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Abstract 

On-site treatment (home and community composting) of organic waste (OW) 

reduces cost and environmental issues as opposed to centralized facilities and 

landfilling. By 2025, such on-site practices could reduce costs and greenhouse gas 

emissions (GGE) by 50 and 40 %, respectively, as compared to maintaining 

landfilling practices and saving land. However, the shift of MSW management 

systems from landfill disposal to resource recovery requires technological input, 

population participation and compost quality assurance. The composting process and 

quality of composted product depends on the initial compost mixture formulation, 

design type and management practices of home composting systems (HC).  

A projet was therefore conducted both in the laboratory and in the field, to 

establish the home composter design criteria and compost formula which favours the 

best organic waste decomposition.  

The results indicated that home composter design is important: perforations 

must be concentrated at the top and bottom to provide an aeration level equivalent to 

that of the ground pile. Such home composters can reach thermophilic temperatures 

when fed at least 10 kg (week)
-1

 of organic waste with a dry matter content over 15 % 

(half yard trimmings and half food waste). The compost produced generally offers 

acceptable levels of polycyclic aromatic hydrocarbons (PAHs) and heavy metals, but 

redients must be careful in applying the righ amount of garden herbicides. The total 

GGE from home composters were found to be equivalent to that of centralized 

composting facilities but to eliminate the need to spend energy equivalent to 50 kg 

CO2-eq (tonne wet waste)
-1 

for handling and processing.  
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Résumé 

 Le traitement des matières résiduelles organiques (MRO) sur place (centres 

communautaires de compostage et composteurs maison) est une approche qui réduit 

les coûts de manipulation et de procédé associés aux centres régionaux de compostage 

et à l‟enfouissement. D‟ici 2025 et comparativement à l‟enfouissement, cette 

approche pourrait diminuer les coûts de traitement et les émissions de gaz à effet de 

serre (GES) de 50 et 40 %, respectivement. D‟autre part, la diversion et le recyclage 

des MRO exigent des connaissances techniques et la participation des gens pour 

assurer la qualité sanitaire du produit, qui dépend du mélange initial, et de la 

conception du composteur maison ainsi que de sa gestion. Un projet fut donc réalisé 

en laboratoire et sur le terrain, dans le but de déterminer les critères de conception des 

composteurs maison et la formulation du mélange initial qui favorisent la 

décomposition et la stabilisation des MRO traitées. Les résultats ont démontré que la 

conception du composteur maison est importante, surtout en ce qui concerne 

l‟emplacement des ouvertures qui, quand concentrées dans le haut et le bas, favorisent 

l‟aération par convection. Cette configuration d‟ouvertures fait en sorte que le 

composteur peut conduire à des température thermophile, tout comme les amas au sol, 

s‟il est chargé de plus de 10 kg (semaine)
-1

 de MRO d‟une cécité de plus de 15 % 

(moitié résidus de jardin et résidus de table). Le compost produit par résident est 

généralement propre, avec de faibles teneurs en hydrocarbures aromatique 

polycyclique (HAP) et en métaux lourds, à conditions d‟appliquer les herbicides 

jardins en quantités raisonnables. Comparativement au centre régionaux de 

compostage, les composteurs maison  générent la même quantité de gaz à effet de 

serre (GES) mais font économiser 50 kg de CO2-équ. (tonne de matière résiduelles 

humides compostée)
-1

 en tant qu‟énergie de manipulation et de procédé.   
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Chapter 1 

General introduction 

 

1.1 Problem statement 

The organic fraction of municipal solid waste (MSW) is the most active in terms 

of producing greenhouse gases and contaminated leachate (Rasapoor et al., 2009; Turan 

et al., 2009; Vehlow et al., 2007; Pokhrel and Viraraghavan, 2005; Bou-Zeid and El-

Fadel 2004; Zacarias-Farah and Geyer-Allely, 2003; Shin et al., 2001; Legg, 1990) while 

also representing a major fraction of the MSW mainstream, especially with the recycling 

of metals, paper, glass and plastics. Over the past decade, the growth of MSW along with 

its urban organic waste (UOW) fraction has added further environmental and economic 

pressure to urban centers (Adhikari et al., 2009; Kollikkathara et al., 2009). In 

industrialized countries such as the European Union and Canada, landfilling is still the 

most common practice for the disposal of MSW along with its organic fraction because 

of its relatively low cost (Environment Canada, 2009; Hazra and Goel, 2009; Messineo 

and Panno, 2008). The landfilled organic wastes emit greenhouse gases which are costly 

to recover, generate leachate requiring treatment and remove land which otherwise could 

be used for crop production (Adhikari et al., 2009; Machado et al., 2009; Wagner and 

Arnold, 2008; Official Journal, 2000). Furthermore, social pressures are such that 

adequate landfill sites are now much harder to introduce.  

In the European Union (EU), waste management is regulated by directives 

(Vehlow et al., 2007) with emphasis on waste management hierarchy (Hansen et al., 

2002). The EU Landfill Directive (1999) has targeted a landfill diversion goal of 65 % 

for all biodegradable wastes by 2016. Similarly in Canada,  in 1989, the Canadian 
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Council of Ministers of the Environment (CCME) adopted a national goal of 50 % 

landfill diversion for all MSW by 2000 (Wagner and Arnold, 2008). 

To achieve the goal of organic waste diversion, the recovered waste needs to be 

treated and utilized. The commonly practiced technologies for treating this waste are 

anaerobic digestion, composting in centralized facilities, incineration and mechanical 

biological treatment (Kelleher, 2007). However, these technologies are expensive, both 

in initial investment and in operating costs (Nas and Bayram, 2008). Centralized 

composting facilities are not only expensive but can created odour nuisances generate 

from truck dumping, temporary storage and initial composting operations (US EPA, 

1999). Source separated organic waste increases collection and transportation costs 

because of its separate handling which then adds fuel emissions. The onsite treatment of 

UOW using home systems or community composting centres can resolve these issues by 

substantially reducing if not eliminating collection and transporting costs. However, the 

composted product must be safe and of good quality to provide an opportunity for people 

to play a role in continuing this cycle. Safe compost can be used as a valuable nutrient 

source for soils while diverting waste from the MSW stream (US EPA, 2005).  

 

1.2 Hypothesis 

In this context, the following hypotheses were set to test in this project: 

(i) onsite treatment of OW reduces environmental and economic pressure on the MSW 

management systems and saves land from landfilling; 

 (ii) the composting process depends on the home composter design type and 

management practices of home composting systems (HC); 

(iii) HC produces a stable, high-quality finished product; and 
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(iv) HC type affects the greenhouse gas emissions (GGE) during the composting 

processes. 

 

1.3 Objective 

In order to test the above hypotheses, the main objective of this project is to 

study the composting process associated with urban organic waste (UOW) using 

home composting systems (HC). The scientific objectives pursued by the project 

were:  

(i) to investigate of economical and environmental advantages of onsite treatment of 

UOW by community or individual households composters; 

 (ii) to compare the performance of four different types of common home composting 

systems (HC); 

(iii) to investigate the impact of management practices on HC on compost temperature 

regime and final characteristics;  

(iv) to validate laboratory results with compost quality actually produced in the 

backyard, and to further examine the influence of home composter design and 

management on compost quality; and 

(v) to compare greenhouse gas emissions (GGE) for four common HC used in Canada 

and France. 

 

1.4 Scope 

The environmental and economic aspects of home and community composting 

of organic waste (OW) were examined and compared with centralized composting 

facilities and landfilling based on the available information. The commonly used 

home composting systems in France and Canada were studied for their process 
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characteristics, quality and greenhouse gas emission (GGE) with the food waste and 

yard trimmings of Rennes France. The study was further validated with resident 

managed home composting systems in the West Island of Montreal, Canada.  

 

1.5 Layout of thesis 

Chapter 2 presents a general literature review covering the topics of 

urbanization and waste production, impact on the environment, home composting and 

factors to be taken into consideration for the composting process. Chapter 3 is a paper 

presenting the home and community composting of organic waste: perspective for 

Europe and Canada. Chapter 4 is a paper discussing effects of home composting 

systems on compost characteristics. Chapter 5 describes the effect of home composter 

management practices on compost characteristics. Chapter 6 is a study of the home 

composting systems operated by residents of Montreal‟s West Island, Canada. 

Chapter 7 is a paper pertaining greenhouse gas emissions from home composting 

systems. Chapter 8 is the general conclusion. Chapter 9 is pertaining to the references 

cited in the thesis. Tables and figures are depicted in sequence at the end of each 

chapter. The acknowledgement, abbreviations and literature cited within a chapter are 

presented at the end of each chapter.  
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Chapter 2 

Literature review 

 

2.1 Urbanization and waste production  

From 2005 to 2010, the average annual rate of change of world urban and rural 

population was reported to be 1.92% and 0.45% respectively.  The urban population is 

expected to reach 6.3 billion in 2050 from 3.2 billion in 2009, whereas, the rural 

population is expected to decrease from 3.41 billion in 2009 to 2.86 billion in 2050 

(UN, 2010). In Europe, the urban population is expected to increase to 84.3% in 2050 

from 72.1% in 2009. Similarly, in Northern America countries (Bermuda, Canada, 

Greenland, Saint Pierre and Miquelon, United States of America), the urban 

population is expected to reach 90.1% in 2050 from 81.9% in 2009 (UN, 2010). In 

Asia, the urban population will grow from 41.7% in 2009 to 64.7% in 2050 (UN, 

2010).  This growing urbanization and related economic activities produces higher 

amount of municipal solid waste (MSW) along with organic waste (OW) that further 

adds environmental and economic pressure to the  urban centres (Parrot et al., 2009; 

Troschinetz and Mihelcic, 2009;  Adhikari et al., 2009a, 2006;  Guermoud et al., 

2008;  Wagner and Arnold, 2008;  Vehlow et al., 2007;  Düring and Gӓ th, 2002;  

Harjula et al., 2001;  Ahmed and Jamwal, 2000;  Abu Qdais et al., 1997; Hong et al., 

1996). The OW represents 20 to 80% of MSW mainstream depending on the 

economic situation of the urban centres (Papadopoulos et al., 2009; Adhikari et al., 

2006; OECD, 2006-2007; EEA and ETC-WMF, 2002).  In 2005, the European Union 

member states (EU27) generated 251 million tonnes of MSW including about a 31%  

organic waste component (Eurostat, 2008; OECD 2006-2007), and OW is expected to 

reach  105 million tonnes in 2025 which is about a 35% increase over 20 years (2005 



 9 

to 2025) (Adhikari et al., 2010). Similarly, in North America (United States of 

America, Canada and Mexico), MSW production was reported to be 272.3 million 

tonnes, including 77.31 million tonnes of OW (OECD, 2006-2007).  In Canada, OW 

is expected to increase by 25% between 2009 and 2025 (Adhikari et al., 2010).  

The management of growing amounts of MSW along with the OW fraction is a 

challenge for urban centres, which are already under economic and environmental 

pressure. The European Union (EU) and Canada promulgated legislation with an 

emphasis on reduction, reuse, recycle, recovery and landfill as last option. The proper 

management of OW requires implementation of provisions and the principles of 

environmental policy and legislation to achieve the goal of sustainability (EC, 2006). 

Therefore, European and American countries have introduced a hierarchy concept for 

waste management practices such as reduction, reuse, recycle with landfilling as the 

last option (Machado et al., 2009; Sakai et al., 1996)  and emphasis on resource 

recovery from the waste (Otegbeye et al., 2009). In this context, EU and Canada have 

set a target to divert their waste from landfills (Dunne et al., 2008; Burnley, 2007) by 

promulgation and implementation of waste management legislations and regulations. 

Many municipalities and waste collection and processing companies are looking at 

alternate solutions (Diaz, 2008) for diversion of OW from landfilling because of strict 

legislation, decreasing capacity of existing landfills, and more difficulty finding new 

ones (US EPA, 1993). 

 

2.2 Waste management legislations in Canada and EU  

The waste management legislations emphasize the diversion of MSW from  

landfilling, and resource recovery.  In 1989, the Canadian Council of Ministers of the 

Environment (CCME) adopted a national goal of 50% landfill diversion of MSW by 



 10 

2000 with priority on reduction, reuse, recycling and recovery (Wagner and Arnold, 

2008; Sawell et al., 1996). The environmental Guidelines specified the source 

separation and composting of OW fraction (food waste, yard trimmings) of MSW for 

reduction of landfill emissions of methane (CH4) and leachate (CSC, 2003; EG 317-7, 

2003). Under the framework of the CCME guidelines, the Canadian provinces issued 

legislation for diversion and recovery of resources. For example,  in 1989, the Quebec 

government adopted an integrated solid waste management policy with 50%  

diversion goal by year 2000; however only 10.8% reduction was achieved (QR MMP, 

2008). New Brunswick achieved 40% diversion in 2000 where the target was set of 

50% diversion (NBELG, 2001). Under the framework of  Environmental Act of 1994-

95 and ban on landfilling of compostable organics in 1998, Nova Scotia became only 

the province to achieve the 50% diversion goal set by CCME in 2000 (NS EAL, 2004; 

NS DOE, 2000).  

In Europe, the promulgation and implementation of waste framework directive 

75/442/EEC changed the concept of end-of-pipe solutions of waste management with 

general advice on waste management and disposal (Vehlow et al., 2007; Pawelczyk, 

2005). Currently, the EU waste management policy is based on the hierarchy of waste 

prevention,  reuse, recycle and landfilling as the last option (Eurostat, 2011; 

Pawelczyk, 2005; Zacarias-Farah and Geyer-Allely, 2003; Hansen et al., 2002). 

Currently, waste management in the EU is regulated by directives that are issued by 

the European Council and the European parliament and have to be adopted by all 

member states (Vehlow et al., 2007). The important directive for MSW disposal is the 

Landfill Directive (1999). The Article 5 of Landfill Directive 1999/31/EC sets the 

strategies of landfill diversion of biodegradable waste fraction of MSW mainstream 

by specifying 25%, 50% and 65% diversion from landfill by 2006, 2009 and 2016 
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respectively from the 1995 level. The Commission Decision 2000/738/EC and 

Directive 2006/12/EC make it mandatory for the EU member states to implement 

Landfill Directive 1999/31/EC, monitoring and reporting (Official Journal, 2000; 

Official Journal, 2006). Western European countries successfully implemented the 

concept of diversion and resource recovery from waste, whereas Canada lags far 

behind likely due to lack of enforcement of legislations and availability of land for 

landfilling (Wagner and Arnold, 2008). 

 

2.3 Municipal solid waste (MSW) management and evolution of technology 

During the early growth of urban centres, problems associated with MSW 

generation and management became prominent and often could be associated with 

disease outbreaks (Vehlow et al., 2007). The first European public MSW dumping site 

was introduced by the Greeks in 500 BC. With the course of time, the health and 

environmental issues associated with waste management became better understood 

and the concept of recycling and sanitary landfilling emerged (Vehlow et al., 2007). 

The landfilling of UOW along with the MSW mainstream remains attractive 

considering its low cost and the minimum implication of producers (El-Fadel et al., 

2003).  

2.3.1 Landfilling 

Landfill disposal of MSW is a common practice worldwide (Kollikkathara et 

al., 2009). The UOW that goes to landfill sites not only pollutes the land and water 

but also contributes to global warming by producing methane (CH4), becoming a 

political priority in the environmental field (Kollikkathara et al., 2009;  Marmo, 2008; 

Baumert et al., 2005; Borjesson and Svenssen, 1997). At any landfill site, 45 to 58% 

of the UOW on a dry weight basis (dwb) is transformed into CH4 (Solid Waste 
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Landfill Guidance, 1999). In Canada, 5.5 million tons organic waste were landfilled 

in 1992 and contributed to global warming process by producing  CH4 (Sawell et al., 

1996). In 1997, the US landfills are said to contribute 37% of the anthropogenic CH4, 

representing the largest fraction of all the anthropogenic sources (US EPA, 2003).  In 

Europe, an estimated 30% of anthropogenic CH4 emissions are from landfill sites 

(EEA, 2001). In 2007, some EU member states such as Malta, Greece and the Czech 

Republic were still landfilling more than 80 % of their MSW (EEA, 2009) and in 

Canada, only Nova Scotia was successfully diverting more than 40 % of its MSW 

(Wagner and Arnold, 2008), a level which stood at 60 % in 2000 because of a smaller 

population and slower economic growth. In 2009, among all Canadian provinces, 

Nova Scotia was diverting the highest rate from landfills because of the enforcement 

of waste management legislations.  

2.3.2 Alternative organic waste management technologies besides landfilling 

Several alternatives methods can be used to treat urban organic waste (UOW): 

anaerobic digestion with biogas production, composting through centralized facilities, 

incineration and mechanical biological treatment (Kelleher, 2007). Amongst these, 

composting is considered one of the best practices for treating UOW (Pokhrel and 

Viraraghavan, 2005), because it can be easily implemented, and its final product is 

stable and dry, offering organic matter (OM) usable as soil amendment (Wolkowski, 

2003; Bari and Koenig, 2001; Hamelers, 1992).  

However, this technology is not new, with patents for the mechanization of 

composting starting to appear in Europe as early as 1932 when the first full scale 

composting plant was established in the Netherlands by a non-profit company, N.V. 

Vuilafvoer Mactschapij (VAM) (Hughes, 1980). The principle was expanded and 

large scale centralized composting plants appeared during the 1970s and 1980s 
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(Slater and Frederickson, 2001) to treat the entire MSW stream by first of all, 

mechanically separating the organic fraction and then proceeding with its 

composting. Known as mechanical and biological treatment plants (MBT), these 

facilities produced poor quality compost and 18 of them were closed in Germany by 

1985 (Slater and Frederickson, 2001). At present, source separated organic waste is 

preferred for composting to assure the quality of the finished product. For example, in 

Germany, source separation and composting of the organic fraction of MSW is 

mandatory in many municipalities and at present, 700 to 900 such composting 

facilities are in operation (ECN, 2009). In France, amongst 119 composting facilities 

treating MSW, 54 are using source separated UOW as feedstock, and in Canada, 54 

facilities compost source separated food waste generated from residences, industries, 

businesses and institutions (ECN, 2009; Antler, 2009). However, the capital and 

variable costs of these facilities are high, and collection and transportation add further 

economic and environmental burden to the municipalities, because the OW must be 

collected separately (Nas and Bayram, 2008; US EPA, 1999). Therefore, the concept 

of onsite treatment of UOW has emerged, using home and community composting 

systems to treat a significant amount of UOW with little if any collection and 

transportation cost (Mitaftsi and Smith, 2006). 

2.3.3 Home and community composting 

The effective management of UOW offers major potential benefits (Shaw and 

Maynard, 2008). Home composting of UOW provides an opportunity for people to 

play a role in contributing to recycling by returning valuable nutrients to the soil and 

diverting waste from its main stream (US EPA, 2005). From 2003 to 2006, a first 

study was conducted by Smith and Jasim (2009) to evaluate the potential of home 

composting bins in diverting OW. The study demonstrated that 20 % of all household 
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OW was recycled within the suburban area of West London, where residents have 

access to gardens. This concept could apply to large Canadian cities such as Toronto, 

where residents living in single unit homes represent 70 % of the population 

(Government of Ontario, 2008) and can recycle their OW fraction using home 

composting, while the other 30 % living in multi-unit apartments can treat their waste 

at community composting centre (CCC). With the implementation of onsite UOW 

composting, environmental and economic issues faced by urban centres could be 

mostly mitigated with trace amounts of greenhouse gas emissions from home 

composting bins (Colón et al., 2010; Smith and Jasim, 2009; Otten, 2001). If HC can 

divert a substantial amount of UOW, the final product needs to be demonstrated as 

safe in terms of composting process, environmental issues and quality of composted 

product. Nevertheless, the composting process depends on various factors that 

influence compost quality and environmental issues. 

 

2.4 Factors influencing composting process 

Composting is a natural aerobic process of biological stabilization of organic 

waste that achieves both weight and volume reduction and provides the nutrients 

required for plant growth (Banegas et al., 2007; Kanat et al., 2006; Pokhrel and 

Viraraghavan, 2005; Barrington et al., 2002; US EPA, 1998; Sakai et al., 1996; US 

EPA, 1994; US EPA, 1993). Composting generates considerable heat, CO2 and water 

vapour into the air while organic matter (OM) is converted into a potentially reusable 

soil amendment (Renkow et al., 1996; Pace et al., 1995; Biddestone and Gray, 1985; 

Haug, 1980; Picci et al., 1978). The microbial activity is mainly affected by moisture 

and oxygen; the aerobic composting process is given as (Wiley and Pierce, 1955): 
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CpHqOrNs . aH2O (organic matter) + bO2 (oxygen consumed) = CtHuOvNw . cH2O 

(compost) + dH2O (water evap.) + eH2O (water prod.) + CO2 (carbon dioxide prod.). 

Depending on the type of HC and the management practices, composting can 

also generate volatile organic compounds (VOC such as ethylbenzene, 

tetrachloroethane, 1,1,1-trichloroethane, and toluene), ammonia (NH3), carbon 

monoxide (CO), nitric oxide (NO), N2O and CH4 (Colón et al., 2010; Martínez-

Blanco et al., 2010; IPCC, 2006; Barton and Atwater, 2002). However, levels of CH4 

and N2O emissions from home composting systems (HC) depend on the method and 

management used (Bogner et al., 2008; EPIC, 2002; Beck-Friis et al., 2000). Various 

factors affect the composting processes and determine the level of biological 

activities. The main factors are moisture, pH, initial recipe C/N ratio, oxygen and 

temperature (de Guardia et al., 2008; Berthe et al., 2007; Meunchang et al., 2005; 

Pace et al., 1995; Zucconi and de Bertoldi, 1986).   

2.4.1 Moisture 

The moisture content of the initial compost mixture is an important factor 

influencing the composting process (Epstein, 1997; Diaz et al., 1993; Haug, 1993). 

The initial moisture of the composting substrate depends on the type and structural 

strength of the OW to be composted (Diaz et al., 1993). Depending on the type of 

composting material, the moisture content varies from 50 to 85% (Day and Shaw, 

2001; Haug, 1993; Zucconi and de Bertoldi, 1986). According to Pace et al. (1995), 

the composting mixtures should be maintained within a range of 40% to 65% 

moisture and preferably 50- 60%, (Day and Shaw, 2001; Hughes, 1980). Adhikari et 

al. (2009b) successfully composted organic waste with initial moisture of 80%. 

According to Haug (1980), composting was possible for mixtures of vegetable 

trimmings at initial maximum moisture contents as high as 85% when using straw as 
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bulking agent, and 76% when using paper. A moisture level below 45% is considered 

rate limiting and under 20%, no biological processes are possible (Day and Shaw, 

2001; Bilitewski et al., 1994).  

2.4.2 pH 

For active microbial growth during composting, a neutral to slightly alkaline 

pH range is required. Organic substrates offer a wide range of pH levels ranging from 

3 to 11 and this pH must be neutralized (Day and Shaw, 2001; Zucconi and de 

Bertoldi, 1986). The pH of initial compost mixture varying from 5 to 6.5 can be 

composted (Day and Shaw, 2001; Haug, 1993) due to the natural buffering capacity of 

the composting material (Willson, 1993).  Generally, the pH level drops below 5 at 

the beginning of the composting process because of the acids formed by the acid-

forming bacteria, which initialize the process by breaking down complex 

carbonaceous materials (Hughes, 1980). The later break down of proteins and 

liberation of ammonia account for the subsequent rise in pH (Bilitewski et al., 1994; 

Zucconi and de Bertoldi, 1986). According to Pace et al. (1995), the preferred range 

of pH is 6.5 to 8.0. The finished compost may have pH above 7, between 7 and 8.5 

(Day and Shaw, 2001; Hughes, 1980).  

2.4.3 C/N ratio 

The decomposition of OM depends on the carbon to nitrogen ratio (C/N) of 

the material. During the process of decomposition carbon declines due to the release 

of carbon as CO2, while nitrogen remains within the system, hence as composting 

process continues , the C/N ratio becomes lower (Hughes, 1980). The C/N ratio 

ensures the necessary nutrients for the synthesis of cellular components of 

microorganisms (Day and Shaw, 2001). For an active aerobic metabolism, a C/N ratio 

of 15 to 30 is suggested (Pace et al.,1995; Haug, 1993; US EPA, 1993; Zucconi and 
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de Bertoldi, 1986). The lower C/N ratio produces excess ammonia and unpleasant 

odour while the high C/N ratio limits the N for microbial growth and lowers the 

composting process rate (Day and Shaw, 2001; Pace at al., 1995). The C/N ratio of 

composted product should not be above 20 or it becomes N deficient in the soil while 

lower C/N ratio facilitates the N loss by volatilization from the soil and can have a 

toxic effect on plants (Bilitewski et al., 1994).   

2.4.4 Aeration 

One of the main parameter to control in the composting process is aeration. If 

the aeration rate is insufficient, oxygen will decrease and lack of oxygen during 

composting results in anaerobic conditions; on the other hand if the aeration rate is too 

high, the compost pile cools and lower the composting rate (Rasapoor et al., 2009; 

Barrington et al., 2002; Fernandes et al., 1994; Finstein et al., 1992). Aeration can be 

assured by implementing three types of techniques: natural, passive and active. 

Among these three methods, natural aeration is the cheapest and simplest, as it 

requires no installations. It consists of ensuring enough compost pile surface area to 

allow for the proper exchange of oxygen by diffusion. Passive aeration requires the 

installation of ducts under the compost plies to enhance the convective forces created 

by the temperature differences between the composting materials and the ambient air 

(Sartaj et al., 1997). Active aeration is the most expensive system, as it requires the 

installation of ducts under the compost piles and fans pushing air into these ducts and 

through the compost piles (Haug, 1993). Oxygen demand is very high during the 

initial decomposition stage, because of the rapidly expanding microbial population 

and the high rate of biochemical activity. After this initial high level of activity that 

generally lasts one to two weeks, oxygen demand decreases (Zucconi and de Bertoldi, 

1986).  
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The previous studies have suggested aeration rates for OW composting. 

Nickolas and Young (2002) proposed 0.06 to 0.4 L (min)
-1

 (kg of waste)
-1

. Another 

study conducted by Rasapoor et al. (2009) suggested starting at a rate of 0.6 L (min)
-1

 

(kg of waste)
-1

 during first 2 months of the process and continuing at a rate of 0.4 L 

(min)
-1

 (kg of waste)
-1

 until the end of composting process.  The natural aeration 

provided from the holes at the bottom and top of composting bin produces better 

results for home composting of OW (Karnchanawong and Suriyanon, 2011).  

2.4.5 Temperature 

Temperature is generally a good indicator of the biological activity (Epstein, 

1997). Home composting of OW takes place within three temperature ranges known 

as psychrophilic ( 0 to 20°C), mesophilic (20 to 40°C) and thermophilic (over 45°C) 

(Smith and Jasim, 2009). Although mesophilic temperatures allow effective 

composting, experts suggest maintaining thermophilic for few days, because they 

destroy pathogens, weed seeds and fly larvae (Pace et al., 1995). Thermophilic 

temperatures above 45°C should be reached within a few days (Adhikari et al., 

2009b).  Temperatures above 60-65°C may kill microorganisms that are more 

sensitive and the decomposition process may be slowed. Nevertheless, a continuing 

high temperature of 55-60°C, lasting beyond 5 to 6 weeks, indicates an abnormally 

prolonged decomposition and a delayed transition to the stabilization stage (Zucconi 

and de Bertoldi, 1986).  

 

2.5 Compost quality  

 Composting is a widely used technique for solid waste treatment (Petiot and 

de Guardia, 2004). The quality of compost depends on initial mixture and process 

management during the composting treatment (Tremier et al., 2005).  Composting is 
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the most important system of material recycling; as for every process of material 

recycling, the economic efficiency of the process is strongly dependent on the quality 

of the final product (Marchettini et al., 2007). Compost quality in relation to intended 

end-use is a frequently discussed issue and compost maturity is a critical factor 

affecting compost quality for specific agronomic objectives (CEPA, 2002). Immature 

and poorly stabilized composts creates handling, storage and marketing problems such 

as producing odour and  developing  toxic compounds during storage (CCQC 2001). 

The use of immature compost for soil growth media may have negative impacts on 

plant growth due to reduced oxygen. The terms compost maturity and stability are 

often used interchangeably. There is no one universally accepted and applied method 

to evaluate the stability and maturity of compost (CCQC, 2001). 

Compost quality evaluation is essential for regulatory compliance and compost 

marketing. Regulatory compliance parameters include biological (Escherichia coli, 

salmonella), heavy metal concentrations, nutrients, soluble salts, and horticultural 

characteristics such as water holding capacity (Coker, 2007). The effective and 

environmental safe utilization of compost products depends on the production of good 

quality compost, especially, compost that is mature and sufficiently low in metals, 

pathogens and content of polycyclic aromatic hydrocarbons (PAHs). The quality of 

compost can be improved by early source separation, perhaps requiring separation to 

occur before or at curbside collection (Hargreaves et al., 2008).  Source separation 

and home composting are considered to produce safe and stable composted products, 

however limited information is available about the quality of the compost obtained 

from home composting of organic waste. 
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2.6 Conclusion 

Landfilling is the commonly used practice for the disposal of OW. Presently, 

stringent legislations in both EU and Canada forced municipalities to divert OW from 

landfilling. The diverted OW needs to be treated and recycled with minimal 

environmental and economic impacts. In this context, home and community 

composting can be considered one of the viable options for treatment and recycling of 

OW. There is limited information available on the cost and environmental impacts of 

home and community composting compared to centralized facilities and landfilling. 

For successful implementation of onsite treatment of OW, some of the issues such as 

compost mixtures formulation, process characteristics, quality of composted product 

and emissions of odour, greenhouse gases (CO2, CH4 and N2O) need to be further 

addressed. Therefore, this research aimed to address these issues to provide 

technological tools for policy makers, implementers and urban residents for successful 

implementation of onsite treatment of OW. The following chapter 3 deals with 

environmental and cost examinations of home and community composting compared 

to centralized composting facilities and landfilling.   
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2.7 Abbreviations 

 

CCC   –  community composting centres 

CCME  –  Canadian Council of Ministers of the Environment 

CH4    –  methane 

C/N    –  carbon to nitrogen ratio 

CO   –  carbon monooxide 

CO2   –  carbon dioxide 

EU   –  European Union 

FW   –  food waste 

HC   –  home composting systems 

MBT  –  mechanical and biological treatment plants 

MSW   –  municipal solid waste 

NH3    - ammonia 

NO   –  nitric oxide 

N2O   –  nitrous oxide 

OECD   –  centralized composting facility 

OM  –  organic matter 

OW   –  organic waste 

UOW    –  urban organic waste 

US   –  United States 

US EPA –  United States Environmental Protection Agency 

VOC  –  volatile organic compounds 
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Connecting statement to chapter 3 

 

 

The growing amount of municipal solid waste production along with the 

organic fraction will add further environmental and economic burdens to the already 

overloaded urban waste management systems.  Considering environmental, economic 

and social pressures, the EU set targets of landfill diversion of biodegradable waste. 

The stringent legislations in both the EU and Canada force urban centres to divert 

organic waste (OW) from landfills. Diverted OW need to be treated and recycled with 

minimal environmental and economic impact. The onsite treatment of these waste by 

implementing home and community composting systems can be considered one of the 

viable options for upcoming decades. In this context, chapter 3 examines the 

environmental and economic issues of home and community composting systems as 

opposed to centralized composting facilities and landfilling.  

 

Chapter 3 is drawn from a published article in the Journal of “Waste 

Management & Research” by the author of the thesis and co-authored by his 

supervisors, Dr. Anne Trémier, Dr. José Martinez, Cemagef, Rennes, France and Prof. 

Dr. Suzelle Barrington, Department of Bioresource Engineering, McGill University, 

Montreal, Canada. The format has been changed to be consistent within this thesis. 
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Chapter 3 

Home and community composting for on-site treatment of urban organic waste: 

perspective for Europe and Canada 

 

 

Abstract 

 

Management of municipal solid waste (MSW) is a challenge faced by urban 

centres worldwide. For many countries including those of the European Union (EU) 

and Canada, urbanization and economic prosperity accelerated the generation of 

organic wastes along with that of MSW where urban organic wastes (UOW) represent 

a major component of the MSW main stream. Within a concept of waste recovery, 

source separation and on-site treatment of UOW can resolve major environmental and 

economic issues presently faced by urban centres. In this context and as compared to 

the traditional landfilling practice (Base Sce), this paper examines on-site UOW 

composting strategies using a combination of centralized composting facilities (CCF), 

community composting centres (CCC) and home composting (HC) (Sce1, 2 and 3). 

This study consists of a feasibility and economic study based on available data and 

waste management costs. This study indicates that on-site treatment of UOW using 

practices such as home and community composting can lower management costs by 

50 % and landfill greenhouse gas (GHG) emissions by 40 %. However, the 

performance of home composters and the quality of the compost products are issues 

to be further addressed for the successful implementation of UOW on-site 

composting.  

 

Keywords: municipal solid waste, urban organic waste, greenhouse gas, landfill, 

composting
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3.1 Introduction 

Depending on the country‟s economic activity, organics represent 20 to 80 % 

of the municipal solid waste (MSW) main stream and therefore constitute one of its 

major fractions (Adhikari et al., 2009; Papadopoulos et al., 2009; Adhikari et al., 

2006; EEA and ETC-WMF, 2002). The improper disposal of urban organic wastes 

(UOW), composed mostly of food and green wastes, results in well-known health and 

environmental issues: attraction of insects and rodents; development sites for 

parasites, pathogens and viruses; contamination of drainage waters, and; emissions of 

unpleasant odours and greenhouse gases (Kumar et al., 2009; Moghadam et al., 2009; 

Rasapoor et al., 2009; Turan et al., 2009).  

All countries worldwide can benefit from reducing the generation of MSW 

through recycling and reusing. In Asian countries, the expansion of urban centres 

along with the growth of their economic activities and population has exponentially 

increased the production of MSW along with the mass of UOW (Adhikari et al., 

2009). Since several major cities in Asia can only afford to collect 30 % of their 

MSW, MSW growth has further stressed issues associated with collection and 

disposal (Parrot et al., 2009; Troschinetz and Michelcic 2009; Guermoud et al., 2008; 

Vehlow et al., 2007; Harjula et al., 2001). In industrialized countries of the Europe 

and North America, landfilling is still the most common practice for the disposal of 

MSW along with UOW although social pressures are making it harder to find proper 

sites (Environment Canada, 2009; Messineo and Panno, 2008; De Baere, 2000). 

Furthermore, landfilled organic wastes (OW) emit greenhouse gases which can be 

recovered at a cost, generate leachate which requires treatment and remove land 

which otherwise could be used for agriculture (Machado et al., 2009; Wagner and 

Arnold, 2008; Official Journal, 2000). In an attempt to reduce the number of landfills 



 38 

along with their social and environmental impacts, European and North American 

countries have adopted policies aimed at reducing the generation of wastes through 

for example recycling and reuse (Landfill Directive, 1999; CCEM, 1989).  

To be diverted from landfills, OW must be stabilized with the objective 

among others of producing a soil amendment. In North Canada, composting to 

produce a soil amendment is likely the most popular treatment, while in Europe, 

countries such as Germany and the Netherlands have encouraged source separation 

for composting and biogas production through anaerobic digestion (Table 3.1). Other 

European countries such as Spain and France, allow the stabilization of the OW 

fraction by composting of the entire MSW mainstream before landfilling; these 

countries also mechanically and source separation of the OW to produce soil 

amendments (Kelleher, 2007). Although the source separated OW produces a 

compost of higher quality and value, this management option through centralized 

facilities increases the collection and transportation cost, besides that of the disposal 

method. In general, landfilling costs between $30 to 50 US ton
-1

 of MSW including 

greenhouse gas capture, whereas composting and anaerobic digestion can cost from 

$50 to 400 US ton
-1

, with an end product not even meeting the recycling cost at $5 to 

10 US ton
-1

 wholesale.  

Therefore, the recycling of OW into a high quality soil amendment requires 

additional investments as compared to the traditional method of landfilling even 

where greenhouse gases are captured and treated (Hazra and Goel, 2009; Dunne et al., 

2008; Burnley, 2007). This additional investment is an economic burden for 

developed as well as developing countries. As an alternative method of reducing if 

not eliminating collection and transport costs to compensate for the treatment cost, 

community composting centres (CCC) and home composting systems (HC) are 
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proposed. Nevertheless, such systems have not yet been demonstrated as sanitary, and 

economically and environmentally advantageous.  

Within the recycling legislative framework of Europe and North America, the 

aim of this study was to investigate the economical and environmental advantages of 

on-site treatment of UOW by community or individual households composters. The 

present feasibility and economic study is based on available waste management costs 

data and environmental knowledge. In this study, food and garden wastes generated 

from households, institutions and businesses make up the UOW fraction of MSW. 

 

3.2 The European and Canadian UOW generation and management 

In this study, the 27 member states of the European Union (EU) will be split 

into groups 1 and 2 (EUG1 and EUG2) consisting of countries with a gross domestic 

product (GDP) in excess of and under $25000 US capita
-1

 year
-1 

(Table 3.2), 

respectively. Canada and the EU are similar in economy but differ in their landmass 

and population density. The EUG1 and EUG2 have population densities of 136 and 

92 persons km
-2

 whereas Canada has a population density of only 4 persons km
-2

 

(World population prospects, 2007). Nevertheless, the Canadian population is mainly 

concentrated along its southern border, for a more representative density of 20 person 

km
-2

. To consider the different contexts of economy, urbanization and population 

density, the following section separately discusses the MSW generation and 

management for the EU, the EUG1, the EUG2 and Canada. 

3.2.1 MSW and UOW generation  

The MSW and UOW generated by the EUG1, the EUG2 and Canada are 

presented in Table 3.2. For Canada, the quantities of MSW and UOW correspond 

only to household waste whereas for the EU, the quantities correspond to household, 
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institutions and commercial wastes (OECD, 2006-2007). In 2005, the EUG1 

generated 207 million tonnes of MSW or 2.0 kg person
-1

 day
-1

, representing 82 % of 

total MSW generated by the EU. The OW fraction represented 32 % of the total 

MSW main stream and amounted to 0.63 kg person
-1

 day
-1

. Also in 2005, the EUG2 

generated 44 million tonnes of MSW or 1.56 kg person
-1

 day
-1

 representing 18 % of 

the total MSW generated by the EU. The generated OW fraction amounted to 25 % of 

the MSW production for the EUG2. With an average gross domestic product (GDP) 

of $35000 US capita
-1

, the EUG1 produced 28 % more MSW per person than the 

EUG2 with half the GDP of $17000 US capita
-1

.   

In North America and for 2005, the Canadian urban population of 25.8 million 

produced 13.4 million tonnes of MSW or 1.42 kg person
-1

 day
-1

 for a GDP of $33400 

US capita
-1

. In comparison, the US and Mexican urban populations of 242.3 and 79.6 

million, respectively, produced 180.1 and 27.5 million tonnes of MSW or 2.5 and 1.2 

kg person
-1

 day
-1

, for a GDP of $41400 and $10700 US capita
-1

. Accordingly, the 

calculated UOW generation for Canada, the US and Mexico was 0.43, 0.63 and 0.63 

kg person
-1

 day
-1

, respectively.  

For the EU and Canada, UOW is one of the major fractions of the MSW main 

stream (Table 3.3) representing in 2005, 30 and 25 % of the MSW main stream, 

respectively. Other reported components of the MSW main stream were paper and 

paperboard, glass, metal, plastics and textile.  

3.2.2 European and Canadian UOW management practices  

Landfilling is still the most common MSW disposal method in both the 

European Union and Canada. In 2005, the EUG1 and EUG2 landfilled 36 and 82 % 

of the total MSW main stream, whereas Canada landfilled 60 % (Table 3.2). 

Diversion of MSW from landfilling practices vary widely among the EUG1 countries 
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with Germany and the Netherlands reaching over 98% as compared to the UK still at 

22 % (Table 3.1). In Malta, Greece and the Czech Republic, more than 80 % of all 

MSW was still being landfilled in 2005 (EEA, 2009) 

The low landfill diversion rate for most European Countries and Canada is far 

from meeting environmental policy expectations. In 1999 and for the biodegradable 

fraction of MSW, the EU Landfill Directive 99 (Article 5) set diversion objectives of 

25 % by 2006, 50 % by 2009, and 65 % by 2016, based on 1995 levels. Similarly in 

Canada, the Canadian Council of Ministers of the Environment (CCME) proposed a 

national diversion goal of 50 % of all MSW by 2000 based on that disposed in 1989, 

without specifically targeting the organic fraction (Wagner and Arnold, 2008).  

Individual country policies have influenced the level of diversion and the 

technology preferred for this diversion. Incineration is not widely used because of 

issues of atmospheric emissions and the fact that the high moisture content of UOW 

reduces the caloric value of the process (Environment Canada, 2009; Zsigraiová et 

al., 2005; El Asri and Baxter, 2004; Marton and Alwast, 2002). While in the EUG1 

countries, 21 % of all MSW was incinerated in 2005, less than 6 % was treated by 

this process in the EUG2 and Canada. The high EUG1 incineration level results in 

part from countries such as France, Germany and The Netherlands using this 

technology to eliminate over 30 % of their MSW while generating energy. In 2007 

and within the EUG1, Germany and The Netherlands were diverting 98 to 99 % of 

their MSW (Table 3.1), respectively, because of strict and costly landfilling and 

incineration regulations encouraging composting, and a subsidy on biogas production 

from the anaerobic digestion of organic wastes. In Canada since 2000, only the 

province of Nova Scotia succeeded in composting 60 % of its MSW, on the basis of 

that produced in 1989 (Wagner and Arnold, 2008), through strict regulations 
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prohibiting among others, the disposal of OW through landfills. However, recycling 

dropped to 41 % in 2006 because of a higher level of waste generation as a result of 

economic growth and changes in consumer habits. British Columbia is second in 

Canada with 32 % diversion from landfill through recycling mainly because of a 

bylaw requiring manufacturers to recover packaging (Table 3.1). With voluntary 

recycling policies for the rest of the Canadian provinces, less than 20 % of all MSW 

is diverted from landfills excess for Quebec thanks to its Recy-Quebec organization 

managing the recycling metals, paper and glass (Environment Canada, 2009).  

Composting and anaerobic digestion are commonly used to treat and recycle 

the organic fraction of MSW. In 2006 and for the EU, 124 central composting 

facilities were treating 4 million tonnes of MSW annually (Kelleher, 2007). In 2005, 

France, Spain and The Netherlands were composting 14, 33 and 24 % of all MSW, 

respectively (Table 3.4), while in Canada, 12 % were composted. In the past, 

centralized mixed MSW composting facilities were built and operated, while at 

present, the composting of source separated OW facilities are preferred to assure the 

quality and value of the finished product. In Germany, source separation of the 

organic fraction of MSW is mandatory in many municipalities and at present, 700 to 

900 composting facilities are in operation (Table 3.5). In France, amongst 119 

composting facilities treating MSW, 54 use source separated UOW. In Canada, 54 

facilities compost source separated food waste generated from residences, industries, 

businesses and institutions (Table 3.5). The construction of a centralized composting 

facility can easily cost $7 million US, for a UOW processing cost of at least $140US 

ton
-1

. Anaerobic digestion is another technology used to divert UOW from landfill 

sites and produce energy, but its application is generally accompanied by an incentive 

to generate energy (Table 3.1). The highest mass of organic waste diverted using this 



 43 

technology is found in Germany and the United Kingdom with 2000 kilo tonne of oil 

equivalent (ktoe) followed by Italy and Spain with 300 ktoe and the France, Austria 

and The Netherlands with 100 ktoe (European Biomass Industry Association, 2006). 

To encourage such source of green energy, EU countries must generally offer a 

subsidy equivalent to the cost of electricity produced by conventional technologies. 

At a crude oil price of $100 US barrel
-1

, such a green energy policy costs the EU 

some $4 billion US year
-1

.  

In order to reduce the cost of treating and recycling UOW, a more interesting 

diversion method needs to be examined. Within this objective, the on-site treatment 

of source separated UOW was proposed to produces a dry, stabilized and volume 

reduced soil amendment (Adhikari et al., 2009) readily available for urban gardens. 

Nevertheless, the real economical impacts are issues to be addressed before 

recommending the wide use of home and community composting centres. Within this 

context, the following sections formulate and compare strategies for on-site 

composting of UOW in the EUG1, EUG2, and Canada.  

 

3.3 Comparison of on-site UOW composting scenarios diverting MSW from 

landfills 

The following sections examine the growth of MSW and UOW over the 

upcoming 15 years and then, predict the economic and environmental advantages 

associated with on-site composting to divert the UOW fraction from the MSW 

mainstream and landfilling operations.   

3.3.1 Estimated growth in MSW and UOW production 

Referring to Adhikari et al. (2006), the following is updated study by 

including rather than estimating the 2005 urban population (UP) and gross domestic 
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product (GDP) data according to UNPD (2007) and UNSD (2008). The growth of 

MSW and UOW was estimated by correlating the 2005 urban population of each 

country (UNPD, 2007) with its 2005 GDP (UNSD, 2008) (Figure 3.1a and b). 

Similarly, MSW and UOW generation rates were correlated with GDP (Figure 3.1c), 

using a procedure developed by Adhikari et al. (2006). Thus, MSW and UOW 

production were computed from the following Equations 1 and 2 for 2009, 2016, 

2020 and 2025, where future economic improvement was used to estimate urban 

population expansion in addition to population growth. The short term global 

economic recession was assumed to have negligible impact on MSW generation and 

management systems: 

 CRYCRYCRYCRY TPMSWRUPMSW )()()(1065.3)( 9
  (1) 

CRYCRYCRYCRY TPUOWPRUPUOW )()()(1065.3)( 9
  (2) 

where, (MSW)CRY  is the MSW production (million tonne yr
-1

); (UP)CRY is the urban 

population (%); (TP)CRY is the total population; (MSWR)CRY is the MSW production 

rate (kg capita
-1

day
-1

); (UOW)CRY is the UOW production (million tonne yr
-1

); 

(UOWPR)CRY is the UOW production rate (kg capita
-1

day
-1

), and; in the subscripts 

CRY, C refers to the country, R to the continents of Europe and North America and Y 

to the year. 

From Equations (1) and (2) and for 2009 to 2025, the estimated growth in 

MSW and UOW in the EU, the EUG1, the EUG2 and Canada are presented in Figure 

3.2. With the largest population, the EUG1 is expected to increase its MSW 

production from 202 to 263 million tonnes yr
-1

, over the next 15 years (2009 to 2025), 

resulting in an UOW production increasing from 75 to 92 million tonnes yr
-1

. Over 

the same period, the EUG2 with the second largest population is expected to increase 

its UOW production from 11 to 13 million tonnes yr
-1

. The UOW production is 
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expected to increase by 23 % and 18 % in the EUG1 and the EUG2 respectively. 

With 8 million tonnes yr
-1

 of UOW in 2009, Canada‟s production is expected to reach 

10 million tonnes yr
-1

 in 2025 representing an increase of 25 %. 

3.3.2  Scenarios for UOW treatment strategies 

The economic and environmental impacts of the proposed scenarios are 

evaluated in this section for the upcoming decades. The Base Scenario (Base Sce) 

assumes that all UOW will continue to be landfilled, but that 80% of their biogas 

generation will be captured; Scenario one (Sce 1) considers the practices of diverting 

57, 16, and 44 % of all UOW from landfilling for the EUG1, the EUG2 and Canada 

respectively, and treating the diverted waste through a centralized composting facility 

(CCF) except for 1 % which would be treated through home composter (HC); 

Scenario two (Sce 2) assumes that UOW diversion from landfill increases from 25 % 

in 2006 to 65 % in 2016 and 80 % in 2025 and the diverted UOW is composted at 

centralized composting facilities (CCF), and; scenario three (Sce 3) considers zero 

landfilling with 10, 60, and 30 % of UOW treated using CCF, HC and community 

composting centres (CCC) respectively by 2025 (Table 3.6). 

3.3.3 Economical assumptions  

Table 3.7 compares the cost of various composting strategies to that of 

landfilling UOW. Disposal of UOW through landfilling requires: land acquisition; 

capital, operating and closure costs, and; collection and transportation of UOW to 

landfill sites generally located at some distance from the city (Adhikari et al., 2009). 

Besides the collection and transportation costs estimated at $115 US tonne
-1

, a 

landfill-dumping fee of $50 US tonne
-1

 is quite common in America and Europe, for a 

total landfilling costs $165 US tonne
-1

 of MSW (Eunomia, 2002). The cost of 

capturing landfill biogases of $1.50 US tonne
-1

 was added to represent more current 
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practices. Centralized composting facilities (CCF) were assumed to cost 33 % more 

in collection and transportation as compared to landfilling because of the double 

collection required, but at a less frequent interval for MSW other than UOW, and the 

location of CCF within the urban perimeter. With a capacity of 20 × 10
3
 tonne yr

-1
 

and at 7 % interest rate, CCF can compost UOW at a cost of $241 US tonne
-1

. 

Community composting centres (CCC) are estimated to treat UOW at a lower cost of 

$118 US tonne
-1

 (Table 3.7) because of the time volunteered to operate the centre. 

Community composters with a 11.5 m
3
 capacity were presumed to cost $30000 US, if 

not automated and built of polyethylene (Eco-quartier, 2009). As compared to CCC, 

HC can cost in the range of $31 US tonne
-1

 of capacity and are expected to have a 10 

yr life. For HC, no collection and transportation costs are involved and the time 

required to manage the system is free. Purchasing the composter, promoting the use 

of HC and training the community, are the only costs amounting to $42 US tonne
-1

. 

The cost of bulking agent is considered negligible when food waste is composted 

along with yard trimmings. 

3.3.4 Environmental assumptions 

No matter the management method, UOW generated CH4. Landfilled UOW 

contribute to global warming by generating potentially 204 kg CH4, 500 kg CO2 and 

0.13 kg N2O tonne
-1

 wet OW (Pettus, 2009; SITA Australia Pty Ltd, 2008; US 

CESLG, 2008; Barton and Atwater, 2002; Wang et al., 1997), where modern 

technology can capture 80 % of the CH4. In addition, the garbage trucks collecting 

and transporting the MSW generate some 25 kg CO2 tonne
-1

 wet UOW (Clean 

Energy, 2007), assuming that UOW constitute 46% of the volume handled.  

According to IPCC (2006), CCF generates 4 kg CH4 and 0.3 kg N2O tonne
-1

 

wet organic waste and the transportation contribution was presumed increased by 
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33% as compared to landfilling. This compares favourably with Amlinger et al. 

(2008) reporting that HC generates 0.8 to 2.2 kg CH4, 139 to 215 kg CO2 and 0.076 to 

0.186 kg N2O tonne
-1

 organic waste. Although composting is an aerobic process, 

some CH4 is formed by anaerobic pockets within the mass, especially early on in the 

process because of issues of O2 transfer to microbes. In the present analysis, CH4, 

CO2 and N2O emissions from CCC and HC were assumed to respect the upper limits 

found by Amlinger et al. (2008), because of limited data on CCC emissions. The 

GHG (CO2, CH4 and N2O) emissions were expressed as units of CO2 equivalent 

based on the global warming potential (GWP) of CH4 and N2O valued at 21 and 310 

times that of CO2, respectively (US EPA, 2005). 

 

3.4 Comparison of the results for the different scenarios 

3.4.1 Economic implications of various scenarios from 2009 to 2025 

Considering the Base Sce, the cost of UOW landfilling in the EUG1 will 

increase from $12293 to $15130 million US from 2009 to 2025, an increase of 23 % 

based on 2009 values (Figure 3.3a). Compared to the base scenario and for 2025, Sce 

1 and 2 will increase the cost of handling and treating UOW by 25 and 37 %, 

respectively, whereas Sce 3 will lower the cost by 49%. Accordingly from 2009 to 

2025 and for Sce 1, 2 and 3, the cost of treating UOW will increase from $15376 to 

$18919 million US, $15124 to $20705 million US and $6310 to $7767 million US, 

respectively.  

In the EUG2, the landfilling cost for UOW will increase by 14 % from $1822 

to $2084 million US. Over the same period, Sce 1, 2 and 3 could increase the cost of 

handling and treating UOW from $1945 to $2225 million US, $2241 to $2852 million 

US and $935 to $1070 million US, respectively (Figure 3.3b). In comparison to 
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landfilling, adopting CCF (Sce 2) will increase the cost by 57 % in 2025 while 

adopting HC (Sce 3) will drop the cost by 41 %.  

In the EU27, the cost of UOW landfilling is expected to increase from $14114 

to $17214 million US, if the Base Sce is maintained, an increase of 22 % (Figure 

3.3c), whereas Sce 1 & 2 will increase this cost by 50 and 67 %, respectively and Sce 

3 can drop this cost by 37 %.  

For Canada, maintaining the Base Sce will increase UOW handling and 

treatment costs by 29% %, in 2025 as compared to 2009. If Sce-3 is adopted, the cost 

will increase from $656 to $844 million US over the same period. By adopting Sce 3, 

the cost can be lowered by 34% as compared to the Base Sce (Figure 3.3d). 

Accordingly, Sce 3 appears to be the most feasible option from an economic point of 

view for the on-site treatment of UOW over the next 15 years. 

3.4.2 GHG (CO2, N2O and CH4) emissions under the various scenarios for 2025 

From 2009 to 2025, UOW management can increase GHG emission if the 

Base Sce, mainly landfilling, is maintained along with its fossil fuels consumption for 

waste collecting and transportation. Considering Base Sce for the EUG1, GHG 

emission from landfilled UOW will grow from 37 to 45 million tonne CO2-eq (Figure 

3.4a), whereas Sce 1 and 3 could emit 34 and 27 million tonne CO2-eq, respectively 

by 2025, representing a drop of 25 and 40 %. The Sce 2 is will increases emissions by 

7 % in 2025, because non CH4 capture is assumed from 2016 onwards with the 

assumption that less UOW landfilling makes CH4 capture uneconomical. Similarly for 

the EUG2 by 2025, the GHG emissions for the Base Sce could increase from 5 to 6 

million tonne CO2-eq whereas Sce 1, 2 and 3 could limit GHG emissions to 6, 7 and 3 

million tonne CO2-eq, respectively (Figure 3.4b). Again with the Base Sce, GHG 

emissions by the EU27 could increase from 42 to 51 million tonne CO2-eq (Figure 
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3.4c) whereas Sce 1, 2 and 3 could limit GHG emissions to 40, 55 and 31 million 

tonne CO2-eq. Compared with 2005 emissions (Table 3.4), the Base Sce, and Sce 1, 2 

and 3 will contribute 1.4, 1.1, 1.5 and 0.8 % of the EUG1 anthropogenic GHG 

emissions respectively in 2025.  

Similarly in Canada, GHG emission from landfilled UOW or the Base Sce is 

expected to increase from 4 to 5 million tonne CO2-eq from 2009 to 2025 (Figure 

3.4d), but to drop to 4 and 3 if Sce-1 and 3 are adopted and increases to 5.2 if Sce 2 is 

implemented.  Therefore, in the EU and Canada, the implementation of Sce-3 will 

reduce GHG emissions remarkably in upcoming years.  

3.4.3 Land used for UOW landfilling from 2006 to 2025 

Landfilling requires 33 ha of tillable land per million tonne of UOW (Adhikari 

et al., 2009). Accordingly and from 2009 to 2025, maintaining the Base Sce in the 

EUG1 will waste 32% more land annually for landfilling (Figure 3.5a) which is 

equivalent to twice the Luxemburg permanent crop area of 1780 ha (CIA, 2009). 

Similarly, the EUG2 will require 21% more land (Figure 3.5b) which is equivalent to 

twice the Malta permanent crop area of 990 ha (CIA, 2009). In Canada, maintaining 

the Base Sce will increase the annual land usage for landfilling by 38 % (Figure 

3.5d).  

By 2025 in the EUG1, implementing Sce 1, 2 and 3 will reduce the annual 

land requirements for UOW landfilling by 56, 80 and 100 % as compared to the Base 

Sce, while for the EUG2, land use will be reduced by 15, 80 and 100 %, respectively 

(Figure 3.5b). Similarly, in Canada, Sce 1, 2 and 3 will reduce land use by 41, 80 and 

100 %, respectively.   
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3.5 Proposed CCC and HC in Paris, France and Toronto, Canada 

Paris, France, and Toronto, Canada, are densely populated cities with 

respective populations of 3400 and 2500 km
-2

 (Table 3.8) where the residential, 

commercial and institutional generation of UOW amounts to 0.63 kg person
-1 

day
-1

 

(OECD, 2006/2007). In this projection, it is proposed to use for Paris, 2 CCC km
-2

 

with 3 - 15 m
3
 in-vessel composters and 438 individual home 400 L composting bins 

km
-2

, and for Toronto, 1 CCC km
-2

 with 2 - 15 m
3
 in-vessel composters and 255 

individual home 400 L compost bins km
-2

 (Table 3.8).  

Compared with landfilling, CCC and HC can save annual UOW treatment 

cost by $25756 and $28905 US km
-2

 in Paris while Toronto can benefit from annual 

savings of $8131 and $49569 US km
-2

, respectively. Furthermore, GHG emissions 

will drop drastically and urban air quality can benefit from less garbage collection 

and transportation (Adhikari et al., 2009). Therefore, the on-site composting of source 

separated UOW can offer interesting environmental and economic benefits for the 

years to come. However, the successful implementation of on-site composting offers 

some challenges. 

To recycle a high fraction of the UOW, the implementation challenge for 

CCC and HC are numerous. The first prerequisite is the participation and 

involvement of waste producers (urban residents), because most need as stimulus, tax 

incentives or legislative pressures, besides education on the benefits of compost as 

soil amendment. Finding space for CCC in the highly populated cities like Paris and 

Toronto is another challenge, although the Montreal City Tournesol Centre owes its 

success to its location on the edge of a large Jeanne Mance park. The compost 

produced from CCC and not used by the UOW producers will have to be transported 

to city gardens.  
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3.6 Conclusion and recommendation  

The production of MSW and its UOW fraction is expected to increase 

exponentially over the next 15 years, as a result of economic growth and urban 

expansion. If landfilling is maintained as the main treatment option, such growth will 

further add to already existing waste management issues and resources shortages. To 

divert the organic fraction from landfills, the EU and Canada have promulgated and 

implemented waste management legislations with emphasis on reduction, reuse and 

recycling.   

The economic and environmental impact of promoting community 

composting centres (CCC) and home composters (HC) to recycle UOW was 

investigated in this project as an alternative to landfilling. By 2025, such on-site 

practices could reduce costs and greenhouse gas emissions by 50 and 40 %, 

respectively, as compared to maintaining landfilling practices. Furthermore and 

annually, some 3440 and 330 ha of agricultural land could be saved for the generation 

of food in the EU and Canada. By eliminating collection, transport and labour costs, 

HC are an interesting solution to the recycling of UOW. However, the shift of MSW 

management systems from landfill disposal to resource recovery requires 

technological input, population participation, compost quality assurance and 

sufficient urban gardens to divert the mass produced (Hargreaves et al., 2008; 

Burnley, 2007). In this context, the performance of HC is an issue to be addressed for 

its successful implementation as on-site treatment system.  
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3.8 Abbreviations 

 

Base Sce  –  base scenario 

CCC   –  community composting centres 

CCF    –  centralized composting facility 

CH4    –  methane 

CO2-eq  –  carbon dioxide equivalent 

CO2   –  carbon dioxide 

EU   –  european union 

EUG1   –  european union group one 

EUG2   –  european union group two 

GDP   –  gross domestic product 

GHG   –  greenhouse gas 

GMP   –  glass, metal and plastics 

HC   –  home composter 

IC & I   –  institutions, commercials and industries 

LF CH4  –  landfill methane 

LF   –  landfilling 

MSW   –  municipal solid waste 

NUP   –  national urban population 

OW   –  organic waste 

P&PB   –  paper & paperboard 

Sce 1   –  scenario one 

Sce 2  –  scenario two 

Sce 3   –  scenario three 

TA CH4  –  total anthropogenic methane 

TA GHG  –  total anthropogenic greenhouse gas 

TMSWG  –  total municipal solid waste generated 

T&O   –  textile & others 

TP   –  total population 

UOW    –  urban organic waste 

UOWPR   –  urban organic waste production rate 

UP   –  urban population
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Table 3.1 Legislation to divert MSW from landfill in some EU countries and provinces of Canada in 2006  
Country Diversion Legislation for diversion 

 

Germany 

 

99 % 

- Waste Disposal Act (1972): closure of uncontrolled landfills and introduction of strict and 

costly regulations for new and larger landfills. 

- Waste Avoidance and Management Act (1986) and German Packaging Ordinance (1991): 

obligatory packaging recovery by the producers and users.  

- Technical Guidelines for Hazardous Wastes (1991) and Solid Household Wastes and Wastes 

Similar to Household Wastes (1993): more stringent and costly regulations on landfills and 

incinerators; realisation that organic wastes were at the base of most leachate and gas issues.  

- Ordinance on Biowaste (1998): control for the sanitary treatment of organic wastes; 

- Renewable Energy Law (2000): subsidizing of biogas production from organic wastes and 

municipal support for home composting. 

 

The 

Netherlands 

 

98 % 

- National Environmental Policy (1988): brought awareness for recycling with slow progress in 

terms of mass recycled. 

- Regulation Air Emissions on Incineration (1989): strict and costly regulations imposed on 

incinerators. 

- Regulation on the anaerobic digestion of UOW: introduction of a high subsidy on the 

production of electricity from UOW. 

 

France 

 

 

56 % 

- Directive aimed at MSW (2005): has producers share the cost of waste management.  

- Action Plan for 2009-2012: aims at increasing recycling, by applying a higher tax on waste 

management and requiring manufacturers to financially contribute to the management of 

packaging.   

- Incineration: air quality policies improved from 1995 to 2006, allowing the incineration of 

47% of all MSW to generally produce energy.  

 

United 

Kingdom 

 

22 % 

- White paper Making Waste Work (1995): despite the 1999 Landfill Directive, 1994 Packaging 

Waste Directive and 1991 Hazardous Waste Directive, the UK had failed to draw up waste 

management plans by 1999.  

- Waste Strategy for England and Whales (2000): making local authorities responsible for waste 

management has limited impact on landfilled MSW.  

- Renewable Obligation Order (2002): sets a target for the UK to generate 10 % of its electricity 

from renewable sources by 2010 with power to be purchased by the Non-Fossil Purchasing 

Agency (NFPA).  

Canada 

British 

Columbia 

 

 

32% 

- Emission Criteria for Municipal Solid Waste Incinerators (1991): imposed emission standards 

and gives all incinerators 5 years to comply. 

- Landfill Criteria for Municipal Solid Wastes (1993) and Guidelines for Environmental 

Monitoring (1996): controls and sets standards for the management of landfills; landfill 

operators have to show that they meet performance criteria. 

- Compost Facility Requirement Guideline and Land application guidelines for Organic matter 

recycling (2002): governs then operation of composting facilities and the land application of the 

compost they produce. 

- Regional District Solid Waste Management plan Guidelines (1994): each district sets its plan 

and several have banned the disposal by landfill of recyclable, hazardous and organic materials. 

- Recycling Regulation - Product Stewardship (revised 2009): industry and the consumer are 

responsible for the disposal of packaging and containers. 

Nova Scotia 41 % - Nova Scotia Environment Act (1994): proposed to develop a Solid Waste Resource 

Development Strategy with the 55 municipalities, introduced strict regulations on new landfills 

and required existing landfills to conform in 2006. 

- Environment Goals and Sustainable Prosperity Act (1996): committed to recycling 50% of all 

municipal solid wastes; ban on disposal of all containers and packaging, refillable or recyclable 

beverage containers, and all organic which can be composted. 

Ontario  19 % - Waste Diversion Act (2002) giving Board the responsibility to develop and implement waste 

diversion programs: reviewed by public consultation and recommend path towards zero waste. 

Quebec 27 % - Bylaw on landfill tax (2006): a landfill tax of $10 ton
-1

. 

- Bylaw on the disposal by landfill and incineration of municipal solid wastes (2006): revision 

with strict environmental requirements whereas before, in many instances a landfill liner was 

not even required. 

- Law and several bylaws on recovery and recycling (1990): creation of Recy-Quebec to 

manage the recycling of glass, paper and metal.  

Note: regulations on compost quality are excluded. References : Eurostat (2009); Statistics Canada (2008); CCC (2010); 

MEEDDM (2009); LAP (2003); Zhang et al. (2009); Schnurer (2000); Bergs (2005); van der Sloot (1996); Gervais (2002). 
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Table 3.2 Countries categorized based on the GDP per capita (US$) in 2005  

Category Countries 
GDP

a
 

per capita 

US$ 

TP
b
 

('1000) 

UP
b
 

('1000) 

UP 

% 

MSW
c
 

generated 

million  

tonne 

UOW
d
 

generated 

million 

tonne 

MSW
c
 

landfilled 

million 

tonne 

  

  

 

 

    

EU Group 1 Luxembourg 64102 457 378 82.8 0.32 0.14 0.06 

 (EUG1) Ireland 39040 4143 2507 60.5 3.07 0.77 1.84 

GDP> Denmark 34298 5417 4653 85.9 3.99 1.16 0.21 

25000 Netherlands 34289 16328 13095 80.2 10.19 3.57 0.18 

 Austria 33299 8292 5514 66.5 5.13 1.80 0.66 

 UK 33125 60245 54040 89.7 35.18 13.13* 22.65 

 Belgium 32955 10398 10117 97.3 4.95 1.93 0.38 

 Sweden 32750 9038 7619 84.3 4.36 2.12* 0.21 

 Finland 32467 5246 3274 62.4 2.49 1.13* 1.48 

 France 31846 60991 46780 76.7 33.06 10.58 11.89 

 Germany 29913 82652 60667 73.4 46.62 6.53 3.97 

 Italy 29189 58646 39645 67.6 31.79 9.22 17.30 

 Spain 26792 43397 33285 76.7 25.91 12.69 12.67 

Total/Average 34928 365250 281574 77 207 65 74 

         

EU Group 2 Greece 23386 11100 6704 60.4 4.86 1.40* 4.30 

 (EUG2) Slovenia 22294 1999 990 49.5 0.85 0.24* 0.66 

GDP Portugal 21168 10528 6064 57.6 4.70 1.60 2.93 

<25000 Czech Republic 20931 10192 7491 73.5 2.95 0.90* 2.13 

 Cyprus 19724 836 579 69.3 0.62 0.11* 0.55 

 Malta 19239 403 377 93.6 0.25 0.05* 0.22 

 Hungary 18257 10086 6687 66.3 4.64 1.35 3.85 

 Slovakia 15991 5387 3027 56.2 1.56 0.44* 1.23 

 Estonia 15990 1344 933 69.4 0.59 0.10* 0.37 

 Lithuania 14538 3425 2281 66.6 1.29 0.21* 1.17 

 Poland 14156 38196 23491 61.5 9.36 3.08* 8.63 

 Latvia 13692 2302 1565 68 0.71 0.15* 0.56 

 Bulgaria 9220 7745 5437 70.2 3.68 0.42* 3.14 

 Romania 9067 21628 11614 53.7 8.15 1.17* 6.40 

Total/Average 16975 125171 77241 65 44 11 36 

         

North  

Americas 
US 41410 299846 242276 80.8 222.90 55.73 121.03 

Canada 33400 32271 25849 80.1 13.40 3.22 8.05
e
 

  Mexico 10689 104266 79555 76.3 36.00 18.36 34.81
f
 

GDP - Gross domestic product; UP - Urban population; TP - Total population MSW -  Municipal solid 

waste; OW - Organic waste; a
UN (2007); 

b
World Population Prospects (2007); 

c
Eurostat (2008); 

 d
OECD 

(2006/2007); *Estimated from Adhikari et al. (2006) with 2005 UOW and GDP data;
 e
2004;

 f
2006;  MSW 

generated and landfilled data for Americas are from OECD (2006/2007). 
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Table 3.3 Composition of MSW in some of the EU countries & North Americas in 2005 

Country TMSWG 

million 

tonne 

OW 

 

% 

P& 

PB 

% 

T&O 

 

% 

GMP 

 

% 

OW 

million 

tonne 

P&PB 

million 

tonne 

T&O 

million 

tonne 

GMP 

million 

tonne 
 

  

Luxembourg 0.32 45 22 16 16.8 0.14 0.07 0.05 0.05 

Ireland 3.07 25 31 23 20 0.77 0.95 0.71 0.61 

Denmark 3.99 29 27 32 11.8 1.16 1.08 1.28 0.47 

Netherlands 10.19 35 26 12 27 3.57 2.65 1.22 2.75 

Austria 5.13 35 22 19 24 1.80 1.13 0.98 1.23 

Belgium 4.95 39 17 29 15 1.93 0.84 1.44 0.74 

France 33.06 32 20 26 22 10.58 6.61 8.59 7.27 

Germany 46.62 14 34 12 39 6.53 15.85 5.59 18.18 

Italy 31.79 29 28 22 20 9.22 8.90 6.99 6.36 

Spain 25.91 49 21 7 24 12.69 5.44 1.81 6.22 

Hungary 4.64 29 15 35 21 1.35 0.70 1.62 0.97 

Portugal 4.70 34 21 23 22 1.60 0.99 1.08 1.03 

Slovakia 1.56 38 13 31 18 0.59 0.20 0.48 0.28 

USA 222.90 25 34 16 25 55.73 75.79 35.66 55.73 

Canada 13.40 24 47 8 22 3.22 6.30 1.07 2.95 

Mexico 36.00 51 15 16 15 18.36 5.40 5.76 5.40 

Source: OECD (2006/2007); Eurostat (2008) 

TMSWG - Total municipal solid waste generated; OW - Organic waste;   

P&PB - Paper & paperboard; T&O - Textile & others; GMP - Glass, Metal & Plastics. 
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Table 3.4 Composting of UOW in some of the EU countries & Canada 

Country Composting Composting Composting Composting 

 

million 

tonne % 

million 

tonne % 

  1995   2005   

Luxembourg 0.02 7.04 0.06
b
 19.28

b
 

Ireland - - 0.03
a
 1.25

a
 

Denmark 0.32 10.69 0.55
b
 15.28

b
 

Netherlands 2.01 23.72 2.38
c
 23.49

c
 

Austria 0.94 26.56 2.06
c
 44.7

c
 

Belgium 0.27 5.95 1.05
b
 22.76

b
 

France 2.53 9.14 4.87 14.33 

Germany 5.59 10.96 8.30
c
 17.14

c
 

Italy 0.12 0.45 10.55 33.30 

Spain 2.09 10.38 7.43
c
 32.69

c
 

Slovenia 0.00 0.00 0.01
a
 1.15

a
 

Portugal 0.50 12.90 0.31 6.26 

Hungary - - 0.05
b
 1.07

b
 

Canada - - 1.66
c
 12.50

c
 

Source: OECD (2006/2007); Eurostat (2008)  

UOW - Urban organic waste
  

a
2002; 

b
2003; 

c
2004. 
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Table 3.5 Municipal Solid Waste (MSW) composting facilities in some of the EU countries 

and Canada 

Country No of composting Description References 

  facilities     

France 119 65 mixed MSW and 54 source ECN (2009) 

  separated urban organic waste (UOW)   

  composting facilities  

    

Germany 700-900 Source separated UOW composting ECN (2009) 

  is the main focus in Germany  

  for the quality assurances  

    

Finland 20 In-vessel composting facilities with  ECN (2009) 

  capacity of 5 million kg to   

  35 million kg  

    

Canada 54 Composting of food waste from Antler (2009) 

  institutions, commercials & industries  

    (IC&I) and residential sectors   
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Table 3.6 Various scenarios of Urban Organic Waste (UOW) treatment strategies (%) 

Scenarios LF CCF CCC HC 

Base Scenario (Base Sce) 100 0 0 0 

Scenario one (Sce 1)     

EUG1 42 57 0 1 

EUG2 84 15 0 1 

Canada 56 43 0 1 

Scenario two (Sce 2)     

Year     

2006 75 25 0 0 

2009 50 50 0 0 

2016 35 65 0 0 

2020 25 75 0 0 

2025 20 80 0 0 

Scenario three (Sce 3) 0 10 30 60 

LF - Landfilling; CCF - Centralized composting facility; CCC - Community composting 

Centre; HC - Home composting. 
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Table 3.7 Cost of various composting strategies versus landfilling for UOW (US$ tonne
-1 

wet 

UOW) 

Costs LF
a
 CCF

b
 CCC HC 

Collection  115 153 0 0 

Capital costs     

Land acquisition 2 4 0 0 

h
Civil works 19 17 20

c
 0 

Equipments 0 18 64
d
 0 

Site assessment/restoration 2 0 0 0 

After care 7 0 0 0 

Compost bin 0 0 0 31
f
 

Sub-total 30 39 84 31 

Variable costs     

Annual maintenance 0 7 0 0 

i
Manpower/operation 18 23 28

e
 0 

Fuel and disposal of rejects 0 19 0 0 

Training/Promotion  0 0 6 11
g
 

j
Gas capturing  2 0   

Sub-total 20 49 34 11 

Total 165 241 118 42 
LF - Landfilling; CCF - Centralized Composting Facility; CCC - Community Composting Center;  

HC - Home Composting; UOW - Urban Organic Waste; 

 
a&b

 values adjusted using an annual inflation rate of 2.5% from 2002 to 2009 and an exchange of $1.00 

US = € 0.72 mid-month average for 2009 (Eunomia 2002; Bank of Canada 1995-2010);  for EU, 

collection cost averaged from a range of $50 to $210 US tonne
-1

 ; CCF increased by 33 % because of 

double collection at a lower frequency for MSW other than UOW; other costs for LF and CCF were 

based on UK and Italian values; 

 
c 
Site preparation and installation cost for CCC $40000 US (Eco- Quartier 2009);  

d 
CCC costing $30000 US for 11.5 m

3
 total capacity (Eco-Quartier 2009) serving 360 person generating 

0.63 kg UOW person
-1

day
-1 

(OECD 2006/2007);  
e 
Annual management cost of $5700 US; 

 
f 
Wooden composting bin at $200 US of 400L capacity (Recycle works Ltd 2010) serving 4 persons 

per household generating 0.63 kg UOW person
-1

day
-1

 (OECD 2006/2007); 

 
g 
Promotion of bins and education of producer (Nash 1992);  

h 
Civil works for LF including capital investment and interest;  

i 
Manpower/operation for labour, power and equipment maintenance;  

j 
Gas capturing cost consisting of vertical extraction wells at $246 US m

-1
 drilling and installation cost 

with a 25 m influence radius and $525 US wellhead assembly cost with piping and valves (CIWMB 

2008), based on a landfill 15 m deep with an average waste density of 380 kg m
-3

 (Peavy et al. 1985; 

Bhide 1994).
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Table 3.8 Proposed community and home composting in Paris, France and Toronto, Canada  

Description                     Paris                        Toronto   

 
a
TP million(2005): 10.4 

a
TP million(2006): 5.671 

 
a
Total area (km

2
): 3043 

a
Total area (km

2
): 2279 

 % NUP: 22 % NUP: 22 

 Population km
-2

: 3400 Population km
-2

: 2500 

 
b
UOWperson

-1
day

-1
: 0.63 UOWperson

-1
day

-1
: 0.63 

  CCC HC CCC HC 
c
Number of composting 

centre km
-2

 2 - 1 - 
 

d
Number of Compost bins 

km
-2

 - 255 - 438 

 

In-vessel composters 

centre
-1

 3 - 2 - 

 

Specification of each 

composter 

6 m long & 

1.8 m dia. - 

6 m long &  

1.8 m dia. - 

 

Capacity of home 

composter bin
-1

 - 400L - 400L 

 

Composting costs  

 

$118 US  

tonne
-1

  

$42 US 

 tonne
-1

  

$118 US  

tonne
-1

  

$42 US 

 tonne
-1

  

Total UOW composted  

yr
-1

 km
-2

 548 tonne 235 tonne 173 tonne 403 tonne 

 

Cost saving comparing 

with Landfill 

$47 US  

tonne
-1

  

$123 US  

tonne
-1 

 

$47 US 

 tonne
-1

  

$123 US  

tonne
-1 

 

 

Cost saving comparing 

with CCF 

$123 US  

tonne
-1

  

$199 US  

tonne
-1

  

$123 US  

tonne
-1 

 

$199 US  

tonne
-1

 

TP - Total population; NUP - National urban population; UOW - Urban Organic Waste;  

CCC - Community composting centre; HC - Home composting; 
  

a
Demographia (2009); 

 
b
OECD (2006/2007) and assuming same for Toronto;  

c
Assuming 30% & 70% population live in multistory buildings in Toronto & Paris 

respectively; 
d
Assuming 70% & 30% people live in single unit house in Toronto & Paris 

respectively with 4 persons  household
-1

. 
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Figure 3.1 Correlation of percentage urban population (%UP) with per capita gross 

domestic product (GDP) according to UNPD (2007) and UNSD (2008) for (a) 

Europe; and (b) The Americas. (c) correlation of per capita urban organic waste 

(UOW) and municipal solid waste (MSW) production with per capita gross domestic 

production (GDP) according to OECD (2006-2007); Eurostat (2008); Sufian and Bala 

(2007); Government of India (2008); Kanbour (1997); WHO (1995); Al-Yousfi 

(2003); Alamgir and Ahsan (2007); and World Resources (1998-99). 
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Figure 3.2 Urban solid waste production in EU and Canada on an annual basis (a) 

Municipal Solid Waste (MSW); and (b) Urban Organic Waste (UOW). 
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Figure 3.3 Cost of UOW handling and treatment in consideration of various scenarios 

for (a) The European Union Group one (EUG1); (b) The European Union Group two 

(EUG2); (c) 27 countries of The European Union (EU27); and (d) Canada. 
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Figure 3.4 Computed Greenhouse Gases  (CH4, CO2 & N2O) emissions from UOW 

treatment in consideration of various scenarios for (a) The European Union Group one 

(EUG1); (b) The European Union Group two (EUG2); (c) 27 countries of The 

European Union (EU27); and (d) Canada. 
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Figure 3.5 Computed landfill area required for UOW landfilling in consideration of 

various scenarios for (a) The European Union Group one (EUG1); (b) The European 

Union Group two (EUG2); (c) 27 countries of The European Union (EU27); and (d) 

Canada. 
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Connecting statement to chapter 4 

 

 

The previous chapter demonstratd that onsite treatment of OW rather than 

disposed in landfills and treating at centralized facilities reduces environmental as 

well as economic pressure of MSW management systems and saves limited land. 

However, the shift of MSW management systems from landfill disposal to resource 

recovery requires technological input, population participation, compost quality 

assurance. In this context chapter 4 examines the effect of home composter design 

type on the composting process and quality of composted product. 

 

Chapter 4 is drawn from a manuscript submitted for publication to the journal 

of “International Journal of Environmental Technology and Management (IJETM)” 

by the author of the thesis and co-authored by supervisors, Dr. Anne Trémier, 

Cemagef, Rennes, France, Prof. Dr. Suzelle Barrington, Department of Bioresource 

Engineering, McGill University, Montreal, Canada and Dr. José Martinez, regional 

director, Cemagef, Rennes, France. The format has been changed to be consistent 

within this thesis. 
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Chapter 4 

Home composting of organic waste: effect of home composter design 

 

Abstract 

Worldwide, health and environmental considerations have recently 

encouraged the diversion from landfills, of the organic fraction (OW) of the municipal 

solid waste stream (MSW). As an alternative to centralized facilities, on-site 

treatments such as home composting can reduce recycling costs, as long as the 

product is safe and well sanitized. The objective of this study was therefore to 

compare, against a laboratory forced aeration composter (LR), the performance in 

terms of temperature regime and compost quality, of four 300 to 400 L home 

composting systems (HC), namely the Plastic (P) and Wood (W) Bins, the Rotary 

Drum (RD) and the Ground Pile (GP). All HC and the LR were batch loaded with the 

same food waste (FW) and yard trimmings (YT) mixture, to monitor under equal 

conditions, their temperature and compost characteristics. The temperature of the P, 

RD and GP composts reached 55ºC within 3 days while that of W and LR required 6 

and 9 days, respectively. The P, W, and GP composts were exposed to 60 °C 

temperatures for over 3 days while that of RD and LR peaked at 58 °C. After 150 

days and despite different temperature regimes, all HC and the LR composts 

demonstrated similar dry matter, organic matter, chemical oxygen demand and total 

carbon (95 % confidence level) concentrations, except for that of RD remaining at 23 

% dry matter, because of poor aeration. All composts produced pathogen and parasite 

counts, trace element levels and polycyclic aromatic hydrocarbons concentrations 

respecting France and North American regulations. In this study, P and GP performed 

best among all HC, producing the longest sterilizing thermophilic temperatures as a 

result of better convective aeration.   

Keywords: organic waste, home composters, compost quality, municipal solid waste. 
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4.1 Introduction 

When used to eliminate the organic fraction of the municipal solid waste stream 

(MSW), landfilling brings about air, water and soil contamination risks for ecosystems, 

the atmosphere and human health, beside complaints from local residents (Kim and 

Kim, 2010; Montejo et al., 2010). As a major fraction of MSW, organic waste (OW) 

production has increased considerably worldwide over the past decade as a result of 

economic growth especially in Asia (Boldrin and Christensen, 2010; Colón et al., 

2010; López et al., 2010). Accordingly, legislation such as in Europe and North 

America, has advocated the recycling and reuse of OW, or its stabilization if it must be 

landfilled. Composting, anaerobic digestion, incineration and mechanical biological 

treatment are options with less environmental impact than landfilling, but require more 

complex collection and transportation systems, besides more costly processing 

facilities (Adhikari et al., 2010).  

Source separation and recycling using a home composting system (HC) is a 

solution among others to recycle OW while limiting collection, transportation and 

treatment costs (Adhikari et al., 2010; Colón et al., 2010; Smith and Jasim, 2009). But 

the management of HC must produce bio-secure compost relatively free of parasites 

and pathogens, trace elements and toxic organics (Stabnikova et al., 2005). Depending 

on the care used during source separation, compost produced from OW can contain: 

trace elements such as those generated from the ink of waste paper and added by 

atmospheric deposition and small metallic fragments discarded inadvertently (Smith 

et al., 2009); organic pollutants such as polycyclic aromatic hydrocarbons (PAH) and 

polychlorinated biphenyls (PCB) from pesticides applied to or aerially deposited on 

horticultural wastes (Brändli et al., 2007), and; pathogens, parasites and viruses when 

the compost recipe, made from infected wastes, is not uniformly exposed to 
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thermophilic temperatures (Gong, 2007). Furthermore, poor compost management can 

lead to a greater generation of greenhouse gases and odours (Nakasaki et al., 1998; 

Recyc-Québec, 2006).  

Considering the limited number of studies pertaining to aspects of bio-security 

associated with OW treatment using HC (Körner et al., 2008; Smith and Jasim, 2009; 

Colón et al., 2010), the main objective of this study was to compare the performance 

of four different types of common HC, by comparing their temperature regime and 

their compost quality. The four experimental HC, namely the Plastic (P) and Wood 

(W) bins, the Rotary Drum (RD) and the Ground Pile (GP), were compared to a 

control, namely a Laboratory Reactor (LR) with forced aeration. All HC and the LR 

were batch filled to monitor under similar conditions, their temperature and compost 

characteristics. 

 

4.2 Material and Methods 

4.2.1 Experimental composters and substrate 

This study compared the performance of four commonly used HC and a 

control, namely a laboratory reactor (LR). The 4 common HC were: a 400 L Plastic bin 

(P) measuring 0.70 m x 0.70 m by 0.80 m in height; a 400 L Wood bin (W) measuring 

0.78 m x 0.65 m by 0.75 m in height; a 350 L metallic Rotary Drum (RD) with an 

internal diameter of 0.77 m and a length of 0.76 m, and; a Ground Pile (GP) measuring 

0.65 m in height and 0.75 m in base diameter (Figure 4.1). The 300 L laboratory 

Reactor (LR) had an internal diameter of 0.70 m and a height of 0.80 m and had a 

manually controlled forced aeration system.  

The source separated food waste (FW) was supplied by two restaurants of the 

city of Rennes, Bretagne, France. All FW was collected within 3 days of being 

produced and stored at 4 °C until used. The yard trimmings (YT) were obtained from 
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the grounds of the Cemagref Research Institute of Rennes, France. While being 

collected, the FW and YT were sampled for physico-chemical characterization.  

4.2.2 Experimental procedure 

All four HC were randomly placed under a tent outside for rainfall and 

sunshine protection, while the LR was operated inside a laboratory. Using the same 

FW and YT mixture in equal wet volumes, all composting systems were filled at once 

without any pre-treatment for comparison on a similar basis. While filling the HC and 

LR, several Thermochron iButton temperature sensors (DS1921G-F5, Thermochron 

iButton, Dallas Semiconductor, USA) were installed in the compost mass: one in the 

centre; two at 0.1 m above the bottom, and; two more at 0.1 m below the compost 

surface. All HC were naturally aerated except for their weekly mixing, while the LR 

was aerated at a fixed rate of 188 L(hr)
-1

. 

All composting systems were operated for 150 d. Every week during the first 

two months and monthly thereafter, all composts were evaluated for their odour 

characteristics, then hand mixed and sampled in triplicate (100 g) for characterization. 

The temperature sensors were retrieved after 70 d of composting, during one of the 

mixing operation. After 150 d, the HC and LR compost mass was weighed and 

sampled in triplicate for physico-chemical characterization. The characterization at 0 

and 150 d provided data to compute the loss in dry matter (DM), total carbon (TC), 

total Kjeldahl nitrogen (TKN), chemical oxygen demand (COD), and organic matter 

(OM) fractions, namely soluble OM, hemicellulose, cellulose and lignin. 

Furthermore, the final product at 150 d was analyzed for pathogens and parasites, 

trace elements and polycyclic aromatic hydrocarbon (PAH), to assess the compost 

quality and thus its suitability as soil amendment (Mato et al., 1994).  
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4.2.3 Analytical procedure 

The bulk density of the fresh compost samples was determined by filling three 

30 L pails without compaction, and weighing their content. The free air space (FAS) 

of the fresh compost samples was determined using an air pycnometer (Berthe et al., 

2007) where an airtight cell is filled with compost and then pressurized while 

measuring the volume of injected air. At equilibrium pressure, the injected air 

provides an estimate of the free air space in the compost.  

 Before being analyzed, all triplicate compost samples were dried in an oven 

(SR 2000, Thermosi, France) at 80 °C
 
until a constant weight was reached and then 

grinded to less than 0.5 mm (ZM model 1000 grinder, Retsch, Germany). The TC was 

determined by burning 10 mg samples at 900 °C (Thermo Scientific, FLASH 2000 

Series, Organic Elemental Analyser, Courtaboeuf, France) according to AFNOR 

(2001a). According to AFNOR (1995), TKN was determined using an automatic 

distilling system (VAP 50c, Gehardt automatic distilator, Gehardt, Germany), after 

digesting 0.5 to 1.0 g samples with H2SO4 (automated Kjeldatherm TZ block digester, 

Gerhardt, Germany). The COD was determined by titration (Metrohm, Courtaboeuf, 

France) after digesting 60 mg samples with H2SO4 and K2Cr2O7 (Kjeldatherm COD 

digestion block, CSB 20M, Gerhardt, Germany), according to AFNOR (2001b). The 

OM was determined by burning at 550 °C for 3 hours (Thermolyne 30400, Furnace, 

F30420 C-33, Essex, UK), according to AFNOR (1985). To correct all analytical 

results, residual moisture was determined by drying grinded compost samples at 105 

ºC for 24 hours (SR 1000, Thermosi, France). The pH of wet samples was determined 

by soaking for 24 hours without shaking at 5ºC, in just enough distilled water to use a 

pH electrode (pH-Electode SenTix41, WTW, Weilhein, Germany) according to 

Adhikari et al. (2009). The soluble OM, hemicellulose, cellulose and lignin fractions 



 

 

 81 

were determined using a fibre extractor (VELP Scientific, FIWE 6 Extractor for raw 

fibre determination, Usmate, Italy) according to Van Soest (1963).  

Escherichia Coli and Fecal Streptococci were quantified using microfiltration 

(AFNOR, 2001c). The presence of Salmonella in 25 g wet samples was verified using 

Petri plates with XLD agar (AFNOR, 2006). The presence of helminthe eggs in 1.5 g 

of wet sample was determined using the triple flotation technique (AFNOR, 2004). 

The trace elements were quantified by ICP-MS (Inductively Coupled Plasma Mass 

Spectroscopy) after digestion with nitric acid, and the PAH were analysed by 

chromatography and fluorimetric detection after extraction with hexane/acetone 

(AFNOR, 2000) respectively.  

 According to a simple method developed by Rosenfeld et al. (2007), compost 

odour characteristics were subjectively evaluated using 10 panellists trained to 

recognize the following smells: earthy/humus (EH), mushroom (MR), citrus fruit 

(CF), grassy/hay (GH), soft fermentation (SF), fishy (F), dead animal (DA), mouldy 

(MD), rotten vegetable (RV), rotten eggs (RE), sewage (SE) and woody (WD). Odour 

evaluations were conducted every two weeks for the first month and monthly 

thereafter. Panellists took a three minute break between each HC evaluation, and 

described the odour using as many smell types as required. Each smell type associated 

with a HC at a given time was expressed in terms of the percentage of reporting 

panellists.  

4.2.4 Statistical procedure 

Consisting of the four HC and the LR, the treatments were tested with same 

initial compost mixture, fed all at once on the same day. The statistical significance of 

the treatment (HC type and LR as control) effect on the compost characteristics during 

150 d was tested over time with triplicate samples for each HC and the LR. 
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Accordingly, the physico-chemical characteristics were compared by the repeated 

measure ANOVA using PROC GLM procedure at 95 % confidence level (SAS 

Institute Inc., 2008)  

 

4.3 Results and discussion 

4.3.1 Initial physico-chemical characteristics of the experimental materials 

The FW and YT composition is described in Table 4.1. On a wet mass basis, 

vegetable residues formed the largest fraction of FW at 49 %, followed by roots and 

tuber, fruit and cooked food residues ranging between 15 and 18 %. The various 

fractions of FW had a similar DM ranging from 20 to 29 % and averaging 25 %. On a 

wet mass basis, the YT consisted of 89.9% grass clippings at 58 % dry matter (DM) 

and 10.1 % tree leaves at a 64 % DM.  

 The physico-chemical characteristics of the initial compost mixture loaded 

into each HC and the LR are presented in Table 4.2. The compost mixture consisted 

of FW and YT at a wet volumetric ratio of 1:1 with a DM of 23 to 24% (±1.2 %), a 

C/N ratio of 17, a pH of 6.1 (±0.17), and an OM of 75 to 77 % (dm basis). The 

properties of the initial compost mixture respected those recommended for an active 

aerobic microbial activity, namely a C/N ratio in the range of 15 to 35 (Stabnikova et 

al., 2005; Haug 1993; Zucconi et al., 1986), a pH between 6 and 8 (Haug 1993) and a 

DM of 20 to 40 % (Haug 1993, Adhikari et al., 2009). The fresh compost offered 

FAS of 66 % which according to Eftoda and McCartney (2004) respects the 

minimum of 30 % required for good aeration. The OM fractions consisted of 51 % 

soluble OM, 23 % hemicellulose, 17 % cellulose and 8.5 % lignin, for a chemical 

oxygen demand (COD) of 1120 g O2 /kg
 
dm.  
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4.3.2 Temperature regime 

Temperature is considered to be an excellent indicator of aerobic microbial 

activity (Diaz et al., 1993). The temperature regime developed by all HC and the LR 

composts during the initial 70 d of testing is presented in Figure 4.2. Quickly 

developing thermophilic temperatures, the P, GP and RD composts reached 55 ºC 

within 3 days, while that of W and LR reached 55 ºC later, on day 6 and 9, 

respectively. Thermophilic temperatures above 55 ºC were maintained during 6, 5, 4 

and 2 days for GP, P/W, RD and LR, respectively. The P, W, and GP composts were 

exposed to 60 °C temperatures for over 3 days while that of RD and LR peaked at 58 

°C. The composts of all HC were fully reacted by day 21, at which time their 

temperatures had dropped to near ambient. The LR compost temperature of 25 ºC as 

of day 18 corresponded to the ambient laboratory temperature. 

 The difference in temperature regime among all HC and LR composts resulted 

from their different aeration modes, where the HC were exposed to natural convection 

while the LR was force aerated. When aerating compost, Barrington et al. (2002) 

demonstrated that convective (passive) aeration is better able to provide an aeration 

rate corresponding to the requirements of the microbial activity, as opposed to forced 

aeration without a control algorithm. Under uncontrolled forced aeration, ventilation 

rates often either exceed or do not meet the microbial requirements resulting in a 

temperature drop below thermophilic levels. Under convective forces, the microbial 

community creates its own aeration rate based on the heat generated from its level of 

activity. Nevertheless, convective aeration requires proper air flow conditions with 

bottom and top air access. Large compost masses require floor ducts to enhance 

convection as opposed to HC where wall perforations can suffice.  
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The temperature regime developed by each HC reflected their ability to 

generate convective aeration forces. The GP was free of obstacles and provided the 

best temperature regime along with that of P with perforations concentrated at its 

bottom and top. In contrast, W did not perform as well, with aeration slots distributed 

over it full height. Initially providing sufficient aeration to quickly reach thermophilic 

temperatures above 55 °C, RD suffered from the later clogging of its aeration ports 

also preventing moisture evacuation. Accordingly, its compost remained wet, 

developing thermophilic temperatures of 58 °C for a short while, and generating 

malodours, as will be seen later. 

The temperature distribution was similar within the compost mass for all HC 

with the highest values recorded in the centre. For all HC, the compost surface 

temperature was close to ambient indicating the need for mixing to achieve a more 

uniform stabilization process.    

 To sanitize the compost from parasites, pathogens and viruses, at least 3 days 

of 60 °C and 55 °C are required (Chroni et al., 2009) in Europe and Canada, 

respectively (Hogg et al., 2002). In this experiment, the P, GP and W composts 

respected both the European and Canadian norms, while that of RD respected the 

Canadian norms only. The LR compost respected neither norm achieving 

temperatures between 55 and 60 °C only for 2 days.  

4.3.3 Compost characteristic evolution 

Figure 4.3 illustrates the evolution of the physico-chemical characteristics of 

all compost during 150 d of composting. When comparing the final characteristics 

among treatments, namely the four HC and the LR, only the RD compost DM, TKN 

and pH and the LR compost TKN were significantly different (p <0.05). Thus, Figure 
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5.3 groups the results of all treatments except for DM, TKN and pH associated with 

RD and TKN associated with LR.   

After 150 days of composting, all composts demonstrated the same final TC 

and OM of 26 % (±1) and 49 % (±2), respectively, resulting in a final COD of 705 g 

O2 (kg dm)
-1

 (±28), with the highest rate of change occurring during the first 15 days. 

The compost DM differed only for that of RD (p<0.01) remaining at 23 %, as 

compared to all other treatments at 80 % (±4). The RD compost maintained a low DM 

because of aeration port clogging resulting in moisture accumulation as observed 

during mixing operations. This also resulted in a shorter thermophilic composting 

period.  

The compost TKN showed little evolution over the 150 day composting 

period, (Figure 4.3b), with that of LR showing a significantly higher final level of 

26.6 (±0.46) g (kg dm)
-1

 and that of RD showing a significantly lower levels of 19.9 

(±0.26) g (kg dm)
-1

 (p<0.01). A final pH ranging between 8 and 9 was reached by all 

treatments, except for that of the RD which remained lower between 7 and 8 

especially from day 15 to 90, because of its wet compost. Nevertheless, a pH ranging 

from 7 to 8.5 exerts no negative effect on the microbial degradation process, even 

during the early stages of composting (Nakasaki et al., 1993).  

Figure 4.4 presents the evolution of the different organic fractions during the 

150 d composting period. The soluble, hemicellulose and cellulose fractions dropped 

to 43.6% (±3.4), 11% (±2.3) and 13.5% (±3.4) from an initial concentration of 51% 

(±0.3), 22.9% (±0.3) and 17.5% ((±0.1), respectively. In parallel with TC and OM, the 

soluble fraction was degraded at a fast rate during the initial 15 days, but still 

remained high at 43.6 % after 150 days of composting. Following the degradation of 

easily available soluble OM after 15 days, hemicelluloses decomposition dominated 
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for the following 135 days, reaching a low of 11 %. The cellulose concentration 

dropped at a constant rate during the entire composting period, whereas the lignin 

concentration increased as the other fractions disappeared. Simple carbon compounds 

such as soluble sugars and organic acids are easily metabolized by the compost 

microbial population whereas natural long chain polymers such as lignin remain being 

harder to breakdown (Epstein, 1997; de Bertoldi et al., 1983). 

Table 4.3 presents the substrate losses for all five treatments after 150 d. 

Although compost composition was similar among all five treatments, higher losses 

were observed for the RD treatment, except for COD. The RD compost had a dry 

mass loss of 63 % whereas the other HC and the LR suffered a loss of 52 to 59 %. In 

terms of moisture, RD lost only 62 %, compared to 93 to 98 % with the other 

treatments. The RD losses of TC, TKN and OM at 77, 68 and 77 %, exceeded those of 

the other treatments ranging from 70 to 72 %, 52 to 53 % and 70 to 73 %, 

respectively. To explain the difference in OM losses, RD lost more soluble and lignin 

fractions at 80 and 20 %, compared to 72 to 75 %, and 9 to 11 %, respectively, for the 

other treatments. Under limited aeration reflected by the achievement of shorter 

thermophilic temperatures, the higher MC of the RD compost enhanced the loss of 

TC, OM and TKN as compared to the other treatments.  

4.3.4 Compost odour emission 

Figures 4.5a to f illustrate the odour characteristics of each HR and the LR 

composts during the 150 d treatment. The objectionable odours were defined as MD 

(mouldy), RV (rotten vegetables) and RE (rotten eggs), and are grouped to the right of 

the vertical dotted line in Figure 4.5 a to f. After 15 d of composting, the GP compost 

offered the least odour, followed by that of W and P offering limited odour levels and 

that of RD and LR offering objectionable odours. Accordingly, the GP compost 
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offered no odour as reported by 80 % of the panellists, while 20 % characterized its 

odour as grass/hay. For that of W, 10 % of the panellists reported no odour, while 60 

% reported an earthy odour and 20 % reported a grass/hay odour. For that of P, its 

odour was mostly characterized as grass/hay by 50 % of the panellists, mouldy by 20 

%, and earthy and mushroom each by 10 % of the panellists. The RD and LR 

composts offered the most odours, with that of RD reported as mostly a grass/hay 

odour by 60 % of the panellists, mouldy by 20%, and rotten vegetables and eggs by 

10%. The LR compost offered a grass/hay odour reported by 70 % of the panellists, 

mouldy by 20%, and rotten vegetable by 10 % of the panellists.  

For the rest of the composting period, only the RD compost produced 

objectionable odours with 20, 20, 50 and 10 % of the panellists reporting an odour of 

mushroom, soft fermentation, mouldy and rotten eggs respectively (Figure 4.5f). The 

stronger odour associated with the RD likely resulted from the low DM of its compost 

encouraging anaerobic conditions and the production of smelly reduced gases. After 

150 days of composting, the LR, GP, and P compost had no odour, as reported by 90 

% of the panellists, while 40 and 60 % reported either earthy/humus or no odour 

respectively for the W compost.  

4.3.5 Pathogens/parasites and trace element levels 

Table 4.4 presents the level of pathogens and parasites found in all composts. 

Despite variations in Escherichia coli and Streptococcus faecalis counts, all compost 

respected regulations imposed by France. The presence of Streptococcus faecalis 

resulted from the YT obtained from a lawn where manure was spread. The low P 

compost level likely resulted from the high thermophilic temperatures sustained over 

5 days, combined with less compost surface exposed to ambient temperatures. The 

high levels observed in the LR compost resulted from the poor thermophilic 
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conditions achieved. Salmonella and Helminthes were absent in all compost likely 

because of their absence in the original materials, especially considering that the LR 

compost was not exposed to stabilizing thermophilic temperatures. 

Since the initial compost mixtures were derived from the same 

source, polycyclic aromatic hydrocarbons (PAH) and trace elements were analysed 

only for the W compost. In Table 4.5, all PAH levels respect regulations for mixed 

MSW compost in Canada and Europe, as a result of its proper source separation. 

Also, trace elements (Table 4.6) respected the various regulations found in the US, 

Canada and Europe, because of the low level of pesticides applied on the grounds 

providing the YT.  

 

4.4 Conclusion and recommendations 

Before home composting systems (HC) can be advocated as a safe 

management practice to recycle the organic waste (OW) fraction of the Municipal 

Solid Waste stream (MSW), its best practices must be defined. Accordingly, the 

objective of this project was to compare the performance of four common HC against 

that of a laboratory composter (LR). The common HC studied were the Plastic (P) and 

Wood (W) Bins, the Rotary Drum (RD) and the Ground Pile (GP). To equally 

compare all five systems, the same compost was fed all at once and observed for 150 

d.  

All four HC produced thermophilic temperatures with P, W and GP achieving 

60 ºC during at least 3 d, and RD and LR achieving 55 ºC for 4 and 2 d, respectively. 

The difference in temperature regime between all four HC was attributed to the extent 

of convective aeration, with GP offering no air movement obstacles and P offering top 

and bottom perforation favouring convection. With opening distributed uniformly 
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over its height, W offered less effective convective aeration. The aeration ports of the 

RD became clogged, resulting in poor aeration and a short thermophilic period.  

Despite differences in aeration, all five treatments produced similar final 

composts except for RD producing a wetter product because of poorer aeration. In 

terms of substrate losses, and because of higher its lower DM as compared to the 

other treatments, the RD compost lost more TC, OM and TKN and offered more 

offensive odours after 150 d. Despite differences in levels of Streptococcus faecalis 

explained by the extent of thermophilic temperatures, all four HC and the LR 

produced compost respecting regulations in terms of pathogens and parasites. 

Produced from the same clean waste, all composts offered aromatic hydrocarbons and 

trace element levels respecting European and North American regulations.  

Comparing HC, GP and P performed best, quickly producing thermophilic 

temperatures lasting long enough to sanitize the compost. The W was slower in 

developing thermophilic temperatures but sustained them as long as P. The RD 

provided poor aeration as a result of its aeration ports becoming clogged, while the 

LR should have been aerated at a higher rate. The higher performance of GP and P 

was attributed to better convective aeration conditions, resulting respectively, from 

the absence of obstacles and perforations concentrated at the bin top and bottom. The 

higher performance of GP and P will be confirmed by a second experiment comparing 

the effect of HC management practices (Adhikari et al., 2011).  

 

4.5 Acknowledgements 

This study is part of a larger project entitled ECCOVAL, conducted in partnership 

with Rennes Métropole, CRPCC LAUREPS and CIELE, and funded by the regional 

council of Brittany, France. The authors also acknowledge the financial and logistics 



 

 

 90 

support by the Cemagref of Rennes, France and the Natural Science and Engineering 

Research Council of Canada.  

 

4.6 Abbreviations 

C - cellulose 

CF – citrus fruit 

CFU – colony forming unit 

COD – chemical oxygen demand 

DA – dead animal 

DM - dry matter 

dm – dry mass 

EH – earthy/humus 

F – fishy 

FAS – free air space 

FW – food waste 

GH – grassy/hay 

GP – ground pile 
H - hemillulose 

HC – home composting systems 
L – lignin 

LR – laboratory reactor 

MD – mouldy 

MR – mushroom 

MSW – municipal solid waste 

OM – organic matter 

OW – organic waste 

P – slatted plastic bin  

PAH – polycyclic aromatic hydrocarbons 

PCB – polychlorinated biphenyls 

RD – metallic rotary drum 

RE – rotten eggs 

RV – rotten vegetable 

SE – sewage 

SF – soft fermentation 

TC – total carbon 

TKN – total Kjeldhal nitrogen 

W – slatted wood bin  

WD – woody 

YT – yard trimmings 
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Table 4.1 Composition of experimental organic waste 

Organic waste description DM 

(%) 

Compost mass content 

Primary Secondary Dry (%) Wet (%) 

Food waste 

 

Fruits  Apple 15.7 3.6 3.6 

 Passion fruit 12.8 0.7 0.9 

 Avocado peel 25.9 1.8 1.1 

 Avocado seed 50.8 1.1 0.3 

 Banana 18.9 2.3 1.9 

 Date fruit 68.1 6.7 1.5 

 Mango  19.3 1.0 0.8 

 Citrus fruits 18.3 6.3 5.3 

 Pineapple  15.4 0.7 0.7 

 Average/Sub-total 27.2 24.2 16.1 

 

Roots and 

tubers   Onion/garlic leaves 13.5 0.8 1.0 

 Onion/garlic flesh 19.1 4.7 3.8 

 Carrot/peel 11.9 9.0 11.7 

 Radish 34.9 4.9 2.2 

 Average/Sub-total 19.8 19.4 18.7 

 

Cooked food Rice and bread 25.7 3.9 2.3 

 Carrot and cabbage 16.0 7.1 6.8 

 Potato 17.3 5.5 5.0 

 Spaghetti 33.3 2.0 0.9 

 Egg white 36.0 0.3 0.1 

 Peas and beans 39.0 0.2 0.1 

 Egg shells 66.3 3.5 0.7 

 Average/Sub-total 27.9 24.2 14.4 

 

Vegetable Celery 10.1 8.3 11.9 

 

Green leafy 

vegetables 10.8 4.5 6.6 

 Cauliflower/cabbage 10.5 20.0 29.6 

 Pumpkin 17.1 1.2 1.1 

 Peas and beans 39.0 0.2 0.1 

 Average/Sub-total 23 34.2 49.4 

     

Overall 

average 

 

25 100 100 

 

Yard 

trimmings 

 

   

 Grass clippings 58.0 89.0 89.9 

 Tree leaves 63.7 11.0 10.1 

 Average/Total 61 100 100 

Note: DM – dry matter 
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Table 4.2 Initial experimental compost characteristics 

Characteristic  Treatment 

Primary Secondary  Wood bin 

(W) 

Plastic bin 

(P) 

Ground Pile 

(GP) 

Rotary Drum 

(RD) 

Laboratory 

Reactor (LR) 

FW:YT Dry mass  0.94:1 0.93:1 0.96:1 1:1 1:1 

 Wet mass  3.67:1 3.63:1 3.77:1 3.95:1 3.87:1 

 Wet volume  1:1 1:1 1:1 1:1 1:1 

Physical Mass – wet (kg) 

          - dry (kg) 

 72.2 

17.1 

75.5 

17.9 

75.0 

17.6 

75.2 

16.8 

67.2 

15.5 

 Volume (L)  320 320 320 320 250 

 Bulk density (wet kg(m
-3

))  230 240 240 230 280 

 Dry matter (%)  24.1 (1.2) 24.1 (1.2) 23.7 (1.2) 23.3(1.2) 23.3 (1.2) 

 Free air space (%)  66 66 66 66 66 

Chemical pH  6.1 (0.17) 6.1 (0.17) 6.1 (0.17) 6.1 (0.17) 6.1 (0.17) 

 Total carbon (g (kg dm
-1

))  392 (0.7) 392 (0.7) 393 (0.7) 395 (0.7) 395 (0.7) 

 Total Kjeldahl nitrogen  

(g (kg dm)
-1

) 

 

23 (0.2) 23 (0.2) 23 0.2) 23 (0.2) 23 (0.2) 

 Chemical oxygen demand  

(gO2 (kg dm)
-1

) 

 

1117 (24) 1115 (24) 1113 (24) 1115(23.8) 1139 (24) 

 Carbon:nitrogen (C/N)   17 17 17 17 17 

Organic 

fraction Organic matter (% dm) 

 

75 (0.2) 75 (0.2) 75 (0.2) 75 (0.2) 77 (0.2) 

 Soluble fraction (%)  50.7 50.7 51.1 51.5 51.2 

 Hemicellulose (%)  23.1 23.1 23.0 22.9 22.4 

 Cellulose (%)  17.6 17.6 17.5 17.4 17.5 

 Lignin (%)  8.6 8.6 8.4 8.3 8.9 
Note: the value in parenthesis is the standard deviation. 
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Table 4.3 Compost substrate losses after 150 days  

Characteristic  Treatment 

Primary Secondary Wood bin 

 

(W) 

Plastic bin 

 

(P) 

Ground 

Pile  

(GP) 

Rotary 

Drum  

(RD) 

Laboratory 

Reactor 

(LR) 

Physical Mass loss 

- % (wet) 

 

87 83 87 62 89  

 - % (dry)  56 52 55 63 59 

 Volume loss 

- % (wet) 

 

88 88 89 89 89 

Chemical  Moisture loss 

- (kg(kg dm)
-1

) 

 

3.12 2.99 3.18 2.06 3.26 

 - %  97 93 98 62 98 

 COD loss       

 - (gO2 (kg dm)
-1

)
 
  805 797 802 845 839 

 - %   72 72 72 76 74 

 Total carbon loss       

 - (kg (kg dm)
-1

)  0.28 0.27 0.28 0.30 0.29 

 - %   70 70 71 77 72 

 TKN loss       

 - (g ((kg dm)
-1

)  12.3 12.0 12.0 15.7 12.3 

 - %   53 52 52 68 53 

 Organic mass 

loss 

 

     

 - (kg (kg dm)
-1

)  0.53 0.53 0.53 0.58 0.56 

 - %   71 70 70 77 73 

Organics Soluble loss  

- %  

 

76 74 72 80 75 

 - (kg (kg OM)
-1

)  0.39 0.37 0.37 0.41 0.38 

 Hemicellulose  

loss 

 

     

 - (kg (kg OM)
-1

)  0.21 0.19 0.19 0.20 0.20 

 - %  90 83 83 88 89 

 Cellulose loss       

 - (kg (kg OM)
-1

)  0.13 0.15 0.15 0.14 0.13 

 - %   72 83 84 80 77 

 Lignin loss       

 - (kg (kg OM)
-1

)  0.01 0.01 0.01 0.02 0.01 

 - %   9 10 11 20 10 

Note: dm – dry mass; OM – organic matter; CO – chemical oxygen demand; TKN – total Kjeldhal 

nitrogen.  
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Table 4.4  Pathogens and parasites levels after 150 days of composting 

Organism Organism level Standard for 

France
a
 Wood 

bin 

(W) 

Plastic 

bin 

(P) 

Ground 

Pile 

(GP) 

Rotary 

Drum 

(RD) 

Laboratory 

Reactor 

(LR) 

Escherichia coli  

(CFU(g)
-1

) 600 <400 <10 70 <10 <1000 

Salmonella  

(count (25 g)
-1

) ab ab ab ab ab Ab 

Streptococcus faecalis 

(CFU (g )
-1

) 3800 <400 2500 2600 86000 - 

Helminthes eggs 

(count (1.5 g)
-1

 ) ab ab ab ab ab Ab 

Note : ab- absent based on standard test procedure. a
AFNOR (2006; 2002) 
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        Table 4.5  Polycyclic aromatic hydrocarbons (PAH) at 150 days for the Wood bin compost 

Compound Wood bin 

(W) 

Compost from MSW  Regulations 

 

Primary 

 

Secondary 

Canada
a
 European 

union
b
 

 France
c
 

PAH (µg (kg dm)
-1

) Naphthalene <73 - 41000 - 

 Methyl (2) 

fluoranthene 

 

<14 

 

- 

 

- 

 

- 

 Phenanthrene <14 1800 224-45900 - 

 Anthracene <14 - 2-6700 - 

 Fluoranthene <14 1800 79 4000 

 Pyrene <14 1400 100-9400 - 

 Benzo(a) anthracene <14 - 205 - 

 Chrysene <14 - 150-500 - 

 Benzo (3,4) (b) 

fluoranthene 

 

<14 

 

- 

 

67 

 

2500 

 Benzo (11,12) (k) 

fluoranthene 

 

<14 

 

- 

 

42 

 

- 

 Benzo (3,4) (a) pyrene <14 - 9-40 1500 

Note: MSW – municipal solid waste.  a
Groeneveld and Hébert (2003); 

b
Déportes et al. (1995); 

c
AFNOR (2006). 
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Table 4.6 Trace elements at 150 days for the Wood bin (W) compost 

Compost source Trace Elements 

(mg (kg dm)
-1

) 

Cd Cr Cu Ni Zn Hg Pb  Se As 

Experimental wood bin 0.3 1.6 31.1 5.9 179.3 <0.1 5.3 0.2 3.8 

 

Miscellaneous references          

USA mixed MSW
a
 2.9 34.8 154 24.8 503 1.27 215 - 2.6 

European source separated MSW
a
 1.1 29.4 57 19.9 281 0.9 112 - - 

India mixed MSW
b
 2.3 142 370 41 414 - 252 - - 

India source separated MSW
b
 0.8 53 81 21 153 - 41 - - 

Spain home
c
 0.3 9 44 9 156 - 28 - - 

Spain source separated centralized 

facility
c
 0.24 8 47 9 150 - 32 - - 

France MSW
d
 7 270 250 190 1000 4 600 - - 

Canada MSW
d
 2 11 270 - 610 1 14 1 2 

 

Trace element limits          

USA biosolids
e
 39 1200 1500 420 2800 17 300 - - 

European Union range
e
 0.7 - 70 - 70 - 20 - 210 - 0.7 - 70 -   

 10 200 600 200 4000 10 1000 - - 

Canada
f
 

- category A 

- category B 

3 

20 

 

210 

- 

400 

- 

62 

180 

700 

1850 

0.8 

5 

150 

500 

2 

14 

13 

75 

France
g 

3 120 300 60 600 2 180 12 18 

European Commission - organic 

growing medium
h
 1 100 100 50 300 1 100 1.5 10 

Note: a
Epstein et al. (1992); 

b
Saha et al. (2010); 

c
Martínez-Blanco et al. (2010); 

d
Iwegbue et al. (2007);

       e
Brinton (2000); 

f
CCME (2005); 

g
AFNOR (2006); 

h
EC (2006). 
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(a) (b) (c) 

Figure 4.1 Home composting systems tested for their performance: (a) Rotary 

Drum (RD), (b) Wood bin (W), (c) Plastic bin (P), (d) Ground Pile (GP), and (e) 

Laboratory Reactor (LR). 

(d) (e) 
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Figure 4.2 Temperature regime of the four home composting systems (HC) and 

the laboratory reactors, compared to daily ambient temperatures.  
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Figure 4.3 Evolution of the compost characteristics for the home composting systems (HC) 

and laboratory reactor: (a) TC, OM, DM, COD, and (b) TKN, pH.  

COD – chemical oxygen demand, TC – total carbon, TKN – total Kjeldahl nitrogen, DM – 

dry matter, OM – organic matter, dm – dry mass, W- Wood bin, P – Plastic bin, GP – 

Ground Pile, RD – Rotary Drum, and LR – Laboratory Reactor.  
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Figure 4.4 Evolution of the organic fractions for all treatments during 150 d of 

composting.  
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Figure 4.5 Compost odour characteristics for the home composting systems and the laboratory 

composter assessed by directly smelling: (a) 15 days, (b) 30 days, (c) 2 months, (d) 3 months, (e) 

4 months, and (f) 5 months.  W- Wood bin, P – Plastic bin, GP – Ground Pile, RD – Rotary 

Drum, and LR – Laboratory Reactor. No – no odour, EH-earthy/humus, MR-mushroom, CF-

citrus fruits, GH-grassy/hay, SF-soft fermentations, F-fish, DA-dead animals, MD-mouldy, RV-

rotten vegetable, RE-rotten eggs, SE-sewage.  
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Connecting statement to chapter 5 

 

 

The chapter 4 demonstrated the effect of composter design type on the 

composting process and quality of composted product. However, the effect of 

management practices of home composting systems (HC) on composting process and 

quality of finished product is another important aspect of HC. Therefore, chapter 5 

studied the effect of management practices of HC on the composting process and 

quality of finished product. 

 

 

Chapter 5 is drawn from a manuscript submitted for publication to the journal 

of “International Journal of Environmental Technology and Management (IJETM)” 

by the author of the thesis and co-authored by supervisors, Dr. Anne Trémier, 

Cemagef, Rennes, France, Prof. Dr. Suzelle Barrington, Department of Bioresource 

Engineering, McGill University, Montreal, Canada and Dr. José Martinez, regional 

director, Cemagef, Rennes, France. The format has been changed to be consistent 

within this thesis. 
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Chapter 5 

Home composting of organic waste: effect of management practices 

Abstract 

Home composting systems (HC) can potentially produce high quality compost 

if properly managed, while eliminating collection, transportation and treatment 

operations at the municipal level. To further investigated safe practices following the 

performance evaluating of four common types of HC, this second experiment looks at 

the influence of three general management practices (with/without bulking agent, 

batch/weekly feeding, with/without regular mixing). The four common HC used were 

the Plastic (P) and Wood (W) bins, the Rotary Drum (RD) and the Ground Pile (GP). 

The compost formula consisted of equal wet volumes of food waste (FW) and yard 

trimmings (YT), and when used, also equal wet volume of wood chips as bulking 

agent (BA). The compost temperature regime was continuously monitored during 70 

days while the evolution of the compost characteristics was measured biweekly during 

150 days. Thermophilic temperatures were obtained only for the batch fed HC, while 

for the weekly fed, temperatures remained mesophilic. Mixing the HC compost 

improved the duration of thermophilic temperatures for W with limited convective 

aeration, but reduced the duration for P with good convective aeration and had no 

impact on GP benefiting from both convective and diffused aeration. Tested only with 

W and RD, BA addition reduced the length of thermophilic temperatures, by 

increasing the compost dry matter from 20 to 40 %, lowering the pH from 6.1-7.7 to 

5.7, and diluting the biodegradable organic matter. Overall, FW and YT compost 

without BA and batch fed in P and GP, produced the best compost, with the lowest 

level of parasites and pathogens and the least odours. Weekly mixing only helped 

reduce objectionable odours.   

Keywords: Organic waste, onsite treatment, management practices, compost, quality 
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5.1 Introduction 

Being most active biologically, the organic fraction of the municipal solid 

waste stream is a growing concern for municipalities (Domingo and Nadal, 2009; 

Montejo et al., 2010). Accordingly, recycling this organic fraction through diversion 

and treatment has become a priority in Europe and North America (Wagner and 

Arnold, 2008; Burnley et al., 2007), with composting being recognized as the most 

practical and feasible method (Kim and Kim, 2010).  

Home composting systems (HC) are recognized as a possible onsite treatment 

capable of reducing collection, transportation and processing costs for municipalities. 

Nevertheless, limited scientific studies pertain to the influence of their management 

practices on the quality and safety of the finished product (Körner et al., 2008; 

Papadopoulos et al., 2009; Chiemchaisri et al., 2010). In West London, Smith and 

Jasmin (2009) studied the effectiveness of 290 L home composters in reaching 

thermophilic temperatures when fed kitchen waste, paper and yard trimmings (YT). 

The organic waste in these HC remained mostly at psychrophilic (0-20
0
C) and 

mesophilic (20-45 °C) temperatures except for a few cases reaching the thermophilic 

range during summer months as a result of a large input of waste. Nevertheless, the 

compost obtained was of good quality. In Thailand, Karnchanawong and Suriyanon 

(2011) evaluated the performance of six different polyethylene composting bins with 

a 200L capacity, batch fed with food waste (FW) and YT. The study concluded that 

improved temperature regimes where obtained with bins aerated through lateral 

perforations located mainly at their top and bottom, enhancing convective air 

displacement.  In the laboratory, Adhikari et al. (2011) compared the performance of 

four different types of common HC to also conclude that the temperature regime is 

highly influenced by the design and location of the bin perforations.  
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To pursue the performance study of HC and the quality of compost produced 

(Adhikari et al., 2011), this project investigated the impact of management practices 

on compost temperature regime and final characteristics. The three general 

management practices studied were: with/without bulking agent (BA), batch/weekly 

feeding, and with/without regular mixing. The four common HC used to test the 

management combinations were the Plastic (P) and Wood (W) bins, the Rotary Drum 

(RD) and the Ground Pile (GP). 

 

5.2 Material and methods 

5.2.1 Experimental composters, management practices and organic waste 

In this study, four common HC were used to test the various management 

practice combinations (Figure 5.1): the 400L Wood bin (W) measuring 0.78 m x 0.65 

m by 0.75 m in height; the 400 L Plastic bin (P) measuring 0.70 m x 0.70 m by 0.80 

m in height; the 350 L Rotary Drum (RD) offering an internal diameter of 0.77 m and 

a length of 0.76 m, and; the Ground Pile (GP) measuring 0.65 m high and 0.75 m in 

base diameter. The management practices tested were: batch or weekly fed; with and 

without bulking agent (BA) and; with or without mixing. The components of the 

experimental food waste (FW) are presented in Table 5.1. The management practice 

combination arbitrarily tested in each HC is presented in Table 5.2 with their 

respective identification, starting with a letter pertaining to HC type followed by a 

number pertaining to the management practice combination.  

The compost mixture consisted of equal wet volumes of food waste (FW) and 

yard trimmings (YT), and when used, equal wet volume of BA. Three day old, source 

separated FW was collected from two restaurants of the city of Rennes, France and 

stored at 4ºC until used. During the 10 week feeding period (70 d), fresh FW was 

collected from the two restaurants and accordingly, the composition of the FW varied 
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among treatments, but remained mostly composed of fruit and vegetable residues. 

The yard trimmings (YT) were obtained from the ground of the Cemagref Research 

Institute of Rennes, France. When used, the bulking agent (BA) consisted of 

purchased pine chips measuring, 5 to 20 mm in width by 30 to 90 mm in length. 

While being collected, samples of FW were manually sorted to establish their 

composition. Triplicate samples of FW and YT were also collected for physico-

chemical characterization.  

5.2.2 Experimental procedure 

At the Cemagref Research Centre, Rennes, France, all experimental HC were 

randomly set-up outside under a tent to avoid rainfall and sunshine. All HC were 

naturally aerated except for weekly mixing if the management practice combination 

called for such treatment. The compost mixture was manually mixed and loaded 

without compaction into the HC. All batch fed HC were loaded at once on the same 

day, while the weekly fed HC were loaded weekly for 10 weeks at a rate of 8.3 to 8.5 

kg (week)
-1

. While filling each HC, Thermochron iButton temperature sensors 

(DS1921G-F5, Thermochron iButton, Dallas Semiconductor, USA) were installed at 

the center of the compost mass. 

All HC were operated for 150 d, during which they were hand mixed weekly, 

unless otherwise required, and sampled in triplicate 100 g aliquots for 

characterization. Thus, all treatments requiring no mixing were analyzed only on day 

0 and 150. The odour characteristics of each HC were evaluated biweekly from day 0 

to 30, and then monthly thereafter, by having 10 trained panellist directly smell the 

compost surface before the mixing session. The temperature sensors were retrieved 

after 70 d of composting, during one of the mixing and sampling operation. After 150 

d, the content of all composters was weighed and sampled in triplicate for physico-
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chemical characterization. The evolution of the compost characteristics during the 

150 d period provided data to compute the loss in: dry matter (DM); total carbon 

(TC); total Kjeldahl nitrogen (TKN); chemical oxygen demand (COD), and; organic 

matter (OM) as well as its different fractions namely soluble, hemicellulose, cellulose 

and lignin. Furthermore, analyses were conducted on the final 150 d composts to 

quantify pathogens and parasites, trace elements and polycyclic aromatic hydrocarbon 

(PAH). These parameters assessed their quality, loss of carbon and nitrogen, and thus 

suitability as soil amendment (Mato et al., 1994).  

5.2.3 Analytical procedure 

The bulk density of the fresh compost samples was determined by filling three 

30 L pails without compaction, and weighing their content. The free air space (FAS) 

of the fresh compost samples was determined using an air pycnometer (Berthe et al., 

2007) where a compost sample is used to fill an airtight cell and then pressurized 

while measuring the volume of injected air. At equilibrium pressure, the injected air 

provides an estimate of the free air space in the compost.  

 The chemical analyses conducted on the compost mixture had to exclude the 

wood chips when present as BA because of their size, except for dry matter and pH. 

Before being analyzed, triplicate compost samples were dried in an oven (SR 2000, 

Thermosi, France) at 80 °C
 
until a constant weight was reached and then grinded to 

less than 0.5 mm (ZM model 1000 grinder, Retsch, Germany). The TC was 

determined by burning 10 mg samples at 900 °C (Thermo Scientific, FLASH 2000 

Series, Organic Elemental Analyser, Courtaboeuf, France) according to AFNOR 

(2001a). According to AFNOR (1995), TKN was determined using an automatic 

distilling system (VAP 50c, Gehardt automatic distilator, Gehardt, Germany), after 

digesting 0.5 to 1.0 g samples with H2SO4 (automated Kjeldatherm TZ block digester, 
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Gerhardt, Germany). The COD was determined by titration (Metrohm, Courtaboeuf, 

France) after digestion of 60 mg samples with H2SO4 and K2Cr2O7 (Kjeldatherm COD 

digestion block, CSB 20M, Gerhardt, Germany), according to AFNOR (2001b). The 

OM was determined by burning at 550 °C for 3 hours (Thermolyne 30400, Furnace, 

F30420 C-33, Essex, UK), according to AFNOR (1985). To correct all analytical 

results, residual moisture was determined by drying grinded compost samples at 105 

ºC for 24 hours (SR 1000, Thermosi, France). The pH of wet samples was determined 

by soaking for 24 hours without shaking at 5ºC, in just enough distilled water to use a 

pH electrode (pH-Electode SenTix41, WTW, Weilhein, Germany) according to 

Adhikari et al. (2009).  

The soluble organic, hemicellulose, cellulose and lignin fractions were 

determined using a fibre extractor (VELP Scientific, FIWE 6, Usmate, Italy) 

according to Van Soest (1963). Because of the size of the wood chips used as BA, the 

compost samples used to determine the evolution of the organic matter fractions 

excluded the BA.  

The Escherichia Coli and Fecal Streptococci were quantified using 

microfiltration (AFNOR, 2001c). The presence of Salmonella in 25 g wet samples 

was determined using Petri plates with XLD agar (AFNOR, 2006). The presence of 

Helminthe eggs in 1.5 g of wet sample was determined by the triple flotation 

technique (AFNOR, 2004). Trace elements were quantified by ICP-MS (inductively 

coupled plasma mass spectroscopy) after digestion with nitric acid, and the PAH were 

analysed by chromatography and fluorimetric detection after extraction with 

hexane/acetone (AFNOR, 2000), respectively.  

 According to Rosenfeld et al. (2007), compost odour characteristics for each 

management practice combination were subjectively evaluated using 10 panellists 
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trained to recognize the following smells: no-odour (NO),  Earthy/humus (EH), 

woody (WD), mushroom (MR), citrus fruit (CF),  grassy/hay (GH), soft fermentation 

(SF), fishy (F), dead animal (DA), mouldy (MD), rotten vegetable (RV0), rotten eggs 

(RE), and sewage (SE). Odour evaluations were conducted every two weeks for the 

first month and monthly thereafter. Panellists took a three minute break between each 

HC evaluation, and described the odour using as many smell types as required. Each 

smell type associated with a composting management practice at a given time was 

expressed in terms of the percentage of reporting panellists.  

5.2.4 Statistical procedure 

During the 150 d experiment, the triplicate compost samples were regularly 

collected for characterization. Thus, evolution of the physico-chemical characteristic 

evolution was compared by the repeated measure ANOVA using the PROC GLM 

procedure at 95% confidence level (SAS Institute Inc., 2008).  

 

5.3 Results and discussion 

5.3.1 Initial physico-chemical characteristics of compost mixture 

Table 5.1 described the FW and YT used to feed the HC. For the batch fed HC 

and on a wet mass basis, FW consisted of 49.9 % vegetables, 16.1 % fruit, 18.0 % 

root and tuber and 16.0 % cooked food residues, respectively. For the weekly fed HC, 

the FW consisted of 43.0 % vegetable, 6.5 % fruit, 32.6 % roots and tuber, and 18.2 

cooked food residues. The YT was mainly composed of grass (90 % wet basis) but 

also contained tree leaves (10 % wet basis) with a respective dry matter (DM) of 58 

and 64 %. The composting formula consisted of equal wet volumes of FW and YT, or 

equal of equal wet volumes of FW, YT and BA when used. The weekly fed HC 

received organic waste at a rate of 8.3 to 8.5 kg (week)
-1

 during 10 consecutive weeks. 
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The variation in FW properties between the batch and weekly fed treatments resulted 

in a slight variation only in total carbon (TC) with batch fed HC at 38-40 % (dm) 

compared to weekly fed at 42 % (dm) (Table 5.2).  

  Table 5.2 described the initial compost characteristics where batch fed HC 

received 54 to 75 kg of organic waste on day 0. The weekly fed HC received organic 

waste at a rate of 8.3 to 8.5 kg (week)
-1

, for a total wet mass of 83 to 85 kg. For HC 

fed BA (W1, W3 and RD2), the compost mixture consisted of equal wet volume of 

FW, YT and BA, offering a dry matter (DM) of 41 to 42 % (±1.6 – 2.5 %), a C/N of 

65, and a FAS of 78 %. For HC fed no BA, (W4, RD1, P1, P3, GP2 and GP3), the 

compost mixture offered a dry matter of 22.6 to 24.1%, a C/N ratio of 17 to 17.4 and a 

FAS of 66%. As compared to a pH of 6.1 to 7.7 without BA, adding BA dropped the 

compost pH to 5.7. Adding BA also changed the OM fractions, dropping by half the 

soluble, hemicelluloses and cellulose fractions, while increasing the average lignin 

from 8 to 63 %. For an active microbial activity, initial compost mixtures should offer 

a C/N ratio ranging between 15 and 35 and a pH between 6 and 8, (Stabnikova et al., 

2005; Haug 1993; Zucconi and de Bertoldi, 1986), indicating that adding BA in this 

experiment may have a negative impact.  

5.3.2 Temperature regime 

Figures 5.2 a, b, c and d illustrate respectively, the temperature profile 

obtained for the W, P, RD and GP composts exposed to the various management 

practice combinations. For W, only the batch fed and weekly mixed composts 

produced temperatures exceeding 55 ºC, with W4 (without BA) reaching 64 ºC on day 

6 compared to W1 (with BA) reaching 58 ºC one day later, on day 7. For W with BA, 

batch fed but not mixed (W3), the compost temperature peaked at 52 ºC on day 10. 

Compost treatment W2 (weekly fed without BA) produced a peak temperature of 32 
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ºC on day 10, indicating that 8.3-8.5 kg (week)
-1

 of OW was not sufficient to produce 

thermophilic temperatures. Accordingly, and for the Wood bin (W), adding BA 

slowed down the microbial process while mixing activated the process. The 

perforation location for W could therefore be improved, a finding which reinforces the 

observations concluded by Adhikari et al. (2011).  

 The batch fed Plastic bin (P) compost reached thermophilic temperature above 

60 ºC on days 3 and 6 for the treatments without BA and not mixed (P1) and without 

BA and mixed (P2), respectively. As for the weekly fed treatment (P3), the compost 

temperature remained in the mesophilic range. For P, mixing retarded the microbial 

activity by releasing heat which reduced the convective aeration forces. Adhikari et al. 

(2011) demonstrated that P generated convective aeration forces equivalent to those of 

GP, because of the location of its perforations at its top and bottom.  

For the Rotary Drum (RD), both management practice combinations were 

batch fed and mixed, but without BA (RD1) and with BA (RD2). Although both 

treatments quickly reached peak temperature of 57 ºC after 3 days, they also quickly 

dropped to ambient on days 8 and 10, with BA (RD2) and without BA (RD1), 

respectively. Once more, BA had a negative impact on microbial activity. 

Nevertheless, RD produced thermophilic temperatures much faster than W, indicating 

its initial excellent capacity for aeration. The lack of sustained thermophilic 

temperatures resulted from the clogging of its aeration ports.  

 All Ground Pile (GP) composts were mixed without BA. On day 4, both batch 

fed treatments reached thermophilic temperatures of 69 and 67 ºC, for the mixed 

(GP3) and not mixed (GP1) treatments, respectively, indicating a slight positive effect 

for mixing. The weekly fed compost never developed temperatures exceeding 30 ºC. 
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 In summary, management practices had an effect on temperature regime. In 

terms of OW loading rate, batch feeding produced thermophilic temperatures 

exceeding 55 ºC for all HC except W3 (not mixed) reaching 52 °C, while weekly 

feeding at 8.3-85 kg (week)
-1

 produced at best mesophilic temperatures. Adding BA 

to the compost mixture both retarded and reduced the duration of thermophilic 

temperatures, because it lowered the pH from 6.1-7.7 to 5.7, increased the dry matter 

from 23 to 42 % and diluted the biodegradable OM fractions by 50%. Mixing the HC 

compost had a variable effect, being positive for W, practically neutral for GP and 

positive for P. This effect reflected the capacity of the HC type in generating 

convective aeration forces, where W with perforations distributed over its height, 

lacked convective aeration, GP relied on both diffusive and convective aeration and P 

generated good convective aeration with perforations located at its top and bottom. 

The present experiment also reinforces the findings of Adhikari et al. (2011) 

indicating that P and GP were better able to produce convective aeration as opposed 

to W.  

5.3.3 Evolution of compost characteristics  

The evolution of the compost characteristics (TC, DM, COD, OM and pH) are 

presented in Figures 5.3, 5.4, 5.5 and 5.6 for W, P, RD and GP, respectively. For W, 

the addition of BA had a significant impact (p<0.01) on DM, with the initial mixture 

with BA (W1 and W3) starting at 40% and finishing at 80%, as opposed to treatments 

without BA (W2 and W4) starting at 20% and finishing at 65 to 80%. Mixing had no 

impact on final compost DM, whether BA was used or not. Finally, weekly feeding 

produced a lower DM of 65 % after 150 days compared to batch feeding at 80 %. In 

terms of TC, OM and COD for the W compost, the management practice 

combinations had no significant effect (p<0.05). The addition of BA produced lower 
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pH compost, through the experimental period, whereas weekly feeding produced a dip 

in compost pH between days 15 to 60, indicating poor fermentation.  

 For the RD compost, BA addition produced a significantly drier initial and 

final mixture during the 150 day experimental period (p<0.01). The addition of BA 

also produced a higher TC, OM and COD compost as a result of its reduced microbial 

activity reflected by a shorter thermophilic period (p<0.01). The addition of BA had 

an impact on pH evolution during the full treatment period, increasing the pH from 

day 15 to 60 but dropping it thereafter.  

All management practice combinations applied to P excluded BA. In terms of 

DM, batch feeding produced a significantly (p<0.05) drier final product at 68 % rather 

than 45 % for weekly feeding. Mixing exerted no significant effect (p<0.01), in this 

case because of sufficient convective aeration. In terms of TC, OM, and COD, the 

weekly fed treatment produced compost consistently higher than batch fed, as a result 

of a slower microbial activity demonstrated by the temperature regime never reaching 

thermophilic conditions. No significant difference was observed in terms of COD, 

while the pH of the weekly fed treatment tended to remain lower from day 15 to 90.  

 The GP management practice combinations excluded the addition of BA. 

Weekly feeding produced wetter final compost with a DM of 60 % as opposed to 

batch feeding at 70 % when not mixed and at 85 % when mixed. Thus, mixing 

improved the final dry matter content of the compost. From day 15 to 90, mixing also 

significantly reduced the compost COD and OM, as opposed to not mixed (p<0.01), 

with final values at 150 days being the same. Thus mixing had a beneficial effect on 

microbial activity during the process, as also demonstrated by a slight difference in 

thermophilic temperatures. Weekly feeding produced compost with a lower pH from 

day 15 to 90, as opposed to batch feeding.  
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 As illustrated in Figure 5.7, management practices had no impact on the 

concentration of TKN and the relative fractions of OM, excluding the impact of BA 

which could not be analyzed because of its wood chip size. 

 The loss of water, dry matter, organic matter and TKN is summarized in Table 

5.3. Most management practices produced high loss of water equal to and exceeding 

2.7 kg (kg)
-1

 of initial dm, except for the BA mixtures loosing from 1.0 to 1.2 kg 

water/kg initial dm and the RD mixture without BA losing 2.1 kg water (kg initial 

dm)
-1

 as a result of aeration port clogging. Mixing improved water loss only for P and 

W, where despite its lower temperature regime, the weekly fed produced just as much 

water loss as batch fed when mixed. The loss of COD, TC, TKN and OM was 

especially low for the W compost with BA, batch fed but not mixed (W3), in parallel 

with the lower water loss, but not for the other treatment with BA (W1 and RD2) also 

loosing as little water. Accordingly, W3 suffered not only less aeration drying but also 

less microbial activity after the thermophilic phase. For the OM fractions, only W3 

suffered less losses especially for the cellulose and lignin fractions, illustrating once 

more, less microbial activity in the later part of the treatment period.  

 In conclusion, management combination practices and especially BA addition, 

and HC type especially W, had an impact on final compost composition and 

compound losses. Addition of BA produced drier initial and final compost which 

lowered the microbial activity. Mixing and batch feeding generally helped produce a 

drier final product. In terms of losses, water was most influenced by management 

combination practices and type of HC, with GP and P performing best under all 

management practices. The W3 compost, with BA, batch fed and not mixed was the 

only treatment producing a significantly different loss in dry mass, COD, TC and OM 

fraction, because of poor aeration and microbial activity during the maturation phase.  
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5.3.4 Odour effects 

Figure 5.8 illustrates the evolution in odour characteristics for all composts as 

influenced by HC type and management practice combination. The dotted vertical line 

separates the acceptable (left) from the objectionable (right) odours. Treatments 

weekly fed, not mixed or without BA tended to produce odours with a higher 

objectionable character. For example, on day 15, 80 and 60 % of the odour 

characteristics were objectionable for P1 (no BA, batch fed but not mixed) and P2 (no 

BA, weekly fed and mixed), but 0 % for P3 (no BA, batch fed and mixed). Still on 

day 30, 80 % objectionable odours were reported for P2 (no BA, weekly fed and 

mixed), 60 and 40 % for GP1 (no BA, batch fed and not mixed) and GP2 (no BA, 

weekly fed and not mixed), and 35 % for W2 (no BA, weekly fed and mixed). On day 

60, 80 % objectionable odours were still reported for P2 (no BA, weekly fed and 

mixed). In terms of BA impact, the RD1 compost started to produce objectionable 

odours on days 60 and 90 at 40 % while RD2 with BA only produced 20 % 

objectionable odours on day 90. On day 120, very little objectionable odours were 

reported for any of the compost, whereas on day 150, 60 % objectionable odours were 

now being reported for RD1. Accordingly, batch feeding, mixing and adding BA 

tended to prevent the generation of objectionable odours.  

5.3.5 Parasites/pathogens, PAH and trace elements 

Parasite and pathogen levels were analyzed for all treatments (Table 5.4). The 

W compost with BA showed E Coli levels exceeding the French Standard of 1000 

CFU (g)
-1

, because of poor microbial activity during the maturation phase, especially 

for W3 not mixed. Besides the W compost, thermophilic temperatures had no impact 

on E Coli counts, with weekly fed treatments showing acceptable levels under 1000 

CFU (g)
-1

 while remaining in the mesophilic temperature range. Salmonella and 
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helminthe eggs were absent from all compost likely because the original organic 

waste was clean. Not impacted by thermophilic temperature regimes, Streptococcus 

faecalis counts were especially high for the RD1 and RD2 (batch fed, mixed and 

without/with BA) and W3 (with BA, batch fed and not mixed), once more because of 

poorer microbial activity during the maturation phase. Analyzed for W only because 

all HC were fed with the same sources of OW, the PAH and trace elements respected 

French and North American standards because of the clean and well sorted organic 

waste used to make the compost mixtures (Table 5.5).  

 

 5.4 Conclusion and recommendations 

Whereas home composting systems (HC) can have a major impact on the 

collection, transportation and treatment cost for organic waste contained in the 

municipal solid waste stream, the quality of the compost produced has received 

limited scientific attention. Therefore, this study evaluated the impact of management 

practice combinations on compost quality using four common types of HC. The main 

management practices tested were: use of bulking agent (BA) besides yard trimmings 

(YT) with food waste (FW); batch versus weekly feeding, and; weekly mixing or not.  

The four common HC used were: the Plastic (P) and Wood (W) bins, the Rotary 

Drum (RD) and the Ground Pile (GP).  

During the initial composting phase, management practice combinations had 

an impact both on the development and extent of the thermophilic period. Feeding at a 

rate of 8.3-8.5 kg (week)
-1

 resulted in mesophilic conditions at the very best while all 

batch filled HC produced thermophilic temperatures above 55 °C except for W3 (with 

BA, batch fed and not mixed) reaching 52 °C. The practice of weekly mixing had a 

positive impact on HC lacking a perforation configuration conducive to convective 
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aeration, such as for W, but had a negative impact on HC capable of generating 

convective aeration, such as P. Benefiting from both diffused and convective aeration, 

mixing had little impact on GP. For all management practice combinations and HC, 

the addition of BA slowed down the microbial activity, retarding and reducing the 

extent of thermophilic conditions. The use of equal wet volumes of FW and YT 

produced a good mixture with sufficient free air space to quickly generate 

thermophilic temperatures. The RD suffered from clogged aeration ports early in the 

composting process, thus producing fast but short lived thermophilic conditions.  

In terms of the evolution of compost characteristics among treatments, the 

addition of BA had the most impact on initial and final dry matter (DM) and pH. The 

organic components, mainly TC and OM were impacted by feeding rate, with weekly 

feeding resulting in higher levels as a result of less intense microbial activity. Losses 

in water were mainly impacted by the use of BA and, for W, weekly mixing. The 

lowest dry and organic matter losses were experienced by W3 (with BA, batch fed 

and not mixed) because of poor microbial activity during the maturation phase as a 

result of a lack of aeration and a drier compost. Such lack of microbial activity was 

also reflected in terms of higher E. Coli and Fecal Streptococci counts. Objectionable 

odours were generally produced by the compost weekly fed, without BA or not 

mixed.  

Overall, the FW and YT compost batch fed in P and GP, without BA produced 

the best compost, with the lowest level of parasites and pathogens and the least 

odours. Weekly mixing only helped reduce objectionable odours.   
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5.6 Abbreviations  

BA  –  bulking agent 

CFU   –  colony forming unit 

C/N   –  carbon to nitrogen ratio 

COD  –  chemical oxygen demand 

DM  –  dry matter 

dm  –  dry mass basis 

FAS  –  free air space 

FW  –  food waste 

GP  –  ground pile 

GP1  –  ground pile without BA, batch fed and not mixed 

GP2  –  ground pile without BA, weekly fed and mixed 

GP3  –  ground pile without BA, batch fed and mixed 

HMs  –  heavy metals 

ICP – MS – inductively coupled plasma mass spectroscopy 

OM  –  organic matter 

OW  –  urban organic waste 

P  –  Plastic bin 

PAHs  –  polycyclic aromatic hydrocarbons  

P1  –  plastic bin without BA, batch fed and not mixed 

P2  –  plastic bin without BA, weekly fed and mixed 

P3  –  plastic bin without BA, batch fed and mixed 

R1  –  rotary drum without BA, batch fed and mixed 

R2  –  rotary drum with BA, batch fed and mixed  

RD  –  rotary drum 

TC  –  total carbon 

TKN  –  total Kjeldahl nitrogen 

v  –  volume 

W  –  Wood bin 

W1  –  wood bin with BA, batch fed and mixed 

W2  –  wood bin without BA, weekly fed and mixed 

W3  –  wood bin with BA, batch fed and not mixed 

W4  –  wood bin without BA, batch fed and mixed 

wm  –  wet mass 

wv  –  wet volume 

YT  –  yard trimmings 
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Table 5.1 Composition of the experimental waste for batch and weekly composter loading 
Waste  Batch feeding 

(% by mass) 

 Weekly feeding (weeks) 

(% by mass) 

Average weekly  

 Feeding (% by 

mass) 

     1-2  3-4  5-6  7-8  9-10    

  dry wet  dry wet dry wet dry wet dry wet dry wet dry wet 

Food Waste (FW)                 

Fruit                 

Apple  3.6 3.6  5.0 5.2 2.5 5.3 0.2 0.2 3.3 3.0 - - 2.2 2.7 

Passion fruit  0.7 0.9  1.7 2.2 - - - - - - - - 0.3 0.4 

Avocado peel  1.8 1.1  - - - - - - - - - - - - 

Avocado seed  1.1 0.3  - - - - - - - - - - - - 

Banana  2.3 1.9  1.3 1.4 - - - - - - - - 0.3 0.3 

Date fruit  6.7 1.5  - - - - - - - - - - - - 

Mango  1.0 0.8  - - - - - - - - - - - - 

Citrus fruit  6.3 5.3  9.0 8.2 - - 4.2 3.3 1.6 1.4 0.4 0.4 3.0 2.7 

Pineapple  0.7 0.7  - - - - - - - - - - - - 

Cucumber  - -  - - - - - - 0.6 1.1 0.5 1.1 0.2 0.4 

Sub-total  24.2 16.1  17.0 17.1 2.5 5.3 4.4 3.5 5.5 5.5 0.8 1.5 6.0 6.5 

Roots and tubers                 

Onion/garlic leaves  0.8 1.0  0.2 0.3 1.2 6.6 7.5 10.2 1.3 1.7 6.5 7.3 3.3 5.2 

Onion/garlic flesh  4.7 3.8  6.1 5.0 13.3 10.5 10.0 6.4 6.3 5.3 26.6 23.6 12.5 10.2 

Potato/carrot peels  9.0 11.0  12.6 14.3 8.2 10.0 11.2 17.0 15.2 16.3 4.4 5.7 10.3 12.7 

Radish leaves  4.9 2.2  12.0 5.7 7.6 7.5 1.3 1.9 2.3 2.6 0.2 0.3 4.7 3.6 

Sweet potato  - -  - - - - 3.4 4.1 - - - - 0.7 0.8 

Ginger roots/peels  - -  - - - - 0.8 0.6 - - - - 0.2 0.1 

Sub-total  19.4 18  30.9 25.3 30.3 34.6 34.3 40.2 25.2 25.9 37.7 36.9 31.7 32.6 

Cooked food                 

Rice and bread  3.9 2.3  9.5 6.1 5.1 6.2 13.4 8.7 33.5 20.7 31.2 17.3 18.5 11.8 

Carrot and cabbage  7.1 6.9  - - 19.7 15.4 - - - - - - 3.9 3.1 

Potato  5.5 5.0  - - 4.1 3.8 - - - - - - 0.8 0.8 

Spaghetti  2.0 0.9  0.6 0.3 - - - - - - - - 0.1 0.1 

Egg white  0.3 0.1  - - - - - - - - - - - - 

Egg shells  3.5 0.8  7.4 1.9 8.2 6.4 9.7 2.0 5.2 1.1 2.2 0.4 6.5 2.4 

Sub-total  22.3 16.0  17.5 8.3 37.1 31.8 23.1 10.7 38.7 21.8 33.4 17.7 29.8 18.2 
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Table 5.1 Composition of the experimental waste for batch and weekly composter loading – continued 
Waste  Batch feeding 

(% by mass) 

 Weekly feeding (weeks) 

(% by mass) 

Average weekly 

 Feeding (% by 

mass) 

 

     1-2  3-4  5-6  7-8  9-10    

  dry wet  dry wet dry wet dry wet dry wet dry wet dry wet 

Vegetables                 

Mushroom  - -  - - - - 9.6 10.1 -  - - 1.9 2.0 

Celery  8.3 11.9  11.0 15.4 17.1 10.9 1.8 2.7 6.6 11.2 - - 7.3 8.0 

Green leafy vegetables  4.4 6.6  5.9 9.0 5.5 6.6 4.6 5.7 12.4 14.9 12.9 24.0 8.3 12.0 

Cauliflower/cabbage  20.0 30.2  15.7 23.3 3.9 4.3 22.1 27.2 8.6 13.6 9.6 11.5 12.0 16.0 

Pumpkin  1.2 1.1  1.5 1.5 - - - - 2.7 7.0 - - 0.8 1.7 

Egg plant  - -  - - - - - - - - 5.6 8.5 1.1 1.7 

Peas and beans  0.2 0.1  0.4 0.2 3.7 6.5 - - 0.2 0.1 - - 0.9 1.4 

Sub-total  34.1 49.9  34.5 49.4 30.2 28.3 38.1 45.7 30.5 46.8 28.1 44.0 32.3 42.8 

Total  100 100  100 100 100 100 100 100 100 100 100 100 100 100 

 

Yard trimmings (YT) 

 

  

 

            

Grass  89.0 90.0  91.79 91.8 65.9 67.2 69.7 72.1 71.5 74.9 99.7 99.8 79.7 81.2 

Tree leaves  11.0 10.0  8.21 8.2 34.1 32.8 30.3 27.9 28.5 25.1 0.3 0.2 20.3 18.8 

Total  100 100  100 100 100 100 100 100 100 100 100 100 100 100 
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Table 5.2 Characteristics of the fresh experimental compost formula 
Characteristics Wood bin Rotary Drum Plastic bin Ground Pile 

BA 

batch fed 

mixed 

No BA 

weekly 

fed 

mixed 

BA 

batch 

fed 

not 

mixed 

No BA 

batch 

fed 

mixed 

No BA 

batch 

fed 

mixed 

BA 

batch fed 

mixed 

No BA 

batch fed 

not 

mixed 

No BA 

weekly 

fed 

mixed 

No BA 

batch 

fed 

mixed 

No BA 

batch fed 

not 

mixed 

No BA 

weekly 

fed 

mixed 

No BA 

batch fed 

mixed 

 W1 W2 W3 W4 RD1 RD2 P1 P2 P3 GP1 GP2 GP3 

Mixture ratio             

FW:YT:BA  

(wet volume) 

 

1:1:1 

 

1:1:0 

 

1:1:1 1:1:0 

 

1:1:0 

 

1:1:1 

 

1:1:0 

 

1:1:0 1:1:0 

 

1:1:0 

 

1:1:0 1:1:0 

FW:YT:BA  

(dry mass) 

 

1.03:1:2.9 

 

1.14:1:0 

 

1:1:2.72 0.94:1:0 

 

1:1:0 

 

1:1.23:2.92 

 

1:1:0 

 

1.18:1:0 0.93:1:0 

 

1.21:1:0 

 

1.2:1:0 0.96:1:0 

 

Physical 

            

Wet mass (kg) 55.9 84.9 54.9 72.2 72.5 54.2 73.0 84.7 75.5 87.6 63.3 75.0 

Dry mass (kg) 23.1 18.8 22.5 17.1 16.8 22.9 16.9 18.6 17.9 19.4 14.1 17.6 

Dry matter (%) 41.2  

(1.6) 

22.6 

(1.0) 

41  

(2.7) 

24.1 

(1.2) 

23.3 

(1.2) 

41.9  

(2.5) 

23.4 

(2.1) 

22.5 

(2.0) 

24.1 

(1.2) 

21.9  

(1.9) 

22.6 

(1.9) 

23.7 

(1.2) 

Wet volume (L) 255 366 255 320 320 225 320 366 320 386 250 320 

Wet bulk density 

(kg (m
-3

)) 

 

220 

 

230 

 

240 

 

230 

 

230 

 

240 

 

230 

 

230 

 

240 

 

230 

 

260 

 

240 

Free air space 

(FAS, %) 

 

78 

 

66 

 

78 

 

66 

 

66 

 

78 

 

66 

 

66 

 

66 

 

66 

 

66 

 

66 

 

Chemical* 

            

pH 5.7 (0.2) 7.7 (0.3) 5.7 (0.2) 6.1(0.2) 6.1 

(0.2) 

5.7 (0.2) 6.1 (0.2) 7.7 

(0.3) 

6.1(0.2) 7.7 (0.3) 6.1 (0.2) 6.1(0.2) 

Total carbon 

(TC, % dm) 

 

38 (0.3) 

 

42 (0.6) 

 

38 (0.2) 

 

39.2(0.7) 

 

40 (0.7) 

 

38 (0.2) 

 

40 (0.2) 

 

42 (0.6) 

 

39.2(0.7) 

 

42 (0.6) 

 

40 (0.2) 

 

39.3(0.7) 

TKN (g (kg dm)
-

1
) 

5.8 (0.7) 25 (0.2) 5.8 (0.7) 23(0.2) 23 (0.2) 5.8 (0.7) 23 (0.7) 24 (0.2) 23(0.2) 24 (0.2) 23 (0.7) 23.1(0.2) 

COD (g (kg dm)
-

1
) 

1110 

(24) 

1125 

(14) 

1100 

(23) 

1117 

(24) 

1115 

(24) 

1095  

(23) 

1115 

(24) 

1130 

(15) 

1115 

(24) 

1105  

(14) 

1145 

(24) 

1113 

(23.7) 

C/N  65 17.3 65 17.1 17.0 65 17.1 17.4 17.1 17.2 17.2 17.1 
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Table 5.2 Characteristics of the fresh experimental compost formula – continued 
Characteristics Wood bin Rotary Drum Plastic bin Ground Pile 

BA 

batch fed 

mixed 

No BA 

weekly 

fed 

mixed 

BA 

batch 

fed 

not 

mixed 

No BA 

batch 

fed 

mixed 

No BA 

batch 

fed 

mixed 

BA 

batch fed 

mixed 

No BA 

batch fed 

not mixed 

No BA 

weekly 

fed 

mixed 

No BA 

batch 

fed 

mixed 

No BA 

batch fed 

not 

mixed 

No BA 

weekly 

fed 

mixed 

No BA 

batch 

fed 

mixed 

 W1 W2 W3 W4 RD1 RD2 P1 P2 P3 GP1 GP2 GP3 

Organic 

Fractions* 

            

Total organics 

(% dm) 

 

73 (0.2) 

 

78 (0.3) 

 

73 (0.2) 75.3(0.2) 

 

75 (0.2) 

 

72 (0.2) 

 

75 (0.2) 

 

79 (0.3) 75.2(0.2) 

 

77 (0.3) 

 

77 (0.3) 75.2(0.2) 

Soluble organic 

fraction (% total) 

 

 

20 

 

 

52 

 

 

20 50.73 

 

 

51 

 

 

50 

 

 

51 

 

 

52 50.70 

 

 

53 

 

 

52 51.09 

Hemicellulose  

(% total organics) 

 

 

10 

 

 

24.4 

 

 

10 23.05 

 

 

22.9 

 

 

24.0 

 

 

23.0 

 

 

24.2 23.06 

 

 

24.6 

 

 

22.4 23.02 

Cellulose 

(% total organics) 

 

 

7 

 

 

17.0 

 

 

7 17.59 

 

 

17.4 

 

 

18.1 

 

 

17.4 

 

 

16.8 17.62 

 

 

16.4 

 

 

17.1 17.50 

Lignin  

(% total organics) 

 

 

63 

 

 

6.9 

 

 

63 8.63 

 

 

8.3 

 

 

8.0 

 

 

8.3 

 

 

6.9 8.61 

 

 

6.4 

 

 

8.4 8.39 

             

Note: Figures in parenthesis – standard deviations, BA – bulking agent, YT – yard trimming, FW – food waste, TKN – total Kjeldahl 

nitrogen, dm – dry mass, COD – chemical oxygen demand, C/N – carbon to nitrogen ratio. 

* For the compost supplemented with BA, the TKN, C/N ratio and OM fraction values were estimated, since the wood chips were too 

large to analyse. 
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Table 5.3 Loss of components in compost after 150 days of maturity 
Loss of 

compounds 

Wood bin Rotary Drum Plastic bin Ground Pile 

BA 

batch fed 

mixed 

 

W1 

No BA 

weekly 

fed 

mixed 

W2 

BA 

batch fed 

not 

mixed 

W3 

No BA 

batch 

fed 

mixed 

W4 

No BA 

batch 

fed 

mixed 

RD1 

BA 

batch fed 

mixed 

 

RD2 

No BA 

batch fed 

not 

mixed 

P1 

No BA 

weekly 

fed 

mixed 

P2 

No BA 

batch fed 

mixed 

P3 

No BA 

batch fed 

not mixed 

 

GP1 

No BA 

weekly 

fed 

mixed 

GP2 

No BA 

batch 

fed 

mixed 

GP3 

Water (%) 

(kg (kg dm)
-1

) 

85 

1.2 

91 

3.2 

84 

1.2 

97 

3.2 

62 

2.1 

71 

1.0 

83 

2.7 

84 

3.0 

93 

3.0 

94 

3.3 

90 

3.1 

98 

3.2 

 

COD (%) 

(g (kg dm)
-1

) 

 

62 

691 

 

70 

792 

 

39 

426 

72 

805 

 

76 

845 

 

69 

787 

 

70 

801 

 

72 

819 

72 

797 

 

69 

760 

 

66 

783 

72 

802 

 

TC (%) 

(g (kg dm)
-1

) 

 

60 

230 

 

70 

290 

 

38 

140 

70 

280 

 

77 

300 

 

69 

260 

 

70 

280 

 

72 

300 

70 

270 

 

69 

290 

 

66 

260 

71 

300 

 

TKN (%) 

(g (kg dm)
-1

) 

 

44 

10.5 

 

48 

11.5 

 

18 

4.2 

 

53 

12.3 

 

68 

15.7 

 

59 

13.6 

 

52 

12.0 

 

54 

12.9 

 

52 

12.0 

 

44 

10.3 

 

48 

11.1 

 

52 

12.0 

 

Dry mass (%) 

(g (kg wm)
-1

) 

 

43 

100 

 

50 

110 

 

18 

40 

 

56 

130 

 

63 

150 

 

61 

150 

 

55 

130 

 

54 

120 

 

52 

120 

 

50 

110 

 

47 

110 

 

55 

130 

 

Organic mass (%) 

(g (kg dm)
-1

) 

 

56 

410 

 

76 

590 

 

31 

230 

 

71 

530 

 

77 

580 

 

69 

500 

 

70 

530 

 

68 

530 

 

70 

530 

 

 

82 

630 

 

66 

500 

 

70 

530 

Wet volume (%) 48 85 37 88 89 58 81 84 88 87 78 89 

Wet mass (%) 61 82 58 87 62 60 76 77 83 84 80 87 
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Table 5.3 Loss of components in compost after 150 days of maturity – continued 
Loss of compounds Wood bin Rotary Drum Plastic bin Ground Pile 

BA 

batch fed 

mixed 

No BA 

weekly 

fed 

mixed 

BA 

batch fed 

not 

mixed 

No BA 

batch 

fed 

mixed 

No BA 

batch 

fed 

mixed 

BA 

batch fed 

mixed 

No BA 

batch fed 

not 

mixed 

No BA 

weekly 

fed 

mixed 

No BA 

batch 

fed 

mixed 

No BA 

batch 

fed 

not 

mixed 

No BA 

weekly 

fed 

mixed 

No BA 

batch fed 

mixed 

 W1 W2 W3 W4 RD1 RD2 P1 P2 P3 GP1 GP2 GP3 

Organic fractions              

 

Soluble (%) 

(g (kg OM)
-1

) 

 

64 

330 

 

76 

400 

 

56 

280 

76 

390 

 

79 

410 

 

82 

410 

 

76 

390 

 

75 

390 

74 

370 

 

77 

400 

 

74 

380 

72 

370 

 

Hemicellulose (%) 

 (g (kg OM)
-1

) 

 

65 

160 

 

76 

190 

 

40 

100 

90 

210 

 

87 

200 

 

84 

200 

 

82 

190 

 

81 

190 

83 

190 

 

77 

190 

 

74 

170 

83 

190 

 

Cellulose (%) 

(g (kg OM)
-1

) 

 

58 

100 

 

76 

130 

 

8 

10 

72 

130 

 

78 

140 

 

52 

90 

 

73 

130 

 

81 

140 

83 

150 

 

71 

120 

 

73 

130 

84 

150 

 

Lignin (%) 

(g (kg OM)
-1

) 

 

12.3 

10 

 

11.4 

10 

 

6.3 

10 

9 

10 

 

11.1 

10 

 

10.7 

10 

 

31.1 

30 

 

10.3 

10 

11.0 

10 

 

16.5 

10 

 

17.7 

20 

11 

10 

Note: dm – dry mass, wm – wet mass, OM – organic matter, TKN – total Kjeldahl nitrogen, COD – chemical oxygen demand, TC – total 

carbon; BA – bulking agent. 
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Table 5.4 Pathogens and parasites in mature compost of 150 days 
Organism French 

Standard 
a
 

(MPN  

(g dm)
-1

 

Wood bin Rotary Drum Plastic bin Ground Pile 

BA 

batch 

fed 

mixed 

No BA 

weekly 

fed 

mixed 

BA 

batch 

fed 

not 

mixed 

No 

BA 

batch 

fed 

mixed 

No BA 

batch 

fed 

mixed 

BA 

batch 

fed 

mixed 

No BA 

batch 

fed 

not 

mixed 

No BA 

weekly 

fed 

mixed 

No 

BA 

batch 

fed 

mixed 

No BA 

batch 

fed 

not 

mixed 

No BA 

weekly 

fed 

mixed 

No 

BA 

batch 

fed 

mixed 
  W1 W2 W3 W4 RD1 RD2 P1 P2 P3 GP1 GP2 GP3 

Escherichia 

Coli 

(CFU (g)
-1

) 

 

 

< 1000 

 

 

2100 

 

 

740 

 

 

63 000 600 

 

 

< 10 

 

 

< 10 

 

 

< 400 

 

 

170 <400 

 

 

570 

 

 

850 <10 

 

 

Salmonella 

(count (25 g)
-

1
) 

 

 

absent 

 

 

absent 

 

 

absent 

 

 

absent 

 

 

absent 

 

 

absent 

 

 

absent 

 

 

absent 

 

 

absent 

 

 

absent 

 

 

absent 

 

 

absent 

 

 

absent 

 

Fecal 

Streptococci 

(CFU (g)
-1

) 

 

 

 

- 

 

 

 

3 700 

  

 

 

< 400 

 

 

 

16 000 3800 

 

 

 

86 000 

 

 

 

2 100 

 

 

 

< 400 

 

 

 

< 100 <400 

 

 

 

< 400 

 

 

 

5 000 2500 

 

 

 

Helminthe 

eggs 

(count (1.5 

g)
-1

) 

 

 

 

absent 

 

 

 

absent 

 

 

 

absent 

 

 

 

absent 

 

 

 

absent 

 

 

 

absent 

 

 

 

absent 

 

 

 

absent 

 

 

 

absent 

 

 

 

absent 

 

 

 

absent 

 

 

 

absent 

 

 

 

absent 

Note: dm – dry mass; 
a
 AFNOR (2002; 2006); BA – bulking agent. 
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Table 5.5 Polycyclic hydrocarbons (PAH) and trace elements for 150 day Wood bin 

compost 

Compound Wood bin (W) compost Regulations 

BA 

batch fed 

mixed 

No BA 

weekly fed 

mixed  

No BA 

batch fed 

mixed 

Canada
a
 European 

union
b
 

France
c
 

 W1 W2 W4    

PAH  

(µg (kg dm)
-1

) 

      

Naphthalene < 86 < 52 <73 - - - 

Methyl (2) 

fluoranthene 

 

24 

 

< 10 

 

<14 
 

- 

 

- 

 

- 

Phenanthrene 123 < 10 <14 - - - 

Anthracene 24 < 10 <14 - - - 

Fluoranthene 313 < 10 <14 - - 4000 

Pyrene 180 < 10 <14 - - - 

Benzo(a) 

anthracene 

 

68 

 

< 10 

 

<14 
 

- 

 

- 

 

- 

Chrysene 87 < 10 <14 - - - 

Benzo (3,4) (b) 

fluoranthene 

 

 

35 

 

 

< 10 

 

 

<14 

 

 

- 

 

 

- 

 

 

2500 

Benzo (11,12) 

(k) fluoranthene 

 

 

27 

 

 

< 10 

 

 

<14 

 

 

- 

 

 

- 

 

 

- 

Benzo (3,4) (a) 

pyrene 

 

22 

 

< 10 

 

<14 
 

- 

 

- 

 

1500 

 

Trace elements 

(mg (kg
 
dm)

-1
) 

      

Arsenic 4.9 3.8 3.8 13 - 18 

Cadmium 0.4 0.1 0.3 3 0.7-10 3 

Chromium 4.2 6.9 1.6 210 70-200 120 

Copper 21.9 18.1 31.1 400 70-600 300 

Lead 31 1.4 5.3 150 70-1000 180 

Mercury <0.1 <0.1 <0.1 0.8 0.7-10 2 

Nickel 4.8 3.7 5.9 62 20-200 60 

Selenium 0.1 0.1 0.2 2 - 12 

Zinc 130 70.1 179.3 700 210-4000 600 

Note: 
a
CCME (2005),  b

Brinton (2000),
  c

AFNOR (2006); BA – bulking agent. 
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(a) (b) 

(c) 

Figure 5.1 Home composters used to test the management practice combinations: (a) Wood 

bin (W); (b) Plastic bin (P); (c) Rotary Drum (RD); and (d) Ground Pile (GP). 

(d) 
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Figure 5.2 Temperature regimes for all HC and management practices measured in the 

centre of the compost mass for: (a) Wood bins; (b) Rotary Drums; (c) Plastic bins; and 

(d) Ground Piles. The management treatments were : W1 – Wood bin with BA, batch 

fed  and mixed; W2 – Wood bin without BA, weekly fed and mixed; W3 – Wood bin 

with BA, batch fed and not mixed; W4 – Wood bin without BA, batch fed and mixed; 

RD1 – Rotary Drum without BA, batch fed and mixed; RD2 – Rotary Drum with BA, 

batch fed and mixed; P1 – Plastic bin without BA, batch fed and not mixed; P2 – Plastic 

bin without BA, weekly fed and mixed; P3- Plastic bin without BA, batch fed and 

mixed; GP1 – Ground Pile without BA, batch fed and not mixed; GP2 – Ground Pile 

without BA, weekly fed and mixed; GP3 – Ground Pile without BA, batch fed and 

mixed; BA – bulking agent.  
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Figure 5.3 Wood bin evolution of compost characteristics as influenced by management 

practice combination: (a) TC and DM; (b) COD and OM; and (c) pH. TC – total carbon; 

DM – dry matter; COD – chemical oxygen demand; OM – organic matter;   W1 – Wood 

bin with BA, batch fed and mixed; W2 – Wood bin without BA, weekly fed and mixed; 

W3 – Wood bin with BA, batch fed and not mixed; W4 – Wood bin without BA, batch 

fed and mixed. Y bars – standard deviations. Since W3 was not mixed and sampled 

regularly, only day 0 and 150 values are illustrated.  
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Figure 5.4 Rotary Drum evolution of compost characteristics as influenced by 

management practices: (a) TC and DM; (b) COD and OM; and (c) pH. TC – total 

carbon; DM – dry matter; COD – chemical oxygen demand; OM – organic matter;  RD1 

– Rotary Drum without  BA, batch fed and mixed; RD2 – Rotary Drum with BA, batch 

fed and mixed.  
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Figure 5.5 Plastic bin evolution of the compost characteristics as influenced by 

management practices: (a) TC and DM; (b) COD and OM; and (c) pH. TC – total 

carbon; DM – dry matter; COD – chemical oxygen demand; OM – organic matter; P1 – 

Plastic bin without  BA, batch fed and not mixed; P2 – Plastic bin without BA, weekly 

fed and mixed; P3 – Plastic bin without BA, batch fed and mixed. Since P1 was not 

mixed and sampled regularly, only day 0 and 150 values are illustrated.  
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Figure 5.6 Evolution of the compost characteristics as influenced by management 

practices for the ground pile: (a) TC and DM; (b) COD and OM; and (c) pH. TC – total 

carbon; DM – dry matter; COD – chemical oxygen demand; OM – organic matter;  GP1 

– Ground Pile without BA, batch fed and not mixed; GP2 – Ground Pile without BA, 

weekly fed and mixed; GP3 – Ground Pile without BA, batch fed and mixed. Since GP2 

was not mixed and sampled regularly, only day 0 and 150 values are illustrated.  
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Figure 5.7 Evolution of the TKN and organic fractions for all management practice 

combinations: (a) TKN; (b) organic fractions. 

 TKN – total Kjeldahl nitrogen; dm - dry mass; OM – organic matter.  

All compost samples were analyzed with BA because of the size of the wood chips. 
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Figure  5.8 Evolution of compost odour characteristics as influenced by management 

practice combinations for day (a) 15;(b) 30;(c) 60;(d) 90;(e) 120, and;(f) 150. The vertical 

dotted line separates the acceptable and objectionable smells.  

 

Symbols : NO – no odour, EH-earthy/humus, WD-woody; MR-mushroom, CF-citrus fruits, 

GH-grassy/hay, SF-soft fermentations, F-fish, DA-dead animals, MD-mouldy, RV-rotten 

vegetable, RE-rotten eggs, SE-sewage,; W1 – Wood bin with BA, batch fed and mixed; W2 

– Wood bin without BA, weekly fed and mixed; W3 – Wood bin with BA, batch fed and 

not mixed; W4 – Wood bin without BA, batch fed and mixed; RD1 – Rotary Drum without 

BA, batch fed and mixed; RD2 – Rotary Drum with BA, batch fed and mixed; P1 – Plastic 

bin without BA, batch fed and not mixed; P2 – Plastic bin without BA, weekly fed and 

mixed; P3 – Plastic bin without BA, batch fed and mixed; GP1 – Ground Pile without BA, 

batch fed and not mixed; GP2 – Ground Pile without BA, weekly fed and mixed; GP3 – 

Ground Pile without BA, batch fed and mixed. 
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Connecting statement to chapter 6 

 

 

The previous chapter demonstrated the effect of management practices of the 

home composting systems (HC) on process and quality of composted product. This 

study need to be further verified from the HC managed by the urban residents. In this 

context, HC managed by Montreal waste island residents was studied. The chapter 6 

examines the compost quality of urban residents managed HC in Montreal waste 

island.  

 

Chapter 6 is drawn from a manuscript submitted for publication to the Journal 

of “Environmental Technology” by the author of the thesis and co-authored by 

supervisors, Dr. Anne Trémier, Unite GERE, Cemagef, Rennes, France and Prof. Dr. 

Suzelle Barrington, Department of Bioresource Engineering, McGill University, 

Montreal, Canada. The format has been changed to be consistent within this thesis. 
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Chapter 6 

Montreal West Island home compost characteristics  

 

Abstract 

For organic wastes, home composting eliminates collection, handling and 

treatment operations at the municipal level. Nevertheless, very few studies have 

evaluated the quality of the compost produced. Accordingly, a study was conducted to 

evaluate the influence of management practices on the quality of the compost 

produced in residential backyards using home composters (HC). The study monitored 

five HC operated by homeowners of the Montreal West Island area, during 20 weeks 

spanning June to October 2010. The management practices observed were: the type 

and backyard location of HC, and; the rate and type of organic waste (OW) fed into 

the HC. The parameters monitored were: compost temperature and final 

characteristics including trace metals and pathogens.  

For all HC, thermophilic compost temperatures were highly probable within 

one week of adding more than 10kg of OW composed of equal volumes of food waste 

and yard trimmings. Top and bottom perforations in HC enhance convective aeration 

but concentrate the OW decomposition within the bottom layer. When the HC was fed 

an equal volume of food waste and yard trimmings, the final compost offered a dry 

and organic matter content over 30 %, and 50%, respectively. The final compost 

offered a total nitrogen, phosphorous and potassium level of 2, 1 and 3 % on a dry 

matter basis, representing a good quality soil amendment. As clean OW was fed, the 

HC compost respected Canadian and European regulations in terms of E. Coli and 

Salmonella, irrespective of the active phase temperature regime. In terms of trace 

metals, regulatory limits may be exceeded when the HC is fed ashes. Homeowners 

must also be careful when applying pesticides to their lawns and gardens and then 

feeding the residues to the HC.  

Keywords: Home composter, organic waste, aeration perforations, pathogens, trace elements.   
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6.1 Introduction 

 

In Europe and North America, legislation promotes the landfill diversion of 

organic waste (CCEM, 1989; EU, 1999) a major constituents of the municipal solid 

waste (MSW) mainstream (Boldrin and Christensen, 2010; Colón et al., 2010; López 

et al., 2010). Nevertheless, this diversion offers environmental and economic 

challenges because recycling treatments generally require either a segregated 

collection or a complex sorting system, besides their consumption of energy and their 

requirements for infrastructures (Lundie and Peters, 2005). Composting is recognized 

as a robust recycling treatment for organic wastes (OW), because of its tolerance for 

foreign materials (Karnchanawong and Suriyanon, 2011; Domingo and Nadal, 2009). 

As early as 1929, centralized MSW composting facilities appeared in Holland and, 

during the 1970s and 1980s, expanded throughout Europe. As a result of full stream 

MSW operations producing poor quality compost, source-separation was encouraged 

despite producer reluctance even today (Slater and Frederickson, 2001).  

 Considering the technical, economical and environmental challenges faced by 

centralized composting facilities, onsite treatments such as home and community 

composting become interesting alternatives (Schwalb et al., 2011; Adhikari et al., 

2010; Andersen et al., 2010).  Canada generated 3.22 million tonnes of OW in 2005, 

representing 24% of the total mass of MSW (OECD, 2006-2007), and amounting to 

100 kg of OW capita
-1

yr
-1

. Besides reducing equipment and labour costs, home 

composting of OW eliminates its selective collection and mechanical processing 

reducing greenhouse gas generation from fossil fuel consumption. Nevertheless, the 

successful implementation of onsite composting depends on the active participation 

of homeowners and the production of a hygienically safe soil amendment (Brändli et 

al., 2007; Gong, 2007; Stabnikova et al., 2005).  
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 Recent food health incidences have provided an incentive to investigate the 

hygienic and environmental issues associated with home composting. In West 

London, Smith and Jasmin (2009) studied the effectiveness of 290 L home 

composters in reaching thermophilic temperatures when fed kitchen waste, paper and 

yard trimmings. The organic waste in these HC remained mostly at psychrophilic (0-

20
0
C) and mesophilic (20-45 °C) temperatures except for a few cases reaching the 

thermophilic range during summer months as a result of a large input of waste. 

Nevertheless, the compost obtained was of good quality. In Thailand, 

Karnchanawong and Suriyanon (2011) evaluated the performance of 6 different 

polyethylene composting bins with a capacity of 200L, batch fed with food waste and 

yard trimmings. The study concluded that improved temperature regimes where 

obtained with bins aerated through lateral perforations enhancing convective air 

displacement.   

In the laboratory, Adhikari et al. (2011a)  compared the performance of four 

different types of home composting systems to also conclude that the temperature 

regime is highly influenced by the design and location of the bin perforations. 

Furthermore, Adhikari et al. (2011b) observed that batch loading produces 

thermophilic temperatures, as compared to weekly loading, and that a bulking agent 

was not necessary when yard trimmings were added along with the food waste.  

To validate laboratory results with compost quality actually produced in 

backyards, and to further examine the influence of home composter (HC) design and 

management on compost quality, five individual HC were monitored during 20 

weeks. Conducted in the West Island area of Montreal, Canada, the project monitored 

the organic waste (OW) input of five backyard HC, their temperature regime and the 

final compost quality. Through autoregressive analysis, the project evaluated the 



 

 149 

impact of weekly OW loading rate on the compost temperature regime. The final 

compost was analyzed for dry matter (DM), pH, nutrient levels trace metals and 

pathogens. 

 

6.2 Material and methods 

6.2.1 Experimental home composters and their treated waste  

Five homeowners of the Montreal West Island community took part in this 

study. Two different types of polyethylene HC were used, namely the slatted bin and 

the top/bottom perforated bin (Figure 6.1). The participating homeowners were 

selected randomly and coded A, B, C, D and E. The slatted composter of homeowners 

A, C and E offered a total capacity of 350 L while that with top/bottom perforations 

of homeowners B and D offered a capacity of 300 L. 

The OW produced by the homeowners consisted of kitchen food waste (FW) 

and yard trimmings (YT), namely grass clippings, garden waste and tree leaves. The 

fresh OW generated by the participating homeowners was characterized based on that 

collected at the top of the HC at the end of the study. The OW characteristics 

observed in this project were compared to those observed for OW produced by 

restaurant and homeowners of several world cities (Table 6.1).  

6.2.2 Methodology 

All five homeowners were asked to normally manage their HC (Table 6.2). 

Home composters A, B, C were shaded by backyard trees while home composter D 

was exposed to the sun and home composter E was located in a semi-shaded area. 

Waste log forms were supplied to each homeowner to keep track of type, amount and 

date of waste loading. A 7.5 L kitchen collection bin (Norseman Plastic Ltd, Canada) 

and a 22 kg hook scale (Notlegalfortrade, China) were provided to each homeowner 
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to collect and measure the waste added to their HC. As normally done, each 

homeowner manually loaded their individual HC without compaction. During the 

experimental 20 week period, the content of the HC was not mixed except for that of 

homeowner E which was mixed occasionally.  

The temperature of the HC content was measured weekly by the researcher on 

the project using a long-stem thermometer (PTC Instruments, Los Angeles, 

California, USA, model 8500D-II). This monitoring was conducted throughout the 20 

week experimental period of June to October 2010.  After 20 weeks, the content of all 

five HC was removed in 3 separate layers, namely top, middle and bottom, and 

triplicate samples were collected from each layer for characterization including DM, 

pH, nutrients, trace metal and pathogen. This characterization verified the compost 

quality and its suitability as soil amendment (Mato et al., 1994).  The temperature 

regime and compost quality results were analyzed to recommend best management 

practices for home composting systems.  

6.2.3 Analytical procedure 

The characterization of all compost samples respected standard laboratory 

methods (APHA, 2005).  Dry matter (DM) was determined gravimetrically by drying 

at 103 °C for 24 h (Scientific John by Sheldon Manufacturing Inc., Cornelius, 

Oregon, USA).  Organic matter (OM) was quantified as volatile solids and determined 

on the dried samples by burning for 4 h at 550 °C in a muffle furnace (Blue M 

Electric Company, Blue Island, USA). Organic carbon (C) content was determined by 

dividing the volatile solids by 1.83 (Barrington et al., 2002).  

 Total nitrogen (TN), phosphorous (TP) and potassium (TK) were quantified 

after digesting the compost samples with sulphuric acid and hydrogen peroxide (50%) 

for 15 min at 500 °C. Total Kjeldahl nitrogen (TKN) was quantified by measuring for 
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the digested compost sample, its NH3-N content at a pH of 13, using a NH3 sensitive 

electrode (Orion, Boston, Massachusetts, USA, model BCN). Because of the low 

compost nitrite and nitrate levels, TN was considered equal to TKN. Total 

phosphorous and potassium were quantified colorimetrically, at pH 7, using a 

spectrophotometer (Hach, Model DR 5000, Loveland, Colorado, USA). 

 The pH was determined using a pH probe connected to an Ion meter (Orion, 

Boston, Massachusetts, USA, model 450) after soaking 10g of sample for 24 h 

without shaking at 5 °C, in 20 ml of distilled water. After a dichromate digestion at 

150 °C for 2 h, COD was determined colorimetrically using a spectrophotometer 

(Hach, Model DR 5000, Loveland, Colorado, USA).  

Escherichia Coli and Fecal Streptococci were quantified as colony forming 

units (CFU) using the Millipore filtration technique according to APHA (2005). The 

presence of Salmonella in 25 g of wet sample was determined using Petri plates with 

XLD agar (MFHPB-20, 2009). The heavy metals were quantified by Inductively 

Coupled Plasma Mass Spectroscopy (ICP-MS) after digestion with nitric acid.  

6.2.4 Statistical procedure 

The PROC ARIMA procedure (SAS Institute Inc.,2008) was used for the 

autoregressive comparison of temperature profile measured at the centre of compost 

mass for all five HC and weekly OW loading. The physico-chemical characteristics of 

the triplicate samples collected from the top, middle and bottom layers of all five HC 

were also compared using ANOVA at a 95 % confidence level for within and between 

the HC using the PROC GLM procedure (SAS Institute Inc.,2008).   
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6.3 Results and discussion 

6.3.1 Waste composition and mass input  

Table 6.3 and Figure 6.2 present respectively, the composition and mass of 

OW loaded into the five HC over the 20 week experimental period. Most HC were 

loaded with 75 % food waste (FW) and 25 % yard trimmings (YT) including grass 

clippings, garden residues and tree leaves. Besides FW and YT, home composter A 

received a large amount of seafood residues in June and some ashes in July, while 

home composter C regularly received flower stems and soil. Home composter D 

received generally a lower fraction of FW at 63 % and a higher fraction of YT at 37 

%.  

All five HC received a mixture of FW and YT with an average DM of 12.5 to 

15.9 %, except for home composter D fed a lower FW:YT ratio resulting in a higher 

DM of 41 %. In general, the C/N ratio of the compost ranged between 20 and 22, 

except for that of home composters A and D in the lower range of 13 to 14.5, 

resulting from their fed OW containing no tree leaves. Tree leaves generally offer a 

C:N ratio in the range of 100-150. For all HC, the fed OW offered a COD level 

between 990 to 1155 mg (kg dm)
-1

.  

All five HC were regularly loaded with OW but the amount varied among 

homeowners and over the experimental period. Home composters B and C received 

the most OW at an average rate of 8.1 and 8.0 kg (week)
-1

, as compared to home 

composters A, D and E which received OW at an average rate of 2.4, 4.0 and 1.6 kg 

(week)
-1

 (Figure 6.2 and Table 6.2), respectively. Home composters B and C received 

especially high amounts of OW during the first 12 weeks of experimentation.  
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6.3.2 Home composter management and temperature profile  

The compost matrix is influenced by HC selection based on its type and 

perforation location, and management practices, namely input rate and type of organic 

waste input, location of HC in the backyard and mixing frequency of the HC content. 

Such practices influence oxygen availability, compost moisture levels, pH and C/N 

ratio ( Epstein, 1997; Haug, 1993).  

Overall, home composter E was loaded with the lowest amount of waste 

compared to all other HC but exhibited an average temperature profile. On a wet 

weight basis, home composter E received on the average 1.6 kg (week)
-1

 with a 

FW:YT ratio of 3:1 and a DM of 15.9 %. The content of home composter E generally 

exhibited a temperature profile ranging between 1 to 11°C and averaging 4 °C above 

ambient. This temperature profile exceeded that of home composters A, B and C 

receiving higher rates of OW, at 2.4, 8.1 and 8.0 kg (week)
-1

, respectively (Figure 

6.3). This is explained by the monthly mixing and the partial exposure of the HC to 

sunshine.  

As opposed to home composter E, home composter D exhibited the highest 

temperature profile ranging between 1 to 36 °C and averaging 8 °C above ambient, 

for an average loading rate of 4.0 kg (week)
-1

. Peak temperatures were especially 

observed when the HC received large amounts of OW, such as during weeks 8 and 13. 

The high temperatures observed for home composter D are associated with its drier 

OW resulting from a FW:YT ratio of 2:1, the low C:N ratio of its fed OW containing 

no tree leaves, its location in full sunshine and the bottom/top position of its 

perforations enhancing convective aeration.  

The content of home composter A produced the lowest temperatures, ranging 

between 0 to 12 °C and averaging 3
 
°C above ambient. Home composter A received 
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the second lowest amount of OW, at 2.4 kg (week)
-1

 and was shaded throughout the 

experiment. It received OW with a FW:YT: ash ratio of 4:1:0.1, and a low C:N ratio 

of 13 because of the absence of tree leaves in the fed OW. The content of home 

composter A reached its maximum temperature of 35 °C, 12 °C above of ambient, on 

week 3, after receiving 10.0 kg of OW (Figure 6.3). The lowest temperatures 

associated with home composter A resulted from its slow loading rate and its low DM 

content of 12.5 %.  

The compost temperature profile of home composter B was generally higher 

than that of home composter C, although both their ranges were intermediate as 

opposed to that of home composters A and D. Whereas the temperature profile of 

home composter B ranged between 1 and 10°C and averaged 6°C above ambient, that 

of home composter C ranged between 2 and 8°C and averaged 5°C above ambient. 

Their loading rate was the highest at 8.1 and 8.0 kg of OW (week)
-1

. Home composter 

B had bottom/top perforations as opposed to home composter C with opening created 

by slats. Both located in a shady backyard area, home composters B and C 

respectively received OW at a low DM of 12.5 and 14.5 % with a FW:YT ratio of 

6.6:1 and 3.4:1. The slightly better performance of home composter B over home 

composter C is attributed mainly to its type of perforations, enhancing convective air 

flow. Nevertheless and despite their heavy OW loading rate, the intermediate 

temperature regime of both home composters B and C resulted from the low DM 

content of the fed OW and their shaded location.  

For all HC, a large single input of OW exceeding 10 kg, resulted in a 

temperature increase, as long as the OW offered a DM of at least 15.9 %. Home 

composter B reached a temperature of 38 °C or 8 °C above ambient, on week 5 

following its loading with 16 kg of OW. However, loading 23 kg on week 7 and 20 kg 
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on week 12 resulted in temperatures of only 35 °C or 5 °C above ambient, and 25 °C 

or 4 °C above ambient, because FW was the predominant OW. Home composter C 

reached its maximum temperature of 34 °C on week 6, after receiving 19 kg of OW 

whereas 26 kg of OW loaded on week 10 only produced 29 °C because the YT 

contained a lot of soil. Home composter E also reached its maximum temperature of 

33 °C or 3 °C above ambient, on week 9 when it was fed 4.5 kg of OW. Home 

composter D reached 54 °C on week 11 and 60 °C on week 13 when fed over 15 kg of 

OW composed of FW and YT in equal volumes.   

The autoregressive analysis (AR) process was used to confirm the influence of 

weekly waste input on compost temperature. Using all time series temperature data, 

the autocorrelation function (ACF) and the partial autocorrelation function (PACF) 

were estimated (Figure 6.4). For all five HC, the AR analysis indicated a temperature 

increase especially during the week of feeding (lag of 0). Based on the autoregressive 

model selection criterion such as significance of model parameter, the AR process 

was found to be the most suitable to compare timing of temperature response to OW 

loading. This implies that the amount of OW loaded on a weekly basis into the HC 

had a significant and immediate influence on the compost temperature profile.  

Considering that temperature is an indicator of microbial activity (Diaz et al., 

1993), the present observations lead to believe that thermophilic temperatures can be 

reached as long as: 

1) The HC has bottom/top perforations enhancing convective air circulation; 

2) The HC receives a large input of OW, generally over 10 kg and this waste 

is composed of equal volumes of FW and YT to offer a reasonable DM;  
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3) Feeding 3 to 5 % tree leaves or wood chips along with the FW will bring 

the C:N ratio to a reasonable level of 20, whereas in their absence, grass 

clippings will give a C:N ratio in the range of 12 to 15;   

4) The HC content is mixed monthly; 

5) The HC is placed in a semi-shaded area and exposed to intermediate 

climatic conditions (rain and sunshine) as opposed to a shaded or non 

shaded area. 

6.3.3 Compost DM and OM 

Figure 6.5 compares the 3 layers of compost, top, middle and bottom, in terms 

of dry matter (DM) and organic matter (OM) for all HC after 20 weeks of operation. 

The DM of all 3 layers followed the same trend among HC, with the bottom layer 

being significantly drier than the middle, which in turn was significantly drier that the 

top layer (p < 0.001). Nevertheless, composter D offered the highest DM value 

followed by composter E with an intermediate value and then home composters A, B 

and C with the lowest DM value. The trend in DM content is explained by the fact 

that composter E was semi exposed to sunshine while composter D was fully exposed, 

as compared to home composters A, B and C which were shaded. Furthermore, 

composter D was fed a lower ratio of FW:YT, as opposed to all other HC.  

The OM level between layers varied among HC, with the top and middle 

compost offering a similar level for home composters B and D, as opposed to home 

composters A, C, and E where the top had a higher OM value than the middle 

(p<0.0001). In all cases, the bottom layer offered a lower OM as compared to the 

other two layers. For the bottom compost layer, composter C received some soil that 

explains its lower OM level as opposed to the other HC. The ash fed to composter A 

did not impact its OM level.  
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A lower OM level implies a more active degradation of the volatile solids, 

leaving behind a material with a higher mineral or ash content. Thus, home 

composters B and D produced limited decomposition at their top and middle section, 

as opposed to home composters A, C, and E where their middle layer was active. As 

opposed to the other HC built out of slats, home composters B and D offered bottom 

and top perforations enhancing convective aeration. Accordingly, convective aeration 

tends to concentrate the OW degradation within the bottom layer, as opposed to the 

slatted HC where degradation is more uniformly distributed over the depth.    

6.3.4 Compost nutrients 

Figure 6.6 illustrates the stratified variations in pH, TN represented by TKN, 

TP and TK. Although the bottom and middle layers of all five HC offered a similar 

pH in the range of 7.2 to 8.0, the top layer demonstrated more variation among HC, 

with wetter compost demonstrating more acidic conditions. For the top layer compost, 

home composters A and B offered the lowest pH of 5.0 because of the wet nature of 

their waste. Home composter C offered an intermediate top layer pH of 5.5 being fed 

slightly drier OW as compared to home composters A and B, and; home composters 

D and E offered a pH of 7.2 and 6.8, respectively, because of their drier OW, as a 

result of sunshine exposure and a lower ratio of FW:YT. Also, the content of home 

composter E was mixed on a monthly basis.  

Figure 6.6 illustrates the variations of TN, TP and TK among layers for all five 

HC. Except for home composter A, all HC exhibited the same TN level and evolution 

between layers, with their top and bottom layer offering a similar TN and the middle 

layer offering a higher value (p<0.05). Home composter A had a higher TN value 

within its top compost layer because during the last month, the fed OW contained 

only FW. Home composter E presented a very even TN among its 3 layers because of 
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monthly mixing. Accordingly, HC management seems to have little impact on the 

final compost TN value.  

In terms of TP, the content of all five HC, except for that of A, demonstrated 

the same value of 1.0% on a dry matter basis. Home composter A demonstrated a TP 

value of 2.5 % likely because of the higher fraction of ashes and FW fed throughout 

the summer. In general and for all HC, their 3 layers demonstrated similar TK values 

averaging 3 % on a dm basis. 

All five HC offered bottom compost with a dry matter generally exceeding 

30%, nutrient values of 2, 1 and 3 % on a dry matter basis respectively for TN, TP and 

TK, and an organic matter content of 50%. Accordingly, the compost offers good soil 

amendment properties (Tognetti et al., 2011; BNQ, 2004; Brinton, 2000; Diaz et al., 

1993).  

6.3.5 Compost trace metals and pathogens 

Table 6.4 presents the trace metals contained in the mixed compost (mixed 

top, middle and bottom layers) of all five HC after 20 weeks of operation and 

compares these levels to Canadian and European regulations. In general, the compost 

from all HC respected even the most stringent regulations, namely that of Germany. 

Nevertheless, home composter A produced compost with Cr, Cu, Zn and Cd levels 

approaching these stringent limits, because it was fed ashes which generally 

concentrate trace metals.  

The levels of pathogens found in the mixed compost of home composters A, 

B, C, D and E are presented in Table 6.5. Despite variations in Escherichia coli count, 

all composts were clean enough to be used on gardens for human consumption 

without restrictions (MDDEP, 2008). Nevertheless, the level of Escherichia coli did 

not reflect the temperature regime developed within the HC. Whereas home 
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composter D was the only one reaching thermophilic temperatures, E. Coli levels in 

the compost of home composter C were just as low. This lack of impact of the 

thermophilic temperatures developed in home composter D resulted from the fact that 

the top layer, never reaching thermophilic temperatures, contaminates the bottom 

layers. All Fecal Streptococci counts were less than 1000 Colony Forming Units 

(CFU) (g dm)
-1

. Garden waste, grass clippings and tree leaves can introduce 

Streptococcus faecalis into the compost from dog, bird and rodent droppings. 

Salmonella was not detected in any of the composts because of their absence in the 

original materials.  

 

6.4 Conclusion and recommendations 

The home composting of organic waste (OW) is considered to be an 

interesting recycling alternative with minimal environmental and economic impact. 

The objectives of the present study were to monitor the composting process of five 

backyard HC operated by homeowners of the West Island of Montreal, Canada, to 

compare field and laboratory observations. The temperature regime of the five HC 

was monitored over 20 weeks, while homeowners recorded their weekly feeding of 

OW. At the end of the study, the composts were separated into top, middle and 

bottom layers, and sampled to quantify their solids, pH, nutrients, trace metals and 

pathogen levels.  

In terms of temperature regime, some practices were identified as 

recommendable to reach thermophilic temperatures on a regular basis: 

1) The HC has bottom/top perforations to improve its convective air 

circulation; 
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2) The HC receives a large input of OW, generally over 10 kg and this 

waste is composed of equal volumes of FW and YT to offer an 

appropriate dry matter content in the range of 40 %;  

3) The HC content is mixed at least monthly; 

4) The HC is placed in a semi-shaded area to benefit from sunshine 

without being subjected to extreme climatic conditions. 

As for pathogen levels, no impact of the temperature regime was observed, 

likely because clean organic waste was fed to the HC.  In terms of trace metals, 

homeowners must be careful not to apply herbicides or large amounts of fertilizers on 

their lawns if grass clippings are to be added to HC. Ashes should be sparingly added 

to the fed OW, as they may produce high levels of trace elements. When respecting 

these management practices, the compost produced by HC has a high agronomic 

value as soil amendment and is safe to use.  
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6.6 Abbreviations 

ACF    –  autocorrelation function 

AR   -  autoregressive analysis 

C    –  organic  carbon 

CFU   –  colony forming units  

C/N    –  carbon to nitrogen ratio 

COD    –  chemical oxygen demand 

DM    –  dry matter 

FW    –  food waste 

HC   -  home composters 

ICP-MS  –  inductively coupled plasma mass spectroscopy 

MSW    –  municipal solid waste 

NH3    –  ammonia 

NH3-N  -  ammonical nitrogen 

OM    –  concentration of organic matter 

OW    –  organic waste 

PACF    –  partial autocorrelation function 

TP   -  total phosphorous 

TK   -  total potassium 

TKN   –  total Kjeldahl 

TN    – total nitrogen 

yr    –  year 

YT    –  yard trimmings 
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Table 6.1 Food waste characteristics reported from various world sources 

Country Waste 

type 

Waste 

producer 

pH DM 

(%) 

TN 

(%dm) 

C 

(%dm) 

C/N References 

France 

(Rennes) 

 

Food 

waste 

 

Restaurant 4.7 14.5 2.6 45.0 17.0 Adhikari et al. 

(2011b) 

France 

(Rennes) 

 

Yard 

trimmings 

Office 

complex 

 

6.3 56.8 2.0 34.9 17.4 Adhikari et al. 

(2011b)  

Canada 

(Montreal) 

Food 

waste 

Community 

kitchen and 

restaurant 

 

4.1 12.2 2.0 47.4 24.0 Adhikari et al. 

(2008)  

Canada 

(Montreal) 

Food 

waste 

Community 

kitchen, 

household 

and 

restaurant 

 

4.4-

5.0 

11-17 1.6-

2.4 

44-48 19.0-

30.0 

Schwalb et al. 

(2011)  

South 

Korea 

 

Food 

waste 

household 5.2 20.9 3.7 47.2 12.7 Seo et al. 

(2004) 

  

 

Taiwan Food 

waste 

Kitchen - 27.5 3.5 51.0 14.6 Chang et al. 

(2005)  

 

Canada 

(West 

Island of 

Montreal) 

 

 

Food 

waste and 

yard 

trimmings 

 

residents 

 

4.5-

7.0 

 

12-

41 

 

2-4 

 

45-50 

 

13-

22 

 

This study 

DM-dry matter, TN-total nitrogen, C-carbon, C/N-carbon to nitrogen ratio 
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Table 6.2 Description of experimental home composters 

Description Composter 

A B C D E 

Composter type Slatted Top/bottom 

perforations 

Slatted Top/bottom 

perforations 

Slatted 

      

Composter 

installation 

Tree 

shaded 

Tree 

shaded 

Tree 

shaded 

Open sky Semi shaded 

 

 

Average OW 

input  

(kg (week)
-1

) 

 

2.4 8.1 8.0 4.0 1.6 

Total capacity 

(L) 

350 300 350 300 350 

 

 

Mixing  Not 

mixed 

Not mixed Not 

mixed 

Not mixed Occasionally 

mixed 

      

Note: The composter type is illustrated in Figure 6.1. 
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Table 6.3 Components of the organic waste added in the composters (% total wet mass) 

Composter/ 

Waste 

components 

Month Input* 

June July August September October Total     

DM 

(%)                 

 COD 

(g (kgdm)
-1

) 

C/N 

Composter-

A       

    

Food waste 13.86 8.18 18.42 11.04 20.54 72.04     

Grass 

clippings 20.72 0.00 0.00 0.00 0.00 20.72 

    

Ash 0.00 1.71 0.00 0.00 0.00 1.71     

Sea food 5.52 0.00 0.00 0.00 0.00 5.52     

Total 40.11 9.89 18.42 11.04 20.54 100.00 12.50  1037 13.0 

Composter-

B 

          

Food waste 19.44 27.78 16.98 9.88 12.04 86.11     

Tree leaves 0.31 5.86 5.56 0.00 2.16 13.89     

Total 19.75 33.64 22.53 9.88 14.20 100.00 12.50  1143 21.6 

Composter-

C 

          

Food waste 11.06 20.85 23.06 14.22 8.21 77.41     

Grass 

clippings 0.00 0.00 2.21 0.00 0.95 3.16 

    

Tree leaves 2.05 1.58 0.95 0.00 0.00 4.58     

Garden 

waste 

(flowers, 

soil) 9.79 3.16 1.58 0.00 0.32 14.85 

    

Total 22.91 25.59 27.80 14.22 9.48 100.00 14.50  1155 19.8 

Composter-

D 

          

Food waste 8.87 15.47 1.07 14.19 23.18 62.77     

Grass 

clippings 2.36 6.85 10.00 0.00 0.00 19.22 

    

Rhubarb 

leaves 0.00 12.58 0.00 0.00 5.00 17.58 

    

Total 11.23 34.90 11.07 14.19 28.18 100.00 41.10  1056 14.5 

Composter-

E 

          

Food waste 15.72 14.15 26.73 6.29 12.58 75.47     

Grass 

clippings 9.75 0.00 0.00 4.72 5.35 19.81 

    

Tree leaves 0.00 0.00 0.00 0.00 4.72 4.72     

Total 25.47 14.15 26.73 11.01 22.64 100.00 15.90  987 22.0 

*DM, COD, and C/N obtained from the top layer (Figure7.1) of compost mass at the end of 

the study, which provides an estimate of the initial compost values loaded into the home 

composters. DM- dry mass, COD-chemical oxygen demand, C/N-carbon to nitrogen ratio. 
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Table 6.4 Concentration of trace metals in the compost obtained from five home composters and regulatory limits in Canada and EU countries 

             

  

Element  (mg (kg dm)-1) 

                 

Home composters Al V Cr Mn Co Ni Cu Zn Rb Sr Y Cd Ba Ce Ti Pb Fe As 

A 6143 2.92 93 904 1.95 14.10 304 260 34 296 1.49 1.37 343 5.08 0.06 9.13 2415 38.08 

std (n=3) 969 0.96 71.74 131 0.39 12.16 37.63 33 1.26 39 0.36 0.12 54 0.71 0.01 0.91 160 7.56 

B 3151 5.85 14 143 1.67 7.33 27 98 27 165 2.34 0.39 74 5.20 0.12 12.84 3444 1.43 

std (n=3) 420 0.34 2.92 21 0.70 1.64 3.64 11 0.29 10 0.77 0.03 13 1.39 0.09 1.85 522 0.64 

C 8337 18.14 150 299 4.96 46.50 28 104 20 122 7.63 0.62 77 17.72 0.18 24.13 12745 2.67 

std (n=3) 466 2.73 114.77 54 0.27 26.87 0.94 19 0.77 33 1.64 0.16 3 3.74 0.10 7.90 1805 0.24 

D 5592 14.59 20 193 2.93 10.35 25 106 26 115 4.51 0.45 76 14.27 0.14 13.19 6910 2.26 

std (n=3) 1019 2.20 2.14 19 0.44 0.82 1.49 7 2.09 11 0.37 0.10 6 1.75 0.14 0.94 1110 0.13 

E 2859 6.10 12 198 1.22 7.34 29 68 15 186 1.76 0.41 60 5.80 0.06 4.59 3248 1.01 

std (n=3) 192 0.77 2.29 24 0.10 1.24 4.78 7 2.00 41 0.11 0.12 4 1.01 0.01 0.43 188 0.08 

Regulatory limits 
1Canada                   

Category-A  - - 210 - 34 62 400 700 - - - 3 - - - 150 - 13 

Category-B  - - 1060 - 150 180 757 1850 - - - 20 - - - 500 - 75 

2Quebec, Canada                   

Category-C1 - - 210 - 34 62 400 700 - - - 3 - - - 150 - 13 

Category-C2 - - 1060 - 150 180 1000 1850 - - - 10 - - - 300 - 41 

3Italy - - 100 - - 50 300 500 - - - 1.5 - - - 140 - 10 

4France - - 120 - - 60 300 600 - - - 3 - - - 180 - 18 

3Germany  - -   100 -  -   50  100  400 -  -  -  1.5  -  -  -   150 -  -  
1(CCME, 2005), 2(MDDEP, 2008),  3(Brinton, 2000), 4(AFNOR, 2006), dm-dry mass, std-standard deviation, n-number of samples, Al-Aluminum, V-Vanadium, Cr-Chromium, Mn-

Manganese, Co-Cobalt, Ni-Nickel, Cu-Copper, Zn-Zinc, Rb-Rubidium, Sr-Strontium, Y-Yttrium, Cd-Cadmium, Ba-Barium, Ce-Cerium, Ti-Titanium, Pb-Lead, Fe-Iron, As-Arsenic. 
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Table 6.5 Levels of organisms in the compost of the five home composters 
Organisms Composter Legislation 

A B C D E 1Quebec, Canada 2France 

Escherichia Coli 

(CFU (gdm)-1) 

140 24 4.5 4.5 17 <2x106 MPN (gdm)-1 for P2 

category compost 

- 

Fecal Streptococci 

(CFU (gdm)-1) 

 

<1000 <1000 <1000 <1000 <1000 - - 

Salmonella (25g)-1 nd nd nd nd nd nd for P1 category compost ab 
1
(MDDEP, 2008), 

2
(AFNOR, 2006), nd-not detected, ab-absent.
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Figure 6.1  Experimental home composters showing the three layer of compost 

sampled at the end of the 20 week monitoring period: (a) slatted plastic bin, and (b) 

perforated plastic bin. 
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Figure 6.2 Weekly and cumulative organic waste added to the home composters by 

the individual homeowners over 20 weeks of composting.   
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Figure 6.3 For the 20 week experimental period, compost temperature profile 

for the five home composters (compost mass centre) as compared to the 

average (n=5) weekly ambient temperature. The vertical bars are the standard 

deviation for the weekly ambient temperature. 
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Figure 6.4 For home composter A, autocorrelation function (ACF) and partial 

autocorrelation function (PACF) illustrated by the bar diagram and limits of standard error 

(dotted lines) for the temperature data versus the weekly organic waste input: (a) ACF, and 

(b) PACF. Similar results were obtained for home composters B, C, D and E. The lag 

represents the effect of temperature in weeks, where for example lag 1 means the effect of 

organic waste loading on temperature after 1 week.  
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Figure 6.5 Compost characteristics by layer (top, middle and bottom) for the five 

home composters after 20 weeks of continuous feeding: (a) dry matter-DM, and (b) 

organic matter-OM. Vertical bars- standard deviations (n=3). 
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Figure 6.6 Compost characteristics by layer (top, middle and bottom) for the five 

home composters after 20 weeks of continuous feeding: (a) pH, (b) total nitrogen-

TN, (c) total phosphorus-TP, and (d)  total potassium-TK. Vertical bars- standard 

deviations (n=3).  
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Connecting statement to chapter 7 

 

 

Along with the quality of composted product obtained from home composting 

systems (HC)  of organic waste (OW), the greenhouse gas emissions (GGE) during the 

composting process is a concern for implementation of HC. The effect of HC on GGE 

needs to be examined. The chapter 7 examines the effect of HC on GGE during 

composting process of OW. 

 

The chapter 7 is drawn from a manuscript prepared for publication by the author 

of the thesis and co-authored by supervisors, Dr. Anne Trémier, Cemagef, Rennes, 

France, Prof. Dr. Suzelle Barrington, Department of Bioresource Engineering, McGill 

University, Montreal, Canada and Dr. José Martinez, regional director, Cemagef, Rennes, 

France. The format has been changed to be consistent within this thesis. 
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Chapter 7 

 

Effect of type of home composting system on greenhouse gas emissions 

 

Abstract 

Depending on handling and treatment, organic wastes (OW) generate various 

amounts of CO2, CH4 and N2O, greenhouse gases contributing to global warming 

trends. Facilitating the recycling of OW, home composting systems (HC) were 

monitored for 150 days to compare their greenhouse gas emissions (GGE). Batch fed 

with restaurant food waste (FW) and yard trimmings (YT), four HC were tested: the 

wood and plastic bins (WB and PB), the mixed and unmixed ground pile (GPM and 

GP). Weekly starting on day 15, CO2, N2O and CH4 emissions were measured during 

2h sessions using a closed trap placed at the compost surface. Compost characteristics 

were monitored by sampling weekly and weighing on day 0 and 150. Most GGE 

consisted of CO2 and N2O generated especially between days 0 to 30 and during the 

maturation phase, respectively. Although not detected except for GP on day 15, future 

research should focus on CH4 generation between days 0 to 15. The WB and PB 

composts produced GGE of 208 and 226 kg CO2-eq (tonne wet waste treated)
-1

 while 

that of GP and GPM produced higher values of 255 and 272 kg CO2-eq (tonne wet 

waste treated)
-1

, values within the range of that reported for centralized composting 

facilities averaging 200 kg CO2-eq (tonne wet waste treated)
-1

. Eliminating GGE for 

centralized composting facilities resulting from energy required for collection, 

transportation and treatment at 50 kg CO2-eq (tonne wet waste treated)
-1

, HC can 

recycle OW with an important advantage if managed properly.   

 

Keywords: Greenhouse gas, home composting systems, organic waste.  
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7.1 Introduction 

Greenhouse gas emissions (GGE), namely carbon dioxide (CO2), methane 

(CH4) and nitrous oxide (N2O), have led to global warming trends and their adverse 

climatic effects (Recycled organic unit, 2011; IPCC, 2006; Friends of the Earth, 

2000). Landfilled organic waste (OW) accounts for 13% of the total annual global 

CH4 emissions, equivalent to 734 kg CO2-eq (tonne wet waste treated)
-1

 (Matthews 

and Themelis, 2007), whereas composting lowers GGE to values of 0.03 – 8.0 kg 

CH4 (tonne wet waste treated)
-1

 and 0.06 – 0.6 kg N2O (tonne wet waste treated)
-1

, for 

a total averaging 200 kg CO2-eq (tonne wet waste treated)
-1

 (Friedrich and Trois, 

2011; Hermann et al., 2011; Rogger et al., 2011; Martínez-Blanco et al., 2010; Lou 

and Nair, 2009; IPCC, 2006 ). Accordingly, Europe and North America initiated 

policies for the diversion of the OW fraction from the municipal solid waste stream 

(Pires et al., 2011; Fenerty and Khare, 2005; Thompson and Tanapat, 2005; Landfill 

Directive, 1999) and its recycling through either composting or anaerobic digestion.  

 Composting OW is achieved either at centralized composting facilities or at 

decentralized systems such as community centres and home composters (Bernstad 

and Jansen, 2011; Schwalb et al., 2011). Home composting systems (HC) eliminate 

collection, transportation and processing, thus reducing the investment and energy 

cost associated with centralized facilities (Boldrin et al., 2011; Andersen et al., 2010). 

However, CO2, CH4 and N2O emissions from HC can be affected by their 

configuration and management (Bogner et al., 2008; EPIC, 2002) with a limited 

number of studies examining their GGE. Using a weekly fed plastic HC, Colón et al. 

(2010) report CH4 and N2O emissions below their detection threshold. For a bi-
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weekly fed HC, Andersen et al. (2010) measured CH4 and N2O emissions in the range 

of 0.4 – 4.2 and 0.30 – 0.55 kg (ton wet waste treated)
-1

 respectively, totalling 100 to 

239 kg CO2-eq (ton wet waste treated)
-1

. With a weekly fed and mixed HC, Martínez-

Blanco et al. (2010) measured GGE of 0.158 kg CH4 (tonne wet waste treated)
-1 

and 

0.676 kg N2O (tonne wet waste treated)
-1

. These reported GGE are within the range 

of those produced by centralized composting facilities (IPCC, 2006), but illustrate 

variability in GGE from HC, which depend on their configuration and management.  

Accordingly, the objective of this study was to compare GGE for four 

common HC used in Canada and France, namely the wood bin (WB), the plastic bin 

(PB), the mixed ground pile (GPM) and unmixed ground pile (GP). All four HC were 

filled at once (batch) with equal wet volumes of food waste (FW) and yard trimmings 

(YT), to simulate the worst loading scenario and maximise GGE. Emissions of CO2, 

N2O and CH4 were measured regularly from day 15 to 150. Losses of total carbon 

(TC) and nitrogen (TN) were compared to measure GGE.  

 

7.2 Material and methods 

7.2.1 Composting systems and input organic waste  

Greenhouse gas emissions (GGE) from batch fed HC were monitored using 

four commonly used systems: the slatted wood bin (WB) measuring 0.78 m x 0.65 m 

by 0.75 m in height; the slatted plastic bin (PB) measuring 0.70 m x 0.70 m by 0.80 m 

in height, and; the mixed and unmixed ground pile (GPM and GP, respectively), both 

measuring 0.65 m high and 0.75 m in base diameter (Figures 7.1a, b, c).   

The organic waste (OW) composted by the four HC consisted of equal wet 

volumes of food waste (FW) and yard trimmings (YT). The FW was source separated 
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and supplied by two restaurants in Rennes, France, within 3 days of production. It 

consisted of vegetable and fruit wastes. The YT were obtained from the green space 

surrounding the Cemagref research station of Rennes, France, and consisted of a 90 

% grass clippings and 10 % tree leaves on wet weight basis. While loading the HC, 

the initial compost mixture was sampled in triplicate for physico-chemical 

characterization using standard methods.   

7.2.2 Experimental procedure  

The four experimental HC were randomly set-up under an outside tent at the 

Cemagref Research Centre, Rennes (France), to avoid rainfall and direct sunshine. 

Equal wet volumes of FW and YT were mixed by hand in a large tub before being 

loaded without compaction into the HC. All four HC were filled at once on the same 

day (batch fed) to 80 % of their capacity. While filling the HC, temperature sensors 

(model DS1921G-F5, Thermochron iButton, Dallas Semiconductor, USA) were 

installed at their mass center.  

While being monitored for 150 days, the HC composts were naturally aerated 

and manually mixed weekly except for that of GP. During the mixing operation, a 

compost sample was collected for analysis every 15 days during the first 60 days, and 

then every 30 days for the rest of the experimental period. The GP treatment was 

sampled only on days 0 and 150. The temperature sensors were retrieved after 70 

days of composting, during one of the mixing and sampling operation.  

During the composting process and before the mixing operation, all HC were 

monitored for GGE, namely carbon dioxide (CO2), methane (CH4) and nitrous oxide 

(N2O), starting on day 15. For all gas monitoring sessions, a closed metallic chamber 
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measuring 0.40 m in length x 0.15 m in width by 0.17 m in height was placed over 

the compost mass (Figure 7.1d). The chamber had a top rubber port to collect air 

samples using disposable plastic syringes. Each monitoring session was repeated 

weekly for the first 30 days, every 10 days for days 30 to 60, every 20 days for days 

60 to 120, and then on day 150. During each 120 min monitoring session, duplicate 

air samples were drawn after 0, 10, 20, 40, 60 and 120 min. All air samples were 

analyzed for CO2, CH4, N2O and O2 by gas chromatography (GC - HP6890N, 

Agilent, Santa Clara, USA). The GC was equipped with an electron capture detector 

(ECD) and a flame ionization detector (FID), and used N2 as a vector gas.  

 After 150 days, the compost mass in each HC was weighed and sampled in 

triplicate for physico-chemical characterization, to compute the loss in DM, total 

carbon (TC), total nitrogen (TN) and organic matter (OM).  

7.2.3 Computation of losses and gaseous emissions 

During the 150 days of experiment, the wet compost mass in individual HC 

could not be measured, although necessary along with concentration values, to 

compute over time the loss in DM, TC and TN. Accordingly, an equation was 

developed to predict Mt, the residual mass of wet compost in each HC at time t, where 

this mass was equated to that of fixed solids, FSt, plus that of the organic matter OMt 

and water: 

Mt   = FSt +  M(t) × OMt × DMt × 10
-4

 + M(t) × (1-DMt/100)  (1) 

where, Mt is total wet mass at sampling time t in kg; FSt is the fixed solid mass at 

time t, in kg; OMt is the organic matter concentration in % DMt, and; DMt  is the dry 

matter concentration at time t, in % of Mt. The values of OMt and DMt were measured 
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periodically during the composting process. With the WB, PB, GPM and GP 

composts losing respectively, 14, 1, 8 and 0 % FSi as leachate, FS was presumed to 

drop linearly during the entire experimental composting period of 150 days.  

Accordingly, Equation (1) can be rearranged to solve for Mt: 

Mt  = FSt / {1 – (OMt × DMt × 10
-4

) – (1 - DMt/100)}  (2) 

The mass evolution in total carbon (TC) and nitrogen (TN) could thus be 

computed using the concentrations measured regularly and the corresponding Mt 

obtained from Equation (2).  

For each GGE session, individual gas production rates were computed from 

the evolution of their concentration within the closed chamber, during 120 min, 

neglecting the initial diffusion effect. Emissions in CO2, CH4, and N2O were 

computed after each GGE session as:   

  VS
OM

A
Q

i

r 610     (3) 

where Q is the gas production rate in kg hr
-1

 (kg OMi)
-1

, Ar is the ratio of the 

composter to sampler cross sectional area in  m
2

 m
-2

 (8.7, 8.3 and 12.5 m
2

 m
-2

 for WB, 

PB and ground piles respectively), OMi is the initial mass of organic matter in the 

composter in kg, S is the rate of gas production equal to the slope of the linear gas 

concentration regression in ppmv hr
-1

, V is the sampler volume in m
3
 and ρ is the gas 

density in kg m
-3

. The density used for the gases, namely CO2, CH4 and N2O were 

1.842, 0.668 and 1.826 kg m
-3 

respectively at the standard temperature of 20 °C and 

pressure of 101.3 kPa (Engineering Toolbox, 2010).  
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7.2.4 Analytical procedure 

Before being analyzed, all triplicate compost sample was dried in an oven (SR 

2000, Thermosi, France) at 80 °C
 
until a constant weight was reached and then 

grinded to less than 0.5 mm (ZM model 1000 grinder, Retsch, Germany).  

The compost pH was determined by soaking 10 g of wet sample for 24 hours 

without shaking at 5ºC, in just enough distilled water to use a pH electrode (pH-

Electode SenTix41, WTW, Weilhein, Germany). Organic matter (OM) was 

quantified as volatile solids (VS) and determined by burning at 550 °C for 3 hours 

(Thermolyne 30400, Furnace, F30420 C-33, Essex, UK), according to AFNOR 

(1985). Fixed solids concentrations were determined by the ash remaining following 

the OM procedure.  Total carbon (TC) was determined by burning 10 mg samples at 

900 °C (Thermo Scientific, FLASH 2000 Series, Organic Elemental Analyser, 

Courtaboeuf, France) according to AFNOR (2001). According to AFNOR (1995), 

total Kjeldahl nitrogen (TKN) was determined using an automatic distilling system 

(VAP 50c, Gehardt automatic distilator, Gehardt, Germany), after digesting 0.5 to 1.0 

g of sample with H2SO4 (automated Kjeldatherm TZ block digester, Gerhardt, 

Germany). The TKN value was assumed equal to TN because of negligible amount of 

nitrite and nitrate in the experimental material.  

To correct all analytical results, residual moisture was determined by drying 

grinded compost samples at 105 ºC for 24 hours (SR 1000, Thermosi, France).  
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7.2.5 Statistical procedure 

The experimental HC were filled with the same compost mixtures on the same 

day and mixed/sampled at the same time, to eliminate all effects except for that of HC 

type. Gaseous emissions from the different composting systems could therefore be 

compared with the repeated measures ANOVA procedure, using PROC GLM 

procedure at 95% confidence level (SAS institute Inc., 2008).  

 

7.3 Results and discussion 

7.3.1 Organic waste characteristics and compost temperature regime 

Table 7.1 summarizes the initial characteristics of the organic waste mixture 

fed into all four HC. The initial DM ranged between 23.7 and 24.1 %, with the GP 

compost being slightly wetter at 22.3 % DM, but not statistically different. The TC 

ranged from 75.2 to 77.0 % and the TN from 22.9 and 23.3 %, for an initial C:N ratio 

of 17, for all four HC. The pH of all HC compost was at 6.1 initially. These initial 

properties are considered to be within the range required to support an active aerobic 

microbial activity for composting (Stabnikova et al., 2005; Haug 1993; Zucconi et al., 

1986).  

Figure 7.2 illustrates the temperature of the composts observed during the first 

70 days, with that of PB and GPM reaching thermophilic conditions after 2 days, as 

compared to 3 days for GP and 7 days for WB. Nevertheless and for all HC, the 

compost temperature had dropped to close ambient by day 20, with that of WB taking 

3 more days to stabilize. During composting, aerobic microbial activity is governed 

by oxygen supply, and is reflected as heat governing compost temperature (Richard, 
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2004; Epstein, 1997; Diaz et al., 1993). Since PB and GPM produced very similar 

high compost temperature regimes, they sustained the same level of high aeration. 

The GP and WB composts reached thermophilic temperatures 1 and 5 days later, 

respectively, indicating some initial limitation in generating convective aeration 

forces. Once thermophilic temperatures are reached, convective air flow rates can be 

sustained (Barrington et al., 2002). As compared to GPM offering free air flow, the 

high level of convective aeration obtained with PB can be attributed to its 

perforations concentrated at its bottom and top.  

7.3.2 Emissions in CO2, N2O and CH4 

Examples of CO2, N2O and CH4 evolution within the closed chamber, during 

the GGE measuring sessions, are illustrated in Figure 7.3. Measured compost gaseous 

concentrations were observed to change linearly, with little initial diffusion effect. 

Measureable CH4 concentrations were obtained only for GP on day 15. Most of the 

gaseous emissions consisted of CO2, generally reaching levels above 10 000 ppmv 

after 120 min, with N2O only reaching levels of 200 to 300 ppmv. Furthermore, the 

drop in O2 corresponded to the increase in CO2, indicating a balance in gas 

measurement. The gas concentrations observed over time were used to compute GGE 

rates presented in Figure 7.4 using Equation (3).  

 The gaseous emission measurements produced different curves depending on 

the gas monitored. For compost CO2 emission rates, the highest values observed on 

day 15 were in the range of 25 to 28 g hr
-1

 (ton wet waste treated)
-1

. These values had 

dropped to 1.5 g hr
-1

 (ton wet waste treated)
-1

 on day 150. On day 15, CO2 emission 

rates were very similar among HC, with some differences appearing later on, such as 
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a peak of 28 and 24 g hr
-1

 (ton wet waste treated)
-1

 for the GPM and GP composts on 

day 30 and 60, respectively. Compost N2O emissions rates were at low values of 7 to 

105 mg hr
-1

 (ton wet waste treated)
-1

 on day 15, with the PB compost showing the 

highest value followed by that of WB, GPM and then GP. The N2O emissions rates 

increased on day 20, at the end of the thermophilic phase, to peak between 350 and 

550 mg hr
-1

 (ton wet waste treated)
-1

 on days 30 and 40 for all HC, except for GP 

peaking on day 80. Compost CH4 emissions were below measurement threshold 

between days 15 to 150, except for GP on day 15.  

Gaseous emissions from day 15 to 150 did not reflect the temperature regime 

developed by the HC composts. On day 15, all HC produced similar CO2 emission 

rates, despite the WB compost still at thermophilic temperatures as compared to that 

of PB, GP and GPM at ambient temperatures. From day 15 to 150, all HC compost 

demonstrated a very similar CO2 emission rate, except for a peak at 60 days for the 

GP composts. This will be explained later by the fact that most CO2 emissions 

occurred from day 0 to 15, rather than 15 to 150. For N2O emissions reflecting 

denitrification and a lack of O2, the WB and GPM composts produced the highest 

peaks on days 30 and 40, respectively, followed by GP on day 80 and PB on day 30. 

Nevertheless, PB produced the least overall N2O, followed by GP and then GPM and 

WB at similar levels. The only factor corresponding to this order in N2O emission is 

the final compost DM with PB and GP at 66 and 60 %, respectively as compared to 

GPM and WB at 85 and 81 %.  
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7.3.3 Evolution of compost characteristics as compared to gas generation 

The evolution of all compost characteristics are presented in Table 7.1 and the 

computed losses in mass are illustrated in Figures 7.5 and 7.6. For all HC similarly, 

compost organic matter (OM) and total carbon (TC) suffered the highest loss of 45 to 

50 % between days 0 and 15, followed from day 15 to 150 by an additional 15 to 20 

% loss. As compared to OM and TC, compost total nitrogen (TN) losses was slightly 

different, dropping by 30 % from day 0 to 15, and then by an additional 25 % 

between days 15 to 150, as a result of denitrification. Loss in fixed solids mass 

through leachate amounted to 14 and 8 % for the WB and GPM composts, compared 

to 0 to 1 % for the PB and GP.  

 Measured between day 15 and 150, CO2-C emissions corresponded to TC 

mass losses. For the WB compost for example, 27 % of the initial mass of 6.8 kg TC 

was lost between days 15 and 150, amounting to 1.84 kg TC or 25 kg TC (ton wet 

waste treated)
-1

. For the same period, measured CO2-C emissions amounted to 23 kg 

(ton wet waste treated)
-1

. Accordingly and from day 15 to 150 days, all HC composts 

emitted CO2-C respecting the following regression equations based on TC losses: 

GGECO2 from WB = 0.72 x TC + 1.78;   R
2
 = 0.95   (4) 

GGECO2 from PB = 1.55 x TC + 2.05;   R
2
 = 0.99   (5) 

GGECO2 from GPM = 1.08 x TC + 2.05;   R
2
 = 0.99   (6) 

GGECO2 and TC are the loss of total carbon as measured CO2 emissions and measured 

compost TC mass, in kg carbon (ton wet waste treated)
-1

; subscripts WB, PB and 

GPM correspond to individual HC. Because the compost of the unmixed ground pile 

(GP) was not characterized regularly, no regression equation could be formulated. 
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Equations (4), (5) and (6) were thus used to compute CO2 emissions from day 0 to 15, 

as presented in Table 7.2.  

In terms of nitrogen, N2O emissions occurred at the end of the active 

composting stage, between days 20 to 50, with the GP compost showing a last peak 

on day 80. Nitrogen losses as N2O represented only 4 to 7 % of the final compost TN 

losses, suggesting that leachate and NH3-N volatilization were more important. Most 

of the emissions occurred between 15 to 48 °C at a pH above 8, conditions favouring 

nitrification and denitrification along with the production of N2O and NO (Richard, 

2004) while during the thermophilic phase, NH3 volatilization governs nitrogen losses 

(Pagas et al., 2006; Barton and Atwater, 2002).  

Emissions in N2O were also correlated to TN losses from day 15 and 150. 

Accordingly, the following regression equations were used to estimate N2O emissions 

from day 0 and 15: 

GGEN2O from WB = 0.08 x TN + 0.02;    R
2
 = 0.85   (7) 

GGEN2O from PB = 0.03 x TN + 0.0008;   R
2
 = 0.94   (8) 

GGEN2O from GPM = 0.11 x TN + 0.0003;   R
2
 = 0.96   (9) 

where GGEN2O  is the compost emission of N as N2O and TN is the compost loss of 

nitrogen mass both in kg N (ton wet waste treated)
-1

; the subscripts WB, PB and 

GPM correspond to individual HC. Because the compost of the unmixed ground pile 

(GP) was not characterized regularly, no regression equation could be formulated.  

Comparing estimated GGE as presented in Table 7.2, a significant difference 

was observed (p<0.01) for individual gases (CO2 and N2O) over time among all four 

HC. This comparison was performed on estimated CO2 and N2O emissions where 
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most CO2 occurred before initiating GGE monitoring, while most N2O occurred 

during GGE monitoring (Table 7.2). Whereas CO2 emissions were lowest for the 

driest final compost, namely those of WB and GPM at 81 and 85 % DM, 

respectively, as compared to the wetter final compost of GP and PB at 50 and 54 % 

DM, N2O emissions were lowest for the wetter compost of PB and GP, followed by 

WB and GPM (Table 7.2). Total GGE values were therefore very similar among all 

four HC, with the WB and PB composts producing slightly lower values of 226 and 

208 kg CO2-eq (ton wet waste treated)
-1

 as compared to GP and GPM at 255 and 272 

kg CO2-eq (ton wet waste treated)
-1

. More accurate compost GGE monitoring 

requires in the future, intensive measurements for the first 15 days especially for CO2 

and CH4.  

7.3.4 Greenhouse gas emissions over time 

Whereas Table 7.2 summarizes GGE in terms of individual gas over time, 

Figure 7.7 illustrated GGE for all HC composts over time, based on kg CO2-eq 

emissions (ton wet waste treated)
-1

. The contribution of CH4 and N2O, equivalent to 

21 and 310 times that of CO2, is based on 100 years of global warming potential 

(GWP) (US EPA, 2005; Friends of the Earth 2000). In this calculation, CH4 is 

considered to be minimal, although not monitored from days 0 to 15. This is based on 

negligible CH4 emissions from the WB compost on day 15, while still exposed to 

thermophilic conditions. Nevertheless, future project should carefully monitor CH4 

emissions especially during the first 2 weeks of active composting.  

Overall and from Table 7.2, the PB compost produced the lowest levels GGE 

at 208 kg CO2-eq (ton wet waste treated)
-1

, followed by WB at 226, GP at 255 and 
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finally GPM at 272 kg CO2-eq (ton wet waste treated)
-1

. Emissions of N2O were just 

as important as those of CO2 when considering the overall earth warming potential. 

Over time, the most GGE occurred between days 20 and 60, except for the GP which 

lost most of its CO2 from day 0 to 20 and then most of its N2O from day 60 and 120. 

Accordingly, GGE observed for all four tested HC corresponded to that reported for 

centralized composting facilities of 200 kg CO2-eq (tonne wet waste treated)
-1

 and 

were lower than that from landfilled OW at 730 kg CO2-eq (tonne wet waste treated)
-

1
. Since centralized composting facilities are said to spend on the average 25 CO2-eq 

(tonne wet waste treated)
-1 

in collecting and transporting OW (Adhikari et al., 2010), 

and the same energy can be estimated spent for composting, HC can therefore offer a 

net GGE advantage of 50 CO2-eq (tonne wet waste treated)
-1

,
 
if properly managed.  

 

7.4 Conclusion and recommendations 

To reduce earth warming trends, lower GGE technologies must be identified 

for the management of organic wastes (OW). Besides diverting OW from landfill 

operations, home composting systems (HC) can eliminate the use of fuels required for 

its collection, transportation and treatment at centralized facilities. Nevertheless, HC 

must produce equal if not lower GGE as compared to other treatment alternatives. 

The objectives of this project were therefore to: measure GGE from OW treated using 

four common HC, namely the wood and plastic bins (WB and PB) and the mixed and 

unmixed ground piles (GPM and GP), and; to compare their emissions to centralized 

composting facilities. Accordingly, all HC were filled at once on the same day to 
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simulate the worst case scenario, and their compost and GGE were monitored 

regularly during 150 days.  

Emissions in CO2 and N2O were highly correlated to total carbon and total 

nitrogen losses. Nevertheless, HC producing drier composts lost the most CO2 and 

the least N2O, with thus all four HC releasing similar GGE of 208 to 272 kg CO2-eq 

(tonne wet waste treated)
-1

 with the lowest and highest value associated with PB/WB 

and GP and GPM, respectively. These GGE were quite similar to those reported for 

centralized composting facilities averaging 200 kg CO2-eq (tonne wet waste treated)
-

1
. Eliminating GGE for centralized composting facilities, in terms of the energy 

required for collection, transportation and composting estimated at 50 kg CO2-eq 

(tonne wet waste treated)
-1

, HC can recycle OW with an advantage in terms of 

greenhouse gas emissions, if properly managed.  
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7.6 Abbreviations 

 

C    –  mass of total carbon 

Ci   -  initial mass of total carbon 

CH4    –  methane 

C/N    –  carbon to nitrogen ratio 

CO    –  carbon monoxide 

CO2    –  carbon dioxide 

DM    –  dry matter 

dm    –   dry mass 

FW    –  food waste 

FS   -  fixed solid 

FSi   -  initial fixed solid 

GHG   –  greenhouse gas 

GEE   -  greenhouse gas emission 

GP    –  unmixed ground pile 

GPM   –  mixed ground pile  

hr    –  hour 

Mi   -  initial wet mass 

Mt    –  wet mass at time t 

N    –  mass of total nitrogen 

NH3    –  ammonia 

NH4    –   ammonium 

N2O    –  nitrous oxide 

O2    –  oxygen 

OM    –  concentration of organic matter 

OMi   -  initial mass of organic matter 

OW    –  organic waste 

PB    –   plastic bin 

ppm    –  parts per million 

TC    –  concentration of total carbon 

TN    –  concentration of total nitrogen 

TNi   -  initial mass of total nitrogen 

VOC    –  volatile organic compound 

WB    –  wood bin 

YT    –  yard trimmings 
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Table 7.1 Evolution of compost characteristics during the 150 day experiment   
Composter/days *Wet mass DM OM TC TN C/N pH 

 (kg) (%) (%dm) (%dm) (g(kg dm)
-1

) ratio  

WB        

FW:YT (dm) 0.94:1       

0 72.2 24.1 (1.2) 75.3 (0.2) 39.2 (0.7) 22.9 (0.2) 17.1 6.1 (0.2) 

15 49.3 23.0 (0.8) 63.0 (0.1) 32.7 (0.2) 27.0 (0.2) 12.1 8.8 (0.1) 

30 37.6 27.0 (2.3) 58.7 (0.2) 30.4 (0.6) 26.3 (0.2) 11.5 8.1 (0.2) 

45 33.3 30.0 (0.7) 58.1 (0.1) 29.9 (0.2) 25.8 (0.2) 11.6 8.2 (0.0) 

60 27.6 33.0 (1.3) 54.2 (0.1) 29.2 (0.1) 24.9 (0.4) 11.7 8.6 (0.3) 

90 17.6 50.4 (0.6) 53.2 (0.3) 28.2 (0.2) 25.2 (0.2) 11.2 8.1 (0.4) 

120 13.2 65.9 (0.7) 52.6 (0.2) 27.6 (0.2) 26.4 (0.2) 10.5 7.8 (0.1) 

150 9.2 81.0 (0.8) 50.4 (0.3) 26.6 (0.3) 24.6 (0.1) 10.8 7.5 (0.1) 

PB        

FW:YT (dm) 0.93:1       

0 75.5 24.1 (1.2) 75.2 (0.2) 39.2 (0.7) 22.9 (0.2) 17.1 6.1 (0.2) 

15 50.9 22.0 (3.0) 60.5 (0.3) 31.2 (0.5) 26.6 (0.5) 11.7 8.4 (0.1) 

30 44.1 24.0 (3.9) 58.4 (0.2) 30.4 (0.1) 26.2 (0.2) 11.6 8.4 (0.2) 

45 38.7 26.0 (0.1) 56.2 (0.1) 29.5 (0.3) 25.0 (0.2) 11.8 8.2 (0.0) 

60 34.6 27.0 (1.0) 52.9 (0.2) 28.7 (0.9) 23.3 (0.1) 12.3 8.8 (0.3) 

90 24.2 34.5 (0.7) 47.0 (0.2) 25.5 (0.1) 21.3 (1.8) 12.0 8.7 (0.4) 

120 16.3 50.9 (2.4) 47.4 (0.3) 25.3 (0.2) 21.4 (0.3) 11.8 8.4 (0.1) 

150 12.5 66.0 (1.8) 45.8 (1.0) 24.6 (0.2) 20.6 (0.2) 11.9 7.7 (0.1) 

GPM        

FW:YT (dm) 0.96:1       

0 75.0 23.7 (1.2) 75.2 (0.2) 39.4 (0.7) 23.1 (0.2) 17.1 6.1 (0.2) 

15 42.9 25.0 (2.1) 59.6 (0.1) 32.1 (0.5) 26.4 (0.2) 12.2 7.9 (0.4) 

30 36.4 27.0 (4.1) 56.0 (0.1) 30.1 (0.9) 26.1 (0.1) 11.5 8.5 (0.3) 

45 31.4 30.0 (1.8) 54.1 (0.3) 28.7 (0.2) 25.3 (0.1) 11.3 8.2 (0.1) 

60 24.3 36.0 (4.1) 50.8 (0.3) 27.6 (0.5) 23.9 (0.4) 11.5 8.9 (0.0) 

90 15.7 54.1 (2.5) 49.6 (0.3) 26.2 (0.2) 23.8 (0.3) 11.0 8.3 (0.2) 

120 11.2 75.6 (0.7) 49.5 (0.1) 26.1 (0.1) 23.7 (0.4) 11.0 7.8 (0.0) 

150 9.4 85.0 (2.2) 49.0 (0.3) 25.1 (0.10 24.5 (0.1) 10.2 7.7 (0.0) 

GP        

FW:YT (dm) 1.2:1       

0 63.3 22.3 (2.0) 77.0 (0.2) 39.8 (0.4) 23.3 (0.7) 17.1 6.1 (0.2) 

150 11.8 60.0 (3.5) 50.4 (0.8) 25.9 (0.1) 23.2 (0.3) 11.2 7.5 (0.2) 

*The total mass was measured on days 0 and 150, otherwise estimated from Equation 2. WB-

wood bin; PB-plastic bin; GPM-mixed ground pile; GP-unmixed ground pile; dm-dry mass 

basis; FW-food waste; YT-yard trimmings; DM-dry matter; TC-total carbon; TN-total 

nitrogen; OM-organic matter; C/N-carbon to nitrogen ratio. The number in parenthesis 

represents the standard deviation.  
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Table 7.2 Total greenhouse gas emission (GGE) for the four home composters  

Gas/time interval Composters 

(kg (ton wet waste treated)
-1

) 

WB PB GPM GP 

CO2      

0 to 20 days* 60 108 85 85 

20 to 60 days 16 16 19 16 

60 to 120 days 7 9 9 19 

120 to 150 days 1 1 1 2 

Total CO2 (kg (ton wet waste treated)
-1

) 84 134 114 122 

Total CO2 (CO2-eq (ton wet waste 

treated)
-1

) 84 134 114 122 

     

CH4 (0 to 20 days) 

Total CH4 (kg CO2-eq (ton wet waste 

treated)
-1

) 

nd 

- 

nd 

- 

nd 

- 

0.002 

0.05 

     

N2O     

0 to 20 days** 0.135 0.065 0.184 0.181 

20 to 60 days 0.289 0.150 0.274 0.017 

60 to 120 days 0.032 0.022 0.051 0.228 

120 to 150 days 0.002 0.001 0.001 0.002 

Total N2O (kg (ton wet waste treated)
-1

) 0.458 0.238 0.510 0.428 

Total N2O (kg CO2-eq (ton wet waste 

treated)
-1

) 142 74 158 133 

     

Total GGE (kg CO2-eq (ton wet waste 

treated)
-1

) 226 208 272 255 

WB – wood bin; PB – plastic bin; GPM- mixed ground pile; GP- unmixed ground pile; 

CO2 - carbon dioxide; CH4 –methane; N2O - nitrous oxide; nd – not detected. The GGE 

impact of CH4 and N2O are assumed to be 21 and 310 times higher than CO2.  

* Values estimated from regression Equations (4, 5, 6); all other values were measured.  

** Values estimated from regression Equations (7, 8 and 9); all other values were 

measured.  
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Figure 7.1 Experimental home composting systems (a) wood bin, (b) plastic bin, (c) 

ground pile. The static gas collection chamber used to measure gaseous emissions (d).  
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Figure 7.2 Temperature regime at the centre of compost mass for all four 

experimental home composting systems against ambient temperature. All 

composters were filled at once (batch fed) and mixed weekly except for the 

unmixed ground pile (GP).  
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Figure 7.3 Typical trend of gas concentrations obtained in the closed chamber placed 

over the compost materials: (a) oxygen for the wood bin at 50 days; (b) carbon dioxide 

for the wood bin after 50 days; (c) nitrous oxide for the wood bin after 50 days; and (d) 

methane for the unmixed ground pile on day 15. 
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Figure 7.4 Measured emissions of CO2 and N2O from all four experimental home 

composting systems (HC) over 150 days: (a) carbon dioxide, CO2; and (b) nitrous oxide, 

N2O. Emissions of CH4 between days 15 to 150 were below the detection threshold. Y-bars 

indicate the standard deviations (n=2).   
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Figure 7.5  Loss of organic matter (OM) over time for the compost of all four 

home composting systems estimated from Equation (2), based on the initial 

mass of organic matter (OMi). 
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Figure 7.6 Loss of total carbon (TC) (a) and total nitrogen (TN) (b) over time for 

the compost of all four home composting systems estimated using Equation.  
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Figure 7.7 Greenhouse gas emissions (GGE) from the compost of all four home composting  

                  systems.  

Note: The CH4 and N2O global warming potential are 21 and 310 times higher than that of CO2  

respectively, based on 100 years of observations (US EPA, 2005; Friends of the Earth, 2000). 
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Chapter 8 

General conclusion 

8.1 General conclusion 

The growing urbanization and economic activities create tremendous pressure on 

municipal solid waste (MSW) management systems by producing remarkable amounts of 

organic waste (OW) in the urban centres. The OW not properly managed may have 

affects both environment and human health. The land based disposal systems of MSW 

along with OW use limited land resources. Therefore, management of MSW along with 

its organic fraction is a great concern for the modern urban centres.  

The economic situation of a country highly influences of growth of urban 

population and MSW production and its composition. Countries with higher economic 

activities generate higher amounts of OW as a fraction of MSW mainstream with higher 

percentage of urban population. Considering environmental, economic and social 

pressure, European Union (EU) and Canada have promulgated and implemented 

legislation for waste management on the concept of hierarchy of reduce, reuse, recycle 

and landfill as the last option. The EU landfill directive 1999 set a  target of 65% 

biodegradable waste diversion from landfilling by 2016. The diverted OW need to be 

treated and recycled with minimal environmental as well as economic burdens. The 

onsite treatment (home and community composting) of OW offers the following 

advantages as compared to landfilling and centralized composting facilities: 

(i) onsite treatment of OW rather than disposed in landfills and treating at centralized 

facilities reduces environmental as well as economic pressure of MSW management 

systems and saves limited land; and 
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(ii)  onsite treatment of OW can be considered one of the viable options as an alternative 

to landfilling and centralized composting facilities.   

However, the shift of MSW management systems from landfill disposal to 

resource recovery requires technological input, population participation, compost quality 

assurance and sufficient urban gardens to divert the mass produced. The composting 

process and quality of composted product depends on the initial compost mixture 

formulation, design type and management of home composting systems (HC). The study 

of commonly used HC design type and management practices suggested that the home 

composting of OW produces stable and safe composted product that can be used for soil 

amendment as well as eliminates emissions resulting from transportation with the 

following conclusion: 

 (i) batch fed ground pile and plastic bin performed best, quickly produced thermophilic 

temperatures lasting long enough to sanitize the compost with the lowest level of 

parasites and pathogens and the least odours; 

(ii) The weekly fed composters with larger amount of waste input produced thermophilic 

temperature; 

(iii) urban residents managed HC demonstrated no impact of the temperature regime 

likely because clean organic waste was fed to the HC; 

(iv) in terms of  trace metals, polycyclic aromatic hydrocarbons (PAHs) homeowners 

must be careful not to apply herbicides or larger amount of fertilizers on their lawns if the 

grass clippings are to be added to HC; and 



 

 210 

 

(v) the plastic bin demonstrated the lowest level of greenhouse gas emission (GGE) 

compared to wood bin and ground piles, because of the top and bottom location of its 

perforations, enhancing convective aeration; 

Finally, the information needs to be disseminated to the stakeholders, the success 

of onsite treatment and recycling of OW depend on their awareness and activities.  

 

8.2 Contributions to knowledge 

Based on the scientific objectives of this project, the research provided the 

following demonstrations as contributions to knowledge: 

(i) home composting systems and community centres offer an environmental and 

economic advantages as compared to landfilling and centralized composting facilities; 

 (ii) the best home composting system has perforations located at its top and bottom, to 

enhance convective air flow; ground piles can be just as effective as plastic or wooden 

boxes with perforations providing good convective aeration; under these conditions and 

their loading of at least 10 kg of organic waste per week, thermophilic temperatures can 

be reached;   

(iii) home composting of source separated OW generally offers safer  composted product 

however, in terms of heavy metals and polycyclic aromatic hydrocarbons (PAHs) 

homeowners must be careful in applying the righ amount of garden herbicides and 

fertilizers on their lawns if grass clippings are to be added to HC.  

(iv) the plastic bin with perforations located at its top and bottom, to enhance convective 

airflow, produced lowest level of greenhouse gas emissions (GGE).  
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8.3 Future research direction 

The suggested future research work is recommended: 

(i) daily measurement (especially during active composting stage) of greenhouse gas  

emissions (GGE) from HC is recommended for further verification of GGE factors of 

home composting systems; 

 (ii) further study of odorous compounds and ammonia volatilization is suggested; 

(iii) leachate production and its possible use as liquid fertilizer need to be examined; 

 (iv) study of community composting centre such as composting process, quality of 

composted product, GGE, leachate production is suggested; 

(v) further study of MSW generation, composition, environmental and economic 

consequences for high, medium and low economic situations with different possible 

management scenarios is highly recommended for development of effective future MSW 

management systems; and 

(vi) the study of the fate of compost after land application need to be assessed for 

complete picture of environmental issues. 
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