
HAL Id: tel-02605169
https://hal.inrae.fr/tel-02605169

Submitted on 16 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Seasonal streamflow forecasting for reservoir
management

Louise Crochemore

To cite this version:
Louise Crochemore. Seasonal streamflow forecasting for reservoir management. Environmental Sci-
ences. Doctorat AgroParisTech, 2016. English. �NNT : �. �tel-02605169�

https://hal.inrae.fr/tel-02605169
https://hal.archives-ouvertes.fr


Doctorat AgroParisTech
�Ecole doctorale G�eosciences, Ressources Naturelles et Environnement

Th�ese

pour obtenir le grade de docteur d�elivr�e par

l'Institut des Sciences et Industries
du Vivant et de l'Environnement

(AgroParisTech)

Sp�ecialit�e : Hydrologie

pr�esent�ee et soutenue publiquement par

Louise Crochemore

le 29 Avril 2016

Seasonal stream�ow forecasting
for reservoir management

Co-directeur de th�ese : Vazken Andr�eassian

Co-directrice de th�ese : Maria-Helena Ramos

Jury

Mme Sandrine ANQUETIN CNRS-LTHE, Grenoble, France Rapporteure

Mme Marie-Am�elie BOUCHER UQAC, Chicoutimi, QC, Canada Rapporteure

Mme Flavie CERNESSON TETIS-AgroParisTech, Montpellier, France Examinatrice

Mme Florence HABETS METIS-UPMC, Paris, France Examinatrice

M. Micha WERNER UNESCO-IHE, Delft, Pays-Bas Examinateur

M. Aldo PENASSO IAV, La Roche Bernard, France Invit�e

AgroParisTech

Irstea, Unit�e de recherche Hydrosyst�emes et Bioproc�ed�es

1 rue Pierre-Gilles de Gennes, CS 10030, 92761 Antony Cedex, France





Remerciements

Ce manuscrit et ces trois ann�ees de th�ese n'auraient pas �et�e les m�emes sans un certain

nombre de personnes que je souhaite remercier ici.

Avant tout, je souhaite remercier Maria-Helena Ramos qui a supervis�e ces travaux de

th�ese et qui m'a beaucoup conseill�ee tout au long du chemin. Merci de m'avoir form�ee

au monde de la recherche comme tu l'as fait, merci de m'avoir pouss�ee �a d�epasser mes

limites, et merci de m'avoir ouvert autant de portes. Je souhaite aussi remercier Vazken

Andr�eassian, en tant que co-directeur de th�ese, et Charles Perrin, en tant qu'instigateur de

la collaboration avec l'IAV. Merci �a tous les deux de m'avoir fait d�ecouvrir l'hydrologie, de

m'avoir donn�e mes premi�eres chances dans l'�equipe et merci pour tout ce que vous m'avez

appris tout au long de ces belles ann�ees.

Deux personnes ext�erieures �a Irstea ont aussi �et�e tr�es importantes pour cette th�ese.

Je pense d'abord �a Aldo Penasso de l'IAV qui a pris le temps de partager son exp�erience

du barrage d'Arzal et qui m'a re�cue �a plusieurs reprises au sein de l'IAV. J'en pro�te

pour remercier les membres de l'IAV que j'ai rencontr�es �a ces occasions et avec qui j'ai pu

discuter, notamment Jean-Pierre Arrondeau. Je pense ensuite �a Florian Pappenberger qui

a jou�e un r�ole important dans l'orientation scienti�que de la th�ese et qui a toujours �et�e

encourageant. Florian nous a notamment permis d'utiliser les pr�evisions saisonni�eres du

CEPMMT et m'a donn�e l'opportunit�e de passer deux semaines au sein du CEPMMT. Un

grand merci �a l'�equipe �a ECMWF pour son accueil �a chaque fois chaleureux, notamment

Fredrik, Louise, Ervin, Rebecca, Francesca et Callum.

Je souhaite remercier les membres du jury d'avoir accept�e d'�evaluer ce travail de th�ese,

ainsi que pour les questions et discussions le jour de la soutenance. Je remercie �egalement

les membres du comit�e de pilotage: �Eric Sauquet, David Dorchies et Matthieu Le Lay pour

leurs conseils sur l'orientation de la th�ese.

Les s�ejours �a l'IAV n'auraient pas �et�e les m�emes sans nos partenaires du WVER dans le

cadre du projet DROP: Herbert, Christo�, Antje et Evelyn, merci pour votre accueil dans

l'Eifel-Rur et ses �inspection galleries�. Merci aussi aux autres partenaires du projet DROP.

�A Irstea, j'aimerais remercier les �equipes administrative et technique qui nous aident

au quotidien, en particulier Nathalie et Roger, sans oublier Sylvain, Laurence et Elisabeth.

Je souhaite remercier l'�equipe Hydro d'Irstea Antony dans son ensemble. Je n'aurais pas

pu imaginer un meilleur cadre pour faire cette th�ese. C'est gr�ace �a chacun d'entre vous,

que vous y soyez actuellement, que vous en soyez partis ou que vous n'y soyez rest�es que

le temps d'un �et�e. Un grand merci �a Carina, Guillaume, Pierre, Olivier et Alban pour

leurs conseils et encouragements, pour les trajets dans ce merveilleux RER C, les soir�ees



ii

brassantes, et la mousse au chocolat (chacun se reconna��tra). Laure, fantastique co-bureau,

dans le calme comme dans la temp�ete, merci pour Tout. Julie, formidable colocataire et

coll�egue, ton entrain et ton interception de balle de tennis sont sans pareil. Andrea et

Carine, ces temps sont di�ciles pour vous, merci �a tous les deux d'avoir �et�e pr�esents dans

cette p�eriode si �etrange qu'est la r�edaction. Sur cette note, j'en pro�te pour souhaiter le

meilleur aux suivants: Ang�elica, Philippe, C�edric, L�eonard, Sylvia, Morgane et Manon.

Merci aux �anciens�, comme le dirait si bien Andrea, qui ont montr�e la voie: Ioanna, Bahar,

Laurent, Fran�cois, Florent, Damien, Pierre B., Claire, Marine, Mathilde, Annie, Pierre-

Yves et Raji et Dimitri. Merci aussi �a l'ensemble de l'hydrologie sociale et �a l'�equipe de

Mamane. Et merci �a ceux sans qui le b�atiment Lavoisier et les pauses sportives n'auraient

pas �et�e aussi conviviales: Violaine, Nastassia, Laetitia, Carolina, Mathilde, Marine, Hajer

Douidoui, C�ecile, Olivier C., Sylvain, Simon S., Thomas, Simon P. , sans oublier Captain

Valou.

En�n, �a ceux qui ont suivi du d�ebut jusqu'�a la �n mon parcours sinueux et tumultueux

au long de ces trois ann�ees, �a ma famille, �a Marilyn, mille mercis.



R�esum�e

Les pr�evisions saisonni�eres de d�ebits peuvent favoriser la gestion des risques dans de nom-

breux secteurs, tels que l'approvisionnement en eau potable, la production hydro�electrique

ou la gestion de r�eservoirs multi-usage. Leur usage pour la prise de d�ecision en contexte

de risque n�ecessite de quanti�er les incertitudes �a longue �ech�eance. Celles-ci peuvent par

exemple �etre communiqu�ees �a l'utilisateur via des outils d'�evaluation des risques. Cepen-

dant, l'impl�ementation des pr�evisions saisonni�eres rencontre encore des obstacles comme la

qualit�e actuelle des pr�evisions, ou la di�cult�e de traduire l'information saisonni�ere pour les

besoins op�erationnels.

L'objectif de cette th�ese est de faire progresser les connaissances sur la pr�evision sai-

sonni�ere pour la gestion de r�eservoirs multi-usage. Dans un premier volet, les travaux ont

�evalu�e la qualit�e des pr�evisions saisonni�eres de pluies et de d�ebits dans seize bassins fran�cais.

De nouvelles m�ethodes de pr�evision des d�ebits ont �et�e propos�ees et test�ees dans ces bassins,

notamment pour la pr�evision des �etiages. Un deuxi�eme volet est consacr�e aux pr�evisions

saisonni�eres de d�ebits pour la gestion de r�eservoirs. Un outil d'�evaluation des risques de

p�enurie d'eau dans le r�eservoir d'Arzal, en Bretagne, a �et�e d�evelopp�e et le r�ole des pr�evisions

saisonni�eres dans la gestion de r�eservoirs en contexte de risque a �et�e analys�e.

Dans le premier volet, nous avons montr�e que la correction des biais mensuels des

pr�evisions saisonni�eres du CEPMMT permet d'am�eliorer la �abilit�e des pr�evisions de d�ebits,

et d'harmoniser les performances obtenues dans les seize bassins. Plusieurs m�ethodes de

pr�evision des d�ebits, bas�ees sur les pr�evisions saisonni�eres du CEPMMT et sur les donn�ees

historiques de pr�ecipitation et de d�ebit, ont ensuite �et�e compar�ees. Un conditionnement

des donn�ees historiques �a partir des pr�evisions de pr�ecipitations a permis de combiner la

�abilit�e des donn�ees historiques et la �nesse des pr�evisions m�et�eorologiques. Ces m�ethodes

permettent de pr�evoir les �etiages de mani�ere �able et peuvent aider �a pr�evoir des �ev�enements

extr�emes de s�echeresse.

Le deuxi�eme volet a permis le d�eveloppement d'un outil d'�evaluation des risques en

contexte de basses eaux pour le cas du r�eservoir d'Arzal. Le risque de ne pouvoir garantir

la ressource en eau pour tous les usages et de devoir changer de strat�egie de gestion pendant

la saison estivale est quanti��e �a partir de pr�evisions saisonni�eres d'apports et d'un mod�ele de

bilan du r�eservoir. En�n, un jeu de r�ole a �et�e d�evelopp�e pour mieux comprendre comment

l'information saisonni�ere peut in�uer la prise de d�ecision en contexte de gestion de r�eservoirs.

Ce jeu a mis en �evidence l'enjeu mais aussi la di�cult�e d'incorporer l'information �a longue

�ech�eance dans le processus de d�ecision.





Abstract

Seasonal forecasts can enhance risk assessment in a variety of applications ranging from

multi-purpose reservoir management, drinking water supply and preparedness to droughts.

Risk assessment tools, for instance, can bene�t from seasonal probabilistic forecasting to

support risk-based decision-making. However, the implementation of seasonal forecasts still

faces impediments, including the quality of seasonal forecasts and the di�culty to tailor

seasonal products to end-users' needs.

This thesis investigates seasonal stream�ow forecasting for multi-purpose reservoir man-

agement. We �rst assess the quality of seasonal precipitation and stream�ow forecasts in

sixteen French catchments. Stream�ow forecasting systems are proposed and tested in

these catchments, and their potential is illustrated in low-�ow and drought risk forecasting.

Secondly, seasonal stream�ow forecasts are applied in reservoir management. A risk assess-

ment tool is developed to forecast risks of water shortages in the Arzal reservoir, in Brittany,

France, and the role of seasonal forecasts for risk-based decision-making is assessed.

First, we showed that a bias correction of monthly biases in seasonal precipitation fore-

casts could increase the reliability of stream�ow forecasts and harmonize their performances

in the sixteen catchments. We then compared several stream�ow forecasting systems, based

either on ECMWF seasonal forecasts or on historical stream�ows and precipitations. A con-

ditioning of historical data based on precipitation forecasts allowed to take advantage of the

reliability of historical data and of the sharpness of meteorological forecasts. The proposed

methods provided reliable low-�ow forecasts and showed a good ability to forecast drought

events.

Secondly, a low-�ow risk assessment tool was developed for the case of the Arzal reser-

voir. The seasonal stream�ow forecasts used as input to a water balance model of the reser-

voir allowed us to quantify the risks of water shortages in summer. Lastly, a role-playing

game was developed to better understand the role of long-term probabilistic information

for decision-making in reservoir management.





R�esum�e substantiel

Introduction

Les pr�evisions saisonni�eres de d�ebits peuvent favoriser la gestion des risques dans de nom-

breux secteurs, tels que l'approvisionnement en eau potable, la production hydro�electrique

ou la gestion de r�eservoirs multi-usage. Leur usage pour la prise de d�ecision en contexte

de risque n�ecessite de quanti�er les incertitudes �a longue �ech�eance. Celles-ci peuvent par

exemple �etre communiqu�ees �a l'utilisateur via des outils d'�evaluation des risques. Cepen-

dant, l'impl�ementation des pr�evisions saisonni�eres rencontre encore des obstacles comme la

qualit�e actuelle des pr�evisions, ou la di�cult�e de traduire l'information saisonni�ere pour les

besoins op�erationnels.

La pr�evisibilit�e peut �etre d�e�nie comme la limite de notre capacit�e �a pr�evoir un �etat futur

�a partir de la connaissance des conditions actuelles (Lorenz, 1984; Kirtman et al., 2013).

La pr�evisibilit�e d�epend du processus naturel et de la localisation g�eographique, mais aussi

de notre capacit�e �a repr�esenter le syst�eme physique (Bl�oschl and Zehe, 2005). Alors que

les ph�enom�enes m�et�eorologiques sont di�cilement pr�evisibles au-del�a de deux semaines �a

cause de la nature chaotique de l'atmosph�ere, les processus climatiques �a plus grande �echelle

peuvent aider �a pr�evoir jusqu'�a des horizons de plusieurs ann�ees. Les informations provenant

de ces syst�emes peuvent ensuite am�eliorer les performances des pr�evisions hydrologiques,

d'autant que l'inertie du bassin versant �ltre les erreurs �a hautes fr�equences.

Les pr�evisions hydrologiques peuvent aider la prise de d�ecision, notamment pour la

gestion de r�eservoirs d'eau. La gestion de barrage est au cœur des strat�egies d'optimisation

de la ressource en eau. Le cas particuli�erement complexe des barrages multi-usage requiert

�a la fois une bonne gestion et des outils sophistiqu�es d'aide �a la d�ecision (Castelletti et al.,

2008). Le processus de d�ecision et l'�evaluation du risque peuvent notamment b�en�e�cier de

pr�evisions d'apports aux r�eservoirs. En contexte de basses eaux ou s�echeresse, lorsque la

gestion vise �a pr�eserver la ressource en eau et garantir ses di��erents usages, des pr�evisions

�a longue �ech�eance peuvent aider �a optimiser la gestion et prendre des mesures pr�eventives

(Georgakakos and Graham, 2008; Regonda et al., 2011).

La th�ese s'est d�eroul�ee dans le cadre du projet DROP Interreg IVB qui visait �a aider

les r�egions du Nord-Ouest de l'Europe �a mieux anticiper les p�eriodes de s�echeresses et de

manque d'eau.Ce travail de th�ese a �et�e motiv�e par les besoins des gestionnaires du barrage
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d'Arzal, un des sites pilotes du projet, en outils de pr�evision des �etiages pour venir en appui

�a la gestion. Un objectif de la th�ese est d'�etudier la qualit�e des pr�evisions saisonni�eres et

leur apport en contexte de basses eaux et s�echeresses pour la gestion de r�eservoir. La

recherche aborde quatre questions: (1) Quel est l'impact de corriger le biais des pr�evisions

de pr�ecipitations issues de mod�eles climatiques sur les pr�evisions de d�ebits ? (2) Comment

utiliser les sorties de mod�eles climatiques pour am�eliorer les m�ethodes traditionnelles de

pr�evision des d�ebits saisonniers bas�ees sur les donn�ees historiques ? (3) Quel syst�eme de

gestion des �etiages pour le r�eservoir d'Arzal ? (4) Comment les d�ecisionnaires exploitent

l'information �a long terme pour la gestion s�equentielle de r�eservoir multi-usage ?

Apr�es une pr�esentation des bassins versants, des donn�ees hydrom�et�eorologiques, du

mod�ele hydrologique et de son �evaluation, nous �evaluons la qualit�e des pr�evisions saisonni�eres

de pr�ecipitations du CEPMMT (Centre Europ�een pour les Pr�evisions M�et�eorologiques �a

Moyen Terme) et de d�ebits associ�ees. Huit m�ethodes de correction des biais sont com-

par�ees et huit conditionnements des donn�ees historiques �a partir d'indices de pr�ecipitations

sont �evalu�es. Ensuite, un outil d'�evaluation des risques de p�enurie d'eau est d�evelopp�e pour

le r�eservoir d'Arzal, et le r�ole des pr�evisions saisonni�eres dans la prise de d�ecision pour la

gestion de r�eservoirs est analys�e. En�n, les conclusions de la th�ese sont pr�esent�ees.

1. Bassins versants et jeux de donn�ees

Figure R1: Localisation des 17 bassins ver-

sants �etudi�es. Les seize bassins versants

sont num�erot�es du plus petit bassin au plus

�etendu. Le bassin de la Vilaine est indiqu�e

par la lettre A.

Dans la th�ese, un premier jeu de seize

bassins versants a �et�e utilis�e pour �evaluer les

performances des pr�evisions saisonni�eres de

pr�ecipitations pour la pr�evision des d�ebits en

France. Ces bassins pr�esentent une vari�et�e de

conditions hydrologiques et climatiques et ne

sont que peu in�uenc�es par les activit�es hu-

maines et par la neige. Ces bassins disposent

de longues s�eries de d�ebits observ�es (36 �a 52

ann�ees) provenant de la Banque HYDRO. Les

aire de ces bassins varient de 377 km2 �a 4320

km2. Fig. R1 pr�esente la localisation de ces

bassins.

Le bassin versant de la Vilaine, situ�e en Bre-

tagne, a ensuite permis de se concentrer sur

les apports au r�eservoir d'Arzal situ�e en aval

(cf. Fig. R1). Le bassin draine une surface

de 10 000 km2, majoritairement occup�ee par

des terres agricoles. �A son embouchure, la Vi-

laine se jette dans le r�eservoir d'Arzal puis dans
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l'Oc�ean Atlantique. Le barrage d'Arzal est g�er�e par l'IAV (Institution d'Am�enagement de

la Vilaine). Initialement construit pour arr�eter les mar�ees qui contribuaient aux inonda-

tions du bassin aval de la Vilaine, le barrage cr�ee un r�eservoir d'eau douce permettant

d'approvisionner la r�egion en eau potable. Les apports au r�eservoir sont estim�es �a partir

des d�ebits observ�es �a la station de Rieux, au Pont de Cran. Le d�ebit moyen journalier de

la Vilaine est de 60 m3/s.

Pour l'ensemble de ces bassins, les donn�ees journali�eres de pr�ecipitations et temp�eratures

proviennent de la r�eanalyse SAFRAN de M�et�eo-France (Quintana-Segu�� et al., 2008; Vi-

dal et al., 2010). Ces donn�ees sont disponibles depuis 1958 �a une r�esolution de 8x8 km.

L'�evapotranspiration potentielle est calcul�ee �a partir des temp�eratures et de la formule

d'Oudin (Oudin et al., 2005). Des mesures locales de pr�ecipitations pour le r�eservoir d'Arzal

ont aussi �et�e collect�ees aupr�es des gestionnaires du barrage.

Les pr�evisions saisonni�eres de pr�ecipitations journali�eres du Syst�eme 4 du CEPMMT

ont �et�e utilis�ees tout au long de la th�ese. Ces pr�evisions �emises le 1er de chaque mois

comprennent 15 ou 51 membres et couvrent la p�eriode de 1981 �a 2010 avec une r�esolution

de 0.7◦ (Molteni et al., 2011). Dans le cadre de la th�ese, les pr�evisions sont agr�eg�ees �a

l'�echelle du bassin versant et seuls les 90 premiers jours de la pr�evision sont utilis�es.

2. Mod�elisation et pr�evision hydrologique
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Figure R2: Structure du mod�ele GR6J (mod-

i��e de Pushpalatha et al., 2011).

Le mod�ele hydrologique utilis�e dans la th�ese

est le mod�ele conceptuel journalier GR6J

d�evelopp�e �a Irstea pour les �etiages (Push-

palatha et al., 2011). Les entr�ees du mod�ele

sont les pr�ecipitations et l'�evapotranspiration

potentielle sur la surface du bassin versant, et

sa sortie est le d�ebit �a l'exutoire. Le mod�ele est

compos�e d'un r�eservoir de production, de deux

hydrogrammes unitaires et de deux r�eservoirs

de routage (Fig. R2).

Les six param�etres du mod�ele sont cal�es

sur l'ensemble de la chronique d'observations

disponibles, �a laquelle on soustrait une ann�ee

utilis�ee pour valider le jeu de param�etres.

Cette proc�edure est r�ep�et�ee pour chaque ann�ee

de la chronique. Trente jeux de param�etres

sont obtenus pour la p�eriode de 1981 �a 2010

dans chancun des seize bassins. Dix sont

obtenus pour la p�eriode de 2003 �a 2012 dans

le bassin de la Vilaine.
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Le mod�ele est cal�e �a l'aide: (1) du KGE (Kling-Gupta e�ciency ; Gupta et al., 2009)

appliqu�e �a la racine des d�ebits (KGErQ) pour mettre l'accent sur les d�ebits m�edians et

forts, et (2) du KGE appliqu�e �a l'inverse des d�ebits (KGEiQ) pour mettre l'accent sur

les bas d�ebits. La valeur optimale de ces crit�eres est 1. Les performances en calage sont

globalement satisfaisantes avec des valeurs de KGErQ entre 0.88 et 0.97, et des valeurs de

KGEiQ entre 0.46 et 0.94.

Le mod�ele est ensuite valid�e �a l'aide des m�emes crit�eres sur les basses eaux et les d�ebits

m�edians �a forts. Les performances du mod�ele cal�e avec KGErQ sont excellentes sur les

d�ebits m�edians. En revanche, de bonnes performances ne sont pas assur�ees dans tous les

bassins sur les bas d�ebits. Un calage sur les bas d�ebits permet d'atteindre des performances

satisfaisantes entre 0.41 et 0.94 en basses eaux dans tous les bassins. De plus, le calage sur

les bas d�ebits assure des performances sup�erieures �a 0.54 sur les d�ebits m�edians �a forts. Le

biais des simulations en terme de volumes mensuels est entre -0.02 et 0.04 avec un calage

sur les d�ebits m�edians, et entre -0.14 et 0.12 �a l'exception du bassin 8 o�u un biais de -0.94

est obtenu avec un calage sur les bas d�ebits. Dans le bassin de la Vilaine, le mod�ele cal�e

sur les bas d�ebits atteint en validation un KGErQ de 0.90, un KGEiQ de 0.76 et un biais

de -0.04. Fig. R3 corrobore ces valeurs satisfaisantes avec les r�ecessions simul�ees de Mai �a

Octobre de 2005 �a 2012.

En pr�evision, les �etats du mod�ele sont d'abord initialis�es sur l'ann�ee pr�ec�edant la date

de pr�evision. Les �etats des r�eservoirs de routage sont ensuite ajust�es �a partir du dernier

d�ebit observ�e. En�n le mod�ele est forc�e avec des sc�enarios de pr�ecipitations pr�evues et

d'�evapotranspiration. Ici, le sc�enario d'�evapotranspiration est syst�ematiquement l'�evapo-

transpiration potentielle moyenne interannuelle. Les sc�enarios de d�ebits ainsi obtenus for-

ment une pr�evision d'ensemble o�rant une repr�esentation des incertitudes.

Figure R3: D�ebits observ�es et simul�es avec GR6J et pr�ecipitations observ�ees dans le bassin de la

Vilaine �a Rieux, de Mai �a Octobre et de 2005 �a 2012.
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3. �Evaluation des pr�evisions

Dans cette th�ese, les performances des syst�emes de pr�evision sont �evalu�ees �a l'aide de

plusieurs crit�eres num�eriques testant la pr�ecision, la �abilit�e, la �nesse, les performances

globales et la capacit�e �a d�etecter des �ev�enements binaires des syst�emes.

Over-prediction

C
D

F
 o

f 
P

IT
 v

al
u

es

PIT values

Over-confident

Under-confident

Under-prediction

0

1

1

Figure R4: Interpr�etation du dia-

gramme de PIT (Laio and Tamea,

2007).

La pr�ecision d'une pr�evision correspond �a sa dis-

tance �a l'observation. Pour cela nous avons utilis�e

la pr�evision moyenne, et l'erreur moyenne absolue

(MAE) ou l'erreur quadratique moyenne (RMSE).

La �abilit�e repr�esente la coh�erence statistique en-

tre les fr�equences d'observations et les probabilit�es

pr�evues. Elle est repr�esent�ee �a l'aide du diagramme

de PIT (Probability Integral Transform; Fig. R4).

Une pr�evision parfaitement �able a un diagramme

confondu avec la diagonale 1:1. Le diagramme de

PIT peut donc �etre synth�etis�e par l'aire entre la di-

agonale 1:1 et la courbe que l'on cherche �a minimiser

(Renard et al., 2010).

La �nesse correspond �a la concentration de la dis-

tribution pr�edictive d'une pr�evision. Elle est �evalu�ee

par l'�ecart interquantile �a 90 %. Suivant Gneiting

et al. (2007), la �nesse n'est consid�er�ee comme crit�ere de performance qu'une fois la �a-

bilit�e assur�ee, i.e. entre deux syst�emes �ables, le plus �n est pr�ef�er�e.

L'erreur globale des pr�evisions est calcul�ee �a l'aide du CRPS qui �evalue l'erreur de

la distribution pr�edictive (Continuous Rank Probability Score; Hersbach, 2000). En�n, le

diagramme de ROC (Relative Operating Characteristics ; Mason and Graham, 1999) �evalue

la capacit�e d'un syst�eme �a d�etecter un �ev�enement d�e�ni par un seuil. L'aire sous la courbe

synth�etise le diagramme en une valeur num�erique que l'on cherche �a maximiser.

Les performances des syst�emes de pr�evision �evalu�ees par le MAE, l'aire du PIT, l'IQR

et le CRPS sont ensuite compar�ees �a des syst�emes de r�ef�erence dont les performances

sont consid�er�ees �standard�. Un syst�eme de r�ef�erence commun pour les pr�ecipitations est

la climatologie des pr�ecipitations. Dans le cas des d�ebits, l'ESP, i.e. la climatologie des

pluies utilis�ee en entr�ee du mod�ele hydrologique, ou la climatologie des d�ebits sont souvent

utilis�es. En�n, on peut aussi utiliser une version ant�erieure, avant modi�cation, du syst�eme

de pr�evision pour mesurer les apports d'une m�ethode. Dans ce dernier cas, on regarde

l'horizon de pr�evision maximal pour lequel les performances du syst�eme sont am�elior�ees

(Useful Forecasting Lead time; Nicolle et al., 2014).
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Figure R5: Biais des pr�ecipiations dans les bassins 2, 4, 7 et 14, sur la p�eriode 1981-2010, sur

l'ann�ee enti�ere et pour chaque mois de l'ann�ee, et pour les horizons 31 �a 60 jours. Le graphe en

haut �a gauche repr�esente le biais avant correction. Les autres repr�esentent les biais restants apr�es

correction avec chacune des huit m�ethodes.

P
récip

itatio
n

s
D

éb
its

Avant correction Après EDMD-m

PIT values PIT values

Figure R6: Diagrammes de PIT des pr�ecipitations et d�ebits pour la saison Juin-Juillet-Ao�ut et un

horizon de 30 jours. Chaque ligne correspond �a un bassin. Les lignes rouges correspondent aux

pr�evisions du Syst�eme 4, les lignes grises correspondent �a la climatologie des pluies ou �a l'ESP.
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4. Correction du biais des pr�evisions de pr�ecipitations pour am�eliorer

les performances des pr�evisions saisonni�eres de d�ebits

Dans ce chapitre, nous estimons la qualit�e de pr�evisions saisonni�eres de pr�ecipitations

et de d�ebits en France et explorons l'impact de la correction du biais des pr�evisions de

pr�ecipitations sur la qualit�e des pr�evisions de d�ebits.

Table R1: Abbr�eviation, calibration et description des huit

corrections du biais.

Abbr�e-

viation

Calibr�e

pour

Description

LS-y l'ann�ee Correction lin�eaire

LS-m chaque mois des valeurs mensuelles

EDM-y l'ann�ee Quantile-quantile de la distribution

EDM-m chaque mois empirique des donn�ees mensuelles

GDM-y l'ann�ee Quantile-quantile de la distribution

GDM-m chaque mois gamma des donn�ees mensuelles

EDMD-y l'ann�ee Quantile-quantile de la distribution

EDMD-m chaque mois empirique des donn�ees journali�eres

Dans un premier temps,

les pr�evisions saisonni�eres de

pr�ecipitations brutes (i.e., sans

correction du biais) du CEP-

MMT sont �evalu�ees pour pr�evoir

les d�ebits des seize bassins ver-

sants fran�cais de 1981 �a 2010.

Dans un second temps, le bi-

ais de ces pr�evisions de pr�eci-

pitations est �evalu�e et corrig�e �a

l'aide de huit m�ethodes de cor-

rection du biais pr�esent�ees dans

le Tableau R1. Les pr�evisions de

pr�ecipitations et de d�ebits obtenues �a l'aide des huit m�ethodes sont, �a leur tour, �evalu�ees. La

qualit�e des pr�evisions est caract�eris�ee en terme de �abilit�e, �nesse, pr�ecision et performance

globale. L'ensemble de r�ef�erence utilis�e pour l'�evaluation des pr�ecipitations est bas�e sur la

climatologie des pluies dans chaque bassin. L'ensemble de r�ef�erence pour �evaluer les d�ebits

est l'ESP qui utilise la climatologie des pr�ecipitations en entr�ee d'un mod�ele hydrologique.

Dans l'ensemble des bassins versants, les pr�evisions obtenues �a partir des pr�ecipitations

brutes du CEPMMT ont tendance �a �etre plus �nes mais moins �ables que celles obtenues

avec la m�ethode ESP. La qualit�e des pr�evisions d�epend fortement de la saison et du bassin

consid�er�e. Les biais observ�es en pr�ecipitation varient aussi de bassin en bassin, avec des biais

mensuels importants qui ont tendance �a se compenser sur l'ann�ee (Fig. R5). Par cons�equent,

seules les m�ethodes de correction du biais cal�ees s�epar�ement pour chaque mois de l'ann�ee

parviennent �a corriger simultan�ement les biais annuels et mensuels. Plus particuli�erement,

la correction lin�eaire simple et la correction quantile-quantile des pr�ecipitations journali�eres

minimisent le biais et apportent les meilleurs gains en performance.

La correction quantile-quantile des valeurs journali�eres est nettement sup�erieure pour

am�eliorer la �abilit�e des pr�evisions de pr�ecipitations et de d�ebits. De plus, cette correction

harmonise les performances entre bassins et saisons. En�n, les pr�evisions corrig�ees devien-

nent aussi �ables que les pr�evisions de la m�ethode ESP tout en restant plus �nes. Fig. R6

illustre l'impact de la correction quantile-quantile des valeurs journali�eres sur la �abilit�e

des pr�ecipitations et d�ebits de la saison Juin-Juillet-Ao�ut. Les pr�evisions de pr�ecipitations



xiv R�esum�e substantiel

corrig�ees pour la saison sont �ables. Les pr�evisions de d�ebits obtenues apr�es correction du

biais ont gagn�e en �abilit�e mais restent peu �ables pour la saison (une meilleure �abilit�e

est obtenue pour les autres saisons). Ceci sugg�ere qu'un post-traitement des pr�evisions de

d�ebits est n�ecessaire pour atteindre des pr�evisions de d�ebits �ables en �et�e.

En�n, nous avons regard�e l'impact relatif de la correction du biais sur les pr�ecipitations

et les d�ebits. Les gains sont moyenn�es sur l'ensemble des horizons de pr�evisions, de 10 �a

90 jours. L'id�ee est d'examiner comment une am�elioration des pr�evisions de pr�ecipitations

impacte les performances des pr�evisions de d�ebits. Le gain en �abilit�e est globalement

sup�erieur en pr�ecipitations qu'en d�ebits (Fig. R7). En�n, un gain en performance globale

des pr�ecipitations, m�eme faible, permet d'obtenir un gain plus important en d�ebit. Ceci

met en �evidence l'importance d'am�eliorer les performances des for�cages m�et�eorologiques

a�n d'am�eliorer les performances des pr�evisions saisonni�eres de d�ebits.
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Figure R7: Gains en performance obtenus en d�ebits gr�ace �a la correction du biais versus gains en

performance obtenus en pr�ecipitations, dans les bassins 2, 4, 7 et 14, pour chaque crit�ere et saison.

5. Pr�evision saisonni�ere des d�ebits en conditionnant les donn�ees

historiques avec des indices saisonniers de pr�ecipitations

Dans le chapitre pr�ec�edent, nous avons montr�e que la correction du biais des pr�evisions

saisonni�eres de pr�ecipitations du CEPMMT peut am�eliorer la qualit�e des pr�evisions de

d�ebits, produites �a l'aide d'un mod�ele hydrologique. Les pr�evisions de d�ebits obtenues �a par-

tir des pr�ecipitations corrig�ees sont �nes, mais restent peu �ables, en �et�e par exemple. Dans

ce chapitre, nous consid�erons d'autres m�ethodes dynamiques et statistiques de pr�evision

des d�ebits �a l'�ech�eance saisonni�ere exploitant les donn�ees historiques de pr�ecipitations ou

de d�ebits. Ces m�ethodes ont l'avantage d'�etre moins co�uteuses en ressources informatiques

et de produire des ensembles �ables, mais ne b�en�e�cient pas des informations sp�eci�ques

au jour de la pr�evision. L'objectif de ce chapitre est de conditionner ces m�ethodes de

pr�evision des d�ebits bas�ees sur les donn�ees historiques �a partir des pr�evisions corrig�ees dans

le chapitre pr�ec�edent, a�n d'am�eliorer la �nesse des pr�evisions bas�ees sur la climatologie.
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Figure R8: CRPSS, IQRSS et diagramme de

PIT des statistiques de pr�ecipitations pr�evues

par Syst�eme 4. L'ensemble de r�ef�erence est la

climatologie des pr�ecipitations.

Pour cela, des statistiques �a long-terme des

pr�evisions de pr�ecipitations du CEPMMT sont

utilis�ees pour s�electionner des ann�ees parmi les

pr�ecipitations et d�ebits disponibles. Les statis-

tiques utilis�ees sont bas�ees sur le cumul de

pr�ecipitations et le SPI (Standardized Precipita-

tion Index ) qui indique l'anomalie par rapport

�a la moyenne �a long terme des pr�ecipitations

ainsi que sa fr�equence. Ces statistiques sont

calcul�ees sur l'ensemble de l'horizon de trois

mois (e.g. SPI3) ou pour chacun des mois (e.g.

SPI1-1, SPI1-2, SPI1-3). Les ensembles bas�es

sur les donn�ees historiques de pr�ecipitations et

de d�ebits sont conditionn�es par rapport �a leur

proximit�e aux statistiques pr�evues par Syst�eme

4. L'int�er�et de la m�ethode est illustr�e en

Fig. R8. Les statistiques pr�evues par Syst�eme

4 sont �ables, o�rent des erreurs globales sim-

ilaires �a la climatologie des pr�ecipitations, et

sont plus �nes que la climatologie. Il est

donc attendu que le conditionnement a�ne les

sc�enarios pr�evus pour l'horizon de pr�evision.

La �nesse, la �abilit�e et les performances globales des ensembles produits sont �evalu�ees

dans le jeu de seize bassins versants de 1981 �a 2010. Ces ensembles sont ensuite compar�es

en fonction de leur capacit�e �a pr�evoir des �ev�enements en basses eaux, ainsi que des variables

d'int�er�et en �etiages telles que le nombre de jours ou le volume d�e�citaire sous un seuil de

basses eaux. En�n, les pr�evisions sont compar�ees �a l'aide d'un graphique d'�evaluation des

risques a�n d'illustrer ces di��erences de performances dans le cas de la s�echeresse de 2003

dans un bassin fran�cais.

Les r�esultats de l'�etude montrent que les s�elections bas�ees sur le SPI, et en particulier

le SPI calcul�e sur trois mois (SPI3), produisent des ensembles aux performances plus ho-

mog�enes entre bassins que les autres m�ethodes de s�election. Fig. R9 montre simultan�ement

les gains en �abilit�e et en �nesse des d�ebits obtenus en conditionnant les pr�ecipitations his-

toriques avec le SPI3 (ESP_SPI3). Les gains sont d�e�nis par rapport aux d�ebits obtenus

avec les pr�ecipitations de Syst�eme 4 d�ebiais�ees, et par rapport �a l'ESP. Les ensembles condi-

tionn�es sont majoritairement plus �ns que l'ESP, comme attendu. �A 10 jours, ces ensembles

sont plus �ables mais moins �ns que les d�ebits d�eriv�es de Syst�eme 4. Pour des horizons

plus lointains, les performances des ensembles conditionn�es se rapprochent de celles des

pr�evisions d�eriv�ees de Syst�eme 4. Par ailleurs, les pr�evisions construites sont �ables.
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Figure R9: Gains en �abilit�e et en �nesse des d�ebits obtenus �a partir des pr�ecipitations con-

ditionn�ees avec le SPI3, par rapport aux d�ebits obtenus avec les pr�ecipitations de Syst�eme 4

d�ebiais�ees (rouge), et �a l'ESP (gris), pour des horizons de 10, 30 et 90 jours.

Figure R10: Aires du PIT des pr�evisions de volume d�e�citaires sous le quantile 80% obtenues avec

cinq m�ethodes s�electionn�ees, pour trois horizons.

L'�evaluation de la discrimination des ensembles de pr�evision montre de bons r�esultats

pour tous les ensembles issus du mod�ele hydrologique (approche dynamique). De plus,

les pr�evisions conditionn�es permettent de pr�evoir le volume d�e�citaire sous le quantile �a

80% (d�ebit exc�ed�e par 80% des d�ebits de la chronique disponible) de mani�ere �able (cf.

Fig. R10). En�n, une application au cas de la s�echeresse de 2003 montre que les pr�evisions

s�electionn�ees peuvent aider �a pr�evoir des �ev�enements extr�emes de mani�ere plus pr�ecise en

terme de dur�ee et de volume d�e�citaire.

6. Outil d'�evaluation des risques en p�eriode d'�etiages pour le r�eservoir

d'Arzal

Dans les chapitres pr�ec�edents, nous avons �evalu�e la qualit�e des pr�evisions saisonni�eres de

d�ebits en France et illustr�e leur potentiel pour la pr�evision des �etiages. En e�et, les outils

d'�evaluation des risques peuvent tirer pro�t des pr�evisions �a long-terme a�n d'aider la

gestion de la ressource en eau ou la prise de d�ecision des l�achers de r�eservoirs.

Le barrage d'Arzal se situe �a l'embouchure de la Vilaine, juste avant qu'elle ne se d�everse
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Figure R11: Sch�ema de la partie avale du r�eservoir du r�eservoir d'Arzal, entre le Pont de Cran et

le barrage.
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Figure R12: Schema of the structure of the reservoir balance model at a given time step.

dans l'Oc�ean Atlantique (Fig. R11). Sa situation en fait une barri�ere entre l'eau sal�ee de

l'oc�ean et l'eau douce de la Vilaine, cr�eant une retenue d'eau douce de 50 Mm3. Cette

retenue est utilis�ee pour l'approvisionnement en eau potable et l'irrigation. De plus, le

barrage permet la navigation et la migration des poissons entre l'oc�ean et la rivi�ere. Le

r�eservoir a donc un r�ole cl�e dans la gestion de la ressource en eau, notamment dans le bassin

aval de la Vilaine. L'objectif de ce chapitre est de proposer un outil d'�evaluation des risques

en contexte de basses eaux pour le r�eservoir d'Arzal.

Gr�ace aux donn�ees des di��erentes entr�ees et sorties du r�eservoir d'Arzal (cf. Fig. R11)

disponibles de 2005 �a 2011, nous avons mis en place un mod�ele simple de bilan d'eau du

r�eservoir. Les �etapes du bilan �a partir des donn�ees de niveaux observ�es sont sch�ematis�ees

dans la Fig. R12. Les entr�ees du r�eservoir sont les apports de la Vilaine et les pr�ecipitations.

Les sorties comprennent l'eau �evacu�ee via les vannes et volets pour la gestion du r�eservoir,

via la passe �a poissons, l'�ecluse, les siphons, ainsi que l'eau pr�elev�ee pour l'eau potable, et

l'eau �evapor�ee.
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Figure R13: Volumes entrants et sortants cumul�es sur

la saison de Mai �a Octobre, de 2005 �a 2014. Les ann�ees

sont class�ees de la plus s�eche (2005) �a la plus humide

(2008) en terme d'apports.

Une analyse pr�eliminaire des donn�ees

hydrom�et�eorologiques et de gestion du

r�eservoir nous permet de mieux com-

prendre les strat�egies de gestion du

barrage et l'importance relative des

entr�ees et sorties du r�eservoir. Les

l�achers des vannes sont �etroitement li�es

aux apports (Fig. R13) et la gestion

est tr�es sensible aux apports de la Vi-

laine, m�eme au pas de temps jour-

nalier. Jusqu'en 2014, en ann�ee s�eche,

les volets �etaient pr�ef�er�es aux vannes

(Fig. R13). La strat�egie a �et�e modi��ee

depuis, de mani�ere �a �evacuer l'eau saline en fond de r�eservoir lors des l�achers de vanne.

Le mod�ele est utilis�e pour estimer le risque de ne pas pouvoir maintenir un niveau

minimum dans le r�eservoir entre Mai et Octobre. Pour �evaluer ce risque, des pr�evisions

saisonni�eres de d�ebits (ESP), �etudi�ees dans les chapitres pr�ec�edents, sont utilis�ees en entr�ee

du mod�ele de bilan. Les sorties des vannes et volets sont optimis�ees pour maintenir un

niveau objectif dans le r�eservoir, tandis que les sorties li�ees aux autres usages sont suppos�ees

constantes et maximales. Les pr�evisions de niveaux de r�eservoir ainsi obtenues nous per-

mettent d'identi�er le risque de franchir le seuil minimal dans le r�eservoir et de d�eterminer

le nombre de jours et le nombre de membres de la pr�evision d'ensemble atteignant ce seuil.

Ces variables d'int�er�et pour la gestion du risque sont r�eunies dans un graphique d'�evaluation

du risque (Fig. R14). Les graphiques ont �et�e produits r�etrospectivement pour les p�eriodes

de basses eaux de 2005 �a 2010 a�n d'�evaluer leur potentiel en conditions op�erationnelles.

Figure R14: Graphes du risque d'atteindre le seuil minimal de gestion pour la saison �a venir. La

dur�ee pr�evue sous le seuil est indiqu�ee verticalement, et les mois de la saison horizontalement. Le

graphe inf�erieur indique la probabilit�e de revenir �a un niveau sup�erieur au niveau minimum au

cours du mois. L'animation pr�esente les pr�evisions issues du 1er Mai au 1er Septembre.
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Figure R15: Sensibilit�e du nombre de jours

sous le seuil de gestion aux usages et au

niveau objectif, dans le cas de la s�echeresse

de 2005.

En�n, une analyse de sensibilit�e est conduite

a�n de d�eterminer les param�etres du bilan qui in-

�uent sur le risque pr�evu (cf. Fig. R15). Ici, le

risque est repr�esent�e par le nombre de jours sous

le seuil minimal de gestion et est calcul�e pour

l'�et�e 2005. L'analyse montre clairement que le

risque est tr�es sensible au niveau maintenu dans

le r�eservoir et tr�es peu sensible aux pr�el�evements

pour l'eau potable. De prime abord le risque est

peu sensible aux ouvertures de l'�ecluse. En r�ealit�e,

les ouvertures d'�ecluse sont �etroitement li�ees au

fonctionnement des siphons auquels le risque est

bien plus sensible. De m�eme le nombre de jours

pr�evus sous le seuil varie rapidement avec l'eau

perdue via la passe �a poissons. Cette analyse

est en accord avec la gestion actuelle. En cas de

s�echeresse, la premi�ere action est de limiter les ou-

vertures d'�ecluses, puis de fermer la passe �a poissons.

7. Une exp�erience de prise de d�ecision pour la gestion de r�eservoir

en contexte de risque

Les pr�evisions probabilistes ou d'ensemble, parce qu'elles prennent en compte les incerti-

tudes de pr�evision, peuvent aider la prise de d�ecision en contexte de risque. Des pr�evisions

de d�ebits aux �ech�eances mensuelles ou saisonni�eres sont d�ej�a utilis�ees op�erationnellement en

gestion de r�eservoirs, pour des objectifs tels que la r�epartition de la ressource, l'optimisation

des l�achers d'eau ou l'anticipation du risque s�echeresse. Dans le chapitre pr�ec�edent, nous

avons notamment propos�e un outil d'�evaluation des risques en p�eriode de basses eaux pour

le barrage d'Arzal. Alors qu'il existe de nombreuses �etudes cherchant �a estimer l'apport

des pr�evisions hydrom�et�eorologiques d'ensemble pour de telles applications, peu �etudient

leur r�ole pour la prise de d�ecision. Les jeux de r�oles peuvent s'av�erer tr�es utiles pour mieux

comprendre le processus complexe de prise de d�ecision en contexte de risque.

Ce chapitre propose une exp�erience, sous forme de jeu de r�ole, pour mieux comprendre

l'usage des pr�evisions probabilistes �a longue �ech�eance pour la d�ecision de l�acher de r�eservoir.

Durant le jeu, les participants endossaient le r�ole de gestionnaire de r�eservoir. �A partir

d'une s�equence de pr�evisions mensuelles d'apports au r�eservoir, et �etant donn�es un objectif

de remplissage et des contraintes de l�achers, les participants d�ecidaient s�equentiellement

des l�achers qu'ils allaient e�ectuer pour les mois �a venir. �A la �n de chaque mois, soit apr�es

chaque d�ecision, les cons�equences des d�ecisions prises le mois pr�ec�edent �etaient �evalu�ees en

fonction des apports e�ectivement observ�es.
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Figure R16: Volumes des 162 participants en �n de saison en fonction des l�achers d�ecid�es aux mois

pr�ec�edents. Le volume �a ne pas d�epasser est de 500 Mm3. Les gagnants sont repr�esent�es en bleu,

les perdants en jaune. A chaque �etape, les pourcentages indiquent le nombre de participants qui

sont d'ores et d�ej�a s�urs d'�etre gagnant ou perdant, �etant donn�ee leur s�equence de d�ecisions.

Pour cette �etude, 162 feuilles de r�esultat collect�ees lors de huit �ev�enements ont permis de

mettre en �evidence l'enjeu mais aussi la di�cult�e de prendre �a la fois en compte l'information

probabiliste et l'information �a long terme. Pendant les s�equences de jeu, un �ev�enement de

crue survenait au mois de juin. La strat�egie permettant de �nir le jeu sans faire d�eborder le

r�eservoir consistait �a vider progressivement le r�eservoir dans les mois pr�ec�edant l'�ev�enement

pour pouvoir recevoir les apports de la crue de juin. L'analyse des feuilles de r�esultats a

montr�e que, sur l'ensemble des s�eances, seulement 20 % des participants avaient r�eussi �a �nir

la s�equence de d�ecisions sans faire d�eborder leur r�eservoir et en respectant les contraintes

de l�achers. En r�ealit�e, la premi�ere d�ecision de l�acher en Avril pouvait d�ej�a d�eterminer le

sort des participants quant �a l'�ev�enement de Juin. En e�et, 61 % des participants, sans le

savoir, avaient perdu d�es le premier tour car ils n'avaient pas su�samment vider le r�eservoir

(cf. Fig. R16). Ceci souligne la n�ecessit�e d'anticiper les �ev�enements extr�emes en gestion,

et d'avoir les informations n�ecessaires pour.

Le manque d'anticipation de l'�ev�enement ou la sous-estimation de l'�ev�enement �a venir en

terme de volume sont des explications possibles au faible taux de r�eussite des participants.

La mani�ere de communiquer les pr�evisions et la quantit�e d'informations �a int�egrer dans

le temps imparti pouvaient aussi pr�esenter une di�cult�e pour les participants et in�uer la

prise de d�ecision. De mani�ere plus g�en�erale, l'usage du jeu de r�ole a permis de faciliter et

cr�eer un contexte favorable �a la discussion des enjeux et limites �a l'usage de l'information

probabiliste �a long-terme dans la prise de d�ecision.

Conclusion

Les pr�evisions saisonni�eres sont un sujet d'int�er�et pour un grand nombre d'op�erationnels

dans des secteurs vari�es allant de la production hydro�electrique �a la gestion de bassin.

Cependant plusieurs barri�eres se dressent encore entre la production des pr�evisions et leur



R�esum�e substantiel xxi

impl�ementation. Dans cette th�ese nous avons abord�e deux de ces barri�eres �a l'impl�ementation

en contexte op�erationnel: le besoin d'�evaluer la qualit�e des pr�evisions disponibles, et le be-

soin de traduire l'information saisonni�ere de mani�ere �a r�epondre aux besoins des utilisateurs.

Nous r�esumons ici les principales conclusions de la th�ese.

Corriger le biais des pr�evisions saisonni�eres de pr�ecipitations peut am�eliorer

la �abilit�e des pr�evisions saisonni�eres de d�ebits. Dans le jeu de bassins fran�cais

�etudi�es, nous avons vu que les pr�ecipitations issues du Syst�eme 4 du CEPMMT pr�esentaient

des biais mensuels qui avaient tendance �a se compenser sur l'ann�ee. Parmi les huit m�ethodes

test�ees, la correction quantile-quantile des pr�ecipitations journali�eres permettait d'am�eliorer

la �abilit�e des pr�evisions de pr�ecipitations et de d�ebits. De plus, nous avons vu qu'une faible

am�elioration en performance des pr�ecipitations pr�evues pouvait amener �a une am�elioration

plus cons�equente des performances en d�ebits.

Conditionner les donn�ees historiques �a partir d'indices de pr�ecipitations

saisonniers peut am�eliorer la �nesse des m�ethodes de pr�evision bas�ees sur la cli-

matologie. Parmi les quatre indices test�es, l'anomalie �a 3 mois (SPI3) a permis d'am�eliorer

la �nesse des pr�evisions bas�ees sur la climatologie tout en maintenant leur �abilit�e et leurs

performances globales. Cette �etude a soulign�e le fait que la relation entre �nesse et �a-

bilit�e est un compromis. Au-del�a du travail de th�ese, cette m�ethode pourrait �etre appliqu�ee

comme une descente d'�echelle.

Un outil pr�e-op�erationnel d'�evaluation du risque a �et�e d�evelopp�e pour aider

la gestion du barrage d'Arzal. L'outil est le fruit d'un travail collaboratif avec les

gestionnaires du barrage d'Arzal. Il indique, �a partir des pr�evisions d'apports pour la

saison, les risques de ne pouvoir maintenir un niveau minimum dans le r�eservoir en basses

eaux. Une analyse de sensibilit�e pour le cas de la s�echeresse de 2005 a montr�e que le niveau

du r�eservoir est le param�etre le plus in�uant sur les risques de manque d'eau.

Un jeu de r�ole mettant en sc�ene un r�eservoir th�eorique a permis d'analyser

le processus de prise de d�ecision bas�e sur l'information probabiliste saisonni�ere.

Le jeu a ouvert la discussion sur les enjeux et barri�eres �a l'impl�ementation des pr�evision

saisonni�eres. Il a aussi permis de montrer qu'en cas d'�ev�enements extr�emes, la pr�evision

saisonni�ere permettait une anticipation n�ecessaire. Cependant, l'exp�erience a aussi montr�e

la di�cult�e �a int�egrer l'information saisonni�ere probabiliste dans la prise de d�ecision.
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Avant-Propos

During the past three years, I have had many opportunities to try and explain my PhD

work to experts at project meetings or conferences and to non-experts at family dinners

and parties with friends. First, there was the common yet awkward step of being unable

to remember the title of my PhD as advertised by my supervisors. At times like that,

my cinema references immediately came to my mind and I was often tempted to answer

�Les chevaliers-paysans de l'an Mil au lac de Paladru� and walk away. Instead, I usually

gathered myself and tried to explain my research with the simplest words I could �nd at

the moment. I have never used a single combination of words nor a single reasoning process

twice in that step, and I believe I have rarely been successful with non-experts. However,

whenever I was successful, I encountered perplex and incredulous expressions and smirks

often followed by questions or assertions that I found very unsettling at �rst: �but why are

you working on this?�, �is someone really paying you to do this?�, �isn't it a bit pointless?�

I soon discovered that these questions would not leave me until the end of my PhD.

In the �rst months of my PhD, I wanted to avoid questions at all cost and thought the

best strategy would be to remain as vague as possible. I tried a few times to simply say:

�I work on water issues�, which, in French, translates more or less as �I work in the water�.

But I quickly gave up on this approach because it triggered many more questions than it

aimed to, including the now famous one �Do you work in a swimming pool?�

After realising I should put a little e�ort in explaining my work, I would say that

I was working on forecasting droughts to help reservoir management. Then came the

inevitable and legitimate question: �are you working on a speci�c dam?� I would respond

by mentioning the Arzal dam in Brittany, France, which is the case study of my research and

the main reason why the PhD subject was launched in the �rst place. It was also around that

time that I created a short video1 to explain my research. Therefore, when the questions

on my PhD subject arose, I could simply refer the inquisitor to that video saying: �Haven't

you seen my video? Shame.� At this stage, I received various feedbacks. While some were

very enthusiastic (mostly the ones who had seen the video), some remained puzzled. The

most recurrent remark I got de�nitely was: �are there any droughts in Brittany?�

Later on in my research, I had the chance to put my hands on the seasonal forecasting

1https://www.youtube.com/watch?v=Ap2bfDoy8Wc, winner of the EGU 2014 �Communicate your sci-

ence� video competition.

https://www.youtube.com/watch?v=Ap2bfDoy8Wc
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products provided by the European Center for Medium-range Weather Forecasts. The de-

scription I would give of my research when asked thus evolved to: �forecasting stream�ow

at the seasonal range to help reservoir management�. At this point, I received many more

comments from people in the scienti�c community. Even though many were convinced

of the importance of long-range forecasting for many applications, such as low �ows and

droughts for reservoir management or hydroelectricity and drinking water production, typ-

ical comments and questions now were: �does it work?�, �do they have any predictability?�,

�no... not in France!�, �... nor in Europe!�, �we have tested it, it is pointless, at least in the

current state of knowledge.�

By the end of my PhD work, I realised that these questions give a meaning to our work

and put words to the challenges of this PhD research rather than question its validity. It

is precisely the objective of any research to answer such questions and challenge what we

assume to be true. My objective in this report is to guide you one last time through the

motivations of my PhD research. I will present the main results we reached and explain how

we tried to contribute and �add our stone� to existing knowledge on seasonal forecasting in

a context of low �ows and droughts, with an application to a reservoir management case:

the Arzal dam in France (and yes... in Brittany!).



Introduction

Risk management is de�ned as �the systematic approach and practice of managing un-

certainty to minimize potential harm and loss� (UNISDR, 2009). It aims at enhancing

preparedness in the anticipation of an event, as opposed to crisis management, where orga-

nizations have to deal with a sudden emergency situation. The type of actions deployed in

crisis management and in risk management can be very distinct, but should be coordinated

to e�ciently reduce and address disaster impacts. In the case of droughts, the transition

from crisis management to risk management has long been advocated for and steps have

been proposed in the last decades to enhance risk management practices (Wilhite et al.,

2000; FAO, 2014). A �rst step consists in understanding the concept of risk. The risk asso-

ciated with a natural disaster integrates both the probability of the natural hazard and the

likeliness of subsequent negative consequences, also called vulnerability (UNISDR, 2009;

Turner et al., 2003). The actions leading to a preventive risk management approach must

address both components. These actions can be grouped in four main categories: monitor-

ing, vulnerability assessment, prediction and early warning, and risk reduction (Figure 1).

A central feature of risk management is the prediction system, which assesses the prob-

ability of future hazards and informs decisions towards risk reduction. Prediction systems

can be combined with warning systems to issue timely warnings to communities at risk or

with decision support systems to optimize water resources management in river basins. The

development of a prediction system requires a close collaboration between the end-users or

decision-makers and the developers of the system (Palmer and Holmes, 1988; Simonovi�c

and Bender, 1996). Both have to work from their experience of the natural process at

stake, which sets the common framework for the development of the system. The devel-

opers of the system will explore the predictability of the natural phenomenon and state

what is technically possible in terms of modelling tools. End-users will set their needs and

operational expectations as well as provide guidance on practical choices, often based on

the particular characteristics of the system subject to decision-making.

The focus of this thesis is to investigate the potential of a low-�ow and drought prediction

system at the seasonal scale in the context of water reservoir management.



2 Introduction
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Figure 1: The cycle of risk and crisis management in the case of a drought (adapted from Wilhite

et al., 2000; FAO, 2014)

Low �ows and droughts

Low-�ow periods are a natural part of a river's �ow regime. In the mid-latitudes of the

northern hemisphere, a distinction is made between summer and winter low �ows. The

former is caused by a lack of rainfall combined with high evaporation rates, while the

latter occurs when precipitation is retained as snow and does not immediately contribute

to catchment runo� (WMO, 2008).

Droughts are occasional phenomena that are de�ned relatively to conditions of rainfall

and evapotranspiration perceived as �normal� in a speci�c area. Wilhite and Glantz (1985)

de�ned four categories of droughts:

- a meteorological drought consists in a lack of precipitation over an extended period

of time;

- an agricultural drought is a combination of weather, soil moisture, groundwater and

surface water conditions that impact agricultural practices and production;

- a hydrological drought is a water de�ciency in water bodies: surface water, ground-

water or reservoirs. This type of drought is a consequence of a meteorological drought

but, unlike agricultural droughts, can occur several months after precipitation de�-

ciency;

- a socio-economic drought corresponds to a period during which hydrometeorological

conditions cause a disequilibrium between water supply and demand, impacting eco-

nomic goods or services, e.g. crops, drinking water distribution or hydroelectric power

production.
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Droughts can last much longer than low �ows, with time scales ranging from one month to

several years. Europe has known major drought events during the 20th and 21st centuries,

the latest one being the drought of 2015. Each of these drought events has contributed to

shaping the way countries prepare for and manage future events. Table 1 illustrates �ve

European drought events and their impacts, with a focus on their contribution to changes

in the French national policies.

Table 1: Time and spatial extent of the European droughts of 1976, 1989, 2003, 2011 and their

main impacts (modi�ed from La Jeunesse et al., 20161).

Year Spatial ex-

tent

Time period Main impacts in France (EDC, 2013)

1976 Europe,

more

speci�cally

northern

Europe

Winter 1975 to

summer 1976

Human casualties in France

Severe loss of spring crops, 1.7 MT of straw transferred (Brochet,

1977)

Wild�res

Death of �sh and livestock

Restriction on drinking water supply

High concentration of pollutants in rivers

Reduction of hydropower and nuclear power production

Drought tax to FFRANCS 2.2 billion

1989 Most Euro-

pean coun-

tries

Summer to au-

tumn 1989, with

impacts lasting

until end of

summer 1990

Loss of crops, wild�res

High concentration of pollutants in rivers

Death of �sh

Reduction of hydropower and nuclear power production

Temporary water ban through revision of the Water Law (passed

in 1992)

2003 Europe,

more

speci�-

cally west

Europe

Summer 2003 14,800 human casualties in France (Pirard et al., 2005; Robine et al.,

2007)

Important loss of crops (UNEP, 2004), wild�res and insect invasions

Death of �sh and livestock

Decrease in nuclear power production (UNEP, 2004)

Water use restrictions in 75% of the French departments

Natural Disaster Declaration for 4,400 municipalities

Drought-induced soil subsidence (Corti et al., 2009)

Economic costs estimated to EUR 1.1 Billion

Drought Action Plan and National Drought Committee

2011 Most Euro-

pean coun-

tries

Spring 2011 Loss of crops, wild�res

Di�culties with cattle feeding, farmers having to sell their animals

Water use restrictions in 75% of the French departments

Historic de�cit of hydropower production

National guarantee funds through agricultural disaster

Implementation of PROPLUVIA2 to manage water bans

2015 Most Euro-

pean coun-

tries

June and July

2015

Civil and industrial water use restrictions (EDO-JRC, 2015)

Loss of crops, wild�res and insect invasions

Decrease in nuclear and hydropower production

The increased severity of drought consequences in the last decades as well as the expected

increase in drought occurrences in the coming years due to climate change have ampli�ed

1A modi�ed version of this table corresponds to my contribution to the DROP handbook chapter: La

Jeunesse, I., Larrue, C., Furusho, C., Ramos, M.-H., Browne, A., de Boer, C., Vidaurre, R., Crochemore,

L., Penasso, A., Arrondeau, J.-P., In press. Chapter 6: The governance context of drought policy and pilot

measures in the Arzal dam and reservoir, Vilaine catchment, Brittany, France., in: Governance for Drought

Resilience. H. Bressers, N. Bressers, C. Larrue (Eds.).
2http://propluvia.developpement-durable.gouv.fr/

http://propluvia.developpement-durable.gouv.fr/
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the need for a better understanding of drought mechanisms and for improved drought

predictions (Mishra and Singh, 2010, 2011, and references therein). The prediction of

droughts and low �ows still raises many challenges such as identifying the predictability

of drought characteristics or better understanding the local processes involved in drought

mechanisms (Wood et al., 2015). It is the topic of many recent research projects, e.g. the

DEWFORA project in Africa, the DROUGHT R-SPI project in Europe (Gudmundsson

et al., 2014) or the PREMHYCE project in France (Nicolle et al., 2014). Improving forecast

skill and linking forecasts to user needs are often highlighted.

This thesis focuses on the prediction of low �ows at the seasonal time scale to

anticipate hydrological droughts.

Seasonal predictability and forecasting

Predictability can be interpreted as the extent to which errors in our knowledge of current

states impact our capacity to predict future states (Lorenz, 1984; Kirtman et al., 2013).

The theoretically attainable predictability mainly depends on the natural process at stake

and the geographical location where such process occurs. Identifying local sources of pre-

dictability can shed light on where to reduce or better represent uncertainties in order to

enhance the skill of a prediction system (Shukla et al., 2013; Yossef et al., 2013; Wood

et al., 2016). Limits in hydrological predictability come from the limits in our capacity to

represent the physical entity that is modelled in the system, i.e., the hydrological catch-

ment, but also from the uncertainties in initial conditions in the �rst forecast horizons and

in boundary forcings at longer forecast horizons (Bl�oschl and Zehe, 2005). The relative

importance of initial conditions and boundary forcings will vary with the catchment inertia

and its long-term memory of initial conditions.

Advances in meteorological and climate predictability can contribute to improving the

skill of stream�ow forecast systems at sub-seasonal to seasonal time scales. Meteorological

processes occur daily in the atmosphere and de�ne our local weather. These processes are

hardly predictable up to more than two weeks due to the chaotic nature of the atmosphere

and its short residence time for moisture (Chow et al., 1988; Stocker et al., 2001). By

contrast, climate processes, as represented by coupled ocean-atmosphere global circulation

models, are predictable for lead times up to several years ahead (Yuan et al., 2015). These

large-scale climate processes describe the expected long-term signals of meteorological vari-

ables, such as di�erences from average conditions. Coarse long-term meteorological signals

can then be used to achieve additional predictability in long-term hydrological forecast-

ing. Indeed, hydrological catchments and processes therein play the role of low-pass �lters,

preserving the long-term tendencies and �ltering random high frequency errors.

Seasonal forecasting has been the topic of many projects launched in the past years,

such as the EUPORIAS project (Hewitt et al., 2013) or the S2S project (Robertson et al.,
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2015). Both projects promote the uptake of products from climate and weather services by

decision makers from di�erent socio-economic sectors.

In this thesis, we aim to assess the available skill of seasonal stream�ow forecasts,

and extend the predictability of low �ows and droughts, with a focus on water resources

and reservoir management.

Reservoir management

User needs and operational expectations are dictated by the characteristics and the vul-

nerability of the system subject to decision-making as well as the economic stakes of the

sector impacted by the decisions taken. In this thesis, the targeted user of the investigated

hydrological forecasts is the manager of a water reservoir.

Reservoir management is a central part of optimization strategies that aim at increasing

resources e�ciency. Indeed, dams and reservoirs are key elements for regulating water �ows

and harnessing water resources. As opposed to reservoir management during high �ows,

which focuses on limiting the consequences of �ooding and the damages to hydraulic struc-

tures, the management of a reservoir during low �ows or droughts focuses on preserving

the water as a resource and on guaranteeing its priority uses. Multi-purpose water reser-

voirs may be subject to strong constraints which require high managing skills and, usually,

sophisticated decision support systems (Castelletti et al., 2008).

Decision-making is a complex process that mainly relies on past experience (Cannon-

Bowers and Bell, 1997). In�ow prediction systems can help inform decision makers by

quantifying risks that otherwise would not have been foreseen. During dry periods, reser-

voirs are strongly dependent on in�ows from upstream catchments. Tools based on in-

�ow forecasts can directly bene�t from the long-range predictability of in�ows to help dam

managers anticipate and take preventive actions (Georgakakos and Graham, 2008; Regonda

et al., 2011). In addition, reservoir management models can be valuable to analyse several

management scenarios and guide towards an optimal management for the running low-�ow

season (Yeh, 1985; Kelman et al., 1990).

The work in this PhD thesis was prompted by the needs of the managers of the Arzal

reservoir (Brittany, France) in terms of in�ow forecasting and drought risk assessment.

It was carried out within the framework of the DROP Interreg IVB project.

The DROP project

The DROP project3 (Bene�t of Governance in DROught AdaPtation), aimed at helping

Northwest Europe regions better anticipate and prepare for periods of drought and water
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scarcity. It was an Interreg IVB project that ran from 2013 to 2015. Six regional water

authorities and �ve research institutes from the United Kingdom, Belgium, the Netherlands,

Germany and France collaborated on drought governance and management topics. The

project had six pilot sites, which were twinned to investigate drought issues under three

perspectives: freshwater, agriculture and nature. One of the main outputs of the project is a

drought governance assessment tool that was developed to help characterize local drought

governance contexts and serve as a basis for recommendations on how to improve local

governance (Bressers et al., 2016).

The multi-purpose Arzal reservoir located in Brittany, France, was one of the freshwater

pilot sites of the DROP project. The project showed that, in the freshwater pilots, drought

governance is still based on crisis management. The transition towards risk-oriented prac-

tices is mainly lagged by the lack of recurrent severe drought events. Nevertheless, awareness

of water scarcity exists and it is common knowledge that freshwater resources are limited

in a context of increasing demand (Furusho et al., 2016). In the speci�c case of the Arzal

reservoir, the DROP project also showed that even though freshwater is recognized as the

priority use by all stakeholders, restrictions on other uses can be sources of tension during

summer (La Jeunesse et al., 2016).

This PhD thesis was partly funded by the DROP project, with the aim to develop a

pre-operational integrated low-�ow forecasting and water management system to sup-

port reservoir management and drought adaptation for the Arzal reservoir. The project

also supported the development of a game designed to better understand how proba-

bilistic forecasts can be used for decision-making in reservoir management (Crochemore

et al., 2015b4). The game was played at the French pilot site and was later adapted

by the stakeholders of the German pilot site of the DROP project (Wasserverband

Eifel-Rur, WVER).

Aims of the research

This thesis focuses on the seasonal time scale in hydrometeorology for the prediction of low

�ows and droughts, with the overall goal of enhancing decision-making in water reservoir

management. It relies on the idea that better hydrological prediction tools can help bridge

climate services and water managers needs, and lead to a faster adoption of novel products

and developments.

The aims of this research can be summarized through four questions: the �rst two

address seasonal stream�ow forecasting and the remaining two focus on reservoir manage-

ment.
3http://www.dropproject.eu
4The game is presented in Chapter 7 of this thesis and can be freely downloaded from

http://hepex.irstea.fr/resources/gamestraining.

http://www.dropproject.eu
http://hepex.irstea.fr/resources/gamestraining
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1 How much can we improve stream�ow forecasting by bias correcting meteorological

forecasts derived from climate models?

2 How can climate model outputs be used to improve traditional stream�ow forecasting

approaches based on historical records, and better capture low-�ow duration and

severity?

3 How should a low-�ow forecasting system be tailored to respond to the needs of the

managers of the Arzal reservoir during summer seasons?

4 What lessons can we learn from the way decision makers use probabilistic long-term

information to manage a theoretical multi-objective reservoir?

Structure of the thesis

This thesis is composed of seven chapters organized into three main parts.

Part I presents the main tools used in this research. Chapter 1 introduces the catchments

as well as the hydrometeorological data available to this research. Chapter 2 presents

the hydrological model used and details the framework adopted for its calibration. The

preliminary step of validation of the hydrological model over the studied catchments is

presented, as well as the ensemble forecasting framework. In Chapter 3, the di�erent

numerical criteria, either deterministic or probabilistic, used to assess the performance of

forecasts are presented.

Part II focuses on the evaluation of seasonal forecasts and addresses the �rst two key

questions of this thesis. In Chapter 4, the skill of precipitation forecasts from ECMWF

(European Centre for Medium-Range Weather Forecasts) System 4 climate model to fore-

cast stream�ow over the studied catchments is investigated. Eight bias correction methods

are applied and compared based on their impact on both precipitation and stream�ow fore-

casts. Chapter 5 presents a conditioning of historical stream�ows and precipitations based

on System 4 precipitations developed to extend the range of predictability of low �ows. It

also introduces a risk visualisation tool developed to assess the risk of low reservoir in�ows

along the dry season.

Part III tackles reservoir management and risk-based decision-making in order to address

the last two key questions of this thesis. Chapter 6 focuses on the case study of the Arzal

dam in Brittany, France. The management data available to this study are presented

and a quantitative model of the reservoir is developed. A risk assessment tool designed

through interactions with end-users and thus adapted to user needs is proposed. Risk

visualisations bene�t from seasonal forecasts and can be used as early warnings for low-

�ow management at the Arzal dam. In Chapter 7, we present the set-up and results of

a game experiment, which aims to improve our overall understanding of how long-term

probabilistic forecast information can be used in sequential decision-making in a theoretical

multi-objective reservoir.



8 Introduction

Lastly, the main conclusions of this thesis are discussed and new perspectives are out-

lined.



I
Hydrometeorological data, hydrological

model and forecast evaluation





1
Data collection and control

1.1 Catchment sets and hydrological data

Two di�erent catchment sets are used in this thesis. The �rst one is a countrywide set that

includes 16 catchments with long time series of observed meteorological and stream�ow

data in France. This catchment set is used to investigate the skill of seasonal precipitation

forecasts for stream�ow forecasting in France (Chapters 4 and 5 of this thesis). The second

catchment set focuses on the Vilaine river basin in Brittany, France. In this catchment, we

are more speci�cally interested in the river in�ows to the Arzal reservoir, located at the

outlet of the catchment. Data from the Vilaine river are used to set up a water balance

model of the Arzal reservoir and investigate the added-value of a low-�ow forecasting and

management system for reservoir operation (Chapter 6). The following sections describe

the catchment sets and their data.

1.1.1 Countrywide catchment set

The catchment countrywide set was selected from the catchment set used in Nicolle et al.

(2014), who compared several hydrological models for low-�ow simulation and forecasting

in France. Their database was built based on three constraints:

- to gather catchments that are representative of a variety of climatic and hydrologic

conditions found in French catchments;

- to ensure that the selected catchments had long time series of meteorological and

stream�ow data for robust model calibration and validation;

- to select catchments that are not strongly in�uenced by human activities, while se-

lecting enough catchments to draw general conclusions (e.g. Andr�eassian et al., 2009).

In this thesis, an additional constraint was considered. Catchments were selected pro-

vided that their solid fraction of precipitation over the basin was below 10 % over the

available record period. In other words, we only considered catchments that were not,

or marginally, in�uenced by snow. This resulted in a set of 16 catchments. For each
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catchment, daily stream�ow observations were available from the French HYDRO database

(www.hydro.eaufrance.fr), which is a national database administered by the National �ood

forecasting centre (SCHAPI - Service Central d'Hydrom�et�eorologie et d'Appui �a la Pr�evision

des Inondations). Discharges over French hydrological stations are provided by local pub-

lic institutions, research institutes or private companies, who are also responsible for data

quality.

Figure 1.1 presents the locations and the hydrological regimes of the studied catchments.

Their main characteristics are presented in Table 1.1. Catchments are ranked from the

smallest (377 km2) to the largest (4320 km2). We can see that stream�ow data availability

for these catchments varies from 36 to 52 years.

The graphs in Figure 1.1 show the mean and the 80 % con�dence interval of monthly

�ows computed over the stream�ow records available for each catchment. They also show

the 80th exceedance percentile computed over all available data (i.e., the stream�ow value

that is exceeded by 80 % of the available data). The catchment set is mainly character-

ized by a pluvial regime and a strong intra-annual variability of stream�ows. High �ows

are typically observed during the rainy season, running approximately from November to

May. Low �ows are typically observed between May and October, and very low �ows,

between July and September. It is also during these months of very low �ows that the

80th exceedance percentile tends to be reached. As expected, the 80 % con�dence interval

is much wider during the months of high �ows. Catchment 1 (the smallest in the set) shows

a slightly di�erent regime pattern, with a large 80 % con�dence interval during low �ows

as well. We observe that the inter-annual variability in this catchment is of the same order

of magnitude as the intra-annual variability.

In Figure 1.2, the Turc-Budyko representation (Andr�eassian and Perrin, 2012) was used

to analyse the balance between the mean annual precipitation, the mean annual evapotran-

spiration and the mean annual �ow of the catchments. These are represented in blue in

the �gure. More than 2000 catchments spread over France (represented in grey) provide an

overview of the range of conditions found in French catchments. The studied catchments

are located within the cloud of French catchments. This indicates that our countrywide

catchment set is well within the range of conditions observed in French catchments and

does not include any outliers, as far as the annual water balance is concerned. From this

�gure, we can also see that the selected catchments have no unexplained water gain or loss.

1.1.2 The Vilaine river basin

The Vilaine river basin has an upstream area of about 10,000 km2 and is located in the

southwest of the Brittany region, in France (Figure 1.3). The source of the Vilaine river is

located in the hills of Juvign�e, at an altitude of only 150 meters (the maximum altitude in

the Vilaine catchment is 340 meters). About 220 km later, the Vilaine river �ows into the

reservoir of the Arzal dam, just before the Atlantic Ocean.

www.hydro.eaufrance.fr
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Figure 1.1: Location in France and hydrological regime of the 16 catchments studied in Chap-

ters 4 and 5 of this thesis. Blues lines represent mean interannual monthly �ows. Grey-shaded

areas represent the 10th and 90th percentiles of interannual monthly �ows. Red lines represent the

80th exceedance percentile (i.e. the daily �ow exceeded by 80 % of the data). The catchments are

numbered from the smallest to the largest. Statistics are computed over the stream�ow record

available for each catchment, i.e. 36 to 52 years (cf. Table 1.1).
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Figure 1.2: The Turc-Budyko representation of the 16 catchments from the countrywide catchment

set (blue dots). Grey dots represent a set of more than 2000 catchments spread over France.

Catchments should ideally be located below the blue line and above the orange curve. Catchments

located above the blue line tend to gain water, while catchments located below the orange curve

tend to lose water or leak.

The major part of the catchment area (62 %) is occupied by agricultural lands, pro-

ducing mainly maize and wheat, and lands dedicated to livestock farming (SAGE, 2015a).

Industries in the catchment are concentrated in its upper areas, with food production being

the sector best represented. In 2012, 1,260,000 inhabitants lived in the Vilaine river catch-

ment, including 700,000 inhabitants of the Rennes agglomeration. Industries, agriculture,

and drinking water supply for local inhabitants and tourists induce important water with-

drawals, which divide as follows: 68.5 Mm3 (79 %) for drinking water supply, 10.4 Mm3

(12 %) for industries and 8.1 Mm3 (9 %) for irrigation (SAGE, 2015b). Other water uses

include energy production, with 19 hydroelectric power plants located in the catchment,

and tourism, with activities such as sailing and �shing (Figure 1.4).

The Arzal dam is an estuarian dam located at the outlet of the Vilaine river basin,

just before the Atlantic Ocean. Its primary goal is to block the ocean tides, which used

to contribute to the �ooding in the downstream part of the catchment. It also creates

a freshwater reservoir that contributes to meeting the water demand in the region. The

in�ows to the water reservoir can be estimated from the stream�ow recorded at the Rieux

gauging station located at Pont de Cran (the last station on the Vilaine river before the

Atlantic Ocean). The stream�ow recorded at this station comprises the �ows from the

Vilaine river and all its tributaries (Figure 1.3). In the upper part of the Vilaine, these
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Figure 1.3: Location, topography, tributaries of the Vilaine river at Rieux, and gauging station.



Data collection and control 17

Figure 1.4: View of the Vilaine river �owing towards the ocean at dusk, seen from the sailing

harbour at La Roche Bernard.

tributaries include the Meu, the Seiche and the Semnon rivers, and later on, the Ch�ere and

Don rivers. Yet, the main tributary of the Vilaine river is the Oust which meets the Vilaine

in its downstream segment. The Oust is fed by the Li�e, the Ninian, the Yvel, the Claie,

the A� and the Arz rivers. The Isac is the last river to reach the Vilaine river before the

Atlantic Ocean and before the Pont de Cran.

Flow records for the Vilaine river were directly collected from the IAV (Institution

d'Am�enagement de la Vilaine), which is the public institution responsible for the man-

agement of the Arzal dam. Among other speci�cations, WMO (2008) recommend using a

minimum �ow record of 5 years, ideally without discontinuities or interruptions, for low-

�ow analysis. For the purpose of this thesis, stream�ow data recorded every 10 minutes

at the Rieux gauging station (at Pont de Cran) were collected for the period running from

April 2003 to July 2012. These observations are based on ultrasonic measurements of the

�ow velocity, as well as bathymetric data. According to the dam managers, these measures

may not be accurate during very low �ows, due to the calibration of the ultrasonic sensors.

Furthermore, �ow velocity can be in�uenced by dam operations when large water volumes

are evacuated through the gates, leading to arti�cially higher velocities.

We prepared the stream�ow data based on the speci�cations given by WMO (2008) for

low-�ow analysis. Prior to aggregating data at the daily time step, we removed negative

values and linearly interpolated them at the 10-minute time step. Mean daily �ows were

then computed for days with at least half of the measures available and at least 25 % of

the measures available in both halves of the day. To minimize the impact of remaining

missing values, daily values were interpolated when gaps did not exceed three consecutive
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days. The characteristics of the raw and quality-controlled data are presented in Table 1.2.

Table 1.2: Main characteristics of the raw and quality-controlled stream�ow data for the Vilaine

river at Rieux.

Characteristics Raw After quality control

First available data 01/04/2003 17:10 02/04/2003

Last available data 21/03/2013 00:00 21/03/2013

Frequency Every 10 minutes Every day

Negative values 2.20 % -

Missing data 4.45 % 4.12 %

Maximum consecutive negative values 48 (0.3 day) -

Maximum consecutive missing values 853 (∼ 6 days) 6 days

Correct data 93.35 % 95.88 %

The rainfall regime of the Vilaine catchment is governed by an oceanic climate, with

a wet season observed from October to January and a dry season from June to August.

On average, the catchment receives approximately 790 mm/yr of precipitation and has a

potential evapotranspiration of about 680 mm/yr, with mean annual temperatures around

12◦C. The discharge per unit area of the Vilaine river at Rieux is of 220 mm/yr, and

the average daily �ow is 60 m3/s. Over the available data, extreme low �ows reach �ow

values as low as 2 m3/s (October 2005), and extreme high �ows reach values as high as

1000 m3/s (February 2014). Figure 1.5 presents the hydrological regime of the Vilaine

at Rieux. As in Figure 1.1, grey-shaded areas represent the 80 % con�dence interval of

monthly stream�ows, the blue line represents the mean interannual monthly stream�ow

and the red line represents the 80th exceedance percentile. We observe a wide intra-annual

variability in �ows as well as a wide interannual variability in high �ows (represented by

a wide interquantile range between December and March). The low-�ow period can be

identi�ed as running from June to October. In August and September, the mean monthly

�ow is very close to the 80th exceedance percentile.

Figure 1.6 and Table 1.3 present some of the characteristics of the Vilaine river at

Rieux in low �ows. Figure 1.6 presents the cumulative distribution of observed �ows, along

with the 70th , 80th , 90th and 95th exceedance percentiles (named Q70, Q80, Q90 and Q95,

respectively). The exceedance percentile QN is de�ned as the �ow exceeded N % of the

Table 1.3: Mean annual minimum �ow (MAM) for �ows averaged over 3, 7, 10, 30 and 90 days for

the Vilaine river at Rieux and based on data from 2003 to 2012.

Duration (days) 1 3 7 10 30 90

MAM (m3/s) 5.5 6.7 8.0 8.6 10.4 14.6
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Figure 1.5: Hydrological regime for the Vilaine river at Rieux. The mean interannual monthly

�ows (blue line), the 80th annual exceedance percentile (red line) and the 10th and 90th quantiles

of monthly �ows (grey-shaded area) are shown based on data from 2003 to 2012.
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time in the data period. In Table 1.3, daily �ows were averaged over time steps ranging

from 3 to 90 days. For each aggregation, the minimum �ow values observed each year were

averaged so as to obtain a mean annual minimum. This mean of annual minima was only

averaged over years with less than 5 % of missing data. We learn from this table that

having three consecutive months with a mean stream�ow of 15 m3/s or a month with a

mean stream�ow of 10 m3/s are average situations in the Vilaine at Rieux catchment.

1.2 Meteorological data

1.2.1 Observed meteorological data

The observed time series of daily precipitation and potential evapotranspiration used in

this thesis come from the SAFRAN reanalysis of M�et�eo-France (Quintana-Segu�� et al., 2008;

Vidal et al., 2010). Daily values are available for an 8 x 8 km grid covering France. Potential

evapotranspiration was computed based on temperature data and extra-terrestrial radiation

(Oudin et al., 2005). These data were aggregated at the catchment scale to obtain time

series of areal precipitation and potential evapotranspiration for each of the 17 catchments

described in Section 1.1.

In addition to the daily meteorological data described above, we collected local precip-

itation data from a rain gauge located at the Arzal dam, downstream the Vilaine river.

These data were collected directly from the dam managers (IAV). Precipitation values at

the hourly time step were collected for the period running from January 1990 to February

2009, and averaged at the daily time step. Precipitation values already aggregated at the

daily time step were collected for the period running from March 2009 to May 2015. In

total, 25 complete years of data were available. These local precipitation data are used in

the water balance model of the Arzal reservoir (Chapter 6).

1.2.2 Meteorological forecasts

Daily seasonal precipitation forecasts from ECMWF System 4 were used. System 4 is an

ocean-atmosphere general circulation model that couples the NEMO ocean model and the

IFS cycle 36r4 atmosphere model. System 4 provides a 51-member forecast ensemble for

the next seven months at a TL255 (about 0.7◦) spatial resolution (Molteni et al., 2011).

ECMWF retrospectively produced forecasts for the period running from 1981 to 2010.

These are composed of 51 ensemble members for February, May, August and November,

and 15 members for the other months. The �rst member of the ensemble is issued with

unperturbed (control) initial conditions, which are obtained from reanalysis of atmosphere

and ocean observations and from climatology. The other forecast members are obtained

from as many perturbed oceanic and atmospheric initial conditions as necessary, but also

from stochastic physics. Even though the role of stochastic physics prevails in the spread

of the forecasts at the seasonal time scale, initial conditions remain important to well
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Figure 1.7: Monthly precipitation forecasts at a one-month lead from the ensemble mean of

ECMWF System 4, from 1981 to 2010. Forecasts are presented for the months of January, March,

May, July, September and November. Note that this �gure is an animation that displays in the

PDF version of this thesis. The printed version only shows the forecasts of 1981.
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reproduce the dynamics in the �rst lead times.

Figure 1.7 gives an overview of the monthly precipitation forecasts issued by System 4

for the month ahead and over France, from 1981 to 2010. In this �gure, the precipitation

forecast ensemble mean is summed over the month following the forecast date. For the

purpose of this PhD work, the 1981-2010 forecasts were aggregated at the catchment scale.

Only the �rst 90 days of the forecast horizon were considered.

Weisheimer and Palmer (2014) evaluated the reliability of the precipitation forecasts

issued by ECMWF System 4 on a scale ranging from �dangerous� to �perfect�. Over the

world, precipitation forecasts often fell within the �marginally useful� category. In France,

they were ranked as �marginally useful� during wet winters and summers, �not useful�

in dry winters, and �dangerous� in dry summers. Kim et al. (2012) also evaluated the

skill of System 4 precipitation and temperature at the global scale. Despite good overall

performances, they identi�ed systematic biases, e.g. a warm bias in the North Atlantic.

Several studies have proposed to bias correct ECMWF System 4 precipitation forecasts

in di�erent contexts. Di Giuseppe et al. (2013) applied a spatially-based precipitation

bias correction to improve malaria forecasts. Trambauer et al. (2015) applied a linear

scaling method to forecast hydrological droughts in Southern Africa. In the same context,

Wetterhall et al. (2015) applied a quantile mapping method to daily precipitation values,

and showed that bias correction was able to improve the skill of the system to forecast

dry spells. Bias correction of System 4 precipitation seasonal forecasts will be the topic of

Chapter 4 of this thesis.

1.3 Conclusion

In this chapter, we �rst presented the catchments and hydrological data used in this thesis.

A set of 16 catchments spread over France and used to draw general conclusions on the

quality of seasonal stream�ow forecasting in France (see Chapters 4 and 5), was introduced.

In these catchments, 36 to 52 years of hydrological data were available from the French

national HYDRO database. We have seen that the selected catchments are dominated

by a pluvial regime, with high �ows typically observed during the rainy season between

November and May, and low �ows observed during the dry season, between May and

October. We have also seen that these catchments are well within the range of French

catchments in terms of water balance, and that no atypical behaviours, such as unexplained

water gain or water leakage, were observed.

The catchment of the Vilaine river at Rieux (Brittany, France) was also presented. This

catchment is used in Chapter 6 of the thesis to study the in�ows to the reservoir of the

Arzal dam, located at the outlet of the catchment. The hydrological data for this catchment

come directly from the managers of the Arzal dam. This catchment presents a strong intra-

annual stream�ow variability, and its lowest �ows are observed in the months of August

and September.
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The observed and forecast meteorological data used in this thesis are presented. Most

meteorological observations originate from the SAFRAN reanalysis provided by M�et�eo-

France. Seasonal precipitation forecasts derive from the ECMWF System 4, which is a

coupled ocean-atmosphere model.

The hydrometeorological data presented in this chapter are used to simulate and forecast

stream�ow in the studied catchments, and evaluate model performances. In the following

chapter, we present the hydrological model used throughout this thesis, as well as the

procedures adopted to calibrate and validate the model, and forecast stream�ows.





2
Hydrological modelling and forecasting

2.1 Introduction

Hydrological models reproduce the rainfall-runo� transformation based on a set of equa-

tions. Chow et al. (1988) classify hydrological models based on their accounting for random-

ness in output variables and their accounting for variations in space and time. Following the

�rst criterion, we distinguish between models with which similar inputs will always yield the

same outputs (deterministic models), and models whose outputs result, at least partially,

from a random process (stochastic models). Deterministic models are then subdivided de-

pending on whether their outputs are uniform (lumped) or vary in space (distributed), and

stochastic models are divided depending on whether they are space-correlated or space-

independent. Similarly, deterministic models are subdivided into models whose outputs are

constant and models whose outputs vary with time. Stochastic models are subdivided into

models that are time-correlated and time-independent.

Just like the response of a catchment depends on its physical characteristics, the response

of a hydrological model, either deterministic or stochastic, is determined by a parameter

set. The parameters can be either �xed, if they are space- and time-independent, or left

free. Prior to stream�ow simulation or forecasting, it is necessary to set the free model

parameters via a calibration step. The objective of model calibration is to identify a pa-

rameter set that not only minimizes an objective function (i.e., a chosen distance between

observed stream�ows and simulated stream�ows obtained from observed inputs) but also

is hydrologically realistic (Andr�eassian et al., 2012). Once a parameter set is identi�ed,

its validity must be assessed based on an evaluation distance metric, that can either be

the objective function, or another metric that focuses on other simulation attributes. This

assessment is carried out over an evaluation period that is ideally independent from the

calibration period (Klemes, 1986; Rykiel Jr., 1996; Refsgaard and Henriksen, 2004). Nu-

merous optimisation and evaluation techniques, either based on numerical distance metrics

or visual inspection, exist to calibrate and validate hydrological models (ASCE, 1993). The

choice of the calibration and validation strategies should thus be guided by the modelling
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objectives.

Once a hydrological model has been calibrated and validated, it can be used to either

simulate or forecast stream�ow. In hydrology, simulation consists in using past meteoro-

logical observations to reproduce past stream�ows by means of a hydrological model. It is

a retrospective approach used, for example, to reconstruct stream�ow time series or gain

insight into the physical phenomena in action in a catchment. By contrast, forecasting

consists in making informed assumptions on �ows that have not yet been observed. In this

con�guration, meteorological and hydrometric observations are only available up to the

time of the forecast, and predictions are made for future lead times.

Many studies advocate for probabilistic forecasting and have shown the value of these

forecasts for decision-making and operational purposes (see e.g. Ramos et al., 2010, 2013).

Probabilistic forecasting proposes to issue forecasts that account for all sources of uncer-

tainties and provide, for each lead time, a forecast probability density function rather than

a single value (Krzysztofowicz, 2001). Sources of uncertainty in hydrological forecasting

include meteorological forcings, initial hydrological conditions, the structure of the hydro-

logical model and its parameters. Taking into account all these sources of uncertainties

in stream�ow forecasting can be fastidious and computationally costly. In seasonal hydro-

logical forecasting, several studies have investigated the relative role of initial hydrological

conditions and meteorological forcings to better understand how the di�erent sources of

uncertainty in�uence the quality of the �nal predictions (Shukla et al., 2013; Yossef et al.,

2013; Wood et al., 2016). They showed that the relative importance of these sources of un-

certainty will depend on several factors such as the lead time, the study area or the season.

Shukla et al. (2013) showed that, in the Northern hemisphere, initial conditions can prevail

over meteorological forcings in snow-dominated regions. In France, Singla et al. (2012) also

found a predominance of initial conditions in snow-dominated catchments, as opposed to

catchments located in plains, in which the hydrologic predictability mainly depended on

meteorological forcings.

The catchments used in this thesis (see Chapter 1) are not in�uenced by snow. There-

fore, we focus on improving the assessment of uncertainties in meteorological forcings for

seasonal stream�ow forecasting. These meteorological forcings were then used as input to

the GR6J hydrological model. In the next section, we present the model, the results of its

calibration and validation as well as the forecasting framework adopted in this thesis.

2.2 The GR6J model

The GR (G�enie Rural) models are lumped, conceptual rainfall-runo� models developed at

Irstea. These models represent the rainfall-runo� processes in a simpli�ed way by means

of a series of storages and a delay function. Their inputs are precipitation and potential

evapotranspiration time series, averaged over the catchment area. Their output is the

corresponding stream�ow time series at the catchment outlet.
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There are several GR models at Irstea. The structure of each model varies with its

purpose and its time step of application, which ranges from the hourly time step to the

yearly time step. They all are characterized by a low number of parameters, ranging from

one to six parameters, to be calibrated against observed stream�ows. This is considered an

asset for operational applications and research studies based on large catchment datasets.

Examples of some of the GR models include:

- the GRP model (Tangara, 2005; Berthet, 2010) that runs at the hourly time step for

forecasting purposes. It has three free parameters and is currently used operationally

in 14 out of 19 French �ood forecasting centres (Services de Pr�evision des Crues);

- the GR4J model (Perrin et al., 2003) that runs at the daily time step and has four free

parameters. This model has been used by several studies in France and worldwide;

- the GR5J model (Le Moine, 2008), which is based on the GR4J model but also

accounts for catchment leakages (exchanges with groundwater).

The daily GR6J model was developed with the objective to further improve the GR

models e�ciency on low �ows. Pushpalatha et al. (2011) tested 60 modi�ed versions of

the GR5J model on 1000 unregulated French catchments. The conclusion of the study

led to the GR6J model: a version of GR5J with an exponential store added in parallel

to the routing store to represent the contribution of pluriannual aquifers. Improvement in

performance was observed in both high and low �ows.

The structure of GR6J is presented in Figure 2.1. In the model, input rainfall (P )

is �rst neutralized by input potential evapotranspiration (PE). Part of the resulting net

rainfall (Pn) or net evapotranspiration (En), depending on whether rainfall is greater than

evapotranspiration, are used to update the production store. Water then percolates from

this store (Perc) and is added to the part of rainfall that directly transforms into surface

runo� (Pn − Ps). The resulting amount of water (Pr) is then routed through two unit

hydrographs. Part of the delayed �ow directly contributes to the catchment outlet (Q1),

but most of it (Q9) feeds the routing and exponential stores which govern the propagation

of the �ow to the catchment outlet (Qr1 and Qr2). Before the �ow reaches the catchment

outlet, the intercatchment groundwater �ow acts on the water in the routing store and

the water that transits directly from the unit hydrograph to the catchment outlet. The

resulting stream�ow (Q) is the sum of all partial outputs.

The �xed parameters of the GR6J model intervene in the division of the water �ow

between the two unit hydrographs, and, later, in the allocation of water between the expo-

nential and the routing stores. A �xed parameter also governs the relative base time of the

unit hydrographs. Six other parameters are left free:

- X1 (mm): the capacity of the production store,

- X2 (mm/day): the maximum intercatchment groundwater exchange,

- X3 (mm): the capacity of the routing store,

- X4 (day): the base time of the unit hydrographs,
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Figure 2.1: Structure of the GR6J model (modi�ed from Pushpalatha et al., 2011). The model

is composed of three reservoirs represented by the grey-shaded areas and two delay functions

represented by the curves. Model states are in black, free parameters are in green, �xed parameters

are in orange and inputs and outputs are in blue.
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- X5 (-): the threshold of inversion of groundwater exchanges,

- X6 (mm): the output coe�cient of the exponential store.

These six parameters are subject to calibration and validation prior to running the model.

2.3 Calibration and validation of the GR6J model

The six free parameters of the GR6J model were calibrated and validated with the one-

year-leave-out method (Figure 2.2). This method allows to take full advantage of the

available observations and provides a robust calibration. With this method, a parameter

set is identi�ed for each year of the record period by optimizing a target score on all other

available years. The parameter set is then transferred to run the model for the target

application year. The procedure is repeated to cover all years in the validation. In each

catchment of the countrywide catchment set, 30 parameter sets were obtained for the period

running from 1981 to 2010. In the Vilaine river catchment, 10 parameter sets were obtained

for the period running from 2003 to 2012.

Y1 
  Y2 

  Y3   Y4   Y5   Y6 

                    

                      

                      

                      

Parameter 

transfer 

Year 

Calibration 

Validation 

Figure 2.2: Schema of the one-year-leave-out method for calibration and validation. If the model

is calibrated to simulate or forecast stream�ows for year Y4, all other years, i.e. Y1, Y2, Y3, Y5 and

Y6, are used in the calibration procedure. The calibrated parameter set is then transferred to run

the model for Y4 in validation.

Parameters were calibrated for each studied catchment by forcing GR6J with precipita-

tion and evapotranspiration from the SAFRAN meteorological reanalysis (see Chapter 1).

The metrics used to minimize the distance between simulated and observed stream�ows

derive from the Kling-Gupta e�ciency (KGE; Gupta et al., 2009), which evaluates si-

multaneously the bias, the error in standard deviation and the correlation between the

observations and the simulation. It is de�ned by:

KGE = 1−

√
(
σQ̂
σQ
− 1)2 + (

1

Bias
− 1)2 + (r − 1)2 (2.1)

where σQ is the standard deviation of the observed stream�ows, σQ̂ is the standard deviation

of the simulated stream�ows, r is the Pearson correlation coe�cient between the observation

and the simulation and Bias represents the error in mean volume. The values taken by the
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KGE criterion fall within the (−∞, 1] interval, with 1 corresponding to a perfect simulation.

In the formulation of the KGE and throughout the thesis, the Bias is formulated as:

Bias =

∑n
i=1Qi∑n
i=1 Q̂i

(2.2)

where Q and Q̂ are the observed and simulated stream�ow, and n is the number of time

steps used for the evaluation. A simulation that is not biased will score 1. A Bias higher

(lower) than 1 indicates that the mean observation is underestimated (overestimated).

In this thesis, two versions of the KGE derived from di�erent �ow transforms were

used as objective function to calibrate the GR6J model: the KGE applied to inverse �ows

(KGEiQ; i.e. the KGE criterion computed for the time series of 1
Q
instead of the time series

of Q) and the KGE applied to root-squared �ows (KGErQ). The inverse �ow transform puts

the focus on the lowest �ows of the hydrographs and is thus preferred to study low �ows,

whereas the squared �ow transform focuses on the medium to high �ows of the hydrographs

(Pushpalatha et al., 2012).

In the validation step, we evaluate the simulations obtained for each year of the available

record period and each catchment by juxtaposing them and evaluating a single simulation

over the record period. The simulations were evaluated with the KGErQ and KGEiQ cri-

teria, but also with a normalized Nash-Sutcli�e e�ciency and the Bias (Equation 2.2)

to evaluate the simulations with criteria that are independent from the calibration crite-

ria. The normalized Nash-Sutcli�e e�ciency (C2MQ; Mathevet et al., 2006) evaluates the

quadratic error between the simulation and the observations, and compares the evaluated

model with a simple benchmark: the constant, long-term mean of the observed stream�ows.

It is formulated as follows:

C2MQ =

∑n
i=1 (Qi − Q̄)2 −

∑n
i=1(Qi − Q̂i)

2∑n
i=1 (Qi − Q̄)2 +

∑n
i=1(Qi − Q̂i)2

(2.3)

where Q is the observed stream�ow, Q̂ is the simulated stream�ow, Q̄ is the mean observed

stream�ow and n is the number of time steps used for the evaluation. C2MQ values fall

within the [−1, 1] interval.

Figure 2.3 presents the ranges of parameter values obtained with the one-year-leave-out

calibration procedure. Each graph corresponds to a parameter of the GR6J model. Catch-

ments are represented on the x-axis and variations in parameter values are represented by

boxplots on the y-axis (in blue when KGErQ is used for calibration and in red when KGEiQ

is used). We observe that the parameter sets are usually consistent over the years, and vari-

ations between catchments are greater than variations between application years. However,

one catchment stands out with a large variability of its calibrated parameters: catchment

13, which is the southernmost catchment (Figure 1.1). The smallest catchment, i.e. catch-

ment 1, also stands out with large capacities of its production and routing stores. Apart

from these two catchments, the parameter values are similar in all catchments, including

in the Vilaine at Rieux catchment.
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Figure 2.3: Ranges of parameter values obtained after calibration with KGErQ (in blue) and

KGEiQ (in red) with a one-year-leave-out procedure. Each graph corresponds to a parameter of

the GR6J model. Catchments are represented on the x-axis, with catchments from the countrywide

set numbered from 1 to 16 (from the smallest to the largest) and the Vilaine at Rieux catchment

represented on the far right (see Figure 1.1 for catchment location in France). Variations in param-

eter values are represented on the y-axis by boxplots (10th , 25th , 50th , 75th and 90th percentiles).

For the countrywide catchment set, the boxplots are composed of 30 parameter values obtained

for the period running from 1981 to 2010. For the Vilaine at Rieux, they are composed of 10

parameter values obtained over the period running from 2003 to 2012.
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Figure 2.4 shows the performance of GR6J in calibration and in validation in the 17

studied catchments. The performance in calibration is the mean calibration score optimized

for each target application year. The performance in validation is the score obtained when

evaluating the series of simulations obtained in validation. The �rst and second rows

respectively correspond to the performances obtained after calibrating GR6J with KGErQ

and KGEiQ. The �rst column shows the performances obtained in calibration as evaluated

by the objective function. The other columns show the performances in validation as

evaluated by KGErQ, KGEiQ, C2MQ and the Bias.

We observe good to excellent performances in calibration, with objective scores ranging

between 0.88 and 0.97 when calibrating with KGErQ, and between 0.46 and 0.94 when cal-

ibrating with KGEiQ. Interestingly, very good performances were obtained in catchments

1 and 13 even though they stood out in terms of variability of parameter values (cf. Fig-

ure 2.3). Performances obtained in validation with the criterion used in calibration (i.e.,

simulations calibrated with KGErQ and evaluated with KGErQ, and simulations calibrated

with KGEiQ and evaluated with KGEiQ) are also very satisfying with performances very

similar to the ones obtained in calibration. As expected, simulations calibrated with KGEiQ

perform better than simulations calibrated with KGErQ to simulate low �ows. While the

calibration with KGEiQ yields KGEiQ values between 0.41 and 0.94, the calibration with

KGErQ yields KGEiQ values in validation between 0.4 and 0.89 except in two catchments

where scores of 0.11 and -0.02 are reached (in catchments 6 and 8). The calibration with

KGEiQ thus yields signi�cant improvement to simulate low �ows in these catchments. Cal-

ibrating GR6J on low �ows (i.e. with KGEiQ as objective function) still provides good

performances in medium �ows with KGErQ values always above 0.54 in all catchments in

validation. Also, performances in C2MQ, which focuses on medium to high �ows, are good

to very good with values always superior to 0.58 when calibration is performed with KGErQ,

and between 0.28 and 0.81 when calibration is performed with KGEiQ. Lastly, the Bias

in validation falls between -0.02 and 0.04 when GR6J is calibrated with KGErQ, which is

close to no bias. When the model is calibrated with KGEiQ, Bias values fall between -0.14

and 0.12, except in catchment 8, where a value of -0.94 is reached.

Figure 2.5 shows the observed and simulated hydrographs for the Vilaine at Rieux (the

largest catchment in Figure 2.4, cf. Figure 1.1) when GR6J is calibrated with KGEiQ. The

hydrographs were limited to the May to October period and allow for a visual validation of

GR6J during low �ows and recessions in the Vilaine river. In this catchment, GR6J gave

very good numerical results, with a KGErQ of 0.90, a KGEiQ of 0.76, a C2MQ of 0.63 and a

Bias of -0.04 in validation. We observe that the hydrological model succeeds in reproducing

the general trend of the stream�ow, including recessions and peak �ows. We also observe

that observations are much noisier than simulations during low �ows. Two explanations are

possible: either the frequent observed variations are actual signals and thus the hydrological

model is not su�ciently reactive, or the variations are caused by noise in the observations,

which the model does not simulate. Discussions with the managers of the Arzal dam, who
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are also in charge of the measurement station, supported the second hypothesis. Indeed,

measuring devices tend to fail during low �ows, which causes unreliable variations in the

observed stream�ow data (observation noises).

Figure 2.5: Observed and simulated stream�ow and observed precipitations for the Vilaine river

at Rieux, between May and October, from 2005 to 2012. Observed stream�ow is represented in

grey, simulated stream�ow in dark blue, and precipitation in light blue.

2.4 Using the GR6J model for stream�ow forecasting

In this thesis, the GR6J model is used to forecast stream�ow in the catchments presented

in Chapter 1. The forecasting procedure can be divided into two steps: the initialisation of

the model states and the input of meteorological forecasts to run the model in forecasting

mode. Figure 2.6 summarizes how a stream�ow forecast is issued with the GR6J model,

from a precipitation forecast scenario.

The initialisation of the model consists in estimating adequate values for the states of

the GR6J model at the time of the forecast. In this thesis, these states are initialised by

running the model with observed inputs for a year up to the time of the forecast. To allow

for a better representation of the initial conditions at the time of the forecast, the model

is then updated based on the last observed stream�ow value. To that e�ect, the levels in

the routing and exponential stores are corrected based on the inverted reservoir balance

equations.

Once the model states are initialized and updated, the GR6J model is fed with me-
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Figure 2.6: Schema of the method used to forecast stream�ows with the GR6J model. Model

states are initialized using previous observations of model inputs and calibrated parameters. The

model is run up to the time of forecast t0 and we obtain the model states s0. Before issuing

a forecast, the last observed stream�ow is used to update model states (s′0). The precipitation

forecast is then used as input to the hydrological model. The model is run with updated states and

previously calibrated parameters. The forecast stream�ow is obtained for each lead time of the

forecast horizon. The procedure is repeated for each input forecast. In this study, GR6J updating

only concerns the updating of the states of the routing and the exponential stores.

teorological inputs (precipitation and potential evapotranspiration) and run in forecasting

mode. We then obtain stream�ow forecasts and the procedure is repeated for each forecast

inputs. In this thesis, the focus is placed on the in�uence of precipitation inputs on stream-

�ow forecasting. The model is fed with interannual potential evapotranspiration to have a

standard reference scenario for potential evapotranspiration. Since the selected catchments

are not in�uenced by snow, this set up is not expected to have a major impact on water

volumes. However, it may underestimate water losses due to evapotranspiration in years

with temperatures well above the climatological average.

The uncertainty in precipitation forcings is represented with ensemble forecasts. Here,

we use precipitation ensembles composed of a �nite number of scenarios (members), each

member corresponding to a possible outcome. Furthermore, all members are assumed to

be equiprobable, meaning that they are equally likely to be the observed outcome. Each

member of the precipitation ensemble is used as input to the GR6J hydrological model

to produce a possible stream�ow outcome. The resulting stream�ow scenarios constitute

an ensemble stream�ow forecast composed of as many members as the input precipitation

ensemble. Because not all sources of uncertainty are taken into account in the resulting

stream�ow forecasts, we refer to the method as ensemble forecasting rather than proba-
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bilistic forecasting (Krzysztofowicz, 2001).

2.5 Conclusion

In this chapter, we presented the GR6J hydrological model that is used throughout this

thesis for stream�ow forecasting. The structure of the model and its parameters were �rst

detailed. The model was then calibrated and validated in the studied catchments (see

Chapter 1) by means of the one-year-leave-out procedure and with two variants of the

Kling-Gupta e�ciency (KGE): the KGE applied to root-square �ows and the KGE applied

to inverse �ows. Parameter sets obtained with this procedure were consistent over the

calibration period in most catchments. The performance of the model in validation were

overall satisfactory. We have seen that calibrating GR6J with the KGE applied to inverse

�ows rather than the KGE applied to root-square �ows provided better performances in low

�ows in some of the catchments and shall be preferred to model low �ows in our catchment

set. In addition, the calibration with KGEiQ also provides good performances in medium

�ows as evaluated by KGErQ. Lastly, we have described how we use the GR6J model to

issue stream�ow forecasts from initial hydrological conditions and meteorological forecast

inputs.

In the following chapter, we present the evaluation criteria used in this thesis to assess

the quality of the stream�ow forecasts obtained with the GR6J model with the procedure

described in this chapter, as well as the quality of the meteorological forecast inputs.



3
Forecast evaluation

3.1 Introduction

Once a forecasting system is set up, it is essential to evaluate its performance and limita-

tions. Indeed, forecast evaluation fosters a critical approach to the forecast system outputs,

but also provides a diagnostic of the de�ciencies of a forecast system to guide further im-

provement. Forecast quality comprises many forecast attributes. Jolli�e and Stephenson

(2003) distinguishes between evaluation approaches that assess the capacity to:

- forecast binary events (also named yes/no events). In this case, the range of possible

outcomes is divided in two exclusive and exhaustive categories corresponding to the

occurrence of the event or its non-occurrence, as is the case of events de�ned by a

threshold;

- forecast categorical events, which are an extension of binary events. In this case, the

range of possible outcomes is divided in a �nite number of categories, superior to two;

- forecast continuous variables.

Regardless of the approach, a thorough forecast evaluation is done retrospectively over

an extended time period. For instance, meteorological centres usually run newly-developed

models over extended past records to evaluate the new system and compare it with previous

versions. These retrospective forecasts, often named hindcasts, are thus essential to evaluate

the performance of the new forecast system.

In general, an evaluation framework should assess forecast quality in regard to several

attributes, and, ideally, combine visual and numerical evaluations (Chiew and McMahon,

1993; Krause et al., 2005; Crochemore et al., 2015a1). A wide range of evaluation metrics

exist to evaluate hydrological models and numerical predictions. Since each metric focuses

1This paper shows the results of my Master work whose publication was �nalized during my PhD thesis:

Crochemore, L., Perrin, C., Andr�eassian, V., Ehret, U., Seibert, S.P., Grimaldi, S., Gupta, H., Paturel,

J.-E., 2015. Comparing expert judgement and numerical criteria for hydrograph evaluation. Hydrological

Sciences Journal 60, 402�423.
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on di�erent attributes of model outputs (Jachner et al., 2007), the objective of the evaluation

should guide the choice of a set of metrics (Krause et al., 2005; Pushpalatha et al., 2012).

Once a set of metrics is chosen, the performance of a forecast system can be assessed

independently from any reference, i.e. in absolute terms, or comparatively to another

forecast system, i.e. in relative terms. In the latter case, the choice of the benchmark is

crucial in order not to in�ate the performance of a system by using a too na��ve reference

or to de�ate its performance by choosing a too demanding reference (Perrin et al., 2006;

Pappenberger et al., 2015).

In this thesis, we evaluated the performance of forecasting systems considering con-

tinuous variables and binary events. The quality of the forecasts in regard to continuous

variables was assessed by looking at the accuracy, the reliability, the sharpness and the

overall performance of the forecast systems. The quality of the forecasts in regard to bi-

nary events was assessed by looking at the discrimination attribute. Each of these forecast

attributes was evaluated by means of di�erent evaluation scores. The performance of the

forecast systems was also assessed relatively to chosen reference forecasts. In this chapter,

the forecast attributes used in this thesis, as well as the evaluation criteria used to assess

these attributes are �rst presented. We then detail the skill scores used to compare forecast

systems.

3.2 Evaluation scores

3.2.1 Accuracy

The accuracy of a forecast (or simulation) corresponds to its distance to the observation.

In the case of a probabilistic or an ensemble forecasting system, the forecast mean, or

sometimes the forecast median, is used in place of the deterministic simulation. In this

thesis, we assess the accuracy with the Mean Absolute Error (MAE) and the Root-Mean-

Square Error (RMSE):

MAE =
1

n

n∑
i=1

|Qi − Q̂i| (3.1)

RMSE =

√√√√ 1

n

n∑
i=1

(Qi − Q̂i)2 (3.2)

where Q is the observed stream�ow (or precipitation), Q̂ is the simulated stream�ow (or

precipitation) and n is the number of time steps used for the evaluation. These metrics vary

within [0,∞). They can be considered as distances: a value of 0 means that the simulation

and the observation are identical.
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3.2.2 Reliability

Reliability is a forecast attribute that refers to the statistical consistency between observed

frequencies and forecast probabilities. It indicates whether a system can be trusted, i.e.,

given a forecast, where is my observation most likely to fall within the forecast range. In

this thesis, reliability is evaluated with the Probability Integral Transform (PIT) diagram

(Gneiting et al., 2007; Laio and Tamea, 2007). The PIT diagram is the cumulative distribu-

tion of the positions of the observation within the cumulative forecast distribution (or PIT

values). The interpretation of the PIT diagram is illustrated in Figure 3.1. A reliable fore-

cast has a PIT diagram superposed with the 1:1 diagonal (the dark blue line in Figure 3.1).

If the PIT diagram shows a curve systematically above (below) the diagonal (the blue lines

in Figure 3.1), the observed values are too frequently located in the lower (upper) parts of

the forecast distribution, suggesting a systematic bias of the forecasts towards overpredic-

tion (underprediction). If the points in the diagram are too concentrated in the vicinity of

the end points (0 and 1), forecasts are over-con�dent and observations fall more frequently

than expected on the tails of the forecast distribution. On the contrary, too many points

concentrated in the midrange indicate a forecast distribution that is under-con�dent. In or-

der to numerically compare results among catchments, we also computed the area between

the curve of the PIT diagram and the 1:1 diagonal, as proposed by Renard et al. (2010).

The PIT area thus ranges between 0 and 0.5. The smaller this area, the more reliable the

ensemble is.

Over-prediction
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IT
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Under-confident

Under-prediction
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1

1

Figure 3.1: Illustration of how symptomatic shapes of the PIT diagram are interpreted (modi�ed

from Laio and Tamea, 2007; Bourgin, 2014).
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3.2.3 Sharpness

Rather than a performance metric, sharpness is a property of the forecast system. It

refers to the concentration of the predictive distribution and, in the case of an ensemble

forecast, indicates how spread the members of the ensemble are. In this thesis, sharpness

was evaluated with the 90 % interquartile range (IQR; Gneiting et al., 2007), i.e., the

di�erence between the 95th and the 5th percentiles of the forecast distribution averaged over

the evaluation period. The narrower the IQR, the sharper the ensemble is. Gneiting et al.

(2007) introduced the paradigm of �maximizing the sharpness of the predictive distributions

subject to calibration�. This paradigm relates sharpness to reliability (here referred to as

�calibration�), i.e., sharpness can only become an evaluation criterion once reliability has

been achieved. Given two reliable forecast systems, the sharpest one is preferred.

3.2.4 Overall performance

The Continuous Rank Probability Score (CRPS; Hersbach, 2000) assesses the overall per-

formance of a forecast system. It evaluates the di�erence between the forecast distribution

and that of the observation. It is de�ned by:

CRPS =
1

n

n∑
i=1

∫ ∞
−∞

(FQ̂
i (x)− FQ

i (x))2dx (3.3)

where FQ̂ is the cumulative distribution of the forecast, FQ is the Heaviside step function

corresponding to the observation and n is the number of time steps used in the evaluation.

The lower the CRPS is, the better the overall performance of the forecasts is. The green

area in Figure 3.2 illustrates a term of the CRPS for a given forecast and corresponding

observation. Note that the CRPS of a deterministic forecast corresponds to its MAE.

Hersbach (2000) showed that the CRPS can be broken down into a reliability term, a

resolution term and an uncertainty term. We do not apply this decomposition in this thesis,

but we evaluate the CRPS as a whole to describe the overall performance of forecasting

systems.

3.2.5 Discrimination

The Relative Operating Characteristics diagram (ROC; Mason and Graham, 1999) is often

used to assess the capacity of a forecast system to discriminate between situations when

an event is observed or not. The ROC diagram is plotted for a given threshold that is

used to compute the Probability of Detection (POD) and the False Alarm Ratio (FAR). In

order to build the diagram for an ensemble forecasting system, the proportion of ensemble

members below the threshold (in the case of a low-�ow event) necessary to trigger an alert

varies from none to all ensemble members. For each proportion, the POD is plotted against

the FAR. The ROC diagram is plotted for a given threshold, catchment and forecast lead

time. The Area under the Curve (AUC) summarizes the ROC diagram into one numerical
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Figure 3.2: Illustration of the CRPS. The blue line represents the Heaviside step function of the

observation. The green line represents the cumulative distribution of the forecast. The green area

represents the area used in the computation of the CRPS (see Equation 3.3), for the displayed
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Figure 3.3: Illustration of the ROC diagram and AUC. The blue curve represents the ROC curve

of a forecasting system with good discrimination. The orange curve presents the ROC curve of

a forecasting system with poor discrimination. The AUC is illustrated for the orange curve and

corresponds to the area under this curve.
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value, which allows for easier comparisons between thresholds, catchments, lead times and

forecast systems. The closer the AUC is to 1, the better the discrimination of the system

is. An AUC value close to 0.5 shows no discrimination. Figure 3.3 illustrates the ROC

diagram and the AUC.

3.3 Skill scores

Forecast skill is evaluated by comparing the performance of a given forecast system with

the performance of a reference forecast. In this thesis, the skill scores were computed for

some of the scores presented in the previous section, namely the MAE, the PIT area, the

IQR and the CRPS. The skill score SS is computed as follows:

SSi =
SREF
i − SSYS

i

SREF
i

(3.4)

where S corresponds to the chosen evaluation score, SREF is the score computed for the

reference forecast, SSYS is the score computed for the forecast system and i is the considered

lead time. The skill score ranges within (−∞, 1]. When it is superior to zero, the forecast

system has skill with respect to the reference forecast. When the skill score is equal to

zero, the system and the reference have equivalent performances with regard to the chosen

evaluation score. A normalized version of the skill score can also be used:

Si =
SREF
i − SSYS

i

SREF
i + SSYS

i

(3.5)

This normalized formulation ranges within ]−1, 1] and is useful to visualize and compare the

skill of a system in several catchments when performances strongly vary among catchments.

3.3.1 Using a reference forecast

The reference used in the computation of the skill score de�nes the scale used for evalua-

tion. For instance, choosing a reference with poor performances will in�ate the skill of the

evaluated forecast system. Pappenberger et al. (2015) list a number of references used in

stream�ow forecasting. The authors investigated the impact of di�erent references on the

assessed performance of a �ood forecasting system. Their study highlighted the need to

clearly de�ne the reference chosen for evaluation and to orientate this choice based on the

application.

A �rst option is to compare the forecast system with a forecast that is commonly used

and whose performance can serve as a standard performance. A common reference used

to evaluate precipitation forecasts over an area is based on past observations and is rep-

resentative of the climatology in this area: for a given day and year, it is the ensemble

of precipitation values observed on that same Gregorian day in past years of the observa-

tion period. A reference that is often used to evaluate seasonal stream�ow forecasts is the
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Extended Stream�ow Prediction (ESP), which corresponds to using the precipitation cli-

matology (as described above) as input to a hydrological model. Another common reference

used to evaluate stream�ow forecasts is the ensemble based on past stream�ow observations

(on the same day as the given forecast day). This reference does not use any precipitation

forecasts or hydrological model. Lastly, the forecast system can also be compared with a

former version of this forecast system. In this case, the skill quanti�es the improvement

achieved between the two versions of the system.

3.3.2 Ensemble size

Studies have shown that the size of an ensemble forecasting system in�uences the computa-

tion of some evaluation scores, such as the Brier score or the rank probability score (see e.g.

Buizza and Palmer, 1998). An increase in the ensemble size of a forecast system leads to

an increase in performance as evaluated by these scores, though to di�erent extents. This

has a direct impact when comparing the performances of forecasting systems of di�erent

ensemble sizes.

Several studies have thus proposed methods to remove the bias induced when comparing

ensembles of di�erent sizes. Ferro et al. (2008) provided a synthesis of existing previous

studies, and detailed the bias correction methods that can be applied in the case of the Brier

score and other probability scores. The authors proposed an approach to remove the bias

in the computation of the CRPS. This approach was followed in this thesis to compute the

CRPS skill score with systems and references of di�erent ensemble sizes. Given a forecast

system of ensemble size M and a reference forecast of size m, the correction computes the

score of the reference ensemble as though it had M members. The corrected CRPS of the

reference ensemble of size m is de�ned by:

CRPSM = CRPSm−D (3.6)

where D is the correction factor expressed as:

D =
M −m
2Mm

1

m(m− 1)

n∑
i=1

∑
k 6=l

(Q̂i,k − Q̂i,l) (3.7)

where Q̂ is the simulated stream�ow (or precipitation), n is the number of time steps used

in the evaluation, and k and l refer to members of the forecast ensemble Q̂. When the

ensemble size varies with the month, as is the case for ECMWF seasonal forecasts, we

chose to use the ensemble size averaged over one year.

3.3.3 Useful Forecasting Lead Time

In this thesis, we also used skill scores to estimate the gain in performance brought by

applying bias correction methods. To that e�ect, we use the raw (uncorrected) forecasts

as reference in the computation of the skill scores. An indicator of forecast performance
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can be derived from the evolution of these skill scores: the lead time up to which bias

corrected seasonal forecasts have more skill than the raw forecasts. Buizza and Leutbecher

(2015) de�ned the forecast skill horizon, with respect to the climatology, as �the forecast

time when the average CRPS of the [forecast system] ceases to be statistically signi�cantly

lower, at the 99th-percentile level, than the CRPS of the climatological ensemble [...]�. In

another study, Nicolle et al. (2014) de�ned an indicator named UFL (Useful Forecasting

Lead time) as �the lead time beyond which model performance is not at least 20 % better

than benchmark performance�. Here, we considered the lead time beyond which the seven-

day moving average of the skill score of the bias corrected forecast system, with regard to the

raw forecast system, becomes negative. UFL values were then grouped in four categories:

(1) None: no improvement over the forecast reference, (2) <30: gain up to 30 days, (3)

<60: gain greater than 30 days and up to 60 days and (4) >60: gain greater than 60 days.

Figure 3.4 illustrates the determination of the UFL and the UFL category in six examples.
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Figure 3.4: Illustration of how UFL values are determined and associated with a UFL category in

six di�erent cases of evolution of the skill score with lead time.

3.4 Conclusion

In this chapter we presented the forecast attributes evaluated in this thesis. The forecast

systems investigated in Chapters 4, 5 and 6 were evaluated based on their accuracy, reli-

ability, sharpness, overall performance and discrimination. The accuracy is assessed with

the Mean Absolute Error (MAE) and the Root-Mean-Square Error (RMSE), the reliability
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is assessed with the PIT diagram and the PIT area, the sharpness is assessed with the

Interquantile Range (IQR), the overall performance is assessed with the Continuous Rank

Probability Score (CRPS) and the discrimination is assessed with the ROC diagram and

the AUC. Skill scores are used in Part II of this thesis. In each case, the evaluation crite-

rion and the reference used in the computation of the skill score are speci�ed. The Useful

Forecasting Lead time (UFL) is also used to evaluate forecasts in Chapter 4.
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Bias correcting precipitation forecasts to

improve the skill of seasonal stream�ow

forecasts

This chapter is based on a paper under review in Hydrology and Earth System Sci-

ences: Crochemore L., Ramos M.-H., Pappenberger F., 2016. Bias correcting precipitation fore-

casts to improve the skill of seasonal stream�ow forecasts. Hydrology and Earth System Sciences

Discussions, doi:10.5194/hess-2016-78.

doi:10.5194/hess-2016-78
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R�esum�e

De nombreux secteurs, tels que l'approvisionnement en eau potable, la gestion du

risque s�echeresse ou la production hydro�electrique, peuvent b�en�e�cier de pr�evisions

saisonni�eres de d�ebits a�n d'anticiper et de plani�er leur gestion. De telles pr�evisions

peuvent notamment �etre obtenues �a l'aide de mod�eles pluie-d�ebit. On parle alors de

l'approche dynamique. Dans ce cas, les pr�evisions saisonni�eres provenant de mod�eles

de circulation peuvent �etre utilis�ees en entr�ee des mod�eles hydrologiques pour b�en�e�cier

des avanc�ees des centres m�et�eorologiques en terme de pr�evisions saisonni�eres. N�ean-

moins, ces produits �etant souvent g�en�er�es �a des r�esolutions spatiales plus larges que

celle du bassin versant, leur utilisation pour la pr�evision des d�ebits n�ecessite un travail

pr�eliminaire de correction des biais. Dans ce chapitre, nous estimons la qualit�e de

pr�evisions saisonni�eres de pr�ecipitations et de d�ebits en France et explorons l'impact

de la correction du biais des pr�evisions de pr�ecipitations sur la qualit�e des pr�evisions

de d�ebits.

Dans un premier temps, les pr�evisions saisonni�eres de pr�ecipitations brutes (i.e.,

sans correction du biais) du CEPMMT sont �evalu�ees pour pr�evoir les d�ebits de seize

bassins versants fran�cais de 1981 �a 2010. Dans un second temps, le biais de ces

pr�evisions de pr�ecipitations est �evalu�e et corrig�e �a l'aide de huit m�ethodes de cor-

rection du biais, bas�ees sur une r�egression lin�eaire simple ou sur la correction des

distributions pr�evues. Les pr�evisions de pr�ecipitations et de d�ebits obtenues �a l'aide

de ces huit m�ethodes sont, �a leur tour, �evalu�ees. La qualit�e des pr�evisions est car-

act�eris�ee en terme de �abilit�e, �nesse, pr�ecision et performance globale. L'ensemble de

r�ef�erence utilis�e pour l'�evaluation des pluies est bas�e sur la climatologie des pluies dans

chaque bassin. L'ensemble de r�ef�erence pour �evaluer les d�ebits est la m�ethode com-

mun�ement appel�ee Extended Stream�ow Prediction (ESP) qui utilise la climatologie

des pr�ecipitations en entr�ee d'un mod�ele hydrologique.

Dans l'ensemble des bassins versants, les pr�evisions obtenues �a partir des pr�eci-

pitations brutes du CEPMMT sont plus �nes mais moins �ables que celles obtenues

avec la m�ethode ESP. La qualit�e des pr�evisions d�epend fortement de la saison et du

bassin consid�er�e. Les biais observ�es en pr�ecipitation varient aussi de bassin en bassin,

avec des biais mensuels importants qui ont tendance �a se compenser si on ne regarde

que le biais annuel. La correction lin�eaire simple et la correction des distributions des

pr�ecipitations journali�eres apportent les meilleurs gains en performance. La correction

lin�eaire a tendance �a d'avantage am�eliorer la �nesse des ensembles alors que la correc-

tion des distributions des valeurs journali�eres est nettement sup�erieure pour am�eliorer

la �abilit�e. La correction des distributions des pr�ecipitations journali�eres harmonise les

performances entre bassins et saisons. En�n, les pr�evisions corrig�ees deviennent aussi

�ables que les pr�evisions de la m�ethode ESP tout en restant plus �nes.
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Abstract

Meteorological centres make sustained e�orts to provide seasonal forecasts that are

increasingly skilful, which has the potential to bene�t stream�ow forecasting. Seasonal

stream�ow forecasts can help to take anticipatory measures for a range of applications,

such as water supply or hydropower reservoir operation and drought risk management.

This study assesses the skill of seasonal precipitation and stream�ow forecasts in

France to provide insights into the way bias correcting precipitation forecasts can im-

prove the skill of stream�ow forecasts at extended lead times. We apply eight variants

of bias correction approaches to the precipitation forecasts prior to generating the

stream�ow forecasts. The approaches are based on the linear scaling and the distribu-

tion mapping methods. A daily hydrological model is applied at the catchment scale

to transform precipitation into stream�ow. We then evaluate the skill of raw (without

bias correction) and bias corrected precipitation and stream�ow ensemble forecasts in

sixteen catchments in France. The skill of the ensemble forecasts is assessed in reli-

ability, sharpness, accuracy, and overall performance. A reference prediction system,

based on historical observed precipitation and catchment initial conditions at the time

of forecast (i.e., ESP method), is used as benchmark in the computation of the skill.

The results show that, in most catchments, raw seasonal precipitation and stream-

�ow forecasts are often more skilful than the conventional ESP method in terms of

sharpness. However, they are not signi�cantly better in terms of reliability. Forecast

skill is generally improved when applying bias correction. Two bias correction meth-

ods show the best performance for the studied catchments, each method being more

successful in improving speci�c attributes of the forecasts: the simple linear scaling of

monthly values contribute mainly to increasing forecast sharpness and accuracy, while

the empirical distribution mapping of daily values is successful in improving forecast

reliability.
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4.1 Introduction

Numerous activities with economic, environmental and political stakes bene�t from

knowing and anticipating future stream�ow conditions at di�erent lead times. While

�ood forecasting requires forecasts up to several hours or days ahead, other areas such

as water supply reservoir operations or drought risk management need forecasts for the

months or season ahead. Regardless of the considered lead time, stream�ow forecasting

systems are frequently updated to take the latest useful information into account (e.g.

last observed discharge, soil moisture or snow cover) and can use numerical weather

model outputs to extend the range of skilful predictions.

Seasonal forecasts can contribute to a proactive risk management, for example, for

drought management (e.g. Wilhite et al., 2000; Dutra et al., 2014; Mwangi et al., 2014;

Wetterhall et al., 2015). Extended-range forecasting systems can be valuable tools to

help decision-makers in planning long-term strategies for water storage (Crochemore

et al., 2015b) and to support adaptation to climate change (Winsemius et al., 2014).

Nevertheless, several users still remain doubtful whether seasonal forecasts can be trust-

worthy or skilful enough to enhance decision-making in an operational context (Rayner

et al., 2005). Lemos et al. (2002) list the performance of seasonal forecasts, the misuse

of seasonal forecasts by end-users and the lack of consideration of end-users' needs in

the development of products as major obstacles to the widespread of seasonal fore-

casting in North-East Brazil. It is therefore crucial to assess the potential of available

seasonal forecasting products and communicate on the assets and shortcomings of the

di�erent approaches that can bene�t the water sector (Hartmann et al., 2002).

Seasonal forecasting methods in hydrology can be broadly divided into two cate-

gories: statistical methods which use a statistical relationship between a predictor and

a predictand, and dynamical methods which use seasonal meteorological forecasts as

input to a hydrological model. More recently, mixed approaches have been investigated

in the attempt to take advantage of initial land surface conditions, seasonal predictions

of atmospheric variables and the predictability information contained in large-scale cli-

mate features (see Robertson et al., 2013; Yuan et al., 2015, and references therein).

Extended Stream�ow Prediction (ESP; Day, 1985) is a dynamical method widely used

to forecast low �ows and reservoir in�ows at long lead times (Faber and Stedinger,

2001; Nicolle et al., 2014; Demirel et al., 2015). It consists in using historical weather

data as input to a hydrological model whose states were initialized for the time of

the forecast. The ESP method is also used along with the Reverse-ESP method to

determine the relative impacts of meteorological forcings and hydrological initial con-

ditions on the skill of stream�ow predictions (Wood and Lettenmaier, 2008; Shukla

et al., 2013; Yossef et al., 2013). An alternative dynamical method consists in using

seasonal forecasts from regional climate models (RCMs) (Wood et al., 2005). This ap-

proach yields better results when seasonal predictability is enhanced by meteorological
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forcings rather than by initial conditions. Climate model outputs may also be more

suitable to capture the speci�c climate conditions at the time of the forecast, whereas

ESP-based methods will be limited to the range of past observations and challenged

by climate non-stationarity.

The use of climate model outputs in hydrology has however some methodological

implications. Outputs are produced for grid scales that are usually too coarse for

stream�ow forecasting at the catchment scale. This can lead to errors in capturing

forecast uncertainty and introduce signi�cant biases. Post-processing (including bias

correction techniques and downscaling procedures) is usually a necessary �rst step prior

to using climate model outputs to model stream�ow. A range of methods has been

proposed in the literature and the best method usually depends on the modelling chain

being investigated and the studied area, with levels of performance that may vary with

the forecast horizon or the targeted application (Christensen et al., 2008; Gudmundsson

et al., 2012).

Bias correction is usually an integral part of post-processing techniques applied to

forecasting systems. Weather forecasting has performed bias correction of numerical

model outputs through model output statistics (MOS) for decades. In hydrologic en-

semble prediction systems, post-processing has become more and more popular in the

last decade, particularly for medium-range ensemble forecasting (e.g. Weerts et al.,

2011; Zalachori et al., 2012; Verkade et al., 2013; Madadgar et al., 2014; Roulin and

Vannitsem, 2015). In seasonal forecasting, two popular bias correction methods are lin-

ear scaling and distribution mapping. Linear scaling corrects the mean of the forecasts

based on the di�erence between observed and forecast means, whereas distribution

mapping matches the statistical distribution of forecasts to the distribution of observa-

tions. These approaches, which can also be applied to improve the performance of ESP

forecasts (Wood and Schaake, 2008), focus on increasing forecast skill and reliability,

by reducing errors in the forecast mean and improving forecast spread.

Studies comparing di�erent bias correction methods in seasonal hydrological fore-

casting are still rare in the literature. However, we can �nd studies reviewing and

comparing methods to bias correct RCM outputs and quantify climate change im-

pacts, although their e�ciency in this context is still a topic of discussion (Ehret et al.,

2012; Muerth et al., 2013; Teutschbein and Seibert, 2013). Teutschbein and Seibert

(2012) compared six methods, among which linear scaling and parametric distribution

mapping, to bias correct RCM simulations of precipitation and temperature in Swe-

den. The authors recommended using the distribution mapping method for current

climate conditions. They also highlighted the need to assume that bias correction pro-

cedures are stationary to correct future climate projections and evaluate changes in

�ow regimes. In Norway, Gudmundsson et al. (2012) proposed a comparison of eleven

methods to bias correct RCM precipitation. The methods derived from distribution

transformations (e.g. distribution mapping based on �tted theoretical distributions),
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parametric transformations such as linear scaling, and nonparametric transformations

such as distribution mapping based on empirical distributions. Their study highlighted

the di�erences between the bias corrections and the necessity to test methods prior to

their application. The authors recommended using nonparametric methods since these

methods were the most e�ective to reduce the bias and did not require any approxi-

mations of the empirical distributions.

This chapter aims to further investigate the potential of bias correcting the sea-

sonal forecasts produced by ECMWF System 4 forecasts from GCM simulations. The

utlimate objective is to improve stream�ow forecasting at extended lead times. By

comparing several variants of linear scaling and distribution mapping methods, the

study provides insights into the way bias correcting seasonal precipitation forecasts

can contribute to the skill of seasonal stream�ow predictions. Forecasts are evalu-

ated over the 1981-2010 period in 16 catchments in France. Section 4.2 presents the

catchment set, the forecast and observed data, as well as the hydrological model used.

Section 4.3 presents the bias correction methods investigated, as well as the calibration

and evaluation frameworks adopted. Results are presented in Sections 4.4 to 4.6 for

the quality of the raw (uncorrected) and the bias corrected forecasts. In Section 4.7,

conclusions and limitations are discussed.

4.2 Data and hydrological model

4.2.1 Seasonal forecasts and observed data

This study is based on daily seasonal precipitation forecasts from ECMWF System 4.

For the purpose of this study, the 1981-2010 forecasts were aggregated at the catchment

scale and only the �rst 90 days of the forecast horizon were considered. Observed

precipitation data used for the calibration and evaluation of the bias correction methods

come from the SAFRAN reanalysis of M�et�eo-France. Daily stream�ow data at the

outlet of each catchment come from the French national archive. Chapter 1 provides a

detailed description of observed and forecast hydrometeorological data.

4.2.2 Studied catchments and hydrological model

The catchment set used in this study includes 16 catchments spread over France with

a dominant pluvial regime. The main characteristics and locations of the catchments

are presented in Chapter 1. The conceptual, reservoir-based GR6J hydrological model

(Pushpalatha et al., 2011) was run at the daily time step with daily precipitation and

potential evapotranspiration inputs at the catchment scale. The model output is the

daily stream�ow at the catchment outlet. Interannual potential evapotranspiration was

used to focus solely on the in�uence of precipitation inputs on stream�ow forecasts.

The model was calibrated in each catchment with the Kling-Gupta E�ciency (Gupta

et al., 2009) applied to root-square �ows (KGErQ) and applied within the forecasting
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framework described in Chapter 2.

4.3 Methods

4.3.1 Overview of the calibration-evaluation approach

Bias correction methods were calibrated and evaluated in each catchment over the 1981-

2010 period. The one-year-leave-out cross-validation method was applied to calibrate

and evaluate the methods over independent periods. This method is further detailed

in Chapter 2.

In the calibration step, we considered two approaches. The simplest calibration uses

all days of the years within the calibration dataset. An alternative approach consists in

calibrating the bias correction methods for each calendar month. Additionally, since we

are dealing with forecasts issued up to 90 days ahead, and since forecast performance

varies with lead time, calibration also takes the lead time into account. In this study,

lead times were grouped from 1 to 30 days, 31 to 60 days and 61 to 90 days ahead. The

calibrated bias correction factors are then applied to the daily values of the ensemble

precipitation forecasts in the target application year. The hydrological model is forced

by precipitation forecasts and stream�ow ensemble forecasts are obtained. The mod-

elling chain is applied to raw and bias corrected precipitation forecasts. Precipitation

and stream�ow forecasts are then evaluated with deterministic and probabilistic scores

commonly used in ensemble forecasting.

4.3.2 Bias correction methods

We applied the linear scaling (LS) and the distribution mapping (DM) methods to

the raw System 4 precipitation forecasts. The distribution mapping method was ap-

plied following three variants: considering the empirical distribution of monthly values

(EDM), a �tted gamma distribution of monthly values (GDM), and the empirical dis-

tribution of daily values (EDMD). Each method was applied on a monthly (-m) or a

yearly (-y) basis (Table 4.1).

Linear scaling of precipitations

The linear scaling method consists in correcting the monthly mean values of the fore-

casts to match the monthly mean values of the observations. A scaling factor (or bias)

is calculated considering the ratio between the observed and the forecast (ensemble

mean) values. A scaling factor higher (lower) than 1 indicates that the mean ensemble

forecast underpredicts (overpredicts) the mean observed value. A value of 1 indicates

no bias in the forecasts. The scaling factor obtained through calibration is then applied

as a multiplicative factor to correct raw daily precipitation forecasts.
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Distribution mapping of precipitations

The distribution mapping method consists in correcting the precipitation forecasts so

that their statistical distribution matches that of the observations. There are several

ways to match forecast and observed distributions or quantiles, and existing techniques

mainly di�er on how the forecast and observed cumulative distribution functions (CDF)

are considered. In some techniques, a parametric distribution is �tted to the forecast

and observed datasets, while in others the empirical distributions and linear interpola-

tions between data points or estimated quantiles are considered. In any case, observed

and forecast CDFs must be determined from long data series.

In this study, the calibration of the distribution mapping method was �rst carried

out considering empirical (EDM) and gamma-�tted (GDM) distributions of observed

and forecast (ensemble mean) precipitation values averaged monthly. A third variant

considered directly the empirical distribution of the daily values of the ensemble mem-

bers (EDMD). These variants are listed in Table 4.1 After calibration, bias correction

is applied to the daily precipitation forecasts of each application period. In the case of

EDM and GDM, all daily values are corrected based on the correction suited to their

monthly average. In the case of EDMD, each daily precipitation value of each forecast

member is corrected individually.

Table 4.1: Abbreviation, calibration period and description of tested bias correction methods.

Abbreviation Calibration based on Description

LS-y the whole year
Linear scaling of monthly values

LS-m calendar months

EDM-y the whole year
Empirical distribution mapping of monthly values

EDM-m calendar months

GDM-y the whole year
Gamma distribution mapping of monthly values

GDM-m calendar months

EDMD-y the whole year
Empirical distribution mapping of daily values

EDMD-m calendar months

4.3.3 Evaluation framework

For each catchment, daily forecasts are issued once every month, up to 90 days ahead,

during the 1981-2010 period. The quality of the forecasts was evaluated at the weekly

time step (i.e., daily forecasts and observations are averaged over the week). Scores

were computed as a function of lead time and for the winter (December-January-

February), the spring (March-April-May), the summer (June-July-August) and the

autumn (September-October-November) seasons. The reliability, sharpness, accuracy

and overall performance of the ensemble forecasts were assessed based on the PIT
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diagram and area, the Interquantile Range (IQR), the Mean Absolute Error (MAE)

and the Continuous Rank Probability Score (CRPS).

The standard computation of the skill (i.e. the version that is not normalized) was

applied in this study to compare forecast systems. The skill scores were computed for

the PIT area, the IQR and the CRPS (noted PITSS, IQRSS and CRPSS hereafter).

The forecast skill was �rst evaluated by comparing the performance of the studied fore-

cast systems with the performance of common reference forecasts. The reference used

to evaluate precipitation forecasts is based on past observations and is representative

of the catchment climatology. The references used to evaluate stream�ow forecasts

are the Extended Stream�ow Prediction (ESP) and an ensemble based on historical

stream�ows. The ESP allows applying the same hydrological modelling setup to both

the precipitation forecasts and the reference precipitation ensemble. Therefore, di�er-

ences in performance are mainly due to di�erences between the precipitation inputs

to the model. One would expect that precipitation and stream�ow forecasts perform

better than precipitation climatology, ESP or historical precipitations, at least in the

�rst lead times. At longer lead times, natural variability should end up being a sound

forecast. When skill scores were computed to indicate the gain in performance brought

by bias correction methods, the raw (uncorrected) forecasts were used as reference in

the computation of the skill scores. The UFL (Useful Forecasting Lead time) was de-

rived from the evolution of these skill scores to indicate the lead time up to which bias

corrected seasonal forecasts have more skill than raw forecasts.

The evaluation criteria, the computation of the skill and the references used in the

computation of the skill scores are described in Chapter 3.

4.4 Quality of the raw seasonal forecasts

4.4.1 Performance of raw precipitation forecasts

Figure 4.1 presents the evolution of IQRSS and CRPSS with lead time, for winter (DJF)

and summer (JJA). Each line corresponds to a catchment. Skill in sharpness and overall

performance is very similar in winter and in summer (as well as in spring and autumn,

not shown). Precipitation forecasts are overall sharper than historical precipitations in

the large majority of catchments and up to long lead times. Some exceptions appear

for lead times longer than three weeks, and especially in winter (wetter season in

the majority of catchments). In terms of overall performance, precipitation forecasts

clearly have skill up to two to three weeks ahead for 7-day averaged areal precipitation.

At longer lead times, they are equivalent or perform slightly worse than historical

precipitations.

Figure 4.2 shows the PIT diagrams for lead times of 30 and 90 days, for winter and

summer. Grey lines represent the reliability of historical precipitations and coloured
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Figure 4.1: Skill of raw weekly precipitation forecasts as a function of the lead time for all

catchments and all seasons. The skill is computed based on the IQR (top) and the CRPS

(bottom) and the reference is historical precipitations. Each column corresponds to a target

season. Each line represents the skill score in a catchment for forecast horizons within the

target season.
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Figure 4.2: PIT diagram of raw precipitation forecasts (coloured lines) and historical pre-

cipitations (grey lines) for lead times of 30 days (top) and 90 days (bottom). Each column

corresponds to a target season. Each line represents the PIT diagram in a catchment for

forecast horizons within the target season.
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lines represent the reliability of System 4 precipitation forecasts in each catchment.

Dotted lines represent deviations of +0.1 and -0.1 from the bisector. The two seasons

yield very similar results (also observed in spring and autumn, not shown). In all

catchments and for both lead times, historical precipitations are reliable, as expected.

Seasonal precipitation forecasts also show some reliability, but tend to overpredict

precipitations in both seasons and at both lead times. The concentration of points in

the zero end points in most of the curves of the System 4 forecasts shows that low values

of the observations are too often falling in the lower tail of the forecast distribution.

This e�ect tends to decrease with increasing lead time. This is an indication that

forecasts are too narrow and overpredict the lowest observations. It can also translate

a di�culty of the system to forecast null precipitation.

4.4.2 Performance of raw stream�ow forecasts

Stream�ow forecasts are generated by using raw seasonal precipitation forecasts as in-

put to the hydrological model. Forecast skill is evaluated using the ESP method as

reference (Figure 4.3). Di�erences in forecast skill between the winter and summer

seasons are more noticeable when evaluating stream�ow forecasts rather than precip-

itation forecasts. Stream�ow forecasts generated from raw precipitation forecasts are

sharper than ESP up to twelve weeks ahead in most catchments (IQRSS above zero

in Figure 4.3). Approximately, only four catchments stand out in both seasons with

lower skill than ESP (six in spring and one in autumn, not shown). However, even in

these catchments, sharpness can be improved using seasonal precipitation forecasts for

lead times up to three weeks in winter (as well as in spring and autumn, not shown).

Concerning overall performance (CRPSS in Figure 4.3), skill can be observed for lead

times up to four weeks in some catchments. In winter, as well as in spring and au-

tumn (not shown), this is observed in the majority of catchments, while in summer,

this concerns only a couple of catchments. At longer lead times, ESP and stream�ow

forecasts generated from raw precipitation forecasts are equivalent in most catchments

for the winter season. In summer, as well as in spring and autumn (not shown), the

di�erence in skill at longer lead times is more pronounced and most catchments have

a clearly negative skill in terms of overall forecast performance.

PIT diagrams are shown for each catchment, for the winter and summer seasons,

and for lead times of 30 and 90 days (Figure 4.4). In winter and spring (not shown), ESP

forecasts and seasonal stream�ow forecasts generated from raw precipitation forecasts

show good reliability, although the curves above the diagonal indicate that forecasts are

slightly overpredicting stream�ow. Stream�ow forecasts for the autumn season (not

shown) also show good reliability, but with a tendency to underpredict stream�ow.

In summer (Figure 4.4, right), stream�ow forecasts from both, ESP forecasts and

forecasts generated from raw seasonal precipitation forecasts, show problems in forecast

reliability. PIT curves clearly indicate a concentration of points at the end points of the
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Figure 4.3: Skill of weekly stream�ow forecasts from raw precipitation forecasts as a function

of the lead time for all catchments and all seasons. The skill is computed based on the IQR

(top) and the CRPS (bottom) and the reference is Extended Stream�ow Prediction. Each

column corresponds to a target season. Each line represents the skill score in a catchment for

forecast horizons within the target season.
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Figure 4.4: PIT diagram of stream�ow forecasts from raw precipitation forecasts (coloured

lines) and Extended Stream�ow Prediction (grey lines) for lead times of 30 days (top) and 90

days (bottom). Each column corresponds to a target season. Each line represents the PIT

diagram in a catchment for forecast horizons within the target season.
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diagram and, consequently, narrow ensemble forecasts. In most catchments, 20 % to

60 % of observed values fall in the lowest interval of the forecast distribution or below

it, i.e., outside the forecast range. Although reliability is slightly improved with lead

time, stream�ow ensemble forecasts remain under-dispersive at 90 days of lead time.

This could be the result of at least two factors acting alone or jointly: a di�culty of

the hydrological model to reach the lowest stream�ow values in the simulations of the

recession periods, and the in�uence of not considering uncertainties in the hydrological

initial conditions at the time of forecasting.

4.4.3 Summary of the quality of raw seasonal forecasts

Skill in the overall performance of System 4 raw precipitation forecasts, at the catch-

ment scale and over a reference forecast based on past observed precipitations, was ob-

served up to two to three weeks in the studied catchments. When looking at stream�ow

forecasts generated from the input of raw seasonal forecasts to a hydrological model,

skill over the traditional ESP method was observed up to four weeks, but only in few

catchments. The asset of System 4 raw precipitation forecasts and related stream�ow

forecasts over historical precipitations and ESP, respectively, resides mainly in their

sharpness. However, the evaluation of forecast quality shows also that forecasts are of-

ten too narrow and su�er from underprediction or overprediction. Improving forecast

reliability, while maintaining forecast sharpness is clearly a challenge. In the following

section, we investigate the presence of biases in System 4 precipitation forecasts and

the impact of bias correction on seasonal precipitation and stream�ow forecasts.

4.5 Bias correction of seasonal precipitation forecasts

4.5.1 Overview of the e�ectiveness of the bias correction meth-

ods

Forecast bias, i.e. the ratio between the mean observation and the average forecast

ensemble mean, was computed for each catchment over the 1981-2010 period. The bias

was computed for each calendar month, but also considering the whole year. Figure 4.5

shows the biases expressed as deviations from 1 (i.e., 1−Bias), before and after applying

the bias correction methods. It illustrates the results obtained in four catchments at

the 2-month lead time (i.e., considering the forecasts issued for day 31 to day 60 in

the forecast range). The e�ectiveness of each bias correction method can be easily

seen from the coloured charts: unbiased forecasts have a deviation equal to 0 (white

colour); positive deviations (red colour) and negative deviations (blue colour) indicate

overprediction and underprediction, respectively. A deviation equal to 0.75 (-3) can

be interpreted as the mean forecast being four times larger (smaller) than the mean

observation. Overall, when computing the deviations for all monthly lead times of the

forecast range, we observed that the biases vary more with the calendar month of the
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Figure 4.5: Deviation of the precipitation bias from 1, for catchments 2, 4, 7 and 14, over the

1981-2010 period. The deviation is shown for the whole year (top line) and for each calendar

month. The bias is only shown for lead times between 31 and 60 days. Blue-shaded areas

(negative values) represent a tendency of underpredicting precipitations and red-shaded areas

(positive values) a tendency of overpredicting precipitations. The top left graph represents

the bias of raw precipitation forecasts, and each of the other graphs represents the bias after

applying one of the bias correction methods.

forecast horizon than with lead time. For this reason, we only show the 2-month lead

time.

In general, seasonal forecasts tend to overpredict precipitations over the entire year

in most catchments. Overprediction tends to occur near the end of the winter (rainy)

season and throughout the spring season. Conversely, precipitations tend to be un-

derpredicted from the end of the summer (dry) season and until the beginning, and

sometimes throughout, the autumn season. The four selected catchments illustrate

the variety of conditions we encountered in the bias correction analysis. In catchment

2, precipitations could be considered unbiased when carrying the analysis over the

year. However, this result hides monthly underpredicting and overpredicting biases

which compensate over the year. In this catchment, forecasts tend to overpredict from

February to June and underpredict from July to October. The yearly result may also

be a re�ection of the lack of important biases in the months of December and Jan-

uary, which are, climatologically, the rainiest months in this catchment. This type of
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variation in bias was also observed in catchments 6, 11, 12 and 13. In catchment 4,

precipitation forecasts are strongly overpredicting observations in all calendar months

and thus over the year. This catchment stands out because in no other catchment do

we observe a similarly strong and systematic bias. This catchment is the one located

at the most eastern part of France. Its main river (l'Ill) is a tributary of the Rhine

river. In catchment 7, precipitations are overpredicted over the year, with the strongest

positive deviations concentrated during the rainy season, basically from November to

April. The same behaviour is found in catchments 5, 10 and 15. Interestingly, catch-

ments with a clear overprediction, i.e. catchments following the patterns depicted in

Figure 4.5 for catchments 4 and 7, correspond to the catchments in which System 4

raw precipitation and stream�ow forecasts showed low skill in sharpness and/or overall

performance. Last, catchment 14 is representative of catchments 1, 3, 8, 9 and 16

in the database. Forecasts slightly underpredict precipitations over the year, with a

tendency to underpredict precipitations in all seasons but the spring season, whose

precipitations are slightly overpredicted.

Figure 4.5 also presents the remaining biases after the application of the eight bias

correction methods to the raw precipitation forecasts. We present the results over

the whole year and for each month. The same four selected catchments illustrate

the results for the 2-month lead time. All correction methods are e�ective to correct

biases of precipitation forecasts over the year. However, this is not observed in the bias

correction for each calendar month. Results for the methods calibrated on a yearly basis

(LS-y, EDM-y, GDM-y, EDMD-y) show that the absence of bias over the year is mainly

achieved through an e�ect of compensation between over and underprediction among

the calendar months. Particularly EDM-y and GDM-y methods show a tendency to

increase monthly biases, towards overprediction of precipitations in winter and spring,

and underprediction in summer and autumn.

By construction, monthly calibrated methods perform much better when looking

at monthly biases. LS-m and EDMD-m are particularly e�ective in all catchments.

Forecasts corrected with EDM-m tend to slightly underpredict precipitations, while

forecasts corrected with GDM-m tend to overpredict precipitations. This may be an

e�ect of the application of distribution mapping based on monthly values. Distribu-

tion mapping requires that the time structure of forecast and observed precipitation

are coherent, so that upper forecast values are shifted towards upper observed values

and conversely. However, raw monthly forecast means from System 4 do not always

reproduce the time structure of monthly observations and often fail to reach extreme

monthly values. Therefore, correction factors obtained with a distribution mapping

based on monthly values show poorer performance, and the method can wrongly in-

crease or decrease daily precipitation values.
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4.5.2 Comparison of bias correction factors for LS and EDMD

methods

The LS and EDMD methods showed more e�ectiveness in reducing bias in the pre-

cipitation forecasts. In order to better understand how the two methods compare, we

plotted in Figure 4.6 their correction factors for catchment 7 over the 1981-2010 period

for the 2-month lead time. Black lines represent correction factors from LS. Each day,

one correction factor is applied to all members of the ensemble forecast at the 2-month

lead time. Grey-shaded areas represent the range of correction factors applied with

EDMD, and darker grey lines represent the median correction factor. For EDMD,

each precipitation value has a speci�c correction factor depending on its probability of

occurrence. Therefore, for a given day and lead time, the number of correction factors

is equal to the number of ensemble members.
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Figure 4.6: Bias correction factors applied to each day of the record period with the LS and

EDMD methods. Correction factors are only shown in the case of catchment 7 and for the

second month lead of the precipitation forecasts. The top graph presents correction factors

obtained with LS and EDMD calibrated over the whole year, and the bottom graph presents

correction factors obtained with LS and EDMD calibrated monthly.

LS-y provides relatively constant bias correction factors over the study period.

Since, on average, precipitations in catchment 7 are overpredicted by System 4 fore-

casts, this correction factor is smaller than 1. The bias correction factors are obtained

with the one-year-leave-out calibration framework. It is interesting to note that re-

moving one year within the 30 years of the calibration period has little impact over the
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calibrated correction factors, even for an extreme dry year such as 1989 in this catch-

ment. With EDMD-y, correction factors vary for each day of the study period. These

factors remain smaller or close to 1. Their median values are smaller than the LS-y

correction factors and the maximum values are slightly greater than the LS factors.

When calibrated monthly, correction factors obtained with LS-m depict a variation,

ranging from 0.6 to 1.2. They present a recurring pattern over the year, which follows

what was shown in Figure 4.5, i.e., that precipitations in catchment 7 are, on aver-

age, overpredicted during the winter and spring seasons, leading to correction factors

smaller than 1, and underpredicted from July to September, leading to bias correction

factors greater than 1. This pattern in the factors indicates that the LS method might

be further simpli�ed to provide correction factors that would solely vary with the cal-

endar month, regardless of the year, or in the case of LS-y, be constant over the target

period. Correction factors computed with EDMD-m present a similar pattern to the

one observed with LS-m, but their range is more variable, with values between 0 and

1.4. This method is particularly interesting because, as opposed to LS, it also corrects

the frequency of precipitation days, given the null values of some correction factors.

4.5.3 Impact of bias correction on the useful forecasting lead

time

The four criteria used to evaluate reliability, accuracy, sharpness and overall perfor-

mance were applied to the precipitation forecasts bias corrected with each of the eight

bias correction methods. They were also applied to the seasonal stream�ow forecasts

generated from inputting the di�erent bias corrected precipitation forecasts to the

hydrological model. Skill scores were computed with the raw seasonal precipitation

forecasts as reference forecast for precipitation, and with the (raw) stream�ow fore-

casts generated from raw precipitation forecasts as reference forecast for stream�ow.

For each variable (precipitation and stream�ow), each criterion, each bias correction

method, each catchment and each season, we obtained the corresponding UFL (Useful

Forecasting Lead time). We then evaluated the proportion of catchments falling in

each UFL group (as de�ned in Section 3.3.3). Results are shown in Figure 4.7 and

Figure 4.8, for precipitation and stream�ow forecasts, respectively.

In Figure 4.7, the two bias correction methods that stand out regarding overall

performance (CRPS), in all seasons, are LS and EDMD. This is in accordance with

our previous results on the e�ciency of each method to correct biases. When looking

more closely at improvements in the PIT criterion, as measured by the UFL, EDMD

clearly stands out from the other methods. The proportion of catchments with skill

improvement over raw forecasts is almost always 100 %, and skill is often extended

up to 60 days and more. The other methods are quite equivalent to each other, al-

though LS performs slightly better, with greater improvements in larger proportions

of catchments, especially in winter and spring, for reliability (PIT), accuracy (MAE)
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and overall performance (CRPS). In terms of sharpness (IQR), the best performing

method varies with the season. Precipitation forecasts in spring (MAM) are sharper

when corrected with methods calibrated monthly, while forecasts in summer and au-

tumn are sharper with methods calibrated yearly. To e�ectively address the tendency

to overestimate spring precipitations, the multiplicative correction factor of a monthly

calibrated bias correction for the spring season will be smaller than 1, and much smaller

than the correction factor obtained with a yearly calibrated correction. Therefore, the

spring interquartile range will be further reduced by the method calibrated monthly

than by the method calibrated yearly. This reasoning only applies to LS, EDM and

GDM since EDMD corrects each ensemble member independently.

Figure 4.8 shows the results for the stream�ow forecasts. LS and EDMD methods

are able to extend the lead time of bias corrected predictions further than other meth-

ods, and for a higher proportion of catchments in the large majority of seasons and

criteria. Again, EDMD methods yield the best improvements in reliability. LS yields

results slightly better than EDMD in sharpness and accuracy. EDM and GDM clearly

have lower performance, except in some cases in sharpness and for spring and summer.

4.5.4 Summary of the comparison of bias correction methods

In general, LS and EDMD bias correction methods show good performance for precip-

itation forecasts, although in a distinct way. While EDMD clearly improves forecast

reliability, LS shows better performance in improving sharpness. In terms of stream-

�ow forecasts, LS and EDMD are the methods that o�er the best performance. Again,

EDMD may be preferred if focus is placed on forecast reliability, while LS may be

preferred if sharpness and accuracy are the criteria one is looking to improve. Since

stream�ow forecasts generated from raw System 4 precipitation forecasts are already,

in most of the studied catchments, sharper than the ESP reference, but lack reliability

(as shown in Figure 4.3 and Figure 4.4), it seems appropriate to give priority to a

correction method that improves reliability, while providing good overall performance.

Therefore, in the following, we will only consider the monthly calibrated version of

EDMD (EDMD-m) to further investigate the skill of bias corrected seasonal forecasts

in the 16 selected French catchments. The monthly version is chosen to ensure that

monthly biases are removed and that the correction will perform relatively equally in

all seasons, while avoiding the �mis-estimation� of forecast skill (Hamill and Juras,

2006).

4.6 Skill scores of bias corrected seasonal forecasts

4.6.1 Performance of bias corrected precipitation forecasts

Figure 4.9 (for sharpness and overall performance) and Figure 4.10 (for reliability)

present the skill of seasonal precipitation forecasts bias corrected with EDMD-m. Skill
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Figure 4.7: Number of catchments (%) in each UFL value category, i.e. number of catchments

in which bias corrections increase the lead time up to which seasonal precipitation forecasts

have skill in regards to raw seasonal precipitation forecasts. Each row corresponds to an

evaluation criterion and each column corresponds to a season. Colour shades indicate the

UFL category, i.e. the lead time up to which precipitation forecasts are improved.
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Figure 4.8: Number of catchments (%) in each UFL value category, i.e. number of catchments

in which bias corrections increase the lead time up to which seasonal stream�ow forecasts have

skill in regards to seasonal stream�ow forecasts generated from raw seasonal precipitation

forecasts. Each row corresponds to an evaluation criterion and each column corresponds to a

season. Colour shades indicate the UFL category, i.e. the lead time up to which stream�ow

forecasts are improved.
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Figure 4.9: Skill of weekly precipitation forecasts corrected with EDMD-m as a function of

the lead time for all catchments and all seasons. The skill is computed based on the IQR

(top) and the CRPS (bottom) and the reference is historical precipitations. Each column

corresponds to a target season. Each line represents the skill score in a catchment for forecast

horizons within the target season.

scores are computed with historical precipitation as the reference. In order to better

evaluate the impact of bias correction on forecast skill, the y-axes in Figure 4.9 are the

same as in Figure 4.1. The comparison of these two �gures shows that bias correcting

the raw System 4 forecasts reduces the di�erences in skill between catchments. After

bias correction, catchments present very similar evolutions of the skill with the lead

time. We can also infer that, after bias correction, in some catchments, the values

of IQR and CRPS are lower than before bias correction. Nevertheless, bias corrected

forecasts remain sharper than the reference (i.e., skill scores are always greater than

zero). In the catchments where the raw forecasts performed worse than historical

precipitations (i.e., skill scores lower than zero in Figure 4.1), bias corrected forecasts

become sharper and gain skill in regards to the reference. Forecast skill in overall

performance (CRPSS) is observed up to two to three weeks ahead, after which forecasts

attain skill equal to that of the reference forecast. Skill is improved in catchments that

performed worse than the reference prior to bias correction (i.e., skill scores lower than

zero in Figure 4.1). Figure 4.9 illustrates these �ndings for winter (DJF) and summer

(JJA), but results are similar for spring and autumn (not shown).

Figure 4.10 shows that the most remarkable improvement in performance due to

bias correction is achieved in reliability. While precipitation forecasts had a tendency

to overpredict prior to bias correction, bias corrected precipitations are reliable in all



70 4.6 Skill scores of bias corrected seasonal forecasts

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F
 o

f P
IT

 v
al

ue
s

DJF JJA

Lead tim
e −

 30 days

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F
 o

f P
IT

 v
al

ue
s

0.0 0.2 0.4 0.6 0.8 1.0

Lead tim
e −

 90 days

Figure 4.10: PIT diagram of precipitation forecasts corrected with EDMD-m (coloured lines)

and historical precipitations (grey lines) for lead times of 30 days (top) and 90 days (bottom).

Each column corresponds to a target season. Each line represents the PIT diagram in a

catchment for forecast horizons within the target season.

catchments. Figure 4.10 shows the results for winter and summer, and for lead times

of 30 and 90 days, but conclusions are similar in the other seasons and lead times (not

shown). Even though a slight tendency to overpredict precipitations remains in winter

for short lead times, the improvements are noticeable. The EDMD-m bias correction

was able to address the concentration of points in the zero end point observed in

Figure 4.2 for the raw forecasts.

4.6.2 Performance of bias corrected stream�ow forecasts

The quality of the stream�ow forecasts generated from the precipitation forecasts cor-

rected with EDMD-m is investigated in Figure 4.11 and Figure 4.12 (IQRSS and

CRPSS) and in Figure 4.13 (PIT diagrams). These �gures can be compared to Fig-

ure 4.3 and Figure 4.4 which were obtained from the analysis of stream�ow forecasts

generated from raw precipitation forecasts. As seen with precipitation forecasts, bias

correction also reduces the di�erences in stream�ow forecast skill between catchments

and seasons (Figure 4.11). Again, this translates into a loss in skill in catchments

with the sharpest ensemble forecasts before bias correction, but also in a gain in skill

in catchments where raw stream�ow forecasts had negative skill. Overall, after bias

correction, stream�ow forecasts are sharper than ESP in all catchments and seasons

(only the winter and summer seasons are shown but results are similar for the spring
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Figure 4.11: Skill of stream�ow forecasts obtained from precipitation forecasts corrected with

EDMD-m as a function of the lead time for all catchments and all seasons. The skill is

computed based on the IQR (top) and the CRPS (bottom) and the reference is Extended

Stream�ow Prediction. Each column corresponds to a target season. Each line represents the

skill score in a catchment for forecast horizons within the target season.

and autumn seasons). In terms of overall performance (CRPSS), the skill of stream�ow

forecasts was largely improved, especially in catchments that had very low skill prior to

bias correction (i.e., CRPSS values well below zero in Figure 4.3). In winter, autumn

and spring, skill over the ESP reference is observed up to four weeks ahead in several

catchments (even up to �ve weeks ahead in spring and autumn), while in summer, it

is observed up to two to three weeks. At longer lead times, stream�ow forecasts show

an overall performance equivalent or slightly lower than the performance of the ESP

method.

Some studies use past stream�ow observations (referred to as stream�ow climatol-

ogy) as the reference forecast to assess the skill of stream�ow forecasts (e.g. Trambauer

et al., 2015; Wetterhall et al., 2015). Figure 4.12 shows the skill in overall performance

and sharpness when stream�ow climatology is used as reference to calculate the skill of

EDMD-m bias corrected forecasts. As expected, stream�ow forecasts generated from

bias corrected precipitation forecasts are sharper and present better overall perfor-

mance than stream�ow climatology, even for lead times of up to twelve weeks in some

catchments. In one catchment (catchment 1), skill scores are systematically higher

than the scores of the other catchments. In this catchment, stream�ow climatology is

very wide, with interannual variability of the same order of magnitude as interseasonal

variability.
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Figure 4.12: Skill of EDMD-m debiased stream�ow forecasts as a function of the lead time

for all catchments and all seasons. The skill is computed based on the IQR (top) and based

on the CRPS (right) and the reference is historical stream�ow. Each column corresponds to

the target season of forecast lead times. Each plotted line represents the performance of a

catchment.

The PIT diagrams in Figure 4.13 show that the reliability of stream�ow forecasts

is also improved after bias correcting precipitation forecasts. In winter (DJF) and

spring (not shown), stream�ow forecasts are now reliable and equivalent to ESP, al-

though forecasts still show a slight tendency to overpredict stream�ows. In autumn

(not shown), stream�ow forecasts are also reliable in most catchments, but with a ten-

dency to underpredict stream�ows. Summer (JJA) stream�ow forecasts are also more

reliable than they were prior to bias correction, but they still depict poor reliability

and show that there is room for improvements. As shown by other studies in ensemble

forecasting (Zalachori et al., 2012; Verkade et al., 2013; Roulin and Vannitsem, 2015),

a simple bias correction of meteorological inputs is obviously not enough to achieve

stream�ow forecast reliability. In our case, the di�culties of the hydrological model

in reaching lower stream�ow values remain. This highlights the need for taking into

account other sources of hydrological modelling uncertainties and including additional

post-processing, targeting directly stream�ow forecasts.

4.6.3 How improvements in precipitation forecasts propagate

to stream�ow forecasts?

We have seen that the use of reliable precipitation forecasts as input to a hydrological

model does not automatically generate reliable stream�ow forecasts. In order to further
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Figure 4.13: PIT diagram of stream�ow forecasts obtained from precipitation forecasts bias

corrected with EDMD-m (coloured lines) and Extended Stream�ow Prediction (grey lines)

for lead times of 30 days (top) and 90 days (bottom). Each column corresponds to a target

season. Each line represents the PIT diagram in a catchment for forecast horizons within the

target season.

understand how improvements in precipitation forecasts propagate to stream�ow fore-

casts, we compared the skill scores of EDMD-m bias corrected precipitation forecasts

with the skill scores of the stream�ow forecasts generated from these bias corrected

precipitations. We focused the analysis on the four catchments previously selected as

representative of the database, i.e. catchments 2, 4, 7 and 14.

Figure 4.14 presents the results for the CRPSS, IQRSS and the PITSS (PIT area)

in these four catchments. The reference forecast for the computation of the skill scores

of the bias corrected forecasts is the raw forecast. The skill thus represents a measure

of the improvement due to bias correction. Skill scores were averaged over lead times

of 10 days to 90 days.

In overall performance (CRPSS), bias correcting precipitation forecasts either led

to a gain in skill in both precipitation and stream�ow forecasts, as in catchments 4

and 7 and in some seasons in catchment 2, or to a skill equivalent to the skill prior

to bias correction, as in catchment 14. Since catchments 4 and 7 were the ones with

the most biased forecasts (cf. Figure 4.5), there was more room for improvement

in these catchments. Catchment 14 had the smallest bias of the four catchments.

Bias correction had thus little impact on precipitation forecasts, and therefore also on

stream�ow forecasts. Interestingly, the improvement achieved in stream�ow is always
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Figure 4.14: Skill scores of stream�ow forecasts after correction with EDMD-m against skill

scores of precipitation forecasts after correction with EDMD-m. The skill score of forecasts

corrected with EDMD-m is computed in regards to raw forecasts. It is then averaged over

lead times 10 to 90 days to obtain a single value. Results are shown for all four seasons in

four selected catchments (Catchments 2, 4, 7 and 14). Skill scores were obtained based on

the CRPS (top), the IQR (middle) and the PIT diagram area (bottom). The 1:1 diagonal

corresponds to an equivalent performance increase in precipitation and stream�ow.
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superior to the improvement achieved in precipitation, or equivalent when there was no

gain in skill. It seems therefore that a small improvement in the overall performance of

precipitation inputs (as measured by the CRPS) can translate in a greater improvement

in stream�ow forecasts.

If we look at the skill in sharpness (IQRSS) and in reliability (PITSS) of the ensem-

ble forecasts, we observe di�erent behaviours. In sharpness, a loss in skill was observed

in catchments 2 and 14, while a gain was observed in catchments 4 and 7. When a

gain was achieved, the gain is superior in stream�ow forecasts than in precipitation

forecasts. If we look at reliability, skill was always improved by bias correcting the

precipitation forecasts, with skill scores always superior to 0.3. The gain in stream�ow

is mainly positive, but not always, as in the case of precipitation forecasts. Although

the majority of skill scores are superior to 0.1, some values are below the zero skill score

line. The gain in reliability from the application of bias correction to raw precipita-

tion forecasts is, in general, superior in precipitation forecasts than it is in stream�ow

forecasts.

Based on our results, we can say that in catchments with small biases, here repre-

sented by catchments 2 and 14, overall performance was mainly stable from precipi-

tation to stream�ow forecasts. However, in these catchments, a gain in reliability was

generally associated with a loss in sharpness. In catchments with greater biases, here

represented by catchments 4 and 7, overall performance, sharpness and reliability were

improved for both precipitation and stream�ow forecasts by simply bias correcting the

precipitation forecasts.

4.6.4 Example of forecast hydrographs in a selected catchment

Figure 4.15 presents the hydrographs of the forecasts obtained from historical stream-

�ow (HistQ), ESP, and seasonal forecasts bias corrected with LS-m and EDMD-m,

from April 2004 to April 2007 in catchment 7. We show forecasts for lead times from

31 days to 60 days, i.e., forecasts issued in the previous month. Ensemble forecasts

are represented by the median forecasts and two prediction intervals: the 25 % - 75 %

interval containing 50 % of the ensemble members (dark grey zone), and the 5 % - 95 %

interval with 90 % of the ensemble members (light grey zone). Observed stream�ow is

also shown. In this catchment, seasonal forecasts had a strong bias and bias correction

methods performed well.

The hydrograph for historical stream�ow represents the interannual variability

in stream�ow in the catchment, except that the forecast year is excluded for cross-

validation. It relies on past observations of stream�ow and does not include seasonal

meteorological forecasts. We can see that the observations fall within the forecast

ranges in most cases, which indicates, as expected with climatology, good forecast re-

liability. However, the forecast lacks sharpness during low-�ow periods. Accuracy of

the median forecast is, in general, good, although too high and low peak �ows are not
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Figure 4.15: Hydrographs obtained with historical stream�ow, ESP, seasonal forecasts cor-

rected with LS-m and seasonal forecasts corrected with EDMD-m in catchment 7 from 1 April

2004 until 1 April 2007. The vertical axis is logarithmic. The blue line represents the observed

stream�ow. The grey shaded areas present the forecasts issued in the previous month, i.e. 31

to 60 days prior to the observations.
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well reproduced.

The forecasts obtained with the ESP method use past observations of precipitation

as input to the hydrological model rather than seasonal meteorological forecasts. They

show visible improvements in sharpness during low �ow periods, while reliability seems

preserved. Accuracy of the median forecasts seems equal or lower than observed with

historical stream�ow.

The hydrographs representing the stream�ow forecasts obtained from bias cor-

rected System 4 precipitation seasonal forecasts show forecasts that are sometimes

even sharper than ESP forecasts, as seen, for instance, for the rising limb in 2005.

Overall, the observed stream�ow falls within the forecast ranges. In some situations,

as in the peak event in August 2004, prediction intervals of bias corrected seasonal

forecasts, particularly in the EDMD-m case, are closer to observations than ESP fore-

casts. In general, visual di�erences in quality between seasonal stream�ow forecasts

obtained from precipitation forecasts corrected with LS-m and EDMD-m are hardly

noticeable. Although EDMD-m forecasts seem to present slightly larger prediction

intervals, which could result in better reliability but lower sharpness comparatively

to LS-m, the accuracy of their median forecasts is practically identical. The visual

inspection of these graphs for all catchments indicates similar results. Although our

analyses and evaluation criteria have indicated the EDMD-m as the preferred method

for the studied catchments, LS-m also yields good improvements in precipitation and

stream�ow forecasts. Since this method is easier to implement, it can be an alternative

to the application of EDMD-m in operational forecasting systems.

4.7 Discussion and conclusions

We assessed the quality of ECMWF System 4 precipitation forecasts for seasonal

stream�ow forecasting in 16 catchments in France. We evaluated areal precipita-

tion forecasts over the catchments and stream�ow forecasts generated from inputting

precipitation forecasts to a lumped hydrological model. Results show that, in most

catchments, raw (uncorrected) System 4 precipitation forecasts are sharper than pre-

cipitation climatology (i.e., ensemble forecasts built from climatological precipitations)

in all seasons. However, raw precipitation forecasts show poor reliability and a ten-

dency to overpredict precipitations. Likewise, stream�ow forecasts generated from raw

System 4 precipitations are sharper, but far less reliable than forecasts based on the

ESP approach (i.e., ensemble forecasts obtained from running the hydrological model

with current initial conditions and past observed precipitations). Yet, in overall per-

formance, raw precipitation forecasts yield improvements up to two weeks in all catch-

ments over precipitation climatology, and stream�ow forecasts yield improvements up

to three to four weeks over ESP in some catchments. In general, improving forecast

reliability, while maintaining (or not diminishing too much) forecast sharpness, was

clearly a challenge for bias correction methods.
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An in-depth analysis of the biases of System 4 seasonal precipitation forecasts

showed strong monthly biases sometimes hidden at the scale of the year, depending on

the catchment. Bias correction methods calibrated over the whole year were therefore

less e�cient when evaluating forecasts over calendar months. In the majority of catch-

ments, the empirical distribution mapping of daily values (EDMD) or the simple linear

scaling method (LS) applied to raw System 4 precipitation forecasts showed more e�ec-

tiveness in correcting the yearly but also the monthly biases. These methods also gave

the highest increase in overall performance for stream�ow forecasting. Empirical dis-

tribution mapping of daily values calibrated for each calendar month (EDMD-m) was

particularly e�cient to increase reliability of precipitation and stream�ow forecasts,

while linear scaling (LS-m) led to higher improvements in sharpness and accuracy.

The EDMD-m bias correction method was further investigated to better under-

stand its impact on the skill of bias corrected seasonal forecasts in the studied catch-

ments. Overall, the application of bias correction reduced the di�erences in forecast

performance between seasons and catchments for precipitation and stream�ow fore-

casts. Also, bias correction ensured that precipitation and stream�ow forecasts were at

least equivalent in performance to the historical precipitations and stream�ow forecasts

based on historical precipitations, respectively, up to three months ahead. In catch-

ments with greater biases, overall performance, sharpness and reliability were improved

for both precipitation and stream�ow forecasts by simply bias correcting the precipita-

tion forecasts. Overall performance was mainly stable in catchments with small biases.

However, in these catchments, a gain in reliability was generally associated with a loss

in sharpness. The evaluation of forecasts after bias correction, for the purposes of op-

erational applications on water and risk management, may therefore involve a trade-o�

between sharpness and reliability. Furthermore, while precipitation forecast reliability

is improved with bias correction, the evaluation of stream�ow forecast reliability shows

that there is still room for improvement. Notably, bias correction of precipitation in-

puts was not enough to achieve good reliability in summer stream�ow forecasts. This

highlighted the need for adding a step of stream�ow post-processing to the forecasting

system.

This study compared eight simple bias correction methods to correct precipitation

seasonal forecasts and investigated how one of them impacts the skill of stream�ow

forecasts. The catchments studied were not in�uenced by snowmelt �ows and thus

only precipitation was considered in the bias correction procedures. In other contexts,

it may be interesting to also include bias correction of temperature forecasts, with

appropriate methods to consider space-time interdependencies of the meteorological

variables. The explicit consideration of temperature forecasts could also bene�t the

skill of low �ow forecasts in summer, when evapotranspiration can play a crucial role.

Several other approaches for post-processing and bias correction exist, for instance,

based on MOS techniques, space-time disaggregation schemes or Bayesian Model Av-
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eraging (Gneiting et al., 2005; Raftery et al., 2005; Liu et al., 2013; Hemri et al., 2014).

These could be investigated to contribute to the comprehensive comparison of options

for bias correcting precipitation and temperature forecasts prior to seasonal stream�ow

forecasting.

Last, other forecasting methods selecting historical precipitations based on climate

indicators have been investigated in the literature for seasonal hydrological forecasting

in regions where strong correlations have been observed, e.g. in the United States or

in Australia. In France, weak correlations have often shown that climate indicators

may not be adapted to forecast precipitations at the seasonal scale. However, the use

of indicators derived from seasonal forecasts could potentially improve the selection of

past precipitation scenarios, which might enhance the skill of ESP methods to forecast

stream�ow.





5
Seasonal stream�ow forecasting by

conditioning climatology with

precipitation indices

This chapter is based on a paper under review in Hydrology and Earth System

Sciences: Crochemore L., Ramos M.-H., Pappenberger F., Perrin C., 2016. Seasonal

stream�ow forecasting by conditioning climatology with precipitation indices. Hydrology and

Earth System Sciences Discussions, doi:10.5194/hess-2016-285.

doi:10.5194/hess-2016-285
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R�esum�e

Dans le chapitre pr�ec�edent, nous avons montr�e que la correction du biais des

pr�evisions saisonni�eres de pr�ecipitations du CEPMMT peut am�eliorer la qualit�e des

pr�evisions de d�ebits, produites �a l'aide d'un mod�ele hydrologique. Les pr�evisions de

d�ebits obtenues �a partir des pr�ecipitations corrig�ees sont �nes, mais restent peu �ables,

en �et�e par exemple. Dans ce chapitre, nous consid�erons d'autres m�ethodes dynamiques

et statistiques de pr�evision des d�ebits �a l'�ech�eance saisonni�ere exploitant la climatolo-

gie des pluies ou les donn�ees historiques de d�ebits. Ces m�ethodes ont l'avantage d'�etre

moins co�uteuses en ressources informatiques et de produire des ensembles �ables, mais

ne b�en�e�cient pas des informations sp�eci�ques au jour de la pr�evision. L'objectif de

ce chapitre est de conditionner ces m�ethodes de pr�evision des d�ebits bas�ees sur les

donn�ees historiques �a partir des pr�evisions pr�esent�ees dans le chapitre pr�ec�edent, a�n

de b�en�e�cier �a la fois de la �abilit�e des pr�evisions bas�ees sur la climatologie, et de la

�nesse des pr�evisions bas�ees sur les pr�evisions du CEPMMT.

Pour cela, des statistiques �a long-terme des pr�evisions de pluies du CEPMMT, i.e.,

le cumul de pr�ecipitations et le SPI (Standardized Precipitation Index), sont utilis�ees

pour s�electionner des ann�ees parmi les ann�ees de pr�ecipitations et de d�ebits disponibles.

Les ensembles produits restent bas�es sur les donn�ees historiques de pluies et de d�ebits,

mais sont sp�eci�ques �a la p�eriode de pr�evision. La �nesse, la �abilit�e et les performances

globales des ensembles produits sont �evalu�ees dans seize bassins versants fran�cais de

1981 �a 2010. Ces ensembles sont ensuite compar�es en fonction de leur capacit�e �a

pr�evoir des �ev�enements en basses eaux, ainsi que des variables d'int�er�et en �etiages

telles que le nombre de jours ou le volume d�e�citaire sous un seuil de basses eaux.

En�n, les pr�evisions sont compar�ees �a l'aide d'un graphique d'�evaluation des risques

a�n d'illustrer ces di��erences de performances dans le cas de la s�echeresse de 2003 dans

un bassin fran�cais.

Les r�esultats de l'�etude montrent que les s�elections bas�ees sur le SPI, et en par-

ticulier le SPI calcul�e sur trois mois (SPI3), produisent des ensembles aux perfor-

mances plus homog�enes entre bassins que les autres m�ethodes de s�election. Les en-

sembles produits avec cette s�election sont �ables et plus �ns que les ensembles de

d�epart bas�es sur la climatologie. Pour des horizons sup�erieurs �a un mois, les perfor-

mances des ensembles s�electionn�es ressemblent aux performances des pr�evisions issues

des pr�ecipitations du CEPMMT. L'�evaluation de la discrimination des ensembles de

pr�evision montre de bons r�esultats pour les ensembles issus du mod�ele hydrologique

(approche dynamique). En�n, une application au cas de la s�echeresse de 2003 montre

que les pr�evisions s�electionn�ees peuvent aider �a pr�evoir des �ev�enements extr�emes de

mani�ere plus pr�ecise.
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Abstract

Many �elds such as drought risk assessment or reservoir management can bene�t from

long-range stream�ow forecasts. Climatology (i.e. time series of climate conditions

recorded over a long time period) has long been used in long-range stream�ow fore-

casting. In the last decade, the use of coupled general circulation model (GCM) outputs

as input to hydrological models has developed. While precipitation climatology and

historical stream�ows o�er reliable ensembles, forecasts based on GCM outputs can

o�er sharper ensembles, partly due to the initialisation of GCMs and hydrological

models.

This study proposes to condition historical data based on GCM precipitation fore-

casts to get the most out of both data sources and improve seasonal stream�ow fore-

casting in France. Four conditioning statistics based on ECMWF System 4 forecasts of

cumulative precipitation or of the Standardized Precipitation Index (SPI) were used to

select traces within historical stream�ows and historical precipitations. This resulted

in eight conditioned ensemble forecast scenarios. These conditioned scenarios were

compared to an ensemble based on historical stream�ows, to the widespread Extended

Stream�ow Prediction (ESP) ensemble, and to System 4 precipitation forecasts used

as input to the GR6J hydrological model. These ensembles were evaluated based on

their sharpness, reliability and overall performance.

An overall comparison of forecast ensembles showed that conditioning past obser-

vations based on the three-month Standardized Precipitation Index (SPI3) improved

the sharpness of ensembles based on historical data, while maintaining a good reli-

ability. An evaluation of forecast ensembles in low-�ow forecasting showed that the

SPI3-conditioned ensembles provided reliable forecasts of low �ow duration and de�cit

volume based on the 80th exceedance percentile. Last, drought risk forecasting is illus-

trated for the 2003 drought.
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5.1 Introduction

Numerical prediction is valuable to proactively manage risks in areas such as hy-

dropower, drinking water production and drought preparedness (Wilhite et al., 2000).

Regardless of the application, probabilistic forecasts are preferred over deterministic

ones to convey uncertainties (Krzysztofowicz, 2001; Ramos et al., 2013). The main

sources of uncertainty that play a central role in informing decision-making depend

on the variable being forecast, the forecast horizon, but also on the location. For in-

stance, region-speci�c tools have been developed in the world to predict and anticipate

drought events weeks, months or even years in advance (Anderson et al., 2000; She�eld

et al., 2013; Ceppi et al., 2014; Hao et al., 2014; Shukla et al., 2014). Nevertheless,

anticipating river runo� events at long lead times remains a challenge (Yuan et al.,

2015).

The predictability of stream�ow at long lead times lies in the initial hydrological

conditions and the meteorological forcing. Research has shown that the relative role

of each source of predictability mainly depends on the studied basin, the forecast

season and the forecast lead time (Shukla et al., 2013; Wood and Lettenmaier, 2008;

Yossef et al., 2013). Yossef et al. (2013) showed that in Western Europe, from July

to October, stream�ow forecasts are more dependent on meteorological forcing than

they are on initial conditions, even one month ahead. The conclusions of Shukla et al.

(2013) are quite consistent with these �ndings. They found that the predictability of

a forecast issued in July in France lies in the meteorological forcing for horizons longer

than three months. However, their results at shorter lead times are more nuanced, with

predictability being led either by initial conditions or meteorological forcing, depending

on the geographical location in France.

In practice, two approaches are often used to forecast stream�ow at the seasonal

scale (Easey et al., 2006). Statistical approaches rely on past observations and statis-

tical relationships between a predictor and a predictand. Dynamical approaches rely

on coupled general circulation model (CGCM) outputs or past observations to feed

a hydrological rainfall-runo� model. The choice of one approach over the other will

depend on the purpose of the forecast, the region of interest and on the available data.

More importantly, some studies have shown that the two approaches can complement

and bene�t from each other (Block and Rajagopalan, 2009; Seibert and Trambauer,

2015).

Climatology (past observations) is considered a good indicator of the range of pos-

sible outcomes for a given time of the year. Day (1985) introduced the Extended

Stream�ow Prediction (ESP), which is an approach that uses precipitation climatol-

ogy as input to a hydrological model previously initialised for the forecast date. This

approach has been extensively used, for research purposes and operationally, in sea-

sonal stream�ow forecasting (Wang et al., 2011) and reservoir operations (Faber and
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Stedinger, 2001), among other �elds. An alternative to climatology is the seasonal

forecasts issued by CGCMs (Yuan et al., 2015). While these are initialized and forced

for a speci�c forecast day, precipitation climatology simply provides a range of what

has been previously observed on the forecast day, regardless of the current atmospheric

situation and latest observations.

More recently, research has focused on �ne-tuning the traditional ESP method by

selecting relevant years within the climatology. In that context, several studies have

proposed to condition or weight past observations based on climate signals. The pro-

posed approaches are commonly divided in pre-ESP (prior to hydrological modelling)

and post-ESP approaches (after hydrological modelling). In Northern America, sev-

eral studies have taken advantage of the in�uence of the El Ni�no Southern Oscillation

(ENSO) and the Paci�c Decadal Oscillation (PDO) to improve the skill of seasonal

forecasts. Hamlet and Lettenmaier (1999) selected past precipitations based on cate-

gories of ENSO and PDO to feed a hydrological model for stream�ow forecasting, and,

later on, for reservoir operation (Hamlet et al., 2002). Werner et al. (2004) selected and

weighted traces based on the ENSO before and after hydrological modelling. The au-

thors showed that the post-ESP method yielded greater improvements in forecast skill

than the pre-ESP method. Their post-ESP method was recently applied by Trambauer

et al. (2015) in Southern Africa. Gobena and Gan (2010) used the PDO in several pre-

and post-ESP resampling, including a pre-ESP approach bene�ting from monthly pre-

cipitation and temperature statistically derived from climate model outputs. Recent

studies have investigated the use of multiple other climate indices in post-ESP tech-

niques (Naja� et al., 2012). At the scale of the globe, van Dijk et al. (2013) selected

traces within precipitation climatology based on climate indicators that were proven

in�uential for the region and time period. They showed that using climate information

improved forecast skill in Southeast Asia and South America.

In Europe, teleconnections show complex patterns and strongly depend on the sea-

son (Ionita et al., 2015). Bierkens and van Beek (2009) exploited the teleconnection

found between winter precipitations and the Northern Atlantic Oscillation (NAO) to

select traces within the precipitation climatology and forecast seasonal stream�ows. In

Czech Republic, �S��pek and Da�nhelka (2015) ran a hydrological model with synthetic

series of precipitation and temperature generated from climate forecasts and histor-

ical meteorological series. In France, Sauquet et al. (2008) forecast low �ows in the

Rhine river by selecting past precipitation scenarios that were close to the forecast

day in terms of previous amounts of precipitation. Other approaches have consisted

in directly taking pro�t of the information o�ered by long stream�ow records. For

instance, Svensson (2016) selected analogues within historical stream�ows based on

the stream�ow anomaly observed in the month prior to the forecast date. The author

aimed to forecast mean stream�ow over the coming month or the coming three months

in the United Kingdom.
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In California, Carpenter and Georgakakos (2001) and Yao and Georgakakos (2001)

tested several stream�ow forecasting methods to forecast the in�ows to the Folsom

Lake. Based on the hypothesis that �It is not necessary [...] that low skill in repro-

ducing regional precipitation is an index of the utility of GCM information for systems

acting as low-pass �lters, such as the hydrological and reservoir systems are.� Carpenter

and Georgakakos (2001) conditioned historical precipitations based on the precipitation

anomaly forecast by a GCM. They found that this conditioning was particularly e�-

cient to forecast the low 30-day in�ows to the lake: �Global climate model information

from the Canadian coupled global climate model CGCM1 bene�ts the mean forecasts sig-

ni�cantly mainly for low observed 30-day in�ow volumes.� Yao and Georgakakos (2001)

compared this method with the ESP method, and with a forecast ensemble conditioned

from historical stream�ows based on the latest observed reservoir in�ows. They found

that the GCM-conditioned ensemble outperformed the ESP method, although the en-

semble conditioned from historical stream�ows, which was the most reliable, managed

to completely eliminate �ood damage and generate more energy than the other two

ensembles.

This study proposes to investigate how selecting historical data based on forecast

precipitation indices contributes to the skill of seasonal stream�ow forecasts. Our

approach selects traces of past observed precipitations and stream�ows based on pre-

cipitation indices derived from the System 4 seasonal precipitation forecasts issued by

the European Centre for Medium-range Weather Forecasts (ECMWF). The aim is to

generate forecasts that bene�t from the reliability of climatology-based ensembles and

the sharpness of System 4 precipitation forecasts. In the previous chapter, we assessed

the performance of System 4 precipitation forecasts for seasonal stream�ow forecasting.

Despite the good overall performance of the stream�ow forecasts after bias correction,

we still observed a lack of reliability of the forecasts generated with the hydrological

model in summer. In accordance with the results from Carpenter and Georgakakos

(2001), we evaluate the proposed methods in contexts of low �ows and droughts.

Section 5.2 presents the data and the methodology used to build stream�ow fore-

casts. In Section 5.3, we present the evaluation of the di�erent studied scenarios. First,

we analyse the impact of the conditioning on the overall performance, sharpness and

reliability of seasonal stream�ow forecasts over the whole year. Then, we investigate

the discrimination and reliability of the ensemble prediction systems to forecast low-

�ow events. We also illustrate the performance of our approach in forecasting drought

risks through the case of the 2003 severe drought in France. In Section 5.4, we discuss

the main outcomes and perspectives of the study.
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5.2 Data and methods

5.2.1 Observed and forecast hydrometeorological data

Mean areal observed precipitation and potential evapotranspiration data come from

the SAFRAN reanalysis of M�et�eo-France. Daily stream�ow data at the outlet of each

catchment come from the French HYDRO national archive. Seasonal precipitation fore-

casts are from ECMWF System 4. They were aggregated at the catchment scale and

only the �rst 90 days of the forecast horizon were considered. Chapter 1 provides the

detailed description of the observed and forecast hydrometeorological data. In Chap-

ter 4, we compared several methods to bias correct System 4 precipitation forecasts for

seasonal stream�ow forecasting. We showed that the empirical distribution mapping

of daily values improved the reliability of both precipitation and stream�ow forecasts.

Following these results, the System 4 precipitation forecasts used in this chapter were

previously bias corrected with this method.

5.2.2 Catchments and hydrological model

The catchment set used in this chapter is the same as in Chapter 4. It includes 16

catchments spread over France, whose main characteristics and locations are presented

in Chapter 1. In these catchments, low �ows are observed between May and October.

One of the major drought events in these catchments is the 2003 drought, which caused

approximately 15,000 deaths and cost over a billion euros just in France (UNEP, 2004;

Poumad�ere et al., 2005). This drought event is used to illustrate the work on drought

risk assessment in Section 5.3.3.

The conceptual, reservoir-based GR6J hydrological model (Pushpalatha et al., 2011)

was run at the daily time step with daily precipitation and potential evapotranspira-

tion inputs at the catchment scale. The model output is the daily stream�ow at the

catchment outlet. Interannual potential evapotranspiration was used to focus solely

on the in�uence of precipitation inputs on stream�ow forecasts. The model was cali-

brated in each catchment with the Kling-Gupta E�ciency (Gupta et al., 2009) applied

to inverse �ows (KGEiQ) to focus on the lowest �ows of the hydrograph. Details on

the hydrological model and on the forecasting framework are described in Chapter 2.

5.2.3 Evaluation framework

The quality of the forecasts was evaluated at the daily time step and up to 90 days

ahead. We assessed the sharpness and the reliability of the ensemble forecast systems

following the paradigm introduced by Gneiting et al. (2007), which is maximizing

sharpness while guaranteeing reliability. These were assessed based on the Interquantile

Range (IQR), and on the PIT diagram and its area. The overall performance and

the discrimination of the forecasts were also evaluated through the Continuous Rank
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Probability Score (CRPS) and the ROC diagram and its area (AUC), both computed

based on the 80th exceedance percentile. Details on the evaluation criteria and the

normalized skill score used in this chapter are presented in Chapter 3.

5.2.4 Forecast scenario building method

Eleven ensemble forecast scenarios were compared based on their performance in fore-

casting stream�ows. Three scenarios are based on methods commonly used in seasonal

stream�ow forecasting. These are named �base ensembles� in the following. The re-

maining eight scenarios are based on these base ensembles and speci�c conditioning

statistics. Table 5.1 summarizes the di�erent ensemble forecast scenarios compared in

this study.

Description of base ensembles

The simplest ensemble forecast scenario uses the long-term statistical variability of

historical stream�ows. It is assumed that the stream�ow at a given day of the year is

likely to fall within the range of past stream�ows observed in previous years, on that

same day. Apart from the necessity to have a long time series of stream�ow records,

this ensemble is not computationally costly. It is named HistQ hereafter.

Another base ensemble is the traditional ESP method. It requires a hydrological

model and a long time series of precipitation records. This ensemble is based on the

assumption that the precipitation of a given day is likely to fall within the range of past

precipitations observed in previous years, on that same day. For a given forecast day, a

precipitation ensemble is thus built by using precipitations observed in previous years.

The precipitation ensemble has as many members as the number of years available in

the precipitation record. The states of the GR6J hydrological model are �rst initialized

with a one year run up to the forecast date. The precipitation ensemble and interannual

evapotranspiration are then used as input to the model.

The third base ensemble uses the ECMWF System 4 seasonal precipitation forecasts

as input to the GR6J hydrological model. Both the System 4 GCM and the hydrological

model are initialized for the forecast day. This ensemble can be considered the most

costly in terms of implementation and computational needs. Hereafter, this ensemble

is named Sys4.

Description of conditioned scenarios

From the base ensembles, we built eight other scenarios by selecting traces within the

HistQ and the ESP ensembles. The conditioning was based on statistics derived from

the System 4 precipitation forecasts. Four statistics were computed for each forecast

date and each member of the seasonal forecasting system. Two are based on cumulative

rainfalls, and two on the standardized precipitation index (SPI). The SPI transforms

the distribution �tted to a long precipitation record into a normal distribution (McKee
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Table 5.1: Summary of the methodology used to build the ensemble forecast scenarios.

Name Statistic

on seasonal

forecast used

as condition

Additional

condition

Size Initial

hydro-

logical

condi-

tions

Hydro-

logical

model

Precipi-

tation

forecast

HistQ No condition - Past avail-

able stream-

�ows

no no no

HistQ_Sum3 Precipitation

volume

previous

stream�ow

15 or 51 yes no no

HistQ_Sum1 Monthly

precipitation

volume

previous

stream�ow

15 or 51 yes no no

HistQ_SPI3 SPI3 previous

stream�ow

15 or 51 yes no no

HistQ_SPI1 SPI1 previous

stream�ow

15 or 51 yes no no

ESP No condition - Past avail-

able precipi-

tations

yes yes no

ESP_Sum3 Precipitation

volume

- 15 or 51 yes yes no

ESP_Sum1 Monthly

precipitation

volume

- 15 or 51 yes yes no

ESP_SPI3 SPI3 - 15 or 51 yes yes no

ESP_SPI1 SPI1 - 15 or 51 yes yes no

Sys4 No condition - 15 or 51 yes yes yes

et al., 1993; WMO, 2012). An SPI value of 0 corresponds to conditions close to the

long-term average of precipitations. Negative (positive) SPI values correspond to drier

(wetter) conditions. The four conditioning statistics are:

- the cumulative precipitation forecast over the �rst three months of lead time

(Sum3);

- the series of cumulative precipitation forecast over the �rst, second and third

months (i.e. one value per lead time, Sum1);

- the SPI over the �rst three months altogether (SPI3);

- the SPI over the �rst, second and third months separately (i.e. one value per

lead time, SPI1).

The statistics (SPI or precipitation volume) derived from System 4 forecasts are

then used to select traces within HistQ and ESP. For that purpose, statistics are also

computed for sequences of historical precipitations. Here, we consider sequences that
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start within 15 days of the forecast date, observed in years di�erent from the forecast

year. For a given forecast member, the sequence that is the closest in terms of the

Euclidian distance, and with regard to the considered statistics, is selected. Note that

di�erent forecast members can be associated with the same �closest� historical sequence.

Once the sequences are selected, two options can then lead to a stream�ow forecast

ensemble: (a) the selected precipitation sequences can be used as input to the hydrolog-

ical model to generate a stream�ow forecast ensemble (ESP_Sum3, ESP_Sum1,

ESP_SPI3, ESP_SPI1), or (b) the historical stream�ows corresponding to the

selected sequences can be directly used as ensemble members to build a stream�ow en-

semble (HistQ_Sum3, HistQ_Sum1, HistQ_SPI3, HistQ_SPI1). In the latter

case, conditioning stream�ow sequences based on rainfall statistics may result in un-

realistic forecasts due to initial conditions far from what is observed on the forecast

date. Therefore, when directly selecting scenarios from past stream�ow observations,

the last observed stream�ow is added as a conditioning criterion in the computation

of the Euclidian distance.

Before evaluating the performance of the eleven ensemble forecast scenarios, we

evaluated the skill of System 4 in forecasting the conditioning statistics (cumulative

precipitations and SPI). Figure 5.1 shows the skill in overall performance (CRPSS) and

in sharpness (IQRSS), and the reliability (PIT diagram). The reference forecast used

to compute the skill scores is historical precipitations (i.e. climatology). Regardless of

the considered statistic, System 4 performs as well as climatology while being sharper.

In addition, SPI forecasts issued from System 4 are reliable overall and in standard

precipitation conditions. In dry conditions (i.e. SPI values smaller than -1), however,

forecasts tend to overestimate SPI values, while in wet conditions (i.e. SPI values

greater than 1) forecasts tend to underestimate SPI values. Similar PIT diagrams are

observed with SPI forecasts from historical precipitations (not shown). Dutra et al.

(2014) did a similar comparison and showed that System 4 forecasts performed better

than or similarly to historical precipitations to forecast SPI values in South Africa.

5.3 Performance of the stream�ow forecasting sys-

tems

5.3.1 Statistical evaluation of accuracy and reliability

In�uence of conditioning on stream�ow forecasts performance

We evaluated the gain and loss in skill of daily stream�ow forecasts due to the four

types of conditioning applied to the HistQ base ensemble. Figure 5.2 shows the CRPSS,

IQRSS and PITSS for lead times up to 90 days, and the PIT diagram for a lead time

of 45 days. The reference for the computation of the skill is HistQ, i.e. historical

stream�ows with all available years. Each line corresponds to one of the 16 catchments.
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Figure 5.1: CRPSS, IQRSS and reliability of SPI forecasts and forecasts of cumulative precip-

itations produced from bias corrected System 4 precipitation forecasts. The reference for the

skill scores is climatology. Skill scores are presented for statistics calculated over one month

and three months altogether (Sum1 and Sum3; SPI1 and SPI3). PIT diagrams are presented

for statistics calculated over the �rst three months altogether (Sum3 and SPI3). Columns

correspond to scores computed for sums, SPI values, SPI values smaller than -1 (dry), SPI

values within -1 and 1 (normal) and SPI values greater than 1 (wet).

The �rst conclusion from this �gure is that all four conditionings lead to similar

results. Their impact on forecasts reliability (PIT) and sharpness (IQR) is uniform

over the lead times, while their impact on overall performance (CRPS) is greater at

shorter lead times. Conditioning HistQ improves sharpness at most lead times (IQRSS

above zero) and, for all conditioning statistics (Sum or SPI). However, as a direct result

of narrower ensembles, there is a decrease in the PIT values (reliability) at most lead

times (PITSS below zero). Nevertheless, the PIT diagrams at 45 days show that this

decrease does not a�ect the overall reliability of the conditioned ensembles: they remain

quite reliable (PIT values close to the diagonal line) for all conditioning statistics,

especially when conditioning based on the SPI. Regarding overall performance (CRPS),

the conditioning increases performance up to 15 to 30 days ahead in most catchments.

Improvement is greater when traces are selected based on cumulative precipitations

(Sum3 or Sum1) or SPI3 than when they are selected based on the series of SPI1 values.

This improvement in overall performance in the �rst lead times can be attributed to the
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fact that the conditioning of historical stream�ow takes into account the last observed

stream�ow. At longer lead times, the overall performance of conditioned scenarios is,

in the majority of catchments, equivalent or slightly worse than that of HistQ. In one

of the catchments, however, we observed improvements up to 90 days ahead. This

catchment corresponds to catchment 1, in which interannual stream�ow variability

dominates over seasonality (cf. Chapter 1) due to a high base �ow index.

We also examined the loss and gain in skill due to conditioning the ESP base en-

semble. Figure 5.3 is similar to Figure 5.2. It plots the skill scores against lead time

and the PIT diagram for a lead time of 45 days, but this time the reference used in

the computation of the skill is ESP. Here again, the four conditionings seem to have

a similar impact on performance. Conditioned stream�ow forecasts appear to be as

performant or slightly worse than ESP in terms of overall performance (CRPSS), for all

lead times. This often translates in a gain in sharpness (IQRSS) associated with a loss

in reliability (PITSS), as observed with the scenarios conditioned from the HistQ base

ensemble. Some distinctions between the conditionings based on cumulative precipita-

tions and the conditionings based on the SPI can be seen. First, conditionings based

on the SPI provide more homogeneous results between catchments for all evaluation

criteria. We also observe that the loss in overall performance is greater with the condi-

tionings based on cumulative precipitations, while overall performance of the ensembles

conditioned with the SPI tend to be equivalent to that of ESP. The PIT diagrams show

that ensembles selected based on cumulative precipitations are not perfectly reliable,

with observations too often falling below the forecast range in most catchments. En-

sembles selected based on the SPI show a similar tendency, but in fewer catchments. In

general, PIT values are closer to the diagonal when conditioning based on SPI values,

especially with ESP_SPI3, which gives more reliable forecasts in most catchments.

Figure 5.2 and Figure 5.3 have shown that the conditionings provide quite consistent

results, with a tendency to increase sharpness and maintain or just slightly decrease

reliability. Overall performance is quite stable at all lead times, when conditioning

the ESP base ensemble. When conditioning HistQ, the use of an additional condition

on stream�ows to select traces increases overall performance in the �rst lead times.

Conditioning based on the SPI provides more consistent results between catchments

and tends to produce more reliable forecasts than conditioning based on cumulative

precipitations. More speci�cally, conditioning based on SPI3 minimizes the loss in

reliability and in overall performance comparatively to the ESP ensemble. In the

following paragraphs of our analysis, the quality of conditioned ensembles is further

explored. The scenarios investigated were restrained to HistQ_SPI3 and ESP_SPI3.

Comparison of conditioned scenarios with the Sys4 base ensemble

In Figure 5.4, we compare the quality of ESP, ESP_SPI3, HistQ and HistQ_SPI3

comparatively to Sys4. Figure 5.4 is similar to Figures 5.2 and 5.3 in that it represents
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Figure 5.2: Skill scores (CRPSS, IQRSS, PITSS; �rst three rows) and PIT diagrams for a

lead time of 45 days (last row) of the conditioned ensemble forecast scenarios: HistQ_Sum3,

HistQ_Sum1, HistQ_SPI3 and HistQ_SPI1. In the skill scores, the reference forecast is the

base ensemble HistQ. Each line represents one of the 16 catchments investigated.
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Figure 5.3: Same as Figure 5.2 but the forecast ensembles are ESP_Sum3, ESP_Sum1,

ESP_SPI3 and ESP_SPI1 and the reference for the computation of the skill is ESP.
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the skill in overall performance, reliability and sharpness as a function of lead time, as

well as the PIT diagrams at 45 days lead.

The behaviour of ESP is very similar to that of ESP_SPI3 with respect to Sys4.

Both have better overall performance than Sys4 for lead times shorter than 5 to 10

days, worse performance for lead times from 5 to 10 days and up to 20 days, and

equivalent performance at longer lead times. In terms of reliability and sharpness,

ESP and ESP_SPI3 are overall more reliable than Sys4 but not as sharp, though

ESP_SPI3 becomes equivalent to Sys4 for lead times longer than 45 days. The PIT

diagrams show that ESP and ESP_SPI3 are visually equivalent in terms of reliability,

though the previously observed tendency of observations falling below the forecast

range persists in a few catchments. This tendency may not be caused by precipitation

inputs but by the hydrological model.

If we now look at ensembles based on historical stream�ows, we observe that HistQ

performs worse than Sys4, at least for lead times shorter than 50 days. Even though

HistQ is more reliable than Sys4, it is not as sharp, especially for lead times shorter

than 30 days. HistQ_SPI3 also has lower overall performance than Sys4 but the gap

in performance is reduced for lead times shorter than 15 days. HistQ_SPI3, following

HistQ characteristics, provides forecasts that are more reliable than Sys4, except at long

lead times in some catchments. Contrary to HistQ, conditioning allows HistQ_SPI3

to be as sharp as Sys4 for horizons longer than 30 days. The reliability of HistQ

and HistQ_SPI3 is con�rmed by their PIT diagrams. These diagrams also show that

ensembles based on historical stream�ows (HistQ) are more reliable than ensembles

based on precipitation climatology (ESP).

Overall comparison of base and conditioned ensembles

The objective now is to see whether we succeeded in bene�ting from the reliability

of climatology and the sharpness of Sys4 when conditioning ensemble forecast scenar-

ios. Figure 5.5 proposes a simultaneous evaluation of the reliability (PIT area) and

sharpness (IQR) of ESP_SPI3 and HistQ_SPI3. For a given catchment, lead time

and reference, the skill in reliability is plotted against the skill in sharpness. Each

point corresponds to a catchment, each column corresponds to a lead time and each

row corresponds to a forecast ensemble. Two references are chosen for each ensemble:

ESP_SPI3 is evaluated against ESP and Sys4, and HistQ_SPI3, against HistQ and

Sys4. Each reference is identi�ed by its colour and shape (cf. legend). If a point is lo-

cated in the upper left part of the graph, the conditioned ensemble is more reliable but

less sharp than the reference (indicated by the colour of the point) in the correspond-

ing catchment. Reversely, if a point is located in the lower right part, the conditioned

ensemble is sharper but less reliable than the reference. At best, both reliability and

sharpness are improved, and points are located in the upper right part of the graph.

At worst, both reliability and sharpness are deteriorated with respect to the reference,
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Figure 5.4: Same as Figure 5.2 but the forecast ensembles are ESP, ESP_SPI3, HistQ and

HistQ_SPI3 and the reference for the computation of the skill is Sys4.
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and points are located in the bottom left part of the graph.

Overall, we can observe that the conditioning tends to have more impact on reliabil-

ity than on sharpness (y-axes extend further than x-axes). Also, conditioned ensembles

are generally more reliable but less sharp than Sys4, and sharper but less reliable than

the ensembles they are selected from. More speci�cally, we observe that:

- For a lead time of 10 days, ESP_SPI3 and HistQ_SPI3 can be more reliable

and sharper than the ensembles they are selected from. This applies to most

catchments with ESP_SPI3, and to at least two catchments with HistQ_SPI3;

- For a lead time of 30 days, fewer catchments bene�t from a gain in both reliability

and sharpness. The loss in sharpness and the gain in reliability with respect to

Sys4 are less pronounced than for a lead time of 10 days. For instance, the

maximum PITSS values for ESP_SPI3 move from 0.45 (for a lead time of 10

days) to 0.2 (for a lead time of 30 days) and those for HistQ_SPI3 move from

0.7 to 0.4. The gain in sharpness and the loss in reliability with regard to ESP

and HistQ remain in the same ranges as observed for a lead time of 10 days;

- For a lead time of 90 days, the gain of ESP_SPI3 over Sys4 is further reduced

and varies with the catchment. The same is observed to a lesser extent for

HistQ_SPI3, even though a positive impact of the conditioning on the reliability

can still be observed in several catchments. At this lead time, both ESP_SPI3

and HistQ_SPI3 provide forecasts that are still sharper, yet less reliable, than

the climatology they are selected from.

Figure 5.5 can also be interpreted in terms of distance between approaches. Indeed,

the (0,0) coordinate corresponds to the location of the references. From this perspec-

tive, we observe that ESP_SPI3 is closer to ESP than to Sys4 for a lead time of 10

days. But as the lead time increases, ESP_SPI3 becomes closer to Sys4 and further

apart from ESP. The proximity between ESP_SPI3 and Sys4 at longer lead times can

be attributed to the conditioning itself. The proximity between ESP_SPI3 and ESP

and their distance to Sys4 at shorter lead times may be attributed to the repercussion

of the initialization of the climate model on Sys4 stream�ow forecasts. Indeed, since

initial hydrological conditions are the same for the three forecast ensembles, di�erences

are caused by meteorological forcings only. The main di�erence between System 4 pre-

cipitations and climatology at such lead times is the initialization of the GCM, which

leads to sharper System 4 forecasts in the �rst lead times. Similarly, we observe that

HistQ_SPI3 becomes closer to Sys4 as the lead time increases due to conditioning.

However, its distance to HistQ remains the same at all lead times. This distance is

probably due to the use of previous stream�ow conditions as a conditioning criterion

within HistQ. Therefore the three ensembles, HistQ, HistQ_SPI3 and Sys4 are equally

distant in the �rst lead times.

Table 5.2 proposes a ranking of the di�erent ensembles investigated based on overall

performance, reliability and sharpness and for di�erent lead time ranges: from 10 to
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Figure 5.5: PITSS (reliability) versus IQRSS (sharpness) for ESP_SPI3 (upper row) and

HistQ_SPI3 (lower row), and lead times of 10, 30 and 90 days (columns). ESP_SPI3 is

compared to Sys4 (red) and ESP (grey), while HistQ_SPI3 is compared to Sys4 (red) and

HistQ (blue). Each point represents one of the 16 catchments.

30 days, from 30 to 60 days and from 60 to 90 days. The rankings are based on

the visual evaluation of Figure 5.4. The mean rank is calculated as the mean of the

ranks obtained in the nine cells of the 3x3 table. Overall performance, reliability and

sharpness are thus considered equivalent in this �nal ranking. Note that this may

not be representative of operational expectations, since, in operational conditions, one

could choose to emphasize one of the three characteristics over the others.

Based on Table 5.2, we can say that, if one seeks an overall performing ensemble

with 10 to 30 days lead, one would use Sys4. For horizons longer than 30 days, ESP

and ESP_SPI3 o�er good alternatives. If one seeks, above all, a reliable ensemble,

one could simply use HistQ, ESP, or even HistQ_SPI3 for lead times shorter than 30

days. However, for ensembles that are both sharp and reliable, and for horizons longer

than 30 days, one could turn to the following ensembles: ESP_SPI3 for an emphasis

on sharpness, or HistQ_SPI3 for an emphasis on reliability.
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Table 5.2: Rankings of the Sys4, ESP_SPI3, ESP, HistQ_SPI3 and HistQ stream�ow ensem-

bles, as evaluated by three evaluation criteria (in rows) and three lead time ranges (columns).

The mean rank is calculated for each ensemble and is a simple mean of the ranks obtained by

this ensemble in the nine cells of the 3x3 table.

10-30 days lead 30-60 days lead 60-90 days lead

CRPS 1. Sys4

2. ESP_SPI3

2. ESP

4. HistQ_SPI3

5. HistQ

1. Sys4

1. ESP_SPI3

1. ESP

4. HistQ_SPI3

5. HistQ

1. Sys4

1. ESP_SPI3

1. ESP

4. HistQ_SPI3

4. HistQ

IQR 1. Sys4

2. ESP_SPI3

3. ESP

4. HistQ_SPI3

5. HistQ

1. Sys4

2. ESP_SPI3

3. HistQ_SPI3

4. ESP

5. HistQ

1. Sys4

1. ESP_SPI3

1. HistQ_SPI3

4. ESP

5. HistQ

PIT area 1. HistQ

2. HistQ_SPI3

3. ESP

4. ESP_SPI3

5. Sys4

1. HistQ

2. ESP

3. HistQ_SPI3

4. ESP_SPI3

5. Sys4

1. HistQ

2. ESP

3. HistQ_SPI3

4. ESP_SPI3

4. Sys4

Mean Rank 1. Sys4 : 2.22

2. ESP_SPI3 : 2.33

3. ESP : 2.44

4. HistQ_SPI3 : 3.11

5. HistQ : 3.55

5.3.2 Statistical evaluation of low �ows

We assess the performance of the ensemble forecast scenarios to forecast summer low

�ows and drought risks. Many ways of characterizing severe low �ows and droughts

exist in the literature (Tallaksen et al., 1997; Smakhtin, 2001; WMO, 2008; Mishra

and Singh, 2010). In the following, the low-�ow variables considered are the low-�ow

duration and de�cit volume, both computed for the 80th exceedance percentile. In this

section, only forecast horizons falling within the May to October period are considered.

Capacity of the ensembles to forecast low-�ow events

The capacity of the di�erent systems to discriminate between low-�ow events and

non-events is assessed. Figure 5.6 presents the ranges of the Area Under the Curve

(AUC) of the ROC diagram obtained from the �ve ensemble forecast scenarios, namely

Sys4, ESP_SPI3, ESP, HistQ_SPI3 and HistQ. AUC values were assessed for the

80th exceedance percentile and for lead times of 10 days, 30 days and 90 days. Each

boxplot gathers the AUC values obtained in the 16 catchments. The letters below

the boxplots result from the Friedman test (see for instance Lowry, 1999). This test
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consists in considering catchments as judges of the �ve methods. The test, which is

based on rankings as evaluated by the catchments, assesses whether the methods are

signi�cantly di�erent by assessing whether their rankings resemble a random shu�ing.

Based on this test, two boxplots sharing a letter at a given lead time are not signi�cantly

di�erent.

Results show that all ensembles but HistQ are very close in terms of discrimina-

tion. As expected, their performance decreases as the lead time increases, except for

HistQ, whose discrimination does not vary with the lead time. For all lead times, ESP

signi�cantly provides the best discrimination with most AUC values superior to 0.88.

ESP_SPI3 and Sys4 are tied in terms of discrimination and appear as second best,

with most AUC values greater than 0.82. HistQ_SPI3 is also very close to the perfor-

mances of Sys4 and ESP_SPI3, but does not score as high as they do, especially for

longer lead times. Nevertheless, HistQ_SPI3 mostly provides AUC values larger than

0.81. HistQ always provides AUC values between 0.8 and 0.9, except in Catchment 1,

in which we have seen that this ensemble forecast has very low performances. Overall,

ensembles based on hydrological modelling (Sys4, ESP and ESP_SPI3) provide the

best skills in discrimination, at least for lead times shorter than 90 days, probably

because they take into account initial hydrological conditions. We note that all these

conclusions are also valid when the 60th exceedance percentile is used as threshold (not

shown).

Capacity of the ensembles to forecast low-�ow variables

We now compare the forecast systems based on variables of interest for water manage-

ment during low �ows, that is the weekly de�cit duration and the weekly de�cit volume.

The weekly de�cit duration corresponds to the number of days per week during which

the daily stream�ow is below a given threshold. The weekly de�cit volume corresponds

to the �ow volume per week below this threshold. Figure 5.7 presents the PIT areas

obtained with Sys4, ESP_SPI3, ESP, HistQ_SPI3 and HistQ when forecasting the

weekly number of days below the 80th exceedance percentile. Boxplots represent the

range of PIT areas obtained over the catchment set. Results are presented for lead

times of two weeks, �ve weeks and twelve weeks (columns). Again, letters represent

the results of the Friedman test. Two boxplots that share a letter are not signi�cantly

di�erent. Figure 5.8 proposes the same evaluation for the weekly stream�ow de�cit

volume below the 80th exceedance percentile.

Figure 5.7 shows that the di�erence between the �ve ensembles is very tenuous

when forecasting the de�cit duration. For instance, all lower and upper quartiles of

Sys4, ESP_SPI3, ESP and HistQ_SPI3 are included in the [0.01, 0.08] interval of PIT

area values, regardless of the lead time. Overall, ESP, ESP_SPI3 or HistQ_SPI3

perform best to forecast the de�cit duration. All ensembles but HistQ provide quite

reliable forecasts (PIT area values close to zero). HistQ_SPI3 is signi�cantly the
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Figure 5.6: Ranges of the Area Under the Curve (AUC) of the ROC diagram based on the

80th exceedance percentile for each of the �ve selected ensemble forecasts (Sys4, ESP, HistQ,

ESP_SPI3, HistQ_SPI3). Boxplots gather the AUC values for the 16 catchments. The boxes

extend to the 25th and 75th percentiles and the whiskers, to the data extremes. Graphs are

presented for 10-day, 30-days and 90-day lead times (columns). The letters below the boxplots

result from the Friedman test. For a given lead time, two boxplots sharing a letter are not

signi�cantly di�erent.

best performing ensemble for a lead time of two weeks. For a lead time of �ve or

twelve weeks, both ESP and HistQ_SPI3 are the best options. The analysis of the

corresponding PIT diagrams (not presented) showed that all ensembles are equivalently

reliable, except for HistQ, which systematically overestimates the de�cit duration.

The gap between ensembles widens when looking at the de�cit volume (Figure 5.8).

For lead times of two and �ve weeks, ESP and ESP_SPI3 provide consistently reliable

ensembles, and lower PIT areas than the others. For a lead time of twelve weeks,

ESP_SPI3, along with Sys4 and HistQ_SPI3, provide the most reliable ensembles.

The corresponding PIT diagrams (not presented) showed that HistQ_SPI3 tends to un-

derestimate durations at all lead times. Ensembles issued with hydrological modelling

also slightly underestimate the de�cit volume at long lead times. Overall, ESP_SPI3

systematically appears to be one of the best options to forecast de�cit volumes.

5.3.3 Drought impact evaluation

Figure 5.9 illustrates the case of the 2003 drought with the stream�ow forecasts issued

on July 1st 2003 for the three months ahead, in catchment 5, the Azergues at Lozanne.

Each column represents the graphs obtained with one of the �ve ensemble forecasts

(Sys4, ESP_SPI3, ESP, HistQ_SPI3 and HistQ). The upper row presents the graphical
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Figure 5.8: Same as Figure 5.7 for de�cit volume.
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representation we propose to assess drought risks based on the ensemble forecasts. The

graphs represent the de�cit duration against the de�cit volume, both computed based

on the 80th exceedance percentile. The graph is divided into 49 boxes corresponding

to possible combinations and ranges of de�cit volumes and durations. The colour

within each of these boxes indicates the percentage of ensemble members that falls

within each box. Coloured dots represent the observation and two references: the 1976

drought and the historical mean duration and de�cit volume over the forecast period

(climatology). The lower row presents the corresponding hydrographs over the forecast

period. The black line represents the observed stream�ow, the red line represents the

80th exceedance percentile and the blue lines represent the members of the ensemble

forecast.

All ensembles produce similar patterns, but with di�erent probabilities. The max-

imum probability is obtained with HistQ_SPI3 with 60 % of the ensemble members

falling in the same cell. Ensembles based on hydrological modelling reach maximum

probabilities of 20 to 30 %, and HistQ does not exceed a probability of 14 %. These

colours translate in a way the sharpness of the ensemble forecasts. The objective with

the graph is to have a maximum of darker cells close to the observation (represented by

the black dot). We observe that the graph obtained with HistQ puts equivalent weights

to a wide range of scenarios indicating no risk to high risks. This ensemble thus conveys

little information to assess drought risks. HistQ_SPI3, as opposed to HistQ, o�ers a

more con�dent risk assessment with the highest forecast probabilities and only three

coloured cells. Eighty percent of the forecast members indicate a drought equivalent or

more severe than that of 1976. The high probability may be explained by the fact that

SPI forecast members were often best represented by the SPI observed in the same

driest year (as suggested by the hydrographs), possibly 1976.

The ESP forecast provides a wider view of risks, with higher probabilities located in

the upper right part of the graph, and small probabilities of having months with moder-

ately dry conditions. ESP is able to forecast a more severe event than observed during

the 1976 drought. This good performance can only be attributed to the initial hydro-

logical conditions since ESP does not have any information on future precipitations

apart from climatology. Conditioning ESP (ESP_SPI3) slightly reduces the number

of coloured cells with slightly higher probabilities in some of the upper right cells. The

di�erence between ESP and ESP_SPI3 is clear when looking at the hydrographs. With

ESP_SPI3, the number of high-�ow peaks is reduced.

Sys4 also provides a quite good risk assessment since only upper right cells are

coloured. While ensembles based on hydrological modelling, i.e. ESP, ESP_SPI3

and Sys4, are limited by the capacity of the model to reproduce small low-�ow varia-

tions and thus slightly underestimate the de�cit volume, ensembles based on historical

stream�ows are limited within the range of past precipitation and stream�ow scenar-

ios. This highlights the fact that the studied methods, and here speci�cally Sys4,



104 5.4 Conclusion

ESP_SPI3 and HistQ_SPI3, have di�erent limitations, but also di�erent assets. We

have illustrated their performances to forecast a given drought event in France. We

should however keep in mind that di�erent contexts might penalize or favour di�erent

methods.

Figure 5.9: Risk graphs presenting the probabilities of de�cit duration versus de�cit volume

based on the 80th exceedance percentile (upper row) and corresponding hydrographs (lower

row). The maximum probability varies with the ensemble and the situation and is indicated

in the colour scale. The black point corresponds to the observation, the dark red dot to the

drought of 1976 and the blue dot to the mean duration and de�cit volume observed in past

stream�ows. Each column corresponds to one of the �ve ensemble forecasts. Forecasts were

issued for the Azergues at Lozanne (catchment 5) for the period running from July 1st to

September 30th 2003.

5.4 Conclusion

We have investigated the potential of seasonal stream�ow forecast ensembles built

by conditioning precipitation climatology and historical stream�ows based on precip-

itation indices derived from ECMWF System 4 (GCM) forecasts. In a �rst step, the

performance of the conditioned ensembles was assessed in terms of overall performance,

sharpness and reliability for lead times up to 90 days. Here are the main conclusions

from this comparison:

- Selecting traces within precipitation climatology or historical stream�ow gener-

ally improved sharpness and decreased reliability. Conditioning based on the SPI

provided more consistent results between catchments and more reliable forecasts

than conditioning based on cumulative precipitations. More speci�cally, condi-

tioning based on SPI3 improved overall performance as compared to historical
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stream�ow and maintained overall performance as compared to precipitation cli-

matology used as input to a hydrological model, while providing reliable forecasts.

- A simultaneous evaluation of the sharpness and reliability of the conditioned en-

sembles showed that conditioning led to ensembles that were more reliable and

less sharp than stream�ow forecasts generated from System 4 precipitations, and

less reliable and sharper than the ensembles they were selected from. Also, the

conditioned ensembles bene�t from the information of either precipitation clima-

tology or historical stream�ows at shorter lead times and from the information

of GCM-based forecasts at longer lead times.

- Ensembles selected from precipitation climatology and historical stream�ow o�er

a good compromise between sharpness and reliability, with an emphasis on sharp-

ness with precipitation climatology, and an emphasis on reliability with historical

stream�ows.

The performance of the ensembles in forecasting low-�ow events and low-�ow vari-

ables was then evaluated, with an illustration on the 2003 drought in France. Their

capacity to discriminate between low-�ow events and non-events and their capacity

to forecast stream�ow de�cit volume and duration, as de�ned by the 80th exceedance

percentile, were assessed. The main conclusions from this second evaluation are:

- Forecast ensembles using hydrological modelling provided better discrimination

than ensembles based on historical stream�ows. Nevertheless, all forecast ensem-

bles provided good performance, except for historical stream�ows for lead times

shorter than a month.

- Even though di�erences between ensembles are tenuous when forecasting low-�ow

duration, the gap widens when forecasting de�cit volume. The ensemble selected

within precipitation climatology systematically provides some of the most reliable

de�cit volume forecasts.

- Lastly, a graphic representation of the forecast drought risks was proposed. It was

illustrated with the 2003 drought. We showed that, for this drought event, en-

semble forecasts based on conditionings within climatologies (either precipitation

or stream�ow climatology) provided good drought risk assessment.

We investigated conditionings within climatology solely based on past precipitations

and catchment conditions. SPI values were computed after an aggregation of System

4 precipitation forecasts at the catchment scale, therefore the conditioning and the

spatial aggregation were independent. Further investigations could assess the potential

of this method for spatial downscaling of System 4 precipitation forecasts.

One important parameter to forecast low �ows and droughts is the temperature.

A more advanced approach would consist in selecting past scenarios based on the

SPEI (Standardized Precipitation-Evapotranspiration Index) calculated from seasonal

precipitation and temperature forecasts.

Finally, other types of combinations can be found in the literature and could be
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investigated along with the proposed conditionings. As an example, Werner et al.

(2005) or Shukla et al. (2012) have investigated the use of medium-range weather

forecasts to improve long-range forecasting. These approaches are based on the fact

that short-term events are well forecast by short-term to medium-term forecasts issued

by GCMs and that the bene�t from medium-range forecasts can be extended to longer

lead times through the inertia of a catchment.
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R�esum�e

Dans les chapitres pr�ec�edents, nous avons �evalu�e la qualit�e des pr�evisions saisonni�eres

de d�ebits en France et illustr�e leur potentiel pour la pr�evision des �etiages. En e�et,

les outils d'�evaluation des risques peuvent tirer pro�t des pr�evisions �a long-terme, a�n

d'aider la gestion de la ressource en eau ou la prise de d�ecision des l�achers de r�eservoirs

pour les mois �a venir. Le barrage d'Arzal se situe �a l'embouchure de la Vilaine, juste

avant qu'elle ne se d�everse dans l'Oc�ean Atlantique. Sa situation en fait une barri�ere

entre l'eau sal�ee de l'oc�ean et l'eau douce de la Vilaine, cr�eant une retenue d'eau douce

de 50 Mm3. Cette retenue est utilis�ee pour l'approvisionnement en eau potable et

l'irrigation. De plus, le barrage permet la navigation et la migration des poissons entre

l'oc�ean et la rivi�ere. Le r�eservoir a donc un r�ole cl�e dans la gestion de la ressource

en eau, notamment dans le bassin aval de la Vilaine. L'objectif de ce chapitre est

d'analyser le potentiel d'un outil d'�evaluation des risques en contexte de basses eaux

pour le r�eservoir d'Arzal.

Nous commen�cons par d�ecrire plus en d�etail le r�eservoir multi-usage d'Arzal et

sa gestion, et nous pr�esentons les donn�ees de gestion disponibles ainsi que le mod�ele

de bilan d'eau du r�eservoir que nous avons mis en place. Une analyse pr�eliminaire

des donn�ees hydrom�et�eorologiques et de gestion du r�eservoir nous permet de mieux

comprendre les strat�egies de gestion du barrage et l'importance relative des entr�ees et

sorties du r�eservoir. Cette analyse montre que le mod�ele de bilan est tr�es r�eactif aux

entr�ees d'eau provenant du bassin amont, ainsi qu'aux sorties des vannes et volets qui

permettent aux gestionnaires de contr�oler le niveau du r�eservoir. Le mod�ele est ensuite

utilis�e pour reproduire les niveaux de r�eservoir sur la p�eriode de Mai �a Octobre, i.e., la

p�eriode de basses eaux dans le bassin de la Vilaine.

En�n, le mod�ele est utilis�e pour estimer le risque de ne pas pouvoir maintenir un

niveau minimum dans le r�eservoir entre Mai et Octobre. Pour �evaluer ce risque, des

pr�evisions saisonni�eres de d�ebits (ESP), �etudi�ees dans les chapitres pr�ec�edents, sont

utilis�ees en entr�ee du mod�ele de bilan. Les sorties des vannes et volets sont optimis�ees

pour maintenir un niveau objectif dans le r�eservoir, tandis que les sorties li�ees aux autres

usages sont suppos�ees constantes et maximales. Les pr�evisions de niveaux de r�eservoir

ainsi obtenues nous permettent d'identi�er le risque de franchir le seuil minimal dans le

r�eservoir et de d�eterminer le nombre de jours et le nombre de membres de la pr�evision

d'ensemble atteignant ce seuil. Ces variables d'int�er�et pour la gestion du risque sont

r�eunies dans un graphique d'�evaluation du risque propos�e �a la �n du chapitre. Les

graphiques ont �et�e produits retrospectivement pour les p�eriodes de basses eaux de

2005 �a 2010 a�n d'�evaluer leur potentiel en conditions op�erationnelles.
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Abstract

Risk assessment tools can help anticipate and corroborate decisions in reservoir man-

agement. The Arzal dam in Brittany, France, is located at the outlet of the Vilaine

river basin, just before the Atlantic Ocean. Being a barrier to the salt water of the

ocean, it creates a 50 Mm3 freshwater reservoir that serves multiple water uses: drink-

ing water, �ood control, irrigation, sailing and �sh by-passing. The reservoir thus plays

an essential role in the regional water management system, and more speci�cally in

the lower Vilaine river basin. In this chapter, we describe the multi-purpose Arzal

reservoir, the elements of the Arzal dam, the available reservoir management data and

a water balance model of the reservoir that we have developed.

A preliminary analysis investigates the management of the dam based on reservoir

management data and hydrometeorological data, and the relative importance of in�ows

and out�ows. This analysis shows that the Arzal reservoir model is very reactive to

in�ows from the upstream catchment and to out�ows through the shutters and sluice

gates of the dam. The reservoir water balance model is then used to assess the potential

to reproduce reservoir levels between May and October, i.e. the low-�ow period in the

Vilaine river basin.

The model is also used to estimate risks in the Arzal reservoir. In the risk assessment

framework, the model is run with seasonal ensemble in�ow forecasts and constant

maximum out�ows for the di�erent water uses. Out�ows through the gates and shutters

are optimized to maintain a constant objective level in the reservoir. The ensemble of

reservoir level simulations thus obtained allow us to estimate the risk of not being able

to maintain a constant level in the reservoir throughout the May to October period.

This risk is quanti�ed in terms of number of days spent below a minimum acceptable

reservoir level and in terms of the number of ensemble members reaching this low

threshold. These variables were summarized in a risk assessment graph proposed at

the end of the chapter. Graphs are produced retrospectively for the May to October

periods of 2005 to 2010 in order to evaluate the potential of these graphs in operational

conditions.
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6.1 Introduction

The Arzal dam (or Arzal-Camo�el dam) is located at the mouth of the Vilaine river

basin, just before the Atlantic Ocean (Figure 6.1). It was built in 1970 with the

objective to reduce �ood risks upstream the Vilaine estuary and has been managed by

IAV since then (Institution d'Am�enagement de la Vilaine). Being a barrier between

the freshwater of the Vilaine River and the saline water of the Atlantic Ocean, the dam

prevents water from the Atlantic tides from entering the river and thus limits the risks

of �ooding from the combination of high tides and high �ows coming from the Vilaine

river.

Figure 6.1: The Arzal dam seen from upstream (top), from downstream with the lock in the

foreground (bottom left) and from downstream with a lateral view of the dam (bottom right).

The dam creates a 50 Mm3 reservoir of freshwater that is used for drinking water

supply in the region. A water treatment plant located at F�erel with a maximum

treatment capacity of 100,000 m3 per day supplies 15 to 20 Mm3 of freshwater annually.

During the summer season, up to one million inhabitants are supplied with drinking

water from this plant. The Arzal reservoir is the surface water mass that is the most

impacted by water withdrawals in the Vilaine basin (SAGE, 2015a). Indeed, Arzal is

the main withdrawal point with more than 15 Mm3 of water withdrawn per year from

surface water and up to 80,000 m3 of water pumped per day for drinking water supply.

In addition to being a key element in �ood risk reduction and drinking water supply,

the dam is located in a key area for leisure boating. About 16,000 boats cross its lock

each year to navigate from the Vilaine to the ocean, and vice versa, mainly during the
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summer season. The dam also allows for �sh migration from one side of the dam to

the other by means of a �sh pass and a �sh ladder, in operation since autumn 1995.

In summer, during low �ows, the management of the dam focuses, �rst and fore-

most, on supplying drinking water to the local and tourist population, but also on

enabling lock openings for leisure boat sailing. An adequate water quantity and a good

water quality in the reservoir are required to make possible and minimize the costs

of drinking water production. A minimum level in the reservoir is also required to

facilitate boats getting in and out of the lock and to ensure the correct functioning of

the pumps that send water from the reservoir to the water treatment plant.

However, as leisure boating and lock openings intensify, the intrusion of saline water

in the reservoir becomes more frequent, degrading water quality. These intrusions

combined with lower water in�ows during dry periods in summer, can threaten both

the water quantity and the water quality in the reservoir. As a result, during the

summer season, the management objectives for the Arzal reservoir consist in ensuring

adequate levels in the reservoir to preserve the estuarine environment and guarantee

priority uses, while limiting and evacuating saline water intrusions so as to preserve

the quality of the freshwater coming from the Vilaine river.

Table 6.1 presents the threshold reservoir levels that constrain the management of

the reservoir and some consequences when these are not reached. Reservoir levels are

expressed in meters NGF (Nivellement G�en�eral de la France). The NGF is based on

a tide gauge located in Marseille and de�nes a common reference level over France.

Levels expressed in meters NGF are computed relative to this reference level. When

the management objectives cannot be met, measures such as limiting lock openings or

preventively increasing the reservoir level can be taken. However, while the former may

cause tensions with boat owners, the latter may cause �ooding of protected marshlands

upstream the reservoir and tensions with farmers of the lower part of the Vilaine due

to losses of harvest during the haymaking season.

Table 6.1: Threshold reservoir levels in the Arzal reservoir and associated consequences or

management constraints.

Thresholds Consequences or management constraints

N > 2.10 m NGF Flooding of nearby �elds and swamps

N < 1.80 m NGF Di�culties in letting boats in and out of the lock

N < 1.60 m NGF No navigation

N < 0.80 m NGF Navigation is prohibited

N < 0 m NGF Di�culties in pumping for drinking supply

The general objective of the work presented in this chapter is to contribute to the

development of a water management tool for the Arzal reservoir to support operations

during low �ows. The managers of the Arzal dam expressed the need for drought risk
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outlooks over the period from May to October, as well as for a simple reservoir model

that could be used to contemplate several management scenarios and serve as a basis

for discussion with stakeholders. They expect to be able to better inform users on

future risks, limit tensions between stakeholders, and, when necessary, take preventive

actions to reduce the risks.

In this chapter, we �rst present the management of the dam in more details and

the di�erent elements subject to decision-making during the May to October period.

The management data (reservoir in�ows and out�ows) available to this study are in-

troduced. A simple reservoir balance model is proposed and its application for the

simulation and the forecasting of reservoir levels is presented. An in-depth analysis

of the data and the simulations is carried out. This analysis then guides the design

of a risk assessment tool presented at the end of the chapter. Lastly, we conclude

on the results of the work and discuss the perspectives for further developments and

operational use of the proposed tool.
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Figure 6.2: Schematic drawing of the downstream part of the Arzal reservoir between the

Pont de Cran (bridge) and the Arzal dam. The reservoir extends upstream, up to the Malon

lock. This lock is located 50 km upstream the Pont de Cran, and 90 km upstream the Arzal

dam.

6.2 Management of the dam and data

To address the objectives of this chapter, it is necessary to fully understand the elements

subject to decision-making in the management of the dam, how they relate to each

other and how they are operated during low �ows. In this section, we present these
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elements, the associated available data and the stream�ow forecast data used to build

and evaluate the reservoir balance model of the Arzal dam.

6.2.1 Elements of the dam

The dam is operated so as to reach the objectives listed in the previous section. Fig-

ure 6.2 provides an overview of the di�erent elements of the dam, with a schematic

drawing of the Arzal forebay and some key locations. These elements are described

hereafter.

Five sluice gates and �ve shutters are operated to maintain a constant level in the

reservoir. They let the water �ow out of the reservoir and into the ocean (Figure 6.3).

Shutters act as an over�ow outlet for relatively small quantities of water. Sluice gates,

however, open from the bottom of the reservoir and can release large volumes of water.

They are thus preferred in case of �ood risks, but also to evacuate the denser saline

water at the bottom of the reservoir. The level of the Vilaine river is relatively constant,

whereas the level of the ocean keeps changing due to the tides. At high tide, when

the level of the ocean rises above the level in the reservoir, sluice gates are closed and

shutters are positioned upward so as to prevent saline intrusions. At low tide, when

the level of the ocean falls below the level in the reservoir, sluice gates or shutters can

be opened to evacuate excess water.

Figure 6.3: Pictures of a shutter in operation (left) and a shutter and upper gate taken out

of the dam for maintenance (right).

The lock enables boats to sail between the Vilaine river and the Atlantic Ocean

(Figure 6.4). Lock openings are scheduled in advance based on tide coe�cients. Each

opening causes saline water intrusions in the reservoir. When in�ows to the reservoir

are low, restrictions on lock openings can be imposed to preserve the freshwater in the

reservoir.

The siphon located at the bottom of the reservoir helps evacuate the denser salt

water from the bottom of the reservoir to the ocean. This siphon is associated with a

salinity sensor. When a salinity threshold is reached, and if the reservoir level is higher

than the ocean level, the siphon automatically starts evacuating saline water from the
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Figure 6.4: Lock operations just before the summer season from the ocean to the Vilaine

(left) and from the Vilaine to the ocean (right).

reservoir. The use of the siphon is closely related to lock operations. During low �ows,

evacuating through the siphon can only be stopped provided that lock operations are

interrupted for an extended period.

The �sh ladder and the �sh pass allow �sh species, such as eels, mullets, lampreys

or shads, to cross the dam and migrate from the salt water of the ocean into the

freshwater of the river and vice versa (Figure 6.5). The �sh ladder more speci�cally

enables the counting of glass eels which is a protected species. The �ow through the

�sh pass is around 28,000 m3 per day. If the water in the reservoir is inadequate to

meet the needs of the water supply treatment plant, either because its salinity is too

high or the reservoir level is too low, and once restrictions on lock openings are already

set, the �sh pass may be closed.
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Figure 6.5: Fish crossing the �sh pass (left), the �sh scale (top right) and glass eels waiting

to be counted and transferred into the Vilaine River after their ascension of the �sh scale

(bottom right).

Table 6.2 lists several scenarios of hydrological conditions (from critical low �ows

to �ood) and the associated management objectives and constraints on the di�erent

components of the dam. We observe that, as the risk of �ood increases, the protection

of populations and zones of economic interest is emphasized, and, as the risk of critical

low �ows increases, drinking water supply is emphasized. Also, as the stream�ow

increases, the objective level in the reservoir decreases, in order to make room for high

in�ows. During low �ows, the reservoir level should be as high as possible to keep a

maximum volume of water in the reservoir throughout the low in�ow period. Sluice

gates and shutters are mainly operated in conditions ranging from regular �ows to high

�ows, and the �sh pass and the lock are exclusively opened in non-critical conditions.

6.2.2 Reservoir management data

IAV measures reservoir levels at three stations: Pont de Cran, la Roche Bernard and

Arzal, by means of level sensors. The bottom of the Arzal reservoir is located at

-7.72 m NGF, while the water level in the reservoir varies around 2 m NGF.

The out�ow through the shutters (m3/day) is calculated at IAV based on the mea-

sured level in the reservoir and open channel hydraulics principles. Similarly, the

out�ow through the siphons and through the �sh pass (m3/day) are both estimated

with laws of hydraulics based on level sensors located both in the reservoir and at sea.
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Table 6.2: Hydrological conditions, associated dam management objectives, and associated

constraints on reservoir levels and elements of the dam (the shutters and sluice gates, the �sh

pass, the siphon and the lock) (modi�ed from PAGD, 2015).

Hydrological

conditions

Dam management

objectives

Reservoir

levels

Dam

out�ows

Siphon Fish pass Lock

Flood

Crisis

Q > 250 m3/s

Protection of popula-

tions and zones of eco-

nomic interest

Between 0

and 0.80 m

NGF

Sluice

gates

- Closed Boating

pro-

hibited

Small �ood

Vigilance

Q from 100 to

250 m3/s

Protection of popula-

tions and zones of eco-

nomic interest

Drinking water supply

Estuarine environment

Optimum

between

0.80 and

1.20 m NGF

Sluice

gates

- Open if

level >

1.30 m

NGF

Regular

Low �ows

Regular

Q from 10 to

100 m3/s

Drinking water supply

Estuarine environment

Between

1.60 and

2.30 m NGF

Shutters

and

gates

Open Open Regular

Severe low �ows

Vigilance

Q from 2.5 to

10 m3/s

Drinking water supply

Estuarine environment

As high as

possible

None Open Restricted Reduced

Critical low

�ows

Crisis

Q < 2.5 m3/s

Drinking water supply As high as

possible

None Closed Closed Closed

The out�ow through the lock (m3/day) is estimated based on the di�erence between

the level in the reservoir and the sea level, and the dimensions of the lock.

The out�ow through the sluice gates (m3/day) was computed at IAV based on the

measures from the level sensors located both in the reservoir and at sea, and the equa-

tions for bottom valves. The equations used to compute the out�ow were parametrized.

Parameters were optimized to minimize the distance between the sluice gate out�ows

and the in�ows observed at Rieux (Pont de Cran) for the period running from 2012 to

2014. Gate out�ows were then calculated with the obtained set of parameters for the

period running from 2003 to 2014. Lastly, the withdrawals for drinking water supply

(m3/day) are directly measured with a �ow sensor at the pumping station. On average,

about 52,000 m3 are pumped each day.

Table 6.3 summarizes the periods for which the data provided by IAV, as well as

hydrometeorological data were available. The time period for which we had available

data for all variables extends from 2005 to 2011. Uncertainties in the di�erent sensors

as well as in the representations used in the hydraulics equations lead to data sets with

di�erent accuracies.
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Table 6.3: Years of available hydrometeorological and management data. Three stars in

the Trust column indicates that dam managers consider data as reliable, whereas one star

indicates that dam managers consider data as not reliable.

2
0
0
0

2
0
0
1

2
0
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0
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0
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0
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0
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0
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IAV observed stream�ow x x x x x x x x x x x x /

IAV local precipitation x x x x x x x x x x x x x x x /

SAFRAN precipitation x x x x x x x x x x x x /

Interannual SAFRAN ETP x x x x x x x x x x x x x x x x

Out�ow � Sluice gates x x x x x x x x x x x x /

Out�ow � Shutters x x x x x x x x x x x x x /

Out�ow � Siphons x x x x x x x x x x x x x /

Out�ow � Fish pass x x x x x x x x x x x x x /

Out�ow � Lock x x x x x x x x x x x x x /

Withdrawal � Water supply x x x x x x x x x x

Water levels � Arzal x x x x x x x x x x x x /

Water levels � Roche Bernard x x x x x x x x x x x x /

Water levels � Pont de Cran x x x x x x x x x x x x /

x Years with period May-October complete

/ Years with period May-October incomplete

Table 6.4: Correspondence between reservoir levels and reservoir volumes.

Level (m NGF ) Volume (Mm3)

0 25.52

0.5 29.31

1 33.41

1.5 37.72

2 42.18

2.1 43.09

2.2 44.01

2.3 44.99

2.4 46.07

2.5 47.31
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The correspondence between levels in the reservoir and its volume were obtained at

IAV through a GIS analysis. The bathymetric data used in this analysis mostly come

from high-resolution surveys, but also from medium-resolution surveys and numerical

model outputs (LIDAR data from the Litto 3D model). Table 6.4 presents the corre-

spondence between reservoir levels and reservoir volumes as assessed by IAV with the

GIS system.

6.2.3 Reservoir in�ow forecasts

The GR6J model was set up to simulate and retrospectively forecast stream�ow at

the outlet of the Vilaine river basin (Rieux gauging station at Pont de Cran, see

Chapter 1). In this section, the numerical criterion used to optimize the calibration

process is the Kling Gupta E�ciency applied to inverse �ows (KGEiQ), which reinforces

performances on low-�ow periods. The calibration method and the results obtained

in validation are presented in Chapter 2. Forecasts of in�ows to the reservoir were

obtained with the ESP method. The method consists in using precipitation time series

from previous years as input to a hydrological model that has been initialised with

information available up to the time of the forecast (see Chapter 5). These forecasts

were produced up to July 2012 because SAFRAN precipitation data used to initialize

the hydrological model states were available up to this date.

6.3 Reservoir balance model and evaluation frame-

work

6.3.1 Formulation of the reservoir balance model

A reservoir balance model was set up for the Arzal reservoir. The reservoir volume V

at time t can be calculated from the volume observed at time t− 1 as:

Vt = Vt−1 + ∆Vt (6.1)

with,

∆Vt = VI,t + VO,t (6.2)

where VI comprises all reservoir in�ows and VO comprises all reservoir out�ows.

The reservoir in�ows VI are de�ned as:

VI,t = VQ,t + VP,t (6.3)

where VQ is the in�ow volume from the upstream catchment, de�ned with an outlet at

Rieux, and VP is the volume of precipitation over the area of the reservoir, represented

by the volume of precipitation observed at the rain gauge located at the Arzal dam.

The reservoir out�ows VO are de�ned as:

VO,t = Vs,t + Vg,t + Vw,t + Vf,t + Vl,t + Vsi,t + VPE,t (6.4)
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where Vs and Vg are the volumes evacuated by the dam managers through the shutters

and sluice gates, respectively, Vw is the water volume pumped for drinking water supply,

Vf , Vl and Vsi are the volumes lost to the ocean through the �sh pass, the lock and

the siphon, respectively, and VPE is the water volume evaporated over the area of the

reservoir, approximated by the interannual potential evapotranspiration.

The volumes associated with precipitation and evapotranspiration over the area of

the reservoir are calculated as follows:

VPE,t = HPE,t.SR,t (6.5)

VP,t = HP,t.SR,t (6.6)

where HPE is the height of water evaporating as evaluated by the interannual potential

evapotranspiration, HP is the height of water due to precipitation and SR is the surface

of the reservoir. SR was approximated by the water surface of the reservoir correspond-

ing to a reservoir level of 2 m NGF, i.e. 6.2 km2. Indeed, 2 m NGF corresponds to

the average water level in the reservoir. Note that a preliminary sensitivity analysis

had shown that varying the surface SR between 5 and 50 km2 had little impact on

the performances of the water balance model. Reservoir evaporation and precipitation

thus have a very small impact on the water balance.

The previous equations are used to simulate time series of volumes in the Arzal

reservoir. However, the management of the dam is based on reservoir levels. Level

time series can be deduced from the volume time series by applying a volume-to-level

transform f to the simulated reservoir volume. This volume-to-level transform is a

linear function �tted to the reservoir level and volume values presented in Table 6.4.

Figure 6.6 shows the computed points, the �tted linear volume-to-level transform f , as

well as its coe�cients. From this �gure, we can see that an error of 10 Mm3 in reservoir

volume can lead to an error superior to one meter in the reservoir level.

The reservoir level time series can be written as:

Nt = f(Vt) = aVt + b (6.7)

where N is the reservoir level, and a and b are the slope and the intercept of the

volume-to-level transform (see Figure 6.6). Based on this equation, the water balance

equation can be expressed in terms of reservoir levels:

Nt = Nt−1 + a∆Vt (6.8)

The global structure of the model is represented in Figure 6.7. We can identify the

upper left branch that corresponds to the in�ow and out�ow data and the lower left

branch that contributes with the previous reservoir volume.
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Figure 6.6: Reservoir levels versus reservoir volumes in the Arzal reservoir. Blue circles

correspond to the values assessed by the GIS system and presented in Table 6.4. The black

line represents the �tted linear transform, whose coe�cients are displayed in the bottom right

corner.

Volume-to-level 

transform 

Vt Nt VI,t 

VO,t 

+ - + + 

ΔVt 

Vt-1 Level-to-volume 

transform 

Nt-1 

Figure 6.7: Schema of the structure of the reservoir balance model at a given time step.

6.3.2 Forecasting framework

The model of the reservoir balance is run at the daily time step based on Equation 6.8.

A model run is de�ned by an initialization date and a forecast horizon. In the �rst

time step, i.e. on the initialization day, the reservoir level observed on the previous day

is used along with in�ow and out�ow data to calculate the updated reservoir level. In

all following steps, we assume that future observed reservoir levels are still unknown.

The reservoir level is thus calculated based on the previously simulated reservoir level

and on in�ow and out�ow data. This is repeated up to the maximum forecast horizon.

The equation of the reservoir in this con�guration can be written as:

N̂t =

Nt0−1 + a∆Vt0 , if t = t0

N̂t−1 + a∆Vt, otherwise
(6.9)
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where t0 is the initialization date, N is the observed reservoir level, N̂ is the simulated

reservoir level, a is the slope of the volume-to-level transform and ∆V is de�ned in

Equation 6.2. Recursively, we can express the simulated reservoir level at time t as a

combination of the initial reservoir level Nt0−1 and the in�ow and out�ow data:

N̂t = Nt0−1 + a
t∑

i=t0

∆Vi (6.10)

The performance of the system is strongly related to the reservoir level data, the

in�ow and out�ow data, and the slope of the volume-to-level transform. If we consider

that the errors in the reservoir level and the errors in the volume-to-level transform are

negligible in regard to the errors in the in�ow and out�ow estimations, the error in the

simulated reservoir levels solely resides in the in�ow and out�ow data. Since in�ows

and out�ows are summed over time steps, the contribution of the error in the in�ow

and out�ow data to the error in reservoir level is expected to increase with lead time.

6.3.3 Evaluation framework

The objective of the simulations obtained with the water balance model is to reproduce

the observed levels in the reservoir. The quality of the simulated levels is assessed with

the Root-Mean-Square Error (RMSE; see Chapter 3). Observed levels were collected

from three di�erent measurement stations: Arzal, la Roche Bernard and Pont de Cran

(cf. Figure 6.2). The portion of the reservoir running from the Pont de Cran station to

the Arzal station is 40 km long and a hydraulic gradient exists between these stations.

Figure 6.8 shows the scatterplots of levels obtained from these three stations to allow

a comparison of their records.

Strong di�erences in levels are observed from November to April between the Pont

de Cran station and the other two downstream stations. These di�erences could,

for instance, be explained by the impact of the wind or of dam operations on water

levels. Indeed, winds from the ocean can push the water level up at Pont de Cran

and subsequently cause levels at Arzal or at la Roche Bernard to decrease. Also, and

as seen previously, the opening of the sluice gates at the dam can cause water levels

to arti�cially decrease in the vicinity of the dam. Despite these di�erences in levels

between November and April, levels at the three stations are very similar from May

to October. Di�erences in level between Pont de Cran and Arzal are, on average,

close to 2.5 cm and rarely exceed 6 cm. The level at la Roche Bernard would be a

good reference for a median level in the reservoir. However, the acquisition of level

data at this station changed between 2009 and 2010 and data prior to this period are

overestimated. Therefore, we chose to evaluate our level simulations against the mean

of the levels observed at the Pont de Cran and Arzal stations.
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Figure 6.8: Scatterplots comparing reservoir levels observed at the Arzal, Pont de Cran and la

Roche Bernard stations for data acquired from 2010 to 2014. Black dots correspond to levels

measured between November and April (wet period), and red dots represent levels measured

between May and October (dry period).

6.3.4 Setup of model runs

Three con�gurations of the model are used in the following sections. These con�gura-

tions are presented in Table 6.5. Each con�guration is characterized by the frequency

of the initialization, which ranges from a daily initialization to a single initialization

on the �rst of each month, and the target horizon, which ranges from one day ahead

to one month ahead.

The �rst two con�gurations from Table 6.5 are used in Section 6.4 to better un-

derstand the behaviour of the water balance model and evaluate its performance in

reproducing the reservoir levels over the years. In these con�gurations, the model is

run with observed out�ow data and both, observed and simulated (with GR6J), in-

�ows. The evapotranspiration is represented by the interanual evapotranspiration. In

the �rst con�guration, the model is initialized each day of the available period and run

only up to the day ahead. This con�guration allows us to visualize the errors in the

reservoir level simulations for a day lead. At each time step, these errors come from

the model structure, the previous observed level and the in�ow and out�ow data at

this time step. In the second con�guration, the model is initialized every day of the

available record period and run up to a month ahead. These simulations are used to

numerically evaluate the model with the lead time.

The third con�guration is used to develop the risk assessment tool presented in

Section 6.5. In this con�guration, the model is run with forecast in�ows. Gate and

shutter out�ows are optimized to maintain a constant level in the reservoir. Out�ows

through the lock, the �sh pass and the siphon, and the amount of water pumped for

drinking water are assumed constant and equal to their respective maximum values.

In this con�guration as well, the evapotranspiration is represented by the interannual
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evapotranspiration.

Table 6.5: Characteristics of the con�gurations of the water balance model.

# Time

step

Initialization Horizon In�ow data Gates and

shutters data

Other out-

�ow data

1 daily daily one day - observed

- simulated

observed observed

2 daily daily one month - observed

- simulated

observed observed

3 daily 1st of each

month

Oct 31st - ESP forecast

- Null P forecast

optimized for

constant level

constant,

maximum

value

6.4 Preliminary data analysis and water balance sim-

ulations

6.4.1 Relative importance of the di�erent in�ows and out�ows

In order to better understand the contribution of each data source to the simulation

errors, we analysed the relative importance of each input data associated with the

reservoir in�ows and out�ows. Figure 6.9 shows the relative importance of the di�erent

in�ows and out�ows to the reservoir, based on interannual volumes over the May to

October and November to April periods. The relative importance of in�ows is very

similar between periods, with more than 99 % of the in�ows coming from the upstream

catchment. In both periods, total out�ows are slightly superior to total in�ows, which

suggests that a perfect balance may not be achieved based on the available management

and hydrometeorological data.

As expected in a season-dominated climate, we observe large di�erences in mean

interannual values in total in�ows and out�ows between the two seasons. Observed

in�ows and out�ows to the reservoir from November to April are almost �ve times

greater than the volumes observed from May to October. Overall, all mean values

increase from November to April as compared to May to October, except for the

siphons, which are mainly used to evacuate salt water in summer, for the water pumped

for drinking water, whose consumption increases in summer, for the lock, since the

boating season is from May to October, and, �nally, for the evapotranspiration, which

is higher in summer. Another di�erence between periods is the relative importance

of out�ow sources. From May to October, the major out�ows of the reservoir are

out�ows from shutters and sluice gates (80 % of total out�ows). Other out�ows are

non-negligible (20 % of total out�ows), and dominated by out�ows through the siphons

(10 %) and the �sh pass (4 %). From November to April, sluice gates and shutters
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represent 97 % of the out�ows from the reservoir, with almost 75 % of the out�ows

solely due to gate openings. Other out�ows are negligible in this period of the year.

Figure 6.10 complements Figure 6.9 by presenting the relative importance of the

di�erent in�ows and out�ows on a year-to-year basis from 2005 to 2014 for the May

to October period. Years were ranked based on their May to October in�ow volumes,

from the driest (187 Mm3 in 2011) to the wettest year (673 Mm3 in 2008), to highlight

di�erences in management due to hydrometeorological conditions. From this �gure,

we observe that out�ows over the season through the �sh pass, the siphons, the lock

and from the pumps for drinking water supply do not vary with the year, and thus

do not depend on average in�ows. The out�ow through the shutters and sluice gates

however do vary with in�ows since shutters and sluice gates allow managers to adjust

the reservoir level depending on the in�ows. In the driest years of 2005 and 2011,

out�ows through the shutters are equivalent to out�ows summed for the �sh pass and

the siphons, while they usually represent more than 40 % of total out�ows. In average

years, we observe that the management of the dam is done in priority through the

shutters. The use of the gates increases with higher in�ows and only surpasses the

use of the shutters in 2008, the wettest year of the period, and in 2014. The drop

in volume evacuated through the shutters observed in 2014 actually re�ects a change

in strategy by the managers of the Arzal dam. Since 2014, the managers evacuate

water in priority through the gates, rather than through the shutters, during the May

to October season. This new strategy was chosen to evacuate the salt water at the

bottom of the water column without losing freshwater at the top of the water column.

6.4.2 Analysis of monthly management strategies

Figure 6.11 zooms in on in�ows and out�ows at the monthly time step for the years of

2005, 2008 and 2014. 2005 is one of the driest years in the available record period and

is representative of the reservoir management during dry periods. 2008 is the wettest

year of the record period and is more representative of the management during wetter

years, but also during wetter months of the year. Lastly, 2014 is representative of the

latest management strategies in the Arzal reservoir within the period analysed in this

thesis.

In 2005, we observe that the reservoir is primarily managed with shutters, with

small water volumes evacuated through the gates. In June, the volumes evacuated

through the shutters and sluice gates strongly decrease and, from July to September,

both gates and shutters are closed. Closing gates and shutters allows managers to retain

all in�ows in the reservoir and water levels from decreasing signi�cantly. Meanwhile,

10 to 15 Mm3 are still used monthly for drinking water supply, lock crossings and �sh

migration. In October, in�ows start increasing and water is evacuated through the

gates again. We note however that in�ows are still far from an average monthly value

for this period (the average monthly in�ow from May to October is about 60 Mm3).
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Figure 6.9: Proportion and mean seasonal value of each in�ow and out�ow component of the

Arzal water balance model. Mean seasonal volumes are averaged over 10 years (2005-2014)

from May to October and from November to April. The left graph compares in�ow volumes,

the middle graph compares out�ow volumes, and the right graph compares in�ow and out�ow

volumes.
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Figure 6.10: Cumulative in�ows and out�ows over the May to October period for 2005 to

2014. Years are ranked based on their May to October in�ow volumes, from the driest (2011)

to the wettest year (2008).

In 2008, the high in�ows of May and June were mostly evacuated with gate open-

ings. From July to October, in�ows became equivalent to the in�ows observed in May

2005, i.e. close to 50 Mm3. From this month on, water was evacuated from the reser-

voir through the shutters, as was observed in May 2005, with small volumes of water

still evacuated through the gates. In this year, which is characterized by large in�ows

during May and June, it was never necessary to completely close the shutters and gates

in order to guarantee enough water for the May to October period.

In 2014, the in�ows over the May to October period were slightly above average.

In May, shutters and sluice gates were equally used to evacuate water volumes from

the reservoir. From July to October, when in�ows reached volumes equivalent to those

observed in May 2005 or July 2008, gates were preferred over shutters to evacuate

water, as opposed to the strategies of 2005 and 2008. In fact, this allows managers to

evacuate an important quantity of salt water. By doing so, they may ultimately avoid

closing the lock for boat sailing during the summer season.

6.4.3 Daily in�ows and out�ows and reservoir reactivity

In general, decisions concerning water quantities in the Arzal reservoir are made at the

daily time step. A �ner time step is usually only necessary during high-�ow periods,

when urgent actions must be taken due to upcoming �ood events. In addition, the

tidal cycle at the sub-daily time step imposes certain constraints on the management

of the shutters and sluice gates, the lock and, sometimes, the �sh pass. The temporal

distribution of releases at the sub-daily time step is outside the scope of this study since
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Figure 6.11: Evolution of monthly in�ows and out�ows over the May to October period in

2005 (dry year), 2008 (wet year) and 2014 (latest management strategy).

we focus on the low-�ow season. However, the relative importance and the variability of

the input and output variables at the daily time step are of interest since the decisions

on reservoir volumes taken daily can in�uence (in the case of hydrometeorological

variables) and re�ect (in the case of management variables) the long-term reservoir

volume planning.

Figure 6.12 shows the cumulative distributions of the daily volumes for each in�ow

and out�ow of the dam, for the periods running from May to October (darker lines)

and November to April (lighter lines). The mean daily values observed in July of

2005, 2008 and 2014 are also represented. Below the �gure, a conversion table gives

the equivalence between �ows in Mm3/day, the unit used in this chapter, and �ows in

m3/s, the unit previously used in this thesis to describe hydrological conditions in the

catchment (see e.g. Table 6.2).

The in�ow-capacity ratio characterizes the relative importance of daily in�ows as

compared to the reservoir capacity. This ratio can help describe how dynamic a reser-

voir system is. For instance, the level of a reservoir with a high capacity and low
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Figure 6.12: Empirical cumulative distributions of the daily volumes for each element of

the dam and each hydrometeorological variable, for the periods running from May to Oc-
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in�ows (i.e. with a low in�ow-capacity ratio) will vary slowly. Provided that man-

agement constraints for such a reservoir are not too strict, decisions may not need

to be as frequent or �ne-tuned as for a reservoir with a quickly varying volume (or

a high in�ow-capacity ratio). In the case of the Arzal reservoir, in�ows and out�ows

can reach, and even exceed, the reservoir capacity, i.e. 50 Mm3, during the high-�ow

season. During low �ows, maximum in�ows and out�ows can reach 20 Mm3, i.e. 40 %

of the reservoir capacity. Therefore, the Arzal reservoir can be considered as a dynamic

system. During high �ows, the reservoir can be �lled in a day or two. On the opposite,

a release during low in�ows may drastically lower the reservoir level for an extended

period of time.

Figure 6.12 shows that the years of 2005, 2008 and 2014 di�er in terms of in�ows

to the reservoir, but also in terms of management strategy with respect to some of the

dam elements, as seen previously and as re�ected in the month of July. In�ows of July

2005 are, on average, exceeded by 60 % of the daily observed in�ows, while in�ows of

July 2008 are exceeded by less than 40 % of the observed in�ows. July 2014 can be

considered as an average month in terms of in�ows, even though it is slightly drier than

the median in�ow. We observe at the daily time step what was also observed at the

monthly time step. In 2005, daily shutter and gate out�ows are null or almost null to

preserve the freshwater in the reservoir. In 2008 and 2014, however, it was necessary to

use shutters and gates to evacuate water from the reservoir. Gate out�ows are superior

in 2014, with only 20 % of observed out�ows above the mean volume of 2014 and 30 %

above the mean volume of 2008. Since July 2014 was an average month, drier than July

2008, the di�erence in gate out�ows between these months can only be explained by

the change in management strategy. The di�erence in the volumes evacuated through

the shutters between July 2008 and July 2014 may be another consequence of this

change in strategy. Since more water is evacuated through the gates in 2014, there is

less need to operate the shutters.

Other di�erences between the months of July 2005, 2008 and 2014 are observed in

water pumped for drinking water, and water lost through the lock and the siphon. In

July 2008, the volume pumped for drinking water supply and the volume lost through

the lock are inferior to the volumes of 2014 and 2005, possibly due to the preceding

wet months. The volumes lost through the siphons, which evacuate salt water from the

bottom of the reservoir and are thus closely related to lock openings, di�er signi�cantly

between July 2005 and July 2014 . The average out�ow through the siphons is close

to 0.26 Mm3 in 2005, a value exceeded only about 15 % of the time, and close to

0.20 Mm3 in 2014, a value exceeded 70 % of the time. In both years however, the

volumes lost through the lock and through the pumps for drinking water were similar.

This di�erence may re�ect the advantage of the new management strategy. Since

gate openings evacuate more salt water than freshwater, less salt water needs to be

evacuated through the siphons, even in average years such as 2014.
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6.4.4 Analysis of errors in simulated reservoir levels

In this section, we assess the potential of the reservoir balance model to simulate

reservoir levels. Errors in the simulations of the water levels in the Arzal reservoir were

evaluated based on the �rst two con�gurations described in Table 6.5. Figure 6.13

presents the observed reservoir levels and the reservoir levels simulated with the �rst

con�guration, for the May to October periods of 2005 to 2012. Figure 6.14 complements

this �gure with the time series of out�ows through the shutters and sluice gates, the

observed in�ows and the in�ows simulated with GR6J.

In the �rst con�guration, when the model is initialized every day and run for the

day ahead, the simulated levels are very close to the observed levels. The simulation

based on the observed in�ow has an RMSE of 0.09 m over the May to October periods

of 2005 to 2012. The simulation based on the GR6J simulated in�ows has an RMSE

of 0.18 m. This error can be related to the in�ows simulated with GR6J, as seen in

Figure 6.14. Indeed, we observe large errors in the in�ows simulated with GR6J during

high �ows. This is fairly expected because the model was calibrated to minimize errors

in low �ows. The errors in simulated in�ows lead to errors in the reservoir levels of

up to a meter, as in 2007. Nevertheless, during low �ows, the simulations of reservoir

levels based on GR6J simulated in�ows provide good results, as in 2005 and 2011. In

these two cases, the reservoir level simulations obtained with simulated in�ows show

even better results than the level simulations obtained with observed in�ows.

In the second con�guration, the model is initialized every day and run for the month

ahead. The RMSE values of these simulations were averaged for initialization dates

within the May to October period and initialization dates within the November to April

period. The water balance model was run at the daily time step, but also at the weekly

time step (i.e. based on weekly-averaged in�ows and out�ows), and both the observed

in�ows and the GR6J simulated in�ows were used as input to the water balance model.

Figure 6.15 presents the evolution of the RMSE of these reservoir level simulations with

the lead time. As expected, the error increases with the lead time. Errors are also much

larger for �ows simulated between November and April, probably due to the larger

absolute errors in observed in�ows and out�ows directly translated in high reservoir

level errors. Errors are also larger when using GR6J simulated in�ows rather than

observed in�ows, especially during the November to April period. Figure 6.15 shows

that errors are smaller when running the model with weekly in�ows and out�ows to

simulate weekly reservoir levels. While errors at the daily time step can reach values

up to 12 meters for a lead time of 30 days, errors at the weekly time step do not exceed

1.5 meters for a lead time of four weeks. It seems that the water balance model of

the reservoir can provide more accurate level simulations for the month ahead when

considering weekly-averaged levels rather than daily levels.
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with the second con�guration of Table 6.5. Simulations at the daily (left) and at the weekly

(right) time step, for May to October (continuous line) and November to April (dashed line),

and for simulations with observed in�ows (blue) and GR6J simulated in�ows (red).

6.5 The risk assessment tool

Several exchanges with IAV, the institution responsible for the management of the

Arzal dam, based on the results of the preliminary analysis, led to the development

of a risk assessment tool. The design of the tool was guided by their management

objectives and needs.

6.5.1 Design of the risk assessment tool

The management of the Arzal dam is based on water levels and restrictions are for-

mulated relatively to threshold levels (cf. Table 6.2). Therefore, a useful management

tool should focus on reservoir levels. Another main request was to have a tool that

would run at the daily time step and that could be updated every day to support

daily decisions. Predictions would ideally cover the May to October period, and the

maximum horizon targeted by the tool would be �xed to October 31st, i.e. the end

of the low-�ow season in the Vilaine catchment. End-users expressed an interest in

having a seasonal outlook of potential water shortages so as to agree on measures with

stakeholders earlier on in the season and limit tensions.

Several discussions with the dam managers on the management objectives and the

performances of the water balance model were necessary to decide on how hydrological

modelling could best serve reservoir management. Several points were brought to light
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during these discussions. One main issue was that the objective of the dam managers

would not be to use the �nal tool to optimize out�ows from the dam. Indeed, the

work carried out in this thesis only targets water quantities in the Arzal reservoir,

while water quality (i.e., salt related issues) is in fact a major factor in the decision

process. Therefore, it was not in the objectives of the risk assessment tool to provide

quantitative guidance on optimal releases for the Arzal reservoir.

However, the proposed tool should provide a qualitative idea of the risk of severe low

�ows for the coming season and of the risk of having to modify the management strategy

of the reservoir during the season. More speci�cally, the objective was formulated as

follows: what is the risk of not being able to ensure a minimum level in the reservoir at

some point during the low-�ow season ? To answer this question, the tool was designed

with the following in�ow and out�ow characteristics:

- The reservoir balance was fed with stream�ow forecasts that reproduce the nat-

ural variability in stream�ow in the upstream catchment. Stream�ow forecasts

were issued with the ESP method (as described in Chapters 4 and 5). These

forecasts represent a wide range of possibilities, which are only constrained by

catchment initial conditions. In addition to these, a forecast generated by run-

ning the GR6J hydrological model with zero rainfall as input was used. This

forecast represents a worst-case scenario.

- Dam out�ows were computed to maintain a constant objective level in the reser-

voir. This objective level was �rst set at 2 m NGF. Models of the releases of the

Arzal dam based on in�ows were tested but, given the reactivity of the reser-

voir and the di�erent uncertainties in the observed stream�ow and management

data, these models were discarded. Dam releases optimised to maintain a con-

stant reservoir level were the closest option to the way the Arzal dam is currently

managed. They also guaranteed realistic reservoir levels and avoided setting un-

realistic constraints on dam releases since these are not constrained in the current

practice.

- Out�ows from the dam other than releases through shutters and sluice gates were

assumed constant between May and October. We have seen that these out�ows

have little impact on the reservoir balance model, even though their relative

weight increases during the summer season. Out�ow values were �xed at their

maximum observed values: water pumped for drinking water supply was �xed at

0.1 Mm3 per day, out�ows due to lock openings were �xed at 0.03 Mm3 per day,

out�ows through the �sh pass were �xed at 0.4 Mm3 per day and out�ows through

the siphon were �xed at 0.33 Mm3 per day (cf. Figure 6.12). By �xing out�ows

at their maximum values, we consider water uses that are more demanding than

they are in reality. However this guarantees all uses in their current volume at

all times.

- Evaporation from the free water surface was assumed to be equal to the inter-
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annual daily potential evapotranspiration; precipitation falling directly in the

reservoir between the dam and Pont de Cran was assumed to be null.

6.5.2 Risk-oriented simulations

Figure 6.16 shows the simulations obtained with the above characteristics between 2005

and 2010. The model is run in the third con�guration of Table 6.5, i.e., the model is

initialized at the beginning of each month between May and September, and run up

to October 31st. Note that the �gure is interactive (this feature requires the PDF �le)

and that each frame represents a di�erent initialization date.

These simulations assess the periods during which managers will likely be able to

maintain a constant objective level in the reservoir. They also assess the periods during

which the in�ows to the reservoir may not be adequate to maintain a minimum level

in the reservoir, given no out�ows through the shutters and sluice gates and constant

values for other out�ows. The minimum acceptable level was set at 1.80 m NGF by

the dam managers. In Figure 6.16, the main di�erence between the simulations for

each of the six years is the initial hydrological conditions used to run the hydrological

model.

The years 2007 and 2008, initialized in May and in June, illustrate the impact of

initial conditions on the assessed risk. The higher the initial stream�ow and reservoir

conditions, the lower the risk of not being able to maintain the objective reservoir level.

When the simulations are initialized in May, the risk assessed for the end of the season

strongly depends on the meteorological forcings used as input to the GR6J model. Since

these forcings are very similar from one year to the next, the risk assessed as early as

in May is very similar in the six years. However, di�erences in the risk assessed for

the six years start appearing when the simulations are initialized in June. As early as

in June, the risk assessed by the simulations seems higher in 2005, 2006, and lower in

2007 and 2008. This is coherent with the ranking from drier to wetter years shown in

Figure 6.10, except for the year 2006 which was not as dry as 2009 and 2010.

6.5.3 Risk-oriented graphs

Risk-oriented graphs were developed to summarize the risk information provided by

the simulations of the previous section. They are shown in Figure 6.17. Each graph

summarizes the simulations by representing the number of days below the minimum

acceptable reservoir level (here, 1.80 m NGF), for a given initialization date and for each

month of the forecast horizon. The number of days below the threshold is divided in six

categories: the threshold is never reached (0 days), the threshold is reached during one

to six days, seven to 12 days, 13 to 18 days, 19 to 24 days, and 25 to 31 days. For each

month of the forecast period, the percentage of scenarios falling within each of these

categories is shown. The percentage is represented by the intensity of the colour in the

corresponding cell, and values greater than twenty percent are written inside the cells.
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Figure 6.16: Level simulations (top), and in�ow forecasts and corresponding shutter and gate

out�ows (bottom). The objective level is 2 m NGF. Each column corresponds to a di�erent

year, and each frame corresponds to a di�erent initialization date, i.e. from May 1st to

September 1st. Blue lines correspond to reservoir levels and in�ow forecasts generated with

the ESP method and red lines correspond to the forecast generated with the GR6J model

with null precipitation as input.

Figure 6.17: Risk graphs used to represent the probability of being below the minimum

acceptable reservoir level of 1.80 m NGF for di�erent durations and the probability of being

able to return to a level superior to 1.80 m NGF. The objective level is 2 m NGF. Each column

corresponds to a di�erent year, and each frame corresponds to a di�erent start date, i.e. from

May 1st to September 1st.
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Below this graph, another graph indicates the percentage of scenarios returning to levels

superior to 1.80 m NGF for each month. It is indicated as �End of tensions� because

it represents the likelihood of going back to a situation where in�ows are adequate to

maintain the objective level and therefore to return to standard management rules.

Note that it was not possible to evaluate the proposed tool against observations,

because the tool does not use actual reservoir releases, but releases that are optimized

to maintain a constant level and that are chosen to always allow uses. Actual reservoir

releases are decided based on a complex learning process from preceding and current

situations that also includes water quality objectives. Therefore, the observed reservoir

levels and the actual number of days below the 1.80 m NGF limit cannot be used as

observations.

6.5.4 Sensitivity to simulation parameters

We investigated the impact of variations in simulation parameters on the risk as evalu-

ated by the risk-oriented graph. Five parameters were looked at: the objective reservoir

level, the constant water amount allocated to drinking water supply, the constant wa-

ter amount that is assumed lost through the lock, the constant out�ow through the

�sh pass and the constant out�ow through the siphon. The risk as represented in Fig-

ure 6.17 was reduced to two indicators: (1) the number of days below the 1.80 m NGF

threshold, averaged over all ensemble members, and (2) the number of members that

predict at least one day below the 1.80 m NGF threshold. Lower values of these indica-

tors correspond to lower risks of not being able to guarantee the minimum acceptable

water level. In order to analyse the sensitivity of the assessed risk to the parameters,

each parameter value was varied between 0 and 150 % of its initial value, while the other

parameters were �xed at their initial value. Percentages of variation and corresponding

parameter values are shown in Table 6.6. We looked at how the risk indicators were

impacted by these variations.

In Figure 6.18, we show the analysis carried out for the year 2005, and for a simula-

tion initialised on May 1st. We can see that the parameter that has the most impact on

the assessed risk is the objective level in the reservoir. Reducing this level drastically

increases the risk since there is less water stored in the reservoir in anticipation of low

in�ows (note that an increase of 10 cm in objective level corresponds to an increase of

0.9 Mm3 in reservoir volume). Increasing this level reduces the risk, but one should

remember that the maximum level in the reservoir is constrained by the risks of �ood-

ing the upstream �elds and marshes. We observe that variations in the water allocated

to drinking water supply have very little impact on the assessed risk. In practice, the

water allocated to drinking water supply is not considered as a variable of adjustment

by IAV, since it is prioritized over all other out�ows. Reducing its volume is thus out

of the question for the dam managers. However, we see here that an increase in the

amount of water pumped for drinking water supply would have little impact on the risk
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Figure 6.18: Sensitivity of the mean number of days and the number of members below the

1.80 m NGF threshold to changes in the objective reservoir level and out�ows other than

shutters and sluice gates for the year 2005. The mean number of days is averaged over all

ensemble members. The number of members corresponds to the members that predict at least

one day below the 1.80 m NGF threshold.

in terms of water quantity in the reservoir. The water lost through the lock also has

very little impact on the risk variables. However, this volume cannot be dissociated

from the volume evacuated through the siphon, which has more impact on the assessed

risk. Reducing the volume through the siphon can almost neutralize the risk assessed

in 2005. This partly explains why closing the lock can help in the management of the

dam during dry seasons. When the lock is closed, the water quality in the reservoir is

not deteriorated by salt intrusions and using the siphon is not necessary. This reduces

one of the sources of water loss in the reservoir and strongly reduces the risk. Similarly

to the volume evacuated through the siphon, the volume allocated to the �sh pass has a

strong impact on the assessed risk. Reducing the �ow through the �sh pass, or closing

it, can substantially help reduce the risks of reaching below the 1.80 m NGF thresh-

old. However, because preserving the estuarine environment is one of the management

objectives for the dam, the out�ow through the �sh pass can only be reduced or closed

once lock openings have been stopped.

6.6 Conclusions

This chapter focused on the case study of the Arzal dam in Brittany, France, and the

management of its water reservoir during low-�ow periods. The management objectives
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Table 6.6: Correspondence between percentage of initial value and actual values of the man-

agement variables studied in the risk sensitivity analysis.

% of ini-

tial value

Objective

level

(m NGF)

Fish pass

(Mm3)

Siphons

(Mm3)

Drinking

water

supply

(Mm3)

Lock

(Mm3)

150 3.00 0.60 0.495 0.15 0.045

140 2.80 0.56 0.462 0.14 0.042

130 2.60 0.52 0.429 0.13 0.039

120 2.40 0.48 0.396 0.12 0.036

110 2.20 0.44 0.363 0.11 0.033

100 2.00 0.40 0.330 0.10 0.030

90 1.80 0.36 0.297 0.09 0.027

80 1.60 0.32 0.264 0.08 0.024

70 1.40 0.28 0.231 0.07 0.021

60 1.20 0.24 0.198 0.06 0.018

50 1.00 0.20 0.165 0.05 0.015

40 0.80 0.16 0.132 0.04 0.012

30 0.60 0.12 0.099 0.03 0.009

20 0.40 0.08 0.066 0.02 0.006

10 0.20 0.04 0.033 0.01 0.003

0 0.00 0.00 0.000 0.00 0.000

and the elements subject to decision in the dam were detailed. Available data for

the management of the dam and hydrometeorological conditions were listed. A water

balance model of the reservoir was proposed. Its use in forecasting conditions allowed us

to evaluate the potential of a risk assessment tool proposed to detect possible situations

of tensions during low-�ow periods.

A �rst analysis of the available data highlighted the relative importance of the

elements of the dam in terms of volumes. The stream�ow from the upstream catchment

is the main in�ow to the reservoir, and the volumes evacuated through the shutters

and sluice gates are the main out�ows. In practice, shutters and sluice gates are

the parameters of adjustment for dam managers to evacuate excess water from the

reservoir. However, during the summer season, other out�ows associated with drinking

water supply, lock openings and the �sh pass are non-negligible. This was �rst observed

in the analysis of yearly in�ows and out�ows, and con�rmed at the monthly scale.

Monthly in�ows and out�ows were quite variable depending on the month of the May

to October period and on hydrological conditions. They were therefore associated with

di�erent management strategies. The analysis of in�ow and out�ow values at the daily

time step also showed that the reservoir is extremely reactive. This characteristic of
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the reservoir caused the reservoir balance model to be very sensitive to errors in input

data. Errors in preliminary simulations seemed to originate from poor peak simulations

or poor low-�ow observations.

Based on these analyses, and in close collaboration with the dam managers, a risk

assessment tool was developed. The aim was to investigate how such a tool could foresee

the risks of not being able to maintain a minimum level in the reservoir. The tool was

developed in a framework that minimized the impact of the reactivity of the reservoir,

with the assumption that out�ows through the shutters and sluice gates were optimized

to maintain a constant objective level in the reservoir. An objective level was set and

the minor out�ows were assumed constant. Examples of simulations and graphs were

provided for the May to October seasons of 2005 to 2010. The risk assessment tool was

developed to summarize the information of these simulations in terms of risk of reaching

a minimum acceptable reservoir level. The graphs predicted both the average number

of days below this reservoir level and the number of ensemble members reaching this

level. We showed that these risk graphs were sensitive to initial hydrological conditions.

The sensitivity of the predicted number of days and members below the minimum

reservoir level was also quanti�ed. These two variables were sensitive to the volumes

evacuated through the �sh pass and the siphon. Risk parameters were also sensitive to

the objective level to be maintained in the reservoir, even though, in practice, there is

little possibility to change this objective level due to several management constraints

in the reservoir.

In the following chapter, we investigate how risk-based information can be used in

reservoir management. We developed a game experiment to better understand how

decision-makers react to long-term information to decide on reservoir releases.
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R�esum�e

Les pr�evisions probabilistes ou d'ensemble, parce qu'elles prennent en compte les

incertitudes de pr�evision, peuvent aider la prise de d�ecision en contexte de risque.

Des pr�evisions de d�ebits aux �ech�eances mensuelles ou saisonni�eres sont d�ej�a utilis�ees

op�erationnellement en gestion de r�eservoirs, pour des objectifs tels que la r�epartition

de la ressource, l'optimisation des l�achers d'eau ou l'anticipation du risque s�echeresse.

Dans le chapitre pr�ec�edent, nous avons notamment propos�e un outil d'�evaluation des

risques en p�eriode de basses eaux pour le barrage d'Arzal. Alors qu'il existe de

nombreuses �etudes cherchant �a estimer la valeur des pr�evisions hydrom�et�eorologiques

d'ensemble pour de telles applications, peu �etudient leur r�ole pour la prise de d�ecision.

Les jeux de r�oles peuvent s'av�erer tr�es utiles pour mieux comprendre le processus com-

plexe de prise de d�ecision en contexte de risque.

Ce chapitre propose une exp�erience, sous forme de jeu de r�ole, pour mieux compren-

dre l'usage des pr�evisions probabilistes �a longue �ech�eance pour la d�ecision de l�acher

de r�eservoir. Durant le jeu, les participants endossaient le r�ole de gestionnaire de

r�eservoir. �A partir d'une s�equence de pr�evisions mensuelles d'apports au r�eservoir, et

�etant donn�es un objectif de remplissage et des contraintes de l�achers, les participants

d�ecidaient s�equentiellement des l�achers qu'ils allaient e�ectuer pour les mois �a venir. �A

la �n de chaque mois, soit apr�es chaque d�ecision, les cons�equences des d�ecisions prises

le mois pr�ec�edent �etaient �evalu�ees en fonction des apports e�ectivement observ�es.

Pour cette �etude, 162 feuilles de r�esultat collect�ees lors de huit �ev�enements ont

permis de mettre en �evidence l'enjeu mais aussi la di�cult�e de prendre �a la fois en

compte l'information probabiliste et l'information �a long terme. Pendant les s�equences

de jeu, un �ev�enement de crue survenait au mois de juin. La strat�egie permettant de �nir

le jeu sans faire d�eborder le r�eservoir consistait �a vider progressivement le r�eservoir dans

les mois pr�ec�edant l'�ev�enement pour pouvoir recevoir les apports de la crue de juin.

L'analyse des feuilles de r�esultats a montr�e que, sur l'ensemble des s�eances, seulement

20 % des participants avaient r�eussi �a �nir la s�equence de d�ecisions sans faire d�eborder

leur r�eservoir et en respectant les contraintes de l�achers. Le manque d'anticipation

de l'�ev�enement ou la sous-estimation de l'�ev�enement �a venir en terme de volume sont

des explications possibles �a ce faible taux de r�eussite. La mani�ere de communiquer

les pr�evisions et la quantit�e d'informations �a int�egrer dans le temps imparti pouvaient

aussi pr�esenter une di�cult�e pour les participants et in�uer la prise de d�ecision. De

mani�ere plus g�en�erale, l'usage du jeu de r�ole a permis de faciliter et cr�eer un contexte

favorable �a la discussion des enjeux et limites �a l'usage de l'information probabiliste �a

long-terme dans la prise de d�ecision s�equentielle.
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Abstract

The use of probabilistic forecasts is necessary to take into account uncertainties and

allow for optimal risk-based decisions in stream�ow forecasting at monthly to seasonal

lead times. Such probabilistic forecasts have long been used by practitioners in the

operation of water reservoirs, in water allocation and management, and more recently

in drought preparedness activities. Various studies assert the potential value of hydro-

meteorological forecasting e�orts, but few investigate how these forecasts are used

in the decision-making process. Role-play games can help scientists, managers and

decision-makers understand the extremely complex process behind risk-based decision.

In this chapter, we present an experiment focusing on the use of probabilistic fore-

casts to make decisions on reservoir out�ows. The setup was a risk-based game, during

which participants acted as water managers. Participants determined monthly reser-

voir releases based on a sequence of probabilistic in�ow forecasts, reservoir volume

objectives and release constraints. After each decision, consequences were evaluated

based on the actual in�ow.

The analysis of 162 game sheets collected after eight applications of the game il-

lustrates the importance of leveraging not only the probabilistic information in the

forecasts but also predictions for a range of lead times. Winning strategies tended

to gradually empty the reservoir in the months before the peak in�ow period to ac-

commodate its volume and avoid overtopping. Twenty percent of the participants

managed to do so and �nished the management period without having exceeded the

maximum reservoir capacity or violating downstream release constraints. The role-

playing approach successfully created an open atmosphere to discuss the challenges of

using probabilistic forecasts in sequential .
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7.1 Introduction

Seasonal climate forecasts are used in a large number of water resources applications

ranging from droughts (Anderson et al., 2000), urban water (Chiew et al., 2000), hydro-

power operations (Block, 2011), water supply (Bracken et al., 2010), water allocation

(Mushtaq et al., 2012), agriculture (Ghile and Schulze, 2008) and ground water levels

(Guo et al., 2009). Without exception, seasonal forecasting systems are probabilistic.

They incorporate uncertainties about the future state of the climate (Brown and Ward,

2013), which is especially useful for risk assessment.

Coelho and Costa (2010) de�ned several challenges for integrating seasonal climate

forecasts in operational management, ranging from the production of the forecasts to

the e�ective implementation into user applications (e.g. Hartmann et al., 2002; Lemos

et al., 2002). In water resource applications, this often requires translating predictions

of precipitation and temperature into predictions of stream�ow or in�ows to reservoirs

(Regonda et al., 2011). Practitioners can then make management decisions that are

informed by the hydrologic forecasts.

Coelho and Costa (2010) particularly emphasise end-user as a key challenge when

implementing seasonal forecasts for water management, even given the common exis-

tence of quantitative water decision support systems (e.g. Dutta et al., 2013; Regonda

et al., 2011). The process and the policies for water management are extremely com-

plex, for they have to satisfy a large range of possibly con�icting objectives, comprising

technical, socio-economic and environmental issues, and also cover a considerable range

of hydrologic conditions (Simonovi�c and Marino, 1982; Welsh et al., 2013). A num-

ber of studies connect forecast performance to (e.g. Golembesky et al., 2009), but few

recognize that a skilful forecast does not necessarily lead to the forecast actually used

by decision makers (Chiew et al., 2003; Kiem and Verdon-Kidd, 2011; Ritchie et al.,

2004).

In addition, almost all studies are unable to incorporate all operating rules or key

decisions due to the complexity of the task. Technical complexities together with in-

tricate governance settings contribute to barriers which lower the uptake of seasonal

climate forecasts in water resource management (for a detailed review see Kirchho�

et al., 2013; Lemos, 2008). Amongst others, these barriers include the challenge in

incorporating information in the process, and the often insu�cient human and institu-

tional capacities. Kirchho� et al. (2013) highlight individual water manager behaviour

and risk perception as important areas which need to be addressed to realise the value

of probabilistic seasonal forecasts (Block and Goddard, 2012).

These issues can be addressed through an improved process, using structured mod-

els, and training. It is however extremely complex to replicate a full reality, with all

possible consequences. The use of role-play games can aid this process, whilst allowing

the investigation of key research questions, such as how decision rules can be formulated
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or whether probabilistic forecasts lead to better decisions (Ramos et al., 2013). The

decision process includes a range of potential actions, a number of possible events, var-

ious consequences for each combination of action and event, and a set of probabilities

for each combination (Faber and Stedinger, 2001; Sankarasubramanian et al., 2009).

These can be controlled in a game setting, whilst providing an experience which can be

close to reality (Cannon-Bowers and Bell, 1997) and helpful to enhance understanding.

This chapter presents a game experiment that focuses on a realistic decision se-

quence for managing a reservoir � one based on actual hydrology, seasonal forecasts,

and typical reservoir management objectives from a setting in the western United States

(US). The game was played with di�erent groups of students, researchers, operational

hydrologists, forecasters, decision-makers and water managers during conferences and

meetings. Players were asked to manage a reservoir used for �ood control and water

supply, for a four-month period (referred to as the management period). They were

presented with a monthly series of probabilistic in�ow forecasts for runo� in the com-

ing 1 to 4 months: such forecasts are referred to as seasonal forecasts in practice due

to their monthly to seasonal lead times. Participants were required to plan out�ows

at each decision step while complying with reservoir capacity and release constraints.

The objectives of this chapter are to present the results obtained and to analyse the

decision making process of the participants.

In the following sections, we present the game setup, the way it unfolded and how

participants managed their reservoirs. The last section is dedicated to discussion and

conclusions.

7.2 Material

7.2.1 Game setup

The setting of the game is a reservoir in a watershed with a pronounced annual runo�

cycle de�ned by a winter-spring snow accumulation and spring-summer melt period,

followed by a low runo� regime in the summer and fall. The reservoir management

objectives are typical of many managed systems: water supply, minimum environmen-

tal releases and �ood control. The game was adapted from training material for a

course given at the 91st Annual Meeting of the American Meteorological Society. It

was modi�ed to be played in an auditorium, in 20-25 minutes, and to be accessible

for audiences ranging from students, researchers, operational hydrologists, forecasters,

decision-makers and water managers.

Game setting Each participant plays the role of a water manager for `Lake Dual',

which is a reservoir with a capacity of 500 Mm3 that serves two primary functions:

water supply for `Swof Town' and �ood control for `Safe Town'. The residents of `Swof

Town' would like to see the reservoir full (500 Mm3) on August 1st to ensure drinking
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water supply until the end of summer, while the residents of `Safe Town' are interested

in keeping monthly releases below 60 Mm3 to prevent �ood damage to their homes.

Probabilistic forecasts of monthly in�ows are available and updated on the �rst day

of each month during the management period running from April to August. At the

beginning of each month, participants have to decide on the monthly reservoir releases

for the remaining months in this period.

Management objectives The goal of each participant is to have the reservoir vol-

ume as close as possible to 500 Mm3 on August 1st without ever exceeding this max-

imum capacity. Participants also have to maintain a minimum release of 15 Mm3 for

environmental �ow and their maximum release cannot exceed 60 Mm3. As a penalty,

participants are �red from their management role in the game if they fail to meet the

constraint of maximum capacity. At the end of the game, the `winner' is the man-

ager that has the highest reservoir volume on August 1st without having exceeded its

maximum capacity during the management period.

7.2.2 Playing the game

To collect the results of each participant, a worksheet was distributed at the beginning

of the game. It allowed participants to record their releases and update their reservoir

volume. It also provided information on the long-term �ow climatology for each month

(the median in�ow in Mm3 over the past 30 years). Before starting the game, an

example was given for the month of March. Participants were guided on how to �ll

in the worksheet. Lastly, we asked for a volunteer to play the game in front of the

group, bringing a more lively atmosphere to the experience. Since computations for

the volunteer could not be executed in real-time, the volunteer was presented with three

pre-de�ned options of releases. They were designed after several test-plays with small

groups. For the volunteer, all possible combinations of sequential decisions were pre-

calculated, but only the chosen sequence was displayed. Furthermore, the volunteer's

choice and play did not interfere with the play of the other participants, because

participants had to de�ne their releases before the choices available for the volunteer

were presented.

To illustrate the forecast-decision procedure, Figure 7.1 shows the slides presented

for the �rst month. First the in�ow forecasts are displayed with the help of boxplots

showing the 5 % (min), 25 %, 50 %, 75 %, and the 95 % (max) percentiles (Figure 7.1a)

and participants are given a few minutes to decide on their reservoir releases. On the

next slide (Figure 7.1b), it is the volunteer's turn to make a decision, choosing among

options A, B and C. The next slide (Figure 7.1c) displays the actual in�ow of the month

and participants update their reservoir levels accordingly, balancing the in�ow with the

release they had decided on for that month. In the last slide of the round (Figure 7.1d),

we assess the volunteer's decision, by showing the calculation of reservoir volume at

the end of the month for the release option chosen by the volunteer. It also indicates
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whether the volunteer still has a job. This marks the end of a forecast-decision-update

sequence and the game moves on to the next decision (i.e., next month).

The game is a repetition of this sequence of steps for forecasts issued once a month

from April 1st to July 1st until we reach August 1st. If participants are �red before

the last round, they are encouraged to keep playing and try to recover their jobs by

lowering the reservoir volume below its maximum capacity.

A major �ow event was included to occur in June to test the participants' capacity to

hedge for the possibility of high in�ows to the reservoir. In addition, the probabilistic

forecasts were designed such that their median values were below the actual in�ow,

to discriminate whether participants became sensitive to the risk represented by the

upper tail of the forecast distribution. To help participants spot this pitfall, forecasts

displayed both observed and forecast in�ows for the past month.

Figure 7.1: Example of a sequence of forecast-decision in the game: forecast issued on April

1st and results for a volunteer that chose option C as release schedule.
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Table 7.1: Characteristics of the applications of the game.

Context of the application

(oral presentations)

Place Number

of work-

sheets

collected

Participants

European Geophysical Union

General Assembly 2013

(Session Ensemble hydro-

meteorological forecasting

for improved risk manage-

ment: across scales and

applications)

Vienna,

Austria

85 Students, researchers,

operational hydrologists,

forecasters, decision-

makers, water managers

Users workshop of the Euro-

pean Flood Awareness System

(EFAS)

Reading,

UK

23 Operational forecasters

from EU �ood forecasting

national services

Trans-national `Drought

team' meeting of the Interreg

NEW IVB DROP project

Brittany,

France

8 Operational hydrologists

and water-supply reservoir

operators from France and

Germany

Seminar at Universit�e du

Qu�ebec �a Chicoutimi (UQAC)

Chicoutimi,

Canada

11 Undergraduate and post-

graduate students, profes-

sors

Seminar at Centre d'Expertise

Hydrique du Qu�ebec (CEHQ)

Qu�ebec

city,

Canada

10 Operational hydrologists

and �ood forecasters

Seminar at Hydro-Qu�ebec's

research institute (IREQ)

Varennes,

Canada

11 Researchers, operational

forecasters, and decision-

makers

Training course on Pre-

dictability, Diagnostics and

Forecasting at ECMWF

Reading,

UK

20 Undergraduate and post-

graduate students

HEPEX 10th Anniversary in-

ternational workshop

Maryland,

USA

35 Scientists, operational fore-

casters in meteorology and

hydrology, decision-makers

TOTAL 203



An experiment on risk-based decision-making in water management 151

20%
Participants who
did not exceed 500 Mm3

63%
Participants who

exceeded 500 Mm3 once

17%
Participants who

exceeded 500 Mm3 twice

Figure 7.2: Results of participants in terms of the main reservoir constraint: not exceed the

maximum reservoir capacity of 500 Mm3.

7.3 Results

7.3.1 Worksheets collected

We collected a total of 203 worksheets through eight distinct presentations of the game

(Table 7.1). Seventy-�ve percent presented release schedules �lled in for each month

(and not only for the �rst month). Thirty-two percent showed a miscomprehension

of the release constraints and had releases greater than 60 Mm3 or less than 15 Mm3.

Miscalculations were observed in 63 worksheets: most were small computational er-

rors that did not impact the reasoning process and few were miscalculations of the

reservoir in�ow-out�ow balance. We discarded the worksheets that did not respect the

constraints in the releases for the �rst month of the schedule and those that presented

miscalculations that could have led to erroneous decisions. In the end, the analysis con-

sidered 162 worksheets, 126 of which had complete release schedules. The volunteer

play was not considered.

7.3.2 Decision-makers' behavior during the game: who won?

who lost?

In terms of the main decision-makers' constraint, i.e., keep the reservoir level below

500 Mm3, we observe (Figure 7.2) that twenty percent of the participants (32) never

exceeded the reservoir capacity during the management period and kept their jobs until

the end of the game. Eighty percent of the participants (130) exceeded the reservoir

capacity at some point during the game. Among them, 103 exceeded the reservoir

capacity once, in June, and lost their jobs, but then managed to recover (i.e., released



152 7.3 Results

enough in July to achieve a reservoir level back below 500 Mm3 on August 1st), and

27 exceeded the reservoir capacity in June, but were unable to bring the volume below

500 Mm3 at the end.

Figure 7.3 shows the monthly evolution of reservoir volumes (Figure 7.3a) and the

distribution of releases at one-month lead (Figure 7.3b), for participants who exceeded

the maximum reservoir capacity and for those who never did. All participants who won

decreased their reservoir volumes by 10 to 50 Mm3 in the �rst two months. These two

months were crucial to make the di�erence between winners and losers. April and May

in�ows summed to 73 Mm3, which, given the minimum compulsory release (15 Mm3 for

each month) and the initial reservoir level (450 Mm3), forced participants to reach at

most a reservoir volume of 493 Mm3 at the end of May. This level left little �exibility

to keep the volume lower than the maximum capacity in the subsequent months. In

the group of participants who won, releases are higher than 30 Mm3 in April, combined

with, in most cases, additional relatively high releases in May (higher than 50 Mm3).

In contrast, more than half of the participants who lost opted to release the minimum

allowed in April and consequently, saw their reservoir volumes increase by the end of

the month since the April in�ow (18 Mm3) was greater than their releases. In May,

75 % of these participants had their reservoir volumes greater or equal to the initial

volume of 450 Mm3, with the highest value being the maximum possible, 493 Mm3.

In June, the month for which the high runo� event was forecast, 80 % of all partic-

ipants released the maximum 60 Mm3. This represents 62 % of the participants who

won and 84 % of the participants who lost. At the end of the month, the reservoir

volumes of participants who lost were between 503 and 553 Mm3, while the volumes

of participants who won were between 473 and 498 Mm3.

All participants who won decreased their reservoir levels in the �rst two months,

anticipating the peak runo� month, which was re�ected in both the forecasts and

the climatology. In the beginning of June, their reservoirs were then low enough to

collect the water from the high in�ow without overtopping. Participants who lost had a

general tendency of increasing their reservoir volumes after the �rst decisions, re�ecting

emphasis on the goal of having the reservoir level as close to 500 Mm3 as possible on

August 1st, rather than on the risk of high in�ow in June. Therefore, in June, they

su�ered the consequence of overtopping the reservoir. The maximum reservoir volume

obtained by a participant reached 553 Mm3 at the end of June, which corresponds

to releasing the minimum 15 Mm3 in April and in May, and the maximum 60 Mm3

in June. This is the pro�le of a decision-maker that ignored or failed to comprehend

the implications of the June in�ow forecasts and climatology, and became trapped by

release constraints in June.

To recover their role as reservoir managers, participants who had exceeded the

reservoir capacity by the end of June had to release enough in July to decrease their

reservoir volumes by the end of the month. Almost 75 % of this group released more
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Figure 7.3: (a) Evolution of reservoir volumes at the end of each month and (b) distribution of

releases for the coming month (one-month lead) for participants who exceeded the reservoir

capacity (participants who lost, 130 worksheets, in yellow) and participants who did not

(participants who won, 32 worksheets, in blue). In (a), the grey and red horizontal lines

mark the reservoir volume at the beginning of the game (450 Mm3) and the constraint of

reservoir capacity (500 Mm3), respectively. In (b), the grey horizontal lines mark the minimum

(15 Mm3) and the maximum (60 Mm3) allowed for releases. Box plots display minimum value,

percentiles 25 %, 50 %, 75 % and maximum value over 162 participants.
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Figure 7.4: Reservoir volumes of 162 participants at the end of July as a function of the

one-month lead releases for April (a), April plus May (b) and the sum of April, May and June

(c). Participants who won (never exceeded the maximum reservoir capacity) are indicated in

blue, and participants who lost, in yellow. The darker the dot, the more participants adopted

the volume/release scenario. Shaded areas highlight the strict separation between winners

and losers by indicating the domain occupied exclusively by participants who won, and by

participants who lost, in the blue and yellow colors respectively. A percentage indicates the

proportions of dots in these areas.

than 40 Mm3 in July, while 75 % of the participants who never exceeded the maximum

capacity released, in the same month, less than 40 Mm3. The return to a reservoir

volume below 500 Mm3 was achieved by 79 % of the participants who had lost their

jobs with the high in�ow in June. Despite their e�orts, 27 unfortunate players saw

their reservoirs remain above the `spill' volume.

The urgency to decrease the reservoir volume after June to avoid further overtop-

ping, or maybe just to secure their jobs, led participants who had lost to release large

quantities of water in July. Out of the 32 participants who had not exceeded 500 Mm3

after the event in June and who had then more �exibility to adjust their reservoir

volume so as to bring it as close as possible to the goal on August 1st, 11 were able to

increase their reservoir volumes in July by managing their releases.

7.3.3 And the winner is...: optimal one-month lead release

schedule

Figure 7.4 presents the reservoir volumes of each participant at the end of July as a

function of their one-month lead releases. We consider, progressively, their releases

in April (Figure 7.4a), the summed releases for the months of April and May (Fig-

ure 7.4b) and the summed releases for all the months prior to the high in�ow event,

i.e., April, May and June (Figure 7.4c). This �gure allows a retrospective analysis of

which decisions led to overtopping the reservoir.

Figure 7.4a shows that participants who released 25 Mm3 or less in April (61 % of
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all 162 participants) lost their jobs on July 1st. The same is observed for participants

who released an accumulated volume of 80 Mm3 or less by May (Figure 7.4b). By this

time, they already represent 72% of all participants. By the end of June, participants

who had released an accumulated volume of 140 Mm3 or less (80 % of all participants;

Figure 7.4c) had lost the game. On the opposite end of the release spectrum, all

participants who released 120 Mm3 by May (i.e., that released the maximum allowed

in April and May) did not overtop their reservoirs during the game (Figure 7.4b).

At the end of the �rst three sequential decisions, all participants who had released

more than 145 Mm3 had their reservoirs prepared for the high runo� event in June

(Figure 7.4c).

In order not to overtop their reservoirs, participants had to lower the initial reservoir

volume of 450 Mm3 by at least 10 Mm3 in the �rst two decisions. In terms of releases,

this means that they had to release at least 83 Mm3 over the �rst two decisions (given

the 18 Mm3 and 55 Mm3 in�ows of April and May, respectively). Given the constraint

of maximum release (60 Mm3), these two months were thus essential to adjust the

reservoir volume prior to the high in�ow event. From the worksheets, it emerges that

the high-score winner applied the following sequence of releases - 35; 50; 60; 24 Mm3

� to achieve the following volumes: 433; 438; 498; 496 Mm3. This winner was among

the audience of the HEPEX 10th Anniversary workshop, which was, most probably,

the venue with the most specialized users of probabilistic forecasts in the audience.

As noted earlier, the game was designed such that the seasonal forecasts were

under-predicting the coming high in�ow event if judged on the 50 % percentile. In

fact, the observed peak in�ow of June was close to the 95 % percentiles of the �rst

three (April, May, June) probabilistic forecasts for June. These forecasts foreshadowed

that an upcoming major event was possible, albeit with a low forecast probability of

occurring. The �ow climatology information in the worksheets indicated that June was

historically a month of high in�ows and also provided a warning for participants to be

cautious and prepare for the coming event with an appropriate release strategy.

7.3.4 Evolution of release schedules

The way participants were planning their releases months ahead, and how they changed

their planning or not as the June high in�ow approached, was investigated with the

help of the 126 worksheets (out of 162) that had release schedules fully �lled. In

both groups, i.e., participants who lost (102 worksheets) and participants who won (24

worksheets), we had approximately the same proportion of players that fully �lled in

their release schedules (78 % and 75 %, respectively).

We observe that participants who won had basically planned their releases for the

month of May and June already in the �rst decision on April 1st. When May 1st and

later June 1st arrived, the majority con�rmed their previous decisions or just increased

their releases of approximately 5 to 10 Mm3 more to accommodate the high in�ows in
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the reservoir without overtopping.

On the other hand, participants who lost were, in general, planning very low releases

on the �rst months and already, since the �rst decision in April, planning to release the

maximum in June. What they had not anticipated was that this would not be enough

to accommodate the high in�ow event and that a better strategy would have been to

gradually empty the reservoir already in April and May. On June 1st, players from this

group may have been frustrated by the fact that they had their reservoir volumes too

high but could not release more than the maximum allowed.

In general, the planned releases for July were progressively increased when moving

from April to June in both groups. On July 1st, however, when the only release they

had to plan was for the coming month and the highest in�ow had already passed, the

majority in the group of participants who won was able to decrease the values they

had planned to release previously on June 1st and, therefore, better target the �nal

goal of having the reservoir volume as close as possible to 500 Mm3 on August 1st. On

the other hand, in the group of participants who lost, half of the players had to decide

on releasing more than what they had scheduled in the previous decisions to have a

chance of getting their reservoir below 500 Mm3 and, consequently, their jobs back.

7.3.5 How might participants have used the probabilistic fore-

casts and the �ow climatology when making decisions?

It was left to participants to choose how they would take into account forecast and

climatology information in their decisions. We could not, unfortunately, follow this

process within each participant's mind. Nevertheless, using the worksheets only, we

tried to identify which forecast quantile participants based their releases on. To do so,

we calculated the August 1st reservoir volumes they would have obtained if the observed

in�ows had consistently matched one of the forecast quantiles, or, alternatively, the �ow

climatology. Volumes obtained with the observed in�ows were also estimated. This

was done for each decision step (month), so that we could also evaluate the release

planning strategy. Figure 7.5 shows the results.

The players who took proactive actions as early as April and May to balance the

game objective with the overtopping risk likely focused on upper quantiles of the fore-

casts (Q75 and Q95), with maybe also some support from the �ow climatology. Indeed,

most of these participants would not have overtopped their reservoirs had the Q75 and

even the Q95 forecast quantiles been veri�ed as observed in�ows throughout the game,

as early as in the �rst decision step. On the third and fourth decisions, they seemed to

have set aside �ow climatology and rather used an `adjusted' upper forecast quantile

(Q95) to evaluate the possible observed in�ow and optimise their releases to the goals

of the game. This might have been the result of having previously noted that the

forecasts were, in general, under-predicting the observed in�ows. The fact that part of
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the distribution for August volumes given actual observed �ows is above the reservoir

maximum during the �rst two decisions (April, May) means that participants tolerated

or were not able to eliminate the overtopping risk early in the management period, but

took steps to eliminate it when the potentially high in�ow month was imminent.
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Figure 7.5: Volumes that participants would have in their reservoirs on August 1st by applying

their release programs at each decision month (April-July) to the cases where in�ows are equal

to: the forecast quantiles Q5 to Q95 (shades of green), the �ow climatology (orange) and the

observed in�ows (red). Boxplots represent statistics over 24 participants who won (top) and

102 participants who lost (bottom).

In the group of participants who lost, most participants might have been guided by

the medium to lower quantiles (Q50 and Q25) in the �rst decisions. Figure 7.5 shows

that if the upper quantile forecasts or even the �ow climatology values had veri�ed as

observed in�ows, these participants would have reached reservoir volumes much higher

than the allowed 500 Mm3 in August. In contrast, if lower quantiles had veri�ed as

observed in�ows, most would have been safe from overtopping their reservoirs. Later

on, on the third and fourth decisions, these participants might have acted based on

the upper forecast quantiles (Q75 and Q90) and, eventually, on the �ow climatology
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to plan their releases.

7.4 Discussion and conclusions

This chapter presented the results of a game experiment designed to mimic risk-based

decision-making in water management using probabilistic forecasts of in�ows to a reser-

voir. From the analysis of the worksheets collected during the application of the game in

eight di�erent contexts, we were able to illustrate key issues on the use of probabilistic

forecasts in sequential decision making.

In the game setup, seasonal forecasts had to be viewed as a whole and not as

independent monthly forecasts. Even though the forecast time evolution warned the

participants about a high in�ow event, monthly 50 % percentile forecast values were

under-estimating �ows. Given the reservoir constraints, as expressed in the rules of the

game, and the goals of the management, it was necessary to look at forecasts months

ahead before deciding on the reservoir releases. A winning strategy would be the one

that would gradually empty the reservoir two months ahead of the expected high in�ow

to accommodate its potential volume without overtopping. Although the worksheets

were designed to invite participants to adopt this long-term approach, notably by

asking them to schedule their releases for the whole management period, still about

25 % of the participants �lled their releases for the coming month only.

Approximately 20 % of the participants to the game were able to �nish the manage-

ment period without exceeding the maximum reservoir capacity at any time during the

sequenced decisions, and approximately 17 % of the participants not only caused the

reservoir to overtop, but also were unable to bring its volume back below the threshold.

Winners were those who had programmed the releases in a way that they succeeded

to adequately decrease their reservoir volumes in the �rst two months, anticipating

the potential high in�ows. Losers of the game were those who did not recognize early

enough the signi�cance of the high in�ow risk, or did not comprehend its potential

impact on the reservoir volume.

In this chapter, answers that showed signs of miscomprehension of the balance

equation were not used in the interpretation. Therefore, it has been implicitly assumed

in the analysis of the remaining results that the participants were able to take full

advantage of the proposed information, once given the necessary tools to read the

probabilistic graphs and understand the climatological values at the beginning of the

game. The results based on the remaining answers may however still be in�uenced by

the comprehension of the proposed tools and the way they were presented. It is possible

that given the timed nature of the game (participants had to decide within a limited

amount of time), some participants could understand the way forecasts were displayed,

but were not fast enough in applying their understanding. Communicating forecasts

and, more generally, probabilities is still a major challenge in hydrometeorology, and
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can be a barrier to the widespread use of ensemble forecasts in operational contexts.

The information collected from the worksheets shows which decisions were taken,

but not why they were taken. Therefore, care has to be taken in the interpretation of

the results of this game experiment. We can only speculate on what could have been

the reasons for many participants to take a certain sequence of release decisions, and

on what strategy winners had with respect to the forecast in�ows. Therefore, even if

the results indicate that the participants who won the game might have considered the

upper quantiles of the forecasts, at least in their �rst decisions, information on why

they followed this procedure is not available through the game setup. A possible solu-

tion to this limitation could be to expand the game by asking these relevant questions

orally or directly in the worksheets. Recording whether participants had prior water

resource management or forecasting experience could also help indicate the value of

training toward improving the application of probabilistic information. Collecting spe-

ci�c information on the main occupation and background of each participant could also

be helpful to evaluate how strategies may vary between di�erent groups (e.g., students,

managers or forecasters).

Finally, this game is a simpli�ed representation of reality and does not intend

to reproduce the full context of operational environments in reservoir management.

Indeed, a participant who had real-life experience managing reservoirs noted during

one game session that the winning strategy (described in Section 3.2) could have raised

alarms in practice for having allowed too much �ooding risk en route to achieving a

near-perfect target level. Despite the simpli�cations, however, we received positive

feedback after the di�erent applications, even though howls of indignation were often

heard in the rooms when the observed June in�ow was revealed. The role-playing

approach, and the penalty experienced by participants of being �red from their jobs,

added a light touch to the experience and created a pleasant atmosphere to discuss the

challenges of using probabilistic seasonal forecasts in sequential decision-making, where

choices have delayed consequences. Notably, the game has been successfully used as

support material during teaching and training activities.





General conclusion

The quest for extending predictability in hydrometeorological forecasting is far from

being over. Seasonal forecasts are a perfect example of this: many are curious about

them and show an interest, but many remain sceptical, eyebrows often rise in their

vicinity, and few trust them enough to implement them. This is a perfect demonstration

of the stake of seasonal forecasting and of all that is left to prove and demonstrate.

In stream�ow forecasting, one can start by assessing the theoretical predictability of

stream�ows. How far ahead can we hope and should we expect skilful predictions? This

approach to predictability is at the heart of recent publications and on-going research

in several research teams around the world. This PhD work has tackled the matter by

directly investigating the performance of seasonal forecasting systems. It has addressed

two aspects that limit the widespread use of seasonal stream�ow forecasts: the need

to assess the quality of seasonal stream�ow forecasts and the necessity to translate the

seasonal information into risk information that answers user needs.

Throughout this PhD research, we have assessed the quality of seasonal stream-

�ow forecasts in France and investigated their potential to enhance decision-making

in reservoir management during periods of low �ows and droughts. This research has

more speci�cally addressed four aspects, listed in the Introduction of this thesis:

1 the bias correction of precipitation forecasts to improve seasonal stream�ow fore-

casts;

2 the conditioning of historical data with seasonal precipitation forecasts to better

capture low-�ow characteristics;

3 the development of a risk assessment tool tailored to the needs of dam managers

to help decision-making and alert against water shortages in summer;

4 the set up of a role-playing game to better understand role of seasonal proba-

bilistic information in risk-based decision making.

We hereafter summarize the conclusions related to each of these questions, and list

some perspectives to this work.
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Conclusions on seasonal stream�ow forecasting in France

1. Bias correcting precipitation forecasts from climate services can improve the

overall performance and the reliability of GCM-based seasonal stream�ow forecasts.

We investigated the ability of precipitation forecasts issued by the System 4 GCM of

ECMWF to forecast seasonal stream�ows. The observed monthly biases of the Sys-

tem 4 precipitation in the sixteen French catchments often compensated over the year.

This highlighted that e�cient bias correction should address monthly biases rather

than biases over the year. Eight bias correction methods were studied. The empiri-

cal distribution mapping of daily precipitations performed best: it allowed improving

overall performance by improving forecast reliability, even though this was sometimes

at the expense of forecast sharpness. The linear scaling method increased overall per-

formance of stream�ow forecasts by improving the sharpness of precipitation forecasts.

Overall, a small improvement in the overall performance of precipitation forecasts led

to greater improvements in the overall performance of stream�ow forecasts. This result

is an incentive to improving seasonal precipitation forecasts, either through improved

climate model outputs or through post-treatment methods, to also improve seasonal

stream�ow forecasts.

2. Conditioning historical scenarios with GCM-based precipitation indices can

improve the sharpness of climatology-based stream�ow forecasts, and provide better

forecasts of low-�ow events.

The conditioning of historical data based on GCM precipitation forecasts allowed

to take advantage of the reliability of historical data and the sharpness of meteoro-

logical forecasts. A conditioning based on forecasts of the anomaly in precipitations

produced reliable forecasts, narrowed the spread of climatology-based forecasts and

preserved their overall performance. This research has highlighted the trade-o� be-

tween sharpness and reliability in the search for better forecast quality. Improving one

may often be at the expense of the other. We can suggest that an universal optimal

balance may not exist and that the best trade-o� between sharpness and reliability is

speci�c to the application. Lastly, an advantage of the proposed methods is that they

may also serve as bias correction and downscaling of GCM outputs as highlighted by

Carpenter and Georgakakos (2001). While the conditioning of historical precipitations

can be seen as a bias correction prior to hydrological modelling, the conditioning of

historical stream�ows can directly serve as a bias correction of stream�ow forecasts.

Additionally, conditioning methods can help translate the large-scale seasonal GCM

information into meteorological and hydrological scenarios observed in the catchment.
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Conclusions on seasonal forecasting for reservoir management

3. A risk assessment tool was developed to forecast the risk of not being able

to maintain all water uses of the Arzal reservoir during the low-�ow season.

An in-depth analysis of the quantitative management data of the Arzal reservoir, sup-

ported by several discussions with the managers of the IAV (the organization in charge

of the management of the dam), highlighted the objectives and constraints of the dam.

This analysis also helped understand how these constraints and objectives relate to

hydrometeorological conditions. It has led to the development a risk assessment tool

for the management of the reservoir. The seasonal stream�ow forecasts used as input

to a water balance model of the reservoir allowed us to quantitatively assess the risk

of reaching a minimum acceptable reservoir level throughout the low-�ow season. A

pre-operational visualisation tool of this risk emerged from this preliminary work. A

fully operational risk assessment tool would require further analysis after implementing

the tool operationally, which would allow a complete evaluation of its strengths and a

�nal tailoring to ful�l the user needs. Lastly, a sensitivity analysis of the risk assessed

in the case of the 2005 drought, highlighted the importance of the objective manage-

ment level in reducing the risk. Interestingly, the analysis also showed that increasing

drinking water supply would have little impact on the quanti�ed risk, while restricting

the openings of the lock for boating can indirectly help reduce this risk.

4. A good communication and interpretation of seasonal products is key to

taking full advantage of the seasonal information for decision-making in reservoir

management.

A role-playing game experiment was conducted to investigate the process of sequen-

tial decision-making based on seasonal probabilistic forecasts in a theoretical reservoir.

Overall, we observed that the game approach facilitated discussions on challenges and

limits to using long-term information in decision-making. The experiment showed

that seasonal probabilistic forecasts can be necessary in risk-based decision-making to

anticipate extreme events months in advance. The experiment also highlighted the

challenge of incorporating long-term probabilistic information in decision-making. In-

deed, among the game participants, few were able to manage the theoretical reservoir

throughout the season without overtopping it. Participants may not have su�ciently

anticipated the hydrological event despite the seasonal forecasts. Also, the way the

forecast information was communicated may have been a critical aspect impacting the

decision-making.
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Collaboration with climate services and end-users was crucial

The conclusions of this PhD work are the fruit of active collaborations with climate

services, represented by ECMWF, but also with end-users, here the dam managers

of the Arzal reservoir. Rather than adopting a top-down approach from the climate

services to the end-users, this work has involved all parties throughout the research

process.

On the one hand, it was the end-users that initiated the collaboration on this PhD

work within the Interreg IVB NWE DROP project. They were included in the sci-

enti�c process and their experience was decisive in the development of adapted tools

for reservoir management. An operational goal involving the work of this PhD thesis

was to develop a pre-operational low-�ow forecasting and water management system

to support reservoir management and drought adaptation for the Arzal reservoir. The

DROP project also allowed for exchanges with end-users from di�erent horizons. We

have been in close contact with the dam managers from WVER, in Germany, who

had di�erent experiences of similar issues, which gave an enlarged vision of this work.

On the other hand, the scientists from ECMWF not only provided the seasonal pre-

cipitation forecasts used in this research, but also actively contributed to the applica-

tion and evaluation of these forecasts for stream�ow forecasting. They o�ered their

contribution throughout the implementation of the precipitation forecasts within the

stream�ow forecasting framework. After the framework was implemented, they shared

their expertise in the forecasts and participated in the interpretation of the results of

this research.

Perspectives

This PhD research builds on a forecasting system based on the precipitation forecasts

of the ECMWF System 4 GCM, on the GR6J hydrological model and on a reservoir

balance model developed for the purpose of this thesis. All the conclusions from the

performance analyses carried out in this thesis thus rely on the performance of these

models and may not be applicable to other forecasting systems. Future directions for

this research are also highly related to this modelling framework.

A direct perspective is to include seasonal temperature forecasts in the stream�ow

forecasting framework. Throughout this thesis, the hydrological model was fed with the

mean interannual evapotranspiration. However, studies have shown the importance of

considering temperature when forecasting dry events, as in the case of the 2014 drought

in California (Kollipara, 2015). Adding temperature forecasts to the analyses would,

however, have implications on the bias corrections applied and on the selection of

past scenarios to predict future events. Indeed, bias corrections would have to correct

simultaneously precipitations and temperatures, and preserve their spatio-temporal

consistency. A conditioning of past temperatures may also be challenging due to non-
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stationarities in long temperature records necessary to forecast stream�ows based on

historical meteorological data. A basic assumption in the way we built our conditioned

forecasts is that past observations can represent current climate conditions, which may

not be valid if trends are present in the observed time series.

In this thesis, we have investigated several ways to condition climatology in order

to forecast stream�ow. Other conditionings are extensively used in the literature,

such as selections based on climate indices (e.g. the North Atlantic Oscillation in

Europe). Yet, other approaches, such as the Bayesian Model Averaging (BMA) or the

nonhomogeneous Gaussian regression (NGR), propose to optimally combine multiple

forecasting systems by learning from their past performance. It would be interesting

to compare the results from such combinations with the results of the conditioning

presented in this thesis. Furthermore, the BMA and NGRmethods could be interpreted

as diagnostics of the performance of the di�erent investigated forecasting ensembles.

Another direct perspective that would serve the future development of forecasting

tools for the Arzal reservoir is the identi�cation of the sources of predictability in

the Vilaine catchment. Knowing the sources of predictability can indeed serve as a

local diagnostic to improving the skill of stream�ow forecasts (Wood et al., 2016). In

practice, this could help guide future e�orts, either towards better data acquisition

tools to improve initial conditions, or towards skilful monthly or seasonal forecasts

from climate services to improve meteorological forcings.

Unfortunately, we could not implement the conditioned stream�ow forecasts based

on historical stream�ow in the risk assessment tool of the Arzal reservoir. Indeed, this

method requires long stream�ow records that are not yet available for the Vilaine at

Rieux. Nevertheless, when stream�ow records allow for it, it would be interesting to use

the method to forecast reservoir in�ows, since it provided a good assessment of drought

and low-�ow risk at a low computational cost. In a similar line, there is still work to

be done to bring the risk assessment tool to an operational level. Its pre-operational

version could be implemented and tested to evaluate the actual potential of the tool

in supporting decision-making. Comparing in real-time its risk assessment to observed

situations could help validate its performance, and, later on, we could assess if and

how the tool can be used in the management of the multi-purpose Arzal reservoir.

The role-playing game presented in this thesis, as well as other game experiments

(Ramos et al., 2013; Arnal et al., 2016), have shown that games can open the discussion

on touchy subjects, by creating a theoretical and therefore safer context. Speaking

of touchy subjects, and in the line of reservoir management, the allocation of the

water resource for di�erent uses could be a perfect subject for a future game including

reservoir volume forecasts.

Further along the line, the impact of climate change on stream�ows might dictate

the value of this work for future years. Climate change is omnipresent when discussing

low �ows and droughts. Even though studies on the impact of climate change on low
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�ows and droughts do not always converge to similar conclusions (Hisdal et al., 2001;

Lehner et al., 2006; Vidal et al., 2012; Corzo Perez et al., 2011), there is a chance

that the occurrence or the severity of droughts will increase in the coming century.

In France, within the Explore 2070 project, Chauveau et al. (2013) showed that more

severe summer low �ows are to be expected in large catchments. Taking into account

climate change implies that the hypothesis of stationarity is no longer valid. This would

require to take into account the bias between past and future hydrometeorological

observations, for example in the calibration of the hydrological model (Coron, 2013),

in the calibration of bias corrections or in the selection of likely scenarios within past

observations.



References

Anderson, M.L., Mierzwa, M.D. and Kavvas, M.L. (2000). Probabilistic seasonal fore-

casts of droughts with a simpli�ed coupled hydrologic-atmospheric model for water

resources planning. Stochastic Environmental Research and Risk Assessment 14,

263�274. 84, 146

Andr�eassian, V., Perrin, C., Berthet, L., Le Moine, N., Lerat, J., Loumagne, C., Oudin,

L., Mathevet, T., Ramos, M.H. and Val�ery, A. (2009). HESS Opinions "Crash tests

for a standardized evaluation of hydrological models". Hydrology and Earth System

Sciences 13, 1757�1764. 11

Andr�eassian, V., Le Moine, N., Perrin, C., Ramos, M.H., Oudin, L., Mathevet, T.,

Lerat, J. and Berthet, L. (2012). All that glitters is not gold: the case of calibrating

hydrological models. Hydrological Processes 26, 2206�2210. 25

Andr�eassian, V. and Perrin, C. (2012). On the ambiguous interpretation of the Turc-

Budyko nondimensional graph. Water Resources Research 48, W10601. 12

Arnal, L., Ramos, M.H., Coughlan, E., Cloke, H.L., Stephens, E., Wetterhall, F., van

Andel, S.J. and Pappenberger, F. (2016). Willingness-to-pay for a probabilistic �ood

forecast: a risk-based decision-making game. Hydrology and Earth System Sciences

Discussions 2016, 1�38. 165

ASCE (1993). Criteria for evaluation of watershed models, vol. 119. American Society

of Civil Engineers, Reston, VA, ETATS-UNIS. 25

Berthet, L. (2010). Pr�evision des crues au pas de temps horaire : pour une meilleure as-

similation de l'information de d�ebit dans un mod�ele hydrologique. Phd thesis, Cema-

gref (Antony), AgroParisTech (Paris). 27

Bierkens, M.F.P. and van Beek, L.P.H. (2009). Seasonal Predictability of European

Discharge: NAO and Hydrological Response Time. Journal of Hydrometeorology 10,

953�968. 85

Block, P. (2011). Tailoring seasonal climate forecasts for hydropower operations. Hy-

drology and Earth System Sciences 15, 1355�1368. 146



168 References

Block, P. and Goddard, L. (2012). Statistical and Dynamical Climate Predictions to

Guide Water Resources in Ethiopia. Journal of Water Resources Planning and Man-

agement 138, 287�298. 146

Block, P. and Rajagopalan, B. (2009). Statistical�Dynamical Approach for Stream-

�ow Modeling at Malakal, Sudan, on the White Nile River. Journal of Hydrologic

Engineering 14, 185�196. 84

Bl�oschl, G. and Zehe, E. (2005). On hydrological predictability. Hydrological Processes

19, 3923�3929. vii, 4

Bourgin, F. (2014). Comment quanti�er l'incertitude pr�edictive en mod�elisation hy-

drologique? Travail exploratoire sur un grand �echantillon de bassins versants. PhD

thesis, AgroParisTech. 39

Bracken, C., Rajagopalan, B. and Prairie, J. (2010). A multisite seasonal ensemble

stream�ow forecasting technique. Water Resources Research 46, W03532. 146

Bressers, H., Bressers, N., Kuks, S. and Larrue, C. (2016). Chapter 3: The Governance

Assessment Tool and its Use. Governance for Drought Resilience, H. Bressers, N.

Bressers, C. Larrue (Eds.), springer edn. 6

Brochet, P. (1977). La s�echeresse 1976 en France : aspects climatologiques et

cons�equences / The 1976 drought in France: climatological aspects and consequences.

Hydrological Sciences Bulletin 22, 393�411. 3

Brown, C. and Ward, M.N. (2013). Chapter 3: Climate variability and hydrologic

predictability. Managing Climate Risk in Water Supply Systems, pp. 27�39, IWA

Publishing, London. 146

Buizza, R. and Palmer, T.N. (1998). Impact of Ensemble Size on Ensemble Prediction.

Monthly Weather Review 126, 2503�2518. 43

Buizza, R. and Leutbecher, M. (2015). The forecast skill horizon. Quarterly Journal of

the Royal Meteorological Society 141, 3366�3382. 44

Cannon-Bowers, J.A. and Bell, H.R. (1997). Training decision makers for complex envi-

ronments: Implications of the naturalistic decision making perspective. Naturalistic

decision making (eds. C. Zsambok & G. Klein), pp. 99�110, C. Zsambok and G.

Klein, Eds., Lawrence Erlbaum Associates, Hillsdale, NJ: LEA. 5, 147

Carpenter, T.M. and Georgakakos, K.P. (2001). Assessment of Folsom lake response to

historical and potential future climate scenarios: 1. Forecasting. Journal of Hydrology

249, 148 � 175. 86, 162

Castelletti, A., Pianosi, F. and Soncini-Sessa, R. (2008). Water reservoir control under

economic, social and environmental constraints. Automatica 44, 1595�1607. vii, 5



References 169

Ceppi, A., Ravazzani, G., Corbari, C., Salerno, R., Meucci, S. and Mancini, M.

(2014). Real-time drought forecasting system for irrigation management. Hydrology

and Earth System Sciences 18, 3353�3366. 84

Chauveau, M., Chazot, S., Perrin, C., Bourgin, P.Y., Sauquet, E., Vidal, J.P., Rouchy,

N., Martin, E., David, J., Norotte, T., Maugis, P. and De Lacaze, X. (2013). Quels

impacts des changements climatiques sur les eaux de surface en France �a l'horizon

2070 ? La Houille Blanche pp. 5�15. 166

Chiew, F.H.S. and McMahon, T.A. (1993). Assessing the Adequacy of Catchment

Stream�ow Yield Estimates. Australian Journal of Soil Research 31, 665�680. 37

Chiew, F.H.S., McMahon, T.A., Zhou, S.L. and Piechota, T. (2000). Stream�ow Vari-

ability, Seasonal Forecasting and Water Resources Systems. Applications of Seasonal

Climate Forecasting in Agricultural and Natural Ecosystems (eds. G.L. Hammer,

N. Nicholls & C. Mitchell), vol. 21 of Atmospheric and Oceanographic Sciences Li-

brary, pp. 409�428, Springer Netherlands. 146

Chiew, F.H.S., Zhou, S.L. and McMahon, T.A. (2003). Use of seasonal stream�ow

forecasts in water resources management. Journal of Hydrology 270, 135�144. 146

Chow, V.T., Maidment, D. and Mays, L. (1988). Applied Hydrology. Civil Engineering,

McGraw-Hill. 4, 25

Christensen, J.H., Boberg, F., Christensen, O.B. and Lucas-Picher, P. (2008). On the

need for bias correction of regional climate change projections of temperature and

precipitation. Geophysical Research Letters 35, L20709. 53

Coelho, C.A.S. and Costa, S.M.S. (2010). Challenges for integrating seasonal climate

forecasts in user applications. Current Opinion in Environmental Sustainability 2,

317�325. 146

Coron, L. (2013). Les mod�eles hydrologiques conceptuels sont-ils robustes face �a un

climat en �evolution ? Phd thesis, AgroParisTech (Paris), Irstea (Antony). 166

Corti, T., Muccione, V., K�ollner-Heck, P., Bresch, D. and Seneviratne, S.I. (2009).

Simulating past droughts and associated building damages in France. Hydrology and

Earth System Sciences 13, 1739�1747. 3

Corzo Perez, G.A., van Lanen, H.A.J., Bertrand, N., Chen, C., Clark, D., Folwell, S.,

Gosling, S.N., Hanasaki, N., Heinke, J. and Voß, F. (2011). Drought at the Global

Scale in the 21st Century. Tech. Rep. 43, WATCH. 166

Crochemore, L., Perrin, C., Andr�eassian, V., Ehret, U., Seibert, S.P., Grimaldi, S.,

Gupta, H. and Paturel, J.E. (2015a). Comparing expert judgement and numerical

criteria for hydrograph evaluation. Hydrological Sciences Journal 60, 402�423. 37



170 References

Crochemore, L., Ramos, M.H., Pappenberger, F., van Andel, S.J. and Wood, A.W.

(2015b). An experiment on risk-based decision-making in water management using

monthly probabilistic forecasts. Bulletin of the American Meteorological Society . 6,

52

Day, G. (1985). Extended Stream�ow Forecasting Using NWSRFS. Journal of Water

Resources Planning and Management 111, 157�170. 52, 84

Demirel, M.C., Booij, M.J. and Hoekstra, A.Y. (2015). The skill of seasonal ensem-

ble low-�ow forecasts in the Moselle River for three di�erent hydrological models.

Hydrology and Earth System Sciences 19, 275�291. 52

Di Giuseppe, F., Molteni, F. and Tompkins, A.M. (2013). A rainfall calibration method-

ology for impacts modelling based on spatial mapping.Quarterly Journal of the Royal

Meteorological Society 139, 1389�1401. 22

Dutra, E., Pozzi, W., Wetterhall, F., Di Giuseppe, F., Magnusson, L., Naumann, G.,

Barbosa, P., Vogt, J. and Pappenberger, F. (2014). Global meteorological drought

� Part 2: Seasonal forecasts. Hydrology and Earth System Sciences 18, 2669�2678.

52, 90

Dutta, D., Wilson, K., Welsh, W.D., Nicholls, D., Kim, S. and Cetin, L. (2013). A

new river system modelling tool for sustainable operational management of water

resources. Journal of Environmental Management 121, 13�28. 146

Easey, J., Prudhomme, C. and Hannah, D.M. (2006). Seasonal forecasting of river �ows:

a review of the state-of-the-art. Proceedings of the �fth FRIEND World Conference,

vol. 308, pp. 158�162, IAHS Publ., Havana, Cuba. 84

EDC (2013). European Drought Impact Report Inventory (EDII) and European

Drought Reference (EDR) database. 3

EDO-JRC (2015). Drought News August 2015. EDO Drought News, European Com-

mission - Joint Research Centre - European Drought Observatory. 3

Ehret, U., Zehe, E., Wulfmeyer, V., Warrach-Sagi, K. and Liebert, J. (2012). HESS

Opinions "Should we apply bias correction to global and regional climate model

data?". Hydrology and Earth System Sciences 16, 3391�3404. 53

Faber, B.A. and Stedinger, J.R. (2001). Reservoir optimization using sampling SDP

with ensemble stream�ow prediction (ESP) forecasts. Journal of Hydrology 249,

113�133. 52, 84, 147

FAO (2014). Towards Risk-Based Drought Management in Europe and Central Asia.

Agenda Item AU816, Food and Agriculture Organization of the United Nations,

Bucharest, Romania. 1, 2



References 171

Ferro, C.A.T., Richardson, D.S. and Weigel, A.P. (2008). On the e�ect of ensemble size

on the discrete and continuous ranked probability scores.Meteorological Applications

15, 19�24. 43

Furusho, C., Vidaurre, R., La Jeunesse, I. and Ramos, M.H. (2016). Chapter 11: Cross-

cutting perspective freshwater. Governance for Drought Resilience, H. Bressers, N.

Bressers, C. Larrue (Eds.), springer edn. 6

Georgakakos, K.P. and Graham, N.E. (2008). Potential Bene�ts of Seasonal In�ow Pre-

diction Uncertainty for Reservoir Release Decisions. Journal of Applied Meteorology

and Climatology 47, 1297�1321. vii, 5

Ghile, Y.B. and Schulze, R.E. (2008). Development of a framework for an integrated

time-varying agrohydrological forecast system for Southern Africa : Initial results

for seasonal forecasts. Water SA 34, 315�322. 146

Gneiting, T., Balabdaoui, F. and Raftery, A.E. (2007). Probabilistic forecasts, cali-

bration and sharpness. Journal of the Royal Statistical Society: Series B (Statistical

Methodology) 69, 243�268. xi, 39, 40, 87

Gneiting, T., Raftery, A.E., Westveld, A.H. and Goldman, T. (2005). Calibrated Prob-

abilistic Forecasting Using Ensemble Model Output Statistics and Minimum CRPS

Estimation. Monthly Weather Review 133, 1098�1118. 79

Gobena, A. and Gan, T. (2010). Incorporation of seasonal climate forecasts in the

ensemble stream�ow prediction system. Journal of Hydrology 385, 336�352. 85

Golembesky, K., Sankarasubramanian, A. and Devineni, N. (2009). Improved Drought

Management of Falls Lake Reservoir: Role of Multimodel Stream�ow Forecasts in

Setting up Restrictions. J Water Res Plan Manage 135, 188�197. 146

Gudmundsson, L., Bremnes, J.B., Haugen, J.E. and Engen-Skaugen, T. (2012). Tech-

nical Note: Downscaling RCM precipitation to the station scale using statistical

transformations - a comparison of methods. Hydrology and Earth System Sciences

16, 3383�3390. 53

Gudmundsson, L., Van Loon, A.F., Tallaksen, L.M., Seneviratne, S.I., Stagge, J.H.,

Stahl, K. and van Lanen, H.A.J. (2014). Guidelines for monitoring and early warning

of drought in Europe. DROUGHT-R&SPI Technical Report 21, DROUGHT-R&SPI

Project. 4

Guo, W., Zhao, J. and Wang, F. (2009). The seasonal forecast method of Sanjing Plain

underground water level. Journal of Northeast Agricultural University 5, 104�107.

146



172 References

Gupta, H.V., Kling, H., Yilmaz, K.K. and Martinez, G.F. (2009). Decomposition of

the mean squared error and NSE performance criteria: Implications for improving

hydrological modelling. Journal of Hydrology 377, 80�91. x, 29, 54, 87

Hamill, T.M. and Juras, J. (2006). Measuring forecast skill: is it real skill or is it the

varying climatology? Quarterly Journal of the Royal Meteorological Society 132,

2905�2923. 66

Hamlet, A.F., Huppert, D. and Lettenmaier, D.P. (2002). Economic value of long-lead

stream�ow forecasts for Columbia River hydropower. Journal of Water Resources

Planning and Management 128, 91�101. 85

Hamlet, A.F. and Lettenmaier, D.P. (1999). Columbia River Stream�ow Forecasting

Based on ENSO and PDO Climate Signals. Journal of Water Resources Planning

and Management 125, 333�341. 85

Hao, Z., AghaKouchak, A., Nakhjiri, N. and Farahmand, A. (2014). Global integrated

drought monitoring and prediction system. Scienti�c Data 1, 140001. 84

Hartmann, H.C., Pagano, T.C., Sorooshian, S. and Bales, R. (2002). Con�dence

Builders: Evaluating Seasonal Climate Forecasts from User Perspectives. Bulletin

of the American Meteorological Society 83, 683�698. 52, 146

Hemri, S., Scheuerer, M., Pappenberger, F., Bogner, K. and Haiden, T. (2014). Trends

in the predictive performance of raw ensemble weather forecasts. Geophysical Re-

search Letters 41, 9197�9205. 79

Hersbach, H. (2000). Decomposition of the continuous ranked probability score for

ensemble prediction systems. Weather and Forecasting 15, 559�570. xi, 40

Hewitt, C., Buontempo, C. and Newton, P. (2013). Using Climate Predictions to Better

Serve Society's Needs. Eos, Transactions American Geophysical Union 94, 105�107.

4

Hisdal, H., Stahl, K., Tallaksen, L.M. and Demuth, S. (2001). Have stream�ow droughts

in Europe become more severe or frequent? International Journal of Climatology 21,

317�333. 166

Ionita, M., Boroneant, C. and Chelcea, S. (2015). Seasonal modes of dryness and

wetness variability over Europe and their connections with large scale atmospheric

circulation and global sea surface temperature. Climate Dynamics 45, 2803�2829.

85

Jachner, S., van den Boogaart, K.G. and Petzoldt, T. (2007). Statistical methods for

the qualitative assessment of dynamic models with time delay (R package qualV).

Journal of Statistical Software 22, 1�30. 38



References 173

Jolli�e, I.T. and Stephenson, D.B. (2003). Forecast Veri�cation: A Practicioner's

Guide in Atmospheric Science. John Wiley. 37

Kelman, J., Stedinger, J.R., Cooper, L.A., Hsu, E. and Yuan, S.Q. (1990). Sampling

stochastic dynamic programming applied to reservoir operation. Water Resources

Research 26, 447�454. 5

Kiem, A.S. and Verdon-Kidd, D.C. (2011). Steps toward �useful� hydroclimatic scenar-

ios for water resource management in the Murray-Darling Basin. Water Resources

Research 47, W00G06. 146

Kim, H.M., Webster, P.J. and Curry, J.A. (2012). Seasonal prediction skill of ECMWF

System 4 and NCEP CFSv2 retrospective forecast for the Northern Hemisphere

Winter. Climate Dynamics 39, 2957�2973. 22

Kirchho�, C.J., Lemos, M.C. and Engle, N.L. (2013). What in�uences climate informa-

tion use in water management? The role of boundary organizations and governance

regimes in Brazil and the U.S. Environmental Science & Policy 26, 6�18. 146

Kirtman, B., Power, S., Adedoyin, J., Boer, G., Bojariu, R., Camilloni, I., Doblas-

Reyes, F., Fiore, A., Kimoto, M., Meehl, G., Prather, M., Sarr, A., Sch�ar, C.,

Sutton, R., van Oldenborgh, G., Vecchi, G. and Wang, H. (2013). Near-term Cli-

mate Change: Projections and Predictability. Climate Change 2013: The Physical

Science Basis. Contribution of Working Group I to the Fifth Assessment Report of

the Intergovernmental Panel on Climate Change (eds. T. Stocker, D. Qin, G.K. Plat-

tner, M. Tignor, S. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex & P. Midgley),

pp. 953�1028, Cambridge University Press, Cambridge, United Kingdom and New

York, NY, USA. vii, 4

Klemes, V. (1986). Operational Testing of Hydrological Simulation-Models. Hydrolog-

ical Sciences Journal-Journal Des Sciences Hydrologiques 31, 13�24. 25

Kollipara, P. (2015). When predicting drought risk, do not overlook temperature. Eos

. 164

Krause, P., Boyle, D.P. and B�ase, F. (2005). Comparison of di�erent e�ciency criteria

for hydrological model assessment. Advances in Geosciences 5, 89�97. 37, 38

Krzysztofowicz, R. (2001). The case for probabilistic forecasting in hydrology. Journal

of Hydrology 249, 2 � 9. 26, 36, 84

La Jeunesse, I., Larrue, C., Furusho, C., Ramos, M.H., Browne, A., de Boer, C.,

Vidaurre, R., Crochemore, L., Penasso, A. and Arrondeau, J.P. (2016). Chapter 6:

The governance context of drought policy and pilot measures in the Arzal dam and

reservoir, Vilaine catchment, Brittany, France. Governance for Drought Resilience,

H. Bressers, N. Bressers, C. Larrue (Eds.), springer edn. 3, 6



174 References

Laio, F. and Tamea, S. (2007). Veri�cation tools for probabilistic forecasts of continuous

hydrological variables. Hydrology and Earth System Sciences 11, 1267�1277. xi, 39

Le Moine, N. (2008). Le bassin versant de surface vu par le souterrain: une voie

d'am�elioration des performances et du r�ealisme des mod�eles pluie-d�ebit? Phd thesis,

ENGREF (Paris), Cemagref (Antony). 27

Lehner, B., D�oll, P., Alcamo, J., Henrichs, T. and Kaspar, F. (2006). Estimating the

Impact of Global Change on Flood and Drought Risks in Europe: A Continental,

Integrated Analysis. Climatic Change 75, 273�299. 166

Lemos, M.C. (2008). What In�uences Innovation Adoption by Water Managers? Cli-

mate Information Use in Brazil and the United States. JAWRA Journal of the Amer-

ican Water Resources Association 44, 1388�1396. 146

Lemos, M., Finan, T., Fox, R., Nelson, D. and Tucker, J. (2002). The Use of Sea-

sonal Climate Forecasting in Policymaking: Lessons from Northeast Brazil. Climatic

Change 55, 479�507. 52, 146

Liu, Y., Duan, Q., Zhao, L., Ye, A., Tao, Y., Miao, C., Mu, X. and Schaake, J.C. (2013).

Evaluating the predictive skill of post-processed NCEP GFS ensemble precipitation

forecasts in China's Huai river basin. Hydrological Processes 27, 57�74. 79

Lorenz, E. (1984). Some Aspects of Atmospheric Predictability. Problems and Prospects

in Long and Medium Range Weather Forecasting (eds. D. Burridge & E. K�all�en),

Topics in Atmospheric and Oceanographic Sciences, pp. 1�20, Springer Berlin Hei-

delberg. vii, 4

Lowry, R. (1999). Concepts and Applications of Inferential Statistics. Vassar College.

99

Madadgar, S., Moradkhani, H. and Garen, D. (2014). Towards improved post-

processing of hydrologic forecast ensembles. Hydrological Processes 28, 104�122. 53

Mason, S.J. and Graham, N.E. (1999). Conditional Probabilities, Relative Operating

Characteristics, and Relative Operating Levels. Weather and Forecasting 14, 713�

725. xi, 40

Mathevet, T., Michel, C., Andr�eassian, V. and Perrin, C. (2006). A bounded version

of the Nash-Sutcli�e criterion for better model assessment on large sets of basins.

IAHS Red Books Series, vol. 307, pp. 211�219. 30

McKee, T., Doeskin, N. and Kleist, J. (1993). The relationship of drought frequency

and duration to time scales. pp. 179�184. 88

Mishra, A.K. and Singh, V.P. (2010). A review of drought concepts. Journal of Hy-

drology 391, 202�216. 4, 99



References 175

Mishra, A.K. and Singh, V.P. (2011). Drought modeling � A review. Journal of Hy-

drology 403, 157�175. 4

Molteni, F., Stockdale, T., Balmaseda, M., Balsamo, G., Buizza, R., Ferranti, L.,

Magnusson, L., Mogensen, K., Palmer, T. and Vitart, F. (2011). The new ECMWF

seasonal forecast system (System 4). ECMWF Tech. Memo. 656, 49 pp. ix, 20

Muerth, M.J., Gauvin St-Denis, B., Ricard, S., Vel�azquez, J.A., Schmid, J., Minville,

M., Caya, D., Chaumont, D., Ludwig, R. and Turcotte, R. (2013). On the need for

bias correction in regional climate scenarios to assess climate change impacts on river

runo�. Hydrology and Earth System Sciences 17, 1189�1204. 53

Mushtaq, S., Chen, C., Hafeez, M., Maroulis, J. and Gabriel, H. (2012). The eco-

nomic value of improved agrometeorological information to irrigators amid climate

variability. International Journal of Climatology 32, 567�581. 146

Mwangi, E., Wetterhall, F., Dutra, E., Di Giuseppe, F. and Pappenberger, F. (2014).

Forecasting droughts in East Africa. Hydrology and Earth System Sciences 18, 611�

620. 52

Naja�, M.R., Moradkhani, H. and Piechota, T.C. (2012). Ensemble Stream�ow Pre-

diction: Climate signal weighting methods vs. Climate Forecast System Reanalysis.

Journal of Hydrology 442�443, 105�116. 85

Nicolle, P., Pushpalatha, R., Perrin, C., Fran�cois, D., Thi�ery, D., Mathevet, T., Le Lay,

M., Besson, F., Soubeyroux, J.M., Viel, C., Regimbeau, F., Andr�eassian, V., Maugis,

P., Augeard, B. and Morice, E. (2014). Benchmarking hydrological models for low-

�ow simulation and forecasting on French catchments. Hydrol. Earth Syst. Sci. 18,

2829�2857. xi, 4, 11, 44, 52

Oudin, L., Hervieu, F., Michel, C., Perrin, C., Andr�eassian, V., Anctil, F. and Lou-

magne, C. (2005). Which potential evapotranspiration input for a lumped rainfall-

runo� model ? Part 2 � Towards a simple and e�cient potential evapotranspiration

model for rainfall-runo� modelling. Journal of Hydrology 303, 290�306. ix, 20

PAGD (2015). Plan d'am�enagement et de gestion durable. Tech. rep., Commission

Locale de l'Eau. 118

Palmer, R. and Holmes, K. (1988). Operational Guidance During Droughts: Expert

System Approach. Journal of Water Resources Planning and Management 114, 647�

666. 1

Pappenberger, F., Ramos, M.H., Cloke, H.L., Wetterhall, F., Al�eri, L., Bogner, K.,

Mueller, A. and Salamon, P. (2015). How do I know if my forecasts are better? Using

benchmarks in hydrological ensemble prediction. Journal of Hydrology 522, 697 �

713. 38, 42



176 References

Perrin, C., Andreassian, V. and Michel, C. (2006). Simple benchmark models as a basis

for model e�ciency criteria. Schweizerbart, Stuttgart, ALLEMAGNE. 38

Perrin, C., Michel, C. and Andr�eassian, V. (2003). Improvement of a parsimonious

model for stream�ow simulation. Journal of Hydrology 279, 275�289. 27

Pirard, P., Vandentorren, S. and Pascal, M. (2005). Summary of the mortality impact

assessment of the 2003 heat wave in France. Eurosurveillance: European Communi-

cable Disease Journal 10. 3

Poumad�ere, M., Mays, C., Le Mer, S. and Blong, R. (2005). The 2003 Heat Wave in

France: Dangerous Climate Change Here and Now. Risk Analysis 25, 1483�1494. 87

Pushpalatha, R., Perrin, C., Mathevet, T. and Andreassian, V. (2011). A downward

structural sensitivity analysis of hydrological models to improve low-�ow simulation.

Journal of Hydrology 411, 66�76. ix, 27, 28, 54, 87

Pushpalatha, R., Perrin, C., Moine, N.L. and Andr�eassian, V. (2012). A review of

e�ciency criteria suitable for evaluating low-�ow simulations. Journal of Hydrology

420�421, 171�182. 30, 38

Quintana-Segu��, P., Le Moigne, P., Durand, Y., Martin, E., Habets, F., Baillon, M.,

Canellas, C., Franchisteguy, L. and Morel, S. (2008). Analysis of Near-Surface At-

mospheric Variables: Validation of the SAFRAN Analysis over France. Journal of

Applied Meteorology and Climatology 47, 92�107. ix, 20

Raftery, A.E., Gneiting, T., Balabdaoui, F. and Polakowski, M. (2005). Using Bayesian

Model Averaging to Calibrate Forecast Ensembles. Monthly Weather Review 133,

1155�1174. 79

Ramos, M.H., van Andel, S.J. and Pappenberger, F. (2013). Do probabilistic forecasts

lead to better decisions? Hydrology and Earth System Sciences 17, 2219�2232. 26,

84, 147, 165

Ramos, M.H., Mathevet, T., Thielen, J. and Pappenberger, F. (2010). Communicating

uncertainty in hydro-meteorological forecasts: mission impossible? Meteorological

Applications 17, 223�235. 26

Rayner, S., Lach, D. and Ingram, H. (2005). Weather Forecasts are for Wimps: Why

Water Resource Managers Do Not Use Climate Forecasts. Climatic Change 69, 197�

227. 52

Refsgaard, J.C. and Henriksen, H.J. (2004). Modelling guidelines - terminology and

guiding principles. Advances in Water Resources 27, 71�82. 25



References 177

Regonda, S., Zagona, E. and Rajagopalan, B. (2011). Prototype Decision Support

System for Operations on the Gunnison Basin with Improved Forecasts. Journal of

Water Resources Planning and Management 137, 428�438. vii, 5, 146

Renard, B., Kavetski, D., Kuczera, G., Thyer, M. and Franks, S.W. (2010). Under-

standing predictive uncertainty in hydrologic modeling: The challenge of identifying

input and structural errors. Water Resources Research 46, W05521. xi, 39

Ritchie, J.W., Zammit, C. and Beal, D. (2004). Can seasonal climate forecasting assist

in catchment water management decision-making?: A case study of the Border Rivers

catchment in Australia. Agriculture, Ecosystems & Environment 104, 553�565. 146

Robertson, A., Kumar, A., Pe�na, M. and Vitart, F. (2015). Improving and Promoting

Subseasonal to Seasonal Prediction. Bull. of the Amer. Meteor. Soc. 96, ES49�ES53.

4

Robertson, D.E., Pokhrel, P. and Wang, Q.J. (2013). Improving statistical forecasts of

seasonal stream�ows using hydrological model output. Hydrology and Earth System

Sciences 17, 579�593. 52

Robine, J.M., Cheung, S.L., Le Roy, S., van Oyen, H. and Hermann, F.R. (2007). Re-

port on excess mortality in Europe during summer 2003. Tech. rep., EU Community

Action Programme for Public Health. 3

Roulin, E. and Vannitsem, S. (2015). Post-processing of medium-range probabilistic

hydrological forecasting: impact of forcing, initial conditions and model errors. Hy-

drological Processes 29, 1434�1449. 53, 72

Rykiel Jr., E.J. (1996). Testing ecological models: the meaning of validation. Ecological

Modelling 90, 229�244. 25

SAGE (2015a). Atlas - R�evision du Sch�ema d'Am�enagement et de Gestion des Eaux

de la Vilaine. Tech. rep., Commission Locale de l'Eau. 15, 112

SAGE (2015b). Synth�ese et �etat des lieux - R�evision du Sch�ema d'Am�enagement et de

Gestion des Eaux de la Vilaine. Tech. rep., Commission Locale de l'Eau. 15

Sankarasubramanian, A., Lall, U., Souza Filho, F.A. and Sharma, A. (2009). Improved

water allocation utilizing probabilistic climate forecasts: Short-term water contracts

in a risk management framework. Water Resources Research 45, W11409. 147

Sauquet, E., Lerat, J. and Prudhomme, C. (2008). La pr�evision hydro-m�et�eorologique

�a 3-6 mois. Etat des connaissances et applications. La Houille Blanche pp. 77�84. 85

Seibert, M. and Trambauer, P. (2015). Seasonal forecasts of hydrological drought in the

Limpopo basin: Getting the most out of a bouquet of methods. Drought: Research

and Science-Policy Interfacing, pp. 307�313, CRC Press. 84



178 References

She�eld, J., Wood, E.F., Chaney, N., Guan, K., Sadri, S., Yuan, X., Olang, L., Amani,

A., Ali, A., Demuth, S. and Ogallo, L. (2013). A Drought Monitoring and Forecasting

System for Sub-Sahara African Water Resources and Food Security. Bulletin of the

American Meteorological Society 95, 861�882. 84

Shukla, S., McNally, A., Husak, G. and Funk, C. (2014). A seasonal agricultural

drought forecast system for food-insecure regions of East Africa. Hydrology and Earth

System Sciences 18, 3907�3921. 84

Shukla, S., She�eld, J., Wood, E.F. and Lettenmaier, D.P. (2013). On the sources of

global land surface hydrologic predictability. Hydrology and Earth System Sciences

17, 2781�2796. 4, 26, 52, 84

Shukla, S., Voisin, N. and Lettenmaier, D.P. (2012). Value of medium range weather

forecasts in the improvement of seasonal hydrologic prediction skill. Hydrology and

Earth System Sciences 16, 2825�2838. 106

Simonovi�c, S.P. and Bender, M.J. (1996). Collaborative planning-support system: an

approach for determining evaluation criteria. Journal of Hydrology 177, 237�251. 1

Simonovi�c, S.P. and Marino, M.A. (1982). Reliability programing in reservoir manage-

ment: 3. System of multipurpose reservoirs. Water Resources Research 18, 735�743.

146

Singla, S., C�eron, J.P., Martin, E., Regimbeau, F., D�equ�e, M., Habets, F. and Vidal,

J.P. (2012). Predictability of soil moisture and river �ows over France for the spring

season. Hydrology and Earth System Sciences 16, 201�216. 26

�S��pek, V. and Da�nhelka, J. (2015). Modi�cation of input datasets for the Ensemble

Stream�ow Prediction based on large-scale climatic indices and weather generator.

Journal of Hydrology 528, 720 � 733. 85

Smakhtin, V.U. (2001). Low �ow hydrology: a review. Journal of Hydrology 240, 147

� 186. 99

Stocker, T., Clarke, G., Le Treut, H., Lindzen, R., Meleshko, V., Mugara, R., Palmer,

T., Pierrehumbert, R., Sellers, P., Trenberth, K. and others (2001). Physical Climate

Processes and Feedbacks. In: IPCC, 2001: Climate Change 2001: The Scienti�c

Basis. Contribution of Working Group I to the Third Assessment Report of the In-

tergovernmental Panel on Climate Change/Houghton, JT, Y. Ding, DJ Griggs, M.

Noguer, PJ van der Linden, X. Dai, K. Maskell, CA Johnson (eds.).-Cambridge and

New York: Cambridge University Press, 2001.-ISBN 0521 01495 6 . 4

Svensson, C. (2016). Seasonal river �ow forecasts for the United Kingdom using per-

sistence and historical analogues. Hydrological Sciences Journal 61, 19�35. 85



References 179

Tallaksen, L.M., Madsen, H. and Clausen, B. (1997). On the de�nition and modelling

of stream�ow drought duration and de�cit volume. Hydrological Sciences Journal

42, 15�33. 99

Tangara, M. (2005). Nouvelle m�ethode de pr�evision de crue utilisant un mod�ele pluie-

d�ebit global. Phd thesis, EPHE (Paris), Cemagref (Antony). 27

Teutschbein, C. and Seibert, J. (2013). Is bias correction of regional climate model

(RCM) simulations possible for non-stationary conditions? Hydrology and Earth

System Sciences 17, 5061�5077. 53

Teutschbein, C. and Seibert, J. (2012). Bias correction of regional climate model sim-

ulations for hydrological climate-change impact studies: Review and evaluation of

di�erent methods. Journal of Hydrology 456-457, 12�29. 53

Trambauer, P., Werner, M., Winsemius, H.C., Maskey, S., Dutra, E. and Uhlenbrook,

S. (2015). Hydrological drought forecasting and skill assessment for the Limpopo

River basin, southern Africa. Hydrology and Earth System Sciences 19, 1695�1711.

22, 71, 85

Turner, B.L., Kasperson, R.E., Matson, P.A., McCarthy, J.J., Corell, R.W., Chris-

tensen, L., Eckley, N., Kasperson, J.X., Luers, A., Martello, M.L., Polsky, C., Pul-

sipher, A. and Schiller, A. (2003). A framework for vulnerability analysis in sustain-

ability science. Proceedings of the National Academy of Sciences 100, 8074�8079.

1

UNEP (2004). Impacts of summer 2003 heat wave in Europe. Environment Alert Bul-

letin 2, United Nations Environment Programme, Nairobi. 3, 87

UNISDR (2009). UNISDR Terminology on Disaster Risk Reduction. Glossary, UN

International Srategy for Disaster Reduction, Geneva. 1

van Dijk, A.I.J.M., Pe�na-Arancibia, J.L., Wood, E.F., She�eld, J. and Beck, H.E.

(2013). Global analysis of seasonal stream�ow predictability using an ensemble pre-

diction system and observations from 6192 small catchments worldwide. Water Re-

sources Research 49, 2729�2746. 85

Verkade, J.S., Brown, J.D., Reggiani, P. and Weerts, A.H. (2013). Post-processing

ECMWF precipitation and temperature ensemble reforecasts for operational hydro-

logic forecasting at various spatial scales. Journal of Hydrology 501, 73�91. 53, 72

Vidal, J.P., Martin, E., Kitova, N., Najac, J. and Soubeyroux, J.M. (2012). Evolu-

tion of spatio-temporal drought characteristics: validation, projections and e�ect of

adaptation scenarios. Hydrol. Earth Syst. Sci. Discuss. 9, 1619�1670. 166



180 References

Vidal, J.P., Martin, E., Franchist�eguy, L., Baillon, M. and Soubeyroux, J.M. (2010). A

50-year high-resolution atmospheric reanalysis over France with the Safran system.

International Journal of Climatology 30, 1627�1644. ix, 20

Wang, E., Zhang, Y., Luo, J., Chiew, F. and Wang, Q. (2011). Monthly and seasonal

stream�ow forecasts using rainfall-runo� modeling and historical weather data. Wa-

ter Resources Research 47. 84

Weerts, A.H., Winsemius, H.C. and Verkade, J.S. (2011). Estimation of predictive

hydrological uncertainty using quantile regression: examples from the National Flood

Forecasting System (England and Wales). Hydrology and Earth System Sciences 15,

255�265. 53

Weisheimer, A. and Palmer, T.N. (2014). On the reliability of seasonal climate fore-

casts. Journal of The Royal Society Interface 11, 20131162. 22

Welsh, W.D., Vaze, J., Dutta, D., Rassam, D., Rahman, J.M., Jolly, I.D., Wallbrink,

P., Podger, G.M., Bethune, M., Hardy, M.J., Teng, J. and Lerat, J. (2013). An in-

tegrated modelling framework for regulated river systems. Environmental Modelling

& Software 39, 81�102. 146

Werner, K., Brandon, D., Clark, M. and Gangopadhyay, S. (2005). Incorporating

medium-range numerical weather model output into the Ensemble Stream�ow Pre-

diction system of the National Weather Service. Journal of Hydrometeorology 6,

101�114. 106

Werner, K., Brandon, D., Clark, M. and Gangopadhyay, S. (2004). Climate index

weighting schemes for NWS ESP-based seasonal volume forecasts. Journal of Hy-

drometeorology 5, 1076�1090. 85

Wetterhall, F., Winsemius, H.C., Dutra, E., Werner, M. and Pappenberger, E. (2015).

Seasonal predictions of agro-meteorological drought indicators for the Limpopo

basin. Hydrology and Earth System Sciences 19, 2577�2586. 22, 52, 71

Wilhite, D.A. and Glantz, M.H. (1985). Understanding: the Drought Phenomenon:

The Role of De�nitions. Water International 10, 111�120. 2

Wilhite, D.A., Hayes, M.J., Knutson, C. and Smith, K.H. (2000). Planning for drought:

Moving from crisis to risk management. JAWRA Journal of the American Water

Resources Association 36, 697�710. 1, 2, 52, 84

Winsemius, H.C., Dutra, E., Engelbrecht, F.A., Archer Van Garderen, E., Wetterhall,

F., Pappenberger, F. and Werner, M.G.F. (2014). The potential value of seasonal

forecasts in a changing climate in southern Africa. Hydrology and Earth System

Sciences 18, 1525�1538. 52



References 181

WMO (2008). Manual on Low-�ow Estimation and Prediction. World Meteorological

Organization. 2, 17, 99

WMO (2012). Standardized Precipitation Index User Guide. World Meteorological Or-

ganization. 89

Wood, A.W., Hopson, T., Newman, A., Brekke, L., Arnold, J. and Clark, M. (2016).

Quantifying stream�ow forecast skill elasticity to initial condition and climate pre-

diction skill. Journal of Hydrometeorology 17, 651�668. 4, 26, 165

Wood, A.W., Kumar, A. and Lettenmaier, D.P. (2005). A retrospective assessment

of National Centers for Environmental Prediction climate model�based ensemble

hydrologic forecasting in the western United States. Journal of Geophysical Research:

Atmospheres 110, D04105. 52

Wood, A.W. and Lettenmaier, D.P. (2008). An ensemble approach for attribution of

hydrologic prediction uncertainty. Geophysical Research Letters 35, L14401. 52, 84

Wood, A.W. and Schaake, J.C. (2008). Correcting Errors in Stream�ow Forecast En-

semble Mean and Spread. Journal of Hydrometeorology 9, 132�148. 53

Wood, E.F., Schubert, S.D., Wood, A.W., Peters-Lidard, C.D., Mo, K.C., Mariotti,

A. and Pulwarty, R.S. (2015). Prospects for Advancing Drought Understanding,

Monitoring and Prediction. Journal of Hydrometeorology . 4

Yao, H. and Georgakakos, A. (2001). Assessment of Folsom Lake response to histor-

ical and potential future climate scenarios: 2. Reservoir management. Journal of

Hydrology 249, 176�196. 86

Yeh, W.W.G. (1985). Reservoir Management and Operations Models: A State-of-the-

Art Review. Water Resources Research 21, 1797�1818. 5

Yossef, N.C., Winsemius, H., Weerts, A., van Beek, R. and Bierkens, M.F.P. (2013).

Skill of a global seasonal stream�ow forecasting system, relative roles of initial con-

ditions and meteorological forcing. Water Resources Research 49, 4687�4699. 4, 26,

52, 84

Yuan, X., Wood, E.F. and Ma, Z. (2015). A review on climate-model-based seasonal

hydrologic forecasting: physical understanding and system development. Wiley In-

terdisciplinary Reviews: Water pp. 523�536. 4, 52, 84, 85

Zalachori, I., Ramos, M.H., Gar�con, R., Mathevet, T. and Gailhard, J. (2012). Statisti-

cal processing of forecasts for hydrological ensemble prediction: a comparative study

of di�erent bias correction strategies. Advances in Science and Research 8, 135�141.

53, 72


	Remerciements
	Résumé
	Abstract
	Résumé substantiel
	Avant-Propos
	Introduction
	Low flows and droughts
	Predictability: Seasonal forecasting
	Reservoir management
	The DROP project
	Aims of the research
	Structure of the thesis

	I Hydrometeorological data, hydrological model and forecast evaluation
	Data collection and control
	Catchment sets and hydrological data
	Countrywide catchment set
	The Vilaine river basin

	Meteorological data
	Observed meteorological data
	Meteorological forecasts

	Conclusion

	Hydrological modelling and forecasting
	Introduction
	The GR6J model
	Calibration and validation of the GR6J model
	Using the GR6J model for streamflow forecasting
	Conclusion

	Forecast evaluation
	Introduction
	Evaluation scores
	Accuracy
	Reliability
	Sharpness
	Overall performance
	Discrimination

	Skill scores
	Using a reference forecast
	Ensemble size
	Useful Forecasting Lead Time

	Conclusion


	II Seasonal Forecasting
	Bias correcting precipitation forecasts to improve the skill of seasonal streamflow forecasts
	Introduction
	Data and hydrological model
	Seasonal forecasts and observed data
	Studied catchments and hydrological model

	Methods
	Overview of the calibration-evaluation approach
	Bias correction methods
	Evaluation framework

	Quality of the raw seasonal forecasts
	Performance of raw precipitation forecasts
	Performance of raw streamflow forecasts
	Summary of the quality of raw seasonal forecasts

	Bias correction of seasonal precipitation forecasts
	Overview of the effectiveness of the bias correction methods
	Comparison of bias correction factors for LS and EDMD methods
	Impact of bias correction on the useful forecasting lead time
	Summary of the comparison of bias correction methods

	Skill scores of bias corrected seasonal forecasts
	Performance of bias corrected precipitation forecasts
	Performance of bias corrected streamflow forecasts
	How improvements in precipitation forecasts propagate to streamflow forecasts?
	Example of forecast hydrographs in a selected catchment

	Discussion and conclusions

	Seasonal streamflow forecasting by conditioning climatology with precipitation indices
	Introduction
	Data and methods
	Observed and forecast hydrometeorological data
	Catchments and hydrological model
	Evaluation framework
	Forecast scenario building method

	Performance of the streamflow forecasting systems
	Statistical evaluation of accuracy and reliability
	Statistical evaluation of low flows
	Drought impact evaluation

	Conclusion


	III Reservoir Management
	Risk assessment tool for the Arzal reservoir during low-flow periods
	Introduction
	Management of the dam and data
	Elements of the dam
	Reservoir management data
	Reservoir inflow forecasts

	Reservoir balance model and evaluation framework
	Formulation of the reservoir balance model
	Forecasting framework
	Evaluation framework
	Setup of model runs

	Preliminary data analysis and water balance simulations
	Relative importance of the different inflows and outflows
	Analysis of monthly management strategies
	Daily inflows and outflows and reservoir reactivity
	Analysis of errors in simulated reservoir levels

	The risk assessment tool
	Design of the risk assessment tool
	Risk-oriented simulations
	Risk-oriented graphs
	Sensitivity to simulation parameters

	Conclusions

	An experiment on risk-based decision-making in water management using monthly probabilistic forecasts
	Introduction
	Material
	Game setup
	Playing the game

	Results
	Worksheets collected
	Decision-makers' behavior during the game: who won? who lost?
	And the winner is...: optimal one-month lead release schedule
	Evolution of release schedules
	How might participants have used the probabilistic forecasts and the flow climatology when making decisions?

	Discussion and conclusions

	General conclusion
	Conclusions on seasonal streamflow forecasting in France
	Conclusions on seasonal forecasting in reservoir management
	Collaboration with climate services and end-users was crucial
	Perspectives

	References


	anm0: 
	0.EndLeft: 
	0.StepLeft: 
	0.PauseLeft: 
	0.PlayLeft: 
	0.PlayPauseLeft: 
	0.PauseRight: 
	0.PlayRight: 
	0.PlayPauseRight: 
	0.StepRight: 
	0.EndRight: 
	0.Minus: 
	0.Reset: 
	0.Plus: 
	anm1: 
	1.EndLeft: 
	1.StepLeft: 
	1.PauseLeft: 
	1.PlayLeft: 
	1.PlayPauseLeft: 
	1.PauseRight: 
	1.PlayRight: 
	1.PlayPauseRight: 
	1.StepRight: 
	1.EndRight: 
	1.Minus: 
	1.Reset: 
	1.Plus: 
	anm2: 
	2.EndLeft: 
	2.StepLeft: 
	2.PauseLeft: 
	2.PlayLeft: 
	2.PlayPauseLeft: 
	2.PauseRight: 
	2.PlayRight: 
	2.PlayPauseRight: 
	2.StepRight: 
	2.EndRight: 
	2.Minus: 
	2.Reset: 
	2.Plus: 
	anm3: 
	3.EndLeft: 
	3.StepLeft: 
	3.PauseLeft: 
	3.PlayLeft: 
	3.PlayPauseLeft: 
	3.PauseRight: 
	3.PlayRight: 
	3.PlayPauseRight: 
	3.StepRight: 
	3.EndRight: 
	3.Minus: 
	3.Reset: 
	3.Plus: 


