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Chapter 1

Introduction

1.1 Abstract

My research activities are related to the fields of Data Mining, Data Base
and Machine Learning. The main goal of my work is the development of
new techniques and algorithms to manage and analyze large amounts of
heterogeneous data with a major emphasis on data involving spatial and
temporal characteristics (i.e. satellite images, environmental data, sensor
data, etc...).

1.2 Context

During my PhD (2007-2010) I focused my attention on the study of methods
and techniques to manage and mine large amounts of information to auto-
matically extract hierarchical representations of the data. More precisely,
I designed, developed and implemented clustering techniques to manage
and mine textual and categorical data. The results of my researches were: i)
methods to evaluate the distance between the data described by categorical
variables and ii) techniques to extract hierarchical representations from tex-
tual data [44]. In the same period, I also investigated the field of associative
classification proposing new classification methods based on local features
extracted through itemset mining approaches [66].

During my PhD training period, I also had the opportunity to perform
an internship at the Yahoo Research Laboratory in Barcelona for a period of
three months where I worked on the analysis of information propagation
on social network data [13].

From February 2011 to September 2011, I turned my attention to the
analysis of spatio-temporal data. Indeed, data with a strong geographic
component are now becoming more widespread and they are a real source
of information that poses new challenges to data mining approaches. To
improve my skills in this field I applied for a post-doctoral fellowship at
Cemagref Institute in Montpellier (now IRSTEA). The topic of the post-doc
fellowship was related to the analysis of spatio-temporal data and classifi-
cation of remote sensing satellite images. The scholarship allowed me to
develop skills and propose new innovative approaches to deal with classi-
fication issue in the context of time series of remote sensing satellite images.
During this period, I have also started a collaboration with the LIRMM lab
that is formally described by my association to the TATOO team before and,
now, to the recently created ADVANSE team.
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Activities after 2011

In September 2011, I was recruited at IRSTEA on the subject of data anal-
ysis and knowledge extraction from spatial and temporal data. In particu-
lar, my main activities are devoted to study, formalize and develop new
data mining and machine learning techniques for spatio-temporal data.
From a methodological point of view, I investigated new methods (super-
vised/unsupervised classification and pattern mining) especially tailored
for such kind of data. Most of the techniques I developed model the data
through a network (or graph) structure to explicitly represent the spatial
interactions among the data. As a privileged field of application, the de-
veloped methods are employed for the analysis of remote sensing images
where both spatial and temporal components play a crucial role in the
knowledge extraction process.

Main Research Activities

In 2012 I co-supervised the PhD thesis of Phan Nhat Hai on moving object
data mining with Dr. Maguelonne Teisseire (IRSTEA) and Prof. Pascal Pon-
celet (LIRMM). The objectives of this thesis were to find new approaches
and methods to efficiently mine different kinds of trajectory patterns at the
same time [35, 37]. This thesis also contributed to develop new strategies to
summarize interesting and useful patterns from the extracted results [36].
Reducing the output size of pattern mining algorithms is an important is-
sue since, sometimes, the size of outputted patterns can be bigger than the
original data size. Supplying a method to filter out the most interesting
trajectories can thus increase the understandability and the usefulness of
the extracted knowledge. The thesis was defended in October 2013 and Dr.
Phan Nhat Hai is currently post-doc at the University of Oregon (USA).

In the same year, between February and April 2013, I spent three months
as a visiting researcher at the University of Waikato, New Zealand, where I
collaborated with Prof. Bernhard Pfahringer to new data mining algorithms
for data streams. The main challenge in data stream mining is the severe
computational constraint imposed by the high speed at which data arrives.
This data velocity can drastically affect the whole mining process [49, 48].

Still in 2013 I started a collaboration with Dr. Andrea Tagarelli (Univer-
sity of Calabria, Italy). He had previously been the reviewer of my PhD
thesis. In conjunction with Dr. Andrea Tagarelli, we supervised the PhD
thesis of Salvatore Romeo on the use of matrix and tensor decomposition
methods for document clustering [79, 78]. Dr. Salvatore Romeo defended
his thesis in April 2015 and, since October 2015, he is post-doc researcher
at QCRI (Qatar Computer Research Institute, Doha, Qatar) working on In-
formation Retrieval and Natural Language Processing. With Dr. Tagarelli,
we are currently collaborating on the development of new data mining ap-
proaches for the study of complex and heterogeneous data with a major
emphasis on multilingual corpora.

Between 2013 and 2015, I co-supervised Dr. Fabio Güttler, post-doc re-
searcher at UMR TETIS, with Dr. Maguelonne Teisseire and Prof. Pascal
Poncelet on the topic of Change Detection analysis of time series of satel-
lite images. The fellowship had a duration of 18 months and it was funded
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by the EQUIPEX GEOSUD1. This supervision gave me the opportunity to
open new research activities in the field of spatio-temporal data analysis
[31, 32]. In this work, we proposed new approaches (validated by experts)
to better characterize evolution and/or changes in time series of satellite
images by proposing a compact and efficient description to depict how nat-
ural phenomena evolve over time.. The fellowship ended in March 2015
and Dr. Fabio Güttler is now post-doc at the University of Strasbourg.

In 2014, I started the co-supervision of the PhD thesis of Vijay Ingalalli
with Prof. Pascal Poncelet. This thesis is founded half by the Labex Numev
and half by a grant that I have obtained from IRSTEA. This thesis focuses on
the development of new graph management and mining techniques with
applications on remote sensing data. More in detail, the work of Vijay In-
galalli focuses on mulitgraph data. A multigraph is a graph where pairs of
nodes can be linked to each other via different types of edges. The multi-
graph representation is particularly useful to describe and reason about en-
tities that interact with each other through different dimensions. In the case
of spatio-temporal data, graph (or multigraph) models are well suited to
describe spatial correlations among data. Firstly, we started to work on ef-
ficient algorithms to deal with the iso/homomorphism problems in multi-
graph structures [90, 91]. Now, we are investigating new efficient methods
to extract frequent patterns from multigraph data.

In June 2014, I visited the CNR Institute (Milano, Italy) hosted by Dr.
Gloria Bordogna with whom I started a collaboration on spatio-temporal
data clustering [16, 7]. In the autumn of the same year I was invited by
Prof. André Carvalho (USP Sao Carlos, Brazil) as an invited lecturer at the
Brazilian doctoral school on Machine Learning and Data Analysis2. The
topic of the lecture was about advanced Machine Learning approaches (Ac-
tive Learning).

In autumn 2015 I started the co-supervision of two new PhD thesis on
the analysis of remote sensing images.

The thesis of Lynda Khiali, co-supervised with Dr. Maguelonne Teis-
seire, is founded by an AVERROES scholarship (Algerian government). The
main goal is to investigate the analysis of long time series of satellite im-
ages. The work is devoted to analyze the image archive Spot World Her-
itage provided by the CNES institute. This archive contains time series of
satellite images that span over a period of more than twenty years. The
temporal richness of this source of data can pave the way to better under-
stand complex phenomena such as climate change behaviors, development
of wetlands, ecological changes in the study area, etc...

The thesis of Lionel Pibrel, co-supervised with Dr. Marc Chaumont
(LIRMM) and Dr. Gerard Subsol (LIRMM) is founded by an ANR CIFRE
fellowship in collaboration with the company Berger Levrault. The work
focuses on the use of deep learning techniques on heterogeneous remote
sensing data for the object detection task in urban areas. Standard classi-
fication algorithms need a training phase before being employed on new
unseen examples (test data). The goal of this thesis is to develop new deep
learning architectures to manage heterogeneous data coming from different
sensors (optical sensor, satellite images, drone images, radar images, etc.)

1 http://ids.equipex-geosud.fr/ (accessed April 5th, 2016)
2http://www.amda.icmc.usp.br/mlkdd2014/

http://ids.equipex-geosud.fr/
http://www.amda.icmc.usp.br/mlkdd2014/
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in a setting where training and test data cannot fit the same format and,
commonly, the test set is poorer (in terms of information) than the training
set.

1.3 Thesis Organization

I choose to present the research activities I did in the past five years in the
TETIS and LIRMM laboratories by means of a collection of publications.
Each paper covers one of the different aspects I have dealt with in the anal-
ysis of spatio-temporal data. In addition to these representative publica-
tions, I develop three chapters to explain from where I come from, what I
have done and what I would like to do in the near future.

More in detail, the first chapter has quickly introduced my career, the
research activities I developed during my PhD and the researches I investi-
gated in the last five year once I have joined my current team in Montpellier.

In the second chapter of this manuscript I draw, with a particular em-
phasis on scientific contributions, a picture about my activities in the field of
data mining and machine learning. The second chapter is especially ded-
icated to my activities in the field of spatio-temporal data analysis, but it
also supplies an overview of my skills and background in the general field
of data science. It also points out the national/international collaborations
I grew in the last years. All these collaborations, I think, heavily highlight
that research is not a solitary process but needs exchanges and partnerships
in order to benefit from different points of view with the goal of creating
new knowledge.

In the third and last chapter, I draw the conclusion of my manuscript
with a list of perspectives directly related to my research but, also, to the
field of spatio-temporal data analysis. This chapter summarizes a part of
my ideas about possible future researches and, possible interesting trends
that are currently investigated by the research community. In some sense,
it paves the way to future subjects tightly related to my on-going projects
that I will be glad to investigate.
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Chapter 2

Contributions in
Spatio-Temporal Analysis

2.1 Introduction

As the world becomes interconnected, spatio-temporal data are more ubiq-
uitous and are getting more and more attention. Moving object (e.g., taxi,
bird) trajectories recorded by GPS devices, social event (e.g., microblogs,
crime) with location tag and time stamps, and environment monitoring
(e.g., remote sensing images) are typical spatio-temporal data that we meet
every day1. These emerging spatio-temporal data also bring new chal-
lenges and opportunities to data mining and machine learning researchers.
This chapter introduces some of the contributions we realized in the past
years regarding spatio-temporal data analysis. It is organized in five parts:
the first two sections are more related to works on pattern mining and pat-
tern extraction we developed during the researches conducted in Montpel-
lier. The first section is related to the analysis of Moving Object data realized
during the PhD Thesis of Dr. Phan Nhat Hai while the second one intro-
duces my recent experiences related to manage spatial interaction through
graph-based approaches.

On the other hand, the third and fourth sections are more focused on
classification techniques (supervised and semi-supervised) we conceived
in partnerships with other colleagues. The third section involves the work
on data stream analysis we developed in collaboration with Prof. Bernhard
Pfahringer during my visit at the University of Waikato, New Zealand. The
fourth section describes some applications of my research in the field of
remote sensing image analysis.

Finally, the fifth section gives a quick overview of my research collabo-
rations in the general field of data mining and machine learning.

As a general guideline to read this chapter, the contributions we pro-
posed in the different domains are highlighted in bold face.

2.2 Moving Object Data: Efficiently extract New, Use-
ful and Non Redundant Trajectory Patterns

Techniques able to summarize the behavior of groups of objects moving
together are getting more and more attention due to the rapid development

1http://researcher.watson.ibm.com/researcher/view_group.php?id=
4152

http://researcher.watson.ibm.com/researcher/view_group.php?id=4152
http://researcher.watson.ibm.com/researcher/view_group.php?id=4152
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of positioning technologies (smartphones, GPS tracking systems, location-
based services, etc..) that constantly record and store position information.

Analyzing data generated from these systems can be useful for:

+ Understanding animal migrations to support public policies in order
to preserve biodiversity;

+ Studying and monitor traffic on road networks to better design future
transportation systems;

+ Detecting suspicious or anomaly movement patterns behaviors.

This is why during the PhD Thesis of Phan Nhat Hai, co-supervised
with Prof. Pascal Poncelet and Dr. Maguelonne Teisseire we studied, con-
ceived and developed new data mining algorithm to extract and summa-
rize collections of trajectory patterns from moving object dataset.

2.2.1 Mine different patterns under a unique approach

A lot of research was done to analyze such datasets with the goal to ex-
tract meaningful patterns [38] and, at the same time, many algorithms have
been proposed such as CuTS∗ [51] (convoy mining), ObjectGrowth [57]
(closed swarm mining), V G-Growth [96] (group pattern mining), etc... Each
of the different proposed methods has its own characteristics and it only
extracts one type of pattern. This means that if we want to compare dif-
ferent moving object patterns extracted from the same dataset, we need to
re-implement each of the different methods and then run each of the algo-
rithm independently.

This issue was addressed by the GET_MOVE approach [34]. This frame-
work represents the moving object database by a cluster matrix in which
a row is an object and a column is a cluster of objects at a certain time
stamps. The matrix representation is successively employed to extract fre-
quent closed itemsets from which movement patterns can be mined.

2.2.2 Flexible Moving Object Patterns

One issue shared by all the previous proposed moving object pattern meth-
ods regards the way parameters are set. Defining a unique strict threshold,
i.e. the maximum time gap between pair of object clusters, without some
degree of flexibility can negatively impact the extraction process due to the
imposed tight bound. Another issue that affects many moving object pat-
tern definitions is the constraint related to the object to monitor. Most of the
previous approaches [38] consider that a pattern is defined over the same
set of objects but, if we for instance consider animal migration, different ob-
jects can join (or leave) a group of objects that is moving towards a certain
direction. Also in this case the data mining method needs to model some
degrees of flexibility to manage such a situation.

As the data can contain noise or the user has approximate knowledge
about the data itself, allowing to soften certain constraints or manage grad-
uality in the objects that belong to a pattern can alleviate such problems.

In [35] we design and develop a fuzzy pattern mining approach to
soften the time gap constraint in the field of moving object data min-
ing. This pattern definition allows the user to define an interval time gap
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(minimum/maximum) and fuzzy logic operators are introduced to retrieve
patterns that match the fuzzy constraints. From an algorithm point of view,
we still exploit an itemset-based representation so that GET_MOVE can be
employed to gather all the fuzzy moving object patterns.

The issue related to analyze and extract object trajectories in which
individuals can join (or leave) the backbone of the pattern is addressed
by [37]. The proposed algorithm manages gradual moving object patterns
which satisfy the graduality constraint during at least mint timestamps.
As state before, the graduality constraint allows the number of objects to
increase (or decrease) while the set of remaining objects shared should be
the same among the clusters.

2.2.3 Mining Representative Moving Object Patterns

Most of the researches in moving object mining are focused to extract spe-
cific trajectory patterns that differ in their characteristics with the goal to
capture various aspects of the data [51, 57, 96, 37]. All these methods extract
thousand of patterns resulting in a huge amount of redundant knowledge
that is difficult to exploit. Spatio-Temporal databases involve complex in-
formation. Due to this complexity, studying a spatio-temporal database by
employing only a single type of pattern is not enough to depict an informa-
tive picture of the data.

Motivated by these issues, we develop a Minimum Description Length
(MDL)-based approach that compress spatio-temporal data leveraging
different kinds of moving object patterns [36].

The proposed approach introduces a way to evaluate to which extent
each extracted pattern is useful and not redundant to summarize the orig-
inal spatio-temporal dataset. The MDL criterion allows to rank the set of
heterogeneous patterns selecting only those that best compress the data and
discarding all the useless ones.

2.3 Spatial Interaction: One more piece of the puzzle

During the last years, I moved more and more my attention towards the
analysis of remote sensing data. Such source of information still belongs
to the category of spatio-temporal data but, differently from the informa-
tion I worked on before, it has some peculiarities: i) the spatial dimension
plays a role at least as important as the temporal aspect; ii) data are mainly
represented through images; iii) in most cases images are multi-bands (or
hyperspectral) and they can be enriched by additional spatial information
(Digital Terrain Model, etc.). Classical data mining and machine learning
approaches cannot be directly applied on such data without an important
pre-processing and transformation step and, such operation needs to be
adapted to the particular task we would deal with.

In the field of spatio-temporal data analysis, modeling the data via graph-
based representation can be beneficial to analyze information from both
spatial [89] and temporal [17] point of views. From a spatial point of view,
the graph structure can supply many information about how the objects



8 Chapter 2. Contributions in Spatio-Temporal Analysis

of the database are arranged while, from a temporal perspective, explic-
itly state the links (or relationships) among objects in a graph can help to
describe and/or simulate a temporal process.

Graphs, in computer science, are an ubiquitous structure that can be
easily employed to model real world information. This tool is particularly
suitable to represent interactions between data [3]. Examples of graph data
are social networks, gene-gene interaction networks, linked open data, doc-
ument networks, knowledge graphs, etc... On the other hand, the flexibility
of such a structure also allows to model data that does not naturally fit the
network paradigm. The graph representation helps to highlight the inter-
action among the objects of the data and this interaction can be leveraged
by specialized data mining and machine learning methods. For example,
a textual collection can be represented as a graph where documents are
nodes and a link exists between two nodes (documents) if their similari-
ties is above a certain threshold [78]. Another similar example is supplied
by the analysis of remote sensing images. After a first pre-processing seg-
mentation step, the image segments can be represented by nodes and a link
exists between two nodes if their corresponding segments spatially over-
laps [32] or they have similar spectral signature [31].

2.3.1 Understanding Temporal Evolutions

During the last period I gave more and more attention, as an application
domain, to the analysis of Remote Sensing data. In particular, thanks to the
collaboration with experts in remote sensing analysis, we developed new
data mining and machine learning approaches especially tailored for this
kind of data. Recently, during the post-doctoral period of Dr. Fabio Gut-
tler, we have started to employ graph-based analysis to model and describe
temporal evolutions from time series of satellite images [32, 33]. A sketch
of the process is illustrated in Figure 2.1.

Given a time series of satellite images the method performs the follow-
ing steps: i) segments all the images by collecting together all the segments;
ii) among the segment set, it chooses a set of reference objects maximizing
the covering of the study area and minimizing the overlapping between the
chosen reference objects. A reference object can come from any image of the
time series; iii) For each reference object, it builds a DAG (Directed Acyclic
Graph) that connects all the segments that intersect the reference object over
all the images of the time series. The obtained DAG is a K-partite graph
where K is equal to the number of images in the time series [32]. A direct
edge exists in the DAG if the segment at level K − 1 (segment of the image
K − 1) spatially intersects the segment at level K (segment of the image
K). Figure 2.2 shows an example of an evolution graph (DAG) with the
corresponding segments ordered by time stamps.

A graph can be easily exploited to describe the evolution of a zone.
Given a study area (represented by a time series of satellite images), a collec-
tion of evolution graphs can be extracted. Such a set of graphs can describe
the different phenomena present in the data. Most of the previous proposed
methods mainly contemplate an analysis at pixel level for a reduced num-
ber of images (two or three) [42] while the novelty of our proposal lies in
the use of objects instead of pixels to describe spatio-temporal evolutions.
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FIGURE 2.1: (Guttler et al. - to appear) The framework to
extract evolution graphs from a time series of Remote Sens-

ing Satellite Images.

FIGURE 2.2: (Guttler et al. - to appear) An example of evo-
lution graphs (K-partite DAG) from a time series of six im-

ages.

2.3.2 Manage Rich Relational Structure

Simple graph structures, sometimes, are not enough to well describe the
richness of real world data. Nowadays many types of data exhibit com-
plex relational structures where additional information in the form of mul-
tiple edges between nodes exist. Such kinds of network structures can be
defined as multigraphs or multilayer graphs [71, 76, 91, 75]. They allow
different types of edges in order to represent different types of relations
between vertices [10, 84, 14, 52]. Many real world scenarios can be mod-
eled as multigraphs. For instance, by considering different social networks
spanning over the same set of people, but with different life aspects (e.g.
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social relationships such as Facebook, Twitter, LinkedIn, etc.), we can get
as many edge types as different aspects. In biology, protein-protein interac-
tion multigraphs can be created considering the pairs of proteins that have
direct interaction, physical association or they are co-localised [14]. In ad-
dition to these examples, Resource Description Framework (RDF) graphs
can be naturally represented as multigraphs where the same subject/object
node pair is connected by different predicates (properties) that describe dif-
ferent types of relationships [58].

Recently, I focused my attention to the study of such particular struc-
tures [71, 76, 91, 75] not only because multigraphs can model a wide range
of application scenarios but, they can be extremely useful to model, min-
ing and analyze spatio-temporal data. More in detail, in the context of
the PhD Thesis of Mr. Vijay Ingalalli, we have designed and developed
efficient methods to deal with the problem of subMultigraph iso and ho-
momorphism [90, 91]. Both problems are known to be NP-Complete and,
to some extent, the homomorphism problem is more general than the iso-
morphism one.

In the case of the multigraph structure the sub isomorphism test needs
to take into account the topological structure but also the containment re-
lationships between the edge set linking a pair of nodes. An example is
given in Figure 2.3. In this example, we can observe two graphs: G1 and
G2. The table in Figure 2.3 reports the set of embeddings of graph G1 in
graph G2 with the corresponding mapping. If we consider the embedding
Emb 1 the edge (u1,u2) of G1 matches the edge (v2,v3) because the red edge
between (u1,u2) is contained among the edges (red, green) between (v2,v3).
The same consideration applies for the Emb 2.

Emb 1 Emb 2 Emb 3

u1 v2 v1 v5

u2 v3 v3 v6

u3 v1 v2 v4

u1

u2u3v2

v1v3

v4 v6

v5

G1

G2

FIGURE 2.3: Sub Isomorphism on Multigraph: Embeddings
of G1 in G2. The table list the possible matching between

nodes in G1 and vertex in G2.

Efficiently performing subgraph matching is useful for image analy-
sis [28] as it can be used as a flexible query mechanism to answer spatial
queries. The original image can be represented by a graph structure and
the goal is to detect and retrieve all the portions of the images that match a
certain geospatial pattern.
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2.4 Remote Sensing Classification: Application to Satel-
lite Images

Remote sensing images are an useful source of information to monitor spatio-
temporal phenonmena [99]. The increasing number of projects and re-
searches about remote sensing supplies huge amounts of data that are pro-
duced almost every day. For instance, the SENTINEL project2 promises
to capture high-resolution images every five/ten days producing a huge
volume of images to process. Studying and developing suitable machine
learning and data mining techniques to efficiently manage such kinds of
data can be crucial for different purposes such as: food monitoring in re-
mote regions, climate change understanding, land cover and land use clas-
sification, complex landscape description [68, 88].

2.4.1 Combine Active and Transductive Learning

Data labels are usually difficult and expensive to obtain. Standard classifi-
cation techniques heavily rely on the hypothesis that a big quantity of la-
beled examples (training set) is available to build a predictive model. Con-
sidering the remote sensing domain the label acquisition constitutes a time
and effort consuming task for the expert [23]. Classical supervised induc-
tive classification approaches (i.e. SVM, Naive Bayes, Random Forest, etc.)
require many labeled data to train the model. Also, they assume that train-
ing and test data are not available at the same time since the model they
have learnt needs to be general enough to classify new unseen examples
available in a near future [92]. However, in the case of remote sensing image
classification, training examples are limited and all the examples (training
and test) are available at the same time. Most of the time, a predictive model
is learnt on a portion of the image and it is successively employed to clas-
sify the rest of the same image. To tackle these two characteristics in land
cover classification: i) data labels acquisition and ii) training and test data
available at the same times, we propose in [31] a new active/transductive
learning framework to cope with object-based remote sensing classifica-
tion. Transductive learning [83] belongs to the family of semi-supervised
approaches. The goal of this kind of methods is to propagate information
from the labeled data to the unlabeled one leveraging the availability of
training and test data at the same time. These kinds of techniques offer
an effective approach to supply contextual classification of unlabeled ones
by using a relatively small set of labeled examples. To deal with both label
scarcity and quality of training set, we couple the transductive strategy with
active learning with the goal to improve accuracy performance and supply
a valid alternative to standard classification techniques usually employed
in remote sensing domain such as Support Vector Machines and Random
Forest [41].

2.4.2 Time Series

Although data from satellite images are very useful for monitoring land
surface, the large quantity of spatio-spectro-temporal measurements stored

2http://www.satsentinel.org/

http://www.satsentinel.org/
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by the instruments limits the usefulness as sources of information. In recent
years, research on spatio-temporal databases has consequently increased
alongside research on mining such data [11]. In [74] we deal with the clas-
sification of remote sensing time series data with the purpose to charac-
terize land use in the northern fringe of sub-Saharan Africa. In this work
we put a major stress on the temporal dimension. More in detail, we devel-
oped a data mining methodology to extract multidimensional sequential
patterns to characterize temporal behaviors. In the same spirit as [66], we
used the extracted multidimensional sequences to build an associative clas-
sifier, and show how the patterns help to discriminate among the classes.
We evaluated our technique using a real-world dataset with the purpose to
automatically recognize the land use of a certain area.

2.5 Data Stream Classification: Deciding when update
the model

Many real world applications continuously generate huge amounts of data,
such as web logs, sensor networks, business transactions, etc. These data
streams [2], due to the big volumes of information they contain, pose serious
issues for the research community in order to extract useful and up-to-date
knowledge in real-time. Due to its intrinsic temporal dimension, the infor-
mation available in data streams can change and evolve over time. More
precisely, this phenomenon impacts on the performance of any supervised
(or unsupervised) model learnt over these evolving data: previous mod-
els may not be suitable for newly incoming data [2]. Therefore we need to
adapt models both quickly and accurately.

2.5.1 Active Learning

Learning predictive models on streaming data implies having continuous
access to the true values of the target variable (the true class labels) of every
incoming example. This labeling phase is usually an expensive and tedious
task for human experts. Consider, for example, textual news arriving as a
data stream. The goal is to predict if a news item will be interesting for a
given user at a given time. The interests and preferences of the user may
change over time. To obtain training data, news items need to be labeled
as interesting or not. This requires human labor, which is time consuming
and costly. For instance, Amazon Mechanical Turk3 offers a marketplace
for intelligent human labeling. Labeling can also be costly or practically
unfeasible because it may require expensive, intrusive or destructive labo-
ratory tests. The labeling problem in standard machine learning scenario is
well known [87] and it is mainly addressed through techniques that guide
the construction of the training set by the needs of the predictive models.
Such kinds of techniques belong to the family of active learning [26]. To
address this important issue in the context of data streams, during the pe-
riod spent at the University of Waikato, in collaboration with Prof. Bern-
hard Pfahringer and other colleagues, we developed new active learning
strategies especially tailored to efficiently learning predictive models on
evolving data streams [49, 47]. All the proposals we developed are based

3https://www.mturk.com
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on the idea that important instances to sample lie in a high density partition
of the data space. In [49] we instantiate this idea by exploiting clustering
approaches in order to estimate the density around each point while in [47]
we estimate the density in an online manner, a sliding window mechanism
allows to quantify the importance of a point considering the density of its
nearest neighbors.

2.5.2 Categorical Change Detection

Due to its intrinsic temporal dimension, the information available in data
streams changes and evolves over time. In particular, different types of
changes may happen in the stream. For instance, classes or concepts that
can be underrepresented during a short period can become overrepresented
after a longer period. Most of the time, a common assumption made by
many research works is to consider only the aposteriori probability of the
class given the data [27, 9]. This formulation of the change detection task
does not exploit information coming from the underlying data distribution.
Another issue is that, in real world applications, data is heterogeneous and
often can be represented over set of categorical attributes as well as numeri-
cal ones. In the last decade, lots of approaches have been defined to monitor
classification accuracy as evidence or an indication for change in streams of
numerical data [9] but, few approaches dealing with the same problem for
categorical evolving data streams [19]. In [48], we tackle this issue and we
propose a new change detection approach devoted to retrieve changes
in categorical evolving data streams. The proposed approach detects and
highlights changes in categorical data streams in a fully unsupervised set-
ting. It works in the batch scenario: when a new batch arrives, firstly the
algorithm summarizes the block through some statistics and successively
performs a statistical test to evaluate if a change happens in the data distri-
bution, or not. The developed algorithm supplies a segmentation approach
that can also work with other statistics. This means that it can be coupled
with any other measure we want to monitor.

2.6 Other Research Activities in Data Science

During the last years, I devoted a major part of my researches to analyze
spatio-temporal data but, in order to enrich my methodological background
in the field of data mining and machine learning, we studied, conceived and
developed, in partnerships with other colleagues, approaches to manage
different kind of data such as textual, categorical and linked open data. The
motivation related to these researches is that, a methodology we can apply
on textual data (i.e. supervised classification, clustering algorithm, etc.) can
be adapted and reused, to some extent, for spatio-temporal data analysis.
As example, in the field of multilingual document classification we exper-
imented and apply transductive based methods [78] and, successively, we
extend and adapt the same strategy to perform active transductive classifi-
cation in the context of object oriented Remote Sensing analysis [31]. Study
and design general data mining and machine learning methods allows me
acquire a good knowledge on how customize each of such strategy w.r.t.
the particular domain to investigate.
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2.6.1 Clustering and Co-Clustering Unstructured data

Most of the techniques developed during my PhD training were devoted
to unsupervised analysis and in particular to cluster data. During the last
years, we continue, with the colleagues I am working with, to conceive and
propose new clustering techniques . Most of the proposed techniques were
devoted to analyse textual information.

The choice of this source of information as type of data is due to its ubiq-
uitous nature and to the fact that it is generally not so difficult to retrieve
annotated document collections. The availability of labeled data facilitates
the evaluation of the different methods.

As a direct extension of my PhD work, we have developed new co-
clustering techniques for dynamic textual sources of information [73] and
co-clustering techniques for heterogeneous data [50]. In the domain of dy-
namic textual data we developed approaches able to incrementally cluster
streams of text supplying a hierarchical organisation of such documents.
The hierarchical organisation allows to easily explore and browse the con-
tent of the evolving document collections. In the same period, we also fo-
cused our attention to develop clustering methods that allow the grouping
of entities that have an heterogeneous representation. For instance, in [50]
we show how entities that can be described, at the same time, by both vi-
sual (images) and textual (captions) information can be jointly analysed in
an unsupervised way.

Data heterogeneity is an important characteristic of modern sources of
information. The same information can be described by different represen-
tations or by different media. An example of such heterogeneity, in the field
of text analysis, is supplied by multilingual document collections [79] in
which the same information can be available in different languages. Dur-
ing the co-supervision (with Dr. Andrea Tagarelli) of the PhD Thesis
of Dr. Salvatore Romeo, we designed and developed on unsupervised
and semi-supervised machine learning framework to analyse multilin-
gual document collections [79, 78]. To tackle the issue of language hetero-
geneity, we leverage knowledge-based resources [69] to obtain a common
representation for collection of multilingual documents. Once the new rep-
resentation was obtained, we have developed new data mining techniques
to automatically categorise multilingual textual information [79]. In the
context of multilingual textual clustering we modeled the documents by
a tensor representation and we successively factorized such tensor to find
a low dimensional embedding of the original data that helps the cluster-
ing process. In the context of semi-supervised textual categorization [78]
we have employed a graph-based transductive learner to propagate label
information from labeled documents (written in a certain language) to un-
labaled ones (written in the same or another language). The propagation
process supplies the final classification result.

2.6.2 Semi-Supervised Learning in Categorical Data

Supervised and Unsupervised settings, from a machine learning perspec-
tive, are two extreme cases in which, from one side, we have labels for all
the training data and, from the other side, we do not have class informa-
tion for any of the objects we would analyse. In many real world tasks the
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situation is less strict and, we can have situation in which only a portion of
the data has associated labels. We can image a scenario in which we need
to classify home pages vs. non home pages. In this context we have a good
knowledge about what is an home page but, strictly define what is not an
home page can be difficult. Examples of such scenario are semi-supervised
anomaly detection [20] and positive and unlabeled learning [56]. Due to
the variety of contexts in which semi-supervised analysis can appear, this
is also valid in the context of remote sensing image analysis [31]. More
in detail, in [46] we recently proposed a semi-supervised anomaly detec-
tion for categorical data where a model is learnt on "normal" data and
then the learnt model is employed to rank anomalies entities. For the
problem of positive and unlabeled learning, we propose in [45] an ap-
proach that firstly computes a model for the positive class, secondly a set
of representative examples for the negative class is detected and finally
a discriminative model is built considering both positive and negative
instances.

The peculiarity of the strategies we proposed is related to the data they
manage: all the examples are represented by only categorical variables (any
numerical variable can be discretized to obtain a categorical one). The prob-
lem to employ distance-based machine learning methods on categorical
dataset is related to the notion of distance measure [20]. Unlike numeri-
cal attributes, it is difficult to define a distance between pairs of values of a
categorical attribute, since the values are not ordered. This underlines the
fact that adapt distance-based machine learning methods to manage cate-
gorical information is challenging.

2.7 Conclusion

This chapter resumes the major researches I developed in the last years in
collaborations with my colleagues. Most of the themes we addressed are
related to the design of general data mining and machine learning tech-
niques that can be applied on spatio-temporal or complex data. Each of
the addressed topic can supply ideas or hints for possible follow-ups. For
instance, regarding the study of moving object data, a deeper investigation
can be made on how moving object patterns can be summarized and how
such results can be presented. In the data stream scenario, a possible point
to address could be the study of how coupling active learning and semi-
supervised learning or how unsupervised change detection techniques can
help unsupervised learning (such as clustering) to extract useful informa-
tion from evolving data. Any of the previous macro topics can supply ideas
and point out possible research tracks in the domain of spatio-temporal,
textual or categorical data analysis.

In the next chapter I will try to sketch some of the research directions
I would investigate that are deeply connected to my current research in
spatio-temporal data analysis.
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Chapter 3

Perspectives

This chapter draws perspectives related to my on-going research on spatio-
temporal data mining. I would discuss in which direction my research ac-
tivities can evolve in the next four, five years. All the perspectives presented
in this chapter are related to students I am co-supervising and projects I am
involved in.

3.1 Research Objectives

In the last years, from the time I joined the TETIS laboratory, I concentrated
my research efforts toward the analysis of dynamic data in which the tem-
poral dimension plays a major role. As I discussed in the previous chapter,
I studied, designed and developed, with researchers I worked with, new
approaches in both pattern mining and machine learning fields to manage,
in particular, the temporal dimension present in spatio-temporal databases.
The complexity of such data is given by the temporal but also by the spa-
tial information it contains. This is why, my next research objectives will
focus on increasing my knowledge through the study and the development
of methods that explicitly deal with spatial autocorrelation inside the data.

My research background ranges from supervised and semi-supervised
machine learning methods to cluster analysis, to the design of pattern min-
ing approaches to mine and extract knowledge from databases. In the cur-
rent data science literature, many methods to manage spatial information
already exist [11]. My main objective is to design, develop and implement
new approaches development of new approaches to deal with the particu-
lar kind of data I am focusing on: Time Series of Remote Sensing Data. To
pursue this goal, in the future, the next PhD fellowships I will supervised,
they will be focused on the analysis of general spatio-temporal data mining
techniques considering the Remote Sensing field as privilegiate domain of
application.

The PhD students I am currently co-supervising, are mainly focusing on
methods to mine and learn from Remote Sensing (RS) Data. Particularly, the
different on-going thesis in which I am involved, they also reflect my differ-
ent research backgrounds (pattern mining, cluster analysis and supervised
learning).
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3.2 Graph-based approaches to analyze spatial infor-
mation

General graph data mining approaches [101, 53, 24] traverse the search
space of graph patterns and, once a pattern is generated, test its support.
The algorithms can work in a transactional setting [101] (the database is
constituted by a collection of graphs) or extract frequent graphs in a single
graph setting [53, 24] (the database is constituted by only one big graph).
The most time consuming and crucial operation in such approaches is the
subgraph isomorphism test [15] that allows to retrieve all the embeddings
(occurrences) of a graph pattern in the graph database. Multigraph pattern
mining seems similar to general graph mining but it has its peculiarity. The
main difference relies in the subgraph isomorphism test [90]. During the
on-going PhD Thesis of M. Vijay Ingalalli, co-supervised in collaboration
with Prof. Pascal Poncelet (LIRMM), we have developed a method to per-
form subgraph isomorphism test for multigraph [90]. The next step of this
research involves the design and the implementation of a frequent multi-
graph mining approach. The approach will leverage techniques and tricks
already proposed in the general domain of graph mining but it will intro-
duce specific pruning strategies tailored for the multigraph structure.

In the remote sensing context we can take, as a toy example, the ex-
traction of complex landscape interactions. Given a satellite image we can
easily model the image content as a multigraph. After image segmentation,
for each segment we can compute a set of characteristics induced by its ra-
diometric attributes. This results in a vector of numerical features. The set
of segments is the set of the nodes of the multigraph and two nodes are
linked each other if they are spatially adjacent. More in detail, we can have
a different edge type for each of the segment’s feature. In this way, an edge
of type ti exists between two objects if they are spatially adjacent and they
have similar values w.r.t. feature fi. An example of this process is reported
in Figure 3.1 where, for the sake of clarity, a geographical area is segmented,
numerical features are computed and the mulitgraph is built following the
previous strategy. Different edge types are represented by different colors.

Once the image is represented by a multigraph we can extract frequent
sub(multi)graphs in order to study how segments spatially interact with
each other. Frequent patterns can be used to highlight recurrent landscape
interactions. Explicitly considering different type of edges can supply more
fine information to experts about the physical phenomenon and what the
study area contains. Frequent patterns can be employed directly or they
can be used, for instance, to feed statistical simulation process. In environ-
mental analysis it is common to design mathematical models to simulate
physical and natural evolutions. Build such a model is a time consuming
task if we do not know what happens in the area we would study. Frequent
sub(multi)graphs patterns can be used to guide the construction of such
models.

3.2.1 Select Interesting Multigraph Patterns

Pattern mining methods that only extract frequent patterns can potentially
produce a huge number of patterns that can be hardly analyzed by human
experts, hence limiting the usefulness of such tools. To cope with this issue,



3.2. Graph-based approaches to analyze spatial information 19

FIGURE 3.1: Example of multigraph representation for a
segmented remote sensing image. The different colors in-

dicate different type of edges.

three different families of approaches can be found in literature to extract in-
teresting patterns, during the mining algorithm or as post-processing step.
This categorization only considers the big trends in the pattern mining field
and it does not want to be exhaustive.

The first family of approaches relies on compression-based measures
such as MDL [94] or entropy [85]. Such methods filter out only a subset of
interesting patterns selecting those ones that better compress the original
database or that are unexpected considering their constituents.

The second family of approaches leverages statistical models in order
to represent the underlying distribution of the patterns. In this case a null-
model is built and patterns that do not fit this null-model are selected as
interesting due to their exceptionality [86, 60].

The third family of approaches always exploit statistical theory but they
extract frequent patterns through a stochastic process. More in detail a sam-
pling algorithm (usually based on Markov Chain Monte Carlo Methods) is
designed and patterns are sampled from the distribution. Sampled patterns
are characterized as interesting [77, 80, 95, 39].

In the graph mining field, most of the strategies to extract interesting
patterns relie on the third family of approaches.

The first family of methods mainly selects interesting patterns as post-
processing. First of all the frequent patterns are generated and then the
relevant ones are selected as post-processing. In the case of graph patterns,
conceiving and designing compression measures to post-process the set of
mined patterns is challenging and more difficult w.r.t. equivalent measures
for itemsets or sequences. On the other hand, compressing the original
database (or considering if a superpattern is more interesting than a sub-
pattern) involves an heavy use of the subgraph isomorphism procedure
that can drastically increase the time of such methods.

The second family of methods to filter out interesting patterns needs the
construction of a null-model of the data distribution and the null-model is
exploited in order to prune the search space. Till now, from the best of my
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knowledge, no approaches for graph mining towards this direction exist
and, for sure, it will be interesting to understand the feasibility of this strat-
egy in the context of multigraph pattern mining. The challenge related to
this point are i) the construction of a null-model to represent the topolog-
ical structure of the multigraph ii) the design of an efficient algorithm to
navigate the search space according to the proposed null-model.

The third family, until now, seems to be more pertinent in the graph
mining domain [39]. Probably, it is due to the fact that sampling patterns
instead of exhaustively traverse the whole search space drastically decrease
the running time and allows graph mining approaches to scale up on big-
ger datasets producing a restricted amount of patterns that can be easily
investigated by a domain expert.

Concerning the extraction of interesting multigraph patterns, the re-
search can address the study of already proposed strategies coming from
the last two families of approaches and how to generalize such groups of
methods to address the selection of interesting multigraph patterns.

Orthogonally to the selection of interesting patterns, another research
direction can be devoted to introducing and designing constrained based
pattern mining algorithm especially tailored for multigraph data. More the
structure becomes complex (itemset, sequence, graph, multigraph) more
constraints we can define in order to filter out patterns that meet such re-
quirements [104]. Designing efficient algorithm to manage constraints in
multigraph is challenging and it can constitute another fruitful research di-
rection.

3.2.2 Multigraph Rules

Another possible research direction can be represented by the study of tech-
niques to extract multigraph rules. Similar to association rule mining [21],
extract rules on multigraph databases can help to better characterize the
information contained in the database and to understand cause-effect re-
lationships leveraging frequent patterns. Preliminary works were done in
the context of graph mining for evolving graphs [17] and recently, some
works suggest to relax the constraints about the topology and, successively,
mining node labels that frequently occur near each other [40]. Such rules
could also be useful from a database point of view to extract conditional
dependencies to summarize and describe multigraph databases.

3.2.3 Approximate Multigraph Mining

Most of the previous follow-ups assume that the sub(multi)graph isomor-
phism task performs exact matching. Many times, in real world scenario
approximation is necessary in order to deal with possible noise or uncer-
tainty present in the data [67, 6, 82]. Approximation can be performed at in-
formation level [6, 18] (label of the nodes) or a topological level [103](mod-
ify the sub isomorphism algorithm to find approximate embeddings). In
the multigraph context, one more piece of information to manage will be
the presence of multiple edge types that can be modeled as an edge with
an associated itemset as label. Depending on which level of approxima-
tion we want to deal with, we need to redefine primitive operations or only
data mining algorithms. Logically, redefining primitive operations will take
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more time than modifying the graph mining algorithms but, it will allow to
acquire more knowledge about the whole graph mining process.

3.2.4 Applications on other domains

The design and the development of multigraph pattern mining approaches
is primarily motivated by the abundance of spatio-temporal data that can
be modeled as graphs and also by multigraphs. The toy example I sup-
plied in Section 3.2 about image analysis through multigraph pattern min-
ing is only one example but another example can be the extraction of colo-
cation patterns [102] (commonly employed in spatial data mining) from a
multigraph that represents how objects are spatially arranged with a more
fine-grain description about how they are interconnected. Due to the wide
range of databases that can be represented as multigraphs, the proposed
perspectives are not only limited to the analysis of spatio-temporal data
but they can be beneficial to mine information coming from other domains.
Among all the possible domains the previous proposals could affect, the
analysis of knowledge graphs seems to be one popular example [70, 100,
59]. Knowledge graphs are structures that supply a network representation
of knowledge where the nodes are objects and links between objects rep-
resent some kind of relationships. In knowledge graphs, the same pair of
nodes can be linked by different edge types resulting in a multigraph struc-
ture. Examples of such knowledge graphs are Yago [64], DBPedia [55] and
FreeBase [12]. Data Management and Mining techniques able to efficiently
deal with multigraph data can be useful to extract information that could
be reused by high-level approaches to reason [25] about the underlining
knowledge. The same approaches can be employed over other domains
in which the multigraph structure can appear such as bioinformatics and
social network analysis [10, 14].

3.3 Summarize Temporal Evolutions in RS Time Se-
ries

Among the different researches I would pursue, the analysis of time series
of remote sensing data still plays an important role supplying interesting
scenarios to develop new data mining and machine learning techniques.
Due to the new research programs that promise, in the next years, to dras-
tically increase the volume of data acquired by satellite sensors, the field
of remote sensing time series analysis will probably get more and more at-
tention from the research community. Practically, this huge volume of data
will pose new challenges in order to be analyzed efficiently [62, 63]. This re-
search track is currently related to the thesis subject of Mme Lynda Khiali, a
PhD student I am co-supervising with Dr. Maguelonne Teisseire (IRSTEA).

3.3.1 Summarize evolutions in RS Time Series

During these researches we would design and implement new methods
to study how the entity evolves in remote sensing time series leveraging
the graph representation we previously introduced. The work we previ-
ously did was related to the analysis of time series of images spanning over
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only one year and it was limited to extract as many evolution graphs as
the selected reference objects. One extension we would work towards is
the summarization of such set of graphs. Among the possible extracted
graphs, many of them can represent the same (or similar) information pro-
ducing some kinds of redundancy. To address this issue a solution can be
the use of clustering techniques [43] with the purpose to summarize the
collection of graphs. In order to cluster (and summarize) such kind of in-
formation we need to understand how to evaluate the distance between
such graphs [81]. This is a fundamental operation in any distance-based
data mining approach (i.e. clustering). How to define a suitable distance
between graphs is still challenging [81] as it depends from i) the charac-
teristics of the graph structure we analyze (labeled vs unlabeled, DAGs vs
general graphs, weighted vs unweighted, etc..) and ii) the task we would
accomplish (summarization, diversity, indexing, etc...).

Once the distance measure and clustering algorithm are available, some
efforts can be made in order to introduce more supervision in the summa-
rization process via end-user interactions. Due to my previous experiences,
a way to introduce a limited amount of user feedback in the mining process
could be the combination of clustering [43, 73, 79] and active learning [26].
Until now, active learning was mainly exploited in supervised scenarios
(classification tasks) but few works start to appear in the literature about
how to combine clustering approaches and active learning [26]. Due to the
peculiarity of remote sensing data in which spatial and temporal informa-
tion plays a crucial role, clustering such kinds of data requires appropriate
methods [16] and the active clustering approaches recently proposed [72,
1, 98] completely ignore the spatial and temporal dimensions in their sam-
pling process. The research track related to active clustering methods for
spatio-temporal data is still challenging and it can constitutes, from my
point of view, a valuable field of research to investigate in order to supply
user-oriented data summarization.

3.3.2 Mining Episodes in Evolution Graphs

During the work we did in [32, 33] we worked on time series of remote sens-
ing data that spans over one year in order to describe the phenology of the
studied area. In the context of climate changes we are interested in follow-
ing natural phenomena over ten, twenty years or more. To this purpose, we
need to analyze multi-annual time series of remote sensing images. Con-
sidering the seasonality of natural phenomena, if we only consider yearly
time series, most of the phenomenon appear only once and the technique
we have proposed is easily applicable to such scenarios. When the time
series involves long periods our approach can have some issues due to the
preliminary assumptions it made [32]. In the case of multi-annual time se-
ries what we can expect is to find recurrent signals that can reproduce them-
selves with some approximation. In the pattern mining field, the study of
recurrent events that can appear in a (possibly infinite) sequence of data
goes under the name of episode mining [97]. The goal of such techniques
is to extract patterns of evolution that can be recurrent along the whole se-
quence of data. While in the context of general episode mining, the data
arrives sequentially and the stream is produced somewhere else, in the
context of multi-annual remote sensing images we can imagine a scenario
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in which, applying the same process we already did in [32], we can build
evolution graphs that cover multi-annual time series. Once the evolution
graphs are built, successively (or during the construction of graphs), we can
identify recurrent substructures that can allow, for instance, to segment the
whole sequence of data or summarize again the whole dataset. Applying
the graph extraction step on a time series of satellite images results in a set
of evolution graphs. Such collections of graphs can be seen as a database
to be mined itself. Defining data mining algorithms in order to extract
frequent and/or interesting episodes from a database of graph sequences
is challenging and needs to consider the particular information that such
structures represent (recurrent events, spatial covering, anomaly behavior,
etc...).

3.4 Exploit Spatial Autocorrelation in remote sensing
analysis

Another point I am interesting in is related to supervised and semi-supervised
learning approaches devoted to classification purposes [66, 45, 46]. In the
last period, I started to develop such methods in the context of satellite
image classification [74, 31]. Automatic classification methods (supervised
and semi-supervised ones) are important in the context of remote sensing
analysis where an image can contain thousands of pixels and/or thousands
of objects to process. Examples are satellite image classification that consid-
ers land use or land cover soil classes [74]. Recently, in the field of machine
learning, Deep Learning methods stand up from the crowd of classification
methods underlining that such strategies are able to heavily outperform
state-of-the-art approaches [54]. Among this family of methods, Deep Con-
volutional Neural Networks (CNN) show impressive performance in the
field of image classification [54] thank to the Convolutional layer that al-
lows to capture, to some extent, spatial autocorrelation among the pixels of
the image. A classical CNN architecture is reported in Figure 3.2. We can
observe different types of layers, the first one represents the input data, then
we can note the portion of the network dedicated to the convolutional op-
eration and, finally, the last layers represent a fully connected Multi Layer
Perceptron that produces the final classification.

3.4.1 Deep Learning in Heterogeneous and Incomplete Data

In 2015 I started to investigate Deep Learning methods and, still in the
same year, I started the co-supervision with Dr. Marc Chaumont (LIRMM)
and Dr. Gerard Subsol (LIRMM) of the PhD Thesis of M. Lionel Pibre
on the "Detection of urban objects from heterogenous remote sensing data
sources". This work will be devoted to the use of deep learning techniques
on heterogeneous remote sensing data to detect objects ( i.e. trees) in urban
areas. As an objective, we would overpass some limitations of standard
supervised approaches on heterogenous multi source data.

Standard classification algorithms need a training phase before being
employed on new unseen examples (test data). A challenge in this field can
be the development of new deep learning architectures to manage heteroge-
neous data coming from different sensors (optical sensor, satellite images,
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FIGURE 3.2: An example of Convolutional Neural Net-
work (CNN) architecture with a first fixed Kernel to pre-
processing the input image, two convolutional layers to
manage image autocorrelation, two fully connected layers
to prepare the prediction step and, finally, a SoftMax layer

to perform the final classification.

drone images, Radar images, etc...) in a setting where training and test data
cannot fit the same format and, commonly, the test set is poorer (in terms
of information) than the training set. In this case we can exploit previous
approaches proposed in the field of deep and representational learning [54,
8] in order to obtain some intermediate representation coping with partial
information. Such intermediate representation can be obtained employing
some kind of autoencoder tool [93]. Successively, the deep learning system
can be trained on such intermediate representation and, once a new unseen
example is available, first of all it will be transformed employing an autoen-
coder and then the transformed instance can be the input of the predictive
model to get the final classification.

During the preliminary experiments we conducted, we observed that
the results are heavily influenced by the type of activation function em-
ployed in a particular layer of the CNN. Studying some kind of adaptive
way to choose which activation function could be used in which layer can
be useful in general. For instance, instead to use a single activation func-
tions [8] (ReLU, eLU, etc...) for each layer, maybe a weighted linear (or not
linear) combination of such functions can allow the network to automati-
cally learn which one is more suitable at which point of the architecture. All
these perspectives can be developed considering as an application scenario
the analysis of remote sensing images where, only in the last two years,
deep learning approaches started getting increasing attention [61, 65].

3.4.2 Deep Learning for image data archives

As well underlined by [54], one of the possible future directions of deep
learning is the use of such models in an unsupervised way. Recently, due
to the rapid evolution of satellite system, large-scale remote sensing image
data archives are more and more available and they need practical tools
to organize and retrieve such information. An exhaustive search through
linear scan over such archives is really time-consuming and not practically
reasonable in real world applications. Recently, [22] proposes an hashing-
based scalable remote sensing image search systems to overcome this prob-
lem employing kernel methods to hash such images. An interesting point
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to investigate could be the use of Deep Learning architecture in order to
compress remote sensing satellite images performing some kind of Local
Sensitivity Hashing [29] to speed up the search and retrieval process. Such
hashing can be successively indexed by some tree structure and the index
can support approximate similarity queries. Leveraging the ability of CNN
to model spatial auto-correlation, the obtained compressed representation
can implicitly incorporate spatial information. The encoding supplied by
the Deep learning strategies can be learnt in both unsupervised or (par-
tially) supervised ways in order to supply a more efficient image search
engine. Combining Deep Models (with a representational purpose) with in-
formation retrieval and database techniques to manage and query archive
of remote sensing satellite images can be an interesting field of research. In
the past, examples in which machine learning techniques are employed to
optimize and ameliorate database and information retrieval systems have
already pointed out their usefulness [5, 4].

3.4.3 Mixing Convolutional and Recurrent Neural Networks

Among the perspectives in the Deep Learning fields, listed by [54], the im-
provement of current deep methods to deal with dynamic systems or se-
quential inputs will be one point to address in the near future. The par-
ticular neural architecture devoted to manage sequential and temporal in-
formation is called Recurrent Neural Network (RNN). RNNs are valuable
tools that started to demonstrate their interest to classify and compress se-
quential data [30]. RNNs manage an input sequence one element at a time,
maintaining in their hidden units a ‘state vector’. Such a vector implic-
itly represents the information about the history of all the past elements of
the sequence. RNNs, once unfolded considering the time dimensions, can
be seen as a very deep feedforward networks in which all the layers share
the same weights. One of the major problem of such architecture was the
training phase over many time steps, in which, the network can typically
explode. Recent advances in the domain of RNNs proposed techniques
such as Long Short-Term Memory (LSTM) and its variants [30]. In order to
deal with the problem to remember too long events, such approaches have
hidden states employed as memory. The role of these hidden states is to
propagate the same information from a time stamp to the next one. The im-
provement of such architectures is related to the ability to learn when such
memories can be re-initialized or not.

In the context of time series of satellite images, as previously discussed,
both spatial and temporal aspects play an important role. Such characteris-
tics are crucial to understand the underlying behavior for both classification
and summarization purposes. CNNs show impressive performance for im-
age analysis while RNNs demonstrate their ability to model temporal data.
A possible research direction can be the combination of these two models
in the context of remote sensing data. What can be proposed is an hybrid
architecture able to learn, at the same time, convolutional filters that are re-
lated to particular portions of the input sequences exploiting the ability of
RNNs to model recurrent phenomena.
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3.5 Conclusion

The first law of geography tells us that “everything is related to everything
else but nearby things are more related than distant things”. Such a charac-
teristic is also known as the spatial autocorrelation. Therefore, the widely
used i.i.d. assumption in data mining is too strong when analyzing spa-
tial data. New methods and modeling techniques are needed to tackle the
spatial heterogeneity and the spatial relationships (such as topological rela-
tionships, directional relationships, etc.), which are unique to spatial data.
Spatio-temporal data are further temporally dynamic, which requires ex-
plicit or implicit modeling of the spatio-temporal autocorrelation and con-
straints to achieve good prediction performance1. This is why, in the past, I
concentrated my effort on spatio-temporal data and this is also why I would
continue, in a near future, to investigate new data mining and machine
learning approaches for Spatio-Temporal data with more emphasis on the
spatial component.

Le me conclude by stating the following observation: research is an ac-
tive process that involves as well junior as senior researchers and as well
PhD as PostDoc. From my reduced experience, research is a collective ac-
tivity in which people collaborate with each others sharing experiences and
new points of view about the same task. My past research was influenced
by people I worked with during visiting periods, conferences, and project
collaborations. Likewise, my future research will be influenced by new peo-
ple I will meet in this never ending trip that is research.

1http://researcher.watson.ibm.com/researcher/view_group.php?id=
4152

http://researcher.watson.ibm.com/researcher/view_group.php?id=4152
http://researcher.watson.ibm.com/researcher/view_group.php?id=4152
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Abstract. Mining trajectories (or moving object patterns) from spatio-temporal
data is an active research field. Most of the researches are devoted to extract
trajectories that differ in their structure and characteristic in order to capture dif-
ferent object behaviors. The first issue is constituted from the fact that all these
methods extract thousand of patterns resulting in a huge amount of redundant
knowledge that poses limit in their usefulness. The second issue is supplied from
the nature of spatio-temporal database from which different types of patterns
could be extracted. This means that using only a single type of patterns is not
sufficient to supply an insightful picture of the whole database.
Motivating by these issues, we develop a Minimum Description Length (MDL)-
based approach that is able to compress spatio-temporal data combining different
kinds of moving object patterns. The proposed method results in a rank of the pat-
terns involved in the summarization of the dataset. In order to validate the quality
of our approach, we conduct an empirical study on real data to compare the pro-
posed algorithms in terms of effectiveness, running time and compressibility.

Keywords: MDL, moving objects, spatio-temporal data, top-k, compressibility.

1 Introduction
Nowadays, the use of many electronic devices in real world applications has led to an
increasingly large amount of data containing moving object information. One of the
objectives of spatio-temporal data mining [5] [10] [6] is to analyze such datasets for
interesting moving object clusters. A moving object cluster can be defined as a group
of moving objects that are physically closed to each other for at least some number of
timestamps. In this context, many recent studies have been defined such as flocks [5],
convoy queries [7], closed swarms [10], group patterns [15], gradual trajectory patterns
[6], traveling companions [13], gathering patterns [16], etc...

Nevertheless, after the extraction, the end user can be overwhelmed by a huge num-
ber of movement patterns although only a few of them are useful. However, relatively
few researchers have addressed the problem of reducing movement pattern redundancy.
In another context, i.e. frequent itemsets, the Krimp algorithm [14], using the minimum
description length (MDL) principle [4], proposes to reduce the amount of itemsets by
using an efficient encoding and then provide the end-user only with a set of informative
patterns.

In this paper, we adapt the MDL principle for mining representative movement pat-
terns. However, one of the key challenges in designing an MDL-based algorithm for
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Fig. 1. An example of moving object
database. Shapes are movement patterns,
oi, ci respectively are objects and clusters.

Fig. 2. An example of pattern overlapping,
between closed swarm (dashed line rectan-
gle) and rGpattern≥ (step shape), over-
lapping clusters are c5, c6 and c7.

moving object data is that the encoding scheme needs to deal with different pattern
structures which can cover different parts of the data. If we only consider different
kinds of patterns individually then it is difficult to obtain an optimal set of compression
patterns.

For instance, see Figure 1, we can notice that there are three different patterns, with
different structures, that cover different parts of the moving object data. If we only keep
patterns having a rectangular shape then we lose the other two patterns and viceversa.

Furthermore, although patterns express different kinds of knowledge, they can over-
lap each other as well. Thus, enforcing non-overlapping patterns may result in los-
ing interesting patterns. For instance, see Figure 2, there are two overlapping patterns.
Krimp algorithm does not allow overlapping patterns then it has to select one and ob-
viously loses the other one. However, they express very different knowledge and thus,
by removing some of them, we cannot fully understand the object movement behavior.
Therefore, the proposed encoding scheme must to appropriately deal with the pattern
overlapping issue.

Motivated by these challenges, we propose an overlapping allowed multi-pattern
structure encoding scheme which is able to compress the data with different kinds of
patterns. Additionally, the encoding scheme also allows overlapping between different
kinds of patterns. To extract compression patterns, a naive greedy approach, named
NAIVECOMPO, is proposed. To speed up the process, we also propose the SMART-
COMPO algorithm which takes into account several useful properties to avoid useless
computation. Experimental results on real-life datasets demonstrate the effectiveness
and efficiency of the proposed approaches by comparing different sets of patterns.

2 Preliminaries and Problem Statement
2.1 Object Movement Patterns
Object movement patterns are designed to group similar trajectories or objects which
tend to move together during a time interval. In the following, we briefly present the
definitions of different kinds of movement patterns.

Database of clusters. Let us consider a set objects occurring at different times-
tamps. A database of clusters, CDB = {Ct1 , Ct2 , . . . , Ctm}, is a collection of snap-
shots of the moving object clusters at timestamps {t1, t2, . . . , tm}. Given a cluster
c ∈ Ct′(∈ CDB), t(c) and o(c) are respectively used to denote the timestamp that c
is involved in and the set of objects included in c. For brevity sake, we take clustering
as a preprocessing step.
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Fig. 3. An example of closed swarm.
Fig. 4. An example of rGpattern.

After generating CDB , the moving object database (ODB , TDB) is defined such as
each object o ∈ ODB contains a list of clusters (i.e. o = c1c2 . . . cm) and TDB stands
for the associated timestamp. For instance, Figure 1 presents the database ODB and
object o1 can be represented as o1 = c1c4c6c7c8.

From this set different patterns can be extracted. In an informal way, a closed swarm
is a list of clusters cs = c1 . . . cn such that they share at least ε common objects, cs con-
tains at least mint clusters and cs cannot be enlarged in terms of objects and clusters.
Note that there are no pairs of clusters which are in the same timestamps involved in cs.
Then a closed swarm can be formally defined as follows:

Definition 1 ClosedSwarm[10]. A list of clusters cs = c1 . . . cn is a closed swarm if:




(1) : |O(cs)| = |⋂n
i=1 ci| ≥ ε.

(2) : |cs| ≥ mint.
(3) : @i, j ∈ {1, . . . , n}, i 6= j, t(ci) = t(cj).
(4) : @cs′ : cs ⊂ cs′, cs′ satisfies the conditions (1), (2) and (3).

(1)

For instance, see Figure 3, cs = c1c3c4 is a closed swarm with mint = 2, ε = 2.
Similarly, in Figure 1, we also have cs = c2c5c7c9 is a closed swarm. A convoy is
a group of objects such that these objects are closed each other during at least mint
consecutive time points. Another pattern is group pattern which essentially is a set of
disjointed convoys which are generated by the same group of objects in different time
intervals. In this paper, we only consider closed swarm instead of convoy and group
pattern since closed swarm is more general [10].

A gradual trajectory pattern [6], denoted rGpattern, is designed to capture the grad-
ual object moving trend. More precisely, a rGpattern is a maximal list of moving object
clusters which satisfy the graduality constraint and integrity condition during at least
mint timestamps. The graduality constraint can be the increase or decrease of the num-
ber of objects and the integrity condition can be that all the objects should remain in the
next cluster. A rGpattern can be defined as follows:

Definition 2 rGpattern [6]. Given a list of clusters C∗ = c1 . . . cn. C∗ is a gradual
trajectory pattern if:

C∗ = C≥





(1) : |C∗| ≥ mint.
∀i ∈ {1, . . . , n− 1},
(2) : o(ci) ⊆ o(ci+1).
(3) : |cn| > |c1|.
(4) : @cm : C∗ ∪ cm is a C≥.

C∗ = C≤





(1) : |C∗| ≥ mint.
∀i ∈ {1, . . . , n− 1},
(2) : o(ci) ⊇ o(ci+1).
(3) : |cn| < |c1|.
(4) : @cm : C∗ ∪ cm is a C≥.

Essentially, we have two kinds of rGpatterns, rGpattern≥ and rGpattern≤. For
instance, see Figure 1, rGpattern≥ = c1c4c6 and rGpattern≤ = c7c8.
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2.2 Problem Statement
Eliminating the number of uninteresting patterns is an emerging task in many real world
cases. One of the proposed solutions is the MDL principle [4]. Let us start explaining
this principle in the following definition:

Definition 3 (Hypothesis). A hypothesis P is a set of patterns P = {p1, p2, . . . , ph}.
Given a scheme S, let LS(P ) be the description length of hypothesis P and

LS(ODB |P ) be the description length of data ODB when encoded with the help of
the hypothesis and an encoding scheme S. Informally, the MDL principle proposes
that the best hypothesis always compresses the data most. Therefore, the principle
suggests that we should look for hypothesis P and the encoding scheme S such that
LS(ODB) = LS(P) + LS(ODB |P) is minimized. For clarity sake, we will omit S
when the encoding scheme is clear from the context. Additionally, the description length
of ODB given P is denoted as LP(ODB) = L(P) + L(ODB |P).

In this paper, the hypothesis is considered as a dictionary of movement patterns P .
Furthermore, as in [9], we assume that any number or character in data has a fixed length
bit representation which requires a unit memory cell. In our context, the description
length of a dictionary P can be calculated as the total lengths of the patterns and the
number of patterns (i.e. L(P) =

∑
p∈P |p| + |P|). Furthermore, the length of the data

ODB when encoded with the help of dictionary P can be calculated as L(ODB |P) =∑
o∈ODB

|o|.
The problem of finding compressing patterns can be formulated as follows:

Definition 4 (Compressing Pattern Problem). Given a moving object database ODB ,
a set of pattern candidates F = {p1, p2, . . . , pm}. Discover an optimal dictionary P∗
which contains at most K movement patterns so that:

P∗ = arg min
P

(
L∗P(ODB)

)
= arg min

P

(
L∗(P) + L∗(ODB |P)

)
,P∗ ⊆ F (2)

A key issue in designing an MDL-based algorithm is: how can we encode data given
a dictionary? The fact is that if we consider closed swarms individually, Krimp algo-
rithm can be easily adapted to extract compression patterns. However, the issue here is
that we have different patterns (i.e. closed swarms and rGpatterns) and Krimp algorithm
has not been designed to deal with rGpatterns. It does not supply multi-pattern types in
the dictionary that may lead to losing interesting ones. Furthermore, as mentioned be-
fore, we also have to address the pattern overlapping issue. In this work, we propose a
novel overlapping allowed multi-pattern structures encoding scheme for moving object
data.

3 Encoding Scheme
3.1 Movement Pattern Dictionary-based Encoding
Before discussing our encoding for moving object data, we revisit the encoding scheme
used in the Krimp algorithm [14]. An itemset I is encoded with the help of itemset
patterns by replacing every non-overlapping instance of a pattern occurring in I with
a pointer to the pattern in a code table (dictionary). In this way, an itemset can be
encoded to a more compact representation and decoded back to the original itemset.
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Table 1. An illustrative example of database and dictionary in Fig-
ure 1. 0̄, 1̄ and 2̄ respectively are pattern types: closed swarm,
rGpattern≥ and rGpattern≤.

ODB Encoded ODB Dictionary P
o1 = c1c4c6c7c8 o1 = [p1, 0][p3, 1]
o2 = c3c4c6c7c10 o2 = c3[p1, 1][p3, 0]c10 p1 = c1c4c6, 1̄

o3 = c6 o3 = [p1, 2] p2 = c2c5c7c9, 0̄
o4 = c2c5c7c9 o4 = p2 p3 = c7c8, 2̄
o5 = c2c5c7c9 o5 = p2

In this paper we use
a similar dictionary-
based encoding scheme
for moving object
database. Given a
dictionary consisting
of movement patterns
P = {p1, . . . , pm},
an object o ∈ ODB

containing a list of
clusters is encoded by replacing instances of any pattern pi in o with pointers to the
dictionary. An important difference between itemset data and moving object data is
that there are different kinds of movement patterns which have their own characteristic.
The fact is that if a closed swarm cs occurs in an object o then all the clusters in cs are
involved in o. While an object can involve in only a part of a rGpattern and viceversa.

For instance, see Figure 1, we can consider that o2 joins the rGpattern≥ = c1c4c6
at c4c6. While, the closed swarm cs = c2c5c7c9 occurs in o4 and o5 entirely.
Property 1. (Encoding Properties). Given an object o which contains a list of clusters
and a pattern p = c1 . . . cn. p occurs in o or o contributes to p if:




(1) : p is a rGpattern≥,∃i ∈ [1, n]
∣∣∀j ≥ i, cj ∈ o.

(2) : p is a rGpattern≤,∃i ∈ [1, n]
∣∣∀j ≤ i, cj ∈ o.

(3) : p is a closed swarm,∀j ∈ [1, n], cj ∈ o.
(3)

Proof. Case (1): after construction we have o(ci) ⊆ o(ci+1) ⊆ . . . ⊆ o(cn). Addition-
ally, o ∈ o(ci). Consequently, o ∈ o(ci+1), . . . , o(cn) and therefore ∀j ≥ i, cj ∈ o.
Furthermore, in Case (2): we have o(c1) ⊇ o(c2) ⊇ . . . ⊇ o(ci−1). Additionally,
o ∈ o(ci−1). Consequently, o ∈ o(c1), . . . , o(ci−1) and therefore ∀j ≤ i, cj ∈ o. In
Case (3), we have o ∈ O(cs) =

⋂n
i=1 ci and therefore ∀j ∈ [1, n], cj ∈ o.

For instance, see Table 1, we can see that for each pattern, we need to store an extra
bit to indicate the pattern type. Regarding to closed swarm, by applying Property 1, in
the object owe only need to replace all the clusters, which are included in closed swarm,
by a pointer to the closed swarm in the dictionary. However, in gradual trajectories (i.e.
rGpattern≥, rGpattern≤), we need to store with the pointer an additional index to
indicate the cluster ci. Essentially, ci plays the role of a starting involving point (resp.
ending involving point) of the object o in a rGpattern≥ (resp. rGpattern≤).

As an example, consider dictionary P in Table 1. Using P , o1 can be encoded as
o1 = [p1, 0][p3, 1] where 0 (in [p1, 0]) indicates the cluster at index 0 in p1, (i.e. c1) and
1 (in [p3, 1]) indicates the cluster at index 1 in p3, i.e. c8. While, o4 can be encoded as
o4 = p2, i.e. p2 is a closed swarm.

3.2 Overlapping Movement Pattern Encoding
Until now, we have already presented the encoding function for different patterns when
encoding an object o given a pattern p. In this section, the encoding scheme will be
completed by addressing the pattern overlapping problem so that overlapped patterns
can exist in the dictionary P .
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Fig. 5. An example of the approach.

See Figure 5, a selected pattern p ∈ P
and a candidate p′ ∈ F overlap each other
at c1c2c3 on object o. Assume that o is
encoded given p then o = pc4c5. As in
Krimp algorithm, p′ is still remained as ori-
gin and then p′ cannot be used to encode
o despite of p′ occurs in o. This is because
they are mismatched (i.e. o = pc4c5, p

′ =
c1c2c3c4). To solve the problem, we pro-
pose to encode p′ given p so that o and p′

will contain the same pointer to p (i.e. p′ =
pc4). Now, the regular encoding scheme can
be applied to encode o given p′ (i.e. o =

p′c5). We can consider that p and p′ are overlapping but both of them can be included
in the dictionary P . Note: in our context, overlapped clusters are counted only once.

Main idea. Given a dictionary P and a chosen pattern p (i.e. will be added into
P), a set of pattern candidates F . The main idea is that we first encode the database
ODB given pattern p. Secondarily, we propose to encode all candidates p′ ∈ F given
p in order to indicate the overlapping clusters between p and p′. After that, there are
two kinds of pattern candidates which are encoded candidates and non-encoded can-
didates. Next, the best candidate in F will be put into P and used to encode ODB

and F . The process will be repeat until obtaining top-K patterns in the dictionary P .

Table 2. Correlations between pattern p and pattern
p′ in F .O,∆ andX respectively mean ”overlapping
allowed, regular encoding”, ”overlapping allowed,
no encoding” and ”overlapping not allowed”.

p
cs rGpattern≥ rGpattern≤

p′
cs X O O

rGpattern≥ ∆ X O
rGpattern≤ ∆ O X

Let us consider the correlations
between a pattern p ∈ P and a can-
didate p′ ∈ F to identify whenever
encoding p′ given p is needed. The
correlation between p and p′ is illus-
trated in Table 2. First of all, we do
not allow overlap between two pat-
terns of the same kind since they rep-
resent the same knowledge that may
lead to extracting redundant infor-
mation.

Next, if p is a closed swarm then p′ do not need to be encoded given p. This is be-
cause there are objects which contribute to gradual trajectories p′ but not closed swarm.
These objects cannot be encoded using p and therefore p′ needs to be remained the
same and the regular encoding scheme can be applied. Otherwise, p′ will never be cho-
sen later since there are no objects in ODB which match p′. For instance, see Figure
2, the objects o1 and o4 do not contribute to the closed swarm p. Thus, if the gradual
trajectory p′ is encoded given p to indicate the overlapping clusters c5c6c7 then that
leads to a mismatched statement between o1, o4 and the gradual trajectory p′.

Until now, we already have two kinds of candidates p′ ∈ F (i.e. non-encoded and
encoded candidates). Next, some candidates will be used to encode the database ODB .
To encode an object o ∈ ODB given a non-encoded candidate p′, the regular encoding
scheme mentioned in Section 3.1 can be applied. However, given an encoded candidate
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p′, we need to perform an additional step before so that the encoding scheme can be
applied regularly. This is because the two pointers referring to the same pattern p ∈ P
from o (e.g. [p, k]) and from p′ (e.g. [p, l]) can be different (i.e. k 6= l) despite the fact
that p′ is essentially included in o. That leads to a mismatched statement between o and
p′ and thus o cannot be encoded given p′.

For instance, see Figure 2, given a gradual trajectory pattern rGpattern≥ p =
c3c4c5c6c7, a closed swarm p′ = c1c2c5c6c7c9c10, the object o3 = c1c2c4c5c6c7c9c10.
We first encodes o3 given p such that o3 = c1c2[p, 1]c9c10. Then, p′ is encoded given
p, i.e. p′ = c1c2[p, 2]c9c10. We can consider that the two pointers referring to p from
o (i.e. [p, 1]) and from p′ (i.e. [p, 2]) are different and thus o3 and p′ are mismatched.
Therefore, o cannot be encoded given p′ despite the fact that p′ essentially occurs in o.

To deal with this issue, we simply recover uncommon clusters between the two
pointers. For instance, to encode o3 by using p′, we first recover uncommon cluster
such that o3 = c1c2c4[p, 2]c9c10. Note that [p, 1] = c4[p, 2]. Since p′ = c1c2[p, 2]c9c10,
o3 is encoded given p′ such that o3 = p′c4.

Definition 5 (Uncommon Clusters for rGpattern≥). Given a rGpattern≥, p =
c1 . . . cn and two pointers refer to p, [p, k] and [p, l] with k ≤ l. uncom(p, k, l) =
ckck+1 . . . cl−1 is called an uncommon list of clusters between [p, k] and [p, l]. Note
that [p, k] = ckck+1 . . . cl−1[p, l].

Similarly, we also have uncom(p, k, l) in the case p is a rGpattern≤. Until now, we
are able to recover uncommon clusters between two pointers which refer to a pattern.
Now, we start proving that given an object o ∈ ODB and a candidate p′ ∈ F , if p′

occurs in o then o can be encoded using p′ even though they contain many pointers to
other patterns. First, let us consider if p is a rGpattern≥ and p′ is a closed swarm.

Lemma 1. Given a rGpattern≥, p = c1 . . . cn, an object o and a closed swarm p′ ∈
F . In general, if o and p′ refer to p then o = xo[p, k]yo and p′ = xp′ [p, l]yp′ . Note that
xo, yo, xp′ and yp′ are lists of clusters. If o contributes to p′ then:

k ≤ l ∧ o = xo uncom(p, k, l)[p, l] yo (4)

Proof. After construction if k > l then ∃ci ∈ {cl, . . . , ck}(⊆ p) s.t. ci ∈ p′ ∧ ci 6∈ o.
Therefore, o does not contribute to p′ (Property 1). That suffers the assumption and thus
we have k ≤ l. Deal to the Definition 5, [p, k] = uncom(p, k, l)[p, l]. Consequently, we
have o = xo uncom(p, k, l)[p, l] yo.

By applying Lemma 1, we have o = xo uncom(p, k, l)[p, l] yo and p′ = xp′ [p, l]yp′ .
Then we can apply the regular encoding scheme to encode o given p′. let us as-
sume that each object o ∈ Op′ has a common list of pointers to other patterns as−−−→
(p′, o) =

{(
[p1, l1], [p1, k1]

)
, . . . ,

(
[pn, ln], [pn, kn]

)}
where ∀i ∈ [1, n], [pi, li] is the

pointer from p′ to pi and [pi, ki] is the pointer from o to pi. If we respectively apply
Lemma 1 on each pointer in

−−−→
(p′, o) then o can be encoded given p′. Similarly, we also

have the other lemmas for other pattern types.
Data description length computation. Until now, we have defined an encoding

scheme for movement patterns. The description length of the dictionary in Table 1 is
calculated as L(P) = |p1|+1+|p2|+1+|p3|+1+|P| = 3+1+4+1+2+1+2 = 14.
Similarly, description length of o2 is L(o2|P) = 1 + |[p1, 1]|+ |[p3, 0]|+ 1 = 6.
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Note: for each pattern, we need to consider an extra memory cell of pattern type.
Additionally, for any given dictionary P and the data ODB , the cost of storing the
timestamp for each cluster is always constant regardless the size of the dictionary.

4 Mining Compression Object Movement Patterns
In this section we will present the two greedy algorithms which have been designed to
extract a set of top-K movement patterns that compress the data best.

4.1 Naive Greedy Approach

Algorithm 1: NaiveCompo
Input : Database ODB , set of patterns F , int K
Output: Compressing patterns P
Input : Database ODB , set of patterns F , int K
Output: Compressing patterns P

1 begin
2 P ←− ∅;
3 while |P| < K do
4 foreach p ∈ F do
5 Od

DB ←− ODB ;

6 L∗(Od
DB |p)←−

CompressionSize(Od
DB , p);

7 p∗ ←− argminp L∗(Od
DB |p);

8 P ←− p∗; F ←− F \ {p∗};
9 Replace all instances of p∗ in ODB by its pointers;

10 Replace all instances of p∗ in F by its pointers;
11 output P ;
12 CompressionSize(Od

DB , p)
13 begin
14 size←− 0;
15 foreach o ∈ ODB do
16 if p.involved(o) = true then
17 Replace instance of p in o by its pointers;
18 foreach o ∈ ODB do
19 size←− size + |o|;
20 size←− size + |p|+ 1;
21 output size;

The greedy approach takes as in-
put a database ODB , a candidate
set F and a parameter K. The
result is the optimal dictionary
which encodes ODB best. Now,
at each iteration of NaiveCompo,
we select candidate p′ which com-
presses the database best. Next, p′

will be added into the dictionary
P and then the database ODB and
F will be encoded given p′. The
process is repeated until we obtain
K patterns in the dictionary.

To select the best candidate,
we generate a duplication of the
database Od

DB and for each can-
didate p′ ∈ F , we compress
Od

DB . The candidate p′ which re-
turns the smallest data description
length will be considered as the
best candidate. Note that p′ =

argminp∗∈F
(
Lp∗(ODB)

)
. The NAIVECOMPO is presented in Algorithm 1.

4.2 Smart Greedy Approach
The disadvantage of naive greedy algorithm is that we need to compress the duplicated
database Od

DB for each pattern candidate at each iteration. However, we can avoid this
computation by considering some useful properties as follows.

Given a pattern p′, Op′ and Op′ respectively are the set of objects that do not con-
tribute to p′ and the set of objects involving in p′. The compression gain which is the
number of memory cells we earned when adding p′ into dictionary can be defined as
gain(p′,P) = LP(ODB)− LP∪p′(ODB).

The fact is that we can compute the compression gain by scanning objects o ∈ Op′

with p′. Each pattern type has its own compression gain computation function. Let us
start presenting the process by proposing the property for a closed swarm p′.

Property 2. Given a dictionary P , a closed swarm p′ ∈ F . gain(p′,P) is computed as:

gain(p′,P) = |Op′ | × |p′| −
( Op′∑

o

−−−→
(p′, o)∑

i

|li − ki|+ |p′|+ |Op′ |+ 2
)

(5)
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Proof. After construction we have LP∪p′(ODB) = L(P ∪ p′) + L(ODB |P ∪ p′) =
(L(P) + |p′|+ 2) +L(Op′ |P) +L(Op′ |P ∪p′). Note that L(Op′ |P) = L(Op′ |P ∪p′).

Furthermore, ∀o ∈ Op′ : L(o|P ∪ p′) = L(o|P)− |p′|+ 1 +
∑−−−→(p′, o)

i |li − ki|. Thus,

L(Op′ |P∪p′) =
∑

o∈Op′
L(o|P ∪p′) = L(Op′ |P)−|Op′ |×|p′|+

∑Op′
o

∑−−−→(p′, o)
i |li−

ki|+|Op′ |. Therefore, we haveLP∪p′(ODB) = L(P)+L(Op′ |P)+L(Op′ |P)−|Op′ |×

|p′|+
(∑Op′

o

∑−−−→(p′, o)
i |li−ki|+ |p′|+ |Op′ |+2

)
. Note that L(ODB |P) = L(Op′ |P)+

L(Op′ |P). Consequently, we have gain(p′,P) = |Op′ | × |p′| −
(∑Op′

o

∑−−−→(p′, o)
i |li −

ki|+ |p′|+ |Op′ |+ 2
)
.

By applying Property 2, we can compute the compression gain when adding a new
closed swarm p′ into the dictionary P . In the Equation 5, the compression gain(p′,P)
depends on the size of p′,O(p′) and the number of uncommon clusters that can be com-
puted by scanning p′ with objects o ∈ O(p′) without encoding ODB . Due to the space
limitation, we will not describe properties and proofs for the other pattern types (i.e.
rGpattern≥, rGpattern≤) but they can be easily derived in a same way as Property 2.

To select the best candidate at each iteration, we need to chose the candidate which
returns the best compression gain. SMARTCOMPO is presented in the Algorithm 2.

5 Experimental Results

Algorithm 2: SmartCompo
Input : Database ODB , set of patterns F , int K
Output: Compressing patterns P

1 begin
2 P ←− ∅;
3 while |P| < K do
4 foreach p ∈ F do
5 L∗(ODB |p)←− Benefit(ODB , p);
6 p∗ ←− argminp L∗(ODB |p);
7 P ←− p∗; F ←− F \ {p∗};
8 Replace all instances of p∗ in ODB by its pointers;
9 Replace all instances of p∗ in F by its pointers;

10 output P ;
11 Benefit(Od

DB , p)
12 begin
13 b←− 0;
14 foreach o ∈ ODB do
15 if p.involved(o) = true then
16 b←− b + benefit(o, p);

17 b←− b + |p|+ 1;
18 output b;

A comprehensive performance
study has been conducted on real-
life datasets. All the algorithms
are implemented in C++, and all
the experiments are carried out on
a 2.8GHz Intel Core i7 system
with 4GB Memory. The system
runs Ubuntu 11.10 and g++ 4.6.1.

As in [10] [6], the two fol-
lowing datasets3 have been used
during experiments: Swainsoni
dataset includes 43 objects evolv-
ing over 764 different timestamps.
The dataset was generated from
July 1995 to June 1998. Buf-
falo dataset concerns 165 buf-

faloes and the tracking time from year 2000 to year 2006. The original data has 26610
reported locations and 3001 timestamps. Similarly to [7] [10], we first use linear in-
terpolation to fill in the missing data. Furthermore, DBScan [2] (MinPts = 2;Eps =
0.001) is applied to generate clusters at each timestamp. In the comparison, we compare
the set of patterns produced by SmartCompo with the set of closed swarms extracted by
ObjectGrowth [10] and the set of gradual trajectories extracted by ClusterGrowth [6].

3 http://www.movebank.org
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(a) rGpattern ≥ (b) Closed swarm (c) rGpattern≤

Fig. 6. Top-3 typical compression patterns.

Effectiveness. We compare the top-5 highest support closed swarms, the top-5 high-
est covered area gradual trajectory patterns and the top-5 compression patterns from
Swainsoni dataset. Each color represents a Swainsoni trajectory involved in the pattern.

Top-5 closed swarms are very redundant since they only express that Swainsonies
move together from North America to Argentina. Similarly, top-5 rGpatterns are also
redundant. They express the same knowledge that is ”from 1996-10-01 to 1996-10-25,
the more time passes, the more objects are following the trajectory {Oregon〉Nevada〉
Utah〉 Arizona〉Mexico〉 Colombia}”.

Figure 6 illustrates 3 patterns among 5 extracted ones by using SmartCompo. The
rGpattern≥ expresses the same knowledge with the mentioned rGpattern in the top
highest covered area. The closed swarm expresses new information that is ”after ar-
riving South America, the Swainsonies tend to move together to Argentina even some
of them can leave their group”. Next, the rGpattern≤ shows that ”the Swainsonies
return back together to North America from Argentina (i.e. 25 objects at Argentina)
and they will step by step leave their group after arriving Guatemala (i.e. 20 objects at
Guatemala) since they are only 2 objects at the last stop, i.e. Oregon State”.

Compressibility. We measure the compressibility of the algorithms by using their
top-K patterns as dictionaries for encoding the data. Since NaiveCompo and Smart-
Compo provides the same results, we only show the compression gain of SmartCompo.

Regarding to SmartCompo, the compression gain could be calculated as the sum
of the compression gain returned after each greedy step with all kinds of patterns
in F . For each individual pattern type, compression gain is calculated according to
the greedy encoding scheme used for SmartCompo. They are respectively denoted as
SmartCompo CS (i.e. for closed swarms), SmartCompo rGi (i.e. for rGpattern≥)
and SmartCompo rGd (i.e. for rGpattern≤). Additionally, to illustrate the difference
between MDL-based approaches and standard support-based approaches, we also em-
ploy the set of top-K highest support closed swarms and top-K highest covered area
gradual trajectories patterns.

Figure 7 shows the compression gain of different algorithms. We can consider that
top-K highest support or covered area patterns cannot provide good compression gain
since they are very redundant. Furthermore, if we only consider one pattern type, we
cannot compress the data best since the compression gains of SmartCompo CS, Smart-
Compo rGi and SmartCompo rGd are always lower than SmartCompo. This is because
the pattern distribution in the data is complex and different patterns can cover different
parts of the data. Thus, considering one kind of patterns results in losing interesting pat-
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(a) Swainsoni dataset (b) Buffalo dataset
Fig. 7. Compressibility (higher is better) of different algorithms.

terns and not good compression gain. By proposing overlapping allowed multi-pattern
structure encoding scheme, we are able to extract more informative patterns.

(a) Swainsoni dataset

(b) Buffalo dataset
Fig. 8. Running time.

One of the most interesting phenomena is that
the Swainsonies and Buffaloes have quite differ-
ent movement behavior. See Figure 7a, we can
consider that rGpattern≥ is the most represen-
tative movement behavior of Swainsonies since
they compress the data better than the two other
ones. While closed swarm is not as representative
as the other patterns. This is because it is very easy
for Swainsonies which are birds to leave the group
and congregate again at later timestamps. How-
ever, this movement behavior is not really true for
Buffaloes. See Figure 7b, it clear that the com-
pression gains of closed swarms, rGpattern≥

and rGpattern≤ have changed. The three kinds
of patterns have more similar compression gain
than the ones in Swainsonies. It means that Buf-
faloes are more closed to each other and they
move in a dense group. Thus closed swarm is
more representative compare to itself in Swain-

soni dataset. Furthermore, the number of Buffaloes is very difficult to increase in a
group and thus SmartCompo rGi is lower than the two other ones.

Running Time. In our best knowledge, there are no previous work which address
mining compression movement pattern issue. Thus, we only compare the two proposed
approaches in order to highlight the differences between them. Running time of each
algorithm is measured by repeating the experiment in compression gain experiment.

As expected, SmartCompo is much faster than NaiveCompo (i.e. Figure 8). By ex-
ploiting the properties, we can directly select the best candidate at each iteration. Con-
sequently, the process efficiency is speed up.

6 Related Work
Mining informative patterns can be classified into 3 main lines: MDL-based approaches,
statistical approaches based on hypothesis tests and information theoretic approaches.

The idea of using data compression for data mining was first proposed by R. Cili-
brasi et al. [1] for data clustering problem. This idea was also explored by Keogh et
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al. [8], who propose to use compressibility as a measure of distance between two se-
quences. In the second research line, the significance of patterns is tested by using a
standard statistical hypothesis assuming that the data follows the null hypothesis. If a
pattern pass the test it is considered significant and interesting. For instance, A. Gionis
et al. [3] use swap randomization to generate random transactional data from the orig-
inal data. A similar method is proposed for graph data by R. Milo et al. [11]. Another
research direction looks for interesting sets of patterns that compress the given data
most (i.e. MDL principle). Examples of this direction include the Krimp algorithm [14]
and Slim algorithm [12] for itemset data and the algorithms for sequence data [9].

7 Conclusion
We have explored an MDL-based strategy to compress moving object data in order to:
1) select informative patterns, 2) combine different kinds of movement patterns with
overlapping allowed. We supplied two algorithms NaiveCompo and SmartCompo. The
latter one exploits smart properties to speed up the whole process obtaining the same
results to the naive one. Evaluations on real-life datasets show that the proposed ap-
proaches are able to compress data better than considering just one kind of patterns.
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Abstract

Data labeling is an expensive and time-consuming task, hence carefully choosing which
labels to use for training a model is becoming increasingly important. In the active learning
setting, a classifier is trained by querying labels from a small representative fraction of data.
While many approaches exist for non-streaming scenarios, few works consider the challenges
of the data stream setting. We propose a new active learning method for evolving data
streams based on a combination of density and prediction uncertainty (DBALStream).
Our approach decides to label an instance or not, considering whether it lies in an high
density partition of the data space. This allows focusing labelling efforts in the instance
space where more data is concentrated; hence, the benefits of learning a more accurate
classifier are expected to be higher. Instance density is approximated in an online manner
by a sliding window mechanism, a standard technique for data streams. We compare
our method with state-of-the-art active learning strategies over benchmark datasets. The
experimental analysis demonstrates good predictive performance of the new approach.

Keywords: Active learning, Data streams, Density-based clustering

1. Introduction

Today, more data are being generated continuously than ever before. Streaming data pose
serious challenges to data analysis researchers and practitioners. For learning predictive
models on streaming data one needs to have continuous access to the true values of the
target variable (the true class labels). This labeling phase is usually an expensive and
tedious task for human experts. Consider, for example, textual news arriving as a data
stream. The goal is to predict if a news item will interesting to given user at a given
time. The interests and preferences of the user may change over time. To obtain training
data, news items need to be labeled as interesting or not interesting. This requires human
labor, which is time consuming and costly. For instance, Amazon Mechanical Turk1 offers
a marketplace for intelligent human labeling.

1. https://www.mturk.com

c© 2014 D. Ienco, B. Pfahringer & I. Žliobaitė.
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Labeling can also be costly because it may require expensive, intrusive or destructive
laboratory tests. Consider a production process in a chemical plant where the goal is
to predict the quality of production output. The relationship between input and output
quality might change over time due to constant manual tuning, complementary ingredients
or replacement of physical sensors. In order to know the quality of the output (the true
label) a laboratory test needs to be performed, which is costly. Under such conditions it
may be unreasonable to require true labels for all incoming instances.

A way to alleviate this issue is to query labels for a small representative portion of data.
The main challenge is how to select a good subset of instances for learning a model. Such
a learning scenario is referred to as active learning (Settles, 2010; Fu et al., 2013).

Active learning studies how to label selectively instead of asking for all true labels. It has
been extensively studied in pool-based (Lewis and Gale, 1994) and online settings (Cohn
et al., 1994). In pool-based settings the decision concerning which instances to label is
made by ranking all historical instances (e.g. according to uncertainty) while in online
active learning each incoming instance is compared to an uncertainty threshold and the
system asks for the true label if the threshold is exceeded. The main difference between
online active learning and active learning in data streams is in expectations around changes.
In data streams the relationship between the input data and the label may change (concept
drift) and these changes can happen anywhere in the instance space while online learning
assumes a stationary relationship between examples and their labels. In order to capture
concept drifts, which can happen anywhere in the data, it is important to characterize and
understand how the examples are related to each other in the data space.

As a recent work in the pool-based settings suggests (Fu et al., 2013), considering the
density around instances can improve the results. In the more dense regions in the instance
space the benefits of updating the classifier with new data are expected to be larger, because
it is likely to improve future classification accuracy for more instances.

The concept of density around instance is usually exploited in unsupervised learning
(such as clustering (Rodriguez and Laio, 2014; Tomasev et al., 2014)) where local density of
a point can be used to initialize cluster centroids. Local density can be directly estimate as
the number of points closer to the considered instance (Rodriguez and Laio, 2014) or derived
indirectly (Tomasev et al., 2014) as the number of times the instance appears as a neighbor
of other example. These approaches widely demonstrate their efficacy for clustering tasks.

Unfortunately, very few works for active learning in data stream integrate the den-
sity (Ienco et al., 2013) in order to choose suitable queries instance. Motivated by this
fact we introduce a new density-focused uncertainty sampling method that uses an online
density approximation to guide the selection of labeling candidates in the data stream. Our
approach works in a fully incremental way: in order to estimate the density of the neigh-
borhood of an incoming instance, we use a sliding window mechanism to compare it to a
recent portion of the historical data.

The remainder of this paper is organized as follows. Section 2 overviews existing active
learning approaches for data streams and makes connections with semi-supervised learning
in data streams. The proposed methodology is presented in Section 3. In Section 4 we
present experimental results for a number of real world datasets and we also supply a
sensitivity analysis of the sliding window size. Finally, Section 5 concludes the study.
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2. Related Work

Online active learning has been the subject of a number of studies, where the data distri-
bution is assumed to be static (Helmbold and Panizza, 1997; Sculley, 2007; Cohn et al.,
1994; Attenberg and Provost, 2011). The goal is to learn an accurate model incrementally,
without assuming to have all training instances available at the beginning, with minimum
labeling effort. One example of such a scenario is malicious URL detection where training
data are arrive sequentially Zhao and Hoi (2013). In contrast, in the evolving data streams
setting, which is the subject of our study, the goal is to continuously update a model over
time so that accuracy is maintained as data distribution is changing. The problem of label
availability in evolving data streams has been the subject of several recent studies (Klinken-
berg, 2001; Widyantoro and Yen, 2005; Masud et al., 2011; Fan et al., 2004; Huang and
Dong, 2007; Zliobaite et al., 2014; Ienco et al., 2013) that fall into three main groups.

The first group of works uses semi-supervised learning approaches to label some of the
unlabeled data automatically (Klinkenberg, 2001; Widyantoro and Yen, 2005; Masud et al.,
2011), which can only work under the assumption that the class conditional distribution does
not change, or, in other words, they assume that their is no concept drift. Semi-supervised
learning approaches are conceptually different from the active learning approaches, that
are the subject of our study, since the former can only handle changes in the input data
distribution, changes in the relation between the input data and the target label cannot be
spotted without querying an external oracle as is done in active learning.

The second group of works process data in batches implicitly or explicitly assuming
that data is stationary within batches (Lindstrom et al., 2010; Masud et al., 2010; Fan
et al., 2004; Huang and Dong, 2007). Such approaches require an external mechanism to
handle concept drift. Lindstrom et al. (2010) use uncertainty sampling to label the most
representative instances within each new batch. They do not explicitly detect changes,
instead they use a sliding window approach, which discards the oldest instances. Masud
et al. Masud et al. (2010) use uncertainty sampling within a batch to request labels. In
addition, they use the unlabeled instances with their predicted labels for training, making
it also another semi-supervised learning approach. A few works integrate active learning
and change detection (Fan et al., 2004; Huang and Dong, 2007) in the sense that they first
detect change and only if change is detected do they ask for representative true labels using
offline active learning strategies designed for stationary data. In this scenario drift handling
and active learning can be considered as two mechanisms operating in parallel, but doing
so independently. This is the main difference between this scenario and the last one, which
combines the two mechanisms more closely together.

Finally, the third group of works use randomization to capture possible changes in
the class conditional distribution (Zhu et al., 2007; Zliobaite et al., 2014; Cesa-Bianchi
et al., 2006). Cesa-Bianchi et al. (2006) develop an online active learning method for a
perceptron based on selective sampling using a variable labeling threshold b/(b+ |p|), where
b is a parameter and p is the prediction of the perceptron. The threshold itself is based
on certainty expectations, while the labels are queried at random. This mechanism could
allow adaptation to changes, although they did not explicitly consider concept drift.

Differently from previous works, and in the same direction of our idea, Ienco et al. (2013)
proposes a clustering-based active learning method for data streams. In that work density is
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captured by means of clustering in a batch-incremental scenario. The clustering step allows
to perform stratified sampling considering dense areas to selecting examples for labelling.

3. Method

In this section we describe our new approach DBALStream (Density Based Active
Learning for Data Streams). We work in a fully incremental scenario in which each instance
is processed as soon as it arrives. We can define a data stream as S := {x1, x2, ...xn, ...}
where each xi is a new instance arriving at time i. This scenario is general enough to model
arbitrary real-world data streams. Given a data stream S and a budget b we want to learn
a classifier cl with only b of the instances in the stream. How to select the instances to
query is challenging for any active learning strategy.

The proposed strategy aims at modelling density around an instance, and is guided by
the following hypothesis: an instance is more important to label if it lies in a dense area.
For example, suppose we are classifying the sentiments towards news items, arriving online.
There are a lot of incoming news about the political situation in Ukraine, and very few
news items about research in Antarctica. Suppose, sentiments towards Antarctica news are
currently more uncertain. We can label the Antarctica news item and learn to classify in
this context very accurately, but if similar news items arrive very rarely in the future, we
have little gain. Perhaps, we would better label news related to Ukraine, which are frequent
(instance space of high density). This way, assuming that there is no sudden change in
density, we can expect improvement in future classification accuracy on more instances.

In order to implement this intuition, given a data point xi we model its density as the
number of times xi is the nearest neighbor of other instances. We use this value as an
estimate of the density around a particular instance and in particular, we use this measure
to understand if an instance xi lies in a dense area, or not.

In a batch scenario this operation can be performed over the whole dataset in order to
obtain a good picture of the global behavior.

In our setting, as we deal with data streams, it is infeasible to store all data and perform
such an operation on the whole data stream. Therefore, we only consider a window, or
buffer, of previously processed examples in order to estimate a local density factor for a
new incoming example. Given a window W of previous examples and a data structure
MinDist that stores the minimum measured distance for each of the instances in W , the
local density factor (ldf) of a new instance xi is defined as follows:

ldf(xi) =
∑

xj∈W
I{MinDist(xj) > dist(xi, xj)} (1)

where I is an indicator function that returns 1 if the condition is true, and 0 otherwise. The
function dist(·, ·) is a distance function defined over two examples xi and xj of the stream.
Procedurally speaking, the MinDist data structure is updated each time the indicator
function is verified. This means that if MinDist(xj) > dist(xi, xj) then MinDist(xj)
is updated with the value dist(xi, xj). The minimum distance computed between xi and
each element of W is used as initial value for MinDist(xi). Another important aspect to
underline is that both W and MinDist cannot exceed a predefined size and for this reason
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they work as a queue data structure (First In First Out): when the limit is reached the first
instance, the oldest one, in the queue is removed and the new one is pushed at the end.

The local density factor of an instance can supply information about its importance,
but it is not enough to understand if an example might be useful or not to label. As shown
in (Fu et al., 2013), an important factor to consider is the uncertainty related to an instance
that is usually employed in general active learning approaches for data streams (Zliobaite
et al., 2014).

In order to combine both these aspects, local density factor and uncertainty of an in-
stance, we build our new proposal extending one of the frameworks proposed in (Zliobaite
et al., 2014). We extend the framework used for the Uncertainty Strategy with Random-
ization. This method relies on a randomized dynamic threshold, trying to label the least
certain instances within a time interval. This threshold adapts, depending on the incoming
data, to align with the budget, and it is also adjusted by a normal random factor. If a
classifier becomes more certain, the threshold is increased, so that only the most uncertain
instances are captured for labelling, otherwise the threshold is decreased to extract more
information for improving the classifier.

The original framework employs the maximum a posteriori probability of the classifier
in order to quantify the uncertainty of an instance. This method prefers instances on which
the current classifier is less confidence (Fu et al., 2013) and can be formally defined as follow:

Confidence(xi) = maxclPL(ycl|xi)
A different approach to model the uncertainty of the instance xi is to consider not only

the maximum a posteriori probability, but considering also the second most probable class
label. Thus this approach is Margin-based (Fu et al., 2013) and it is prone to select instances
with minimum margin between posterior probabilities of the two most likely class labels.
The margin is defined as:

Margin(xi) = PL(ycl1 |xi)− PL(ycl2 |xi)
where the cl1 and cl2 are respectively the class with the maximum a posteriori probability

and the second most probable class.
Our proposal is depicted in Algorithm 1. The algorithm takes as input the instance

to evaluate xt, the stream classifier L, the budget percentage b, the adjusting step s,
the threshold θ, the window of previous collected instances W and the MinDist data
structure that stores the minimum distance for each element in W . The algorithm first
computes the number of times the instance xt is the nearest neighbor of an instance
in W . This operation is performed using Formula 1 and implemented by the function
compute#timesNN(xt,W,MinDist). This procedure returns an integer representing the
local density around example xt and, at the same time, it updates W and MinDist accord-
ing to their maximum size. Next, the procedure tests two conditions: the first one (u/t < b)
verifies the budget constraint, which disallow any new labelling when the budget is already
exceeded; the second condition (lrd(xi) 6= 0) takes into account the local density function.
In particular this test does not allow to ask for labels for instances that lie outside any local
dense areas of the data space. If either of the conditions fails, then the algorithm returns
false, otherwise the margin for the instance xt is computed.

5
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Line 4 to 12 are inspired by the approach proposed in (Zliobaite et al., 2014) where the
randomized adaptive threshold method was firstly introduced. In Line 4 the threshold θ
is randomized employing a variable ε sampled from a Normal distribution N(0, 1). This
randomization step allows to occasionally label instances that are far from the decision
boundary. Line 5 checks the uncertainty of xt w.r.t. the randomized threshold θran. If
the test is positive, then the instance will be used to train the classifier and the active
learning strategy consumes some budget (Line 6). The threshold θ is updated, considering
the adjusting step (Line 7) and the procedure terminates. If the test (Line 5) fails, the
Algorithm 1 returns false, no budget is spent and the threshold θ is relaxed in order to
increase the chance of labeling the next time.

The DBALStream algorithm is employed in the general data stream classification
framework proposed in Section 3.1. In particular, it is used to decide if the true label yt for
the instance xt should be asked for, or not.

Regarding the computational complexity of our method, the most time consuming steps
are the computation of ldf(xi) and the updating of MinDist structure. Both operations
have linear complexity in the size of |W | and they can be done at the same time (we need
to scan once the window W for each incoming instance xi).

Algorithm 1 DBALStream(xt, L, b, s, u, θ, W , MinDist)
Require: xt: the new instance in the data stream, L: learned classifier, b: budget, s: adjusting step, u:

number of instances labeled till now, θ: the actual threshold value, W : set of previous instances used to
computed the local density function, MinDist: minimum distances for each instance in the window W

1: ldf(xt) = compute#timesNN(xt,W,MinDist)
2: if (u/t < b and ldf(xt) 6= 0) then
3: margin(xt) = PL(ycl1|xt)− PL(ycl2|xt)
4: θran = θ × ε where ε ∈ N(0, 1)
5: if margin(xt) < θran then
6: u = u+ 1
7: θ = θ ∗ (1− s)
8: return true
9: else

10: θ = θ ∗ (1 + s)
11: return false
12: end if
13: end if
14: return false

3.1. General Active Learning Classification Framework

Algorithm 2 presents the general active learning classification framework. It requires as
input the data stream S and the budget percentage b. At the beginning (line 1 and 2) the
framework initializes the different parameters. In particular we set the θ threshold equal to
1 and the step option s to 0.01. The step option s is used for increasing or decreasing the
threshold in the DBALStream procedure.

We use DDDM change detection technique (Gama et al., 2004): the accuracy of the
classifier is monitored during the streaming process. If the accuracy starts to decrease
(change warning is signaled line 6-8) a new background classifier Ln is generated.
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At line 9-11 both classifiers are trained in parallel with the incoming instance xt. If a
change is detected, the classifier L is replaced by Ln (line 13-15).

Classifier performances are evaluated by means of the prequential schema. The eval-
uation through the prequential setting involves two steps: i) classify an instance, and ii)
use the same instance to train the learner. To implement this strategy, each new incoming
instance xt is first classified using L and only after this step the approach decides if a label
is waned for training, or not. The accuracy is computed over the classification results of L.
This process continues until the end of the data stream is reached.

Algorithm 2 Active Learning Classification Framework
Require: b: labeling budget
Require: S the data stream
1: θ = 1, u = 0, s = 0.01, W = ∅, MinDist = ∅
2: L =classifier, Ln =classifier
3: for xt ∈ S do
4: if ( DBALStream(xt, L, b, s, u, θ, W , MinDist) ) then
5: request the true label yt of instance xi
6: if change warning is signaled then
7: start a new classifier Ln

8: end if
9: train classifier L with (xt,yt)

10: if Ln exists then
11: train classifier Ln with (xt,yt)
12: end if
13: if change is detected then
14: replace classifier L with Ln

15: end if
16: end if
17: end for

4. Experiments

In this section we evaluate the performance and the quality of the proposed method DBALStream.
We compare our algorithm with state of the art methods that are explicitly designed for
active learning over data streams. We use the prequential evaluation procedure: each time
an instance arrives, we first test the algorithm on it, and then we decide on whether to
pay the cost for labeling it and subsequently use it as an input for updating the classifier.
In order to evaluate the performance of the different strategies we employ classification
accuracy. We use two methods proposed by (Zliobaite et al., 2014): Random and Rand
Unc. The first one is Random. It randomly chooses examples for labeling. The second
one (Rand Unc), proposed in (Zliobaite et al., 2014), uses a randomized variable uncer-
tainty strategy that combines the randomization with maximum a posteriori probability
and an adaptive method to avoid consuming too much of the budget when a consecutive
run of easy instances is encountered. The last competitor ACLStream is a clustering-based
active learning approach proposed by Ienco et al. (2013). This approach works in a batch-
incremental scenario. It performs stratified sampling, where at first a clustering solution
over a batch of data is obtained, and then instances are chosen for labelling considering a
combination of their own uncertainty and the uncertainty of the cluster they belong to.
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For all methods a warm-up period is introduced. The first 500 instances of each dataset
are all labeled and used to train the initial model used by the specific approach. Evaluation
using active learning only starts after this warm-up step.

All the methods need an internal classification algorithm to perform the classification
and to produce the maximum a posteriori probability. For this reason for all the approaches
we use the classifier proposed in (Gama et al., 2004). This classifier is able to adapt itself
to drift situations: when the accuracy of the classifier begins to decrease, a new classifier is
built and trained with new incoming instances. Considering the batch size, for ACLStream,
following the original paper, we use a window size of 100 instances and the number of clusters
is set to 5. As all the approaches are nondeterministic, each result, for each of the strategies,
is averaged over 30 runs.

All the experiments are performed using the MOA data stream software suite (Bifet
et al., 2010). MOA is an open source software framework implemented in Java designed
specifically for data stream mining.

4.1. Datasets

To evaluate all the algorithms we use four real world benchmark datasets: Electricity,
CoverType, Airlines, KDD99. Electricity data (Harries et al., 1998) is a popular benchmark
in evaluating streaming classifiers. The task is to predict the rise or fall of electricity prices
(demand) in New South Wales (Australia), given recent consumption and prices in the same
and neighboring regions. Cover Type data (Bache and Lichman, 2013) is also often used as a
benchmark for evaluating stream classifiers. The task is to predict forest cover types or types
of vegetation from cartographic variables. Inspired by (Ikonomovska et al., 2010) an Airlines
dataset was constructed using the raw data from US flight control. The task is to predict
whether a given flight will be delayed, given the information of the scheduled departure. The
last dataset, KDD99, is commonly used as a benchmark anomaly detection task but recently
it has also been employed as a dataset for testing data stream algorithms (Masud et al.,
2011). One of the big problems with this dataset is the big amount of redundancy among
instances. To solve this problem we use the cleaned version named NSL-KDD2. To build the
final dataset we join both training and test data. Table 1 presents summary characteristics
of the datasets. This collection includes both binary and multi-class classification problems,
datasets with different numbers of instances (varying between 42k to 829k) and different
numbers of features (from 7 to 54). Even though CoverType, KDD99 have no time order
variable, we assume that they are presented in time order.

In order to better characterize this collection of datasets, we show for each of them,
how the class variable evolves over time. For this purpose, we divided each dataset in
batches and for each batch we plot its class values distribution. As the different datasets
have different sizes, we choose an adapted batch size to allow for a clear trend visualization.
This information can be useful to understand which dataset has dramatic (resp. smooth)
changes considering the target variable. Logically, quick changes in the target variable
requires more flexible classifiers than stationary situations. The characterization of the
datasets is presented in Figure 1. The X axis represents the batch number while the Y
axis corresponds to the proportion (as ratio) of instances belonging to a class value. At

2. http://nsl.cs.unb.ca/NSL-KDD/
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Dataset n. of Instances n. of Features n. of Classes

Airlines 539 383 7 2

Electricity 45 312 8 2

Cover Type 581 012 54 7

KDD99 148 517 41 2

Table 1: Dataset characteristics

each moment the sum of the different class labels is equal to 1. We can observe different
behaviors as a function of the target variable. Some datasets show high fluctuation of
different classes over the stream (Cover Type and Electricity) while other ones show more
smooth (or stable) behavior (airlines and KDD99 ).

We think that this final set of four datasets is a good benchmark for evaluating the
performance of our approach, DBALStream, w.r.t. state of the art methods.

(a) (b)

(c) (d)

Figure 1: Distribution of classes during the stream process: a) Airlines b) Cover Type c)
Electricity e) KDD99
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4.2. Analysis of Classification Performance

The final accuracy is reported in Figure 2. In this experiment we evaluate the different
methods, over the different datasets, varying the budget percentage. We start with a budget
percentage of 0.03 and go up to a percentage of 0.3. Obviously, to evaluate the results we
need to take into account how the performances change when varying the budget size.

We can observe that DBALStream outperforms the competitors over Airlines and
KDD99 datasets while it obtains comparable accuracy results for the other two datasets.
In particular, regarding Cover Type we can note that all the methods have very similar
behavior for budget values smaller or equal to 0.15 while for higher budget the performance
of ACLStream drops down w.r.t. the competitors. For the Cover Type dataset the best
result is obtained by DBALStream with a budget value of 0.25. If we analyze the results
over Electricity we can note that DBALStream has better performance than the other
strategies for a big range of the budget value (between 0.1 and 0.25) while for smaller
budgets Rand Unc slightly outperforms our proposal.

To wrap up this set of experiments we can state that our new proposal obtains better
or comparable results with respect to previous approaches in the field of active learning in
data streams. These results underline that using the local density information of incoming
instances positively affects the active learning process in the data stream setting.

(a) (b)

(c) (d)

Figure 2: Accuracy on a) Airlines b) Cover Type c) Electricity and e) KDD99
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4.3. Influence of the Window Size

In this subsection we focus our attention on the impact of window size over the final per-
formance. In particular, we analyse how the size of the window impacts the final accuracy
of DBALStream. For this purpose, we run experiments varying the size of the batches
from 50 to 300 with a step of 50. We average each result over 30 runs.

(a) (b)

(c) (d)

Figure 3: Accuracy Results for DBALStream on a) Airlines b) Cover Type c) Electricity
and d) KDD99 varying the batch size from 50 to 300

The accuracy results are reported in Figure 3. We can observe that, considering Airlines
and Electricity benchmarks the performances of DBALStream are not influenced by this
parameter and changes in the value of window size did not impact the final results. A
different behavior is shown for the Cover Type dataset. In this case we can note an important
difference in the results between the smallest value of window size (50) w.r.t. the other values
of window size (100-300). This is due to the fact that only considering the 50 previous
examples to evaluate the importance of a new one (considering its relative density) is not
enough. This can also be explained by the way the data were collected. As we will underline
in Section 4.5, the data came from a GIS database that stores raster cells considering their
spatial order. These cells are arranged in a matrix and, probably, a window size of 50 did
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not allow to capture temporal correlations among the data. For the KDD99 dataset we
note that no particular value of window size outperforms the others. Accuracy fluctuation,
also in this case, are very small and they did not exceed 0.5 accuracy points.

In summary, we can underline that for almost all of the benchmarks, this parameter
did not affect the final results and window size values bigger than 100 are a good choice in
order to compute good density estimates. As a conclusion we can state that, generally, our
method is quiet robust with respect to its parameter setting.

4.4. DBALStream: Confidence based vs Margin based uncertainty estimation

In Section 3 we underlined that our proposal quantifies the uncertainty over an instance
considering the Margin of the classifier while previous techniques for active learning in data
stream exploit the Confidence value (Zliobaite et al., 2014). In this section we evaluate how
the performances of DBALStream are influenced considering these two different ways of
estimating the uncertainty of a classifier over an instance. Figure 4 shows the results of this
experiment over all benchmarks datasets.

We can note that, generally, the Margin based version clearly outperforms the Confi-
dence based one for almost all the datasets and all the budget values. This phenomena is
usually more visible for high budget values.

As a general finding we can state that considering the discrepancy between the two
most probable classes supplies much more information on the uncertainty of an instance
than only taking into account the maximum a posteriori probability. This also supports
our choice of using a Margin-based approach in our framework.

4.5. Performance with different types of concept drift

For analysis purposes, we also introduce two more datasets: Cover Type Sorted, in which
the instances of the Cover Type dataset are reordered w.r.t. the attribute elevation, and
Cover Type Shuffled, where the order of instances is randomly shuffled. Due to the nature of
the underlying problem, sorting the instances by the elevation attribute induces a natural
gradual drift on the class distribution, because at higher elevation some types of vegetation
disappear while other types of vegetation appear gracefully. Shuffling instances ensures that
the data distribution is uniform over time, i.e. there is no drift at all. Figure 5 plots the
prior probabilities of the classes over time in the two new versions of the dataset

Note, that the order of the Cover Type dataset is related to the spatial location of the
instances, as clarified by the authors in personal communication. This additional knowledge
about the data indicates that in the first two cases (Cover Type and Cover Type Sorted)
the data contains some kind of spatial auto-correlation while in the last scenario (Cover
Type Shuffled) this autocorrelation is broken by randomisation over the instances order.

Figure 6 plots the accuracy results of the compared approaches on three versions of the
Cover Type dataset: the original, sorted (gradual drifts), and shuffled (no drift).

We can observe that all the algorithms obtain similar performances on the original data
(Figure 6(a)) while on the sorted version (Figure 6(b)) we can note that DBALStream
obtains a slight improvement w.r.t. the competitors for budget values around 0.1.

Considering the Cover Type Shuffled version (Figure 6(c)), DBALStream clearly out-
performs all the competitors for all the budget values. The only exception happens for
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(a) (b)

(c) (d)

Figure 4: Accuracy Results for DBALStream coupled with different Confidence based and
Margin based uncertainty estimation on a) Airlines b) Cover Type c) Electricity
and d) KDD99

budget value equals to 0.05 where the Rand Unc heuristic obtains the same results as our
proposal. This experiment underlines that DBALStream performs similarly to state of
the art approaches for spatially auto-correlated data while it clearly outperforms the com-
petitors when data instances are not affected by this kind of auto-correlation.

5. Conclusions

Building classification models on data streams considering only a limited amount of labeled
data is becoming a common task due to time and cost constraints.

In this paper we presented DBALStream, a novel algorithm to perform active learning
in a data stream scenario. Our approach exploits local instance correlation over the feature
space in order to improve sampling on the potentially most useful examples to label.

We assessed the performance of our proposal over real world benchmark datasets. The
results showed that the proposed approach outperforms state-of-the-art active learning
strategies for data streams in terms of predictive accuracy. We empirically studied dif-
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(a) (b)

Figure 5: Distribution of the class values during the stream process: a) Cover Type Sorted
b) Cover Type Shuffled

(a) (b)

(c)

Figure 6: Accuracy on a) Cover Type b) Cover Type Sorted and c) Cover Type Shuffled
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ferent factors that can impact our strategy: the window size used to estimate the local
density of a new instance and the way in which the uncertainty of an example is estimated.
As a final experiment we supplied an in-depth study on how our strategies deal with evolving
data and manage concept drift.

As future work we would like to investigate other ways to measure and incorporate
density into the active learning process for data streams.
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Abstract—In this letter we propose a new Active Transductive
Learning (ATL) framework for object-based classification of
remote sensing images. The proposed framework couples a
graph based label propagation method with active learning to
exploit positive aspects of both learning settings. The transductive
approach considers both labeled and unlabeled image objects to
perform its classification as they are all available at training time
while the active learning strategy smartly guides the construction
of the training set employed by the learner. We experiment the
proposed framework on two remote sensing datasets coming from
the same study area. We compare our proposals w.r.t. state of
the art classification techniques employed in object-based image
classification.

I. INTRODUCTION

Data labels are usually difficult and expensive to obtain.
Standard classification techniques heavily rely on the hypoth-
esis that a big quantity of labeled examples (training set) is
available in order to build predictive models. Considering the
remote sensing domain, in particular the object-based image
classification, the label acquisition task is an important issue
because the expert needs to spend time and effort for labeling
a portion of the objects to successively classify the rest of the
image. The collection of such labels can affect negatively the
image classification task on two points of view: the quantity of
labeled data commonly needed by standard inductive classifier
and the way the objects to label are chosen.

Classical supervised classification approaches (i.e. SVM,
Naive Bayes, Random Forest, etc.) require many labeled data
to train the model. Also, they assume that training and test
data are not available at the same time since the model they
have learnt needs to be enough general to classify new unseen
examples available in a near future [18]. Conversely, in the case
of remote sensing image classification, the available training
examples are limited to a small portion of the image and all
the objects (training and test) are available at the same time.

A different classification setting is supplied by transduc-
tive learning [9]. Transductive learning belongs to the fam-
ily of semi-supervised approaches and it tries to propagate
information from the labeled data to unlabeled one lever-
aging the availability of training and test data at the same

time. These kind of techniques offer an effective approach
to supply contextual classification of unlabeled examples by
using a relatively small set of labeled ones. Many real-world
applications can be modeled through a transductive setting
and, in particular, it has been also applied in the remote
sensing domain [2] where, labels are difficult to obtain and
the classification decisions should not be made separately
from learning the current data. Differently from inductive
classification, transductive learning does not produce any re-
usable model, the classification cannot be performed on new
data. This is not necessary a problem for object-based image
classification as the model learnt on a given image is rarely
reused to classify another image [17].

The second issue regards the way labels are collected.
Objects are usually labeled randomly from an expert while
choosing examples guided by the classifier needs can dras-
tically improve the classification performance and positively
impact the data labeling process [5]. This kind of technique
is called Active Learning and it allows to involve expert
interaction during the classifier construction. More in detail,
the choice of the objects to label is guided by the learner needs
and the classifier asks the true labels for those objects that can,
potentially, improve the performance of the model. The objects
are usually selected considering the classifier uncertainty over
the set of possible examples to choose [6]. In remote sensing
applications this approach is getting more and more attention
[5] due to the improvement it can supply in the task of multi
and hyperspectral image classification [5], [16].

In this letter we propose to couple transductive and active
learning in order to design a new Active Transductive Learning
(ATL) framework. More in detail we propose to adapt a label
propagation approach [14] to object-based image classification
and combine it with an effective active learning strategy.
The proposed methodology is experimented in the context of
object-based image classification as it is particularly indicated
to process high and very high spatial resolution images [1]. In a
general way, it starts with a segmentation step which creates a
new and more meaningful representation of the image. Instead
of an arbitrary pixel grid, segmentation aims to create spatially
coherent objects based on spectral and spatial features of
adjacent pixels over the image.



The letter is organized as follows: Section II presents the
Active Transductive Learning (ATL) framework introducing
the Transductive Learner (Sec.II-B) and the Active Learning
strategy we adopt (Sec.II-C). The experiments are carried out
in Section III: we describe the study area and the datasets
(Sec.III-A), the experimental setting (Sec. III-B) and we dis-
cuss the obtained results (Sec. III-C). Conclusions are drawn
in Section IV.

II. METHODOLOGY

In this section we introduce the different components we
have used to implement the Active Transductive Learning
(ATL) framework : i) the transductive setting ii) the label
propagation algorithm we adapted for object-based image
classification iii) how we coupled transduction and active
learning to perform the final classification.

A. Transductive setting

Given a set of object O = {oi}Ni=1, let us denote with L
the subset of labeled objects of O, and with U = O \ L the
subset of unlabeled ones. Note that U can in principle have
any proportion w.r.t. L, but in many real cases U is much
larger than L. Every object in L is assigned a label that refers
to one of the known M classes C = {Cj}Mj=1. We also denote
with Y a N ×M matrix such that Yij = 1 if Cj is the label
assigned to object oi, 0 otherwise. Without loss of generality,
we can refer to L as training data and to U as test data.

The goal of a transductive learner is to make an inference
“from particular to particular”, i.e. given the classifications
of the instances in the training set L, it aims to predict the
classifications of the instances in the test set U , rather than in-
ducing a general rule that works out for classifying new unseen
instances [18]. Transduction is naturally related to the class
of case-based learning algorithms, whose most well-known
algorithm is the k-nearest neighbor (kNN) [10]. Differently
from standard supervised setting, in the transductive setting
there is no separation between model training and testing
phase. The classification of new unseen example is performed
at the same time the model is learnt over L.

B. Label propagation algorithm

In order to perform transductive learning we use the ap-
proach proposed in [14] named Robust Multi-class Graph
Transduction (RMGT). From the best of our knowledge it
is the first time this approach is employed in a remote
sensing application and in particular to perform an object-
based classification of satellite images.

Essentially, RMGT implements a graph-based label propaga-
tion approach, which exploits a kNN graph built over the entire
dataset to propagate the class information from the labeled to
the unlabeled examples.

The assumption behind this approach is that adjacent ver-
tices are likely to have similar labels. For this reason the label
propagation procedure ensures that the classification function
varies smoothly along the edges of the kNN graph. In the

following we describe in detail the mathematics aspects of
RMGT.

Let G = 〈V, E , w〉 be an undirected graph whose vertex set
is V = O, edge set is E = {(oi, oj)|oi, oj ∈ O∧sim(oi, oj) >
0}, and edge weighting function is w = sim(oi, oj).

Given a positive integer k, consider the kNN graph Gk =
〈V, Ek, w〉 derived from G and such that E = {(di, dj)|dj ∈
Ni}, where Ni denotes the set of di’s k-nearest neighbors. A
weighted sparse matrix is obtained as W = A + AT, where
A is the weighted adjacency matrix of Gk and AT is the
transpose of A; the matrix W represents a symmetry-favored
kNN graph [14]. Moreover, let L = IN −D−1/2WD−1/2 the
normalized Laplacian of W, where IN is the N ×N identity
matrix and D = diag(W1N ). Without loss of generality,
we can rewrite L and W as subdivided into four and two
submatrices, respectively:

L =

[
∆LL ∆LU
∆UL ∆UU

]
, Y =

[
YL
YU

]
(1)

where ∆LL and YL are the submatrices of L and Y, respec-
tively, corresponding to the labeled objects, and analogously
for the other submatrices. The RMGT learning algorithm
finally yields a matrix F ∈ RN×M defined as:

F = −∆−1UU∆ULYL+
∆−1UU1u

1T
u∆−1UU1u

(Nω−1T
l YL+1T

u∆−1UU∆ULYL)

(2)
where ω ∈ RM is the class prior probabilities.

The transductive learning scheme used by RMGT employs
spectral properties of the kNN graph to spread the labeled
information over the set of test instances. Specifically, the
label propagation process is modeled as a constrained convex
optimization problem where the labeled objects are employed
to constrain and guide the final classification. Equation 2 repre-
sents the closed form solution of the propagation process. This
equation shows how Labeled (L) and Unlabeled (U) examples
are combined in order to implement the main assumption that
adjacent vertices are likely to have similar labels. After the
propagation step, every unlabeled object oi is associated to a
vector (i.e., the i-th row of F) representing the likelihood of the
object oi for each of the classes; therefore, oi is assigned to the
class that maximizes the likelihood. Concerning the sim(·, ·)
function, we derived it from the standard euclidean distance. In
particular the sim(·, ·) is defined as 1

1+dist(·,·) where dist(·, ·)
is the euclidean distance between the feature vectors of two
objects. Moreover, the class priors (ω) used in Eq. (2) are
defined as uniformly distributed.

Algorithm 1 sketches the main steps of the Label Propaga-
tion algorithm. Initially, the similarity matrix between all the
objects is computed (Line 1). The computation of the similarity
matrix is based on the euclidean distance measure. The graph-
based label propagation process requires the construction of the
kNN graph (Line 2) and its symmetry-favored transformation
(Line 3). After that, the algorithm computes the normalized
Laplacian of the matrix (Line 4) and the RMGT algorithm
is applied on such data matrix. Line 6 describes the decision
rule we adopted to perform the classification.



Algorithm 1 Object-Based Transductive Classification
Input: A collection of object O, with labeled objects L and unlabeled objects U (with

D = L ∪ U and L ∩ U = ∅); a set of labels C = {Cj}Mj=1 assigned to the
objects in L; a positive integer k for the neighborhood selection.

Output: A classification over C for the objects in U .
1: Build the similarity graph G for the object set O.
2: Extract the k-nearest neighbor graph Gk from G. /* Section II-B */
3: Build the matrix W from Gk , which represents the symmetry-favored k-nearest

neighbor graph. /* Section II-B */
4: Compute the normalized Laplacian of W. /* Section II-B */
5: Compute the RMGT solution F. /* Eq. (2) */
6: Assign object oi ∈ U to the class Cj∗ that maximizes the class likelihood, j∗ =

argmaxj Fij .

C. Active Learning

Active learning is getting more attention in the remote
sensing image classification domain as it helps to deal with
the time and effort consuming task of collecting a good quality
training set to build a classification model [4], [5]. The gen-
eral active learning loop [6] involves the interaction between
the classifier and the expert. Firstly a budget is defined. It
represents the percentage (or the number) of examples the
experts is willing to label. Then the active learning loop starts.
At each iteration the active learning procedure ranks the set
of unlabeled examples in order to promote in the rank the
more relevant ones to label. The rank is produced scoring
each example with its importance considering the current learnt
classifier. Once the rank is produced, the procedure chooses the
top objects (one or more) and provide them to the expert in
order to obtain the true labels. The new objects are added to
the current training set and the classifier is updated. The active
learning cycle stops when the budget is exhausted.

Different heuristics to score the examples were proposed
in the literature but in this work we chose the Margin-based
strategy [6]. This strategy considers the probability distribution
of a classifier cl on the example x over the possible set of
classes C and it is prone to select instances with minimum
margin between posterior probabilities of the two most likely
class labels. More formally, it is defined as follows:

Margin(x) = Pcl(x|Ci)− Pcl(x|Cj)

where Ci is the most probable class for the example x while
Cj is the second most probable class given the classifier cl.

Values of Margin(x) close to 0 indicates big uncertain on
x while values close to 1 underlines reliable confidence in
the prediction. In the active learning step, first the unlabeled
instances are ranked in ascending order w.r.t. their Margin
value, then the top n examples are supplied to the expert and
their true label is obtained. In our application we fixed the
number of examples at each loop equals to 20.

Considering our framework, we coupled the Margin-based
heuristic with Algorithm 1. Given an object to classify oi,
we employ the likelihood vector returned by RMGT (Fi)
as posterior probability distribution to implement the Margin-
based strategy.

III. EXPERIMENTS

A. Dataset Description

Experiments were performed on the Lower Aude Valley site,
located in the south of France. Spanning over a coastal wetland
area of about 4 842 ha, this site is part of the European network
of protection areas called Natura 2000. Most of the site (56.3
%) is composed of natural and semi-natural areas, specially
salt-meadows, salt-marshes and coastal lagoons. The rest of
the site (43.7 %) is principally occupied by agricultural parcels
(vineyards, cereal crops, orchards) and some small artificial
areas (roads, houses).

As input remote sensing data we have used a RapidEye
multispectral image (6.5 m of spatial resolution) acquired in
24 June 2009 and available in the context of the GEOSUD
project (France). The RapidEye image contains five spectral
bands (approximate center in nm): blue (475), green (555),
red (657), red-edge (710) and near-infrared (805). Image
segmentation was performed using the five spectral bands
and considering only the area inside the Lower Aude Valley
site. The segmentation task has created a set of 13,292 ob-
jects (using the multiresolution segmentation algorithm MSA
available at eCognition Developer 8.8.1). For each object we
have calculated the following attributes: mean value for the 5
spectral bands and 5 spectral indices (NDV I [15], NDV Ire
[7], [13], NDWIre [12], RTV Icore [3] and SR [11]).

Fig. 1. Land cover map for the Lower Aude Valley site (left side) and the
spatial distribution of the labeled objects (right side).

In parallel, the same RapidEye image was used to map
the whole Lower Aude Valley site. This task was carried out
through a manual land cover digitalization process at the scale
of 1:10,000. Field surveys and precise aerials photographs
(0.5 m of spatial resolution) were employed to ensure the
exactness of the land cover map. Each individual map unit
(polygons in our case) was labeled according to two specific
sets of land cover classes. The first set is specific to natural and
semi-natural areas (Natural set) while the second set concerns
artificial, cultivated and managed areas (Artificial set). Then,



the land cover map was superimposed on the set of objects in
order to propagate the land cover information. Only the objects
fitting completely inside the polygons of the map received the
land cover label (see figure 1). In total, 3 357 objects were
labeled for the Natural set and 3 637 for the Artificial set.

As the experiment reproduces a real task of land cover
object-based classification, the number of objects per class is
strongly unbalanced as one can notice in the following lists
(number of objects indicated in brackets).

Natural: NA1(264), NA2(760), NA3(1019), NA4(161),
NB1(253), NB2(155), NC1(529) and NC2(216).

Artificial: AA1(21), AA2(418), AB1(77), AC1(439),
AC2(277), AC3(658), AC4(542), AC5(209), AC6(75),
AC7(900) and AC8(21).

B. Experimental Setting

We compared our proposal with respect to state of the art
classification approaches. As competitors we used the Random
Forest Classifier (RF), the Support Vector Machine (SVM) and
the Naive Bayes approach (NB). For SVM we used Polynomial
kernel with exponent value equals to 8. We coupled each of the
previous classifiers with the same active learning strategy we
employed for ATL. This is done in order to fairly compare
our proposal with the competitors. We also investigated the
performance of the base Transductive Learner (TL) w.r.t. ATL
to highlight the benefit supplied by the Active Learning step.

For all the competitors we use the Weka1 implementation
with default setting. For the RMGT method we use a k value
equals to 15 for building the kNN graph.

We varied the training percentage (budget) between 2% to
40% in steps of 2%. The percentage indicates the proportion
of the original dataset employed as training set.

We evaluated the classification performance using the F-
Measure [8]. We used F-Measure instead of general accuracy
due to its ability to better describe classifier performance on
unbalanced dataset. We randomly initialised each classifier
with an object per class and then the active learning process
starts. For each pair ’classifier and training percentage’ we
reported the average results over 30 runs.

C. Experimental Results

Figure 2 and Figure 3 report the results over the Natural
and Artificial subsamples of the Lower Aude Valley site.

Considering the results on the Natural subsample reported
in Figure 2, we can observe that the general trend is that by
increasing the number of objects available in the training set
the performance increases. Comparing the different classifi-
cation methods we can observe that ATL outperforms all the
other competitors for all the values of training percentage. The
biggest gap between ATL and the other methods is obtained
for a training percentage of 4% where it obtains more than
4 points of F-Measure w.r.t. the Random Forest method. For
all the other values of training percentage the gain is always
around 1.5 or 3 points of F-Measure. The maximum value of

1http://www.cs.waikato.ac.nz/ml/weka/

F-Measure for our proposal (0.78) is reached for a training
percentage of 40%.

Figure 2(b) reports the performance of the Transductive
approach with and without Active Learning. We can observe
that for training percentages bigger than 8% ATL clearly
outperforms the simple Transductive Learner underlining that
building a training set guided by the classifier needs positively
influences the final performance. Regarding smaller training
percentages, we can note that the difference is very limited.
This fact points out that the benefit of Active Learning only
becomes evident when the size of training set exceeds a
minimum threshould, in our case around 8%.
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Fig. 2. Results of F-Measure a) All the different classification methods
coupled with Active Learning b) ATL vs TL over the Natural subsample of
Lower Aude Valley site.

Figure 3 reports the results of the different approaches over
the Artificial subsample of the Lower Aude Valley study area.

We can observe that, for percentage training smaller than
20%, SVM + AL obtains results that differ of 2 or 3 points
from ones reached by ATL . When the budget increases and
reaches values bigger than 20% the general trend changes,
ATL continues to improve its performance outperforming
SVM that remains stable. The maximum gap between ATL
and SVM is around 7 points achieved for a budget of 40%.

Comparing the performance of ATL w.r.t. Naive Bayes and
Random Forest we can note that, also in this case, ATL
outperforms both approaches. This experiment shows that for
reasonable amount of training percentage available (20%) the
ATL framework is able to clearly outperforms all the state of
the art methods.

Figure 3(b) shows the comparison between ATL and TL.
The behaviour of the two approaches follow the same trend
showed for the Natural Lower Aude Valley dataset. ATL



clearly outperforms TL for training percentage bigger than
8% while for lesser number of labeled instances ATL and
TL obtain comparable performance.
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Fig. 3. Results of F-Measure a) All the different classification methods
coupled with Active Learning b) ATL vs TL over the Artificial subsample
of Lower Aude Valley site.

To sum up the experimental section, the proposed approach
outperforms the competitors over both datasets considering a
reasonable amount of training data. It also shows a stable
behaviour w.r.t. all the other state of the art classification
methods usually employed for object-based image classifica-
tion over the considered remote sensing datasets. This result
can be explained considering the nature of the classifier.
Standard classification techniques employ inductive learning
where training and test examples are available at separate
time. Conversely, transductive learning assumes that training
and test data are available at the same time and they can be
exploited together to propagate class assignment from labeled
to unlabeled data. The unlabeled examples in the training time
allow the transductive learner to make an inference “from
particular to particular”. In the case of remote sensing datasets,
where training and test data are available at the same time, this
setting can be more adapt. The Active Transductive Learning
approach we have proposed also take advantage from the
Active Learning strategy to intelligently build the training set.

IV. CONCLUSION

In this letter we presented a new Active Transductive
Learning Framework that can efficiently deal with object-
based image classification. The proposed approach was exper-
imented on two remote sensing datasets coming from the same
study area (Lower Aude Valley). We compared our proposals
w.r.t. classification approaches usually employed in object-
based image classification. The quality of the obtained results

underlines the appropriateness of combining transduction and
active learning for the classification of remote sensing images.
As future work we would investigate more sophisticated ac-
tive learning techniques that employ diversity criteria in the
selection process to better exploit the structure of the data.
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Informa-
tion
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First Name: DINO

Personal Address:
204, rue Dante Alighieri,
34790 Grabels, France

Professional Address:
UMR TETIS
500 rue Jean-François Breton,
34090 Montpellier

Tel: +33 (0)4.67.55.86.12
Mail: dino.ienco@irstea.fr
Web Site: https://sites.google.com/site/dinoienco/
Citizenship: Italy
Date of Birth: 27/06/1982

Research
Interests

Methodology

Data mining, Supervised/Semi-Supervised/Unsupervised Learning, Feature Selection, Anomaly Detection,
Clustering, Associative Classification, Pattern mining, Graph Data Management

Data

Spatio-Temporal Data, Remote Sensing, Data Stream, Social Network, Text, RDF

Activity

Researcher (CR1) at IRSTEA, Montpellier, France
Associate Researcher in the Advanse Team, LIRMM, Montpellier, France
(from September 2011)

• Topic: Spatio-Temporal Data Mining

Post-Doc at CEMAGREF, Montpellier, France
(from February 2011 to August 2011)

• Topics: Geo-Spatial Data Mining, Sequence Mining

Post-Doc at University of Torino, Torino, Italy
Bioinformatic (from February 2010 until January 2011)

• BioBits project (Developing white and green biotechnologies by converging platforms from biology
and information technology towards metagenomics)

• Topics: Data Management with open sources platform (GMOD, GBROWSE), Clustering approaches
over genomes

Education

Ph.D. in Computer Science University of Torino, Torino, Italy (January 2010)

• Thesis Title: Unsupervised approaches for the generation of structures on large data
• Thesis Topic: Data Mining techniques to exploit hierarchical information from data
• Supervisor: Prof. Rosa Meo

M.S. in Computer Science University of Torino, Torino, Italy (September 2006)

• Thesis Topic: Data Mining application with emphasis on inductive database for sequence mining
• Supervisor: Prof. Marco Botta
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Invited
Talks • Tri-National Scientific Workshop Climate change: Observation, Analysis and Health Indonesia Thailand

France October 2015

+ Talk: Detecting spatiotemporal dynamics in satellite remote sensing time series: methodological ap-
proach combining OBIA and data mining techniques

• III School on Machine Learning and Knowledge Discovery in Databases - Sao Carlos - Brazil October
2014

+ Invited Lecture on Active Learning, From Pool-Based to Stream Setting

Visiting
Activities • Invited Visiting Researcher at USP, Sao Paolo, Brazil April 2016 (Duration: One Month)

+ Anomaly detection in heterogenous data

• Invited Visiting Researcher at CNR, Milano, Italy June 2014 (Duration: Two Weeks)

+ Spatio-Temporal Fuzzy Clustering

• Invited Visiting Researcher at the University of Waikato, Hamilton, New Zealand February - April 2013
(Duration: Three Months)

+ Active Learning for data stream
+ Concept drift and change detection in categorical stream data

• Internship at Yahoo Research Lab!, Barcelona, Spain November 2009 - January 2010 (Duration: Three
Months)

+ Social network analysis on the Meme Yahoo data

Scientific
Collabo-
rations • International:

• University of Torino (Dr. Ruggero Pensa and Prof. Rosa Meo) 2007 - Ongoing.
Study and development of new distance-based data mining approaches to deal with both categor-
ical and textual data. In these scenarios distance computation can be negatively influenced by
high-dimensionality (textual data [Ienco13j], [Pensa14j]) or unclear distance metric (categorical data
[Ienco12j] and [Ienco16aj]).

• Yahoo Research Lab. (Researcher Francesco Bonchi) 2009 - 2011.
This collaboration was devoted to study and evaluate how the information spreads on real world social
media considering both topological and content information [Bonchi13j].

• University of Bari (Prof. Donato Malerba) 2012 - Ongoing.
Study and Developing data mining approaches to mine useful correlations over relational data with a
particular emphasis on gradual patterns [Phan15].

• Stony Broke University (Dr. Leman Akoglu) 2014
This collaboration was focused on the inspection and implementation of new community detection
methods in the context of complex graph such as multilayer network [Papalexakis13].

• University of Waikato (Prof. Bernhard Pfahringer) 2013 - 2014
Study and development new data stream classification algorithms with a particular emphasis on active
learning strategies. Active learning is useful to reduce the costly and tedious task of data labeling
needed to constitute the train data and, in the case of data stream, not always feasible [Ienco13b],
[Ienco14a] and [Ienco14b].

• Center for National Research Italy - CNR (Researcher Gloria Bordogna) 2014 - Ongoing.
Design and development of new spatio-temporal clustering methods with a particular emphasis on
approaches able to exploit domain knowledge specified as fuzzy constraints [Bordogna14] and [Ar-
caini16j].

• University of Calabria (Dr. Andrea Tagarelli) 2014 - Ongoing.
Study and development of semantic-based textual representation for multilingual document collection.
We exploit multilingual knowledge-bases to model and represent documents written in different lan-
guages. This new representation allows standard data mining techniques to cope with the language
heterogeneity in comparable corpora [Romeo14a], [Romeo14b] and [Romeo15].
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• University of Sao Paolo (USP) (Prof. André Carvalho Ponce de Leon) 2014 - Ongoing.
Design and develop new anomaly detection methods especially tailored to deal with data represented
by mixed attributes (numerical and categorical).

Supervised
Students

• PhD Students

• Hai Phan Nhat (percentage of supervision 40%) - Mining Object Movement Patterns from Trajectory
Data, PhD founded by CNRS/Irstea, University of Montpellier 2 Defended October 2013. Co-
Supervised with Dr. Maguelonne Teisseire (Irstea) and Prof. Pascal Poncelet (LIRMM). Current
situation : post-doc at Oregon University, USA.

• Salvatore Romeo (percentage of supervision 40%) - Multi-topic and Multilingual Document Clustering
via Tensor Modeling, PhD founded by Italian Ministry of Education, University of Calabria Defended
March 2015. Co-supervised with Dr. Andrea Tagarelli (Univ. of Calabria). Current situation:
post-doc at QCRI, Qatar.

• Vijay Ingalalli (percentage of supervision 50%) - Multigraph Query and Mining with Applications to
Remote Sensing Images, PhD founded by NUMEV/Irstea, University of Montpellier, February 2014
Ongoing. Co-Supervised with Prof. Pascal Poncelet (LIRMM).

• Lionel Pribel (percentage of supervision 30%): Detection of urban objects from heterogenous data
sources, PhD founded by CIFRE (company Berger-Levrault), University of Montpellier, September
2015 - Ongoing. Co-Supervised with Dr. Marc Chaumont (LIRMM) and Dr. Gerard Subsol (LIRMM).

• Lynda Khiali (percentage of supervision 50%): Mining spatio-temporal data from large volumes
of satellite images, PhD founded by AVERROES, UMR TETIS, September 2015 - Ongoing. Co-
Supervised with Dr. Maguelonne Teisseire (Irstea).

• Post-docs

• Fabio Güttler (percentage of supervision 40%) - Approaches to mine and describe time series of
remote sensing satellite images , Post-doc, founded by Equipex GEOSUD, June 2013 - December 2014
Co-Supervised with Dr. Maguelonne Teisseire (Irstea) and Prof. Pascal Poncelet (LIRMM). Current
situation: post-doc at University of Strasbourg.

• Master Students

• Mykael Vigo Twitter Event Detection and Modeling with TEWS, Master IPS (Informatique Pour les
Sciences), University of Montpellier, 2015. Co-Supervised with Dr. Konstantin Todorov (LIRMM)
and Prof. Zohra Bellahsene (LIRMM).

• Lionel Pibrel Deep Learning approaches for Steganalysis, Master DECOL (Données, Connaissances
et Langage Naturel), University of Montpellier, 2015. Co-Supervised with Dr. Marc Chaumont
(LIRMM).

• Denis Redondo Layer-Centered Approach for Multigraphs Visualization , Master Stic Santé, Univer-
sity of Montpellier, 2014. Co-Supervised with Dr. Arnaud Sallaberry (LIRMM) and Prof. Pascal
Poncelet (LIRMM).

• Manel Achichi Towards Linked Data Extraction From Tweets, Master DECOL (Donnes, Connais-
sances et Language Naturel), University of Montpellier, 2014. Co-Supervised with Dr. Konstantin
Todorov (LIRMM) and Prof. Zohra Bellahsene (LIRMM).

Projects

• DyNAmiTeF CNES-Tosca project (2016-2017) DyNAmiTeF : DyNAmique des milieux NATurels par
télédétection et Fouille de données (22k euros). Scientific Advisor.

• JVWEB (2013-2014) Aide à la faisabilité technologique (30k euros). Consulting about machine learning
approaches for data stream. Co-supervised with Prof. Jerome Azé (LIRMM), Dr. Sandra Bringay
(LIRMM) and Prof. Pascal Poncelet (LIRMM).

• AE RMC (2013-2015) Caractérisation des pressions agricoles par lutilisation de linformation spatialisée
et de méthodes de fouilles de donnes - Modélisation pression / impacts pour la qualité des cours deau (67k
euros - founded by the Water Agency). Scientific Co-Advisor with Dr. Maguelonne Teisseire (IRSTEA).

• ANR FRESQUEAU (2011-2015) Fouille de données pour l’évaluation et le suivi de la qualité hydrobi-
ologique des cours d’eau (851K euros). Member of the project.
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• EQUIPEX GeoSud (2011-2019) Infrastructure nationale dimagerie satellitaire pour la recherche sur
lenvironnement et les territoires et ses applications la gestion et aux politiques publiques (21M euros).
Participant through the supervision of a post-doc fellowship, Dr. Fabio Güttler, Co-Supervised with Prof.
Pascal Poncelet (LIRMM) and Dr. Maguelonne Teisseire (IRSTEA).

Service
and Vol-
unteer
Activities

International Conferences (Program Committee)
• ACML - Asian Conference on Machine Learning (2013, 2014, 2015)
• ACM SAC Track on Information Retrieval (2014, 2015)
• ECML/PKDD - European Conference on Machine Learning/Principle and
Practice of Knowledge Discovery from Data (2013, 2014, 2015)
• IJCAI - International Joint Conference on Artificial Intelligence (2013)
• ICDM - IEEE International Conference on Data Mining (2013, 2014, 2015)
• ECML/PKDD-DyNak 2010 - Workshop on Dynamic Networks and Knowledge Discovery Discovery
• IEEE DSAA - Int. Conf. on Data Science and Adv. Analytics (2015)
• ISCIS - International Symposium on Computer and Information Sciences (2013)
• KDIR - International Conference on Knowledge Discovery and Information ReTrieval (2013)
• NLDB Natural Language and DataBase (2014)

International Journals (Reviewer)
• Machine Learning Journal, Springer (2014, 2015)
• Data Mining and Knowledge Discovery, Springer (2013, 2014, 2015)
• Applied Soft Computing, Elsevier (2014)
• ACM Transaction on Intelligent Systems and Technology (2013)
• Information System, Elsevier (2014)
• ACM Transaction on Multimedia (2013)
• IDA Journal - IOS Press (2013)
• International Journal of Computers and Applications, actapress (2013)
• IEEE Transactions on Multimedia (2013)
• IJITDM - International Journal of Information Technology And Decision Making (2013, 2014)
• IEEE TKDE Transaction on Knowledge and Data Engineering (2013, 2014, 2015)
• ACM TKDD Transaction on Knowledge Discovery from Data (2014)
• Neurocomputing, Elsevier (2014, 2015)
• Theoretical Computer Science, Elsevier (2014)
• KAIS - Knowledge and Information Systems, Springer (2016)

Phd Thesis Reviewer

• Reviewer of the PhD Thesis of Lucrezia Macchia: Learning to Rank from Dynamic Network (University
of Bari, Italy), 2014

Workshop Organization

• Artificial Intelligence meets the Web of Data at European Conference on Artificial Intelligence (ECAI)
2012 co-chaired with Cristophe Gueret, Francois Scharffe and Serena Villata

• Artificial Intelligence meets the Web of Data at European Semantic Web Conference (ESWC) 2013 co-
chaired with Cristophe Gueret, Francois Scharffe and Serena Villata

• Modeling, Learning and Mining for Cross/Multilinguality (MultiLingMine) at European Conference on
Information Retrieval (ECIR) 2016 co-chaired with Salvatore Rome, Andrea Tagarelli, Mathieu Roche
and Paolo Rosso

Teaching
activity Considering my teaching activities, I am involved in the Computer Science Master program at the University

of Montpellier in DECOL and IPS programs. My implication in the Master programs are related to Data
Mining and Machine Learning classes in which the base notion of these research fields are taught considering
both lecture (CM, TD) and practice (TP) interventions.
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Classes University Level Year Hours
Fouille de données Univ. of Montpellier, France Master 1 - IPS 2015/2016 12h
ECD Univ. of Montpellier, France Master 1 - DECOL 2015/2016 10h
ECA Univ. of Montpellier, France Master 2 - DECOL 2015/2016 15h

Fouille de données Univ. of Montpellier, France Master 1 - IPS 2014/2015 12h
ECD Univ. of Montpellier, France Master 1 - DECOL 2014/2015 19h
ECA Univ. of Montpellier, France Master 2 - DECOL 2014/2015 13h
Active learning Univ. of Sao Paolo, Brazil Summer School 2014 3h

ECD Univ. of Montpellier, France Master 1 IPS 2013/2014 3h
ECA Univ. of Montpellier, France Master 2 - DECOL 2013/2014 20h

ECD Univ. of Montpellier, France Master 1 - IPS 2012/2013 10h

ECD Univ. of Montpellier, France Master 1 - IPS 2011/2012 15h
BD Univ. of Montpellier 2 , France Licence 2 2011/2012 33h

Publications

JOURNALS

[Ienco16aj] D. Ienco and R.G. Pensa Positive and unlabeled learning in categorical data Neurocomputing -
Accepted for Publication, pp. 1-24 (2016).

[Ienco16bj] D. Ienco, R.G. Pensa and R. Meo A Semi-Supervised Approach to the Detection and Character-
ization of Outliers in Categorical Data Transaction on Neural Network and Learning Systems - Accepted
for Publication, pp. 1-13.

[Güttler16j] F. Güttler, D. Ienco, P. Poncelet and M. Teisseire Combining Transductive and Active Learning
to Improve Object-based Classification of Remote Sensing Images Remote Sensing Letters - Accepted for
Publication, pp. 1-10 (2016).

[Arcaini16j] P. Arcaini, G. Bordogna, D. Ienco and S. Sterlacchini User-driven geo-temporal density-based
exploration of periodic and not periodic events reported in social networks Information Sciences - Accepted
for Publication, pp. 1-33 (2016).

[Berrahou15j] S. L. Berrahou, N. Lalande, E. Serrano, G. Molla, L. Berti-Équille, S. Bimonte, S. Bringay,
F. Cernesson, C. Grac, D. Ienco, F. Le Ber and M. Teisseire A quality-aware spatial data warehouse for
querying hydroecological data Computers & Geosciences, 85: 126-135 (2015).

[Pitarch15j] Y. Pitarch, D. Ienco, E. Vintrou, A. Bégué, A. Laurent, P. Poncelet and M. Teisseire Spatio-
Temporal Data Classification through multi-dimensional sequential patterns: application to food risk anal-
ysis Engineering Application of Artificial Intelligence (EAAI), 37: 91-102 (2015).

[Egho14j] E. Egho, N. Jay, D. Ienco, C. Raissi, P. Poncelet, M. Teisseire and A. Napoli A contribution to
the discovery of multidimensional patterns in healthcare trajectories. Journal of Intelligent Information
Systems (JIIS), 42(2): 283-305 (2014).

[Pensa14j] R.G. Pensa, D. Ienco and R. Meo Hierarchical Co-Clustering: Off-line and Incremental Ap-
proaches Data Mining and Knowledge Discovery Journal (DAMI), 28(1): 31-64 (2014).

[Vintrou13j] E. Vintrou, D. Ienco, A. Begue and M. Teisseire. Data mining, a promising tool for large area
cropland mapping IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,
6(5): 2132-2138 (2013).

[Bonchi13j] F. Bonchi, C. Castillo and D. Ienco Meme Ranking to Maximize Posts Virality in Microblogging
Platforms Journal of Intelligent Information System (JIIS), 40(2): 211-239 (2013).

[Ienco13j] D. Ienco, C. Robardet, R. G. Pensa and R. Meo Parameter-Less Co-Clustering for Star-Structured
Heterogeneous Data Data Mining and Knowledge Discovery Journal (DAMI), 26(2): 217-254 (2013).

[Ienco12j] D. Ienco, R.G. Pensa and R. Meo. From Context to Distance: Learning Dissimilarity for Cate-
gorical Data Clustering ACM Transaction on Knowledge Discovery from Data (TKDD), 6(1): 1-29 (2012).
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[Meo12j] R. Meo, D. Bachar and D. Ienco A distance-based classifier built on ensembles of positive and
negative observations Pattern Recognition, 45(4): 1409-1425 (2012).

[Bonfante11j] P. Bonfante , F. Cordero , S. Ghignone , D. Ienco , L. Lanfranco, G. Leonardi, R. Meo, S.
Montani, L. Roversi, and A. Visconti A Modular Database Architecture Enabled to Comparative Sequence
Analysis LNCS Transactions on Large-Scale Data and Knowledge-Centered Systems, Springer, 124-147
(2011).

CHAPTER IN BOOKS

[Visconti12] A. Visconti, F. Cordero, D. Ienco and R.G. Pensa. Coclustering under Gene Ontology derived
Constraints for Pathway Identification. Biological Knowledge Discovery Handbook: Preprocessing, Mining
and Postprocessing of Biological Data, M. Elloumi and A.Y. Zomaya (Eds). Wiley, USA. pp. 625-642,
2012.

[Meo09] R. Meo and D. Ienco Replacing Support in Association Rule Mining invited chapter in Rare Asso-
ciation Rule Mining and Knowledge Discovery: Technologies for Infrequent and Critical Event Detection,
Yun Sing and Nathan Rountree (ed.), Advances in Data Warehousing and Mining Book Series, IGI Global
publisher, 2009. ISBN: 1935-2646.

INTERNATIONAL CONFERENCES

[Bourqui16] R. Bourqui, A. Sallaberry, D. Ienco and P. Poncelet Multilayer Graph Edge Bundling, IEEE
Pacific Visualization 2016 (PacificVis16), pp. 1-5.

[Ingalalli16] V. Ingalalli, D. Ienco, P. Poncelet and S. Villata Querying RDF Data Using A Multigraph-based
Approach, International Conference on Extending Database Technology (EDBT16), pp. 1-12.

[Redondo15] D. Redondo, A. Sallaberry, D. Ienco, F. Zaidi and P. Poncelet Layer-Centered Approach for
Multigraphs Visualization, Information Visualisation Theory And Practice (IV15), pp. 50-55.

[Phan15] H. Phan Nhat, D. Ienco, D. Malerba, P. Poncelet and M. Teisseire. Mining Multi-Relational
Gradual Patterns, Siam on Data Mining (SDM15), pp. 846-854

[Romeo15] S. Romeo, D. Ienco and A. Tagarelli. Knowledge-based Representation for Transductive Multi-
lingual Document Classification, European Conference on Information Retrieval (ECIR15), pp. 92-103.

[Romeo14a] S. Romeo, A. Tagarelli and D. Ienco. Clustering View-Segmented Documents via Tensor Mod-
eling, International Symposium on Methodologies for Intelligent Systems (ISMIS14), pp. 385-394.

[Romeo14b] S. Romeo, A. Tagarelli and D. Ienco. Semantic-Based Multilingual Document Clustering via
Tensor Modeling, Conference on Empirical Methods in Natural Language Processing (EMNLP14), pp.
600-609.

[Bordogna14] D. Ienco and G. Bordogna Fuzzy Core DBScan Clustering Algorithm, Information Processing
and Management of Uncertainty in Knowledge-Based Systems (IPMU14), pp. 100-109.

[Güttler14a] F. Güttler, Dino Ienco, Maguelonne Teisseire, Jordi Nin, Pascal Poncelet Towards the Use
of Sequential Patterns for Detection and Characterization of Natural and Agricultural Areas, Information
Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU14), pp. 97-106.

[Güttler14b] F. Güttler, S. Alleaume, C. Corbane, D. Ienco, J. Nin, P. Poncelet and M. Teisseire. Exploring
high repetitivity remote sensing time series for mapping and monitoring natural habitats - a new approach
combining OBIA with K-Partite Graph, IEEE International Geoscience and Remote Sensing Symposium
(IGARSS14), pp. 3930-3933.
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[Ienco14a] D. Ienco, A. Bifet, B. Pfahringer and P. Poncelet Change Detection in Categorical Evolving Data
Streams, ACM Symposium of Applied Computing (SAC14), pp. 792-797.

[Ienco13a] D. Ienco, Y. Pitarch, P. Poncelet and M. Teisseire Knowledge-free Table Summarization, Inter-
national Conference on Data Warehousing and Knowledge Discovery (DAWAK13), pp. 122-133.

[Ienco13b] D. Ienco, A. Bifet, I. Zliobaitè and B. Pfahringer Clustering based Active Learning for Evolving
Data Streams, Discovery Science (DS13), pp. 79-93.

[Papalexakis13] E. E. Papalexakis, L. Akoglu and D. Ienco. Do more views of a graph help? Community
Detection and Clustering in Multi-Graphs, IEEE International Conference on Information Fusion (FU-
SION13), pp. 899-905.

[Phan13] H. Phan Nhat, D. Ienco, P. Poncelet and M. Teisseire. Mining Representative Movement Patterns
through Compression, Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD13), pp.
314-326.

[Phan12a] H. Phan Nhat, D. Ienco, P. Poncelet and M. Teisseire. Mining Time Relaxed Gradual Moving
Object Clusters, ACM SIGSPATIAL International Conference on Advances in Geographic Information
Systems (ACM GIS12), pp. 478-481.

[Phan12b] H. Phan Nhat, D. Ienco, P. Poncelet and M. Teisseire. Mining Fuzzy Moving Object Clusters,
International Conference on Advanced Data Mining and Applications (ADMA12), pp. 100-114.

[Loglisci12] C. Loglisci, D. Ienco, M. Roche, M. Teisseire and D. Malerba An Unsupervised Framework for
Topological Relations Extraction from Geographic Documents, International Conference on Database and
Expert Systems Applications (DEXA12), pp. 48-55.

[Ienco12] D. Ienco, Y. Pitarch, P. Poncelet and M. Teisseire Towards an Automatic Construction of Contex-
tual Attribute-Value Taxonomies, ACM Symposium on Applied Computing, Data Mining Track (SAC12),
pp. 113-118.

[Spinella11] S. Spinella, E. Sciacca, D. Ienco and P. Giannini Annotated Stochastic Context Free Grammars
for Analysis and Synthesis of Proteins, Eur. Conf. on Evolutionary Computation, Machine Learning and
Data Mining in Bioinformatics (EVOBIO11), pp. 77-88.

[Boella11] G. Boella, S. Colombo Tosatto, A. d’Avila Garcez, V. Genovese, D. Ienco and L. van der Torre
Neural Symbolic Systems for Normative Agents , International Conference on Autonomous Agents and
Multiagent Systems (AAMAS11), pp. 1203-1204.

[Cordero09] F. Cordero, R.G. Pensa, A. Visconti, D. Ienco, M. Botta. Ontology-driven Coclustering of Gene
Expression Data, Conference of the Italian Association for Artificial Intelligence (AI*IA09), pp. 426-435.

[Ienco09a] D. Ienco, R.G. Pensa and R. Meo. Parameter-free Hierarchical Co-Clustering by N-Ary Splits, Eu-
ropean Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases
(ECML-PKDD09), pp. 580-595.

[Ienco09b] D. Ienco, R.G. Pensa and R. Meo. Context-based Distance Learning for Categorical Data Clus-
tering, Symposium on Intelligent Data Analysis (IDA09), pp. 83-94.

[Ienco08a] D. Ienco, R. Meo. Towards Automatic Construction of Conceptual Taxonomies, International
Conference on Data Warehousing and Knowledge Discovery (DAWAK08), pp. 327-336.

[Ienco08b] D. Ienco, S. Villata and C. Bosco. Subcategorization frame extraction for Italian, Language
Resources Evaluation Conference (LREC08).

[Ienco08c] D. Ienco, R. Meo. Exploration and Reduction of the Feature Space by Hierarchical Clustering,
SIAM International Conference on Data Mining (SDM08), pp. 577-587.
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NATIONAL CONFERENCES

[Ingalalli15nc] V. Ingalalli, D. Ienco and P. Poncelet SuMGRA: On Querying Large Graphs with Multiple
Relationships Conférence sur la Gestion de Données Principes, Technologies et Applications (BDA15).

[Ienco14nc] D. Ienco, A. Bifet, B. Pfahringer and P. Poncelet Détection de changements dans des flots de
données qualitatives Conference Internationale Francophone sur l’Extraction et la Gestion de Connaissance
(EGC14).

[Ienco12nc] D. Ienco, Y. Pitarch, P. Poncelet and M. Teisseire Vers une methode automatique pour la con-
struction de hirarchies contextuelles Conference Internationale Francophone sur l’Extraction et la Gestion
de Connaissance (EGC12).

[Ienco09nc] D. Ienco, R. Meo. Distance based Clustering for Categorical Data Italian Symposium on Ad-
vanced Database Systems (SEBD09).

[Ienco08anc] D. Ienco, R. Meo. Clustering the Feature Space Italian Symposium on Advanced Database
Systems (SEBD08).

[Ienco08bnc] D. Ienco, R. Meo, M. Botta. Using PageRank in Feature Selection Italian Symposium on
Advanced Database Systems (SEBD08).

INTERNATIONAL WORKSHOPS AND DEMOS

[Vigo15] M. Vigo, Z. Bellahsene, D. Ienco and K. Todorov Twitter Event Detection and Modeling with
TEWS International Semantic Web Conference - Demo (ISWC15).

[Pensa14] R.G. Pensa and D. Ienco Learning from Categorical Attribute Relationships for Positive-Unlabeled
Classification European Conference on Machine Learning and Principles and Practice of Knowledge Dis-
covery in Databases (RL14@ECML-PKDD14).

[Ienco14b] D. Ienco, I. Zliobaite and B. Pfahringer High density-focused uncertainty sampling for active
learning over evolving stream data ACM KDD Conference (BigMine14@KDD14)

[Loglisci12] C. Loglisci, D. Ienco, M. Roche, M. Teisseire and D. Malerba Toward Geographic Information
Harvesting: Extraction of Spatial Relational Facts from Web Documents ICDM IEEE Workshop Spatial
and Spatio-Temporal Data Mining (SSTDM12@ICDM12).

[Egho12] E. Egho, D. Ienco, N. Jay, A. Napoli, P. Poncelet, C. Quantin, C. Raissi and M. Teisseire Healthcare
Trajectory Mining by Combining Multi-dimensional Component and Itemsets European Conference on
Machine Learning and Principles and Practice of Knowledge Discovery in Databases (NFMCP@ECML-
PKDD12).

[Phan12] N. H. Phan, D. Ienco, P. Poncelet, and M. Teisseire Extracting Trajectories through an Efficient
and Unifying Spatio-Temporal Patten Mining System European Conference on Machine Learning and
Principles and Practice of Knowledge Discovery in Databases - Demo (ECML-PKDD12).

[Ienco10] D. Ienco, F. Bonchi, C. Castillo. The Meme Ranking Problem: Maximizing Microblogging Virality
ICDM IEEE Workshop on Social Interactions Analysis and Service Providers - (SIASP10@ICDM10).

Patents

• R. Cezar, D. Ienco, A. Mas, F. Masseglia, P. Poncelet, P. Pudlo, E. Szekely, M. Teisseire and J.P.
Vendrell. ”(WO2014118343) PROCESS FOR IDENTIFYING RARE EVENTS”. International Patent,
PCT/EP2014/051963, 2014.
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