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ABSTRACT

This PhD work proposes new concepts and tools for stochastic weather simulation activ-
ities targeting the specific needs of hydrology. We used, as a demonstration, a climatically
contrasted area in the South-East of France, Cévennes-Vivarais , which is highly attractive
to hydrological hazards and climate change.

Our perspective is that physical features (soil moisture, discharge) relevant to everyday
concerns (water resources assessment and/or hydrological hazard) are directly linked to
the atmospheric variability at the basins scale, meaning firstly that relevant time and space
scales ranges must be respected in the rainfall simulation technique. Since hydrological
purposes are the target, other near-surface variates must be also considered. They may
exhibit a less striking variability, but it does exist. To build the multi-variable modeling,
co-variability with rainfall is first considered.

The first step of the PhD work is dedicated to take into account the heterogeneity of the
precipitation within the rainfall simulator SAMPO [Leblois and Creutin, 2013]. We cluster
time steps into rainfall types organized in time. Two approaches are tested for simulation: a
semi-Markov simulation and a resampling of the historical rainfall types sequence. Thanks
to clustering, all kind of rainfall is served by some specific rainfall type. In a larger area,
where the assumption of climatic homogeneity is not considered valid, a coordination must
be introduced between the rainfall type sequences over delineated sub-areas, forming rainy
patterns at the larger scale.

We first investigated a coordination of Markov models, enforcing observed lengths-of-
stay by a greedy algorithm. This approach respects long duration aggregates and inter-
annual variability, but the high values of rainfall are too low. As contrast, the joint resam-
pling of historically observed sequences is easier to implement and gives a satisfactory be-
havior for short term variability. However it lacks inter-annual variability. Both approaches
suffer from the strict delineation of homogeneous zones and homogeneous rainfall types.

For these reasons, a completely different approach is also considered, where the areal
rainfall totals are jointly modeled using a spatio-temporal copula approach, then disaggre-
gated to the user grid using a non-deterministic, geostatistically-based conditional simula-
tion technique. In the copula approach, the well-known problem of rainfall having atom at
zero is handled in replacing historical rainfall by an appropriated atmospheric based rain-
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ii ABSTRACT

fall index having a continuous distribution. Simulated values of this index can be turned
to rainfall by quantile-quantile mapping.

Finally, the copula technique is used to link other meteorological variables (i.e. temper-
ature, solar radiation, humidity, wind speed) to rainfall. Since the multivariate simulation
aims to be driven by the rainfall simulation, the copula needs to be run in conditional mode.
The achieved toolbox has already been used in scientific explorations, it is now available
for testing in real-size application. As a data-driven approach, it is also adaptable to other
climatic conditions. The presence of atmospheric precursors a large scale values in some
key steps may enable the simulation tools to be converted into a climate simulation disag-
gregation.
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INTRODUCTION

Water

Water is a vital element for human existence. The importance of water is reflected in all
kinds of effects on many issues in the world.

Effects on climate
Water has a regulatory role on the climate. Water vapor is a greenhouse gas that can

protect the Earth from cooling, even more effective (60%) at absorbing the thermal radiation
from the Earth’s surface than carbon dioxide (25%) or ozone (8%) [see Barkstrom, 1990;
Karl and Trenberth, 2003]. Marine and terrestrial water absorb, accumulate, modulate and
distribute heat and maintain a livable temperature whatever the season.

The water in the oceans and on the earth’s surface evaporates and is then advected in
the atmosphere, to form clouds by condensation. A variety of processes redistribute cloud
water on the surface as rainfall or snowfall, depending on the altitude and the temperature.
Most water evaporates back, the rest often infiltrates in the soil and filtrate at water springs
or river beds, sometimes runs overland, eventually flowing into the sea through rivers.
This forms the water cycle.

Effects on topography
71% of the Earth’s surface is covered by water [Nace, 1967]. The Earth is seen as a “Blue

Planet” from the sky. Water erodes rock and soil. Water erodes river beds, transports
sediments, lowers mountains and reshape alluvial plains. These processes act on surface
morphology.

Effects on human society
Water is an important resource for human life. Daily people’s needs are around 50 liters

by inhabitant [Gleick, 1996], covering daily life needs, industrial and agricultural produc-
tion. In particular, agriculture requires huge amounts of water, either rain feed or through
irrigation. The origins of human civilization are mostly in the vicinity of rivers. Early cities
were generally established at the water’s edge to address irrigation and drinking issues.

1



2 INTRODUCTION

With the development of science and technology, water conservancy is being built to
fight natural disasters such as floods and waterlogging (which refers to the saturation of
soil with water). As a result, a number of water-related activities developed, progressively
backed by branches of water science such as hydrology, hydraulics, hydrobiology, etc.

The importance of hydrology science

The term hydrology comes from Greek: ὕδωρ [hýdōr] (“water” in English) and λόγος
[lógos] (“study” in English). So literally, hydrology is the study of water.

In the Nature scientific journal1, hydrology science is described as follows.

Hydrology is the study of the cycling of water through different reservoirs
on Earth. [. . .] Hydrology focuses on the distribution of water in the subsurface,
surface and atmosphere, the chemistry of that water, and the effects of climate
on the water cycle.

Among numerous published papers and text books, Hydrology: A Science of Nature of
Musy and Higy [2010] present the various components of water cycle, the catchments or
river basins, the factors affecting their hydrological response and hydrological regimes, as
well as issues related to measurement and control of hydrological data. Research in hydrol-
ogy aims at providing methods and tools that are essential for solving concrete problems
related to water resources and the associated risks. Management of water resources and
related hydrological hazards (e.g., flooding, landslides, mudslides, erosion, drought, etc.)
are among the major hydrological concerns. Water resources and hydrological hazards are
to be considered in territorial development studies, aiming at structural or non-structural
development designs or at financial evaluations (e.g., costs/benefits relations, assurances
practice, renewing of hydroelectric concessions). However, operators in charge of territo-
rial assessment face major methodological difficulties in constructing climate scenarios at
the regional scale, even where only present climate scenarios are requested, not to speak
about taking climate change scenarios into account.

As an example, Musy et al. [2014] pointed out four key hydrological issues related to
water resources and hydrological hazards which are (1) prediction of hydrological vari-
ables, (2) hydrological forecasting, (3) hydrological impacts of human and activities and
(4) hydrological impact of climate change. Dealing with such key issues calls for innovat-
ing approaches linking observations with modeling tools. Observation networks are first
needed to document the system of interest. Obviously, observations can not be provided
everywhere, thus modeling approaches may be developed to first represent the missing
values at the ungauged places, but are then widely used to forecast hydrological variables
in the future (i.e. hours, day, years ahead). Hydrological models then need inputs at the
proper targeted spatial and temporal scales.

1https://www.nature.com/subjects/hydrology, last check on 2017/11/23

https://www.nature.com/subjects/hydrology
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The main objectives of the thesis

In order to address the hydrological issues related to water resources and hydrological
hazards, the main objective of this PhD work is to provide efficient spatio-temporal stochas-
tic simulations of hydrometeorological variables as inputs for hydrological models.

Two major issues are explored in this research.

1. The first concerns the heterogeneity of the rainfall that needs to be properly repro-
duced.

2. Being able to supply the required inputs for hydrological modeling constitutes the
second issue. Identifying the meteorological inputs and proposing a multivariate
system are thus investigated.

The approach should be able to be generalized in order to be applied in any territory
under different climatic conditions. The strategy of regionalization needs to respect the
resonance in spatial and temporal scales associating atmospheric and hydrological phe-
nomena.

The progress of the thesis

This thesis is organized as follows.
Part I (i.e. Chapter 1-3) introduces the general context dealing with hydrological sim-

ulations, the geographical context and the main challenges of this PhD work. Chapter 1
emphasizes the importance of hydrological simulations in particular when water resources
and hydrological hazard management are concerned. Chapter 2 introduces the studied
area and available data that will be later used. Our main area of interest is located on
the Cévennes-Vivarais region which is one of the main regions concerned by flash floods
in Europe [Boudevillain et al., 2011]. Two sources of meteorological data are considered in
this PhD work. The observatory OHM-CV (Observatoire Hydro-météorologique Méditer-
ranéen Cévennes-Vivarais) is used for its collection of precipitation observations. The
ECMWF (European Center for Medium-Range Weather Forecasts) is a major institution
providing climate services like atmospheric reanalyses. The ERA-Interim reanalysis of the
ECMWF is used for all needed meteorological variables but precipitation. Chapter 3 points
out the two main issues. First, given the availability at Irstea of the local stochastic rain-
fall simulator SAMPO (Simulation of Advected Mesoscale Precipitations and their Occur-
rence), several methods are proposed to adapt SAMPO to simulate over a heterogeneous
rainfall field. Modeling under multivariate framework constitutes the second challenge of
this PhD work: to provide proper meteorological inputs required for hydrological mod-
els, several meteorological variables such as temperature, wind speed, solar radiation and
water vapor pressure must be taken into account.

Part II (i.e. Chapter 4-8) deals with the heterogeneity problem. The spatial variability
of rainfall is usually more difficult to be captured than the temporal variability due to the
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resolution of precipitation data. One easy but not ideal way to overcome the heterogeneity
problem is to partition the whole region into several zones that can be considered homoge-
neous in term of rainfall regimes. Instead of modeling spatial correlations with large vari-
ability, the heterogeneity problem then becomes how to spatially coordinate these homo-
geneous rainfall zones in space. Chapter 4 reviews some existing stochastic rainfall models
that simulate precipitation at more than one location. Chapter 5 proposes two different ap-
proaches which are parametric (hierarchical Hidden Markov model) and non-parametric
(resampling model) to deal with the coordination problem. Chapter 6 shows the statistical
diagnosis of the two approaches. Chapter 7 proposes a contrasting approach inspired by
copula technique. Along with copula approach, a disaggregation model is introduced to
generate spatially fine simulations which respect large scale values. Chapter 8 makes the
conclusions of our approaches concerning to the heterogeneity of the rainfall field problem.

Part III (i.e. Chapter 9) deals with multivariate simulations. The copula technique
is a very promising statistical approach to deal with multivariate situations. Combining
with auto-regressive process (which is used to model temporal correlations for time-series)
and kriging technique (which is used to generate sequentially conditional simulations), a
copula based multivariate model is proposed to generate long term simulations of input
variables such as precipitation, temperature, wind speed, solar radiation and water vapor
pressure for the needs of hydrological models.

Part IV (i.e. Chapter 10-11) makes the conclusions and perspectives of this PhD work.



Part I
General context
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CHAPTER 1

SOME MAIN HYDROLOGICAL CONCERNS

[XXX] The title of this chapter should be changed since its topic is not hydrological mod-
elling. How to change the title ?

Water is one of the most important natural resources on our earth. In science, hydrology
is the study of water. More precisely, Hydrology is the science that encompasses the oc-
currence, distribution, movement and properties of the water on earth and its relationship
with the environment at each phase of the water cycle. The water cycle, also known as the
hydrological cycle, describes the continuous movement of water on, above and below the
surface of the Earth.

The main issues in hydrology are to enhance our descriptive capacity and to build the
proper synergy between observations and modeling. Practical issues are how to better
manage the water resources and wisely assess the hydrological risks. Water cycle refers to
the water circulation on different parts of the Earth. Absorbing the energy of the sun, water
changes state and moves to other places on earth. [XXX rephrase] For example, the water
on the surface turns into water vapor by evaporation as the sun warms. Then, the water
vapor is advected in the atmosphere, later forms clouds that lead to precipitation. Energy
and water cycles are deeply interconnected. While the state of water in the earth includes
solid, liquid and gaseous, the earth’s water is present in the atmosphere, in the soil, in
the ground, in the lakes, in the rivers and in the oceans [see Gleick and Howe, 1995]. The
water moves from one place to another through physical processes such as evaporation,
precipitation, infiltration, surface flow and underground flow. Water movement can also
be induced by biological processes (e.g., evapotranspiration).

The water cycle is an important process that redistributes water and nutrients at the
global scale. Change of phase of water (e.g., liquid to vapor) plays also a major role in
energy transfer. In doing so, it brings freshwater to people, animals and plants all around
the world. The main roles of water cycle can be synthesized as:

1. Water is the medium of all nutrients. The circulation of nutrients and the water cycle
are inextricably linked together.

2. Water is a good solvent for substances involved in the energy transfer and essential

7



8 Chapter 1. Some main hydrological concerns

for the ecosystems.

3. Water plays a role at the geological scale. The loss of a local mineral element and its
deposition at another place are often done through the water cycle.

In the framework of this PhD work, two particular themes in hydrology which are water
resource management and hydrological hazards are first introduced.

1.1 Water resources

Water resources are sources of water that are potentially useful. Uses of water include
many activities such as agricultural, industrial, household, recreational and environmental
activities. All living entities require water to grow and reproduce. Figure 1.1 presents the
distribution of earth’s water.

Figure 1.1: Distribution of earth’s water. Only 3% of the Earth’s water is fresh water. Most of it is
in icecaps and glaciers (69%) and groundwater (30%), while all lakes, rivers and swamps combined
only account for a small fraction (0.3%) of the Earth’s total freshwater reserves. Source: [Gleick and
Howe, 1995].

Salt water occupies 97% of the water on the Earth and only 3% is fresh water; around 2/3
of fresh water is frozen in glaciers and polar ice caps. The remaining unfrozen freshwater
is found mainly as groundwater, with only a small fraction present above ground or in the
atmosphere. Gleeson et al. [2012] mentioned that fresh water is a renewable resource, yet
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the world’s supply of groundwater is steadily decreasing, with depletion occurring most
prominently in Asia, South America and North America, although it is still unclear how
much natural renewal balances this usage, and whether ecosystems are threatened.

It is essential to understand that the management of water resources is directly related
to human life and the future of our earth. Water resources in France are on the order of 200
billion m3 per year on average, i.e. around 3,300 m3 per inhabitant per year [see FAO, 2003].
The average annual water withdrawal is 33 billion m3, of which 19% is from groundwater
and 81% from surface water. Agriculture accounts for 70% of anthropogenic consumption,
domestic use 23% and energy production 7%. Water resources are widely used by human
beings in production and living activities, not only widely used in agriculture, industry and
life, but also for hydroelectric power generation, water transport, aquatic products, tourism
and environmental transformation. Among the various uses, some are water consumption,
others are non-expendable or consume very little water. Therefore, the requirements for
water quality are different.

[XXX rephrase] Water resources are unevenly distributed among the earth due to nat-
ural atmospheric cycles, linked to the solar cycle, and due to the different properties of
the ground worldwide. The annual wet and dry seasons and their associated surface and
groundwater evolutions are ones of popular knowledge. Locally, such seasonal or monthly
trends are partly known. Variability around these “natural” trends is an important aspect
of water resource and how to predict and assess this part of the water resources is still an
open question. For example, inter-annual variability of a river discharge remains difficult
to capture as well as induced changes of the water table. Understanding may be improved
by the use of statistical analysis requiring long series of observation data. Such study is
thus possible only for very few parts of the world where the data are available.

Another issue associated with the study of the water resource concerns the signature
of global warming. Indeed, Huntington [2006] showed that the intensification of the water
cycle may lead to i) changes in water-resource availability, ii) an increase in the frequency
and intensity of tropical storms, floods, and droughts, and iii) an amplification of warming
through the water vapor feedback. Therefore, improving our knowledge on the variability
of water resources, at different scales, may help to better anticipate such important issues.

1.2 Hydrological hazards

[XXX-NON] This section is confused, jumping from one topic to another without clear
guidelines.

Hydrological hazards include floods, storm surges, coastal erosion and droughts. It
is important to understand the relationship of hydrological hazards with other hazards
(e.g., weather or solid earth (earthquakes, volcano, etc.)) [XXX-NO] what is referring the
author ?. For example, extreme rainfall from a thunder and lightning event can cause
flooding; winds and low pressure from a tropical cyclone can exacerbate storm surge and
coastal erosion.
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Floods

Flooding typically results from large-scale weather systems generating prolonged rain-
fall or on-shore winds. Other causes of flooding include locally intense thunderstorms,
snow melt, ice jams, and dam failures. Flash floods, which are characterized by rapid on-
set and high velocity waters, may carry large amounts of debris. They occur at smaller
time and space scales. Floods are capable of undermining buildings and bridges, eroding
riverbeds and riverbanks, tearing out trees, washing out access routes, and causing loss of
life and injuries, and disruption in economy.

In France, a study lead by Lang and Coeur [2014] established lists and descriptions of
noteworthy floods. Such reference works serve memory, provide insight to typical or un-
expected mechanisms.

Considerable research has been devoted to investigate the most appropriate frequency
distribution and fitting method for flood-frequency analyses [Stedinger, 1993]. Different
frequency distributions and fitting methods have been suggested as superior to the Pearson
Type III frequency distribution [Singh, 1998], which has been used widely for many years.

1.3 Conclusions

Water provides the possibility of life for the Earth and mankind. Relative to the total
amount of water in the Earth, the proportion of available water resources is very small.
Although the water cycle helps to recycle water resources, water resources are still limited
and unevenly distributed. Large amounts of fresh water are present in polar ice caps and
glaciers, but many countries and regions around the world are facing a crisis of water
scarcity. How to wisely deal with water resources is still an unavoidable problem.

Water fluxes variability is natural and plays a positive role in a natural environment. It
is also a major source of natural disasters such as floods and droughts. The assessment and
prevention of hydrological hazard is essential to the protection of human life and property.

As a way of helping water resource management and hydrological hazard assessment,
the spatio-temporal variability of hydrological variables must be made explicit and con-
sidered. [XXX rephrase] Therefore, hydrological simulation is of great significance. The
relevance of hydrological simulation is largely based on the selection of adequate time and
space scales.
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Water resources are indispensable resources for human survival. But at the same
time, hydrological hazards as floods and droughts often bring disasters to people. This is
the starting point of this PhD work that aims to serve simulation frameworks in order to
enhance our understanding of the evolution of the water resources. The region of interest
is the French Mediterranean region, in particular the Cévennes-Vivarais region. This area
benefits of many observations [Boudevillain et al., 2011; Braud et al., 2016] and numerous
modeling works [Nuissier et al., 2008; Godart et al., 2011; Adamovic et al., 2016] have been
already realized to partially study the different parts of the water cycle, such as, processes
associated with intense precipitation, contribution of the orographic precipitation to
the water resource and identifying hydrological signatures at different basin scales,
respectively.





CHAPTER 2

PRESENTATION OF THE STUDIED AREA AND OF DATA

In this chapter, the studied area of the Cévennes-Vivarais region is first introduced and
two meteorological databases are then presented for the needs of the hydrological inputs.
Due to its main topographic features, the Cévennes-Vivarais region leads to a clear hetero-
geneous behaviour of the rainfall, which constitutes the main guideline of this chapter.

2.1 Studied area: The Cévennes-Vivarais, France

The Cévennes (Figure 2.1(b)) are a range of mountains in south-central France (Fig-
ure 2.1(a)), covering parts of the French administrative Departments of Ardèche, Gard,
Hérault and Lozère. The Cévennes are a part of the Massif Central. They run from south-
west (le Causse Noir) to northeast (Monts du Vivarais). The highest peak are the Mont
Lozère (1702 m) and the Mont Aigoual (1567 m). Among all rivers having their headwaters
in the Cévennes, the Loire river and its tributary the Allier river flow northwestward to the
Atlantic ocean, whereas the Ardèche, Chassezac and Cèze rivers, the different Gardons, the
Vidourle, Hérault and Dourbie rivers flow Southeastward either as tributaries to the Rhone
or directly to the Mediterranean Sea.

This mountainous area, 3730 km2, is prone to flash flood hydrometeorological events,
and has been intensively monitored within the framework of the long term natural obser-
vatory OHM-CV [Boudevillain et al., 2011]. The OHM-CV began activity in 2000 compiling
a research database by gathering, analyzing, and archiving meterological and hydrologi-
cal data. As mentioned by Boudevillain et al. [2011], the Cévennes-Vivarais region is one of
the main regions concerned by flash floods in Europe. Nuissier et al. [2008] explained that
the simultaneous presence of a number of meteorological factors is propitious to extreme
precipitation events.

One of the interesting fact is that Cévennes-Vivarais belongs to the Mediterranean re-
gion. As Christensen et al. [2007] reports, intense precipitation events will likely increase
over central Europe in winter, but trends over the Mediterranean regions remain uncertain
because of complex interactions at different scales (presence of topography; interactions
and feedback among atmosphere-ocean–land processes) that play a predominant role in

13
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Figure 2.1: (a) Location of the Cévennes-Vivarais region in the map of France, the red contours refer
to the main catchments of the Cévennes-Vivarais area; (b) zoom on the study area, the triangles refer
to the main summits and the squares to the largest cities.

climate and the related ecosystems. So, the Mediterranean region has been identified as a
“hot spot” of climatic change, in the sense that climate change is expected to modify hydro-
logical regime in this region, but the direction of change is uncertain, justifying dedicated
and dense monitoring. More details about the topological features, climate characteristics
and research activities in the Cévennes-Vivarais area can be found, as example, in [Delrieu,
2003; Braud et al., 2010, 2016].

2.2 Observation and re-analysis data

Two meteorological databases are considered in this thesis. The first one concerns the
precipitation observations. Meteorological variables such as temperature, wind speed or
solar radiation are retrieved from the second one. These two databases differ from the
origin of the data. Precipitation data are local rain gauge observations, whereas meteo-
rological variables refer to computed values obtained with the integration of radiosonde
observations by the mean of physical equations.

OHM-CV Database

A primary objective of the observatory OHM-CV 1 (Observatoire Hydrométéorologique
Méditerranéen Cévennes-Vivarais) is to bring together the skills of meteorologists and
hydrologists, modelers and instrumentalists, researchers and practitioners, to improve
knowledge and capacity for forecasting the hydrometeorological risk associated with

1http://www.ohmcv.fr/P100_objectifs.php?lang=en: last check on 2017/11/31

http://www.ohmcv.fr/P100_objectifs.php?lang=en
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heavy rainfall and flash floods in the Mediterranean region. The OHM-CV observation
strategy consists of three complementary lines of effort:

1. detailed, long-lasting, and modern hydrometeorological observation over part of the
region of interest, the Cévennes-Vivarais region, dedicated to process studies and to
the improvement and assessment of hydrometeorological predictive models;

2. multi-disciplinary post-flood investigations after any event occurring over the entire
Mediterranean region to document and analyze the physical and societal processes
associated with such extremes;

3. use of historical information available on past floods to better characterize the
frequency of extreme hydrometeorological events and the possible trends under a
changing climate.

The OHM-CV has been strongly involved in the meta-program MISTRALS (Mediter-
ranean Integrated STudies at Regional And Local Scales) of the Inter-Organizations Envi-
ronment Committee, and in particular the HyMeX2 (HYdrological cycle in the Mediter-
ranean EXperiment) project. This latter project is dedicated to the study of the water cycle
in the Mediterranean, with a particular interest for the evolution of climate variability and
for the genesis and predictability of intense events.

European Center for Medium-Range Weather Forecasts (ECMWF)
Database

ECMWF is an independent intergovernmental organization supported by 34 states.
ECMWF is both a research institute and a 24h/7d operational service, producing and
disseminating numerical weather predictions to its Member States. The data are fully
available to the national meteorological services in the Member States. The Center also
offers a catalogue of forecast data that can be purchased by businesses worldwide and
other commercial customers. The supercomputer facility and associated data archive at
ECMWF is one of the largest of its type in Europe; Member States can use 25% of its ca-
pacity for their own purposes. The organization was established in 1975 and now employs
around 350 staff from more than 30 countries. ECMWF is one of the six members of the
Co-ordinated Organizations, which also include the North Atlantic Treaty Organization
(NATO), the Council of Europe (CoE), the European Space Agency (ESA), the Organization
for Economic Co-operation and Development (OECD), and the European Organization for
the Exploitation of Meteorological Satellites (EUMETSAT).

In this thesis, data out of the ECMWF ERA-Interim reanalysis [Dee et al., 2011] is used.
ERA-Interim is a global atmospheric reanalysis from 1979, continuously updated. The tem-
poral resolution is a 6-hours time step and the spatial resolution is 0.75◦.

The data assimilation scheme of ERA-Interim included many ground observations (tem-
perature, pressure, etc.) and precious vertical profiles brought by radio-soundings, and

2https://www.hymex.org: last check on 2017/11/31

https://www.hymex.org
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also satellite imagery was considered, bringing in cloud presence and cloud height infor-
mation (the presence of satellite data is the reason why ERA-Interim database could not
be extended before 1979). Locally observed rainfall, however, was not considered in ERA-
Interim reanalysis. The reasons for that are the huge gap in scales and the difficulty of
entering strongly non-linear precipitation processes schemes into assimilation systems.

2.2.1 Precipitation

Rainfall observations are provided through the OHM-CV database3. Hourly and daily
precipitation data are available (Table 2.1).

Table 2.1: Precipitation observations available in the OHM-CV database

Type of data period available number of rain gauge stations

hourly precipitation 2005 - 2014 146

daily precipitation 1985 - 2014 840

The observations used in this PhD work are the 146 hourly rain gauge stations. The
location of these stations in the Cévennes-Vivarais area is illustrated in Fig. 2.2.

Many previous works proposed a climatology of the Cévennes-Vivarais [e.g., Molinié
et al., 2012]. Below simple analysis are proposed to introduce the main scales of the precip-
itation variability. Figure 2.3 depicts the monthly average precipitation of the 146 hourly
rain gauge stations from 2005 to 2014. This figure shows that there are more precipitation
in fall than in summer over Cévennes-Vivarais region. Monthly variability is more impor-
tant in February, April, May and November, than for the rest of the year. In November,
the monthly average precipitation could exceed 200 mm (222 mm for 2011 and 295 mm for
2014).

Four rain gauges are chosen to illustrate the inter-annual variability of the precipitation
in different parts of the study area. Their locations are presented in Fig. 2.4. In Fig. 2.5, the
time series of daily precipitation are plotted from 2005 to 2014 at the 4 rain gauges as pre-
sented in Fig. 2.4. Clearly, the rain gauge station MONT AIGOUAL, located in Mountain
area, records more precipitation, also frequent strong rainfall events.

3http://ohmcv.osug.fr/spip.php?article30: last check on 2017/11/31

http://ohmcv.osug.fr/spip.php?article30
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Figure 2.2: Locations of the 146 hourly rain gauge stations in the Cévennes-Vivarais region.
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Figure 2.3: Monthly average precipitation of the 146 hourly rain gauge stations from 2005 to 2014.
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Figure 2.4: Location of the 4 rain gauges in blue triangle (MONTPELLIER, ST CHRISTOL, MON-
TELIMAR, MONT AIGOUAL) located in different areas.
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Precipitation variability takes place within a large range of time and space scales that
make this meteorological variable highly complex to observe and to forecast. As far as
stochastic rainfall generators are concerned, Koch and Naveau [2015] indicate that, most of
the stochastic rainfall generators nowadays have a good performance with daily precipita-
tion data, but still present drawbacks when hourly precipitation is concerned. As a matter
of fact, hourly precipitation stochastic simulation poses a difficult challenge, given values
that appear non-negative, positively skewed, possibly heavy tailed, containing a lot of ze-
ros (dry hours) sometimes organized in dry episodes having long persistence.

Hourly precipitation data at the 4 rain gauges, are illustrated for two given years, for
example 2005 and 2014, using histograms in Fig. 2.6 and Fig. 2.7, respectively. They ap-
pears that for each rain gauge station in both years, the hourly precipitation distribution
is positive, highly skewed to the highest values and contains high values. Mont Aigoual
and St Christol also have much frequent and more rain than Montelimar and Montpellier,
although high hourly values are likely seen also in Montpellier, as year 2014 gives a clear
example.
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The Cévennes-Vivarais region: a pool of several relatively homogeneous
rainfall zones

As mentioned in Section 2.1, several different topological features form the Cévennes-
Vivarais region lead to a strong heterogeneity state of the precipitation. Guttorp and Sampson
[1994] gave a series of methods for estimating heterogeneous spatial covariance functions
for environmental applications. Nevertheless, the parameter estimation associated with
spatial covariance functions can be very difficult when the number of considered points/s-
tations/rain gauges increases, running into a curse of dimensionality. To cope with spatial
heterogeneity, a much simpler and possibly the simplest way is to divide the whole re-
gion into sub-regions or zones considered as “relatively” homogeneous. These zones need
to be determined. The identification of a possible set of “k” zones is based on clustering
techniques applied to the correlations between each pair of hourly rain gauges. In the
Cévennes-Vivarais region, the 146 hourly rain gauge stations are therefore used, and the
stations presenting similar vector of correlations to all stations will be gathered in the same
homogeneous zone.

The n rain gauge stations {S1, . . . , Sn} have the same record length of precipitation data.
The correlation between any pair of stations (Si, Sj) is calculated by correlation function.
There are three typical correlation coefficients which are:

1. Pearson correlation coefficient [see Galton, 1886] which is a measure of the linear cor-
relation between two variables;

2. Spearman correlation coefficient [see Spearman, 1904];

3. Kendall correlation coefficient [see Kendall, 1938; Kruskal, 1958].

The latter two refer as rank correlation coefficients which measure the extent to which, as
one variable increases, the other variable tends to increase, but without assuming a linear
relation between the two increments. Considering the type of data used in this PhD work,
the rank correlation coefficients are more suitable. Thus, the Kendall rank correlation coef-
ficient (called Kendall’s tau) is chosen consideration the possible ties (x1 = x2; y1 = y2). In
most situations, the interpretations of Kendall’s tau and Spearman rank correlation coeffi-
cient are very similar and lead to the same inferences. Advantages of using Kendall’s tau
over Spearman rank correlation are as follows:

• The distribution of Kendall’s tau has better statistical properties [see Hamed, 2009a,b].

• The interpretation of Kendall’s tau in terms of the probabilities of observing the con-
cordant or discordant pairs is very direct.

Let (x1, y1), (x2, y2), . . ., (xm, ym) be a set of observations of the joint random variables X
and Y respectively. One says that (xi, yi) and (xj, yj) are concordant if xi < xj and yi < yj

or if xi > xj and yi > yj (i.e., if (xi − xj)(yi − yj) > 0); and discordant if xi < xj and yi > yj

or if xi > xj and yi < yj (i.e., if (xi − xj)(yi − yj) < 0). There are (m
2 ) distinct pairs of
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observations in the sample, and each pair (barring ties) is either concordant or discordant.
The Kendall τ coefficient for the pair (X and Y) is defined as:

τ(X, Y) =
(number of concordant pairs)− (number of disconcordant pairs)

m(m− 1)/2
. (2.1)

�

For any hourly rain gauge station Si (i ∈ [1 : 146]), the Kendall correlation coefficients
between Si and all 146 stations consist a n(= 146) dimension correlation vector τSi which
is defined as:

τSi =


τ(Si, S1)

τ(Si, S2)
...

τ(Si, Sn)

 , n = 146. (2.2)

A matrix Mτ such as

Mτ =
(
τS1 | τS2 | · · · | τSn

)
=


τ(S1, S1)

τ(S1, S2)
...

τ(S1, Sn)

τ(S2, S1)

τ(S2, S2)
...

τ(S2, Sn)

· · ·

τ(Sn, S1)

τ(Sn, S2)
...

τ(Sn, Sn)


consists the Kendall coefficients between all pairs of stations. Each column of Mτ is the rank
correlation vector of one station which represents the entire relation of the rank correlations
between this station and all stations (include itself).

Classification is not only a matter of choosing an algorithm, but ultimately a question
of choosing the relevant descriptor for the purpose. [XXX-NON rephrase] In this work,
choosing correlations coefficients calculated on time-series as descriptors will favor that
the stations in one group enter rainy condition in the same time, in related quantities. So,
to obtain the homogeneous areas, it is our choice that the classification technique will be
applied on the matrix Mτ. The principle of clustering is the task of grouping a set of objects
(here the 146 stations) in such a way that objects in the same group (called a cluster) are
more similar (in some sense or another) to each other than to those in other clusters. There
are three major clustering techniques which are (1) Hierarchical clustering, (2) k-means
clustering and (3) Density-based clustering. More details for different types of clustering
methods could be found in Rokach and Maimon [2005]. In this work, we use the k-means
clustering technique on the rank correlation matrix Mτ to partition the rain gauge stations
into several clusters. The term “k-means” was first used by MacQueen et al. [1967], though
the idea goes back to Steinhaus [1956].

Given a set of observations (X1, X2, . . . , Xn), where each observation is a d-dimensional
real vector, k-means clustering aims to partition the n observations into k(≤ n) sets G =

{G1, G2, . . . , Gk} so as to minimize the within-cluster sum of squares (i.e. variance). For-
mally, the objective is to find:

argmin
G

k

∑
i=1

∑
x∈Gi

‖x− µi‖2 = argmin
G

k

∑
i=1
|Gi|Var Gi, (2.3)
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where µi is the mean of points in Gi. This is equivalent to minimizing the pairwise squared
deviations of points in the same cluster:

argmin
G

k

∑
i=1

∑
x∈Gi

‖x− µi‖2 ≡ argmin
G

k

∑
i=1

1
2|Gi| ∑

x,y∈Gi

‖x− y‖2. (2.4)

�

In our case, a set of observations (X1, X2, . . . , Xn) is the vectors (τS1 , τS2 , . . . , τSn) and n =

146.
The algorithm of k-means clustering could be found in MacKay [2003]. In practice,

kmeans is a function in the package stats of R software.

Number of clusters

To identify the optimal number of clusters, k-means clustering is thus applied on k =
2 to 7 clusters. The results of these 6 clusterings are presented in Fig. 2.8, where each
color refers to one cluster gathering n stations among the 146 rain gauge stations. Table 2.2
gives the number of stations in each cluster for each clustering. The number of rain gauge
stations in each cluster needs to be large enough to maintain robust statistics. Therefore, the
number of clusters should remain limited, but average intra-class distance needs also to be
as minimum as possible showing a certain form of class homogeneity. On the other hand,
to choose the number of clusters, one needs to deal with the average distance of inter-class
that needs to be as large as possible and with the intra-class variability that must be the
lowest as possible. Figure 2.9 illustrates these two quantities for the 6 clusterings.
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(a) 2 clusters (b) 3 clusters

(c) 4 clusters (d) 5 clusters

(e) 6 clusters (f) 7 clusters

Figure 2.8: 146 rain gauge stations are partitioned into several clusters by using k-means clustering
technique. From 2.8a: 2 clusters to 2.8f: 7 clusters.
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Table 2.2: Number of stations in each class, depending on the total number of clusters. The
partition refers to the ones given in Fig. 2.8.

2 clusters 67 79

3 clusters 48 58 40

4 clusters 22 37 40 47

5 clusters 22 27 36 25 36

6 clusters 22 26 18 25 19 36

7 clusters 22 19 25 28 18 19 15
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Figure 2.9: Average inter-class (in red) distance and intra-class (in blue) distances as a function of
the number of classes.

Based on the results illustrated in Fig. 2.9, we decide to choose 4 “homogeneous” areas
(i.e. Fig. 2.10) to represent the Cévennes-Vivarais . These 4 “areas” overlap pretty well
with the topographical features of the region, as detailed in Table 2.3, strengthening the
idea of a certain form of homogeneity. In Fig. 2.10, the red cluster refers to the Mountain
area presenting the highest elevation, whereas the yellow, blue and cyan, refer, respectively,
to the Piedmont between two ranges of mountains, to the Mediterranean affected by sea
forcing, and to the Northeastern hilly terrain.
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Figure 2.10: 146 rain gauge stations in the Cévennes-Vivarais region are partitioned into 4 clusters
which are located in the Mediterranean area (in blue), the hilly area (in cyan), the Piedmont area (in
yellow) and the Mountain area (in red).

Table 2.3: Partition of the studied area.

zone Conventional name Geographic feature Location Number of stations

1 Gard and Hérault Mediterranean South West 22

2 Drôme Hills North East 37

3 Ardèche Piedmont Central North 47

4 Haute-Loire and Lozère Mountain North West 40
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Statistical analysis

A first climatological analysis is proposed to examine the class features. The monthly
average precipitation is given, in Fig. 2.11, for the 4 zones from 2005 to 2014, based on the
hourly precipitation data. As usually mentioned, autumn presents the highest amount of
precipitation whatever the area [Nuissier et al., 2011; Molinié et al., 2012].

With the Piedmont area (zone 3), the Mountain area (zone 4) presents the highest
monthly average precipitation, in November, associated with orographic lifting leading to
local precipitation enhancement that may contribute to 40% of the rainfall regime as shown
by Godart et al. [2011]. The Mediterranean area (zone 1) presents important precipitation
variability, associated with synoptic conditions and sea-surface-temperature that strongly
modulate moisture content in the atmosphere and thus the resulting precipitation [see
Nuissier et al., 2008; Lebeaupin et al., 2006].
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Figure 2.11: Monthly precipitation evolution in the 4 zones from hourly precipitation 2005-2014
data set.

Figure 2.12 presents the comparison of the monthly average precipitation among the
4 zones. During summer, the Mediterranean area presents higher precipitation amounts
than other areas, and the Piedmont area has much less rain on average. On the contrary,
the Piedmont area accumulates more precipitation in the beginning of the year (such as
January, February and March). In October, the Hills area has much less precipitation than
other areas because of the topological feature.
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Figure 2.12: Comparison of the monthly average precipitation in the 4 zones from 2005 to 2014
using hourly precipitation data.

Due to the different topological features and climate conditions, the precipitation
fields over the Cévennes-Vivarais region can not be considered as a homogeneous
rainfall field. Hourly precipitation data from 2005 to 2014 have been selected to analyze
rainfall situation in the Cévennes-Vivarais region. The 146 rain gauge stations in the
Cévennes-Vivarais region are partitioned into 4 relatively homogeneous rainfall zones,
using the k-means technique.

2.2.2 Hydrological model inputs

As mentioned in the introduction, our target is to provide near-surface meteorological
variables that will be latter used as inputs of hydrological models. Such models are a sim-
plification of a real-world system that help in the understanding, the predicting and the
managing of water resources. The water balance may be seen as the simplest way to model
water flows in an hydrological system. Its equation is:

P = R + E + ∆S. (2.5)

where P is the precipitation, E is the (actual) evapotranspiration, R is the stream-flow and
∆S is the change in storage (as soil moisture or as groundwater in aquifers). The precip-
itation data have been described in Section 2.2.1. To solve the water balance, we need an
estimation of evaporation.
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Evaporation

A most accepted standard formula to estimate it is the Penman equation. Penman [1948]
combined the energy balance with the mass transfer method and derived an equation to
compute the evaporation from an open water surface from standard climatological records
of sunshine, temperature, humidity and wind speed. The original equation was developed
by Howard Penman at the Rothamsted Experimental Station, Harpenden, UK [see Penman,
1948]. The Penman’s equation for evaporation is:

Emass =
mRn + ρacpδega

λv(m + γ)
(2.6)

where
m = Slope of the saturation vapor pressure curve (Pa · K−1)

Rn = Net irradiance (W ·m−2)

ρa = density of air (kg ·m−3)

cp = heat capacity of air (J · kg−1 · K−1)

δe = water vapor pressure deficit (Pa)

ga = momentum surface aerodynamic conductance (m · s−1)

λv = latent heat of vaporization (J · kg−1)

γ = psychrometric constant (Pa · K−1)

which will give the evaporation Emass in kg/(m2 · s).
In words, evaporation from open water surfaces, like the ocean or lakes, can be sim-

ply estimated as proportional to the difference between the saturation vapor pressure at
the water surface and the actual vapor pressure above the surface, although the higher the
wind speed and the greater the turbulent mixing of the atmosphere, the greater the evapo-
ration. In Equation 2.6, most of parameters are constants or accessible variables such as net
irradiation. The water vapor pressure deficit is the difference between the absolute humid-
ity and the absolute humidity at saturation. The absolute humidity at saturation is mostly
a temperature dependent quantity. This so-called combination method was further devel-
oped by many researchers into many variants, especially suitable extended to cultivated
surfaces by introducing resistance factors.

Here, it is enough to say that to serve a water balance model, we need five main near-
surface meteorological variables which are Precipitation, Temperature, Solar radiation, Wind
speed, Absolute humidity = Water vapor pressure. Using the same variables, it will also be
possible to serve other energy-related issues like estimating the share of snow and rain in
precipitation and snow-melt rate. So these five variables are the target of this PhD work.
[XXX rephrase] All these near-surface meteorological variables data (except of precipitation
data from the OHMCV collection of local raingauges data) are available in ERA-Interim.
To illustrate the yearly evolution of the wind speed, the solar radiation, the temperature
and the water vapor pressure data in the 4 different zones, the associated 0.75◦× 0.75◦ grid
is chosen in each zone (Fig. 2.13). The 6-hours data from 2005 to 2014 in each grid are
accumulated into daily data for wind speed, solar radiation, temperature and water vapor
pressure.
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Figure 2.13: Location of ERA-Interim pixel (red rectangle) associated with each zone Rectangle (in
red) is the 0.75◦ × 0.75◦ grid associated to each zones. Points (in red) are the centers of the grids.
[XXX-NO Need new figure]

Figure 2.14 - 2.17 present the monthly evolution and its associated variability, of the
wind speed, the solar radiation, the temperature and the water vapor pressure, at the 4-
zone scale.

Even if globally and due to loose resolution of the ERA-Interim reanalysis, the meteoro-
logical variables in the 4 different zones present a similar behaviour as some discrepancies
appear, again confirming the necessity to split the whole region in 4 areas. Indeed, the
wind speed variability is the highest in the Piemont, probably due to the topographical
feature presenting a succession of deep valleys that locally may enhance divergence or
convergence of the incoming flow [Anquetin et al., 2003]. As expected, solar radiation, tem-
perature and water vapor pressure show a very strong seasonal evolution during the year.
Some discrepancies appear when comparing the 4 zones. In particular, the solar radiation
strongly differs within the 4 zones at the period of the year of maximum solar radiation
(spring-summer); likewise for the temperature, the 4 zones present the largest differences
in winter, when the topography plays an important role of the temperature evolution, and



2.2. Observation and re-analysis data 33

in summer-fall, the water vapor pressure is slightly different from one zone to the other as
the precipitation is.
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2.3 Conclusions

The main objective of this work is to produce stochastic simulations of input variables
for hydrology, these being first precipitation, then wind speed, solar radiation, temperature
and water vapor pressure, all for the estimation of evaporation, precipitation phase and
snowmelt. The study area “Cévennes-Vivarais ” is located in a well documented moun-
tainous terrain which contains several different climates and topological situations. This
region benefits of a long-term and qualified meteorological observation data, as necessary
to implement the simulations.

In the next chapter, we shall define the research questions to address.



CHAPTER 3

MAIN CHALLENGES

The hydrological models are used to manage water resources and assess hydrological
hazards. Application of hydrological models requires input variables such as precipita-
tion, temperature, solar radiation, water vapor pressure and wind speed which must be
modeled together.

Among all these input variables, precipitation is the most important because of its direct
link to water. On the basis of SAMPO (Simulation of Advected Mesoscale Precipitations
and their Occurrence), a stochastic rainfall generator developped at Irstea which can simu-
late spatio-temporal precipitation over a homogeneous domain, a first main challenge and
suggestion made to this PhD work was to expand SAMPO to make it possible to simulate
precipitation over a much larger, non-homogeneous domain.

A second main challenge is obviously to build a multivariate model to generate the
simulations of all input variables needed for a hydrological model. However, each input
variable has its own proper physical behaviour and distinct statistical properties.

In the following Section 3.1, by comparing the different approaches, the stochastic
weather generators are considered as the direction of the research modelling. A local
stochastic rainfall generator is thus introduced in Section 3.2. In Section 3.3 and 3.4, two
major research problems are highlighted that will guide this work.

3.1 Stochastic simulations

Before introducing the stochastic rainfall generator SAMPO, the choice of the stochastic
approach rather the physical approach in this PhD work must be justified. There are two
different types of climate models for the multivariate simulations:

1. physically based atmospheric models (e.g., several existing French models: Meso-NH
[Lafore et al., 1997], LMDZ [Hourdin et al., 2006] and AROME [Seity et al., 2011]);

2. stochastic weather generators (SWG).

The physically based atmospheric models use the physical theory described with math-
ematical equations, numerically solved. The simulated atmospheric variables are the state

39
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variables (i.e. pressure, temperature, wind) and the variables associated with the water
cycle (variables related to all phases of water, would it be water vapor, liquid or solid; for
the condensed phases it can be in suspension or precipitating).

On the other hand, the stochastic weather generators are statistical models. By using
statistical tools with observed atmospheric data, the weather generators aim at producing
simulations with similar statistical properties as observation. Though the history of the
developments of the physical models (1920s) is longer than the stochastic models (1950s),
there are several disadvantages by using the physical models comparing to the stochastic
models:

- The physical models are based on the computation of numerous meteorological vari-
ables, describing the whole atmospherical volume above the region of interest. The
stochastic models are built only on the concerned variables.

- Spatial and temporal resolutions are still an important problem for the physical mod-
els, even nowadays where computer power allows better resolution to address im-
pact issues with more accuracy. On the contrary, the spatial and temporal resolu-
tions of stochastic models are by design the ones of the observed data. Therefore, the
stochastic models generate more easily the simulations with finer spatial and tempo-
ral resolution (e.g., hourly or even sub-hourly resolution for the time scale and 1 km
resolution for the space scale, depending on the observation network).

- The computation time and cost are not negligible for running the physical models;
this is still a considerable issue since the structure of the physical models are more and
more complex. Generally, the physical models need hours, or even days to complete
one simulation ; this may come along with a tendency of communities involved in
physical atmospheric modelisation to investigate detailed events more than exploring
the behavioral variability of the system over long runs.

For these reasons, the stochastic approach has been chosen in this PhD work.

3.2 SAMPO

This section aims at presenting our local stochastic rainfall generator called SAMPO
(Simulation of Advected Mesoscale Precipitations and their Occurrence) developed by
Leblois and Creutin [2013]. SAMPO uses the Turning Bands Method (TBM), introduced in
its general form by Matheron [1973] and popularized for 2-D applications in hydrology by
Mantoglou and Wilson [1982]. Lepioufle [2009] and Lepioufle et al. [2012] gave the statistical
principles to estimate rainfall parameters in a context of spatial rainfall accumulating over
time, that the rainfall simulation aims to reproduce. Renard et al. [2011] and Labbas [2015]
used extension of the code for conditional simulation. SAMPO only works with one homo-
geneous zone.

The idea of considering separately the rainfall occurrences and rainfall amounts and one
homogeneous rainfall type at a time is quite general in several models, but usually these
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two processes are modeled in very different statistical ways [see Richardson, 1981; Racsko
et al., 1991; Bárdossy and Plate, 1991; Breinl et al., 2015].

SAMPO contributes to the stochastic approach with the particularity of adapting a clas-
sical Gaussian random field generator, the Turning Bands Method (TBM), to simulate ad-
vected intermittent rainfall fields. The relying assumptions are intimately related to the
time and space resolution of the simulated fields. The objective of SAMPO is to simulate
rainfall fields at a resolution of typically 10 min and 1 km2 over domains of several thou-
sands of square kilometers, where intermittency and advection are relevant features.

3.2.1 Turning Bands Method

Here is how Mantoglou and Wilson [1982] introduced TBM:

The Turning Bands Method(TBM) for the simulation of multidimensional
random fields is presented. These fields commonly occur in the Monte Carlo
simulation of hydrologic processes, particularly groundwater flow and mass
transport. The general TBM equations for two- and three-dimensional fields
are derived with particular emphasis on the more complicated two-dimensional
case. For stationary two-dimensional fields the uni-dimensional line process is
generated by a simple spectral method, a technique which can be generally ap-
plied to any two-dimensional covariance function and which is easily extended
to anisotropic and areal averaged processes. Theoretically and by example the
TBM is shown to be ergodic even for a finite number of lines, and it is demon-
strated that it rapidly converges to the true statistics of the field. Guide lines
are presented for the selection of model parameters which will be helpful in the
design of simulation experiments. The TBM is compared to other methods in
terms of cost and accuracy, demonstrating that the TBM is as accurate as and
much less expensive than multidimensional spectral techniques and more accu-
rate than the most expensive approaches which use matrix inversion, such as the
nearest neighbor approach. The uni-dimensional spectral technique presented
here permits, for the first time, the inexpensive and accurate TBM simulation of
any proper two-dimensional covariance function and should be of some help in
the stochastic analysis of hydrologic processes.

SAMPO uses the geostatistical TBM in 3D to generate series of rainy periods with ho-
mogeneous statistical properties. Rainfall fields are constructed from the product of two
independent fields (Fig. 3.1): (i) a Boolean indicator field representing pixels with zero and
non-zero rainfall; and (ii) a field of non-zero precipitation generated from a pre-specified
distribution.

The TBM simulation depends on parameters describing the at-site rainfall distribution
(e.g., mean and variance of a log-normal distribution) and the spatio-temporal properties
of the observed rainfall fields (e.g., the spatio-temporal variogram). SAMPO commonly
uses the inverse Gaussian distribution [Chhikara and Folks, 1974].
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Figure 3.1: Diagram of the simulation of rainfall field which are constructed as the product of two
independent fields: Fs(x) - simulated non-zero rainfall field; Is(x) - simulated intermittence field;
Zs(x) - Final rainfall field obtained. In the simulated intermittence field, the non-rainfall zone is
indicated in black. Source: modified from [Domingues-Ramos, 2002].

The general formulation of the intermittent rainfall fields RI proposed by Leblois and
Creutin [2013] takes the following form:

RI(xE, t) = ϕ(YR(xL, t.UR))1YI(xL,t.UI)≥λ (3.1)

where YR and YI are the two independent Gaussian functions used to represent nonzero
rainfall and intermittency with UR and UI featuring their respective dynamics; ϕ stands
for the anamorphosis used to care about the skewed distribution; λ characterizes the frac-
tion of intermittency; the combined use of Lagrangian xL and Eulerian xE coordinates takes
care about advection. The separate specification of nonzero rainfall, intermittency and ad-
vection is easy to carry on and gives flexibility to control the properties of the resulting
compound field. Lepioufle [2009]; Lepioufle et al. [2012]; Creutin et al. [2015] gave the princi-
pal for analyzing raingauge or weather radar data to these models.

3.2.2 Calendar of rainfall types

A second part of SAMPO represents the time variation of the rain field statistical prop-
erties from one homogeneous period to the next, including the alternation of rainy and
dry periods. As this separation of observed rainfall into homogeneous rainfall chunks is
an important starting point for the work in this thesis, and as it was not yet formally pub-
lished but in French language reports, short notes or academic dissertations (e.g., Leblois
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[2012]), it will be described below with some details. The obtained sequence of regional
rainfall periods directly governs the statistical properties of rainfall accumulation over long
time steps (weeks to years). The situation of a homogeneous rainfall field at one time step
called rainfall type is characterized by several rainfall descriptors such as the average rain-
fall intensity, the rainfall variation, the average indicator function or the spatial structure.
SAMPO simulates the occurrence of rainy periods in time using a Hidden semi-Markov’s
Model [Baum and Petrie, 1966; Barbu and Limnios, 2008] applied to rainfall types classified
by a Kohonen’s Self-Organization Map [Kohonen, 2001] (called the Kohonen algorithm or
SOM). More details of Self-Organization Map will be shown in Part II and Appendix B.

The Kohonen algorithm is applied to create clusters regrouping similar (in the descrip-
tors’ sense) time steps. An attractive feature of this algorithm is that the clustering is per-
formed with a neighboring constraint between clusters. In other words, clusters are orga-
nized so that neighboring clusters are similar, while distant clusters are more markedly
different. This organization creates a map where each cell represents a cluster. Figure 3.2 is
a simple example of using Self-Organization Map to classify time-steps documented over
a set of raingauges by time-series of rainfall precipitations into 9 rainfall types. The rain-

Figure 3.2: (a) Diagram of self-organization map with 9 clusters. Each cluster is represented by
three descriptors which are the average rainfall intensity (avg), the coefficient of variation (cv) and
the indicator function (ind). (b) The code values of three descriptors for 9 clusters.

fall type 3 represents the time steps when there are high precipitation intensity and rainy
everywhere. The rainfall type 6 represents the time steps when there are medium rainfall
intensity with small variation at about half the space. The rainfall type 9 represents the time
steps when there are no rains almost everywhere but there are still some locations with low
precipitation. Classes may seem numerous, but this can be justified on both the demand
and offer sides. On the demand side, rainfall types combines several aspects (intensity,
variability, coverage, etc.) and even a coarse distinction on each aspect will necessarily
generate a number of combinations. On the offer side, the rainfall types are not defined
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over one sole time-series observed at one raingauge, but over a set of many raingauges
sampling the same rainfall events; this later fact is in favor of a reasonable information /
parameter ratio.

Such mapping-with-continuity of rainfall types is suitable to possible further grouping,
as is common in SOM approaches. However, both the number of clusters and the topology
of the map need to be provided to the algorithm. Such information may be difficult to spec-
ify and require additional analyses. In the case of rain, besides absolutely dry time-steps
that are not included in the classification, the separation of classes is largely conventional.
The coupling of SAMPO and SOM algorithms presented above is quite straightforward.
Once the rainfall types are identified through Kohonen’s classification and the appropriate
transition and emission matrices of a (seasonal) hidden Markov model are identified, the
simulated time series of rainfall types called calendar will be obtained by considering the
weather types. And then we can use the TBM simulator to produce a space-time simulation
of rain-fields following the rainfall types prescribed by the calendar.

3.3 Heterogeneity problem of rainfall field

Since the 1970s, stochastic rainfall models are discussed and developed a lot [e.g., Todor-
ovic and Woolhiser, 1975; Bras and Rodríguez-Iturbe, 1976; Katz, 1977]. Stochastic Weather
Generators (SWG) are statistical models that aim at quickly simulating realistic random
sequences of atmospheric variables such as precipitation, temperature and wind. We can
find some classic models and different approaches in these review articles [Wilks and Wilby,
1999; Srikanthan and Mcmahon, 2001; Ailliot et al., 2015].

[XXX-NON rephrase] For large region of interest, the one of most challenging problems
in the construction of SWG when we want to simulate in a large surface is the regional
heterogeneity, would the origin of this fact be orographic or meteorological. Prior to the
1980s, heterogeneity was most often addressed (when recognized) by partitioning a spatial
field into relatively homogeneous regions [see Guttorp and Sampson, 1994]. Hingray [2003]
reviewed the different existing stochastic weather models, in particular, he distinguished
the difference between the multi-site models and the spatial models. Multi-site models
faithfully reproduce rainfall variability at a discrete set of locations, but don’t describe the
spatial variations in a continuous way. As a continuous description is very important to
the simulation of rainfall which displays one of the largest variability among meteorolog-
ical variables in time and space, we prefer to model a space-time weather generator that
can simulate the variables continuously in time and space, but the challenge is more com-
plicated.

Before solving this heterogeneity problem, the notion of homogeneity and heterogene-
ity must be well defined, because with different concepts, the definition can be changed.
Several criterion can be considered, for example the different climate, the different topog-
raphy or the combination of different aspects. On a statistical point of view, we define a
relatively homogeneous rainfall field by considering all stations in this field to have simi-
lar precipitation distribution, in the sense of rank correlation (see Section 2.2.1). Here, we
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insist that the definition of homogeneous rainfall field is relative, as using different rainfall
duration, or focusing on a specific season, could slightly change the boundaries of homo-
geneous zones within the rainfall field.

With our choice of definition of relatively homogeneity, a large heterogeneous rainfall
field can be partitioned into several relatively homogeneous rainfall zones (e.g., Fig. 2.10).
Each zone can be represented with its calendar of rainfall types. Based on the above situ-
ation, the main challenge in this PhD work for resolving heterogeneity problem is to pro-
vide joint simulated calendars of locally homogeneous rainfall types for use in SAMPO.
The question is how to coordinate the calendars of each zone in time and space.

3.4 Multivariate analysis for hydrological input variables

Water resources and hydrological modeling projects typically involve simulating sys-
tems made up of many component parts, strongly interrelated, and in some cases, poorly
characterized. Fatichi et al. [2016] currently reviewed the applications, challenges, and fu-
ture trends in distributed process-based models in hydrology. In most situations, the hy-
drological system is driven by stochastic variables (i.e. precipitation, potential evapotran-
spiration, etc.) and still involves uncertain processes and parameters. Recent articles [e.g.,
Devia et al., 2015; Sood and Smakhtin, 2015] reviewed several types of hydrological models
highlighting the important numbers of inputs required for handling simulations as accu-
rate as possible. These inputs concern topography, soil characteristics, vegetation, land
surface classification, and meteorological forcings. Runoff observations are used for evalu-
ation.

Thus, it is vital to provide long term simulations of the meteorological input variables
for hydrological models. The essential concern of generating well distributed simulations
of multivariate context is how to formally describe the relationships between variables and
their relevance to the problem being studied. Multivariate statistics is a form of statistics
encompassing the simultaneous observation and analysis of more than one outcome vari-
able.

There are two major problems associated with the multivariate modeling. The first one
concerns the representation of the observed data distributions as described by the multi-
variate model. The hydrometeorological data (precipitation, wind speed, cloud cover, rela-
tive humidity, etc.) often turn out to be non-Gaussian, which belong to bounded or skewed
distributions [Schoelzel and Friederichs, 2008]. So, attention needs to be paid on individual
distributions and it may be necessary to discuss the dependence of most of these hydrome-
teorological variables to figure out their relationships. The second difficulty deals with the
identification of the multivariate joint distribution. The textbook of Anderson [1958] edu-
cated a generation of theorists and applied statisticians. In this book, we can find the es-
sential problems and theories for multivariate analysis, especially, it gives us clear notions
and methods to deal with standard situations (e.g., the multivariate normal distribution)
and simple cases (e.g., the general linear hypothesis).

In hydrology, the development of the multivariate model began with the seminal paper
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of Richardson [1981] where the author modified the point rainfall generator described in
Katz [1977] by the introduction of three other meteorological variables, the minimum and
maximum temperatures and the solar radiation given at the daily time scale. This was the
first stochastic weather generator which took into account simultaneously four meterolog-
ical variables. Since then, many other works developed with the same idea. Two articles
[Wilks and Wilby, 1999; Srikanthan and Mcmahon, 2001; Hao and Singh, 2016] reviewed this
long list of multivariate approaches.

Several methods are now available. As examples, multivariate Gaussian mixture mod-
els [Marin et al., 2005; McLachlan and Peel, 2004] rely on parametric descriptions of the rela-
tionship among the variables, or the Bézier distribution [Wagner and Wilson, 1995], or the
Johnson distribution [Johnson, 1949]. Within these approaches, multivariate extensions of
the log-normal or gamma distribution are not possible. More generally, it appears that not
all distributions are suitable to multi-dimension extensions, and it is matter of fact that
variables to be linked usually have different distributions.

Given these limitation, resorting to homogeneous multi-dimensional distributions ap-
pears to not be the one and final good solution in general. Instead, the use of so called
copulas [e.g., Nelsen, 2007] became more and more popular. The main advantage of the
copula approach for hydrology relies on the selection of an appropriate model for the
dependence among the variables, represented by the copula, that proceed independently
from the choice of the marginal distributions. The copula approach can be seen as a simple
and straight forward method to find parametric descriptions of multivariate distributions
in a context of non-normally distributed random variables, eventually achieving the pro-
gram that was preliminary addressed by multidimensional approaches. Today, copulas
have now a strong record of applications, among others in finance and climatology. They
are also used in hydrology [e.g., Genest and Favre, 2007; Bárdossy and Li, 2008; Schoelzel and
Friederichs, 2008; Erhardt et al., 2015; Evin et al., 2017]. Georgakakos and Kavvas [1987] pointed
out an important and another interesting point of view when other meteorological vari-
ables are combined with precipitation in stochastic simulations. They reported that doing
so, it improved the capability of the models to capture the structure of the precipitation and
it also facilitated the assessment of the effect of climate change on the precipitation struc-
ture, as including some physical drivers as covariates could help a multivariate simulation
to hold over a variety of contexts. Given this general context, this PhD work will develop
its own multivariate modeling using the copula technique.

3.5 Conclusions

The main objective of this PhD work is to contribute to build and to evaluate a strategy
of climate regionalization targeting the specific needs for hydrology. The approach should
be able to be generalized in order to be applied in other territories under different climatic
conditions. The strategy of regionalization needs to respect the resonance in spatial and
temporal scales associating with atmospheric and hydrological phenomena. A simulation
in present climate is first targeted. The possibility of application under climate change must
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be kept in mind.
Two different major problems are introduced. The heterogeneity of rainfall field is first

discussed and appear to not have a real good solution among the existing models. There
are two types of rainfall models for capturing the spatial variability of entire rainfall field
which are spatial and multi-site models. Flexible but spatially discontinuous multi-site
models have less advantage for hydrological use (e.g., urban drainage risk). On the other
hand, spatial models do not have much flexibility to capture all different kinds of spatial
situations and variabilities and are often much simplified, and this is also true for SAMPO.

Another problem is how to build a multivariate model to provide the hydrometeorolog-
ical input variables such as precipitation, wind speed, solar radiation, temperature and wa-
ter vapor pressure for hydrological models. The inputs must to be statistically consistent,
within a large range of time and space scales, with observation data. As is well-known, the
multivariate joint distribution remains one of the major difficulties for multivariate model-
ing.

These two problems will be addressed in the two next parts of the thesis.
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Heterogeneity problem of rainfall field
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CHAPTER 4

STATE OF THE ART

Part II deals with the heterogeneity problem of rainfall field pointed out in Section 3.3.
This chapter first reviews the state of the art on this issue. Chapter 5 proposes two ap-
proaches which are parametric and non-parametric to resolve the problem. Chapter 6 di-
agnoses the statistical properties of two proposed approaches in time and space. Chapter 7
presents a third approach based on the copula technique and a disaggregation method.
Chapter 8 gives some conclusions.

4.1 Motivations

As mentioned in Section 3.1, this PhD work is based on stochastic simulations of rainfall
or other meterological variables. Several overview articles [Wilks and Wilby, 1999; Srikan-
than and Mcmahon, 2001; Ailliot et al., 2015] reviewed different types of stochastic weather
generators. Stochastic weather generators can be classified into two categories which are
rainfall models and multivariate models. Rainfall models can also be classified into three
categories which are (1) single-site models, (2) multi-site models and (3) spatio-temporal
models. For the heterogeneity problem, we concentrate on the rainfall models. Srikan-
than and Mcmahon [2001] gave an extensive review of rainfall models, including multisite
network modelling. Hingray [2003] reviewed different modelling approaches developed
over the last decades for the generation of space-time rainfall fields. Table 4.1 presents a
overview of available stochastic weather generators of different categories.

In hydrological models, we often need spatially distributed processes, the spatial depen-
dence between the weather inputs at different sites has to be accommodated. Especially,
this is very important to the simulation of rainfall which displays the largest variability
among meteorological variables in time and space. But we can’t ignore the utility of the
multisite models and some useful techniques in these models that may also help us in
modeling spatial correlations. For example, Georgakakos and Kavvas [1987] showed that
the multisite precipitation models were essential to allow the characterization of the pre-
cipitation process over spatial domains of area similar to medium sized river basins (e.g.,
hundreds to thousand of km2).
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In the next section, a few multisite and spatial models are shortly introduced.

4.2 Existing solutions

4.2.1 Kriging models

A daily spatio-temporal precipitation model, similar to the approach of Wilks [1998,
2009], is proposed by Kleiber et al. [2012]. They generated spatially and temporally cor-
related precipitation in two steps. The first step was dedicated to the generation of the
precipitation occurrence with a latent Gaussian process. The simulation of precipitation
amounts was then performed, in the second step, by means of a transformed Gaussian
process. This is similar to the approach used in SAMPO. At individual locations, Kleiber’s
model reduced to a Markov chain for precipitation occurrence and a gamma distribution
for precipitation intensity, allowing statistical parameters to be included in a generalized
linear model (GLM) framework. Statistical parameters were modeled as spatial Gaussian
processes, which allowed for interpolation to locations where there are no direct observa-
tions via kriging [Matheron, 1963; Cressie, 1992]. Kriging models, as a spatiotemporal model,
minimize and produce an uncertainty estimation at any location.

In the model of Kleiber et al. [2012], the estimations of both precipitation occurrence and
intensity are obtained by the use of an isotropic correlation function whose scale parameter
varies with time. For much more complex terrain or larger domain, alternative anisotropic
and non-stationary models [Baigorria et al., 2007] are more preferable. Another problem
appears when extreme rainfall events are concerned; in their context the gamma distri-
bution is no more suitable. Kleiber et al. [2012] suggested that it would be desirable to
combine their model with that of Buishand et al. [2008] who described a model for spa-
tially correlated extreme precipitation. And also, their approach requires no extra effort to
incorporate the important low-frequency behavior and interannual variability required of
precipitation generators. Verdin et al. [2015] proposed some extended works and developed
a GLM-based spatial weather generator which combined the precipitation and temperature
generator. The model can generate sequences at any arbitrary location.

4.2.2 Conditional models

Charles et al. [1999] extended the non-homogeneous hidden-state Markov model of
Hughes et al. [1999] by incorporating rainfall amounts. The joint distribution of daily
rainfall at n sites was evaluated through the specification of n conditional distributions
for each weather state (s = 1, . . . , N). The conditional distributions consist of regressions
of transformed amounts at a given site on precipitation occurrence at neighboring sites
within a set radius (e.g., d km). An automatic variable selection procedure was used to
identify the key neighboring sites. The precipitation model can be expressed as

z(i)s = θ
(i)
0s + ∑

k∈ni(d)
θ
(i)
ks + ε

(i)
s i = 1, . . . , n
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where the θ
(i)
ks are regression parameters, ni(d) denotes the set of indices of the key

neighboring sites for site i, ε
(i)
s is an error term modeled stochastically by assuming

ε
(i)
s ∼ N (0, σ2

s (i)) , and
z(i)s = Φ−1{F(y(i)s )}

in which F denotes the normal cumulative distribution function and F(y(i)s ) is the empirical
distribution function of y(i)s , the rainfall amount on days with r(i) = 1.

Another conditional model is proposed by Bárdossy and Plate [1992], they developed a
multi-dimensional stochastic model for the space-time distribution of daily rainfall linked
to atmospheric circulation patterns using conditional distributions and conditional spatial
covariance functions. The model is a transformed multivariate first-order auto-regressive
model with parameters depending on the atmospheric circulation patterns. The negative
values are declared as dry days.

4.2.3 Copula-based multisite models

Bárdossy and Pegram [2009] proposed the use of the multivariate copula to relate spa-
tial and temporal observation trends at many sites. As the models previously discussed,
the spatial and temporal dependence structure of hydrometeorological data sets are more
complex than using conventional correlation of the multivariate normal. Thomas and Fiering
[1962]; Matalas [1967] used the normal score transform for multi-site stochastic simulation
in hydrology at the earliest. The consideration of using multivariate copula instead of the
classical normal score transform is that the classical one is not rich enough to capture the
range of pair-wise correlations being strong at high rainfall values and weak at low rainfall
amounts.

Example of the precipitations in two pair stations

Extracted from Bárdossy and Pegram [2009], Figure 4.1 shows the locations of the obser-
vations used to build the Copula-based multisite model.

Same as Fig. 4.1, extracted from Bárdossy and Pegram [2009], Figure 4.2 shows two exam-
ples of empirical copulas derived from scatter-plots of pairs of daily recording rain gauges
(stations 1 and 23 as shown in Fig. 4.1). The empirical densities are given for two seasons,
Fig. 4.2(a), for summer (June, July, and August) and, (b), for winter (December, January,
and February). As illustrated by the positions of the horizontal and vertical lines, the sum-
mer appears to be drier. These figures exhibit a constant density for the “dry” conditions
located in the lower left corner for both seasons. The upper left and lower right quadrants
show the one-dimensional marginal densities of the wet gauge given that the other is dry.
All the conditional distributions are therefore clearly identified in only one figure.
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Figure 4.1: Locations of the rain gauge stations indicated by circled dots, around the Black Forest
within the German state of Baden-Württemberg used in this study; shading darkens with increasing
altitude above sea level. Stations 1 and 23 are colored brown and blue respectively. Source: [Bárdossy
and Pegram, 2009]

Figure 4.2: Two sample copulas for station pairs 1 and 23, the left panel (a) for Summer (June
to August) and the right panel (b) for Winter (December to February), more wet. The horizontal
and vertical lines indicate the probability limits for the dry/wet boundaries. Source: [Bárdossy and
Pegram, 2009]
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4.2.4 Condorcet model

The method was first proposed in a Master thesis [Ollagnier, 2013], and then devel-
oped and reported in an unpublished scientific rapport [Leblois, 2014]. The idea behind
this model is to combine two or several non-homogeneous areas into large-scale consensus
state by the use of mutual information.

Example: coordinating local atmospheric models together

Similarity of two weather-type sequences considered jointly can be summarized by a
contingency matrix that may demonstrate the tendency of given states to occur at the same
time, as the contingency matrix identify conditional probabilities of states in one sequence
given the state in the other sequence.

The criteria to express the strength of the dependency is the Mutual Information (MI).
Formally, the mutual information of two discrete random variables X and Y is defined as:

I(X, Y) = ∑
y∈Y

∑
x∈X

P(x, y) log
(

P(x, y)
P(x)P(y)

)
. (4.1)

where P is the probability function.
Among a set of sequence, maximum mutual information determaines the most similar

sequences, to possibly hierarchically aggregate. As an illustration, Figure 4.3 represents
a control plot showing the successive linkages established between 5 local atmospheric
weather classes systems for five countries: DE (Germany), DK (Denmark), FR (France),
NO (Norway) and UK (United Kingdom).

An important by-product of the Condorcet model is a table of historical consensus states
at all aggregation levels. As an illustration, Figure 4.4 shows an excerpt of the Condorcet
model outputs used to coordinate the weather types over 5 countries ; the weather types
were determined based on ERA-Interim on a 4 time-steps in a day basis.

The Condorcet model may thus be used to coordinate the rainfall types, separately iden-
tified at each time step for each homogeneous region. The coordination could thus provide
the rainfall pattern at large scale, also for a large heterogeneous areas, gathering n homo-
geneous regions states into one large scale state.

Limitations

The Condorcet model is a good solution to describe the state of a heterogeneous region.
But it gives too much priority to the spatial aspect, neglecting to consider temporal coher-
ence ; if we try do simulate the top-level and then local states conditionally to the top-level
state, temporal coherence is readily lost by the successive decisions taken. Starting from
this evidence, the next chapter tries to find a compromise that would preserve both space
and time correlations.
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Figure 4.3: Coordinating atmospheric weather classes over five countries by means of Condorcet
model. Source: [Leblois, 2014]

Figure 4.4: Excerpt of a table of historical states at all aggregation levels. Each column has 36
weather classes (which are not the same in each column). Source: [Leblois, 2014].





CHAPTER 5

METHODOLOGY I: COORDINATION OF RAINFALL
TYPES CALENDARS

A new approach is proposed in this chapter to better take into account the heterogene-
ity with stochastic rainfall simulator. As mentioned in Section 3.1, SAMPO is a spatio-
temporal rainfall simulator which only generates homogeneous rainfall fields. The model
input is a time-series of rainfall types (called calendar), provided in our case by means
of self-organizing map (SOM). Given a rainfall structure lead by different weather condi-
tions, it is not realistic to apply SAMPO over such rainfall field under the assumption of
homogeneity since it will probably demonstrate a clear heterogeneous behaviour. How-
ever, by using clustering method, a heterogeneous rainfall field can be partitioned into
several homogeneous rainfall zones (e.g., Fig. 2.10). Thus, SAMPO can be applied over
each homogeneous rainfall zones. A calendar is thus created for each homogeneous zones,
using the precipitation observations located in the zone (Section 3.2.2). These calendars
are observed calendars. A interesting feature is that the rainfall classes system almost surely
differ in each zone to accommodate local rainfall regime. The objective of this chapter is
to coordinate these observed calendars in time and space, to later simultaneously gener-
ate simulated calendars for each homogeneous region, and finally to import the simulated
calendars into SAMPO to generate separately the spatio-temporal simulations for each ho-
mogeneous rainfall zone. The spatio-temporal rainfall simulation over the whole region is
then obtained combining all the simulated homogeneous rainfalls.

One parametric approach (coupled hidden Markov model) and one non-parametric ap-
proach (resampling model) are introduced in this chapter to deal with the coordination of
rainfall-type calendars. Figure 5.1 presents the complete methodology used for the coordi-
nation.
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hourly precipitation data of the 146 gauge stations from 2005 to 2014 (mm)
Time S1 S2 S3 … S144 S145 S146

2005/01/01 00:00 0 0 0 … 0 0 0

2005/01/01 01:00 0.5 0 0 … 0.2 0.4 0.2

… … … … … … … …

2014/12/31 23:00 0 0.2 0 … 0 0 0

↓
Step 1 clustering algorithm

↓
hourly precipitation data of the 4 zones from 2005 to 2014 (mm)

zone A zone B zone C zone D

Time SA1 … SA22 SB1 … SB40 SC1 … SC47 SD1 … SD37

2005/01/01 00:00 0 … 0 0 … 0 0 … 0 0 … 0

2005/01/01 01:00 0.5 … 0 0 … 0.4 0 … 0.2 0.2 … 0

… … … … … … … … … … … … …

2014/12/31 23:00 0 … 0 0.2 … 0 0 … 0 0 … 0

↓ ↓ ↓ ↓
Step 2 Creation of rainfall types calendar

↓ ↓ ↓ ↓
Time observed calendar 

A
observed calendar 

B
observed calendar 

C
observed calendar 

D
2005/01/01 00:00 A17 B11 C02 D16

2005/01/01 01:00 A10 B13 C02 D16

… … … … …

2014/12/31 23:00 A17 B08 C17 D17

↓ ↓ ↓ ↓
Step 3 coordination model

↓ ↓ ↓ ↓
Time step simulated calendar 

A
simulated calendar 

B
simulated calendar 

C
simulated calendar 

D
t1 A17 B17 C17 D17

t2 A11 B06 C17 D05

… … … … …

tn A17 B11 C10 D17

↓ ↓ ↓ ↓
Step 4 SAMPO

↓

n consecutive simulated rainfall fields

Figure 5.1: Framework of the coordination of rainfall-type calendars.
Step 1: Determination of the homogeneous rainfall regions using the clustering algorithm to par-
tition the 146 hourly raingauge stations; Step 2: Creation of the observed calendars, one for each
individual zone, using the hourly precipitation data; Step 3: Coordination of the observed calendars
and generation of the simulated calendars, one for each individual zone; Step 4: Simulation of the
rainfall fields over the whole region.
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As mentioned in the previous chapters, the region of interest is the Cévennes-Vivarais
(Fig. 2.1) that benefits of long term observation data. In Fig. 2.2, the locations of the 146
hourly rain gauge stations are shown; this work uses their records from 2005 to 2014. As
presented in Section 2.2, the partition of the whole area in several homogeneous regions
was done based on the k-mean clustering algorithm of these records and lead to 4 homo-
geneous zones (Fig. 2.10). Figure 5.2 presents the partition of the whole region into the 4
homogeneous rainfall zones on a nearest neighbor basis. The notations, zone A, B, C and
D, are preferred here in this chapter, to facilitate mathematical expression and, thus replace
zone 1, 2, 3 and 4 (Table 2.3) respectively.

zone A 
 Mediterranean

zone B 
 Hills

zone C 
 Piedmont

zone D 
 Mountain
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Figure 5.2: Partition of Cévennes-Vivarais region into the 4 homogeneous rainfall zones (blue con-
tours).

5.1 Creation of a rainfall-type calendar for each homoge-
neous zone

Since each zone is considered as homogeneous, at each time step, the rainfall structure
is represented as a rainfall type (Section 3.2.2). There are 4 rainfall descriptors used for clas-
sification of rainfall type. These descriptors are chosen with their hydrological significance
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in mind. They are:

1. the average rainfall intensity over all the gauged stations; it represents the quantity
of precipitation over the whole zone.

2. the coefficient of variation of non-zero rainfall intensity; it represents the variability
of non-zero rainfall intensity inside the zone.

3. the average indicator function or rainfall intermittency; it represents rainfall fre-
quency over the zone.

4. the Geary’s C spatial-correlation coefficient; it represents the spatial structure [Geary,
1954; Khalili et al., 2007; Banerjee et al., 2014].

The descriptors are normalized between 0 and 1 to balance their weight in the classi-
fication. The classification is made without considering the associated uncertainties. The
self-organizing map (Kohonen algorithm) classifies rainy types out of 87648 steps (10 years
at hourly time step) into 16 types (or classes). The type 17 is the dry class. Figure 5.3 shows
the self-organization maps in each zone with 4 descriptors. Table 5.1 gives the code vectors
for the 16 rainfall types with 4 descriptors by using SOM algorithm. The content of each
class is relevant to rainfall modeling as in [Leblois and Creutin, 2013; Creutin et al., 2015].
However, advection is not considered in the present context; the rainfall is analyzed from
a Eulerian perspective (as seen from the ground) and simulated as such.

Table 5.1: Self-organizing map with the 16 rainfall types. Left: the order of the 16 rain-
fall types in self-organizing maps as presented in Fig. 5.3. Right: the code vectors for
each rainfall type with the 4 descriptors by using Kohonen algorithm, example of zone
D. “avg” (in mm) stands for the average rainfall intensity over all the gauged stations;
“cv” (without unit) stands for the coefficient of variation of non-zero rainfall intensity;
“ind” (without unit) stands for the average indicator function or rainfall intermittency and
“GearyC” (without unit) stands for the Geary’s C spatial-correlation coefficient. [XXX-NO
Units should be indicated]
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Figure 5.3: Results of the classification, in 16 rainy classes, using Kohonen algorithm for the 4
homogeneous zones. The classification is based on four descriptors: the average total rainfall(avg),
the coefficient of variation of non-zero rainfall(cv), the average indicator function(wetness) and the
Geary’s C spatial-correlation coefficient(gearyC).
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The classification thus provides the observed calendars of rainfall types for each zone,
as illustrated in Table 5.2. Structurally, the calendar analysis could be conducted for any
rainfall duration. In our case, the considered data are:

- hourly observed gauge precipitation at the 146 stations from 01/01/2005 to
31/12/2014 (10 years = 87648 hours);

- 4 homogeneous rainfall zones (A, B, C, D) as a partition of the 146 stations;

- 4 rainfall-type calendars (SA, SB, SC, SD), one for each of the 4 homogeneous rainfall
zones;

- each calendar has its own 17 rainfall types ({A1, A2, . . . , A17} refer to zone A,
{B1, B2, . . . , B17} to zone B, {C1, C2, . . . , C17} to zone C and, finally, {D1, D2, . . . , D17}
refer to zone D);

- each calendar gathers 87648 time steps.

Table 5.2: Hourly calendar for each of the 4 zones for the 2005-2014 period. There are 17
rainfall types in each zone, the type 17 is the dry class and the other 16 types are the rainy
classes.

At a time step t, the heterogeneous rainfall field at the whole Cévennes-Vivarais scale, is
described by (Ait, Bit, Cit, Dit), it ∈ [1, 17]. With 17 different rainfall types in each calendar,
there exist 174 = 83521 possible joint rainfall types for (Ait, Bit, Cit, Dit) at each time step.
The 4 calendars can be thus considered as one calendars SABCD with 174 = 83521 possible
joint rainfall types for the entire Cévennes-Vivarais region. Theoretically, SABCD can be
modeled by the Markov model with transition matrix from one time step t to next time
step t + 1. But the dimension of such transition matrix will be 174 × 174. Not only it will
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be difficult to model with actual computer capacity, but anyhow the data don’t provide
evidence for transition probability.

In the next section, a coordination method is proposed to overcome this dimension prob-
lem. It then allows the generation of realistic simulations. The coordination aims at build-
ing a model that can generate the simulations corresponding to the observed rainfall-type
calendars. That means:

- the spatial synchronicity (Ait, Bit, Cit, Dit) must be as similar as possible between the
simulations and observed rainfall-type calendars;

- the temporal correlation of the simulations in each zone must be as similar as possible
to the one of observed rainfall-type calendar in the same zone.

The coordination is built in two phases. In the first one, the spatial synchronicity is modeled
for the 4 homogeneous rainfall zones by using hierarchical method and hidden Markov
models. In the second phase, a reorganization method is proposed to re-organize the rain-
fall types sequences which are generated by previous hierarchical hidden Markov models
in order to respect the observational evidence for observed length of stay. The reorgani-
zation method is applied separately in each homogeneous rainfall zone for optimizing the
temporal correlation of rainfall-type simulations. A final check insures that the result is a
good approximation to both criteria.

5.2 Hierarchy of homogeneous zones: Coupled Hidden
Markov Model

This new approach aims at reducing the bias in temporal correlation by coupling two
similar sequences of rainfall-type of different domains while respecting the joint probability
matrix. The idea is thus to couple two or several hidden Markov models to obtain one
“coupled” hidden Markov model that correctly presents the joint situations.

5.2.1 Hidden Markov Models

This section presents how hidden Markov models (HMMs) can be used in stochastic
rainfall modeling. Special cases of (two-state) HMMs for precipitation occurrence were
presented by Foufoula-Georgiou and Lettenmaier [1987]; Smith [1987]. HMMs were later in-
troduced formally as a general mean of modelling single-site and multisite precipitation oc-
currence data by Zucchini and Guttorp [1991]. In their model, precipitation occurrences were
assumed to be conditionally independent across the spatial network, given the weather
state. Figure 5.4 presents a diagram of hidden Markov model.

Rabiner [1989] is probably the most referenced contribution for hidden Markov mod-
els. In this article, the author clearly showed three basic problems of interest that must be
solved with such modeling approach, and being useful in real-world applications. These
problems are the following:
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Figure 5.4: Hidden Markov model: {Xn} refers to the hidden states, and {Yn} to the observation
sequence; π is the matrix of transition probabilities for {Xn} and ψ is the matrix of emission proba-
bilities from {Xn} to {Yn}.

Problem 1: Given the observation sequence Y = Y1Y2 . . . YT and a model

λ = (π, ψ, θ), how do we efficiently compute P(Y|λ), the

probability of the observation sequence, given the model ?

Problem 2: Given the observation sequence Y = Y1Y2 . . . YT and the model λ,

how do we choose a corresponding state sequence X = X1X2 . . . XT

which is optimal in some meaningful sense (i.e. best “explains"

the observations) ?

Problem 3: How do we adjust the model parameters λ = (π, ψ, θ) to maximize P(Y|λ) ?

Rabiner [1989] also discussed explicitly the problems and gave the solution of them.
More theoretical contents about HMMs can be found in Appendix A.

• Problem 1: Evaluation (Forward algorithm);

• Problem 2: Decoding (Viterbi algorithm);

• Problem 3: Training (Baum-Welch algorithm).

The idea of coupled hidden Markov models is to model systems of multiple interact-
ing process. The method is firstly mentioned in Brand [1997]. In the past 20 years, this
method has been very useful in vision and speech applications [e.g., Natarajan and Nevatia,
2007; Nefian et al., 2002]. SAMPO uses the single hidden Markov model to simulate rainfall
precipitation in one homogeneous field, so the idea is to coupled two (or more) hidden
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Markov models of homogeneous rainfall zone to generate a heterogeneous field (Fig. 5.5).
The main approach is to reduce the joint situations of two sequences of the hidden states.
The modeling part is focused on the hidden states since we want to keep the most informa-

Figure 5.5: How to couple two HMMs ? The circles refer to the hidden states and the squares to the
observations. Source: Brand [1997]

tion as possible on the coupled hidden sequence with the least parameters as possible to
generate both two hidden sequences. The reason why we want to improve the model with
a more complicated model is that the hidden sequence is the Markov chain which gives
the temporal property. For example, in Fig. 5.6, there are different types of probabilities
between two HMMs, which one will be the most important ? Furthermore, how the tem-
poral correlations remain in these joint probabilities ? We shall also use the singular-value
decomposition (SVD) technique to diagnose the performance of this approach (Fig. 5.6).

Figure 5.6: Left: the transition probabilities between two HMMs; Right: the cross probabilities
between two HMMs. Source: Brand [1997]

5.2.2 Coupled Hidden Markov Models

The calendar of a homogeneous zone is represented by the hidden Markov model which
contains a transition matrix and a emission matrix. This hidden Markov model also pro-
vides an associated hidden state sequence (called Viterbi sequence) with much less classes
than the rainfall types in the calendar. Appendix A describes how to create a HMM cor-
responding to the calendar with an optimized hidden state sequence (Viterbi sequence)
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which has less number of choices than rainfall-type calendar, which is a real advantage.
That’s the main idea to reduce the dimension problem.

In our case, for the 17 rainfall types, the number of hidden states is reduced to 4 (Table
5.3).

Table 5.3: Reducing the sequences of the 17 observed rainfall types into the optimized
sequences of the 4 hidden types. Left: the 4 calendars in each zone (17 rainfall types in
each calendar). Right: the 4 optimized hidden type sequences in each zone (4 hidden types
in each hidden type sequence).

The idea of creating a model to generate several simulated calendars simultaneously
is to apply hierarchically the Markov reduction to joint states until all zones will be con-
nected. Figure 5.7 presents how the hierarchical process works in a typical case. The con-
struction of the model is representing from bottom (local ground evidence) to top (large
scale rainfall type pattern), whereas the simulation generated afterward by the model is
building from top to bottom. In each step of aggregation, two sequences (e.g., calendars
or Viterbi sequences) which have the most similarity are chosen to be combined. To assess
the similarity, the Mutual Information (MI) is used as a natural criterion and is based on
the co-occurrence matrix (see Equation 4.1). As it is shown in Fig. 5.7, the sequence B and
the sequence C have the maximum mutual information among all the pairs of sequences
{A, B, C, D}, so Aggregation 1 combines the sequence B and the sequence C to obtain a se-
quence (B+C) for the further modeling. With the same process in each aggregation step, the
final sequence (B+C+D+A) can be modeled to generate the simulations. This is the main
approach called Coupled Hidden Markov Model (CHMM) which applied hierarchically
HMMs in each aggregation to construct the coordination model.

The advantage of hierarchical process is not just to make certain order for combining,
but also to reduce the dimension of the joint situations of combined sequence in each ag-
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Figure 5.7: Diagram of hierarchy by using CHMM.

gregation. The hierarchical process will begin with the optimized Viterbi sequences with
the 4 hidden types instead of the 17 rainfall types (Table 5.3). This choice is also made by
reducing the number of classes at the beginning. For Aggregation 1, zone B and zone C
have been combined due to the maximum mutual information (MI_max= 0.43) among all
pairs. So the hidden type sequence HSB and HSC combine as the joint situations sequence
for zone (B+C). Then, by applying HMM to the joint situation sequence (with 16 possi-
ble joint situations), an optimized hidden type sequence HSBC (with 4 possible hidden
types corresponding to 16 joint situations) presents zone (B+C) for the next aggregation.
Table 5.4 presents how Aggregation 1 works. Table 5.5 presents the entire hierarchical pro-
cess (Fig. 5.7) of merged zones (B+C), (B+C+D) and (B+C+D+A).

The CHMM contains all the transition and emission matrix when HMM is applied
in each aggregation during the modeling. In our case, the final sequence HSBCDA of
(B+C+D+A) is also modeled by HMM, then this HMM associated (B+C+D+A) generates
the initial simulation. With the emission matrix, two hidden sequences for both merged
(B+C+D) and C zones are generated after the simulations of merged zone (B+C+D+A). The
simulated sequences for individual zone A, B, C and D are generated after several times of
the same procedure.

Within hierarchical simulation, the spatial co-occurrence is preserved, but temporal con-
tinuity is broken by successive draws in emission matrices. So we need a final step to en-
force correct temporal distribution of each type within each homogeneous zone. In our
case, we propose to guide the simulation by the use of the length of stay within types. The
length of stay distributions for wet spell and dry spell have important impact in hydro-
logical application (e.g., heavy rain accumulation, drought, etc.), this is the reason why we
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choose this criterion: combined with rainfall types content, it represents the distribution of
accumulated rainfall.

Table 5.4: Using HMM to reduce the number of joint situations of a combined hidden type
sequence. Here is the example of combining zone B and zone C to obtain a hidden type
sequence for zone (B+C).

Table 5.5: Aggregations of 4 zones by using CHMM corresponding to the diagram of hier-
archy Fig. 5.7.
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5.2.3 Re-organizing method

The objective of reorganization is to optimize the time-series of simulated sequence in
each zone with local observed length of stay distributions. The main idea is to reorganize a
simulated sequence to a new (reorganized) sequence which preserves the synchronicity as
much as possible with the original simulated sequence, and without changing the number
of the types of the simulated sequence. The reorganization aims at following the local
observed length of stay distributions, as much as possible.

Given S, a time-series of a simulated sequence given one rainfall type at each time step.

• n is the length of the simulated sequence S;

• m is the number of rainfall types;

• T = {T1, T2, . . . , Tm} is the set of rainfall types;

• S = {S1, S2, . . . , Sn} (where Si ∈ T, for i ∈ {1, . . . , n}) is a simulated sequence gener-
ated by CHMM.

• O = {O1, O2, . . . , ON} (where Ot ∈ T, for t ∈ {1, . . . , N}) is the observed calendar, O
and S therefore consist of the same set of rainfall type T.

In general, the length of simulated sequence S is much longer than the length of ob-
served calendar O, that means n� N.

The objective is to reorganize S to obtain a new sequence named C = {C1, C2, . . . , Cn}
(where Ci ∈ T, for i ∈ {1, . . . , n}). The three criteria of the reorganization are:

Criterion 1: Card{Tk ∈ C} = Card{Tk ∈ S}, for all k ∈ {1, . . . , m};

Criterion 2: {the length of stay distribution for Tk in C} ∼= {the length of stay distribu-
tion for Tk in O}, for all k ∈ {1, . . . , m};

Criterion 3: to maximize the synchronicity between C and S,

max

(
n

∑
i=1

1Ci=Si

)
. (5.1)

Criterion 1 means that the number of each rainfall type in C is exactly the same as in S. Cri-
terion 2 is the main feature that we want to make sure that the length of stay distributions of
the simulated sequences will respect the observed calendars. Criterion 3 is also important
because the synchronicity between S and C was granted by CHMM approach. However,
while Criterion 1 is maintained by design, some loss must be accepted on Criterion 3 to
reach Criterion 2.

The re-organizing method is presented as follows. We define (Sp, . . . , Sq), for 1 ≤ p <

q ≤ n, a sub-sequence of S of length q − p + 1 as a fragment of the rainfall type Tk (k ∈
{1, . . . , m}) when (Sp, . . . , Sq) consists of q − p + 1 consecutive rainfall type Tk, and also
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both the time step just before Sp and the time step just after Sq are not the rainfall type Tk.
That means

Sp−1 6= Tk, Sh = Tk, Sq+1 6= Tk, for h ∈ {p, . . . , q}. (5.2)

If (Sp, . . . , Sq) is a fragment of the rainfall type Tk, then we call the length of stay (or dwell
time) for rainfall type Tk of (Sp, . . . , Sq) is (q− p + 1).

MS, the table of lengths of stay for each rainfall type for sequence S is presented by
Table 5.6. dS is the maximum length of stay among all types and Sk,l (for k ∈ {1, . . . , m},
l ∈ {1, . . . , dS}) is the frequency of length of stay l for type k.

Table 5.6: Table of lengths of stay for each rainfall type for sequence S: MS

1 2 . . . dS

type 1 S1,1 S1,2 . . . S1,dS

type 2 S2,1 S2,2 . . . S2,dS
... ...

... . . . ...

type m Sm,1 Sm,2 . . . Sm,dS

Correspondingly, MO, the table of lengths of stay for each rainfall type for observed
calendar O is presented by Table 5.7.

Table 5.7: Table of lengths of stay for each rainfall type for sequence O: MO

1 2 . . . dO

type 1 O1,1 O1,2 . . . O1,dO

type 2 O2,1 S2,2 . . . O2,dO
... ...

... . . . ...

type m Om,1 Om,2 . . . Om,dO

In probability theory, Kullback-Leibler divergence [Kullback and Leibler, 1951] is a mea-
surement of the differences between two probability distributions. For discrete probability
distributions P and Q, the Kullback-Leibler divergence from Q to P is defined in MacKay
[2003] to be

DKL(P ‖ Q) = ∑
i

P(i) log
P(i)
Q(i)

(5.3)

In our case, for a rainfall type Tk (for k ∈ {1, . . . , m}), the Kullback-Leibler divergence from
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(Sk,1, Sk,2, . . . , Sk,dS) to (Ok,1, Ok,2, . . . , Ok,dO) is

DKL =
max(dS,dO)

∑
l=1

 Ok,l
N
∑

i=1
1Oi=k

 log



Ok,l
N
∑

i=1
1Oi=k

Sk,l
n
∑

i=1
1Si=k


=

max(dS,dO)

∑
l=1

O(k, l) log
O(k, l)
S(k, l)

(5.4)

which
Ok,l

N
∑

i=1
1Oi=k

(noted O(k, l)) is the probability of length of stay of l for the rainfall type Tk

in observed calendar O and
Sk,l

n
∑

i=1
1Si=k

(noted S(k, l)) is the probability of length of stay of l

for the rainfall type Tk in the observed calendar S. We can use this measurement to examine
whether the simulated length of stay distribution for each type is similar to the observed
one. Equation 5.4 shows if S(k, l) equals to O(k, l) (for all l ∈ {1, . . . , max(dS, dO)}), then
DKL will be equal to 0, meaning that the simulated sequence S has exactly the same distri-
bution of length of stay for the rainfall type Tk.

So now, the idea is to create a table of lengths of stay MW (Table 5.8) to follow the next
three rules.

Table 5.8: Table of lengths of stay for each rainfall type for sequence W: MW

1 2 . . . dW

type 1 W1,1 W1,2 . . . W1,dW

type 2 W2,1 W2,2 . . . W2,dW
... ...

... . . . ...

type m Wm,1 Wm,2 . . . Wm,dW

First, the maximum length of stay among all types of MW is the same as MO.

dW = dO. (5.5)

Second, MW contains the same quantity for each type.

dW

∑
l=1

Wk,l =
dS

∑
l=1

Sk,l for all k ∈ {1, . . . , m}. (5.6)

Third, MW has the same length of stay distribution for each type as MO. But on account
of previous rule (Equation 5.6), the consistency of the two length of stay distributions will
be approximated.

W(k, 1)
O(k, 1)

∼=
W(k, 2)
O(k, 2)

∼= . . . ∼=
W(k, dW)

O(k, dO)
⇔ Wk,1

Ok,1

∼=
Wk,2

Ok,2

∼= . . . ∼=
Wk,dW

Ok,dO

for all k ∈ {1, . . . , m}.

(5.7)
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With Equation 5.5, 5.6 and 5.7, we obtain a new table of lengths of stay MW which rep-
resents the very similar length of stay distribution as MO for each rainfall step. Basically,
we shift a minimum number of types in the sequence S to make a corrected sequence C
(from S) that has the exactly the same table of lengths of stay MW . Once MW is fixed, we
reorganize S to obtain a corrected sequence C by following the previous three criteria.

Criterion 1 means that the total quantity of each type in C is the same as S;

Criterion 2 means that the table of lengths of stay of C is MW ;

Criterion 3 means to maximize the synchronicity between C and S [XXX-NO
rephrase].

Criterion 1 is preserved by design. Criterion 2 is easy to check, so Criterion 3 is our priority.
Criterion 3 means to make the minimize changes comparing to S, the question is how to
shift a minimum number of types in S to reach the Criterion 2.

The principle of the reorganization approach is similar to the so-called greedy algorithm,
that is an algorithm which always makes the choice that seems to be the best at that mo-
ment. This means that it makes a locally-optimal choice in the hope that this choice will
lead to a globally-optimal or at least usable solution. We thus follow the table MW and
begin with the maximum (most “difficult block”) length of stay dW (= dO). For each length
of stay l (l ∈ {1, . . . , dW}) and for each type Tk (k ∈ {1, . . . , m}), we need to find the Wk,l

positions in S where we can place the Wk,l fragments of l-length for type Tk in C. These
positions will be chosen by shifting the minimum number of types in S.

Here is a simple example.
We have a sequence X = (T1, T3, T1, T2, T2, T1, T1, T3, T1, T1, T2, T1, T3, T2, T3, T1).

time step 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

type T1 T3 T1 T2 T2 T1 T1 T3 T1 T1 T2 T1 T3 T2 T3 T1

If a fragment (T1, T1, T1, T1) needs to be placed in X, we shall examine all segments (sub-
sequence) of length 4 in X. In this example, it does not exist a fragment (T1, T1, T1, T1), so
we begin with all segments of length 4 which contain 3 types T1. The possible candidates
are

time step 6 7 8 9 7 8 9 10 9 10 11 12

type T1 T1 T3 T1 T1 T3 T1 T1 T1 T1 T2 T1

But if first two candidates are chosen, then X will have a fragment (T1, T1, T1, T1, T1) of
length of 5 instead of length of 4 because of the time steps 6 and 10 are also type T1. So
we have to avoid such mistake to find the right place for the expected fragment in the
re-organizing method.

The algorithm of the re-organizing method for obtaining a corrected sequence C is pre-
sented as follows:
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1. set C = S;

2. the initial length of stay l := dW(= dO);

3. for k from 1 to m, Wk,l fragments of type Tk of length l need to be placed in C by
making the minimum changes comparing to S;

4. fix the time steps of placed Wk,l fragments in the sequence C (they will not be replaced
anymore in further algorithm);

5. then l := l − 1 and repeat the step 2 and 3.

In the end of the re-organizing algorithm, the sequence C has

- the same quantity of each rainfall type as the sequence S, that means Criterion 5.2.3
is respected.

- the same table of lengths of stay as MW which is very similar to the table of lengths
of stay MO, that means Criterion 5.2.3 is respected.

Table 5.9 shows the percentage of preserved time steps between the simulated sequence
S and the corrected sequence C in each zone. The percentages reach more than 90% in our
case.

Table 5.10 shows the percentage of spatial synchronicity of the 4 zones between the sim-
ulated sequences and the corrected sequences. We can see that there are more than 96
percent of time steps when at least 3 zones have the same synchronicity as the sequences
before the reorganization. This is important because the spatial rainfall type prescribed by
the hierarchical simulation is respected at all these time-steps.

Table 5.9: For each zone, percentage of the total number of time steps when the corrected
sequence C and simulated sequence S have the same rainfall types after the reorganization
algorithm.

zone 1 zone 2 zone 3 zone 4

92.7% 91.5% 88.1% 90.5%

Figure 5.8 presents the methodology schema of CHMM with re-organizing method from
the beginning to the end.
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Table 5.10: Percentages of spatial synchronicity between the simulated sequences and the
corrected sequences. The first column corresponds the percentage of time steps when the
simulated sequences and the corrected sequences have the same rainfall types in all 4 zones.
The last column corresponds to the percentage of time steps when the simulated sequences
and the corrected sequences do not have any similar rainfall type in each zone.

4 3 2 1 none

81.59% 15.70% 2.48% 0.22% 0.01%

Figure 5.8: Overview of rainfall simulation by coordination of homogeneous zones.
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Step by step

To summarize, the following steps (Fig. 5.8) are followed to get the simulation of an
heterogeneous rainfall:

1. the partition a heterogeneous rainfall field to several homogeneous zones;

2. the creation of an observed calendar in each time step for each zone by using self-
organizing maps (Kohonen classification);

3. the generation of the simulated calendar of each zone by using CHMM;

4. the reorganization of the individual simulated sequence generated previously in
each zone with following objectives:

• the reorganized sequences will have the same the length of stay distributions
in each type as the observed calendars;

• the reorganized sequences will have the same number of each rainfall type as
the simulated sequence;

• the reorganized sequences will keep the maximum number of rainfall types
equal to the simulated sequence.

5.3 Non-parametric method: Resampling technique

The resampling model presented in this section is an alternative to the coupled hidden
Markov model in Section 5.2. Common resampling techniques include bootstrapping, jack-
knifing and permutation tests [Efron, 1982]. In this PhD work, the resampling method used
is bootstrapping, which draws randomly with replacement from available data.

The starting point is that for the objective of coordination of rainfall types calendars,
both spatial and temporal aspects are important to be captured. More specifically, with
the case of hourly calendars for the 4 zones (Table 5.2), the resampling technique will be
applied to preserve the synchronicity of rainfall types of the 4 zones at each time step. To
construct one year of rainfall-type simulation corresponding to the historical calendars, the
procedure is the following (Fig. 5.9):

(1) defining t as a certain day in the year;

(2) choosing a random number of days n (e.g., between 10 days to 20 days);

(3) choosing a random year Y (e.g., between 2004 and 2015 in hourly case);

(4) targeting the same period of days in the chosen year as simulated year (e.g., the period
from date t to next n days in the year Y of observed calendars);
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(5) allowing a random shift of several days from the exact same period (e.g., between 0
and 15 days before or after the targeting period).

Figure 5.9: Diagram of resampling technique.

The algorithm is easy to implement and the long-term simulation is also simple to gen-
erate. A small number of numerical parameters of the method, however, must be chosen.
The above-mentioned values want (2) to honor the duration of rainfall/hydrological events
in the area and (5) to give some flexibility in the resampling, while keeping seasonality.

Next chapter, we will diagnose the simulations of the coupled hidden Markov model
with the reorganization method and the resampling method.



CHAPTER 6

RESULTS AND CONCLUSIONS FOR METHODOLOGY I

In this chapter, the results of four modeling approaches are analyzed, as well as their
capacity to reproduce the rainfall field at the Cévennes-Vivarais scale is examined. The first
modeling approaches is SAMPO applied over the entire rainfall field (monobloc). The 3
other modeling approaches are applied to SAMPO applied over each of the 4 homogeneous
zones, where SAMPO uses simulated calendars out of CHMM optimized by reorganization
method (reorg), simulated calendars out of resampling technique (resam), or simulated
calendars out of resampling technique optimized by reorganization method (resamreorg).

To get rid of possible interference with the peculiarities of the homogeneous simulation
technique used, the reference will not be the observed rainfall, but the result of combining
SAMPO simulated rainfall with observed/historical calendars as established from hourly
observed precipitation data from 2005 to 2014. This reference is denoted obs (observation),
but this (obs) properly only denotes observed calendars.

For all the models including the reference with observed calendars (obs), 50 replications
of 10 years hourly simulations are generated and analyzed with box-plot illustrations.

Figure 6.1 presents the domains of simulation. In each homogeneous zone, 5 windows
at different scales, 1km × 1km, 2km × 2km, 4km × 4km, 8km × 8km and 16km × 16km re-
spectively, are chosen to analyze the statistical properties and how they evolve with spatial
support. The larger 128km × 128km domain intersect all zones, so refers to an actually
heterogeneous region.

6.1 Statistical analysis

The simulation where conducted on hourly time step, but statistics are conducted on
daily accumulation, stressing on the temporal aggregation of the simulated fields. Fig. 6.2
- 6.9 present, for each homogeneous zone and for the 5 domains, the comparison between
the 5 models (referred with a different color) on features like the daily accumulation, its
standard deviation, yearly maximum value, average indicator function or wetness, wet
spell duration and its the standard deviation, dry spell duration and its standard deviation,
respectively.

79
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Figure 6.1: The Cévennes-Vivarais region with different domains of simulations. In each homoge-
neous zone, 5 domains are chosen at different scales, 2 km×2 km, 4 km×4 km, 8 km×8 km, 16
km×16 km and 32 km×32 km. The larger square of 128 km×128 km refers to the heterogeneous
region since it overlaps the 4 homogeneous zones. In color, precipitation intensity in mm/h is shown
as an example.

As illustrated in these Figures, the resampling technique gives a very good estimation of
historical statistics. The reorganization technique does not improve the resampling simu-
lation much better. The Markov parametric method CHMM with reorganization technique
performs as not as good as the non-parametric resampling method, but the diagnostics for
different statistics are not bad either when comparing to the reference simulations, obs,
based on historical rainfall types sequences. As expected, the SAMPO simulations over
the whole region give worst results in particular when compared to the “observations”.
This result clearly justifies the partition over the heterogeneous region into several homo-
geneous rainfall zones. Comparing the diagnostics of different zones, the CHMM with
reorganization technique gives the best results for zone C where there are less stations with
smaller surface.

Figure 6.2 shows the statistical fluctuations of the simulations for all models. The box-
plots of the different models are close, but they should be in the same level if the proportion
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of rainfall types in the simulations converges to the proportion of rainfall types in the obser-
vation. Figure 6.3 shows that the simulations of reorg lack variability when compared with
resam and resamreorg. Figure 6.4 shows that the simulation of reorg under-estimate ex-
treme values, that are not explicitly considered by the design of the hidden Markov models.
The facts that the simulations of reorg cover too much rain in space (Fig. 6.5) and are in-
consistent with the reference one at dry spell and wet spell (Fig. 6.6-6.9) also is a drawback
of HMM. That is because the random draws of simulations by HMM break the transition
probabilities of rainfall types in the observations. Non-parametric models like resam and
resamreorg are more capable to reproduce the extreme events.
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6.2 Spatial correlation

In Fig. 6.10 - Fig. 6.12, the inter-stations correlations are presented within each homo-
geneous zone, between the reference, obs, and the computed values with the monobloc,
reorg and resam models, respectively. As illustrated in Fig. 6.10, whatever the zones, the
inter-station correlations are not too bad. For a given zone, the correlations computed with
the simulated values are usually smaller than observed ones.

In Fig. 6.11 (CHMM with the reorganization method) and Fig. 6.12 (resampling model),
for a given zone, the inter-station correlations computed with the simulated values, what-
ever the model, are more accurate than the ones obtained with the monobloc simulation,
and this is good. But if we look at two stations located in two different zones, the inter-
station correlations is completely lost. It appears that due to the hierarchical simulation
containing a partition choice and independent rainfall simulation in each zone, simulated
rainfall values pertaining to distinct zones are conditionally independent. The correlation
reduces to the part conveyed / preserved by the rainfall typing and appears only zone
dependent, not distance dependent unless the zone is the same and the correlation within
SAMPO simulated fields appears. This is especially noticeable when we consider two sta-
tions in two different zones but located near the border of the zones, they should present a
strong correlation, what is not the case in the simulations, as can be seen clearly in Fig. 6.1.
This feature is not only unaesthetic, but correspond to a systematic bias.
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Figure 6.10: Inter-station correlations between hourly observation and monobloc simulation
(SAMPO applied to whole surface). The length of hourly simulation is 10x10 years.
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Figure 6.11: Inter-station correlations between hourly observation and CHMM-reorganization sim-
ulation. The length of hourly simulation is 10x10 years.
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Figure 6.12: Inter-station correlations between hourly observation and resampling simulation. The
length of hourly simulation is 10x10 years.
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6.3 Temporal correlation

Length of stay distribution

[XXX-YES change “length of stay” to dry/wet spells]
In this Section, the distributions of dry/wet spells are analyzed and discussed, since

they express the temporal correlation which is a major issue.
For each time step, if the hourly precipitation values of all rainfall gauge stations in the

zone (or the entire rainfall field) are 0, then the zone (or the entire rainfall field) is called dry
at the time step, otherwise the zone (or the entire rainfall field) is called wet. Figure 6.13 and
Figure 6.14 - Figure 6.15 present the distributions of dry/wet spells which are displayed for
each of the 4 models and compared to the reference, for the whole domain and for each of
the homogeneous zones, respectively.

As a first comment when looking at Fig. 6.13 - Fig. 6.15, the distributions of wet spell
retrieved from the 4 models are over-estimated to the reference one (red line in Fig. 6.13,
whatever the area (i.e. whole region versus each of the 4 homogeneous zones). For dry
spell, reorg performs well comparing with other models, especially for the whole domain
and zone A. However, both resampling models are under-estimated with respect to the
reference, especially for individual zones. This suggests that the reorganization method
prioritized dry spells, possibly because they occupy a majority of time steps in hourly scale.
However, the reorganization method is not able to improve the distribution of wet spell, it
may be due to the drawback of CHMM which can not produce satisfied simulations.
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Figure 6.13: Distributions of simulated dry (above) and wet (below) spells, for hourly precipitation.
The 4 models are: monobloc stands for SAMPO applied over the entire rainfall field, reorg for
SAMPO with CHMM optimized by reorganization method, resam for SAMPO with resampling
technique and, resamreorg for SAMPO with resampling technique and reorganization method.
These results are for the whole region. [XXX-YES]
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Figure 6.14: Distribution of dry spells with hourly simulation for 4 zones. The 4 models are:
monobloc stands for SAMPO applied over the entire rainfall field, reorg for SAMPO with CHMM
optimized by reorganization method, resam for SAMPO with resampling technique and, resamre-
org for SAMPO with resampling technique and reorganization method.
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Figure 6.15: Distribution of wet spells with hourly simulation for 4 zones. The 4 models are:
monobloc stands for SAMPO applied over the entire rainfall field, reorg for SAMPO with CHMM
optimized by reorganization method, resam for SAMPO with resampling technique and, resamre-
org for SAMPO with resampling technique and reorganization method.



98 Chapter 6. Results and conclusions for Methodology I

6.4 Conclusions

This chapter proposes hierarchical techniques to enable a “homogeneous zone” rainfall
generator to address rainfall simulation over a large, heterogeneous domain. The develop-
ment of this new simulator is based on assumed good performance of a rainfall generator
over one homogeneous zone. In this PhD work, we use the SAMPO weather generator, but
any rainfall-type based generator could be handle in the same way.

To compensate for the priority coordination of hidden Markov models give to spatial
description, a reorganization method was introduced to enforce the duration of stay in
local rainfall classes. It performs correctly, despite the reorganization does not consider
the actual content of qualitative rainfall classes (it could be possible to do slightly better in
defining a penalty Wi,j of changing rainfall type i to rainfall type j ).

On the other hand, the new model with several homogeneous zones presents better
scores than when SAMPO is applied on only one large region. Thus, our new approach is
useful when spatial scale increases, as spatial variability can be crucial in the applications
(when a hydrological model is to be applied for a large river for example).

The new models do not solve entirely the heterogeneity problem, as they still have a bias
that is the inter-station correlations for stations located in different zones. This ultimately
comes from the very principle of the hierarchical simulation based on homogeneous zones.



CHAPTER 7

METHODOLOGY II: CONTINUOUS TYPE MODEL

In this chapter, a new approach, inspired by copula technique, is proposed as an alterna-
tive for the simulation of heterogeneous rainfall fields. The calendars of the rainfall types,
as previously defined, are no more used; the proposed approach only uses the rainfall de-
scriptors, and more specifically, for a first exploration, the average rainfall and the rainfall
intermittency are kept. Each homogeneous rainfall zone is considered as a large scale (LS)
cell for which the average precipitation and the rainfall intermittency are identified. The
copula technique is used to jointly simulate the calendars of the average precipitation and
the rainfall intermittency of the 4 homogeneous rainfall zones. Then, a geostatistical dis-
aggregation technique is proposed to generate fine scale rainfall fields which respect large
scale values.

For each homogeneous rainfall zone, the values of the daily average precipitation and
the daily rainfall intermittency are obtained by hourly precipitation data of the 146 rain
gauge stations. Thus, a set of 8 calendars (i.e. 2 calendars per zone), as presented in Ta-
ble 7.1, is built and constitutes the data that will be later used in the copula modeling
approach. Within the 2005-2014 period, each calendar may be considered as a time-series
of each of the variable, the daily average precipitation in 4 zones (noted P1, P2, P3 and P4)
and the daily rainfall intermittency (noted I1, I2, I3 and I4), respectively. As an illustration,
Table 7.1 presents the data of 12 continuous days, for the 4 homogeneous zones.

7.1 Reconstructed precipitation index

As mentioned in Chapter 2, precipitation is a very complex data in term of its variability
within a large range of time and space scales. Precipitation data set presents a large portion
of 0 values that can produce two major problems when copula is used. Since, copula uses
rank correlation, too many 0 values will hamper the calculation of this correlation. Then,
with such data set, it may be difficult to find an appropriate distribution for precipitation
data. This problem is obviously not new. Standard approaches used hydrology are either
to use a truncated distribution [Loaiciga et al., 1992; Sharma, 1997] or to use an independent
binary rain indicator (0/1) and non-zero rainfall [Zucchini and Guttorp, 1991; Bárdossy and

99
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Table 7.1: Daily average precipitation and daily rainfall intermittency for the 4 homoge-
neous zones. Only 12 continuous days are presented as an illustration. P1-P4 (in mm)
stand for the daily average precipitation in 4 zones. I1-I4 (without unit) stand for the daily
rainfall intermittency in 4 zones. [XXX-YES indicated the units.]

Date P1 P2 P3 P4 I1 I2 I3 I4

2005-04-10 0.20 1.28 0.03 0.73 0.29 0.47 0.05 0.53

2005-04-11 0.00 0.02 0.00 0.01 0.00 0.03 0.00 0.07

2005-04-12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2005-04-13 0.03 0.00 0.00 0.00 0.14 0.00 0.00 0.00

2005-04-14 0.01 0.00 0.00 0.00 0.07 0.00 0.00 0.00

2005-04-15 7.50 0.14 5.24 14.25 0.86 0.19 0.74 1.00

2005-04-16 4.54 58.64 59.29 17.74 0.79 1.00 1.00 1.00

2005-04-17 5.52 38.51 7.69 17.85 0.93 1.00 0.95 1.00

2005-04-18 0.13 7.96 0.08 0.27 0.29 0.94 0.21 0.40

2005-04-19 1.23 1.06 1.32 4.44 0.79 0.69 0.74 0.93

2005-04-20 1.34 0.97 0.15 1.83 0.43 0.56 0.16 0.73

2005-04-21 0.73 0.15 0.01 0.25 0.36 0.11 0.05 0.33

Plate, 1991]. Both approaches have advantages and drawbacks.
In this section, a third approach is proposed and takes advantage of neural network.

Indeed, the precipitation data is linked to a smooth variate obtained from artificial neural
network (ANN) approach. For more theoretical details on artificial neural network, refer
to Appendix D.

The method is the following. The inputs of ANN are several meteorological variables,
extracted from the ERA-Interim database and suitable to reconstruct precipitation data.
The meteorological variables, the location and the atmospheric levels to be considered have
been optimized by using ANN with the criterion of the best coefficients of determination.

The target of ANN for training step is just observed precipitation data. Only the non-
zero precipitation values are used when tuning the ANN. Precisely, we use normalized
observed precipitation data ( P

max P)
0.3 (for all days where P>0) for training step. Then we

apply the ANN to recover complete time-series of rainfall-related reconstructions, also for
all dry days. The reconstructed precipitation is later referred as the precipitation index.
It appears that reconstructions may generate positive or negative “precipitation values”
depending on the estimated ANN, and this is especially true for dry days. This index
is interesting as a diagnostic property ; considering all the 0 in the observed precipitation
time series it appears that the ANN makes a difference between nearly-rainy and really-dry
contexts. Finally precipitation could be quantile-quantile related to the precipitation index,
of course with some uncertainty in the reconstruction. Figure 7.1 presents the diagram of
ANN for the training step. 28 meteorological variables data are used in the training phase
to reconstruct the non-zero precipitation. Three hidden nodes have been considered. The
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coefficient of determination between the normalized non-zero precipitation data and the
reconstructed precipitation index is generally more than 0.7 (0.702 in this very case) which
makes this approach encouraging in its use.

Figure 7.2 presents the comparison between the normalized precipitation data and the
reconstructed precipitation index, for the 2012 year. During several periods when the re-
constructed precipitation index turned negative, the observed precipitation data showed
considerable dry spells. On the contrary, when the observed precipitation data showed a
very short dry spell, the precipitation index could remain positive value but very close to
zero. Due to the information provided by the other meteorological variables through ANN,
the precipitation index can make the different between nearly dry (positive value), dry (0)
and very dry (negative value). In the same way, we transform the rainfall intermittency
data to the reconstructed intermittency data referred as the intermittency index.

Learning from the atmospheric context, the precipitation index is a data-mining recon-
struction that has similarities to and possibly justifies the latent variate, included in sev-
eral stochastic rainfall models [e.g., Bárdossy and Plate, 1991; Vrac et al., 2007; Baxevani and
Lennartsson, 2015].
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7.2 Copula based parametric model

This section aims at simulating the time-series of daily average precipitation and daily
rainfall intermittency for several homogeneous rainfall zones.

Our approach relies on two steps. First, the copula technique is to be implemented in
combination with auto-regressive process to capture the joint distribution of multi time-
series calendars and temporal correlation of each variable. Then, kriging technique is ap-
plied to generate the sequential simulations.

7.2.1 Copula approach

Copulas are functions that link multivariate distribution functions to their constituent
univariate marginal distributions [Nelsen, 2007]. Basic elements about copula technique
can be found in Appendix C.

Sklar’s Theorem (C.4) provides the framework where copula plays an essential role be-
tween multivariate distribution functions and each marginal distribution. Each marginal
distribution is estimated separately. The main issue is then to identify the proper copula
function to hold the different margins together into a joint multivariate distribution.

In our case, Gaussian copula is used for its simplicity and, has will be shown, explicit
links it has with other statistics tools. The Gaussian copula is a distribution over the unit
cube [0, 1]d. It is constructed from a multivariate normal distribution over Rd by using the
probability integral transform. For a given correlation matrix R ∈ [−1, 1]d×d, the Gaussian
copula, with parameter matrix R, is written as

CGauss
R (u) = ΦR(Φ−1(u1), · · · , Φ−1(ud)), (7.1)

where Φ−1 is the inverse cumulative distribution function of a standard normal and Φ(R) is
the joint cumulative distribution function of a multivariate normal distribution with mean
vector zero and covariance matrix equal to the correlation matrix R. The density of Gaus-
sian copula can be written as

cGauss
R (u) =

1√
det R

−1
2


Φ−1(u1)

...

Φ−1(ud)


T

· (R−1 − I) ·


Φ−1(u1)

...

Φ−1(ud)


 (7.2)

where I is the identity matrix.
Therefore, only the correlation matrix of d variables (e.g., d calendars in our context) is

needed when applying the Gaussian copula.

7.2.2 Auto-regressive process (AR)

The copula technique makes link between the multivariate joint distribution and each
marginal distribution. However, the temporal correlation in each calendar needs to be con-
sidered as well. For this, the use of auto-regressive model allows to deal with time-varying
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process. Indeed, the auto-regressive model (AR) specifies that the output variable linearly
depends on its own previous values and on a stochastic term which has a probability dis-
tribution with zero mean and finite variance.

The AR(p) notion indicates an auto-regressive model of order p. The AR(p) model is
defined as :

Xt = a +
p

∑
i=1

φiXt−i + υt (7.3)

where Xt is the scalar value at time t in case of uni-variable AR models (p = 1),
{Xt−1, . . . , Xt−p} are the corresponding values at previous time {t − 1, . . . , t − p},
φ1, · · · , φp are the parameters of the model, a is a constant, and υt is a white noise.

In case of multivariate AR models, Xt, Xt−i, a, φi are matrices and vt a stochastic matrix.
The combination of the copula technique with auto-regressive model allows the construc-
tion of a multi-time-varying-variables model.

7.2.3 Kriging technique

Kriging is a well known method in geostatistics [Matheron, 1963] that aims to predict the
value of a function at a given point by computing a weighted average of the known values
of the function in its neighborhood.

As a reminder, simple kriging is a linear estimation method. A value from location x1

(notation of a any set of geographic or temporal coordinates) is interpreted as a realization
z(x1) of the random variable Z(x1). In the space A, where the set of samples is dispersed,
there are N realizations of the random variables Z(x1), Z(x2), · · · , Z(xN), correlated be-
tween themselves. Spatial estimation of a quantity Z : Rn → R, at an unobserved location
x0, is obtained from a linear combination of the observed values zi = Z(xi) and weights
wi(x0), i = 1, . . . , n:

Ẑ(x0) =
n

∑
i=1

wi(x0)× Z(xi). (7.4)

If kriging is often used as a clever interpolation technique, this method can be used,
more generally, in conditional simulation situation. In this case, the variable Z(xi) is thus
simplified to zi. After estimating the kriging weights, the simulation is generated by the use
of Equation 7.4 with an added random residual. In our case, only simple kriging is used.
Simple kriging is mathematically the simplest, but the least general [Olea, 2012]. It assumes
the expectation of the random field to be known, and relies on a covariance function. The
kriging weights of simple kriging have no unbiasedness condition and are given by the
simple kriging equation system:

w1
...

wn

 =


v(x1, x1) · · · v(x1, xn)

... . . . ...

v(xn, x1) · · · v(xn, xn)


−1

v(x1, x0)
...

v(xn, x0)

 (7.5)

where v(x, y) = Cov(Z(x), Z(y)). In this case, the estimation of variance is:

σ2 = v(x0, x0)−
n

∑
i

v(xi, x0)wi (7.6)
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In the approach developed in this section, the conditional simulation is based on sequen-
tial kriging with uncertainty. Within the Gaussian framework chosen from the beginning,
a drawn value is thus obtained from conditional distribution by the use of Ẑ(x0) (the ex-
pected value) and σ2 (the prediction variance) before proceeding the estimation to the next
step.

7.2.4 Diagnosis and results

Several statistical diagnosis are presented in this section. The used data for modeling are
the 8 time-series of daily data from 2005 to 2014 noted (P1, P2, P3, P4, I1, I2, I3, I4) which
Pi is the daily average precipitation of zone i and Ii is the daily rainfall intermittency of
zone i. The simulations are 50 replications of the 10-years period as the same length as the
2005-2014 period.

The observed data used to model are the reconstructed precipitation index and the inter-
mittency index (Section 7.1). The simulated values are thus a simulated precipitation index
and a simulated intermittency index. These two simulated values are then transformed to
“real” values by using quantile-quantile plot of observed data.

The comparisons between the observed and the simulated values are presented in
Fig. 7.3 and 7.4, for respectively, the average daily precipitation and rainfall intermittency
and their associated standard deviations, given in the 4 homogeneous zones. The general
agreement is good.

The observed 2005-2014 average values (in black) are inside of the boxes (in red) given
the statistics of the 50 replications of the 10-year simulated period. Furthermore, the results
for the daily rainfall intermittency are better than those of the daily average precipitation,
since the mean simulated values (horizontal red line) are very closed to the mean observed
values (black dots), whatever the homogeneous zone. This may be due to the variability of
the average precipitation higher than the rainfall intermittency.

Figure 7.5 and 7.6 show the comparison between the observed and the simulated
marginal distributions. The general results are satisfactory, but in all cases, the comparison
fails for high extreme values.

Moreover, Figure 7.7, 7.8 and 7.9 present the bivariate diagnosis between the observed
and the simulated data. For this analysis, the period length must be the same for the ob-
served and the simulated data. Therefore, just one replication among the 50 is randomly
chosen for each variable. Figure 7.7 compares the daily average precipitation in the 4 homo-
geneous zones. The simulations seem more dispersive than the observations as illustrated
in the upper right part of the figure. But surprisingly, the bivariate distributions between
the simulated and the observed data, showed the lower left part of the figure, are quite
good. Figure 7.8 compares the daily rainfall intermittency in the 4 homogeneous zones.
The upper right part of the figure gives less information due to the structure of the daily
rainfall intermittency. However, the bivariate distributions of simulated values are quite
similar to the observations. It’s difficult to show all results in the same figure, so Fig. 7.9 is
selected as an illustration of the comparison between zones 1 and 2. Focusing the 4 plots
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(P1, I1), (P1, I2), (P2, I1) and (I1, I2) in the upper right part of the figure, the simulated val-
ues of the daily average precipitation are generally slightly overestimated, especially when
the values of the average rainfall intermittency are close to 1. Nevertheless, the bivariate
distributions between the simulations and observed data show good consistency.

The auto-correlation function (ACF) is finally used to examine the temporal correlations
for each variable. The results shown in Fig. 7.10 are generally satisfactory. Even for 20 days
in lag, the ACF values are preserved in the simulated values as compared in the observed
data. I1 is a very good example.

These different statistical diagnosis between the simulated and the observed data
present very encouraging and promising results. The diagnosis of both marginal dis-
tributions and joint distributions show the power of copula technique when dealing
with the multivariate framework. The auto-regressive process ensures that the temporal
correlations of the variables can be preserved. At this point, the simulations generated by
this copula based parametric model are usable for the further disaggregation approach.
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Figure 7.3: Statistics, illustrated with boxplots, of the average values for the daily average precip-
itation and the daily rainfall intermittency in the 4 homogeneous over the 10-years period. Black
points refer to the observed average value. The statistics of the simulated values, in red, rely on the
50 replications of the 10-years simulations.
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period. Black points refer to the observed average value. The statistics of the simulated values, in
red, rely on the 50 replications of the 10-years simulations.
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Figure 7.5: QQ-plots for the daily average precipitation by comparing the marginal distributions
bewteen the observed and the simulated data in 4 zones.
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Figure 7.6: QQ-plots for the daily rainfall intermittency by comparing the marginal distributions
bewteen the observed and the simulated data in 4 zones.
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Figure 7.7: Bivariate distributions of the observed (in black) data within the 2005-2014 period and
the 10-years simulations (in red) for the daily average precipitation. The simulated contours refer to
the mean of the 50 replications of the 10-years simulation. Upper right, the point-by-point represen-
tations of all pairs of variables; lower left, the bivariate distributions of all pairs of variables; in the
diagonal, the comparison between the observed and the simulated data distribution for each variable.



112 Chapter 7. Methodology II: Continuous type model

Figure 7.8: Bivariate distributions of the observed (in black) data within the 2005-2014 period and
the 10-years simulations (in red) for the daily rainfall intermittency. The simulated contours refer
to the mean of the 50 replications of the 10-years simulation. Upper right, the point-by-point rep-
resentations of all pairs of variables; lower left, the bivariate distributions of all pairs of variables;
in the diagonal, the comparison between the observed and the simulated data distribution for each
variable.
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Figure 7.9: Bivariate distributions of the observed (in black) data within the 2005-2014 period and
the 10-years simulations (in red) for zone 1 and zone 2. The simulated contours refer to the mean of
the 50 replications of the 10-years simulation. Upper right, the point-by-point representations of all
pairs of variables; lower left, the bivariate distributions of all pairs of variables; in the diagonal, the
comparison between the observed and the simulated data distribution for each variable.
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Figure 7.10: Auto-correlation functions of the observed (in black) data within the 2005-2014 pe-
riod and the 10-years simulations (in red) for the daily average precipitation and the daily rainfall
intermittency in 4 zones.
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7.3 Geostatistical disaggregation of a rainfall field

At any time step, each homogeneous zone is described by two rainfall descriptors (i.e.
the average precipitation of the zone, the rainfall intermittency) as the large scale (LS) val-
ues. As seen in Section 7.2, the simulated large-scale values calendars are generated by the
use of copula model. In this section, a new disaggregation method is proposed to gener-
ate a fine-resolution rainfall field which respects large scale values. In our case, at a given
time step, each rainfall zone of a fine resolution simulation must be preserved the average
daily precipitation and the rainfall intermittency, provided by the copula based parametric
simulations.

7.3.1 Method algorithm

Two steps are achieved in the disaggregation method. At a given time step, the small-
scale intermittency field is first generated and needs to respect the LS value. Then, the
small-scale non-zero rainfall field is generated and needs to respect the LS non-zero precip-
itation value. The product of the intermittency field with the non-zero rainfall field consti-
tutes the final simulated rainfall field. The quantity to disaggregate is total rainfall, but the
fractional wet area (the fraction of the area with positive rainfall) can also be preserved.

More precisely, the intermittency step is presented as follows and is later illustrated in
the next section:

1. generate a Gaussian field for the small-scale grid having the expected spatio-temporal
structure suitable for thresholding-based simulation of intermittency.

2. check how the thresholded field compares with the expected large-scale wetness val-
ues

3. where the recovered wetness is too much, gently lower the Gaussian field ; where the
recovered wetness is not enough, gently higher the Gaussian field.Adjust as necessary
to recover every prescribed large-scale wetness value.

Then, the non-zero rainfall step is presented as follows:

1. generate a Gaussian field for the small-scale grid having the spatio-temporal structure
suitable for anamorphosis-based simulation of non-zero rainfall.

2. check how the anamorphosed field compares with the expected large-scale rainfall
values (keep only the average on wet cells).

3. where the recovered precipitation amount is too much, gently lower the Gaussian
field; where the recovered precipitation amount is not enough, gently higher the
Gaussian field. Adjust as necessary to recover every prescribed large-scale wetness
value.
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How to “gently change” a Gaussian field ?

The basic idea is to choose one scalar shift value per control zone (LS cell); using block-
to-point kriging [Kerry et al., 2012], these shifts are distributed (interpolated) into a small-
scale grid and this small-scale distributed shift is added to the Gaussian grid. (A warning
about block-to-point kriging: what is easily found about block kriging usually refers to
point-to-block kriging, where the kriging matrix is between data points and the right hand
vector is average covariance between data and a target domain of finite non point size, so a
block. Here we really mean block-data to points kriging, where the kriging matrix is build
on block covariance between data blocks and the right vector is covariance between data
blocks and target point.) As the kriging variance is not needed, using dual-formulation of
kriging [Royer and Vieira, 1984] is possible.

How to respect the exact values of large scale ?

The previous paragraph has explained briefly how we “gently change ” a Gaussian field.
In order to enable each control zone to respect the large scale values, a technique called
dichotomy method is introduced. The dichotomy method is a root-finding method that
repeatedly bisects an interval and then selects a sub-interval in which a root must lie for
further processing. The technique was inspired by solutions for solving inverse problems
in hydrogeology given by Certes and de Marsily [1991]; de Marsily et al. [1999] under the
name of pilot points approach. Their motivation was then aquifers reconstruction given
observed macro-scale properties. The pilot points where points of arbitrary value set to
condition the Gaussian field underlying the aquifer simulation. In changing their values,
the aquifer properties could be tuned as wished.

In our context, the dichotomy method will allow each control zone of a arbitrary Gaus-
sian field to come close to prescribed large-scale value by gently changing the Gaussian
field in each iteration, until the large-scale values are respected for all control zones.
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7.3.2 Application: the Cévennes-Vivarais region

As mentioned previously, the 4 homogeneous rainfall zones (Fig. 2.10) are the large scale
area control zones (LS cells). Figure 7.11 presents the control zones (LS cells) delineation
and the small-scale 2km resolution grid. The LS cells (i.e. the homogeneous rainfall zone)
are described by the two known values, the average daily precipitation (i.e. average rain
over the whole LS cell) and the daily rainfall intermittency (i.e. fraction of grid cells in
the LS cell presenting a non-zero rain). As an illustration, Table 7.2 presents 12 continuous
daily simulated values, obtained with the copula based parametric model, as described in
Section 7.2.4, that are used as input in the disaggregation model.
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Figure 7.11: Gridded Cévennes-Vivarais region. Two resolutions are shown: large-scale resolution
(blue lines) based on the 4 homogeneous rainfall zone, small-scale regular resolution (black squares)
given at 2km resolution.

Figure 7.12 to 7.20 present 12 continuous daily simulated rainfall fields at each step of the
proposed disaggregation model. Let’s introduce nz, the number of homogeneous rainfall
zones, here nz = 4 and nt, the number of time steps, here nt = 12.

We begin with the first step which is to generate the intermittency fields. The nt free
Gaussian fields having the expected spatio-temporal structure representing the rainfall in-
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Table 7.2: Twelve continuous daily simulated values of the average precipitation and the
rainfall intermittency in the 4 homogeneous zones.

t P1 P2 P3 P4 I1 I2 I3 I4

1 1.76 0.01 0.01 3.01 0.64 0.17 0.05 1.00

2 0.00 0.02 0.01 1.53 0.00 0.14 0.05 1.00

3 0.07 0.01 0.28 4.37 0.36 0.64 0.33 1.00

4 0.52 0.55 0.03 6.00 0.43 0.97 0.10 1.00

5 0.41 0.21 0.03 1.44 0.64 0.19 0.63 0.89

6 2.18 1.16 1.68 5.97 0.82 0.86 0.97 1.00

7 7.46 20.32 24.81 11.19 1.00 1.00 1.00 1.00

8 3.33 5.63 3.54 5.39 0.86 0.97 1.00 1.00

9 0.28 0.01 0.03 0.55 0.36 0.14 0.47 0.57

10 1.14 3.63 1.93 10.20 0.64 1.00 0.83 1.00

11 11.33 5.35 25.21 4.92 1.00 0.95 1.00 0.93

12 9.28 2.66 17.88 1.53 1.00 0.81 1.00 0.54

termittency fields are generated (see Fig. 7.12).
Given a threshold value p, each generated Gaussian field (in Fig. 7.12) can be truncated

at this threshold to get a binary mask for dry-wet areas (called the thresholded field). By
comparing the thresholded field with the LS intermittency values Ii (i ∈ [1..4]), we under-
stand that the generated Gaussian fields need to be adjusted to match the 4 Ii. That means,
at each time step and for each homogeneous zone, we need to add a new field (called the
interpolated pilot values field) to the free Gaussian field so that the thresholded field of the
sum of the two fields has the same intermittency value as the expected Ii.

Before modeling the interpolated pilot values fields, several details must be clarified.

- The interpolated pilot values fields are generated by using block-to-point kriging so
the resulting spatio-temporal structure remains the same as the free Gaussian fields.
In this case, the block-to-point kriging is used in a three-dimensional context (space
and time; later called 3D domain).

- The interpolated pilot values are obtained by using the dichotomy method.

The kriging matrix relevant to the intermittency for block-to-point kriging needs first to
be calculated. Below is the case of ordinary kriging with exponential covariance.

Let Bk
i the block of zone k at time step i, Bh

j the block of zone h at time step j, the expo-

nential covariance function from the block Bk
i to the block Bh

j is

C(Bk
i , Bh

j ) =
∑x∈Bk

i ,y∈Bh
j

exp(−d(x, y))

∑x∈Bk
i ,y∈Bh

j
1(x,y)∈Bk

i×Bh
j

for (i, j) ∈ [1 : nt]; (k, h) ∈ [1 : nz] (7.7)

where d is the distance function.
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Thus, the kriging matrix relevant to the intermittency M is

MK =


1

(C(Bk
i , Bh

j ))(i,j)∈[1..nt];(k,h)∈[1:nz]
...

1

1 · · · 1 0

 (7.8)

The dimension of the kriging matrix MK is (nt× nz + 1)× (nt× nz + 1) = 49× 49.
For each cell x (including cells outside the 4 zones) in the 3D domain, the exponential

covariance function from x to the block Bh
j of zone j at time step h is

C(x, Bh
j ) = ∑

y∈Bh
j

exp(−d(x, y)) for j ∈ [1 : nt]; h ∈ [1 : nz] (7.9)

Thus, the vector of our target cell x linked to all blocks of the 3D domain is

V =



C(x, B1
1)

...

C(x, Bh
j )

...

C(x, Bnz
nt )

1


(7.10)

where the dimension of V is 49 (= nt× nz + 1).
According to Equation 7.4, the kriging weights of V for point-to-block kriging is

λx = MK−1 ×V (7.11)

Let PV a vector of the pilot values, the dimension of the PV is nt× nz + 1 where the first
nt× nz values correspond to the pilot values of the nz zones for all nt time steps and the
last one is 1 (non-bias parameter). The estimated value of the target cell x associated with
the pilot values vector PV and the kriging weights vector λx is

xpilot values =< λx, PV > (7.12)

where < u, v > is the scalar product of the vector u and the vector v.
Thus, a 3D field (called the pilot values fields) corresponding to a given pilot values vec-

tor PV can be generated by calculating each cell x in the 3D domain through Equation 7.12.
With the same threshold p, the threshold field of the sum of the free Gaussian field

and the pilot values fields present an adjusted intermittency field. Comparing the rainfall
intermittency value of the threshold field to Ii in each zone i, we can decide whether the
pilot values should be increased or diminished so that the prescribed intermittency value
Ii is recovered.
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The dichotomy method is used to find the interpolated pilot values.
Since the interpolated pilot values have been found in all zones for all time steps, the

interpolated pilot values field for the intermittency field (Fig. 7.13) can be generated.
Figure 7.14 presents the sum of Fig. 7.12 and Fig. 7.13.
The simulated intermittency field (Fig. 7.15) is obtained by a binary mask for Fig. 7.13

with the threshold value p. That means the cell in Fig. 7.15 equals to 1 (i.e. the cell is wet)
if the same cell in Fig. 7.13 is greater than p, otherwise the cell in Fig. 7.15 equals to 0 (i.e.
the cell is dry).

A very similar procedure is used to generate the simulated non-zero rainfall field.

1. The nt free Gaussian fields having the expected spatio-temporal structure are gener-
ated to be used for modeling the non-zero rainfall field (see Fig. 7.16).

2. The kriging matrix relevant to the non-zero rainfall is calculated through 7.7 and 7.8.

3. The interpolated piloted values field (Fig. 7.17) can be generated by using the di-
chotomy method.

4. Figure 7.18 is the sum of Fig. 7.16 and Fig. 7.17

5. Two parameters (m and σ) of a log-normal distribution are introduced for the non-
zero rainfall. The value r of a cell in Fig. 7.18 is transformed to exp(m + σ× r).

6. The simulated non-zero rainfall field is generated in Fig. 7.19 after the transformation.

The final simulated rainfall (Fig. 7.20) is obtained by the product of the cell of Fig. 7.15
with the cell of Fig. 7.19 in the same location.
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Figure 7.12: The 12 continuous free Gaussian fields, used for intermittency fields.
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Figure 7.13: The 12 continuous fields of the interpolated pilot values, then added to the Gaussian
fields.
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Figure 7.14: The 12 continuous sum of a priori Gaussian plus shift, used for intermittency fields.
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Figure 7.15: The 12 continuous simulated intermittency fields.
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Figure 7.16: The 12 continuous free Gaussian fields, used for non-zero rainfall fields.
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Figure 7.17: The 12 continuous fields of interpolated pilot values, later added to the Gaussian fields.
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Figure 7.18: The 12 continuous sum of a priori Gaussian plus shift, used for non-zero rainfall fields.
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Figure 7.19: The 12 continuous simulated non-zero rainfall fields.



7.3. Geostatistical disaggregation of a rainfall field 129

t=9 t=10 t=11 t=12

t=5 t=6 t=7 t=8

t=1 t=2 t=3 t=4

650 700 750 800 850 650 700 750 800 850 650 700 750 800 850 650 700 750 800 850

1850

1900

1950

2000

2050

1850

1900

1950

2000

2050

1850

1900

1950

2000

2050

X Lambert [km]

Y
 L

am
be

rt
 [k

m
]

mm

p>50

p<=50

p<=20

p<=10

p<=5

p<=2

p<=1

p<=0.5

p=0

mr

Figure 7.20: Final composite rainfall fields for 12 consecutive days.
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7.3.3 Details on the algorithm

1. We assume a stationary covariance structure; the simplest is an exponential decay. If
several time steps are jointly disaggregated the suggestion is to use an adimensional
equivalent distance

deq =

√(
dx
L

)2

+

(
dt
D

)2

(7.13)

where L and D are correlation parameters tuning variability in space and time.

In geostatistical terms, a Gaussian field presenting a covariance only dependent on
the separation of two points (i.e. a stationnary covariance structure), is called SRF-2
(stationary random function of order 2) [Chilès and Delfiner, 2008a; Christakos, 2012].
However the technique introduced could be implemented as well in the context of an
IRF-0 (intrinsic random function of order 0) [Chilès and Delfiner, 2008b] structure - the
geostatistical equivalent of a Brownian motion, where stationarity is not on the data
but on the increments.

2. The shifts have initial zero-values, they are likely to evolve between a minimum (say
-10) and a maximum (say +10).

3. For mathematical consistency, kriging must be done using the same stationarity
model and the same structure that has been used for the Gaussian field simulation.
This can be shown to give an unbiased sampling of the parental Gaussian field
conditionally to the zonal average.

4. Kriging used here is the block-to-point ordinary kriging with unknown mean, a usual
and tolerant variant. According to the theoretical point recalled above, a stricter al-
ternative would be to use simple kriging with known (0) mean. These variants may
deserve later study.

5. Kriging is an exact estimator and a linear estimator when the data is fixed (the sum
of kriging estimates is the kriging of the sum); The control zone (LS cell) average of
the kriged shift will by construction respect the given pilot value. So the average over
any control zone (LS cell) of the kriged field is the data average plus the shift value
for the given control zone (LS cell).

6. The operation, an anamorphosis, turns the gridded field into a field of the quantity
of interest to the user. In all cases but for linear transformations, the sum of the trans-
form, however, is the transform of the sum; this is why we can’t explicitly state what
is the right pilot value to use: the pilot value has to be tuned.

It is known that anamorphosis induces a decay in correlation, that can be formally
described in the case of transforming unconditional Gaussian fields using Hermite
decomposition of the anamorphosis function (e.g., Leblois and Creutin [2013]); here the
phenomenon also exists, but we transform conditioned fields, not free fields; we are
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not aware whether a formulation for the covariance decay exists in this case; for now
we just do not consider the problem; a possibility later would be to use the general
formulation as an approximation.

7. Starting from one given underlying Gaussian field, the zonal average is expected to be
in monotonous relation to the shift - an increase of the shift will result in an increase
in the target value. So tuning the shifts is an obvious way to drive the simulation to
respect the wished LS values.

The simplest way to tune a value to get a prescribed derived value in a monotonous
context is a dichotomy search. Here several shift values must be tuned together. It
was found efficient to include all shifts in the same dichotomic loop.

However, we may expect that if the parameters for the underlying process are incon-
sistent to the forcing averages, forcing averages may be conflicting. So caution was
taken to not miss the solution by a too quick convergence.

Let us consider the iterative one-step feasible range reduction factor α of the di-
chotomy, commonly 0.5 (at each step, the legal domain [0-1] is reduced to [0-0.5] or
[0.5-1]).

We choose to take an α reduction of less than 0.5 so that at each step, the legal domain
[0-1] is reduced to either [0 to (1-α)] or [α to 1]. As compared to the ordinary di-
chotomy, this allows the domain [α; (1- α)] around the tested value, to be maintained
in the convergence procedure.

A check was done about smooth convergence: we traced where each final value was
located within the limits of the nested intervals out of the dichotomy search, so long
these intervals still have a significant width. The guess is that, if there is no conflict
between LS values given the assumed small scale variability, the final value should
not have been on the limit of the feasible domain while tuning.

We tested alphas from 0.01 to 0.50 on synthetic examples and found the strategy cor-
rect. However, there is a huge difference between NZR (Non-Zero Rainfall) and IND
(INDcator function) simulation. [XXX-YES NZR? IND?]

7.3.4 Specific details for rainfall

Rainfall has an enormous atom at 0 that makes possible to consider it a bivariate quan-
tity, an occurrence of rain (0/1), and a quantity of rain (in R+*) that is only observable
where rainy. Most authors make the design choice of perfect dependence (rainfall can be
simulated using a one step simulation, in thresholded Gaussian style), other prefer inde-
pendence (occurrence of rain independent of the quantity).

(Certainly a better choice would be to consider both aspects of the rainfall phenomena
being linked with a explicit bivariate structure that may depend of the space and time
resolution, but this idea is still place for research).
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In this contribution, we shall consider both phenomena to be independent, with a benefit
of a much simpler solution. As a consequence, the disaggregation algorithm described
above will be applied two times.

1. First, we disaggregate the wetness. The user transformation is thresholding to the
threshold that corresponds to the local rainfall percentile. If the shifted Gaussian
field is above that value, the location will be declared rainy, if it is below the location
will be declared dry. Counting the fraction of wet cells over a control zone (LS cell)
makes the assessment of the zonal wetness, to be compared with target value.

A detail is that the number of cells in the control zone (LS cell) makes only discrete
values for wetness reachable, and the zonal predicted wetness must be rounded to
such a feasible value – excluding zero if we know the total rainfall over the control
zone (LS cell) to be non-zero.

IND simulation is much more sensitive, because of the threshold effect making a lim-
ited set of fractional intermittency feasible. A low alpha value (around 0.02) and nu-
merous iterations make the job. A termination peculiarity is that if the intermittency
is OK for a given LS cell, no reduction is taken. When this is true for all LS domains,
the tuning is complete.

The result of this step is a wet/dry pattern over the area that fulfills the LS wetness
constraint up to the resolution of the grid; the scale size of the pattern is dominated
by the structure parameters of the underlying Gaussian if the LS simulation is really
loose versus the size of the grid cell size.

2. Second, we disaggregate the rain total. The user transformation is there just the
anamorphosis between the underlying Gaussian and the local rainfall percentile (QQ-
plot). Tuning the shifts relies on comparing the zonal average (over all cells, including
dry ones) rainy cells to the LS rainfall total – this is why the wetness pattern was de-
cided first. The dichotomy can be stopped when the marginal changes in user space
are below any practical meaning (say 0.001 mm). For NZR simulation, a α value
of 0.30 to 0.35 was found able to maintaining a satisfactory convergence rate and
complain only in the case of ill balanced LS data (suggesting to review the choice of
parameters).

We see the disaggregated field keeps a noticeable conditional variability and this makes
sense if one considers disaggregation as a scale-bridging technique.

Elaborated in this PhD , this geostatistical disaggregation technique could be useable in
many disaggregation issues. It has been suggested to our colleagues at Sintef1 (Norway) for
use in their own SWG prototype, and we intent a paper with our colleague Sara MARTINO
(SINTEF & NTNU).

1https://www.sintef.no/en/: last check on 2017/11/27

https://www.sintef.no/en/


CHAPTER 8

CONCLUSION FOR HETEROGENEITY PROBLEM

In this part, two different approaches are proposed to solve the problem of the simula-
tion of the heterogeneous rainfall field.

Chapter 4 reviews some existing rainfall simulation methods which deal with rainfall
simulation at more than one location, including kriging models, conditional models and
copula based multisite models. Several references on multisite models [e.g., Bárdossy and
Pegram, 2009; Chen et al., 2015; Evin et al., 2017] demonstrates the potential of the copula
technique, which will eventually be used in this PhD work.

In this PhD work, we aim at generating spatial-temporal rainfall simulations, not just
multisite rainfall models. We first tried to use SAMPO [Lepioufle et al., 2012; Leblois and Cre-
utin, 2013], the local rainfall simulation tool, which relies on the idea that a spatio-temporal
rainfall field can be considered as an instance of a homogeneous rainfall type. Ongoing
work at Irstea suggests that local rainfall can be summarized as a alternation of rainfall
fields of several rainfall types. So in Chapter 5, we proposed two models to coordinate
parallel calendars of qualitative rainfall types, which are a parametric model based on cou-
pled hidden Markov model (CHMM), and a non-parametric model based on a resampling
technique. Parametric models are sometimes difficult to model because of the complexity
of the observations. The CHMM is modeled by using hidden Markov models. In hidden
Markov models, the statistical properties of the qualitative (types) calendars are captured
with a transition matrix and a emission matrix. These matrices are estimated with the well
known Baum-Welch algorithm (see Appendix A). This established technique is a very im-
portant part of how the model is fitted to the observations. But a problem appears in the
generation of simulations from the estimated transition matrix and emission matrix. The
successive random draws in a emission matrix generate correct frequencies but incorrect
distribution of length of stay in the observed states. This effect is worse in coupled hier-
archical Markov model where the simulation chain includes several conditional draws for
any single time step. We defined a re-organization method to adjust the length of stay dis-
tributions; the statistical results show a clear but limited improvement. As an other way
to make the compromise, we introduce a non-parametric model based on the resampling
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technique. Due to the non-parametric nature of this resampling, such a model can not be
used to generate all different kinds of scenarios, especially could not be run in a climate
change context, and simulation demonstrated a slightly eroded interannual variability as
each simulated year is by design a mixture from the sampled years. But the resampling
technique is easily applied in our case and the statistical diagnosis of the simulations are
generally satisfying.

As a main result, both models were formally capable to generate the calendars to drive
SAMPO simulations over a large heterogeneous domain. However, both models also have
difficulties to fully capture the spatial correlations between the different zones; the root
of the evil comes from the fact that the achieved/preserved correlation is only the part of
the correlation conveyed by the rainfall types system between successive distinct rainfall
types in one zone and between two zones. This comes evident in the statistical analysis of
both models, and we eventually came to recognize that the real problem is associated with
the very concept of homogeneous rainfall type and the strict delineation of homogeneous
rainfall zones.

Given the above diagnostic, a completely different approach was designed, where the
areal rainfall totals and intermittency want to be kept in their original distribution, jointly
modeled using the copula technique. The idea of partitioning a heterogeneous rainfall
field into several rainfall zones still remains, but we target the average precipitation and
the rainfall intermittency values for each homogeneous rainfall zone, not just a qualita-
tive type of homogeneous rainfall. As it is well known, atoms are a problem in copula
modeling, and specially the atom at 0 is a well known problem in rainfall modeling. We in-
troduced a detour through data mining the historical atmospheric context as documented
by ERA-Interim. This provided a rainfall index and intermittency index, having no atom
and suitable for use as surrogates to the targeted quantities in the copula approach. Results
are quantile-quantile transferred to the targeted average precipitation and wetness values,
that finally have similar statistical properties as the observations. Final step is to use these
large-scale simulations as input to a disaggregation model, to generate fine resolution rain-
fall fields. The disaggregation is handled using a geostatistically-based conditional simu-
lation technique combining block to point kriging and optimization. The technique first
generates the rainfall intermittency fields, then generate the non-zero rainfall fields taking
into account the dry/wet pattern previously simulated. The simulation of 12 continuous
days offers a realistic spatial connection between the zones. This simulation technique still
needs to be diagnosed statistically, but shows great potential.

In the next part, a multivariate model is proposed to deal with several hydro-
meteorological variables in time.
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CHAPTER 9

DRIVING VARIABLES FOR WATER RESOURCES
MODELING: COPULA BASED MULTIVARIATE

APPROACH

A multivariate model generating time-series simulations for the hydro-meteorological
variables is proposed in this chapter.

This multivariate model is similar to the copula based parametric model introduced
for rainfall in Section 7.2 of Part II, and uses several techniques that appears to be closely
related:

- The Gaussian copula, used to capture the multivariate joint distribution;

- The multi-variate auto-regression, used to explicit temporal correlations in the time-
series of the variables;

- The sequential kriging perspective, used to generate complete simulations given pos-
sibly already known variables.

The target, here, is the joint simulation of five different hydro-meteorological variables
(precipitation, temperature, solar radiation, water vapor pressure and wind speed). The
inter-variability among these hydro-meteorological variables can be complex, and each
variable has its own, possibly very different distribution. In addition, we intend to make
precipitation the primary variable, possibly simulated by a different model component, so
that other considered variables must be simulated conditionally to the precipitation. The
sequential kriging technique is the natural technique to make such conditional simulations.

The chapter is presented in the form of a scientific paper which is hopefully to be sub-
mitted in the future.
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Abstract [XXX-YES the abstract should end with one or two sentences presenting the
main conclusions of the paper]

For water resources modeling, several meteorological inputs such as precipitation, tem-
perature, solar radiation, wind speed and water vapor pressure are required in hydrologi-
cal models. In statistical approach, multivariate models are to provide such simulations. In
this paper, Gaussian copula based multivariate approach is proposed to simulate sequen-
tially these five variables. The multivariate auto-regression is introduced to explicitly use
the temporal correlation for the variables. The simulations of multivariable can be per-
formed in any desired order by using sequential kriging technique. The studied area is in
Cévennes-Vivarais area, a mountainous region in the south of France well documented in
local rainfall data-bases and as any other place by meteorological reanalysis. The seasonal-
ity is considered in this paper by standard 3-months seasons. The diagnosis of the statistical
analysis for this copula based multivariate approach are generally quite promising.

9.1 Introduction

Water resources, essential for lifebeing, are widely shared by different users and eco-
nomical sectors, such as agriculture, industry, household, recreational and environmen-
tal activities. Often, sharing raises conflicts between specific users and very generally be-
tween the sustainable environment and economical purposes like hydro-power, irrigation
for agriculture and domestic and industry water supply, where total flows are diverted
without releasing water for ecological conservation [Tessema, 2011]. Such conflicts need a
balanced assessment of water resources and this remains a difficult task given their high
variability in space, time, and also the presence of water in different physical compartments
(i.e. atmosphere for rain water; soil and hydrographic network for surface water; aquifers
for groundwater). Vörösmarty et al. [2000] mentioned that the future adequacy of freshwa-
ter resources is also difficult to assess, owing to a complex and rapidly changing geography
of water use and regulating schemes.

When evaluating water supply and resource systems, the challenge is to build an ap-
proach that can incorporate all the knowledge available for planners and water managers
into a quantitative framework that can be used to simulate and predict the outcome of al-
ternative approaches and policies. To do so, hydrological models are thus required [e.g.,
Maidment et al., 1993; Legesse et al., 2003; Musy et al., 2014; Fatichi et al., 2016].

Water resources and hydrological modeling projects typically involve simulating sys-
tems made up of many parts, strongly interrelated, and in some cases, poorly character-
ized. Fatichi et al. [2016] currently reviewed the applications, the challenges, and the future
trends in distributed process-based models in hydrology. In most situations, the hydrolog-
ical system is driven by physical variables (i.e. precipitation, potential evapotranspiration,
etc.) and still involves uncertain processes and parameters. Recent articles [e.g., Devia
et al., 2015; Sood and Smakhtin, 2015] reviewed several types of hydrological models high-
lighting the important numbers of inputs required for handling simulations as accurate as
possible. These inputs concern topography, soil characteristics, vegetation, land surface
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classification, and meteorological forcings. Runoff observations are used for evaluation.
This paper aims at providing relevant meterological forcings for the use of hydrological

models. To close the water balance at the catchment scale, it is necessary to have avail-
able precipitation and potential evapotranspiration, both forcings associated with meteo-
rological processes. This paper takes part of a long term scientific dynamics where a local
stochastic rainfall generator, named SAMPO [Lepioufle et al., 2012; Leblois and Creutin, 2013],
has been developed and provides simulated stochastic rainfall fields for a given homoge-
neous region. Evaporation is under control of potential evapotranspiration ; the stochastic
simulation of the potential evapotranspiration is more complicated due to the large num-
ber of relevant parameters involved [e.g., Penman, 1948; Zotarelli et al., 2010]. To obtain
the evapotranspiration, mainly four meteorological variables are needed: temperature, so-
lar radiation, wind speed, and water vapor pressure. These other variables, by the way,
are not only useful for potential evapotranspiration estimation, but also rule some water
demands uses like irrigation and connected topics like assessment of renewable energy
potential. Since the target is to feed an hydrological model, all the meteorological forc-
ings must be available at the same time and space scales. It is thus necessary to develop a
multi-variate model to reach this objective.

Georgakakos and Kavvas [1987] give another interesting point of view about the interest of
other meteorological variables to be combined with precipitation in stochastic simulations.
They reported that doing so, it improves the capability of the models to capture the struc-
ture of the precipitation and it also facilitates the assessment of the effect of climate change
on the precipitation structure. Including some physical drivers as covariates may help a
multivariate simulation to hold over a variety of contexts.

The principal concern of multivariate statistics is to formally describe the relationships
between variables and their relevance to the problem being studied. There are two major
problems associated with the multivariate modeling. The first one concerns the represen-
tation of the observed data distributions as described by the multivariate model. Meteo-
rological or climatological data (precipitation, wind speed, cloud cover, relative humidity)
often turn out to be non-Gaussian, having bounded or skewed distributions [Schoelzel and
Friederichs, 2008]. So, attention needs to be payed on individual distributions and it may be
necessary to discuss the dependence of most of these meterological variables to figure out
their relationship.

The second difficulty deals with the identification of the multivariate joint distribution.
In hydrology, the development of the multivariate model began with the seminal paper of
Richardson [1981] where the author modified the rainfall generator described in Katz [1977]
introducing three other meteorological variables, the minimum and maximum tempera-
tures and the solar radiation given at the daily time scale. This was the first stochastic
weather generator to simultaneously consider four meterological variables. Many later
works developed the same idea, and already [Wilks and Wilby, 1999; Srikanthan and Mcma-
hon, 2001] reviewed a long list of multivariate approaches.

Several methods are now available. Multivariate distributions had some success, as an
example multivariate Gaussian used in mixture models [Marin et al., 2005; McLachlan and
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Peel, 2004]. Such multivariate distributions rely on one parametric description to accom-
modate all relationship among all variables. However, not all distributions are suitable to
multi-dimension extensions, and variables of interest often follow different distributions.
This why the so called copulas [e.g., Nelsen, 2007] became more and more popular. Copu-
las relies on the selection of an appropriate model for the dependence among the variables,
represented by the copula that is understood independently from the choice of the marginal
distributions, what is very convenient in many applications. Today, copulas have now a
strong record of applications, among others in finance and climatology. They are also used
in hydrology [e.g., Genest and Favre, 2007; Bárdossy and Li, 2008; Schoelzel and Friederichs,
2008; Erhardt et al., 2015; Evin et al., 2017].

Within this general context, this paper aims at developing a multivariate models using
the copula technique. In our case the precipitation is the priority because of the complex-
ity of its spatio-temporal variability. Assuming a specialized component (either SAMPO
or any other simulator) already generates reasonable precipitation simulations, there is a
need for a capacity of partial simulation model driven by already available simulated pre-
cipitation. So we may have to use the copula in conditional mode. Interestingly, if using
the Gaussian copula, we find a practical situation that is strictly equivalent to sequential
kriging or auto-regression techniques. Sequential kriging is a well-know method in geo-
statistics to operate conditional simulations [Zimmerman et al., 1998; Bayraktar and Turalioglu,
2005].

The multivariate model is used in a context of water resources in the French Mediter-
ranean region, the Cévennes-Vivarais region, where many observations [Boudevillain et al.,
2011; Braud et al., 2016] and modeling [Nuissier et al., 2008; Godart et al., 2011; Adamovic et al.,
2016] works have been already realized. These previous works pointed out the need for
long-term stochastic meteorological forcings to assess the evolution of the water resources
in a region recognized [Intergovernmental Panel on Climate Change, 2014] as a hot-spot of
global change.

The article is organized as follows. The overall methodology including the copula
method seen in its connection to sequential kriging and auto-regression techniques is first
described in Section 9.2. Section 9.3 details its application to daily hydrological multivari-
ate model in the Cévennes region. Section 9.4 compares the statistics of observations and
simulations and synthesizes the results. Section 9.5 offers conclusions and perspectives.

9.2 Methods

The three techniques (copula, auto-regressive process, kriging) used in this copula based
multivariate model were respectively described in the previous Section 7.2.1, 7.2.2 and 7.2.3
(of this PhD). In this section, we present more details of the mathematical formulations
about how Gaussian copula, auto-regression and sequential kriging work together in our
context.
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Equivalence between Gaussian copula, auto-regressive process and sim-
ple kriging

Let {V1, V2, . . . , Vn} n be time-series variables, all of them supposedly already normal-
ized. In this part, we concentrate in AR(1) model for auto-regression, but there could be a
higher lag. So the concerned variables will extend to {V1, V2, . . . , Vn, V1

1 , V1
2 , . . . , V1

n } (also
noted as {X1, X2, . . . , Xn, Xn+1, Xn+2, . . . , X2n}) with

V1
i (t) = Vi(t + 1) for i ∈ [1 : n]. (9.1)

The associated covariance matrix of the variables {V1, V2, . . . , Vn, V1
1 , V1

2 , . . . , V1
n } is

Mcov =

 cov(Vi, Vj) cov(Vi, V1
j )

cov(V1
i , Vj) cov(V1

i , V1
j )

 = (ai,j).

As a symmetric real matrix, the covariance matrix Mcov admits the unique Cholesky de-
composition that has the form

Mcov = MCholM
ᵀ
Chol

which MChol is a lower triangular matrix with having only real entry and positive values
(usually strictly positive) on the diagonal

MChol =


b1,1 0 · · · 0

b2,1 b2,2 · · · 0
...

... . . . ...

b2n,1 b2n,2 · · · b2n,2n

 .

Let us decide we want to make the simulation sequentially. This means that a value of
Xi is to be obtained conditionally on previously simulated values such as {X1, . . . , Xi−1}.
We also use an AR process to formulate Xi.

Xi =
i−1

∑
j=1

αi,jXj + εi. (9.2)

So we can write the vector X = [X1, . . . , X2n]
ᵀ under the form,

X1

X2
...

X2n

 =


α1,1 α1,2 · · · α1,2n

α2,1 α2,2 · · · α2,2n
...

... . . . ...

α2n,1 α2n,2 · · · α2n,2n




X1

X2
...

X2n

+


ε1

ε2
...

ε2n

 .

In fact, the vector of innovations [ε1, . . . , ε2n]
ᵀ equals to the diagonal of MChol,

ε1

ε2
...

ε2n

 =


b1,1

b2,2
...

b2n,2n

 . (9.3)
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With the structure of Equation 9.2, [αi,j] is a lower triangular matrix. Therefore, each vari-
able of {Xn+1, . . . , X2n} (= {V1

1 , . . . , V1
n }) can be expressed as the linear combination of vari-

ables {X1, . . . , Xn} (= {V1, . . . , Vn}) only. This means that a multivariate auto-regressive
model can be built consistent to the Gaussian copula based model. A multivariate auto-
regressive model of order p (noted MAR(p)) predicts the next value in a d-dimensional
time series, yn as a linear combination of the m previous vector values

yn =
m

∑
i=1

yn−i A(i) + en (9.4)

where yn = [yn(1), yn(2), . . . , yn(d)] is the nth sample of a d-dimensional time series, each
A(i) is a d-by-d matrix of coefficients and en = [en(1), en(2), . . . , en(d)] is additive Gaussian
noise with zero mean and covariance.

Since we have concentrated in AR(1) model, we should build a MAR(1) for n variables
{V1, . . . , Vn}. 

V1
1

V1
2
...

V1
n

 = A


V1

V2
...

Vn

+ e (9.5)

where A is a n-by-n matrix and e = [e1, e2, . . . , en] is a n-dimension Gaussian noise.
Actually, the parameters A and e could be easily found by using associated Cholesky

matrix MChol. A series of sub-Cholesky-matrix {M1, M2, . . . , M2n} of MChol is introduced

Mi =

[
Mi

Chol 0i×(2n−i)

0(2n−i)×i I2n−i

]
where

Mi
Chol =


b1,1 0 · · · 0

b2,1 b2,2 · · · 0
...

... . . . 0

bi,1 bi,2 · · · bi,i

 .

The inverse of Mi has the same form of Mi such as:

M−1
i =

[
(Mi

Chol)
−1 0i×(2n−i)

0(2n−i)×i I2n−i

]
where Id stands for identity matrix of dimensions d× d and 0p×q stands for zero matrix of
dimensions p× q.

As we mentioned before, we use kriging technique for conditional simulation. When
we multiply M2n and M−1

n , we can obtain

M2nM−1
n = MChol

[
(Mn

Chol)
−1 0n×n

0n×n In

]

=

[
Mn

Chol 0n×n

B1 B2

] [
(Mn

Chol)
−1 0n×n

0n×n In

]
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where

B1 =


bn+1,1 bn+1,2 · · · bn+1,n

bn+2,1 bn+2,2 · · · bn+2,n
...

... . . . ...

b2n,1 b2n,2 · · · b2n,n

 , B2 =


bn+1,n+1 0 · · · 0

bn+2,n+1 bn+2,n+2 · · · 0
...

... . . . ...

b2n,n+1 b2n,n+2 · · · b2n,2n

 . (9.6)

Thus, we can obtain

M2nM−1
n =

[
Mn

Chol(Mn
Chol)

−1 = In 0n×n

B1(Mn
Chol)

−1 B2

]

A and e can be expressed as follows.

A = B1(Mn
Chol)

−1. (9.7)

and 
e1

e2
...

en

 = B2


b1,1

b2,2
...

bn,n

 . (9.8)

With Equation 9.7 and 9.8, we build the relationship between the parameters of
multivariate auto-regressive model of order 1 and the Cholesky matrix for the variable
{V1, . . . , Vn}.

Equation 7.4 provides the kriging weights for simple kriging which are the parameters
for the simulation. In fact, the kriging weights can be found in the series of sub-matrix of
Cholesky. For example, the kriging weights vector [wi

1, . . . , wi
i−1]

ᵀ for Xi which is simulated
conditionally on {X1, . . . , Xi−1} can be calculated as


wi

1
...

wi
i−1

 =


a1,1 · · · a1,i−1

... . . . ...

ai−1,1 · · · ai−1,i−1


−1 

ai,1
...

ai,i

 .

However, we can also find the same kriging weights vector [wi
1, . . . , wi

i−1]
ᵀ by multiply-
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ing Mi and M−1
i−1.

Mi M−1
i−1 =

[
Mi

Chol 0i×(2n−i)

0(2n−i)×i I2n−i

] [
(Mi−1

Chol)
−1 0(i−1)×(2n−i+1)

0(2n−i+1)×(i−1) I2n−i+1

]

=



0

Mi−1
Chol

...

0

bi,1 · · · bi,i−1 bi,i

0i×(2n−i)

0(2n−i)×i I2n−i





0

(Mi−1
Chol)

−1 ...

0

0 · · · 0 1

0i×(2n−i)

0(2n−i)×i I2n−i



=


Ii−1 0(i−1)×1

[bi,1 · · · bi,i−1]× (Mi−1
Chol)

−1 bi,i
0i×(2n−i)

0(2n−i)×i I2n−i


Thus, we have

[wi
1 · · ·wi

i−1] = [bi,1 · · · bi,i−1]× (Mi−1
Chol)

−1. (9.9)

Equation 9.9 shows the relationship between the kriging weights and the Cholesky
matrix.

Our approach is to use both auto-regressive process and kriging technique in Gaussian
copula framework to model a multivariate situation. The auto-regressive process makes
sure that the model has certain temporal correlation for each variable. The kriging tech-
nique has been used to simulate sequentially on previous variables.

In Gaussian copula framework, the Cholesky matrix associated with the covariance ma-
trix is vital. Our approach is similar to model a multivariate auto-regressive model (Equa-
tion 9.5). Both weight matrix A and white noisy vector e are accessible by using MChol

through Equations 9.7 and 9.8.
On the other hand, we need kriging weights and innovation vector to generate sequen-

tial conditional simulations. The same conclusion as above, the Cholesky matrix are used
to obtain kriging weights in each simulation step with Equation 9.9 and the innovation
vector with Equation 9.3.

Let us recall the matrix called Schur complement that is interesting to consider in the
context of this kind of conditional simulations.

Suppose P, R, S and Q are respectively p× p, p× q, q× p and q× q matrices. In addition,
Q is considered as invertible. Let

M =

[
P R

S Q

]

where M is a (p + q)× (p + q) matrix.
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Then the Schur complement of the block Q of matrix M, denoted as M/Q, is the p× p
matrix.

M/Q := P− RQ−1S.

In the applications to probability theory and statistics, suppose the random vectors Y
and Z belong to Rp and Rq respectively, and the vector (Y, Z) in Rp+q has a multivariate
normal distribution whose covariance is the symmetric positive-definite matrix

Σ =

[
P R

Rᵀ Q

]

where P ∈ Rp×p is the covariance matrix of Y, Q ∈ Rq×q is the covariance matrix of Z and
R ∈ Rp×q is the covariance matrix between Y and Z.

Then the conditional covariance of Z given Y is the Schur complement of P in Σ:

Cov(Z|Y) = Q− RP−1Rᵀ (9.10)

In our context,
p = n;

q = m;

Y = [V1, . . . , Vn];

Z = [V1
1 , . . . , V1

n ].

Thus, we have

Cov(Y, Z) = Mcov

=

 cov(Vi, Vj) cov(Vi, V1
j )

cov(V1
i , Vj) cov(V1

i , V1
j )


where P = [cov(Vi, Vj)]1≤i,j≤n, Q = [cov(V1

i , V1
j )]1≤i,j≤n and R = [cov(Vi, V1

j )]1≤i,j≤n.
Because of Equation 9.10, we obtain the conditional covariance of {V1

1 , . . . , V1
n } given

{V1, . . . , Vn} as the Schur complement of P in Mcov

Cov(V1
1 , . . . , V1

n |V1, . . . , Vn) = Q− RᵀP−1R

= [cov(V1
i , V1

j )]− [cov(V1
i , Vj)][cov(Vi, Vj)]

−1[cov(Vi, V1
j )].

Thus, we can also find the Schur complement of P = [cov(Vi, Vj)]1≤i,j≤n with B2 in
Equation 9.6:

Cov(V1
1 , . . . , V1

n |V1, . . . , Vn) = B2Bᵀ2 .

All the above can be summarized in saying that sequential kriging, auto-regression and
the Gaussian dependence part of the Gaussian copula techniques are different aspects of
the same system of dependence. So one can express things resorting to one or the other
aspect according to convenience, and links are explicit to switch from one perspective to
another.
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9.3 A multivariate model for hydrological purposes

9.3.1 Studied area and data

The studied area is located in the Cévennes which are a mountain range in south-central
France (Fig. 9.1).

Figure 9.1: (a) Location of the Cévennes. (b) 146 daily rain gauge stations available over years
1989-2013.

The Cévennes form a mountainous region at the interface of the Massif Central and
the plains of Languedoc. The Cévennes are subjected to Mediterranean influences and
its situation as first heighs facing south makes the area sensitive to the so-called épisode
cévenol meteorological phenomenon, where convective thunderstorms discharge consider-
able amounts of water in few hours. These events occur at fall when south wind blows
moist lukewarm air from the Mediterranean, while upper air is colder, yielding a convec-
tive context [see Tudurí and Ramis, 1997].

Figure 9.1 shows different topological features in Cévennes area. By applying k-means
clustering method on correlation matrix of daily precipitation data, the 146 rainfall gauge
stations can be partitioned into 4 clusters, as illustrated in Fig. 9.2.
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Figure 9.2: (a) The 146 daily rainfall gauge stations in Cévennes Vivarais within the 1989-2013
period. (b) The 146 gauges stations are partitioned into 4 clusters by using the k-means cluster-
ing. The clusters are located in the Mediterranean area (in dark blue), the Hill area (in cyan), the
Piedmont area (in yellow) and the Mountain ares (in red).
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Table 9.1 gives more details about the partition.

Table 9.1: Partition of the study area.

zone Conventional name Geographic feature Location Number of stations

1 Gard and Hérault Mediterranean South West 22

2 Drôme Hills North East 37

3 Ardéche Piemont Central North 47

4 Haute-Loire and Lozère Mountain North West 40

As already mentioned, a multivariate model aims at providing simulation of several
variables relevant to hydrologic modeling, used to improve our understanding and our
capacity of prediction and management of water resources.

Starting from the beginning, the water balance at the catchment scale may represent the
simplest description of the flow of water in and out of a system. Its general equation is:

P = R + E + ∆S. (9.11)

where P is precipitation, E is evapotranspiration, R is runoff or streamflow and ∆S is the
change in storage (in soil or the bedrock / ground water). E is a response to an atmospheric
potential evaporation (PET) that summarizes, from a physically based point of view, avail-
able energy. A typical estimation of PET originates in the Penman formula that indicates
most relevant atmospheric factors. To serve relevant inputs to a hydrologic model, one fi-
nally comes to five main near-surface meteorological variables driving the water balance:
Precipitation, Temperature, Solar radiation, Water vapor pressure and Wind speed.

The objective of the multivariate model is thus to make these five variables available to
the simulations.

Rain gauge observation precipitation data is extracted from the OHM-CV (Observa-
toire Hydrométéorologique Méditerranéen Cévennes-Vivarais) database [Boudevillain et al.,
2011]. Cévennes-Vivarais region covers an area of 160 km × 210 km. In this case, the aver-
age of daily precipitation data of 22 gauge stations in the Mediterranean area (see Table 9.1)
from 1989 to 2013 is considered as precipitation data for modeling. As seen in Section 7.1
and Section 7.2.4, the precipitation index is used as the precipitation variable.

Temperature, solar radiation, water vapor pressure and wind speed data are extracted
from the ERA-Interim database1 [Dee et al., 2011]. ERA-Interim is a global atmospheric re-
analysis starting in 1979, continuously updated. The temporal resolution is a 6-hours time
step and the spatial resolution is 0.75◦. Figure 9.3 presents the location of the Mediter-
ranean area where the extracted temperature, solar radiation, water vapor pressure and
wind speed data are joined to the precipitation data as inputs of the multivariate modeling.

Table 9.2 gives a short sample of the type of data used in the multivariate model. The
6-hours ERA-Interim data are averaged to obtain a daily observation.

1http://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/: last check on
2017/11/23

http://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/
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Figure 9.3: Location of the ERA-Interim cell used for providing atmospheric data for zone 1. The
cell center is located at (43◦30’N, 3◦00’E) and indicated by a red cross. The allusive background is a
ERA-Interim temperature field, with spatial resolution 0.75◦. Green lines are surface wind vectors.

Table 9.2: Short sample of the daily average data used in the multivariate model.
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9.3.2 Modeling

This section presents the different steps of the modeling process.
In Fig. 9.4, the daily average observations of the 4 variables extracted from the ERA-

Interim database (i.e. temperature, solar radiation, water vapor pressure,wind speed) as
well as the precipitation index are plotted for the 1989-2013 period. As expected, three
among these 5 variables, temperature, water vapor pressure and solar radiation, present a
strong seasonality.

Figure 9.4: The time-series of daily average observation of 5 variables from 1989 to 2013.

To accomodate seasonal variability, the modeling process was repeated for each of the
4 seasons commonly used in climatology : Spring runs from March to May, Summer from
Jun to August, Autumn from September to November, and Winter runs from December to
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February. The modeling process is thereafter only illustrated for the Summer.
Figures 9.5 - 9.9 present the time series of the five variables and their corresponding

fitted distributions.
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Figure 9.5: (a) the time series of average daily wind speed (m/s) in summer periods from 1989 to
2013. (b) the histogram of data and the fitted Weibull distribution (red line) with parameters (shape,
scale) = (2.336, 5.922). (c) the Q-Q (quantile-quantile) plot between empirical quantile of data
(y-axis) and theoretical quantiles (x-axis). (d) the comparison of cumulative distribution function
between the data (in black) and theoretical Weibull distribution (in red). (e) the P-P (probabil-
ity–probability) plot between empirical quantile of data (y-axis) and theoretical quantiles (x-axis).
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Figure 9.6: (a) the time series of average daily solar radiation (W/m2) in summer periods from 1989
to 2013. (b) the histogram of data and the fitted Weibull distribution with parameters (shape, scale)
= (24.78, 645.4). (c) the Q-Q (quantile-quantile) plot between empirical quantile of data (y-axis)
and theoretical quantiles (x-axis). (d) the comparison of cumulative distribution function between
the data (in black) and theoretical Weibull distribution (in red). (e) the P-P (probability–probability)
plot between empirical quantile of data (y-axis) and theoretical quantiles (x-axis).
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Figure 9.7: (a) the time series of average daily temperature (Celsius) in summer periods from 1989
to 2013. (b) the histogram of data and the fitted Normal distribution with parameters (mean, sd)
= (22.18, 2.332). (c) the Q-Q (quantile-quantile) plot between empirical quantile of data (y-axis)
and theoretical quantiles (x-axis). (d) the comparison of cumulative distribution function between
the data (in black) and theoretical Normal distribution (in red). (e) the P-P (probability–probability)
plot between empirical quantile of data (y-axis) and theoretical quantiles (x-axis).
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Figure 9.8: (a) the time series of average daily water vapor pressure (hPa) in summer periods from
1989 to 2013. (b) the histogram of data and the fitted Gamma distribution with parameters (shape,
rate) = (21.02, 1.155). (c) the Q-Q (quantile-quantile) plot between empirical quantile of data (y-
axis) and theoretical quantiles (x-axis). (d) the comparison of cumulative distribution function
between the data (in black) and theoretical Gamma distribution (in red). (e) the P-P (probabil-
ity–probability) plot between empirical quantile of data (y-axis) and theoretical quantiles (x-axis).
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Figure 9.9: (a) the time series of daily precipitation index in summer periods from 1989 to 2013.
(b) the histogram of data and the fitted Gumbel distribution with parameters (location, scale) =
(0.0768, 0.0814). (c) the Q-Q (quantile-quantile) plot between empirical quantile of data (y-axis)
and theoretical quantiles (x-axis). (d) the comparison of cumulative distribution function between
the data (in black) and theoretical Gumbel distribution (in red). (e) the P-P (probability–probability)
plot between empirical quantile of data (y-axis) and theoretical quantiles (x-axis).
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For each variable, the distribution is fitted among the general common uni-distributions
such as Normal distribution, Log-normal distribution, Exponential distribution, Gamma
distribution, Weibull distribution and Gumbel distribution.

As mentioned in Section 7.2.2, the auto-regressive process is included in the model and
is illustrated in Table 9.3 for the Summer season. In Table 9.3, the data of next day is then
added to each line of the original data. Indeed for the 5 variables W (FF2 [XXX-YES need
explain FF], R,T, V, P referred as Wind speed, Solar radiation, Temperature, Water vapor
pressure and precipitation index respectively), the temporal relation between a day and its
following is preserved by adding their shifted variant AR(1) process φ1 (i.e., FF1, R1, T1,
V1, P1).

φ1(t) = φ(t + dt), for φ ∈ {FF, R, T, V, P}. (9.12)

where dt is one time-step (or one day).
These data are then used to build the multivariate AR(1) model for summer period from

1989 to 2013.

Table 9.3: Daily average data in summer period from 1989 to 2013. Columns from 2 to
5 refer to the original data. (FF, R, T, V, P) is the abbreviation of (Wind speed (m/s), So-
lar radiation (W/m2), Temperature (◦C), Water vapor pressure (hPa), Precipitation index).
Columns from 6 to 9 refer to the data one day in advance in comparison to the original
data.

The copula model, based on the 10 variables (i.e., FF, R, T, V, P, FF1, R1, T1, V1, P1), is

2FF comes from the SYNOP (surface synoptic observations) code - https://donneespubliques.
meteofrance.fr/client/document/doc_parametres_synop_168.pdf: last check on 2017/11/31.

https://donneespubliques.meteofrance.fr/client/document/doc_parametres_synop_168.pdf
https://donneespubliques.meteofrance.fr/client/document/doc_parametres_synop_168.pdf
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implemented by the use of the Gaussian copula, defined by its Equation 7.1.
The kriging is then used to simulate the variables sequentially, meaning that in this ap-

plication, the multi-variable (FF, R, T, V, P, FF1, R1, T1, V1, P1) is operated in this specific
order. At each time-step, the value of R is simulated conditionally to the variable FF, the
value of T is simulated conditionally to the variables R and FF, and so on, finally, the value
of P1 is simulated conditionally to the variables FF, R, T, V, P, FF1, R1, T1, V1. The way how
a simulation is done, whether all at a time or as chained conditional simulation, does not
make any difference about the final result, if everything is to be simulated and all copula
parameters are supposed exactly known. The flexibility of conditional simulation is use-
ful when some data are already known (like rainfall) and all other variates are simulated
conditionally to it as statistically dependent.

Due to the sequential conditional characteristics of the simulations, the construction of
the model is also sequential. To do so, the multivariate auto-regressive model needs three
factors to use kriging for the simulation :

(a) the correlation matrix (as for the copula parameters);

(b) the parameters of white noise in auto-regressive process;

(c) the kriging weight parameters.

The first one (a) is easily calculated with the data. Table 9.4 gives the example of the
correlation matrix of the variables obtained with the Summer data.

Table 9.4: The correlation matrix of multivariables (FF, R, T, V, P, FF1, R1, T1, V1, P1)

FF R T V P FF1 R1 T1 V1 P1

FF 1.00 -0.10 -0.30 -0.60 0.03 0.56 -0.09 -0.33 -0.62 -0.30

R -0.10 1.00 0.44 0.18 -0.34 -0.19 0.61 0.45 0.31 -0.39

T -0.30 0.44 1.00 0.63 -0.20 -0.17 0.34 0.90 0.57 -0.14

V -0.60 0.18 0.63 1.00 0.18 -0.25 0.16 0.59 0.74 0.45

P 0.03 -0.34 -0.20 0.18 1.00 0.17 -0.13 -0.20 -0.10 0.53

FF1 0.56 -0.19 -0.17 -0.25 0.17 1.00 -0.10 -0.28 -0.60 0.03

R1 -0.09 0.61 0.34 0.16 -0.13 -0.10 1.00 0.43 0.18 -0.32

T1 -0.33 0.45 0.90 0.59 -0.20 -0.28 0.43 1.00 0.62 -0.18

V1 -0.62 0.31 0.57 0.74 -0.10 -0.60 0.18 0.62 1.00 0.20

P1 -0.30 -0.39 -0.14 0.45 0.53 0.03 -0.32 -0.18 0.20 1.00

From these numerical values, we can see there is no general rule weather the inter-
variate or inter-time correlation will be stronger. This agnostic perspective of the technique
is a strength that makes it very flexible. In distinct context and use cases, especially in
distinct season or time scales, different links may appear, that can be understood or used,
even understood and used in the best case.
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Equation 7.3 and 7.4 give access to the parameters (b) and (c), respectively, reported in
Table 9.5 for the summer season.

Table 9.5: The sequential system of simple kriging for multivariables (FF, R, T, V, P, FF1, R1,
T1, V1, P1). The first 9 columns contain the kriging weight parameters for the sequential
system. The simulated value of the variable φ ∈ {R, T, V, P, FF1, R1, T1, V1, P1} at time t
can be obtained by using Equation 7.4, the weight parameters can be found in the row
corresponding to the variable φ. The last column is the estimation of variance for simple
kriging (see Equation 7.6).

Kriging weight parameters

FF R T R P FF1 R1 T1 R1 σ

R -0.13 0.99

T -0.22 0.44 0.86

V -0.45 -0.07 0.54 0.64

P 0.30 -0.17 -0.47 0.76 0.84

FF1 0.54 -0.14 0.04 0.04 0.09 0.83

R1 -0.10 0.67 0.12 -0.10 0.11 0.04 0.72

T1 -0.01 -0.04 0.82 0.00 0.00 -0.12 0.17 0.41

V1 -0.01 0.12 -0.18 0.57 -0.09 -0.35 -0.11 0.33 0.49

P1 -0.10 -0.08 -0.22 0.57 0.31 0.17 -0.12 -0.29 0.24 0.58



160 Chap 9. Copula based multivariate approach

9.4 Results and discussion

This section presents the results of the simulations generated with the copula-based mul-
tivariate model and the comparison between the data from ERA-Interim and the simulated
data. Since the daily observations are available from 1989 to 2013, so a 25 years data-set, the
simulation is considered in chunks of 25 years. 50 replicates are generated (1250 simulated
years all together).

The simulations include the seasonality by generating the model separately for the 4
different seasons. Thus, for each season, a specific model is provided. Several statistical are
checked to evaluate the simulations:

1. a general statistical analysis (e.g., the average and the standard deviation) ;

2. the marginal distribution of each variable ;

3. the joint distribution of several variables ;

4. the temporal correlation.

The Section is thus structured in order to discuss on these 4 items.

9.4.1 General statistical analysis

Basic statistic properties such as the mean and standard deviations of the 25-years sim-
ulations are first diagnosed. These simple statistics are essential as they provide a prelim-
inary validation of the model before exploring more complex indicators. Figures 9.10 and
9.11 present the statistics of the mean and standard deviations of the simulated period. For
each variable, there are 50 replications of 25-years simulations. The black points refer to the
mean and standard deviations of 25-years observation for each variable. By its construc-
tion, the simulations present a large variability, but the comparisons between the average
observed and simulated data show a good agreement for almost all the variables.
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Figure 9.10: Statistics, illustrated with boxplots, of the average values for each variable over the
25-years period. Black points refer to the observed average value. The statistics of the simulated
values, in red, rely on the 50 replications of 25-years simulations.
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The capacity of the model to reproduce the seasonality is illustrated in Fig. 9.12. As
expected, the variability within each season is strongly reduced compared to the one for
the whole year, and the comparison with the observation presents better agreement.
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Figure 9.12: Statistics, illustrated with boxplots for each season, of the average value for each vari-
able over the 25-years period. Black points refer to the observed average value. The statistics of the
simulated values, in red, rely on the 50 replications of 25-years simulations.
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This result is confirmed with the QQ-plot graphics, introduced in Fig. 9.13, where the
comparison between the observed and the simulated probability distributions presents a
fairly good agreement. The points approximately remain on the line y = x.

Figure 9.13: QQ-plots for each variable by comparing the marginal distributions between 25-years
observed and one 25-years simulation.

Some discrepancies still exist for the high values, in particular for water vapor pressure
and precipitation index. This result is due to approximate adjustment of their marginal



9.4. Results and discussion 165

distributions. As Sklar’s Theorem C.4 mentioned, the joint distribution of multivariable
can be treated separately with a copula function and all marginal distributions. If also
means that if the marginal distributions could not be fitted correctly to observed data, the
copulas will not solve the problem. The theorem makes sure that the marginal distributions
of variables are not affected by the nature of copulas. This is one of the main advantage
to use copula technique to deal with multivariate problem. In this paper, the empirical
distribution function is chosen to fit marginal distribution of the variables.

9.4.2 Bi-variate distribution

Bivariate distributions of all pairs of variables are presented in Fig. 9.15 for the summer
season. The comparison between the observed (in black) and the simulated (in red) focus
on the 25-years simulated period.

The Figures may be split in two parts. The upper right part presents the point-by-point
comparison between the observed and simulated data. As illustrated in the Fig. 9.15, the
red and the black clusters occupy more or less the same area. Few discrepancies appear
when analyzing the highest precipitation index values. In the lower part, the plots show
the bivariate distributions of all pairs of variables. The simulated contours (in red) refer to
one replication of 25-years simulations. Even if the two colored contours do not coincide
exactly, both bivariate distributions present more or less the same shape, which is an en-
couraging result. Looking in more details (Figure 9.18), it is almost impossible to identify
the observed bivariate distribution among to the simulated ones, and this is as expected.

The results are encouraging even though the model is based on simple Gaussian copula.
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Figure 9.14: Bivariate distributions of the observed (in black) and the simulated (in red) data for
the spring season within the 1989-2013 period. The simulated contours refer to the mean of the 50
replications of the 25-years simulation. Upper right part of the figure) the point-by-point represen-
tations of all pairs of variables; lower left part of the figure) the bivariate distributions of all pairs of
variables; the diagonal) the comparison between the observed and the simulated data distribution for
each variable.
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Figure 9.15: Bivariate distributions of the observed (in black) and the simulated (in red) data for the
summer season within the 1989-2013 period. The simulated contours refer to the mean of the 50
replications of the 25-years simulation. Upper right part of the figure) the point-by-point represen-
tations of all pairs of variables; lower left part of the figure) the bivariate distributions of all pairs of
variables; the diagonal) the comparison between the observed and the simulated data distribution for
each variable.
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Figure 9.16: Bivariate distributions of the observed (in black) and the simulated (in red) data for the
autumn season within the 1989-2013 period. The simulated contours refer to the mean of the 50
replications of the 25-years simulation. Upper right part of the figure) the point-by-point represen-
tations of all pairs of variables; lower left part of the figure) the bivariate distributions of all pairs of
variables; the diagonal) the comparison between the observed and the simulated data distribution for
each variable.
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Figure 9.17: Bivariate distributions of the observed (in black) and the simulated (in red) data for
the winter season within the 1989-2013 period. The simulated contours refer to the mean of the 50
replications of the 25-years simulation. Upper right part of the figure) the point-by-point represen-
tations of all pairs of variables; lower left part of the figure) the bivariate distributions of all pairs of
variables; the diagonal) the comparison between the observed and the simulated data distribution for
each variable.
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Figure 9.18: The comparison of bivariate distributions of wind speed and solar radiation between the
observation data and simulation data. There are one observation plot and 8 simulation plots. The
span of each data is 25-years for summer periods. This displays the variability of 25-years chunks,
and suggest there is no obvious difference between any of them and the observed.



9.4. Results and discussion 171

9.4.3 Temporal correlation

Temporal correlation is an important issue since the objective of this multivariate model
is to provide relevant simulated meteorological variables that will be further used as inputs
of hydrological models in order to evaluate water resource at the regional scale. In this
context, the auto-correlation functions (ACF) are used to evaluate the capacity of the model
to proper reproduce the observed temporal correlation. They are drawn in Fig. 9.19 - Fig.
9.22 for each variable, for the spring, summer, autumn and winter seasons, respectively.

Autocorrelation is the correlation of a signal with a delayed copy of itself as a function
of delay. ACF represents the serial dependence for a time series of random variable.

Overall, Fig. 9.19 - Fig. 9.22 present a fairly good agreement between the observed and
simulated ACF for all seasons. For the variables which do not present any strong periodic
change in time, like wind speed and precipitation index, the performance of the model
is really good. The observed and the simulated ACF present very weak discrepancies.
Nevertheless, for the three other variables, in particular the solar radiation, the multivariate
model is not able to properly reproduce its periodic feature as the one observed in the
observation data. In spring, the model correctly reproduce the ACF of the simulated solar
radiation up to 15 days, but is not able to capture the change of the sign.

This result is associated with the choice of the 3-month block to define the season, and
consequently to implement the multivariate model.

But the existence of non-stationarity (periodic trend) [XXX-NON inside for ?] inside
of certain variables (such as temperature or solar radiation) for 3-month block could be
an issue for temporal modeling. One possible solution is to reduce 3-month block into
a shorter interval (e.g., one-month interval). Another way would be to fit a trend where
obvious and physically appropriate and remove it from stochastic simulation.
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9.4.4 Seasonality

The definition of season and its associated months is based on usual meteorological
conventions. However, the temporal correlation diagnosis (Section 9.4.3) shows the im-
portance of such seasonality choice. In this section, the signature of the definition of the
season not only on the performance, but also on the multivariate dependence structure is
shown. One copulas model per month is built, and the impact of the definition of the sea-
son (i.e. 4 seasons per year versus 12 seasons per year [XXX-NON monthly values ?]) in
the multivariate simulation is illustrated in Figure 9.25 and Figure 9.26.

Figure 9.25 presents the Kendall rank correlation coefficients between temperature and
precipitation index within each individual season. The overall evolution of the correlation
coefficients presents the same pattern over the year, whatever the number of seasons in a
year (4 or 12). Temperature has the positive correlation with precipitation index during
the winter and autumn periods, but a negative correlation during the spring and summer
periods. This clearly demonstrates a change in the inter-variable structure along the year,
that we know has climatological relevance and can not be ignored in practice.

On the contrary, Figure 9.26 presents the Kendall rank correlation coefficients between
solar radiation and precipitation index within each individual season. Just in December,
the precipitation index has a positive correlation with solar radiation, but this is not very
strong and disappear when only 4 seasons per year are considered.

The segmentation of the year in seasons of homogeneous dependence structure, or the
relevant parametrisation of significant gradual changes, could be interesting as such. It is
certainly a next step in SWG development.
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Figure 9.25: Kendall rank correlation coefficients between temperature and precipitation index
within each individual seasons. Each boxplot presents 10 yearly correlation coefficients within the
1989-2013 period. Above: 4 seasons per year; Below: 12 seasons per year.
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Figure 9.26: Kendall rank correlation coefficients between solar radiation and precipitation index
within each individual different seasons. Each boxplot presents 10 yearly correlation coefficients
within the 1989-2013 period. Above: 4 seasons per year; Below: 12 seasons per year.
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9.5 Conclusions and discussions

A multivariate model is necessary to provide relevant meteorological variables required
as inputs of hydrological models. The inputs must to be statistically consistent, within
a range of time and space scales determined by the intended use of the simulation, with
observation data.

As it is well known, the multivariate joint distribution remains one of the major difficul-
ties for multivariate modelling. Within the framework proposed by Sklar [1959] in its the-
orem (Equation C.4), a continuous multivariate joint distribution may be expressed as the
product of the marginal distributions of each single variable and a multivariate probabil-
ity distribution for which the marginal probability distribution of each variable is uniform.
The importance of this theorem is to establish the relationship between the multivariate
joint distribution and each univariate marginal distribution, by means of a copula func-
tion that describes the dependence structure between the uniform transformed variables.
Therefore, the copula technique has become one more and more attractive statistical tool to
analyze multivariate model. As one of the elliptical copula families, the Gaussian copula
is most popular because of the simplicity of their formula and the easy links with other
statistical tools under Gaussian framework (such as geostatistics). Certainly, the Gaussian
copula is frequently inadequate, because it can not model tail dependence, making it un-
suitable for the situations where tail dependence exists and must be considered [see Mazur
and Piterbarg, 2015; Serinaldi et al., 2015; Furman et al., 2016; Hao and Singh, 2016]. A possi-
ble improvement would be to use multivariate t-distribution which resembles multivariate
normal distribution with one extra parameter in t-distribution that can give more flexibil-
ity. Evin et al. [2017] has used t-copula to generate multi-site daily precipitation for the
assessment of extreme floods in Switzerland.

Another major issue is the capacity of the multivariate model to reproduce a sound
temporal correlation of each variable. Here the auto-regression aspect was explicitly intro-
duced to check how easily the temporal dependence can be handled in the copula frame-
work. In this paper, only AR(1) process has been applied, but the development done do
not suggest any lack of generality. If the results are globally encouraging, a main difficulty
remains associated with the important seasonality of some variables. Introducing season-
ality by 3-month blocks seems to be not enough because seasonal trends in some variates
like temperature and solar radiation make a stationary model ineffective.

In this paper, only Gaussian copula has been considered, the general results are quite
promising. On one hand, because of the limitations of the Gaussian framework itself, it
is clear that extreme values will still be an issue. On the other hand, as demonstrated,
the Gaussian copula comprises known results of auto-regression and sequential kriging
techniques. This suggest that the copula technique is a very flexible and no regret approach
for building stochastic weather generator, even if the parallel between copula and other
efficient techniques may be more obscure or only approximate if other copulas are used.
[XXX-NON clarify please]

The studied area in this paper is in Cévennes-Vivarais area which is mountainous region
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with several well documented data-bases for the meteorological variables. Five hydrologi-
cal variables such as Wind speed, Solar radiation, Temperature, Water vapor pressure and
precipitation have been chosen to build a multivariate model. We know that the atom at
zero in precipitation data usually cause difficulties in copula approach. In this paper, using
the meteorological context data is efficient to scrutinize dry-days and suggest and adjust a
precipitation index that is much more continuous and easily enters the copula approach.

The diagnosis of the statistical analysis for this copula based multivariate approach are
generally quite promising. The simulations have the similar average values and variability
of each variable as observed data in both yearly and seasonal span. The marginal distri-
butions of the variables have also been reproduced in the simulations. In a more com-
plex bivariate diagnosis, the joint distributions of all pairs of the variable have been nicely
represented. Even though, the choice of 3-month block for separating the seasons is not
good enough in the temporal correlation diagnosis for certain variables such as tempera-
ture or solar radiation, the modification to monthly block might solve the problem, and
additionally suggest further investigation of the seasonal changes in the dependence struc-
ture among variables under study.
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CHAPTER 10

CONCLUSIONS

This work has been dedicated to propose new concepts and tools for stochastic weather
simulation activities targeting the specific needs of hydrology. Two main contributions are:

1. to generate spatio-temporal rainfall simulations over a large heterogeneous domain;

2. to generate multivariate simulations related to precipitation, temperature, solar radi-
ation, water vapor pressure and wind speed in a flexible way, using conditional mode
on already known elements to extend the simulation in time or across variates.

Chapter 1 pointed out two main hydrological concerns which were water resources
management and hydrological hazards assessment that can be served with hydrological
simulations. [XXX-NON rephrase] Water resources are indispensable for human survival.
But at the same time, hydrological hazards like floods often bring disaster to people. This
was the starting point of this PhD work that aimed to propose a simulation framework in
order to make explicit a picture of the variability of water fluxes at the entrance to river
basins.

Chapter 2 introduced the Cévennes-Vivarais region as the studied region in this PhD
work. The Cévennes-Vivarais region is located in a mountainous terrain which contains
several different climates and topological situations. This well-documented region benefits
of a long-term and qualified meteorological observation data, necessary to implement the
simulations. The OHM-CV database provided precipitation data. There are 146 available
rain gauge stations that record the hourly precipitation. Data from 2005 to 2014 were used
to analyze rainfall situations in the Cévennes-Vivarais region. Due to the different topolog-
ical features and climate conditions, the rainfall field at the Cévennes-Vivarais region can
not be considered as homogeneous. By using k-means clustering method applied on hourly
data, we classified the whole Cévennes-Vivarais region into relatively homogeneous rain-
fall zones. A classification of 4 zones was selected and preserved during the PhD work be
representative of the heterogeneity problem of a rainfall field. We identified precipitation,
temperature, solar radiation, water vapor pressure and wind speed as the key hydrological
model inputs to serve the water balance models, so hydrologic distributed models in gen-
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eral. The latter 4 hydro-meteorological variables data were selected from the ERA-Interim
database. The variabilities inside the zone were not considered.

Chapter 3 identified the main challenges in this PhD work. The main objective is to
enable hydrological simulations to realize various long term hydrological strategies on dif-
ferent spatial and temporal scales. There were two steps to achieve our objective, corre-
sponding to two main challenges. The first main challenge to overcome was the hetero-
geneity of a rainfall field mentioned in Chapter 2. The spatio-temporal rainfall simulator
SAMPO available at Irstea was introduced. This simulator is built under the assumption
of the homogeneity of the rainfall field, while the temporal sequence is built as a succes-
sion of different rainfall types. Hence, our direct approach was to adapt SAMPO to sim-
ulate over a non-homogeneous rainfall field considered as a set of several homogeneous
rainfall zones. The second main challenge was the multivariate modeling. Five hydro-
meteorological variables chosen in Chapter 2 needed to be modeled simultaneously for the
spatio-temporal simulations for the hydrological uses to be consistent.

Heterogeneity problem

Chapter 4 reviewed existing approaches relevant to the problem of the heterogeneity
of a rainfall field. An overview table (Table 4.1) on available stochastic weather genera-
tors (SWG) was presented to distinguished SWG into different categories. Several existing
methods dealing with spatial correlations of a rainfall field and their limitations were re-
viewed. But they were not suitable for our approach of adapting SAMPO, as SAMPO is
based on homogeneous rainfall types. Therefore, approaches dealing with coordination of
rainfall types calendars were considered.

Chapter 5 proposed two different approaches based on rainfall types calendars to enable
a “homogeneous” rainfall generator to address rainfall simulations over a large, heteroge-
neous field. The first one was a parametric approach based on coupled hidden Markov
model (CHMM). The CHMM was built by using the well known hidden Markov model in
a hierarchical way. As a parametric model, the modeling process needs to estimate a num-
ber of parameters from Baum-Welch training algorithm and Viterbi decoding algorithm
(Appendix A) for hidden Markov models. This condense the information provided by the
data in a reduced number of explicit parameters, that are necessary and sufficient to sim-
ulate other instances of their observed process. The other approach was a non-parametric
approach based on resampling of historical calendars of homogeneous rainfall types. Both
models were able to generate a set of simulated calendars of rainfall types for the homoge-
neous rainfall zones.

Chapter 6 showed the statistical results of the simulations generated by SAMPO through
the two approaches based on rainfall types calendars, comparing to a reference simulation
built on the historical sequences of rainfall types. Simulations (called monobloc) generated
by SAMPO over the whole rainfall field without the separation into several homogeneous
rainfall zones were also included in the comparison of the results. The results with coor-
dination methods were much better than monobloc simulations, as expected, confirming
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that the assumption of homogeneity for the whole domain would not be realistic. The
simulations of the resampling based method represented better results than those of the
CHMM with the re-organization method, when comparing to simulation based on the ob-
served calendars in term of the general statistical values (the average, the standard de-
viation or the maximum, etc) and the temporal correlations (dwell time for wet and dry
period). However, parametric methods have a more pronounced interannual variabilities
and the potential to be driven by the large scale. So both approaches have their relevance.
However, the new methods share a common drawback that the inter-station correlations
for stations in different zones are not correct. Given the partition of a large surface into
several homogeneous zones, the spatial correlation between two zones is only conveyed
by the rainfall types system. Ultimately, the real problem came from the very principle of
delineating homogeneous zones and homogeneous rainfall types.

Chapter 7 proposed a new approach taking the opposite perspective to the previous
two methods to overcome the heterogeneity problem. This new approach uses a copula
based coordination method to generate the simulated time-series with the continuous val-
ues, and a disaggregation method to simulate small-scale rainfall field while respecting the
large scale values provided by the simulated continuous type time-series. The modeling of
the copula based coordination approach is made under the Gaussian framework. This is a
bit restrictive choice as a copula, but allows different techniques such as the geostatistical
tools, the auto-regressive process and the Gaussian copula to work together. The simulated
time-series of the average daily precipitation and the daily rainfall intermittency seems cor-
rect. The diagnostic of the marginal distributions and the joint distributions showed the
benefits of the copula technique when dealing with the multivariate framework. The auto-
regressive process ensures the preservation of temporal correlations inside of the simulated
time-series. Thereafter, reasonably simulated time-series of average daily precipitation and
daily rainfall intermittency considered as large scale values could be submitted to a dis-
aggregation model. By using a combination of block-to-point kriging and optimization
search inspired by inverse modeling in hydrogeology, the rainfall fields were simulated in
a fine scale. Especially using an adapted dichotomy search enable the rainfall field at small
scale to respect daily average precipitation and the daily rainfall intermittency prescribed
at large scale. The evident improvement of this approach is that the field is now smooth at
boundaries between zones. The new approach makes the simulations much more realistic
in space, while correlation in time is also preserved, if it exists. However, lack of statistical
diagnosis on this new approach suggests further assessment of this new technique.

Multivariate modeling

Part III proposed a copula based multivariate model to provide relevant hydro-
meteorological variables required as inputs of hydrological models. Five hydro-
meteorological variables (precipitation, temperature, solar radiation, water vapor pressure
and wind speed) were chosen for multivariate modeling. The daily precipitation data and
the daily data of the other meteorological variables from 1989 to 2013 were selected from
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the OHM-CV and ERA-Interim database, respectively. The main focus of multivariate
modeling was on the inter-variable link and on the time scale, the spatial disaggregation
of other variates than precipitation was not considered. Similar to the model proposed
in Chapter 7 to simulate several time series of large-scale rainfall, we used the copula
technique combining with the auto-regressive process and kriging technique to deal with
the time series of these five hydro-meteorological variables under the Gaussian framework.

Several issues have been overcome in this part. Firstly, the precipitation index was in-
troduced to deal with the problem that the distribution of daily rainfall total has a large
proportion of days with zero rainfall. By using an artificial neural network applied on
context meteorological variables, the non-zero precipitation data being used as target, the
zeros in daily precipitation data could be transformed into non-zero values. In our case,
the coefficient of determination between the precipitation data and the reconstructed pre-
cipitation index was more than 0.7 which was considered as a reasonable result to allow us
using the precipitation index in the modeling. Secondly, since the spatio-temporal rainfall
simulation could be generated as in Chapter 5 and 7, the kriging technique was introduced
to simulate sequentially the other hydro-meteorological variables conditionally to the pre-
cipitation simulation. The equivalence between the Gaussian copula technique, the auto-
regressive process and the simple kriging method under the Gaussian framework makes
the multivariate model easy to implement.

The general statistical analysis showed the good consistency between simulated and ob-
served datasets. The bivariate diagnostic validated the choice of the Gaussian copula in our
case. If the results are globally encouraging, a main difficulty remains associated with the
strong dependency of the some meteorological variables to the season. Introducing stan-
dard seasonality by 3-months blocs seems to be not enough because of the non-stationarity
of the temperature and the solar radiation. The results of auto-correlation functions were
improved when the interval of one season reduced to one month. So the choice of seasons
is a key factor to in the time-series modeling. Actually, the statistical analysis of seasonality
in inter-variable dependence must be first investigated, and also has an interest for itself.

With this, we are moving to the perspective section.
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PERSPECTIVES

This PhD work (1) simulated large, non-homogeneous rainfall field with two different
methodologies, the rainfall types calendars based coordination approach and the copula-
disaggregation approach; (2) generated multivariate simulations of the hydrological inputs
conditioned by precipitation simulations.

Possible further developments follow.

Coupled hidden Markov model

In Chapter 10, we mentionned drawbacks of the coupled hidden Markov model
(CHMM) linked to the very concept of homogeneous rainfall types. But the hidden
Markov model still allows us to simulate rainfall on homogeneous rainfall zone, having
key statistical properties (e.g., rainfall probabilities, dry/wet spell lengths) of the sim-
ulated rainfall that do match those of the observed rainfall records. This can be useful
for generating large numbers of synthetic realizations of rainfall for input into statistical
analysis. Also, the unobserved hidden states introduced by the hidden Markov model
have different rainfall distributions associated with them. More, the hidden states can be
coupled with the states of the atmosphere; hence it is certainly possible to drive a HMM of
rainfall from classified weather types out of atmospheric runs for climate change.

Disaggregation model

The disaggregation approach was developed by the end of the PhD and certainly needs
to be diagnosed more sharply using different statistical analysis.

The current model shows that the average precipitation and the rainfall intermittency of
small scale respect the large scale values, as expected by design. However, spatial changes
in distribution parameters could be considered as they influence the fine-scale rainfall field
achieved. This is needed to better respect the local climatology.

Prescribed small scale variability has a clear impact on the disaggregation results. De-
spite it can be first “expert-prescribed”, this suggests a detailed estimation of the small scale
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variability to be conducted, as customary in any simulation; it can be based on raingauge
data but could also be supplemented by rainfall radar images as these are gaining enough
record to serve in climatological studies.

Multivariate model

Even though the results are generally good with the copula based multivariate model,
there are still several points which need to be investigated. Firstly, in the absence of tail
dependence of Gaussian copula, it is important to see whether Gaussian copula is suitable
for concerned variables or should be replaced by more adequate copulas [Furman et al.,
2016], provided these copulas can also conveniently run in conditional and autoregressive
mode. Secondly, other copula families should be tested as well to compare the differences.
This kind of comparison will provide more information about the “real” multivariate dis-
tribution. Thirdly, the investigate of seasonality must be more precise. In the case of this
PhD work, the 3-month interval for one season was taken for granted. Though a reduced
one-month interval for one season showed a better result, it still needs to understand how
to classify different seasons where the variables can be considered as stationary. Finally, in
the aspect of auto-regressive process, only AR(1) has been applied in this PhD work, and
trying AR with higher order may be another step forward for further development.

Long term development

Looking forward, the ultimate goal will be to provide a complete procedure to gener-
ate the spatio-temporal simulations of concerned hydrometeorological variables over any
reasonable large-scale studied area (e.g., large catchments).

Precipitation is generally considered as primary variable for stochastic weather gener-
ators in the statistical approach, but which variables conduct rainfall events in the real
world ? The investigations on the physical interactions among the meterological variables
can be useful in the multivariate models, especially when the multivariate models operate
in conditional mode. Opening the set of variables concerned to other variables that the
ones strictly needed, possibly including obviously physically relevant background vari-
ables, may help respect a minimum of physical sense and better prepare the stochastic
models to run as a disaggregator.

For other hydro-meteorological variables, their simulations should be generated in
space and in time with the same spatio-temporal resolution as the precipitation simula-
tions. The spatio-temporal simulations of all concerned hydrometeorological variables
finally could be an option, but it may be not the most urgent, if we consider the dynamic of
hydrology is mostly sensitive to rainfall distribution and other factors mostly act through
by their accumulated effect on evaporation.

Eventually, the simulations should be capable to produce different hydrological scenar-
ios for the different hydrological uses with no noticeable bias when comparing to using
historical data.
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APPENDIX A

HIDDEN MARKOV MODELS

Theory

Let
T = length of the observation sequence;

N = number of states in the model;

M = number of observation symbols;

S = {S0, S1, . . . , SN−1} = distinct states of the Markov process;

V = {v0, v1, . . . , vM−1} = set of possible observations;

π = state transition probabilities;

ψ = observation probability matrix;

µ = initial state distribution;

O = (O0,O1, . . . ,OT−1) observation sequence;

Q = (q0, q1, . . . , qT−1) one possible hidden state sequence.

The state transition probabilities π = {aij} where

aij = P(qt+1 = Sj|qt = Si), 1 ≤ i, j ≤ N − 1. (A.1)

and the observation probability matrix in state j, ψ = {bj(k)}, where

bj(k) = P(vk at t|qt = Sj), 1 ≤ j ≤ N − 1, 1 ≤ k ≤ M− 1. (A.2)

A generic hidden Markov model is illustrated in Fig. A.1, where the {Xi} presents the
hidden state sequence and all other notations are as given above. The Markov process
which is hidden behind the dashed line is determined by the current state and the transition
matrix π . We are only able to observe the {Oi}, which are related to the (hidden) states of
the Markov process by the emission matrix ψ.

Three fundamental problems

There are three fundamental problems that we can solve using HMMs.
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Figure A.1: Hidden Markov Model.

• Problem 1: Evaluation

Given a model λ = (π, ψ, µ) and a sequence of observations O, find P(O|λ). Here,
we want to determine the likelihood of the observed sequence O, given the model.

We can use the forward algorithm [Baum et al., 1967, 1968] to resolve the evaluation
problem. Problem 1 allows us to choose the model which best matches the observa-
tions.

• Problem 2: Decoding

Given λ = (π, ψ, µ) and an observation sequence O, find an optimal state sequence
for the underlying Markov process. In other words, we want to uncover the hidden
part of the Hidden Markov Model.

We can use the Viterbi algorithm [Viterbi, 1967; Forney, 1973] to resolve the decoding
problem. The Viterbi algorithm is a dynamic programming algorithm for finding
most likely sequence of hide states. The principle of the Viterbi algorithm is to find the
single best state sequence, Q = {q0, q1, . . . , qT}, for the given observation sequence
O = (O0,O1, . . . ,OT). For this purpose, we need to define the quantity

δt(i) = max
q0,q1,...,qt−1

P(q0, q1, . . . , qt = i,O0,O1, . . . ,Ot|λ) (A.3)

i.e. δt(i) is the best score (highest probability) along a single path, at time t, which
accounts for the first t observations and ends in state Si. Thus, we have

δt+1(j) =
[

max
i

δt(i)aij

]
× bj(Ot+1). (A.4)

• Problem 3: Training

Given an observation sequence O and the dimensions N and M, find the model λ =

(π, ψ, µ) that maximizes the probability of O. This can be viewed as training a model
to best fit the observed data. Alternatively, we can view this as a (discrete) hill climb
on the parameter space represented by π, ψ and µ.

We can use the Baum-Welch algorithm [Dempster et al., 1977] to resolve the train-
ing problem. The Baum-Welch algorithm is used to find the unknown parameters



195

of a hidden Markov model. It uses the well known EM algorithm to find the max-
imum likelihood estimate of the parameters of a hidden Markov model given a set
of observed feature vectors. The Baum-Welch algorithm finds a local maximum for
λ∗ = argmaxλP(O|λ) (i.e. the HMM parameters λ that maximize the probability of
the observation).

A simple case: use HMM to generate one sequence of rainfall
types

For example, the below table presents a sequence of rainfall types.

Observations O1 O2 O3 . . . OT

Type of rainfall 3 3 5 . . . 1

For a hidden Markov model, we need three things which are the number of the hidden
states, a initial state transition probabilities πini and a initial observation probability matrix
ψini.
Once we get a initial hidden Markov model, we use Baum Welch algorithm to improve the
model. The Baum Welch algorithm optimizes the model parameters so as to best describe
how a given observation sequence comes about. It allows us to optimally adapt model
parameters to observed training data i.e. to create best models for real phenomena. Then,
another important step is to find the “correct” state sequence. This is the decoding prob-
lem which we mentioned before. The Viterbi algorithm can solve this problem as best as
possible. But we must point out here that the Viterbi algorithm is not the only solution for
the decoding problem. After the training step for finding the best model with given obser-
vation and the fixed number of states, and the decoding step for finding the correct state
sequence with given observation and given model, we can generate observation sequence
with a hidden Markov model and get a correct state sequence.

If the number of observation symbols is M and the number of state is N, we can obtain
a transition matrix with the dimension of N × N for the states, a emission matrix with
the dimension of N × M between the states and observations, and also a state sequence
of the same length of observation sequence. These are three important elements when we
construct the coupled hidden Markov model in Section 5.2.2





APPENDIX B

SELF-ORGANIZING MAP

Definition

The Self-Organizing Map (SOM), commonly known as Kohonen network introduced
by the Finnish professor Kohonen [1982] is a computational method for the visualization
and analysis of high-dimensional data. The self-organizing map is a type of artificial neu-
ral network (Appendix D) that is trained using unsupervised learning to produce a low-
dimensional, discretized representation of the input space of the training samples, called
a map, and is therefore a method to do dimensionality reduction. Self-organizing maps
differ from other artificial neural networks as they apply competitive learning as opposed
to error-correction learning (such as back-propagation with gradient descent), and in the
sense that they use a neighborhood function to preserve the topological properties of the
input space. There are two modes when operating SOM.

- Training mode is to build the map using input examples (a competitive process, also
called vector quantization).

- Mapping mode is to automatically classify a new input vector.

Same as artificial neural network, a self-organizing map consists of components called
nodes or neurons. Associated with each node are a weight vector of the same dimension as
the input data vectors, and a position in the map space. The usual arrangement of nodes
can be defined to be rectangular, hexagonal or even irregular; hexagonal is effective for
visual display. The procedure for placing a vector from data space onto the map is to find
the node with the closest (smallest distance metric) weight vector to the data space vector.

Learning Algorithm

SOM mapping steps starts from initializing the weight vectors. From there a sample
vector is selected randomly and the map of weight vectors is searched to find which weight
best represents that sample. Each weight vector has neighboring weights that are close to
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it. The weight that is chosen is rewarded by being able to become more like that randomly
selected sample vector. The neighbors of that weight are also rewarded by being able to
become more like the chosen sample vector. From this step the number of neighbors and
how much each weight can learn decreases over time. The whole process is repeated a large
number of times. The training utilizes competitive learning. When a training example is
fed to the network, its Euclidean distance to all weight vectors is computed. The neuron
whose weight vector is most similar to the input is called the Best Matching Unit (BMU).
The weights of the BMU and neurons close to it in the SOM lattice are adjusted towards the
input vector. The magnitude of the change decreases with time and with distance (within
the lattice) from the BMU. Kohonen learning uses a neighborhood function ϕ, whose value
ϕ(i, k) represents the strength of the coupling between unit (or neuron) i and the BMU k
during the training process. A simple choice is defining ϕ(i, k) = 1 for all units i in a
neighborhood of radius r of unit k and ϕ(i, k) = 0 for all other units. Regardless of the
functional form, the neighborhood function shrinks with time. At the beginning when
the neighborhood is broad, the self-organizing takes place on the global scale. When the
neighborhood has shrunk to just a couple of neurons, the weights are converging to local
estimates.

Algorithm

start : The n-dimensional weight vectors w1, w2, . . . , wm of the m computing units are
selected at random. An initial radius r, a learning constant η, and a neighborhood
function ϕ are selected.

step 1 : Select an input vector ξ using the desired probability distribution over the
input space.

step 2 : The unit k with the maximum excitation is selected (that is, for which the
distance between wi and ξ is minimal, for i = 1, . . . , m).

step 3 : The weight vectors are updated using the neighborhood function and the
update rule

wi ← wi + ηϕ(i, k)(ξ − wi), i = 1, . . . , m. (B.1)

step 4 : Stop if the maximum number of iterations has been reached; otherwise modify
η and ϕ as scheduled and continue with step 1.

In sum, the training mode occurs in several steps and over many iterations.

1. Each unit’s weights are initialized.

2. A vector is chosen at random from the set of training data.

3. Every unit is examined to calculate which one’s weights are most like the input vector.
The winning unit is selected and called BMU.
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4. Then the neighborhood of the BMU is calculated. The amount of neighbors decreases
over time.

5. The winning weight is rewarded with becoming more like the sample vector. The
neighbors also become more like the sample vector. The closer a unit is to the BMU,
the more its weights get altered and the farther away the neighbor is from the BMU,
the less it learns.

6. Repeat step 2 for N iterations.





APPENDIX C

COPULA

In probability theory and statistics, a copula is a multivariate probability distribution
for which the marginal probability distribution of each variable is uniform. Copulas are
used to describe the dependence between random variables. They are named for their
resemblance to grammatical copulas in linguistics.

Definition

A definition of copula can be found in Nelsen [2007] which is a main reference. A copula
is defined as a distribution function on the n-dimensional unit cube. All marginal distribu-
tions are uniform:

C : [0, 1]n −→ [0, 1]

C(u) = ui if the vector u = (1, . . . , 1, ui, 1, . . . , 1).
(C.1)

For every n dimensional hyper-cube within the unit hyper-cube, the corresponding prob-
ability has to be non-negative. Copulas and multivariate distributions are linked to each
other. Each multivariate distribution F(x1, . . . , xn) can be represented with the help of a
copula:

F(x1, . . . , xn) = C(Fx1(x1), . . . , Fxn(xn)). (C.2)

where Fxi(xi) represents the i-th one-dimensional marginal distribution of the multivariate
distribution. If the distribution is continuous then the copula C is unique. Copulas can be
constructed from distribution functions:

C(u) = C(u1, . . . , un) = F(F−1
x1

(x1), . . . , F−1
xn (xn)) (C.3)

Theory

Abe Sklar’s theorem [Sklar, 1959], provides the theoretical foundation for the application
of copulas.

fX(x1, . . . , xn) = cX(FX1(x1), . . . , FXn(xn)) · f1(x1) · · · fn(xn), (C.4)

201



202 Appendix C. Copula

where cX is the density of the copula for X.
Sklar’s Theorem states that any multivariate joint distribution can be written in terms of

uni-variate marginal distribution functions and a copula which describes the dependence
structure between the variables.

The advantages that can be described to using copula densities to represent interdepen-
dence between variables include the following properties:

- The empirical copulas (probability density scatter-plots in many dimensions) are in-
dependent of their corresponding marginal distributions, so that copulas display in-
terdependence between variables in its purest or essential form;

- Empirical copulas are easily computed from data;

- Differences in types of association between variables are readily identified by copula
shape;

- A suite of theoretical copula density functions has been developed to model these
attributes.

The copula technique is used to preserve the rank-correlations for each pair variables.
Because of the Sklar theorem, the construction of copula will not affect the marginal distri-
bution of each variable. Yet, the copula approach doesn’t deal with the seasonality problem.
The copula technique does not presume where these variables are, why they are different,
and if they are different by nature, by measurement technique, by support, or by place in
space or time.



APPENDIX D

ARTIFICIAL NEURAL NETWORK

An Artificial Neural Network (ANN) is a computational model that is inspired by the
way biological neural networks in the human brain process information. Artificial Neural
Networks have generated a lot of excitement in Machine Learning research and industry,
thanks to many breakthrough results in speech recognition, computer vision and text pro-
cessing. [French et al., 1992] uses a neural network to forecast rainfall in space and time.
Artificial neural network has been the core of data learning and deep learning science in
recent years. The advantages of artificial neural network are which

1. ANN is nonlinear model that is easy to use and understand compared to statistical
methods.

2. ANN is non-parametric model that is not concerned with dimensionality.

3. ANN with back propagation learning algorithm is widely used in solving various
classification and forecasting problems.

However, ANN is black box learning approach, can not interpret the relationship be-
tween input and output and can not deal with uncertainties.

A single Neuron

The basic unit of computation in a neural network is the neuron, often called a node or
unit. It receives input from some other nodes, or from an external source and computes
an output. Each input has an associated weight (w), which is assigned on the basis of its
relative importance to other inputs. The node applies a function f (defined below) to the
weighted sum of its inputs as shown in Fig. D.1.

The above network takes numerical inputs X1 and X2 and has weights w1 and w2 as-
sociated with those inputs. Additionally, there is another input 1 with weight b (called
the Bias) associated with it. The output Y from the neuron is computed as shown in the
Fig. D.1.

Y = f (w1 × x1 + w2 × x2 + b) (D.1)
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Figure D.1: A single neuron.

where the function f is non-linear and is called the Activation Function. The purpose
of the activation function is to introduce non-linearity into the output of a neuron. This
is important because most real world data is non linear and we want neurons to learn
these non linear representations. There are several activation functions that one may use in
practice.

• Sigmoid: takes a real-valued input and squashes it to range between 0 and 1

σ(x) = 1/(1 + exp(−x)) (D.2)

• tanh: takes a real-valued input and squashes it to the range [−1, 1]

tanh(x) = 2σ(2x)− 1 (D.3)

Figure D.2 shows each of the above activation functions.

Figure D.2: Different activation functions.
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Importance of Bias: The main function of Bias is to provide every node with a trainable
constant value (in addition to the normal inputs that the node receives).

Feedforward Neural Network

The feedforward neural network was the first and simplest type of artificial neural net-
work devised. It contains multiple neurons (nodes) arranged in layers. Nodes from adja-
cent layers have connections or edges between them. All these connections have weights
associated with them. An example of a feedforward neural network is shown in Fig. D.3.

Figure D.3: An example of articificial neural network.

A feedforward neural network can consist of three types of nodes:

1. Input Nodes - The Input nodes provide information from the outside world to the
network and are together referred to as the “Input Layer”. No computation is per-
formed in any of the Input nodes - they just pass on the information to the hidden
nodes.

2. Hidden Nodes - The Hidden nodes have no direct connection with the outside world
(hence the name “hidden”). They perform computations and transfer information
from the input nodes to the output nodes. A collection of hidden nodes forms a
“Hidden Layer”. While a feedforward network will only have a single input layer
and a single output layer, it can have zero or multiple Hidden Layers.

3. Output Nodes - The Output nodes are collectively referred to as the “Output Layer”
and are responsible for computations and transferring information from the network
to the outside world.
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In a feedforward network, the information moves in only one direction - forward - from
the input nodes, through the hidden nodes (if any) and to the output nodes. There are no
cycles or loops in the network (this property of feed forward networks is different from
Recurrent Neural Networks in which the connections between the nodes form a cycle).
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Abstract

This PhD work proposes new concepts and tools for stochastic weather simulation activities
targeting the specific needs of hydrology. We used, as a demonstration, a climatically contrasted
area in the South-East of France, Cévennes-Vivarais , which is highly attractive to hydrological
hazards and climate change.

Our perspective is that physical features (soil moisture, discharge) relevant to everyday concerns
(water resources assessment and/or hydrological hazard) are directly linked to the atmospheric
variability at the basins scale, meaning firstly that relevant time and space scales ranges must be
respected in the rainfall simulation technique. Since hydrological purposes are the target, other
near-surface variates must be also considered. They may exhibit a less striking variability, but it
does exist. To build the multi-variable modeling, co-variability with rainfall is first considered.

The first step of the PhD work is dedicated to take into account the heterogeneity of the precip-
itation within the rainfall simulator SAMPO [Leblois and Creutin, 2013]. We cluster time steps into
rainfall types organized in time. Two approaches are tested for simulation: a semi-Markov simu-
lation and a resampling of the historical rainfall types sequence. Thanks to clustering, all kind of
rainfall is served by some specific rainfall type. In a larger area, where the assumption of climatic
homogeneity is not considered valid, a coordination must be introduced between the rainfall type
sequences over delineated sub-areas, forming rainy patterns at the larger scale.

We first investigated a coordination of Markov models, enforcing observed lengths-of-stay by a
greedy algorithm. This approach respects long duration aggregates and inter-annual variability, but
the high values of rainfall are too low. As contrast, the joint resampling of historically observed se-
quences is easier to implement and gives a satisfactory behavior for short term variability. However
it lacks inter-annual variability. Both approaches suffer from the strict delineation of homogeneous
zones and homogeneous rainfall types.

For these reasons, a completely different approach is also considered, where the areal rainfall
totals are jointly modeled using a spatio-temporal copula approach, then disaggregated to the user
grid using a non-deterministic, geostatistically-based conditional simulation technique. In the cop-
ula approach, the well-known problem of rainfall having atom at zero is handled in replacing histor-
ical rainfall by an appropriated atmospheric based rainfall index having a continuous distribution.
Simulated values of this index can be turned to rainfall by quantile-quantile mapping.

Finally, the copula technique is used to link other meteorological variables (i.e. temperature, so-

lar radiation, humidity, wind speed) to rainfall. Since the multivariate simulation aims to be driven

by the rainfall simulation, the copula needs to be run in conditional mode. The achieved toolbox

has already been used in scientific explorations, it is now available for testing in real-size applica-

tion. As a data-driven approach, it is also adaptable to other climatic conditions. The presence of

atmospheric precursors a large scale values in some key steps may enable the simulation tools to be

converted into a climate simulation disaggregation.

Keywords: stochastic weather generator; hydrology; multivariate; heterogeneity.
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