can therefore be used for environmental applications, earth monitoring,

plant content mapping or even weed detection.

However, the counterpart of this very detailed spectral information is that the

huge amount of data to process, in order to retrieve these characteristics, makes

the usual processing techniques fail.

For example, in supervised classification, which is one of the main uses of HS imag-

ing, the high dimensionality of the data leads to the failure of standard classifiers.

129
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In addition, spectral data are highly correlated, which creates other conditioning

problems for matrix computations. Fortunately, high collinearity also means high

redundancy. Hence, methods that can summarize the spectral information have

been investigated in order to deal with this type of data. For instance, in supervised

classification, di↵erent methods have been proposed to reduce the dimensionality

of the data. One classical approach is to model the class structure using statis-

tical learning techniques such as Partial Least Squares. Although very e↵ective,

this method is prone to overfitting and therefore needs extra data to be collected

to compensate for this issue. Another classical way of finding the ‘best’ linear

subspace is to use the Fisher approach, that is to minimize the Wilk’s Lambda

by minimizing the within-class variability and maximizing the distance between

classes. Fisher’s paradigm is however not directly applicable to high dimensional

and collinear data because of matrix inversion issues. Much research has thus been

conducted to adapt Fisher’s idea for high dimensional spaces. Among these meth-

ods, Nullspace LDA o↵ers an interesting way to solve this issue but is dependent

on the existence of this nullspace, which becomes empty as the number of observa-

tions increases. Another way is to perform a Principal Component Analysis prior

to the Fisher LDA so that in the reduced space, the inversion problem is avoided.

However, this method uses in its first step all the data information without con-

sidering class information in the dimension reduction and is therefore not optimal

for classification purposes. In this thesis, we propose an alternative approach that

uses orthogonal projection to clean the data before dimension reduction. The data

cleaning is performed using the within-class principal directions. In that sense, it

mimics the LDA, but instead of weighting the projection by the within-class in-

version, it directly removes the information due to this within class-variations. We

also show that without being very careful when removing the within-class informa-

tion, the class separability can be lost because of non-orthogonality of the within-

and between-class principal directions. Therefore, in the method we proposed,

called DROP-D, a first step consists in preserving the most important between-

class directions so that no cleaning can be performed on them. Once the data is

cleaned, a classical Principal Component Analysis is performed in order to provide

reduced data. This method provides similar results to PLS in terms of classifi-

cation performances. However, contrary to PLS, by the nature of the method,

overfitting can be prevented without using the cross-validation procedure. Indeed,

by cleaning the data instead of learning a class structure, DROP-D classification

results are a↵ected if useful information is removed even during the training phase.
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Another issue tackled in this thesis is the use of both spectral and spatial infor-

mation to enhance classification performances. Contrary to pure spectrometric

applications, the contextual spatial information provided by the hyperspectral

image should not be ignored in the classification process. In this context, the hy-

perspectral community has recently been developing many di↵erent approaches in

order to combine these complementary types of information. Among them, edge

preserving filtering techniques have received much attention due to their ability to

reduce spatial noise within homogeneous objects while preserving their borders.

The HS image quality is thus improved for visual analysis and for classification

performance owing to the reduced noise. However, the existing approaches either

use this spatial filtering directly on the hyperspectral image, and thus need to

redefine high-dimensional gradients, or use the regularization on reduced variables

obtained from unsupervised dimension reduction methods. In both cases, the vari-

ables used for regularization contain both the within-class natural variations as

well as the information due to class di↵erences. Hence, spatial filtering is not op-

timal because the natural variability creates edges in the reduced image that are,

by definition, preserved by the EPF. To compensate for this issue, we proposed in

this thesis to use a supervised approach for dimension reduction before applying

the spatial EPF. We show that, by having edges that are mostly due to the objects

borders, within-object smoothing is increased. Therefore, it results in increased

classification performances when compared with the other approaches.

Finally, the last issue tackled in this thesis concerns the reflectance correction

necessary to model the transfer between images. In order to process data that

do not vary with atmospheric and lighting conditions, hyperspectral images have

first to be calibrated into reflectance images. This operation requires the measure

of lighting conditions in each image and is thus constraining for some applica-

tions. For instance, at Irstea, a calibrated reference surface is positioned at each

acquisition in the field of view of the camera. Then, because the reflectivity of

this surface is known, the lighting condition on the scene can be estimated and

the image corrected. Other techniques exist, but also require the measurement

or the estimation of the light received by the objects at the moment of image

acquisition. In this thesis, we show that in the framework of supervised classifi-

cation this e↵ect can be corrected automatically without prior information if the

surfaces are Lambertian. In particular, we show that the di↵erence in lighting

can be expressed, after logarithm pre-treatment, as an additive e↵ect which is

constant for each pixel within an image. This e↵ect remains additive after using
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linear dimension reduction method such as DROP-D and can thus be estimated in

the low-dimensional space. We thus propose a method to estimate this translation

that is based on class density estimation in the reduced space. Owing to the use of

a supervised dimension reduction, the classes form clusters in this reduced space

which can be retrieved by automatic methods such as Expectation Maximization.

Once the class distribution is modeled, we propose to use a classical image reg-

istration technique (cross-correlation) in order to estimate this translation, which

is robust to missing classes. On the two data sets presented in this thesis, the

obtained results o↵ered by this method are comparable to those obtained with a

classical reflectance correction technique.

These three approaches can also be combined in a general hyperspectral processing

framework: DROP-D can be first used as a spectral supervised dimension reduc-

tion method. Then, on the obtained scores, a spatial regularization technique

that preserves spatial borders can be e↵ectively applied. Finally, without prior

reflectance correction, other HS images can be classified as well using the score

translation method.

5.2 Future work

In this thesis, we have tackled three main issues of hyperspectral image classifica-

tion. For each proposed approach, di↵erent research directions can be taken and

improvements can be made.

In the actual implementation of DROP-D, the eigenvectors associated to the

largest eigenvalues are preserved. However, it would be interesting to chose some

combinations of between and within axis to be kept or removed, not necessarily

starting from the main ones. Although obvious when there are few classes, it

would require optimization techniques to be implemented as the number of possi-

ble combinations increases.

Another approach would be to relax the orthogonality constraint on the projec-

tion. It is expected that non-orthogonal projection would be able to reduce better

the within class variability without a↵ecting the between class distances.

Another possibility with DROP-D would be to use the cleaned data with some

more complex classifier such as SVM in order to reduce the amount of support

vectors to use.
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Finally, from a theoretical point of view, it would be interesting to compare the

cleaning made by DROP-D with the chemometric methods developed for regres-

sion analysis such as Orthogonal Signal Correction for example.

We implemented the spectral-spatial approach using the original version of Anisotropic

Di↵usion in conjunction with the supervised dimension reduction. Hence, as the

image processing community has worked extensively in the field of spatial regular-

ization, investigating more sophisticated approaches would surely be beneficial.

Also, observing the residual maps (di↵erences before and after regularization),

some obtained patterns in terms of textural analysis seem of potential interest to

keep enhancing the use of spatial information in the classification process. These

textural features could be added to the process as input of a classifier in the same

way as spectral data.

Finally, with the translation estimation, several improvements can be made in

the approach. For instance, as a first step, alternatives to the very costly cross-

correlation to find a translation would be beneficial (using Fourier Transform for

example). Then, using the spatial information (i.e., shapes in the classification

map as a feedback) in addition to the correlation information should help to find

the translation when classes do not cluster well in the reduced space. Finally,

solutions to deal with non-Lambertian objects would be highly beneficial since

even reflectance correction cannot accurately deal with this particular case. We

do believe that this approach using a logarithm transformation as a pre-processing

could also be applicable to deal with non-Lambertian cases. In this case each

class would translate independently from the other, but with the same covariance

matrix. Thus, using non-rigid registration techniques by matching the covariance

could possibly be performed on some cases.
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Introduction

Une caméra hyperspectrale (HS) peut enregistrer des images avec une information

spectrale très détaillée pour chaque pixel. L’information spectrale fournie par ces

capteurs est liée aux propriétés biochimiques de l’échantillon mesuré, et a donc été

largement utilisée pour la mesure non-destructive dans les domaines scientifiques

et industriels ces dernières décennies. À Irstea, et en particulier dans l’unité de

recherche ITAP (Information, Technologies, Analyse environnementale, Procédés

agricoles), cette information spectrale spatialisée permet d’augmenter les possi-

bilités de caractérisation déjà o↵ertes par les spectromètres et les caméras couleurs

classiques pour les applications environnementales et agricoles. En e↵et, si la di-

mension spectrale fournit une source d’information sur l’état de la récolte (physi-

ologique ou pathologique, par exemple), l’information spatiale permet de récupérer

des informations de structure ( phase de développement, présence d’adventices,

etc.). La mise en œuvre de la technologie HS et le traitement des données obtenues

sont cependant complexes et nécessitent des procédures adaptées.

Dans le cadre de la classification, les di↵érences biochimiques entre pixels spectraux

peuvent être exploitées pour créer un modèle de classification qui permet d’a↵ecter

chaque pixel de l’image HS à une catégorie unique. En classification supervisée, les

échantillons d’apprentissage de catégories connues sont nécessaires afin de définir

la règle d’a↵ectation.

Au début de ce travail de thèse, le contexte spécifique de la discrimination des

adventices dans les cultures de blé a été étudié. En particulier, la comparaison

de di↵érents pré-traitements spectraux en regard des méthodes de classification

a été proposée dans le cadre de la proxi-détection au champ. Toutefois, il a été

constaté que certains des problèmes rencontrés pourraient être abordés de manière

plus générique.

Par conséquent, par la suite, des questions plus générales concernant la classi-

fication supervisée des images hyperspectrales ont été étudiées, et constituent

l’essentiel du présent document. Trois contributions principales sont notamment

développées. La première est une nouvelle méthode supervisée de réduction de

dimension, développée spécifiquement pour faire face à la dimension élevée et à la

colinéarité des données spectrales. La seconde est une approche spectro-spatiale

qui consiste à utiliser une méthode de régularisation spatiale en combinaison avec

une réduction supervisée de la dimension, dans le but d’optimiser son e↵et sur les
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performances de classification. La troisième et dernière est une méthode automa-

tique qui permet à des images HS en radiance d’être classifiées même avec des

conditions di↵érentes d’éclairage, et évite donc la correction en réflectance.

Notons que d’autres méthodes ont également été étudiées, que nous avons choisi

de ne pas inclure dans le présent document. En particulier, une collaboration avec

le Pr. Dinesh Kant Kumar et le Dr. Marc Sarossy du Royal Melbourne Institute of

Technology, en Australie, a été accomplie afin de développer une approche multi-

résolution pour l’analyse spectrale. Toutes ces contributions sont disponibles en

annexe A.

Ce manuscrit de thèse est organisé en cinq chapitres. Le premier chapitre présente

le contexte de la classification d’images hyperspectrales. La description ainsi

que les plus importantes définitions concernant les images hyperspectrales y sont

données. Le contexte spécifique de la classification supervisée y est ensuite détaillé.

À la fin de ce chapitre, les principaux enjeux concernant l’application des méthodes

de classification aux images hyperspectrales sont résumés, à savoir la dimension

élevée et la colinéarité des données spectrales, la façon d’introduire l’information

spatiale dans le processus de classification et les principales étapes de correc-

tion pour obtenir une image HS en réflectance. Le deuxième chapitre dresse un

état de l’art des méthodes principales qui répondent aux problèmes mentionnés

précédemment. Il permet enfin de statuer sur les inconvénients des approches ex-

istantes. Dans le troisième chapitre, nous proposons trois contributions originales

pour répondre à ces questions. Le quatrième chapitre est consacré à la validation

des approches proposées par la présentation de résultats en utilisant des exemples

réels. Le cinquième chapitre conclut cette thèse en synthétisant les points les plus

importants des approches développées et propose quelques perspectives ainsi que

de futures directions de recherche pour continuer ce travail.

B.1 Classification en imagerie hyperspectrale

L’imagerie hyperspectrale, également connue sous le nom d’imagerie chim-

ique ou encore de spectro-imagerie, est une technologie d’imagerie relativement

récente qui permet à la fois l’acquisition de l’information spectrale et spatiale des

objets ciblés. Les images hyperspectrales (HS) sont des images multivariées qui

peuvent être représentées comme des cubes de données, avec deux dimensions
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spatiales (x, y) et une dimension spectrale (�). Chaque pixel de l’image contient

une mesure spectrale échantillonnée, qui peut être interprétée pour identifier les

matériaux présents dans la scène. Cette représentation est généralement perçue

de deux manières équivalentes :

- Du point de vue de la spectrométrie, le contenu de l’image HS est considéré

comme de l’information spectrale spatialisée : les spectromètres deviennent spa-

tialement résolus.

- Du point de vue du traitement de l’image, le contenu de l’image de HS est

considéré comme de l’information spatiale spectralisée : les pixels d’une image

deviennent spectralement résolus.

Dans les deux cas, chaque position spatiale dans l’image HS est associée à un

spectre qui contient l’information chimique de l’objet imagé.

L’objectif de la classification est d’identifier la nature des objets en termes de

classes, sur la base de certaines caractéristiques [Bishop, 2007, Fukunaga, 1990].

En classification supervisée, toutes les classes sont supposées être connues et

mutuellement exclusives. Quelques observations pour chaque classe sont également

supposés être disponibles pour étalonner un modèle. Ces observations, qui forment

ce qu’on appelle les échantillons d’apprentissages, sont attribuées manuellement,

et nécessitent l’établissement préalable d’une vérité terrain.

Avec une image HS, les caractéristiques peuvent prendre di↵érentes formes, par

exemple spectres bruts, variables spectrales réduites, formes des objets, textures.

Définissons un espace des caractéristiques X 2 RP et un jeu fini des classes possi-

bles Y = {Y1, · · · ,YC}, où Yc représente l’une des C classes. Les N observations

de l’ensemble d’apprentissage sont regroupées dans une matrice X = {xi 2 X} et

les classes associées dans Y = {yi 2 Y}, où i = 1, · · · , N . Avec cette notation, xi

correspond au ieme vecteur et yi à sa classe. Les classes sont généralement notées

en codage disjonctif, par exemple y = [0 0 1 0 0]T code la classe 3 parmi 5.

La classification consiste à assigner chaque vecteur à l’une des C classes d’intérêt

en utilisant une fonction g : X 7! Y .
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B.2 Problématiques et état de l’art en classifica-

tion des données HS

Le type et la quantité d’informations fournies par les capteurs HS doivent être

considérés lors de la mise en place d’une procédure de classification. En e↵et,

bien que le grand nombre de bandes spectrales fournies par la caméra HS signifie

également plus d’information potentiellement discriminatoire, cela pose également

des problèmes

B.2.1 Problèmes avec la dimension spectrale

Il existe plusieurs problèmes liés à l’utilisation des données spectrales à des fins de

classification, qui sont dues au fait que nous essayons de modéliser une structure

de faible dimension contenue dans un espace de grande dimension et en utilisant

seulement quelques observations [Donoho, 2000, Jimenez et al., 1998, Tormod and

Bjorn-Helge, 2001]. La concentration de la mesure stipule que les régions d’un

espace de grande dimension sont presque vides parce que les données ont tendance

à se concentrer dans une couche mince à la frontière des régions. Chaque voisi-

nage des observations dans l’espace des caractéristiques est donc susceptible d’être

vide. Par conséquent, les estimations de densités statistiques doivent être réalisées

en utilisant une large bande passante et donc en perdant les détails spectraux.

Les estimations statistiques nécessitent un nombre croissant d’échantillons

d’apprentissage lorsque la dimensionnalité des données augmente [Hughes, 1968].

La colinéarité entre les variables est un problème bien connu avec des données

spectrales. Ce problème, lié au conditionnement des matrices, est dû à la très forte

inter-corrélation des variables spectrales mesurées.

Toutefois, du fait que les espaces de grande dimension sont presque vides, une

structure de dimension inférieure contenant la même quantité d’information est

susceptible d’exister. Pour compenser ces problèmes, une approche classique con-

siste donc à e↵ectuer une réduction de dimension avant la classification [Geladi,

2003, Wold et al., 2001]. Pour la réduction de dimension spectrale, lorsque l’objectif

est la classification, les méthodes non supervisées conduisent à des scores sous-

optimaux car ne prenant pas en compte l’information de classe lors du processus

de réduction [Barker and Rayens, 2003].
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Parmi les approches supervisées, les méthodes type moindres carrés partiels (PLS)

[Bylesjö et al., 2006, Fearn, 2000, Trygg and Wold, 2002, Wold et al., 2001] ten-

dent à modéliser la structure de classe des données en maximisant la capture de

covariance entre les variables et les classes lors de la construction des scores. Ces

approches ont donc naturellement tendance à “sur-apprendre” et leurs paramètres

doivent être réglés en utilisant des procédures de validation croisées [Esbensen and

Geladi, 2010]. Sans prendre de précaution particulières, ces validations croisées

peuvent conduire à des résultats trop optimistes et peuvent même trouver une

structure de classe quand il n’y en a pas.

D’autre part, des méthodes type analyse discriminante de Fisher (LDA) [Guo et al.,

2006, Witten and Tibshirani, 2011, Ye et al., 2005] tendent à résoudre le problème

d’inversion de la matrice de covariance en utilisant des astuces mathématiques

comme la pseudo-inverse ou l’inversion de la matrice de variance totale à la place

de la matrice de variance intra-classe. Une autre méthode consiste à utiliser une

analyse en composantes principales (PCA) [Grahn and Geladi, 2007] comme une

première étape en vue d’obtenir moins de variables sur lesquelles une LDA peut en-

suite être e↵ectuée. Cette approche est cependant sous-optimale, car la première

étape sélectionne des composantes qui ne sont pas liées à des di↵érences entre

classes. Enfin, nullspace LDA [Chen et al., 2000] est une méthode mathématiquement

très prometteuse car répondant parfaitement au paradigme de la LDA. Cependant,

cette méthode nécessite que le noyau de la matrice de covariance intra-classe ex-

iste, ce qui n’est le cas que lorsque le nombre de variables est plus grand que le

nombre d’observations. Cela signifie qu’en cas de nouvelles observations acquises

pour améliorer un modèle, la méthode ne peut plus être utilisée, limitant son

champ d’applications pour les données HS.

Dans cette thèse, nous proposons une démarche dans laquelle, contrairement à

la nullspace LDA, la suppression de la variabilité intra-classe est contrôlée, ce

qui permet également de préserver explicitement les axes discriminants les plus

importants.

B.2.2 Utilisation de l’information spatiale

Les classifieurs décris précédemment ne traitent les données HS que comme des

listes de mesures spectrales sans tenir compte des relations spatiales entre pix-

els adjacents, écartant ainsi des informations importantes. En e↵et, les résultats
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de classification pourraient être améliorés en utilisant l’information contextuelle

fournie par le spatial en plus de l’information spectrale [Dalla Mura et al., 2011,

Gorretta et al., 2012, Tarabalka et al., 2010a]. Selon l’échelle d’acquisition, di↵érentes

sources de variabilité spectrale sont présentes au sein des objets et pourraient être

gérées en utilisant l’information spatiale [Bioucas-Dias et al., 2013]. À cette fin,

depuis la méthode originale “extraction et classification des objets homogènes”

(ECHO) développée par Kettig and Landgrebe [1976], un grand nombre de recherches

ont été menées pour trouver des classifieurs spectro-spatiaux e�caces [Fauvel et al.,

2013].

Ces méthodes se répartissent en trois catégories [Valero, 2011] :

(1) Si les objets à classer ont de fortes caractéristiques discriminatoires spatiales,

ces caractéristiques sont extraites et utilisées comme variables pour un classifieur.

Par exemple, la segmentation d’image [Tilton, 2010], la Morphologie Mathématique

[Aptoula and Lefèvre, 2007, Soille, 2003, Tilton, 2010], les filtres de régularisation

à préservation de contours [Lennon et al., 2002, Wang et al., 2010].

(2) Si les objets à classer ont de fortes caractéristiques discriminatoires spectrales

et spatiales, les deux sont extraites puis utilisées simultanément dans un classifi-

cateur par des techniques de noyaux [Camps-Valls et al., 2006, Fauvel, 2007], des

champs de Markov [Rellier, 2002, Tarabalka et al., 2010b], ou à l’aide d’une anal-

yse croisée [Gorretta, 2009].

(3) Si les objets à classer ont de fortes caractéristiques spectrales discrimina-

toires, l’information spectrale est d’abord traitée et l’information spatiale des pix-

els voisins est ensuite utilisée pour améliorer les résultats de la classification par

segmentation ou régularisation des cartes de classifications [Kang et al., 2014, Li,

2011, Tarabalka, 2007].

Concernant les approches spectro-spatiales, les méthodes qui utilisent des filtres

à préservation de contours (EPF) semblent être particulièrement bien adaptées à

la classification des images HS. En e↵et, être en mesure de réduire la variabilité

au sein des classes en utilisant un EPF semble très intéressant pour compléter

la réduction de variabilité spectrale déjà obtenue par la méthode de réduction de

dimension spectrale supervisée. Cependant, parmi les approches proposées dans

la littérature, cette régularisation spatiale est e↵ectuée uniquement soit sur les im-

ages HS brutes soit sur des images de scores obtenues de manière non supervisée.

Dans les deux cas, la variabilité naturelle au sein de chaque classe peut conduire à

des images très texturées. Ainsi, en utilisant le filtrage EPF, des bords sont aussi
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préservés à l’intérieur des classes qui doivent être homogénéisées. Par conséquent,

nous proposons dans cette thèse d’utiliser l’EPF de façon légèrement di↵érente : il

est appliqué sur une image de scores, obtenue à partir d’une méthode de réduction

de dimensions supervisée. En e↵et, en utilisant une méthode supervisée, la vari-

abilité au sein des classes est réduite et la distance entre classes est augmentée,

ce qui aide la régularisation spatiale à trouver des bords seulement aux frontières

des classes.

B.2.3 Obtention d’images en réflectance

Dans le scénario idéal, chaque objet à classer peut être représenté par sa signature

spectrale. Cependant, de nombreuses sources de variabilité incontrôlables tels que

l’angle de la source de lumière incidente, l’angle d’acquisition, les conditions atmo-

sphériques et un certain nombre d’autres variables a↵ectent sensiblement la mesure

spectrale [Barrett, 2013]. La correction en reflectance est donc indispensable pour

chaque analyse d’image HS acquise en extérieur. Les méthodes disponibles sont

généralement classés en trois catégories : modèles de transfert radiatifs, méthodes

basées sur l’image et méthodes basées sur la scène [Shaw and Burke, 2003]. Des

revues complètes concernant ces méthodes sont disponibles dans [Gao et al., 2009,

Gri�n and Burke, 2003].

Le modèle général [Gao and Goetz, 1990, Hamm et al., 2012] à partir duquel toutes

les méthodes de corrections sont basées est donné par :

Lobs(�) =
⇣
E#(�)T#(�) cos ✓ + L#(�)

⌘
T"(�)⇡

�1⇢(�) + L"(�), (B.1)

où, ⇢(�) est la réflectance de surface, Lobs(�) la radiance observée par le cap-

teur, L"(�) la radiance montante (trajet cible ! capteur) causé par la di↵usion

de l’atmosphère, L#(�) l’irradiance descendante (illumination di↵use), E#(�) la

radiance exo-atmosphérique, ✓ l’angle du soleil par rapport à la surface, T#(�) la

transmission atmosphérique soleil ! cible et T"(�) la transmission cible ! cap-

teur.

On peut noter qu’une relation linéaire existe entre la radiance observée et la

réflectance de surface :

Lobs(�) = a(�)⇢(�) + b(�). (B.2)
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L’objectif des méthodes de correction atmosphérique est donc de donner une es-

timation précise de a(�) et b(�). Les modèle de transferts radiatifs simulent

le spectre de rayonnement solaire, calculent les e↵ets de scènes, la position du

soleil et mesurent ou estiment le taux de particules absorbantes et di↵usantes de

l’atmosphère [Kruse, 2000]. Les méthodes de corrections basées sur la scène

utilisent des sources d’informations supplémentaires afin d’estimer empiriquement

les termes additif et multiplicatif [Moran et al., 2001, Smith and Milton, 1999,

Vain et al., 2009]. Les méthodes de corrections basées sur l’image utilisent

uniquement les informations qui peuvent être récupérées à partir de l’image pour

e↵ectuer la correction atmosphérique.

B.3 Approches proposées

B.3.1 Introduction

Lorsque les données HS sont utilisées à des fins de classification, les di↵érences entre

réponses spectrales sont utilisées pour attribuer un label à chaque pixel de l’image

HS. Si la classification est supervisée, des échantillons d’apprentissage avec labels

connus sont nécessaires afin d’étalonner le modèle de classification. Cependant,

des questions spécifiques sont soulevées quand un modèle de classification fiable

doit être créé avec ces données complexes. Dans cette thèse, nous présentons

trois approches pour faire face à certaines de ces questions principales, à savoir, la

réduction de la dimension spectrale, la combinaison des informations spectrale et

spatiale et la correction en réflectance.

B.3.2 Réduction de dimension

La classification supervisée consiste, en utilisant une matrice de données X et une

matrice de classe Y d’échantillons d’apprentissages, à trouver un modèle capable

de prédire la classe de toute nouvelle observation x en utilisant ses P descripteurs.

Avec les données spectrales, la classification se fait généralement en deux étapes:

(1) projection de l’observation dans un sous-espace de dimension plus faible;

(2) a↵ectation de l’observation à une classe.
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L’e�cacité de la deuxième étape est fortement influencée par la première. Par

conséquent, nous recherchons un sous-espace dans lequel les centres des classes

sont bien séparés et la répartition des classes autour de leurs centres est faible.

D’un point de vue mathématique, cela correspond à trouver des facteursD
�
P⇥Q�

tels que la projection de X sur D minimise le lambda de Wilk’s:

⇤Wilks =
trace(W)

trace(W +B)
(B.3)

qui correspond au ratio de la variabilité intra-classe sur variabilité totale (somme

de la variabilité inter- et intra-classes). Dans les cas “bien conditionnés”, une

solution est donnée par l’analyse factorielle de Fisher (LDA) :

D = argmax
D

⇣
trace

�
DTW�1BD

�⌘
= EQ

�
W�1B

�
(B.4)

où pour toute une matrice carré diagonalisable A, la notation EQ

�
A
�
correspond

aux Q vecteurs propres associés à ses Q plus grandes valeurs propres. Cependant,

avec des données mal conditionnées, l’inversion de W devient problématique. Par

conséquent, La LDA est incapable de traiter des données spectrales directement, et

plusieurs solutions ont été proposées dans la littérature pour résoudre ce problème.

Néanmoins, la construction d’un modèle de classification correspond à trouver un

sous-espace de l’espace des variables qui “copie” la structure de classe observée

dans l’espace des individus. La LDA le fait en contractant le sous-espace porté

par la variance intra-classe et en se focalisant sur celui porté par la variance inter-

classes.

La méthode proposée dans cette thèse o↵re une autre façon de réaliser cette copie.

L’idée est d’utiliser les variance inter- et intra-classes pour décomposer l’espace

des variables en di↵érents sous-espaces, de sorte que l’un d’eux porte une grande

partie de la variance inter-classes et une petite partie de l’intra-classe. Cependant,

la séparation des sources de variance n’est pas évidente en raison de la colinéarité

potentielle entre les sous-espaces F
B

et F
W

. Ainsi, selon la configuration des

classes, la suppression de la variance intra-classe n’améliore pas nécessairement la

séparabilité. Dans cette thèse, nous proposons une méthode, appelée DROP-D,

qui permet une suppression contrôlée de la variabilité intra-classe, c’est à dire, en

préservant ses axes colinéaires à F
B

.
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DROP-D: Réduction de dimension par projection orthogonale pour la discrimi-

nation est décomposée en trois étapes.

La première étape consiste à supprimer de X les b directions principales de la

variabilité inter-classes, tel que :

X?
b = P?

B,b

�
X
�
. (B.5)

Dans la seconde étape, la variabilité intra-classe est calculée sur
�
X?

b ,Y
�
. Ensuite,

les w directions principales liée à cette variabilité intra-classe (W⇤) sont éliminées

suivant l’équation :

Xclean = P?
W

⇤
�
X

?
B ,Y

�
,w

�
X
�
. (B.6)

La troisième étape consite à extraire les Q directions principales de Xclean qui sont

données par :

D = EQ

⇣
T
�
Xclean

�⌘
. (B.7)

En résumé, DROP-D défini trois sous-espaces de RP , FB, FW ⇤ et FD tel que :

- FB est lié aux b directions principales de la variabilité inter-classes

- FW ⇤ contient les w directions principales de la variabilité intra-classe (orthogonal

à FB)

- FD contient les Q directions qui incluent les b directions principales de la vari-

abilité inter-classes et les Q � b direction principales qui sont orthogonales à la

variabilité intra-classe.

Ce faisant, DROP-D élimine les directions principales de la variabilité intra-classe,

tout en préservant les directions les plus importantes de la variabilité inter-classes.

Une simple projection orthogonalement à W risquerait de supprimer aussi des

axes importants de B, car FB et FW peuvent avoir des parties colinéaires. En

ce sens, l’étape 1 de DROP-D garantie de préserver au moins les b axes les plus

importants de FB. En outre, les axes de FB qui n’étaient pas inclues à l’étape 1,

mais qui sont orthogonaux à FW , sont également préservés.

B.3.3 Approche spectro-spatiale

Dans l’état de l’art, nous avons vu plusieurs approches spectro-spatiales visant

à améliorer les performances de classification. Parmi elles, les EPF ont prouvé

leur e�cacité au travers de di↵érentes études. Dans cette thèse, nous proposons

également une approche spectro-spatiale qui utilise la régularisation spatiale EPF
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afin d’améliorer les résultats de la classification purement spectrale. L’hypothèse

retenue lors de l’utilisation de la régularisation spatiale EPF pour améliorer les

résultats de classification est que les bords sont supposés être présents seulement

aux frontières des classes et non à l’intérieur des classes. Cependant, dans les

images réelles, des bords sont également trouvés ailleurs qu’aux frontières des

classes en raison du bruit de fond provoqué par la texture, les non homogénéités

de couleur, d’éclairage, etc. Par conséquent, l’utilisation d’EPF directement sur

une image HS conserve les bords dus au bruit de fond et ne parvient pas à en

réduire la variabilité. L’EPF appliqué à une image de scores obtenus par une

méthode de réduction de dimension non-supervisée échoue de manière similaire

car les caractéristiques extraites comprennent également le bruit de fond.

Pour compenser ce problème, nous proposons donc une approche dans laquelle

la régularisation spatiale est appliquée à une image de scores obtenue par une

méthode de réduction de dimension supervisée (comme DROP-D). L’idée de base

est que, puisque l’image des scores décrit déjà les classes à discriminer en min-

imisant la variabilité due au bruit de fond, les bordures correspondent principale-

ment aux frontières de classes et le processus de régularisation spatial est plus

e�cace.

Construction de l’image des scores

Une image hyperspectrale H de dimension I ⇥ J ⇥ P , c’est à dire, I lignes, J

colonnes et P longueur d’ondes, peut être dépliée dans une matrice H de taille

M ⇥ P où M = I · J . La notation Hi correspond au ieme canal de l’image HS.

L’image de scores S de taille I⇥J⇥Q est obtenue de manière similaire en repliant

la matrice de scores S de taille M ⇥Q donnée par :

S = HD. (B.8)

Chaque canal Si de l’image de scores correspond donc au ieme score.

Notons que comme les scores de DROP-D sont obtenues à partir d’une PCA, les

facteurs ainsi que les scores sont orthogonaux. Les di↵érents canaux de l’image de

scores sont donc supposés non corrélés.

Régularisation anisotropique

Nous mettons en œuvre notre approche en utilisant la méthode de di↵usion anisotropique

de Perona and Malik [1990] pour augmenter l’homogénéité au sein des régions
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tout en gardant intact les frontières entre régions adjacentes. Cette méthode a été

développée pour débruiter des images en niveau de gris en lissant l’image sans en

enlever les bordures principales.

La méthode de Perona and Malik [1990] est un processus itératif dans lequel,

à chaque itération, la quantité de lissage est pondérée par l’intensité locale du

gradient.
@I�x, y, t�

@t
= div

⇥
g
� k rI�x, y, t� k �rI�x, y, t�⇤ (B.9)

où la fonction g doit être décroissante par rapport à la norme du gradient ↵ = k
rI k. Dans [Perona and Malik, 1990], les auteurs ont utilisés une fonction Gaussi-

enne déterminée seulement par un paramètre, correspondant à une largeur de

noyau de lissage ⌘. Cette fonction est donnée par :

g(↵) = exp
�� �

↵/⌘
�2�

. (B.10)

Ce processus de di↵usion est donc anisotropique et permet donc de conserver les

bordures principales.

Régularisation des images de scores

En fonction des scores obtenus, deux schémas de régularisation peuvent être en-

visagés. Avec des scores non-orthogonaux, une régularisation multidimen-

sionnelle est préférable afin d’éviter les valeurs aberrantes. Avec des scores

orthogonaux, on peut trouver des régions homogènes sur un score alors qu’il y

a une transition de classe sur un autre. Dans ce cas, chaque canal de l’image des

scores peut être traité de façon indépendante, ce qui conduit à une méthode très

simple et parallèle.

Le processus de di↵usion est donc dans notre cas appliqué individuellement sur

chaque canal Si de l’image des scores i 2 [[1, · · · , Q]]. Le processus est initialisé

avec Si,0 = Si. Ensuite, à l’itération k+1, la di↵usion est appliquée numériquement

au canal Si,k en suivant l’équation :

Si,k+1 = Si,k + ✏ · div ⇥g� k rSi,k k
� ·rSi,k

⇤
(B.11)

où ✏ règle le taux de change à chaque itération du processus de di↵usion.
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B.3.4 Correction en réflectance

Dans cette section, nous proposons un approche automatique de correction de

l’éclairement qui, dans le cas de la classification, évite l’utilisation de mesures de

références. L’hypothèse principale est que les matériaux à discriminer sont lam-

bertiens.

Hypothèse lambertienne

La quantité mesurée par une caméra HS est, après correction radiométrique, une

radiance spectrale L(�), c’est à dire, une irradiance mesurée dans une direction

spécifique (en W.sr�1.m�2.nm�1). Avec des matériaux lambertiens, pour un pixel

i, j, la radiance mesurée est :

Li,j(�) = ri,j(�)E(�) (B.12)

où ri,j(�) est la réflectance en radiance et E(�) l’irradiance descendante (enW.m�2.nm�1)

supposée identique pour chaque pixel.

Hypothèse du modèle de discrimination

Considérons une matrice X de taille (N ⇥P ) qui correspond aux N spectres de P

longueurs d’ondes extraits de l’image HS. Définissons une matrice Y de dimension

(N ⇥ C) qui code le degré d’appartenance de chaque spectre de X. Considérons

également une méthode de classification qui calcule des scores (comme DROP-D)

et qui les utilise ensuite pour la discrimination. Rappelons que les projections d’un

espace de grandes dimensions vers un espace de dimensions plus faibles favorisent

la Gaussianité des distributions, dans la suite, nous utilisons donc un classifieur

de Bayes sur les scores réduits. On a donc un modèle de discrimination comme

suit :

(1) Réduction de dimension linéaire D qui décompose la matrice de spectres en

une matrice de scores S:

S = XD (B.13)

de dimensions N ⇥Q, avec Q⌧ P .

(2) Pour chaque classe c 2 [1, · · · , C] une estimation du vecteur moyen µ̂c et de

la matrice de covariance b⌃c est calculée en utilisant les observations de l’ensemble

d’apprentissage.
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(3) La décision de classification pour une nouvelle observation est faite en utilisant

le classifieur de Bayes définie par :

ĉ = argmax
c

1

(2⇡)
Q
2 |b⌃c| 12

exp
�

1
2

�
s�µ̂c

�T
b
⌃

�1
c

�
s�µ̂c

��
(B.14)

Définition du problème

Nous avons vu que réflectance et radiance sont liés par un terme multiplicatif, con-

stant pour chaque pixel de l’image, E(�). La clé de la méthode est de transformer

l’équation B.12 en utilisant le logarithme :

log(Li,j(�)) = log
�
ri,j(�)E(�)

�
= log

�
ri,j(�)

�
+ log

�
E(�)

�
. (B.15)

On peut montrer que la seule di↵érence qui se produit dans le modèle en utilisant

la log-réflectance par rapport à un modèle utilisant la log-radiance est l’estimation

du vecteur moyen par classe, c’est à dire que la matrice de réduction de dimension

ainsi que les matrices de covariances sont inchangées. D’un point de vue classifi-

cation, la correction en réflectance peut être évitée si l’on connait la translation
dµ(E), en changeant la règle de décision par µ̂c +

dµ(E) à la place de µ̂c.

Estimation de la translation

Nous proposons également dans cette thèse une méthode pour estimer la transla-

tion automatiquement. Cette méthode, basée sur une technique utilisée pour le

recalage d’image est robuste aux classes manquantes ainsi qu’au nombre variable

d’observations par classe. Avant recalage, une image de dimension Q doit être crée

à partir des scores de dimensionQ. La création de l’image est basée sur l’estimation

de distribution de classes dans l’espace de dimension Q pour chaque image HS.

Dans notre cas où la distribution des classes est supposée gaussienne, un outil

puissant pour l’estimation est l’algorithme Espérance-Maximisation (EM) [Moon,

1996]. Finalement, la corrélation croisée est utilisée comme mesure d’appariement

pour estimer la translation des scores de chacune des images.
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B.4 Résultats

L’objectif de cette section est de montrer la pertinence des approches développées

à partir d’images hyperspectrales acquises dans des conditions extérieures réelles.

Dans l’ensemble de données 1, des images HS de proxi-détection ont été acquises

avec une caméra Hyspex V-NIR 1600 (Norks Elektro Optikk, Norvège). Les images

ont été acquises sur le terrain à l’aide d’un rail de translation monté sur un tracteur,

à 1 mètre au-dessus du sol (résolution spatiale de 0, 2 mm/pixel). En utilisant une

surface de référence calibrée dans chaque image, les images de radiance (LXX)

ont été transformées en images de réflectance (RXX). Deux acquisitions ont été

réalisées à une heure d’intervalle à des endroits di↵érents dans le même champ.

Ensemble de données A1 a été utilisé pour étalonner le modèle, dans lesquels

trois classes doivent être discriminées : blé, adventices et sol. Pour l’étalonnage

du modèle, 100 spectres par classe (300 au total) ont été extraits au hasard à

partir de la carte de vérité terrain disponible (cela qui correspond à environ 0, 6%

des données disponibles). Par souci de cohérence avec les résultats de la dernière

section, dans laquelle une transformation logarithmique doit être e↵ectuée, nous

avons utilisé les spectres transformés en logarithme dans toute la thèse. Les

données A2 correspondent au même champ que les données A1 mais acquises

une heure plus tard. Cet ensemble de données est utilisé dans la dernière section

pour illustrer le problème de la transformation en réflectance.

L’erreur de classification correspond au ratio de pixels mal classifiés (en pour-

centage). Les résultats de validation croisée sont utilisés pour le réglage des

paramètres des di↵érents modèles. Dans ce cas, nous avons utilisé une procédure

“10-fold” sur l’ensemble d’apprentissage [Esbensen and Geladi, 2010]. Pour vali-

dation, les résultats sont présentés sur le jeu de données globales moins les données

d’apprentissage.

B.4.1 Réduction de dimension

La figure B.1, montre l’erreur de classification obtenue avec l’ensemble d’apprentissage

et celle obtenue avec une 10-fold validation croisée. Ces graphiques présentent

1Dans ce résumé, un seul jeu de données est présenté (jeu de données A). La notation utilisée
pour décrire les jeux de données sont : 1er caractère: lettre R pour réflectance et L pour un
luminance; 2eme caractère : lettre A ou B pour l’ensemble de données; 3eme caractère : numéro
du sous-ensemble
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l’erreur de classification en fonction du nombre d’axes discriminants retenus pour

di↵érents nombres d’axes intra-classes retirés (nombre inscrit dans le cercle). Avec

w = 0 (correspond à une PCA) les erreurs de d’étalonnage et de validation croisée

décroissent lentement sans minimum évident. Pour w = 1 à w = 4, l’erreur de clas-

sification varie fortement. Ensuite, à partir de w = 5 (optimal) jusqu’à w = 7, la

même erreur de classification est obtenue. En plus, un minimum évident apparâıt

pour Q (Q = 2). Ensuite, si plus d’axes intra-classes sont retirés, l’erreur com-

mence à augmenter (même sur l’ensemble d’étalonnage), permettant donc de régler

les paramètres sans validation croisée. En terme de résultats de classification,
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Figure B.1: Jeu de données RA1: Erreur d’étalonnage (A) et de validation
croisée (B) pour di↵érent paramètres pour w et Q et avec b = 1.

DROP-D o↵re les mêmes possibilités que les approches présentées précédemment,

tout en évitant le risque de sur-apprentissage.

B.4.2 Régularisation spatiale

Afin de valider quantitativement notre approche, le Tableau B.1 donne des résultats

de classification pour di↵érent schémas de régularisation en utilisant les K plus

proche voisins (KNN) comme méthode de classification avec K=3. On observe

déjà que l’utilisation de réduction de dimension supervisée donne de meilleurs

résultats que les méthodes non-supervisées. Ensuite, pour chaque méthode, la

régularisation spatiale permet d’améliorer les résultats de classification. Pour

l’ACP, une amélioration légère est obtenue lorsque la régularisation est e↵ectuée

après réduction de dimension. En revanche, pour la PLS ou DROP-D, on voit
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Table B.1: RA1: erreur de classification (%) pour di↵érentes procédures de
régularisation

Without regularization Regularization first Regularization second

KNN 7.97 AR-KNN 7.62 n/a n/a
PCA-KNN 7.35 AR-PCA-KNN 7.27 PCA-AR-KNN 7.26
PLS-KNN 6.84 AR-PLS-KNN 6.62 PLS-AR-KNN 4.91

DROP-D-KNN 7.14 AR-DROP-D-KNN 7.10 DROP-D-AR-KNN 5.37

clairement que la régularisation doit être e↵ectuée après réduction de dimension

comme proposé dans cette thèse. La Figure B.2 représente les cartes de classifi-
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(a) Données RA1 avant AR : Erreur 4.9%
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(b) Données RA1 après AR : Erreur 3.2%

Figure B.2: Résultats de classification avant et après régularisation.

cation obtenues avant et après régularisation spatiale. On observe que le bruit de

classification est largement diminué, montrant des classes plus homogènes. Aux

bordures des classes, notamment avec les feuilles de blé (vert), l’erreur de classifi-

cation est aussi nettement diminuée.

En comparant par rapport à d’autres approches spectro-spatiales récentes, notam-

ment SVM-EPF [Kang et al., 2014], LORSAL Multilevel Logistic (LORSAL-MLL)

[Li et al., 2012] notre approche o↵re des résultats au moins aussi bons sur les im-

ages classiquement utilisées pour comparer ce type de méthodes.

B.4.3 Correction en réflectance

Dans cette section nous souhaitons montrer qu’en utilisant la log-radiance et en es-

timant correctement la translation, la correction en réflectance pouvait être évitée.

Par exemple, la Figure B.3 montre les di↵érences de scores et les résultats de

classification obtenus sur notre jeu de données avec des acquisitions à une heure

d’intervalle. Comme cette translation est principalement selon l’axe (PC1) (figure

c), la carte de classification obtenue est plus verte (figure d), même pour classi-

fier du sol qui est normalement aisément discriminable de la végétation. Après
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estimation de la translation et recalage, les scores deviennent parfaitement alignés

(figure e) et la carte obtenue est de nouveau correctement classifiée (figure f).

Des résultats similaires sont obtenus en l’absence de la classe adventice (voir les

résultats complets de la thèse).

(a) LA1 et données
d’apprentissage
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(e) scores LA1 et scores LA2 après
translation
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(f) LA2 après recalage

Figure B.3: Scores et cartes de classification obtenues avec un modèle étalonné
sur LA1

B.5 Conclusion

Dans cette thèse, nous avons abordé trois principales questions portant sur la

classification d’image hyperspectrale. Pour chaque approche proposée, di↵érentes

directions de recherche ainsi que des améliorations sont possibles.

Dans la mise en œuvre de DROP-D, les vecteurs propres associés aux plus grandes

valeurs propres sont conservés. Toutefois, il serait intéressant de choisir d’autres
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combinaisons d’axes inter- et intra-classes à conserver, non nécessairement à par-

tir des axes principaux. Ce choix est évident quand il y a très peu de classes.

Il faudrait cependant mettre en œuvre des techniques d’optimisation dès que le

nombre de classes augmente.

Une autre approche serait de relaxer la contrainte d’orthogonalité de la projection.

On espère qu’une projection non-orthogonale serait capable de réduire davantage

la variabilité intra-classe sans a↵ecter la distance entre classes.

Une autre possibilité serait d’utiliser des données nettoyées par DROP-D avec

d’autres méthodes de classification plus performantes comme les machines à vecteurs

de support (SVM) afin de réduire le nombre de vecteurs de support à utiliser.

Enfin, d’un point de vue plus théorique, il serait intéressant de comparer le net-

toyage réalisé par DROP-D avec d’autres méthodes chimiométriques développées

pour la régression, comme l’Orthogonal Signal Correction par exemple.

Nous avons mis en œuvre l’approche spectro-spatiale en utilisant la version orig-

inale de di↵usion anisotropique. Cependant, comme la communauté de traite-

ment d’image a beaucoup travaillé dans le domaine de la régularisation spatiale,

l’utilisation d’approches plus sophistiquées serait sûrement bénéfique.

De plus, en observant les cartes des résidus (di↵érences avant/après régularisation),

certains motifs obtenus semblent d’un intérêt potentiel, en termes d’analyse de

texture, pour continuer à augmenter les performances de classification. Ces car-

actéristiques texturales pouvant être ajoutées comme entrée d’un classifieur de la

même manière que les données spectrales.

Finalement, pour l’estimation de la translation, plusieurs améliorations peuvent

être apportées. Dans un premier temps, une alternative à la corrélation croisée

(très coûteuse) afin d’estimer la translation serait bénéfique (en utilisant la trans-

formée de Fourier par exemple). Puis, l’utilisation de l’information spatiale (ex:

les formes obtenues dans la carte de classification comme feedback), en plus de

l’information de corrélation, devrait aider à estimer la translation lorsque les

classes ne sont pas évidentes à regrouper dans l’espace des scores.

Enfin, une solution pour gérer les objets non-lambertiens serait très bénéfique,

car même les corrections en réflectance classiques ne peuvent correctement traiter

ce cas particulier. Nous pensons que cette approche utilisant une transforma-

tion logarithmique comme un pré-traitement pourrait également être applicable

pour traiter les cas non-lambertiens. Dans ce cas, chaque classe se translaterait

indépendamment l’une de l’autre, mais avec la même matrice de covariance. Ainsi,
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en utilisant des techniques de recalage non-rigides, en faisant correspondre les ma-

trices de covariances, la correction pourrait être envisageable dans certains cas.
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Résumé Cette thèse présente trois approches pour gérer di↵érentes problématiques de
la classification supervisée des images hyperspectrales (HS) : réduction de la dimension
spectrale, combinaison de l’information spectrale et spatiale et indépendance vis-à-vis de
l’éclairement. La grande dimension et forte colinéarité des données spectrales nécessitent
un traitement adapté avant classification. Pour pallier à ce problème, nous proposons une
approche originale de réduction de dimension supervisée utilisant les projections orthogo-
nales. La projection est réalisée afin que les scores obtenus minimisent la variabilité intra-
classe tout en préservant les distances entre classes. De plus, la méthode étant basée sur
de la suppression d’information, le sur-apprentissage peut être empêché sans nécessiter
une validation croisée. Ensuite, afin de combiner l’information spectrale et spatiale, nous
développons une approche de régularisation spatiale sur les canaux d’images de scores
obtenus de manière supervisée. Ces scores, mettant en évidence les di↵érences entre
les classes, permettent dans le domaine spatial, d’obtenir des bordures correspondant
aux variations entre classes et non au bruit de fond. Par conséquent, une régularisation
spatiale qui préserve les contours, appliquée aux canaux de l’image des scores, réduit
la variabilité intra-classe restant et facilite la classification. Enfin, nous présentons une
démarche permettant, dans le contexte de classification supervisée, de s’a↵ranchir de la
correction en réflectance préalable des images HS. En faisant l’hypothèse que les classes
ont des réflectances lambertiennes, nous montrons que, après une transformation loga-
rithmique, la di↵érence d’éclairement correspond à une translation dans l’espace spectral
ainsi que dans l’espace des scores obtenu à partir d’une réduction de dimension super-
visée linéaire. Grâce à l’utilisation de la méthode de réduction de dimension supervisée,
les classes forment des clusters dans l’espace réduit. Nous proposons donc une méthode
d’estimation de cette translation dans l’espace des scores, robuste aux variations du nom-
bre d’individus par classe ainsi qu’aux aux classes manquantes. Ces trois approches ont
été évaluées et validées sur deux jeux de données HS réels, i.e., classification d’adventices
dans les champs de blé à partir d’image HS en proxi-détection et classification d’une zone
rurale à partir de données HS en télédétection.
Mots clés: Hyperspectral; Classification; Analyse multivariée; Réduction de dimension;
Méthode spectrale-spatiale; Correction en reflectance
Abstract This thesis presents three approaches to deal with di↵erent issues concerning
supervised classification in hyperspectral (HS) images: spectral dimension reduction,
spectral spatial combination and light source independence. The high dimensionality
and collinearity of spectral variables necessitate specific processing methods to be used
before classification. To tackle this issue, we propose an original supervised spectral
dimension reduction method that uses orthogonal projections. The projection is per-
formed so that the obtained scores minimize the within-class variability and preserve
between-class distances. In addition, since the method is based on removing informa-
tion, overfitting is prevented without the need for cross-validation. Then, in order to
combine the spectral and spatial information, we propose using a spatial regularization
on score image channels obtained with a supervised dimension reduction method. These
channels, that are built to highlight class di↵erences, allow edges to be obtained, in the
spatial domain, that correspond to the actual class borders and not to the background
variability. Therefore, applying an edge-preserving spatial regularization to the chan-
nels of this score image reduces the remaining within-class variability and thus leads to
an easier classification. Finally, we propose an approach that allows, in the context of
supervised classification, the prerequisite reflectance correction of the HS images to be
unblocked. Under the assumption that classes have Lambertian reflectance, we show
that, after log-transformation, the di↵erence in lighting corresponds to a translation in
the spectral space as well as in a score space obtained through linear supervised di-
mension reduction. Owing to the use of a supervised dimension reduction, classes form
clusters in the low-dimensional score space. Using these clusters, we propose a method
to estimate the translation that is robust against an unbalanced number of samples and
missing classes. These three approaches have been evaluated and validated on two real
HS datasets, i.e., classification of weeds in a wheat crop using close-range HS images,
and classification of a rural area using remotely-sensed HS images.
Keywords: Hyperspectral; Classification; Multivariate analysis; Dimension reduction;
Spectral-spatial method; Reflectance correction
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