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Résumé

La France dispose d’un important parc d’ouvrages hydrauliques avec plus
de 19 000 km de digues fluviales et maritimes, plusieurs dizaines de mil-
liers de petits barrages, et environ 600 grands barrages. Ces ouvrages sont
pour la plupart construits à base de matériaux granulaires compactés. Ce
mode constructif en fait des ouvrages perméables qui sont par conséquent
soumis en permanence à des écoulements d’eau dans leur volume pouvant
altérer leur structure interne par érosion. Tant que les ouvrages endomma-
gés ne sont pas soumis à aux chargements hydrauliques intenses pour lequels
ils ont été dimensionnés (crues ou tempêtes par exemple), les conséquences
de l’érosion interne peuvent passer inaperçues. Cependant, ces infiltrations
d’eau sont susceptibles de générer des instabilités mécaniques responsables de
ruptures inattendues lors de brusques modifications des conditions de char-
gement. Aujourd’hui, on observe en moyenne une rupture de digue par an
en France, dont 45 % sont attribuées à l’érosion interne. Dans un contexte
de changement climatique où la fréquence et l’intensité des tempêtes et de
crues ne cessent d’augmenter, la compréhension des mécanismes de ruptures
dans les digues et les barrages devient un enjeu de plus en plus important.

Localement, on distingue quatre types d’érosion interne : l’érosion de
conduite, l’érosion régressive, l’érosion de contact et la suffusion. Ce dernier
mécanisme, qui se définit par l’érosion sélective des plus petites particules
d’un sol, est le seul pour lequel il n’existe aucune recommandation pratique
pour prévenir de son occurrence. Cette thèse est consacrée à l’analyse des in-
stabilités dans les matériaux granulaires soumis au phénomène de suffusion.
Les objectifs de ce travail sont d’une part de comprendre les mécanismes
élémentaires responsables des instabilités matérielles dans les matériaux gra-
nulaires et d’autre part de relier les changements de microstructure induits
par un écoulement interne à l’existence de telles instabilités mécaniques.

Pour atteindre ces objectifs, une approche par homogénéisation est propo-
sée. Elle consiste à prendre en compte la nature discrète des matériaux granu-
laires à l’échelle microscopique tout en considérant un nombre suffisamment
important de grains pour être représentatif du comportement macroscopique.
Le comportement mécanique de tels volumes élémentaires représentatifs peut
alors être simulé grâce à une modélisation par éléments discrets permettant
de rendre compte des interactions inter-grains, et un schéma de couplage
fluide/grains. Grâce à des outils micromécaniques basés sur la définition de
chaînes de force et de réseaux de pores, une première étape de ce travail de
recherche permet de valider le caractère représentatif des échantillons granu-
laires utilisés vis-à-vis des mécanismes élémentaires de la suffusion.

Le cadre théorique général du travail du second-ordre est ensuite utilisé
pour détecter l’existence d’instabilités mécaniques à l’échelle du point maté-
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riel. Dans cette seconde étape, le couplage direct fluide/grains est ignoré pour
se focaliser sur la mise en évidence des liens micro macro entre évolutions mi-
crostructurelles et leurs interprétations en termes d’instabilités mécaniques à
l’échelle du milieu continu homogène équivalent. Nous avons montré que les
instabilités observées résultent du déconfinement et de la flexion des chaînes
de force. Leur effondrement déclenche une transition inertielle qui se traduit
par un adoucissement transitoire. Ce régime dynamique prend fin lorsque
la réorganisation de la microstructure permet de reconstruire de nouvelles
chaînes de force stables. D’un point de vue macroscopique, ces réorgani-
sations microstructurelles s’interprètent comme des déformations plastiques
incrémentales. Grâce à l’utilisation d’une formulation non-associée du com-
portement élasto-plastique incrémental des matériaux granulaires, nous avons
établi que l’intensité et la direction des incréments de déformation plastique
pilotent l’existence d’instabilités mécaniques. En contrôlant le développement
des déformations plastiques incrémentales, les particules libres jouent un rôle
clé vis-à-vis de la stabilité mécanique des matériaux granulaires. Les parti-
cules libres étant aussi facilement transportables et érodables, ce résultat est
d’autant plus important lorsque l’on s’intéresse à la suffusion.

Dans cette troisième étape, l’impact d’un écoulement interne sur la mi-
crostructure de matériaux granulaires est examiné en trois dimensions grâce
à des simulations numériques intégrant un couplage complet avec le fluide.
L’impact du fluide est double. D’abord, en introduisant des forces addition-
nelles, un écoulement interne génère une réorganisation de la transmission des
efforts dans le squelette granulaire. Pour des matériaux instables, la réorga-
nisation des contraintes locales peut suffire à provoquer la rupture globale du
matériau. Dans ce processus, l’importance des fluctuations des forces fluides
est soulignée, et comme pour le cas sec, les chaînes de force se retrouvent
déconfinées et fléchissent en même temps que le matériau s’effondre sur lui-
même. Le second impact du fluide concerne le transport des particules libres.
De manière cohérente avec le rôle stabilisateur des particules libres, il est
montré que lorsque le colmatage est prépondérant vis à vis de l’érosion, un
écoulement interne est capable de restabiliser un matériau granulaire initia-
lement instable au sens du critère du travail du second-ordre.

Mots clés : Instabilités mécaniques, matériaux granulaires, suffusion,
DEM, PFV, micromécanique, travail du second-ordre, chaînes de force, ré-
seaux de pores, érosion, colmatage.



Abstract

France owns a significant stock of hydraulic structures with more than 19,000
km of river and maritime dikes, several tens of thousands of small embank-
ment dams and approximately 600 large dams. These hydraulic structures
are most of the time built of granular compacted materials and are thus
generally permeable. As a result, they are continuously subjected to inter-
nal fluid flows that can affect their internal structure through erosion. As
long as the damaged structures are not subjected to the intense hydraulic
loadings they are designed to resist to (flooding or storms for instance), the
consequences of internal erosion are likely to remain unnoticed. However,
internal fluid flows may generate mechanical instabilities that will lead to
unexpected failures in case of sudden changes in the loading conditions. To-
day in France a yearly average of one dike failure is observed, with 45 % of
the failures attributed to internal erosion. In a context of climate change in
which the frequency and the intensity of storms and river floods increase,
the understanding of dike and dam failure mechanisms has become a major
issue.

Locally, internal erosion may be decomposed into four mechanisms: pip-
ing erosion, regressive erosion, contact erosion and suffusion. The latter,
that consists in the selective erosion of the finest particles of a soil, is still
the only one for which no practical recommendations have been proposed
yet to prevent its occurrence. This PhD work is devoted to the analysis of
instabilities in saturated granular materials subjected to internal fluid flows.
The objectives of this work are i) to understand the elementary mechanisms
responsible for material instability in granular materials and ii) to link flow
induced microstructure modifications to the existence of such mechanical
instabilities.

To achieve this, a homogenization approach is proposed. This consists
in accounting for the discrete nature of granular materials at the microscale
while considering a sufficiently large number of grains to be representative of
the macroscopic behavior. The mechanical behavior of such representative
elementary volumes can be simulated thanks to a discrete element method to
account for the grain/grain interactions, and a fluid/grain coupling scheme.
Taking advantage of micromechanical tools based on the definition of force
chains and pore networks, the representativeness of numerical samples with
respect to suffusion elementary mechanisms is assessed in the first step of
this research work.

The general theoretical framework of the second-order work is then used
to detect the existence of instabilities at the material point scale. In this
second step, fluid/grain coupling is left aside to focus on the derivation of
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micro to macro links between discrete evolutions of the microstructure and
the associated continuum scale interpretations in terms of material stability.
It is shown that instabilities result from the unjamming and bending of force
chains. Force chain collapse results in an inertial transition characterized by
a transient softening. This dynamic regime ends when microstructure reor-
ganizations enable to build new stable force chains. At the macroscale, these
rearrangements can be interpreted in terms of incremental plastic strains.
Thanks to a non-associated elasto-plastic formulation of the constitutive be-
havior of granular materials, the intensity and the direction of incremental
plastic strains are shown to drive the existence of mechanical instability. By
controlling the development of incremental plastic strains, rattlers play a ma-
jor role in the mechanical stability of granular materials. This key finding is
of a particular significance in relation with suffusion as rattlers are privileged
candidates to erosion.

The impact of an internal fluid flow on the microstructure of granular
materials is eventually investigated numerically from fully coupled three di-
mensional simulations. The impact of the fluid is twofold. First, by intro-
ducing additional forces, an internal fluid flow induces stress reorganization
in the primary fabric of granular materials. For unstable materials, these
stress reorganizations can lead to material failure. In this process, the im-
portance of fluid forces fluctuations is highlighted and as for the dry case,
force chain deconfinement and bending occur together with the collapse. The
second fluid impact concerns the transport of rattlers. Consistent with the
stabilizing role played by rattlers, it is shown that, when clogging dominates
over erosion, an internal fluid flow is able to restabilize unstable granular
materials in the sense of the second-order work criterion.

Key words: mechanical instabilities, granular materials, suffusion, DEM,
PFV, micromechanics, second-order work, force chains, pore networks, ero-
sion, clogging.
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Chapter 1

Introduction

1.1 General context of dike and dam failures . . . . . 1

1.2 Internal erosion and the particular case of suffusion 2

1.3 Justification for a numerical homogenization ap-
proach of suffusion . . . . . . . . . . . . . . . . . . . 5

1.4 Outline and structure of the present work . . . . 7

1.1 General context of dike and dam failures

Water is in the meantime a vital natural resource and a source of important
natural hazards. Nearly every human settlement developed in close connec-
tion to a river, and a significant proportion of the world population live by
the seaside. However, these locations are also very sensitive to many kinds
of natural hazards such as flooding or marine submersions. As a result, pro-
tective structures such as river or maritime dikes are commonly found and
are essential to protect all these urbanized areas.

The example of The Netherlands is quite representative of the issues at
stake as two thirds of the country could disappear in case of flooding or
marine submersion. For a slightly larger country, France owns a significant
stock of hydraulic structures. The linear length of dikes is indeed equivalent
to 13 times the largest dimension of its territory, with more than 9,000 km
of protection against flooding, 1,000 km of maritime dikes, 8,000 km of dikes
for navigation canals and 1,000 km of hydroelectric canals (Bonelli, 2012).
In total, this represents half of the earth circumference with 19,000 km. In
addition to these elongated structures, several tens of thousands of small
embankment dams (smaller than 15 m) and approximately 600 large dams
are found in France.

These hydraulic structures whose primary function is to retain or trans-
port water are essential for all sorts of human activities. However, as they
are built to constraint water to flow in a counter natural direction, they must
constantly resist the fluid flow which will take advantage of any fault in order
to break loose. If the fluid does not succeed in the short term, in the long
term these hydraulic structures are slowly but surely eroded. Similarly to
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2 CHAPTER 1. INTRODUCTION

dikes of sand built by kids on beaches, without a constant care and regular
reinforcements, they will eventually fail.

Dams and dikes are either built of natural compacted materials or of
manufactured materials such as masonry or concrete. Because earthen hy-
draulic structures are much more permeable, they are more at risk. However,
they are far more economical than their concrete counterparts. As a result,
the great majority of dikes and some dams are built with natural compacted
materials. For these earthen structures, statistics show that 90 % of the ob-
served failure are caused by erosion (Bonelli, 2012). Between 1971 and 1995
in France, 71 incidents including 23 failures have been reported on only 550
large dams, a few thousands of small dams and only 1,000 km of dikes. Nowa-
days, an average of one failure per year is still observed in France (Arroux in
2001, Montambert in 2002, North canal in 2003, Rhine Rhone canal in 2005,
Roanne canal in 2007, Xynthia in 2010, Ouches in 2013). On the interna-
tional scale, examples of dikes and dams failure regularly hit the headlines
such as in 2005 in New-Orleans (USA) during Katrina hurricane.

Flooding is known to be the most expensive natural hazard in terms of
insurance cost. At the scale of Europe its yearly cost between 1980 and 2003
was estimated at three billion dollars. In France, it reached a billion euros in
2002 and 2003. By simply decreasing by a few percents the vulnerability of
the hydraulic structures responsible for flooding, the sums at stakes justify
the profitability of research projects aiming to understand the mechanisms
responsible for dike and dam failures. In a context of climate change, the
frequency and the intensity of storms and river floods is expected to increase
and the understanding of these failure mechanisms will be even more critical.

1.2 Internal erosion and the particular case of
suffusion

Applied to earthen hydraulic structures, erosion is the process by which a
fraction of the material composing a dike or a dam is worn away under the
action of water. For these permeable structures, two types of erosion may be
defined depending whether erosion occurs on the surface or directly in the
core of the structure. The first case corresponds to external erosion while the
second one to internal erosion. Feedback on past failures shows that internal
erosion is the major cause of 45 % of the failures of embankment dams (Foster
et al., 2000), and contrary to external erosion, the consequences of internal
erosion are more insidious as they are not always clearly visible from the
outside of the damaged structure. This slow and invisible degradation of
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the mechanical properties of the hydraulic structures is particularly critical
when considering dikes as they are hardly ever subjected to the extreme
loading they are supposed to resist to. Consequently, the internal erosion
of dikes may be harmless most of the time when water level is low. But
as soon as the level rises too much, failure may occur out of the blue. By
contrast, the situation is less critical while considering embankment dams
that are almost constantly subjected to their nominal load and for which a
gradual degradation of their mechanical properties has better chances to be
detected ahead of failure. In addition, contrary to dikes, dams are not very
long structures (less than a few hundred meters compared to kilometers for
dikes) and can be monitored more carefully than dikes. Consequently, dams
will not systematically be mentioned together with dikes in the following,
even though internal erosion mechanisms are identical.

Following the International Workshop on Internal Erosion of Embank-
ment Dams and their Foundations held in Aussois, France from 25th to 27th
July 2006 the international community agreed on the distinction between the
four types of internal erosion illustrated in Figure 1.1 (Fell and Fry, 2007;
Bonelli, 2012, 2013):

- Backward erosion that consists in the progressive erosion of the struc-
ture from downstream to upstream sides;

- Contact erosion that can occur when a fine layer of material in contact
with a coarse one is eroded through the large pores in between coarse
grains;

- Piping erosion that consists in the enlargement of an existing pipe in
the hydraulic structure;

- Suffusion that is the selective erosion of the finest particles of a soil
directly through the pore space of the material.

Among these four types of internal erosion process, suffusion is certainly
the most complex and is still the only one for which no practical recommenda-
tions have been proposed yet to prevent its occurrence. Indeed the two most
frequent criteria used in practice are not consistent and lead to contradic-
tions in some cases (Li and Fannin, 2008). In addition suffusion often occurs
for hydraulic gradients well below the critical value proposed by Terzaghi
to account for soil liquefaction (Skempton and Brogan, 1994). Starting from
these statements suffusion has received increased attention recently with sev-
eral ongoing PhD thesis on this topic. In close connection with the present
work, Rodaina Aboul Hosn proposed during her PhD thesis (2014-2017) an
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Figure 1.1 – The four types of internal erosion.

investigation of the effect of suffusion on the triaxial response of eroded soils.
Her approach is based on the one side on a simplified numerical erosion pro-
cedure and on the other side on the conduction of post-erosion experimental
triaxial tests. In parallel with the present thesis, a fully experimental thesis
is conducted by Doan Nguyen (2015-2018). Together with the development
of an erodimeter cell, the objective of this undergoing thesis is to provide ex-
perimental evidences of the impact of suffusion on the mechanical properties
of soil.

A second particularity of suffusion compared to the three other types of
internal erosion is that it cannot be modeled as a boundary value problem
directly at the scale of the hydraulic structure. It is a material scale is-
sue. Indeed, suffusion directly modifies the intrinsic mechanical properties
of the material composing the hydraulic structure of interest by involving
microstructure modifications (an increase in porosity for instance). From an
engineering point of view, the effect of suffusion on the occurrence of failure
has thus to be assessed through modifications of the constitutive behavior of
the materials used in the modeling of the hydraulic structure. By contrast,
the effect of piping or regressive erosion can be assessed by updating the
internal geometry of the hydraulic structure (i.e. by defining an inner fluid
domain) while keeping unchanged material constitutive behaviors. As for
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contact erosion, it is indeed a hidden surface erosion problem which lead to
the settlement of the coarse material into the finer one while keeping again
unchanged material constitutive behaviors.

1.3 Justification for a numerical homogeniza-
tion approach of suffusion

As a result, the understanding of suffusion is indeed an homogenization prob-
lem which involves multiple scales and physical processes. If we zoom into
the dike body, soil may be modeled as a granular material, with grains inter-
acting between each others through local contact laws. At this micro-scale,
the macroscopic concept of erosion vanishes to the profit of fluid/grain in-
teractions. Indeed, at this local scale the problem of interest consists in
interactions between grains and a fluid flowing within the interstitial pore
space.

This multi-scales and multi-physics view of suffusion lead to the formula-
tion of two questions which are indeed the guidelines of all the work carried
out during this PhD:

• What is the effect of an internal fluid flow on a granular material mi-
crostructure?

• What are the consequences of these microstructure modifications on
the material constitutive behavior?

So far, most of the studies devoted to suffusion focused mainly on the
first point with the objective to relate the particle size distribution (PSD) of
a soil to the mass fraction of particles that can be moved out of the material
by an internal flow. The occurrence of the loss of this fine fraction is usually
referred to as internal instability (Kenney and Lau, 1985). For a long time,
and still today for practical applications, the second question has often been
eluded and suffusion is usually reputed to be harmful as soon as fine particles
are eroded from the bulk of the material. This is however too conservative
as sometimes, the withdrawal of some particles does not necessarily result
in modifications of the mechanical constitutive behavior dangerous for the
integrity of the whole hydraulic structure. This is why, considering these two
questions together is essential to me. It is nevertheless a difficult guideline
since it is much easier to stick to self-filtration processes. How can we char-
acterize microstructure evolutions? How do we characterize the evolution of
the mechanical behavior of an eroded material? What are the microstructure
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evolutions responsible for dangerous alterations of the mechanical properties?
What is indeed a dangerous evolution of the mechanical properties?

In order to provide some answers to these questions, different modeling
strategies may be followed:

- A first modeling approach is to stick to a full continuum mechanics
approach and to model a saturated soil as a the coexistence of a fluid
phase, fluidized particles and a solid phase (see (Bonelli and Marot,
2011) for instance). The phase exchanges are then assessed through
partial differential equations (mass conservation, transport, local ero-
sion or deposition,...). Then, the change in the mechanical properties
is related to the relative fractions of these different phases that are
assumed to be internal state variables.

- A second approach consists in modeling the full fluid/grain interaction
problem directly at the microscale. In this approach, grains are mod-
eled individually, their interactions are accounted for through contact
laws, the fluid flow is handled as a fluid mechanics problem in a com-
plex pore space domain and the fluid forces applied on the grains are
deduced from the local fluid velocities. In this approach, the full com-
plexity of the microstructure geometry is accounted for and the evolv-
ing mechanical properties of the soil can be recovered at the macroscale
(the scale of the continuum media) through numerical homogenization
techniques.

One drawback of the first approach is that its validation strongly relies
on experimental data. However, the different experimental works carried out
today are still limited to fully answer to the two main questions formulated
above. Indeed, most of the existing erodimeter cells are not able to impose
simultaneously a hydraulic and a mechanical loading to investigate the cou-
pling between both. Moreover, the use of rigid boundaries tends to induce
large porosity close to the sample boundaries which results in localized trans-
port of small particles along the sample boundary as visible in Figure 1.2. As
a result, the microstructure of considered samples is no longer homogeneous
in the end of experimental suffusion tests. The problem solved experimentally
is thus always a boundary value problem and not a material point problem as
necessary to investigate suffusion phenomenon. In order to overcome these
limitations on the experimental side, some laboratories are currently devel-
oping erodimeter cells directly inside triaxial apparatus (Chang and Zhang,
2012), conducting post erosion triaxial test (Xiao and Shwiyhat, 2012) or
acquiring X-ray tomography images of samples subjected to suffusion test to
reckon the boundary influence in the sample volume (Nguyen et al., 2017).
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Figure 1.2 – Localization of erosion along the boundaries of erodimeter cells
in laboratory tests (Sail et al., 2011).

In the present work, the choice was made to bypass the current laboratory
limits by following the second modeling approach mentioned previously. By
going down to the microscale, the modeling of suffusion is reduced to more
elementary physical processes, the modeling of which is more documented
and already validated. At this scale, suffusion consists in:

- modeling a fluid flow in a porous media;

- accounting for grain/grain interactions;

- accounting for fluid/grain interaction.

With use of existing and validated numerical codes to account for this two
processes, a fully numerical work is conceivable in which real experiments are
replaced by numerical ones. This particular bias is adopted in the present
work with the objective to enhance the understanding of suffusion physics. Of
course this second approach result in computationally expensive simulations
and cannot be used directly to assess the occurrence of dike failure.

However, the result of this work is valuable to better interpret the macro-
scopic data obtained experimentally and to justify the underlying hypothesis
adopted in the constitutive modeling of suffusion. To this last respect, the
understanding of the micromechanics of suffusion is essential in the develop-
ment of micro-mechanical models which are an alternative to direct numerical
homogenization by use of mesostructures.

1.4 Outline and structure of the present work

This thesis summarizes three years of intense research that already led to
four journal publications, two of which have already been published.
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Chapter 2 introduces the necessary concepts and numerical tools to un-
derstand the following work. First the existing criteria used to assess the
internal stability or instability of a soil are briefly reviewed. Then the notion
of mechanical stability is introduced and substituted to the notion of internal
stability to better link suffusion to potential material failure. To this respect,
the second-order work criterion is introduced. Then, the specific DEM/PFV
numerical modeling adopted in this work is introduced and justified.

Because suffusion occurs at the material point scale, its modeling at the
microscale requires the introduction of a representative elementary volume
(REV), i.e. a small volume of material sufficiently large to capture the physi-
cal processes at stake in a material subjected to an internal flow. In Chapter
3 different scales are introduced and numerical tools are developed to char-
acterize the length scales associated with stress transmission and transport
properties in granular materials. Fully coupled three dimensional fluid/grain
simulations are carried out to estimate internal transport of free particles and
validate the introduced length scales. Part of the results presented in this
chapter were published in 2017 in "Scale separation between grain detach-
ment and grain transport in granular media subjected to an internal flow"
(Wautier et al., 2017).

In Chapter 4, fluid grain coupling is left aside to focus on the understand-
ing of the micromechanics responsible for material instability. The results
presented in this chapter are inspired by two research papers. The first paper
"Micro-inertia origin of instabilities in granular materials" published in 2018
presents the systematic procedure used to assess the existence of material
instability at the REV scale and relate this instability to micro mechanisms
(Wautier et al., 2018b). The second paper "Rattlers contribution to granular
plasticity and mechanical stability" that was recently submitted highlights
the particular role played by free particles with respect to mechanical stability
(Wautier et al., 2018c). As these free particles are very sensitive to internal
flows, the impact of microstructure modifications resulting from erosion or
clogging is intuited.

In Chapter 5, the impact of a fluid on the mechanical stability of a granu-
lar material is assessed thanks to fully coupled three dimensional fluid/grain
simulations at the REV scale. Both the direct impact of a fluid flow on stress
transmission and on the erosion or clogging of rattlers are considered. This
chapter extends the results of the recently submitted paper "Flow impact on
granular force chains and induced instability" (Wautier et al., 2018a).
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The objective of this chapter is to provide a minimal state of the art and
introduce the necessary concepts and numerical tools to the understanding
of the methodology and the results presented in the following chapters. The
first section is dedicated to the current approaches deployed to assess soil
susceptibility to suffusion. Based on this literature review the choice to con-
sider suffusion susceptibility in terms of changes in mechanical properties is
justified. The second section of this chapter is dedicated to the introduction
of the concept of mechanical stability and instability that provide a relevant
framework to assess whether the occurrence of suffusion may prove harm-
ful. The second-order work criterion as introduced in continuum mechanics
by Hill (Hill, 1958) is shown to provide a relevant indicator in the present
case. The last two sections are dedicated to provide details on the avail-
able numerical methods able to simulate microscale mechanisms responsible
for suffusion. A justification of the choice made to carry out the numerical
experiments used in this thesis is provided.

2.1 Suffusion susceptibility: an internal stabil-
ity approach

As recalled for instance by Garner and Fannin (2010), the occurrence of
failure by internal erosion requires to fulfill three conditions illustrated in
Figure 2.1: material susceptibility, hydraulic susceptibility and mechanical
susceptibility.

In this Figure, it is recalled that failure is a combination of different fac-
tors and that suffusion as defined by the succession of grain detachment,
grain transport and possibly grain attachment is neither a sufficient nor nec-
essary condition for material failure. In the following subsections some of the
main criteria used to prevent the occurrence of suffusion which corresponds
indeed in Figure 2.1 to particle transport and possibly particle release are
recalled. And the recent effort to relate macroscopic features of suffusion to
micromechanical aspect is presented.

2.1.1 Geometrical criteria

By far the most common, geometrical criteria focus on material susceptibil-
ity (see Figure 2.1). Indeed, this class of criteria relies on the idea that in
order to avoid particle transport a granular material, the pores of the coarse
particles should not allow for the smaller particles to pass between them.
This properties corresponds to the notion of self-filtration. For practical ap-
plications most of the criteria are constructed on particle size distributions
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Figure 2.1 – Internal erosion conditions according to Garner and Fannin
(2010).

(PSD) or more recently on constriction size distributions (CSD). An exten-
sive description of the existing criteria may be found in the PhD thesis of
Abdoulaye Hama (2016) or Le (2017). In this work only the two most widely
used criteria are reviewed.

When two populations of grains may be identified, it is convenient to
distinguish between coarse and fine grains. If the soil PSD is gap-graded,
this distinction is straightforward but otherwise this requires an arbitrary
threshold size to define the two grain populations. Based on this distinction
between coarse grains composing a filter and potentially erodible fine grains,
Peck and Terzaghi (1948) proposed D15

4
to characterize the typical constric-

tion size between the coarse grains where D15 is the particle diameter for
which 15% of the mass of the coarse grains is finer than, and 1

4
corresponds

indeed to a typical constriction size in between the two geometrical configu-
rations illustrated in Figure 2.2.

A soil retention criterion is then derived in the form of D15

4
< d85, where

d85 is the particle diameter for which 85% of the mass of the fine fraction
is finer than (Peck and Terzaghi, 1948). Initially formulated by Terzhaghi
for the design of filters, this criterion was reused later on by Kézdi (1979)
to characterize the internal stability of a soil (i.e. the geometrical possibility
for the smallest grains to move through the pore space defined by the largest
grains). The definition of the so-called Kezdi’s filter rule is illustrated in
Figure 2.3 and is based on a splitting of the PSD between fine and coarse
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Figure 2.2 – Geometric justification of the ratio 1
4
used in internal instability

criteria.

particles around a varying grains diameter D. A soil is then reputed to be
internally stable if the passing fraction between D and 4D is greater than 15
% whatever the chosen D value.

A widely used alternative to this criterion was proposed by Kenney and
Lau (1985) based on the so-called "H

F
" ratio illustrated in Figure 2.3. This

criterion, always based on the PSD, defines F as the fraction of grains with
a diameter smaller than an arbitrary value D. H corresponds then to the
fraction of grain with diameters lying in the interval [D, 4D]. A low value
of the ratio H

F
correspond to a soil with a hole in its PSD curve sufficiently

large (again Figure 2.2 provide a justification for the factor 4 used here) to
allow for grain transport. As a result, the lowest value of H

F
is sought for

D describing the range of particle sizes constituting the considered soil. A
threshold value of H

F
> 1 was advocated for F < 0.2 in soils having a widely

graded coarse fraction and for F < 0.3 in soils with a narrowly graded coarse
fraction (Kenney and Lau, 1985). For fine fractions higher than 20 to 30 %,
the material is considered as overfilled (Benahmed et al., 2015). In this case,
the constriction sizes are driven by the fine particles and the filter rules are
not relevant anymore.

These two criteria are the most used criteria for practical assessment of
suffusion (Andrianatrehina et al., 2016), however, as shown by Fannin and
Moffat (2006), Kezdi’s filter rule proved to be too rough for some soils sat-
isfying the criteria but experimentally internally unstable. Moreover, these
two criteria show inconsistencies as shown Li and Fannin (2008) and recalled
in Figure 2.4.

Since then, many authors have tried to improve these geometric criteria
with validation on experimental suffusion tests in which soils are said to
be internally unstable if there exists at least one combination between a
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Figure 2.3 – Definition of the two main criteria used for practical applications
(Li and Fannin, 2008).

Figure 2.4 – Inconsistency of the two main criteria used for practical appli-
cations (Li and Fannin, 2008).
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microstructure state, a stress state and an hydraulic loading leading to the
washing of a fine fraction out of the sample. Among the different improved
criteria, we can mention Wan and Fell (2008); Chang and Zhang (2013);
Indraratna et al. (2015). Nevertheless, none of these criteria accounts for the
effective occurrence of suffusion and the possible consequences in terms of
material failure.

In a similar spirit to PSD based criteria, recent works proposed to as-
sess the possibility to transport fine particles in the pore space based on the
computation of constriction size distributions (CSD) (Silveira, 1965; Locke
et al., 2001; Vincens et al., 2015). Reboul et al. (2010) and Vincens et al.
(2012, 2015) summarized the methods for evaluating the constriction size
distributions of a numerical assembly of spheres which were generated by the
Discrete Element Method (DEM) and where the void geometry was evaluated
by a radical Delaunay triangulation. Compared to PSD methods, the com-
putation of CSDs enables to account for the particular arrangement of grains
and to distinguish for instance between loose and dense sand. These meth-
ods are however computationally expensive and cannot be used for practical
applications. Following the work of Silveira (1965), Locke et al. (2001) and
Indraratna et al. (2015, 2007) improved self filtration criteria by deriving the
CSD from the PSD plus some assumptions on the geometrical grain packing
to account for the particular microstructure state.

2.1.2 Hydraulic and stress conditions

As recalled in Figure 2.1, the occurrence of suffusion also requires a suffi-
ciently strong internal flow to transport and possibly detach grains in the
material volume. Going back to the work of Terzaghi (1939), soil fluidization
is related to the vanishing of the effective stress in the soil. As a result, pro-
vided the hydraulic gradient equals the effective stress, heave failure occurs.
The critical vertical hydraulic gradient is then given by:

Ic =
γ′

γw
= (1− n)(γs − 1) (2.1)

where n is the soil porosity and γ′, γw and γs are respectively the specific
gravity of the submerged soil, of water and of the soil particles.

Thanks to the combine use of photoelastic grains and numerical simu-
lations, the overall behavior of granular materials was shown to rely on a
limited number of grains (Drescher and De Jong, 1972; Liu et al., 1995; Rad-
jai et al., 1998; Bardenhagen et al., 2000; Cambou et al., 2013). As a result,
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the critical hydraulic gradient as introduced by Terzaghi largely over pre-
dicts the necessary hydraulic gradient to move some loosely loaded grains in
a granular material.

Skempton and Brogan (1994) found indeed that for unstable materials,
the critical hydraulic gradient could be roughly 1/3 to 1/5 of the normal
predicted value based on the theory of Terzaghi for sand boil process. This
deviation was accounted for by a stress reduction coefficient α such that:

Ic = α
γ′

γw
(2.2)

Skempton and Brogan (1994) proposed a grain-scale interpretation of this
coefficient as most of the effective stress is carried by a matrix of coarse
particles, leaving the loose finer particles under relatively low stress. Thanks
to the use of discrete element simulations, Shire et al. (2014) provided a
micromechanically based justification of this interpretation for idealized gap-
graded samples with varying potential for internal stability. Based on the
contact forces f c applied on points xc of a given particle p, the mean stress
tensor σ̄p in each particle can be computed thanks to the Gauss theorem as
(Love, 1927; Weber, 1966; Christoffersen et al., 1981; Mehrabadi et al., 1982;
Nicot et al., 2013b)

σ̄p =
1

V p

Nc,p∑
c=1

f c ⊗ (xc − xp). (2.3)

By volume averaging this tensor on two grain populations (coarse and fine
grains) the stress reduction factor is linked to the ratio between the mean
pressures computed on the fine grains only and on all the grains

αDEM =
p′fine

p′
(2.4)

where
p′ = 1

V

Np∑
p=1

1
3

Trσ̄p V p

p′fine = 1−n
Np,fine∑
p=1

V p

Np,fine∑
p=1

1
3

Trσ̄p V p
. (2.5)

and n the sample porosity.
Based on the fine content, Shire et al. (2014) show that the stress reduc-

tion factor increases as the microstructure of gap-graded materials changes
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from underfilled (no fine particles are involved in stress transmission) to over-
filled (many fine particles are involved in stress transmission).

Thanks again to the use of DEM, efforts were recently made to relate
PSD based criteria to micromechanical features such as average number of
contacts per particle, contact force distributions and the probability that a
particle participates in stress transmission (Fonseca et al., 2014; Shire and
O’Sullivan, 2013; Langroudi et al., 2015). Shire and O’Sullivan (2013) for in-
stance used DEM to analyze the relationship between grain-scale fabric and
the empirical criterion for assessing internal stability proposed by (Kézdi,
1979) for a series of idealized gap-graded soils with varying PSD and finer
fractions at a single relative density level. They studied the degree of in-
terlocking of fine particles with neighboring particles with respect to their
participation in the stress transfer in the granular skeleton. The average co-
ordination number decreases as internal instability increases which accounts
for an increase in the proportion of loose, erodible fine particles. Similarly,
the number of coarse particles participating in stress transfer falls as inter-
nal instability increases. Initially introduced with geometric considerations,
Shire and O’Sullivan (2013) thus gave Kezdi’s filter rule a micromechanical
meaning by linking it to physical parameters.

In addition to gap graded soils, Langroudi et al. (2015) also considered a
concave upward and a linear grading curves. The evolution of contact force
networks confirms that internally stable soils have a more homogeneous net-
work of contact forces compared to internally unstable soils. Force distribu-
tion analyses reflect higher percent of weak contacts and low connectivity for
fine particles in internal instability.

Through the use of X-ray tomography, Fonseca et al. (2014) explored
the link between PSD and the coordination number which provides an in-
dicator of grain interlocking. The correlation between coordination number
and internal stability was confirmed, with coordination number values being
significantly higher for real material than model materials used in DEM.

2.2 Suffusion susceptibility: a mechanical sta-
bility approach

Despite abundant literature focused on the definition of criteria to assess
the internal stability of a granular material, the consequences of suffusion
in terms of mechanical stability have been surprisingly left aside. In this
section the few attempts to characterize the consequences of suffusion on the
mechanical behavior of granular materials are reviewed before introducing a
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formal framework to precisely assess the mechanical stability of a soil through
the use of the so-called second-order work criterion.

2.2.1 The drained triaxial test approach from experi-
mental and numerical points of view

In order to investigate the mechanical consequences of suffusion, most of the
studies found in the literature compare the drained triaxial response of a soil
before and after suffusion either from an experimental (Chang and Zhang,
2011; Ke and Takahashi, 2012; Xiao and Shwiyhat, 2012; Ke and Takahashi,
2014a; Sibille et al., 2015b; Hosn et al., 2017) or a numerical point of view
(Wood et al., 2008; Wood and Maeda, 2008; Scholtès et al., 2010; Sibille
et al., 2015a; Hosn et al., 2016).

Experimental results

On the experimental side, Ke and Takahashi (2014a) evaluated the mechan-
ical consequences of suffusion by conducting monotonic drained compression
tests on eroded and non-eroded specimens. As large amounts of fines are
washed out of the samples, the eroded specimens show contractive volumetric
strains during the erosion phase which results in a less contractive behavior
during triaxial loading as shown in Figure 2.5. As for the stress response,
suffusion leads to a reduction of the soil strength during post-erosion drained
triaxial tests (Figure 2.5). While applying larger effective confining pressure
during the erosion step, the eroded mass of fine particles and the impact on
the mechanical behavior decrease.

Similar observations were made by Chang and Zhang (2011), Chang and
Zhang (2012) or Hosn et al. (2017) who noticed that after the loss of a
significant amount of fine particles, the original dilative stress-strain behavior
becomes contractive and the peak stress decreases. This may be explained by
a global increase in the porosity when fine particles are washed out despite
the small compaction observed during the suffusion test. As porosity is one
of the key internal state variables which control the macroscopic strength of
granular materials, an increase in porosity results in a decrease in the peak
stress.

However, some researchers showed an opposite trend for the mechanical
behavior of the eroded soil with larger deviatoric stresses for eroded spec-
imen than for non-eroded ones at least for small axial strain values (Xiao
and Shwiyhat, 2012; Ke and Takahashi, 2014b). Xiao and Shwiyhat (2012)
attributed such behavior to the low degree of saturation as well as the occur-
rence of clogging. Whereas, Ke and Takahashi (2014b) suggested that such
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Figure 2.5 – Comparison of the drained triaxial responses of the three gap-
graded specimens considered in Ke and Takahashi (2014a) with (circles) our
without (crosses) suffusion. An effective confining pressure of 50 kPa is ap-
plied. The deviatoric stress (top) and the volumetric strain (bottom) evolu-
tions with respect to the axial strain are shown.

an inconsistency of the eroded soil behavior might be related to changes in
the soil fabric. Provided that the loss of particle is not too large, the observed
compaction during the suffusion phase strengthens eroded specimens.

Numerical results

On the modeling side, hardly no study dare to account for the full fluid/-
grain coupling problem. As a result, the consequences of suffusion on the soil
microstructure are often mimicked through particle removal. For instance,
Scholtès et al. (2010) simulated the degradation of dense granular assem-
blies through the progressive removal of the finest particles with the use of
a discrete element model as well as an analytical micromechanical model
(Chang and Hicher, 2005). Both models highlight a change from a dilative
to a contractive behavior with the degradation and a strong dependency of
the overall stability on the mobilized friction level is put forward. In par-
ticular, they show how failure is triggered when particle removal occurs for
mobilized frictions greater than the one reached at the critical state. These
results are consistent with those obtained previously by Wood et al. (2008)
for two dimension biaxial tests in which the autors observed that the sta-
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Figure 2.6 – One way coupling procedure developed by Hosn et al. (2018) to
mimick suffusion by grain extraction.

bility of particle removal is related to the stress ratio which the sample is
experiencing (this result will be revisited in Section 4.6).

More recently, Aboul Hosn (2017) developed in her PhD thesis a one way
fluid/grain coupling (see Figure 2.6) to improve the selective extraction of
erodible grains in DEM numerical simulations. By simulating an internal
flow, fluid forces are estimated and applied to the small grains candidates
to erosion. Provided that i) the intensity of the fluid forces is large enough
to make these grains move and ii) these grains are smaller than a typical
constriction size computed on the CSD, the particles are suppressed.

While subjected to different hydraulic gradients the numerical sample
used in Hosn et al. (2018) shows that depending on the amount of eroded
particles and depending on whether eroded particles are involved in stress
transmission, two distinct responses are observed. The eroded medium ei-
ther shows negligible deformations during erosion but then collapses suddenly
once loaded in drained triaxial conditions, or it deforms significantly during
erosion and exhibits a smaller peak strength once subjected to drained tri-
axial loadings. These two types of eroded behaviors are shown in Figure
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Figure 2.7 – Drained triaxial tests performed on a dense non-eroded numerical
sample (NE) and on eroded samples exhibiting two types of behaviors: a peak
stress reduction (group 1) or a change from a dense to a loose type behavior
(group 2) Hosn et al. (2018).

2.7.

2.2.2 Triaxial testing limits to assess suffusion conse-
quences on material resistance

A mechanical characterization of the effects of suffusion on soil simply based
on triaxial tests in indeed a too rough approach. In classical soil mechan-
ics theories, the interpretation of triaxial tests assume the homogeneity of
the tested specimens in terms of microstructure. However, this assumption
becomes questionable for eroded specimens in which erosion is far from homo-
geneous. As shown for instance in Sail et al. (2011) or more recently thanks
to X-ray tomography by Nguyen et al. (2017), erosion tends to localize along
the lateral boundaries of the tested specimen. These heterogeneities shown
in Figures 2.8 and 2.9 prevent indeed easy interpretation of post erosion tri-
axial test. Indeed, as discussed in the introduction, the specimens should be
considered as structures and no longer as representative elementary volumes.

In addition, the sole use of drained triaxial tests is not always represen-
tative of the changes in mechanical and hydraulic conditions that an eroded
soil can undergo during flooding. To this respect, the work carried out dur-
ing this PhD focused on providing a suitable framework to effectively assess
the consequences of suffusion through the notions of mechanical stability and
loss of stability.
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Figure 2.8 – Observation of microstructure heterogeneities in two experimen-
tal suffusion tests (Sibille et al., 2015b).

Figure 2.9 – Local porosity values along a slice of a specimen subjected to a
suffusion test. Red colors correspond to the highest porosities concentrated
along the lateral boundaries (Nguyen et al., 2017).
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2.2.3 From an intuitive definition of instability to the
second-order work criterion

In order to go a step forward in the understanding of the failure mechanisms
in earthen hydraulic structures, there is a need for a precise definition of the
notion of mechanical stability or conversely instability. This notion applies
to a given phenomenon with respect to its evolution over time: a system is
reputed unstable if and only if an infinitesimal perturbation induces finite
changes in the response of the system.

Historically, in the field of solid mechanics, a formal mathematical def-
inition was proposed by Lyapunov (1907) to study the stability of the tra-
jectories of celestial bodies. Considering a body whose position and velocity
at time t are x1 and v1 respectively, and assuming that a small perturba-
tion is applied at this time on its position and its velocity, Lyapunov queried
whether the new trajectory of this body x2(t′) and the new velocity v2(t′)
remain close to the trajectory x1(t′) and the velocity v1(t′) it would have
had without this perturbation for any t′ > t. The formal mathematical
formulation of this stability definition reads:

∀εx > 0 and ∀εv > 0, ∃ηx(εx, εv) > 0 and ∃ηv(εx, εv) > 0, such that
if ||x1(t)− x2(t)|| < εx and ||v1(t)− v2(t)|| < εv,
then ∀t′ > t, ||x1(t′)− x2(t′)|| < ηx and ||v1(t′)− v2(t′)|| < ηv.

The extension of this definition to the continuum mechanics framework
can be achieved by introducing adequate variables to describe the state of the
system in place of the position and the velocity. In this particular context,
the notion of stability relates to a stress/strain state of a given material with
respect to its evolution under prescribed loading conditions (Darve et al.,
1995).

However, the main difficulty with this general definition consists in for-
mulating a related manageable criterion for practical use. If we limit our
analyses to divergence instabilities (letting apart flutter instabilities), Hill’s
sufficient condition of stability (Hill, 1958) is often considered to describe
the occurrence of material instability. A detailed derivation of this criterion
from the writing of the energy balance can be found in the work of Nicot and
Darve (2007c); Nicot et al. (2009, 2012) in the general framework of finite
deformation. For the sake of simplicity, if we restrict here to small strain
continuum mechanics, Hill’s instability criterion applied to a material point
states that:
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For a given equilibrium (σ, ε) reached after a given loading history,
the material point is unstable if there exists at least one couple
(dσ,dε) linked by the constitutive law of the material such that
W2 = dσ : dε < 0.

Let Ω denote a mechanical system of boundary ∂Ω. Let df be the force
per surface unit applied on ∂Ω and du the displacement acting on ∂Ω. Start-
ing from an initial equilibrium position, the variation of kinetic energy of this
mechanical system is a second-order term d2Ec equal to (Nicot and Darve,
2007c; Nicot et al., 2009, 2012)

d2Ec = |Ω|
(
W

ext

2 − W 2

)
=

∫
∂Ω

df · du dS −
∫

Ω

W2 dV (2.6)

where W ext

2 =
1

|Ω|
∫
∂Ω

df · du dS is referred to as the mean external second-

order work and W 2 =
1

|Ω|
∫

Ω
W2 dV is the mean (internal) second-order

work.
This fundamental equation states that the external work is always larger

than the integral of the second-order work of the system. In the case of
a nil external second-order work, a negative second-order work associated
with an equilibrium position (at the first order dEc = 0) will automatically
result in an increase in the kinetic energy of the system as d2Ec > 0. As a
result, Hill’s second-order work criterion may be seen as an energy criterion
corresponding to a situation in which the deformation of the mechanical
system can be pursued without any input of energy from the observer.

It is essential to note that the second-order criterion by itself does not
provide a sufficient condition for failure. In other words, it is not a failure
criterion but only a potential failure one. Some loading programs will lead
to an effective failure but not every loading program will trigger off the
underlying instability. By coming back to Equation 2.6, the vanishing of
the second-order work leads to an increase in kinetic energy if and only if
W 2 < W

ext

2 .
Recent papers have demonstrated the ability of this criterion to anticipate

the occurrence of material instability characterized by an outburst of kinetic
energy (Nicot et al., 2009; Daouadji et al., 2011; Nicot et al., 2012; Wan et al.,
2013; Nicot et al., 2017). It has even been shown that the vanishing of the
second-order work is indeed the first instability criterion to be encountered
(Nicot et al., 2009; Daouadji et al., 2011; Wan et al., 2013; Challamel et al.,
2010) and other instability criteria are simply particular cases associated
to specific failure mechanisms such as localized failure (Rudnicki and Rice,
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1975; Nova, 1994) or plastic limit failure. The main contributions to the
field of geomechanics obtained thanks to the use of this criterion have been
summarized in a recently published treatise (Wan et al., 2016).

2.2.4 Second-order work envelope based on directional
analysis

Following the principle of incremental determinism, the incremental stress-
strain response of a rate-independent material is only a function of the in-
cremental stress dσ and the incremental strain dε. This statement can be
formulated as the existence of a bijective function L depending on the past
history of the material such that

dε = L(dσ) or equivalently dσ = L−1(dε). (2.7)

In the above relation (valid for rate-independent materials), L is a homo-
geneous function of degree 1. As a result, it can be rewritten by introducing
a function G acting on the unit sphere in the stress space and such that

dε = L(dσ) = ||dσ||G(d) (2.8)

where d = dσ
||dσ|| and G(d) has the dimension of the inverse of a pressure.

In in addition, if Euler’s identity is used, the incremental constitutive
relationship reads (Darve and Nicot, 2005)

dε = ||dσ||∂G
∂d

: d. (2.9)

As a result the incremental strain response depends only on the magnitude
of the incremental stress increment ||dσ|| and on the loading direction in the
stress space d. In Equation 2.9, it should be underlined that the constitutive
operator ∂G

∂d
depends only on the loading direction d but is generally not

constant with respect to d which makes the incremental constitutive behavior
non-linear.

Coming back to the definition of instability according to the second-
order work criterion, Equation 2.9 shows that the sign of W2 depends only
on the loading direction, but generally through a non-linear relationship
W2 = ||dσ||2d : ∂G

∂d
: d. As a result, the mechanical stability or instabil-

ity assessment of a material requires the use of a directional analysis, as
introduced for instance by Gudehus (1979). A directional analysis consists
in loading a same initial material along several directions (either in the incre-
mental stress or strain space). The material response is recorded and enables
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Figure 2.10 – Typical visualization of the incremental strain response of a
granular material subjected to an incremental stress directional analysis con-
ducted in axisymmetric conditions (dσxx = dσyy).

to compute the associated second-order work criterion. An example of the in-
cremental strain response of a granular material subjected to an incremental
stress directional analysis is shown in Figure 2.10.

The main difficulty consists in testing a sufficient number of loading di-
rections to be able to detect the existence of a direction giving W2 < 0. For
numerical analysis, this question is only a computational cost issue. For real
experiments, an other difficulty consists in preparing as many specimens as
the number of tested loading directions because of the irreversible nature of
each incremental loading. This is a reason why only very few experimental
directional analyses exist (Royis and Doanh, 1998).

In many cases, granular materials can be assumed to exhibit an isotropic
microstructure in a virgin state. Provided that they are subjected to ax-
isymmetry loading conditions (for instance triaxial loading), the resulting
constitutive behavior exhibits transverse anisotropy and directional analy-
ses can be restricted to Rendulic’s place of axisymmetry (

√
2dσxx, dσzz). In

other words the unit sphere in the incremental stress or strain space reduces
to a circle for these particular cases. In this case, polar (or circular) repre-
sentations of the normalized second-order work

W norm
2 =

W2

||dσ||||dε||
=
d : ∂G

∂d
: d

||∂G
∂d

: d||
(2.10)

can be plotted as in Figure 2.11 for stress control. In this Figure, some par-
ticular incremental loading cases are shown with small schematic diagrams.
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Figure 2.11 – Typical stress controlled circular envelope obtained for an un-
stable material. Some particular incremental loading cases are shown with
schematic diagrams.

In Figure 2.12 circular representations of normalized second-order work
envelopes found in the literature are shown for stress or strain controlled
directional analyses in axisymmetic loading conditions.

In Figure 2.12 and for some stress states, the loading directions associ-
ated with the vanishing of the second-order work define a cone of instability
(around 230◦ and 130◦ respectively for stress and strain controlled directional
analyses). These directions are those that can lead to an effective failure of
the material through an increase in kinetic energy and a transition from a
quasi-static to a dynamic regime.

2.2.5 Flood induced loading and possible impact on me-
chanical stability

As seen in the previous subsection, directional analyses give more informa-
tion than simply the existence or not of loading directions associated with
W2 < 0. Indeed, for unstable materials, directional analysis also provide the
set of incremental loading directions that can lead to effective development
of underlying instability. It is interesting here to estimate the incremental
loading directions associated with flooding.

Contrary to the hydraulic loading associated with suffusion which is con-
stant in time and result in a water pressure decrease through the dike or
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(a) Numerical sample (S1)
(Sibille et al., 2007)

(b) Numerical loose granular assembly
(Hadda et al., 2013)

Figure 2.12 – Typical circular representations of normalized second-order
work envelopes resulting from stress (a) or strain (b) controlled directional
analyses in axisymmetic loading conditions. In both cases, the envelopes are
computed on numerical samples loaded in drained triaxial tests at different
stress ratios η = q/p and under a confining pressure of 100 kPa. The dashed
circles correspond to W2 = 0.

dam body (see Figure 2.13), flooding is associated with a sudden increase
in the water level on the upstream side of the hydraulic structure. As a
result, flooding imposes undrained conditions in the dike or dam body. In
other words, the sudden rise in the water level imposes a global increase in
interstitial water pressure in the short term as illustrated in Figure 2.13. In
the short term the total stress remains approximately constant and the pore
pressure increase results in a drop in the effective stress along a constant
deviatoric stress loading direction (constant q-path). Consequently, the in-
cremental stress loading associated with flooding is of the form dσ = −dp1.
In Rendulic’s plane (

√
2dσxx, dσzz), this corresponds to an incremental stress

direction θ = π+ arctan
√

2 ' 235◦ (dσxx = dσyy = dσzz = −dp implies that
θ ∈ [π, 3π/2] and tan θ =

√
2). Because this direction is usually close to

the observed cones of instability in granular materials (see Figure 2.12(a)),
flooding imposes indeed a potentially harmful loading for an unstable gran-
ular material in the sense of Hill’s criterion. The proposal made in this PhD
to characterize suffusion mechanical consequences in terms on mechanical
stability through the second-order work criterion is thus very sensible.

In order to facilitate the interpretation of the stability analysis in terms
of incremental loading from the hydraulic structure point of view, the choice
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Figure 2.13 – Inner water pressure distribution for standard hydraulic loading
conditions (drained conditions) and during flooding (undrained conditions).

was made in this work to consider only stress-controlled directional analyses.

2.3 Multiscale modeling of granular materials

Down to the microscale, granular materials can be described as a collection
of particles interacting between each others through local contact laws. How-
ever, at the engineering scale, this discrete nature is not accounted for but
hidden behind a macroscopic continuum description of their mechanical be-
havior. It is for instance unconceivable to model atoms in a metal beam or
sand grains in earth dams and dikes. As a result, basically two approaches
can be followed either i) by completely disregarding the discrete nature of
the materials and proposing ad hoc constitutive equations to account for the
macroscopic behavior of granular materials, or ii) by explicitly accounting
for the local geometry and bridging the gap between the two scales thanks
to homogenization techniques. Since one of the objective of this PhD work
was to study the local physics of suffusion, the second approach was chosen
and a discrete element modeling approach used in order to easily capture
important microstructure modifications.

In this section, the used Discrete Element Method (DEM) computation
scheme is briefly reviewed and the state of the art on the understanding of
the local physics of granular materials is presented.
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2.3.1 Microscopic modeling through discrete element
methods (DEM)

First developments of Discrete Element Methods (DEM) are usually at-
tributed to Cundall and Strack (1979). Since then, and thanks to increasingly
powerful computing capability, DEM becomes widely accepted as an effec-
tive and efficient method to account for the complex behavior of granular
materials. Indeed, by being able to simulate at a reasonable computational
cost the collective behavior of tens to hundreds of thousands of particles,
DEM offers the possibility to work at a scale at which discrete and contin-
uum descriptions of granular material merge. This scale is known as the
Representative Elementary Volume (REV) as introduced by Hill (1963) and
enables direct comparison between experimental and simulation results. Con-
sequently, recent studies show the ability of DEM methods to accurately
account for characteristics of granular materials such as dilatancy/contrac-
tancy, anisotropy building, hardening/softening or shear band localization
(Calvetti, 2003; Alonso-Marroquín, 2004; Luding, 2004; Sibille, 2006; Walker
and Tordesillas, 2010; Zhu et al., 2016a).

In DEM, only two ingredients are needed to account for the evolution of
a mechanical system: the geometry of the grains and the interaction forces
between them. In DEM, contrary to molecular dynamics (MD), grains can
only interact with their closest neighbors, provided that there exists a con-
tact point between them. Among the existing discrete numerical approaches
that have been developed, two families of models can be distinguished de-
pending on how either contact forces are computed explicitly or implicitly.
If grain inter-penetration is not allowed, a single geometric configuration can
correspond to many different contact forces. As a result, the local contact
forces can only be computed by considering the whole mechanical problem.
Such approaches are referred to as non-smooth contact dynamics and rely on
an implicit integration scheme. On the contrary, if grain inter-penetration
is allowed, a small variation of the geometric configuration corresponds to a
unique variation of the contact force. As a result, the local contact forces
can be computed contact per contact. Such approaches are referred to as
smooth contact dynamics and rely on an explicit integration scheme.

These two approaches are used in practice and have both advantages and
drawbacks as underlined for instance in details in Dubois et al. (2017). On
the one hand, smooth contact dynamics schemes are easier to implement, can
handle large numbers of particles but face a CFL (Courant–Friedrichs–Lewy)
condition for the choice of the integration time step, require the use of numer-
ical damping and have to deal with hypo-elastic formulations of the contact
law. On the other hand, non-smooth contact dynamics schemes show no CFL
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conditions but each time step is computationally more expensive and they
cannot yet handle large numbers of particles. For the sake of efficiency, a
smooth contact dynamic approach is used in this work with contact stiffness
sufficiently large so that grain inter-penetration remains limited. For most
of the results presented in this PhD thesis, the choice is only a matter of
numerical implementation but still for a few results this choice may slightly
influence the physics (one example is detailed in the end of Section 4.2.4).

In practice, all simulations performed in this work have been using the
open source code YADE (Yet Another Dynamic Engine) developed in 3SR
lab in Grenoble (Šmilauer et al., 2015). The reason for the choice of this
particular smooth contact dynamic code is mainly due to an existing efficient
fluid/grain coupling scheme that is detailed in the next section.

Computation cycle

DEM relies on the integration of Newton’s second law of motion for non-
deformable solid bodies. For a single particle p the force and momentum
balance equations read

ρVp
d2xp
dt2

=
∑
cp

F cp (2.11a)

d

dt

[∫
Vp

(x− xp)×
dx

dt
ρdV

]
=
∑
cp

(xcp − xp)× F cp (2.11b)

where ρ is the mass density of the particle, Vp its volume, xp the position
of its mass center, xcp the positions of the contact points of the particle and
F cp the external contact forces applied on the particle at contact cp.

If the particle shape is specified as a sphere, then Equation (2.11b) can
be simplified by introducing the inertia momentum of a sphere J = 2

5
ρVpR

2
p

(Rp being the sphere radius) and the rotation speed ωp of the sphere. In this
case, Equation (2.11b) reads

J
dωp
dt

=
∑
cp

Rpncp × F cp (2.12)

where ncp is the outward normal vector to the sphere on point cp.
For a time increment ∆t, Equations (2.11a) and (2.12) are then discretized

by use of a mid-point integration scheme with
dxp
dt

∣∣∣
t+∆t/2

= dxp
dt

∣∣∣
t−∆t/2

+ d2xp
dt2

∣∣∣
t
∆t

ωp(t+ ∆t/2) = ωp(t−∆t/2) + dωp
dt

∣∣∣
t
∆t

(2.13)
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and

xp(t+ ∆t) = xp(t) +
dxp
dt

∣∣∣∣
t+∆t/2

∆t. (2.14)

Contrary to the position, the orientation of a particle cannot be simply
described by a physical vector but through the three Euler’s angles. In
practice, the particle orientation is deduced from the second equation of
(2.13) thanks to an efficient use of quaternion algebra (Šmilauer et al., 2015).

To sum up, each computation cycle is composed of the following four
steps:

- Detect the contact points;

- Compute the contact forces;

- Integrate the force and momentum equations for each grain;

- Update the positions of the grains.

Contact law

The choice of the contact law is the second ingredient needed to perform DEM
simulation with the choice of the grain geometry. Today, a large choice in
contact laws have been developed and are implemented in DEM computation
codes.

The most common contact law used in DEM is the elasto-frictional law,
introduced by Cundall and Strack (1979). It assumes that a contact is created
as two particles overlaps. The two contacting bodies are then assumed to
be linked by two fictitious linear springs and a slider as illustrated in Figure
2.14. At time t, the normal spring defines a normal force F t

n = −F t
nn

t (nt
being the outward normal unit vector to the contact) and the tangential
spring associated with the slider define a tangential force F t

τ .
The normal intensity F t

n is defined at time t as proportional to the over-
lapping distance δt between the two particles through a contact stiffness kn.
As it is aligned with the normal direction (with opposite sense), it can be
computed in a scalar form as

F t
n = knδ

t (2.15)

In the above equation, the contact normal stiffness kn depends on the size
of the two contacting particles as it is proportional to the material’s Young
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Figure 2.14 – Elasto-frictional law used in DEM simulations

Figure 2.15 – Incremental update of the accumulated shear displacement uτ
as implemented in YADE.

modulus E and to the harmonic average of the two particles radii Rp and Rp′

kn = E
2RpRp′

Rp +Rp′
. (2.16)

Contrary to its normal counterpart, the tangential force F t
τ cannot be

simply defined based on the current geometrical configuration. It depends
on the loading history and the accumulated shear displacement utτ at time t.

The incremental definition of utτ is not trivial and is illustrated in Figure
2.15.

Let consider two spheres p and p′ in contact at time t. In this configuration
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the outward normal vector for sphere p is

nt =
xtp′ − xtp
||xtp′ − xtp||

(2.17)

and the contact point position xtcp is located in the middle of the overlapping
zone

xtcp = xtp + (Rp −
δt

2
)nt (2.18)

with δt = Rp +Rp′ − ||xtp′ − xtp||.
Then, at time t+∆t, the two contacting spheres move to the new positions

xt+∆t
p and xt+∆t

p . Accordingly, the normal vector and the contact positions
are updated as nt+∆t and xt+∆t

cp . The tangential displacement utτ is updated
by introducing two correction terms ∆urτ and ∆usτ .

Part of the update is simply linked to the solid rotation of the two spheres
in contact and part of the update is coming from the relative motion be-
tween the spheres (Šmilauer et al., 2015). As a result, a first correction ∆urτ
is introduced to account for the rotation of the normal vector with a rota-
tion velocity

ωtp+ωt
p′

2
without changing the norm of the shear displacement

||utτ + ∆urτ || = ||utτ ||. The second increment accounts for the relative
velocity vtp′/p of grain p

′ compared to grain p at the contact point xtcp

vtp′/p =
dxp′

dt

∣∣∣∣
t

− dxp
dt

∣∣∣∣
t

+ ωtp′ × (xtcp − x
t
p′)− ωtp × (xtcp − x

t
p) (2.19)

The associated incremental shear displacement ∆usτ at the contact point
is then computed by integrating the shear component of the velocity with
respect to the current normal vector nt+∆t

∆usτ = ∆t
[
vtp′/p − (vtp′/p ·nt+∆t)nt+∆t

]
. (2.20)

In the end, the shear displacement at time t+∆t (perpendicular to nt+∆t)
is updated as

ut+∆t
τ = utτ + ∆urτ + ∆usτ . (2.21)

In the global framework, the tangential force F t
τ is then defined at time

t as proportional to the shear displacement utτ through a contact stiffness
kt = αkn expressed as a fraction α of its normal counterpart.

F t
τ = −ktutτ (2.22)
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Table 2.1 – Mechanical parameters used in the elasto-frictional contact law
implemented in YADE.

Parameters Value
Density 3,000 kg.m−3

Young Modulus (E) 356 MPa
Stiffness ratio (α) 0.42
Inter-particle friction angle (φ) 35◦

Particle-wall friction angle 0◦

Note that the tangential force F t+∆t
τ could have been defined equivalently

in an incremental form by rotating F t
τ and adding the incremental contribu-

tion ∆F τ = kt∆u
s
τ .

The above relation remains valid as long as contact sliding does not occur,
which is assessed thanks to a Mohr-Coulomb criteria with an internal friction
angle φ. As a result, the complete tangential force is expresses as

F t
τ =

{
−ktutτ if ||F t

τ ||/F t
n < tanφ

− tanφ F t
n

utτ
||utτ ||

otherwise
(2.23)

The input parameters used in this elasto-frictional contact law are re-
ported in Table 2.1 and are similar to those used in Hadda (2006).

Remark on the ratcheting effect : Because the relative velocity given in
Equation (2.19) involves the non-constant length scales ||xtcp−x

t
p′ || = Rp′− δt

2

and ||xtcp − x
t
p|| = Rp − δt

2
, the formulation of the shear force can result in

granular ratcheting. This well known effect appears while considering cyclic
loading during which a certain amount of permanent shear displacement
is accumulated each cycle even in the elastic regime. For instance, let us
consider two grains p and p′. p is fixed, and a displacement cycle is imposed
to p′ as follow:

- translation dxp′ in the normal direction

- rotation ∆t ωp′

- translation −dxp′ in the normal direction

- rotation −∆t ωp′

If the branch vector used to define the relative shear displacement through
grain rotation is not constant (as it is the case in Equation (2.19)), then the
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shear displacement at the end of this cycle is not zero. It results in a finite
contact force at the end of the cycle even though the positions and orienta-
tions are identical which contradicts the elastic nature of the problem. Given
that DEM simulations tend to generate oscillations around equilibrium, it can
have a significant impact on the evolution of the packings, resulting for in-
stance in slow creep in iterations under constant load. The solution adopted
in YADE to avoid ratcheting is inspired by the work of Mcnamara et al.
(2008). Indeed, Equation (2.19) is replaced by

vtp′/p = α

(
dxp′

dt

∣∣∣∣
t

− dxp
dt

∣∣∣∣
t

)
− ωtp′ ×Rp′n

t − ωtp ×Rpn
t (2.24)

with

α =
Rp +Rp′

Rp +Rp′ − δt
. (2.25)

Convergence conditions

As already mentioned in the comparison between smooth and non-smooth
contact dynamics approaches, smooth contact dynamics is subjected to a
CFL condition. This imposes a condition on the time step ∆t that should
be smaller than a critical time step ∆tc depending on the wave propagation
velocity in the medium. For a granular system modeled as a collection of
spheres linked by springs, the characteristic oscillation period T is equal to
2π
√

m
k
with m the particle mass and k the spring stiffness. As m and k ∈

{kn; kt} depend on the particle radius Rp, the critical time step ∆tc for the
whole granular material must be strictly less than the minimum characteristic
period over all particles for the stiffer spring kn. By recalling that kn ' ER
with R the radius of contacting particles and m = ρ4

3
πR3,

∆tc ' Rmin

√
ρ

E
(2.26)

In case rolling resistance should be introduced, an other critical time step
coming from the integration of (2.12) should also be considered.

In addition, in order to avoid permanent small oscillations in the system
due to the absence of viscous damping in the used contact law, a numer-
ical damping coefficient λd is used for numerical stabilization purpose. In
practice, λd is set to 2%. The basic idea is to decrease the summary forces∑

cp
F cp which increase the particle velocity and vice versa by comparing

the current acceleration direction and particle velocity direction. The force
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increment ∆F d corresponding to the numerical damping is computed com-
ponent per component, which makes the damping scheme non-objective and
clearly non-physical (Šmilauer et al., 2015)

∆F i
d∑

cp
F i
cp

= −λd sign

∑
cp

F i
cp

 ·

(
dxip
dt

∣∣∣∣
t−∆t/2

+
d2xip
dt2

∣∣∣∣
t

∆t

2

) (2.27)

where i refers to vector components.

Computational efficiency in YADE

Before concluding on this short review of the DEM method that was used
throughout this PhD work, it is important to tell a few words on the com-
putational cost of DEM as implemented in YADE. It is indeed closely linked
to the contact detection step and the critical time step.

Because contact detection requires basically to test for every couple of
particles whether they intersect, the computation cost of this step strongly
depends on the number of particles handled in the simulation. A brutal
force algorithm predicts a complexity of O(N2

p ), Np being the number of
particles. By sorting the particles by sub-domains and only checking the
occurrence of contacts between particles belonging to a same domain, it is
possible to speed up the contact detection. Dealing with each sub-domain in
parallel on different processors also speeds up this step. However, if too many
sub-domains are used, most of the contacts will concern particles belonging
to different sub-domains. This will result in a decrease in computational
efficiency as information exchange between processors will become too much
time consuming. As a result, for tens of thousands of particles in 3D, no
more than 6 to 10 processors should be used to speed up contact detection.
A detailed performance test of YADE was carried out by Klaus Thoeni and
is available on https://yade-dem.org/wiki/Performance_Test.

Because the critical time step ∆tc ' Rmin

√
ρ
E

is proportional to Rmin,
the presence of a few small particles has dramatic consequences on the com-
putation time needed to simulate the same physical time period.

As a result, the computational cost of a DEM simulation in YADE in-
creases with

• the number of particles N ;

• the aspect ratio Rmin/Rmax between the smallest and largest particles.

If we come back to the numerical modeling of suffusion, these two com-
ments predict very expensive numerical simulations as soils subjected to suf-

https://yade-dem.org/wiki/Performance_Test
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fusion exhibit i) a very wide particle size distribution (PSD) and ii) a signifi-
cant mass fraction of fine particles. In order to account numerically for these
PSD, both a large number of particles and a large aspect ratio are required.
In addition, if we take into account the fact that the mechanical behavior of a
soil is mainly dictated by the largest particles, the definition of a representa-
tive elementary volume also tends to increase the number of particles needed.
Eventually, as it will be detailed in the next section, simulating the fluid flow
increases significantly the computation cost also positively correlated with
the number of particles.

For all these reasons, the PSD used during this PhD are not always asso-
ciated with internal instability but they are still able to be used to account
for fluid/grain interactions directly at the microscale.

2.3.2 Mesoscale structures and mechanics

The mechanical response of a granular material is a mixture between contact
scale properties (rigidity, friction, ...) and geometrical effects linked to the
specific arrangements of the grains (packing, void ratio, fabric, ...). In the
end of the twentieth century, the combine use of photo-elastic grains and
numerical simulations shows that the overall behavior of granular materials
relies indeed on a limited number of grains organized in linear structures
called force chains (Drescher and De Jong, 1972; Liu et al., 1995; Radjai
et al., 1998; Cambou et al., 2013; Majmudar and Behringer, 2005; Peters
et al., 2005). Such structures are shown in Figure 2.16 for photo-elastic
grains and DEM contact force networks.

Besides these qualitative visualizations, the distributions of the contact
forces magnitude have been investigated from microscale data. Both ex-
perimental and numerical results show that the probability density decays
exponentially at large forces and shows a plateau or possibly a small peak
near the average force (Cambou et al., 2013). As introduced for instance
by Radjai et al. (1998), the contact network can be split into a strong and
a weak contact networks depending whether contact forces are greater than
the average contact force. The strong contact is responsible for the load
bearing capacity of the granular material and the privileged orientation of
the force transmission paths is aligned with the principal loading direction.
On the contrary, the contacts belonging to the weak contact network are
mainly perpendicular to the main loading direction and are responsible for
the stability of the strong network as well as the energy dissipation (Radjai
et al., 1998). During, a mechanical loading, granular material can thus be
seen as a constantly evolving complex network that adapts to the chang-
ing boundary conditions (Walker and Tordesillas, 2010). The generation of
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(a) Force chain visualization in a gran-
ular assembly of photoelastic disks
(Majmudar and Behringer, 2005).

(b) The contact force network in a 2D
packing of 4000 disks (Cambou et al.,
2013).

Figure 2.16 – Experimental (a) and numerical (b) visualization of the het-
erogeneities in contact force networks.

column-like structures during a hardening phase followed by the collapse of
these structures during a softening phase have been frequently observed in
DEM simulations (Iwashita and Oda, 1998, 2000; Majmudar and Behringer,
2005).

From a slightly different perspective, some authors prefer to describe the
two grain phases, not through contact networks at the scale of the whole
specimens, but by introducing an intermediate scale between the grain scale
and the REV scale. Such scale is referred to as mesoscale and two kinds of
mesostructures composed of a few grains have been defined in the form of
force chains and grains loops. This mesostructure approach has the advan-
tage to be focused on the grains and not on the contacts. As a result, it is a
more convenient approach to be used when considering suffusion as the fluid
acts on the grains and not on the contacts.

In this work, the force chain definition1 given in Peters et al. (2005) is
adopted as well as the algorithm described to identify force chains in DEM
simulations. This definition is illustrated in Figure 2.17 and reviewed here:

- From the definition of the mean stress in a grain recalled in Equation
(2.3) the principal stress σ1 of each grain is computed. Particles be-

1Following a discussion with the PhD jury, it appears that the wording stress chain
should be preferred since the definition is based on the stresses and not forces.
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Figure 2.17 – Force chain definition according to Peters et al. (2005) (a).
Force chain branching and definition of chained particles (b).

longing to a force chain are then searched among those having principal
stress larger than the averaged particle principal stress (σ1 ≥ <σ1>).

- Among these highly stressed grains, contacting grains having principal
stress directions aligned with the geometrical contact direction forms
column-like structures transmitting large stresses. As in Peters et al.
(2005) a maximum angle of 45◦ is used to assess the stress/geometry
alignment.

- Among the potential aligned groups of stressed grains, only those com-
posed of more than 3 grains are eventually retained to define force
chains.

As a result, force chain definition relies on three thresholds: the minimum
principal stress ratio σmin

1

<σ1>
= 1, the maximum deviation angle between stress

and geometric directions θmax = 45◦ and the minimum force chain length
Lmin = 3. A justification of these thresholds will be provided in section 3.2.1
of the next chapter.

An other arbitrary aspect of the algorithm presented in Peters et al.
(2005) is that force chain branching is not accounted for. As a result, and
illustrated in Figure 2.17, force chains are not necessarily uniquely defined
and two runs of the algorithm can identify different force chains. As a result,
a distinction is made in this manuscript between force chains (mesostructures
defined from running Peter’s algorithm once) and chained particles (the set
of all particles that can be part of force chains). While considering chained
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Figure 2.18 – Interplay between loops and force chains in a 2D numerical
sample (Zhu, 2015). In the zoom (on the right) loop topology is shown by
geometrical figures (triangle, square, ...).

particles, the notion of mesostructure is lost but in the meantime, branching
is implicitly accounted for as shown in Figure 2.17.

Complementary to force chain grains, loops have been introduced in 2D
to account for the properties of the loose phase. Indeed, in two dimensions
the pore space is composed of isolated pores which are enclosed by grain
cycles. These topological structures provide indeed a partition of the material
domains into meso-scale loops. Compared to force chains that account for
the load bearing capacity of the material, these mesostructures account for
the deformability of the material. In his PhD, Zhu (2015) investigated in
details the interplay between loops and force chains. By performing detailed
analysis of DEM simulation, he showed how the surrounding loops around
force chains ensure their mechanical stability (Zhu et al., 2016c,b). Loops
and force chains in a 2D numerical specimen are illustrated in Figure 2.18.

2.4 Numerical modeling of internal fluid flows

In order to provide a full microscopic modeling of suffusion, the local fluid
impact has to be simulated also at the local scale. From a conceptual point
of view, accounting for fluid/grain interaction is not a new problem as it
basically consists in the simulation of a laminar flow in a pore space which
geometry is explicitly known. Under the additional assumption of fluid in-
compressibility, the fluid problem consists in solving Stokes and mass con-
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servation equations{
µ∇2u−∇p+ f = 0
∇ ·u = 0

, (2.28)

where u is the fluid velocity, p the fluid pressure field, µ the fluid dynamic
viscosity and f a body force (the gravity for instance).

From the knowledge of the fluid velocity field, the action of the fluid on
the different grains of the material are deduced by integrating the shear and
normal stresses on grain interfaces. Eventually, these additional forces can
be used in the DEM computation to update the grain positions and the pore
space geometry.

The real issue at stake when accounting for the fully coupled suffusion
problem at the microscale is indeed a computational issue. Without very effi-
cient numerical computation schemes, three dimensional problems are simply
out of reach.

2.4.1 A comparative review of existing methods

A first approach is to simulate the fluid flow thanks to resolved Computa-
tional Fluid Dynamics (CFD) techniques. In this approach, the pore space
is triangulated in order to solve Equation (2.28) thanks to Finite Element
Methods (FEM). As tens to hundreds FEM elements per pore are required
to get accurate results, the fluid solving step is extremely expensive and ex-
isting studies in the litterature are extremely scarce (Chareyre et al., 2012).
Moreover, frequent remeshing is needed to account for the microstructure
modifications.

As a result, much of the CFD approaches found in the litterature are
indeed unresolved CFD approaches (Zeghal and El Shamy, 2004; El Shamy
and Zeghal, 2005; Chen et al., 2011; Zhao and Shan, 2013; Shan and Zhao,
2014; Abdoulaye Hama et al., 2016; Kawano et al., 2017). Unresolved CFD
is indeed hybrid between a micro and a macro scale modeling as the fluid
problem is not solved at the pore scale but on finite elements, the size of
which is much larger than the grains. As a result, Equation (2.28) has to be
changed to account for the local porosity of the granular media. Compared to
resolved CFD, unresolved CFD is computationally less expensive and requires
no remeshing but in the meantime the microscale description of the problem
is lost and ad hoc macroscopic assumptions are needed to account for the
fluid flow (Darcy’s law and Kozeny-Carman expression of the permeability
for instance).

A third option to account for the fluid at the local scale is to use Lattice
Boltzmann Methods (LBM) (Lallemand and Luo, 2000; Mansouri et al., 2009;
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Yu and Fan, 2010; Cuellar et al., 2015; Jaeger et al., 2017; Ngoma et al., 2018).
These methods rely on a statistical physics approach and Equation (2.28) is
replaced by Boltzmann discrete equation to account for the fluid behavior
through a collision-propagation scheme (Lallemand and Luo, 2000). As for
resolved CFD approaches, this numerical scheme requires a discretization
of the pore space but LBM relies on a fixed lattice that is not changed as
grains move. Even if this numerical technique can be easily parallelized, its
implementation in 3D is still very expensive. In addition, it should be noted
that, incompressible flow represents a high difficulty for the conventional
LBM, which is entirely based on density fluctuations.

A fourth class of approach lies in the use of pore network models (Bryant
et al., 1993; Thompson and Fogler, 1997; Bakke et al., 1997; Hilpert et al.,
2003; Abichou et al., 2004). Indeed, these methods (initially developed to
predict the permeability of porous media) are based on a discretization of
the void space into connected pores. The complexity of the fluid flow is
then reduced to fluid exchange laws between adjacent pores. As a result, the
accuracy of these approaches strongly relies on adequate definitions of how
fluids are exchanged between pores in terms of the local pore geometry. A
second difficulty consists in computing the fluid forces on the surrounding
grains as the fluid state is defined as piecewise constant within each pore.
However, provided that these difficulties can be overcome, these approaches
provide a microscale fully coupled fluid/grain modeling at a relatively cheap
computational cost.

So far, most of the existing studies in the literature did not dare to tackle
suffusion problems in their full 3D complexity. Some studies propose 2D
simulations, but 2D problems imply some arbitrary definition of the local
conductivity, assuming virtual channels between adjacent voids as the pore
space is not connected contrary to 3D. In this PhD work, the opportunity
offered by the recent development of a promising pore network model em-
bedded in the DEM code YADE has been seized to simulate suffusion at the
representative elementary volume in 3D. The next subsection introduces in
more details the coupled Pore-scale Finite Volume (PFV) - DEM model used
in this PhD work (Chareyre et al., 2012; Catalano, 2012).

2.4.2 Pore-scale Finite Volume (PFV) method

Pore space discretization

The first ingredient of all pore network models is to simplify the geometry
of the void space by defining a connected network of pores. In the PFV
method, this is done by using a regular Delaunay triangulation which con-
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Figure 2.19 – Adjacent tetrahedra in the regular Delaunay triangulation and
dual Voronoi network, in two dimensions (a,b) and three dimensions (c)
(Chareyre et al., 2012).

sists in a weighted generalized form of the classical Delaunay triangulation
(Edelsbrunner and Shah, 1996). This particular triangulation has the im-
portant property that all edges of the dual tessellation belong to the void
space and do not intersect any grains. The result of this triangulation step
is illustrated in Figure 2.19.

The partitioning described above results in a tethraedral mesh whose ver-
tices coincide with the centers of the spheres. The dual tessellation system,
defined by branches linking the Voronoi centers computed for each pore, rep-
resents the path along which the fluid is assumed to flow within the medium.

Before moving foreward, it is important to underline here that in the
PFV method the size of the discretization is not controlled and is dictated
by the microstructure. As a result, this method is well adapted to account
for fluid flow in condensed granular materials. On the contrary, if granular
suspensions or piping erosion are considered, the use of the PFV method will
result in large pores which can lessen the method accuracy.

Fluid flow solving step

Following the work of Catalano (2012), let Ωi be the domain defined by a
tetrahedron i of the triangulation. The Nc tetrahedra define a partition of
the total domain Ω = ∪Nci=1Ωi. As shown in Figure 2.20, Ωi is composed of
portions of spheres and of void space. Let Γi and Θi be the domains occupied
respectively by the solid and the fluid (since we consider saturated granular
materials): Ωi = Γi ∪Θi.

In an integral form, the continuity equation (2.28) for an incompressible
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Figure 2.20 – Tetrahedron unit cell of the volume discretization (Chareyre
et al., 2012). Pore volume (a) and constriction area (b).

fluid gives a relation between the time derivative of the fluid volume V f
i

contained in pore Ωi, the fluid velocity u and the contour velocity v

dV f
i

dt
=

∫
∂Θi

(v − u) ·ndS (2.29)

where ∂Θi is the boundary of the fluid domain Θi and n the outward normal
vector.

Because term (v−u) ·n acts on fluid grain interfaces, Equation (2.29) is
the sum of four terms computed on the surfaces Sij illustrated in Figure 2.20.
If fluid fluxes qij from pores i to j are introduced, the continuity equation is
expressed as

dV f
i

dt
=

j4∑
j=j1

∫
Sfij

(v − u) ·ndS = −
j4∑
j=j1

qij. (2.30)

As Stokes equation (2.28) predicts a linear relationship between the fluid
velocity and the pressure gradient, the fluid exchange between two adjacent
pores is sought in a Darcy (or Poiseuille) form. By assuming the fluid pressure
to be constant in each pore, fluid fluxes are computed as

qij = gij
pi − pj
lij

(2.31)

where gij is the hydraulic conductivity of constriction Sfij and lij is the inter-
pore distance.

In the PFV model, Equation (2.28) is thus reduced to the two Equations
(2.30) and (2.31) and the unknowns of the problem are the pore pressures
pi and the fluid fluxes qij where (i, j) ∈ [[1, Nc]]. As a result, the fluid flow
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Figure 2.21 – Construction of subdomain Ωij and Θij, defining the volume
of the throat assigned to a facet for the definition of hydraulic radius Rh

ij

(Chareyre et al., 2012).

problem is reduced to a linear algebra problem and basically to the inversion
of a sparse matrix for which several efficient algorithms exist.

In Equation (2.31), the definitions of the geometrical parameters gij and
lij are not given. The accuracy of the PFV model relies indeed on a savvy
definition of these two parameters.

By analogy with the Hagen-Poiseuille relation, gij is defined based on the
geometry of the facet ij. By introducing the hydraulic radius of the pore
throat Rh

ij, the cross-sectional area Aij and a dimensionless coefficient α, the
hydraulic conductivity is expressed as

gij = α
AijR

h
ij

µ
(2.32)

where µ is the fluid dynamic viscosity.
The geometric definition of Rh

ij, Aij and lij are computed on a dual par-
titioning of the total domain Ω. Indeed, for two adjacent pores i and j,
a domain Ωij is defined based on the center of the three common grains
and the two Voronoi vertices Pi and Pj as illustrated in Figure 2.21. The
corresponding fluid domain is designed as Θij.

The hydraulic radius is then computed as

Rh
ij =

|Θij|
|∂Θs

ij|
(2.33)

where |Θij| is the fluid volume in Θij and |∂Θs
ij| is the surface of the fluid/-

grain interface of Θij.
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The inter-pore distance is computed as lij = ||PiPj|| and the cross-
sectional area as Aij = Sfij.

The last remaining parameter to set is α that is set to α = 1/2 in order to
respect the analogy with the Hagen-Poiseuille law. It is worth noting that,
this factor being the same for all constrictions, the pressure map is insensitive
to α, and consequently do not affect the values of the forces applied on the
particles.

The accuracy of the PFV scheme was tested and validated against CFD
simulations in Chareyre et al. (2012); Catalano (2012).

Computing fluid forces acting on the grains

Through the triangulation of the void space, the grain impact on the fluid
flow has been accounted for. The last step of the DEM-PFV coupling scheme
is to compute the back effect of the fluid flow onto the grains. This is done
by adding a fluid force into the force balance equation (2.11a). The total
force F f

k generated on particle k by the fluid includes the effects of absolute
pressure pa = p+ ρfΦ (where Φ is a potential field) and viscous stress τ

F f
k =

∫
∂Vk

(pan+ τ ) dS

=
∫
∂Vk

ρΦn dS +
∫
∂Vk

pn dS +
∫
∂Vk
τ dS

= F b
k + F p

k + F ν
k

(2.34)

where n is the outward normal vector to domain Ωij and Vk is the particle
domain.
F b
k is called the buoyancy force which is equal to Archimede’s force in the

case of gravitational body forces. It is not accounted for in the PFV method
implemented in YADE.

In order to compute the last two terms, it is interesting to remark that
the domains Ωij form a partition of the whole domain Ω. F p

k and F ν
k are

thus decomposed into F p,ij
k and F ν,ij

k computed for each cell Ωij.
As derived in Chareyre et al. (2012),

F p,ij
k =

∫
∂Vk∩Ωi∩Ωij

pindS +

∫
∂Vk∩Ωj∩Ωij

pjndS = Akij(pi − pj)nij (2.35)

where Akij is the area of particle k intersecting the common faces in between
tetrahedra i and j and nij is the unit vector joining point Pi to Pj.

Derived from the momentum conservation, the surface integral over ∂Θij

of the stress vector −pn− τ applied on Θij is equal to zero. As a result, by
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decomposing ∂Θij into a fluid/fluid interface ∂Θf
ij and a fluid/solid interface

∂Θs
ij ∫

∂Θij

−pndS +

∫
∂Θfij

−τdS +

∫
∂Θsij

−τdS = 0 (2.36)

By assuming that the shear stress in the fluid is negligible, we eventually
get the total viscous force on Θij as

F ν,ij '
∫
∂Θij

−pndS = Afij(pj − pi)nij (2.37)

where Afij = Sfij is the area on the fluid domain on the common face between
tetrahedra i and j.

Under the additional assumption that the force on sphere k is proportional
to the surface γkij of that sphere contained in the subdomain Ωij, we eventually
get

F ν,ij
k ' F ν,ij

γkij∑3
k=1 γ

k
ij

. (2.38)

In the end, the fluid forces acting on all the grains of the materials are
computed by summing the contributions of all subdomains Ωij. This com-
pletes the DEM-PFV fully couple scheme.
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At the microscale, suffusion consists in a rearrangement of particles driven
by three elementary mechanisms, namely the detachment of grains from the
granular skeleton, their transport through the pore network and possibly
their reattachment to the granular skeleton farther away. In order to cor-
rectly simulate suffusion, there is a need to use a volume of granular material
sufficiently large to simulate these three elementary processes. In this chap-
ter, specific micromechanical tools are developed to investigate the suscepti-
bility of a polydisperse assembly of spherical particles to grain detachment
and grain transport. The possibility to provide a quantitative definition of
the length scales associated with these two elementary mechanisms is shown
thanks to the use of a Discrete Element Method (DEM) coupled with the
Pore scale Finite Volume (PFV) fluid grain coupling scheme. The length
scale analysis is addressed in this chapter thanks to the use of spatial auto-
correlation between force chains and the definition of virtual transport paths.
Most of the result presented in this chapter have been published in Wautier
et al. (2017).

This chapter is organized as follows. In section 3.1, idealized virtual sam-
ples defined as poly-dispersed assemblies of spheres of varying void indices are
generated and numerical experiments are considered in the form of drained
triaxial tests. Based on the geometrical and micro-mechanical description of
the samples under testing, two mesoscales (associated with force transmis-
sion and particle transport) are defined and quantified in sections 3.2 and 3.3
respectively.

3.1 Numerical experiments on widely graded
samples with DEM

The micromechanical analysis is based on non-cohesive granular materials
modeled as poly-disperse assemblies of spheres. The interaction between two
particles is modeled by the classical elasto-frictional contact law proposed by
Cundall and Strack (1979) and detailed in Section 2.3.1 with parameters of
Table 2.1. Given all inter-particle contact forces, the induced particles dis-
placements are then numerically integrated thanks to the DEM open source
code YADE (Šmilauer et al., 2015).

3.1.1 Sample definition

Cubic assemblies of spheres are generated randomly with a uniform radius
distribution between rmin and rmax = 10 rmin. This particle size distribution
is taken such that the smallest particles have a good geometrical chance of
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Figure 3.1 – Cumulative distribution in terms of mass corresponding to the
generated samples. Particle radii are normalized by the mean radius value.
An insight sample visualization is provided.

being transported through the voids created by the largest ones according to
Therzaghi’s filter rule: rmin � 4 rmax (Terzaghi, 1939). The corresponding
cumulative distribution in terms of mass passing fractions is shown in Figure
3.1.

After generating a cloud of 10,000 non-overlapping spheres surrounded
by six bounding planes defining a cube, the particles are inflated and allowed
to rearrange according to the radius expansion technique. This process is
stopped when the confining pressure applied on the bounding planes reaches
an intermediate stress of 20 kPa. This stress is chosen such that it is large
enough to obtained a jammed state while being still much smaller than the
typical stress values that will be imposed in mechanical testing after the sam-
ple preparation step. From this point, the internal friction angle is artificially
decreased by small steps, making it easier for particles to rearrange. Since
the particle radii should be increased to keep the confining pressure constant,
this procedure results in a densification process. Three geometrical configu-
rations are generated during this process when the void ratio of the sample
reaches the targeted values of 0.8, 0.7 and 0.6. These values were selected
such that the resulting three samples exhibit macroscopic behaviors typi-
cal of loose, intermediate, and dense sands respectively. Accordingly, they
are referred to as loose sample, medium sample and dense sample hereafter.
Associated with the cubic grain assemblies thus generated, a Cartesian co-
ordinate system (ex, ey, ez) is defined such that the axis directions coincide
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with the edges of the cube. This definition is recalled in Figure 3.5.

3.1.2 DEM simulation of drained triaxial tests

From the resulting forces applied on the bounding walls a macroscopic stress
tensor σ is computed. The diagonal components σxx, σyy and σzz are ob-
tained by dividing the total normal forces applied on each of the sample faces
by their area. As frictionless bounding walls are considered, the off diagonal
terms of σ are equal to zero. The resulting deviatoric stress q is then derived
as

 q =

√
3

2
σdev : σdev

σdev = σ − 1
3
Tr(σ)1

(3.1)

where 1 stands for the identity tensor and : stands for the double dot contrac-
tion product. Soil mechanics conventions are used with compression counted
positive.

Likewise, the macroscopic homogeneous strain tensor ε is defined from
the bounding walls displacements. Since no rotations are allowed for the
bounding walls, the off diagonal terms of ε are equal to zero. The volumetric
strain is then defined with the trace operator as

εv = Tr(ε) = εxx + εyy + εzz. (3.2)

A negative strain value correspond to contraction.
After the sample preparation phase, the internal friction angle of the

inter-particle contact law (see Figure 2.14) is restored to its initial value of
35◦. The same dry drained triaxial test is applied to the three prepared
samples. This test consists in two steps:

- First an isotropic confining pressure of σ0 = 100 kPa is applied by
allowing the bounding walls to move;

- Then a vertical compression strain rate ε̇zz = −0.01 s−1 is applied
up to 20 % of deformation while keeping a constant lateral confining
pressure of σ0; this strain rate is chosen such that the loading can be
considered as quasi-static (Hadda, 2006).

The classical deviatoric stress and volumetric strain responses are shown
for the three samples in Figure 3.2.

In Figure 3.2, the dense sample is characterized by a dilative behavior
after a brief initial contracting phase. The stress response reaches a peak
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Figure 3.2 – Stress (left) and volumetric (right) responses of the prepared
samples of different initial densities during a drained triaxial loading with
confining pressure of 100 kPa and vertical strain |εzz| ∈ [0, 0.2]

followed by a softening phase. The loose sample is characterized by a con-
tractive behavior and the absence of a stress peak. The medium sample
evolves in an isochoric way with a stress peak immediately followed by a
plateau. These three mechanical responses are consistent with those classi-
cally observed both in the laboratory (Terzaghi et al., 1996) and from discrete
numerical simulations (Scholtès et al., 2010; Wang and Li, 2015). Moreover,
one can highlight the existence of a unique critical state, as described in the
classical critical state theory in soil mechanics (Schofield and Wroth, 1968).

3.2 Mesoscale analysis of force transmission

The microscale analysis of the force network in granular assemblies is under-
pinned by two governing ideas with respect to grain detachment. The first
idea is that the most detachable grains do not transmit important forces. The
second idea is that the typical length scale associated with the detachment
process should be linked to the distance between the grains transmitting
stresses through the granular assembly. As a result, the grains of the three
samples presented in the previous section are first divided into two groups
based on the force chain definition introduced by Peters et al. (2005). Then
the spatial distribution of force chains is investigated using autocorrelation
functions (Matheron, 1967; Kanit et al., 2003). This two steps analysis is
conducted on the three samples presented in the previous section.
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Figure 3.3 – Force chain definition according to Peters et al. (2005) based on
the three threshold values σmin

1 , θmax and Lmin.

3.2.1 Force chains and associated statistics

Force chains1 are identified according to the same algorithm as Peters et al.
(2005) reviewed in Section 2.3.2 of the state of the art. This definition is based
on three threshold values recalled in Figure 3.3: the minimum principal stress
σmin

1 =<σ1 >, the maximum deviation angle θmax = 45◦ and the minimum
force chain length Lmin = 3. Before moving forward, a justification of these
arbitrary thresholds can be given by performing a sensitivity analysis. In
Figure 3.4, the evolution of the number of chained particles is given for
different threshold values.

In Figure 3.4, the number of identified chained particles remains constant
for σmin

1 smaller or greater than the mean principal stress <σ1> but around
this particular value, a drop is observed. This behavior is typical of the ex-
istence of two grain populations (loose and stressed grains) and justifies a
posteriori the used threshold value σmin

1 =<σ1> in Peters’s definition. This
value is also consistent with the alternative definition of the strong and weak
contact networks (Radjai et al., 1998). For θmax and Lmin the justification of
the thresholds is less clear as the number of chained particles is an increas-
ing function of θmax and a decreasing function of Lmin. Choosing Lmin = 3
corresponds to the minimum number of grains to define indeed a structure
with non-trivial internal degrees of freedom. And choosing θmax = 45◦ corre-
sponds to the largest angle that avoid to define force chains with geometric
deviation larger than 90◦ between two successive contact orientations.

Based on these three threshold values, force chains can be identified in the
three samples for several strain values. A typical visualization of the force
chains in the dense sample can be found in Figure 3.5. At the beginning of

1Following a discussion with the PhD jury, it appears that the wording stress chain
should be preferred since the definition is based on the stresses and not forces.
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Figure 3.4 – Evolution of the number of chained particles for different thresh-
old values. This sensitivity analysis is carried out for the dense sample under
an isotropic confining pressure of 100 kPa (εzz = 0).

the triaxial test (εzz = 0), the force chains are distributed in an isotropic
way which is consistent with the fact that no principal direction of loading
exist. Once the deviatoric loading is applied, the force chains tend to align in
the vertical direction of the macroscopic principal stress which is consistent
with the previous results obtained in 2D with the combined use of fabric
tensors and contact forces network (Radjai et al., 1998; Iwashita and Oda,
1998, 2000; Majmudar and Behringer, 2005).

In addition to these qualitative observations, some of the force chains’
statistical properties can be analyzed. In Figure 3.6 the percentage of chained
particles, the total number of force chains and the mean length of a force
chain are plotted for the different samples during the triaxial test presented
in the previous section.

As pointed out in Peters et al. (2005), only a small fraction of the total
number of particles is involved in force chains. At the beginning of the triaxial
test, the fraction of chained particles ranges from 23 to 31 % depending
on the sample density (Figure 3.6 (a)). The higher the density, the more
particles are involved in force chains. This should be related to the fact that
for a dense sample the high number of contacts between particles enables a
homogeneous distribution of the stress inside the sample. Conversely, a loose
sample presents a more limited number of contacts, which results in the
concentration of the stress onto a more limited number of particles. As the
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Figure 3.5 – Force chains visualisation for the dense sample under an isotropic
confining pressure of 100 kPa (a) and at the end of the triaxial test (b).

deviatoric loading starts, force chains disappear, as illustrated in Figure 3.6
(a) and (b) for the dense and medium samples, respectively. After merely
10 % of strain, a critical state is reached with only 24 - 25 % of particles
involved in force chains.

The evolution of the mean length of a force chain gives information on
the ability of a material to withstand an incremental load. Indeed, granular
assemblies containing long force chains are able to sustain high stress levels
because most of the stiffness will result from the normal contact stiffness
kn (see Figure 2.14). In contrast, for granular assemblies containing short
force chains the overall stiffness is more influenced by the tangential contact
stiffness kt ≤ kn and the friction angle φ (see Figure 2.14). As a result, Figure
3.6 (c) accounts for the three typical macroscopic stress behaviors presented
in dots. In particular, the softening experienced by the dense sample can be
linked to the destruction of long force chains.

Overall, the three graphs in Figure 3.6 are consistent with the existence
of a common critical state with respect to these meso-structures (Zhu et al.,
2016a) given that the curves corresponding to the different samples collapse
on a single curve for large strain values.

Another interesting statistical property of the chained particles with re-
spect to grain detachment is the probability density that a particle of a given
radius belongs to a force chain. The corresponding probability density for
the dense sample in the isotropic initial state (εzz = 0) is shown in Figure 3.7.
Probability densities corresponding to the two other samples and other axial
strain levels are not shown as no noticeable evolutions have been observed.
For comparison purposes, the uniform probability density for a grain of a
given radius to be part of the different samples is plotted as a dashed line. It
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Figure 3.7 – Probability density for a grain of a given radius to be part
of a force chain belonging to the dense sample in the isotropic initial state
(εzz = 0). The dashed lines correspond to the uniform probability density
for a grain of a given radius to be part of the whole sample.

should be noted here that the probability density functions are not bounded,
but their integral over the whole range of radii is equal to 1.

In Figure 3.7, the probability densities corresponding to chained particles
are very different from the reference horizontal probability density corre-
sponding to Figure 3.1. Indeed, force chains are mainly composed of large
particles (Voivret et al., 2009; Cambou et al., 2013) and particles smaller
than 0.4 rmean are rarely involved in force chains. The dual comment is that
the finest particles are the least loaded particles of the samples and therefore
the most sensitive to internal fluid flows. Fine particles are also good candi-
dates for being transported over large distances, which will be estimated in
Section 3.3. However, no sharp transition is visible in the probability den-
sities in Figure 3.7. As a result, no clear radius threshold exists between
the loose particles of a granular assembly and the primary fabric responsible
for stress transmission, as proposed in many suffusion susceptibility criteria.
This result is consistent with the recent findings of To et al. (2015), prov-
ing the existence of an overlapping zone in the PSD curve in which a grain
can either belong to the loose or the coarse phase of the resulting granular
assembly.

As already mentioned, the probability density functions shown in Figure
3.7 do not depend on the strain level, which can result either from very stable
force chains or from stable statistic rearrangements of chained particles. In
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Figure 3.8 – Averaged lifespans of the chained particles existing in the
isotropic state (εzz = 0) in terms of axial strain level |εzz|. The gray domain
in the background corresponds to the range of radii for all the particles.

order to chose between these two options, the lifespan of a chained particle
during the triaxial loading is introduced as the width of the strain interval
during which this particle is continuously identified as belonging to force
chains. In Figure 3.8, the average lifespan of the chained particles initially
identified in the three samples under the isotropic confining pressure σ0 is
shown with respect to the grains’ radii.

As seen in Figure 3.8, the average lifespan increases with the size of the
particles from less than 1% up to 4 %. The force chains containing large
particles are therefore less sensitive to an increase in the axial strain and have
a longer lifespan than the force chains composed of small particles. However,
it can be noted that even for the largest particles, the average lifespan remains
limited to a few percent of strain. Overall, it can be concluded that the
force chains are constantly rearranging to cope with the deviatoric loading.
This dynamic process affects all the particles whatever their radii, but the
largest chained particles are more stable than their smaller counterparts.
The comparison between the three graphs in Figure 3.8 highlights the fact
that the initial void ratio does not seem to have a strong influence on this
rearrangement process.
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3.2.2 Force chain spatial autocorrelation and associated
length scales

Even if the statistical properties shown so far are able to describe several
salient features of the chained particles, they do not capture the spatial
distribution of the force chains. Based on the theoretical work of Matheron
(1967); Lantuejoul (1991); Kanit et al. (2003), the spatial distribution of the
chained particles can be described using autocorrelation functions.

Autocorrelation function definition

If Ω denotes the domain occupied by the chained particles of a given sample
of volume V , the autocorrelation function C is defined for any vector h =
(hx, hy, hz) as the joint probability that a point x and the translated point
x+ h simultaneously belong to chained particles (Matheron, 1967):

C :

{
R3 7→ R
h 7→ P{x ∈ V / x ∈ Ω, x+ h ∈ Ω} . (3.3)

For h = 0, the autocorrelation C(0) corresponds to the chained particles
volume fraction as C(0) = P{x ∈ Ω} , and for ||h|| → ∞, C(h) converges
towards C(0)2 because of probability independence (no infinite range correla-
tion exist in disordered media). Thus a normalized autocorrelation function
C̃ can be introduced as

C̃(h) =
C(h)− C(0)2

C(0)− C(0)2
. (3.4)

When ||h|| varies from 0 to ∞, C̃ varies from 1 to 0 and the rate of
decrease characterizes the microstructure autocorrelation distance. A quan-
titative definition of this autocorrelation distance can be derived from the
introduction of an approximate expression as

C̃fit(h) = exp

(
−

√(hx
Lx

)2

+
(hy
Ly

)2

+
(hz
Lz

)2
)
, (3.5)

where Lx, Ly and Lz are three lengths scales that capture the decreasing
rate of C̃. Even though this expression is empirical, the initial and final
theoretical values of C̃ are recovered, the principal directions of geometrical
anisotropy imposed by the mechanical loading along the axis x, y and z are
respected (Radjai et al., 1998), and as predicted by the theoretical work of
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Matheron (1967) and reviewed in Corson (1974) and in Jin et al. (2016), the
initial tangent of the fit is not equal to zero and close to the specific surface
of the samples. In 3D, and in case the autocorrelation function C depends
only on ||h||, the initial tangent is

dC

d||h||

∣∣∣∣
||h||=0

= −s
4
, (3.6)

where s is the specific surface area defined as the ratio between the surface
of the grains and the total volume of the sample (Jin et al., 2016).

A refinement of the definition of the three length scales introduced above
can be derived from integral range theory (Matheron, 1975; Kanit et al.,
2003). It was shown that the variance of a homogenized property Z of a
biphasic material computed over a volume V is given by

D2
Z(V ) = φ(1− φ) (∆Z)2 A3

V
(3.7)

where ∆Z is the property contrast between the two-phases of the material,
φ is the material porosity and A3 is the integral range defined as

A3 =

∫∫∫
R3

C̃(h) dhxdhydhz. (3.8)

In our case, Z is simply the indicator function associated with force chains
(Z(x) = 1 if x ∈ Ω, 0 otherwise) and φ the porosity computed only by
considering chained particles. The numerical estimation of A3 in three di-
mensions is however out of reach in practice for two reasons:

- the numerical assessment of each value P{x ∈ Ω ∩ x+h ∈ Ω∀x ∈ V }
relies on a large number of random samplings. Gathering enough values
C̃(h) for h ∈ R3 to integrate C̃ is thus too expensive;

- moreover, as C̃ is integrated on R3, small numerical errors would result
in non-integrability.

This is the reason why the fitted integrable function C̃fit is used instead
of C̃. In addition, to speed up the computation of C̃(h), the central limit
theorem is used. For a given h let us consider the random variable Zh(x) =
1(x ∈ Ω and x + h ∈ Ω) where 1 is the indicator function. For a large
number N of random samplings, the central limit theorem predicts that the
associated distribution converges toward a normal distribution whose average
is equal to C̃(h) and whose 95% confidence interval isC̃(h)− 1.96

√
C̃(h)(1− C̃(h))

N
; C̃(h) + 1.96

√
C̃(h)(1− C̃(h))

N

 . (3.9)
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For a fixed width δ of this interval, a controlled approximation of C̃(h) '
N∑
n=1

Zh(xn) is thus obtained as soon as

1.96

√√√√√ N∑
n=1

Zh(xn)

(
1−

N∑
n=1

Zh(xn)

)
N

<
δ

2
. (3.10)

With use of these two tricks, the integral range is approximated as a
function of Lx, Ly and Lz:

A3 ' Afit
3 = 8π Lx Ly Lz. (3.11)

Thus a more physical definition of the autocorrelation lengths can be given
as 

L′x = 2π1/3 Lx
L′y = 2π1/3 Ly
L′z = 2π1/3 Lz

. (3.12)

With this definition of the autocorrelation lengths, the integral range
related to the chained particles can be seen as a volume of dimensions
(L′x, L

′
y, L

′
z). Combined with Equation (3.7), this gives a quantitative def-

inition of the representative elementary volume (REV) associated with force
transmission within a given sample as a multiple of the integral range. As
a result, this also specifies the REV associated with grain detachment pro-
cesses, namely a small volume which is structurally entirely typical of the
whole material on average and for which the fluctuations due to the imposed
boundary conditions can be ignored (Hill, 1963).

It is worth noting here that the integral range can be seen as a virtual
unit cell inside which the microstructure is highly correlated. The whole
grain assembly may therefore be seen as a collection of unit cells, the shape
of which depends on the shape of the autocorrelation C(h).

Autocorrelation distances between chained particles during triaxial
loading

The autocorrelation functions corresponding to 0, 5, 10 and 20 % of deforma-
tion are plotted in Figure 3.10 for the dense sample together with equation
(3.5). Analysis is restricted to the principal directions of loading ex, ey and
ez. Given that the samples used in this study are surrounded by bound-
ing planes, the boundary particles tend to crystallize in the vicinity of these
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Figure 3.9 – 2D porosity φ2D(x) computed in the x direction for the dense
sample in the initial isotropic state (εzz = 0). The central zone of the sample
used to compute spatial autocorrelation functions is shown by vertical dashed
lines.

planes. This effect was highlighted in Reboul et al. (2008) for the local poros-
ity. In Figure 3.9, this crystallization is shown for the dense sample in the
initial isotropic state (εzz = 0). In this figure, the two dimensional porosity
φ2D(x) is computed in the plane (ey, ez) for varying position x.

In Figure 3.9, φ2D(x) is equal to 1 on the bounding walls as grains/wall
contacts are limited to points. While going away from the walls, the porosity
decreases with oscillations, the period of which corresponding to the typi-
cal grain size. In a central zone corresponding to x/xmax ∈ [0.2, 0.8], the
crystallization effect of the bounding walls disappears and the porosity re-
mains constant. As a result, the autocorrelation analysis performed in the
following is restricted to the core of the samples to get rid of these boundary
effects (effective lengths of 0.8 times the total dimensions of the sample are
adopted).

In the initial state, the autocorrelation points for h ∝ ex and h ∝ ez
cannot be distinguished. Accordingly, the autocorrelation lengths L′x and L′z
are very similar in this case, which is consistent with the fact that under the
isotropic initial confining pressure the force chains tend to follow an isotropic
distribution, as illustrated in Figure 3.5. In the final state, the autocorrela-
tion function C̃ converges toward 0 much more slowly in the z direction than
in the x direction. This is consistent with the fact that the force chains tend
to align along the vertical principal direction of loading as seen in Figure
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Figure 3.10 – Rescaled autocorrelation functions computed for the dense
sample at two strain levels (|ε| ∈ {0, 0.05}). The plot of C̃ is restricted to
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are shown and the estimated autocorrelation lengths L′i are given. The initial
asymptote corresponding to Equation (3.6) is shown (dashed) together with
the mean asymptote derived from the expression of C̃fit (solid).

3.5. Thus the autocorrelation lengths L′x and L′z are able to account for this
anisotropic evolution of the microstructure. However, the proposed fit sys-
tematically overestimates the horizontal autocorrelation and cannot account
for the negative values obtained for the horizontal autocorrelation function
for |εzz| ≥ 5%. This latter anti-correlation feature should be related to an
exclusion zone around force chains in the horizontal plane located at about
3 rmean.

More comprehensively, the three autocorrelation lengths L′x, L′y and L′z
are plotted against the axial strain for the three samples in Figure 3.11 (a).
A similar analysis is performed for the non-chained particles in Figure 3.11
(b) and for the whole set of particles in Figure 3.11 (c).

In Figure 3.11 (a), as the horizontal autocorrelation lengths remains more
or less constant for all the samples around 3 rmean for the chained particles,
the vertical autocorrelation length increases significantly between the initial
and the final state. For the loose and the medium samples, the increase is
monotonous whereas the vertical autocorrelation length for the dense sample
reaches a peak value around 4.5 rmean for the chained particles. For |εzz| >
15%, a critical state is reached as L′z stabilizes for all the samples around
4 rmean for the chained particles. At this stage, the spatial distribution of
chained particles can be characterized by a small volume, the size of which
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Figure 3.11 – Load induced anisotropy through the evolution of the three
autocorrelation lengths L′i (i ∈ {x, y, z}) during the drained triaxial loading.
Autocorrelation analysis is restricted either to particles belonging to force
chains (a), to particles not belonging to force chains (b) or to all particles
(c).



66 CHAPTER 3. MESOSCALES IN GRANULAR MATERIALS

is

(L′x, L
′
y, L

′
z) = (3 rmean, 3 rmean, 4 rmean). (3.13)

With reference to Equation (3.7), this gives the order of magnitude of the
REV associated with the stress distribution within the different samples. For
the sake of illustration, the volume fraction occupied by chained particles for
the dense sample in the isotropic compression state is 30 %. An estimation
of this volume fraction with a variance of 10−4 according to Equation (3.7)
would require a volume V equal to roughly 2,000 times bigger than A3 corre-
sponding to a REV of dimensions
(38 rmean, 38 rmean, 50 rmean) which is similar to the total size of the samples
used in this chapter.

In Figure 3.11 (b) the evolution of the autocorrelation lengths computed
for the non-chained particles is qualitatively similar to the one corresponding
to chained particles. This argues in favor of the fact that the spatial distribu-
tion of loose particles can be effectively described by the spatial distribution
of chained particles. However, the autocorrelation lengths L′i are slightly
smaller when considering the non-chained particles instead of the chained
ones which could be related to the slight misfit observed in Figure 3.10 with
respect to the horizontal autocorrelation for |εzz| > 0%. When looking at the
transient evolution of L′z with respect to εzz, it can be noted that the dense
sample is characterized by an initial increase in the vertical autocorrelation
followed by a decrease toward the critical state. This can be closely related
to the macroscopic response observed in Figure 3.2. Indeed the increase in
the vertical autocorrelation corresponds to a lengthening of the force chains
along the vertical direction which accounts for the initial hardening of the
dense sample. The following decrease in the vertical autocorrelation accounts
for the destruction of force chains and thus to the stress softening observed
for the dense sample. For the medium and the loose samples, L′z increases
more or less continuously until reaching the critical state. This is consistent
with the fact that these two samples do not experience any softening. In the
end of the triaxial test, the three samples exhibit a common mesostructure
associated with force chains whose size is characterized by equation (3.13).
This provides a quantitative definition of the force chain pattern existing in
the critical state as pointed out by Zhu et al. (2016a).

When considering the whole set of particles, the anisotropy with respect
to z direction is still visible but the shapes of the curves are completely
different from those obtained while considering only the force chains (Fig
3.11 (c)). Indeed they capture quite well the volumetric behavior of the
different samples observed in Figure 3.2.
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3.3 Mesoscale analysis of transport properties

The microscale analysis of the pore space is critical to assess the occurrence
of grain transport. In this section, a simplification of the void phase of
granular materials based on pore networks is presented. The geometrical
and topological properties of these networks are used to propose estimations
of the expected travel distances in the three samples introduced in Section
3.1.

3.3.1 Pore network definition

In the wake of the previous work of Reboul et al. (2008) and Vincens et al.
(2015) for the transport of spherical cohesionless particles, the pore space
can be reduced to the definition of a pore network. A regular triangulation
of a spheres assembly (Edelsbrunner and Shah, 1996) is built from YADE
software. This particular type of triangulation has the important property
that all the edges of its dual tessellation belong to the pore space (Chareyre
et al., 2012; Vincens et al., 2015).

This tessellation is the key ingredient in defining a pore network composed
of pores (the nodes of the graph) and constrictions (the edges of the graph).
The pores are defined following the level 0 analysis introduced in Reboul et al.
(2008). Their positions are defined at the center of each tetrahedron of the
regular triangulation in terms of power distances and their radii as the radius
of the largest interior sphere in the associated tetrahedra. The constrictions
are modeled as cylinders joining two adjacent pores (Reboul et al., 2008)
and their radii are defined as the radius of the largest interior circle on the
common face of the two tetrahedra defining the constriction. The definition
of the pore and constriction radii is shown in Figures 3.12 (a) and (b). For
the sake of illustration, three-dimensional visualizations of the pore network
associated with two simple grain assemblies are shown in Figures 3.12 (c) and
(d). It should also be noticed that the considered triangulation is built while
considering all the particles, including the potentially migrating particles
identified thanks to the force chains analysis. This choice is motivated by
the idea that only a few non-chained particles will actually be detached under
the action of a fluid, leading to few changes in the initial pore network. If
this hypothesis is reasonable for the granulometry considered in this chapter,
it becomes questionnable when larger fine particle contents are considered.

The bounding planes surrounding the samples locally induce a very dif-
ferent microstructure from that observed in the core of the samples (see
Figure 3.9). Indeed, close to the boundary, a significant number of tetrahe-
dra are found to be flat, which results in the estimation of very huge pore
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Figure 3.12 – Visualization of a tetrahedron with its inscribed pore sphere
(a), a tetrahedron face with its inscribed constriction circle (b), a simple
assembly of four spheres with the associated pore network (c), and an as-
sembly of nine sphere with the associated pore network (d). In these figures,
the spherical particles are represented in grey, the pore by blue spheres and
the constrictions between two pores by blue cylinders. The tetrahedra re-
sulting from the regular Delaunay triangulation are represented with black
lines joining the different particles centers.

and constrictions radii. Consequently, as for the computation of autocorre-
lation functions, the pore network is only defined on a centered subvolume
fraction of 0.83. A visualization of the pore network for the dense sample at
the beginning and the end of the triaxial test is given in Figure 3.13.

In this figure the constrictions are represented by grey-scaled cylinders
linking two pore centers. The lighter the cylinders, the larger the constric-
tions. The whole pore network is visible in snapshots (ai) and (bi) in Figure
3.13. The network is very dense and enables many possible paths connecting
the different pores of the sample. To show only sufficiently large constrictions
that allow particle transport, a radius threshold is applied. The two snap-
shots (aii) and (bii) correspond to a radius threshold r = 0.3 rmean, and the
two snapshots (aiii) and (biii) correspond to a radius threshold r = 0.5 rmean.
Many constrictions larger than 0.3 rmean are still connected together which
is no longer the case for constrictions larger than 0.5 rmean that are isolated
from one another. These features give an idea of expected transport in the
pore space for particles of different radii. The comparison between Figure
3.13 (a) (|εzz| = 0%) and Figure 3.13 (b) (|εzz| = 20%) highlights the fact
that the number of large constrictions increases between the beginning and
the end of the triaxial test for the dense sample, which is consistent with its
dilative behavior observed in Figure 3.2.
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Figure 3.13 – Three dimensional visualization of the dense sample pore net-
work under the initial isotropic loading (a) and after 20 % of deformation
(b). Only constrictions are represented thanks to cylinders. The lighter the
constrictions, the larger their radii. On the left, all constrictions are visible.
In the middle, a radius threshold of 0.3 rmean is applied. On the right, a
radius threshold of 0.5 rmean is applied.
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Figure 3.14 – Probability density for a pore (dashed blue), a constriction
(solid blue), a grain (dotted red) or a non-chained grain (dash-dotted black)
to be of a given radius. The three graphs correspond to the three samples
used in this study. The line thickness corresponds to the strain level |εzz| ∈
{0, 0.05, 0.1, 0.2} during the triaxial test. The thicker the line, the larger the
strain.

3.3.2 Statistical identification of potentially transportable
particles

From the pore network definition, the probability densities corresponding to
pore and constriction radii are computed and plotted in Figure 3.14 for the
three samples considered at four strain levels. To identify whether some par-
ticles of the sample could be transported within the pore space, the density
probabilities that a grain and a non-chained grain would be of a given radius
(see Figure 3.7) are also reported in Figure 3.14.

For every sample in Figure 3.14, the pore and the constriction proba-
bility density functions (pdfs) follow single-mode distributions around r =
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0.25 rmean and r = 0.5 rmean, respectively. Since the constriction mode value
(r = 0.2 rmean) is significantly smaller than the pore value (r = 0.5 rmean),
constriction sizes control the transport of particles. For the three samples,
the comparison between the constriction and the grain pdfs highlights that a
large number of grains are small enough to be transported through the pore
network. An even larger fraction of the non-chained grains is concerned.

While observing how the strain of the pore and constriction probability
densities evolve, the contractive/dilative behavior observed in Figure 3.2 is
recovered. For the dense sample, the probability densities are shifted to-
ward larger radius values, which is related to an overall increase of the pore
space volume. On the contrary, for the medium and the loose samples, the
probability densities are shifted toward slightly smaller radius values, which
accounts for a decrease in the pore space volume.

3.3.3 Mean travel distances and associated length scales

Even though many particles are identified in Figure 3.14 as potentially de-
tachable by analyzing the statistical properties of the pore network, determin-
ing the distance that a particle of a given radius can cover requires knowing
the spatial distribution of pore and constriction radii. This distribution is
accessible from the graph description of the pore space (see Figure 3.13).
As constriction radii are smaller than their pore counterparts (Figure 3.14),
only the constriction radii are considered while assessing the possibility for
a grain to move from one pore to another.

Pore-to-pore transport criteria

In a granular material subjected to an internal flow, particle transport is not
isotropic and is governed by the direction and intensity of the flow through
the pore space. While keeping in mind the fact that in hydraulic structures,
the fluid flow is perpendicular to the principal stress direction, the transport
properties of the pore networks defined for the three samples are consid-
ered with a horizontal fluid flow imposed by a small pressure gradient of
10 Pa � σ0 between the sample boundaries in the x direction. This fluid/-
grain problem is addressed using the DEM/PFV model detailed in section
2.4.2. In this section it should be underlined that the PFV scheme is used as
a one way coupling only to localize the macroscopic gradient onto the local
pore network. An rougher option to the use of the PFV model to obtain a
local pressure map would be simply to assume a linear decrease of the pres-
sure from the upstream to the downstream sides of the sample. This option
disregard local fluctuations but has the advantage that it does not need to
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Figure 3.15 – Hagen-Poiseuille flow velocity profile in a circular tube (a) and
Stokes drag force (b). In both cases viscous flow conditions are assumed.

use any numerical scheme to account for the internal fluid flow. It can also be
used to perform a directional analysis of the transport properties of a given
material. This rougher localization scheme will be used in Section 3.4.2 and
5.2.4 and the predicted travel distances will be compared with effective ones
obtained thanks to two ways coupling DEM/PFV simulations.

From these simulations a pore pressure map is defined and used to study
the transport of particles in the pore network. Based on the Hagen-Poiseuille
flow velocity profile for a circular tube and the expression of the drag force
of a uniform flow acting on a sphere for low Reynolds numbers (Figure 3.15),
it can be assumed that the drag force acting on a particle of radius r in a
constriction of radius R and subjected to a pressure gradient ∇p scales as

F ∼ r ∇pR2. (3.14)

From this simple scaling law, a criterion for particle transport is pro-
posed. Given a pore i connected to neighboring pores {j1, j2, j3, j4}, a trans-
ported particle of radius r in the pore i will move to a neighboring pore
k ∈ {j1, j2, j3, j4} if and only if{

Rik > r
||∇pij||R2

ij ≤ ||∇pik||R2
ik ∀j ∈ {j1, j2, j3, j4}

, (3.15)

where Rik is the constriction radius of the connection between pores i and
k. In other words, the particle propagates to the next accessible pore in the
direction of maximum drag force.
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Definition of expected travel distances

To estimate the average distance a particle of radius r can travel in the pore
space, a propagation path P(n0, r) is defined for every node n0 of the pore
network by repeated application of the propagation criterion introduced in
Equation (3.15) (see Figure 3.16). For any node n0, the farthest node nk
that the particle considered can reach is thus computed. From the list of the
visited nodes {n0, ...nk}, the true travel distance Dtrue(n0, r), the shortest
travel distance Dshort(n0, r) and the tortuosity T (n0, r) corresponding to the
path P(n0, r) are then defined as

Dtrue(n0, r) =
∑k−1

i=0 ||xi+1 − xi||

Dshort(n0, r) = ||xk − x0||

T (n0, r) =
Dtrue(n0, r)

Dshort(n0, r)

, (3.16)

where xi stands for the vector position of node ni. Figure 3.16 provides
examples of propagation paths computed for the dense sample under the
initial isotropic confining pressure σ0 and for a radius threshold r = 0. On
average, all the visible paths are aligned with the horizontal direction x
corresponding to the imposed flow pressure gradient. As the radius threshold
is chosen as r = 0, all the paths end on the sample boundaries, which is
consistent with the fact that the pore space in 3D for a sphere assembly is a
connected space.

The mean travel distance D̄true(r) and the mean tortuosity T̄ (r) are then
deduced from statistical averaging of the above quantities over all the nodes
of the pore network. In Figure 3.17 the mean travel distance is plotted
together with the mean tortuosity for different radius values at four strain
levels.

For the smallest radius values, the mean travel distance reaches a plateau,
which is related to a percolation phenomenon. Indeed, the transport path
can end up on the boundary of the sample for some nodes, as seen in Figure
3.16. In this case, the end of the propagation path does not coincide with
the actual farthest point the particle would reach in a non-finite sample. In
Figure 3.17 a percolation phenomenon is observed for r smaller than 0.2 rmean

for all the samples. Conversely, no transport is possible for particles larger
than 0.5 rmean for all the samples. This observation is consistent with the
findings of Reboul et al. (2008) who highlighted the fact that the connectivity
of the pores larger than the radius mode value of the probability density
function on Figure 3.14 is too small to allow for the transport of such large
particles. The grey zone on the graphs corresponds to the range of radius
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Figure 3.16 – Definition on a propagation path on the weighted pore network
by flow intensity (left). Visualization of 60 propagation paths for the dense
sample under the initial isotropic confining pressure σ0 (right). The paths
are chosen randomly for a radius threshold r = 0. The arrows indicate the
propagation direction. The more intense the blue color, the larger the con-
striction radius. All paths end on the boundaries of the sample materialized
by an empty cube.

values for the grains constituting the samples. If the largest grains cannot
be transported, the smallest ones can be transported over long distances
up to 25 rmean. However, no percolation exists since there is no overlapping
between the initial percolation plateau and grey zones on the graphs. Because
of its dilative behavior (see Figure 3.2), transport appears to be greater
in the dense sample after a few percent of vertical strain. For the loose
and medium samples that exhibit a contractive behavior, the mean travel
distance is reduced for the largest particles, but the mean travel distance of
the smallest particles is slightly increased.

The dashed curves in Figure 3.17 represent the evolution of the tortuosity
of the transport paths. No noticeable difference is visible between the three
samples and the mean tortuosity decreases from 1.5 to 1 as the particle size
increases following the mean change in travel distance. The limit value of 1
corresponds to the case where particles are so large that they are trapped in
one or two pores. As the mean travel distance increases, the mean tortuosity
increases and stabilizes around a finite value. This should be related to the
fact that the propagation is driven by the flow direction, the mean direction
of which is parallel to the x direction with limited fluctuations along the cross
directions.
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Figure 3.17 – Mean travel distance D̄true (solid lines) and mean tortuosity T̄
(dashed lines) for different radius thresholds. The three graphs correspond to
the three samples used in this study and the line thickness corresponds to the
strain level |εzz| ∈ {0, 0.05, 0.1, 0.2} during the triaxial test. The thicker the
line, the bigger the strain. The grey domain in the background corresponds
to the accessible radius values for the grains composing the samples.
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3.4 Numerical validation of expected travel dis-
tances thanks to DEM/PFV simulations

In the previous section, the expected transport distances are predicted with-
out running fully coupled fluid grain simulations. Transport is indeed as-
sessed first by localizing a macroscopic pressure gradient onto a pore net-
work and then by using a simplified propagation criterion. In this section, a
comparison with fully coupled DEM/PFV simulations is proposed.

3.4.1 Flow boundary value problem

Throughout this section, the dense sample prepared under an isotropic con-
fining pressure σ0 = 100 kPa is considered. Compared to the dry case, the
problem of interest at the REV scale is modified to account for the hydraulic
loading which is imposed in the form of a pressure drop in the direction ex
between an upstream face where the fluid pressure is set to p0 and a down-
stream face where the fluid pressure is kept to 0. The pressure p0 is set in
order to impose an initial hydraulic gradient I ∈ {1, 2, 3}. By definition, the
hydraulic gradient I is equal to the decrease in hydraulic head between the
upstream and downstream sides of the sample. In the present case,

I =
p0

ρf g `x
(3.17)

where ρf = 1000 kg.m−3 is the fluid density, g = 9.81 m.s−2 the gravitational
acceleration and `x the sample length in the flow direction ex. It should
be noticed here that the hydraulic gradient is only a dimensionless rescaling
of the macroscopic pressure gradient p0/`x as the PFV scheme relies only
on the fluid dynamic viscosity ν = 10−3 Pa.s (see Section 2.4.2) and the
gravity is not taken into account. On the four remaining faces of the sample,
zero flux boundary conditions are imposed (details on the precise definition
of such boundary conditions in the PFV scheme can be found in Catalano
(2012). Because fluid forces scale with the square of the particle radii (in
Section 2.4.2 pressure stresses are integrated over the sphere surfaces), it
should be stressed that in comparison to the dry case, the dimensional PSD
influences the results of coupled simulations and not only the dimensionless
PSD presented in Figure 3.1. As a result, throughout this section the mean
grain radius is set to rmean = 1 mm.

Compared with the dry case, the existence of a fluid pressure gradient
imposes consequently an effective stress gradient between the upstream and
downstream boundaries. Indeed, the equilibrium at the sample scale imposes
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Figure 3.18 – DEM/PFV boundary value problem of interest at the REV
scale. The used sample correspond to the dense sample prepared under an
isotropic confinement σ0 = 100 kPa and subjected to a hydraulic gradient
I ∈ {1, 2, 3}.

that the total stresses are balanced but not the effective stresses. As a result,
the normal effective stress on the downstream boundary is expected to be
p0 larger than the normal effective stress on the upstream boundary. Be-
cause the stress control in YADE considers the effective stress and not the
total stress, the boundary conditions have to be adapted. As a result, the
boundary condition on the downstream boundary is switched from stress to
displacement control and a zero displacement condition is imposed on this
boundary while effective stresses of σ0 = 100 kPa are still imposed on all
other faces of the sample. The full problem of interest is summarized in
Figure 3.18. The introduction of a pressure gradient poses

During the DEM/PFV simulation the boundary conditions are kept un-
changed and the system is let free to evolve under the action of the fluid
forces. It should be underlined here the importance of non-periodic bound-
ary conditions. Indeed, with periodic boundary conditions, the application of
fluid forces would result in a collective motion of all the grains. To avoid such
a non-physical situation, a possible numerical trick consists in not applying
the fluid forces on some specific grains (Hosn et al., 2018). While looking
at transport properties this numerical trick is acceptable, it is not relevant
anymore to investigate the direct impact of a fluid flow on stress transmis-
sion as it will be considered in Chapter 5. For this later reason non-periodic
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boundary conditions were selected by anticipation.
The simulation is stopped when all grains transported by the internal flow

reach their farthest point and are either blocked in the sample volume by a
too narrow constriction or reach the downstream side of the sample. In Figure
3.19 the sample is shown before and after the application on the internal fluid
flow. In this figure the transportability of the particles is assessed thanks to
coordination numbers Zc:

- transportable particles are assumed to have a low coordination number
(Zc < 3) and are shown in blue;

- geometrically blocked particles are assumed to have a large coordina-
tion number (Zc > 4) and are shown in red;

- clogged particles are assumed to be in contact with the three particles
composing a too narrow constriction (Zc = 3) and are shown in white.
They remain blocked as long as the flow is kept in the same direction
but they become free again if the flow is reversed.

In most of the cases, the use of Zc to assess whether a particle can be trans-
ported by an internal fluid flow is sufficient but in some cases Zc may not be
a sufficient indicator as i) particles with 2 ou 3 contacts can be involved in
stress transmission and ii) particles with 4 contacts may be part of a group
of clogged particles. These particles status are illustrated in 2D in Figure
3.19 (c).

In Figure 3.20, the number of transportable (Zc < 3) and clogged (Zc = 3)
particles are plotted with respect to time for the three hydraulic gradients
I ∈ {1, 2, 3}.

After 0.8 s, most of the initially transportable particles have a coordi-
nation number larger than 3 and the sample reaches a new state in which
the fluid does not induce particle transport anymore. While looking at the
evolution of the curves in Figure 3.20, it should be underlined that the fil-
tration process is faster when the hydraulic gradient is increased and that
the fraction of transportable and clogged particles is not constant over time.
This later observation means that some initially free particles have a final
coordination number strictly larger than 3. As illustrated in Figure 3.19 (c),
these particles may either be reattached to the primary skeleton and involved
in stress transmission or belong to a group of clogged particles.
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Figure 3.19 – Dense sample under isotropic confinement before (a) and after
(b) the application of a hydraulic gradient I = 1 in direction ex. Particles
are colored according to their coordination number Zc in relation with their
transportability (c).
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Figure 3.20 – Time evolution of the fractions of transportable (solid lines)
and clogged (dashed lines) particles for the dense sample prepared under
an isotropic confinement σ0 = 100 kPa and subjected to three hydraulic
gradients I ∈ {1, 2, 3}.

3.4.2 Numerical assessment of particle transport and
erosion

By tracking the positions of all particles during the fluid flow simulations,
the transport distances can be estimated from the fully coupled numerical
simulations. For each particle k, the travel distance can be estimated ei-
ther by comparing the final position xk(tf ) and initial position xk(t0), or by
incrementally summing the displacements observe during intervals [ti, ti+1].
Similarly to Equation (3.16), this leads to the definitions of the shortest travel
distance Dshort

num and the true travel distance Dtrue
num of a particle k with center

xk: {
Dtrue

num(k) =
∑
i

||xk(ti+1)− xk(ti)||

Dshort
num (k) = ||xk(tf )− xk(t0)||

. (3.18)

In Figure 3.21, the true and shortest displacements observed for all parti-
cles are plotted with respect to the particle radii for the three hydraulic gra-
dients considered. Displacements are normalized by the mean radius rmean.

In Figure 3.21 the particle displacements are not strongly influenced by
the hydraulic gradient intensity as the three clouds of points superpose. As
predicted by the transport model presented in the previous section, the small-
est particles are transported over large distances up to Dshort

num = 45rmean,



3.4. DEM/PFV validation of expected travel distances 81

which is comparable to the sample dimension `x = 48rmean, and particles
larger than ∼ 0.7rmean hardly move. These observed transport distances are
quite consistent with the pore and constriction size distributions shown in
Figure 3.14 as r > 0.7rmean corresponds to the tails of the distributions.

While computing the mean observed displacements in Figure 3.21, it is
interesting to compare these DEM/PFV estimates with the prediction of
Section 3.3.3. This comparison is shown in Figure 3.22 for the mean true
and shortest travel distances.

In Figure 3.22 the agreement between the predictions from Section 3.3.3
and the fully coupled numerical result is quite good. The proposed propaga-
tion criterion combined with the simplified description of the pore geometry
is thus sufficient to capture the driving physical processes responsible for
grain transport. However, it should be underlined that the effective trans-
port is larger than the predicted values. This can be explained because the
pore network used in the transport model of Section 3.3.3 is built on all the
particles which includes particles transported by the flow. As a result, the
pore and constriction sizes of the resulting pore network underestimate the
effective pore sizes seen by the transported particles. The model prediction
gives indeed a lower bound for D̄short

num and D̄true
num.

The transport model used in Section 3.3.3 proposes a simplified approach
to grain transport that does not need fully coupled fluid/grain simulations.
A pore scale fluid model is however necessary to compute the pore pres-
sure map which reduces the scope of applicability of the simplified transport
model. To this respect, it is interesting to compare the mean travel distances
obtained with a rougher pressure map deduced from the assumption of a
linear decrease in the pore pressure between the upstream and downstream
boundaries. The comparison between the two propagation model predictions
in Figure 3.22 shows the importance of pressure fluctuations with respect to
particle transport which affects mostly the smallest particles. The fluctua-
tions are shown in Figure 3.22 to increase the mean travel distances.
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(a) Effective transport distances.
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(b) Shortest transport distances.

Figure 3.21 – Numerical results for the shortest and true travel distances
of all the particles of dense sample subjected to an isotropic confinement
σ0 = 100 kPa for three hydraulic gradients I ∈ {1, 2, 3} (respectively in blue,
red and green). The mean transport distances D̄true

num and D̄short
num are shown in

solid lines.
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Figure 3.22 – Comparison between the mean transport distances (D̄true and
D̄short) predicted with the transport model of Section 3.3.3 (thin dashed), this
same model with a linear approximation of the pressure map (thick dashed),
the numerical results obtained from DEM/PFV simulations for three hy-
draulic gradients I ∈ {1, 2, 3} (solid lines). In all cases, the dense sample
under an isotropic confinement σ0 = 100 kPa is considered.
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In Figure 3.23, the pressure fluctuations are quantified by looking at the
difference between the pore pressure computed with the PFV model and the
macroscopic linear regression pmacro = p0 − p0

`x
x. For the macroscopic fluid

direction ex, the mean pressure p̄(x) is defined as the 2D average of the pore
pressure p in directions ey and ez at a given position x ∈ [0, `x].

In Figure 3.23, the pore pressures fluctuate around the macroscopic pre-
diction with a slight positive deviation close to the upstream boundary and
a slight negative deviation close to the downstream boundary. These devia-
tions are related to the larger porosity close to the sample boundaries shown
in Figure 3.9 which induces a larger permeability close to the boundary and
smaller local pressure gradients in these regions.

As illustrated in Figure 3.22 with the prediction of the travel distances,
the fluctuations of a few percents of the pressure drop p0 have a non-negligible
influence on grain transport and justify the use of a resolved approach to
model the fluid flow among the modeling options listed in Section 2.4.1.
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Figure 3.23 – Normalized difference between 2D averaged pore pressures p̄(x)
and the linear regression pmacro = p0−xp0

`x
for the dense sample prepared un-

der an isotropic confinement for t = 0 s (similar curves are obtained ∀t > 0).
Three hydraulic gradients I ∈ {1, 2, 3} are considered. Standard deviations
are shown in the form of error bars. Two vertical dashed lines correspond to
x = 0.2`x and x = 0.8`x.

3.5 Summary of the main findings

Thanks to the use of specific micromechanical tools, partitions of both the
solid and the void phases of granular materials have been proposed, motivated
by the assessment of grain detachment and transport properties in granular
materials subjected to suffusion. A partition of the solid fraction between
chained particles and non-chained particles prefigures the susceptibility to
grain detachment. Similarly, the void space is split into an accessible pore
network and a non-accessible pore network. This dual partition is a funda-
mental ingredient to describe the grain transport process.

Based on DEM simulations, the microstructure evolutions of a numerical
samples are recorded during a drained triaxial loading and the relevance of
the proposed micromechanical tools in enhancing the comprehension of the
macroscopic behavior is shown. In particular, the ability of the chained parti-
cle autocorrelation lengths to recover the hardening and softening behaviors
of the dense sample confirms the relevance of this approach to describe the
typical length scales associated with stress transmission. Likewise, the mean
travel distance functions are shown to address the dilative and contractive
behaviors of the specimen considered. Their relevance in correctly assessing
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travel distances is validated thanks to fully coupled DEM/PFV simulations
of the suffusion process.

By carefully considering the spatial distribution of particles participating
in stress transmission and the spatial distribution of constrictions enabling
particle transport within the pore space, two mesoscales are introduced in
relation with the grain detachment and the grain transport processes. It was
shown that the typical length scale associated with grain transport can be up
to ten times larger than that associated with grain detachment. As a result, a
scale separation exists between these two processes for the smallest particles
in the present case. This implies that grain detachment and grain transport
can be studied independently from one another for the particular granular
material studied in this chapter. Macroscopically, if this separation of scales
holds, suffusion may be described as the superposition of both detachment
and transport processes.
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In this chapter, fluid grain coupling is left aside to focus on the under-
standing of the micromechanisms responsible for the the onset of material
instability in granular materials in the sense of the second-order work crite-
rion as introduced in Section 2.2.3.

The aim of this chapter is twofold. A first objective is to investigate nu-
merically the elementary mechanisms taking place in granular materials for a
loading program leading to the vanishing of the second-order work. What is
the micro-signature of an instability? What is the sequence of micromechan-
ical mechanisms leading to the vanishing of the second-order work? A second
objective is then to analyze the influence of some particular microstructure
modifications on the overall mechanical stability.

This chapter is organized as follows. In Section 4.1, a representative el-
ementary volume of an idealized loose granular material is generated and
subjected to a drained triaxial test. For different stress states, the mechan-
ical stability is assessed in Section 4.2 following a classical stress-controlled
directional analysis procedure with use of the second-order work criterion. A
particular care is paid to (i) the influence of the pre-stabilizing step of the
procedure and (ii) the magnitude of the stress probe used in the directional
analysis. Some of these results provide some insight on the standard numer-
ical procedure used to assess the mechanical stability of a granular material
thanks to the second-order work criterion. In Section 4.3, the microscale
mechanisms leading to the vanishing of the second-order work are identified
and a special care is paid to their chronology. For a particular stress state,
the incremental constitutive behavior is then modeled in Section 4.4 within
the framework of non-associated elasto-plasticity. This continuum mechanics
modeling is used to relate plastic strain development and mechanical stability
from analytical considerations. A conjecture on the particular role of rattlers
is then formulated. In Section 4.5, the link between mechanical stability and
plastic strain obtained at the macroscale is derived directly at the contact
scale. Eventually, the stabilizing role of rattlers is confirmed numerically
thanks to DEM simulations in Section 4.6.

4.1 Numerical experiments on narrowly graded
samples with DEM

The micromechanical analysis performed throughout this chapter consid-
ers non-cohesive granular materials modeled as poly-disperse assemblies of
spheres. The interaction between two particles is modeled by the classi-
cal elasto-frictional contact law detailed in Section 2.3.1 with parameters of
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Table 2.1. Given all inter-particle contact forces, the induced particles dis-
placements are then numerically integrated thanks to the DEM open source
code YADE (Šmilauer et al., 2015).

4.1.1 Sample definition

A cubic assembly of spheres is generated randomly with a uniform radius
distribution between rmin and rmax = 3.5 rmin. After generating a cloud
of 10,000 non-overlapping spheres surrounded by six bounding planes defin-
ing a cube, the particles are inflated and allowed to rearrange according to
the radius expansion technique. This process is stopped when the confining
pressure applied on the bounding planes reaches 20 kPa and the normalized
unbalanced force (Funb) of the system decreases below 10−5. By definition
Funb is equal to the mean summary force on the Np particles divided by the
mean contact force magnitude on the Nc contacts:

Funb =

1
Np

Np∑
p=1

||
∑
cp

F cp||

1
Nc

Nc∑
c=1

||F c||
. (4.1)

As a result Funb has no units and provide an intrinsic measure of how close
to equilibrium a mechanical system is. During this process, the inter-particle
friction angle is maintained to its value of 35◦ in order to prepare a loose
granular material with a void index of e = 0.73. The resulting sample may
be visualized in Figure 4.1 together with the PSD curve corresponding to the
used uniform radius distribution. Associated with the generated cubic grain
assembly, a Cartesian coordinate system (ex, ey, ez) is defined such that the
axis directions coincide with the edges of the cube.

4.1.2 DEM simulation of a drained triaxial test

From the obtained equilibrium state, a drained triaxial loading is then im-
posed to the sample in the form of a two step procedure as in Chapter 3.
First, the confining pressure (σ0) is increased from 20 kPa to 100 kPa by al-
lowing the bounding walls to move. Once a new equilibrium state is reached
(Funb < 10−5), a vertical compression strain rate ε̇zz = 0.01 s−1 is applied up
to 6 % of deformation while keeping the same lateral confining pressure σ0.
This strain rate is chosen similar to the one used in previous numerical stud-
ies (Hadda et al., 2013; Nicot et al., 2012) and is supposed to be sufficiently
small so that the loading can be considered as quasi-static.
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Figure 4.1 – Cumulative distribution in terms of mass corresponding to the
generated sample. Particle radii are normalized by the mean radius value.

As in Chapter 3, the classical soil mechanics conventions are adopted with
compressions counted positive. The homogeneous Cauchy stress tensor σ is
defined at the REV scale from the forces applied on the bounding walls. The
stress ratio η is then introduced as the ratio between the deviatoric stress q
and the mean pressure p

η =
q

p

q =
√

3
2
σdev : σdev

σdev = σ − p 1
p = 1

3
Tr(σ)

. (4.2)

where 1 stands for the identity tensor, ":" stands for the double dot contrac-
tion product and Tr for the trace operator.

Likewise, a macroscopic homogeneous strain tensor ε is defined from the
bounding walls displacements. In order to be consistent with the second-
order work definition W2 = dσ : dε, compaction is counted positive. The
volumetric strain is then simply defined as

εv = Tr(ε). (4.3)

In Figure 4.2, the stress ratio and volumetric strain responses are shown.
A typical contractive behavior is observed as both η and εv monotonously
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Figure 4.2 – Drained triaxial test response. The diamond points correspond
to the mechanical states considered for the stability analysis. The circles
corresponds to the stress-strain state reached after the pre-stabilization step
(see subsection 4.2.1)

increase with the vertical compaction (εzz > 0). This behavior is typical of
non-compacted granular material (recent gravel deposits or stocks of indus-
trial materials for instance). After a sharp increase, the stress ratio slowly
increases on average. This second phase of the mechanical response is char-
acterized by a bumpy curve resulting from important grain rearrangement
processes occurring from time to time. As a result, as soon as these sudden
drops in η are observed the mechanical response of the sample becomes in-
herently dynamic and the quasi-static hypothesis becomes questionable over
these short periods.

In order to study the mechanical stability of the particular sample under
different mechanical stress states, 9 samples are saved during the triaxial
loading for η ∈ {0.01, 0.20, 0.30, 0.35, 0.45, 0.50, 0.55, 0.60, 0.65}. The corre-
sponding states are marked with diamonds in Figure 4.2.

4.2 Macroscopic assessment of bifurcation points

In this section, the mechanical stability of the 9 mechanical states saved
during the triaxial loading presented in the previous section is assessed thanks
to a classical stress-controlled directional analysis procedure with use of the
second-order work criterion (Sibille et al., 2009; Nicot et al., 2007, 2009).
This numerical procedure is composed of two steps which are reviewed in
detail hereafter. First, a pre-stabilization is required to define a reference
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equilibrium state. Then, an incremental stress probe is imposed at the scale
of the whole sample which is accompanied by a transient mechanical response
until a second equilibrium state is reached.

In addition to the directional analysis of the vanishing of the second-
order work criterion (section 4.2.2), a particular care is paid to the influence
of the pre-stabilizing step (section 4.2.1), to the transient response observed
between the two equilibrium states (section 4.2.3) and to the influence of the
magnitude of the stress probe (section 4.2.4).

4.2.1 Pre-stabilization step

Even if the vertical compression rate is set at a reasonably low value, the
mechanical response recorded during the triaxial loading is inherently dy-
namic as it relies on particle rearrangements and the integration of Newton’s
second law of motion for each particle. As a result, a pre-stabilization step
is required prior to study the mechanical stability of saved samples thanks
to the second-order work criterion reviewed in Section 2.2.3.

This pre-stabilization step is achieved by keeping the lateral pressure to
the constant value σ0 and by imposing a vertical stress σzz corresponding to
the stress ratio considered. The equilibrium state is assumed to be reached
once Funb < 10−5.

Even if the stress state is kept constant, delayed deformations are observed
during this pre-stabilization step. The final stress-strain states reached at the
end of the pre-stabilization step are shown for each stress ratio in Figure 4.2
by blue circles. For η ≤ 0.45 and η = 0.55, negligible delayed deformations
are observed while for η ∈ {0.50, 0.60, 0.65} delayed deformations are larger
than 1 %. For stress ratios larger than η = 0.45, the quasi-static regime be-
comes questionable and sudden rearrangements in the microstructure yield
fluctuations in the stress-strain response. These rearrangements are not in-
stantaneous and continue to occur during the pre-stabilization step which
result at the scale of the sample in delayed permanent deformations. A par-
allel can be drawn here with the concept of delayed plasticity1 introduced
by Di Prisco (di Prisco and Imposimato, 1996) and also mentioned in Froiio
et al. (Froiio et al., 2010).These local particle reorganizations can affect the
mechanical stability as the state variables obtained after the pre-stabilization
step are different from the initial ones.

1Following a discussion with the PhD jury, it should be underlined that the timescales
observed numerically and experimentally are different because i) the timescale linked to
global rearrangement is not intensive (it increases with the size of the sample) and ii) other
mechanisms such as grain plasticity or grain crushing can also contribute to plasticity on
the experimental side.
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4.2.2 Directional analysis step

As presented in Section 2.2.4, directional analysis is a convenient framework
to track the existence of stress increments leading to the vanishing of the
second-order work (Bardet, 1994; Sibille et al., 2009; Nicot et al., 2007, 2009;
Harthong and Wan, 2013). In this study, we restrict our stability analysis to
stress increments lying in the plane of axisymmetry such that dσxx = dσyy
(Rendulic plane). In this plane (

√
2dσxx, dσzz), a stress increment dσ is fully

described by its polar coordinates ||dσ|| and θ such that
√

2dσxx = ||dσ|| cos θ
dσzz = ||dσ|| sin θ

||dσ|| =
√

dσ2
zz + 2 dσ2

xx

. (4.4)

In practice, finite stress increments of ||dσ|| = 5 kPa are imposed in
the form of a stress loading rate of 142 kPa.s−1 (corresponding to 10,000
DEM time steps) followed by a stabilization phase letting the system evolves
toward a new equilibrium position with Funb < 10−5. The size of the stress
increment is similar to those classically used in the literature (Calvetti, 2003;
Kishino, 2003; Sibille et al., 2009).

At the end, for each imposed stress increment dσ, a strain increment dε
is obtained. A normalized second-order work is then defined at the material
point scale (REV scale) as

W norm
2 =

dε : dσ

||dε|| ||dσ||
(4.5)

Provided that the strain increment depends linearly on the applied stress
increment for each direction θ (this will be investigated in section 4.2.4), the
normalized second-order work introduced in Equation (4.5) depends only on
θ and not ||dσ||. For the considered stress increment ||dσ|| = 5 kPa, the
normalized second-order work envelopes for the 9 pre-stabilized samples are
shown in Figure 4.3. A circular representation is used as the second-order
work is positive outside the red dashed circle and negative inside.

In Figure 4.3, the normalized second-order work envelopes on the left
correspond to the quasi-static regime (η ≤ 0.45) while the ones on the right
corresponds to the dynamic regime of the triaxial test (η > 0.45). For small
stress ratios, no vanishing of the second-order work is observed. As the stress
ratio increases, the second-order work gradually decreases for incremental
stress directions around 210◦ and an instability cone (θ values such that
W2 ≤ 0) is eventually obtained for η = 0.45. According to the second-order
work criterion the sample becomes unstable while approaching the onset of
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Figure 4.4 – Macroscopic strain (left) and stress (right) response for the two
loading directions θ = 30.5◦ (dashed lines) and θ = 210.5◦ (solid lines). The
vertical stress (dσzz) and strain (dεzz) components are plotted in blue while
the horizontal ones are plotted in red (dσxx and dεxx) and green (dσyy and
dεyy).

the dynamic regime during the triaxial loading as there exist incremental
loading programs associated with negative W2. Then, for higher stress ratio,
the second-order work suddenly becomes positive again for all the incremental
stress directions (except for η = 0.55 for which an instability cone is still
visible). The non-vanishing of W2 for η ∈ {0.5, 0.6, 0.65} should be linked
to the large delayed deformations observed for these stress state in Figure
4.2. The grain rearrangements result in a stable configuration for which no
stress increments lead to the vanishing of the second-order work (at least for
loading directions within the Rendulic plane).

4.2.3 Continuum scale analysis of the onset and devel-
opment of instability

In the previous subsection, the second-order work has been systematically
computed between two equilibrium states. In this subsection, transient evo-
lutions induced by macroscopic stress probes are analyzed at the scale of the
REV. In Figure 4.4, the incremental stress and strain time responses are pre-
sented for a stress ratio η = 0.45 and for the two loading directions θ = 30.5◦

(stable) and θ = 210.5◦ (unstable).
For the considered stable direction (θ = 30.5◦) the evolution of the incre-
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mental stress follows perfectly the prescribed loading program in the form
of a ramp over the first 10,000 numerical time iterations (t < 0.035 s). By
contrast the measured stress increments corresponding to the unstable direc-
tion θ = 210.5◦ fails to follow prescribed ramp and a deviation is observed
for t ∈ [0.015, 0.04] s. Indeed, contrary to stable directions a transient loss
of controllability (in the sense of Nova (Nova, 1994)) is observed for unstable
directions. This has to be linked to the development of large incremental
strains up to several percents whereas in the case of stable directions, the
incremental strains are limited to approximately 10−5 (see inset graph in
Figure 4.4).

The considered unstable direction (θ = 210.5◦) corresponds to a physical
configuration in which the sample is slightly deconfined simultaneously in
the vertical and horizontal directions (dσzz < 0 and dσxx = dσyy < 0). For
a stable material, this loading program should result in an increase in the
volume of the sample which is only the case here for t < 0.01 s (before large
strains develop). A sudden collapse of the sample in the vertical direction
is observed and a densification of the sample is obtained as the horizon-
tal dilatancy does not counterbalance the vertical contraction in Figure 4.4
(dεv =

∑
i dεii > 0).

In Figure 4.5, the transient evolution of the second-order work is plotted
for the two loading directions θ ∈ {30.5◦, 210.5◦} and for the same stress
ratio η = 0.45. It should be noted here that as the sample does not follow
a quasi-static evolution, the transient second-order work shown in Figure
4.5 is indeed the external second-order work which is an upper bound for
the internal second-order work as d2Ec ≥ 0 in Equation (2.6) (Nicot et al.,
2017).

Initially positive, the second-order work vanishes after t = 0.014 s when
the loss of controllability is observed. Then W ext

2 decreases, goes through a
minimum and eventually stabilizes after t = 0.05 s around a negative value.
This non-monotonic evolution should be underlined as for some stress ratios
and some stress loading directions the final increase of the second-order work
may rise above zero. Indeed this evolution is explained by the onset of a
softening regime (the vanishing and the decrease of W2) which is eventually
stopped as the sample gets denser (the final increase in W ext

2 ). Provided this
softening regime is rapidly stopped (W ext

2 does not decrease too much), the
final value for W ext

2 = W2 may become positive again.
In Figure 4.6, a circular representation of W ext

2 is shown in order to link
the transient evolutions of dσ and W ext

2 for a stress ratio η = 0.45.
In this Figure, the loss of controllability for unstable directions is visible as

transient normalized second-order work does not follow a straight line. As the
external second-order work decreases, the incremental stress loading direction
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Figure 4.5 – External normalized second-order works for the two loading
directions θ = 30.5◦ (dashed line) and θ = 210.5◦ (solid line). The vanishing
of W2 is indicated by the horizontal red line.

deviates toward the direction of the cone of instability slightly outside the
normalized second-order work envelop computed in Figure 4.3 (asW ext

2 > W2

according to Equation (2.6)) before getting back to its original position as
soon as the softening regime is contained.

4.2.4 Influence of the stress increment on the onset of
instability

As already pointed out in the literature concerning the numerical assessment
of the mechanical stability of granular materials (Froiio et al., 2010; Sibille
et al., 2009), the stress increment ||dσ|| used in the directional analysis can-
not be infinitely small as assumed theoretically. This is usually assumed to
be linked to the discrete nature of granular materials the mechanical behavior
of which strongly rely on particle rearrangements and incorporate an internal
length scale.

In this study, the specific influence of ||dσ|| on the normalized second-
order work envelopes shown in Figure 4.3, has been explored for the stress
ratio η = 0.45. In Figure 4.7, the normalized second-order work envelopes are
shown for six stress increments ||dσ|| ∈ {0.5, 1, 2.5, 5, 7, 10} kPa. For each
stress increment, the testing procedure remains the same as in section 4.2.2.
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In particular, the same stress loading rate ||dσ̇|| = 142 kPa.s−1 is used.
If no change is visible for stable directions, the magnitude of the ap-

plied stress increment has a noticeable impact on the width of the instability
cone which can even disappear for small stress increments. Once underlying
instability has been mobilized by the incremental stress perturbation, the
normalized second-order work does not depend on ||dσ|| anymore. In the
present case, a minimal value between 2.5 kPa and 5 kPa is required.

In order to explore this dependence on the stress increment at the mi-
croscale, it is interesting to define for each contact a sliding index Ip as

Ip =
||Ft||/||Fn||

tanφ
(4.6)

where φ is the inter-particle friction angle, Ft and Fn are respectively the
tangential and normal contact forces as defined in Figure 2.14. This sliding
index is normalized between 0 and 1, Ip = 1 meaning that the Mohr-Coulomb
criterion of the contact law is reached.

In Figure 4.8, probability density functions (pdf) associated with this slid-
ing index are shown for the pre-stabilized sample corresponding to η = 0.45.
The solid line corresponds to the reference pdf before the application of any
stress increment while the dashed lines correspond to pdf reached after a
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Figure 4.8 – Sliding index probability density functions before and after the
application of an incremental stress for a stress ratio η = 0.45 and the two
loading directions θ = 30.5◦ (left) and θ = 210.5◦ (right).

stress increment ||dσ|| = 0.5 kPa or ||dσ|| = 5 kPa. Two loading direc-
tions are considered as θ = 30.5◦ (stable direction) or θ = 210.5◦ (unstable
direction).

In Figure 4.8, the initial pdf presents a "S" shape with a local maximum
for Ip ' 0.25 and a maximum for Ip = 1. Indeed, in the initial config-
uration, a significant number of contacts have reached or are close to the
Morh-Coulomb limit. For both θ directions, the application of a stress in-
crements ||dσ|| = 0.5 kPa hardly changes the contact distribution whereas
a larger stress increment of ||dσ|| = 5 kPa has a noticeable impact on the
pdf as fewer contacts remain close to sliding. As a result, a finite stress in-
crement is required to have an impact on the microstructure geometry which
is required to observe the vanishing of the second-order work (Sibille et al.,
2009; Froiio et al., 2010).

The comparison between the two loading directions for ||dσ|| = 5 kPa
shows that for the unstable direction θ = 210.5◦, the probability density
falls down to 0 for Ip = 1 which is not the case for θ = 30.5◦. Indeed, an
incremental load in a stable direction will provoke a partial reorganisation
of the microstructure through gain and loss of contacts, whereas an incre-
mental load in an unstable direction will result in a complete microstructure
reorganization. In both cases many contacts close to sliding are either lost
or released and for θ = 210.5◦ no contacts remain close to sliding anymore.

In order to highlight the specific influence of the incremental stress ||dσ||
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Figure 4.9 – Remaining fraction of contacts with a sliding index Ip > 0.9
with respect to the applied incremental stress magnitude for a stress ratio
η = 0.45, an unstable direction θ = 210.5◦ (solid line) and a stable direction
θ = 30.5◦ (dashed line).

on contact reorganizations, the fraction of contacts remaining close to sliding
was investigated for θ ∈ {30.5◦; 210.5◦} and η = 0.45 for 14 values of ||dσ||.
As in Figure 4.8 the shape of the pdfs remains mostly unchanged for Ip < 0.9,
the contacts close to sliding are defined by Ip > 0.9.

In Figure 4.9, stable and unstable directions show completely different
results. For θ = 30.5◦, the number of contacts remaining close to sliding
smoothly decreases with ||dσ|| whereas a threshold value ||dσ∗|| = 0.9 kPa
is observed for θ = 210.5◦. For ||dσ|| < ||dσ∗||, the final number of contacts
Nf (Ip > 0.9) close to sliding increases monotonously by comparison with the
initial one Ni(Ip > 0.9). Then, for ||dσ|| > ||dσ∗|| the remaining fraction of
contacts close to sliding drops to a low value around 30 % and remains stable.
These observations are consistent with the comments made previously and
can be interpreted through a micromechanical approach of stability based
on jamming analysis (Bagi, 2007). Indeed, an incremental loading along a
stable direction will result in incremental modifications of the microstructure
whereas an incremental loading along a unstable direction will result in a
generalized unjamming/re-jamming process, provided that ||dσ|| > ||dσ∗||.
As a result, for unstable directions, there exists a threshold value responsible
for the triggering of the observed instability. As soon as the threshold is
reached, the size of the stress increment does not have any influence on the
number of contacts close to sliding anymore. It should also be noted that
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this value is found to depend on the loading rate and the direction of loading
θ (not shown here).

The existence of a threshold value is consistent with DEM framework
in which particle overlapping is allowed and controlled through a normal
stiffness kn. As a result, contact points are not limited to single points and
the loss of contact requires a finite perturbation. In order to highlight the
dependence of ||dσ∗|| to kn, a stiffening/softening experiment was carried
out. kn has been gradually increased or decreased from the initial value to a
new value knew

n while keeping constant the ratio kn/kt. After each incremental
change in knew

n /kn the mechanical equilibrium is perturbed and the sample
is let free to evolve until it re-stabilizes (Funb < 10−5) before changing again
the normal stiffness. In Figure 4.10 the time evolution of knew

n /kn and the
kinetic energy of the sample Ec are shown during the stiffening and softening
experiments.
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Figure 4.10 – Time evolution of knew
n /kn (dashed) and the kinetic energy of the

sample Ec (solid) are shown during the stiffening and softening experiments.

In case where knew
n /kn is decreased, no inertial transition is observed and

the small jumps in kinetic energy resulting from sudden changes in knew
n /kn

rapidly vanish. On the contrary, when knew
n /kn is increased, the sample fails

to adapt to the new stiffness value when knew
n /kn reaches 1.025. As a result,

an outburst of kinetic energy is observed in Figure 4.10(b) as the sample
collapses. This first observation shows that for a stiff material in an unstable
state, a small perturbation can activate the underlying instability.

Complementary to Figure 4.10, a sensitivity analysis with respect to
||dσ|| can be performed for the stabilized stiffer or softer samples. In Figure
4.11, the remaining fraction of contacts with a sliding index d smaller than
0.1 with respect to ||dσ|| are given for different ratios knew

n /kn.
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Figure 4.11 – Remaining fraction of contacts with a sliding index Ip > 0.9
with respect to the applied incremental stress magnitude for different ratios
r = knew

n /kn (r > 1 in red, r = 1 in black and r < 1 in blue). The unstable
direction θ = 210.5◦ is considered.

In Figure 4.11, it can be seen that the stress threshold ||dσ∗|| depends
on the normal stiffness. Without invoking non-linear effects coming from the
geometry, this result is rather surprising as a larger kn implies a smaller in-
terpenetration but in the meantime a given incremental stress is expected to
result in smaller changes in grain interpenetration. Since instability is con-
sidered, even small modifications of the sample geometry induced by changes
in kn or kt can be sufficient to change the value of ||dσ∗|| necessary to trigger
off microsructure modifications leading to the vanishing of the second-order
work.

4.3 Micromechanical identification of driving mech-
anisms responsible for material instability

In the previous section, the mechanical stability of granular samples has
been assessed at the scale of the REV and the onset of instability has been
explained as the ability of an incremental load to trigger off microstructure
reorganizations. If the mechanical state of the considered sample is in the
bifurcation domain and loaded along an unstable direction, the incremental
loading induces generalized microstructure reorganizations which result in a
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macroscopic transient softening responsible for a loss of controllability. In
the end, a new equilibrium is reached which is characterized by a contact
population relatively far from sliding.

The purpose of this section is to provide a microscale investigation of the
physical processes leading to the vanishing of the second-order work during
the transient loss of controllability phase observed macroscopically in Figure
4.4. In all this section, the particular stress state η = 0.45 and the unstable
loading direction θ = 210.5◦ are considered. A particular attention is paid to
the chronology of events leading to the softening of the granular assembly.

4.3.1 Outbursts of kinetic energy

As regularly highlighted in the literature (di Prisco and Imposimato, 1997;
Darve et al., 2004; Sibille et al., 2009; Nicot et al., 2012, 2009), the main
ingredient enabling microstructure reorganizations in granular materials is
the particles’ kinetic energy. As a result, it is of particular interest to track
the time evolution of the kinetic energy of the individual particles while
applying a stress increment. In Figure 4.12, snapshots of the considered
sample are shown for different time steps for two sufficiently large stress
increments ||dσ|| ∈ {1, 5} kPa (see Figure 4.9). The particles are colored
according to their kinetic energy, and the most energetic ones are highlighted.
A threshold of E∗c = 10−8 J is chosen corresponding to the most energetic
particles in the initial state.

In both cases, a localized burst of kinetic energy appears at the same spot
and approximately at the same time (once ||dσ|| reaches its targeted value in
the 1 kPa case and during the transient increase of ||dσ|| in the 5 kPa case).
Then the local burst of kinetic energy propagates to the whole sample. In
the case where ||dσ|| is below the threshold value ||dσ∗|| identified in sec-
tion 4.2.4, no burst of kinetic energy is visible (not shown here). Indeed, the
observed threshold value in direction θ = 210.5◦ corresponds to the minimal
perturbation required to trigger off the burst of kinetic energy shown in Fig-
ure 4.12. Once initiated, the burst of kinetic energy propagate to the whole
sample. The observed vanishing of the second-order work is thus a material
property and not a structural one as the microstructure modifications do not
stay localized in some regions of the sample with a length scale similar to the
one of the whole sample.

The time evolution of the second-order work in Figure 4.6 can be reinter-
preted in the light of these results. The initiation and the propagation of the
burst of kinetic energy correspond to the decrease in W ext

2 . W ext
2 vanishes

as soon as the burst of kinetic energy has propagated to the whole sample.
This correlation is completely in line with Equation (2.6) that establishes the



106 CHAPTER 4. MICRO TO MACRO ANALYSIS OF INSTABILITY

Figure 4.12 – Onset and propagation of the burst of kinetic energy leading to
the loss of controllability for ||dσ|| = 1 kPa (a) and ||dσ|| = 5 kPa (b). The
sample considered is characterized by a stress ratio η = 0.45 and is loaded in
an unstable direction θ = 210.5◦. Particles with Ec > 10−8 J are highlighted.
A control volume around the location of the kinetic burst is shown in black.
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Figure 4.13 – Mean kinetic energy per particle for the whole sample and
around the initiation of the kinetic burst. The sample considered is char-
acterized by a stress ratio η = 0.45 and is loaded in an unstable direction
θ = 210.5◦ with a stress increment ||dσ|| = 1 kPa (blue) or ||dσ|| = 5 kPa
(red). The end of the imposed transient loadings (see Section 4.2.2) are
shown by dash-dot lines.

close relation between the kinetic energy, the internal second-order work and
the external second-order work.

In order to describe the onset and the propagation of the burst of kinetic
energy, the time evolution of the mean kinetic energy per particle is plot in
Figure 4.13 for the whole sample and for the small control volume visible in
Figure 4.12.

In Figure 4.13, an early increase in the mean kinetic energy per particle
occurs simultaneously in the control volume for ||dσ|| = 1 kPa and ||dσ|| =
5 kPa for t ' 0.005 s. This corresponds to the initiation of the burst of the
kinetic energy shown in Figure 4.12. After t ' 0.015 s the kinetic energy
per particle follows the same evolution in the control volume and for the
whole sample. This marks the end of the propagation of the burst of the
kinetic energy. For ||dσ|| = 1 kPa, the transient incremental loading is
stopped before the end of the kinetic burst propagation (blue dotted line).
As a result, a small plateau is observed in the general increase in the kinetic
energy corresponding to the time needed for the instability to affect the whole
sample. Such a plateau is not observed for ||dσ|| = 5 kPa as kinetic energy is
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continuously provided through evolving boundary conditions (the end of the
transient loading is reached even after the mean kinetic energy per particle
reaches its maximum).

4.3.2 Chained particle populations renewal

As recalled in Section 2.3.2 and re-examined in Section 3.2.1, the macroscopic
mechanical behavior of granular materials relies on a limited number of grains
organized in mesostructures called force chains. It has been shown, that the
strength of a granular material results from its ability to build relatively long
force chains and to constantly rearrange the existing force chains to cope
with any change in the boundary conditions (Tordesillas et al., 2011; Zhu
et al., 2016a; Wautier et al., 2017).

Still based on the force chain definition of Peters et al. (2005), the chained
particles responsible for stress transmission can be identified in the initial
state and tracked while the incremental stress is applied. By comparing the
current set of chained particles to the initial one, force chain renewal can
be quantified as Nborn current chained particles were not identified as such
initially and Ndied initial chained particles are no longer identified as such.
A visualization of the force chains identified before and after the application
of a stress probe leading to the vanishing of the second-order work is shown
in Figure 4.14 as well as the time evolution of the total number of chained
particles (Ntot) and the time evolution of the new and former ones (Nborn

and Ndied).
In this figure the microstructure evolution induced by the applied incre-

mental stress is visible. Between the initial and final states roughly 50 % of
the chained particles are renewed while the total number of chained particles
remains quasi-constant (a slight decrease from 2821 to 2661 chained particles
is observed). In addition, in the final state the vertical anisotropy of the force
chains seems visually to be less pronounced than initially.

4.3.3 Chained particles lifespan and life expectancy

In order to detect birth and death of force chains, the notions of lifespan
and life expectancy are introduced similarly as in Zhu et al. (2016a). This
analysis is not carried out directly on force chains but on groups of three
chained particles that constitute the elementary bricks of force chains. For
a given time t and a given group of three chained particles g, the lifespan
`s(t, g) is defined as

`s(t, g) =
t− tbirth

g

t− ti
, `s(t, g) ∈ [0, 1] (4.7)
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Figure 4.14 – Visualization of force chains identified in the initial (a) and final
(b) configurations for a stress ratio η = 0.45 in an unstable direction θ =
210.5◦ for ||dσ|| = 5 kPa. Force chains are composed of contacting particles
of same color. (c) Time evolution of the number of chained particles (black),
the number of new (green) and former (red) chained particles compared with
the initial state.
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where ti = 0 is the time at which the incremental stress is applied and tbirth
g

is the time at which the three particles composing g were first identified
as chained particles and from which they remain continuously identified as
such until the current time t. `s(t, g) = 1 means that the group g of three
chained particles have been existing since the initial configuration before the
incremental stress is applied. On the contrary, `s(t, g) = 0 means that g has
just appeared.

Similarly, the life expectancy `e(t, g) of g computed at time t is defined
as

`e(t, g) =
tdeath
g − t
tf − t

, `e(t, g) ∈ [0, 1] (4.8)

where tf = 0.087 s is the time at which a new equilibrium (Funb < 10−5)
is reached after the application of the incremental stress boldsymboldσ and
tdeath
g is the time at which the three particles composing g were last identified
as chained particles starting from time t. `e(t, g) = 1 means that the group
g of three chained particles exists until the final stabilization of the sample.
On the contrary, `e(t, g) = 0 means that g is about to disappear.

In Figure 4.15, the probability density functions ps and pe are shown for
different time t ∈ [ti, tf ] in order to identify whether the current force chains
are rather young or old and whether they have a long life ahead or are about
to disappear.

In the beginning of the incremental loading, the force chains are sta-
ble as all groups of three chained particles are old with a non-zero life ex-
pectancy. This statement remains true when the burst of kinetic energy
identified in the previous subsection initiates and propagates to the whole
sample (t ∈ [0.005, 0.013] s). From the moment that the kinetic energy
reaches its maximum level (t = 0.0388 s), groups of three particles start col-
lapsing replaced by young force chains with a short life expectancy. Once
the kinetic energy of the sample start decreasing (from t = 0.0634 s) some
time after the targeted stress increment reaches its final value (t = 0.035 s),
force chains become stable again as an aging population of force chains with
a long life expectancy is encountered.

The main conclusions to be retained from this analysis are that:

- the initiation of the burst of kinetic energy is not due to the destruction
of force chains;

- the loss of controllability appears prior to the generalized collapse of
force chains;
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Figure 4.15 – Probability density histograms associated to the lifespan (left)
and life expectancy (right) of the groups of three chained particles at different
moments of the incremental loading. The sample considered is characterized
by a stress ratio η = 0.45 and is loaded in an unstable direction θ = 210.5◦

with a stress increment ||dσ|| = 5 kPa. A high value of ps around 1 cor-
responds to the presence of old force chains, a high value of pe around 1
corresponds to the presence long lasting force chains.
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Figure 4.16 – Group of three chained particles (g) and geometric definition
of the bending angle β.

- the force chains reorganization appears simultaneously with the maxi-
mum level of kinetic energy;

- the final stabilization of the sample is reached as soon as long lasting
force chains appear.

4.3.4 Localized force chain bending

As the loss of controllability occurs prior to the destruction of force chains,
their collapse should not be regarded as the triggering microscale mechanism
responsible for the onset of the burst of kinetic energy (Tordesillas et al.,
2010). Force chains are elongated column like structures loaded in compres-
sion. As a result, their effective failure is very likely to be related to the onset
of bending, before destruction of any force chains (notice that the word bend-
ing is preferred to the term buckling frequently used in existing literature as it
relies only on a geometric definition without any force or stress ingredients).
Given a group of three chained particles g for which two contact directions
form an angle β ∈ [0, π], the bending rate β̇ is simply the time derivative of
β (see Figure 4.16). A strictly positive value β̇ > 0 characterize the bending
of g.

In Figure 4.17, a zoom of the time evolution of the mean kinetic energy
and the mean bending rate are shown for the whole sample and a small
control volume around the location of the burst of kinetic energy (see Figure
4.12). On the first graph, the evolution of the difference between the actual
incremental stress components and their prescribed values is shown.

In this figure, both the loss of controllability, the onset of the burst of
kinetic energy and the increase in the bending rate in the control volume
shown in Figure 4.12 occur simultaneously for t ' 0.008 s, approximately
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Figure 4.17 – Absolute error between the actual stress components and their
targeted values during the incremental stress loading (top), mean kinetic en-
ergy per particle for the whole sample and close to initiation of the kinetic
burst (bottom left), mean bending rate of the groups of three chained parti-
cles for the whole sample and around the kinetic burst (bottom right). The
sample considered is characterized by a stress ratio η = 0.45 and is loaded
along an unstable direction θ = 210.5◦ with a stress increment ||dσ|| = 5 kPa.
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Figure 4.18 – Time evolution of the number of contacts between two chained
particles (Ncc), two non-chained particles (Nnn) and a non-chained and a
chained particle (Nnc). The evolution is given for the whole sample (left)
and for the control volume shown in Figure 4.12 (right). The onset and the
propagation of the burst of kinetic energy is delimited by two vertical lines.
The sample considered is characterized by a stress ratio η = 0.45 and is
loaded along an unstable direction θ = 210.5◦ with ||dσ|| = 5 kPa.

0.007 s prior to a general increase in mean kinetic energy per particle and
mean bending rate for the whole sample (black solid curves in Figure 4.17).
Indeed, the localized bending of a few force chains seems to be sufficient to
generate a loss of controllability at the scale of the REV.

As recently shown for 2D granular assemblies, force chain loss of stability
results from the opening of contacting grain cycles (Tordesillas et al., 2010,
2011; Zhu et al., 2016b). In order to investigate this feature in 3D, the time
evolutions of the number of contacts between two chained particles (Ncc),
two non-chained particles (Nnn) and a non-chained and a chained particle
(Nnc) are represented in Figure 4.18. As in Figure 4.17, the time evolutions
are given for the whole sample and for the same control volume around the
location of the burst of kinetic energy (see Figure 4.12). The onset and the
propagation of the burst of kinetic energy are indicated by two vertical solid
lines.

In Figure 4.18, the number of non-chained/chained contacts (Nnc) de-
creases in the control volume even prior to the onset of the burst of kinetic
energy while Nnn and Ncc remain more or less constant up to the end of the
propagation of the burst of kinetic energy. This observation suggests that the
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Figure 4.19 – Evolution of the mean coordination number of the chained
particles for the two stress increments ||dσ|| = 1 kPa (blue) and ||dσ|| =
5 kPa (red). The onset and propagation of the kinetic energy burst are
indicated by vertical lines while the mean kinetic energies are shown with
dashed lines. The sample considered is characterized by a stress ratio η =
0.45 and is loaded in an unstable direction θ = 210.5◦.

localized bending highlighted in Figure 4.17 results from an early unjamming
of force chains within the used control volume (and consequently a local di-
latancy). The evolution of Ncc, Nnn and Nnc for the whole sample confirms
this mechanism with a generalized drop in Nnc observed during the propaga-
tion of the burst of kinetic energy. This failure mechanism is consistent with
the 2D opening of the three particles loops around force chains mentioned in
Tordesillas et al. (2011) or Zhu et al. (2016b). In the end, following the gen-
eralized collapse of force chains, the initially loose sample gets denser and the
number of contacts between non-chained particles increases. The decrease in
Ncc follows qualitatively the trend mentioned in section 4.3.2 for the number
of chained particles. However, as the number of chained particles is reduced
by roughly 160, Ncc drops by approximately 260. This might result from
changes in the topology of force chains (less branching or shorter chains for
instance).

Complementary to Figure 4.18, the evolution of the mean coordination
number of the particles belonging to force chains (ZFch) is shown in Figure
4.19 for ||dσ|| ∈ {1, 5} kPa.

In Figure 4.19, the evolution of the mean kinetic energy for the whole
sample is shown in dashed lines while the onset and propagation of the burst
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of kinetic energy are still indicated by two vertical solid lines. As soon as the
incremental load starts, ZFch drops which is a signature of local dilatancy
around force chains. This decrease in ZFch appears before any noticeable
increase in kinetic energy and its decreasing rate accelerates as the local
burst of kinetic energy appears. These observations are consistent with the
failure mechanism identified previously. In addition, it should be noted that
drops in ZFch occur simultaneously for ||dσ|| = 1 kPa and ||dσ|| = 5 kPa
(both above the threshold value identified in section 4.2.4) so as the onset
of the burst of kinetic energy. In the case ||dσ|| = 1 kPa, the drop is
observed after the end of the transient incremental loading while for ||dσ|| =
5 kPa, the drop occurs during the transient increase of ||dσ|| from 0 to
5 kPa (see Figure 4.13). As a result, the failure mechanism seems to be
triggered off as soon as the incremental stress overcomes the threshold value
||dσ∗|| = 0.9 kPa (see section 4.2.4). Then, the failure is not instantaneous
and develops in an intrinsic timespan which is independent of the size of the
stress increment. The concept of delayed instability observed experimentally
in soils by di Prisco and Imposimato (1997) is recovered here at the microscale
on a shorter timescale.

4.4 Phenomenological relation between plastic
strain and mechanical stability

After detailed microscale analyses of the elementary mechanisms leading to
the vanishing of the second-order work, this section focuses on the effect
of changes in material properties on the existence of mechanical instability.
In order to so, discrete and continuum modeling of granular materials are
linked by fitting a non-associated elasto-plastic model based on DEM data
to account for the incremental non-linearity of the material loaded under a
stress ratio η = 0.45. This model is then used to exhibit the importance of
plastic strain with respect to the existence of mechanical instability.

4.4.1 Elasto-plastic model fitting procedure based on
DEM results

At the macroscale, irreversible microscale grain rearrangements are usually
accounted for through plastic theory as long as they remain rate-independent.
For frictional granular materials such as soils or rocks, it is well established
that the normality of the flow rule as proposed by Drucker and Prager (1952)
does not hold and the plastic behavior is non-associated. For such materials,
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the volume change predicted by an associated flow rule is indeed significantly
larger than that observed in experiments with soils or rocks. To account for
these observations, the choice of a potential surface different from the yield
surface is often used to accommodate a much smaller volume change. Such
a continuum scale modeling is used in the following to account for the incre-
mental behavior of granular materials. As a result, the incremental strain dε
corresponding to an incremental stress dσ is assumed to be additively broken
down into an elastic part dεe and a plastic one dεp such that dε = dεe+dεp.
This is indeed an approximation as rigorously speaking this additive decom-
position does not hold (Nicot and Darve, 2006b).

To extract the elastic part dεe of the total incremental strain, one of the
following two approaches found in the literature can be used:

- by successively imposing an incremental stress loading and unloading in
the same direction. The residual strain is then considered to be equal to
the plastic strain (Bardet, 1994; Kishino, 2003). This method is based
on the hypothesis that only reversible deformations occur during the
unloading and that no elastic unloading is prevented because of grain
rearrangements during the loading phase.

- by performing the same incremental stress loading twice with two dif-
ferent contact friction angles: the material friction angle φ and a non-
dissipative friction angle of 90◦. This method prevents any plastic
dissipation through friction when φ = 90◦ but does not prevent con-
tact gain and loss which could result in non-reversible microstructure
changes (the kinetic energy released form these events is partly dissi-
pated through numerical damping). However, these irreversible changes
do not impact the macroscopic behavior significantly as long as the am-
plitude of the loading increment remains small. Under this condition
the observed strain can be considered to be fully elastic (Nicot and
Darve, 2007a; Sibille et al., 2009; Calvetti, 2003).

Following the work of Nicot et al. (2007) and Calvetti (2003) the second
method was used since no hysteresis was observed while performing incre-
mental loading and unloading with a friction angle of 90◦.

A systematic way to track the incremental behavior of a given mate-
rial consists in performing a directional analysis as introduced by Gudehus
(1979). By imposing, for instance, stress probes in different directions in the
stress space and recording the corresponding strain responses, the incremen-
tal behavior is then given by the implicit relation between incremental stress
and incremental strain. As previously shown by Nicot and Darve (2007a),
the existence of a flow rule in granular materials is limited to axisymmetric
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loading conditions. As a result, the directional analyses performed in this
chapter are restricted to the Rendulic plane (

√
2dσxx, dσzz) (this corresponds

to the plane dσxx = dσyy in the stress space). By considering
√

2dσxx instead
of dσxx, scalar products in the Rendulic plane correspond to scalar products
computed directly in the three dimensional stress space (dσxx, dσyy, dσzz).

In the inset of Figure 4.20, incremental elastic strains are plotted in the
axisymmetric plane (

√
2dεexx, dε

e
zz) while incremental stress probes describe

a circle in the Rendulic plane (
√

2dσxx, dσzz), the parametric equation of
which is given by


√

2dσxx =
√

2dσyy = ||dσ|| cos θ
dσzz = ||dσ|| sin θ

||dσ|| =
√

dσ2
zz + 2 dσ2

xx

, (4.9)

where ||dσ|| = 5 kPa and θ ∈ [0, 2π].
Extending Bardet’s 2D work (Bardet, 1994), the incremental elastic strain

envelope shown in Figure 4.20 is typical of an incremental anisotropic elastic
behavior. Let us assume that the sample behaves as a transverse isotropic
material. This hypothesis is based on the following two points i) the sam-
ple preparation procedure results in an isotropic sample and ii) the triaxial
loading introduces an anisotropy in the vertical direction (see Figure 3.11).
Thus, in the Rendulic plane, the constitutive matrix relating the incremental
strain to the imposed incremental stress reads as:

( √
2dεexx

dεezz

)
=

(
1−νh
Eh

−
√

2νhv
Eh

−
√

2νhv
Eh

1
Ev

)
·

( √
2dσxx

dσzz

)
(4.10)

where Eh and Ev are the Young modulus in the horizontal and vertical direc-
tions respectively and νh and νhv are the Poisson ratios between horizontal
directions and between the horizontal and the vertical directions, respectively.

While dσ describes a circle in the Rendulic plane (Equation (4.9)), dε
describes a tilted ellipse in the axisymmetric plane (

√
2dεexx, dε

e
zz) with the

following parametric equation:


√

2dεexx =
√

2dεeyy = ||dσ||
[

1−νh
Eh

cos θ −
√

2νhv
Eh

sin θ
]

dεezz = ||dσ||
[
−
√

2νhv
Eh

cos θ + 1
Ev

sin θ
] . (4.11)

By minimizing the quadratic error between the numerical points and
Equation (4.11), a very good prediction of the numerical results is achieved
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Figure 4.20 – Incremental strain responses in axisymmetric plane for the
sample corresponding to η = 0.45 while incremental stress probes describe a
circle in the Rendulic plane (Equation (4.9)). The total incremental strain
(dotted line) is broken down into its elastic (dashed line) and plastic parts
(solid line). The point corresponding to θ = 0 is shown with a diamond in
the inset plot. Fitted elastic and plastic models for incremental strains are
shown with thin solid lines.
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by choosing Eh = 25.2 MPa, Ev = 32.5 MPa and νh = νhv = ν = 0.31. The
resulting fitted model is shown in Figure 4.202.

As summarized in Figure 4.23, the elastic incremental behavior is ac-
counted for in the Rendulic plane through three material constants Eh, Ev
and ν. It must be stressed here that the choice νh = νhv is arbitrary and
has no reason to hold. Indeed, the three independent material constants at
stake in Equation (4.10) are 1−νh

Eh
, νhv
Eh

and Ev. However, assuming νh = νhv is
though convenient to benchmark the present material parameters to classi-
cal Young modulus obtained for uniformly distributed loose sands that range
from 10 to 30 MPa. Based on the load history, the vertical compaction in-
duces the building of force chains mainly aligned in this direction (see Figure
3.11). As a result, the sample is expected to be stiffer in the vertical direction
than in the horizontal one which is consistent with Ev > Eh.

As discussed in Bardet (1994) in 2D, the inclination of the ellipse is linked
to the ratio between Eh and Ev. In order to compute the tilt angle of the
ellipse, let us first compute the square of the distance between a point from
the ellipse and the origin in Equation (4.11):

r2/||dσ||2 = (a2 + b2) cos2 θ+ (c2 + b2) sin2 θ− 2b(a+ c) cos θ sin θ (4.12)

where a = 1−νh
Eh

, b =
√

2νhv
Eh

and c = 1
Ev

.
The major and minor directions of the ellipse correspond to extremal

values. As a result they correspond to the vanishing of the derivative

dr2/||dσ||2

dθ
= (c2 − a2) sin(2θ)− 2b(a+ c) cos(2θ) (4.13)

By introducing an angle θ̃ such that cos θ̃ = 2b(a+c)√
(c2−a2)2+4b2(a+c)2

sin θ̃ = c2−a2√
(c2−a2)2+4b2(a+c)2

, (4.14)

Equation (4.13) can be written as

dr2/||dσ||2

dθ
= −

√
(c2 − a2)2 + 4b2(a+ c)2 cos(2θ + θ̃). (4.15)

As a result, major θ+
t and minor θ−t directions are given by

θ±t = − θ̃
2
± π

4
(4.16)

2It should be underlined here that the fitting procedure assumes the major symmetry
of the constitutive tensor. This is not necessarily the case for granular materials for which
the rigorous definition of a strain energy is not possible as soon as contact gain and loss
occur.
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Figure 4.21 – Evolution of the norm of the incremental plastic strain ||dεp||
with respect to the loading angle θ. Numerical results are shown as a solid
line while the fitted truncated cosine function is shown as a dashed line.

By using the fitted values recalled in Table 4.1, we found in our case
θ+
t = −50.4◦. Compared with the isotropic case (Eh = Ev = E), the isotropic
tilted angle is found to be independent of E and ν as{

cos θ̃iso = 2
√

2
3

sin θ̃iso = 1
3

, (4.17)

which corresponds to θiso+
t = −54.7◦.

By subtracting the incremental elastic strain from the total strain, the
plastic contribution is then recovered. In Figure 4.20, dεp is plotted in the
axisymmetric plane whereas the norm ||dεp|| is plotted against the stress
probe angle θ in Figure 4.21.

In Figure 4.20, the plastic strain concentrates in a single direction ϕ what-
ever the loading direction θ. This indicates a typical flow rule the direction
of which is ϕ in the plane (

√
2dεxx, dεzz). In Figure 4.21, the plastic flow

intensity can be approximated by a truncated cosine function with a maxi-
mum intensity εp in the stress loading direction θ = ϕ + ∆ϕ normal to the
plastic yield surface:{ √

2dεpxx =
√

2dεpyy = εp max (0, cos(θ − ϕ−∆ϕ)) cos(ϕ)
dεzz

p = εp max (0, cos(θ − ϕ−∆ϕ)) sin(ϕ)
. (4.18)

By minimizing the quadratic error between the numerical points and
Equation (4.18), a reasonable prediction of the numerical results is achieved
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Figure 4.22 – (a) Illustration of an associated and non-associated flow rule
in the Rendulic plane. Starting from a state σ, an incremental load dσ is
applied. In case the plastic limit is crossed, a plastic increment exists and the
plastic limit may move if hardening occurs. (b) Illustration of the distance
d to Morh-Coulomb plastic limit thanks to Mohr circle.

by choosing ϕ = 113.8◦, ∆ϕ = 25.9◦ and εp = 4.69 10−2. The resulting fitted
model is included in Figure 4.20.

The non-zero value for ∆ϕ is a signature of the non-associated character
of the flow rule (Nicot and Darve, 2007b; Sibille et al., 2009). Indeed, in
the case of associated plasticity, the direction of the plastic flow rule is given
by the perpendicular direction to the yield surface in the stress space as
illustrated in Figure 4.22 (a). If the reference stress state is close enough
to the plastic limit, the angular range of incremental loadings dσ able to
activate plasticity is close to 180◦ (see Figure 4.22 (a)). In Figure 4.21, the
loading angles for which ||dεp|| 6= 0 are such that θ ∈ [49.7◦, 229.7◦]. The
reference state η = 0.45 therefore belongs to the yield surface. As a result,
in our case ϕ + ∆ϕ corresponds to the normal to the plastic limit surface,
which is equal to 139.7◦. The observed flow direction in Figure 4.20 equal
to ϕ = 113.8◦ and not to 139.7◦, however, which is incompatible with the
existence of an associated flow rule.

If a Mohr-Coulomb plastic limit is assumed, the half-plastic plane (θ ∈
[ϕ + ∆ϕ − π

2
, ϕ + ∆ϕ + π

2
] can be linked to the material friction angle φm

(at the continuum scale). Indeed, for stress states in the Rendulic plane,
the distance d between the Mohr-Coulomb straight line and the Mohr circle
representing the stress state (see Figure 4.22 (b)) reads

d =
σIII + σI

2
sinφm −

σI − σIII
2

. (4.19)

where σI = σzz and σII = σIII = σxx and σIII are the principal stresses in
decreasing order.
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Remembering the fact that initially the stress state is given by a horizontal
confinement σ0 and a vertical stress characterized by the stress ratio η, the
total stress components to be considered during the directional analysis given
in Equation (4.9) are{

σxx = σ0 + ||dσ||√
2

cos θ

σzz = 2η+1
1−η σ0 + ||dσ|| sin θ

, (4.20)

which leads to

d(θ) = σ0
(2+η) sinφm−3η

2(1−η)
+||dσ||

√
3−2 sinφm+3 sin2 φm

2
cos(θ+θ0) (4.21)

with θ0 defined such that cos θ0 = 1+sinφm√
3−2 sinφm+3 sin2 φm

cos θ0 =
√

2(1−sinφm)√
3−2 sinφm+3 sin2 φm

. (4.22)

As a result, directions corresponding to non-zero plastic increments are
given by d(θ) < 0. When the initial state belongs to the yield surface (d = 0
for ||dσ|| = 0) the suitable range for θ is [π

2
− θ0,

3π
2
− θ0], whose amplitude is

180◦. In our case, this assumption is likely to hold true as the amplitude of
non-zero values for the plastic incremental strain in Figure 4.21 is 180◦ which
is a consequence of the hardening observed during the drained triaxial loading
in Figure 4.2. As a result, the vanishing of d for ||dσ|| = 0 corresponds to
a material friction angle φm = 33.4◦. For such a material friction angle, the
half-plastic plane predicted by Equation (4.21) is [π

2
−θ0,

3π
2
−θ0] = [68◦, 248◦],

which is different from the one observed in Figure 4.21 [ϕ+∆ϕ− π
2
, ϕ+∆ϕ+

π
2
] = [50◦, 230◦]. The difference observed might stem from the fact that the

material does not follow a perfect Mohr-Coulomb plastic criterion as assumed
to derive Equation (4.21).

In the end, the fitting procedure described in this subsection and sum-
marized in Figure 4.23 is based on the identification of six parameters. For
the sample prepared in the mechanical state η = 0.45 the fitted parameters
are given in Table 4.1.

4.4.2 Plastic strain intensity and vanishing of the second-
order work

The phenomenological model introduced in the previous subsection and fitted
in the Rendulic plane, is convenient to interpret the vanishing of the second-
order work in terms of macro variables such as the maximum level of plastic
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Figure 4.23 – Non-associated elastoplastic fitted response in the incremental
strain space corresponding to stress probes describing a circle in the Rendulic
plane. The strain response is broken down into an elastic part characterized
by three parameters and a plastic one described with three parameters.

Table 4.1 – Fitted parameters for the incremental non-associated elastoplastic
behavior of the sample saved in the mechanical state η = 0.45.

Elastic behavior Plastic behavior
Eh = 25.2 MPa ϕ = 113.8◦

Ev = 32.5 MPa ∆ϕ = 25.9◦

ν = 0.31 εp = 4.69 10−2
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strain εp. Indeed, based on Equations (4.9), (4.11) and (4.18), in the plastic
domain θ ∈ [ϕ+ ∆ϕ− π

2
;ϕ+ ∆ϕ+ π

2
], the second-order work reads

W2 = dσ : (dεe + dεp)

= ||dσ||
√
β2 + γ2

(
α√
β2+γ2

+ cos(2θ − ϕ0)

)
(4.23)

with 

α = 1
2
||dσ||

(
1−ν
Eh

+ 1
Ev

)
+ εp

2
cos(∆ϕ)

β = 1
2
||dσ||

(
1−ν
Eh
− 1

Ev

)
+ εp

2
cos(2ϕ+ ∆ϕ)

γ = −||dσ||
√

2ν
Eh

+ εp
2

sin(2ϕ+ ∆ϕ)

cosϕ0 = β√
β2+γ2

and sinϕ0 = γ√
β2+γ2

. (4.24)

In Figure 4.24 the analytical expression (4.23) (parameters from Table
4.1) is compared with the DEM results obtained in Section 4.2 (sample cor-
responding to η = 0.45).

In Figure 4.24, the fitted model is shown to account nearly perfectly
for the shape of the circular envelopes obtained numerically. The relative
contribution of the elastic and plastic strains to the normalized second-order
work are shown with dashed lines (W2 = W e

2 +W p
2 ). For the set of parameters

in Table 4.1, two half-planes can be defined in which W2 ' W e
2 or W2 ' W p

2 .
The second-order work vanishes in the half-plastic plane [ϕ + ∆ϕ − π

2
;ϕ +

∆ϕ + π
2
] which is a signature of material instability by divergence. The

discontinuity observed for θ = ϕ + ∆ϕ + π
2
is linked to the activation of the

plasticity along a wedge path as illustrates in Figure 4.22. For θ = ϕ+∆ϕ− π
2
,

dσ is changed in −dσ while dε is kept the same as imposed by the flow
rule. As a result, no discontinuity is observed in the circular envelope for
the direction θ = ϕ + ∆ϕ − π

2
. This difference between the two sides of the

plastic domain stems from the non-associated character of the flow rule is
visible because the normal direction ϕ+∆ϕ to the half-plastic plane (dashed
line) differs from the direction of plastic increment in the axisymmetric plane
ϕ (solid line).

As a result of Equation (4.23), a necessary condition for having a loading
direction leading to the vanishing of the second-order work reads

If ∃θ such that W2(θ) < 0, then α2 ≤ β2 + γ2. (4.25)

If this condition is satisfied and if the directions θ giving W2 < 0 lie in the
plastic half-plane [ϕ+ ∆ϕ− π

2
;ϕ+ ∆ϕ+ π

2
] (otherwise Equation (4.23) is not
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Figure 4.24 – Comparison between analytical (solid lines) and numerical
(dots) normalized second-order work envelopes for the initial sample cor-
responding to η = 0.45. The model parameters are taken from Table 4.1.
The relative contribution of the elastic and plastic incremental strain in the
computation of W2 are shown with dashed lines. The plastic half-plane
[ϕ + ∆ϕ − π

2
;ϕ + ∆ϕ + π

2
] corresponds to the grey domain. The maximum

plastic intensity direction ϕ + ∆ϕ (black dashed line) and the plastic flow
direction ϕ (black solid line) are also shown.
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Figure 4.25 – Phase diagram of couples (ν, Ev
Eh

) leading to the positive def-
inition of the constitutive tensor. The point corresponding to the fitted
parameters in Table 4.1 is indicated.

valid), the granular material considered is at a bifurcation point. In other
words, even if the considered material is at equilibrium in the current state
(defined by the geometry of its microstructure and its stress state), incre-
mental loading programs exist that will lead to the material failure through
an abrupt increase in kinetic energy.

If we assume that the material behavior is fully elastic (εp = 0), then
condition (4.25) can be written in terms of material constants ν and Ev/Eh
as

ν ≤ −
1 +

√
1 + 8Ev/Eh

4Ev/Eh
or ν ≥

−1 +
√

1 + 8Ev/Eh
4Ev/Eh

. (4.26)

This condition corresponds indeed to the positive definition of the constitu-
tive tensor and define the admissible bounds for ν. The set of admissible
parameters (Ev/Eh, ν) is illustrated in Figure 4.25.

The positive definition of the constitutive tensor results in the fact that
the elastic contribution to the second order work is always positive. As a
result, the size of the plastic increment is expected to play an important
role with respect to the vanishing of the second-order work. This sensitivity
to εp is explored in Figure 4.26 in which normalized circular envelopes of
the second-order work are shown for different εp values while keeping other
parameters of Table 4.1 constant.

The plastic strain intensity εp has a great influence on the existence and
the width of the cone of instability resulting from Equations (4.23) and (4.24).
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Figure 4.26 – Analytical normalized second-order work envelopes for different
plastic intensities εp ∈ {ε◦p, ε◦p/20, ε◦p/50, ε◦p/100} where ε◦p = 4.69 10−2. The
six other parameters of the model are selected from Table 4.1.
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The larger εp, the larger the instability cone. This close relationship between
the vanishing of the second-order work and the size of the plastic increments
was also recently accounted for by Zhang et al. (2016) while considering the
occurrence of strain bursts.

4.4.3 A conjecture for the stabilizing role played by rat-
tlers

When looking back to the microscale, the plastic strain intensity can be
linked to the presence of rattlers, i.e. free particles not participating in stress
transmission3. Indeed, from the results illustrated in Figure 4.26 combined
with the schematic diagram in Figure 4.27, we conjecture that rattlers (par-
ticles with no contacts in absence of gravity) play the particular of limiting
the development of plastic strain when the existing contact network fails to
adapt to the newly imposed mechanical loading and induces microstructure
rearrangements. Given that large incremental plastic strain development is
a necessary condition for the onset of macroscopic instability, rattlers play a
fundamental role in mitigating material instability by divergence. This issue
will be discussed from micromechanical considerations in the following two
sections.

4.5 A contact scale explanation for the stabi-
lizing role played by rattlers

Complementary to the previous section, the particular role played by rat-
tlers in mitigating plastic strain development can be examined analytically
and qualitatively using the micro-formulation of the second-order work in-
troduced for granular materials (Nicot et al., 2007; Hadda et al., 2013). In
this section, the contact scale necessary condition to observe the vanishing of
the second-order work contact scale necessary condition to observe the van-
ishing of the second-order work (Nicot and Darve, 2006a; Nicot et al., 2013a)
is revisited in terms of rattlers influence to provide an analytical proof of
the conjecture formulated in Section ??. This section is kept qualitative on
purpose but a quantitative assessment of the role played by rattlers directly
at the contact scale is proposed in ?? through DEM simulations.

3In the absence of gravity, rattlers are floating particles. When gravity is accounted
for, rattlers deposit in the bottom of pores with three contacts with non-rattler particles.
The name rattlers come from the verb to rattle. When a sample is shaken, rattlers rattle!
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Figure 4.27 – Schematic diagram of the particular role played by rattlers with
respect to plastic strain development. Comparison between a microstructure
with rattlers (a) and the same microstructure without rattlers (b).

Let `c be the branch vector connecting the centers of two contacting
spherical particles at contact c, F c the inter-particle contact force, F p the
resultant contact force on particle p and xp the position of its mass center.
Then the volume integral of the second-order work on a sample of domain Ω
can be computed from micro-quantities as∫

Ω

W2dV =
∑
c

∆F c · ∆`c +
∑
p

∆F p · ∆xp (4.27)

where ∆ correspond to incremental variations and · to the scalar product.
Provided that only inertial terms can be ignored (∀p,∆F p = 0), the

second term vanishes and the second-order work computed at the REV scale
reads:

W2 =
1

|Ω|
∑
c

∆F c · ∆`c. (4.28)

Consequently a microscopic second-order work can be defined at the contact
scale as wc2 = ∆F c · ∆`c (Nicot and Darve, 2006a).

By further breaking down ∆F c and ∆`c into normal and tangential com-
ponents, wc2 can be expressed as

wc2 = ∆F c
n · ∆`cn + ∆F c

t · ∆`
c
t . (4.29)
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The definition of the different vectors at stake in this equation appears more
clearly in Figure 4.28.

Using the contact law recalled in Section 2.3.1, the first term reads kn||∆`cn||2
and is always positive, as is the second one as long as ||F c

t ||/||F c
n|| < tanφ.

As a result, wc2 ≥ 0 if the contact behaves elastically. If sliding occurs, the
sign of wc2 is difficult to predict and two cases should be considered (see
Figure 4.28 and Nicot and Darve (2006a); Nicot et al. (2013a)).

(a) F c
n remains constant and ∆F c

t is such that F c
n + F c

t + ∆F c
t reaches

the Mohr-Coulomb limit cone. In this case the tangential relative dis-
placement ∆`ct is positively collinear to F c

t +∆F c
t and for a sufficiently

small increment ∆F c
t , ∆F c

t · ∆`
c
t ≥ 0. As a result wc2 ≥ 0.

(b) ||F c
n|| decreases such that F c

n+∆F c
n+F c

t violates Mohr-Coulomb limit
cone as ||F c

t || > (||F c
n|| − ||∆F c

n||) tanφ. In this case, the tangential
force decreases as

∆F c
t = −

[
||F c

t || − (||F c
n|| − ||∆F c

n||) tanφ
] F c

t

||F c
t ||

(4.30)

whereas the relative displacement ∆`ct is positively collinear to F c
t . In

this case, the tangential term in wc2 is negative and

wc2 =
1

kn
||∆F c

n||2−
[
||F c

t ||
||F c

n||
−
(

1− ||∆F
c
n||

||F c
n||

)
tanφ

]
||F c

n|| ||∆`ct ||

(4.31)

As a result, it should be underlined that the occurrence of contact sliding
is not a sufficient condition to observe the vanishing of wc2. If a contact
slides under an "increase" in the tangential force, for instance, the scalar
product ∆ut · ∆F t is positive. Contact sliding through normal unloading is
thus a necessary condition to observe the vanishing of the local second-order
work wc2. Then the vanishing of the second-order work W2 at the scale of a
representative elementary volume requires the following two conditions:

- A sufficient number of contacts have to slide through normal unloading;

- A large proportion of these contacts has to exhibit a sufficiently large
tangential displacement ∆`ct such that the local second-order work wc2
vanishes.

By imposing internal geometrical constraints to a granular material, rat-
tlers can contribute to limiting the size of the tangential increment ||∆`ct ||



132 CHAPTER 4. MICRO TO MACRO ANALYSIS OF INSTABILITY

Figure 4.28 – Two incremental loadings leading to contact sliding with differ-
ent consequences on the sign of wc2. While configuration (a) results in wc2 > 0,
configuration (b) can result in wc2 < 0 depending on ||∆`ct ||.

when contact sliding occurs as illustrated in Figure 4.29. Consequently, the
presence of rattlers will result in a decrease in the number of contacts with
wc2 < 0 and an increase in W2 which imposes mechanical stability at the
macroscopic scale. This constitutes a micromechanical proof of the conjec-
ture formulated in Section 4.4.3.

4.6 DEM inspection of rattlers’ stabilizing role

In this section, the two samples corresponding to η = 0.35 and η = 0.45
in Figure 4.2 are considered. By referring to Figure 4.3 the sample corre-
sponding to η = 0.35 is reputed stable whereas the sample corresponding to
η = 0.45 is reputed unstable.

Based on these two samples, in this section we focus on the role played by
the loose phase (i.e. the least stressed grains of the assembly) with respect to
the mechanical stability of granular materials. In particular we focus on the
role played by rattlers, i.e.particles with no contacts with their neighbors.
Given that these particles do not carry any load, they can be easily removed
from the saved samples, without decaying the their bearing capacity. Sim-
ilarly, rattlers can be artificially added to existing interstitial voids. These
two artificial microstructure modifications will be considered in the following
two subsections and may be representative of massive erosion or clogging
induced by an internal flow.
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Figure 4.29 – Schematic diagram of the particular role played by rattlers with
respect to the size of the tangential increment ||∆`ct || for the incremental
loading of Figure 4.28 (b).

4.6.1 Mechanical stability assessment for samples with-
out rattlers

In Figure 4.30 (a) the sample corresponding to the mechanical state η = 0.45
is shown with the free particles highlighted in white. In this case, artificial
removal of rattlers concerns 3,480 particles out of 10,000 and the resulting
microstructure is shown in Figure 4.30 (b). A similar extraction procedure
was performed on the sample corresponding to the mechanical state η = 0.35
in which 3,458 particles are found to be rattlers.

As for the virgin microstructure, a stress-controlled directional analysis
(see Equation (4.9)) with 5 kPa stress probes is performed with artificially
eroded microstructures. In Figure 4.31, circular representations of the re-
sulting normalized second-order work are shown for the two samples saved
and compared with those obtained before any particle are removed.

In the case corresponding to η = 0.35, the sample initially identified as
stable with respect to the second-order work criterion (∀θ, W2 > 0) enters
the bifurcation domain when rattlers are removed (∃θ, such that W2 < 0).
In the case corresponding to η = 0.45, both samples are in the bifurcation
domain. Removing rattlers results in a wider cone of instability (the set of
loading directions leading to W2 < 0). These observations show that rattlers
play an important role with respect to mechanical stability even though they
did not initially contribute to supporting the mechanical load. Indeed, if the
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Figure 4.30 – Microstructure evolution induced by removing free particle for
the sample corresponding to the mechanical state η = 0.45. Free particles
are shown in the initial sample (a) in grey. After these 3,480 particles are
removed, the resulting microstructure is shown in (b) without rattlers.
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Figure 4.31 – Circular envelopes of normalized second-order work for η = 0.35
(a) and η = 0.45 (b). The initial microstructure containing rattlers corre-
sponds to solid lines while the microstructure without rattlers corresponds
to dashed lines.
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existing contact network fails to transmit the imposed incremental stress, the
microstructure is forced to rearrange until a more robust contact network is
built, possibly by mobilizing free particles. As a result, free particle removal
reduces rearrangement possibilities, which is consistent with an increase in
the number of unstable loading directions. At the macroscale, this results
in larger plastic increments. For instance, in the case of η = 0.45, the max-
imum plastic intensity εp introduced in Section 4.4.1 rises from 4% to 21%
when rattlers are removed. The corresponding incremental strain envelopes
observed during the directional analyses performed are shown in Figure 4.34.

These observations are consistent with previous studies in which particle
removal is considered (including particles involved in stress transmission).
For instance, Scholtès et al. (2010) show that granular samples loaded in
a drained triaxial state with a sufficiently large η value cannot adapt to
substantial particle removal. In some cases, removing some stressed particles
is sufficient to induce the collapse. Indeed, destabilized contact networks
cannot find any new stable configurations by incorporating new particles into
force chains. Even if particle removal does not lead to instantaneous failure,
Scholtès et al. (2010) and Hosn et al. (2018) observed considerable reduction
of the peak stress in drained triaxial tests resulting from the decrease in the
number of accessible microstructure configurations.

4.6.2 Mechanical stability assessment for samples with
added rattlers

Following the pore network analysis shown in Wautier et al. (2017), an arti-
ficial increase in the number of rattlers is achieved as follows:

- define a pore network using a regular Delaunay triangulation of the
media (Chareyre et al., 2012);

- for every pore defined as a tetrahedron linking the center of four par-
ticles, compute the radius of the inscribed sphere together with the
position of its center;

- check whether such a sphere intersects any other existing particles not
belonging to the tetrahedron considered. If yes, decrease the computed
inscribed sphere radius until no intersection exists;

- include a particle inside every pore where the inscribed radius is larger
than a threshold value rth.
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Figure 4.32 – Microstructure evolution induced by inclusion of free particles
for the sample corresponding to the mechanical state η = 0.45. Free particles
are shown in the initial sample (a) in white. The 12 805 added particles are
shown in blue in the enriched sample (b).

The result of the above procedure with rth = rmin

2
is shown for the sample

corresponding to η = 0.45 in Figure 4.32 (b). A total of 12,805 particles have
been added to existing voids (in addition to pre-existing rattlers).

As in the previous subsection, a stress-controlled directional analysis was
performed with this artificially enriched microstructure. In Figure 4.33, cir-
cular representations of the normalized second-order work are shown for (i)
the initial sample with η = 0.45, (ii) this sample without rattlers and (iii)
this same sample in which additional rattlers are incorporated.

In Figure 4.33, the role played by rattlers with respect to mechanical sta-
bility is clearly shown and confirms the conjecture proposed in Section 4.4.3.
Indeed, adding new rattlers offers new possibilities in rebuilding contact net-
works. In the case η = 0.45, the maximum plastic intensity εp is reduced
from 4% to 0.8% when additional rattlers are considered as shown in Figure
4.34. As a result, fewer incremental loading directions are associated with a
negative value of the second-order work as observed in Figure 4.33. However,
despite the large number of newly incorporated rattlers, a cone of instabil-
ity persists for the sample considered. These additional rattlers do not get
jammed into a new contact network quickly enough to prevent the existence
of macroscopic instability.
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Figure 4.33 – Circular envelopes of normalized second-order work for η =
0.45. Three microstructures are considered: the initial microstructure (solid
line), the initial microstructure without rattlers (dashed line) and the initial
microstructure enriched with more rattlers (dotted-dashed line).
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Figure 4.34 – Incremental strain envelopes associated with directional anal-
yses in the case of η = 0.45. The three microstructures shown in Figures
4.30 and 4.32 are considered: virgin (solid line), with rattlers removed (large
dashed line), with more rattlers (small dashed line). Two levels of zoom are
provided in the inset plots.
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4.6.3 Rattlers’ influence on the macroscopic direction
of the non-associated flow rule

As shown in the previous subsection, rattlers have a significant impact on the
mechanical stability of the samples considered. For the sample corresponding
to η = 0.45 it is interesting to reconsider the model parameters of Table
4.1 while updating the plastic flow intensity εp to account for the removal
or addition of rattlers considered in this section (εp = 21 10−2 and εp =
8 10−3 respectively). The comparison between the resulting envelopes and
the numerical data is given in Figure 4.35.

As shown in Figure 4.35, the change in the plastic intensity explains most
of the change in the W2 circular envelope in the case where new rattlers are
incorporated but does not account for the modification induced by the re-
moval of rattlers. Indeed, the presence or absence of rattlers may have an
other impact on the plastic behavior at the continuum scale through the
plastic flow direction as illustrated in the schematic diagram of Figure 4.36.
The macroscopic activation of the plastic behavior corresponds locally to
substantial grain rearrangements following the collapse of pre-existing force
chains. Initially these force chains are oriented in the principal stress direc-
tion along z axis. Once they fail, the sample contracts in this direction while
slightly dilating in the horizontal directions x and y as a consequence of ver-
tical to lateral force transmission. When rattlers are removed, the vertical
contraction is stopped later while the horizontal dilation is less influenced.
Since incremental plastic strains result from the collapse of mesostructures
mostly oriented along the z axis, the impact of rattlers is expected to be
greater along dεzz than along dεxx and dεyy. This asymmetric influence re-
sults in a clockwise rotation of the plastic flow in the axisymmetric plane
(
√

2dεxx, dεzz) as observed numerically in Figure 4.34. However, since the
onset of the plastic behavior is governed by the primary fabric, the plastic
half-plane is however not affected by the modification of the population of
rattlers.

As shown in Figure 4.35, a decrease in the plastic flow direction ϕ while
keeping ϕ + ∆ϕ constant precisely accounts for the new circular envelopes
when rattlers are removed from the sample. On the contrary, when adding
rattlers, a small increase in the plastic flow direction ϕ provides a better fit
of the numerical data. The modified plastic parameters are given in Table
4.2
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Figure 4.35 – Circular envelopes of normalized second-order work for η = 0.45
corresponding to the sample without rattlers (a) and in which additional
rattlers are incorporated (b). The phenomenological fits coming from the
elastoplastic model presented in Section 4.4.1 are shown with a dashed line
with parameters from Table 4.1 and updated εp values, and as a solid line
for the updated plastic parameters from Table 4.2. The maximum plastic
intensity direction ϕ + ∆ϕ (the black dashed line segment) and the plastic
flow direction ϕ (two thick solid line) are also shown for both fits.
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Figure 4.36 – Illustration of the plastic flow rotation induced by rattler re-
moval with anisotropically oriented force chains in the z direction.

Table 4.2 – Updated plastic parameters for the incremental non-associated
elastoplastic behavior for the mechanical state η = 0.45 in case of removal or
addition of rattlers.

No rattlers More rattlers
ϕ = 113.8◦ − 10◦ ϕ = 113.8◦ + 3◦

∆ϕ = 25.9◦ + 10◦ ∆ϕ = 25.9◦ − 3◦

εp = 21 10−2 εp = 8 10−3
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4.7 Summary of the main findings

Thanks to the combine use of the second-order work theory at the macroscale
and the force chain concept at the microscale, physical mechanisms respon-
sible for the onset and development of instability in granular materials have
been identified at the microscale. It was shown that an incremental stress
loading leading to the vanishing of the second-order work provokes the un-
jamming of force chains. This results in their bending accompanied by an
increase in the kinetic energy. At the macroscale, force chain bending is vis-
ible through softening behavior and loss of controllability as the measured
incremental stress rotates toward the direction of the instability cone. The
correlation between the increase in kinetic energy and the vanishing of the
second-order work predicted by the writing of the kinetic energy balance (2.6)
is verified, but it is shown here that this is the consequence of the propagation
of a burst of kinetic energy to the whole sample. Once the kinetic energy of
the whole sample is large enough, existing force chains collapse and impor-
tant microstructure reorganizations are observed resulting in a macroscopic
densification (for loose granular materials). This densification is eventually
stopped as soon as new stable force chains are built. Macroscopic softening
ends and the incremental stress rotates back to its prescribed direction.

In addition to this physical interpretation of the vanishing of the second-
order work, a particular attention has been paid to the pre-stabilization step
required to define a reference equilibrium state as well as to the magnitude of
the stress increments required to trigger off instability. Even for quasi-static
evolutions, it was shown that localized micro-inertia crisis occur during this
pre-stabilization step. As a consequence, threshold values exist for stress
increments below which the sign of the normalized second-order work depends
on the magnitude of stress increments. These observations are hardly ever
reported in the literature and could provide clues to carry out systematic
numerical assessment of the bifurcation domain of granular materials.

By going back to a continuum mechanics perspective, the local grain
rearrangements were linked to the macroscopic concepts of plasticity and
material instability. To this respect, a particular attention was paid to pro-
vide physical interpretations of the phenomenological parameters used in
non-associated elasto-plastic constitutive modeling. A necessary condition
for the occurrence of material instability within granular materials (detected
by the second-order work criterion) lies in the development of large plas-
tic strains. Provided that the current contact network fails to withstand
an incremental load, the mechanical stability of a granular material at the
macroscale is closely related to the ability of free particles to get jammed into
new force chains. Indeed, removing free particles results in an increase in in-
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cremental plastic strain. When the loading history induces microstructure
anisotropy, local microstructure rearrangements occur in a specific direction
which affects macroscopically the direction of the flow rule. As a consequence
of these two microstructure effects, the removal of rattlers leads to an increase
in the number of loading directions associated with a vanishing second-order
work. On the contrary, adding free particles inside the pores of an unstable
granular assembly is shown to have a stabilizing effect.

These latter results are of a particular significance in relation with suf-
fusion as rattlers are privileged candidates to erosion. Indeed, if rattlers are
too big to be transported through the pore space, they remain trapped in-
side the soil and ensure mechanical stability. On the contrary, if the soil
loses some rattlers, a mechanical instability is more likely to appear. Clog-
ging and erosion are thus expected to have antagonist effects with respect to
mechanical stability. These two effects can be invoked for instance to comfort
the interpretations of experimental triaxial tests performed on eroded soils
(see Section 2.2.2). If the post-erosion peak stress is unchanged or increases,
clogging of rattlers is certainly the privileged mechanism. On the contrary,
if the post-erosion peak stress decreases, erosion of rattlers is certainly the
privileged mechanism. The competition between these two mechanisms will
be analyzed from fully coupled simulations in Section 5.2 in the following
chapter.
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As reviewed in the state of the art chapter of this manuscript, the oc-
currence of suffusion has been mostly been considered through geometric
considerations. Indeed, the notion of internal stability has been introduced
in the geomechanics community as the ability of a granular material to self
prevent the loss of the smallest particles under the action of disturbing forces
such as seepage or vibration (Kenney and Lau, 1985). The notion of self fil-
tration follows, and most of the criteria used for practical applications are
constructed on particle size distributions (PSD) (Kenney and Lau, 1985;
Skempton and Brogan, 1994; Li and Fannin, 2008) or more recently on con-
striction size distributions (CSD) (Sjah and Vincens, 2013; Vincens et al.,
2015; Li et al., 2014). Only few of them take into account the mechani-
cal or hydraulic loading to assess the occurrence of the phenomenon (Shire
et al., 2014; Jaeger et al., 2017; Kawano et al., 2017) and none account for
the resulting evolutions in terms of mechanical stability as deduced from the
literature review in Section 2.1.

For cohesionless granular materials, an internal flow does not directly
modify the mechanical properties at the contact scale but induces geometrical
changes in the microstructure following two kinds of mechanisms.

- A first change lies in the transport of rattlers, i.e. particles with no con-
tacts with their neighbors in the absence of gravity. Under the action
of an internal fluid flow, these particles move through the pore space
and are either eroded or clogged depending on their size with respect to
those of pores and constrictions (Reboul et al., 2008; O’Sullivan et al.,
2015; Wautier et al., 2017).

- The second flow impact consists in introducing additional forces on the
primary skeleton of the granular material (Mahabadi and Jang, 2017;
Beguin et al., 2012). This results in stress redistribution and possibly to
grain detachment if the existing contact network is forced to rearrange.

The first aspect has been widely accounted for through filtration tests
(O’Sullivan et al., 2015; Vincens et al., 2015) and the relative impact of clog-
ging and erosion can artificially be obtained by modifying the population of
rattlers (see Section 4.6). The second aspect has been much less investigated
and grain detachment is usually assessed thanks to a Shield criterion at the
scale of a single grain and not at the scale of the whole contact network.

The objective of this chapter is twofold. First, by considering a granular
sample without rattlers prepared in an unstable mechanical state, the direct
impact of a fluid flow on the primary skeleton is investigated and the ability
of the internal flow to trigger off underlying instability is shown. Then, the
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relative influence of erosion and clogging is considered for a widely graded
sample in an unstable state subjected to an internal flow.

Similarly to the previous chapers, the micromechanical analysis performed
in this chapter considers non-cohesive granular materials modeled as poly-
disperse assemblies of spheres. The interaction between two particles is mod-
eled by the classical elasto-frictional contact law proposed by Cundall and
Strack (1979) and presented in Section 2.3.1. The input parameters used in
this elasto-frictional contact law are reported in Table 2.1. After comput-
ing all inter-particle contact forces, induced particles displacements are inte-
grated based on Newton’s second law of motion using the open source code
YADE (Šmilauer et al., 2015) based on a discrete element method (DEM).
The fluid grain coupling is accounted for thanks to the use of the pore scale fi-
nite volume (PFV) scheme developed by Chareyre et al. (2012) and reviewed
in Section 2.4.2. Compared to most of fluid-grain problems discussed in the
literature, this study dares to account for the fluid phase connectivity in 3D
(Robinson et al., 2014; Jaeger et al., 2017; Kawano et al., 2017).

This chapter is organized as follows. In Section 5.1, the ability of a fluid
to trigger off underlying instability on a sample in which rattlers are initially
removed is shown and microscale mechanisms are investigated. In Section
5.2 the relative influence of erosion and clogging is considered for a widely
graded sample.

5.1 Direct flow impact on stress transmission

5.1.1 Sample definition with no rattlers

In this section, the loose granular sample used in Chapter 4 is considered
for which the grain radii follow a uniform distribution between rmin and
rmax = 3.5 rmin. After being prepared in an isotropic state following the
radius expansion technique, this sample was subjected to a drained triaxial
test (see Section 4.1) which is recalled in Figure 5.1. In this section, the
sample saved for a stress ratio η = 0.35 (marked with a diamond in Figure
5.1) and no rattlers is considered. As shown in Figure 4.31, the resulting
sample is known to be mechanically unstable in the sense of the second-order
work criterion. Indeed, some incremental loading programs will result in
an unbounded increase in kinetic energy which is a signature of an inertial
transition. However, knowing whether additional forces resulting from an
internal fluid flow can trigger of this inertial transition still remains an open
question.
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Figure 5.1 – Drained triaxial test response with respect to axial strain εzz
(top). The stress ratio η is defined as the ratio between the deviatoric stress
and the mean stress and εv stands for the relative volume change. The di-
amond point corresponds to the mechanical state η = 0.35 considered for
the fluid/grain coupled problem. The two bottom images illustrate the mi-
crostructure changes resulting from the removal of rattlers (particles with
coordination number Zc = 0). The 3,458 removed particles are shown in
white.



5.1. Direct flow impact on stress transmission 149

5.1.2 Fully coupled DEM/PFV numerical experiments

The numerical sample resulting from the preparation procedure presented
in the previous subsection is subjected to a macroscopic pressure gradient.
During this mechanical testing, the stress state is kept constant (η = 0.35)
and the microstructure is let free to evolve (in particular, new rattlers are
not removed). Two flow directions are considered:

- parallel to the principal loading direction (along z axis) and referred to
as vertical flow case hereafter;

- perpendicular to the principal loading direction (along x axis) and re-
ferred to as horizontal flow case hereafter.

Figure 5.2 summarizes the boundary value problem solved in the two flow
cases. On upstream faces, the fluid pressure is set to p0 while on downstream
faces null fluid pressure and null displacement are imposed. On the remaining
faces of the sample, zero flux conditions are imposed (qx = qy = 0 for the
vertical case and qz = qy = 0 for the horizontal one). The upstream pressure
p0 is prescribed such that the hydraulic gradient I = p0

ρg`
is set to 0.1 with

ρ = 1000 kg.m−1 the fluid density, g = 9.81 m.s−2 the earth gravity and
` ∈ {`x, `z} the sample length in the flow direction. In the vertical case,
p0 = 151 Pa while in the horizontal one p0 = 152 Pa. Since the effective
stress is now varying at the scale of the sample, the problem of interest
is no longer a homogenization problem and the concept of REV vanishes.
However, as the fluid pressure drop p0 is small compared to the effective
stress σ0 and if we neglect the flow induced microstructure heterogeneities
at the scale of the sample, the concept of REV is restored approximatively.
Under this hypothesis, the fluid can be seen as an external perturbation that
makes the microstructure evolve without any change in the stress state. As
already mentioned in Section 3.4, it should be emphasized that the additional
fluid pressure p0 applied only the upstream wall generates an effective stress
gradient between the upstream and downstream walls of the sample. As a
result, in the direction of the pressure gradient, the downstream effective
stress is p0 higher than the upstream one. In practice, the control on the
downstream wall is switched from effective stress to displacement and a zero
displacement condition ux = 0 or uz = 0 is imposed to the downstream wall
depending on the flow case.

As also mentioned by anticipation in Section 3.4 the use of non-periodic
boundary conditions is capital here in order to study the direct fluid impact
on stress transmission as no particles have to be fixed in order to prevent
collective motion of the sample (contrary to the use of periodic boundary
conditions).
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Figure 5.2 – Boundary value problems solved for two flow directions. In the
vertical case (a), zero flux boundary conditions are applied in directions x
and y while on the top face a pressure p0 is imposed while keeping p = 0 on
the bottom face. In the horizontal case (b), zero flux boundary conditions are
applied in directions z and y while on the left face a pressure p0 is imposed
while keeping p = 0 on the right face. In both case the mechanical loading
correspond to the stress state η = 0.35 reached during the triaxial loading of
Figure 5.1. In x and y directions a confining stress σxx = σyy = 100 kPa is
imposed while in z direction a compression σzz = 2η+1

1−η σxx is applied.
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5.1.3 Flow induced material failure

In Figure 5.3, the incremental strain responses are shown for the two flow
directions while the initial and final microstructures are shown in Figure 5.4.
In both cases, the collapse of the sample is observed with very large final
incremental strains in the principal direction of loading whatever the flow
direction (|dεzz| ' 12 − 14%). The failure direction is indeed governed by
the stress state. In our case (η > 0), the compression in the direction z
is larger than the transverse compression in the directions x and y. When
material failure occurs, the sample undergoes a transient liquefaction during
which it cannot withstand anymore the imposed mechanical loading (see
section 4.2.3). During this transient period, it shrinks along the direction of
major compression (z in the present case). The deformation stops when the
new microstructure is able to resist again to the imposed stress state. The
collapse direction could switch provided that the additional fluid pressure p0

imposed in the horizontal direction was such that p0 + σxx > σzz. This is
however unlikely to occur as in practice p0 ' 102 Pa� σxx = σyy ' 105 Pa.

Indeed, the internal flow acts as a small perturbation that is sufficient to
trigger off the collapse but it does not control the failure direction. In addi-
tion, the flow direction does not seem to have any influence on the occurrence
of failure.

In Figure 5.3, the collapse of the sample is visible as dεzz suddenly drops
below -0.1 which corresponds to a decrease in more than 10% of the sample
length in the principal stress direction (see Figure 5.4). Laterally, a little
dilation of roughly 1% is observed in the meantime. In the inset plot of Figure
5.3 small strain jumps corresponding to small microstructure evolutions are
observed before the global collapse. Indeed, the fluid impact on the granular
skeleton is incremental and the flow induced modifications of the contact
network develop with a characteristic time up to the global failure.

5.1.4 Influence of fluid force fluctuations

In the boundary value problems recalled in Figure 5.2 the confining stresses
applied through grain contacts by the bounding walls are kept unchanged
while a fluid pressure drop is imposed to generate an internal fluid flow.
As presented in Section 2.4.2, the flow impact is then taken into account
in the DEM computation through additional fluid forces applied on every
particle. As a result, these additional fluid forces are at the origin of the
sample collapse. In Figure 5.5, their micro influence is assessed by plotting
the statistical distributions of their three components F f

x , F f
y and F f

z for
the two flow cases at the beginning of the flow simulation (t = 0 s). The
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Figure 5.3 – Incremental strain response with respect to time after a fluid
pressure drop p0 is applied in the vertical direction (red curves) or in the
horizontal direction (green curves) while keeping a stress state constant (η =
0.35).

Figure 5.4 – Sample visualization before and after fluid flow is applied. Par-
ticles are colored according to their coordination number Zc.
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Figure 5.5 – Probability density functions (pdfs) associated to fluid forces
components F f

x , F f
y and F f

z acting on individual grains after a fluid pressure
drop p0 is applied in the vertical direction (red curves) or in the horizontal
direction (green curves) while keeping a stress state constant (η = 0.35). The
pdfs are plotted for t = 0 s but remains unchanged until the global failure of
the sample.

probability density functions (pdfs) shown in Figure 5.5 remain unchanged
until the global failure of the sample (not shown here).

In Figure 5.5 only two functions are sufficient to describe the six pdfs:

- One to account for fluid forces along the direction of the macroscopic
pressure gradient (x or z). These pdfs have strictly positive mode and
mean values, which is consistent with the macroscopic flow direction;

- One to account for fluid forces perpendicular to the macroscopic pres-
sure gradient (y and z or x and y). These pdfs are symmetric with
zero mean values, which is also consistent with the macroscopic flow
direction.

As a result, the pore network driving the fluid force distributions remains
isotropic even if the stress state is anisotropic. This is indeed due to the fact
that the axial strain levels reached during the triaxial loading are too small
to lead to microstructure anisotropy (see Figure 3.11 (c) for axial strain lower
than 1%).

The similarities between pdfs of Figure 5.5 and those measured exper-
imentally (Rashidi et al., 1996; Johns et al., 2000; Beguin et al., 2012) or
numerically using other coupling schemes (Magnico, 2003; Maier et al., 1999)
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Figure 5.6 – Probability density functions (pdfs) associated to normalized
fluid forces F f

x / < F f
x > and F f

z / < F f
x > in the horizontal direction (green

lines) compared to the pdfs obtained in Beguin et al. (2012) for dimensionless
fluid velocities vfx/ < vfx > and vfz / < vfx > (black thick lines).

are striking. In case of Stoke drag force, the fluid force is proportional to
the flow velocity. As a result a comparison between velocity and force pdfs
may be attempted by rescaling the fluid forces by the mean fluid force in the
macroscopic flow direction. The comparison between pdfs from Figure 5.5
and those obtained by Beguin et al. (2012) is shown in Figure 5.6.

The pdfs for the direction perpendicular to the macroscopic flow are very
close to each other while a larger difference can be observed in the macro-
scopic flow direction. In particular, the experimental mode is much smaller
than the one obtained numerically. This can be explained because the pdfs
obtained in Beguin et al. (2012) are computed from velocity fields at a resolu-
tion finer than the pore size. Indeed, the statistical analysis of Beguin et al.
(2012) accounts for the variations of the fluid velocity in boundary layers
around grains. As a result, a more important contribution of small velocity
values is expected as the fluid velocity is nil on the grain boundaries.

The comparison between the two functions describing the pdfs in Figure
5.5 also gives important clues to understand why the fluid flow direction
does not influence the occurrence of macroscopic failure. Indeed, even if
fluid forces perpendicular to the macroscopic pressure gradient have a zero
mean value, the corresponding pdf shows a standard deviation which is non-
negligible compared to the pdf mode value corresponding to the component
along the macroscopic flow direction. As a result, whatever the macroscopic
flow direction, local fluid force fluctuations can result in incremental loading



5.1. Direct flow impact on stress transmission 155

Figure 5.7 – Two possible cases for the fluid force pdfs in the direction of
the macroscopic flow and perpendicular to it. In the top case (observed
situation), pdfs overlap means that force fluctuations cannot be neglected.
In the bottom case (hypothetic situation), no overlapping exists and force
fluctuations around the macroscopic flow direction can be neglected.

to particles such that some of the current contacts will reach Mohr-Coulomb
limit sliding condition. This situation is illustrated in Figure 5.7. From a
quantitative point of view, imagine for instance that a given particle contact
is about to slide provided that an additional fluid force Fz > 0.0002 N is
applied. Based on the statistical results shown in Figure 5.5, the probability
for this contact to slide is 80 % in the vertical flow case and 15 % in the
horizontal one. As a result, even for the horizontal flow case, this contact has
a non-negligible chance to slide. The local non-sensitivity to the macroscopic
flow direction is however only true for low magnitude forces. Large fluid
forces are more aligned to the macroscopic flow direction as shown by the
pdfs in Figure 5.5. The ability of both flow directions to trigger off the sample
collapse means that the required magnitude of the fluid forces is quite small
for the considered microstructure and the considered stress state.

5.1.5 Contact scale signature for the sample collapse

For a material in the bifurcation domain, some incremental loadings will
result in rapid increase in kinetic energy as illustrated for instance in Figure
4.12. The local evolutions of the kinetic energy are shown in Figures 5.8(b)
and 5.8(a) in which particles are colored according to their kinetic energy,
and the most energetic ones are highlighted thanks to the use of an arbitrary
threshold E∗c .

For both flow directions the sample collapse is preceded by a double
burst of kinetic energy. The two bursts initiate locally and then propagate
to the whole sample in quite a similar pattern visible in Figure 4.12 for an
incremental loading associated with the vanishing of the second-order work.
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(a) Vertical flow case (b) Horizontal flow case

Figure 5.8 – Visualization of the two outbursts of kinetic energy propagation
for the two flow cases. Particles are colored according to their kinetic energy
(log scale). Those with kinetic energy higher than E∗c are highlighted.
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If the first bursts initiate in different locations for the two flow directions,
the second bursts start at the same spot. For the vertical flow case the
two bursts follow in a row while for the horizontal flow case, the sample
temporarily restabilizes between the two outbursts of kinetic energy. As
a result, the second burst is more intense in the vertical case and a higher
kinetic threshold E∗c = 10−6 J was used to highlight its propagation in Figure
5.8.

The burst mechanism is a signature of a local failure of the existing con-
tact network under the action of additional fluid forces. Even if the failure
remains localized, this can affect the whole contact network as stresses are
forced to redistribute. In order to assess the impact of this stress redistribu-
tion on the contact network, it is interesting to analyze whether contact forces
get closer to the Mohr-Coulomb limit. At the contact scale the sliding index

Ip =
||F t||/||F n||

tanφ
introduced in Equation (4.6) is reconsidered. This sliding

index compares the ratio between the tangential and normal contact force
magnitudes (||F t|| and ||F n||) with the Mohr-Coulomb limit value tanφ, φ
being the inter-particle friction angle.

Ip values sufficiently closed to 1 (contact close to sliding) is a necessary
condition to observe the local the vanishing of the second-order work (Nicot
and Darve, 2006a; Wautier et al., 2018c). A large population of contacts with
Ip close to 1 is thus a necessary condition to obtain a material instability, i.e.
a macroscopic vanishing of the second-order work (Wautier et al., 2018b).
In Figure 5.9, the time evolution of the fraction of contacts close to sliding
Nc(Ip>0.9)

Ntot
c

is plotted for the two flow cases during the sample collapse identified
in Figure 5.3 by large strain jumps. It is recalled here that the condition
Ip > 0.9 used to define contacts close to sliding is justified in Section 4.2.4.
In this figure, the initiation of the two outbursts of kinetic energy detected
in Figures 5.8(b) and 5.8(a) are shown with vertical solid lines.

In Figure 5.9, the two identified bursts of kinetic energy have two very
different signatures in terms of Nc(Ip>0.9)

Ntot
c

evolutions. While the first burst is

associated with a decrease in Nc(Ip>0.9)

Ntot
c

, the second burst is associated with

an increase in Nc(Ip>0.9)

Ntot
c

. Indeed, the first outbursts of kinetic energy result in
building more resilient contact networks with fewer contacts likely to reach
Mohr-Coulomb condition (Ip = 1), while the second bursts result in less
resilient contact networks which eventually fail globally. This explains why
failure occurs only after the second outburst of kinetic energy.
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Figure 5.9 – Time evolution of the fraction of contacts close to sliding during
the sample collapse for the vertical flow case (a) and the horizontal one (b).
The onset of the two outbursts of kinetic energy is shown with vertical solid
lines.
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Figure 5.10 – Time evolution of the average pore pressure in the core of the
sample for the two flow cases. The pore pressure is averaged over the domain
[0.45`x, 0.55`x]× [0.45`y, 0.55`y]× [0.45`z, 0.55`z] where `x, `y and `z are the
sample dimensions. The onset of the two outbursts of kinetic energy visible
in Figure 5.8 are shown with vertical solid lines.

5.1.6 Collapse and resulting excess pore pressure

Soil liquefaction is one possible phenomenon responsible for granular material
failure. In order to precise the failure mechanism leading to the outbursts of
kinetic energy shown in Figure 5.8, it is interesting to plot the time evolution
of the pore water pressure. In Figure 5.10, the average pore pressure in the
core of the sample is plotted during the sample collapse.

In Figure 5.10 the propagation of the two outbursts of kinetic energy are
shown by vertical solid lines. For both flow cases, an increase in the central
pore pressure is observed only after the onset of the second outburst of kinetic
energy. As a result, the observed pore excess pressure is a consequence and
not the cause of the observed material failure triggered off by the internal
fluid flow. As a result the mechanisms responsible for the observed material
failure can be investigated with the micromechanical tools developed in the
previous chapters for dry granular materials.

In Figure 5.11 the difference between the pore pressure and the linear
approximations of the macroscopic pressure gradient (pmacro = p0 − xp0

`x
and

pmacro = p0 − z p0

`z
) are shown for the two flow cases and at different times

during the increase in the central pore pressure shown in Figure 5.10. As in
Section 3.4.2, 2D average pore pressures p̄(x) and p̄(z) are computed together
with the corresponding standard deviations in the plane perpendicular to the
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fluid flow.
In both cases the pressure distributions deviates from the linear approx-

imation of the macroscopic pressure gradient with an increase in the pore
pressure in the core of the samples. Close to the boundaries where pressure
is imposed, this deviation is less pronounced. In both flow cases the pore
pressure increase occurs at the same pace but the maximum increase is lo-
cated more on the downstream side of the sample in the vertical flow case
and more on the upstream side of the sample for the horizontal case.

5.1.7 Driving mesoscale mechanisms

As widely acknowledged in the literature, stresses imposed at the macro-
scopic scale concentrate locally on only 20 to 30 % of the grains organized
in elongated mesostructures commonly called force chains (Liu et al., 1995;
Radjai et al., 1998; Bardenhagen et al., 2000; Cambou et al., 2013). The in-
terplay between these chains and the surrounding loosely stressed grains (the
non-chained grains) is known to have important implications on force chain
stability as loose particles provide lateral support (Tordesillas et al., 2010;
Zhu et al., 2016b). By using the force chain definition introduced by Peters
et al. (2005) the set of chained particles can be tracked in the considered
sample during its flow induced collapse identify in Figure 5.4.

In Figure 5.12, the current set of chained particles is compared to the
initial one in terms of:

- born particles (Nborn): current chained particles that were not belong-
ing to initial force chains;

- died particles (Ndied): initially chained particles that does not belong
to force chains anymore.

In Figure 5.12, the sample collapse is visible through important modifica-
tions in the chained particle populations (after collapse, roughly 70% of the
initial chained particles have died). A simultaneous increase in Nborn and
Ndied occurs as outbursts of kinetic energy are observed. In the end, as the
sample gets denser, more force chains are built than initially (Nborn > Ndied).

Similarly to Sections 4.3.3 and 4.3.4, elementary force chain bricks com-
posed of three particles can be considered to understand the causes of chained
particle population renewal. At some point, these elementary bricks referred
to as 3-p groups in the following may not be identified as such because they
do not satisfy anymore one of the three conditions used in the force chain
definition (Peters et al., 2005) illustrated in Figure 5.13:

- a contact is lost between the considered three particles;
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Figure 5.11 – Differences between the 2D averaged pore pressure and the
linear approximations of the macroscopic pressure gradient pmacro = p0−xp0

`x
and pmacro = p0−z p0

`z
for the two flow cases after the onset of failure. Standard

deviations are shown in the form of error bars.
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Figure 5.12 – Time evolution of Nborn (solid) and Ndied (dashed) during the
sample collapse for the vertical flow case (a) and the horizontal one (b). The
common reference set of chained particles is defined on the sample prior to
impose the horizontal or vertical fluid pressure drop. The onset of the two
outbursts of kinetic energy is shown with vertical solid lines.
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Figure 5.13 – Three criteria force chain definition according to Peters et al.
(2005) (left) and force chain visualization in the sample before collapse
(right). σ1 corresponds to the principal compression value of each grain.
Grains belonging to force chains are colored in red while non-chained grains
are represented in blue or transparent blue.

- one of the particle’s principal stress is now lower than the mean prin-
cipal stress computed for all the sample particles;

- the geometrical direction of the contacts is no more aligned with the
principal stress direction (a maximum deviation of 45◦ is used here).

In Figure 5.14 the relative contributions of the above causes for the dis-
appearing of a 3-p group are given for the current set of 3-p groups that will
disappear in the future.

Misalignment between principal stress and contact directions and relative
unloading compared to the mean principal stress are the two main cause of
the disappearing of initial 3-p groups. On the contrary, contact loss is not
a significant mechanism at first. As a result, the changes in force chain
populations observed in Figure 5.12 mainly result from force chain bending
occurring simultaneously with the second outburst of kinetic energy.

Once the general collapse occurs (after the second outburst of kinetic en-
ergy), the remaining force chains will mainly disappear because of stress re-
distribution (relative unloading compared to the mean principal stress value).
Later on, contact loss becomes a non-negligible cause for 3-p groups disap-
pearing. These observations are consistent with previous results found in
the literature for dry granular materials describing the micromechanisms re-
sponsible for failure in granular materials (Tordesillas et al., 2010; Zhu et al.,
2016b; Wautier et al., 2018b). Additional fluid forces induce force chain
bending which results in important stress redistribution and eventually some
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Figure 5.14 – Statistical repartition between the three possible disappearing
causes for 3-p groups existing at time t and disappearing at time tf < 1.01 s
(vertical flow case (a)) or tf < 1.05 s (horizontal one (b)). A 3-p group
may not be identified as such anymore either because of contact loss (solid
line), relative unloading (densely dashed line) or geometrical/compression
misalignment (dashed line). The onset of the two outbursts of kinetic energy
is shown with vertical solid lines.
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contact losses. It is important to stress here that the disappearing of 3-
p groups through contact loss is a consequence from the global collapse of
the contact network and not directly driven by the fluid flow. As a result,
grain detachment may not be directly induced by fluid flows but may be a
consequence of force chain collapse.

Based on the distinction between chained particles (heavily stressed parti-
cles constituting the force chains) and non-chained particles (loosely stressed
particles not belonging to force chains), three populations of contacts can
be defined, namely chained/chained (cc) non-chained/non-chained (nn) and
non-chained/chained (nc) contacts. By tracking the time evolution of these
three contact populations, information can be obtained on internal kinematic
constraints. In particular, the number of non-chained/chained contacts (Nnc)
is known to be of fundamental importance with respect to force chain stabil-
ity (Wautier et al., 2018b; Zhu et al., 2016b). In Figures 5.15(a) and 5.15(b)
the time evolution of Nnc, Nnn and Ncc is shown for three control volumes:
for the whole sample and for two small volumes around the locations of the
two outbursts of kinetic energy. The control volumes located around the
positions of the outbursts of kinetic energy are visible in Figures 5.8(b) and
5.8(a).

For the horizontal case in Figure 5.15(b), the first outburst of kinetic
energy is followed by a local drop in Nnn together with an increase in Nnc and
Ncc. As a result kinematic constraints increase around force chains which is
consistent with the sample recovering from a temporary destabilization. This
is not the case for the second burst which is accompanied by a drop in Nnc

which characterizes force chain deconfinement. This drop appears at first
locally in the second control volume (N b2

nc) before generalizing to the whole
sample (Nnc). In the end, as the sample densifies and new force chains are
build, Nnn, Ncc and Nnc increase again.

For the vertical case in Figure 5.15(a), the two bursts appear in a row
with increasing levels of kinetic energy. If the first burst is not accompanied
by a drop in Nnc, the second one is. As for the horizontal case, the drop
in Nnc appears at first locally in the second control volume (N b2

nc) before
generalizing to the whole sample (Nnc). As the sample densifies Nnn, Ncc

and Nnc increase again in the end.
In both cases, the sample collapse occurs simultaneously with a release

in kinematic constraints around force chains which is consistent with previ-
ous results found in the literature (Zhu et al., 2016b; Wautier et al., 2018b).
However it must be emphasized that this force chain deconfinement does not
seem to be the triggering mechanism as it was shown in the case of an in-
cremental stress loading corresponding to a negative second-order work (see
Section 4.3). Indeed, for classical stress-controlled directional analysis under
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Figure 5.15 – Time evolution of the number of chained/chained
(densely dashed line) non-chained/non-chained (dashed line) and non-
chained/chained (solid line) contacts during the sample collapse for the two
flow cases. Nnc, Nnn and Ncc are given for the whole sample and for the
two control volumes shown in Figure 5.8. The onset of the two outbursts of
kinetic energy is shown with vertical solid lines.



5.1. Direct flow impact on stress transmission 167

drained axisymmetric conditions, the vanishing of the second-order work is
usually observed for loading directions corresponding to a macroscopic di-
lation (Nicot et al., 2009, 2013a; Wautier et al., 2018b). At the microscale,
this dilation results in some contact loss. When occurring around force chains
contact loss results in a decrease in kinematic constraints which eventually
lead to force chain collapse. In the present case, the perturbation is imposed
by the fluid and does not necessarily result in global dilation. As a result,
no force chain deconfinement is observed before the onset of the outburst of
kinetic energy in Figure 5.15.

5.1.8 Grain detachment as a consequence of force chain
collapse

At the microscale, suffusion is reduced to three elementary mechanisms,
namely grain detachment, grain transport and clogging (or grain attach-
ment). In the present case, since all rattlers have been removed initially, any
transported grains have to be previously detached. As a result, the occur-
rence of grain detachment can be simply assessed by detecting grains with
a coordination Zc = 0. In Figure 5.16, grain detachment events (t, i) are
shown by pointing the first moment t at which a grain identified by its index
i ∈ [[0; 10, 000]] has a coordination number Zi

c(t) = 0.
In Figure 5.16, grain detachment is found to occur only after each out-

burst of kinetic energy for the two flow cases. As seen in Figure 5.8, these
outbursts of kinetic energy propagate to the whole sample and result in a
general rearrangement of the contact force network. As a result, grain detach-
ment is not an isolated mechanism in which grains are individually extracted
from the primary fabric under the action of a fluid force. Grain detachment
is indeed a non-local mechanism which is the consequence of force chain reor-
ganization. This result precises the sequence of mechanisms responsible for
grain detachment:

- first the internal fluid flow forces stress reorganization in the granular
material

- in case of force chain collapse, grains are then detached from the pri-
mary fabric.

This result is backed by the fact that no grain detachment was ever found
in all DEM/PFV simulations run during this PhD without any sample col-
lapse.
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Figure 5.16 – Grain detachment events (t, i) for both flow cases around the
collapse of the sample. Point (t, i) corresponds to the first moment t at
which a grain identified by its index i ∈ [[0, 10000]] has a coordination number
Zi
c(t) = 0. The onset of the two outbursts of kinetic energy is shown with

vertical solid lines.

5.2 Relative influence of flow induced erosion
and clogging

In the previous section, a sample in which rattlers are removed was considered
to analyze the direct impact of an internal fluid flow on stress transmission.
In this section, a sample with a wider PSD is considered and the relative
influence of erosion and clogging with respect to mechanical stability is ex-
plored in the light of the results from Chapter 4.

5.2.1 Definition of a widely graded sample with signifi-
cant fine fraction

Similarly to the preparation procedure presented in Section 3.1, a cubic as-
sembly of spheres is generated randomly with a widely graded particle size
distribution (PSD) illustrated in Figure 5.17. This PSD is such that the
ratio between the largest and smallest particles is 10 and such that the coef-
ficient of uniformity Cu = d60/d20 = 1.98 where d20 and d60 are the particle
diameters corresponding respectively 20 % and 60 % of the mass passing
fractions.
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Figure 5.17 – Normalized PSD curve by mass corresponding to the generated
sample. Particle radii are normalized by the mean radius value rmean =
2.10−4 m. The generated sample in the isotropic state is shown.

After generating a cloud of 5,000 non-overlapping spheres surrounded by
six bounding planes defining a cube, the particles are inflated and allowed
to rearrange according to the radius expansion technique. This process is
stopped when the confining pressure applied to the bounding planes reaches
20 kPa and the normalized unbalanced force (Funb) of the system decreases
below 1.5 10−2. By definition Funb is equal to the mean summary force on
the Np particles divided by the mean contact force magnitude on the Nc

contacts:

Funb =

1
Np

Np∑
p=1

||
∑
cp

F cp||

1
Nc

Nc∑
c=1

||F c||
. (5.1)

During this process, the inter-particle friction angle is maintained to 35◦ in
order to prepare a dense granular material with a void index e = 0.55. The
resulting sample shown in Figure 5.17 is then rescaled such that rmean =
2.10−4 m.

It should be highlighted here that despite the large aspect ratio between
the largest and smallest particles, the used PSD is not identified as internally
unstable acording to Kezdi’s filter rule (Kézdi, 1979) or Kenney and Lau
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Figure 5.18 – Drained triaxial test response. The diamond points correspond
to the mechanical states considered for the stability analysis.

criterion (Kenney and Lau, 1985).

5.2.2 Mechanical stability assessment for different stress
states

From the obtained equilibrium state, a drained triaxial loading is then im-
posed to the sample in the form of a two step procedure as in Section 3.1.2.
First, the confining pressure (σ0) is increased from 20 kPa to 100 kPa by al-
lowing the bounding walls to move. Once a new equilibrium state is reached
(Funb < 10−4), a vertical compression strain rate ε̇zz = 0.01 s−1 is applied up
to 3 % of deformation while keeping the same lateral confining pressure σ0.
This strain rate is chosen similar to the one used in previous numerical stud-
ies (Hadda et al., 2013; Nicot et al., 2012) and is supposed to be sufficiently
small so that the loading can be considered as quasi-static.

In Figure 5.18, the stress ratio and volumetric strain responses are shown.
A typical contractive/dilative behavior of a dense soil is observed. While the
stress ratio increases, samples are saved for η ∈ {0, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,
0.8, 0.9}. The corresponding states are marked with diamonds in Figure 5.18.

Following the procedure detailed in Section 4.2, directional analyses are
performed in Rendulic’s plane to assess the mechanical stability of the nine
saved samples (dry conditions). In Figure 5.19, the second-order work circu-
lar envelopes are shown for the considered stress ratio.

In Figure 5.19, as the stress ratio increases, second-order work decreases
for directions around 235◦. The second-order work eventually vanishes for
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Figure 5.19 – Circular second-order work for different η values. W2 = 0 is
indicated by a red dashed circle.

η = 0.9 in the instability cone θ ∈ [220◦, 250◦]. If is interesting to notice
that the vanishing of the second-order work occurs after the characteristic
point in Figure 5.18 when the volumetric behavior changes from contractancy
to dilatancy. This point is also known to correspond to the moment from
which the number of chained particles decreases (Liu et al., 2018). This
weakening of the contact force network is thus consistent with the existence
of an underlying instability.

5.2.3 Flow boundary value problem and bounce back
erosion criterion

In the following subsections, DEM/PFV simulations with boundary condi-
tions similar to Section 5.1.2 are considered for the two samples corresponding
to η ∈ {0.7, 0.9}, for the two flow directions {ex, ez} and for the two flow
intensities I ∈ {0.1, 1}. The corresponding six DEM/PFV simulations are
summarized in Table 5.1.

Since non-periodic boundary conditions are used in the DEM/PFV sim-
ulations carried out, transported grains are either i) extracted out from the
core of the sample as they reach the downstream wall or ii) filtrated by the
primary fabric as they are blocked by a too narrow constriction. In the first
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Table 5.1 – The six DEM/PFV simulations carried out in this section.

Stress Hydraulic gradient Flow direction
state I = 0.1 I = 1 Vertical (ez) Horizontal (ex)
η = 0.7 x x x
η = 0.9 x x x x

Figure 5.20 – Illustration of the non-physical clogging induced by the down-
stream wall.

case, the downstream wall induces artificial clogging. If many particles can be
extracted, this boundary effect is likely to strongly affect particle transport
in the sample as illustrated in Figure 5.20.

To avoid such boundary effects, it is thus important to detect and delete
particles reaching the downstream wall. A naive and computationally ex-
pensive approach is to check for particles with a single contact with the
downstream wall. The main problem with this criterion is that it has to be
run at every time step as extracted particles often bounce several times on
the downstream wall before stabilizing and the contact with the downstream
wall never lasts for long. As a result, a prediction/correction algorithm was
preferred to this first approach. This algorithm is illustrated in Figure 5.21
and consists in the following two steps:

- At time t, rattlers are identified. By assuming that their velocity v(t)
remains constant over the interval [t, t+∆t], rattlers that will virtually
go through the downstream wall during this interval are identified as
candidates to particle removal. This is the prediction step.

- At time t+ ∆t, the scalar product between the updated velocity v(t+
∆t) and the outward normal to the downstream wall n is computed for
rattlers candidates to particle removal. If v(t + ∆t) ·n < 0, then the
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Figure 5.21 – Prediction/correction algorithm used to identify extracted par-
ticles.

considered particle bounced back on the downstream wall during the
time interval [t, t+ ∆t] and will be removed from the simulation. This
is the correction step.

This approach reduces the computational cost needed to detect extracted
particles as loops over the number of particles are required only from time
to time and not at every DEM time step. In practice, ∆t is set to be equal
to 1,000 DEM time steps.

To improve computational efficiency, when extracted particles are identi-
fied, they are not deleted immediately. Indeed, as the PFV scheme relies on
a particle based tessellation of the pore space (see Section 2.4.2), remeshing
is needed each time a particle is deleted. As a result, extracted particles are
kept in memory and are only deleted after several runs of the prediction/cor-
rection algorithm (every 5,000 iterations in practice which is small enough
to avoid that particle that bounced back collide with an other particle).

5.2.4 Numerical analysis of directional transport prop-
erties

By tracking the positions of all particles during the fluid flow simulations,
travel distances are estimated as in Section 3.4.2. In addition, extracted
particles that reached the downstream side of the sample during DEM/PFV
simulations are identified. The shortest displacements (see definition in Equa-
tion (3.18)) of all particles are shown in Figure 5.22 for the initially unstable
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sample subjected to a hydraulic gradient I = 0.1 either in vertical or hori-
zontal directions.

In Figure 5.22 the clouds of points corresponding to extracted (red dia-
monds) and non-extracted (blue crosses) particles superimpose, showing that
the considered sample is sufficiently large to compute mean travel distances
representative of material properties and not influenced by sample bound-
aries. Compared to the sample dimensions (`x, `y, `z) = (43.7rmean, 43.7rmean,
43.5rmean) some particles are transported over quite large distances up to 20
times the mean radius, but the average travel distances are small (< 2rmean).
There exist too few pores and constrictions large enough to allow for trans-
port and clogging dominates as expected by the fact that the used PSD is
not identified as internally unstable.

As in Section 3.4.2, the numerical estimations of the shortest mean travel
distances D̄short

num can be compared to pore network predictions D̄short. To this
respect, three predictions of D̄short are considered and plotted in Figure 5.22.
Theses predictions rely on the three weighted pore networks illustrated in
Figure 5.23. The first pore network corresponds to the one used in Section
3.3.3 and relies on a triangulation of the pore space based on all particles
and a pressure map computed thanks to the PFV scheme (Figure 5.23 (a)).
The second pore network was introduced in Section 3.4.2 and relies on a
triangulation of the pore space based on all particles and a pressure map
computed thanks to the linear approximation of the macroscopic pressure
gradient (Figure 5.23 (b)). The third pore network relies on a triangula-
tion of the pore space based only on non-free particles and a pressure map
computed thanks to the linear approximation of the macroscopic pressure
gradient (Figure 5.23 (c)).

In Figure 5.22, mean shortest travel distances computed thanks to the
transport network model of Section 3.3.3 gives indeed lower and upper bounds
of the transport distances estimated thanks to fully coupled DEM/PFV sim-
ulations. While using the pore network computed with all particles, pore
and constriction sizes are underestimated. For instance, for a free particle in
a tetrahedron composed of four particles, four small pores are identified in
the corresponding pore network whereas the free particle moves in a single
large pore (see Figure 5.23). As a result, mean travel distances computed
from this pore network provide lower bounds for the effective mean travel
distances. While using the pore network computed with only non-free par-
ticles, pore and constriction sizes are more relevant but collective motions
of the free particles are not accounted for (in particular collective clogging).
As a result, mean travel distances computed from this pore network pro-
vide upper bounds for the effective mean travel distances. As already seen
in Section 3.4.2, the local fluctuations in the pore pressure tend to increase



5.2. Relative influence of flow induced erosion and clogging 175

0.0 0.5 1.0 1.5 2.0

r/rmean

0

5

10

15

20

D
sh

or
t /
r m

ea
n

D̄short
num , I= 0. 1

D̄short, network model, all particles, PFV pressure

D̄short, network model, all particles, linear pressure

D̄short, network model no rattlers, linear pressure

0.6 0.8 1.0 1.2 1.4

r/rmean

0.0

0.5

1.0

1.5

2.0

D̄
sh

o
rt
/r

m
ea

n

(a) Vertical flow case

0.0 0.5 1.0 1.5 2.0

r/rmean

0

5

10

15

20

D
sh

or
t /
r m

ea
n

D̄short
num , I= 0. 1

D̄short, network model, all particles, PFV pressure

D̄short, network model, all particles, linear pressure

D̄short, network model no rattlers, linear pressure

0.6 0.8 1.0 1.2 1.4

r/rmean

0.0

0.5

1.0

1.5

2.0

D̄
sh

or
t /
r m

ea
n

(b) Horizontal flow case

Figure 5.22 – Shortest travel distances of all the particles of the initially
unstable sample corresponding to η = 0.9 subjected to a hydraulic gradient
I = 0.1 in the vertical (a) or horizontal (b) directions. Extracted particles are
identified by red diamonds. The mean transport distances D̄short

num are shown
in blue solid lines. In black solid lines the numerical prediction correspond-
ing the transport model of Section 3.3.3 are shown (pressure map computed
thanks to the PFV scheme). Dashed and dot-dashed lines correspond to the
predictions computed from the linear approximation of the macroscopic pres-
sure gradient respectively on the pore network computed with all particles
and on the pore network computed with only non-free particles.
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Figure 5.23 – Three different pore networks used to estimate mean travel
distances. The network can be constructed either from all particles ((a) and
(b)) or only from non-free particles (c). The pore pressure map can be derived
from the use of the PFV scheme (a) or from the linear approximation of the
macroscopic pressure gradient ((b) and (c)).
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Figure 5.24 – Time evolution of the eroded mass (corresponding to the mass
of deleted particles) for the six DEM/PFV simulations considered.

the travel distances as shown by the comparison between the predictions
obtained in Figure 5.22 for the two localization schemes of the macroscopic
pressure gradient (models (a) and (b) in Figure 5.23).

In Figure 5.22, transport and erosion seem to be more important for the
vertical than for the horizontal flow direction. This is quantified in Figure
5.24 by looking at the time evolution of the eroded mass (corresponding to
the mass of deleted particles) for the six DEM/PFV simulations considered.

In Figure 5.24, erosion is limited to 1.4-1.9 % of the total mass of the
particles, which is consistent with the main occurrence of clogging over ero-
sion. A larger eroded mass is observed i) for the vertical flow case, ii) for the
larger hydraulic gradient I = 1 and iii) for the largest stress ratio η = 0.9.

These observations are indeed consistent with micromechanical features
highlighted previously in this manuscript, namely:

- for η > 0 force chains are built aligned with the vertical direction (the
major compression direction). This load induced anisotropy explains
why more particles are extracted from the sample when the flow is
aligned with force chains.

- a larger hydraulic gradient increases the kinetic energy of transported
particles that are thus able to explore more transport paths (a larger
induced grain detachment has to be excluded as no grains are detached
in the six DEM/PFV simulations considered in this section).
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- while the stress ratio is increased from η = 0.7 to η = 0.9, the sample
dilates, which increases pore and constriction sizes. In the meantime
the number of chained particles decreases, which increases the number
of particles candidate to erosion.

As highlighted in Figures 5.22 and 5.24, transport process is not isotropic
in the two samples considered (η = 0.7 and η = 0.9). A systematic anal-
ysis of this anisotropy can be sought in the form of a directional analysis
with respect to the flow direction. In the current form of the PFV scheme
implemented in YADE, imposing an arbitrary macroscopic flow direction
is however not straightforward and DEM/PFV directional analyses would
anyway be computationally expensive. A cheap alternative to fully coupled
simulations is to use the transport model of Section 3.3.3 applied to pore net-
works for which the pressure map consists in the linear approximation of the
macroscopic pressure gradient (see Figure 5.23 (b) and (c)). The resulting
computed mean travel distances provide thus a lower and an upper bounds
for the effective mean travel distances.

For flow directions lying in the plane (ex, ez), the flow direction is given
by an angle θ (θ = 0 corresponding to ex and θ = 90◦ corresponding to ez).
In Figure 5.25, lower and upper bounds of the shortest mean travel distances
are computed for θ ∈ [0, 2π] and for a given particle size r = rmin = 0.48rmean.

In Figure 5.25, polar plots of the predicted shortest mean travel distances
are quite isotropic. Even if these results are not inconsistent with anisotropic
effective shortest mean travel distances (the predictions in Figure 5.25 are
given by bounds), the transport model of Section 3.3.3 applied to pore net-
works for which the pressure map consists in the linear approximation of the
macroscopic pressure gradient is too rough to capture the anisotropic trans-
port properties highlighted in Figures 5.22 and 5.24. The limitation of the
simplified transport model may stem from the fact that for the stress ratios
considered, the microstructure geometry is still isotropic while considering all
the grains (the triaxial strain εzz is less than 0.5 %). For the considered sam-
ples, only the load bearing mesostructures show a marked anisotropy. This
anisotropy is not accounted for in the simplified transport model but may
affect the effective transport while considering the fully coupled problem.

5.2.5 Stabilizing effect induced by clogging domination

Compared with the study presented in the first section of this Chapter, the
internal fluid flow does not trigger off the collapse of the samples. Even
for the instable sample corresponding to η = 0.9, the observed incremental
strain during DEM/PFV simulations are smaller than 2.10−5. As a result,
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Figure 5.25 – Directional analysis of the lower and upper bounds of the
shortest mean travel distances in the plane (ex, ez) for the two samples cor-
responding to η = 0.7 and η = 0.9. Bounds are calculated for a given
particle size r = rmin = 0.48rmean. Round (η = 0.7) and diamond (η = 0.9)
points correspond to effective shortest mean travel distances computed with
DEM/PFV simulations.
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the suffused samples obtained at the end of DEM/PFV simulations can be
used to assess the relative influence of erosion and clogging on the mechanical
stability. Similarly to the testing procedure described in Chapter 4, stress-
controlled directional analyses are performed in Rendulic’s plane on the dry
suffused samples with stress increments of ||dσ|| = 5 kPa imposed in the form
of a stress loading rate of 1, 558 kPa.s−1 (corresponding to 10 000 numerical
time increments) followed by a stabilization phase letting the samples evolve
toward a new equilibrium position as Funb < 10−5.

The second-order work envelopes computed from directional analyses per-
formed before and after the application of a macroscopic hydraulic gradient
I = 0.1 in the horizontal or vertical direction are plotted in Figure 5.26 for
the two samples corresponding to η = 0.7 and η = 0.91.

In all cases, the second-order work computed after the application of
an internal fluid flow is larger than the value computed in the initial case.
And for the initially unstable sample (η = 0.9), no cone of instability exists
anymore after the application of an internal fluid flow (either vertical or
horizontal). As a result, the fluid is shown to have a restabilization effect on
the considered samples.

These observations can be explained by recalling the results obtained
in Section 4.6 for the particular role played by rattlers with respect to the
mechanical stability of a granular material. Indeed, by providing support
in case of force chain collapse, rattlers improve the mechanical stability. In
the present case, as analyzed in the previous section, clogging dominates
over erosion. As a result, rattlers remain trapped in the considered granular
samples and are clogged in contact with existing force chains. They are
thus ready to prevent the development of plastic strain in case of force chain
collapse.

In Figure 5.26 it can be noted that second-order work values are slightly
smaller in the vertical flow case which corresponds to larger fraction of eroded
rattlers in Figure 5.24. This observation is consistent with the fact that
removing rattlers results in larger plastic strain together with a decrease in
the second-order work when a stress increment is applied (see Section 4.6).

1In both case, dry granular samples are considered in the directional analyses.
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Figure 5.26 – second-order work envelopes corresponding to directional anal-
ysis performed before the application of an internal fluid flow (solid black or
gray) and after the application of a macroscopic hydraulic gradient I = 0.1
in the horizontal (dashed blue) or vertical (solid blue). Two samples corre-
sponding to η = 0.7 and η = 0.9 are used. W2 = 0 is indicated by a red
dashed circle.
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5.3 Summary of the main findings
In the first section of this chapter, the specific impact of a fluid flow on the
primary fabric of a granular material was investigated in terms of mechanical
stability. For a reference state (stress and microstructure geometry) identified
as mechanically unstable, a fluid flow was shown to be able to trigger off
the underlying instability on its own (without any change in the external
contact forces on the sample boundaries). Thanks to the micromechanical
tools developed in the previous chapters, the sudden collapse is shown to
result from an outburst of kinetic energy mechanism associated with force
chain deconfinement and increase in the number of contacts close to sliding
as well. Following, the sample collapse, the pore water pressure increases and
grains are detached following force chains reorganization. Because of fluid
force fluctuations in directions perpendicular to the macroscopic flow, it is
important to notice that the flow direction does not influence the triggering
of the underlying instability.

In the second section of this chapter, the relative influence of clogging
and erosion was investigated on widely graded samples in stable or unstable
states according to the second-order work criterion. For the considered sam-
ples, internal fluid flows were not able to trigger off material collapse. While
analyzing grain transport for DEM/PFV simulations, it was found that most
of the initially free particles got clogged when an internal fluid flow is con-
sidered. As predicted by the results from Chapter 4, the microstructure
evolutions induced here by internal fluid flows have a restabilization effect
for the samples considered.



Chapter 6

General conclusion and
perspectives

This PhD work was devoted to the multi-scale analysis of instability in sat-
urated granular materials subjected to an internal fluid flow. The objective
of this study was to improve the understanding of the microscale mecha-
nisms leading to the occurrence of material instability thanks to numerical
experiments of suffusion at the material point scale taking into account both
the hydraulic and mechanical loadings. These mechanisms are of paramount
importance in the understanding of the consequences of the suffusion phe-
nomenon affecting earthen hydraulic structures such as river or maritime
dikes. To achieve this, we have proposed the following approach which con-
sists of the following steps:

• Define representative elementary volumes of cohesionless granular ma-
terial subjected to different stress states and different hydraulic gradi-
ents.

• Perform directional analyses before and after taking into account fluid/-
grain coupling in order to assess mechanical stability at the continuum
scale thanks to the second-order work criterion.

• Use micromechanical tools to analyze down to the micro and meso
scales the impact of suffusion in terms of grain transport, stress reor-
ganization, grain detachment and grain reattachment. These microme-
chanical tools, and in particular the definition of force chains, were used
to investigate the driving mechanisms leading to material collapse.

The main contribution of this work has been to propose i) fully coupled
and resolved simulations of suffusion at the representative elementary volume
scale in 3D, ii) use a general definition of mechanical stability at the material
point scale to assess suffusion consequences, iii) highlight the micro origin of
instability in granular material and iv) link suffusion induced modifications
of the microstructure of granular materials to the existence of mechanical
instability.

In the following the major results obtained during this PhD are listed.
Then several perspectives for future work are proposed.

183
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6.1 Noticeable contributions

6.1.1 Development of versatile micromechanical tools

One of the great advantage of DEM is that individual grain data are accessible
such as grain positions and velocities or contact and fluid forces. In order
to approach the physics of granular materials, this large amount of raw data
has to be organized to become readable. One of the greatest challenge of this
PhD work was to find a sensible way to structure the huge amount of data
acquired from each DEM simulation and extract the physics out of it.

To this respect, valuable information on the small scale physics of gran-
ular materials was extracted thanks to the definition of force chains and
pore networks. These tools were used in the present work to define relevant
quantities that help understand the micro origin of instability in granular
materials and the specific impact of an internal fluid flow. Among microme-
chanical tools introduced in this manuscript, one can mention the definition
of autocorrelation distances between chained particles, force chain bending
rate, populations of contacts close to sliding, non-chained/chained contact
population, pore and constriction size distributions, transport criterion and
travel distance predictions. It should be underlined that these microme-
chanical tools are not specific to this study and can be used to investigate
other features of granular materials such as for instance strain localization
mechanisms.

6.1.2 Numerical procedure to assess the mechanical sta-
bility of granular materials

Initially developed within continuum mechanics framework, the application
of the second-order work criterion to granular materials at the representa-
tive elementary volume scale (REV) is not straightforward. In this PhD, a
systematic numerical procedure has been provided to assess the mechanical
stability of granular materials. This procedure is based on the following three
steps:
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Pre-stabilization
step

The second-order work is linked to the second-
order variation of the kinetic energy. In order to
interpret the vanishing of the second order work
as the possibility to observe an inertial transition,
the reference state of the material must be in an
equilibrium position (Ec = 0 and dEc = 0) such
that ∆Ec = W ext

2 −W int
2 .

Directional analysis
step

Contrary to theoretical results derived in the
continuum framework, stress probes cannot be
infinitely small while considering granular ma-
terials. The finite size of the stress probes is
linked to the discrete nature of granular mate-
rials, the constitutive behavior of which strongly
rely on microstructure evolutions. The applied
stress probes should be able to generate such mi-
crostructure evolutions.

Post-stabilization
step

After the application of each loading increment,
dynamic evolutions occur in granular materials
such that the microstructure adapts to withstand
the new imposed load. In order to equal the ex-
ternal second-order workW ext

2 computed on REV
boundaries with the internal second-order work
W int

2 , it is important to wait for the material
to restabilize after incremental loads are applied
(∆Ec = W ext

2 −W int
2 = 0).

This above procedure is not new but the justification of each of the three
steps is hardly ever reported in the literature. Thanks to micro to macro
analysis, it was shown that localized micro-inertia crisis occurring during the
pre-stabilization step need to be taken into account to interpret the results
of the mechanical stability assessment. While looking at the time evolution
of the external second-order work, it has been shown that, when plasticity is
activated, transient losses of controllability occur. Depending on the level of
plastic strain, transient vanishing of the external second-order work can be
observed which was never reported in the literature. These observations are
strongly linked to the discrete nature of granular materials and cannot be
accounted for in a quasi-static continuum mechanics framework. As a result,
they should be systematically investigated when assessing the mechanical
stability of granular materials.
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6.1.3 Multiscale approach of mechanical instability and
identification of elementary mechanisms

At the microscale, granular materials are discrete by nature. However, at the
macroscale (the scale of the hydraulic structure) they are described within
the framework of continuum mechanics. In this PhD work a detailed analysis
of the link between the discrete and continuum modelings of granular materi-
als was carried out. In particular, i) the role of rattlers has been highlighted
with respect to the development of plastic strain and ii) the elementary mech-
anisms leading to the vanishing of the second-order work computed at the
material point scale have been specified.

The existence of material instability (at the continuum scale) was shown
to rely on the possibility to impose locally the deconfinement of force chains.
This deconfinement results in force chain bending and collapse. Without
pre-existing free particles ready to build new force chains, important mi-
crostructure reorganizations occur which results macroscopically in the de-
velopment of plastic strain. Then, the intensity and the direction of plastic
strain controls the vanishing of the second-order work and thus the existence
of material instability.

6.1.4 Occurrence of suffusion elementary mechanisms

At the microscale, suffusion is usually decomposed into grain detachment,
grain transport and grain reattachment. In this PhD, the use of DEM/PFV
simulations was used to investigate the occurrence of these three elementary
mechanisms.

The occurrence of grain transport was investigated through the computa-
tion of mean travel distances. These distances provide information to assess
the relative occurrence of erosion and clogging. Pore network models were
used to provide lower and upper bounds for the expected travel distances.

For all the fluid/grain coupled simulations performed in this PhD work,
grain detachment was never observed individually but follows force chain col-
lapse and stress reorganization. As a result, no individual grain detachment
criterion can be formulated as it is the case for surface erosion. Grain detach-
ment is a non local phenomenon which consists in two steps. Fluid induces
stress reorganization which is then followed by the release of new rattlers as
microstructure reorganizations occur.

Similarly, grain reattachment is a consequence of microstructure reor-
ganizations. It is not a direct flow induced mechanism, however, clogging
facilitate grain reattachement in case of force chain redistribution.
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6.1.5 Fluid flow impacts with respect to mechanical sta-
bility

Rattlers have been shown in this work to play an important role with respect
to mechanical stability. As these particles are also easily transported by an
internal fluid flow, clogging and erosion play antagonist roles with respect to
mechanical stability through their ability to limit incremental plastic strain
development. By removing free particles, internal erosion has a destabilizing
effect. On the contrary, by increasing the number of contacts between loosely
stressed particles and force chains, clogging facilitates the reconstruction of
new force chains. This result shows the importance to account for erosion
or clogging of rattlers to assess the consequences of suffusion in terms of
mechanical stability.

In addition, it was shown thanks to DEM/PFV simulations that an inter-
nal fluid flow can trigger off an underlying mechanical instability by acting
directly on the primary skeleton of a granular material. Indeed, by intro-
ducing additional forces, the fluid induces stress reorganization. Because of
fluid forces fluctuations induced by the local tortuosity of the pore space, the
macroscopic flow direction was not shown to influence the triggering of the
underlying instability.

6.2 Outlook for future investigations

6.2.1 Towards real particle size distributions

Despite the computational efficiency of the DEM/PFV approach used in this
work, simulating real soils at the REV scale is still computationally demand-
ing. Nevertheless, during this PhD exploratory DEM/PFV simulations were
performed with a numerical sample corresponding to the soil gradation used
in the experimental work of Aboul Hosn (2017) and in the ongoing PhD of
Doan Nguyen at IRSTEA. The corresponding gap-graded sample composed
of 50,000 particles is shown in Figure 6.1 together with the associated particle
size distribution. This sample is on the edge of what can be simulated today
with DEM/PFV simulations but is still considered as not so widely graded
from an experimental point of view. It should also be underlined that even
if 50,000 particles are used, only 200 to 300 particles actually compose the
primary fabric which is too small to have a representative elementary volume
for the mechanical behavior.

This sample was subjected to a horizontal hydraulic gradient I = 0.1
while being prepared under an isotropic confining stress of 20 kPa. Com-
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Figure 6.1 – Particle size distributions corresponding to the soil gradation
used in the experimental work of Aboul Hosn (2017) before (solid black),
during (dashed blue) and after (solid blue) the application of a horizontal
hydraulic gradient I = 0.1 while imposing an isotropic confining pressure of
20 kPa. The initial and final sample microstructures are shown.

pared to the samples used in this PhD work, erosion largely dominates clog-
ging and in the end of the simulation, most of the fine particles have been
eroded as seen in Figure 6.1. Since too few particles compose the primary
fabric of this sample, its stability cannot be assessed properly. In order to
simulate more efficiently the microstructure evolutions induced by suffusion,
a possible option would be to apply the cheaper one way coupling approach
developed by Aboul Hosn (2017). The present two ways coupling DEM/PFV
simulation will be used to assess the relevance of the erosion criterion used in
this approach and possibly improve this criterion. Such a work is currently
in progress.

6.2.2 Towards comparison with experimental evidences

In the present PhD, numerical experiments replace real ones and no direct
confrontation was attempted simply because both time and length scales
accessible numerically and experimentally are not comparable. Indeed, nu-
merical samples represent typically a few cubic centimeters of soil and flow
induced microstructure modifications last a few seconds whereas in labora-
tory experiments, samples are composed of a few cubic decimeters of soil and
suffusion experiments last for hours.



6.2. Outlook for future investigations 189

However, recent developments of small scale 3D imaging techniques such
as X-ray microtomography enable the acquisition of detailed images of soils
in which individual grains can be isolated (Fonseca et al., 2014; Hurley et al.,
2016; Marteau and Andrade, 2017; Nguyen et al., 2017). By comparing the
microstructures before and after erosion, the consistency of the microscale
mechanisms highlighted in this work will be strengthened. It should however
be underlined that the spatial resolution of X-ray microtomograph images
does not allow yet to detect individually both small and large particles over
a representative elementary volume of real soil (Nguyen et al., 2017).

At the macroscopic scale, experiments on granular materials in which
data are acquired over time steps comparable to the accessible ones in DEM
are scarce but exist. In particular, in Doanh et al. (2017) stick-slips and
transient liquefactions are observed over short periods (comparable to those
simulated with DEM) for saturated granular materials subjected to devia-
toric stress loadings. These experimental observations seem similar to the
transient losses of controllability observed in Section 4.2.3. The microscale
mechanisms responsible for the observed instability in this present thesis are
likely to explain the experimental observations of Doanh et al. (2017). The
possibility to reproduce the experimental observations with DEM is currently
discussed.

6.2.3 Towards enriched micromechanical models

Understanding the elementary micromechanisms presented in this PhD work
is of paramount importance while considering the development of microme-
chanical models in which a model mesostructure is used to represent the
microstructure geometry of a granular material (Chang and Hicher, 2005;
Zhu et al., 2006; La Ragione et al., 2008; Zhu et al., 2010; Nicot and Darve,
2011; Xiong et al., 2017). In these bottom-up models, and contrary to macro-
scopic phenomenological models, no assumptions are required a priori on the
form of the overall constitutive behavior which simply results from the mi-
cromechanisms captured in a simplified manner at the micro or mesoscale.
As a result, micromechanical models in which mesostructures are rich enough
to account for the collapse and rebuilding of force chains incorporating free
particles will be able to account for the suffusion induced evolutions in terms
of mechanical stability.

The development of enriched versions of micromechanical models such as
the one proposed by Nicot and Darve (2011) and recently extended in 3D
by Xiong et al. (2017) could thus lead to advanced constitutive modeling
of internal processes in soils for engineering applications in which detecting
underlying mechanical instability is of paramount importance. A possible
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Figure 6.2 – A possible enriched version of the mesostructure of the 3D H-
model (Xiong et al., 2017) with a central free particle.

enriched version of the mesostructure of the 3D H-model (Xiong et al., 2017)
is shown in Figure 6.2.

The scope of applications of such micromechanical models looks very
promising and such models could also provide an elegant way to question to
which extent the classical paradigm of single gradient continuum mechan-
ics holds for granular material at the macroscopic scale. To this respect, the
confrontation with higher order continuum models might give some microme-
chanical clues to better assess the relevance of such approaches applied to
granular materials.



Appendix A

Résumé étendu en français

A.1 Contexte général
La France dispose d’un important parc d’ouvrages hydrauliques avec plus de
19 000 km de digues fluviales et maritimes, plusieurs dizaines de milliers de
petits barrages, et environ 600 grands barrages. Ces ouvrages hydrauliques
sont pour la plupart construits à partir de matériaux granulaires compac-
tés. Ce mode constructif en fait des ouvrages perméables qui sont soumis en
permanence à des écoulements d’eau dans leur volume pouvant altérer leur
structure interne par érosion. Tant que les ouvrages endommagés ne sont
pas soumis aux chargements hydrauliques pour lequels ils ont été dimension-
nés (crues ou tempêtes par exemple), les conséquences de l’érosion interne
peuvent passer inaperçues. Cependant, les infiltrations d’eau sont suscep-
tibles de générer des instabilités mécaniques responsables de ruptures lors de
brusques modifications des conditions de chargement. Aujourd’hui, on ob-
serve en moyenne une rupture de digue par an en France, dont 45 % sont
attribuées à l’érosion interne. Dans un contexte de changement climatique où
la fréquence et l’intensité des tempêtes et des crues ne cessent d’augmenter,
la compréhension des mécanismes de rupture des digues et barrages devient
aujourd’hui un enjeu de plus en plus important.

En reprenant la typologie présentée à Aussois en 2005 (International
Workshop on Internal Erosion of Embankment Dams and their Foundations),
on distingue aujourd’hui quatre types d’érosion interne :

- l’érosion de conduite reliant l’amont et l’aval ;

- l’érosion de contact, à l’interface entre un sol fin et un sol grossier ;

- l’érosion régressive, par l’entraînement de matériaux qui se déclenche
à l’exutoire d’un écoulement d’eau et qui s’auto-entretient jusqu’à dé-
boucher à l’amont ;

- la suffusion, qui est l’entraînement sélectif, par l’eau en mouvement,
des petits grains à travers l’espace poreux formé par les grains les plus
gros.

De ces quatre mécanismes, la suffusion est le plus complexe et le seul
pour lequel il n’a pas encore été possible d’établir des recommandations ex-
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ploitables en pratique. Par exemple, les deux principaux critères granulomé-
triques mentionnés dans la littérature manquent de cohérence et se contre-
disent (Li and Fannin, 2008). De plus, la suffusion apparaît le plus souvent
bien en deçà du gradient critique de Terzaghi prédisant la liquéfaction des
sols (Skempton and Brogan, 1994). Face à ce constat, une réponse possible
consiste en le développement de modèles macroscopiques phénoménologiques.
Si cette approche permet de proposer des modèles mécaniques enrichis, ils ne
permettent pas toujours de comprendre l’origine physique des phénomènes
étudiés et des termes correctifs introduits. Récemment, avec le développe-
ment de techniques d’imagerie performantes (comme la micro-tomographie
à rayons X) et d’outils de calcul numérique toujours plus puissants, il est
possible d’étudier les mécanismes d’érosion interne par une approche micro-
mécanique. Plus rigoureuse mais aussi plus complexe, cette approche permet
par exemple de donner un sens physique aux termes correctifs des modèles
phénoménologiques et d’étendre leur domaine de validité.

A.2 Objectifs et méthodologie

Les objectifs de ce travail de thèse sont d’une part de comprendre les méca-
nismes élémentaires responsables des instabilités matérielles dans les maté-
riaux granulaires et d’autre part de relier les changements de microstructure
induits par un écoulement interne à l’existence de telles instabilités méca-
niques.

Pour atteindre ces objectifs, une approche numérique par homogénéisa-
tion est utilisée. Elle consiste à prendre en compte la nature discrète des ma-
tériaux granulaires à l’échelle microscopique tout en considérant un nombre
suffisamment important de grains pour être représentatif du comportement
macroscopique. On se place ainsi à l’échelle d’un volume élémentaire repré-
sentatif (VER) de sol de quelques centimètres cubes. À cette échelle, il est
possible, d’une part, d’appliquer les outils de la mécanique des milieux conti-
nus pour caractériser la stabilité mécanique de l’assemblage grâce au critère
du travail du second ordre (Hill, 1958; Nicot et al., 2009; Daouadji et al., 2011;
Wan et al., 2016), et d’autre part, d’utiliser des outils micromécaniques pour
caractériser le comportement local du milieu.

Dans ce travail de recherche, la géométrie d’un VER est approchée par un
assemblage de sphères interagissant par des lois de contact élasto-frictionnelles
(Cundall and Strack, 1979). Le comportement mécanique de l’assemblage
granulaire saturé est alors modélisé par une méthode aux éléments discrets
(DEM) (Šmilauer et al., 2015) et un schéma de couplage fluide/grains aux
différences finies de type réseau de pores (PFV) (Chareyre et al., 2012). Grâce
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à ces outils numériques, il est possible de simuler le comportement de maté-
riaux granulaires en trois dimensions à l’échelle du point matériel en tenant
compte à la fois du chargement mécanique et du chargement hydraulique.
On s’affranchit ainsi des contraintes expérimentales (tels que les effets de
structure et le nombre limité de chargements possibles) pour analyser de ma-
nière très fine tout changement de microstructure tant du point de vue de la
cinématique que de la transmission des efforts.

A.3 Définition quantitative d’un VER pour la
suffusion grâce à des outils micromécaniques

L’homogénéisation repose sur l’hypothèse forte de séparation d’échelles. Si
la taille caractéristique des hétérogénéités à l’échelle microscopique est très
petite devant la taille caractéristique du problème d’intérêt à l’échelle ma-
croscopique, il est alors possible de remplacer un milieu hétérogène par un
matériau homogène équivalent. Pour l’étude du comportement d’un matériau
granulaire soumis à un écoulement d’eau interne, la difficulté est de carac-
tériser les longueurs internes d’intérêt qui ne sont pas forcément celles des
grains. En effet, le comportement mécanique d’un matériau granulaire repose
en grande partie sur l’arrangement géométrique des grains entre eux qui s’or-
ganisent pour former des structures longilignes de quelques grains fortement
comprimés que l’on nomme chaînes de force. De plus, la présence d’un écou-
lement interne provoque le transport de grains dans l’espace poral avec des
évolutions de microstructure sur des distances caractéristiques qui peuvent
être bien plus grande que la taille des grains. Des outils micromécaniques
basés sur la définition des chaînes de force (Peters et al., 2005) et de réseaux
de pores (Vincens et al., 2015) sont proposés dans ce travail pour donner une
définition quantitative de ces longueurs internes associées à la transmission
des efforts dans le squelette granulaire ainsi qu’au transport des grains libres
dans l’espace poral.

Une analyse des chaînes de force dans les matériaux granulaires montre
qu’il est possible de distinguer d’une part, des grains peu nombreux (20 à 30
%) reprennant la majorité des efforts (les grains chaînés), et d’autre part, des
grains peu chargés et très nombreux (les grains non-chaînés). En s’intéressant
aux distances d’autocorrélation spatiales (Kanit et al., 2003) entre les grains
chaînés, il est possible de définir une échelle mésoscopique qui caractérise
la dimension des mésostructures responsables du comportement mécanique
des matériaux granulaires. Un échantillon de matériau granulaire peut alors
être considéré comme un VER vis-à-vis du comportement mécanique s’il est
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suffisamment gros par rapport à cette échelle mésoscopique (en pratique 10
fois plus gros).

La définition d’une échelle caractéristique vis-à-vis du transport est traitée
dans ce travail i) en réduisant l’espace des vides à un réseau de pores et ii) en
décrivant le mécanisme de transport comme un problème de propagation sur
un graphe orienté. Pour cela, un critère de propagation est proposé et validé
par confrontation avec les résultats de simulations couplées DEM/PFV. Le
critère proposé se base sur i) une estimation de l’intensité des forces fluides
entre deux pores voisins (deux nœuds du graphe) et ii) sur la taille des
constrictions joignant ces pores (les arêtes du graphe). La distance moyenne
que les plus petits grains du matériau peuvent parcourir fournit alors une
échelle caractéristique associée au phénomène de transport. Elle précise ainsi
la taille du VER à considérer pour étudier le phénomène de suffusion.

A.4 Relations micro macro pour une descrip-
tion des instabilités dans les milieux gra-
nulaires

Aujourd’hui, la plupart des critères de susceptibilité à la suffusion sont basés
sur la notion d’instabilité interne définie comme l’incapacité d’un matériau
granulaire à s’auto-filtrer (Kenney and Lau, 1985). Toutefois, cette approche
n’apporte aucune information sur les conséquences de la suffusion vis-à-vis du
comportement mécanique du matériau concerné. C’est pour cette raison que
nous avons choisi dans ce travail de préférer la notion d’instabilité mécanique
à la notion d’instabilité interne. Cette notion trouve une définition générale
basée sur le critère du travail du second-ordre introduit par Hill (1958) dans
le cadre de la mécanique des milieux continus. Un matériau est défini comme
instable dans un état donné (caractérisé par sa microstructure et son état
de contrainte) s’il existe au moins un chargement incrémental pour lequel le
travail du second-ordre est négatif. L’existence d’un tel chemin signifie qu’il
existe des conditions de chargement pour lesquelles le matériau peut être
continument déformé sans apport extérieur d’énergie et passer d’un compor-
tement quasi-statique à un comportement dynamique (on parle de point de
bifurcation).

Il est toutefois à noter que l’application de ce critère (hérité de la méca-
nique des milieux continus) sur un matériau modélisé par éléments discrets
n’est pas sans poser quelques difficultés. Dans cette thèse, une procédure
numérique en trois étapes est utilisée afin d’estimer la stabilité mécanique
d’un matériau granulaire : pré-stabilisation, chargement incrémental direc-
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tionnel et post-stabilisation. Le respect de ces trois étapes est primordial pour
pouvoir appliquer un formalisme continu quasi-statique à un matériau dont
le comportement provient en grande partie de réorganisations dynamiques
locales.

Pour des matériaux granulaires secs identifiés comme instables au sens
du critère du travail du second-ordre, les mécanismes élémentaires respon-
sables de ces instabilités sont analysés grâce à des outils micromécaniques
s’appuyant en grande partie sur la définition des chaînes de force. Nous
avons établi que l’annulation du travail du second-ordre résulte du décon-
finement et de la flexion des chaînes de force. Leur effondrement déclenche
alors une transition inertielle qui se traduit par un adoucissement transitoire
et une perte momentanée de contrôlabilité (i.e. une incapacité temporaire à
imposer le chargement incrémental désiré). Ce régime dynamique prend fin
lorsque la réorganisation de la microstructure permet de reconstruire de nou-
velles chaînes de force stables. Les résultats obtenus dans cette thèse viennent
conforter les conclusions de Zhu (2015) issus de travaux en deux dimensions
sur le rôle des cycles de grains vis-à-vis de la stabilité des chaînes de force.

D’un point de vue macroscopique, les réorganisations microstructurelles
s’interprètent comme des déformations plastiques incrémentales. Pour des
matériaux granulaires frictionnels, ces déformations sont souvent décrites
par des lois élasto-plastiques non-associées, pour lesquelles le caractère non-
associé de la règle d’écoulement plastique est fondamental pour décrire cor-
rectement les changements de volume observés. C’est également grâce à ce
caractère non-associé que des instabilités mécaniques existent avant même
d’atteindre la surface de rupture plastique. En calibrant un modèle élasto-
plastique non-associé sur des simulations DEM, il est possible de relier les
paramètres phénoménologiques du modèle macroscopique à des caractéris-
tiques microstructurelles. En particulier, nous avons démontré que les grains
libres contrôlent le développement des déformations plastiques incrémentales
en termes d’intensité et de direction d’écoulement. Ces deux paramètres pi-
lotent à leur tour l’existence d’un cône d’instabilité, c’est à dire l’existence
de directions de chargement pour lesquelles le travail du second-ordre s’an-
nule. La présence de grains libres dans un matériau granulaire limite ainsi
l’existence d’instabilités matérielles. Ces grains étant par ailleurs potentielle-
ment transportables par un écoulement interne, ce résultat est fondamental
pour analyser les conséquences de la suffusion sur la stabilité mécanique d’un
matériau granulaire.
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A.5 Analyse numérique de l’impact d’un écou-
lement interne sur la stabilité mécanique
des matériaux granulaires

Par rapport aux autres méthodes de résolution numérique de la phase fluide,
le schéma PFV utilisé ici (Chareyre et al., 2012) permet de simuler le double
impact d’un écoulement interne dans un matériau granulaire à l’échelle d’un
VER, en trois dimensions et en tenant compte de la géométrie locale de
l’espace poral.

En introduisant des forces additionnelles, le fluide induit une réorganisa-
tion de la transmission des efforts dans le matériau. Cet effet sur la micro-
structure n’induit pas forcément de modifications flagrantes de la géométrie
de la microstructure. En revanche, pour un matériau instable au sens du
critère du travail du second-ordre, il peut être suffisant pour déclencher l’ef-
fondrement du matériau. En effet, si le réseau de contact existant ne permet
pas une réorganisation suffisante des chaînes de forces, le matériau n’est alors
plus capable de résister au chargement mécanique qui lui est imposé. Afin
d’isoler cet effet du fluide, nous avons étudié un échantillon granulaire instable
privé de ses grains libres. Les résultats de simulations couplées DEM/PFV
montrent que le fluide est capable de déclencher une transition inertielle dans
l’échantillon considéré. Dans ce processus, l’importance des fluctuations des
forces fluides est mise en évidence car l’effondrement observé ne dépend pas
de la direction d’écoulement macroscopique (parallèle ou perpendiculaire à la
direction du chargement principal). Cela confirme qu’il est important d’uti-
liser un schéma local de résolution du fluide et non un schéma à mailles
larges (pour lesquels l’impact des grains sur l’écoulement est modélisé par
une perméabilité apparente de type Kozeny-Carman par exemple). De ma-
nière simultanée avec l’effondrement du matériau, on observe, comme pour le
cas sec, un déconfinement et un fléchissement généralisé des chaînes de force.

Le second impact du fluide concerne le transport des grains libres. Selon
que ceux-ci se retrouvent colmatés ou érodés, le fluide a un effet stabili-
sateur ou déstabilisateur sur le matériau granulaire considéré. Grâce à des
simulations DEM/PFV sur un VER dans lequel les grains libres sont majori-
tairement colmatés, nous avons montré que le matériau est plus stable méca-
niquement après l’application d’un écoulement interne qu’avant (disparition
des directions de chargement pour lesquelles le travail du second-ordre est né-
gatif). Cet effet stabilisateur du fluide s’interprète localement par la mise en
contact des grains colmatés avec les chaînes de force. Ceux-ci peuvent alors
plus facilement limiter les déformations plastiques en cas d’effondrement des
chaînes de force.
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A.6 Perspectives
L’approche multi-échelle mise en œvre dans cette thèse a permis d’isoler les
mécanismes élémentaires responsables des instabilités mécaniques dans les
matériaux granulaires et d’identifier les directions de chargement particuliè-
rements défavorables à leur stabilité. Les résultats obtenus permettent ainsi
d’améliorer la compréhension des modes de ruptures liées à l’érosion interne
par suffusion dans les digues et les barrages et permettront à l’avenir de
mieux anticiper leur rupture éventuelle.

Les analyses présentées dans ce manuscrit aident également à interpréter
les expériences de laboratoire. En particulier, les mécanismes mis en évi-
dence viennent confirmer les explications souvent proposées pour interpréter
les résultats d’essais triaxiaux sur des échantillons ayant été préalablement
érodés (Chang and Zhang, 2011; Ke and Takahashi, 2012; Xiao and Shwiy-
hat, 2012; Ke and Takahashi, 2014a; Sibille et al., 2015b; Hosn et al., 2017).
La résistance maximale au cisaillement dépend d’une part des contributions
relatives de l’érosion et du colmatage, et d’autre part d’éventuels tassements
résultants de l’effondrement des chaînes de force pendant la phase d’érosion.

Sur le plan de la modélisation, un prolongement naturel de ce travail de
thèse concerne le développement de modèles micromécaniques enrichis. Ces
modèles constituent une approche alternative pour déterminer les propriétés
mécaniques homogènes équivalentes des matériaux granulaires. En effet, elles
proposent une description statistique et non volumique du VER par une col-
lection de mésostructures. Le comportement macroscopique est alors obtenu
par moyennisation statistique et non spatiale. La difficulté de ces approches
réside dans la définition d’une mésostructure simple et non simpliste, ca-
pable de rendre compte des mécanismes physiques locaux. Ainsi, un modèle
micromécanique basé sur une mésostructure capable à la fois de reproduire
l’effondrement des chaînes de force et de tenir compte du rôle clé joué par les
grains libres dans l’enrayement des déformations plastiques permettra certai-
nement de reproduire une large gamme de comportements macroscopiques.
Le modèle H développé par Nicot and Darve (2011) et récemment étendu
en 3D par Xiong et al. (2017) pourrait être enrichi par la présence de grains
libres érodables.
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Résumé : La plupart des digues sont constituées de matériaux granulaires compactés. Elles sont
ainsi perméables et constamment soumises à des écoulements d’eau dans leur volume. Dans certaines
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soumis au phénomène d’érosion interne. Dans ce travail, le comportement mécanique de ces matériaux
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états de contraintes et gradients hydrauliques. Grâce à l’utilisation du critère du travail du second-ordre
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interne. Il est établi que l’origine micro-inertielle des instabilités observées provient du déconfinement
et de la flexion des chaînes de force ainsi que des déformations plastiques importantes résultant de
l’effondrement des chaînes de force. Par leur capacité à enrayer rapidement le développement de telles
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granulaires soumis à l’érosion interne.
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Abstract : Dikes are most of the time built of compacted granular materials that are permeable and
continuously subjected to internal fluid flows. In some cases, microstructure modifications resulting from
internal erosion generate mechanical instability that will lead to unexpected failures in case of serious
flooding.
This thesis focuses on multi-scale analysis of mechanical instability in granular materials subjected to
internal erosion. In this work, the mechanical behavior of such materials is simulated in three dimen-
sions at the scale of representative elementary volumes subjected to different stress states and hydraulic
gradients. Thanks to the use of the second-order work criterion and micromechanical tools, the mecha-
nical stability of these materials is tested before and after internal erosion. It is established that the
micro-inertial origin of the observed instabilities is linked to force chain deconfinement and bending as
well as to the development of large plastic strains resulting from force chain collapse. By preventing
the development of such plastic strains, it is shown that rattlers contribute to ensure the mechanical
stability of granular materials. This key finding is of a particular significance in relation with internal
erosion as rattlers can be easily transported under the action of an internal fluid flow. Depending on
whether they get clogged or eroded, an internal fluid flow has thus either a stabilizing or a destabilizing
effect on the mechanical behavior of granular materials subjected to internal erosion.
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