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Chapter 1

Introduction

1.1 Personal background

| began my scienti ¢ education at Saint Olaf College in North eld, Minnesota in 2001-2015
with my coursework for a Mathematics major. In my junior year, | had an "aha" moment
when | discovered the eld of biostatistics through a one-month practicum project, during
which | had the opportunity to work with data collected from the National Bone Marrow Do-
nor Program — | had found a rewarding way to analyze and make sense of important real life
problems! | quickly lled out the remainder of my bachelor's degree with statistics courses,
and went on to get a Master's degree in Applied Statistics and Ph.D. in Statistics at Purdue
University in West Lafayette, Indiana. My Ph.D. work, co-supervised by Rebecca W. Doerge
at Purdue and Florence Jaffrézic and Jean-Louis Foulley at the French National Institute for
Agricultural Research (INRA), focused on the inference of gene regulatory networks from
time-course microarray data, and provided me with my rst research experience in France:
two six-month stays in Jouy en Josas to work at $tation de génétique quantitative et
appliqguée(SGQA) at INRA.

After my Ph.D., | obtained a one-year post-doctoral position at Inria to work on co-
expression analyses of RNA-seq data with Gilles Celeux, Marie-Laure Martin-Magniette,
and Cathy Maugis-Rabusseau. This was not an easy topic to address, as RNA-seq technology
was still in its early days at that time, and it took us some time to fully understand the
characteristics of the data and identify the most appropriate modeling strategy. However, we
persevered in our research, and extensions to this work are now an active area of interest for
me — a good lesson that research can take us in unplanned directions (and that sometimes it
is a good idea to abandon research ideas that are going nowhere...!).

Since October 2011, | have worked as a Research Sciettimigée de recherchén the
Génétique animale et biologie intégrati@@ABI) research unit of INRA in Jouy en Josas. As
a member of the biostatistics group in the Populations, Statistics, and Genome (PSGen) rese-
arch team, | have had the opportunity to bene t from arich, varied, and collaborative research
environment. Throughout my career at INRA, collaborations with biologists, bioinformatici-
ans, and fellow statisticians, both within my research unit and beyond, have provided a rich
source of biologically meaningful questions to orient my research towards the development
of sound, practical, and useful statistical tools to answer biologically meaningful questions.
In particular, the analysis of genomic and transcriptomic data has been a rich source of inspi-
ration for statistical methodological research to identify robust and appropriate analysis tools
in the presence of the so-called "curse of dimensionality.”

In this manuscript, | will focus on my research activity from 2011-2017. The manuscript
is organized as follows: in the remainder of this chapter, | provide some brief thoughts on
developing user-friendly software, as well as the notation used throughout the text. The
second chapter is dedicated to contributions | made concerning the differential analysis of
RNA-seq data, in particular methods to lter weakly expressed genes and to jointly analyze
data from multiple related studies. The third chapter focuses on co-expression analyses of
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RNA-seq data using nite mixture models. The fourth chapter presents some contributions
for the inference of gene regulatory networks from RNA-seq or intervention expression data.
Finally, the last chapter discusses some research projects | plan to develop in the future.

1.2 Implementing user-friendly software

Throughout my work, | have strived to develop and maintain open-source software packages
implementing our proposed statistical methods in order to facilitate as much as possible the
use of our approaches. Software implementation in the R programming language can take
several forms: at its most minimal, as raw source code; better, as a structured R package; best,
as a fully documented R package with reproducible vignettes, examples, and unit tests, and
even tutorials, FAQs, and dedicated web pages. Writing and maintaining useable and user-
friendly software is of course a time-consuming endeavor; | do not have any formal training in
software engineering, nor do | have a team of software engineers to help design, implement,
test, document and maintain the packages | have developed in my research. However, | have
found that package development and maintenance (done to the best of my abilities!) has led
to wider use of our proposed methods, as well as valuable interactions with and feedback
from users.

The majority of my methodological developments have included corresponding R packa-
ges hosted on CRAN or GitHub, and | have focused particular energyT@rilter and
coseq , two R software packages included in the Bioconddctmoject. The constraints
imposed by Bioconductor ensure that included packages make use of best practices to enable
reproducible research and use and t into the existing infrastructure of classes and methods
de ned for common genomic data types; Bioconductor maintainers also commit to long-term
user support through the Bioconductor support site. To illustrate the use and interoperability
of these packages, | have included some relevant R code in the examples in Sections 2.2.3
and 3.3.3. These are intended to be brief examples with code snippets; users should see the
appropriate vignett&dor full and reproducible examples with each package.

Finally, the packages | have written build upon the extraordinary work provided by ot-
her open-source software developers, who are far too numerous to name individually. | am
particularly indebted to the work of Hadley Wickham (in particular, the suite of packages
contained in theéidyverse , including theggplot2 (Wickham, 2009) package, which is
used several times throughout this work to produce graphics), the Rmixmod team (Lebret,
2015), the R core team (R Development Core Team, 2009), and the Bioconductor core team
(Gentleman et al., 2004).

1.3 Notation

Throughout this manuscript, | will make use of the following uni ed notation unless other-
wise noted. Ley;; represent the observed raw read countgndhe corresponding norma-
lized read count (e.g., after scaling raw counts by library size) for gémesamplej, with

the experimental condition of samglein the context of differential analyses, the number

!Note that Bioconductor packages are peer-reviewed, and must meet a checklist of standards of functionality,
documentation, and interoperability.
2vignette("HTSFilter") andvignette("coseq")
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of conditionsd is often equal to 2, whereas co-expression analyses are more often perfor-
med for a larger number of experimental (ipnditions. Finallg/, we use dot notation to indicate
summations in various directions, e.g;,= ;y;j andy; = ; yj,and so on.






Chapter 2

Differential analysis of RNA-seq data

In recent years, next-generation high-throughput sequencing (HTS) technology has become
an essential tool for genomic and transcriptomic studies. By quantifying and comparing
transcriptomes among different types of tissues, developmental stages, or experimental con-
ditions, researchers have gained a deeper understanding of how changes in transcriptional
activity re ect speci c cell types and contribute to phenotypic differences. In particular, the
use of HTS technology to directly sequence reverse-transcribed RNA molecules (comple-
mentary DNA; cDNA), known as RNA sequencing (RNA-seq), has revolutionized the study

of gene expression by opening the door to a wide range of novel applications. RNA-seq al-
lows for high coverage of the genome, and enables detection of weakly expressed genes and
quanti cation of gene expression without prior knowledge of the genome (e.g. for non-model
species). Unlike microarray data, which are continuous, RNA-seq data represent highly he-
terogeneous counts for genomic regions of interest (typically genes), and often exhibit zero-
in ation and a large amount of overdispersion among biological replicates. As such, a great
deal of methodological research (e.g., Anders and Huber, 2010; Robinson et al., 2010; Dil-
lies, 2013) has recently focused on appropriate normalization and analysis techniques that
are adapted to the characteristics of RNA-seq data; see Oshlack et al. (2010) for a review of
RNA-seq technology and analysis procedures.

Although a variety of different protocols exist for high-throughput sequencing studies,
the same broad pre-processing steps are followed. Namely, after sequencing fragmented
reverse-transcribed transcripts (reads), bioinformatic tools are used to perform quality cont-
rol and remove adapters and low-quality sequences. Next, if an appropriate genome sequence
reference is available, reads are mapped to the genome or transcriptome; otrowice
assembly may be used. After alignment or assembly, read coverage for a given biological
entity (e.g., a gene or an exon) is subsequently calculated. The quanti cation of gene ex-
pression in RNA-seq data remains an active area of research, and in this work, we focus
on measures of digital gene expression (counts). These count-based measures are discrete,
nonnegative, and highly skewed, with a very large dynamic range, often covering several
orders of magnitude. In addition, sequencing depth (i.e., the library size) and coverage vary
between experiments, and read counts are known to be correlated with gene length (see Fi-
gure 2.1, Oshlack and Wake eld, 2009; abaj, 2011). For these reasons, methods previously
proposed for microarray data (which tend to make use of Gaussian distributions after nor-
malization, background correction, atad-transformation) are not typically well-suited to
RNA-seq data without some modi cation.

In this chapter, we focus on two contributions for differential analyses of RNA-seq data:
(1) a data-driven ltering criterion to ag and remove genes with weak signal; and () a
value combination approach for differential meta-analyses of multi-study RNA-seq data; we
thus begin the chapter with a brief overview of RNA-seq differential analyses.
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FIGURE 2.1: Schematic representation of alignment of sequenced reads

(black bars) from two samples on a reference genome consisting of two ge-

nes (blue and green), each made up of three exons. Sample 1 has a larger

library size than sample 2, leading to higher overall counts; gene 2 is longer
than gene 1, also leading to larger counts.

2.1 Overview of RNA-seq differential analyses

For both microarray and RNA-seq data, it has been shown that normalization is an essential
step in the analysis of gene expression; a variety of sources of systematic variation have been
reported in RNA-seq data, most notably between-sample differences such as library size (i.e.
sequencing depth). Sample-speci ¢ normalization factors for RNA-seq data account for the
fact that the number of reads expected to map to a particular gene depends not only on its own
expression level, but also (1) on the total number of mapped reads (also referred to as library
size) in the sample, and (2) on the overall composition of the RNA population being sampled
(Figure 2.1). Gene- and sample-speci c normalization factors have also been proposed to
account for biases due to GC content (Risso, 2011). Although a number of normalization
approaches to treat RNA-seq data have emerged in the literature, initially there was no clear
consensus on the appropriate hormalization method to be used or the impact of a chosen
method on the downstream analysis. To address this, the members of the Statomique Con-
sortium' conducted a comprehensive comparison of seven proposed normalization methods
for RNA-seq data using a variety of real and simulated datasets involving different species
and experimental designs (Dillies, 2013). Based on this study, we found the median ratio
(Love et al., 2014) and trimmed mean of M-values (TMM; Robinson and Oshlack, 2010)
methods to be robust and effective. Without loss of generality, we ncte(tj) as the
scaling normalization factors for raw library sizes calculated using the TMM normalization

method;’; = y;t; is then the corresponding normalized library size for sampéed
mj = Pqi— (2.1)
=1 t=0

is the associated normalization scaling factor by which raw cogjntare divided to obtain
normalized counts:

Yi = Vi =m;:
As with gene expression data arising from microarrays, RNA-seq data are often used

to conduct differential analyses. In recent years, several approaches for gene-by-gene tests
using gene-level count data have been proposed, with the most popular (indRE8&g2

1The Statomique Consortium is made up of over forty statisticians and biostatisticians involved in high throug-
hput transcriptome analysis from a variety of institutions, including INRA, the Pasteur Institute, the Curie Insti-
tute, Inria, and AgroParisTech.
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andedgeR) making use of negative binomial distributions to account for the overdispersion
(i.e., variance larger than the mean) typically observed among biological replicates for a
given gene (Robinson et al., 2010; Love et al., 2014). Under these approaches, the count for
genei in samplej is assumed to follow a negative binomal distributign NB ( jj i)

with mean j and variance =t ﬁ,where
ij = q]' mj (2.2)
log(gj ) = Xj i3

andX; represents the design matrix for samjple ; the vector of coef cients for genie and
m; the library size scaling factor for sampgleDESeq2 andedgeR differ in the manner in
which model parameters are estimated, but both make use of empirical Bayesian shrinkage
approaches to share information among genes in order to provide more robust estimators for
i for small sample sizes.

In simple two-group experimental designs where= ( io; i1), the null hypothesis
Hoi :© i1 = 0 may be tested using an exact conditioned test. In particulgy iBndyig
represent the sum of normalized counts for gemreconditionA andB, an exact test can
be constructed similar to Fisher's exact test for contingency tables, replacing hypergeometric
probabilities with negative binomial probabilities:

p(a; b)
a+b=y;

o = p(@b) lvia ¥ ) : (2.3)

|
p(a; b
at+b=y;

where under the null hypothesis it is assumed fifatb) = Pr(Yia = a)Pr(Y;g = b) using
the negative binomial distribution described in Equation (2.2). In the more recent versions of
DESeg2 andedgeR, the Wald test statistic is now instead commonly used, with

N
Wi = —— N (0;1); 2.4

" SEY) (0; 1) (2.4)
and whereSE() denotes the standard error. Because a large number of hypothesis tests
are performed for gene-by-gene differential analyses, the obtpimatlies must be adjusted
to address the fact that many truly null hypotheses will produce gmadlues simply by
chance; to address this multiple testing problem, several well-established procedures have
been proposed to adjuptvalues in order to control various measures of experiment-wide
false positives, such as the false discovery rate (FDR). Although such procedures may be
used to control the number of false positives that are detected, they are often at the expense of
the power of an experiment to detect truly differentially expressed (DE) genes, particularly
as the number of genes in a typical RNA-seq dataset may be in the thousands or tens of
thousands.
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2.2 Data-driven Itering of RNA-seq data

This section corresponds to the following published article:

Rau, A., Gallopin, M., Celeux, G., and Jaffrézic, F. (2013) Data-based Itering for
replicated high-throughput transcriptome sequencing experimigisiformatics
29(17): 2146-2152.

This work is the result of the M2 and Ph.D. work of Mélina Gallopin, co-supervised by
Florence Jaffrézic, Gilles Celeux, and myself.

— e———___B

2.2.1 Background

Several authors in the microarray literature have suggested the use of data Iters in order to
identify and remove genes which appear to generate an uninformative signal and have no
or little chance of showing signi cant evidence of differential expression; only hypotheses
corresponding to genes that pass the lIter are subsequently tested, which in turn tempers the
correction needed to adjust for multiple testing. In recent work, Bourgon et al. (2010) advo-
cated for the use ahdependent data Iteringin which the lter and subsequent test statistic
pairs are marginally independent under the null hypothesis and the dependence structure
among tests remains largely unchanged pre- and post- Iter, ensuring that pogi-Vtdues

are indeed trup-values. For such an independent lter to be effective, it must be positively
correlated with the test statistic under the alternative hypothesis; indeed, it is this correlation
that leads to an increase in detection power after lItering. In addition, Bouega@h. de-
monstrated that non-independent lters for which dependence exists between the Iter and
test statistic (e.g., making use of condition labels to Iter genes with average expression in at
least one condition less than a given threshold), can in some cases lead to a loss of control of
experiment-wide error rates.

In practice, ad hoc ltering techniques are regularly used to moderate this correction by
removing genes with low signal, with little attention paid to their impact on downstream ana-
lyses. Several ad hoc data Iters for RNA-seq data have been used in recent years, including
Itering genes with a total read count smaller than a given threshold (Sultan et al., 2008) and
Itering genes with at least one zero count in each experimental condition (Bottomly et al.,
2011); however, selecting an arbitrary threshold value to lIter genes in this way does not
account for the overall sequencing depth or variability of a given experiment. One exception
to these ad hoc lters is the work of Ramskoéld (2009), in which a comparison between ex-
pression levels of exonic and intergenic regions was used to nd a threshold for detectable
expression above background in various human and mouse tissues, where expression was
estimated as Reads Per Kilobase per Million mapped reads (RPKM) (Mortazavi, 2008). The
threshold of 0.3 RPKM identi ed in this work has in turn been applied to several other stu-
dies (e.g., abaj, 2011; Canovas, 2010; Sam et al., 2011). However, although lIters for read
counts are routinely used in practice, little attention is typically paid to the choice of the type
of Iter or threshold used or its impact on the downstream analysis.

2.2.2 Jaccard index ltering threshold

To begin, we consider two broad categories of lters for RNA-seq data, based on the lte-
ring criterion used: mean-based lters and maximum-based lters. Although variance-based
Iters are routinely used for microarray data (Bourgon et al., 2010), they have not been ap-
plied to RNA-seq data; this is likely due to the small number of replicates available in most
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TABLE 2.1: De nition of the constants used to calculate the Jaccard simila-

rity index for a pair of samplegsandj °and a given thresholsl The constant

a represents the number of genes with normalized counts greates than
both samples and;j ®, and so on.

Samplg
Normalized Normalized
counts> s counts s

Normalized b
Samolei © counts> s
g Normalized
c d
counts s

RNA-seq datasets (and thus, the dif culty in obtaining accurate estimates of per-gene vari-
ances) and the fact that the variance is assumed to be a function of the mean under a negative
binomial model.

In mean-based ltersgenes with mean normalized counts across all samples less than
or equal to a pre-speci ed cutoff are Itered from the analysis. Some authors (Sultan
et al., 2008) have also proposed Itering genes with a total read count less than or equal
to a given threshold; we note that this is equivalent to mean-based lters for threshold

s divided by the number of samples.

In maximum-based lterggenes with maximum normalized counts across all samples
less than or equal to a pre-speci ed threshold are Itered from the analysis. A gene-
ralization of the maximum-based Iter has also been proposed irdgeR analysis
pipeline (Robinson et al., 2010) based on counts per million (CPM), calculated as the
raw counts divided by the library sizes and multiplied by one million. Genes with a
CPM value less than a given cutoff (e.g., 1 or 100) in more samples (ignoring condition
labels) than the size of the smallest group are subsequently Itered from the analysis.

Regardless of the type of Iter used, a biologically pertinent cutoff (or alternatively, num-
ber of genes to be ltered) must be chosen; in practice, arbitrary thresholds are routinely used
with little or no discussion of their impact on the downstream analysis. To address this issue,
we propose a data-based choice for the threshold to be used in maximum-based lters. The
main idea underlying this choice is to identify the threshold that maximizes the Itering simi-
larity among replicates, that is, one where most genes tend to either have normalized counts
less than or equal to the cutoff in all samples (i.e., ltered genes) or greater than the cutoff in
all samples (i.e., non- ltered genes).

We rst de ne a similarity indexbetween a pair of replicates within the same condition
flyjsyjo - CAj) = 9g after binarizing the data for a xed cutoff (L if y; >s and 0
otherwise). We note that a variety of similarity indices have been proposed since the early
1900s; however, in a comparison among a set of similarity indices we found the Jaccard index
(Jaccard, 1901) to be simple, natural, and easy to interpret for the anslysis of high-throughput
sequencing data. This index is de ned as follows:

a

At bt c (2.5)

Js(Yjiyjo) =
wherea, b, andc are de ned in Table 2.1. We note thag(y;;y;o) takes on values from 0
(dissimilar) to 1 (similar). Because multiple replicates and/or conditions are typically avai-
lable in HTS experiments, we extend the de nition of the pairwise Jaccard index in Equa-
tion (2.5) to a global Jaccard index by averaging the indices calculated over all pairs in each
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FIGURE 2.2: Global Jaccard index for the Bottomly et al. (2011) data cal-

culated for a variety of threshold values for normalized counts, with a loess

curve (blue line) superposed and data-driven threshold value (red cross and
red dotted line) equal t&” = 15:252

condition:

3¢(y) = mean Js(yj;yjo) 1 j <j %andQ(j) = (Y : (2.6)

Using the global Jaccard index de ned in Equation (2.6) as a measure of similarity, we
now wish to identify the cutofs” for normalized counts that corresponds to the greatest
similarity possible among replicates, that is, the valus obrresponding to the maximum
value of the global Jaccard index:

s’ = argmax JZ(y): (2.7)
S

In practice, for the calculation of the data-based global Itering threshold in Equation (2.7),
we calculate the value of the global Jaccard index in Equation (2.6) for a xed set of threshold
values and t a loess curve (Cleveland, 1979) through the set of points; the vakieiof
subsequently set to be the maximum of these tted values (see Figure 2.2).

Once the data-driven lter threshold for normalized cousitshas been identi ed, the
subsequent steps to be taken may change for different applications. To perform an analysis of
differential expression between two experimental conditions, we propose using this threshold
s?inamaximum-based lter, as de ned above; we refer to this technique akatteard lter.

2.2.3 Data application withHTSFilter

The proposed Jaccard lter is implemented in our R/Bioconductor packidggFilter

Using HTSFilter , we applied our proposed Jaccard index lter to an RNA-seq dataset
from Bottomly et al. (2011) focused on differential striatal expression between inbred mouse
strains C57BL/6J (ten biological replicates) and DBA/2J (eleven biological replicates). Raw
read counts and phenotype tables may be obtained from the ReCount online resource (Frazee
etal., 2011).


http://bowtie-bio.sourceforge.net/recount/ExpressionSets
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In its simplest form, the Jaccard lter may be applied tonatrix  or data.frame
containing the raw RNA-seq counts:

library(HTSFilter)

counts <- exprs(bottomly.eset)

counts <- counts[rowSums(counts) > 0,]
conds <- pData(bottomly.eset)$strain
filter_counts <- HTSFilter(counts, conds=conds)

V V.V V V V

> dim(counts)
[1] 13932 21
> dim(filter_counts$filteredData)

[1] 9049 21
> filter_counts$s
[1] 15.252

In the above example, we note that these data, which originally contained expression
counts for 13932 genes (with at least one nonzero count) in 21 samples, have been Itered
down to a total of 9049 genes in 21 samples, based on the identi ed data-based lItering
threshold of 15.252 (i.e., genes with a maximum normalized count less than this threshold in
all samples were ltered from the analysis). The plot shown in Figure 2.2 is automatically
generated by a call to tHéTSFilter  function.

In practice, however, the Jaccard Iter is most useful if applied directly within a dif-
ferential analysis pipeline; for this purpose, the negative binomial models implemented in
DESeq2 (Love et al., 2014) anédgeR (Robinson et al., 2010) are two popular choices.
To illustrate howHTSFilter  can be inserted into thedgeR pipeline, we make use of the
following code:

> library(edgeR)

> d <- DGEList(counts=counts, group=conds)

> d <- calcNormFactors(d)

> d <- estimateDisp(d)

> fit_nofilter <- exactTest(d)

> fit_filter <- HTSFilter(fit_nofilter, d)$filteredData
dim(fit_nofilter)

[1] 13932 3

> dim(fit_filter)

[1] 9049 3

\Y

The effect of the Jaccard lter on the histogram of ragwalues may be seen in Fi-
gure 2.3A. Note that the example above makes use of the exact test de ned in Equation (2.3);
recent versions ofdgeR now also include a quasi-likelihodd and likelihood ratio tests
that tend to be less affected by the discretizatiop-g&lues for small counts that contribute
to the peak near 1 for the un ltered analysis.

It is also of interest to consider the effect of each Iter on the number of DE genes
identi ed at various levels of expression; in Figure 2.3B, we note hESFilter leads to
more discoveries at all but very weak levels of expression (i.e., mean expression less than
10). A large number of the missed discoveries for the Jaccard Iter at very low levels of
expression correspond to genes with zero read counts in one condition and a small number
of read counts in the other; for example, in the Bottomly et al. (2011) data 49.7% of the 177
missed discoveries among genes with mean expression less than 10 had per-condition means
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FIGURE 2.3: (left) Histogram of rawp-values from a differential analysis

of the Bottomly et al. (2011) RNA-seq data. The histogram in grey in the

background represents the rgavalues from a differential analysis using

un ltered data; the histogram in color in the foreground represents the raw

p-values from a differential analysis of the data Itered wiiT SFilter

(right) Number of DE genes detected in the Bottomly et al. (2011) RNA-

seq data using un ltered diTSFilter  ltered data, categorized by mean
expression.

less than 1 in one of the two conditions and less than 5 in the other. It thus seems reasonable
to remove these genes from consideration from the nal differential analysis result.

2.2.4 Conclusions and discussion

Data Itering has proven to be of great practical importance for the differential analysis of
high-throughput microarray and RNA-seq data by identifying and removing genes with unin-
formative signal prior to testing. In recent years, many ad hoc procedures have been used to
Iter RNA-seq data, such as Itering genes with a total or mean normalized read count less
than a speci ed threshold. However, despite its impact on the downstream analyses, clear
recommendations concerning the choice of ltering technique are not often provided.

In this work, we proposed a method to calculate a data-driven and non pre- xed ltering
threshold value for normalized counts from replicated RNA-seq data, based on the global
Jaccard similarity index. In particular, our proposed ltering technique was found to ag
and remove from the analysis a large number of genes with little or no chance of showing
evidence of differential expression, and therefore to increase detection power at moderate to
high levels of expression through a moderation of the correction for multiple testing. We
emphasize that the data-driven threshold value may vary greatly among RNA-seq experi-
ments due to differences in sequencing depth and intra-condition variability (see Figure 2.4).
These differences in Itering threshold among experiments are due to both sequencing depth
and variability within the data; in particular, experiments with greater sequencing depth will
tend to have higher Itering thresholds, and those with greater variability will tend to have
lower Itering thresholds. It is worth noting that maximum-based Iters are not independent
Iters as described by Bourgon et al. (2010); in particular, for extremely large ltering thres-
holds, maximum-based lIters do not guarantee control of the Type | error rateafues
are computed using the pre- Iter null distribution. For the threshold values typically used
in practice (e.g., based on a quantile or using the global Jaccard index), this is usually not a
concern.



2.3. Meta-analysis of RNA-seq data from related studies 13

Gilad Hammer Pasilla

0.80 0.84
| |
0.950 0.960
1 1
0.94 0.96
1 1

Global Jaccard index
0.92
1

Global Jaccard index
Global Jaccard index

0.940
1

0.76
0.80
1

0.930
1

.
X s =289 y
T T T T T T T T
1 2 5 10 20 50 100 1 2 5 10 20 50 100 1 2 5 10 20 50 100

0.72
|

Threshold Threshold Threshold

FIGURE 2.4: Global Jaccard index for three RNA-seq datasets calculated for
a variety of threshold values, with a loess curve (blue line) superposed and
optimal threshold value (red cross and red dotted line). (left) Liver RNA-seq
from three male and three female humans Blekhman (2010). (middle) RNA-
seq from the L4 dorsal root ganglion in rats with chronic neuropathic pain
for two distinct protocols and two time points following spinal nerve ligation,
with two replicates for each group (Hammer et al., 2010). (right) RNA-seq
data arising from a study of the effect of RNAi knockdown of the Pasilla
gene on thérosophila melanogaster transcriptomaith three replicates of

the knockdown and four of the untreated control (Brooks, 2011).

In practice there may be some question about the appropriate point in the analysis pi-
peline to apply data Iters: Should normalized data rst be Itered, then normalization fac-
tors re-estimated and the model t (i.e., mean and dispersion parameters estimated)? Should
normalization factors and model parameters be estimated based on the full data, and the data
Itered only at the end of the analysis pipeline? The difference between the two options is
nontrivial, particularly as the differential analysis approaches implemented DHE$®=q2
andedgeR packages both borrow information across genes (whether all or only those pas-
sing the Iter) to obtain per-gene parameter estimates. In this work, we present results based
on the application of lters applied as late in the pipeline as possible, i.e., after library size
and dispersion parameter estimation.

2.3 Meta-analysis of RNA-seq data from related studies

This section corresponds to the following published article:

Rau, A., Marot, G. and Jaffrézic, F. (2014) Differential meta-analysis of RNA-se
data from multiple studie88MC Bioinformatics15:91.

2.3.1 Background

As RNA-seq experiments remain relatively expensive, typical datasets tend to contain only
a few biological replicates, and therefore analyses to detect differential expression between
two experimental conditions tend to lack detection power. However, as the costs of such
experiments continue to decrease, additional independent experiments may be conducted
under the same experimental conditions, suggesting a future need for methods able to jointly
analyze data from multiple independent studies. In particular, such methods must be able
to appropriately account for the biological and technical variability among samples within

a given study as well as for the additional variability due to study-speci c effects. Such



14 Chapter 2. Differential analysis of RNA-seq data

inter-study variability may arise due to technical differences among studies (e.g., sample
preparation, library protocols, batch effects) as well as additional biological variability.

Several methods have been proposed to analyze microarray data arising from multiple
independent but related studies; these meta-analysis technigues have the advantage of incre-
asing the available sample size by integrating related datasets, subsequently increasing the
power to detect differential expression. Such meta-analyses include, for example, methods
to combinep-values (Marot et al., 2009), estimate and combine effect sizes (Choi, 2003),
and rank genes within each study (Breitling, 2004). In many cases the meta-analysis techni-
ques previously used for microarray data are not directly applicable for RNA-seq data. In
particular, differential analyses of microarray data, whether for one or multiple studies, ty-
pically make use of a standard or moderatddst (Smyth, 2004; Jaffrézic, 2007), as such
data are continuous and may be roughly approximated by a Gaussian distribution after log-
transformation. On the other hand, the growing body of work concerning the differential
analysis of RNA-seq data has primarily focused on the use of negative binomial models
(Love et al., 2014; Robinson et al., 2010) in order to account for their highly dispersed and
discrete nature. Under these models, the calculation and interpretation of effect sizes is not
straightforward. In this section, we thus present fwealue combination methods for the
integrated analysis of RNA-seq data arising from multiple related studies.

2.3.2 p-value combination for multi-study RNA-seq data

we begin by conducting per-study differential analyses as described in the introduction to
Chapter 2, for example using tiEESeq2 pipeline (Love et al., 2014). In the case of a sim-

ple two-group comparison, per-gene and per-spugigluesp;s are typically calculated using

the conditioned exact test in Equation (2.3); in more complex experimental designs, pairwise
differential expression is now more often tested using the Wald test statistic in Equation (2.4).
After obtaining these vectors of ragvvalues for each study, we consider two possible ap-
proaches to combine them: the inverse normal and the Fisher combination methods, both of
which assume that each vectonms¥alues is uniformly distributed under the null hypothesis.

Inverse normal method. For each geng we de ne

x
Nj = Ws 1(1 Pis) (2.8)

s=1

wherep;s corresponds to the raprvalue obtained for geniein a differential analysis
for studys, the cumulative distribution function of the standard normal distribution,
andws a set of weights (Stouffer, 1949; Liptak, 1958). We propose the use of study-
speci ¢ weightswg, as described by Marot and Mayer (2009):
r
Ws = Pios ;
g

wheres is the total number of biological replicates in stusly This allows studies

with large numbers of biological replicates to be attributed a larger weight than smaller
studies. Other weights may also be de ned by the user depending on the quality of the
data in each study, if this information is available.

Under the null hypothesis, the test statidtic in Equation (2.8) follows aN (0; 1)
distribution. A unilateral test on the right-hand tail of the distribution may then be
performed, and classical procedures for the correction of multiple testing may subse-
quently be applied to control the false discovery rate at a desired level
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Fisher combination method. For the Fisher combination method (Fisher, 1932), the
test statistic for each gemanay be de ned as

xS
Fi= 2  In(ps); (2.9)
s=1

wherep;s is as before. Under the null hypothesis, the test stafigtio Equation (2.9)
follows a 2 distribution with2S degrees of freedom. As with the inverse norpal
value combination method, classical procedures for the correction of multiple testing
may be applied to the combingdvalues.

The implementation of the previously describg#alue combination techniques requi-
res two additional considerations to be taken into account when dealing with RNA-seq data.
First, a crucial underlying assumption for the statistics de ned in Equations (2.8) and (2.9)
is thatp-values for all genes arising from the per-study differential analyses are uniformly
distributed under the null hypothesis. This assumption is, however, not always satis ed for
RNA-seq data; in particular, a peak is often observedptealues close to 1 due to the
discretization ofp-values for very low counts. To circumvent this rst dif culty, we rst
Iter weakly expressed genes in each study, usingHii&Filter  R/Bioconductor package
described in Section 2.2.3. As will be seen in the following, this approach appears to effecti-
vely lter those genes contributing to a peak of layg@alues, resulting ip-values that are
roughly uniformly distributed under the null hypothesis (see Figure 2.3A for an example).

Second, unlike microarray data, under- and over-expressed genes are analyzed together
for RNA-seq data when the conditioned exact test in Equation (2.3) is used. As such, some
care must be taken to identify genes exhibiting con icting expression patterns (i.e., under-
expression when comparing one condition to another in one study, and over-expression for
the same comparison in another study). In the case of microarray data, Marot et al. (2009)
suggested the use of one-tailedalues for each study to avoid directional con icts; as the
inverse normal combination method was used in their work, the combined statistic thus fol-
lows a normal distribution, which is symmetric. Because under- and over-expressed genes
may be found in the left and right tail, respectively, of the corresponding normal distribution,
it is thus possible to use a two-tailed test to simultaneously study over and under-expressed
genes. Note that Pearson (1934) and Owen (2009) proposed another alternative to handle
con icting differential expression if the Fisher combination method is instead used. Howe-
ver, in the case of RNA-seq data, the use of the exact test in Equation (2.3) does not enable
the separation of over- and under-expressed genes in distribution tails; in such cases it is not
possible to use the approaches proposed Marot et al. (2009) or Owen (2009). We thus sug-
gest that either (1) a one-sidpdralue be used with the Wald test statistic in Equation (2.4)
and use one of the approaches proposed Marot et al. (2009) or Owen (2009); or (2) genes
exhibiting differential expression con icts among studies be identi ed post hoc and removed
from the nal list of differentially expressed genes.

The p-value combination approaches detailed above are implemented in the R package
metaRNASeq, freely available on CRAN.

2.3.3 Conclusions and discussion

We compared thp-value combination techniques, a negative binomial GLM with xed study
effect, and the intersection of individual differential analyses on real and simulated data.
Unsurprisingly, the latter approach is overly conservative, as only genes with adpisted
values less than the desired signi cance threshold in all studies are identi ed as differentially
expressed. Accounting for study effects (whether through the GLM with study effect or


https://cran.r-project.org/web/packages/metaRNASeq/index.html
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FIGURE 2.5: Proportion of true positives among unique discoveries for ne-

gative binomial GLM with a xed study effect (orange) and Fislpevalue

combination (red). Columns (from left to right) correspond to simulations

with 2, 3, and 5 studies, and rows (from top to bottom) correspond to simu-

lations with low ( = 0.15) and high ( = 0.5) inter-study variability. Error

bars represent one standard deviation, and numbers in parentheses represent
the mean total number of unique discoveries for each method.

the p-value combination approaches) considerably increases detection power; in simulations
with low inter-study variability and/or a small number of independent studies (e.g., 2), these
approaches had similar detection power (see Rau et al. (2014) for details). However, for
increasing inter-study variability and number of studies, the gains in performance in terms
of AUC, sensitivity, and proportion of true positives among uniquely identi ed genes for the
meta-analysis techniques are more marked (see Figure 2.5).

The methods presented here are intended for the analysis of data in which all experimen-
tal conditions under consideration are included in every study, thus avoiding problems due to
the confounding of condition and study effects. As with all meta-analyseg;thie com-
bination techniques presented here must overcome differences in experimental objectives,
design, and populations of interest, as well as differences in sequencing technology, library
preparation, and laboratory-speci c effects. In order to be biologically relevanp-tizdue
combination methods rely on the fact that the same test statistics, or in the case of RNA-seq
data conditioned tests, are used to obtairalues for each study. An important challenge for
the future will be to propose methods able to jointly analyze related heterogeneous data, such
as microarray and RNA-seq data, or other kinds of genomic data.
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Chapter 3

Co-expression analysis of RNA-seq
data

Identifying biological entities that share similar pro les across several treatment conditions,
such as co-expressed genes, may help identify groups of genes that are involved in the same
biological processes (Eisen, 1998; Jiang et al., 2004). By identifying clusters of co-expressed
genes, we thus aim both to identify co-regulated genes and to characterize potential biologi-
cal functions for orphan genes (namely, those whose biological function is unknown). It is
worth noting that the concept gkne co-expressiada alternatively used to refer to two broad
types of analyses (D'haeseleer et al., 2000): 1) clustering gene expression patterns to ex-
plore shared function and co-regulation (our focus in this chapter); and 2) network inference,
which aims to construct a model of the network of regulatory interactions between genes (our
focus in Chapter 4). Although a variety of methods have been developed for co-expression
analyses in microarray data (i.e. the identi cation of groups of genes that share the same
behavior over a set of experimental conditions), for the time being little has been proposed to
study co-expression from RNA-seq data.

In the following chapter, we make use of probabilistic clustering models, where the ob-
jects to be classi ed (genes) are considered to be a sample of a random vector and a cluste-
ring of the data is obtained by analyzing the density of this vector (McLachlan, 2004; Yeung,
2001); we thus begin the chapter with a brief overview of nite mixture models.

3.1 Overview of nite mixture models

In the context of model-based clustering, the datre assumed to be sampled from a nite
mixture density ofK random variables, each with parameterized derfsityi; «), k =

density ofy may thus be written as

Y X
fy;K, k)= kFr(Yis «); (3.1)
i=1 k=1
where « = ( 1;:::; k 1, 1;:::; k) are the parameters |(_;Jf the mixture model, and
( 1;:::; k) are the mixing proportions withx 2 (0; 1) for all k, I}<<=1 k=1.

For parameter estimation, the mixture model in Equation (3.1) may be thought of as an
incomplete data structure model wheres the(n K ) matrix of unknown mixture labels,
with zx = 1 if genei is from groupk and O otherwise. Note that this matrix de nes a
partition of the genes. Using the mixture labelthe completed density gf may be written
as follows:

YK
fyizik )= Ckfilyis 1™
i=1 k=1
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The maximum likelihood estimaté x of the mixture parameters is estimated using the
Expectation-Maximization algorithm (Dempster et al., 1977). After initializing the para-
meters f<0) andz©, the E-step at iteratiob corresponds to computing the conditional
probability that an observatianarises from th&th component for the current value of the
mixture parameters:

CINC
D= O® =p K Wi i) (3.2)

K Dy &)

Then, in the M-step the mixture parameter estimates are updated to maximize the expected
value of the completed likelihood, which leads to weighting the observation groupk
with the conditional probability " . Thus, at iteratior of the algorithm,

1 X
n

(b+1) _

k i?(b) ; (3-3)

i=1

and the M-step update fOtl((bﬂ) depends on the speci ¢ family of moddig.

One important task in model-based clustering is the choice of an appropriate model, most
notably the revelant number of clusté¢s To this end, a standard model selection criterion
is the Bayesian Information Criterion (BIC; Schwarz, 1978):

BIC(K) = logf (y;K; ")+ 7K log(n); (3.4)

where " ¢ is the maximum likelihood estimator of the mixture parameters anthe num-
ber of free parameters in the model with components. This criterion is an asymptotic
approximation of the logarithm of the integrated likelihood:
Z
f(y;K)= fFly;K k) ( x)d «;

K

where ( k) is a weakly informative prior distribution on .
An alternative to the BIC is the Integrated Completed Likelihood (ICL) criterion (Bier-
nacki, 2000):
ICL(K) = BIC(K) + EntropyK); (3.5)

where EntropyK ) is the estimated mean clustering entropy:

XX A A
EntropyK) = ik("k)log w("k) O (3.6)
i=1 k=1

Note that the ICL is a BIC-like approximation of the logarithm of the completed integrated
likelihood: Z
f(y;z;K)= fly;z;K: k) ( k)d k:
K

Because of the additional entropy term de ned in Equation (3.6), the ICL favors models that
lead to data partitions with the greatest evidence in terms of classi cation.

A different approach to model selection is the use ofllope heuristic§Birgé and Mass-
art, 2001; Birgé and Massart, 2007), which is a data-driven method to calibrate a penalized
criterion known up to a multiplicative constant. Brie y, in our context the penalty is assumed
to be proportional to the number of free parametegrs such thapen(K) / K ; We note
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that this assumption may be veri ed in practice. The penalty is calibrated usindgatiae
driven slope estimatio(DDSE) procedure available in tliapushe R package (Baudry et

al., 2012). This procedure directly estimates the slope of the expected linear relationship of
the log-likelihood with respect to the model dimension for the most complex models (here,
models with largeK ). Denoting the estimated slope in our context the slope heuristics
consists of setting the penalty to Bé ¢, yielding the following penalized criterion:

SH(K)= logf(y;K; “k)+2" k: (3.7)

For more details, see Baudry et al. (2012). For all of the criteria de ned in Equations (3.4)-
(3.7), the number of selected clust&scorresponds to the value Kf minimizing the pena-
lized criterion. Finally, based of @ each observationis assigned to the component max-

(
2k =

N

1 if A}e >
0 otherwise

¢ 86Kk

where j (" ¢ ) is as de ned in Equation (3.2).

In the remainder of this chapter, we focus on three developments for model-based cluste-
ring of RNA-seq data: (1) directly modeling raw gene counts with a Poisson mixture model,
(2) modeling transformed gene pro les with a Gaussian mixture model; and (3) using functi-
onal annotation information to guide model selection.

3.2 Clustering raw RNA-seq counts

This section corresponds to the following published article:

Rau, A., Maugis-Rabusseau, C., Martin-Magniette, M.-L., Celeux, G. (2015)
Co-expression analysis of high-throughput transcriptome sequencing data witl
Poisson mixture model®ioinformatics 31(9): 1420-1427.

I — ———___B

=]

3.2.1 Background and motivation

One of the rst questions that must be addressed when seeking to cluster raw RNA-seq counts
is to precisely de ne the end goal. In particular, RNA-seq data are characterized by large
differences in scale between genes (due to differences in the level or rate of transcription
between genes as well as to differences in the length of the coding region between genes).
In this work, rather than clustering together genes with similar absolute expression (e.g.,
strongly expressed genes versus weakly expressed genes), we instead focus on clustering
relative expression across experiments.

To illustrate this, consider Figure 3.1, in which we plot normalized cowptslog-
transformed normalized counltsg(y; ), and normalized expression pro leg =y; for a
subset of genes from the mouse RNA-seq data studied by Fietz (2012) (see Section 3.3.3 for
a description of these data). In particular, we consider ten representative genes from four dis-
tinct groups: non-differentially expressed (NDE) genes (Group 1); and genes expressed only
inthe last, rst, or second experimental conditions (Group 2, 3, 4). It may clearly be seen that
the large differences in magnitude that are dominant for normalized counts (Figure 3.1A) are
greatly reduced by a log-transformation (Figure 3.1B), although a certain amount of spread
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FIGURE 3.1: Normalized counts (A), log normalized counts + 1 (B), and
normalized expression pro les (C) for a subset of the Fietz (2012) mouse
RNA-seq data. The subset of genes include non-differentially expressed
(NDE) genes across all samples (Group 1); genes expressed only in the last
experimental condition (samples 11 to 15, Group 2); genes expressed only
in the rst experimental condition (samples 1 to 5, Group 3); and genes ex-
pressed only in the second experimental condition (samples 6 to 10, Group
4). Transparent grey boxes delimit the replicates in each of the three experi-
mental groups.

remains between very highly and weakly expressed genes. This spread is notably reduced by
considering the normalized expression pro les (Figure 3.1C). This example is thus instructive
in illustrating the importance in co-expression analyses of considering a measure that is in-
dependent of the absolute expression level of the genes, as is the case for the normalized
pro les, when relative expression patterns are of interest.

In the following section, we consider a model parameterization to focus on these relative
expression patterns; in Section 3.3 we will revisit the question of modeling the normalized
expression pro les.

3.2.2 Poisson mixture models for RNA-seq counts

We rst focus on the use of Poisson loglinear models to cluster count-based RNA-seq ex-
pression pro les; however, rather than using such a model to de ne a distance metric to be
used in &K -means (Cai, 2004) or hierarchical clustering (Si, 2014) algorithm, we make use
of nite mixtures of Poisson loglinear models. This framework has the advantage of directly
modeling the raw gene counts and providing a straightforward procedure for parameter es-
timation and model selection, as well as a per-gene conditional probability of belonging to
each cluster.

Although a multivariate version of the Poisson distribution does exist (Karlis, 2003), it is
dif cult to implement, particularly for data with high dimensionality. For this reason, in this
work we assume the samples are conditionally independent given the components:

w
fr(yis k)= P(Yii; ik )
j=1
whereP () denotes the standard Poisson probability mass function gnd f jx gj. We
note that although the assumption of conditional independence of components is quite strong,
it is commonly employed to analyze multivariate categorical data; for instance, the latent

class model is a reference model in model-based cluster analysis of categorical data (McCut-
cheon, 1987). When this conditional independence assumption is not expected to hold, in
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practice it leads to a larger number of clusters and a more complex mixture model that is still
able to adequately t the data.
Each mean jj is further parameterized by

ik = Wil o)k (3.8)

wherew; = y;. corresponds to the overall expression level of observati(@ng., weakly

to strongly expressed) as well as a proxyFtor gene length,mandepresents the rescaled
normalized library size for sampje such that jmj=1. These normalization factors take

into account the fact that the number of reads expected to map to a particular gene depends
not only on its expression level, but also on the library size (overall number of mapped reads)
and the overall composition of the RNA population being sampled (Dillies, 2013). We note
thatfm; g, are estimated from the data prior to tting the model (see the introduction to
Chapter 2 for more details), and like the overall expression lavelthey are subsequently

considered to be xed in the Poisson mixture model. Finally, the unknown parameter vector

k = ( 1;:::; dk) corresponds to the clustering parameters that de ne the pro les of the
genes in clustek across all biological conditions. Thus,
_ X
ck = ¢k mj
j:C)=c

can be interpreted as the proportion of reads that are attributed to corditiolusterk, after
accounting for differences due to library size; this proportion is shared among the replicates
of conditionc according to their respective library siZe®; g;.q(j)= -

To estimate the mixture parameterg =( ; 1;:::; k) bycomputing the maximum
likelihood estimate (MLE), an Expectation-Maximization (EM) algorithm is used (Dempster
et al., 1977) as described in Equations (3.2)-(3.3). To complete the M-step for the Poisson
mixture model, we have

P P
(b
ik Y
(b+1) _ 1=1 jCj)=c
ck - P
(b
mj i Yi

i=
sincew; = v; .

Particular care must be taken with the intialization of parameters for the Poisson mixture
model, particularly for largk . As such, we propose the use of a hybrid splitting-small
EM initialization that combines the strategies proposed by Papastamoulis et al. (2016) and
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Biernacki et al. (2003), which proceeds as follows:
for K 2to Kmaxdo

— Calculate per-class entropy = P i logfh ! for model with(K 1)
clusters

— Select clustek” = argmax, e to be split

fori  1toinit.runs do

— Randomly split the observations in cluské’rinto two clusters
— Calculate corresponding®): and (@)K
— Update values of @)K and @)K via EM algorithm withinit.iter

iterations ' ©i)K ‘

— Calculate the log-likelihood (VK = ("7 0Ky
end

) . ) o : 0;i?):K
Leti? = argmax; L) . Fix new initial values @K = A% 4pg

0K = AQi%)K

fori  ltoiter do
— Update values of ('K and (1)K via EM algorithm
if LK (0 DK < cutoff  then stop

end

output: nK and”~X for the model withk clusters.

end

Our proposed clustering procedure based on a Poisson mixture model is implemented in
the R packagélTSCluster , freely available on CRAN.

3.2.3 Data application

We illustrate the use of the proposed Poisson mixture model on data arising from the modEN-
CODE project, which aimed to provide functional annotation of@nesophila melanogaster
genome. Graveley (2011) characterized the expression dynamics over 27 distinct stages of
development during the life cycle of the y using RNA-seq. In this work, we focus on a
subset of these data from 12 embryonic samples that were collected at two-hour intervals for
24 hours, with one biological replicate for each time-point. The phenotype tables and raw
read counts for the 13,164 genes with at least one non-zero count among the 12 time-points
were obtained from the ReCount online resource (Frazee et al., 2011).

Over three independent runs, we used eSCluster package with default settings
and the splitting small-EM initialization strategy to t a sequence of Poisson mixture models

gest log-likelihood among the three runs was retained. To ensure that the collection of models
considered is large enough to apply the slope heuristics model selection, one additional set of

steps of 10). Using the slope heuristics, the number of clusters was determined to 88.
Visualizing the results of a co-expression analysis for RNA-seq data can be somewhat
complicated by the extremely large dynamic range of gene counts and the fact that more
highly expressed genes tend to exhibit greater variability (though much smaller coef cients
of variation) than weakly expressed genes. For the purposes of co-expression, rather than
directly visualizing the raw counts themselves, we propose the use of either line plots of the
normalized expression pro les (Figure 3.2, top) or an alternative visualization of the overall
behavior of each cluster (Figure 3.2, bottom). In the latter plot, bar widths correspond to the
estimated proportion of genes in each clustef),(and the proportion of reads attributed to
each developmental time-point in each clustgr are represented by the colored segments
within each bar. The advantage of such a visualization is that it enables a straightforward
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FIGURE 3.2: (top) Line plots of time versus normalized expression pro le

for the genes assigned to the rst six clusters. (bottom) Visualization of

overall cluster behavior for;th. melanogastedevelopmental data. For

each cluster, bar plots Ofx c(j)= ¢ M; are drawn for each developmental

time-point, where the width of each bar corresponds to the estimated propor-
tion /.

comparison of typical gene pro les among clusters. For instance, it can be seen that clusters
characterized by higher relative expression in the early embryonic stages, such as Clusters 6
and 13 (composed of 70 and 60 genes, respectively) tend to be much smaller than those with
higher relative expression in later stages, e.g., Clusters 4, 18, 19, and 21 (composed of 567,
680, 485, and 475 genes, respectively).

3.2.4 Conclusions and discussion

In this work, we have proposed a method and associated R patKeg€luster to clus-

ter count-based DGE pro les based on a Poisson mixture model that enables the use of a
rigorous framework for parameter estimation (through the EM algorithm) and model se-
lection (through the slope heuristics). The model is parameterized to account for several
characteristics of RNA-seq data, including: (1) a set of normalization factar¥ to ac-

count for systematic differences in library size among biological replicates, (2) a per-gene
offset parameteny;) to account for differences among genes due to overall expression level,
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and (3) a condition-speci c cluster effect{;)x). As the marginal sums of each gene are
xed in the model, variations in expression among experimental conditions may be modeled
throughout the extremely large dynamic range typical of RNA-seq data. In particular, this
parameterization enables a straightforward interpretation of the modgi asrresponds to

the proportion of reads attributed to conditiom clusterk. However, the processing time
and memory requirements bfTSCluster re ect the fact that parameter estimation must

be performed over a large set of models to enable model selection; onehdis@iuster

(version 2.0.4) took about about 2 hours with 1800 MB of memory for the y developmental
datd.

Finally, we have applied this method to a set of miRNA-seq data from divergently se-
lected chickens produced in the PSGen and GIS (Genome, Immunity, and Health) teams in
the GABI research unit (Endale Ahanda, 2014) to identify groups of stress-responsive cir-
culating extra-cellular microRNAs in plasma that exhibited similar patterns across lines and
feeding conditions. More recently, we also used this same method to identify co-expression
modules from crop and wild tomato plants (Sauvage et al., 2017).

3.3 Clustering transformed RNA-seq pro les

This section corresponds to the following published and submitted articles:

Rau, A. and Maugis-Rabusseau, C. (2017) Transformation and model choice for
RNA-seq co-expression analysBrie ngs in Bioinformatics bbw128.
doi: 10.1093/bib/bbw128.

Godichon-Baggioni, A., Maugis-Rabusseau, C. and Rau, A. (2017) Clustering
transformed compositional data using K-means, with applications in gene expression
and bicycle sharing system data. arXiv:1704.06150.

The latter is the result of the post-doctoral work of Antoine Godichon-Baggioni,
co-supervised by Cathy Maugis-Rabusseau and myself.

" — |

3.3.1 Background and motivation

The work described in the previous section was a primary motivation leading to the ANR-
JCJC grant "Mixture-based procedures for the statistical analysis of RNA-seq data" (MixStat-
Seq; 2014-2108, coordinated by Cathy Maugis-Rabusseau, INSA/IMT Toulouse), in which

| am a work package leader. In particular, although our proposed Poisson mixture model
has the advantage of directly modeling the count nature and variable library sizes of RNA-
seq data, it has several serious limitations: (1) the assumption of conditional independence
among samples, given the clustering group, is likely to be unrealistic for the vast majority of
RNA-seq datasets; (2) per-cluster correlation structures cannot be included in the model; and
(3) the Poisson distribution is likely overly restrictive, as it imposes an assumption of equal
means and variances. In addition, classical asymptotic model selection criteria such as the
BIC and ICL were often observed to have poor behavior for the Poisson mixture model; to
deal with this, the method described in the previous section instead used a non-asymptotic
penalized model selection criterion calibrated by the slope heuristics. This approach requires
a collection of mixture models to be t for a very wide range of cluster numBerfor large

1Al analyses were run on a Dell Latitude E6530 quad-core 2.70 GHz Intel(R) Core(TM) with 10GB RAM,
running a 64-bit version of Windows 7 Professional.
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K, this can imply signi cant computational time as well as practical dif culties for parameter
initalization and estimation.

To address the aforementioned limitations of the Poisson mixture model, in this work
we investigate appropriate transformations to facilitate the use of Gaussian mixture models
for RNA-seq co-expression analysis. This strategy has the notable advantage of enabling the
estimation of per-cluster correlation structures, as well as drawing on the extensive theore-
tical justi cations of Gaussian mixture models (McLachlan and Peel, 2000). Law (2014)
employed a related strategy for the differential analyses of RNA-seq data by transforming
data, estimating precision weights for each feature, and usintinthea empirical Bayes
analysis pipeline (Smyth, 2004). The identi cation of an "appropriate” transformation for
RNA-seq co-expression is not necessarily straightforward, and depends strongly on the desi-
red interpretability of the resulting clusters as well as the model assumptions.

3.3.2 Gaussian mixture models for transformed RNA-seq pro les

Several data transformations have been suggested for RNA-seq data, most often in the con-
text of exploratory or differential analyses. These incluttegdransformation (where a small
constant is typically added to read counts to avoid 0's), a variance-stabilizing transformation
(VST; Tibshirani, 1988; Huber, 2003; Anders and Huber, 2010), moderated log counts per
million (CPM; Law, 2014), and a regularized log-transformation (rlog; Love et al., 2014).
These transformations were proposed with the objective of rendering the data homoskedastic
(in the case of the VST or rlog) or to reduce the orders of magnitude spanned by untransfor-
med RNA-seq data. Rather than making use of these transformations, we propose calculating
the normalized expressiqmo les for each feature, that is, the proportion of normalized reads
observed for genewith respect to the total observed for gerecross all samples:

B = pyi > : ;

y +1
where a constant of 1 is added to the numerator and denominator due to the presence of 0
counts. As before, the interest of these normalized expression pro les for co-expression ana-
lysis is illustrated in Figure 3.1. We note that using these normalized expression pro les for
co-expression analysis is somewhat analagous to the parametrization of our previous Poisson
mixture model de ned in Equation (3.8), where thg parameters could be interpreted as
the proportion of counts (weighted by relative library sizes) attributed to each experimental
condition for each gene assigned to clugter

Transformations for normalized expression pro les

It is important to note that the pro le for gerigp; = (p; ), represents compositional data
(Aitchison, 1986), as it is a-tuple of nhonnegative numbers whose sum is 1 that can be
represented in the simplex qfparts:
8 9
< xd =
S%:=  pi=(pis;iiPig) 2RY  pj =1;p5 > 0;8i;j
j=1 ’

This means that the vector of valugsare linearly dependent, which imposes constraints on
the covariance matricesg that can be problematic for the general Gaussian mixture model
(and indeed for most standard statistical approaches).

For this reason, we consider two separate strategies:
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1. Apply a general transformation to break the unit sum constraint. In particular,
we focus on the logit and the arcsine (also referred to as the arcsine square root, or
angular) transformations:

OarcsiPjj ) = arcsin pm 2 [0; =2]; and (3.9)

ogi(Py) = log, - 2 (1 ;1) (3.10)
Over a broad range of intermediate values of the proportions, the logit and arcsin trans-
formations are roughly linearly related to one another. However, although both trans-
formations tend to pull out the ends of the distributiorppfvalues, this effect is more
marked for the logit transformation, meaning that it is more affected by smaller diffe-
rences at the ends of the scale.

2. Apply a compositional data transformation. The centered log ratio (CLR) is com-
monly used for compositional data (Aitchison, 1986), and is de ne@laR : S9!
RY for all p; 2 S9 by

P ... In Piq

CLR(pi) = In apn T ol

(3.11)

whereg(pi) is the geometric mean @f;. In this case, the transformed values belong

compositional data transformations, the additive log ratio (ALR), and isometric log
ratio (ILR), yielded similar results to the CLR and are not discussed further here.

For data of moderate dimension, when a large number of coordinates have very small
proportions, the CLR transformation tends to be quite sensitive to small uctuations
close to zero. This can have a strong undesired effect on clustering results when a small
number of observations have highly-speci ¢ pro les (e.g., for genes with condition-
speci ¢ expression). To account for this phenomenon by giving more importance to
coordinates with large relative values, we also proposed a novel extension of the CLR
for compositional data called the Log Centered Log Ratio (LCLR). Fopa S9,

o In@ Inlpy =gpaDI? if py =gpi) L
LCLR (py ) = (In[p; =g(pi)])* otherwise, (3.12)
andg(pi) is as before. The addition&bg term wheng?g_) 1 accords less im-

portance in the transformation to samples with relativelyl/ weak proportions, while the
squared term facilitates the concentration of pro les close to the center of the simplex

Given these two transformation strategies, we now turn our attention to the clustering
model.

Gaussian mixture models and theK -means algorithm

We consider a collection of Gaussian mixtures, de ned®8)mam = (Sikv))(kiv)2m »
where
( | 5 | )
Stkiv) = f (Kv) = kv (ki okv) (3.13)
k=1
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with  (ij «; «kv) denoting theg-dimensional Gaussian density with meagp and cova-
riance matrix .,. The indexv denotes one of the Gaussian mixture shapes obtained by
constraining one or more of the parameters in the following decomposition of each mixture
component variance matrix:

k= kDPADy; (3.14)

where = j «j¥9, Dy is the eigenvector matrix of ., andA is the diagonal matrix of
normalized eigenvalues ofi. Various constraints on these parameters respectively control
the volume, orientation, and shape of #& cluster (Celeux and Govaert, 1995); by additio-
nally allowing the proportionsy to vary according to cluster or be equal for all clusters, we
may de ne a collection of 28 parsimonious and interpretable mixture models. Without loss
of generality, for simplicity of notation we will consider here only the most general model
form, with variable proportions, volume, orientation, and shape (referred to §stheCy]
in Rmixmod); as such, the model collection is de ned solely over a range of numbers of clus-
ters,(Sk )k 2m - The parameters of each mod in the collection de ned in (3.13) may
be estimated using a standard EM algorithm (Dempster et al., 1977). After solving the den-
sity estimation problem, for each model in the collectiors estimated by’\K =f(j k),
and model selection may be performed using the BIC, ICL, or slope heuristics de ned in
Equations (3.4)-(3.7).

In addition to the Gaussian mixture model described in Equation (3.13), we will also con-
sider theK -means algorithm (MacQueen, 1967) as an easily computable and fast alternative.

Brie y, for a set of q dimensional points1;:::;xp, letP®) = fP;k=1;:::;Kgbe a
partition of then observations int& clusters, and , be the mean of the clustex:
1 X
K = = Xi;
JPkJ 2Py

wherejPyj is the cardinality of clustek. Using the usual Euclidean norkik,, the aim of
K -means is to minimize the sum of squared errors (SSE), de ned for each set of clusters
P (&) py
X X 5
SSE pK) = kxi  (k3;
k=1 i2Py

with i 2 Py if kx; kKo = min go=q ok KX koK,. Note that there is in fact a strict
equivalence between thée-means algorithm and a uniform spherical Gaussian mixture mo-
del with equal cluster proportions estimated using the classi cation EM (CEM) algorithm
(Celeux and Govaert, 1992).

Finally, although rarely done in practice, penalized criteria like the BIC and ICL may also
be used to select among different models or transformations, as was suggested in a different
context by Thomas et al. (2008) and more recently for RNA-seq data by Gallopin (2015).
This is of great interest, as it removes the need for an arbitrary choice of data transformation
by using the framework of formal model selection. We illustrate this principle for the choice
of number of cluster& and data transformation; in a more general case, a similar proce-
dure could be used to additionally choose among the different forms of Gaussian mixture
models described in Equation (3.14) or among different parametric forms of models. Let
g(x) represent an arbitrary monotonic transformation of a dataséthe new sample(x)
is assumed to arise from an i.i.d. Gaussian mixture derdty, « ), then the initial data
is an i.i.d. sample from densitfyy(;j « ), which is a transformation df(;j ) and thus
not necessarily a Gaussian mixture densitylgllenotes the Jacobian of the transformation

gand” ) the maximum likelihood estimate obtained for the model wtrelusters and
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transformatiorg, we select the paifK; g) leading to the minimum of the corrected BIC or
ICL criteria:

BIC (Kig)= logf (v;K; "(kg)) = l0g(n) log (det(Jg))
ICL (K;g) = BIC (K;g)+ Entropy(K): (3.15)

where EntropyK ) is as de ned in Equation (3.6). Note that in these expressions, the number
of parametersk does not depend on the transformatgrin order to compare the arcsine
and logit transformations, we must thus calculate the log determinant of each transformation:

XX
0 (det(Jacs) = naln@) S~ log (e (1 py);
i=1j=1

X0 xd
log det(Jiogi) = nqgin[in(2)] log (pjj (1 pj)):
i=1j=1

The corrected ICL criteria ICL(K; arcsif and ICL (K; logit) can thus be directly compared
to choose between the arcsine and logit transformations.

3.3.3 Data application withcoseq

We implemented the strategies described above irctiseq (co-expression of RNAseq
data) package, available as part of the Bioconductor project. We illustrate the csseqf
using RNA-seq data from a study of the expansion of three regions of the neocortex (ventri-
cular zone [VZ], subventricular zone [SVZ], and cortical plate [CP]) in ve embryonic mice
(Fietz, 2012). Raw read counts for this study were downloaded on December 23, 2015 from
the Digital Expression Explorer (DEE) (Ziemann, 2015) using the associated SRA accession
number SRP013825, and run information was downloaded using the SRA Run Selector.

A typical call tocoseq to ta Gaussian mixture model on arcsine- or logit-transformed
normalized pro les takes the following form:

> library(coseq)

> data(fietz)

> counts <- exprs(fietz)

> conds <- pData(fietz)$tissue

> run_arcsin <- coseg(counts, K=2:20, model="Normal",
+ transformation="arcsin")

> run_logit <- coseq(counts, K=2:20, model="Normal",
+ transformation="Ilogit")

wherecounts represents &n @) matrix or data frame of read counts forgenes inq
samples, andk=2:20 provides the desired range of numbers of clusters (here, 2 to 20).
This function directly calls th&mixmod R package to t Gaussian mixture models (Lebret,
2015). For backwards compatibility with our previous method (Rau, 2015), a similar function
call may be used to t a Poisson mixture model on raw counts usingHh8Cluster
package:

> run_pois <- coseg(counts, conds, K=2:20, model="Poisson")

where a vectoconds is additionally provided to identify the experimental condition as-
sociated with each column iocounts . In all cases, the output of tredseq function is
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FIGURE 3.3: Corrected ICL values for the arcsine (red) and logit (blue)
transformed normalized expression pro les over a range of numbers of clus-
tersK for the Fietz (2012) mouse RNA-seq data.

an S4 object of classoseqResults  (an extension of th&ummarizedExperiment0
Bioconductor S4 class) on which standadt andsummary functions can be directly
applied; the former uses functionalities from tpgplot2 package (Wickham, 2009). The
option of parallelization via th&iocParallel Bioconductor package is provided, and
several additional options ( ltering, normalizatioRmixmod options) are available.

For these data, the models selected using the ICKarel2 andK = 15 for the arcsine
and logit transformations, respectively. By comparing the corrected ICL de ned in Equa-
tion (3.15) between these two transformations using the convenience fuocatigrarelCL
it may be seen that in this case, the arcsine transformation is preferred (see Figure 3.3). We
focus our attention on this model in the following discussion.

> comparelCL(list(run_arcsin, run_logit))

A visualization of the per-cluster expression pro les and diagnostic plots can be obtained
using a simplglot command (see Figure 3.5):

> plot(run_arcsin, graphs="boxplots",

+ conds=conds, average_over_conds=TRUE)

> plot(run_arcsin, order=TRUE,

+ graphs=c("probapost_boxplots","probapost_barplots"))

Note that the output of oyslot function is aggplot2  object which can be further modi-
ed by the user (e.g., to change color schemes, add titles, change labels, etc).

One advantage of the Gaussian mixture model is that it enables an investigation of per-
cluster covariance structures. It is interesting to note that although the Gaussian mixture
model does not explicitly incorporate the experimental condition laBgls the estimated
models include large cluster-speci c correlations among replicates within each tissue (Figu-
res 3.4A and 3.4B). In addition, cluster-speci c correlation structures among regions may
be clearly seen; for example, Cluster 2 is characterized by very large negative correlations
between the CP and SVZ/VZ regions, while Cluster 3 instead has a strong negative corre-
lation between the VZ and CP/SVZ regions. This strongly suggests that in these data, the
assumption of conditional independence among samples assumed by the Poisson mixture
model described in Rau (2015) is indeed unrealistic.
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FIGURE 3.4: Per-cluster correlation matrices for clusters 2 (A) and 3 (B)

from the Fietz (2012) mouse data. Dark blue and red represent correlations

close to 1 and -1, respectively, and circle areas correspond to the absolute

value of correlation coef cients. Correlation matrices are visualized using
thecorrplot R package.

FIGURE 3.5: Per-cluster expression pro les for the Fietz (2012) data. Clus-

ters have been sorted so that those with similar mean vectors (as measured

by the Euclidean distance) are plotted next to one another. Connected red
lines correspond to the mean expression pro le for each group.
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FIGURE 3.6: Evaluation of clustering quality for the Fietz (2012) mouse

data. (A) Maximum conditional probabilities,ax (i) for each cluster, sorted

in decreasing order by the cluster median. (B) Barplots of cluster sizes,

according to max (i) greater than or less than 0.8, sorted according to the
number of genes withyax (i) > 0:8.

An additional advantage of model-based clustering approaches is that they facilitate an
evaluation of the clustering quality of the selected model by examining the maximum condi-
tional probabilities of cluster membership for each gepg(i):

max (i) 1m?x}€ ik o=l
Boxplots of the maximum conditional probabilitiegax (i) per cluster for the Fietz (2012)
mouse data are presented in Figure 3.6. It may be seen that across clusters, the majority of
genes in both datasets have a large value (i.e., close to 1){efi); in this case, the number
of genes with nax(i) > 0:8 is 7382 (82.4%). However, the boxplots also illustrate that
some genes have gax (i) less than this threshold, in some cases as low as 0.4; this indicates
that for a small number of genes, the cluster assignment is fairly ambiguous and assignment
to a single cluster is questionable (the gene with the smallgsi(i) in the Fietz (2012)
mouse data had a conditional probability of 24.8%, 32.2%, 13.0% and 30.0% of belonging
to clusters 1, 4, 6, and 12, respectively). In such cases, it may be prudent to focus attention
on genes with highly con dent cluster assignments (e.g., those wih(i) > 0.8).

Finally, as described in the previous section, a fast and simple alternative to a Gaussian
mixture model is th& -means algorithm, if per-cluster covariance matrices can be assumed
to be of the form = 2l. In addition, in cases where highly-speci ¢ pro les may be
expected (e.g., in developmental data, where some genes may be active during only a portion
of developmental stages), transformations speci cally tailored for compositional data, such
as the CLR and LCLR in Equations (3.11)-(3.12), may be more appropriate choices:

> run_LCLR <- coseq(counts, K=2:20, model="kmeans",
+ transformation="logclr")

As RNA-seq expression analyses are often performed on a subset of genes identi ed as diffe-
rentially expressed, theoseq function can also be directly called on Bfi:SeqResults

S4 object or integrated witDGELRTS4 objects, respectively corresponding to output from
theDESeg2 (Love et al., 2014) anddgeR (Robinson et al., 2010) Bioconductor packages

for RNA-seq differential analyses. We illustrate this usingieSeq2 pipeline below:
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library(DESeq?2)

dds <- DESeqDataSetFromMatrix(counts,
DataFrame(group=factor(conds)), ~group)

dds <- DESeq(dds, test="LRT", reduced = ~1)

res <- results(dds)

run <- coseq(dds, K=2:15, model="kmeans", alpha=0.05)

V V.V + V V

3.3.4 Conclusions and discussion

In this work, we addressed the choice of transformed normalized expression pro les rather
than raw counts for RNA-seq co-expression analysis under the framework of Gaussian mix-
ture models. We focused the majority of our discussion here on the use of (arcsine- or logit-
transformed) normalized pro les to identify groups of co-expressed genes using Gaussian
mixture models or th& -means algorithm. Gaussian mixtures in particular represent a rich,
exible, and well-characterized class of models that have been successfully implemented in a
large variety of theoretical and applied research contexts. For RNA-seq data, this means that
the model may directly account for per-cluster correlation structures among samples, which
can be quite strong in RNA-seq data. We also illustrated the use of penalized criteria like the
ICL and BIC to objectively compare results between different monotonic transformations,
and potentially among different forms of Gaussian covariance matrices or among different
models.

Several practical issues should be considered in co-expression analyses. First, acommon
question is whether genes should be screened prior to the analysis (e.g., via an upstream dif-
ferential analysis or lter based on the mean expression or coef cient of variation for each
gene). Such a screening step is often used in practice, as genes contributing noise but little
biological signal of interest can adversely affect clustering results. A second common que-
stion pertains to whether replicates within a given experimental group should be modeled
independently or summed or averaged prior to the co-expression analysis. Although techni-
cal replicates in RNA-seq data are typically summed prior to analysis, in this work we t
Gaussian mixture models on the full data including all biological replicates; subsequently
to visualize clustering results, replicate pro les are summed for improved clarity of cluster
pro les.

Finally, many alternative clustering strategies exist based on different algorithms (e.g.,
K -means and hierarchical clustering), distance measures calculated among pairs of genes
(e.g., Euclidean distance, correlation, etc), and techniques for identifying the number of clus-
ters (e.g., the Dynamic Tree Cut method for dendrograms (Langfelder and Horvath, 2008)).
The dif culty of comparing clusterings arising from different approaches is well-known, and
it is rarely straightforward to establish the circumstances under which a given strategy may be
preferred. Following a co-expression analysis, it is notoriously dif cult to validate the results
of a clustering algorithm on transcriptomic data, and such results can be evaluated based on
either statistical criteria (e.g., between-group and within-cluster inertia measures) or exter-
nal biological criteria. In practice groups of co-expressed genes are further characterized by
analyzing and integrating various resources, such as functional annotation or pathway mem-
bership information from databases like the Gene Ontology Consortium. Such functional
analyses can be useful for providing interpretation and context for the identi ed clusters.
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3.4 Annotation-based model selection

This section corresponds to the following published article:

Gallopin, M., Celeux, G., Jaffrézic, F., Rau, A. (2015) A model selection criterion for
model-based clustering of annotated gene expression$iaiistical Applications in
Genetics and Molecular Biology4(5): 413-428.

This work is the result of the Ph.D. work of Mélina Gallopin, co-supervised by Florence
Jaffrézic, Gilles Celeux, and myself.

I — ———___B

3.4.1 Background and motivation

Genome annotation broadly refers to the set of meta-data associated with the coding regions
in the genome, typically including the identi cation of the location of each gene as well as
a determination of the functions related to the gene product (e.g., protein or RNA). In parti-
cular, gene annotations correspond to known functions related to the gene product, including
molecular functions, biological pathways, or the cellular location of the gene products. A
variety of well-known uni ed databases have been constructed with known functional an-
notations collected from bibliographic sources across species, including the Gene Ontology
(GO) (Ashburner et al., 2000), the Kyoto Encyclopedia of Genes and Genomes (KEGG) (Ka-
nehisa and Goto, 2000) or the MSigDB (Molecular Signatures) databases (Liberzon, 2011).
Although such databases contain a rich source of functional information about the genome in
a large variety of species (e.@\abidopsis thalianahuman, rat, mouse, y), our knowledge

of functional annotations is often far from complete (Tipney and Hunter, 2010).

In practice, annotation databases are often used to pedqoosteriorivalidation and
interpretation of co-expressed gene clusters through tests of functional enrichment (Steuer et
al., 2006). Such functional annotation may instead be directly integrated into the clustering
model itself. For example, Tari et al. (2009) incorporate GO annotations as prior knowledge
in a fuzzy c-means clustering. Verbanck et al. (2013) proposed a clustering approach based
on a distance de ned conjointly on the similarity among expression pro les and that among
functional pro les. Pan (2006) and Huang and Pan (2006) proposed including gene anno-
tation as prior information in a strati ed mixture model. However, the inclusion of gene
annotation directly in the model itself in this way may be questionable, particularly when
they are also used to validate the gene clustep®steriori Moreover, as gene annotati-
ons tend to be incomplete, biases may be introduced if they are directly incorporated in the
model, as unannotated genes (which represent those known to be unassociated with a given
function as well as those of unknown function) may be erroneously separated from annotated
genes.

One alternative to such approaches is to de ne a clustering model that accounts for exter-
nal gene annotations without directly including them in the model itself. To this end model-
based clustering provides a convenient framework, as it (1) allows for a large set of clustering
models to be t to the gene expression alone, and (2) facilitates the choice among this set a
parsimonious model that simultaneously provides a good t to the data and coherence with
the external gene annotations. In this work, we address these points by proposing a model
selection criterion that accounts for external gene annotations.
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3.4.2 Integrated completed annotated likelihood model selection criterion

Baudry (2014) recently proposed an ICL-like criterion that takes advantage of the potential

tes that the genkis in category for ther™ external categorical variable and 0 otherwise.
The idea is to choose a classi catiarbased ory that is coherent witlu. Assuming thay

andu are conditionally independent giventhe Supported Integrated Completed Likelihood
(SICL) criterion is an asymptotic approximation of the logarithm of the integrated completed
likelihood: Z

fly;u;z;K)= f(y;u;zK k) ( k)d k:
The SICL criterion is de ned as follows:
X ¥ X n'.

SICL(K ) = ICL(K) N log —=; (3.16)
r=1 =1 k=1 Mk

whereU, is the number of levels of the variallé,
ne =cardi:zg =1 andur =1 ;

Ny = P 9:‘1 Ny, and ICL(K) is as described in Equation (3.5). The last additional term in
Equation (3.16) quanti es the strength of the link between the categorical varialled the
classi cationz.

The objective of this work is to make use of external gene annotations to choose a model
for which clusters may be meaningfully interpreted both with respect to their expression pro-
les and the functional properties associated with a subset of genes. Since gene annotations
are binary variables (i.e., a gene is either annotated or unannotated), it may seem natural to
directly use the SICL de ned in Equation (3.16). However, in contrast to the situation con-
sidered by Baudry (2014), gene annotation information is often incomplete. More precisely,
for each of theG annotation terms, indexed lgy the available information? is as follows:

1 if genei is known to be implicated in functiog;
0 if genei is not known to be implicated in functicyt

Note thatu? = 0 can indicate that information is missing (i.e., gankas not yet been
identi ed for annotationg) or that gene is known to be unrelated to annotatignAs such,

uig = 0 does not represent the null level of variable and thus represents an incomplete binary
variable. For this reason, the SICL criterion is not an appropriate measure of the link between
an external annotation® and a classi catiorz, and a speci ¢ criterion must be de ned to
incorporate the gene annotation information into the model selection step. To this end, we
propose a novel model selection criterion as follows.

latent variables indicating the allocation of the annotations amonk thieisters:

) = 1 Yvith probabilityp{ if uf = 1; 3.17)
0 ifuf=0:

Each row of the matrixb? is a random vector following a multinomial distribution with

completed annotated likelihood (ICAL) criterion seeks to select the clustering model that
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minimizes the negative logarithm of the integrated annotated likelihood:
z

logf (y;z;b%;:::;b%;K)=log f(y;z;b%:::;b%:K; k) ( k)d k: (3.18)

Assuming thatb®;:::;b® andy are conditionally independent given the conditional
distribution of eacr‘og given z does not depend oy or the mixture parameters. Thus as
f(b9jy;z;K; k)= f(b9]zK)forall g, we have

logf (y;z;bY;:::;b%;K) = Iogf(b1 """ 17, K) (3.19)

IOg f(y,Z,K, K)( K)d K-

The last term in Equation (3.19) can be approximated with(kCL. from Equation (3.5).
Assuming in addition that?;:: :; b® are independent and that gene annotations are missing
at random, we can write

NG
f(b::;b%z,K) = f(b%zK); (3-20)
g=1

and the rst term may thus be approximated using

X o
logf (b9 2.K)= nEIogn—g;
k=1

wheren? = cardi : uf = 1gandn] = cardi : 2x = 1 andu? = 1g. leading to the
generalized Integrated Completed Annotated Likelihood (ICAL) criterion:

X X nd
ICAL(K) = ICL(K) n? log F;: (3.21)
g=1 k=1

Finally, if the uncertainty associated witlf = 0 (i.e., that gené could either be unas-
sociated with functiorg or that this information is missing) is ignored, it can be shown that
our ICAL criterion can be rewritten as a function of the SICL criterion proposed by Baudry
(2014):

X X X
ICAL(K) = SICL(K) nplogngo+ G nglogng + constant  (3.22)
9=1 k=1 k=1

whereny represents the size of the clustei~rom Equation (3.22), we note that the SICL ta-
kes into account both mgdahngéz{mdl) of the external variablas, while the ICAL discards
the null modality (the gl K., nd,logng, term). Moreover, it can be seen that the
ICAL penalises a large number of clusters, while the SICL does noIC{the{f:l Nk log ng
term). As such, the ICAL tends to select parsimonious models with a relatively small number
of clusters, as compared to SICL. This means that the ICAL generally tends to merge clusters
to group genes annotated for the same function, reducing the number of optimal dtusters
with respect to the optimal number of clusters selected by ICL. SICL tends to split clusters in
order to obtain clusters made up only of annotated genes, increasing the number of optimal
clusters with respect to the optimal number of clusters selected by ICL.

The ICAL criterion is implemented in the R packa@AL , freely available on GitHub.
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FIGURE 3.7: lllustration of a simulated dataset and three annotation pat-

terns: associated annotatian (left), unassociated annotatiarg (center)

and mixed annotationsc (right). For each gure, the 200 observations are

drawn from a mixture of Gaussian bivariate components: circles, triangles,

inverted triangles and diamonds correspond to components 1, 2, 3 and 4. For

each annotation type, the 20 annotated genes are represented by coloured
bold crosses.

K 1 2 3 4 5 6 7 8 9 10
BIC 19 81 2

ICL 54 46
. SICL 53 47
Associated Ua ICAL 87 13
Unassociated u SICL 53 47
B ICAL 53 47
. SICL 49 51
Mixed Uc ICAL 79 21
Multiple UaUg; U SICL 48 52
P Ads, Uc | cap 97 4

TaBLE 3.1: Number of simulated datasets for which each md#el=

annotations over 100 independent simulated datasets. The model most com-
monly selected for each criterion is highlighted in boldface.
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Illustration on simulated data

To illustrate this behavior, we simulated data from a mixture of four bivariate Gaussian dis-
tributions withn = 200 observations associated with different types of external functional
annotations:ua, ug anduc (see Figure 3.7). The genes annotatedugrare shared by

the two closest mixture components. This annotation is designed &sdmxiated to the
componentsn the sense that it suggests the interest of merging the two clusters, as they
share similar joint distributions and external annotations. The genes annotated for the se-
cond functionug are shared only by the two clearly distinct components. This annotation is
designed to benassociated with the componenédthough the components share a similar
function, their joint distributions are too distinct to be merged from a modeling point of view.
Finally, the genes annotated for are randomly spread over the four components, meaning
the annotation isnixed(half associated / half unassociated).

Using the R packagBmixmod (Biernacki, 2006; Lebret, 2015), we estimated the pa-
rameters for models with the number of clustkrsvarying from 1 to 10 and subsequently
performed model selection using the BIC, ICL, SICL, and ICAL to select the most appro-
priate number of clusters. Out of 100 simulated datasets (see Table 3.1), we found that (1)
the BIC most often (81% of the datasets) selected the modeKnith clusters, which corre-
sponds to the true model used for simulation; (2) the ICL had some dif culty in determining
whether 3 or 4 components should be preferred; (3) the SICL performed similarly to the ICL,
as it tends to prefer smaller clusters containing only annotated genes (i.e., a high speci city of
annotation within each cluster); (4) when relevant), mixed Uc), or multiple (a; ug; uc)
annotations were included, the ICAL showed a strong preference for the modé{ witB
components, merging the close pro les that shared relevant annotations; and (5) when irrele-
vant (Ug) annotations were included, the ICAL performed similarly to the ICL. This suggests
that if the external information is associated to the components, even partially so, the use of
the ICAL criterion improves model selection in terms of functional interpretability. If the
external information is unassociated to the components, the ICAL criterion simply behaves
like the ICL.

lllustration on RNA-seq data

The ICAL criterion described above was used to perform model selection for a co-expression
analysis of RNA-seq data from three regions (the duodenum, the jejunum and the ileum) of
the small intestine of four healthy piglets from Mach (2014). After an initial differential
analysis, 4021 genes of interest were identi ed and normalized counts were log-transformed
using thevoom procedure from (Law, 2014). We also collected relevant annotations corre-
sponding to the canonical pathways (CP) gene set collection from the Molecular Signatures
Database (MSigDB) (Liberzon, 2011). Among the 1320 CP in the database, a total of 10
CPs of interest (Table 3.2) were found to be overrepresented in the set of differentially ex-
pressed genes (Fisher's exact test, adjuptedlue < 0.05 after Bonferroni correction) and
were retained as relevant functional annotations.

After tting Gaussian mixture models with thBRmixmod package (Lebret, 2015) for
K =1;:::;50, we performed model selection with the ICK (=23) and ICAL (K =20)
criteria. Although the result of the latter is not perfectly nested in the former, in many cases
the attribution of genes to clusters in the ICAL solution is a result of collapsing or partially
collapsing several clusters from the ICL solution. We also examine associations between
clusters and CP using Fisher's exact test for each of the selected models (see Table 3.3). The
ICAL criterion yields a clustering that maximizes the number of genes annotated in each
cluster for each CP while still only grouping genes that share suf ciently similar expression
pro les. For example, we note that CP8 is associated with two different clusters in the ICL
solution, while it is associated with a single cluster in the ICAL solution; similarly, CP10 is
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CP Name DE Total
1 Reactome metabolism of lipids and lipoproteins 141 480
2 Reactome transmembrane transport of small molecules 124 415
3 Reactome hemostasis 99 468
4 Reactome SLC mediated transmembrane transport 73 243
5 Reactome phospholipid metabolism 54 200
6 Reactome fatty acid triacylglycerol & ketone body metabolism 53 170
7 KEGG PPAR signaling pathway 34 71
8 KEGG ECM receptor interaction 34 86
9 Reactome transport of inorganic cations anions
and amino acids oligopeptides 33 96
10 KEGG peroxisome 31 80
TABLE 3.2: Number of genes annotated for each canonical pathway (CP),
among the 4021 differentially expressed (DE) genes and among the full CP
gene set collection of the MSigDB database.
(a) ICL solution
size| CP1| CP2| CP3| CP4| CP5| CP6| CP7| CP8| CP9| CP10
Cluster2 58 ? ? ?
Cluster5 203 ?
Cluster6 47 ?7?
Cluster7 258 ? ? ?
Cluster8 96 ??
Cluster 10 287 ?
Cluster 14 225 ??
Cluster22 144 ?? ?2?7?
(b) ICAL solution
size| CP1| CP2| CP3| CP4| CP5| CP6| CP7| CP8| CP9| CP10
Cluster3 297 ?
Cluster5 379 ?? ???
Cluster6 156 ?? ?
Cluster7 92 ?
Cluster 10 267 ? ?? ??
Cluster 17 235 ?7?

TaBLE 3.3: Table of associations between clusters and CP for the ICL solu-

tion (a) and the ICAL solution (b). Associations are detected using Fisher's

exact tests: the number of stars indicates the value of the p-valoelgw
0:01, ? ? below0:001, ? ? ?below0:0001).
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associated with three clusters in the ICL solution and only two clusters in the ICAL solution.
On the other hand, although clusters 10 and 17 in the ICAL solution both share annotations
for CP10, these clusters are not collapsed into one using the proposed criterion, as their
expression dynamics are too different. As such, the ICAL solution appears to enable the
identi cation of more biologically interpretable clusters than the ICL, while still ensuring
that the clustered genes share suf ciently similar expression dynamics.

3.4.3 Conclusions and discussion

In this work, we presented a novel way to incorporate functional annotations into model-
based clustering of gene expression data using the ICAL criterion, which is designed to
select the model that jointly maximises the goodness-of- t to the data and the association of
clusters and annotations. From a biological point of view, ICAL aims to select models with
more interpretable clusters than those selected by BIC or ICL. It is important to note that the
functional annotations are not directly included in the clustering model and are only used to
select the best model. This approach is a good compromise between two opposite strategies:
including functional annotations directly in the clustering model (Morlini, 2011) or excluding
them altogether and using them only to validate clusigrgsteriori Since we do notinclude
annotations in the clustering model, we detect associations between annotations and clusters
with a stronger evidence than if we had included the external annotations in the clustering
model. In particular, the ICAL criterion is a good way to include prior biological expertise
without according it too much importance, which can provide a good balance between what
can be observed in the data and what experts expect to see in the data.
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Chapter 4

Inferring gene regulatory networks
from expression data

4.1 Overview of gene regulatory networks

High-throughput assays like microarrays and RNA-seq may be used to study the coordinated
behavior of genes during speci ¢ biological processes, such as the cell cycle or a response
to an external input, often with the goal of identifying and understanding gene regulatory
networks. Inference of gene networks from transcriptomic data is indeed a key aspect of
systems biology that may help unravel and better understand the underlying biological regu-
latory mechanisms. Abstractly speaking, a gene regulatory network (GRN) can be described
as the direct and indirect interactions that occur among a collection of interconnected ge-
nes (Figure 4.1, top). As these interactions regulate gene transcription and the subsequent
production of functional proteins, the identi cation of these networks can lead to a better
understanding of complex biological systems. Graphs are often used as an abstraction to vi-
sualize these networks, where nodes represent genes and edges represent interactions among
the genes (Figure 4.1, bottom right).

Using high-throughput measurements of gene expression, taken over time or following
experimental interventions, we aim to infer (or "reverse-engineer") the structure of GRN
involved in a particular cellular process. However, these networks are generally very compli-
cated and dif cult to elucidate, particularly given the large number of genes considered (and
thus, the large number of potential parameters to be estimated), the typically small number
of biological replicates, the assumed sparsity of such networks, and the complexity inherent
to biological networks. In this chapter, | will focus on two of our contributions to gene regu-
latory network (GRN) inference from expression data: (1) a hierarchical Poisson log-normal
model speci cally designed for inference from RNA-seq data; and (2) an approach to infer
causal relationships among genes from intervention gene expression data.

4.2 Network inference for observational RNA-seq data

This section corresponds to the following published article:

Gallopin, M. Rau, A., and Jaffrézic, F. (2013). A hierarchical Poisson log-normal
model for network inference from RNA sequencing data. PLoS One 8(10): e77503.

This work is the result of the Ph.D. work of Mélina Gallopin, co-supervised by Florence
Jaffrézic, Gilles Celeux, and myself.

I — e— |

Similarly to differential and co-expression analayses, it is somewhat of an open ques-
tion as to whether methods developed for the inference of GRN from microarray data are
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FIGURE 4.1: A schematic illustration of a simple gene regulatory network

made up of four genes. Each gene is transcribed and translated into a

transcription factor protein, which in turn regulates the expression of other

genes in the network by binding to their respective promoter regions. The

gene regulatory network may be represented using the graph in lower right

corner, made up of four nodes (genes) and ve edges (interactions among the
genes).

appropriate for RNA-seq data. In order to identify relationships among genes from microar-
ray data, several authors have proposed the use of co-expression networks based on Pearson
correlation (Giorgi et al., 2013) or canonical correlation (Hong, 2013; lancu, 2012), or al-
ternatively based on Gaussian graphical models (Friedman et al., 2008; Meinshausen, 2006;
Cai et al., 2012). However, at the time of this work, no speci ¢ models had been proposed
for RNA-seq data.

Our goal here was thus to investigate three different strategies that could be used for this
purpose: (1) apply a appropriate data transformation, using for example a Box-Cox trans-
formation (Box and Cox, 1964), and subsequently use a Gaussian graphical model; (2) use
a power transformation (Li, 2012) in conjunction with a log-linear Poisson graphical model
(Allen and Liu, 2012) speci cally designed to model count data; or (3) use a hierarchical
log-normal Poisson graphical model speci cally designed to account for overdispersed count
data. In the three aforementioned strategies, lasso penalities (Tibshirani, 1996) are used to
obtain to obtain a sparse respresentation of the network. We brie y describe the three appro-
aches in the following.

Gaussian graphical modelThe underlying assumption of this model is that the data
are normally distributed. In the case of untransformed RNA-seq data, this assumption
is not valid since data counts cannot take negative values. We investigated a variety of
Box-Cox transformations to lead to approximately normal data (Box and Cox, 1964),
where the value was chosen to maximize the log-likelihood of the transformed data:

8
< (yij +1) 1. . .
= if 60;
yi b ofQyi)=. !
" log(yj +1); if =0;

where a constant of 1 has been added due to zero counts. Edtf (yqj);:::; f (ynj))
be the transformed vector of expression valuesifgenes for th¢ th biological sam-
ple. We assume tha; N ( ; ). To ensure the estimation of a sparse network (a
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common assumption in this context), we consider the lasso-penalized log-likelihood:
L( Y= 2logdet( 1) tracds 1+ k ‘k; (4.1)

whereS is the empirical covariance matrix.

Many methods exist to compute the penalized maximum likelihood estimate of the
matrix above, including the populafasso R package (Friedman et al., 2008)
which makes use of a coordinate descent algorithm. The choice of the regularization
parameter has also been extensively studied (Giraud et al., 2012). In this work,

model selection for the regularization parameteis performed by minimizing the
BIC (Schwarz, 1978). Finally, the edges of the inferred network correspond to non-
zero partial correlations, i.e. the non-zero elements of matrix (Whittaker, 2009;
Friedman et al., 2008).

Log-linear Poisson graphical model In a log-linear Poisson graphical model (Allen

and Liu, 2012), as RNA-seq are frequently characterized by an overdispersed variance
with respect to the mean (thus violating one of the assumptions of the Poisson dis-
tribution), a transformation is typically required as a rst step. Allen and Liu (2012)
proposed using a power transformation (Li, 2012) of the gqgta  g(yij) = ;.

with  2]0; 1], where the coef cient is chosen to maximize an adequacy criterion
between the transformed data and a Poisson distribution.

Letzi = (9(yi1);::;9(Yiq)) be the transformed vector of expression values for gene
j in the q biological samples. It is assumed that the conditional distributiod;of

distributionP ( i), with log( i) modeled as a linear regression on all the other genes:
P(Zijjziog iy) P (i)

with
log( i) = i 0750 -
i% i
The notationz corresponds to a standardization of the log-transformed data. This
standardization is a necessity since we model the mean of thé gadeot the random
variable itself. An edge is present in the inferred graph if one or both paramgters
and q are different from zero.

To ensure sparsity of the vectoy, we consider the lasso-penalized log-likelihood for
genei:
2 0 1 3

xa X X
L ( i): 2 42'1] exp@ iiOZ]OjA iiOZin5+ k ik‘l (42)
j=1 %8 i 198 i

Estimation of parameters; can be obtained by a coordinate gradient algorithm as
implemented in the R packaggmnet (Friedman et al., 2010). Similarly to Allen
and Liu (2012), we perform model selection for the regularization parameter using the
Stability Approach to Regularization Selection criterion (StARS; Liu et al., 2010).

Hierarchical log-normal Poisson graphical model The Poisson log-linear model
presented above requires a transformation of the data to account for the high dispersion.
Here we propose to deal with this dispersion directly through a hierarchical log-normal
Poisson model. The count expression of geinesamplg is modeled asY;; P ( j)
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FIGURE 4.2: ROC curves, averaged over 50 simulated data sets on scale-
free graphs. Results are presented for the Gaussian graphical model on log-
transformed data (blue), the log-linear Poisson graphical model on power-

transformed data (red) and the hierarchical log-normal Poisson model on raw
data (black) on multivariate Poisson data (A) and multivariate Poisson data

with in ated variance (B). The dotted black lines represent the diagonals.

with
X
log( )= i oig + i
08 i
"= (Minuntig) N0 Pl

As before, the notatioy corresponds to a standardization of the log-transformed data.
Here, the vectoy; P ( ;) anqD i isitself a random variable:; = ; exp("i) with

"i N (0; izl g and j =exp( jo; iio%q). Note that the variance of the random
variableP ( ) is larger than its mean ifi2 is positive. As previously, an edge is present
in the graph between geniandi®if one or both parameters;o and ;4 are different
from zero.

In this model, the lasso-penalized likelihood for géman be written as:

0
L= 2 @ —exp( j+yjlog( ) logly;h (4.3)
R =1
1 1., . . _
@)z %P ool iz i kg

Estimation of parameters and ; may be performed using the R functighnmixedlasso
(Schelldorfer and Buhlmann, 2014), based on a Laplace approximation of the penali-
zed likelihood and a coordinate descent algorithm. For model selection, we use a
two-stage approach by minimizing the per-gene BIC to identifyand then averaging
over genes to identify a global regularization parameter

Comparisons among the three aforementioned approaches on simulated data with various
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amounts of additional inter-sample variability suggested that the proposed hierarchical Pois-
son log-normal model exhibited better sensitivity and comparable speci city to the GGM and
log-linear Poisson model for both multivariate Poisson data (Karlis and Meligkotsidou, 2005)
and over-dispersed Poisson data (Figure 4.2. This suggests a bene t to methods developed
speci cally for RNA-seq data, although for the time being network inference for RNA-seq is
limited in practice by the small number of biological replicates typically available.

4.3 Network inference for intervention gene expression data

This section corresponds to the following published article:

Rau, A., Jaffrézic, F., and Nuel, G. (2013) Joint estimation of causal effects fro
observational and intervention gene expression d%C Systems Biologg:111.

4.3.1 Background and motivation

Although Gaussian graphical models (Friedman et al., 2008) are often used to infer gene
networks from observational (also referred to as wild-type or steady-state) transcriptomic
data (also referred to as wild-type or steady-state expression data), they result in undirected
graphs (corresponding to partial correlations among genes) that cannot highlight potential
causal relationships. For this reason, a great deal of research has focused instead on the use
of causal Bayesian networks for a wide variety of applications (Spirtes et al., 2001; Pearl,
2000b). Using Gaussian causal Bayesian networks (GBN) Maathuis (2010) and Maathuis et
al. (2009) recently proposed a method calletrvention-calculus when the DAG is Absent
(IDA) to predict bounds for causal effects from observational data alone. In the IDA, the PC-
algorithm (Spirtes et al., 2001; Kalisch, 2012; Kalisch and Buhlmann, 2007) is rst applied
to nd the associated completed partially directed acyclic graph (CPDAG), corresponding
to the graphs belonging to the appropriate equivalence class. Following this step, bounds
for total causal effects of each gene on the others are estimated using intervention calculus
(Pearl, 2000a) for each directed acyclic graph (DAG) in the equivalence class.

However, if intervention experiments such as gene knock-outs or knock-downs are avai-
lable, it is valuable to jointly perform causal network inference from a combination of wild-
type and intervention data. One such approach was proposed by Pinna et al. (2010), based on
the simple idea of calculating the deviation between observed gene expression values and the
expression under each systematic intervention, where a down-ranking algorithm was applied
to the initial graph to remove feed-forward edges. An improved version of that approach
was also proposed Pinna (2013) to provide more accurate network inference for large-scale
networks through a novel implemention of the transitive reduction step. Both methods have
the dual advantages of being very fast to compute and being quite general, as they do not
require any assumption of acyclicity of the graph. However, in order to evaluate all possible
causal links among genes, the Pinna et al. (2010) and Pinna (2013) methods require a single
replicate of observational data as well as a systematic knock-out experiment for each gene in
the network.

In this work, we instead seek to identify a exible method able to jointly infer causal rela-
tionships among genes from arbitrarily complex knock-out experiments, including partial or
multiple gene knock-out experiments. Although in principle such intervention experiments
could be conducted using RNA-seq technology, for the time being the majority of such inter-
ventional data have been instead collected using microarrays. With the re nenmantiod
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gene silencing experimental techniques such as RNA interference (RNAI) and the CRISPR-
Cas9 system, intervention experiments are likely to become increasingly feasible for gene
expression studies in coming years.

4.3.2 MCMC-Mallows algorithm for causal Gaussian Bayesian networks

LetG = (V;E) be a graph de ned by a set of verticgsand edge€ (V V). Letthe
vertices of a graph represgmtandom variableX 1; :::; X ,. As in the approach of Maathuis
et al. (2009), we consider here the framework of causal GBNs, which correspond to Bay-
esian networks where the nodes have a Gaussian residual distribution and edges represent
linear dependencies. In this case, it also follows that the joint distribution of the network is
multivariate Gaussian. In DAGs such as GBNs, we often encounter the presence of Markov
equivalence classes, i.e. multiple network structures that yield the same joint distribution; in
such cases, observational data alone generally cannot orient edges. For this reason, in many
cases the use of intervention data can help overcome this issue, as presented below.
Following an intervention on a given nodég, denoteddo(X; = X), we consider the
expected value of each other gene in the network via do-calculus as shown in Theorem 3.2.2
(Adjustment for direct causes) in Pearl (2000a):

(
E(Xj) if Xj 2 pa(Xj)
E(Xjix; pa(Xi)) P(pa(Xi))dpa(Xi) ifXj 2 pa(Xi)
wherepa(X ;) represents the parents of nole Itis important to point out tha(Y jdo(X =

X)) is different from the conditional probabili(Y jX = x). Using this framework, the total
causal effects may be de ned as follows:

E(X;jdo(X; = x)) =

= SO Ido(X, = X)

and are equal to 0 X is not an ancestor of ;. On the other hand, the direct causal effects
(i.e. the edges in the graph) are de ned as:

= SEOX Ipalx, ): dolX; = X))

Causal inference method

In the GBN framework, when observational data are jointly modeled with intervention data
for an arbitrary subset of genes, the network follows a multivariate Gaussian distribution of
dimension equal to the number of genes that had no intervention (as the expression value
of the gene under intervention is xed to a given value), and the log-likelihood value can
subsequently be calculated for a proposed network.

The calculations in the following section assume that the nodes in the graph have been
sorted according to an appropriate causal ordering in the graph such itkaf if thenX;
is not an ancestor of;; we note that such an ordering is possible under the assumption of
acyclicity of the graph. In practice, of course, it is typically not possible to correctly order
nodes in such a way without knowledge of the underlying DAG. For this reason, we aim to
explore various network structures based on causal orderings, and to choose among those
with the best likelihood value for an arbitrary set of observational and intervention data.
The Metropolis-Hastings algorithm (Metropolis, 1953; Hastings, 1970), through the use of
a proposal distribution for causal orderings, allows such an exploration to take place and to
approach a local maximum of the likelihood.
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Let p be the number of nodes in the grapgh,the DAG structure andV the matrix
containing the values for all edges. The nodes are assumed to have been sorted by parental
order forG andW , i.e. ifi <j , thenXj is not an ancestor of;. This sorting is possible
under the assumption of acyclicity and may not necessarily be unigue. Under this ordering,
W is an upper triangular matrix and thus nilpotent. In the GBN framework, it is assumed
that each node dB has a residual Gaussian distribution, independently from the rest of the

network. Let us consideX, with | = f1;:::;pg, a set ofp Gaussian random variables
de ned by: X
Xj = mj+ wij Xi+ " with "j N (0; {): (4.4)
i2paj)

We assume that thg are independent, and tha2 pa(j) ) i <] (this assumption is
equivalent to assuming that the directed graph obtained using the parental relationships is
acyclic). Given the parental structure of the grapl), may only be nonzero on the edge set,
(5i)2E=fi2paj);j 21g.

Let us now consider the matrix form of Equation (4.4):

X=m+XW +"

whereX = (Xq;:::5Xp), m = (mg;:::;mp), and” = ("1;:::;"p) are row-vectors of
dimensionp, andW = (Wwij;j)1ei;jep IS ap-dimensional square matrix. By recursively
applying this formula and taking advantage of the nilpotence of médrijwe obtain:

X=mL+"L

whereL = (I W) =1+ W + :::+ WP L This proves that the model de ned in
Equation (4.4) is equivalentt® N ( ; ) with:

X
- — 1 Ty 2\ = 2| TaTa
=mL and = L diag “)L = L e el
j2l

whereeg; is ap-dimensional null row-vector except for it§ term which is equal td, and
where =( 1;:::; p)isarow-vector of dimensiop.

. N X XX g
(m; ;W)= 7plog(2 ) N log( ) 3 S xkwe  mj)Z
j2l k=1j2 |

To see this, let us denéd = (x*¥ mL) (xX¥ mL)T forall k. Since ! =

(I W)diagl= 2)(I W)T we get:

X 1
Ay = S0 W) mefe(xk w) m)T
j21 i
1
2
jar

(x€ x*we [l mj)=

Analytical formulae can be obtained for the derivatives with respect to parameters
(m; ;W).

The likelihood presented above only takes into account observational data. Let us now
consider the case of an arbitrary mixture of observational and intervention data. We assume
that we perform an intervention on a subdetl = f1;:::;pg of variables by arti cially
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xing the level of the corresponding variables to a value (typically O in the case of knock-out
experiments):do(X; = Xj). The model is then obtained by assuming thatg|l = 0

for (i;j) 2 E andj 2 J ; we denote the corresponding matwk; . We also assume that
the variables<; forj 2 J are fully deterministic. As before, the resulting model is hence
GaussianX jdo(Xy = x3) N ( ;(x3); 4)with

s(Xa)= a(xg)ba; 5 = Liefely;
j2
where
_ X ifj23d _ 1- 4 e WP L
J(XJ)ej = m; otherwise and LJ—(I WJ) = | W ; WJ .
For the likelihood calculation, we considiir data generated undek = (xX;::: ;x'g)

(16 k 6 N) with intervention onJ i (whereJ = ; means no intervention). We denote by
K; = fk;j 2 J«g, and byN; = jK;]j its cardinal. The log-likelihood of the model can then
be written as:
log(2 ) X X 1X X 1

> N; Njlog( j) 3 S xkwe [ my)%

(m; ;W)= _ j
j j k j2ly

(4.5)
This is mainly due to the fact that for any intervention $etve haveW ; ejT = WejT for all
j 2 J . Considering the derivative with respectrty for all j such thalN; > 0, we obtain:

1 X

mj = (xf x*we )

Nj k2K |
which can be plugged into the likelihood expression to get:
log(2 ) X X 1 X X 1 .. .
I N T N T S0 vy
2 2 2] j
j j k j2i, |

TIwW)=

where for(k;j) such thaj 2 J x we have:

X
yKi = xX 1 5 K

NJ kOZKJ'

andW can be estimated by solving the following linear system:
X X Kj | Kij X ki ki .
Wio; Yi"Yio = yiry;" forall(i;j) 2 E: (4.6)
i%(i% )2E k2K | k2K j

Note that the system might be degenerate if the intervention design gives no insight on some
parameters. It is hence nally possible to obtairthrough:

1 X Ki .
j2 — Ni (yj b yk,J WeJT)Z:
kK
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MCMC algorithm with Mallows proposal model

The Metropolis-Hastings algorithm (Metropolis, 1953; Hastings, 1970) is a random walk
over ,the parameter space of the model. It relies on an instrumental probability distribution
Q which de nes the transition from positioK; to a new positionX . The probability of
moving from stateX; to the new statX is de ned by:

()X X))

P(Xe1 = XIXg=min - — o S X 1),

4.7)
where (X) is the likelihood function.

In order to propose a new causal node ordeffgfrom the previous orderin®, we
propose to make use of the Mallows model (Mallows, 1957). Brie y, under this model, the
density of a proposed causal ordering is de ned as follows:

P(0%) = P(O7%0; )
= 1 4070
Z

where 2 (0;1]is a xed temperature parametet, is a normalizing constant, ard{ ; )
is a dissimilarity measure betwe@nhandO? based on the number of pairwise ranking dis-
agreements. In addition, we remark that as the temperature paranagproaches zero, the
Mallows model approaches a uniform distribution over all causal orderings, and if.,
the model corresponds to a dirac distribution on the reference ord@ririg the following,
we will use a reparameterization of the temperature coef ciestich that = exp( 1=),
with > 0. Due to the symmetry ad, it is clear thatP (O?jO; ) = P(OjO?; ), which
allows a simpli cation of theQ terms in the acceptance ratio in Equation (4.7). In practice,

is a parameter that must be tuned by the user to obtain an acceptance rate near 30 to 40%
(Roberts et al., 1997).

Proposals for causal node orderings using the aforementioned Mallows model may be
obtained by sampling using a repeated insertion model as described in Doignon et al. (2004).
Based on this new proposal for the node ordef@ig maximum likelihood estimators may
be calculated for the model parameterss (m; ;W) using the likelihood described in
Equation (4.5). Subsequently, the Metropolis-Hastings ratio may be calculated and used to
determine whether the proposed causal node ordering is accepted or rejected.

4.3.3 Conclusions and discussion

In simulation studies, we explored the posterior distribution of causal node orderings using
our proposed MCMC-Mallows GBN model (50,000 iterations, with a burn-in of 5000 itera-
tions and thinning interval of 50 iterations) when data consisted of (1) a mixed setting with
wild-type samples and one knock-out per gene; (2) a partial knock-out design with wild-type
samples and one knock-out for a subset of genes; (3) a multiple knock-out design, with wild-
type samples, one knock-out per gene, and ve double knock-outs (i.e., samples in which two
genes were simultaneously inactivated). Comparisons with the Pinna et al. (2010) and Maat-
huis et al. (2009) approaches using various criteria (area under the ROC curve, area under the
precision-recall curve, mean squared error) for both total and direct causal effects indicated
that in settings with only partial (rather than systematic) knock-outs, the MCMC-Mallows
GBN approach was better able to leverage the intervention data to provide satisfactory es-
timates of causal effects. Additionally, our simulations demonstrated that multiple knock-
out designs contributed valuable additional information for causal network inference beyond
single knock-outs; we therefore anticipate that the need for methods able to accommodate
complex intervention designs will only increase as such data become more common.
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FIGURE 4.3: (left) Graph structure, with ten nodes and 21 edges, used in
simulation study. Posterior distribution of node orders from the MCMC-
Mallows approach from the simulation setting with complete single knock-
outs (middle) and partial single knock-outs (right). Node labels are included
on the vertical axis, estimated positions within causal orderings along the
horizontal axis, and the intensity of color of each square corresponds to the
average proportion of iterations in which a given node was placed in a given
position.

As the MCMC-Mallows approach explores the posterior distribution of causal node or-
derings, it is also of interest to visualize this posterior distribution (Figure 4.3 middle and
right). In these plots, node labels are included on the vertical axis, and estimated positions
within orderings along the horizontal axis. Potential orderings for each node within the true
graph are highlighted with black outlines (note that the node ordering is not unique for the
DAG considered here); as an example, node N6 could be placed in the rst, second, or third
position, while node N3 could only be placed in the tenth position in the true graph. The
intensity of colors within each box represents the average proportion of iterations in which a
node was placed in a particular order. To follow our example, in the mixed setting (center of
Figure 4.3), on average node N6 was most often placed in the rst position, and occasionally
positioned second or third, while node N3 was nearly always placed in the last position. As
expected, the node orders were most accurately estimated when a systematic knock-out de-
sign was considered (with one knock-out for each gene) than for a partial knock-out design,
but pertinent information can still be extracted from the latter.

The novelty of the MCMC-Mallows approach, and the primary contribution of this work,
lies in its exibility to model arbitrary single, multiple, and partial knock-out designs as well
as in the focus on exploring the posterior distribution of causal orderings of nodes rather
than of the directed acyclic graph itself. In its present form, the proposed algorithm is not
applicable to large-scale networks made up of several hundreds of nodes. Due to the curse of
dimensionality, the size of the search space of causal node orderings explodes in dimension
as the number of nodes increases, meaning that alternative MCMC samplers, such as parallel
tempering, may be better suited to such situations. In addition, the resolution of the linear
system in Equation (4.6) needed for the likelihood calculation has compi@j$) when no
sparsity constraints are included for matvik. As such, the generalization of the proposed
algorithm to ap >> n situation will require the addition of a ridge or Lasso penalty, as re-
cently proposed by Fu and Zhou (2013), as well as a modi cation of the proposal distribution
and sampling strategy. The current algorithm is fully compatible with such extensions.

Finally, during the Master's and Ph.D. work of Gilles Monneret (co-supervised by Flo-
rence Jaffrézic, Grégory Nuel, and myself) we have developed several extensions to this
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initial work, including the use of pairwise gene ordering preferences rather than the Mal-
lows model (Nuel et al., 2013) and a ridge penalty for high-dimensional networks (Monne-
ret, 2015). Futher extension have also been motivated by two successful interdisciplinary
collaborations with biologists in the GABI research unit funded by INRA Animal Genetics
internal department grants. The rst, entitled "Causality" (2014; coordinated by Florence Jaf-
frézic and Tatiana Zerjal) focused on transcriptomic data produced for wild-type and dwarf
chickens, the latter of which have a naturally-occurring functional knock-out of the growth
hormone receptor. To address the fact that a single gene was inactivated in this experiment,
we developed a marginal causal estimation approach based on the framework of Gaussian
directed acyclic graphs (Monneret, 2017) to identify genes with a causal downstream relati-
onship to the growth hormone receptor. Although this approach performs very similarly in
practice to a classical differential analysis, it has the advantage of providing a formal cau-
sal interpretation. More recently, a second project entitled "COSI-net: Using COmbinato-
rial gene Silencing and Inactivation to infer gene NETworks" (2016; coordinated by myself
in collaboration with Jean-Luc Vilotte and Katayoun Moazami-Goudarzi (MoDiT team in
GABI, INRA) was also successfully funded. This project provided a new set of data collected
in double knock-out and RNAI knock-down mice for the PrnP and Shadoo prion-encoding
genes; statistical exploration and analysis of these rich data is currently ongoing.
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Chapter 5

Future projects

The methods presented in this manuscript primarily deal with transcriptomic data measured
using either RNA-seq or microarray technology. High-throughput technologies now enable
deep and multi-faceted studies of the biological variability of living organisms at a variety of
levels in addition to the transcriptome, including the proteome, metabolome, and epigenome,
as well as copy number variations, single nucleotide polymorphisms, and chromatin acces-
sibility. Each of these data types provides a different, partial, but complementary view of
the genome. Despite the increasing availability of these various data sources and expanding
databases of genome annotations, our understanding of the function of the genome and its
relationship to phenotypic and/or physiological characteristics is far from complete. Iden-
tifying an appropriate way to simultaneously exploit and model this large accumulation of
hetereogeneous ‘'omics data collected on the same individuals remains a major obstacle and
an important area of current biostatistical research.

Multi-omics integratiorhas in fact become a bit of a buzz word in the past couple of years,
and this admittedly vague and ill-de ned term encompasses a broad range of topics and can
mean widely different things to researchers from the elds of biostatistics, bioinformatics,
and biology (as well as to researchers within each of those elds!). As such, one of the
major challenges in addressing multi-omics data integration is the need to clearly de ne the
biological questions of interest; once this is done, the statistical challenges associated with
such analysis are numerous (e.g., simultaneous modeling of continuous and count data, large
number of variables with a limited number of biological replicates, preprocessing steps) and
often (but not always!) require the development of new statistical methodologies.

My current and future research projects will seek to pose and address some well-de ned
guestions concerning multi-omics data integration. | will detail a few of them in this chapter.

5.1 Integrated clustering of gene expression and methylation data

Our recent work (Rau and Maugis-Rabusseau, 2017) has convinced us that using normali-
zed expression pro les (rather than raw counts) is an appropriate strategy for RNA-seq co-
expression analyses. In collaboration with Cathy Maugis-Rabusseau and Antoine Godichon-
Baggioni, we have several extensions on which we would like to follow-up when relevant
multi-omics data are available. For the time being, the methods proposed to perform integra-
ted clustering of multi-omics data have primarily focused on grouping together individuals
(e.g., to identify groups of patients exhibiting a molecular structure for a subtype of cancer),
for example using a joint latent variable model (Shen et al., 2009; Mo, 2013). Our continued
goal in this work is instead to continue our focus on clustering biological entities, such as
genes. We envisage several possibilities:

In our previous work on model selection using functional annotations (Gallopin, 2015),
we focused on modeling gene expression alone and using the additional (partially mis-
sing and categorical) information to guide model selection. In somewhat related work,
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our rstidea is to cluster normalized gene expression pro les (for example, using a

K -means algorithm as described in Section 3.3.2) for a xed large number of clusters

K, and subsequently aggregate clusters based on a distance measure that integrates a
secondary set of relevant 'omics data (e.g., methylation data). Such a distance measure
could be de ned, for example, by adapting the weightd consensus clustering measure

in the multi-viewK -means algorithm (Cai et al., 2013).

A similar approach would be to instead x a very small number of cluserfer aK -
means clustering of normalized gene expression pro les, and instead use the secondary
set of relevant 'omics data to split clusters, in an analgous way as that described above.

Finally, the multi-viewK -means algorithm (Cai et al., 2013) itself could be used to
directly and jointly cluster gene expression and secondary 'omics data; in this case,
several questions must be addressed, including the impact of transformations on each
data type, the selection of an appropriate number of clusters, the integration of quali-
tative data, and how best to deal with missing values (e.g., genes for which expression
data is available but methylation data is not). Another interesting extension would
be to identify with the multi-viewK -means algorithm could incorporate cluster- and
block-speci ¢ weights, thus allowing data sources to have different weights in different
clusters.

5.2 Exploring molecular drivers of gene expression

In August-September 2016, | had the opportunity to be a Visiting Scholar at the University of
Wisconsin-Milwaukee to work with Paul L. Auer (University of Wisconsin-Milwaukee). In
our continued collaboration, we are working on an exploratory analysis of pan-cancer gene
regulation using a rich and varied set of semi-public data from a project called The Cancer
Genome Atlas (TCGA). In particular, transcriptomic, epigenomic, genomic, proteomic, and
clinical data were collected for several thousands of patients with one of over thirty different
tumor types.

Using a linear mixed model, we are currently in the process of analyzing to what ex-
tent variability in gene expression can be explained by methylation, copy number alterations,
somatic mutations, genetic heritability, and transcription factor and miRNA expression, as
well as how these patterns are conserved across cancer types or subtypes. We have deve-
loped an interactive R/Shiny web application, entitled "EDGE cancer dashboard: Exploring
Drivers of Gene Expression in cancer genomes", to facilitate graphical exploration of our re-
sults. We are also working with a specialist in breast cancer genomics, Mike Flister (Medical
College of Wisconsin), to experimentally validate genes of interest that are highlighted by
our pan-cancer integrative approach. To give one example, the non-receptor protein tyrosine
phosphatase (PTPN14) that regulates many breast cancer pathways has been implicated in
breast cancer growth and metastasis; however somatic mutations and copy number variants
of PTPN14 do not appear to be prevalent in breast cancer, and the transcriptional regulators
of PTPN14 are unknown. Initial exploration with our interactive tool con rmed previous re-
sults from ChlP-seq data collected in the ENCODE project, suggesting that the transcription
factors FOXA1 and GATA3 are important molecular drivers of PTPN14 expression in breast
cancer. We anticipate that this work will be submitted for publication in the coming months,
and will lead to futher developments in methodological research to contribute understanding
of the regulatory landscape of cancer.

Longer-term extensions to this work are also expected. In particular, we plan to extend
the analysis results currently presented in the web application to include information about
relevant clinical/survival characteristics of patients in order to associate promising molecular
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drivers of gene expression with clinical outcomes. We anticipate that this could be done, for
example, by providing Kaplan-Meier plots based on extremes of gene expression levels. In
addition, similar approaches could be undertaken for the analysis of other large-scale geno-
mic projects, including the Breast Cancer Risk after Diagnostic Gene Sequencing (BRID-
GES), B-CAST and Trans-Omics for Precision Medicine (TOPMed) projects. Finally, it is
obviously of great interest to perform the molecular decomposition of gene expression vari-
ation in species of agricultural importance (e.g., cattle, chickens, pigs). For the time being,
the primary obstacle to such an extension is simply the lack of publicly-available large-scale
multi-omics data collected on the same individuals, but it is likely that such data will become
increasingly available in the coming years.

5.3 Joint modeling of chromatin accessibility and gene expres-
sion data

I have recently started participating in the analysis work group for the FR-AGENCODE pilot
project, which is part of the Functional Annotation of Animal Genomes (FAANG) inter-
national consortium (The FAANG Consortium, 2015) and aims to improve the functional
annotation of livestock species (cattle, chicken, goat, pig) through the production and analy-
sis of high-throughput data. In particular, for each of these species, RNA-seq and chromatin
accessibility Assay for Transposase-Accessible Chromatin with high throughput sequencing
referred to as ATAC-seq) data were collected for two males and two females in each of three
tissues (liver and two types of lymphocytes, CD3+CD4+ and CD3+CD8+). In addition, the
proximity of genomic loci in three-dimensional space, known as the chromosome confor-
mation, was also measured in the liver cells of each individual using Hi-C technology. In
ATAC-seq data, a peak-calling bioinformatic step is required (as accessible regions of chro-
matin are not necessarily situated within the coding regions of genes), and each called peak
is then associated with a count of the number of sequenced fragments. In Hi-C data, fol-
lowing read mapping the data must be binned and bias-corrected (i.e., balanced) to ensure
that the sum of every row/column in the matrix is equivalent. It should be noted that these
pre-processing steps as well as the appropriate normalization for ATAC-seq and Hi-C data
are active ongoing areas of methodological research.

Following standard differential analyses between tissues and sexes of the RNA-seq and
ATAC-seq data individually, it is of primary interest to understand the shared variability of
these two sources of information. We are currently in the rst steps of exploring the use of
multivariate exploratory techniques (e.g., multiple factor analysis, sparse partial least squa-
res) to jointly investigate these two sources of information. To identify potential distal gene
enhancers, we also plan to explore the use of a lasso penalized regression to predict the ex-
pression of each gene with respect to chromatin accessibility of peaks in a large window
around the gene; one interesting extension of this model would be to make use of weighted
lasso regression to incorporate into the aforementioned model the spatial proximity of ea
chgene-peak pair, as measured by Hi-C.
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