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ABSTRACT

1 Abstract

In swine breeding industry, sows have been selected for decades on their prolificacy in order to
maximize meat production. However, this selection is associated with a higher mortality of newborns.
In this context, the skeletal fetal muscle is essential for the piglet’s survival, as it is necessary for motor
functions and thermoregulation. Besides, the three-dimensional structure of the genome has been proven
to play an important role in gene expression regulation. Thus, in this project, we have focused our
interest on the 3D genome conformation and gene expression in porcine muscle nuclei at late gestation.
We have initially developed an original approach in which we combined transcriptome data with
information of nuclear locations (assessed by 3D DNA FISH) of a subset of genes, in order to build gene
co-expression networks. This study has revealed interesting nuclear associations involving /IGF2, DLK1
and MYH3 genes, and highlighted a network of muscle-specific interrelated genes involved in the
development and maturity of fetal muscle. Then, we assessed the global 3D genome conformation in
muscle nuclei at 90 days and 110 days of gestation by using the High-throughput Chromosome
Conformation Capture (Hi-C) method. This study has allowed identifying thousands of genomic regions
showing significant differences in 3D conformation between the two gestational ages. Interestingly,
some of these genomic regions involve the telomeric regions of several chromosomes that seem to be
preferentially clustered at 90 days. More important, the observed changes in genome structure are
significantly associated with variations in gene expression between the 90™ and the 110%™ days of

gestation.
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2 General introduction

Pig breeding is one of the most important divisions in the French feed industry, being the French
swine sector the third producer in EU, and the pork, the most consumed meat in France. In order to reach
such levels of production, farmers have developed over the last fourty years breed selection programs
based on cross-breeding plans designed to select phenotypic traits of interest. In that context, sows have
been selected for their prolificacy. Unfortunately, the increasing number of piglets per litter has been
correlated with an increase of newborns mortality. A key factor in this issue is the piglet’s maturity,
defined as the stage of full development leading to survival at birth. Indeed, developmental problems
occurring at late gestation can lead to maturity defects during the perinatal period and consequently, to
death. Therefore, it is important to understand the biological processes taking place in late gestation. For
instance, the skeletal muscle represents the first reserve of glycogen in piglets, which is used during the

first 24h after birth for piglet’s thermoregulation.

Many studies have been performed in muscle tissue to identify key genes or molecular processes
involved in muscle development and maturity. Nevertheless, it remains unclear how these genes or
processes are regultated, not only in muscle tissue but generally in all kind of tissues. In fact, all cell
types of a living organism have the same genetic material yet, they are morphologically and functionally
different from each other. It is known that cell-type specific genes are responsible of phenotypic
differences observed between cells, as it is also known that modulations of expression levels of a given
gene can explain differences observed in a specific cell type under different conditions. Although in
many cases the mechanisms of gene regulation have been well described, for many others some
questions remain open: Which are all the factors and mechanisms responsible of gene expression
regulation? How these mechanisms of gene regulation work? Some features present in the genome
sequence itself such as promoters or enhancers, have been identified as key elements involved in gene
expression regulation. Others, such as transcription factors or non-coding RNAs, associate to specific
DNA sequences in order to regulate gene expression. Also, epigenetic modifications on histones or DNA
have been show to play as well an important role in this regulation. All this knowledge has provided
many clues to unravel the mechanisms involved in gene expression regulation but it remains insufficient
to explain all phenotypic differences observed between cells. In the last fifteen years, numerous studies
have emerged addressing the question of the 3D genome organization role in the regulation of gene
expression. It has been proven that it exists an intimate relation between chromatin structure and gene

expression, as will be presented in more detail in the third chapter of the “Bibliographic review”.

The main objective of this thesis has been to explore any change on the 3D genome
structure occurring in fetal porcine muscle between two developmental ages that could explain
phenotypic differences observed at the level of gene expression at 90 and 110 days of gestation.

For that purpose two different strategies were used.

Our fisrt approach combined the inference of gene co-expression networks with nuclear location

information of a small set of genes. The expression data of a previous transcriptome study performed
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by microarray analysis on muscle samples from 90 days and 110 days fetuses (Voillet et al., 2014) was
used to build the networks. Concretely, we used the expression values of differentially expressed genes,
identified in this previous study as genes having a potential role in piglet’s maturity. Then, the 3D
nuclear proximity between some pairs of genes was tested by 3D DNA Fluorencence in situ Hybridation
(FISH) because either they appeared connected in the networks, they were identified as key genes in
muscle development, or both. The resulting information of these 3D DNA FISH assays was used each
time to infer a new gene co-expression network by reinforcing the edges between genes when they were
found co-localized in the nucleus, or by preventing connexions between genes found distant in the
nuclear space. This integration of gene expression and nuclear co-localization proved to be relevant as

it revealed clusters of genes, around our target genes, related to muscle development.

In this first approach, we analyzed the nuclear proximity (distance) of a small number of genes
in few (~ 60 - 100) nuclei. On our second approach, we sought to extend the scale of the analysis in
order to explore the genome-wide structure of the DNA in a large population of muscle cells. We used
the High-throughput Chromosome Conformation Capture (Hi-C) molecular approach, coupled to DNA
sequencing and bioinformatics data analysis. This enabled to identify all genomic regions that were in
nuclear proximity. Hi-C assays were performed on muscle samples from two gestational ages (90 and
110 days, 3 fetuses per condition). Large genomic regions, the so-called “A and B compartments”, which
are functionally different, were also identified. Although these compartments were highly conserved,
we identifyied some genomic regions switching of compartment type between the two conditions. At a
smaller scale, topologically associated domains (TADs), were also identified in both conditions. The
differential analysis revealed global differences in the 3D chromatin structure between the two
gestational ages. More precicely, it allowed identifying genomic regions that were proximal at 90 days
of gestation but distant at 110 days and vice versa. Finally, we explored whether the differential of
genome organization between the two gestational ages was associated with a differential in gene
expression previously reported in the muscle transcriptome study. Small althought significant
differences in gene expression were associated with those genomic regions showing a differential

conformation between the two gestational ages.

The present manuscript is divided into four sections. The first one is a bibliographic review
about the pig breeding context, which exposes the issue of neonatal mortality, the concept of maturity,
and the role of muscle development and maturity in survival at birth. This is followed by a review about
pig genome sequencing and annotation and the main transcriptome studies performed on fetal muscle.
Lastly, a detailed review about the nuclear architecture will be presented to uncover: first, the general
principles of the 3D genome organization then, the different approaches that allow to study this aspect
and final, some specificities observed in pig. The methods used in this project will be presented in the
second section. The third and fourth sections show respectively the results obtained with the two
strategies mentioned before, used to study the 3D genome structure during fetal development and the
integration of gene expression. In these two last sections, the results are presented and then discussed.
The main results of this thesis are summarized in a final conclusion, followed by the presentation of the

perspectives.
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Figure 1. Evolution of average number of piglets per litter in France from 1975 to 2015. The data
used to build this graph were collected and treated by the GTTT (Technical Management of Sow Herds)
of the French Porc and Pig Institut (IFIP).
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3 Bibliographic review

3.1 Chapter 1. Breeding context

3.1.1 Early mortality: a major breeding issue in pig farming

3.1.1.1 Background

Pig sector is an important economic motor of the livestock industry in France. In 2016, around
8.9% (24.3 million pigs) of the global production in the European Union (EU) was obtained in France
(data obtained from the National Establishment of Agricultural and Sea products, FranceAgriMer,
2017). This makes the French swine sector into the third producer in EU after Germany and Spain.
Actually, pork is the most consumed meat in France, before poultry and cattle, which makes France the
fourth consumer (FranceAgriMer, 2017). To ensure this demand of meat, farmers have had to find

strategies in order to increase their production.
3.1.1.2 Selection towards prolificacy

Beyond the breeding conditions (feeding, bedding, health, etc.), genetics and breed selection
programs are among the most important aspects handled by farmers to increase their production. In this
context, cross-breeding plans are used to combine different genotypes and select the best animals
regarding genealogy, reproductive performance, growth, carcass type, and meat quality. For instance,
pig males have been selected to improve feed conversion efficiency and carcass quality criteria, and
sows from Large White (LW) line have been prolificness-enhanced to increase the number of live-born

piglets per litter.

The selection towards increasing the prolificacy and meet production, has been unfortunately
associated to an increment of perinatal mortality. Figure 1 shows data collected from the French Porc
and Pig Institute (IFIP). A shift is observed between the years 1975 and 2015, with an increase in: (i)
progeny (4.1 more piglets per litter), (ii) premature mortality (0.6 more still-born per litter) and (iii)
postnatal mortality (1.5 of piglets died before reaching the weaning age in 1975 while 1.9 perished
before weaning in 2015). The last, presenting the highest rate around the first 48-72 hours
(corresponding to the perinatal mortality). In brief, the incidence of mortality has considerably raised in
the last forty years, especially during the last fifteen years because of the application of novel selection
practices for genetic improvement. This early mortality generates not only important economic losses
(10-20% of total operating costs) for the swine industry but also raises ethical questions about animal

welfare.

Early mortality is not a phenomenon restricted to the swine industry, other species in the
agronomic sector suffer from the same losses. In the sheep industry, the mortality rate before the sixtieth

day after birth is 13.6% and, before 48 hours of lambs’ life, mortality represents more than 50% (data
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obtained from the Sheep Breeding Institute, Idele, 2016). Although less pronounced than in the pig and
sheep sectors, the proportion of perinatal mortality in the cattle industry is 5.2% (Perrin et al., 2011).

To finish with this overview of perinatal mortality, I would like to underline that humans are
unfortunately not exempt from this problem, despite all the advances in medicine in the last years. In
2016, 5.6 million deaths were registered in children under five years old. Neonatal deaths (the first 28
days of life) accounted for 46% of all under-five deaths. Although the majority of them were attributable
to neonatal infections, intrapartum-related events and congenital abnormalities, almost 35% of the
neonatal mortality was due to preterm birth complications (data obtained from UNICEF, “Levels and
Trends in Child Mortality Report 2017”), the last, especially regarding immaturity problems of

newborns (hypothermia, hypoglycemia, respiratory distress, etc.).
3.1.1.3 Ciritical factors of piglets mortality

Many factors are responsible of pig losses, the most commons, the ones affecting the perinatal
period and involved in stillbirths (prenatal stage), and deaths during the first 72 hours after birth
(neonatal stage). Fetal losses can be explained by maternal effects (uterus anatomy, placenta
development, and number of embryos). Neonatal deaths happening during farrowing can also be
explained by maternal effects (farrowing issues, intrauterine hypoxia and hyperthermia caused by
acidosis). Those happening in early breastfeeding can be due to maternal effects, breeding conditions or
effects specific to the piglets. The piglet’s weakness (malnutrition by low-quality colostrum and/or milk
production from the sow) and maternal crushing are the most common causes of pre-weaned mortality.
Other factors are important for piglet survival like the maternal skills/abilities (resource management
(relationship with its appetite and body condition), its dairy milk production, the farrowing efficiency,
the weight and size of the piglets and the maternal behavior). And last, but not less important, the vitality
of the piglet defined as the piglet characteristics that will influence its survival and growth during the
breastfeeding stage (Canario, 2006). This thesis is focused on this last item which is developed in the

coming section.
3.1.2 Maturity and survival

3.1.2.1 Ciritical factors for piglets survival

Some studies have been performed to investigate and understand which conditions during pig
fetal development alter the genetic merit for piglet survival. It has been observed that postnatal
performance in pigs is mainly affected by the placental development, the size and weight of fetuses, and
the levels of cortisone and glycogen. For instance, litters with high estimated breeding values for piglet
survival present smaller and more regular placenta, smaller fetuses, higher cortisol concentrations,
higher concentrations of glycogen in liver and skeletal muscle (longissimus dorsi) and higher
percentages of carcass fat (Leenhouwers et al., 2002a). Similarly, intrauterine growth retardation
(IUGR) have been associated with variation in birth weight within litters, pre-weaning survival and
postnatal growth. Actually, IUGR is often produced due to high ovulation leading to high fetuses

surviving to 30 days gestation. This is in detriment of a proper placenta development, especially limiting

19



maturation process

Fetal breed-specific mechanisms

.
>

I Late gestation I
Day 90 Day 114
farrowing

Increase of plasma cortisol

Glycogen accumulation in Muscle and Liver
Maturation of tissues

>

Figure 2. Specific mechanisms during pig maturation process in late gestation. (Voillet, 2016).

Dermom:
Sclerotome "

Neural tube

eural tube Dermomyotome

Notochord

Sclerotome

Myotome

Figure 3. Primary trunk muscle embryonic development. Skeletal striated muscle derives from the
myotome, the middle layer of the somite segments. Myogenesis is initiated by delamination of cells of
the dermomyotome that differentiate into skeletal muscle of the myotome (Yusuf and Brand-Saberi,
2012).



BIBLIOGRAPHIC REVIEW

the availability of nutrients to the embryo during myogenesis (Foxcroft et al., 2006). These aspects
support the idea that by selecting hyperprolific females to increase the number of pigs born, piglet
survival is strongly impacted. Therefore, this strategy of selection should be critically evaluated in the
context of pork production, as well as selection should be optimized to obtain slightly smaller but

stronger piglets in terms of piglet survival.

3.1.2.2 Piglet’s maturity

The ability of piglets to cope with hazards during birth or within the first days of life is closely
linked to the fetal physiological maturity (van der Lende et al., 2001). A state of full development, due
to a successful maturation process, promotes early survival after birth (Leenhouwers et al., 2002b,
2002a). Concretely, the maturity is described by the weight of birth, the body composition, the levels of
metabolites, the ability to thermoregulate, the immune response and behavioral aspects (Canario, 2006;
Foxcroft et al., 2006; Leenhouwers et al., 2002a). The fetal maturation process in pigs involves
biological processes occurring between the 90" day and the term of gestation (around the 114" day)
(Leenhouwers et al., 2002a). During this period, the most important events happening over the
maturation process are the ones described in the previous section: an increase of plasma cortisol, the

glycogen accumulation in muscle and liver and the maturation of tissues (Figure 2, (Voillet, 2016)).

Experimental results have also shown that breed-specific mechanisms could influence the
physiological processes at the end of development and during the maturation process. Indeed, there are
examples of breeds having different performances for piglet survival. For instance, the survival rate
differs between the LW European breed and the Meishan (MS), a Chinese domestic breed. The LW
breed which has been highly selected, presents a high incidence of mortality, while the primitive breed
MS exhibits a strong potential for survival (Herpin et al., 1993). This disparity between extreme breeds
in terms of maturity can be explained by breed-specific particularities happening during the muscle
development and maturation, due to the fact that a proper functioning of this tissue is essential for piglet
postnatal performance as mentioned before. The role of muscle maturity in survival at birth will be

discussed in the following section, by focusing attention on the skeletal muscle.
3.1.3 The role of muscle maturity in survival at birth

There are three types of muscle in vertebrates, the skeletal muscle (“voluntary muscle”
responsible of the skeletal movement), the smooth muscle (“involuntary muscle”, in organs, blood
vessels, skin, etc.) and the cardiac muscle (also “involuntary” but more similar in structure to the skeletal
muscle). In this thesis, the interest is focused on the skeletal muscle, concretely on the longuissimus

dorsi which is located in the trunk and it extends from the thoracic region to the sacrolumbar.
3.1.3.1 Myogenesis: the fetal skeletal muscle development

Skeletal muscle in the trunk of vertebrate embryo derives from the somites, segments of the
paraxial mesoderm germ layer which is formed in the primitive blastopore during gastrulation

(Figure 3). Somites are located at both sides of the neural tube and notocorde, and they are composed
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by three structures: the sclerotome (ventral compartment that originates vertebrae, ribs and cartilage),
the myotome (middle layer originated from the dermomyotome, gives rise to skeletal striated muscles),
and the dermomyotome (dorsal compartment originates dermis and hypodermis). After demomyotome
formation, myogenesis is initiated by delamination of cells from the inward-curled borders (lips) of the
dermomyotome. These detached cells move under the dermomyotome to generate the primary myotome
and rapidly differentiate into skeletal muscle of the myotome. The dorsomedial portion of the myotome
gives rise to the intrinsic back muscles (Buckingham, 2006; Chal and Pourquié, 2017; Yusuf and Brand-
Saberi, 2012).

Cells in the dermomyotome express the Pax3 and Pax7 transcription factors, they are myogenic
proliferating precursors in somites and do not express myogenic regulatory factors (MRFs) or muscle
proteins (Figure 4). This is the so-called proliferation step. The determination step happens during the
myotome formation, when myogenic precursors retreat from the cell-cycle. Then, these cells start to
express Myf5 (myogenic factor 5), MyoD (MyoD1, myogenic determination factor), MRF4 (Myf®6,
myogenic factor 6) and to downregulate Pax3 (Paired box 3), becoming committed myoblasts
(Buckingham, 2006; Chal and Pourquié, 2017; Yusuf and Brand-Saberi, 2012). In early development,
myoblasts can either proliferate or differentiate. The differentiation step begins when myoblasts start
expressing myogenin (Myf4/MYOG), MyoD and MRF4 (Buckingham, 2006). At this stage, the
differentiating myoblasts are often named myocytes, which express specialized cytoskeletal proteins:
Myh7 and Myh3 myosin heavy chains (MyHC), a-actine (Actcl), desmin, the Notch ligand jagged 2
and metabolic enzymes. Myocytes elongate and align to span the entire somite length and this process
is controlled by Wntl1 signaling. Then they fuse leading to the formation of multinucleated myotubes
which latter mature into myofibers. Myogenesis separated into two phases: an early embryonic or
primary phase and a latter fetal or secondary phase. The first one results in the formation of primary
myofibers (muscle cell polynucleated) (expressing slow MyHC and myosine light chain 1, MyLCl).
During the second phase, myogenic precursors fuse among themselves or to the primary fibers and give
rise to secondary myofibers expressing f-enolase, Nfix or MyLC3. Then these fibers also start to express
fast MyHC isoforms (Chal and Pourqui¢, 2017).

Myofibers are filled of myofibrils which are bundles of protein filaments and responsible of
muscle contraction. The process of myofibrils formation is called myofibrillogenesis. Myofibrils are
composed of a repetitive contractile modules called sarcomeres and they are surrounded by the
sarcolemma, a specialized plasma membrane for neural signal transduction by depolarization upon
neural excitation. The filaments in a sarcomere are composed of actin and myosin (Chal and Pourquié,
2017).

It exists three main types of myofibers classified depending on their MyHC isoforms and
metabolism. These are the slow-twitch oxidative (oxidative metabolism), the fast-twith oxydative
(oxido-glycolytic meatabolism) and the fast-twitch glycolytic (glycolitic metabolism) fibers (Picard et
al., 2002). There are eight isoforms of MyHC: four adult (I, Ila, IIx and IIb), 3 developmental
(embryonic, fetal and a-cardiac), and one extraocular isoform (Perruchot et al., 2012). Oxidative

slow-twitch fibers express slow MyHC (type I, Myh7), whereas glycolytic fast-twitch fibers express fast
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MyHC (types Ila (Myh2), IIb (Myh4) and IIx (Myhl)). Being the embryonic (Myh3) and slow MyHC
the first to be expressed in early myogenesis phase, then fetal and neonatal fibers express perinatal
MyHC (Myh8), finally the fast isoforms start to be expressed during late fetal myogenesis (Chal and
Pourquié, 2017).

To finish with this section, hereafter a brief introduction about the adult muscle stem cells. They
are the so-called satellite cells and are located between the basal lamina and the sarcolemma of each
myofiber. They origined during embryogenesis from myogenic progenitors of the central
dermomyotome expressing Pax7. The Pax7 progenitors pool is maintained by the Notch signaling.
Satellite cells have a limited ability to replicate and will remain as quiescent Pax7" satellite cells in adult
muscle. They are required for skeletal muscle regeneration, growth and maintenance through adulhood
(Chal and Pourquié, 2017) (see (Crist et al., 2012) for more details).

3.1.3.2 Peculiarities of pig skeletal myogenesis and muscle
metabolism

In pigs, and more generally in livestock animals, muscle fiber characteristics and ontogenesis
influence the quality of meat. As discussed before, during myogenesis, two succesive waves of
myoblasts are responsible of the myofiber ontogenesis and will lead to the formation of primary and
secondary myofibers. In larger species as bovines, sheeps, pigs, but also in humans, it exists a third
generation of myofibers (Picard et al., 2002; Rehfeldt et al., 2000). These tertiary myofibers appear
during fetal life except for pigs, in which the third generation appears during the early postnatal period.
Therefore, in the pig gestational timeline, the first wave of myoblast generation arrives around the 35™
day of fetal life, the second around the 55%day, and the third between birth and the first 15%days after
birth (Picard et al., 2002). The total number of muscle fibers (TNF) and the myofibers size are important
parameters playing a key role in meat quality and they have been influenced by lean meat growth
selection (Rehfeldt et al., 2000). In pigs, the TNF is fixed around the 90" day of gestation suggesting
that the third generation of fibers (postnatal) is not quantitatively important. Primary and secondary
fibers are under genetic and epigenetic (environmental) control respectively. The genetic aspect is
explained by differences between breeds and the epigenetic one is mainly explained by maternal effects
(maternal nutrition and offspring) (Picard et al., 2002; Rehfeldt et al., 2000). Regarding the maternal
effects, intrauterin growth retardation has been observed in some fetuses of hyperprolific sows
presenting high rates of conceptuses surviving to 30 days of gestation, resulting in detrimental effects
of placental development. This limites the availability of nutrients to the embryo during the myogenesis
and is translated into a decrease of the number of muscle fibers at 90 days of gestation (Foxcroft et al.,
2006). Muscle mass is determinated not only by the TNF but also by the size of those fibers. Increases
in muscle mass due to the fiber size are subjected to the prenatal and postnatal fiber hypertrophy
(Figure 5). The hypertrophy depends on the accumulation of myonuclei (satellite cell proliferation) and

muscle specific proteins.

Porcine muscle shows a unique distribution of fibers consisting in clusters of slow type I fibers

surrounded by fast type II fibers. Primary and secondary myofibers express type I MyHC (embryonic
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and fetal) but, in secondary fibers, type I MyHC is not expressed until late gestation (Figure 6). Fast
type I MyHCs are mostly expressed after birth with exception of type Ila which expression increases
from the last third of gestation. Another characteristic of porcine muscle is that the a-cardiac MyHC
(Myho) is also detected in early postnatal development (Picard et al., 2002). It seems that the fiber type
composition could differ between different breeds. For instance, it was observed that MS pigs exhibited

a decrease in the expression of the fastest isoform compared with LW pigs (Lefaucheur et al., 2004).

The oxidative metabolism represents the principal source of energy during fetal porcine life. At
birth all muscles are oxidative, and glycolytic metabolism increases during the first postnatal weeks
(from 0 to 15 days after birth in pigs). Globally, contractile and metabolic muscle fibers differentiate
during the two first postnatal weeks, meaning that the main events occur soon after birth whereas they
occur during fetal life in human, bovine and ovine (Picard et al., 2002). The carbohydrates metabolism
is related to viability in perinatal period. Muscle glycogen reserves are the first source of energy for heat
production used for piglets’ thermoregulation during the first hours of life (Leenhouwers et al., 2002a;
van der Lende et al., 2001).

3.1.3.3 Muscle and maturity

Low birth piglets born from hyperprolific sows are generally more immature, they present low
number of secondary fibers, and exhibit lower postnatal growth performance and lean percentage than
their mature littermates. To compensate, they tend to develop extremely large muscle fibers (giant fibers)
to increase muscle mass solely through muscle fiber hypertrophy. This is associated with problems in
fibers capacity to adapt to activity-induced demands, stress susceptibility and meat quality in modern
meat-type pigs. Larger fibers present less mitochondria, and probably energy and oxygen supply are
limited due to reduced capillarity density. Nuclear control of cellular processes may also be impaired
because these kind of fibers present a low nuclear/cytoplasm ratio. Moreover, larger fibers belong to the
white fast type, correlated with pale, soft, exudative meat conditions and their metabolism contributes
to a fast pH decline which cannot be removed (Foxcroft et al., 2006; Rehfeldt and Kuhn, 2006; Rehfeldt
et al., 2000). Mature piglets exhibiting a strong potential for survival show high concentrations of
glycogen in longissimus dorsi muscle and liver, stimulated by an increase in cortisol concentrations.
This may allow piglets to have a higher ability to maintain glucose levels during and after farrowing and

to maintain body temperature in situation of late colostrum intake (Leenhouwers et al., 2002a).

The maturity process of the fetal muscle occurs during the last third of gestation, concretely
between the 90™ day and the perinatal period (Figures 2 and 5). Muscle studies regarding this gestational
period, and performed in extreme breeds in terms of maturity, are particularly interesting to reveal
biological processes involved in piglets survival. In this context, numerous transcriptome studies have
been performed in porcine muscle tissue in the last decades. This approach is valuable because it allows
assessing the gene expression profile easily in a particular tissue or condition (age, genotype, etc.). In
the next chapter, a review of the different transcriptome approaches and studies will be presented

focusing on studies performed in fetal muscle pig.
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3.2 Chapter 2. Muscle transcriptome studies

The majority of phenotypes are complex and quantitative in nature. Understanding the rules that
govern the transition from genotype to phenotype requires a comprehensive knowledge of the genome
sequence information. Numerous projects of the Encyclopedia of DNA Elements (ENCODE) have been
addressed in humans and classical model species. However, transcriptome complexity differs
significantly between species (Barbosa-Morais et al., 2012), and little information is available for
non-model species such as livestock animals compared with model species. Before addressing the
subject of muscle transcriptome studies in pig, a brief description about specific features of the porcine

genome sequence and annotation will be presented.

3.2.1 Functional Annotation of porcine genome

3.2.1.1 Main efforts in pig genome sequencing and annotation

The porcine genome is organized in 38 chromosomes (2n): 18 pairs of chromosomes and 2 sex
chromosomes. The first five chromosomes are sub-metacentric as shown in Figure 7, chromosomes 6
and 7 are sub-telocentric, chromosomes 8 to 12 are metacentric, and the remaining six are telocentric
(Gustavsson, 1988).

A prerequisite for mapping functional elements is a reference genome assembly. Contrary to the
human or mouse genomes, which first drafts of their reference sequences were published in 2001 and
2002 respectively, first pig reference genome assembly was published in 2012 (Groenen et al., 2012),
after more than 9 years of efforts since the Swine Genome Sequencing Consortium (SGSC) was created
in 2003 (Schook et al., 2005). This pig whole genome de novo sequencing and assembly (Sscrofal0.2)
was produced after the generation of genetic and physical maps (microsatellite linkage and
whole-genome radiation hybrid maps). The SGSC adopted then the strategy of shotgun Sanger
sequencing of bacterial artificial chromosome (BAC) clone end sequences (Humphray et al., 2007), and
complemented latter with Illumina next-generation sequencing. For more details see: (Archibald et al.,
2010; Chen et al., 2007; Groenen et al., 2012).

The current pig genome assembly (Sscrofal1.1) was produced and released in December 2016,
and produced by the SGSC. Sequence data were largely obtained at 65x genome coverage in whole
genome shotgun (WGS) Pacific Biosciences long reads. Sanger and Oxford Nanopore sequence data
from a few BAC clones were used to fill gaps and, for final error correction, Illumina HiSeq2500 WGS
paired-end and mate pair reads were used. Sscrofal 1 replaces the previous assembly, Sscrofal0.2, which
was largely established from the same Duroc DNA source. Sscrofall.l genome version is estimated to
be ~2,500 Mb, with 41.97% of GC content. The total number of scaffolds is 706, with 583 unplaced
scaffolds. It contains 1,118 contigs, and the N50 length for the contigs is 48,231,277. The final assembly
is available in the public databases (GenBank/EMBL) under the accession number GCA_000003025.6.
The primary source of the Sscrofall.l assembly is in the NCBI site
https://www.ncbi.nlm.nih.gov/assembly/GCF _000003025.6/ (WGS in GenBank accession number:
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AEMKO00000000.2). Genome annotation for this genome version was available in July 2017 Ensembl
v90. Sus scrofa genome contains 22,452 coding genes, 3,250 non coding genes, 178 pseudogenes and

49,488 gene transcripts.

Today, a few percentage of the human and mouse genomes (~0.37% and ~0.14% respectively)
is found in unplaced scaffolds, while this percentage is higher in pig genome (~2.66%). Genome
annotation is also poorer in pig than in model animals. In general, the annotation of genome sequence
in domesticated and farmed species is limited to gene models using RNA expression and DNA variation
data, which is insufficient to characterize the complexity of the transcriptomes in domesticated animals.
These aspects highlight the difficulties that scientist must confront when working with species other

than model ones.

In an effort to improve the annotation of newly assembled genomes of domesticated and

non-model organisms, the Consortium of Functional Annotation of Animal Genomes (FAANG) was

recently created (www.faang.org, (Andersson et al., 2015; Tuggle et al., 2016)). The aim of this
Consortium is to produce comprehensive maps of functional elements based on common standardized
protocols and procedures. Studies performed in the FAANG context have been mainly focalized on
chicken, pig, cattle, and sheep, at neonatal and mature stages. Studied tissues include: skeletal muscle,
adipose, liver and tissues collected from reproductive, immune and nervous systems. The main assays
are based on RNA sequencing, chromatin accessibility and architecture, and histone marks. In this
context, a French pilot project (FrAgENCODE) of the French National Institute of Agronomic Research
(INRA) has been developed to asses the expression profiles, chromatin accessibility and structure in

several tissues of four different farm species. This will be presented latter in more details.
3.2.2 Transcriptome technologies and approaches

3.2.2.1 DNA microarray and RNA-seq

The full range RNA molecules expressed by an organism comprise messenger RNA (mRNA),
transfer RNA (tRNA), ribosomal RNA (rRNA), and regulatory RNAs (miRNA, RNAi, siRNA, piRNA,
IncRNA, snRNA, snoRNA or circRNA), being the most abundant the rRNA, the tRNA and the mRNA.
The transcriptome is defined as the full range of RNA molecules expressed by an organism, tissue, or
cell type, in a particular condition, and is generally referred to the messenger RNA (mRNA) but it can
also refer to other RNA types. Therefore, a transcriptome analysis allows determining expressed (active)

and non-expressed (inactive) genes in a population of cells.

The two most commonly used transcriptomic techniques are DNA microarrays and RNA
sequencing (RNA-seq). Microarrays, also known as DNA chip or biochip, are used since early 80s: (a)
to measure thousands of genes at the same time, (b) for gene expression profiling, (c) to genotype
multiple regions of a genome (d) for single nucleotide polymorphisms (SNP) or alternative splicing
detection, etc. On the microarray, specific DNA sequences called “probes” or “oligos”, are used to
hybridize anti-sense RNA or complementary DNA (cDNA, synthesized from a single stranded RNA).
Probe-target is quantified by the detection of a fluorophore. RNA-seq, also named whole transcriptome
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Figure 8. Schematic illustration of pairwise correlations and partial correlation assumptions. Circles
represent nodes (genes) and black arrows represent an observed correlation between nodes. Lefi:
Computing pairwise correlations can lead to misconceptions. In the example, when two genes “B” and
“C” are regulated by a common gene “A”, the coefficient between the expression of “B” and the
expression of “C” is strong as a consequence (dotted line). Right: By computing partial correlations

there is no undesirable effects of strong indirect correlations.

Similarity matrix Filtered matrix Network

Figure 9. Basic steps of network inference. First, pairwise similarities are computed (correlations in
the simplest case). Second, the smallest (or less significant) similarities are filtered (using a threshold
chosen either heuristically, or other more sophisticated methods). Third, the network is built from the

remaining similarities.
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sequencing (WTSS), is a more recent technology, first used in 2008 (Lister et al., 2008) and based on
next-generation sequencing (NGS). This technology is useful not only to obtain gene expression
profiling but to detect alternative gene spliced transcripts, post-transcriptional modifications, or SNPs.
It needs to prepare cDNA from isolated RNA before sequencing. RNA can be enriched for a specific
type (i.e. by using 3’ polyadenylated (poly (A)) tails to include only mRNA). After sequencing,
transcriptome assembly and annotation are necessary before analyzing data. One common way for
analyzing transcriptome data is by constructing gene co-expression networks. In the section below is

presented a brief review about the methods and characteristic of these networks.
3.2.2.2 Co-expression networks

Gene co-expression networks are mathematical representations to model relations between genes
behaving in a similar way across tissues and experimental conditions. In these kind of networks, each
vertex (node) corresponds to a gene, and pairs of genes are connected by an edge when a significant
co-expression relationship exists between the pairs. The first step to infer a co-expression network is to
calculate pairwise similarities between pairs of genes (often by computing Pearson correlations for
“relevance networks”) (Zhang and Horvath, 2005). Although this approach can be useful to have a first
look at relationships between co-expressed genes, it can also lead to misconceptions because Pearson
correlations are sensitive to unwanted indirect effects, such as the effect of a common strong correlation
with another gene (Figure 8). To account for the effect of all expression data and obtain a measure closer
to direct interactions between genes, it is thus advised to use more sophisticated methods, such as
Graphical Gaussian Models (GGM) (Edwards, 1995). GGM base the definition of the network on the
measure of a partial correlation, i.e., a correlation between two gene expressions knowing the
expression of all the other genes. This method was found more efficient, for instance, to group genes
with a common function (Villa-Vialaneix et al., 2013). After computing pairwise similarities, those less
significant in the similarity matrix are filtered by fixing a threshold to discard the less significant ones,

then, the network is built from the remaining pairwise similarities between genes (Figure 9).

Once the network inferred, many network characteristics can be used to extract information
about the most important nodes, or group of nodes, which will be helpful for interpreting the biological
meaning of co-expressed genes. This is the so-called process of “Network mining”. Network features
can be classified as global characteristics of the network (i.e. density, transitivity), or as individual
characteristics of a node (i.e. degree, betweenness). The individual characteristics are particularly
interesting to extract the most important nodes, or genes in the case of gene co-expression networks.
The degree of a node is the number of edges afferent to this node and the betweenness of the node is the
number of shortest paths between pairs of nodes in the network that pass through that node. High-degree
genes are connected to many other genes while high-betweenness genes are central and more likely to
disconnect the network if removed. Finally, a clustering of the nodes can be performed to partition the
network into groups of densely connected genes (sharing more edges than with other groups). These
groups are called clusters or communities, and they are often used to find enriched biological processes

or molecular functions by using Gene Ontology (GO) approaches.
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3.2.3 Muscle transcriptome studies in pigs

Many transcriptome studies have been performed in pig to elucidate the mechanisms that govern
porcine skeletal muscle development and maturity, but few of them address the gestational period when
the skeletal muscle maturation process takes place (90th day of gestation and the end of gestation)
(Voillet et al., 2014; Zhao et al., 2015). Some of these studies include, or are centered on the period
before the maturation process (Cagnazzo et al., 2006; Tang et al., 2015a; Zhao et al., 2011, 2015), and
some others include or mainly concern the study of the postnatal period (Ayuso et al., 2015; Ovilo et
al., 2014; Sodhi et al., 2014; Xu et al., 2012; Zhao et al., 2011, 2015). Generally, most of them are based
on comparisons between transcriptomes of two extreme breeds. Often, between highly selected breeds
(selected for lean meet), and non-selected breeds. Four of these studies are particularly interesting as
they explain phenotypic traits observed in breeds highly selected for muscle growth, and characterized
by a high incidence of perinatal mortality. Firstly, some authors observed in Duroc (DU, high
intramuscular fat) and Pietrain (PT, low intramuscular fat) breeds that myogenesis is more intense in
late PT fetuses than in DU ones, and genes related to energy metabolism are expressed at a higher level
in PT than in DU prenatal pigs (Cagnazzo et al., 2006). Then, a similar study performed in Lantang (LT,
obese) and Landrace (LR, lean) breeds (Zhao et al., 2011) revealed that some differentially expressed
genes might contribute in later myogenesis and more muscle fibers in LR than in LT. Another study,
focused on the maturation process period in the MS (strong potential for survival) and the LW (high
incidence of mortality) breeds, reported that: (a) genes involved in muscle development were enriched
at 90 days of gestation, while those involved in metabolic functions were enriched at 110 days, (b) it
exists a delay of gene expression in LW fetuses at 110 days of gestation which concerns globally genes
involved in muscle development and metabolic functions (Voillet et al., 2014). Lastly, another study
performed in the Tongcheng breed (TC, slow growth) and the American version of the LW, the
Yorkshire breed (YK, fast growth, low back fat and high lean meat), revealed a higher number of
myoblasts (myogenic progenitor cells) in early TC embryos than in YK embryos (Tang et al., 2015a).
These results suggest that pig breeds characterized by low back fat and high lean meet composition as
LW, LR, PT or YK, present a delay in expression of genes involved in muscle development and

maturity.

To finish with this overview of the porcine muscle transcriptomes, the study of Zhao et al. (2011)
performed at several time points of the prenatal and postnatal periods, nicely illustrates the whole

process of myogenesis by indicating the main expressed genes for each step (Figure 10).
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3.3 Chapter 3. Nuclear architecture

Genome sequence alone is not sufficient to explain cell type diversity and the overall
coordination of nuclear activity in a particular tissue. Even though cis- and trans-acting regulatory
sequences are among the most studied regulatory elements, they are not the only determinants of gene
expression. For instance, epigenetic mechanisms such as histone and DNA modifications can also be
responsible for tissue-specific expression of genes (Rothbart and Strahl, 2014). Nevertheless, numerous
studies have demonstrated that the genome organization in the nucleus acts as an additional level of
gene expression regulation (Osborne et al., 2004; Rieder et al., 2014; Schoenfelder et al., 2010; Zhao et
al., 2006).

In the present section, the main generalities about nuclear architecture, more specifically about
genome organization, will be presented. Additionally, an overview of the principal experimental
methodologies and applications to study this matter will be presented, together with a description of

current studies about genome organization performed in pig.
3.3.1 Higher order genome organization

3.3.1.1 Generalities

Genome organization extremely differs among biological organisms. The most important
distinction regarding genome structure is the one found between prokaryotes and eukaryotes organisms.
Prokaryotes lack of nuclear membrane, genome has relatively small size, is often circular, it generally
contains only one chromosome, and may have additional DNA molecules (plasmids). In contrast, in
eukaryotes the genome is located inside a nuclear membrane, and it contains larger and multiple linear
DNA molecules (except for mitochondrial and chloroplast circular DNAs) which are condensed into
chromosomes by association with histone proteins. Eukaryotic genome is also more complex with
longer genes, and around only 1.22% of coding sequence (for protein-coding exons in human (ENCODE

Project Consortium, 2012)) while prokaryotes has up to 90%.

The fundamental units of the genome are the chromosomes, which are made of chromatin in
eukaryotic cells (DNA compacted by association to histone proteins). The higher level of DNA
compaction is found in mitotic cells, with the metaphase chromosomes. Chromatin is subdivided into
euchromatin, correlated to “open” and transcribed chromatin (R-bands of metaphasic chromosomes),
and heterochromatin, more condensed chromatin (G-bands of metaphasic chromosomes) enriched into
inactive and silenced chromatin regions. In interphase nuclei, the distribution of the chromatin is not
random and is constrained by the presence of several nuclear structures such as, proteinaceous nuclear
bodies (PML bodies, Cajal bodies or Polycomb bodies), nucleolus, nuclear lamina, nuclear pores,

transcription factories (TFs) or splicing speckles (Schneider and Grosschedl, 2007).
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intermingling. (Branco and Pombo, 2006).
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3.3.1.2 Chromosome territories

In situ hybridization techniques have allowed visualizing individual chromosomes in the
interphase nuclei. This permitted to accept the theory that chromosomes occupy discrete territories in
the nucleus, the so-called chromosome territories (CTs), against the theory of global intermingling of
interphase chromosomes (Figure 11A-B) (Bolzer et al., 2005). CTs are the basic principle of nuclear
organization in animals, plants and yeast (Cavalli and Misteli, 2013; Cremer and Cremer, 2010).
Although chromosomes occupy discrete regions in the nuclear volume, they are not necessarily
completely separated one from each other. Different models are proposed, the most popular ones: the
chromosome territory-interchromatin compartment (CT-IC) model, and the interchromatin network
(ICN) model (Branco and Pombo, 2006) (Figure 11C). The CT-IC model postulates that two spatial
compartments are present in the nucleus, one formed by the CTs, and the other one called the
interchromatin-compartment (IC) and defined as a DNA-free space, rich in soluble nuclear machinery
such as TFs or splicing speckles. The ICN model establishes that CTs are not separated by a DNA-free
compartment, but chromatin expands into the surrounding CTs allowing a certain degree of
intermingling at the interfaces of neighboring chromosomes with the presence of nuclear machinery in
intermingling regions. In the CT-IC model, trans-chromosomal interactions could occur via extended
chromatin loops, while in the ICN model, regions of intermingling would be more likely to produce
trans-chromosomal interactions. A more recent study argues against these two models (Nagano et al.,
2013). Firstly, local dissociations from CTs (necessary for extended loop formation in the CT-IC model)
were not observed. Secondly, the observed preferential location of frans-chromosomal interactions
associating some pairs of chromosomes, and the lack of contacts between other chromosome pairs, argue
against the idea of domains completely immersed in other territories. These results do not exclude CT
intermingling, but propose an intermediate model that includes preferential regions of intermingling
altogether with DNA-free interface regions. It is not excluded that other eukaryotic organisms show a
different chromosomal conformation. For instance, the CTs of the yeast S. cerevisiae are spatially less
well defined and intermix to a much greater extent than those of higher eukaryotes. This is possibly due
to yeast genome specificities (more decondensed chromatin, lack of large heterochromatin domains and

smaller genome size) (Cavalli and Misteli, 2013).

Aside from the special distribution of chromosomes in CTs, it has been observed that p and q
arms of metacentric chromosomes are also quite separated entities (Bickmore, 2013). Moreover, a
special localization of centromeres has been observed in yeast, fly, mouse and human (Li et al., 2017).
Indeed, the centromeres tend to cluster and are positioned at the periphery of the nucleolus during
interphase, and this process is thought to play a role in determining the overall genome architecture.
Finally, a specific phenomenon of homologous chromosomes pairing called transvection has been
observed in D. melanogaster and other dipteran insects. This pairing can influence gene expression by

forming interactions between regulatory elements on homologous chromosomes (Li et al., 2017).

Other elements influencing genome organization are gene density, active and repressive
domains, and specialized nuclear structures. Regarding gene density, it has been observed in human,

rodents, cattle and birds, that gene-rich chromosomes tend to be located towards the center of the nucleus
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and gene-poor chromosomes toward the nuclear periphery (Cremer and Cremer, 2010; Gibcus and
Dekker, 2013). Moreover, a polarized nuclear organization within chromosomes was observed, with
gene-poor regions located towards the nuclear periphery compared with gene-rich regions from the same
chromosome (Bickmore, 2013). Correlation between this non-random radial localization and gene
activity has been observed in selected cases however, the nuclear periphery is not entire restrictive to
transcription (Deng and Blobel, 2014).

3.3.1.3 NPCs, LADs, NADs, TFs and PcG domains

The main structures responsible of genome organization at the nuclear periphery are the nuclear
lamina (NL) and the nuclear pores (NP) (Figure 12). NL is a protein network that covers the inner part
of the nuclear envelope, and many studies have reported associations of the chromatin to this structure
(Holwerda and de Laat, 2012). These are the so-called lamina-associated domains (LADs), reported
before in human, fly and mouse (Li et al., 2017). They are characterized by heterochromatic regions,
low gene density, transcriptional inactivity and depletion for transcription marks such as RNA
polymerase II (RNAPII) and histone marks. LADs are large domains spanning (0.1-10 Mb) representing
almost half the genome in a given cell population but not all LADs can physically be associated with
the NL in each cell (Bickmore, 2013; Gibcus and Dekker, 2013). The differences in genome organization
between a cell population and a single cell will be discussed later. Whereas NL associates with
heterochromatin (inactive domains), NP are in some cases enriched for associations with euchromatin
and active genes. These are the so-called nuclear pore complexes (NPCs) (Deng and Blobel, 2014;
Gibcus and Dekker, 2013). For instance, in yeast active genes reside proximal to nuclear pores while in
mammals, active genes did not exhibit such positioning preferences. Nevertheless, nuclear envelope is
not the only organizer of genome structure, other nuclear bodies such as nucleolus, Polycomb bodies or

TFs play an important role in genome organization.

Nucleoli are subnuclear structures specialized in ribosome biogenesis and enriched in RNA
polymerase I (RNAPI) responsible of 45S rDNA transcription (Pombo and Dillon, 2015). In human,
over 2000 clustered rRNA copies dispersed over five chromosomes (in human) are recruited together
and transcribed on the surface of the fibrillar center within the nucleolus (Mercer and Mattick, 2013).
Moreover, actively transcribed RNAPIII-dependent genes can also be found at the nucleoli, and some
groups of RNAPII-dependent genes such as olfactory receptors have been also identified at the nucleoli;
however these RNAPII-dependent genes are silent (Gibcus and Dekker, 2013). All these loci that
associate at or near nucleoli are described as nucleolus-associated domains (NADs) (Figure 12). Hence,
nucleoli are genome organizing structures bringing together actively transcribed RNAPI and RNAPII-
dependent genes, as well as silenced repressive loci surrounding the sites of ribosomal synthesis (Deng
and Blobel, 2014; Gibcus and Dekker, 2013). Nucleoli are a highly specialized example of RNAPI
transcription factories (TFs) responsible of rDNA transcription but it is not the only one. TFs are defined
as large nuclear assemblies containing a range of transcription factors and machinery constituents along
with additional accessory proteins for RNA processing and splicing (Mercer and Mattick, 2013).
RNAPII is associated to the transcription of most protein-coding genes. RNAPIII is responsible for the
synthesis of 5S TRNA and tRNA and is also associated with clusters of 5S rRNA and tRNA transcripts

(Rieder et al., 2012). RNPII and RNAPIII TFs are distributed through the nucleoplasm in foci, are more
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abundant than RNAPI TFs, but contain far fewer polymerases (Pombo and Dillon, 2015). The number
of TFs, and of polymerase molecules appears to depend on the cell type and species, for example, in
HeLa cells there are about 8000 RNAPII factories and 2000 RNAPIII factories, each containing
approximately 6 to 8 active enzymes (Pombo and Dillon, 2015; Rieder et al., 2012). In terms of nuclear
structure, there is some evidence that TFs can lead to the clustering of co-regulated genes. Indeed it
exists some cases where transcriptionally-related genes are transcribed in specialized TFs. A
well-known example of this are the TFs enriched with the KIfl transcription factor that mediates
preferential co-associations with KlIfl-responsive globin genes in erythroid cells (Schoenfelder et al.,
2010).

Another structure playing a role in genome organization are the Polycomb bodies, identified in
fly and mammals. They are composed by the Polycomb group (PcG) proteins, a collection of
transcriptional regulatory factors mainly involved in gene silencing. PcG transcriptional repression
occurs by imposing post-transcriptional modifications on histones and inducing chromatin
condensation, which in turns restrain RNAPII elongation. More recently, PcG proteins have also been
identified as coactivators of gene expression by regulating local topological interactions (Aranda et al.,
2015). Regarding the regulation of chromatin structure, it was observed in mouse that most
PcG-associated genes are contained within a loop flanked by CTCF/cohesin sites. These genes are
included in the so-called chromatin structures PcG domains that average 112 Kb, and include repressive
histone methylation marks (Dowen et al., 2014). Some of the best characterized PcG domains are the
Hox gene clusters (Vieux-Rochas et al., 2015). PcG shapes intra-TADs (topologically associated
domains) interactions and might help to stabilize and consolidate TADs of transcriptionally inactive

regions of the genome (Aranda et al., 2015). A detailed view about the TADs will be discussed latter.
3.3.1.4 A and B compartments

Besides CTs, subchromosomal compartments within CTs have been identified. They are
made-up of groups of multi-Mb chromosomal domains (median size ~3 Mb in mice, (Dixon et al.,
2012)), mostly located in the same chromosome but can also be on different chromosomes (Gibcus and
Dekker, 2013). Those are the A and B compartments, first described by Lieberman-Aiden et al. in human
cells (Lieberman-Aiden et al., 2009). The A compartments are defined as transcriptionally permissive,
euchromatic regions, which are gene-rich and DNase I hypersensitive areas, also referred as open
compartments. Inversely, B compartments are considered as transcriptionally inert regions enriched for
features of heterochromatin and nuclear lamina associations, which are gene-poor, DNase I insensitive,
and are also referred as closed compartments (Bonora et al., 2014; Gibcus and Dekker, 2013). Different
strategies have been adopted to define A and B compartments: by using High throughput Chromosome
Conformation Capture (Hi-C) data, DNA methylation microarray data, DNase [ hypersensitive
sequencing, single cell whole-genome bisulfite sequencing, and Assay for Transposase Accessible

Chromatin with high-throughput sequencing (ATAC-seq) (Fortin and Hansen, 2015).

Hi-C data allow to identify genomic compartments or domains at different scale levels
depending on data resolution. Lieberman-Aiden et al. first defined the A and B compartments by

analyzing low resolution matrices of a human lymphoblastoid cell line (Lieberman-Aiden et al., 2009).
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Table 1. Specific characteristics of each A and B subcompartment according to Rao et al. 2014.

A and B subcompartments

A1 A2 B1 B2 B3 B4
H3K36me3 + + - - - +
activating H3K79me2 + + - -
chromatin marks H3K27ac + + - -
H3K4mel + + - -
silencing H3K9me3 * - - +
chromatin marks H3K27me3 +
H4K20me3 +
density + +
gene features .
expression + +
genomic LADs - - + +

domains NADs - - + -
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Later, they performed new experiments in the same cell line that allow obtaining high resolution
matrices (1 Kb), and six nuclear subcompartments were identified (Tablel) (Rao et al., 2014). These
subcompartments were associated with distinct patterns of histone modifications and named: Al, A2,
B1, B2, B3 and B4. A1 and A2 are gene dense, have highly expressed genes, harbor activating chromatin
marks (H3K36me3, H3K79me2, H3K27ac and H3K4mel) and are depleted at LADs and NADs. A2 is
more strongly associated with the presence of H3K9me3, has lower GC content, and contains longer
genes than Al. B1 correlates positively with H3K27me3 and negatively with H3K36me3, suggestive of
facultative heterochromatin. B2 and B3 tend to lack all of the above-noted marks. B2 includes 62% of
pericentromeric heterochromatin and is enriched at LADs and NADs, while B3 is only enriched at LADs
but strongly depleted at NADs. Finally, B4 is only present in a region highly enriched with members of
the KRAB-ZNF superfamily genes, which exhibit a highly distinctive chromatin pattern, with strong
enrichment for activating chromatin marks (H3K36me3) and heterochromatin-associated marks
(H3K9me3 and H4K20me3).

It remains unclear whether these A and B compartments are stable or if they change in specific
conditions. A recent study showed that changes in gene expression were associated with switches
between compartments in 36% of the genome during mammalian development (Dixon et al., 2015). The
A and B compartments are further subdivided into Topologically Associated Domains (TADs), which
are further partitioned into smaller substructures and contact domains (Rao et al., 2014; Zhan et al.,
2017). Last studies have been focused on the description of these smaller domains (TADs), and little

work is available about descriptions of A and B compartments behavior in different conditions.
3.3.1.5 Topologically associated domains

Decreasing in the genome organization scale, domains smaller than A and B compartments were
first identified by Nora et al. in mice active and inactive X chromosomes, and were named topologically
associated domains (TADs) (Nora et al., 2012). TADs are contiguous genomic regions that range
approximately 1 Mb size (Dixon et al., 2012; Nora et al., 2012). They are defined as chromatin domains
enriched in highly-self interacting regions, with a frequency of intra-domain interactions higher than
inter-domain interactions. These domains are highly conserved between cell types and across species,
including human, mouse, fly, bacteria, yeast and plants (Bjorkegren and Baranello, 2018; Dixon et al.,
2012), and genes located within the same TAD tend to have coordinated dynamics of expression during
differentiation. Hence, TADs may play a role in coordinating the activity of groups of neighboring genes
(Gibcus and Dekker, 2013).

A very characteristic feature of TADs is that their boundaries are enriched in DNA-binding
proteins such as the CCCTC-binding factor (CTCF) in mouse, human and fly cells (Figure 13A) (Dixon
et al., 2012; Li et al., 2017). This could suggest that CTCF might be involved in the establishment of
TAD boundaries. However, in Drosophila, CTCF does not seem to have a role in loops formation
(Bjorkegren and Baranello, 2018). Moreover, in human and mouse, only 15% of CTCF binding sites
are located within boundary regions while the other 85% are present inside TADs (Dixon et al., 2012)
indicating that CTCF alone is insufficient to separate different TADs (Ong and Corces, 2014). The role
of CTCF at these sites will be addressed later.
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Figure 13. Topological domains and boundaries regions. Images obtained from a study performed in
mouse embryonic stem cells (mESC) (Dixon et al., 2012). (4) TADs obtained from Hi-C data (ved
triangles), overlayed on ChlP-seq data. (B) Density of peaks for different histone marks, transcription

start sites, genome-wide nuclear run-on sequencing (GRO-Seq: short transcripts generated by engaged
RNA polymerase) and SINE elements around TAD boundaries.
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CTCF is not the only element found enriched at TAD boundaries. Cohesin, a conserved
ring-shaped protein complex, is often found co-localized with CTCF and enriched at TAD boundaries
(Uuskiila-Reimand et al., 2016). In fact, both CTCF and cohesin have been observed to be involved in
gene expression regulation by shaping chromatin through loops formation (Bjorkegren and Baranello,
2018; Hnisz et al., 2016a; Rao et al., 2014). Chromatin marks associated with active transcription (more
concretely with active promoters) of nearby genes, such as H3K4me3 and H3K36me3, have also been
found enriched at boundaries. In contrast, non-promoter associated marks, such as H3K4me1 (associated
with enhancers) and H3K9me3 (associated with heterochromatin), have been found not enriched or
specifically depleted at boundary regions (Figure 13A and B). Likewise, transcription start sites (TSS)
and repeat classes such as Short Interspersed Nuclear Element (SINE), are enriched at boundaries
regions (Figure 13B), and “housekeeping genes” have been found strongly enriched near TAD
boundaries (Cournac et al., 2016; Dixon et al., 2012). SINE-repetitive elements preferentially
co-localize in the nuclear space and are enriched in transcription factors in human, mouse and fly, which
may explain the global conservation of genome folding (Cournac et al., 2016). Besides, some
non-coding RNAs may be involved in genome folding and gene expression regulation, such as the
non-coding RNAs derived from Long Interspersed Nuclear Elements (LINEs) (Nozawa and Gilbert,
2014), or the intergenic long non-coding RNAs (lincRNAs). Indeed, lincRNAs show a preferential
location at TAD boundaries, and are enriched in enhancer-like signatures, suggesting a regulation of
proximal gene expression by modulating local chromosomal architecture (Tan et al., 2017). The fact
that DNA associating proteins, transcriptional histone marks, TSS, repetitive elements, and IncRNAs,
are preferentially enriched at TAD boundaries, together with coding genes localized near boundaries,

strongly points to a potential role of boundary regions in the regulation of gene expression.

Smaller domains than the TADs (1 Mb) described by Dixon et al. have been observed in other
studies (Rao et al., 2014; Sexton et al., 2012; Zhan et al., 2017) employing higher resolution maps. These
domains range in size from 40 Kb to 3 Mb (median size 185 Kb), and are described as “contact domains”
or sub-TAD structures (Rao et al., 2014). They were probably not observed by Dixon et al. because
detecting smaller structures (sub-TADs) requires higher resolutions than the ones used in their study as
discussed in Rao et al. (2014). As mentioned before, CTCF and cohesin are enriched at TAD boundaries
but they also bind pervasively within TADs and are involved in the formation of sub-TAD structures,
which are strongly associated with active regulatory sequences (Phillips-Cremins et al., 2013). It is not
clear whether these subdomains are different from TADs or if they simply represent a further level of

hierarchical organization (Bjorkegren and Baranello, 2018).

The 3D genome organization offers a hierarchical complexity (including from higher to lower
scales: CTs, LADs and NADs, A and B compartments and subcompartments, TADs and sub-TADs)
which is achieved with the presence of chromatin loops observed at the highest resolutions. The role of
CTCF and cohesin, among other factors, in the mechanisms of loop formation has been quite well

studied and will be detailed in the following section.
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cohesin progression (Bjorkegren and Baranello, 2018).
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3.3.2 Chromatin loops and gene-gene interactions

3.3.2.1 CTCF and cohesin functions

CTCEF is an architectural protein conserved in most animals, and it contains a highly conserved
DNA-binding domain (Kim et al., 2007). Around the 55,000-65,000 sites in mammalian genomes,
approximately 5,000 are ultraconserved among species and tissues, whereas 30-60% of CTCEF sites show
cell-type specific distribution (Ong and Corces, 2014). This CTCF target selectivity can be explained
by differential methylation in specific CpG dinucleotides at the CTCF recognition sequence (Wang et
al., 2012). Classically, CTCF was initially associated to the roles of chromatin barrier (function to
prevent repressive heterochromatin from spreading into a neighboring domain) and enhancer activity
blocker (by association with insulators, sequences that block the action of enhancers on promoters).
However, recent studies argue against these two proposed functions. Indeed, there is little evidence to
support a generalized functional role for CTCF in separating domains with different epigenetic marks,
and CTCF could participate in both, enhancer blocker and enhancer facilitator functions (Ong and
Corces, 2014). New functions associated to CTCF are related to its ability to: (i) bring together distant
sequences such as enhancer-promoters or distant gene segments, (ii) control transcriptional events such
as RNAPII pausing and alternative mRNA splicing, (iii) stabilize interactions required for the formation

of TAD borders together with the cooperation of other architectural proteins (Ong and Corces, 2014).

Cohesin is essential to establish sister chromatid cohesion during the S phase of the cell cycle,
and maintaining it through G2 and mitosis, by forming a ring structure loaded onto DNA during G1. A
large number of cohesin-binding sites co-localizes with binding of CTCF, and it is been suggested that
both proteins are primary involved in promoting promoter-enhancer interactions by forming chromatin
loops. But, they could also have some involvement in delineating boundaries between TADs (Pombo
and Dillon, 2015).

3.3.2.2 Insulated neighborhoods (CTCF/cohesin-mediated loops)

One hypothesis to explain the mechanism of loop formation mediated by CTCF and cohesin is
the loop extrusion model. Bjorkegren et al. proposed cohesin as a loop extruding factor, in a way that
DNA could pass through the ring and the extrusion would stop when the ring meets an obstacle. This
obstacle could be a DNA site occupied by CTCF on each side of the growing loop (Figure 14B). In
addition, they proposed that RNAP may be involved in this mechanism, which could also contribute to
the formation of TADs structure (Figure 14A-C). Indeed RNAPII has been detected in loop structures
included within CTCF-mediated in chromatin contact domains, suggesting that CTCF-anchor regions
are the foci for transcriptional activity (Tang et al., 2015b). Positive supercoiling introduced by RNAP,
could “push” cohesin along the double helix, providing an impulse for the extrusion of the loop
(Bjorkegren and Baranello, 2018).

This mechanism of loops formation likely involves CTCF dimerization due to the convergent
orientation of the two CTCF motif present at the loop anchors (Rao et al., 2014), suggesting that CTCF

may participate to the stabilization and maintain of the loop. Rao et al. observed that the vast majority
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of detected loops bound CTCF and two proteins of the cohesin complex (RAD21 and SMC3) at the loop
anchor region. Two-thirds of loops contain a single CTCF-binding motif, but 92% of motif pairs are
facing one another. Many of the loops detected by Rao et al. demarcate sub-TADs (contact domains,
185 Kb median size), suggesting that CTCF delimits structural and regulatory domains, and that the two
anchor sequences of the loop are located at these domain boundaries. These are referred as “loop
domains”. Figure 15 illustrates possible models of loop domain to form TAD structures and
sub-structures (Hnisz et al., 2016a). Finally, they also observed that loops frequently have a promoter at
one anchor locus and an enhancer at the other one. Enhancers are defined as segments of DNA occupied
by multiple transcription factors that recruit co-activators and RNAPII to target genes, which are
generally located far away from the gene promoter (Hnisz et al., 2016a). Genes whose promoters are
associated to a loop are higher expressed than those that do not associate, and cell type-specific loops

are associated with changes in expression (Rao et al., 2014).

CTCF-CTCF loops have been called “insulated neighborhoods”, defined as chromatin loops
formed by a CTCF-CTCF homodimer, co-bound with cohesin, and containing at least one gene. The
median of an insulated neighborhood is ~190 Kb and contains three genes (Figure 16B). The majority
of enhancer-gene interactions occur within these loops, which are necessary for normal gene activation
and repression (Figure 16C). Perturbation of their loop anchors (i.e. deletion of CTCF binding sites)
leads to local gene dysregulation (Figure 16D). Insulated neighborhood boundaries serve either to
constrain the activity of enhancers, or maintain repression of genes within the neighborhood (Figure
16E).

Above, a detailed view about CTCF-CTCF mediated loops is presented. However, as mentioned
before, not all the loops involve a CTCF dimer (two-thirds of loops contain a single CTCF-binding
motif), and some loops are detected without the presence of CTCF (Rao et al., 2014). This suggest that
other mechanisms of loop formation exist and may be involved in different functions than those
explained by the insulator-mediated looping. For instance, intrachromosomal looping may be required
for: (i) efficient recycling of RNAPII after transcription termination (Figure 17A); (ii) bringing distant
enhancers in contact with promoters without CTCF dimerization (Figure 17B); (iii)

polycomb-dependent repression (Figure 17C) (Cavalli and Misteli, 2013).

3.3.2.3 Gene-gene interactions

After this description of genomic compartments/regions from the highest order of organization
(CTs) to the smallest one (chromatin loops), some well-described examples of gene-gene interactions

will be presented in this section (see (Hou and Corces, 2012) for review).

The B-globin locus has been probably one of the most studied example of association between
genes and regulatory sequences. 3D DNA and RNA Fluorescence In Situ Hybridization (FISH)
combined with 3C assays revealed that distal genomic regions co-localize in mouse erythroid nuclei
(Osborne et al., 2004; Tolhuis et al., 2002). Concretely, the locus control region (LCR), located 40-60 Kb
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away from the active genes, come in close spatial proximity with these globin genes. The nuclear
co-localization was observed not only between erythroid-specific genes but between highly transcribed
genes that co-localize in the same transcription factory (TF) at high frequencies, and movement into or

out of these factories results in activation or abatement of transcription (Osborne et al., 2004).

Another example in mouse olfactory neurons, is the nuclear aggregation of silent olfactory
receptor (OR) genes from different chromosomes (Clowney et al., 2012). In this study, a spatial
segregation between active and silent OR alleles was observed by combining DNA and RNA FISH with
immunofluorescence against heterochromatic marks and transcriptional active marks. Inactive alleles
were found associated with heterochromatic foci, while active alleles were found associated with Pol 11

in euchromatic territories. This phenomenon might explain the monoallelic nature of OR expression.

Allele specific regulation of imprinted genes through long-range chromosomal interactions has
been studied in detail in the human and mouse Igf2/H19 loci (see (Hou and Corces, 2012) for review).
In this locus, Igf2 is expressed from the paternal allele and H/9 from the maternal allele. The imprinting
control region (ICR) which is methylated on the paternal but not on the maternal alleles, is responsible
for the regulation of this allele-specific expression (Macdonald, 2012). This ICR contains CTCF-binding
sites and, when the ICRs are non-methylated, CTCF can bind to these sites. 3C assays showed that the
CTCF-loop structure formed in the maternal allele prevents the accessibility of the enhancer to Igf2
(Hou and Corces, 2012), avoiding Igf2 expression. Additionally, trans-interactions between the H/9
ICR and other imprinted loci have been observed using 4C assays (Zhao et al., 2006). In this study,
perturbations of the CTCF recognition site or CTCF binding lead to a loss of interactions and

miss-regulation of imprinted genes.

Co-expressed genes have been found co-localized in TFs, this is the case of erythroid-specific
and highly transcribed genes, mentioned at the beginning of this section (Osborne et al., 2004), but this
is not the only example. For instance, it was observed by 3D FISH that upon differentiation of human
multipotent stem cells, co-expressed genes associated with either the same splicing speckle or with the
same TF (Rieder et al., 2014). In another study which combined 3D RNA FISH, Immuno-FISH and
4C-derived assays, it was observed that mouse globin genes interact with many other transcribed genes,
and Kl1f1-regulated genes preferentially co-associate with specialized TFs enriched with the transcription
factor KIf1 (Schoenfelder et al., 2010). This idea of gene associations driven by specialized factors has
been also formulated in a study performed in estrogen-treated human breast adenocarcinoma cells
(MCF-7) (Fullwood et al., 2009). In this study, the ChIA-PET assay was used to determine interacting
chromatin regions associated with the estrogen receptor alpha (ER-a), and it was proposed that ER-a
form chromatin looping structures around target genes for coordinated transcriptional regulation of these

genes.

Another example of co-expressed genes interacting in the nucleus was observed in Human
Umbilical Vein Endothelial Cells (HUVECs) when upon TNFa (a major proinflamatory cytokine)
stimulation, TNFa-induced genes were hierarchically transcribed when engaged also hierarchically in
chromosomal interactions (Fanucchi et al., 2013). This is an elegant illustration of the dynamic aspect
of genome organization, which will be discussed in the following section.
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All the studies presented here, are examples of long-range interactions between active genes.
However, there are some cases where silent genes form repressive interactions such as
polycomb-repressed Hox genes in Drosophila and mammalian cells (see (Hou and Corces, 2012) for
review). For instance, it was observed that Hox genes only co-localize in polycomb bodies in tissues

where these genes are repressed (Bantignies and Cavalli, 2011).
3.3.3 Dynamic organization of the genome

The position of genes in the nucleus is not fixed, for instance genes can move in and out of TFs,
resulting in activation or abetment of their transcription (Osborne et al., 2004). The ability of
chromosome large domains (such as A and B compartments) to move in a given cell is limited because
of their several megabases in size. At scales of several hundreds of kilobases, chromatin is considerably
more dynamic. The mobility and movements of gene loci have been studied by live cell imaging,
showing that loci have a constrained radius of diffusion of ~0.5 pum. This volume corresponds to the
TADs scale (1 Mb), suggesting that interactions between any two loci located within a TAD are
sufficiently dynamic to have an opportunity to engage in long-range interactions (Gibcus and Dekker,
2013). Imaging of relative positions of individual genes or subnuclear compartments by 3D FISH in
fixed cells, has shown that locations can change at different stages of gene activation and/or cell
differentiation (Schneider and Grosschedl, 2007). Nevertheless, other studies show that genes can

change expression without altering nuclear location (Hakim et al., 2009; Kocanova et al., 2010).

Sometimes changes in chromatin location can happen at great scale. Striking changes in
chromosome positioning are rare, but have been reported to occur within minutes (Pombo and Dillon,
2015). Another example of chromatin dynamics is observed in LADs, which can be classified in
constitutive (cLADs) and facultative (fLADs) LADs. It was observed in mouse that cLADs are
maintained across a wide range of cell types and across species (between human and mouse), contrary
to fLADs which are rather cell-type specific (Meuleman et al., 2013). Moreover, in vivo analyses in a
human fibrosarcoma cell line show that some LADs relocate to the periphery of the nucleolus after
mitosis (Kind et al., 2013). TAD reorganization has also been observed in the regulation of the Hox gene
clusters, one of the best characterized PcG domains. Hox genes form large H3K27me3-marked
(inactive) TADs, located within an A compartment. In mouse ES cells, when transcription is activated,
specific Hox genes progressively segregate into an active TAD and this process is accompanied by a

switch in histone modifications (Aranda et al., 2015).

Little is known about how DNA moves or is relocated in some of these examples of genome
dynamics. One possibility is that active polymerase can function as a motor that pulls in its template.
Alternatively, other molecular motors such as actin and myosin could be involved in the relocalization
of the DNA template (Schneider and Grosschedl, 2007). Moreover, it has been proposed that the
nucleoskeleton (a dense, filamentous structure containing many proteins: lamins, titin, actin, myosins,
DNA binding proteins and the general transcription machinery) may direct the traction of genes to
nuclear bodies such as TFs (Mercer and Mattick, 2013). Recent studies argue in favor to this hypothesis

by suggesting that an actin-based nucleoskeleton would be involved in gene regulation and genome
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organization (Xie and Percipalle, 2017). For instance, some authors suggested that nuclear actin is
required for rapid long-range movement of U2 genes towards Cajal bodies in HeLa cells (Dundr et al.,
2007). Other authors observed that after transcriptional activation, the migration of a chromosomal locus
from nuclear periphery to the interior was perturbed in actin or myosin mutants in a rat cell line (Chuang
et al., 2006). More recently, it was observed in budding yeast that both cytoskeletal and nuclear actin
drive local chromosomal movements, such as telomeres dynamics (Spichal et al., 2016). In addition,
chromatin modifications such as post-transcriptional histone modifications could directly affect the
structure of the chromatin and may also have a role in the positioning of chromosomes (Schneider and
Grosschedl, 2007). Possible mechanisms explaining the role of post-transcriptional modified histones
in chromatin (during cell differentiation in mammals) or telomeres (in yeast) anchoring to the nuclear

periphery, have been recently reviewed (Harr et al., 2016).
3.3.4 Single cell genome organization

Due to this capacity of individual loci to diffuse in the nuclear space, is quite difficult that two
cells exhibit exactly the same genome organization at the same time. Most of the recent studies
performed to uncover the global organization of the genome have been performed on cell populations.
Therefore, the average interaction maps generated using population-based methods are an ensemble of
many different genome landscapes (Cavalli and Misteli, 2013) and do not show the reality of what is
happening in an individual cell. Single-cell approaches have permitted to fill this gap (Nagano et al.,
2013; Stevens et al., 2017). For instance, Nagano et al. showed that it exists cell-to-cell variability in
chromosome structure, and that intradomain contacts are more robust (generally conserved) at the
single-cell level that interdomain contacts, which are highly variable between individual cells. They also
observed that some domains are more likely to present frans-chromosomal contacts at the surface of
CTs than others (Nagano et al., 2013). A recent study highlighted that the structure of TADs and loops
vary substantially from cell-to-cell. However, A/B compartments, LADs, active enhancers and
promoters are quite stable among all cells in a population. This suggests that the last could drive
chromosome and genome folding (Stevens et al., 2017). Thus, data coming from cell population-based
methods, need to be interpreted carefully and if possible combined with single-cell data. All chromatin
contacts occurring in a cell population, cannot be present simultaneously in an individual cell,

cell-to-cell variability and other physical constrains will prevent this to happen.
3.3.5 3D genome architecture and disease

The structural integrity of the 3D genome topology is crucial for the correct functioning of an
organism. In the normal human population, approximately 5% of the genome is structurally variable,
including deletions, duplications (copy number variants, CNVs), inversions, and translocations
(Lupiafiez et al., 2015). Chromosomal rearrangements (CRs), more concretely the breakpoints, occur in
evolutionary “fragile” genomic regions characterized by the presence of high chromatin contacts
(Berthelot et al., 2015). Balanced rearrangements such as inversions, or CNVs limited to non-coding

DNA, have the potential to disrupt the integrity of the genome, leading to alteration of gene expression
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levels and patterns. Only a fraction of enhancers contact the nearest promoter, whereas most skip one or
more genes (de Laat and Duboule, 2013), and these contacts are restricted by the TADs structure. When
CR events affect the structure of TADs, more concretely the TAD boundaries, they alter the interactions
between enhancers and promoters, leading to abnormal expression of genes (Figure 18) (Li et al., 2016).
CR associated disease, such as developmental disecases and cancer can potentially be caused by
chromosomal 3D structure alterations when a TAD boundary is deleted or a novo TAD boundary is
created. A recent study shows that CR events cause polydactyly diseases through altering
CTCF-associated TAD boundary domains (Lupiaiiez et al., 2015). Global and more specific alterations
in the 3D genome organization have been described in cancer. For instance, higher order chromosomal
changes were detected between breast cancer cells and a normal epithelial cell line (Barutcu et al., 2015).
In this study, a decrease on the interaction frequencies in breast cancer cells was observed in small
gene-rich chromosomes, associated with a higher occurrence of open compartments of these
chromosomes. Moreover, telomeric and subtelomeric regions displayed more frequent
intra-chromosomal interactions in epithelial cells than in cancer cells. Another study in breast cancer
cells, allowed detecting differentially interacting loci enriched for cancer proliferation and
estrogen-related genes after hormone stimulation. These loci were correlated with higher estrogen
receptor a-binding events and gene expression, suggesting a role of estrogen hormone on genome
reorganization (Mourad et al., 2014). Besides these global changes, more precise disruptions in genome
topology may explain pathological processes. For instance, a disruption in the insulated neighborhood
structures may be also involved in cancer processes. An aberrant activation of proto-oncogenes by
enhancers, normally located outside the neighborhoods, might be due to a loss of an insulated
neighborhood boundary (Figure 16E). This was observed in acute lymphoblastic leukemia, where
T-cells contain recurrent microdelections that eliminate boundary sites of insulted neighborhoods

containing proto-oncogenes (Hnisz et al., 2016b).
3.3.6 3D genome architecture approaches

Initially, genome organization has been studied by microscopy, particularly with fluorescence
in situ hybridization (FISH). This approach has permitted to obtain valuable information about the
nuclear organization although uncompleted. These assays allow analyzing specific aspects of genome
folding, but do not permit to uncover global aspects of chromatin structure and genome topology. Since
2002, the development of Chromosome Conformation Capture (3C)-based technologies, has led to a
kind of revolution in the domain of genome topology. The reason is that these technologies have the

potential to quantify almost all frequency contacts between distal DNA segments in a cell population.

3.3.6.1 Population-based methods (3C, 4C, 5C, Capture-C, Hi-C,
ChIA-PET)

All 3C-derived methods are based on the same principle. First, chromatin is fixed, often using
formaldehyde agent to create covalent bounds between DNA fragments bridged by proteins. Second,
DNA is digested by using a restriction enzyme. Third, sticky ends are religated under diluted conditions

(to promote intramolecular ligations between cross-linked fragments), which creates “hybrid”
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fragments. Only ~5% of the restriction fragments in a 3C library ligate back to their original partner
(Figure 19) (Davies et al., 2017). The final step consists in reversion of cross-linking, and DNA
extraction containing the hybrid fragments (Figure 20). The idea is that DNA fragments being far away
on the linear sequence of the genome, but co-localizing in space, can be ligated to each other (Figure
19). In the initial method (termed 3C), Dekker et al. performed PCR amplification using primers
designed near and towards ligation junctions, followed by gel electrophoresis (Dekker et al., 2002)
(Figure 20). Nowadays, to quantify interaction frequencies, electrophoresis has been replaced by
real-time PCR. 3C method allows uniquely detecting contacts between small numbers of fixed
restriction fragments for suspected interactions, rather than identifying new interactions. Actually, 3C
is known as a “one vs. one” strategy, because it serves to obtain pairwise interaction frequencies between
a known pair of loci (de Wit and de Laat, 2012).

An evolution of the 3C method was the development of circular chromosome conformation
capture (4C), also termed as a “one vs. all” approach (Zhao et al., 2006). This method allows identifying
all potential partners for any specific loci of interest in the genome, through an additional step of
circularization after decross-linking of 3C fragments (Figure 20). Small circularized fragments are
generally generated with a second digestion by using a different restriction enzyme. Then, an inverse
PCR is performed by using primers designed close to the first restriction enzyme site of the target locus,
and oriented towards the unknown sequence to amplify any interacting partners. Initially, microarray
was used to identify interacting partners, but this has now been replaced by high-throughput sequencing.
An improvement of the 4C method is the recently developed protocol described as Unique Molecular
Identifier (UMI)-4C (Schwartzman et al., 2016). Without circularization step, 3C fragments are
sonicated and sequencing adapters ligated uniquely to one end of each 3C sonicated fragment. Hybrid
fragments are then amplified by using a universal adaptor primer and a primer in the target sequence.

UMI-4C also allows multiplexing by using different sequencing adapters.

The first jump from interrogating only one target sequence to many at a time (genome-scale
assays), came with the development of the chromosome conformation capture carbon copy (5C)
technology (Dostie et al., 2006). 5C can be described as a “many vs. many” method, because it allows
the simultaneous detection of millions of interactions by using a mix of primers in a single assay. This
approach allows to define functional contacts for all the genes in a locus simultaneously. 5C primer pairs
anneal to either site of all the ligation junctions in the sequence of interest. Forward and reverse primers
contain universal tails (usually T7 and T3 respectively) joined at the ends of 5C primers, a middle
specific sequence complementary to the target locus, followed by half of the restriction enzyme site
(Figure 20). Reverse primers have in addition a phosphate group at the 5° end of the half restriction
enzyme site. Only primers annealed next to each other at the ligation junction can be ligated with Taq
ligase by means of the phosphate group. All ligated 5C primers are simultaneously amplified using a
pair of universal primers that anneal on the T7 and T3 sequences. In brief, this method allows detecting

contact events concerning different regions within a particular locus.

A more recent 3C-based technology is the Capture-C, which can generate genome-wide

interaction profiles from hundreds of viewpoints in a single assay. This method was developed to
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analyze hundreds of cis-regulatory landscapes (Hughes et al., 2014). In Capture-C, 3C fragments are
sonicated, and sequencing adapters with indexed barcodes are added (Figure 20). This unique random
ends allow identifying and removing PCR duplicates in a subsequent data analysis. The library is then
enriched for fragments of interest using biotinylated probes designed for each viewpoint, before
amplification and sequencing. An improvement of this method is the so-called next-generation (NG)
Capture-C (Davies et al., 2016), which uses a different method of probes design that increases the

efficiency of the oligonucleotide capture process.

The method that has permitted to interrogate interaction frequencies between all parts of the
genome is the High throughput chromosome conformation capture (Hi-C), which is referred as an “all
vs. all” method (Lieberman-Aiden et al., 2009). In Hi-C, the protocol for creating the 3C template is
slightly modified (Figure 20). Before ligation, the digested ends are filled-in with a biotynilated
nucleotide, followed by a blunt-end ligation. Then DNA is purified and sheared. Ligation junctions are
enriched by a streptavidin bead pull-down, and sequenced by high-throughput sequencing. Hi-C has
been found very appropriate for determining megabase-scale contacts and large-scale chromatin
structure, such as A and B compartments and TADs. An improvement of this method is the so-called in
situ or in-nucleus Hi-C. In this protocol the ligation step is performed within preserved nuclei, instead
of performing in-solution diluted cross-linked chromatin ligation (Nagano et al., 2013). This allows
capturing chromatin interactions more consistently and reducing experimental noise and bias, compared
to the in-solution method (Nagano et al., 2015). A variant of the Hi-C method is the capture Hi-C, which
combines capture-C and Hi-C libraries to enrich in target sequences and to exclude further uninformative
background. In addition to determining interaction frequencies and chromatin structure, Hi-C has been
found useful for other applications, such as in de novo assembly (Burton et al., 2013), and in

metagenome analysis (Marbouty and Koszul, 2015).

Another “all vs. all” method is the chromatin interaction analysis by paired-end tag (ChIA-PET)
sequencing (Fullwood et al., 2009). This method combines chromatin immunoprecipitation (ChIP) with
3C, an offers the possibility to analyze all chromatin interactions between sites bound by a specific
protein. After cross-linking and sonication, ligation junctions between DNA sites are pulled-down with
an antibody against the protein of interest. Then, DNA sequences tethered together and to the target
protein are connected through proximity ligation with DNA linkers. These linkers are biotynilated and
contain Mmel restriction sites. Mmel is able to recognize these sites and cut DNA few bases away of
the restriction site, allowing short fragments to be extracted with a streptavidin bead pull-down, and then

identified by paired end (PE) sequencing.

A little mention about the ChIP-seq (chromatin immunoprecipitation sequencing) approach will
be done in this section. Even though this is not an approach to study DNA-DNA interactions, ChIP-seq
has allowed to uncover important aspects of genome organization and function. ChIP-seq is based on
cross-linking of DNA-protein interactions, and enrichment of DNA sequences associated with the target
protein, by using specific antibodies, followed by DNA sequencing. It was first developed to study
genome sequences associated to histone modifications (Barski et al., 2007). Later, it was assessed to

study regions associated with structural proteins such as CTCF and cohesin (Rao et al., 2014), and other
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DNA-binding proteins. The integration of ChIP-seq and Hi-C data has permitted to study mechanisms

of loop formation and TAD structure, and to define active and repressed chromatin domains.

3.3.6.1.1 Hi-C resolution

An important parameter that will determine the scale level of study of the 3D genome
organization is the resolution. For instance, in a Hi-C approach which has the potential to capture all
genomic regions in proximity, high resolutions will permit to detect “small” chromatin structures such
as loops. However, lower resolutions for the same Hi-C experiment will not allow to identify such
structures, but could permit identifying larger domains such as A and B compartments or TADs. The
resolution depends on many factors, the most important concerns the choice of the restriction enzyme
and the sequencing depth. The most limiting, the restriction enzyme, because contacts between DNA
sequences can be detected only at restriction enzyme cut sites (Davies et al., 2017; Han et al., 2018).
This means that contacts within two restriction enzyme sites will not be identified. For instance a
four-cutter enzyme will produce smaller fragments than a six-cutter enzyme (256 bp vs. 4096 bp),
increasing in 16-fold the resolution of the library. This is a global approximation considering that
resolution will not be the same all over the genome, because the distribution of restriction sites is not
uniform. Therefore, an increase of resolution can be achieved by substituting restriction enzymes by
other enzymes. This is the case of Hi-C variants using DNase and MNasel (termed micro-C), which can
cut at any site along the genome and have the potential to generate single base pair resolution.
Theoretically, if 1 bp fragment size is achieved, the resolution is no longer dependent on the restriction
enzyme but is determined by the sequencing depth. However, the sequencing depth is intimately linked
to the restriction enzyme choice and to the genome size. Indeed, the sequencing requirements of the 3C
libraries are related to the square of the number of restriction fragments in the genome (Davies et al.,
2017). Moreover, because of the quadratic nature of ““all vs. all” data, an increase in resolution by 10-fold
requires a 100-fold increase in depth (de Wit and de Laat, 2012). For instance, the 1 Mb resolution
achieved by performing Hi-C experiments in mammals, was based on 10 million PE reads (Lieberman-
Aiden et al., 2009). In this case, an increase in resolution from 1 Mb to 100 Kb, would need 1 billion PE
reads instead of 10 million. Likewise, generating contact profiles with a resolution from 40 Kb to 1 Kb
in the human genome, requires from hundreds of millions to multiple billion PE reads. Therefore, the

cost and computational resources are far too expensive for most laboratories (Han et al., 2018).

3C library complexity is another critical factor for resolution, and it is mainly affected by the
initial number of cells used, the digestion and ligation efficiency and the cumulative loss of material
from each step before sequencing (Davies et al., 2017). When library complexity and/or sequencing are
insufficient to explore contacts at the level of individual restriction fragments, the resolution will be
determined by an appropriate bin size. Binning improves the signal strength and reduce biases, the
inconvenient is that: (i) the profile becomes skewed by density of restriction enzyme sites, (ii) the
original signal is smoothed, hiding the quality of underlying data, (iii) the resolution decrease (Davies
etal., 2017).

65






BIBLIOGRAPHIC REVIEW

3.3.6.1.2 Limits and biases of 3C-based methods

Regarding the limits and biases of the 3C-based methods, 3C is limited to the detection of spatial
relationships between known DNA sequences and it can detect contacts only in a limited range (not
exceeding a few hundred of kilobases) (Han et al., 2018). 4C allows very long-range contacts to be
detected, however, the amplification of GC-rich fragments by inverse PCR is inefficient, resulting in
biases in the interaction profile. In addition, it is not possible to differentiate between PCR duplicates
and unique ligation junctions (Davies et al., 2017). In contrast, UMI-4C allows removing PCR
duplicates during data analysis (Han et al., 2018). In 5C, the resolution is determined by the spacing
between neighboring probes on the linear chromosome template (de Wit and de Laat, 2012). It can never
reach the resolution of 4C, Hi-C, and Capture-C, as not every end of each restriction fragment will allow
the design of a 5C probe. It can also miss weak, long-range contacts, which are detectable by 4C, Hi-C
and Capture-C. Moreover, differences in the hybridization efficiency of the probes can cause bias, and
it is only possible to determine contacts between forward and reverse probes. As in 4C, the levels of
PCR duplication cannot be determined. Although Capture-C can be used to detect hundreds of
informative interactions, individual interactions themselves do not have the depth of data of a good 4C
experiment for the same region. NG Capture-C is then a better alternative in terms of sensivity and
resolution, which allows weak cis long-range and trans interactions to be quantified (Davies et al., 2017;
Han et al., 2018). Regarding Hi-C, the number of contacts determined from any individual restriction
fragment is around 100-fold lower than in 4C and Capture-C, even in the recent Hi-C data sets at 1 Kb
resolution (Rao et al., 2014). That makes Hi-C a relative insensitive method to determine fine-scale (<40
Kb) interactions between regulatory elements present within TADs (Davies et al., 2017). Even though
Hi-C has relative low biases, it is still systematically affected by the distance between restriction sites,
the G+C content and the presence of repetitive regions. But, several methods have been developed to
attempt to correct these biases (Davies et al., 2017). Compared to the high levels of enrichment of NG
Capture-C, the two-fold increase in resolution in capture Hi-C seems negligible and has been balanced
against the more extended protocol (Hi-C) and extra loses in library complexity due to decreases on cell
numbers in each step (Davies et al., 2017). Regarding the ChIA-PET method, a limitation is the low
library complexity due to the relative low levels of enrichment of ChIP, which implies that the number

of reads used to identify individual interactions is usually low (Davies et al., 2017).

In conclusion, the Hi-C method is unique in its ability to determine genome-wide interaction
profiles, and to define whole genome large domains to globally determine basic rules of genome
organization. However, to define the details of small-scale interactions that dictate regulation of
individual genes, 4C or NG Capture-C are more appropriate because need less requirements in terms of

sequencing depth than high resolution Hi-C experiments (Davies et al., 2017).

3.3.6.2 Single-cell methods (single-cell Hi-C, 3D DNA and
RNA-FISH)

As mentioned before, the 3D genome organization is not static but dynamic, which makes
almost impossible that two cells exhibit exactly the same genome organization. The techniques

described above, give an overview of all possible chromatin interactions in a cell population. However,
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Table 2. Comparison of super-resolution microscopy techniques (Sydor et al., 2015).

Principle

Microscopy type
xy Resolution
Axial resolution
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Temporal resolution
Photodamage
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Live imaging?
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Microscopy (SIM)

Uses interference-
generated light patterns
to create a Moire effect
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resolution information
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Wide-field
100130 nm
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organic dyes and
fluorescent proteins

Miliseconds to seconds
Low to moderate
Moderate to high

Yes

Yes

Straightforward
multicolor experiments
and sample
preparation.
Reconstruction
algorithm may cause
artifacts

Stimulated Emission
Depletion Microscopy
(STED)

Reduces the effective
excitation volume with a
depletion laser

Laser scanning confocal
20-70 nm
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fluorescent proteins
STORM: phaotoswitchable
organic dyes

Seconds to minutes
Moderate
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Yes

PALM: 2
STORM: 3

Highest spatial resolution;
however sensitive to
labeling density. Crosstalk
between fluorophores
maybe an issue
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a single cell will not be able to present all of them in a given moment due to physical constrains. To
study this aspect, a variant of the in situ Hi-C method termed “single-cell Hi-C” has been developed
(Nagano et al., 2013). Basically the protocol is the same, except that before reverse the crosslinks and
purify the biotinilated Hi-C ligation junctions, individual nuclei are selected under the microscope and
placed into individual tubes, which allows creating single-cell libraries. Although this approach gives
an idea of the global chromatin structure in an individual cell, several single-cell Hi-C experiments need

to be performed to identify conserved and variable regions among cells.

Before the appearance of the 3C-based methods, classical genome architecture studies were
mainly performed by 3D Fluorescence In Situ Hybridization (FISH). This method allows labelling
specific loci (DNA FISH), whole chromosomes (chromosome painting), nascent RNAs (RNA FISH),
and protein complexes such as transcription factories (immuno-FISH). Performing these approaches in
3D-preserved interphase nuclei has permitted to uncover important aspects of the 3D nuclear
organization (Bickmore, 2013; Chaumeil et al., 2013). FISH experiments can be done by using direct or
indirect detection. For direct detection, probes are labelled by incorporation of a nucleotide associated
to a fluorophore. For indirect detection, probes are labelled with biotin, and revealed with
avidin/streptavidin associated to fluorophore. Chromosomes can be labelled by using paint probes, a
mix of several probes that cover a large portion of the whole chromosome. DNA probes are generally
constructed with bacterial artificial chromosomes (BACs) containing the gene of interest, and then
hybridize on the corresponding gene sequence after DNA denaturation. RNA probes are constructed
with PCR products from the amplification of the target gene, or synthetically (RNA FISH oligo probes,
40-50 nucleotides), and hybridization occurs without DNA denaturation. Protein complexes labelled by
immuno-FISH use generally primary antibodies that recognize the protein of interest, and are revealed
with secondary antibodies labelled with a fluorophore. For 3D FISH, the nuclear integrity must be
preserved during all the process, including a fixation step, and soft conditions of permeabilization. All
these methods permit multiple labelling to visualize several loci in a single experiment. Nuclei are
generally analyzed by confocal microscopy, and 3D distances between loci, RNAs, or protein
complexes, can be measured by using specific software. However, the smallest measured distance will
depend on the resolution, which is determined by microscopy characteristics and parameters. Classical
confocal microscopy has a relative low resolution (200 nm at the best in the x and y axes), which means
that two loci located at less than 200 nm cannot be separated. Other technologies have been developed
since 1994, termed super-resolution fluorescence microscopy, or nanoscopy, achieving up to 10-fold
improvement in resolution (Table 2). These instruments allow obtaining up to 20-40 nm resolution in
the focal plane (x and y), and 50-80 nm in the depth direction (z plane). More recently, a new technology
offering ultra-high resolution have been developed, achieving up to 10-20 nm of isotropic resolution (x,
y and z) (Huang et al., 2016). These new technologies have been widely used for imaging proteinaceous
nanostructures such as bacteriophages, PLM bodies, nuclear pore complex or centriole. However,
imaging sequence-specific chromatin loci remains more challenging even though some progress have
been done (Cremer et al., 2017; Sieben et al., 2018; Sydor et al., 2015).

Transcription activator-like effectors (TALEs) conjugated with fluorescent proteins, or

clustered regulatory interspersed short palindromic repeat (CRISPR)/CRISPR-associated protein 9
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Figure 21. Illustrated relationship between 3C and FISH. (4) FISH obtains information for all cells
in a population to build up a full distribution of pairwise distances between labeled loci. (B) 3C-based

approaches (including 4C, 5C, Hi-C) capture contacts from the small fraction of cells where two loci
are within the capture radius. (C) Illustration of a PDF pairwise spatial distance, R, between two loci
for a large population of cells. Theoretically, FISH can measure the full pairwise spatial distance
distribution. 3C captures contacts that occur at distances less than the capture distance (Fudenberg and
Imakaev, 2017).
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(Cas9) system, have been used for fluorescence labelling of specific loci in live cells. Concretely,
CRISPR/Cas9 system has permitted multicolor labeling and measuring of 3D distances between
different loci (Ma et al., 2015; Qin et al., 2017). A version of the CRISPR/Cas9 system uses
nuclease-inactive Cas9 (dCas9), to label three orthogonal Cas9 variants by fusion to green, red or blue
fluorescent proteins (GFP, RFP and BFP respectively). Then, single-guide RNAs (sgRNAs) are
designed to target the specific loci. These two constructions (fluorescent dCas9, and sgRNAs containing
the target sequences) are each subcloned into a different plasmid vector. Then, both plasmids are
co-transfected in the cells. The dCas9-fluorescent protein and the sgRNAs will be then expressed into

the cells and will associate to form a complex able to target the loci of interest by fluorescence labelling.
3.3.6.3 Comparison between FISH and 3C-based methods

FISH and 3C-based methods, are both used to detect spatial chromatin interactions, and many
3C-based studies used FISH to validate some of the detected interactions. However, both techniques
differ in many aspects and must be interpreted with caution. FISH are low-throughput assays, because
they are restricted to viewpoints corresponding to regions targeted by specific probes. In contrast,
3C-based methods offer a genome-wide view of genome organization. FISH has limited spatial
resolution but distances are measured directly in individual cells. 3C methods extrapolate physical
proximity by considering that ligation frequency is inversely proportional to the real spatial separation
between to loci. Moreover, they provide average frequencies across all cells in a population. Some
studies have proposed an equivalence between direct 3D measured distances and interaction frequencies.
For instance, Wang et al. observed that Hi-C contact frequency was inversely proportional to the fourth
power of the mean spatial distance (Wang et al., 2016). Nevertheless, these kind of comparisons must
be taken with caution. Indeed, it has been demonstrated that contact frequency is distinct to average
spatial distance (Fudenberg and Imakaev, 2017), and that data coming from FISH and 3C-type
experiments are not always concordant (Williamson et al., 2014). Comparing the simplest case of 3C
and FISH, in which each method probes the relationship between a pair of loci, large shifts can be
observed due to the nature of each approach. Measuring 3D spatial distances between a pair of loci in
several cells, allows the measurement of the probability density function (PDF) between a pair of loci
(Figure 21). While FISH makes possible measuring distances at any location of the two loci (except for
the limits of microscopy resolution) (Figure 21A), 3C only capture contacts when the loci are closer
than the contact radius. Such small “distances” detected by 3C correspond to very rare contacts in the
cell population (Figure 21B-C). Thus, to compare 3C and FISH, it would be necessary imaging much
more cells than conventionally done in FISH studies (around 100 nuclei or even less), and overcome the

resolution limits of microscopy to obtain the full spatial distribution of two loci.

Other intrinsic factors of both methods could hinder the reconciliation of both approaches. In
FISH, the probe size and the chromatin movement during denaturation and hybridization could affect
the distances (Fudenberg and Imakaev, 2017). FISH may be no appropriate to capture weak or transient
interactions. In 3C, formaldehyde preferentially crosslinks with lysine, tryptophan, and cysteine side
chains in proteins, which could bias interaction frequencies (Williamson et al., 2014). It seems that FISH
and 3C-based methods, such as Hi-C or 5C, may agree or may be more comparable when comparing

large-scale domains such as CTs, A and B compartments or TADs. However at higher resolution, 3C
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interaction frequency may not always simply reflect physical distances (Wang et al., 2016; Williamson
et al., 2014). Finally, the dynamics of chromatin structure and cell-to-cell variation, is not appreciable
by 3C-based methods. It cannot be determined whether interactions between multiple loci occur
simultaneously or sequentially and/or whether they are mutually exclusive, which is possible by FISH
(de Wit and de Laat, 2012). In conclusion, visual and molecular approaches should be complementary
to each other and models of 3D genome organization should be extrapolated from data validated by

independent methods.
3.3.7 3D Pig genome organization

3.3.7.1 Assessed by 3D DNA FISH

Few studies have been performed in pig regarding the nuclear architecture and genome
organization. The majority of them are based on FISH assays to assess different aspects of nuclear bodies
and gene-gene associations related to gene expression profiles. For instance, it was observed during in
vitro adipogenesis that some up-regulated genes are relocated more internally, found on loops and
projections of chromatin away from CTs, associated (often in clusters) to splicing speckles, and their
CTs are decondensed (Szczerbal and Bridger, 2010; Szczerbal et al., 2009). However, another study on
the same in vitro adipogenesis system showed that the relationship between transcription activity and
gene positioning exists only for some genes but not all (Kociucka et al., 2012). A more recent study
about nuclear substructures changes during differentiation of porcine mesenchymal stem cells (MSCs)
into adipocytes has been performed by the same research group (Stachecka et al., 2018). After
differentiation, they observed changes in nuclear size and shape (smaller and less spherical nuclei), as
well as a preferential location in nuclear interior of nucleoli, and a clustering of telomeres. In
differentiated cells, they also observed that chromocenters (a densely staining aggregation of
heterochromatic regions) were more diffused than in MSCs, but no change in speckles and PML bodies’

number were detected.

Other studies have been performed in neutrophils before and after activation by
lipopolysaccharide (LPS) stimulation to mimic bacterial infection (Yerle-Bouissou et al., 2009). In both
conditions, it was observed that centromeres associate to form chromocenters (preferentially between
chromosomes with the same morphology), but after activation, some of these chromocenters disperse.
Telomeres were observed to form clusters but no difference was observed upon LPS activation. They
presented a more internal position than chromocenters, which were found significantly closer to nuclear
border after activation. It was observed as well, that some chromosomes decondense upon LPS
activation. Similar studies were performed in macrophages and neutrophils before and after LPS
activation (Solinhac et al., 2011). In this study, it was observed that some up-regulated genes change
their position with respect to CTs upon activation by increasing the distances to CTs edges, while

down-regulated genes did not change their position.
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3.3.7.2 Assessed by population-based methods

As mention in the second chapter, current efforts to improve functional annotation of livestock
species have been made thanks to the creation of the FAANG Consortium (Andersson et al., 2015). The
core assays of this Consortium are mainly focused on three aspects: identification of transcribed
elements, study of the chromatin accessibility, histone modification marks, and genome organization.
Although most of the studies are in progress, many FAANG contributors have already produced relevant
data for these three aspects of the functional annotation (Tuggle et al., 2016). For instance, RNA-seq
data have been generated in liver, muscle and T cells for chicken, cattle, pig and goat by the French
National Institute of Agronomic Research (INRA), and by the University of California-Davis (UC
Davis). ChIP-seq data for histone marks and CTCF protein have been also generated for chicken, cattle

and pig by the UC Davis group.

Regarding genome organization, Hi-C assays have been performed on liver samples of pig
(LW), chicken, and goat, from adult animals (two males and two females) by the INRA contributors to
the FAANG Consortium (FR-AgENCODE project). Chromatin accessibility as well as transcriptome
profiles have been also assessed by ATAC-seq and RNA-seq assays respectively on the same samples.
These data have been integrated and are issue of a recent publication (Foissac et al., 2018). This study
has permitted to: (1) extend the catalog of protein-coding and non-coding transcripts; (2) reveal
differentially expressed transcripts with unknown function (including new IncRNAs in syntenic
regions); (3) detect differentially accessible ATAC-seq peaks mapped to putative regulatory regions and
enriched with predicted transcription factor binding sites; (4) show a consistency with results from gene
expression (RNA-seq) and chromatin accessibility (ATAC-seq) in topological A and B compartments
of the genome (Hi-C).

3.4 Chapter 4: Objective and strategy of this thesis

The main objective of this thesis has been to establish the relationship between genome
organization and gene expression in muscle tissue during late fetal development. Two main approaches

were developped for this purpose:

3.4.1 Combining 3D DNA FISH and gene expression for network
inference

First, a single-cell approach was used to determine by 3D DNA FISH specific gene associations
in the nuclear space for a small selected group of genes. Initially, we performed a study mainly focused
on three target genes (/GF2, DLKI and MEG3). These genes correspond to two imprinted loci of
particular interest in the agronomic context: /GF2 for being a key element in fetal growth and
development, involved in pig muscle growth and fat deposition (Nezer et al., 1999; St-Pierre et al., 2012;
Van Laere et al.,, 2003) and DLKI for being related to the control of muscle development and
regeneration (Waddell et al., 2010).This preliminary study allowed us to detect by 3D DNA FISH trans-
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interactions between these three genes in fetal liver and muscle tissues, and to reveal that these
interactions involve the expressed alleles in muscle cells (Lahbib-Mansais et al., 2016). To extend this
study, we further analyzed other nuclear associations between these three initial genes and four new
genes (MEST and DCN imprinted genes, and MYH3 and RPL32 non-imprinted), MYH3 being also a
gene of major interest because of its important role in fetal muscle development (Schiaffino et al., 2015;
Voillet et al., 2018).

Beyond these, a transcriptome study previously performed in our laboratory on muscle tissue,
revealed differentially expressed genes (DEGs) associated with two fetal gestational ages (90 and 110
days of gestation) and four genotypes (Large White (LW), Meishan (MS), and the two reciprocal
crossbreeds) (Voillet et al., 2014). The expression data and the information about DEGs observed in this
study, together with the information of nuclear gene associations obtained by 3D DNA FISH, were
combined to develop a new iterative method of gene co-expression network inference. This approach
has enabled to obtain a robust gene co-expression network that spotlights significant biological
processes related to foetal muscle development through the combination of spatial gene association and
gene expression data. This study has recently been issue of a publication in the Scientific Reports journal
(Marti-Marimon et al., 2018) and is further detailed after the “Materials and methods” section.

3.4.2 Global genome organization assessed by Hi-C and gene
expression analysis

Second, after this initial single-cell approach focussed on a reduced number of genes
associations analyzed on a few number of cells, a population-based approach was used to explore
globally the changes occurring at the level of chromatin structure for a large cell population of muscle
tissue during late fetal development. For that purpose we first assessed the 3D genome organization in
pig fetal muscle at the 90" and the 110" day of gestation, by determining all interacting regions in the
genome. To do this, Hi-C assays were performed by adapting the FAANG experimental protocol of
Hi-C to fetal muscle tissue. As being a contributor of the FAANG Consortium, Hi-C data pipeline
implementation was done in collaboration with the INRA research group in charge of Hi-C data
production and analysis. Then, we further explored whether significant differences in the 3D genome
organization exist between the two gestational ages. Finally, we combined the Hi-C and transcriptome
data to investigate whether changes in genome organization are linked to changes in gene expression.
This approach is further detailed on the “Global genome organization assessed by Hi-C and gene

expression” section.
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4 Materials and methods

4.1 Ethics statement

All tissues sampled for the 3D DNA FISH experiments were collected on pigs bred for the
project (ANR-09-GENM-005-01, 2010-2015). The ethical committee of the Midi-Pyrénées Regional
Council approved the experimental design (authorization MP/01/01/01/11). Tissues sampled for the
Hi-C and ChIP-seq experiments were collected on pigs bred and financed by the AAP INRA of the
Animal Genetics Division, 2014. The experimental design was approved and authorized by the ethical
committee (No. 84) in animal experimentation of the French Ministry of National Education, Higher
Education, and Scientific Research (authorization No. 02015021016014354).

For both samplings, the experiment authorization number for the experimental farm GenESI
(Genetics, testing and innovative systems experimental unit) is A 17 661. All the fetuses used in this
study were males and were obtained by caesarean after euthanasia of sows and fetuses. The procedures
performed in this study and the treatment of animals complied with European Union legislation
(Directive 2010/63/EU) and French legislation in the Midi-Pyrénées Region of France (Decree 2001-
464).

4.2 Gene co-expression network approach

4.2.1 Transcriptome data

4.2.1.1 Microarray data description

Expression data were obtained from a previous transcriptome study of skeletal muscle in pig for
two fetal gestational ages (90 and 110 days of gestation) associated with four fetal genotypes (two
extreme breeds for mortality at birth —Large White (LW) and Meishan (MS)- and two reciprocal crosses
—MSXxLW and LWxMS). The final dataset consisted of 44,368 probes for 61 samples under eight
different conditions (four genotypes at two gestational ages). A precise description of the experimental
design and data collection can be found in (Voillet et al., 2014). Normalized expression data (log2

transformed) and sample information are available in NCBI (GEO accession number GSE56301).
4.2.1.2 Microarray data pre-processing

Missing values were imputed with k NN (R package “impute” function, with £ = 3). Gene
annotation was updated (nblast/NCBI July 2017, Sscrofal(.2) and the 40,847 annotated probes were
found to correspond to 13,855 unique genes. For each gene, the probe with the highest average
correlation with the other probes associated with the same gene, was selected to serve as a representative

in further statistical analyses.
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4.2.2 Network inference and analysis

4.2.2.1 Network inference

Networks were inferred using Gaussian Graphical Models (GGMs (Edwards, 1995)) from n =
61 samples. From expression data, GGMs build a graph (or network) in which vertices are genes and
edges represent the conditional dependency structure between those genes. GGMs are based on the
estimation of partial correlations (i.e., correlations between two gene expressions when the expression
of all the other genes is known). They were preferred over relevance networks (Butte and Kohane, 2000)
because they improve measurements of direct relations between gene expressions by accounting for the
effect of all expression data, and because they were found to be more efficient for grouping together

genes with a common function in a previous study (Villa-Vialaneix et al., 2013).

Since the number of samples was smaller than the number of genes used for network inference,
the models were fitted with a sparse penalty (Meinshausen and Biihlmann, 2006) to address the issues
of high-dimensional data and edge selection. In addition, as many examples have shown that
co-expressed genes occasionally tend to interact preferentially or consolidate in specialized foci of the
nuclear environment (Osborne et al., 2004; Rieder et al., 2014; Schoenfelder et al., 2010; Zhao et al.,
2006), when a priori information about nuclear gene co-localization is available, the latter was included
in the model using the approach described in (Villa-Vialaneix et al., 2014). The details of the method
and of the tuning of the different parameters are given in Appendix 1 “Description of the model used

for network inference”.
4.2.2.2 Practical implementation of network inference

The starting point of the analysis was the inference of a network with no a priori information
about co-localization. Since network inference based on partial correlation can only be performed with
a limited number of genes (because of the number of samples) and since the number of unique genes (p
=13,855) was too high compared to the number of samples (n = 61), we applied two restrictions to the
original list. First, we restricted the list to genes that were reported as differentially expressed (DEG)
(Voillet et al., 2014). Secondly, among these DEGs, only those that had an absolute value for their
correlation with either /IGF2, DLKI or MEG3 larger than 0.84 were kept. This final list contained 359

genes, provided in the Appendix 2 “Gene description and cluster allocation”.
4.2.2.3 Network inference interactions and 3D FISH validations

Based on network inference results or on genes found to be connected in the IGN of (Varrault
et al., 2006), 3D DNA FISH experiments were performed to check whether pairs of genes of interest
were co-localized in the 3D nuclear space. These experiments were conducted in an iterative manner
with network inference. More precisely, network inference was performed with the following a priori
conditions: (1) Network 0: was inferred with no a priori information, as a baseline for comparison; (2)
Network 1: was inferred using a priori information from the triple association found in (Lahbib-Mansais
et al., 2016) by giving the three pairs /IGF2-DLKI, IGF2-MEG3 and DLKI-MEG3 as known
co-localized genes. Network 1 was then used to propose candidate pairs of genes for testing by 3D DNA
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FISH for Network 2 (/GF2-RPL32) and Network 3 (DLKI-MYH3); (3) Network 2: in addition to the
initial three pairs, Network 2 was inferred using a priori information provided by the results of the new
3D DNA FISH experiments by giving the pairs IGF2-MEST, DLK1-MEST, MEG3-MEST, MEG3-DCN,
DLKI-DCN, and RPL32-IGF2 as known to be co-localized and IGF2-DCN as known not to be
co-localized; (4) Network 3: in addition to the 10 previous pairs, Network 3 was inferred using a priori
information provided by the results of new 3D DNA FISH experiments by giving the additional pairs
IGF2-MYH3, DLK1-MYH3, MEG3-MYH3 and MEST-MYH3 as known co-localized genes.

All simulations were performed with the free statistical software R (https://cran.r-project.org).

The inference was performed using our own scripts (available at https://github.com/tuxette/internet3D)

and the graphs were displayed and analyzed using the R package igraph (Csardi and Nepusz, 2006).
4.2.2.4 Network mining and clustering

Nodes of importance to the network structure were obtained by computing the degree and the
betweenness centrality measurement for every node. Node clustering was performed by applying the
Louvain algorithm (Blondel et al., 2008), which performs fast approximate optimization of the
modularity (Clauset et al., 2004). All clusterings were found to be significant using the permutation test
described in (Montastier et al., 2015) by generating 500 random networks with the same degree
distribution (all clusterings were found to have a modularity larger than that obtained on the 500 random
networks, p-value < 0.002). Clusters were compared using two methods: first, pairwise contingency
tables between clusters were computed. Second, the normalized mutual information (NMI (Danon et al.,
2005)) between pairs of clusterings was obtained. The NMI is a number between 0 and 1 measuring the

similarity between two clusterings and is maximum (equal to 1) when the two clusterings are identical.
4.2.3 Functional analysis of the networks

4.2.3.1 Gene Ontology (Webgestalt)

Functional enrichment analysis based on GO was performed using the web tool Webgestalt
(WEB-based GEne SeT AnaLysis Toolkit, http://www.webgestalt.org/option.php) updated on January
27,2017 (Wang et al., 2013; Zhang et al., 2005). The web tool uses the Fisher exact test and controls

for the number of false positives among the declared significant GOs terms. The False Discovery Rate

procedure was used ((Benjamini and Hochberg, 1995), FDR < 5%). The analysis was performed using
the Overrepresentation Enrichment Analysis (ORA) method, selecting non-redundant Biological
Processes (BPs).

4.2.3.2 Ingenuity Pathway Analysis

The final network was analysed through the use of Ingenuity Pathway Analysis version 01-12
(updated on March 31st, 2018). Ingenuity Pathway Analysis (IPA, Ingenuity Systems; QIAGEN, Inc.,
Valencia, CA, USA, https://analysis.ingenuity.com/pa) contains a large bibliographic database

(Ingenuity Pathways Knowledge Base) with various molecular relationships already identified between

two genes (protein-protein interaction, ligand-receptor regulation, enzymatic modification,
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Figure 22. Verification of BAC probes specificity and location by 2D DNA FISH on porcine
methaphases. DNA probes were labeled with alexa fluor-568 (red), chromosomes with DAPI (blue) and
images were obtained by fluorescence microscopy wide field. Each metaphase was shown before with
G-banding for chromosome identification. (A) Example for the DLK1/MEG3 locus. The comparison of
the two images allows the identification of chromosomes bearing spots. (B) The same procedure was

applied for the other genes.
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transcriptional expression regulation, etc.). The obtained network is a graphic representation of the
molecular relationships between molecules. All edges are supported by at least one reference from the
literature, or from canonical information stored in the Ingenuity Pathways Knowledge Base. The
obtained networks were improved for representation using Path Designer. Nodes are displayed using
various shapes that represent the functional class of the gene product. The Functional Analysis identified
the biological functions, the canonical pathways and the upstream regulators that were the most relevant
to the dataset. Molecules from the dataset that were associated with biological functions, canonical
pathways or upstream regulators in the Ingenuity Knowledge Base were considered for the analysis.
Fisher’s exact test was used to calculate a right-tailed p-value determining the probability that each
function and pathway assigned to that dataset is due to chance alone. The networks proposed by IPA
were cleaned (some nodes/genes were discarded) in order to keep only the genes necessary to connect
the co-expressed genes. The three first networks were merged and regulation information was added to
highlight transcription factors that could explain unexpected gene co-expression and nuclear co-
localization (e.g. MYH3 and IGF2; see Appendix 3 “Biological network reconstructed following

Ingenuity data analyses”™).
4.2.4 Gene-gene nuclear associations

4.2.4.1 3D DNA FISH in interphase nuclei

Tissue preparation: Foetal muscle tissue was obtained from the Longuissimus dorsi muscle of
90-day gestation YMSXLW ' pig and prepared as described in (Lahbib-Mansais et al., 2016) with slight
modifications. In addition, muscle sample from the LW breed at 90-day gestation was also used to test
some gene associations. When needed, stored muscle fibre packets were permeabilised for 8 min in
cytoskeleton extraction buffer (100 mM NaCl, 300 mM sucrose, 3 mM MgCI2, 10 mM PIPES pH 6.8)
containing 0.5% Triton X 100 and then fixed in cold 4% paraformaldehyde for 5 min. After washing in
cold PBS, muscle packets were manually dilacerated directly on Superfrost glass slides (CML,
Nemours, France) to isolate individual fibres, and air-dried before adding DNA probes for in situ

hybridization.

DNA probes construction: Bacterial artificial clones (BACs) containing genes were isolated
from porcine BAC libraries (available at the Biological Resources Center-GADIE, INRA, Jouy-en-

Josas, France http://abridge.inra.ft/) using specific primers designed with Primer3 software

(http://primer3.sourceforge.net/) (Appendix 4 “Information about BACs used as probes for 3D DNA

FISH experiments”). For multiple label experiments, approximately 120 ng of each BAC DNA were
random priming labelled (Bioprime DNA labelling kit, Invitrogen, Cergy Pontoise, France) directly by
incorporation of dUTP Alexa Fluor (488 or 568) or indirectly with Biotin 6 dUTP detected by immuno-
FISH. Chromosomal localizations of all BAC probes were controlled by 2D DNA FISH on porcine
metaphases (Figure 22) prepared from lymphocytes according to standard protocols (Yerle et al., 1994).

IGF2 was previously localized on SSC2pl7, DLKI/MEG3 on SSC7q26 and ZARI on
SSC8q11-12 (Lahbib-Mansais et al., 2016). In this study, additional genes were localized on pig
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Figure 23. Illustrative exemple of a NEMO analysis window. Nuclei are initially segmented and

numbered from the raw images of a confocal field. Left panel: list of all segmented nuclei of a confocal

field. For each nuclei, the deteted objects for each channel are listed (blue: nucleus, red: the alleles of
MEST; and green: the two alleles of MYH3). Right panel: decomposition of each channel and final

merge. The detected objects are visualized in the left column, and the raw images in the right column.

Lower panel: distance measures and percentage of co-localization between each object. The

center-to-center 3D distances (Dist. center) were chosen for further analyses.
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metaphases: MYH3 on SSC12q, MEST on SSC18, RPL32 on SSC13q24-33, DCN on SSC5qter, and
PRLR on SSC16.

3D DNA Fluorescence in situ hybridization: 3D DNA FISH experiments were conducted using
specific probes to label each gene with a different colour as described in (Lahbib-Mansais et al., 2016)
with slight modifications. Probes were resuspended in hybridization buffer (50% formamide, 10%
dextran sulphate, 2 mg/ml BSA, 2x SSC) at a final concentration of 110 ng/pl. Nuclear DNA and probes
were simultaneously denatured at 74°C for 7 min and then incubated overnight at 37°C in a wet
atmosphere (DAKO hybridizer). Washes were then performed with gentle agitation, first twice in 2%
SSC at room temperature (RT) for 8 min, then twice for 3 min in 2x SSC, 50% formamide pH 7.0 at
40°C, and finally twice for 15 min in 2x SSC, then in PBS at RT. When a biotin-labelled probe was
used, biotins were detected by incubating the slides with streptavidin-Alexa 568 or 488 at a final

concentration of 5 pg/ml for 1 hour at RT.
4.2.4.2 Confocal microscopy and image analysis

Image captures: 3D acquisitions were performed at the T.R.I. Genotoul (Toulouse Réseau

Imagerie, http://trigenotoul.com/en) imaging core facility in Toulouse (France). Image stacks were

captured at different depths with a Leica TCSSP2 confocal microscope (Leica Instruments, Heidelberg,
Germany) equipped with an oil immersion objective (plan achromatic 63x N.A. = 1.4). The Z-stacks
(around 60 confocal planes per capture) were acquired at 1024 x 1024 pixels per frame using a 8-bit

pixel depth for each channel at a constant voxel size of 0.077 x 0.077 x 0.284 pm.

Image analyses: Images were analysed with a specific software for measuring the 3D distances
between signals (genes) (NEMO (Iannuccelli et al., 2010)) (Figure 23) as described in (Lahbib-Mansais
et al., 2016). Euclidean distances were computed with respect to the X, y and z resolutions. Given the
resolution on the z axis, at least three pixels corresponding to 0.852 um (0.284 x 3) were required for a
high resolution between two separate signals; consequently, 1um was chosen as the upper cut-off for

associated signals.

Gene-gene associations: In all 3D DNA FISH experiments, nuclei were only analysed when 4
signals (corresponding to the 2 alleles of each gene) were present. “Associated” signals were considered
to be those separated by a distance (d) < 1 um, and were divided into two different classes: “close”
signals (0.5 < d <1 um), and “co-localized” signals (d < 0.5 um). The great majority of associations
concerned uniquely one allele from each gene. To establish the threshold for distinguishing between
associated and non-associated genes, two 3D DNA FISH experiments were performed as negative
controls: first, between two genes (ZARI and PRLR) located on different chromosomes and expressed
at a very low level in muscle cells (Voillet et al., 2014), second, between /GF2 (highly expressed) and
ZARI1 (low expression) (Lahbib-Mansais et al., 2016). In both cases, the two genes were found to be
associated in only 8% of the analysed nuclei. Considering this value as a sporadic association between
loci not expected to be associated, a 10% value was arbitrarily chosen to distinguish between associated

and non-associated genes.
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4.3 Nuclear architecture and gene expression approach

4.3.1 Transcriptome data

4.3.1.1 Microarray data description

Expression data were obtained from the previous transcriptome study of skeletal muscle in pig
during development (Voillet et al., 2014). The dataset consists of 44,368 probes for 17 samples (LW
animals) at two different gestational stages (8 samples for the 90 days gestational age and 9 samples for
the 110 days). A precise description of the experimental design and data collection can be found in
(Voillet et al., 2014). Normalized expression data (log2 transformed) and sample information are
available in NCBI (GEO accession number GSE56301).

4.3.1.2 Microarray probes alignment and annotation

Since the microarray was originally designed on a former version of the pig genome, the probes
were aligned to the Sscrofall.l assembly version by using BLAT (v.35x1) with the
parameters -minldentity=95 -mask=lower. Alignments were obtained and processed by keeping unique
best hits only with a minimum score of 30, and in case of several "blocks" in the alignment of a given
probe -across two exons for instance- the longest block (with a minimum length of 20) was kept. The
42,885 resulting probes were then annotated depending on their mapping position relatively to the
annotated genes of the Ensembl v90 annotation. Probes that overlapped an annotated gene from the
Ensembl annotation -either within the entire genic region or on an annotated exon- were assigned to the
corresponding gene ID. A total of 38,043 probes could be assigned to a gene, from which, 30,594
correspond to probes mapped to exonic regions. The total of distinct genes targeted with probes mapped

to genes was 13,530 and those targeted with probes mapped to exons were 12,465.
4.3.2 High-throughput chromosome conformation capture (Hi-C)
The experimental FAANG protocol, based on the in situ Hi-C protocol used in (Rao et al., 2014)

(available in http://ftp.faang.ebi.ac.uk/ftp/protocols/assays/INRA SOP_Hi-C HA vl 20160610.pdf),

was slightly modified in terms to adapt the Hi-C experiments and libraries to the fetal muscle tissue. A

detailed description of the experimental procedure (Figure 24A) is presented below.
4.3.2.1 Hi-C experiments

Muscle nuclei isolation and crosslink: Longissimus dorsi muscle samples from three 90- and
three 110-day post coitum (p.c.) fetus (3 males at 90 days, 2 males and 1 female at 110 days) of a
European Large White (LW) breed (F1 JLW x LWQ), were frozen in isopentane cooled with liquid
nitrogen and stored at -80 °C until needed. For each sample, around 1.5 g of frozen stored fetal muscle
was thawed at Room Temperature (RT) and dissected with scalpel blades to obtain a homogenate of
mashed muscle. Dissected tissue was washed in phosphate-buffered saline (PBS) to remove blood.

Nuclei were disaggregated by rubbing (pipetting up-down many times), filtered through a cell strainer
89


http://ftp.faang.ebi.ac.uk/ftp/protocols/assays/INRA_SOP_Hi-C_HA_v1_20160610.pdf

No digestion/ ligation:

Control (Ctrl) tube _# } } e No amplification
DNA fixation (crosslink)
Decrosslink E— | | = = Amplification

Lysis + DNA purification

—

3C tube:

DNA fixation (crosslink)
Hindlll digestion
DNA religation

Decrosslink
Lysis + DNA purification Digestion / ligation:
< ks 2 43 3  Amplification
~ ~ AN
L
] ® ®
Hi-C tube: —_— B sw & = ——

DNA fixation (crosslink)
Hindlll digestion

Blunt + biotine

DNA religation
Decrosslink

Lysis + DNA puriﬁcatiol'l_

PCR amplification:
Forward primers Forward and reverse primers —» £

Ctrl 3C HiC 3C HiC gDNA H20 Ctrl 3C HiC 3C HIC  gDNA H20

Figure 25. PCR quality control of Hi-C products. A couple of forward primers (blue arrows) and a
couple of forward and reverse primers (green arrows) were used to amplify the same genomic region
in the Control, 3C and Hi-C tubes (left side of the A panel), as well as in genomic DNA (¢gDNA) and in
absence of DNA (H20). (A) In the Control tube, where the steps of digestion and ligation were not
performed (similar to gDNA), the region was amplified with the forward and reverse primers but no
amplification was observed with the couple of forward primers as expected. In both 3C and Hi-C tubes,
digestion and religation were performed allowing in some religation events switching the sense of one
DNA fragment thus permitting the amplification with the couple of forward primers. (B) Migration of
the PCR products in a 1% agarose gel.



MATERIALS AND METHODS

(70 um) and centrifuged at 1200g 5 min to get a high yield of cells. Pellet was resuspended in 3 ml
Dulbecco's Modified Eagle's Medium (DMEM) with glutamax (1% formaldehyde) and incubated 10
min at RT. To quench fixation, 0.125 M final glycine was added 5 min at RT, then cooled 5 min on ice.
After 5 min centrifugation at 1200 g, pellet was washed in ice-cold PBS (with protease inhibitors). An
aliquot of cell suspension was stained with 4',6-diamidino-2-phénylindole (DAPI) and phalloidin to
check nuclei quality and integrity (see Appendix 5 “Quality check of nuclear integrity in Hi-C

experimental steps”).

Nuclei permeabilization and endonuclease-based DNA fragmentation: For each Hi-C
experiment, 3 pellets were prepared with around 5 million cells per tube (named: Hi-C, 3C and control).
Pellet in control tube was resuspended in 200 ul of water and kept at 4 °C. Tubes Hi-C and 3C were
resuspended in 0.05 % Sodium Dodecyl Sulfate (SDS) and incubated 10 min at 62 °C. To quench the
SDS, 0.1 % final Triton X-100 was added for 15 min at 37 °C, then 100U of HindIII in 25 pul of 10X
NEbuffer 2.0 were added to digest overnight at 37 °C on the wheel. Fifty pl of water were added to the
3C tube.

Biotinylation, ligation and decrosslink: To fill overhangs with marked dNTPs and obtain blunt
ends 50 pl of fill-in master mix (200 nM dATP, dGTP, dTTP, biotin-14-dCTP, 50U Klenow) were
added to the Hi-C tube only, and both tubes (Hi-C and 3C) were incubated at 37 °C, 1 hour on the wheel.
Then they were incubated at 62 °C 20 min to inactivate the enzyme and 900 pl of ligation mix was added
to each tube (1.3X T4 DNA ligase reaction buffer, 1.1% Triton X-100, 130 ng/ml BSA, 2000U T4 DNA
ligase) and incubated 1 hour at RT and then overnight at 4°C on the wheel. Proteins were degraded by
incubating the three tubes (Hi-C, 3C and control) with 50 ul of Proteinase K (20 mg/ml) and 120 pl of
10% SDS at 55 °C for 30 min, then with 130 pl of NaCl 5M at 68°C overnight.

DNA purification and enrichment of biotinylated DNA: DNA was precipitated with 1.6 volume
of 100% ethanol and 0.1 volume of 3M sodium acetate (pH5.2) at -80°C 15 min, then centrifuged at
4°C (15400rpm, 10 min), the pellet was resuspended in 70% ethanol, centrifuged at 4 °C (15400rpm, 5
min) and dissolved in nuclease-free water (20 min at 37°C). To desalt and purify DNA, 1.8 volume of
CleanPCR magnetic beads were added and incubated 5 min and after washing twice for 30 seconds with
80% ethanol and letting dry for 3 min, the beads were resuspended in TE (10:1, Tris 10 mM pHS.0,
EDTA 0.1 mM) buffer solution for control and 3C tubes and in TE (10:0.1) for Hi-C tubes.

Removing non-ligated biotinylated DNA: To remove non-ligated biotinylated DNA, 28 pul of T4
DNA polymerase mix reaction (714 ng/ml bovine serum albumin (BSA), 5.3X NE Buffer 2, 357 nM
dATP, 357 nM dGTP and 30U T4 DNA polymerase) were added to the Hi-C tubes and incubated at
12 °C for 90 min. The reaction was stopped by adding 2 ul of 0.5 M Ethylenediaminetetraacetic acid
(EDTA) and heating 20 min at 75 °C. Then DNA was purified with magnetic beads as explained before
and resuspended in TE (10:0.1).
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Figure 26. Digestion quality control of the PCR products. PCR products from the 3C and Hi-C tubes
amplified with a couple of forward primers were digested with Hindlll (H) and Nhel (N) restriction
enzymes and the digestion products were migrated in a 1% agarose gel. The digestions were also
performed in absence of DNA (Ctrl), and absence of enzymes (H20) as negative controls. 3C tubes,
where no filling ends with biotin incorporation was performed, were digested only with Hindlll (smaller
band ~210 bp). Hi-C tubes, where biotin incorporation was performed with the resulting formation of
a Nhel target site, were mainly digested with Nhel (~210 bp) and slightly digested with Hindlll.
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4.3.2.2 Quality control of Hi-C experiment

The quality control is based on the following principle: when DNA is digested with Hindlll, after filling
and ligation of the digested ends, the HindIII target site disappears and a new site, which is recognized
by the Nhel restriction enzyme, is created instead (Figure 24B). To check the efficiency of the Hi-C
assays, PCR are performed around one HindIII restriction site with two forward primers (Fwdl: 5’
TCTGGGCAGGTCACTCATT 3’; Fwd2: 5 TCTCGGGATGCTGAGTGTTT 3’; product size = 425
bp). A reverse primer combined with Fwdl was wused as a control (Rvl: 5’
AAACACTCAGCATCCCGAGA 3’; product size = 465 bp). In Hi-C and 3C assays, some religation
events allow switching the sense of one DNA fragment and PCR amplification with these primers is
possible (Figure 25). Then the PCR amplification products from the couple of forward primers are
digested either with HindIII or Nhel (product sizes =201 + 215 bp). For 3C experiments, HindIII should
cleave the PCR products while Nhel should not. For Hi-C experiments, Nhel should cleave most of the
PCR products while HindIII should cleave only a small fraction (Figure 26).

4.3.2.3 Hi-C libraries production and sequencing

The whole process of Hi-C libraries production and sequencing was performed at the GeT-

PlaGe (Génome & Transcriptome - Plateforme Génomique) (https://get.genotoul.fr/en/ in Toulouse,

France).

DNA fragmentation and sizing: 1.4 ng of DNA from the Hi-C experiments were fragmented
with a Covaris machine. Then, 0.55 volumes of CleanPCR magnetic beads were added to the fragmented
DNA to select fragments < 600 bp (5 min incubation and keeping the supernatant), and 0.7 volumes of
beads were added again (5 min incubation and removing supernatant) to remove fragments < 200 bp.

Then beads were washed with 80% ethanol and DNA was recovered with Resuspension Buffer.

Biotinylated DNA purification: To purify biotinylated DNA, 1 volume of M-280 streptavidin
magnetic Dynabeads was added and after 15 min incubation, the supernatant was removed and the beads
were washed 4 times with beads wash buffer (Nextera Mate Pair Preparation Kit, [llumina) and twice
with Resuspension buffer. From this point, all steps were performed while DNA remains attached to the
beads.

End repair, 3’ adenylation and adapters ligation: To repair DNA breaks, 60 pl of water and 40
ul of End Repair Mix 2 (TruSeqNano DNA library prep, [llumina) were added and incubated 30 min at
30°C, then beads were washed as explained before. To allow the adapters ligation, an ‘A’ nucleotide
was added to the 3’ ends by adding 17.5 pl of water and 12.5 pl of A-Tailing Mix (TruSeqNano DNA
library prep, [llumina) and incubating 30 min at 37 °C and then 5 min at 70°C to inactivate the enzyme.
To ligate the adapters to the DNA extremities, 2.5 ul of Resuspension Buffer, 2.5 ul of DNA Ligase
Mix and 2.5 pl of DNA Adapter Index (TruSeqNano DNA library prep, [llumina) were added (10 min
incubation at 30°C, then 5 pl of Stop ligation Buffer) and then beads were washed as before.

PCR enrichment and DNA purification: DNA was amplified by 12 PCR cycles (15 sec at 98 °C
—30 sec at 60 °C — 30 sec at 72 °C) by resuspending beads in 50 pl of PCR mix (25 pl Enhanced PCR
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Table 3. Libraries size and concentration estimations of the libraries.

library size estimated | library concentration
with FA (bp) by gPCR (nM)
Rep1-90 619 10,74
Rep2-90 635 4,19
Rep3-90 547 15,01
Rep1-110 540 19,87
Rep2-110 570 19,86
Rep3-110 644 35,69
Rep1-90 Rep2-110
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Figure 27. Fragment analyzer profiles of the Hi-C libraries. Missing data for Rep3-110.
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Figure 28. Digestion quality control of the Hi-C libraries. All six initial Hi-C libraries were digested
with Hindlll (H) and Nhel (N) restriction enzymes and run in a 1% agarose gel. After an initial low
depth sequencing and Hi-C data processing (see below), two Hi-C libraries (110 days gestation)
presented low percentages of valid pairs and high of dangling ends compared with the others. This
corresponds with the less efficient digestion profile observed in these two libraries (upper panel). Two
new Hi-C libraries were prepared in order to replace these two, but only one (Rep3-110) showed a good

digestion profile (lower panel) and was used to replace the one presenting a less proportion of valid

pairs.
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mix, 5 ul PCR primer Cocktail and 20 ul water, TruSeqNano DNA library prep, Illumina). To recover
DNA from the beads, 0.6 volume of CleanPCR magnetic beads were added and incubated 5 min, then
washed twice with 80% ethanol, resuspended in 30 pl of Resupension Buffer and after placing in a

magnetic rack, supernatant containing the libraries was recovered.

Size selection control and sequencing: Libraries size was then controlled with the Fragment
Analyzer (FA) (Figure 27) and quantified by qPCR (Table 3). In addition an aliquot was digested by
using the Nhel and HindIII enzymes to verify if selected fragments are the ones containing the filled-in
biotinylated religation sites as done in (Belton et al., 2012) (Figure 28) and they were sequenced in pool
in one HiSeq3000 lane to validate their quality. For depth sequencing, the pool was paired end (PE)
sequenced in 9 lines of a HiSeq3000 (reads size = 150 bases), producing from ~ 476 M to 685 M read

pairs per library in total.

4.3.2.4 Hi-C data processing

The total 3,447,428,742 PE reads were processed with a bioinformatics pipeline developed in
the context of the FAANG consortium (Andersson et al., 2015) (Foissac et al., 2018). This pipeline
mainly combines existing software: HiC-Pro v2.9.0 for mapping the reads (with Bowtie 2 v2.3.3.1
(Langmead and Salzberg, 2012)) and obtaining the contact matrices (Servant et al., 2015), ICE to
normalize the matrices (Imakaev et al., 2012), HiTC v1.18.1 for various tools (Servant et al., 2012) and
Armatus v2.1 to call TADs (Filippova et al., 2014). Figure 29 shows the main steps of the pipeline
described below: read cleaning, trimming, mapping and pairing, detection and filtering of valid

interaction products, binning, contact map normalization, and TADs finding.

Mapping: A first smaller dataset was initially mapped to the Sus scrofa genome version 10.2,
and latter mapped to Sscrofal 1.0. Then after re-sequencing, the full dataset of reads was mapped to the
Sus scrofa genome (version 11.1) in two steps. First, during what is called “global alignment” in the
HiC-Pro software, both reads of each pair were mapped independently in single-end (SE) mode with
bowtie2 using the full read sequences. The reason for this SE mode is that paired-end (PE) mappers
typically use the genomic distance between potential positions of reads to assist the mapping process
since the read-to-read distances are expected to fit the size distribution of the sequenced fragments. Here,
this genomic distance is irrelevant since the goal of the Hi-C protocol is to capture long-range and trans
ligation events, so reads from the same pair are initially mapped separately. Also, due to their chimeric
nature, many reads might not directly map on the genomic sequence over their entire length. Indeed, Hi-
C hybrid fragments are issue of digestion and religation events that bring together two interacting loci.
Therefore, a single read might contain sequences from distant genomic regions when spanning the
ligation junction, which hampers the mapping process. Consequently, around 30-40% of reads were not
mapped during the global alignment. These chimeric reads need to be trimmed in order to remove the
portion beyond the ligation junction, and then re-mapped during a “local alignment” step, still in SE
mode. To do that HiC-Pro needs to be provided with the re-ligation sequence (AAGCTAGCTT)
resulting from the HindlIII digestion, fill-in, and ligation. Global and local alignments use bowtie2-

2.3.3.1-1inux-x86_64 and bowtie2 options: --very-sensitive -L 30 (global)or -L 20 (local);
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--score-min L,-1,-0.1 (global) or L,-0.6,-0.2 (local); --end-to-end; and -reorder. From
46.2 to 73.7% of the previously unmapped reads could be successfully mapped and therefore retrieved
after trimming. In the last step of the mapping process, read pairs were rebuilt whenever possible using
the set of all SE-mapped reads (either from the global or local alignment) to generate the final alignment
files in bam format. Singletons (reads for which the “mate” could not be mapped: ~14% of the initial

material) were discarded, resulting in a total of 2,367,601,471 read pairs (68.7% of the initial material).

Detection of valid interactions: Mapped read pairs were classified into valid and invalid pairs. The valid
pairs are those with reads in the expected mapping configuration, meaning that both reads map near a
HindlII restriction site. More precisely, the cumulative distance between their 5’-end to the closest
HindllI site downstream should fit within the range of the expected molecular size distribution of the
library. The distribution of these genomic distances (readl-to-HindlIlIsitel + read2-to-HindlIlIsite2) is
estimated during the quality control step and used to define the threshold values of the accepted range:
from 20 bp to 1 Kb. Invalid pairs with a fragment size outside of this range were therefore discarded by
specifying the parameters -i 20 (MIN_INSERT SIZE) -1 1000 (MAX_ INSERT SIZE). Read pairs
classified as dangling end and self-cycle ligation were discarded. These are obtained when both reads
of the read pair belong to the same restriction fragment of the genome. The self-circularized ligation
products correspond to pairs with reads in opposite directions within the same restriction fragment, and
the unligated dangling end products correspond to pairs with reads facing each other (Figure 29)
(Imakaev et al., 2012). PCR duplicates (redundant pairs with both reads at the same positions: about

13.6% of the initial material) were also filtered out.

Contact map generation: Only valid pairs involving two different restriction fragments are used
to build the contact maps. To build them, the genome is segmented into intervals of equal number of
bases, called bins. Then, the number valid read pairs (number of contacts or counts) per bin pair is
reported. In this study, the binning was generated at 500, 200 and 40 Kb (bin size), which define the
resolution of the Hi-C matrices. Large bin sizes allow identifying higher order chromatin conformation
features, while smaller bin sizes allow identifying local chromatin structures. Therefore, the smaller is
the bin size, the higher will be the resolution. However, this parameter of resolution is intimately linked
to the sequencing depth. For instance, at high resolutions, the genome is highly segmented, and the
number of read counts per bin pair is low. Therefore, high resolution Hi-C matrices need higher

sequencing depth in order to compensate this effect.

Intra-matrix normalization and display of contact maps: HiC-Pro uses for normalization a fast
sparse-based implementation of the iterative correction and eigenvector decomposition (ICE) method
(matrix balancing ICE normalization). Contrary to any parametric normalization approaches, this
method does not explicitly model specific biases introduced by experimental procedures and by intrinsic
properties of the genome (such as GC content, mappability or restriction site density), but treat them
globally instead. ICE normalization assumes that the bias for detecting contacts between two regions

can be represented as the product of the individual biases of these regions. Concretely, this method
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assumes an equal exposure to contacts for each region with all the others (Imakaev et al., 2012; Servant
et al., 2015). 2% of bins showing the lowest counts were filtered out by fixing the following parameter:
FILTER_LOW_COUNT_PERC = 0.02. The maximum number of iterations was also fixed to 100 (MAX_ITER
= 100).

The pipeline here presented uses HiTC R / Bioconductor package v1.18.1 (Servant et al., 2012)

to visualize the normalized contact maps generated by HiC-Pro.

TADs finding: Only the longest 25 chromosomes/scaffolds were considered for TAD calling,
with a specific focus on the 18 autosomes. 40-Kb resolution matrices (HiC-Pro output format) were
extracted for each chromosome separately and converted to square matrices before running Armatus

(http://www.cs.cmu.edu/~ckingsf/software/armatus/  (Filippova et al., 2014)) to generate TADs.

Armatus uses a multiscale approach to find TADs at various size scales. This method uses a score
function that encodes the quality of putative domains based on their local density of interactions. The
algorithm used to identify topological domains in chromatin from interaction matrices uniquely requires
a single specific parameter ymax, Wwhich was fixed to 0.5. Armatus generates then TADs at different y
values (from 0 to 0.5) by incrementing this parameter in steps of 0.05. As y decreases, the average size
of the domains increase, conform to a hierarchical domain structure. Armatus offers additionally the
possibility to obtain a consensus set of TADs, which have been showed to persist across multiple
resolutions (Filippova et al., 2014). Therefore, consensus TADs were used in this study for subsequent

analysis.

CTCF prediction: The position specific frequency matrix corresponding to the CTCF-binding
motif was recovered from the JASPAR Transcription Factor Binding Sites (TFBS) catalogue
(http://jaspar.genereg.net/, (Mathelier et al., 2016)). CTCF genomic occurrences were predicted by
running FIMO v.4.11.1 (Grant et al., 2011) software with the JASPAR CTCF frequency matrix. Then,
the density of CTCF predicted motifs with respect to TADs was obtained.

A/B compartments detection: A and B compartments were obtained for each chromosome after
matrix balancing ICE normalization, followed by a distance-based normalization, using the method
described in (Lieberman-Aiden et al., 2009) (Figure 30). ICE-normalized counts, Kij, were corrected
for a distance effect with:

Rij = Kij —d K¢

o

in which Kij is the distance-corrected count for the bins i and j, K¢ is the average count over all pairs
of bins at distance d = d(i,j) and ¢ is the standard deviation of the counts over all pairs of bins at
distance d. Then, Pearson correlations were computed between bins, by using interaction counts with
all the other bins of the same chromosome, and a Principal Component Analysis (PCA) was performed
on the correlation matrix. The overall process was performed similarly to the method implemented in
the R/Bioconductor package HiTC (Servant et al., 2012). Boundaries between A and B compartments
were identified according to the sign of the first PC (eigenvector). Since PCAs had to be performed on

each chromosome separately, the average counts on the diagonal of the normalized matrix were used to
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samples, several sonication cycles (from 1 to 12) were performed on fetal porcine muscle cells to
determine the number of cycles necessary to obtain DNA fragments of 300 bp. Six cycles were observed

to be appropriate for the obtention of 300 bp DNA fragments.
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identify which PC sign (+/-) should be assigned to A and B compartments for each chromosome. This

allowed to automatically obtain a homogeneous assignment across chromosomes.
4.3.3 Chromatin Immunoprecipitation sequencing (ChIP-seq)

All ChlIP-seq experiments and ChlIP-seq libraries production were performed during a three
months PhD mobility in the context of a collaboration with FAANG contributor members of the ABG
(Animal Breeding and Genetics) group at Wageningen University, Netherlands. The sequencing of the
ChIP-seq libraries was performed at the GeT-PlaGe (Génome & Transcriptome - Plateforme

Génomique) (https://get.genotoul.fr/en/ in Toulouse, France).

4.3.3.1 ChIP-seq experiments

Muscle nuclei isolation and crosslink: Muscle samples from the same six animals used in Hi-C
assays (3 fetuses at 90 days of gestation and 3 fetuses at 110 days) were used for ChIP-seq assays. For
each sample, nuclei from around 0.8g of frozen stored fetal muscle were obtained as explained before
for Hi-C experiments. Pellet was resuspended in 1/10 volumes of buffer A with formaldehyde (148 mM
NaCl, 148 mM EDTA, 0.74 mM Egtazic Acid (EGTA), 74 mM 4-(2-hydroxyethyl)-1-
piperazineethanesulfonic acid (HEPES), 11% formaldehyde) and incubated 10 min at RT. 1/10 volume
of'ice-cold 1.25 M glycine was added for 2 min at RT to quench fixation. Nuclei were centrifuged 5 min
at 1600g, then the pellet was washed with ice-cold PBS (with protease inhibitors) and nuclei were
centrifuged again 5 min (4 °C, 1600g) and resupended in 28 ml buffer C (150 mM NaCl, 1 mM EDTA,
0.5 mM EGTA, 50 mM HEPES) at 4 °C for 10 min. An aliquot of cell suspension was stained with
DAPI and phalloidin to check nuclei quality and integrity. Nuclei were then centrifuged 5 min (4 °C,
1600g) and the pellet resuspended in 1X incubation buffer (0.75% SDS, 5% Triton X-100, 750 mM
NaCl, 5 mM EDTA, 2.5 mM EGTA, 100 mM HEPES, 1/50 volume PIC reagent) so the final

concentration was around 15 million cells/ml.

DNA fragmentation: A preliminary test of DNA sonication was performed in fetal muscle nuclei
to define the number of sonication cycles needed to obtain DNA fragments of approximately 300 bp
(Figure 31). The suspension was then sonicated in a water bath at 4 °C using the Bioruptor Pico sonicator
(6 cycles, 30 seconds on/30 seconds off in order to favor fragments of 300 bp), and after 5 min
centrifugation (4 °C, 13000rpm) the supernatant was snap freeze and stored at -80 °C. An aliquot of
supernatant was used for a decrosslink test by adding 2 pl of 10 mg/ml of Proteinase K (PK) at 65 °C

for lhour.

Chromatin Immunoprecipitation: When needed, 300 ul chromatin (around 4.5 million cells)
was thawed and incubated overnight at 4 °C in final concentration 0.1% BSA, 1X PIC, 1X incubation
buffer, 3 ul CTCF antibody). To recover CTCF binding fragments, 15 ul of protein A/G magnetic beads
(50% slurry), previously washed and resuspended with incubation buffer (0.1% BSA), were added to
the 300 pl of chromatin and incubated 90 min at 4 °C on the wheel. Then beads were washed at 4 °C
for 5 min twice with wash buffer 1 (0.1% SDS, 0.1% sodium deoxycholate (DOC), 1% Triton, 150 mM
NaCl, 1 mM EDTA, 0.5 mM EGTA, 20 mM HEPES), once with wash buffer 2 (same as wash buffer 1
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but 500 mM NaCl), once with wash buffer 3 (250 mM LiCl, 0.5% DOC, 0.5% Nonidet P-40, 1 mM
EDTA, 0.5 mM EGTA, 20 mM HEPES) and twice with wash buffer 4 (1 mM EDTA, 0.5 mM EGTA,
20 mM HEPES). After washing steps, 400 pl of fresh elution buffer (1% SDS, 0.1 M sodium

bicarbonate) were added and incubated 20 min at RT.

Decrosslink and DNA purification: 0.2 M final NaCl and 100 ng/ml final PK were added to the
supernatant and to 10% input sample (30 pl of sonicated DNA before immunoprecipitation in 370 pl of
elution buffer) and were incubated at 65 °C overnight (shaking at 1000rpm). DNA was purified in a
MinFElute column (MinElute purification kit Qiagen) by adding 5 volumes of PB buffer and
centrifugation 1 min at 13000rpm (removing flow through), then eluted in 20 pl EB buffer (1 min at 37
°C, then 1 min at 13000rpm). The elution product was the final ChIP sample.

4.3.3.2 ChIP-seq libraries production and sequencing

End repair, 3’ adenylation and adapters ligation: To repair DNA breaks and allow the adapters
ligation, 7 pl End Repair & A-Tailing buffer, and 3 pl of End Repair & A-Tailing Enzyme Mix (Kapa
Hyper Prep Kit) were added to 50 pl of fragmented double-stranded DNA (5 ng) and incubated 30 min
at 20°C, then 30 min at 65 °C to inactivate the enzyme. To ligate the adapters, the 60 pul End Repair &
A-Tailing reaction product were incubated at 20 °C for 15 min in the thermo-shacker with 30 pl of
ligation buffer and 10 ul of DNA ligase (Kapa Hyper Prep Kit), 5 ul of nuclease free water and 5 ul of
final 28 nM NEXTflex-96™ DNA Barcodes. The adapter ligation reaction product was then purified by
incubating with 0.8 volume of Agencourt AMPure XP reagent at RT for 15 min, then beads were washed
twice with 80% ethanol, resuspended in 22.5 pl of elution buffer (10 mM Tris-HCI, pH 8.0) and
incubated for 2 min to elute the DNA from the beads (keeping supernatant).

PCR enrichment, DNA purification, size selection and sequencing: Libraries were amplified by
10 PCR cycles (15 sec at 98 °C — 30 sec at 60 °C — 30 sec at 72 °C) by adding to the 20 ul of Adapter-
ligated library 25 pl of PCR mix (25 pl of 2X KAPA HiFi Hotstart Ready Mix and 5 pl of 10X Library
Amplification Primer Mix). PCR product was purified in a MinElute column as described before. A
final step of size selection was performed by loading the 20 pl of amplified libraries in an E-Gel™ iBase
Power System (2% agarose, program 2) and running for 16 min and 30 seconds to collect the 300 bp
band. Afterwards, a qPCR with specific primers was performed as a quality control and libraries size
was controlled on the Bioanalyzer. The 6 libraries and the 2 input DNAs were PE sequenced in one
HiSeq 3000 lane.

4.3.3.3 ChIP-seq data analyses

Mapping: PE reads were mapped to the Sus scrofa genome version 11.1.90 (obtained from the
NCBI and released in December 2016) with bwa mem (bwa v.0.7.12-r1039) and the option -M. Resulting
sam files were converted to the bam format with samtools view -bS (samtools v.1.3.1 (Li et al.,
2009)), sorted with samtools sort and indexed with samtools index. PCR duplicates were removed with

samtools rmdup.
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Peak calling: The peaks were called using macs2 callpeak (MACS2 v2.1.1.20160309 (Feng et

al., 2012)) with the options -f BAMPE, -g 2.4e9, --keep-dup all and -q 0.01.

4.3.4 Differential analyses

A differential analysis was performed to extract bin pairs that are significantly differentially

connected between the two conditions (90 and 110 days of gestation), at three different resolutions (500,
200 and 40 kb). A method similar to the one described in (Lun and Smyth, 2015), with some adaptations,

was used to perform this task. More precisely, a 3-step approach was used which consisted in three

steps:

1)

2)

3)

Filtering step, in which low count bin pairs were removed from the dataset: this step is used to
leverage the effect of multiple testing correction (and improve the testing procedure power) by
removing low count bin pairs that have a very low chance to be found differentially expressed.
We choose to use a fixed threshold (t = 30, which corresponds to a minimum of 5 reads per
sample on average) based on the total number of reads, across the 6 samples, associated to a

given bin pair, to filter out irrelevant bin pairs from the differential analysis.

Normalization step (inter-matrices normalization), to make the different matrices comparable.
As stressed in Lun and Smyth (2015), contrary to RNA-seq data, a normalization based on the
(potentially corrected) library size is not sufficient for Hi-C data. Indeed, the complexity of the
protocol generally generates additional biases that result in trended differences between libraries
(as visible on MA plots). To correct such biases, we used the method proposed in (Ballman et
al., 2004) and implemented in the Bioconductor R package esaw (Lun and Smyth, 2016) that
performs a non-linear normalization based on a fast loess algorithm. Gene and sample specific
offsets were computed and incorporated in the Generalized Linear Model (GLM) described in

the next step, to correct trended differences.

The efficiency of the normalization was controlled using PCA and MA plots on pseudo counts

(log, transformed counts), before and after normalization.

Differential analysis step: this step was performed using a Generalized Linear Model (GLM)
based on the Negative Binomial (NB) distribution with a condition (two-level factor: 90/110
days) fixed effect. The model was estimated with the implementation of the R package edgeR
(Robinson et al., 2010) and log ratio tests were used to assess the significativity of the condition
effect on each bin pair proximity. p-values were corrected using (Benjamini and Hochberg,

1995) procedure to control the False Discovery Rate.
4.3.5 Gene ontology (GO) analysis

The GO functional analysis was performed among the human homologs of genes mapped to the

differential bin pairs. The enrichment of ontological categories was tested with the hypergeometric test
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implemented in the R package GOstats v2.32.0 (Falcon and Gentleman, 2007) using the following
ontologies: biological processes (BP), molecular functions (MF) and cellular components (CC).
Ensembl gene IDs were converted to entrez gene IDs via the R package org.Hs.eg.db v3.1.2, and mapped
to gene ontology through the R package GO.db v3.0.0.

The GO terms associated with the biological process hierarchy are sorted by their p values

corrected for multiple testing (Benjamini—Hochberg correction (Benjamini and Hochberg, 1995)).
4.3.6 Integrative analysis with expression data

Expression data was obtained from a previous transcriptome study in pig using microarray

probes (Voillet et al., 2014). For each probe ID of that study the following information was available:

1) The corresponding sequence of the probe

2) The average expression value that was measured with the probe in fetal muscle samples from Large
White pigs at 90 days of development (log-normalized value)

3) The same for samples at 110 days of development.

4) Log fold change (1ogFC) of these expression values at 110 vs. 90 days. As the reference time point

was 90 days, a positive logFC involves a higher expression in 110-days pigs.

As the transcriptome characterization -including the microarray design- was performed using a
former version of the pig genome (Sscrofa 10.2)- we first proceeded to remap the probe sequences on
the more recent 11.1 genome version in order to anchor expression data on reliable genomic positions.
Stringent filtering steps were applied to keep only high quality hits (unique best hits with more than 30

matches).

To compare the average expression in A vs. B compartment we simply computed the mean
expression value of all the probes in each compartment using bedtools map and considered the resulting
distribution in A vs. B compartments. This was done separately for 90 and 110 days, using expression
values and compartments from the same condition. To investigate the dynamic of expression in
compartment-switching regions we considered the logFC expression values of the probes and split them
into compartment-switching categories using bedtools: no switch, A to B, B to A. The distribution of all

logFC in each category was then compared. Boxplots and statistical tests were carried on in R.

The same approach was used to compare logFC expression values in the regions that were
identified by the differential analysis of Hi-C data. Since a same genomic region (bin) can be
simultaneously involved in both a bin pair with a positive logFC proximity value and a bin pair with a
negative logFC proximity value (for instance, a chrl region that is both significantly closer from a chr2
region at 90 days and significantly closer from chr3 at 110 days) we chose to discard such regions. We
therefore considered the distribution of probe logFC expression values in three categories of bins based
on the Hi-C differential analysis: bin that were not involved in any significantly different bin pair, bins
that were only found in bin pairs with negative logFC and bins that were only found in pairs with positive

logFC.
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S Combining 3D DNA FISH and gene
expression for network inference

The results presented in this study have been issue of a recent publication in the journal of
Scientific Reports (Marti-Marimon et al., 2018). The whole article is provided at the end of this thesis
(Apendix 21).

5.1 Results

5.1.1 Network inference iteration and 3D FISH validations

The whole process involving the data selection, the network inference and the 3D FISH
validations is summarized in Figure 32. Network 0 was inferred with no a priori knowledge and
contained 2,279 edges for 359 nodes (density: 3.55%). A sub-network extracted around the three target

genes is shown in Figure 33a.

Network 1 was built based on the triple co-localization of IGF2, DLKI and MEG?3 found in our
previous study (Lahbib-Mansais et al., 2016). This a priori information was used to reinforce the
existence of an edge between the pairs /GF2-DLKI, IGF2-MEG3 and DLKI-MEG3 in Network 1
(sub-network in Figure 33b), which contained 2,250 edges (density: 3.50%). In both graphs (Network 0
without a priori and Network 1 with a priori), we found a direct connection between the genes /GF2
and RPL32. The IGF2-RPL32 association was thus tested by 3D DNA FISH, because it involved one of
our 3 initial target genes (/GF2, DLK1 and MEG?3), and because it was also found in the Imprinted Gene
Network (IGN) of (Varrault et al., 2006). The 3D DNA FISH assay revealed that /GF2 and RPL32 were
associated in 20% of the analyzed nuclei (Table 4, Figure 34a).

Additionally, we used 3D DNA FISH to analyze MEST and DCN associations with each of the
three target genes, because they were also connected in the IGN (Table 4 and Figure 34b-e).

This new information about spatial co-localization in the nucleus was entered in our model as
an a priori to build Network 2 (with 2,091 edges and 3.25% of density) (sub-network in Figure 33c¢).
Specifically, in addition to the three pairs IGF2-DLKI, IGF2-MEG3 and DLKI-MEG3 given as
associated in Network 1, we gave the following pairs of genes as known to be co-localized: /IGF2-MEST
(34% of analyzed nuclei presenting an association), (DLK1/MEG3)-MEST (in 34% of analyzed nuclei),
(DLK1/MEG3)-DCN (in 15% of analyzed nuclei) and RPL32-IGF2 (in 20% of analyzed nuclei). The
pair /IGF2-DCN was given as not co-localized (with 10% of nuclei presenting an association) (Table 4,
Figure 34b-e). DLKI and MEG3 are two imprinted genes located in the same cluster, and are both
present in the same Bacterial Artificial Chromosome (BAC) used for the 3D DNA FISH experiments,

because of their proximity on the genomic sequence (Appendix 4). Consequently, we considered
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Table 4. Association percentages of tested gene pairs. Associated signals (close + co localized) are
considered as those separated by a 3D distance (d) < 1 um, and are divided into two different classes:

“close” signals (0.5 <d <1 um), and “co localized” signals (d < 0.5 um). * Genes imprinted in pig.

Number Percentage of nuclei with signals
Gene associations of nuclei | Distant Close Co-localized | Associated
analysed |(d>1pum) | (0,5<d<1pm) | (d<0.5pum) (d<1pm)
MEST* - IGF2* 100 66 32 2 34
MEST* - (DLK1-MEG3)* 90 66 28 6 34
DCN - (DLK1-MEG3)* 73 85 15 0 15
RPL32 - IGF2* 80 80 16 4 20
DCN - IGF2* 98 90 7 3 10
IGF2* - MYH3 58 48 43 9 52
(DLK1-MEG3)* - MYH3 69 55 38 7 45
MEST* - MYH3 103 74 23 3 26
ZAR1 - IGF2* 61 92 8 0 8
ZAR1 - PRLR 63 92 8 0 8

DLKI/MEGS3 |{17um DLKI/MEG3

[270m DLKI/MEG3 |[17um

Figure 34. Analysis of gene associations by DNA FISH. Extended focus of 3D image sections from
confocal microscopy and overlay of the 3 channels (blue, red and green) were obtained with Volocity
v6.0 software (Perkin Elmer). The four signals in the nuclei correspond to the two alleles of each gene.
Nuclei are counterstained with DAPI (blue). In all experiments, the percentage of association between
genes was higher than 10% except for (e). Scale = 1.7 um.

44

Table 5. Normalized mutual information (NMI) between pairs of clusterings. NMI measure the
similarity between two clusterings. The value is comprised between 0 and 1 and is equal to 1 when the

two clusterings are identical.

Network O | Network 1 | Network 2 | Network 3

Network O 1 0.3893 0.3381 0.3244
Network 1 0.3893 1 0.4007 0.3923
Network 2 0.3381 0.4007 1 0.4152

Network 3 0.3244 0.3923 0.4152 1
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DLKI/MEG3 as a simple locus for all 3D DNA FISH analyses, even though they are considered to be

single genes for network inference.

To obtain the last network (Network 3), we used 3D DNA FISH to test for associations involving
MYH3 because it was found to be connected to DLK! and MEG3 in Network 0 and to DLK! in
Network 1. We found MYH3 associated with 1) /GF2 in 52% of the analyzed nuclei, ii)) DLKI/MEG3 in
45% of the analyzed nuclei, and iii) MEST in 26% of the analyzed nuclei (Table 4, Figure 34f-h). Thus,
in addition to the a priori information given in Networks 1 and 2, we gave the following new
associations (/GF2-MYH3, DLKI1-MYH3, MEG3-MYH3 and MEST-MYH3) to infer Network 3 (2,091
edges, density = 3.25%) (Sub-network in Figure 33d).

5.1.2 Network mining (network structure with key genes)

For each network, two main numerical characteristics (degree and betweenness) were used to
detect key genes with respect to the network structure. The degree of a node (in this case, of a gene) is
the number of edges afferent to this gene. The betweenness of the node (gene) is the number of shortest
paths between pairs of genes in the network that pass through that gene. High-degree genes are
connected to many other genes while high-betweenness genes are central and more likely to disconnect
the network if removed. We analyzed the evolution of the betweenness and degree from Network 0 to
Network 3. Appendix 6 “Evolution of the betweenness and degree values of a subset of genes from
Network 0 to Network 3 shows a subset of 25 genes selected as key genes for the network structure
because they showed a high betweenness or a high degree value or both a high betweenness and a high
degree, or because they were among genes whose associations tested positive with 3D DNA FISH. Most
of the genes presenting the highest betweenness values in Network 0, still kept or increased this
numerical characteristic in Network 3 after network inference iterations. However, important changes
were observed in some genes. For instance, AKR7A2, DLK1, EGFR, MEG3, MYH3 and RPL32, showed
more than a 40% decrease in betweenness accompanied by a decrease in degree (> 25%) when
Network 3 was obtained. DCN showed a pronounced decrease in its degree while its betweenness was
slightly modified. Interestingly, MEST and /GF2 were found to have a mixed profile of betweenness
and degree: in Network 3, we observed a 46% loss for MEST in gene connections, as compared to
Network 0, while its betweenness increased by 160%. Similarly, a 30% loss of connections and a 426%

gain in betweenness was observed for /GF2.
5.1.3 Network clustering

To analyze the evolution of the network structure from Network 0 to Network 3, clustering of
the genes was performed on each network (for more details, see “Network mining and clustering” in
“Materials and Methods” and Appendix 2 and 7 “Gene description and cluster allocation” and “Cluster
parameters”). Four significant clusterings (p-value < 0.002) were obtained, one for each network. A
total of nine clusters were obtained in Network 0, six in Network 1, eight in Network 2 and six in
Network 3. Networks 0 and 3 were analyzed in depth to search for any correspondence between clusters
(Appendix 8 “Pairwise contingency tables between clusterings”). Four clusters in Network 0 were found
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Table 6. Comparison of GOBP in clusters 1 and 2 between Network 0 and Network 3. GO terms
enriched in one of the clusters as well as all GO terms associated to one of the three target genes at
least (even if not significantly enriched). In bold, the smallest FDR value for a given GOBP term when
the difference between the FDR of the two clusters is higher than one order of magnitude. Genes tested

by 3D DNA FISH are in red bold.

Network 0 - Cluster 1 Network 3 - Cluster 1
GOID GOBP Terms Genes FDR Genes FDR
43062 Extracellular structure POSTN, COL1A1, COL1A2, 5,76E-05 POSTN, COL1A1, 1,14E-08
COL3A1, COL5A1, COL16A1, COL1A2,COL3A1, COL5A1,
LAMA4, MFAP5 COL5A2, COL16A1, DCN, FAP,
FBN1, ABI3 bp, ANXA2, LAMA4
71417 Cellular response to COL1A1, COL1A2,COL3A1, 6,80E-04 COL1A1, COL1A2,COL3AL, 1,16E-02
organonitrogen COL5A2, COL16A1, FYN, KLF3, COL5A2, COL16A1, DNMT1,
compound ZFP36L1, HSP90B1 FBN1,IGF2, HSP90B1
45995 Regulation of embryonic | COL5A1, COL5A2, FGFR1, LAMA4, | 2,24E-03 COL5A1, COL5A2, FGFR1, 1,16E-02
development LFNG LAMA4, LFNG
71559 Reponse to transforming | POSTN, COL1A1, COL1A2, 2,35E-03 POSTN, COL1A1, 1,24E-01
growth factor beta COL3A1, FYN, ZFP36L1 COL1A2,COL3A1, FBN1
44236 Multicellular organism COL1A1, COL1A2,COL3AL, 2,35E-03 COL1A1, COL1A2,COL3AL, 3,05E-03
metabolic process COL5A1, COL5A2 COL5A1, COL5A2, FAP
43588 Skin development COL1A1, COL1A2, COL3A1, 3,18E-03 COL1A1, COL1A2, COL3A1, 1,44E-01
COL5A1, COL5A2, ZFP36L1 COL5A1, COL5A2
1101 Reponse to acid COL1A1, COL1A2,COL3AL, 1,17E-02 COL1A1, COL1A2,COL3A1, 2,27E-02
chemical COL5A2, COL16A1, NFATC4 COL5A2, COL16A1, DNMT1,
NFATC4
1501 Skeletal system POSTN, COL1A1, COL1A2, 1,43E-02 POSTN, COL1A1, COL1A2, 3,05E-03
development COL3A1, COL5A2, FGFR1, COL3A1, COL5A2, FBN1, FGFR1,
TMEM119 ANXA2, TMEM119, IGF2
Network 0 - Cluster 2 Network 3 - Cluster 2
72350 Tricarboxylic acid CS, DLAT, DLD, NNT, MDH1, 3,02E-06 CS, DLAT, DLD, NNT, MDH1, 2,11E-05
metabolic process PDHA1 PDHA1
51186 | Cofactor metabolic €OQ7, DLAT, DLD, NNT, HK1, 2,97E-05 | DLAT, DLD, IBA57, NNT, GPI, 1,34E-03
process ACACB, NMINAT3, ACAT1, MDH1, ACACB, NMINAT3, MDH1,
PDHA1, PDHX PDHA1, FLAD1, MCEE
72524 | Pyridine-containig DLD, NNT, HK1, NMINAT3, MDH1, | 1,00E-08 | DLD, NNT, GPI, NMINAT3, MDH1, | 1,11E-02
compound metabolic PDHA1, PDHX PDHA1
process
6631 Fatty acid metabolic CPT1B, ECI1, DLAT, DLD, ACACB, 1,00E-04 | CPT1B, ECI1, DLAT, DLD, FABP3, 1,17E-03
process ACADS, ACAT1, PDHA1, PTGES2, ACACB, ACADS, PDHA1,
PDHX ADIPOR2, PTGES2, MCEE
6091 Generation of precursor CS, DLAT, DLD, NNT, HK1, MDH1, 1,09E-04 CS, DLAT, DLD, NNT, GPI, MDH1, 1,32E-07
metabolites and energy OXA1L, ATP5B, PDHA1, SLC25A3 NDUFA3, NDUFB5, NDUFS1,
OXA1L, ATP5B, PDHA1, SLC25A3,
CISD1, NDUFA12, PYGM
6090 Pyruvate metabolic DLAT, DLD, HK1, PDHA1, PDHX 5,42E-03 DLAT, DLD, GPI, PDHA1, BSG 2,32E-02
process
6790 Sulfur compound VCAN, DCN, DLAT, DLD, ACACB, 7,47E-03 DLAT, DLD, IBA57, ACACB, 4,79E-01
metabolic process ACAT1, PDHA1, PDHX PDHA1, MCEE
42180 | Cellular ketone COQ7, DLAT, DLD, ACACB, 1,46E-02 | DLAT, DLD, FABP3, GPI, ACACB, 8,05E-02
metabolic process PDHA1, PDHX PDHA1
45454 Cell redox homeostasis TXNRD2, DLD, NNT, PTGES2 1,46E-02 TXNRD2, DLD, NNT, PTGES2 4,91E-02
44282 Small molecule catabolic | CPT1B, ECI1, DLD, HK1, ACACB, 1,88E-02 CPT1B, ECI1, DLD, GPI, ACACB, 4,51E-02
process ACADS, ACAT1 ACADS, BCAT2, MCEE
98656 Anion transmembrane CLCN5, CPT1B, ACACB, SLC25A3, 2,31E-02 CPT1B, ACACB, SLC25A3, 3,77E-01
transport SLC1A3, VDAC1 SLC1A3, VDAC1
6081 Cellular aldehyde DLAT, DLD, PDHA1, PDHX 2,59E-02 | DLAT, DLD, GPI, PDHA1 8,73E-02
metabolic process
43648 Dicarboxylic acid DLD, NMINAT3, MDH1, SLC1A3 3,13E-02 DLD, NMINAT3, MDH1, BCAT2, 2,13E-02
metabolic process SLC1A3
16042 | Lipid catabolic process CPT1B, ECI1, ACACB, ACADS, 3,65E-02 | CPT1B, ECI1, FABP3, ACACB, 6,59E-02
ACAT1, NCEH1 ACADS, NCEH1, MCEE
10257 NADH dehydrogenase NDUFA3, NDUFB5, NDUFS1, 3,29E-03
complex assembly OXA1L, NDUFA12
97031 Mitochondrial NDUFA3, NDUFB5, NDUFS1, 3,29E-03
respiratory chain OXA1L, NDUFA12
complex | biogenesis
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to share at least two thirds of their nodes with the corresponding clusters in Network 3. More precisely,
64.1% of the genes in cluster 1, 68.4% in cluster 2, 66% in cluster 3 and 82.4% in cluster 4, were
observed in the corresponding clusters of Network 3. The other clusters in Network 0 (clusters 5, 6, 7,
8 and 9) were mainly spread each into two different clusters of Network 3. Additionally, the Normalized
Mutual Information (NMI) value was calculated to quantify the similarity between clusterings for pairs
of networks (Table 5). Interestingly, we observed that the clustering obtained in Network 0 was the most
similar to the clustering obtained in Network 1 (NMI = 0.389). Similarly, the clustering in Network 1
was the most similar to the one obtained in Network 2 (NMI = 0.401), and the clustering in Network 2
was the most similar to the one obtained in Network 3 (NMI = 0.401). This finding suggests that
clusterings become more consistent when introducing new biological information in each network

inference iteration.
5.1.4 Functional enrichment analysis

To test the biological relevance of each cluster in Networks 0 and 3, a functional enrichment
analysis was performed for each cluster from both networks. Significant GO terms for Biological
Processes (GOBP) were observed in clusters 1 and 2 of Networks 0 and 3, and in clusters 3, 5 and 8 of
Network 0 (Table 6 and Appendix 9 “Comparison of GOBP between Network 0 and Network 3”). Table
6 shows the four clusters presenting the non-redundant GOBP with the smallest False Discovery Rate
(FDR). When comparing cluster 1 in Networks O and 3, eight common enriched GO terms were
observed, mainly involved in extracellular matrix formation, embryonic development, metabolic
processes and cellular response to stimulus. Besides, fourteen common enriched GOs were observed in
cluster 2 of Networks 0 and 3. These GO terms were mainly involved in cellular respiration, energy
metabolism, cellular metabolic processes and metabolism of fatty acids. Additionally, two GO terms
were observed only in cluster 2 of Network 3, both involved in the mitochondrial respiratory processes.
Interestingly, the smallest FDR were observed in Network 3: (i) for cluster 1 (containing all genes tested
by 3D DNA FISH), referring to the “Extracellular structure” term (involving the Decorin gene (DCN);
FDR = 1.14e-08); (ii) for cluster 2, referring to the “Generation of precursor metabolites and energy”
term (FDR = 1.32¢-07) (Table 6).

These results suggest that our approach to network inference by incorporating a priori biological
information enables us to obtain relevant GO terms while conserving the functional enriched terms
found in the initial network (Network 0). Moreover, we unexpectedly observed that two (/GF2 and
DCN) of our seven target genes showed more significant GO terms in Network 3 than in the initial
network. Specifically, /GF2 was observed to be uniquely involved in the “Genetic imprinting” term in
cluster 3 of Network 0 (FDR = 3.82e-02), while in cluster 1 of Network 3 it was found to be involved
in two new significant GO terms, the one with the smaller FDR being “Skeletal system development”
(FDR = 3.05e-03) (Table 6 and Appendix 9 “Comparison of GOBP between Network 0 and Network
3”). DCN was in turn observed to be involved in the “Sulphur compound metabolic process” term
(FDR = 7.47e-03) in cluster 2 of Network 0, while in cluster 1 of Network 3 it appeared to be involved
in the “Extracellular structure” term presenting the smallest FDR value (1.14e-08) of all clusters.
Concerning MEST, MYH3 and DLK1, also tested by 3D DNA FISH, even though the observed FDR
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were higher than 5%, interesting GO terms were observed for these genes in cluster 1 of Network 3
(Appendix 9 “Comparison of GOBP between Network 0 and Network 3”). For instance, MEST was
found to be involved in “Mesoderm development”, MYH3 in “Body morphogenesis”, DLK! in “Notch
signaling pathway” and DCN and MYH3 were both found to be involved in “Muscle organ

development”.

Another functional analysis was performed with Ingenuity Pathway Analysis (IPA) specifically
on cluster 1 of Network 3, which contains the target genes (/GF2, DLKI1, MEG3, RPL32, MEST, DCN
and MYH3). IPA proposed to connecting 49 (82%) out of 60 genes in a network including all target
genes except MEG3 and MYH3. MYH3 was found in a small network with 8 out of 60 genes, and MEG3
in another small network of only 1 out of 60 genes. Furthermore, MYOD1 and CTNNBI were identified
by upstream regulator analysis as potential transcriptional factors for a group of genes including /GF2
and MYH3. As IPA offers the possibility of merging networks (if there are links between nodes in the
Ingenuity Pathways Knowledge Base), a reconstructed network was obtained (Figure 35), and analyzed
around the target genes. Fourteen genes, among them 7 genes from cluster 1 (including DCN and IGF?2),
were observed to be related to “Cell Morphology” (p-value = 1.75¢-08). DCN, DLKI and IGF2 were
likewise involved in the “Quantity of cells” function with 31 genes, including 16 genes from cluster 1
(p-value = 2.48¢-09). “Morphology of connective tissue cells” with 8 genes (p-value = 1.27¢-04)
included DLK and MEST. “Formation of muscle”, with 10 genes (p-value = 2.98e-05), involved IGF2
and MYH3 together with the two transcription factors CTNNBI and MYOD! (Appendix 3 “Biological

network reconstructed following Ingenuity data analyses™).

5.2 Discussion

We present here a new approach based on GGM that enables the user to introduce previously
acquired biological knowledge to build gene co-expression networks. Since an observed correlation
between two genes in the co-expressed gene network does not necessarily mean that these genes are
related to a common biological process, we used information of gene nuclear co-localizations to
reinforce observed links in the co-expressed gene network. Some studies have shown examples of
co-expressed and co-localized genes being implicated in a particular process, e.g. the Hbb and Hba
Klfl-regulated globin genes were found to be co-localized in specialized Klfl-enriched transcription
factories of erythroid cells (Schoenfelder et al., 2010). Others have observed a role of co-expressed and
co-localized genes in gene expression regulation, e.g. in the HUVECs endothelial cell line, SAMD4A,
TNFAIP2 and SLC6A5 TNFo-induced genes were hierarchically transcribed when engaged in

chromosomal interactions (Fanucchi et al., 2013).

In order to determine which pairs of genes would present a reinforced edge in the networks, we
performed two negative controls (see “gene-gene associations” in the “Materials and Methods” section).
As discussed in our previous study (Lahbib-Mansais et al., 2016), it can be difficult to define a suitable
non-associating control. Sandhu et al. established a threshold of 2% (Sandhu et al., 2009), while others

used the expected frequency of random co-localization based on the volume of the nucleus and
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individual gene signals (<1%) (Osborne et al., 2004). This estimation of random co-localization does
not take into account other constraints such as: (1) chromosomes occupy specific territories (Bolzer et
al., 2005; Rieder et al., 2014); (2) transcriptionally silent domains reside at the nuclear periphery (Boyle
et al., 2001); (3) chromatin regions are preferentially associated in topological domains (TADs) (Dixon
et al., 2012). Fixing an arbitrary threshold of 10% was a more restrictive way of analysing co-expressed
genes that might tend to interact preferentially. Consequently, the pair /GF2-DCN was given as not co-

localized by enforcing the absence of an edge between both genes.

Testing the nuclear co-localization of /GF2 and RPL32 by 3D DNA FISH proved interesting,
as this connection concerned an imprinted gene (/GF2, involved in muscle growth-related traits (Van
Laere et al., 2003)) and a ribosomal protein coding gene RPL32 (Young and Trowsdale, 1985). This
experiment revealed that these genes are associated. Additionally, it was interesting to find co-localized
pairs of genes such as IGF2-MEST, (DLK1/MEG3)-MEST, (DLK1/MEG3)-DCN, that were observed to
be connected in co-expression networks in other studies (Al Adhami et al., 2015; Varrault et al., 2006),
even though they were not directly connected by an edge in our network (Network 1) but via
intermediary genes. Besides, surprising results showed the highest association we have ever observed
between two genes (neither in the present study, nor in previous ones). This association concerns MYH3
and /GF2. MYH3 plays an important role in foetal muscle development (Schiaffino et al., 2015; Voillet
et al., 2018), and encodes for the embryonic Myosin Heavy Chain (MYHC) 3 protein. To the best of our
knowledge, no previous association between these two genes, whatever its origin (nuclear or functional),
has ever been observed, even though the two genes are known to be involved in muscle development
(Livingstone and Borai, 2014; Schiaffino et al., 2015). To determine the impact of the a priori co-
localization information introduced to enforce the presence or the absence of an edge, we analysed the
evolution from Network 0 to Network 3, first globally (with conserved edges and key genes) and then
locally (with network clustering and functional enrichment). The global analyses revealed that 82% of
edges in Network 0 were conserved in Network 3 and that the most important genes (with respect to
network structure) in Network 0 were among those showing the highest values of betweenness and
degree in Network 3. These findings suggest that the introduction of enforced edges is not linked to the
appearance of major disturbances in the network structure. However, when focusing on the target genes
analysed by 3D DNA FISH, we observed a general decrease in the degree value, meaning that /GF2,
DLKI, MEG3, RPL32, MEST, DCN and MYH3 were less connected with the rest of the other genes in
Network 3. Despite this observed isolation concerning genes for which edges were enforced, this effect
was not always accompanied by a loss of betweenness. In other words, reinforcing a limited number of
edges did not change either the global network structure or the importance of target genes in the final
network. In the local analysis, the NMI value revealed that the clusters resembled one another more with
each new network inferred. In addition, four out of six clusters in the final network (Network 3)
conserved more than 62% of genes in the corresponding clusters of Network 0. This concurred with the
results of the functional enrichment analysis, which revealed that the GOs found were conserved
between Networks 0 and 3. All these results support the evidence that our approach did not introduce
any substantial disturbance. In fact, this iterative process brought substantial improvements; notably, it
enabled us to obtain reliable networks in terms of relevant biological information, especially around our

target genes. This was supported by the following findings: (1) the biological processes presenting the
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smallest FDR were found in Network 3, even though one of them involved DCN, for which edge
estimations were modified by the introduction of a priori information; (2) two new significant GO terms
related to energy metabolism appeared in cluster 2 of Network 3; (3) two genes (/GF2 and DCN)
analysed by 3D DNA FISH were involved in biological processes with smaller FDR in Network 3 than
in Network 0. Moreover, /IGF2 was found in an additional GO of Network 3, while only present in one
GO of Network 0.

One of the most important goals of the present article was to elucidate the mechanisms that
govern porcine skeletal muscle development in late gestation. Many studies have been performed in pig
to address this question (Cagnazzo et al., 2006; Tang et al., 2015a; Voillet et al., 2014; Xu et al., 2012;
Zhao et al., 2011, 2015). In our model, we proposed a final network (Network 3) in which enriched
biological functions related to muscle development were observed. These observations were in
agreement with the results obtained by Voillet ef al.(Voillet et al., 2014). In addition, in the resulting
IPA reconstructed network, we highlighted MYODI and CTNNBI among the proposed transcription
factors because they were especially interesting due to their connection to two important target genes,
IGF2 and MYH3. Although MYODI and CTNNBI were not present in the 359 genes used for network
inference, they were up-regulated at 90 days of gestation in all genotypes (Appendix “Gene expression
profiles”) (Voillet et al., 2014). MYOD! encodes for a myogenic factor that regulates skeletal muscle
cell differentiation by activating transcription of muscle-specific target genes (for review (Berkes and
Tapscott, 2005)). CTNNBI (B-catenin 1), encodes for a transcriptional co-activator that was found to be
required for muscle differentiation in murine myoblasts by interacting directly with MyoD and
promoting its binding to the E box elements enhancing its transcriptional activity(Kim et al., 2008). The
co-expression and nuclear co-localization of /IGF2 and MYH3 suggest they are each subjected to similar
transcriptional regulation by these two transcription factors. The studies of (Shang et al., 2007) and
(Ramazzotti et al.,, 2016) are in agreement with this hypothesis. Shang et al. revealed that in
mesenchymal stromal cells from rats, an ectopic expression of Ctunbl inhibits adipogenetic
differentiation and induces the formation of long multinucleated cells expressing myogenic genes, such
as MyoD and Myhc, by promoting the expression of skeletal muscle-specific transcription factors.
Ramazzotti ef al. observed that an overexpression and accumulation of B-catenin in the nuclei of
differentiating murine myoblasts results in higher MyoD activation and Myhc induction. Additionally,
IGF2 was found to be up-regulated in pig during myogenesis and, more precisely, involved in primary
and secondary muscle fibre differentiation (Zhao et al., 2011). Moreover, Myod and Igf2 were observed
to be involved in the switch between myogenic and adipose lineages in mouse (Borensztein et al., 2012).
In addition, we found /GF?2 indirectly associated with CTNNBI (through the intermediary gene
IGF2 bpl) in the reconstructed network. /GF2 bpl was not used for network inference but was found
expressed at the 90™ day of gestation (Appendix 10 “Gene expression profiles”) (Voillet et al., 2014).
Indeed, B-catenin was observed to induce /GF2 bpl in HEK293 cells (Noubissi et al., 2006), which in
turn was observed to regulate /GF2 mRNA subcellular location and translation in neurons (for review
(Bell et al., 2013)). This suggests that in muscle cells, a similar mechanism could possibly be involved
for the regulation of /GF2 via the CTNNBI transcription factor. Moreover, the long non-coding DNA
of MyoD (IncMyoD), directly activated by MyoD, may negatively regulate /gf2 bp1-mediated translation
of proliferation genes in murine myoblasts (Gong et al., 2015). This could explain how MyoD blocks
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Figure 36. Summary of the main steps in data analysis. The Hi-C hybrid fragment (result of a
religation event) is paired-end (PE) sequenced (first line). Readl (R1) and read2 (R2) are mapped to
the reference genome (second line). Valid read pairs with an estimated insert size between 20 bp and 1
Kb (sum of distances from each read pair to their closest downstream HindlIll genomic site) are kept,
the others are discarded. The genome is segmented into genomic intervals of an equal number of bases
(binning), the so-called “bins”. Matrices are obtained at different resolutions (bin size) by adding the
number of valid pairs (counts) per bin pair. The numbers in the matrices were made up for illustrative

purpose and do not come from real data.
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proliferation to create a permissive state of differentiation. Moreover, DLKI and MYODI were not
connected in the reconstructed network. However, DLK [ which encodes for a preadipocyte factor that
inhibits adipocyte differentiation(Wang et al., 2010), might inhibit cell proliferation and enhance cell
differentiation by regulating the expression of MyoD (Waddell et al., 2010). Combining all this
information with the observed up-regulation at 90 days of gestation of the above-mentioned genes, our
results highlight a network of interrelated genes associated with skeletal muscle regulation and that are

mainly responsible for inhibition of proliferation and muscle differentiation.
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6 Global genome organization assessed by
Hi-C and gene expression

6.1 Results

6.1.1 Descriptive analysis of genome global organization in fetal
muscle by Hi-C

In order to assess the 3D genome organization in fetal muscle, six Hi-C libraries (three per
condition: 90 days and 110 days of gestation), called Rep1-90, Rep2-90, Rep3-90, Rep1-110, Rep2-110
and Rep3-110, were sequenced in two batches. First, an initial sequencing run was performed on 4 lanes
of'a HiSeq3000 to estimate the level of resolution that could be achieved in practice with these libraries.
This first set was analyzed using the assembly version SscrofalO of the pig genome that was available
at the time. Since a more recent version of the reference genome came out during the study, we
reanalyzed this first dataset on the Sscrofall version. Later, in order to achieve a better resolution, we
re-sequenced the same libraries over six new lanes. This full dataset was analyzed on the most recent
assembly version Sscrofall and most of the results we present come from this entire set of data.
However, in order to estimate the effect of the reference genome assembly on the analysis, we will
sometimes compare results from the initial subset on both assembly versions. We will refer to these
datasets as “subset_v10” and “subset_v11” in the text. In addition, in order to validate both our data and
the analysis pipeline, we downloaded two public datasets from Hi-C assays performed in human and
mouse cells (GEO Accessions SRR1030718 and SRR1658732 respectively) (Dixon et al., 2015; Rao et
al., 2014). These two datasets, hereafter referred as “human ES cells” and “mouse CH12 cells” have
been analyzed in parallel using their respective reference genomes (GRCh38 and GRCm38) as a control.
The main steps of the analysis are summarized in Figure 36 (from raw data to matrix construction) as a
remainder of the bioinformatics pipeline used to process Hi-C data (see Material and methods for more
details).

6.1.1.1 Read statistics

6.1.1.1.1 Mapped pairs

Between ~ 476 M and 685 M read pairs were obtained per library after the two runs of
sequencing (Figure 37A), which represents a total of ~ 3.45 billion of sequenced reads for the entire
experiments. Around 63% - 73% of the read pairs could be mapped to the reference genome (Sscrofall)
(Figure 37B). All replicates showed a similar mapping ratio except for Rep2-110 which showed lower
mapping rates. These mapping rates are lower than usually reported for human and mouse (Rao et al.,
2014), as expected due to the lower quality of the porcine reference genome in terms of completion and
assembly. Processing public datasets from human and mouse studies with our pipeline led to results in
line with the literature (Figure 37B).
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Figure 38. Selection of “valid read pairs” issue of a Hi-C religation event. Upper panel (4 and B):
Images adapted from (Yaffe and Tanay, 2011) to illustrate how spurious ligation products are filtered
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distribution is consistent with the expected size of the fragments to be sequenced after the experimental

step of size selection (see Materials and methods).
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6.1.1.1.2 Valid pairs

The next step of the Hi-C data analysis is to obtain, among the total read pairs, the so-called
“valid pairs”. The bioinformatics pipeline based on HiC-Pro (Servant et al., 2015) applies a filter to
remove read pairs that do not have a mapping configuration consistent with a Hi-C religation event (see
Materials and Methods). More precisely, since the Hi-C protocol aims to sequence chimeric fragments
that contain a religation site, each read is expected to be mapped close to a HindllI restriction site on the
genome. In addition, for a given read pair, the sum of the distances from the reads to their closest HindIII
sites downstream (d1 + d2) should correspond to the size of the sequenced fragment (Figure 38A-B).
The distribution of this sum is computed across all read pairs as a quality control, and pairs with extreme
values (min and max threshold of 20 bp and 1 Kb respectively) are discarded (Figure 38C). This
distribution corresponds to the insert size of the libraries (420- 520 bp), which was experimentally
estimated after subtracting 120 bp (size of the adapter sequences) to the observed size (540 — 640 bp) of

the libraries that was measured with the Fragment Analyzer (see Materials and Methods, Figure 27).

After applying this filter, between 122 M and 283 M valid pairs were obtained per library on
the genome version Sscrofall (Figure 37A). This corresponds to ~ 26% — 47% of the total pairs (Figure
37B). Globally, libraries showed a good ratio (> 50%) of valid/mapped pairs, except Rep2-110 for which
both mapping rates and proportion of valid pairs were lower compared to the other libraries. Despite
this decrease on valid/mapped pair ratio, we still kept the Rep2-110 library because the fragment size
distribution estimated from the valid pairs was consistent with a Hi-C religation event (Figure 38C),
which supported the quality of the filtered data. The valid/mapped pair ratio obtained in pig was higher
than the one observed in human, except for Rep2-110, meaning that our Hi-C libraries were generally
more enriched in valid pairs than the data set obtained from human (Figure 37B). This could be the
results of small variations in the experimental protocols for instance, or of intrinsic differences due to

tissue and/or species specificities.

As mentioned above, a subset of the data was both analyzed on the 10 and on the 11 version of
the pig genome. The results of these analyses are summarized in Figure 39. Running the pipeline by
using the Sscrofall genome version allowed a ~ 8% - 10% increase on the mapping rates compared
with Sscrofal0. These resulted in a ~2% - 4% increase on valid pairs, which is consistent with the
considerable improvement on the sequence completion and assembly of the more recent genome

version.

6.1.1.1.3 Cis and trans valid pairs

The valid pairs were then classified into cis and trans pairs depending on whether reads from
the same pair mapped to the same or to different chromosomes respectively. Around 41% - 56% were
classified into trans pairs and ~48% - 59% into cis pairs. Last, cis pairs were divided into short-range
pairs (genomic distance within mapped reads < 20 Kb; ~ 0.9% - 3.8%) and long-range pairs (genomic
distance within mapped reads > 20 Kb; ~ 43% - 56%). These results were obtained using the Sscrofall
genome version (Figure 40). Compared with results on the previous genome version, this represents
~4.5% less trans pairs (Figure 41). This difference could be explained by the assembly improvement.
Indeed, read pairs with one read on a chromosome and the other one on an unplaced scaffold are
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Figure 40. Valid read pairs per category after mapping the full dataset of reads on the Sscrofall
genome version. (A) Cis valid pairs: pairs with reads on the same chromosome (short-range: separated
by a genomic distance < 20 Kb; long-range: distance > 20 Kb). Trans valid pairs: pairs with reads on
different chromosomes. (B) Percentage of valid pairs per category of our six datasets (dark colors).
Results from two public datasets from human ES cells (Dixon et al., 2015) and mouse CHI2 cells (Rao

et al., 2014), analyzed with our bioinformatics pipeline, are also shown (light colors).

131



100% 3psy% aEm 2/03% M shiey sEc U0%% 1R8% 374y @ 266% 2
90%

80% 38,75%

46,73% 4L18% 45,319 45,54% 45,37%

70% 51,20% 49,17% 49,86% 49,67%
53,95%

60%

50%

40%
30% 60,16%
55,89% ! 5 %
’ 5 % 50,72% 51,97%

. 50,02% 4 % 45,67% . » 4 % L %

(+]
10%
0%

X E X » X EY o > O > > »

oS N o o of o > S N S Y N
x4 3 A ¥
& & & & & & & & R Qg,&

Q«“éb’

Trans valid pairs (subset_v10)  Cis long-range valid pairs (subset_v10)  Cis short-range valid pairs (subset_v10)

M Trans valid pairs (subset_v11) = Cis long-range valid pairs (subset v11) M Cis short-range valid pairs (subset v11)

Figure 41. Results from a subset of the data on the previous genome version (Sscrofal() and on the
current genome version (Sscrofall). Comparison of the percentage of valid read pairs per category

obtained with the two assembly versions.

500 kb ||° 200 kb 40 kb

500 kb 200 kb || 40 kb

Figure 42. Hi-C contact matrices at different resolutions. lllustration of Hi-C contact matrices of
chromosomes 1 and 18 obtained at 500, 200 and 40 Kb resolution (Rep1-90). The darker the red color,
the more contacts (valid read pairs) present in a pair of bins. Visualizations made with the HiTC R

library.
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automatically classified as trans pairs. Consequently, if the number of unplaced scaffolds decreases
between assembly versions, the number of trans pairs should decrease too. In fact, the Sscrofal0 version
contains 4,562 unplaced scaffolds (7.54% of the genome; genome size ~ 2.8 Gb), vs. 583 unplaced
scaffolds in the 11 version (2.65% of the genome; genome size ~ 2.5 Gb). Accordingly, the proportion
of valid pairs that involved unplaced scaffolds (i.e. with at least one read mapped on a scaffold) dropped

from 11.7% to 4.6% between versions, which can explain part of the drop in trans pairs.

Interestingly, we observed higher percentages of trans pairs in the porcine libraries than in the
human one. Moreover, the percentage of cis short-range pairs were lower in pig than in human or mouse
(Figure 40B). These unexpected results could be in part explained by differences on the assembly of the
human and pig genomes, similarly to the differences observed between SscrofalQ and Sscrofall as
presented above. The human reference genome (GRCh38) contains 169 unplaced scaffolds (0.37% of
the genome; genome size ~ 3.1Gb), compared with the 583 unplaced scaffolds in Sscrofall (2.65% of
the genome). However, even if a small proportion of the increased values of trans pairs reported in fetal
muscle pig can be explained by the quality of the reference genome, the percentages of frans pairs
remain still high. This means that most of the differences in the cis/frans pair ratio underline specificities
regarding the genome organization of the biological material (fetal pig muscle tissue vs. human

embryonic stem cells).
6.1.1.2 Construction of genome-wide contact maps

The next step of the analysis is the generation of the contact matrices using valid read pairs. For
that purpose, the genome was segmented into intervals of equal size (number of bases) called bins. To
explore the data at different resolutions, we generated the matrices using several bin sizes (500 Kb, 200
Kb and 40 Kb). The larger the bin size, the lower the resolution, similarly to pixel size in pictures. Each
cell of the matrix corresponds to a pair of bins, to which is associated the raw number of valid read pairs
(referred as “counts” when talking about bin pairs) connecting the corresponding genomic intervals. The
total number of bin pairs —hence the size of the matrix- therefore depends on the genome size and on the
resolution (15,182,805, 83,650,645 and 1,973,647,378 bin pairs for the 500, 200 and 40 Kb resolutions
respectively). An example of Hi-C contact matrices (also called interaction matrices or contact
heatmaps) obtained at different resolutions for chromosomes 1 (the biggest one) and 18 (the smallest

autosomal chromosome) is provided in Figure 42.

6.1.1.2.1 Main features of Hi-C matrices

Globally, Hi-C contact matrices share similar properties. The first one is that they are balanced
(or symmetric) matrices, which means that the rows and columns of the matrix represent the same
feature, in this case the same succession of genomic intervals. For instance, if we observe Figure 42, the
500 Kb resolution Hi-C matrix of chromosome 1 is displayed by dividing the length of the chromosome
into 500 Kb genomic intervals to form the rows and columns respectively. The first row and column
both represent the genomic interval Chrl:1-500,000 (assigned to binl), the second ones represent the
interval chr1:500,001-1,000,000 (assigned to bin2), and so on. Thus, the first cell of the matrix
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Figure 43. Distribution of count values in the 40 Kb matrices. The number of occurrences of each
count value (number of bin pairs with that value) is shown after log-transformation. Only positive values

up to 60 are shown.

Table 7. Percentage of cis and trans bin pairs in a virtual matrix with one count in each cell. Values

obtained in Hi-C matrices at different resolutions.

500 Kb 200 Kb 40 Kb
Total number of bin pairs 15,182,805 83,650,645 1,973,647,378
Cis bin pairs (%) 4.73 5.34 5.65
Trans bin pairs (%) 95.27 94.66 94.35




GLOBAL GENOME ORGANIZATION ASSESSED BY HI-C AND GENE EXPRESSION

500 kb

Ll
e

eooe
®oo0
e @0
oo 0
o0 o
e o
o0

°
[ ]
L]

oo
eo@
oo
o0
eo @

200 kb

o0 @
o9
o0 0
o0 o
oo@
LI YT
o0
o0
oo @
° o0
LI Y]
o0 @
e e
o0

5131317 31216 61212

oo 0
®oe@@
oo
(1}
oo 0
® oo
oo 0
eo0@
L]

3121013/0131314 31012101313 314|2 2

Figure 44. Schematic representation of the relationship between binning (resolution) and sparsity.
Read counts represented over one dimension genomic region to illustrate the positive correlation
between resolution and sparsity on the Hi-C matrices. For an equal number of counts on a specific
chromosome, when the last is divided into smaller genomic intervals (bins), the number of counts per
bin decreases while the number of bins with no count increases. Consequently, the sparsity increases at

higher resolutions.

Table 8. Statistics of bin pairs counts of Hi-C matrices obtained at three different resolutions (R) for
the six replicates. The percentages of bin pairs with no count or at least one count were calculated over
the total number of bin pairs (showed in Table 7). The percentages of cis and trans bin pairs with at

least one count were calculated over the total bin pairs with at least one count.

R

(Kb) Rep1-90 Rep2-90 Rep3-90 Rep1-110 Rep2-110 Rep3-110 Mean
%bin 500 13.17 12.87 15.98 13.31 18.85 13.00 14.53
pairs 200 29.66 28.83 42.15 27.48 52.32 29.21 34.94
count=0 40 91.60 91.42 94.11 91.60 95.77 91.52 92.67
%bin 500 86.83 87.13 84.02 86.69 81.15 87.00 85.47
pairs 200 70.34 71.17 57.85 72.52 47.68 70.79 65.06
count>0 40 8.40 8.58 5.89 8.40 4.23 8.48 7.33
%cis bin 500 5.42 5.40 5.60 5.42 5.79 541 5.50
pairs 200 7.44 7.33 8.88 7.23 10.47 7.41 8.13
count>0 40 29.04 25.72 33.61 27.32 35.45 29.21 30.06
%trans 500 94.58 94.60 94.40 94.58 94.21 94.59 94.50
bin pairs 200 92.56 92.67 91.12 92.77 89.53 92.59 91.87
count>0 40 70.96 74.28 66.39 72.68 64.55 70.79 69.94
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A Proportion of trans bin pairs with an absolute count per bin pair (500 kb resolution matrices)
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Figure 45. Distribution of counts in cis and trans bin pairs. (4) Proportion of trans bin pairs among
puairs of different count values. Proportions were computed within each set of bin pairs with I to 100
counts on the 500 Kb resolution matrix of each replicate. Pairs of bins with no count are not represented.
Most of bin pairs harboring few counts correspond to genomic regions located on different
chromosomes. Inversely, most of bin pairs harboring many counts correspond to genomic regions
located on the same chromosomes. (B) Heatmap representation of a whole genome Hi-C matrix (sample
Rep1-90 - only the 18 autosomes are represented). The matrix is proportional to the chromosome sizes.
Interactions between proximal regions in the genomic space correspond to the area next to the diagonal

(between dotted blue lines), where most of the high counts are located.
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(rowl-columnl) contains the number of counts (reported valid read pairs) between genomic regions
mapped to binl, the second one contains the reported counts between binl and bin2, and so on. These
Hi-C matrices are symmetric because, for instance, the number of counts in the matrix cell

“rowl-column2” (binl-bin2) is the same than in “row2-columnl” (bin2-binl).

The second property of the Hi-C matrices is the high density of counts all along the diagonal,
which represents the number of valid read pairs mapped to genomic regions located in the same genomic
interval (bin) or consecutive genomic intervals (bins), as observed in Figure 42. This is an expected
observation as proximal genomic regions in the linear sequence of the genome cannot be far from each
other in the 3D nuclear space and thus, the probability of a Hi-C religation event between these regions
is higher than between genomically distal regions. Hence, as we move away from the diagonal, the
number of counts decreases along with the probability of contact between distal genomic regions. Far
from the diagonal, inter-chromosomal bin pairs (trans) usually have low counts. These trans bin pairs
represent the vast majority (~ 95%) of all bin pairs in a typical matrix (Table 7), meaning that most of
the bin pairs have low or no counts. As the distribution of the count values shows in Figure 43, bin pairs

with few counts (~ 1 — 5) are more abundant than those with many counts.

As mentioned above, the third property of the Hi-C matrices is the sparsity. In numerical
analysis, a sparse matrix is defined as a matrix in which most of elements (in our case, most of counts)
are zero, which is the opposite of a dense matrix. This can be observed in Figure 42, where outside the
diagonal most of the matrix is white (absence of contacts). The sparsity increases as the resolution
increases and pairs of bins become less dense in counts. In other words, for an equal number of counts
in a contact matrix, when the genomic intervals (bins) are smaller (i.e. 40 Kb vs. 500 Kb resolution), the
proportion of bins with no count increases (Figure 44). In our data for instance, the proportion of bin
pairs with no count represents about 14.5% of the matrix at 500 Kb and 34.9 % at 200 Kb. At 40 Kb, it
reaches 92.7 % of the matrix (Tables 7 and 8).

6.1.1.2.2 Proportion of cis and trans read pairs

As the cis/trans ratio is often mentioned as an informative statistic to describe Hi-C data (Dixon
et al., 2015), we further analyzed the proportion of read pairs (counts) in cis and ¢rans bin pairs. Within
each set of bin pairs with a specific value (from 1 to 100 counts), we computed the proportion of trans
bin pairs (Figure 45A). The first observation is that most of bin pairs (genomic regions) containing a
low number of counts correspond to trans bin pairs. These results were expected due to the direct
correlation between the number of counts and the genomic distance. By measuring digestion-religation
events between proximal genomic regions in the 3D nuclear space, we are indirectly measuring the

spatial distance between these genomic regions.

A second observation is that all curves in Figure 45A show a quite drastic transition from a high
number of ¢rans bin pairs with few counts, to a high number of cis bin pairs with many counts. This is
reflected by the marked increase in count density around the diagonal in the heatmap representation of
the Hi-C matrix genome-wide (the 25 longest scaffolds, including the 18 autosomes and the 2 sex

chromosomes, Figure 45B). Moreover, we observed a shift between all six curves and a progressive
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Figure 46. Individual Hi-C contact matrices for each replicate. lllustration of Hi-C raw contact
matrices of chromosome 1 obtained at 200 Kb resolution. Left column: the three replicates at 90 days.

Right column: the three replicates at 110 days.
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Figure 47. Individual Hi-C contact matrices for each replicate. lllustration of Hi-C raw contact
matrices of chromosome 18 obtained at 200Kb resolution. Left column: the three replicates at 90 days.

Right column: the three replicates at 110 days.
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Figure 48. Merged Hi-C contact matrices. The three Hi-C contact matrices of each condition (90 days

and 110 days of gestation) were merged before normalization. Example of the merged matrices obtained

at 200 Kb resolution for chromosomes 1 (top) and 18 (bottom).
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decrease in their slopes (Figure 45A). The first curve on the left corresponds to Rep2-110, the library
with the lowest number of sequenced and mapped read pairs (Figure 37A), and the last curve on the
right corresponds to Rep2-90, which shows the highest number of mapped read pairs. This means that
the distribution of counts in cis and trans bin pairs is highly dependent on the genome coverage. In other
words, as the coverage increases, we find more bin pairs with high counts in cis and more with small
counts in trans and vice versa, and the observed transition on the cis/trans ratio between pair of bins
with few and many counts becomes smoother due to the saturation of the matrix in counts. This

emphasizes the need of an efficient normalization method to compare replicates and/or conditions.

6.1.1.2.3 Hi-C matrices comparison

Sixty Hi-C matrices were generated for each replicate: 3 resolutions x 20 chromosomes (18
autosomes + 2 sex chromosomes) (Appendix 11). To limit the effect of the sexual chromosomes on the
results (due to experimental constraints, samples from both genders were collected) we focused our
analysis on the 18 autosomes. A rough visual comparison of these Hi-C matrices shows that they look
very different across chromosomes while very similar across the three replicates of the same condition
(Figures 46 and 47) suggesting that results are reproducible. Considering the apparent similarity across
replicates, merged matrices were generated for each condition (90 _merged and 110 _merged) by adding
the raw counts of the individual matrices across animals for each pair of bins (Figure 48). Matrices from
different conditions (90 vs. 110 days) also seem to be generally conserved overall, as previously reported
in several studies ((Dixon et al., 2015; Rao et al., 2014; Sexton et al., 2012).

Globally, the general features we observed in our data (matrix sparsity, high density of counts
over the diagonal) are consistent with the ones previously published in human and mouse. As far as we
know this is the first characterization of the genome organization made by Hi-C in cells from fetal
muscle tissues. Moreover, at that level of analysis, the apparent similarity between conditions globally
shows a high level of conservation in the 3D genome structure as previously reported between different

cell lines or tissues, even between different species (Rao et al., 2014).
6.1.1.3 Hi-C intra-matrices normalization

Hi-C matrices are subject to specific and non-specific biases that need to be corrected before
being analyzed. The non-specific ones are the classical biases of sequencing (regions with high GC
content) and mapping (repetitive DNA regions). In addition, the genomic density in restriction sites,
which are the target of the restriction enzyme used in the DNA digestion step of the Hi-C experiment,
is a specific source of biases when performing Hi-C assays. Regions that are enriched on the specific
restriction site tend to be cut more frequently that those poor in restriction sites and consequently present
a higher probability of Hi-C religation events. In order to remove such biases (GC content, mappability
or restriction site density), all matrices were normalized using the non-parametric ICE method (Imakaev
et al., 2012) implemented in HiC-Pro (Servant et al., 2015) (see Materials and Methods). Globally, the
ICE (Iterative Correction and Eigenvector decomposition) normalization assumes that the bias for
detecting contacts between two regions can be represented as the product of the individual biases of
these regions. Briefly, this normalization is done in order to make all bins of a given matrix comparable

by means of an iterative process. This method ensures that the total counts that involve a given bin (sum
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Figure 49. Normalization of Hi-C matrices. Example of the Hi-C matrix of chromosome 1 before and
after ICE normalization (Rep1-90) obtained at 200 Kb resolution. The “smoothing” effect of the

normalization is visible at specific positions (example indicated by the black arrows).
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of all the values throughout a row or a column) is the same for all the bins. Figure 49 shows an example

of Hi-C contact matrices before and after normalization.

The normalized matrices obtained at a 500 Kb resolution were used for the detection of large
genomic compartments (known as A and B compartments), and those obtained at 40 Kb resolution were
used to detect smaller genomic domains (TADs) (this will be further detailed in the next section). The
200 Kb contact matrices were obtained to work at an intermediate resolution. Accordingly to the “map
resolution” definition described in (Rao et al., 2014), which refers to the smallest bin size such that 80%
of the loci have at least 1,000 contacts, we achieved a good map resolution as 99.98%, 99.98% and
99.56% of bins in our 500, 200 and 40 Kb resolution matrices showed more than 1,000 contacts.

6.1.2 Identification of higher order chromosomal structures

6.1.2.1 A and B compartments

The so-called “A” and “B” compartments are large genomic regions often defined as “open
active” and “close inactive” compartments respectively. “A” compartments are characterized as
transcriptionally permissive, euchromatic, gene-rich and DNase I hypersensitive regions. Inversely, “B”
compartments are considered as transcriptionally inert, heterochromatic, nuclear lamina-associated,
gene-poor and DNase | insensitive (Bonora et al., 2014; Gibcus and Dekker, 2013). From our Hi-C data,
we sought to investigate the compartmentalization of the genome in order to determine whether: (a)
these functional compartments previously reported in other studies exist in porcine fetal muscle, and
whether they are similar or they differ compared to model species, (b) they vary between the two
conditions (90 days and 110 days of gestation). In brief, the method used to identify these compartments
relies on a Pearson correlation matrix made from the bins to distinguish the two groups of genomic
positions assigned to A and B compartments in each chromosome. The segmentation into A and B
compartments can be observed in these correlation matrices in the form of a plaid pattern with red and
blue stripes (see the corresponding section in Materials and Methods for more details). Correlation
matrices for chromosomes 1 and 13 are shown in Figures 50 and 51. A complete set of all chromosome
correlation matrices (obtained from the merged matrix of the 3 replicates at 90 days of gestation and the

merged one at 110 days) is provided in the Appendix 12 and 13.

A first look at the resulting Pearson correlation matrices allowed us to note the presence of these
A/B compartments in all chromosomes of our six samples, and to see that they look like the ones from
the literature. Due to insufficient coverage and other filtering steps of the compartment calling method
HiTC ((Servant et al., 2012), see Materials and methods), several genomic regions were not assigned to
any compartment, resulting in white stripes in the visualizations. Nonetheless, we observed that these
matrices appear to be quite similar within and between conditions (Figures 50 and 51) while, very
different across chromosomes (Appendix 12 and 13). For instance, some chromosomes (i.e. chrl, chr3,
chrl5 and chrl16) are highly segmented while others (i.e. chr5, chr6, chr8 and chr17) show quite large

compartments.
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Figure 50. Hi-C A and B compartments for individual matrices (chromosome 1). Illustration of
Pearson correlation matrices obtained between bins on chromosome 1 at 90 days (left column) and 110
days (right column) of gestation, to predict A and B compartments. The color code in a pair of bins (cell
of the matrix) represents the correlation coefficient between the normalized values of the corresponding
bins (blue=low correlation, red=high correlation). Sharp transitions between blue/red stripes define
boundaries between A and B compartments. Occasional white stripes characterize regions with no

prediction from the method due to insufficient coverage and other filtering steps.
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Figure 51. Hi-C A and B compartments for individual matrices (chromosome 13). Same as above
(Figure 49).
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Size distribution of A/B compartments
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Figure 52. Size distribution of AB compartments for each replicate. All pairwise comparisons of A/B
compartments size distributions between replicates from the two conditions were significant and no

significant differences on size distribution were found between pairs of the same condition.
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About 733 compartments per replicate were predicted on average, with a mean size between 1.5
Mb and 2 Mb, which are in the same order of magnitude that those reported from Hi-C experiments in

human or mouse cells (Dixon et al., 2012; Lieberman-Aiden et al., 2009).

6.1.2.1.1 Differences in size and number of A/B compartments

Next, we investigated whether A and B compartments differ between conditions. To address
this question, we first compared the number of A/B compartments across replicates. We noted that this
number varies substantially (598, 586, 594 and 767, 781, 768 for the 3 replicates at 90 days and the 3 at
110 days respectively), and that the variability is higher between conditions than across replicates of
each condition. In addition, analyzing the number of A and B compartments separately we found
approximatively 51% of A and 49% of B compartments in each replicate. Consistently with the
variability in number of A/B compartments observed between conditions, the compartments are
remarkably larger at 90 days than at 110 days of gestation as shown in Figure 52. To confirm this
observation, we tested the significance of all pairwise combinations across replicates and confirmed that
the observed differences on size distribution inter-conditions were significant (Wilcoxon test, 3.166e-
09 < p-value <4.83e-04) while no significant differences were found intra-conditions (0.1308 < p-value
< 0.8823). This outcome has two plausible explanations: it could be either, the result of a real biological
difference of size between the two gestational ages, or it could be an artifact, resulting for instance from
differences of sequencing depth, as previously observed with the number of counts in cis and trans bin

pairs.

In order to explore the potential impact of sequencing depth on the size of compartments, we
computed the correlation between the mean compartment size of each replicate and the number of valid
read pairs. A relatively weak yet notable correlation was obtained (Pearson correlation coefficient r =
0.45), suggesting that the size of the detected compartments could be affected by the quantity of data.
As we observed with the white stripes in the correlation matrices, regions with low coverage could be
filtered out by the A/B compartment calling method. Such filtered bins, when present within
compartments, would result in a fragmentation of the predicted compartments and consequently in a
general shortening of their sizes. To answer if the observed difference in size distributions could be due
to a difference in coverage via filtered bins, we computed the number of genomic regions (bin size: 500
Kb) that could not be assigned to an A or B compartment in each replicate. This number varies between
500 and 709, which represents between 11.3% and 16.9% of the total number of bins, meaning that
considerable parts of the genome are not assigned to any compartment. This number of unassigned bins
was negatively correlated with the mean size of the compartments across replicates (Pearson correlation
r=-0.89), which is supportive of a potential impact of the available data on the size of the compartments
via a fragmentation effect of the prediction method. We concluded that the significant difference in
compartment sizes that we observed between conditions may be partially explained by an artefact of the
prediction method via a difference in the quantity of available data. This emphasizes the importance of

considering regions with enough information for any comparison between conditions.
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Figure 53. Distribution of Hi-C A and B compartments along each chromosome for each replicate.
Genome-wide overview of compartment labels per 500 Kb bin. A general consistency can be observed

across replicates. Dotted lines delimit the beginning and the end of each chromosome. White regions

are devoid of any called compartment.
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Figure 54. A/B compartments and gene annotation along the two Hi-C merged contact matrices (90
days vs. 110 days). The figure shows as example the comparison of the two merged matrices obtained
for chromosome 2. A/B compartments are represented as red intervals for the merged matrix obtained
at 90 days of gestation, and as a blue intervals for the one obtained at 110 days. Gene annotation is

represented in green, in the middle of the image.
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6.1.2.1.2 Differences in A/B compartments assignment

Since the compartment size could be affected by the sequencing depth, we wanted to make sure
that it was not the case for the A/B assignation itself and sought to investigate: (a) the consistency of the
A/B calling method across replicates from the same condition and (b) the differences in A/B calling
between conditions. We therefore looked whether each genomic region (bin) was assigned to the same
or to a different compartment type across replicates (Figure 53). Any bin containing missing data (lack
of compartments assignment) in any of the six replicates was not considered for this analysis. Over
3,371 bins (bin size = 500 Kb), 2,809 (83.3%) were assigned to the same compartment type (either A or
B) in all six replicates, which is consistent with a general conservation of the higher structural
organization level of the genome even in different cells as previously observed in human (Barutcu et al.,
2015). Interestingly, 94.1% and 90.7% of the bins were assigned to the same compartment type in all of
the three replicates at 90 days and 110 days of gestation respectively. Considering pairwise comparisons,
the average number of bins with the same label is 3,201 (95.0%) between replicates from the same group
and 3,038 (90.1%) between replicates from different groups. Altogether, these results confirm the high

consistency of the A and B compartments prediction method when the A/B information is available.

After verifying that the variability intra-condition was low, we focused our interest on analyzing
the variability between conditions and, more precisely, on the proportion of bins switching from one
compartment type to another. Again, considering only bins with assigned compartments, different
approaches are possible. First, we performed the compartment calling after merging the three Hi-C
contact matrices per condition, which allowed to increase the genomic coverage of the Hi-C matrix and
therefore to reduce the number of unassigned bins (down to 7.6% and 8.2% for 90 days and 110 days
respectively). The pairwise comparison of the A/B assignment between the merged matrices indicated
that among the 4,026 bins (88.7%) with an assigned compartment in both conditions, 3592 of them
(89%) have the same compartment (Figure 54). Among the remaining 444 variable bins (11.0%), which,
at 500 Kb resolution, represents ~222 Mb of the genome, 181 (40.8%) indicate a switch from an A
compartment at 90 days of gestation to a B compartment at 110 days (A = B) and 263 (59.2%) showed
a switch from B to A between the two gestational stages (B =» A). Alternatively, another approach to
identify these compartment switches is to take advantage of our experimental design by considering the
A/B compartment calling that was made on all the replicates separately. Among the 3,371 bins (74.3%)
with an assigned compartment in all the 6 replicates, 2,809 (83.3%) have the same assignment. As
expected, this proportion is slightly lower than the one we obtained from comparing only two merged
matrices (88.7%) but still indicative of a strong consistency across replicates. To identify switching bins,
we required a total consistency between the assignments within each condition, meaning a switch from
a triple A to a triple B or the other way around. Eventually, 104 bins (3.1%) fulfilled this stringent
condition (~52 Mb of the genome), among which 45 (43.3%) and 59 (56.7%) indicated an A =» B and
a B =» A switch, respectively. Consistently, a large majority of them (92 out of 104) were also detected
by the previously described approach using merged matrices. These bins, with a strong and consistent
A=>B or B2 A switch, have been further investigated for integrative analyses with gene expression data

in the section “Gene expression and nuclear organization”.
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Figure 55. Gene density in A and B compartments. The A and B compartments were estimated from
the two merged matrices obtained at 90 days and 110 days of gestation. The differences observed

between the two types of compartments were found significant (Wilcoxon test).
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Figure 56. Size distribution of TADs for each replicate.
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6.1.2.1.3 Gene density in A/B compartments

In model organisms, A compartments have been reported to be transcriptionally active and gene-
rich, while B compartments were transcriptionally inactive and gene-poor (Lieberman-Aiden et al.,
2009). We estimated whether this general organization was preserved in our samples by computing the
gene density in the A and B compartments estimated from the two merged matrices obtained at 90 days
and 110 days of gestation. For that purpose, we used the reference gene annotation ENSEMBL (Figure
55) and considered for each bin the number of annotated genes in the corresponding 500 Kb. As reported
in human and mouse, gene density was significantly higher in A vs. B compartments (Wilcoxon test:

p-value < 6.2e-06). Similar results were obtained on the individual matrices (Appendix 14).
6.1.2.2 Topologically associated domains (TADs)

At a smaller scale than A/B compartments, we investigated the structural organization of the pig
genome at the level of the Topologically Associated Domains (TADs). TADs are defined as chromatin
domains enriched in self-interacting regions, with a frequency of intra-domain interactions higher than
inter-domain interactions (Dixon et al., 2012; Matharu and Ahanger, 2015; Nora et al., 2012). They can
generally be observed in contact heatmaps as darker triangles on each side of the diagonal (see Figure
46 for an example of visible TADs in our data). We used the armatus program (Filippova et al., 2014)
in order to find TADs in the 40 Kb resolution matrices (see Materials and methods for more details). In
a first step, TAD finding was performed on individual matrices of each replicate separately in order to
assess the reproducibility of the results, then on the merged matrices to obtain a set of TADs for each
condition. Globally, thousands of TADs could be identified in each replicate (from 4,941 to 7,176),
with 78.9% of the genome being part of a TAD in at least one of the replicates. The average TAD size
per replicate varies from 181 to 309 Kb (Figure 56), which is lower but in the same order of magnitude
than the reported range of TADs found in human and mouse (median size: 880 Kb) (Dixon et al., 2012).
Unlike for the A/B compartments, no strong correlation was found between the mean TAD size and the

sequencing depth (valid pairs) across replicates (Pearson 1=0.3).

6.1.2.2.1 CTCF and TADs

In several mammals, the CTCF DNA binding protein, which plays an important role in genome
architecture, is enriched at TADs boundaries and involved in the mechanisms of loop formation
(Bjorkegren and Baranello, 2018; Dixon et al., 2012; Rao et al., 2014). No information being available
for pig, we wondered whether this protein could play a similar role in this species. Thus, we sought to
identify the CTCF-binding sites in fetal porcine muscle and to map them in our detected TADs. In order
to identify CTCF-binding genomic regions we tried two approaches, one experimental in vitro and one
in silico. First, we performed ChIP-seq (Chromatin Immuno-Precipitation sequencing) assays on fetal
muscle samples from the same animals than the ones used for Hi-C experiments. This method allows
capturing chromatin regions associated to a protein of interest, in our case, the CTCF protein. In brief,
all DNA-protein interactions are cross-linked and then, target sequences are enriched by using a specific
antibody (see Materials and methods for more details). The six ChIP-seq libraries (Rep1-90, Rep2-90,
Rep3-90, Rep1-110, Rep2-110 and Rep3-110) were pooled and sequenced on one lane of a HiSeq3000,
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Figure 57. Genomic density profiles of predicted CTCF motifs around TADs. Mean density of CTCF
binding sites predicted on Sscrofal0 (A) and Sscrofall (B) relative to TADs positions detected on the
corresponding genome versions. Dotted vertical lines represent the TAD boundaries and delimit the
relative position inside the domains (from 0 to 100% of the TAD length). Outside of the domains, up to
500 Kb upstream and downstream flanking regions are represented. These density plots were obtained

for Repl-110, and similar profiles were observed for the other five samples.
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together with two input DNA libraries (input-1 and input-2) which are later required as a control for the
data analysis. Input DNA represents a 10% fraction of the fragmented and cross-linked DNA set aside
before any specific selection for CTCF-binding fragments, and which processing resumes at the reverse
crosslink. Because the input DNA is essentially genomic DNA, it is used as a background sequencing
control to compare with libraries that are enriched in CTCF-bound fragments. Between ~ 69 M and 96
M read pairs were sequenced per library. From them, around 76% - 81% and 73% - 82% could be
mapped to the reference genome (Sscrofall) for the three replicates at 90 and 110 days of gestation
respectively. CTCF-enriched regions (called “CTCF peaks”) were obtained by comparing the read
mapping density along the genome between CTCF-immunoprecipitated libraries and input DNA using
the MACS?2 software (see “ChIP seq data analyses”, Materials and methods). Between 909 and 5,491
CTCEF peaks were predicted per replicate (mean size= ~ 340 bp). To control the quality of these data,
we searched for the known sequence consensus of the CTCF recognition site in the peaks. To do this,
we provided the FIMO motif detection software (Grant et al., 2011) with a model of the CTCF consensus
binding site (PWM for Positional Weight Matrix, see Materials and methods), which is highly conserved
in vertebrates (Kim et al., 2007). Unfortunately, only ~ 9% - 15% of the peaks contained the CTCF
consensus motif sequence, contrary to an expected percentage of ~ 90% for a real enrichment (results
obtained on porcine cell line samples from another project, data not shown). In light of these negative
quality controls, we concluded that some issue could have happened during the ChIP-seq experiments
(defective batch of CTCF antibody, some problem in the immunoprecipitation or size selection steps,

not enough starting material, etc.) and we discarded these data.

In the absence of available CTCF ChIP-seq data obtained from the Hi-C muscle samples, we
used an in silico approach to validate the biological relevance of the detected TADs. The CTCF
consensus motif was used again, but instead of looking for binding sites in peaks only, we performed
this time a genome-wide scan in order to identify all potential CTCEF sites in the pig genome. Then, we
computed the genomic density profiles of the predicted CTCF sites within and around TADs. This
analysis was performed on the previous (SscrofalO) and the current (Sscrofall) reference genome
versions. In both versions, the CTCF predicted sites tend to accumulate at TAD boundaries (see Figure
57 for Rep1-110; similar density profiles were obtained for the other five replicates, data not shown).
Moreover, on the improved genome version (Sscrofall), CTCF predicted sites were not only enriched
at the TAD boundaries but also depleted inside TADs. Last, we performed the same analysis by
considering the orientation of the predicted CTCEF sites. Similar plots were obtained with asymmetrical
peaks, showing a prevalence of “forward” CTCEF sites at the beginning of the TADs and of “reverse”
CTCEF sites at the end of the TADs (Figure 58). This is supportive of the model provided in the literature
for other mammals, where pairs of CTCF sites involved in DNA structures tend to display a convergent
(“head-to-head”) orientation (Rao et al., 2014). These results allowed us to validate the method used for
TADs detection as well as the detected TADs. Moreover, the notable improvement of the CTCF
enrichment in TAD borders we observed between the 10 and the 11 assembly versions emphasizes again
the importance of a good genomic reference for this kind of study, in particular when considering large

structural features like TADs.
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Distribution of CTCF sites within and around TADs (90 days)
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Figure 58. Genomic density profiles of forward and reverse predicted CTCF motifs around TADs.
Mean density of CTCF binding sites predicted on Sscrofall relative to TADs positions detected on the

merged matrix at 90 days (the 110 merged matrix lead to similar results). TADs show an accumulation

of forward CTCF sites at the beginning of the TAD and reverse CTCF sites at the end. The two shifted

peaks correspond to boundaries of the upstream and downstream respective TADs.

Table 9. Number and proportion of tested bin pairs after the filtering step.

Resolution | Number of bin pairs with at least one count
(Kb) Before filtering After filtering
500 10,293,777 9,262,199 (89.98%)
200 63,872,799 3,844,272 (6.02%)
40 523,799,997 2,872,786 (0.55%)
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6.1.3 Differential analysis of the genome organization

6.1.3.1 Global differences in the 3D genome organization of fetal
muscle between 90 and 110 days of gestation

In order to investigate global changes occurring at the level of chromatin structure, we did a
differential analysis to explore whether significant differences in the 3D genome organization exist
between the two gestational ages. The differential analysis was performed on the raw matrices obtained
for the 18 autosomes at 500, 200 and 40 Kb resolution.

As described in the Materials and Methods section, the first step was to discard pairs of bins
with low read counts (5 per sample on average). Raw read counts from the remaining bin pairs (from 3
to 9 M, see Table 9) were then normalized in order to make matrices comparable across replicates. This
inter-matrix normalization relies on the assumption that: (1) library sizes should be equal and, (2) MA
plots should not show any strong trend between samples (Figure 59, Figure 60 and Appendix 15 and
16).

At each resolution, a Principal Component Analysis (PCA) was performed on the samples
before and after normalization to investigate the organization of the data. Although the PCAs do not
clearly show two distinct groups, which is expected since differences between conditions might not
involve most of the genome, we observed that the resulting projection of the samples on the two first
principal components (normalized data) allowed to separate the 90 and the 110 days samples along the
first axis (Figure 61). Thus, we hypothesized that differences in conformation between gestational ages
can explain part of the variability between samples, and that changes might occur at the level of the 3D

genome organization between the 90" day and the 110" day of gestation.
6.1.3.2 Differential genome regions in late fetal muscle development

Using the normalized counts and the experimental design (2 groups, 3 replicates per group), a
differential analysis has been conducted to identify pairs of genomic regions with a significant difference
in the number of read pair connections between the two groups of samples. The analysis has been
performed at the three resolutions (40, 200 and 500 Kb) as described in Materials and Methods.

A total of 10,183, 3,417 and 83 differential bin pairs were obtained at the 500, 200 and 40 Kb
resolution respectively (Table 10). This represents a small proportion of the tested bin pairs (from 0.003
to 0.11%). Among them, between 82 and 95% bin pairs were located on the same chromosome at 500
and 200 Kb resolution, while only 58% at 40 Kb resolution. The observed differences between
resolutions in both, the number and the cis/frans ratio of differential bin pairs, can be explained by the
number of read counts per bin pairs. At smaller bin sizes, many bin pairs are filtered out because the
number of counts per bin pair is low. Consequently, there are less remaining bin pairs to be compared
between conditions and less differential bin pairs to be detected. Similarly, most of the bin pairs bearing
low counts are those in trans, even after filtering. Consequently, small variations in the number of read
counts per bin pairs between conditions may imply bigger contrasts in trans bin pairs than in cis bin

pairs, thus increasing the number of differential bin pairs in trans at smaller bin sizes. This means that
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A Boxplots of pseudo counts per sample (before normalization)
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Figure 59. Distribution of raw (A) and normalized (B) counts per sample (200 Kb).
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200 Kb

A MA plot: 90 days vs 110 days (before normalization)
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Figure 60. Global MA plot between samples at 90 and 110 days before and after normalization (200
Kb). The MA plot represents for each bin pair (dots) the log-average count across all samples (A-value,
x axis) and the average log-fold change between samples of different groups (M-value, y axis). The
lowess fit (purple line) indicates the potential bias related to the average counting value (close to zero

after normalization).
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Projection on the first two PCs (before normalization)

Projection on the first two PCs (after normalization)
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Figure 61. Principal component analysis of the samples using raw (left column) and normalized
(right column) counts. Data normalization resulted in separating the developmental stages along the

first principal component (x axis). Replicates are shown in red (90 days of gestation) or blue (110 days).

Table 10. Number and properties of the differential bin pairs

500 Kb 200 Kb 40 Kb
Total bin pairs with any count 9,262,199 3,844,272 2,872,786
Differential bin pairs 10,183 3,417 83
% differential bin pairs 0.11 0.09 0.003
% differential bin pairs in trans 18.2 5.5 42.2
% differential bin pairs in cis 81.8 94.5 57.8
% differential bin pairs with logFC(+) 56.9 50.7 59.0
% differential bin pairs with logFC(-) 43.1 49.3 41.0
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Figure 62. Distribution of differential bin pairs per chromosome at 500, 200 and 40 Kb resolution.

The number of differential bin pairs per chromosome are plotted against the chromosome length. The

five smallest chromosomes are represented in green, and the five biggest ones in pink. The number of

differential bins is globally correlated with the chromosome length. As expected because of lower

counts, the higher the resolution the higher the variability.
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in order to detect local (fine) variations, the quantity of data needed to show significant changes between
conditions is higher than for detecting global (large) changes. Approximately, 56% of the differential
bin pairs on average showed a positive log-fold change (logFC), meaning that they bear significantly
more counts at the 110 days condition than at the 90 days one. As the number of counts depends on the
probability of a Hi-C religation event which in turn depends on the spatial distance between two genomic
regions, these differential bin pairs with a positive logFC represent genomic regions that get closer from
each other at 110 days of gestation than they were at 90 days. Inversely, ~44% of the differential bin
pairs were found spatially closer at 90 days than at 110 days.

Then, we sought to investigate whether the distribution of these differential bin pairs across the
chromosomes was homogeneous or whether some chromosomes were more represented than others. We
observed that globally, the biggest chromosomes were those having the highest number of differential
bin pairs (Figure 62). This confirms again that the results highly depend on the chosen resolution.
Nevertheless, the global correlation between the chromosome sizes and the number of differential bin
pairs suggests a widespread and homogenous distribution of the differential bin pairs along the genome.
In order to normalize by the chromosome size, we computed for each chromosome the percentage of
bins involved in at least one differential bin pair with respect to all bins in the chromosome. We noted
that chromosome 11, with a relatively small length (79 Mb), presents the highest percentage of bins
(93%, 45% and 1%) with respect to its size, involved in differential interactions in all three resolutions
(500, 200 and 40 Kb respectively).

Then, among the bin pairs with a significant difference in read counts between conditions, we
examined the distribution of cis and trans interactions, as well as the proportion of the ones with a
positive logFC (significantly closer at 110 days) vs. negative logFC (significantly closer at 90 days).
Figure 63 shows the positions of the differential bin pairs with a positive (red) and a negative (blue)
logFC along the genome matrix (because of the low number of differential bins at 40 Kb only the other
resolutions were shown). Globally, we observed a concentration of differential bin pairs along the
diagonal (intra-chromosomes). The proportion of differential bin pairs with positive and negative logFC
is highly heterogeneous across chromosomes (Appendix 17), suggesting various degrees of contribution

to the topological difference between the developmental stages.

Another observation is that many differential bin pairs seem to be located close to the transitions
between chromosomes (dotted vertical/horizontal lines, Figure 63), suggesting the presence of abundant
trans interactions between terminal parts of the chromosomes. To investigate the positions of cis and
trans interactions along the chromosomes with a better resolution, we used “circos plot” visualizations
to represent significantly distal bin pairs. In these plots, we visualized separately the cis and trans
differential bin pairs by representing the genome sequence as a circumference inside which, the relations
between two genomic regions (a pair of differential bins) are represented as red (positive logFC) or blue
(negative logFC) loops connecting the two regions (Figures 64 and 65). We first considered cis
connections, and observed that some chromosomes show large genomic regions of differential bins with
a specific logFC type (either positive or negative). For instance, chromosome 2 seems to be divided in

two blocks: the first one (blue), smaller, with most of the bins having a negative log-fold change; the
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Figure 64. Distribution of differential bin pairs along the genome obtained at 500 Kb resolution. Each
bin pair is represented by a loop connexion between the two genomic regions (bins) involved in a
differential bin pair. Chromosome positions are oriented clockwise. Differential bin pairs are
represented in red (positive logF'C) or blue (negative logFC). Upper panel: Differential bin pairs
mapped to regions located on the same chromosome. Lower panel: Differential bin pairs mapped to

regions located on different chromosomes.
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second one (red), mostly composed by bins with positive log-fold change (Figure 64, upper panel).
Similarly, chromosome 3 seems to have a large blue region at the beginning, as well as chromosomes 6
and 14 show large blue regions in their second half. Other chromosomes show mixed profiles,
alternating bins with positive and negative logFC (i.e. chromosomes 5 and 16). These results suggest
that large portions of certain chromosomes contain genomic regions that behave in the same way by
either becoming closer “condensation” or further “decondensation” from each other at 110 days of
gestation with respect to their initial position at 90 days. These differentially distal regions define large
chunks of adjacent regions behaving in the same way, similar as TADs or compartments but intrinsically
dynamic because originating from a comparative analysis. Focusing on frans interactions allowed to
confirm that many interchromosomal differential bin pairs seem to involve the extremities of the
chromosomes, in particular with a negative logFC (Figure 64, lower panel). Moreover, these differential
bin pairs seem to implicate the telomeric regions of both the “q” arm (e.g. chromosomes 3, 4, 8, 9, 10,
13 and 15) and the “p” arm (e.g. chromosomes 1, 2, 5 and 11), all with a prevalence of negative log-fold
changes (blue connections). Density plots of trams vs. cis connections along each chromosome
highlighted this trend for the trans connections to accumulate at the chromosome extremities (Appendix
18 and 19). In fact, by considering the first 5 and last bins of each chromosome as a “terminal region”,
about 4%, 10% and 38% of the trans interactions involved a terminal region at the 500, 200 and 40 Kb
resolution respectively, while only 2%, 1% and 4% of the cis interactions did at the same resolution.
This indicates a significant difference in the proximity of telomeric and subtelomeric regions between
90 and 110 days, being more proximal at 90 days than at 110 days, which might suggests a clustering
of telomeric regions from different chromosomes in the 3D nuclear space at 90 days of gestation.
From this differential analysis, we concluded that it exists two global dynamic changes in
muscle cells between the two gestational ages. The first one concerned intra-chromosomal interactions
(global chunks of consecutive regions with a coordinated condensation/decondensation), and the second
one concerned inter-chromosomal interactions with a strong component located at the chromosome

extremities.
6.1.3.3 Functional analysis of differential bin pairs

We wanted to investigate in more details to which genes correspond the differential genomic
regions and what their roles are. We wondered whether these differential regions are enriched in specific
biological functions or not. In order to address this question, we performed a gene ontology (GO)
analysis over all genes located in the differential bin pairs with a positive logFC, or a negative logFC
obtained at 40, 200 and 500 Kb resolution. We searched for biological processes (BP), molecular
functions (MF) and cellular components (CC) enriched among the human homologs of genes mapped
to the differential bin pairs with respect to those mapped to all bin pairs. Obviously, this type of analysis
highly relies on the quality of the genome annotation and on the proximity of the target genome with
the human reference. Common functions enriched among genes found in differential bins with both, a
positive and a negative logFC, were mainly biological processes referred to the synaptic transmission,
signal transduction, metabolic processes and catalytic activity (Tables 11 and 12). The olfactory receptor
activity was a specific biological process among differential bins with a positive log-fold change, while
the response to stimulus was specific of differential bins with a negative log-fold change. No enriched
functions were found at 200 and 500 Kb in differential bins with a negative log-fold change.
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Figure 65. Distribution of differential bin pairs along the genome obtained at 200 and 40 Kb
resolution. Each bin pair is represented by a loop connexion between the two genomic regions (bins)
involved in a differential bin pair. Chromosome positions are oriented clockwise. Differential bin pairs
are represented in red (positive logF'C) or blue (negative logFC). Left: Differential bin pairs mapped
to regions located on the same chromosome. Right: Differential bin pairs mapped to regions located on

different chromosomes.
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No apparent enrichment in muscle functions was detected from this analysis. This could be
partly due to the specific nature of the topological differences between stages. Indeed, the main features
revealed by the differential analysis (large regions of differential compaction in cis and telomere
clustering in trans) tend to support a global reorganization of the genomic structure with a major
structural component rather than a targeted gene expression regulatory program.

6.1.4 Gene expression and nuclear organization

In this last section we combined Hi-C and expression data to investigate whether changes in
genome organization are linked to gene expression. To do that, we used the expression data obtained by
microarray experiments in a previous study of the muscle transcriptome at 90 and 110 days of gestation
(Voillet et al., 2014). In that transcriptome study, the expression data of 12,465 genes were measured
by targeted microarray probes in samples from different breeds, including 8 Large White samples at 90
days of gestation and 9 Large White samples at 110 days. For each microarray probe, that study provided
us two types of information: (1) an average expression value for both developmental stages (90 and 110
days); (2) statistical results from a differential analysis comparing both stages with a log-fold change
(logFC) and an associated p-value. As the previous study was based on a former version of the reference
genome and annotation -which highly impacts the microarray design- we decided to re-map the sequence
of each probe on the more recent Sscrofall version and to keep only unambiguous matches with
annotated exons from the Ensembl v90 annotation (see Methods). Importantly, while the previous study
and the current project were conducted on different animals, we hypothesized that biological effects

with strong and general impacts might be detected by broad integrative analyses.
6.1.4.1 Gene expression in A and B compartments

We first wanted to confirm the difference in gene expression that can be expected between A
and B compartments. For each A or B compartment predicted from our Hi-C data at a given stage (90
or 110 days using the merged matrices), a mean expression value was computed by considering all the
probes within the compartment across the 8 or 9 samples of the corresponding stage of gestation. The
distributions of these average expression values in A and B compartments are shown in Figure 66. As
shown in model organisms (Lieberman-Aiden et al., 2009; Rao et al., 2014), we observed a significantly
higher gene expression in A vs. B compartments (Wilcoxon test, p-value < 2.2e-16 for both tests with
576 and 769 probes at 90 and 110 days respectively). Similar results were observed for the probes in A
and B compartments obtained from the individual matrices (Appendix 20). This integration of
transcriptome data from a previous project reveals a high consistency between 3D genome structure and
function, considering that the transcriptome data were not obtained from the same animals than the ones

used to perform the Hi-C experiments.
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Table 11. Enriched GO terms found in genes mapped to differential bin pairs with a positive log FC.
Categories: BP (Biological Processes), MF (Molecular Functions) and CC (Cellular Components).

Resolu- GOBPI

tion Category D Pvalue | Count | Size | Term

0002091 0.002 1 5 | negative regulation of receptor internalization
0032482 0.002 1 5 | Rab protein signal transduction
0035418 0.004 1 11 | protein localization to synapse

BP 0006677 0.004 1 13 | glycosylceramide metabolic process
0035640 0.004 1 13 | exploration behavior

40 Kb 0097503 0.006 1 20 | sialylation

0048488 0.007 1 22 | synaptic vesicle endocytosis
0097060 0.002 2 200 | synaptic membrane

cC 0030054 0.003 3 911 | cell junction
0060076 0.005 1 12 | excitatory synapse

MF 0008373 0.008 1 20 | sialyltransferase activity
0036150 | 3.00E-07 11 16 | phosphatidylserine acyl-chain remodeling

0007268 | 2.00E-06 120 641 | synaptic transmission

0036148 | 3.00E-06 10 16 | phosphatidylglycerol acyl-chain remodeling

0036152 | 6.00E-06 11 20 | phosphatidylethanolamine acyl-chain remodeling

0036149 | 8.00E-06 9 14 | phosphatidylinositol acyl-chain remodeling

0051966 | 1.00E-05 16 40 | regulation of synaptic transmission, glutamatergic

200 Kb 0050911 | 2.00E-05 o5 85 detection of che_mical stimulus involved in

sensory perception of smell

0051932 | 2.00E-05 13 30 | synaptic transmission, GABAergic

0052646 | 2.00E-05 13 30 | alditol phosphate metabolic process

cc 0005578 | 5.00E-06 65 303 | proteinaceous extracellular matrix

0044456 | 1.00E-05 72 353 | synapse part

MF 0004984 | 2.00E-05 25 85 | olfactory receptor activity

BP 0050911 | 7.00E-08 70 85 detection of chemical stimulus involved in
sensory perception of smell

0004984 | 6.00E-08 70 85 | olfactory receptor activity

0038023 | 5.00E-07 522 833 | signaling receptor activity

BP

500 Kb
MF
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Table 12. Enriched GO terms found in genes mapped to differential bin pairs with a negative logFC.
No enriched functions were found at 200 and 500 Kb in differential bins with a negative log fold change.

Resolu-
tion Category | GOBPID Pvalue | Count | Size | Term
0021897 | 7.00E-04 1 1 |forebrain astrocyte development
0051460 | 7.00E-04 1 1 | negative regulation of corticotropin secretion
1900011 | 7.00E-04 1 1 negative reg_u_lation of corticotropin hormone
receptor activity
0070593 | 1.00E-03 1 2 | dendrite self-avoidance
0071314 | 1.00E-03 1 2 | cellular response to cocaine
0060060 | 2.00E-03 1 3 post-embryonic retina morphogenesis in camera-
type eye
0097211 | 2.00E-03 1 3 cellular response to gonadotropin-releasing
hormone
BP 0007162 | 2.00E-03 2 101 | negative regulation of cell adhesion
0048593 | 2.00E-03 2 102 | camera-type eye morphogenesis
0002125 | 3.00E-03 1 4 | maternal aggressive behavior
0035021 | 3.00E-03 1 4 negative _regulation of Rac protein signal
transduction
0035865 | 3.00E-03 1 4 | cellular response to potassium ion
40 Kb 0007270 | 3.00E-03 2 115 | neuron-neuron synaptic transmission
0046929 | 4.00E-03 1 5 | negative regulation of neurotransmitter secretion
0042445 | 4.00E-03 2 137 | hormone metabolic process
0007406 | 4.00E-03 1 6 | negative regulation of neuroblast proliferation
positive regulation of axon extension involved in
0048842 | 5.00E-03 1 7 axon guidance
0030424 | 6.00E-04 3 267 |axon
cc 0031088 | 3.00E-03 1 4 | platelet dense granule membrane
0043196 | 4.00E-03 1 6 | varicosity
0005767 | 5.00E-03 1 7 | secondary lysosome
0051424 | 7.00E-04 1 1 | corticotropin-releasing hormone binding
0016404 | 1.00E-03 1 > ;it-it\w/?/tgroxyprostaglandin dehydrogenase (NAD+)
MF 0004719 | 2.00E-03 1 3 protein-L-isoaspartate_ (_D-aspartate) O-
methyltransferase activity
0010340 | 3.00E-03 1 4 | carboxyl-O-methyltransferase activity
0008429 | 4.00E-03 1 5 | phosphatidylethanolamine binding
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Figure 66. Average gene expression in AB compartments. The A and B compartments were estimated
from the merged matrices at 90 and 110 days of gestation. The gene expression data used to compute
the average expression in both compartments was obtained from a muscle transcriptome study

performed at 90 and 110 days of gestation respectively (Voillet et al., 2014).
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Figure 67. Distribution of differential expression values of probes mapped to genomic regions
switching A/B compartment vs. probes mapped to regions with no compartment switch. LogF'C values
of probes mapped to genomic regions: (left) switching from an A compartment at 90 days to a B
compartment at 110 days (A-B switch), (middle) showing no compartment switch, (right) switching from
a B compartment at 90 days to an A compartment at 110 days (B-A switch).
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6.1.4.2 Gene expression in A/B switching compartments

To better investigate potential correlations between high-order chromosomal compartments and
gene expression, we compared results from the differential expression analysis with those from the
compartment calling in the different stages. More precisely, we compared the distributions of the probe
logFC values (110 days vs. 90) in distinct types of genomic regions according to the predicted A/B
compartments. A positive logFC expression value indicates that the probe was significantly more
expressed at 110 days than at 90 days. Inversely, a negative logFC expression value indicate that the
probe was more expressed at 90 days than at 110 days. In particular, we considered the previously
identified 2,809 regions (500 Kb bins) that showed a consistent A/B labelling in all 6 replicates on the
one hand (see the “Differences in A and B compartments assignment” section) and the 104 regions with
a consistent switch on the other hand. Within this second category, the distinction was made between
A = B and B 2 A switches (switching sense: 90 = 110 days). We could identify 26,083 probes in
“conserved” regions, 200 in A =» B switches and 686 in B =» A switches. As shown in Figure 67, probes
that mapped to A =» B switching regions showed lower log-fold changes than both probes in stable
regions and probes in B =» A switching regions. Differences between these distributions were all
statistically significant (Wilcoxon test, p-values equal to 1.2e-4 and 1.0e-15, respectively). In other
words, genes in genomic regions that switch from an “active” state at 90 days of gestation to an
“inactive” one at 110 days are likely to show a consistent decrease of expression, in line with previously

reported results in human and mouse (Dixon et al., 2015).

Altogether, these results validate the biological relevance of the reported switching regions, as
the observed differences in gene expression are consistent with the reported changes in the 3D genome
structure. Although the differences in gene expression in these switching compartments were relatively
subtle in terms of average logFC (-0.16 for A=»B vs. 0.23 for B=»A), they were significant. Moreover,
as mentioned before, the expression values used in this analysis were not obtained from the same fetuses
than those of the Hi-C experiments, supporting the hypothesis of a general and important regulatory

mechanism.
6.1.4.3 Gene expression in differentially located genomic regions

To further study the relationship between expression and chromatin structure, we examined the
expression profiles of genes located on the differential genomic regions responsible of the observed
global differences in 3D genome structure between the two developmental ages (Figure 61). For that
purpose, we investigated whether increases or decreases in gene expression could be associated with
significant variations of the spatial proximity between genomic regions, similarly as we did with the
switching A/B compartments. We therefore computed and compared again the distributions of
differential expression values of probes mapped to different categories of genomic regions. Because
some genomic region can be involved in both positive and negative log-fold changes (depending on the
interacting partner), this time we considered separately regions that: (1) were not involved in any bin
pair with a significantly different distance between conditions (2) were only reported in differential bin
pairs with a significant p-value and a positive logFC, meaning a smaller 3D distance at 110 days vs. 90

days (3) inversely, regions that were only involved in significantly closer bin pairs at 90 days (negative
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Figure 68. Distribution of differential expression values (logFC) of probes mapped to differentially
located bin pairs (200 Kb resolution) with a positive or negative logFC vs. probes mapped to regions

with no significant difference in spatial proximity.
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logFC). The results of this analysis are shown in Figure 68. Interestingly, although the trends are
relatively subtle again, the expression values of probes in genomic regions closer at either 90 days or

110 days of gestation are significantly lower both at 90 or 110 days (p-value < 2.2e-16, Wilcoxon test).

Altogether, these results suggest that the local variations in the 3D genome organization that we
reported in fetal muscle may be involved in mechanisms of gene expression regulation occurring in late

gestation, which supports our initial hypothesis.

6.2 Discussion

6.2.1 First insights in porcine muscle genome architecture at late
gestation

The development of the High throughput chromosome conformation capture (Hi-C) method
nearly 10 years ago (Lieberman-Aiden et al., 2009), has allowed to obtain a global view of the three
dimensional (3D) architecture of genomes. Since the appearance of this approach, many studies about
the 3D genome conformation have been carried on animal models such as human, mouse and fly (Dixon
etal., 2012, 2015; Lieberman-Aiden et al., 2009; Rao et al., 2014; Sexton et al., 2012), as well as many
other organisms such as fish, plants, yeast or bacteria (Dong et al., 2017; Kaaij et al., 2018; Kim et al.,
2017; Marbouty and Koszul, 2015). However, to the best of our knowledge, no previous work has been
published regarding the spatial organization of livestock genomes assessed by Hi-C. Although Hi-C
assays were perfomed on goat blood samples, data were not used to study the chromatin structure but to

improve instead de novo genome assembly of Capra hircus (Ghurye et al., 2017).

Indeed, the sequence and functional annotation of livestock genomes are not as well
characterized as in model species. In order to fill this gap, the Functional Annotation of Animal Genomes
(FAANGQG) initiative emerged recently to support and coordinate several projects on domesticated species
(Andersson et al., 2015; Tuggle et al., 2016). As part of this initiative started the FR-AgENCODE
project, a French pilot project centered on the functional analysis of pig, chicken, cattle and goat
genomes (Foissac et al., 2018). This study has permitted to describe the global features of pig, chicken
and goat genome architecture by obtaining the first Hi-C genome-wide contact maps in these species.
Although this project has been proven highly valuable to describe the 3D genome organization of pig
genome, the Hi-C assays were uniquely performed on a specific tissue (adult liver). Thus, this thesis has
been conceived in parallel of the FR-AgENCODE project in order to investigate on another important
tissue (muscle), in first place, the dynamic changes occurring at the level of the chromatin structure
between two different conditions and next, to determine in which extent these variations in genome

conformation are linked to differences in gene expression.

In the present project we focused on the study of porcine muscle tissue at 14 and 4 days before
birth (the 90" and the 110" day of gestation respectively). During this period, important biological
processes take place affecting the capacity of piglets survival at birth (Foxcroft et al., 2006; Rehfeldt

and Kuhn, 2006; Rehfeldt et al., 2000). This makes our experimental design of special interest for the
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agronomic research (in terms of meat production), as well as a potential biomedical model for human
diseases and developmental issues considering the anatomical, physiological and genetic homologies
between human and pig (Lunney, 2007). As far as we know, our study is the first performed on fetal
muscle tissue regarding the 3D genome structure of muscle nuclei in this critical period of gestation.
The closest study to our approach was published last year (Doynova et al., 2017) in which, Hi-C was
used to capture the genome organization of mouse muscle progenitor cells before and after
differentiation to myotubes. However, the experiments were performed on an in vitro model (cell
lineage), thus not as close to real physiological conditions as we could investigate. Moreover, their in
vitro model targeted a more premature stage of the muscle developmental process which includes the
proliferation and differentiation of myoblast occurring during myogenesis (Buckingham, 2006; Chal
and Pourquié, 2017; Yusuf and Brand-Saberi, 2012), while we focused on the maturity process of

differentiated muscle fibers.
6.2.2 Adaptation of the in situ Hi-C protocol to porcine fetal muscle

To perform the Hi-C experiments we used the in situ Hi-C protocol (Rao et al., 2014) which
reduces the risks to obtain spurious contacts due to random ligation events occuring in dilute solution
(Nagano et al., 2015), when applying the initial in solution Hi-C protocol (Lieberman-Aiden et al.,
2009). This is because in the in situ (or in nuclei) protocol, all main steps (crosslinking, digestion and
religation of DNA) occur inside the nuclei. The in situ protocol was initially conceived to be applied in
human embryonic and mouse lymphoblastoid cell lines. Indeed, most of the published work in this
domain have been performed on cultured cell lines. One case of Hi-C experiments performed in fresh
tissue was a study of chromosome conformation in developing human brain (Won et al., 2016). Our first
challenge was to adapt the in situ Hi-C protocol to fetal muscle tissue preserved at -80°C in isopentane.
The main difference when working with tissue compared with cell cultures is the need of a preliminary
step of cell dissociation. Skeletal striated muscle is a quite particular tissue, as the specialized muscle
fibers form a syncytium (fusion on thousands of individual muscle cells), which is surrounded by the
sarcolemma (cell membrane) and the basement membrane (a support structure of connective tissue
formed by collagen fibrils and laminin proteins) (Chal and Pourquié, 2017). Muscle nuclei have oval
shapes because they are constrained by the basement membrane from the outside, and by myofibrils
from the inside. As the preservation of nuclear shape is probably one of the most important factors when
investigating 3D nuclear architecture, we paid special attention to this first step of nuclei isolation. Using
an enzymatic treatment (collagenases) in order to dissociate both the sarcolemma and the basement
membrane, resulted in nuclear lysis and loss of material. Indeed we found that when working with fetal
frozen tissue, there is no need to use enzymatic digestion, a manual dissection of muscle fibers with
scalpel blades followed by a filtration through a cell strainer and a quick fixation in order to preserve
the nuclear shape, proved sufficient to isolate the nuclei. With these experiments, we demostrated that
it is possible to perform Hi-C assays on frozen tissue, which may be advantageous in situations where,
due to experimental contrains, the Hi-C assays cannot be performed on fresh tissue straight away after

sampling.
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6.2.3 High resolution porcine genome maps

As introduced in the “Hi-C resolution” section (see Chapter 3 of the bibliographic review), the
sequencing depth is one of the most important factors to generate high resolution contact matrices. Thus,
we sequenced our Hi-C libraries at high depth in order to obtain high resolutive 3D maps of the porcine
genome. This allowed us to obtain a total of 3.45 billion read pairs for all our six libraries (575 M read
pairs / library) from which, between 302 and 461 million per library were identified as valid read pairs.
The Hi-C contact matrices described by (Rao et al., 2014) have been the most resolutive matrices
obtained so far (between 395 M and 4.9 billion pairwise contacts in human maps from different cell
lines and one mouse map). The number of sequenced read pairs obtained in some of these human
libraries was in the same order of magnitude than the ones obtained in our experiment. However, the
range of valid pairs was lower than the ones they obtained. This can be explained by: (1) differences in
quality between the two reference genomes (affecting the mapping rates); (2) the selection criteria of
valid pairs (pairwise contacts). Indeed, when analyzing one of their dataset with our pipeline, we
obtained approximately the same proportion of valid/mapped pairs than in our libraries, which suggest
that our selection criteria to discern read pairs issue from a Hi-C religation event may probably be more
restrictive; (3) small variations or differences in performance of the experimental protocols, as observed
in one of our Hi-C libraries (Rep2-110), which resulted less productive than the others. Despite this,
even if lower, the quantity of valid data we obtained was in the same order of magnitude than the valid
data reported in mouse (Rao et al., 2014). Indeed, comparing with the most relevant studies in this
domain (Dixon et al., 2012, 2015; Lieberman-Aiden et al., 2009; Sexton et al., 2012), we obtained
similar quantity of exploitable data, which underlines the high potential of our experimental design
which, in addition, consisted in 3 replicates per condition, while in most of the studies, only one or two

replicates were used.

Regarding Hi-C resolution we must discern between two confusing concepts: “matrix
resolution” and “map resolution”, as first described in (Rao et al., 2014). The first refers to the locus
size (bin size) used to construct a contact matrix, and the second one was described as the smallest locus
size such that 80% of the loci have at least 1,000 contacts. We obtained contact matrices at 500, 200 and
40 Kb matrix resolutions, on which at least 99% of loci have more than 1,000 contacts. This means that
theoretically, we could have obtained Hi-C matrices at smaller bin sizes than 40 Kb while still keeping
good mapping resolutions. However, we did not decrease the bin size because the criteria of map
resolution to perform a differential analysis, as we did, must be higher in order to identify significant
differences between the two conditions. Indeed, the number of differential bin pairs detected at 40 Kb
was too low compared with 200 and 500 Kb. This suggests that at 40 Kb, the quantity of valid data is
probably insufficient to target all relevant differences in chromatin structure existing between the two

stages of development.
6.2.4 Main features of 3D genome folding in fetal muscle

Before building Hi-C contact matrices, we investigated the number of cis and trans read pairs
among the total valid pairs. Interestingly, we obtained across all six replicates relatively higher
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percentages of inter-chromosomal interactions (48% on average) than in the human and mouse dataset
(Dixon et al., 2015; Rao et al., 2014) used for comparison (29% and 43% respectively). In addition the
reported percentages of short-range (< 20 Kb) intra-chromosomal interactions (~ 2.4%) were much
lower compared with the human and mouse datasets (12% and 22% respectively). We first wondered
whether these discrepancies were a consequence of differences in the quality of the reference genomes.
Thus, we compared the impact of a genome assembly improvement by running our pipeline on a small
dataset with the previous (Sscrofal0) and current (Sscrofall) genome versions. However, the observed
decrease on trans bin pairs in Sscrofal 1 with respect to Sscrofal( was not important enough to elucidate
all differences, and we suggested that cell-type specificities (i.e. nuclear shape or genome compaction)
may explain the observed differences. Indeed, in the study performed in human embryonic stem (ES)
cells and four ES derived lineages (from which we exported the human dataset (Dixon et al., 2015))
between 11% - 51% of trans, and 16% -53% of cis (< 500 pb) read pairs were reported, showing a high
variability among the different cell types. The high percentages of cis short-range interactions observed
in this study, might be due to the proliferating state of these progenitor stem cells, as during some points
of the cell cycle (mitosis) the chromatin is found in its highest level of compaction forming
chromosomes. In another Hi-C assay performed in human fetal brain tissue around 53% of trans valid
pairs were reported (Won et al., 2016), similar to the 51% reported in neural progenitor cells (Dixon et
al., 2015), but no information is available for the cis-short range in this tissue of differentiated cells.
Another evidence of cell-type specificities on the number of cis/frans interactions, was the the results
found in our aforementioned Fr-AgENCODE project (adult liver) (Foissac et al., 2018), where the
percentages of trans (30% - 38%) and cis short-range valid pairs (6.4% — 6.8%) in hepatocytes were
quite conserved across the three species (goat, chicken and pig). As mentioned before, muscle nuclei
have a particular oval shape due to their peculiar location along the syncytium formed by the muscle
fiber, which might explain the observed differences on the cis/trans ratio compared with other cell types.
In fact, in a study performed in differentiated myotubes (Doynova et al., 2017), although the criteria for
classifying cis short-range interactions was different (< 10 Kb instead of 20 Kb), the percentage was in
the same order of magnitude (2.5% — 3%) than in our fetal muscle libraries. However, only 36-37% of
trans read pairs were reported compared with our 41% - 52%. Nevertheless, we must consider that in
this study, an in vitro instead of an in tissue model was used to investigate the genome organization of
differentiated muscle cells, which might explain the differences. In addition, their Hi-C experiments
were performed by using the in solution Hi-C protocol which has been proven to increase both
experimental noise and bias and, more specifically, to reduce the reproducibility of long-range intra-
and inter-chromosomal contacts (Nagano et al., 2015). Altogether, our results support the idea that the
cis/trans contacts ratio may be more cell-type specific than species specific, and probably they can be

explained by differences in nuclear shape and cell state (proliferating or quiescent cells).

In order to investigate the higher order structures of muscle genome, we obtained Hi-C contact
matrices for individual chromosomes, as well as for the whole genome. The first observation was the
high contrast between the density of intra- and inter-chromosomal contacts (Figure 45), displaying a
clear delimitation of each chromosome in the whole genome matrix. These chromosomal structures
correspond to the well-described chromosome territories (CTs) occupying discrete foci on interphase
nuclei (Bolzer et al., 2005; Cremer and Cremer, 2001).
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Then, we sought to investigate subchromosomal structures within the chromosome territories,
the so-called A and B compartments. We identified about 682 compartments per replicate with a mean
size between 1.5 and 2 Mb. These compartments are smaller than the ones previously observed in mouse
(3 Mb median size) (Dixon et al., 2012). However, in our previous study on porcine liver
(FR-AgENCODE project), we obtained A/B compartments which showed a mean size of ~3 Mb. These
results suggest that there might be cell-type specific differences, apart from differences in the genomes
and/or in the analysis method. Besides, we confirmed that, compared with the B compartments, A
compartments show a higher density of genes, a higher gene expression, and a lower frequency of
contacts, meaning that the chromatin is more decondensed (accessible), as previously described in
(Lieberman-Aiden et al., 2009). We also observed that most of these compartments were highly
conserved across all replicates, as previously reported in other studies (Barutcu et al., 2015; Doynova et
al., 2017; Foissac et al., 2018), while their distribution is very heterogeneous across all chromosomes.
For instance, some chromosomes (i.e. 1, 3, 15 and 16) seem highly segmented, while others (i.e. 5, 6, 8

and 17) show quite large compartments.

Beyond the CTs and the A/B compartments, we identified smaller chromatin structures defined
as chromatin domains enriched in highly-self interacting regions, the so-called TADs (Dixon et al.,
2012; Nora et al., 2012). TADs seem to play a role in coordinating the activity of groups of neighboring
genes (Gibcus and Dekker, 2013). Indeed, TADs boundaries are enriched in insulator proteins (such as
CTCF), histone marks associated to active promoters, and transcription start sites (TSS) (Dixon et al.,
2012). Accordingly to this, we found a high density of genomic CTCF-binding sites around TAD
borders, with a prevalence of “forward” CTCF sites at the beginning of the TADs and of “reverse”
CTCEF sites at the end of the TADs when considering the orientation of the CTCF-binding sites, as
previously observed by (Rao et al., 2014). In fact, TAD boundaries have been suggested to be involved
in the mechanism of loop formation, together with other proteins such as cohesin and RNAPIIL, which
may need CTCF dimerization due to the convergent orientation of the two CTCF motifs present at the
loop anchors (Bjorkegren and Baranello, 2018; Rao et al., 2014; Tang et al., 2015b). The mean size of
our predicted TADs ranged between 181 and 309 Kb, which are considerably smaller than those initially
described (~ 1 Mb) (Dixon et al., 2012; Nora et al., 2012), but similar in size than the “contact domains”
and “physical domains” described in (Rao et al., 2014 and Sexton et al., 2012) respectively. Indeed, the
TADs involved in loop formation have been proposed as “insulated neighborhoods” of approximately
~ 190 Kb, which can associate to form nested insulated neighborhoods through the formation of nested
boundaries (Hnisz et al., 2016a). This suggests the existence of nested TADs organized in a hierarchical
way, as previously described (Fraser et al., 2015), meaning that we possibly detected additional
boundaries beyond those previously observed, as proposed by (Rao et al., 2014). This would explain the
size difference. Another evidence that supports this hypothesis is that our TADs showed not only a high
density of CTCF-binding sites at the boundaries, but also a depletion of these sites inside TADs, while,
in Dixon et al. 2012, 85% of the CTCF-binding sites were found inside TADs. As just mentioned, this
is probably because they did not find additional boundaries inside their TADs which might have contain
CTCF-binding sites. In addition, these differences could also be explained because we used a different

TAD detection method, the Armatus program (Filippova et al., 2014), instead of the directionally index
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(DI) approach (Dixon et al., 2012). Indeed, Armatus has been proven to have higher sensitivity in
recovering TAD boundaries than other methods (Forcato et al., 2017).

6.2.5 Major changes on chromatin conformation at late gestation

In this study, we have been able to detect dynamic changes in the chromatin structure of muscle
nuclei occurring at late gestation (between the 90" and the 110" day). Some of these changes were
global, (identification of many genomic regions showing a significant differential on the interaction
frequencies); others were more specific, such as clustering of telomeric regions; and others were more

subtle, such as the detection of few genomic regions switching between A and B compartments.
6.2.5.1 Switching compartments

Regarding the A and B compartments, although the vast majority of genomic regions have the
same compartment assignment across replicates, 11% of them switched between the two conditions
when comparing the two merged matrices. However, when being more restrictive by comparing
uniquely genomic regions with a compartment assignment in all replicates, and with a total coherence
between the three replicates of each condition, only 3.1% of the genomic regions switched compartment.
These dynamic changes seem less important compared with some studies where extensive A/B
compartment switches were observed. For instance, up to 25% of switches were reported between
human embryonary stem (ES) cells and mesenchymal stem cells (MSCs) (Dixon et al., 2015), 12%
between epithelial and a breast cancer cells (Barutcu et al., 2015), and 8% between progenitor and
differentiated myotubes (Doynova et al., 2017). However, analyzing more in detail the different
approaches used for compartment detection, we realized that these values are not strictly comparable.
Indeed, in all these three studies, the genomic regions switching compartment were identified after
merging all replicates for each condition, rather than requiring for a total consistency between replicates.
Obviously, this approach leads to a different number of switching regions. Moreover, the A/B
compartments were identified at different resolutions in each study. The choice of resolution might
considerably affect the number and assignment of A/B compartments. Fine changes in compartment
assignments that could not be detected at large bin sizes, might be easily detected when using smaller
bin sizes, and consequently, the number of variable genome regions may increase. This would explain
the high percentage (25%) of switching compartments found in (Dixon et al., 2015), as they used 40 Kb
resolution matrices to determinate the A/B compartments, while we did the compartment calling on the
500 Kb resolution Hi-C matrices. Similarly, (Barutcu et al., 2015) obtained 12% of switches by using
250 Kb resolution matrices, and Doynova et al. observed 8% of switches in 400 and 500 Kb resolution
matrices, the last being in the same order of magnitude than the number of changes we detected at similar

resolutions.

Overall, when the different approaches are comparable, then it can be hypothesized that the
magnitude of dynamic switches can be cell-type dependent, as reported in (Dixon et al., 2015), which
observed huge differences in the number of switching compartments between different cell types. In this
study, embryonic stem (ES) cells are derived in mesendoderm (ME) and mesenchymal stem cells
(MSCs), being the first the initial progenitors and the last the most differentiated. ME cells and MSCs
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showed 3.8% and 25% of switches with respect to ES cells respectively. It seems that the more divergent
are the cell populations, the more important are the differences in chromatin structure. In this context,
considering that we studied the dynamic changes between two populations of the same cell type
(differentiated muscle fibers at two different points of the muscle maturation process), we observed a
non negligible proportion (from 3% to 11%, depending on the approach) of genomic regions switching
compartment types. These changes of chromatin state between the two conditions may potentially have
a role in the regulation of gene expression, as variations in gene expression have been significantly

associated to these switching compartments (further discussed bellow).
6.2.5.2 Dynamic interacting regions

Our differential analysis method allowed us to identify 10,183, 3,417 and 83 differential bin
pairs at 500, 200 and 40 Kb resolution respectively between the two developmental stages. These
differential bin pairs reflect dynamic interacting regions distributed all over the genome, and might be
responsible of major changes in chromatin structure occurring between the 90" and the 110™ day of
gestation that explain the separation we observed between the two conditions (Figure 61). We were able
to detect much more dynamic interacting regions, compared with the myogenesis in vitro model study
performed in mice (Doynova et al., 2017), where only 55 differentially bin pairs were reported between
myoblast and myotubes (400 Kb resolution). We could expect higher global changes during
differentiation (myogenesis) than in our model of differentiated muscle fibers at two relatively close
developmental stages. This is probably because we have a much better map resolution, which allowed
us to identify more subtle changes. The functional analyses performed on these differential bin pairs
show an enrichment in biological processes related to synaptic transmission, signal transduction,
metabolic processes and catalytic activity. No apparent enrichment in muscle-associated functions was
observed, unless the synaptic transmission refers in this case to the neuromuscular contraction. It must
be considered that at 500 and 200 Kb resolution the differential genomic regions contain too many genes
to be able to target specific genes. On the other side, althought at 40 Kb we could target more fine (gene
scale level) differential genomic regions, the quantity of data was probably not enough to allow us
identifying relevant differences in chomatin structure associated to expression regulatory programs.
Further sequencing would be necessary in order to improve the results obtained in the differential

analysis at 40 Kb resolution.

Among all differential bin pairs, we highlighted two interesting findings involving several
related genomic regions. The first concerns large chromosomal adjacent regions and the second one

involved telomeric regions of most of the chromosomes.
6.2.5.3 Differentially distal adjacent regions

Interestingly, we observed large genomic regions of adjacent differential bin pairs that exhibit
the same dynamic behavior when comparing the two gestational ages. Specifically, we found two large
clusters in chromosome 2 that seem to correspond each to a chromosome arm, with a high density of
differential bin pairs with a negative log-fold change in the p arm, and a positive log-fold change in the

g arm. This indicates that the p arm becomes less condensed at 110 days of gestation and the q arm more
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condensed, which suggests that globally, genes located on the p arm may show a more inactive state
than those located on the q arm at the end of gestation. Similar results were observed on the fly genome,
where higher-order clusters corresponding to each chromosome arm were organized into active and
inactive clusters (Sexton et al., 2012). However, unlike in our study, this was not associated to dynamic
changes because this study was mostly focused on an exhaustive description of 3D folding features in
the fly genome. Beyond these clusters found on chromosome 2, similar large structures were observed
for instance in chromosomes 6 and 14 (both with a negative log-fold change) or 1 and 13 (positive
log-fold change), however, they did not involve the whole chromosome arm. It remains to verifiy if
genes located in these dynamic adjacent regions are related and/or whether they show a coordinated
regulation of gene expression, in which case we could suggest that the chromatin remodeling of large

adjacent regions explain in part a coordinated regulation of related genes.
6.2.5.4 Inter-chromosomal telomeres clustering

Another interesting finding was that many inter-chromosomal differential bin pairs involved the
telomeric regions of many different chromosomes (at least nine among eighteen) located in either the p
or the q arm. Some of them, such as telomeric regions in the q arms of chromosomes 3, 9 and 15,
involved differential bin pairs with telomeric regions belonging to at least four different chromosomes.
Moreover, most of them showed a negative log-fold change indicating than telomeres exhibit dynamic
coordinated nuclear organization in muscle cells during late development. More specifically, this
suggests that telomeres seem to be preferentially clustered at 90 days of gestation and might dissociate
later at 110 days. Indeed, these telomeres changes could be possible since telomeres have been observed
to display rapid movements in live human cells (Wang et al., 2008). Similarly, preferential contacts
between telomeres have been reported in fly embryonic nuclei, but these contacts were not associated
to dynamic changes (Sexton et al., 2012). In another study, telomeric and sub-telomeric regions were
found to display more frequent interactions in epithelial cells than in breast cancer cells (Barutcu et al.,
2015), however these interactions were only intra- but not inter-chromosomal, meaning that some
chromosomes bend to bring in contact their two extremities. This phenomenon of telomeres clustering
has been also observed in yeast meiotic and quiescent cells (Guidi et al., 2015; Lazar-Stefanita et al.,
2017; Yamamoto, 2014). Also in yeast, the telomere clustering has been associated to the formation of
foci in which silencing factors concentrate, and it has also been proved the dynamic nature of
aggregation or dissociation of these clusters (Hozé et al., 2013). There are also evidences of telomere
clustering in mammals both in somatic cells and gametes (Solov’eva et al., 2004). For instance in human
cancer and mouse cell lines, dynamic associations and dissociations of a subfraction of telomeres have
been also observed in quiescent mammalian cells (Molenaar et al., 2003). In human fibroblasts,
telomeres are known to associate preferentially in interphase nuclei than in their cycling counterparts
(Nagele et al., 2001), and long telomeres have been observed to be involved in forming chromosome
loops that can affect the higher order chromatin structure and gene expression (Robin et al., 2014).
Interestingly, this study was performed in human myoblasts where it was proposed that telomere
length-dependent long-range chromosomal interactions may repress gene expression by silencing genes
close to the telomere. Or it may inversely enhance gene expression by activating those genes when

telomeres became shorter with cellular aging. Moreover, a strong clustering of telomeres has also been
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reported in porcine neutrophils and lymphocytes (Yerle-Bouissou et al., 2009). Another study focused
on the cis telomeric associations in neutrophils revealed that when telomeric associations occur, the
assotiations of p and q arm from the same chromosome are more frequent (Mompart et al., 2013).
Besides, on one side, the SMARCA4 subunit of the SWI/SNF complex, which has a potential role in
tissue-specific gene regulation during embryonic development, has been suggested to play a role in
three-dimentional organization of telomeric regions (Barutcu et al., 2016). On the other side, the ATPase
subunit of this same SWI/SNF complex has also been found to be required for the formation of
inter-chromosomal interactions contributing to changes in gene positioning during myogenesis and

temporal regulation during myogenic transcription (Harada et al., 2015).

Our results of inter-chromosomal clustering of telomeric regions at 90 days of gestation,
together with the aforementioned studies related to telomeres associations, suggest the possibility of a
specific dynamic mechanism of gene expression regulation in fetal muscle cells through temporal
formation-disruption of telomere clusters. Further studies by using 3D DNA FISH will be necessary to
confirm this hypothesis.

Interestingly, similarly to telomeres yet less obvious, we observed that some differential bin
pairs seem to involve the centromeric regions of few chromosomes (i.e. chromosomes 2, 5, 8, 10, 11
and 12) but in this case, they show a positive log-fold change. This suggest that centromeres might
cluster preferentially at 110 days. This phenomenon of centromeres clustering has been previously
observed in different studies (Botta et al., 2010; Sexton et al., 2012; Yerle-Bouissou et al., 2009).
However, we were not able to prove it since their genomic location it is not available in the reference

genome sequence.
6.2.6 Genome organization and gene expression

In order to investigate whether the observed structural changes in 3D genome folding (switching
A/B compartments and differential bin pairs) were related to variations in gene expression, we integrated
to our study muscle expression data obtained on fetuses of 90 days and 110 days gestational ages.
Regarding A/B compartments, we observed that probes mapped to A =» B switching regions (switching
sense: 90 days =» 110 days) showed significantly lower fold changes than those mapped to B = A
switching regions. This suggests that at 110 days of gestation, there is a downregulation of gene
expression in these genomic regions, which seems to be associated to structural variations of the
chromatin state (switch from an “active” state at 90 days of gestation to an “inactive” one at 110 days).
Inversely, switches from B to A seem to be associated to upregulated genes in these genomic regions.
This was in agreement with results reported previously in human and mouse (Barutcu et al., 2015; Dixon
et al., 2015; Doynova et al., 2017; Won et al., 2016). Similarly, we found that the expression values of
genomic regions (differential bin pairs) significantly closer either at 90 days or 110 days of gestation
are significantly lower than in more distant regions. Although significant, the differences in gene
expression, both in switching compartments and differential bin pairs, were subtle. This suggests that
variations in chromatin structure, especially when considering large genomic regions, do not always

imply a global regulation of gene expression but rather indicate fluctuations in the expression levels of
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a subset of genes located in the interrogated region. In fact, the integration of gene expression and
differentially located regions was done at 200 Kb resolution. When we used the differential bin pairs
reported at 500 Kb, no significant differences in the logFC expression were found when comparing with
stable regions (data not shown). This is probably because at 500 Kb the differentially located regions
are too large to target genes potentially regulated (to many genes per genomic region) and/or because
the genomic regions involved in differential genome conformation are not sufficiently specific of
distancing/approaching phenomena. Despite these subtle but significant variations, these results strongly
support our initial hypothesis that the differences in gene expression previously reported between the

two developmental stages (Voillet et al., 2014), are at least in part associated to chromatin remodeling.
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7 General conclusion

This project has permitted to explore the relations between 3D genome organization and gene
expression. More specifically, it has allowed to shed light on the main changes occurring at the level of
chomatin structure in porcine developmental muscle, which are associated at least in part with variations

in gene expression.

Our first study, in which a single-cell approach (3D DNA FISH) was used to asses the nuclear
proximity of a selected group of genes, allowed us to reveal interesting associations involving /GF?2,
DLK]I and MYH3 genes, all of them related to muscle development (Schiaffino et al., 2015; Van Laere
et al., 2003; Waddell et al., 2010). Moreover, we developed an innovative approach of gene
co-expression network inference in which, by means of integrating information of gene nuclear
co-localizations, we were able to obtain consistent, robust and reliable gene co-expression networks. As
these networks were build from genes differentially expressed in fetal muscle of two extreme breeds in
terms of survival, the information generated by these networks, brought to light relevant functions
involved in the development and maturity of the fetal muscle. In addition, we proposed the MYOD1 and
CTNNBI transcription factors as potential co-regulators of the aforementioned /GF2 and DLKI genes
that we found co-localized in muscle nuclei. Globaly, we proved that by combining biological
information of spatial proximity between genes, with pairwise partial correlations between gene

expression levels, we are able to highlight a network of muscle-specific interrelated genes.

In our second study, we investigated the 3D genome organization at a larger scale, by using a
population-based method approach (Hi-C), which allowed to explore all genomic regions found in
proximity in muscle cell nuclei. This study has permitted to provide the first 3D maps of the porcine
muscle genome at 500, 200 and 40 Kb resolution, as well as to determine major chromatin structures
such as the A/B compartments and TADs. More important, we have identified genomic regions showing
significant differences in chromatin structure between the two gestational ages. Interestingly, a
considerable proportion of these genomic regions involved the telomeric regions of several
chromosomes, which seem to preferentially cluster at 90 days of gestation compared with 110 days. In
addition, our data suggest that differences between conformations at the two developmental stages, can
explain a part of the variability between conditions. Moreover, althought the A/B compartments were
mostly conserved across replicates, we identified few genomic regions changing of compartment type
between the two gestational ages. We proved an actual link between chromatin conformation and gene
expression by first confirming that the gene expression was significantly higher in A vs. B compartments
as expected. Second, we observed that swiching from an A compartment (at 90 days) to a B compartment
(at 110 days) was accompaigned by a slight but significant decrease in gene expression at 110 days,
which is consistent with the known genomic features of B compartments (related to close inactive
regions associated to heterochromatic histone marks). Third, the genomic regions exhibing significant
differences in chromatin conformation, showed as well subtle but significant differences in gene

expression. More specifically, those regions significantly closer both at 90 days or at 110 days of
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gestation, showed a significant decrease in gene expression than those regions significantly far from

each other in the corresponding stage of gestation.

Altogether, these new insights would help us to understand possible mechanisms of gene
expression regulation dependent on genome structure in fetal porcine muscle, which is a valuable
information in the context of the agronomic research. Further functional studies will be still necessary
to uncover which are those mechanisms (potentially involved in muscle development and the
establishment of muscle maturity in pig). Meanwhile, this thesis has allowed to characterize the main
structural changes occurring in the 3D genome organization at late gestation, where important variations

in the expression of genes related to muscle maturation process have been described.
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8 Perspectives

In order to further exploit our data, it would be interesting in the short term to identify A/B
compartments at smaller matrix resolutions than we did, in order to explore the impact of resolution on
the compartment assignments and, eventually, to identify new genomic regions switching compartment
type. The obtainment of Hi-C matrices at smaller bin sizes (i.e. at 10 Kb resolution), if we still keep a
good “map resolution”, would allow us to search for loop structures as previously described in (Rao et
al., 2014). As loop structures are known to be involved in mechanisms of gene expression regulation
(by bringing genes and distal regulatory elements in proximity), these would be a first step to identify
potential regulatory elements of target genes such as distal enhancers. In line with this, it would be
highly valuable to integrate our Hi-C data with ChIP-seq (chromatin immunoprecipitation sequencing)
data, which would allow us to capture DNA sequences bound by proteins (RNAPII, H3K36me3,
H3K79me2, H3K27ac, H3K4mel, and H3K27me3) associated to transcriptionally active or inactive
regions. As it would be worth repeating the ChIP-seq experiment targeting the CTCF protein, as well as
the SMARCA4 subunit of the SWI/SNF complex which has been found to be involved in the telomere

structure, but also found enriched in open chromatin regions and TAD boundaries (Barutcu et al., 2016).

Obviously, if we could further increase the sequencing depth of our Hi-C libraries, we will be
able to achieve a better resolution in order to target structural variations of specific genes (even of the
regulatory sequences of those genes), as well as to allow performing the differential analysis at lower
resolutions. Moreover, if we could achieve such a level of resolution, we will be able to detect chromatin
contacts between pairs of genes at the whole genome scale. This information, combined with the
appropriate expression data, could be used in our model of network inference in order to extend the
approach by using data of gene-gene interactions at the whole genome level, which will allow us to

obtain highly relevant and informative gene co-expression networks.

In addition, it would be interesting to use expression data from RNA-seq assays, which would
be more appropriate to be integrated with our Hi-C data. Indeed, the expression data used in our study
were obtained from a porcine microarray, in which probes related to adipose tissue, immune system and
skeletal muscle specific genes were overrepresented. On the microarray some genes were characterized
by several probes while others were represented by a unique probe, and probes were designed when the
available reference genome was still of relatively low quality. Using RNA-seq data would allow us to
have a better representation of the whole genome transcripts, and a more accurate measure of gene

expression levels, which would rend the expression and chromatin conformation data more comparable.

Because we studied a diploid genome, the results obtained for each chromosome are indeed a
mixture of chromatin structures from the two homologs. It would be interesting to investigate whether
we obtain the same chromosome folding patterns between the paternal and maternal homologs. In order
to do this, we could detect allele-biased genomic regions in terms of chromatin structure by identifying

SNPs overlapping to our reads. These new results could be integrated with the new RNA-seq data to
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explore whether allelic imbalances in gene expression (i.e. genes subject to genomic imprinting) are

associated to allelic differences on the interacting frequencies.

Finally, as we observed that the telomeric regions seem to preferentially cluster at 90 days of
gestation, it would be interesting to perform 3D DNA FISH experiments in order to find out whether
these clusters are just more prevalent at 90 days than at 110 days or whether they remarkably dissociate
at 110 days.
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Appendix 1. Description of the model used for network inference.

Description of the model used
for network inference

Supplementary file for the article “A new approach of gene co-expression network inference reveals highly
significant biological processes in pig muscle involved in the etablishment of maturicy”

his file describes the model used for net-

work inference and puts it in perspective

with other approach found in the litterature.
It also explains the choices made for the different
hyper-parameters of the method.

1 Network inference

Networks were inferred using Gaussian graphical mod-
els (GGM; Edwards, 1995) from n — 61 samples at
gestational age 90. From expression data, GGM build
a graph (or network) in which vertices are genes and
edges represent a strong relationship between the gene
expressions. GGM are based on the estimation of par-
tial correlations (i.e., correlations berween two gene
expressions knowing the expression of all the other
genes). They were preferred over relevance networks
(Butte and Kohane, 2000) because they better measure
direct relations between gene expressions by account-
ing for the effect of all expression data and because
they were found more efficient to group genes with a
common function in a previous study (Villa-Vialaneix
et al., 2013).

More precisely, if X — (X;,...,X,) denotes the
random variables corresponding to the expression of
p genes, GGM supposes that X follows a Gaussian
distribution A(0, X)) and aims at estimating

Cor (X, Xy |(Xe)rgsir)

for every pair (7, ) in {1,...,p}. A graph is obtained
from these estimation by putting an edge between
nodes corresponding to the variables X; and X+ when
this partial correlation is different from 0. It can be
shown that estimating partial correlations is also equiv-
alent to estimating 4, in the following linear models:

A — Z

bl PR %

By Xy

and more precisely that

B30 #£0 > Cor (X, X |( Xe)egi o) 7 0.

When the number of samples is smaller than the
number of genes used for network inference (which
is generally the case and which was the case for our
problem), the estimation of the partial correlation or
of the equivalent linear models are ill-posed problems.
This issue is [requently addressed by adding a sparse
(L1) penalty to the maximum likelihood (ML) prob-
lems induced by the linear regression formulation: this
is the Graphical Lasso (GLasso) (Friedman, Hastie, and
Tibshirani, 2008). This method allows to simultane-
ously estimates the coefficients 3;; and to perform
variable (here edge) selection among the possible can-
didates since Lasso penalty vields to provide sparse
solution in which many coefficients [3;;- are set to 0 by
the maximization of the penalized likelihood.

Similarly to that approach, we used a model that in
cluded a sparse penalty (for edge selection) combined
with two Ly (smooth) penalties aiming at incorporat
ing a priori information into the inference similarly to
what is proposed in Villa-Vialaneix et al., 2014. More
precisely, this led to the minimization over ;. (for j
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and j' varying from 1 to p) of
1
2
peubdnnm:hnvum likelituod
A 35112 +
—_——

Iy [sparse) penalty

p S Bi—1)? +

(k) By

BT BB + B By +

L
L~ (smooth) penalty for co-localized edges

I 3 (B —0)? (1)

(k.3 =

———
Lo [smooth) penalty for non co-bocaled edges

in which ¥ is the empirical estimates of ¥, ﬁ‘d‘u is the
same matrix deprived from row and column j, ﬁ_ﬂ.‘
is row j of the empirical covariance matrix deprived
[rom entry j, Fy is the list of known co-localized genes
and F, is the list of genes known not to be co-localized.
A and p are two positive hyper-parameters that re-
spectively control the sparsity of the solution and its
conformity to a priori co-localization of information.

The idea behind the model of Equation (1) is that
edge estimation must be enforced for pairs of genes
that are known to be co-localized whereas the absence
of an edge must be enforced for pairs of genes that are
known not to be co-localized.

2 Practical implementation of
network inference

The same method, based on a bootstrapping scheme
than the one described in (Villa-Vialaneix et al., 2014)
was used to perform the inference while ensuring the
robustness of the estimation: B = 100 bootstrap sam

ples were drawn from the original dataset. Inference
(ie., the minimization, for all § = 1,_._,p, of Equa

tion (1)) was performed for every bootstrap sample
and a fixed value of p. The inference was performed
for the complete set of values for A along the regular-
ization path (Friedman, Hastie, and Tibshirani, 2010]).
The value of A that ensured at least 77 edges in the
network was kept (and 73 was set to 20% of the num-
ber of pairs of nodes in the network). Only edges that
appear in, at least, 1% — 15 bootstrap samples were
included in the final network.

Finally, i was set to the minimum value such that
all a priori information were recovered, which led
g = 0.2 in Nerwork 2, p = 0.3 in Nerwork 3,
g = 04 in Nerwork 3. All simulations were per-
formed with the free statistical software R (R Core
Team, 2017) (https://eran. r-project.org). The
inference was performed using our own scripts (avail
able at https://github.con/tuxette/internet3D)
and the graphs were displayed and analyzed using the
R package igraph (Csardi and Nepusz, 2006).
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Appendix 2. Gene description and cluster allocation.

Expression data of the 359 genes is available on the NCBI/GEO database with the following accession
number GSE56301. The gene annotation was improved compared to the one given in the original

publication (Voillet et al., 2014). Target genes tested by 3D DNA FISH are in red bold.

Netwrork | Netwrork | Netwrork | Netwrork
0 1 2 3
Gene o
Gene description ProbeName cluster cluster cluster cluster
symbol
ABCRB7 ATP binding cassette subfamily B member 7 [Source: HGNC 2i|115551474|dbj 6 2 7 4
Symbol;Acc:HGNC:48] |AK236152.1]
ABI family member 3 binding protein [Source:HGNC
ABI3 bp Symbol: Acc:HGNC: 17265] A_72_P039386 5 1 5 1
ABR active BCR-related [Source:HGNC Symbol;Acc:HGNC:81] A 72 P496416 3 3 1 3
ACACB | acetyl-CoA carboxylase beta [Source: HGNC Symbol;Acc:HGNC:85] A 72 P582352 2 2 2 2
acyl-CoA dehydrogenase, C-2 to C-3 short chain [Source:HGNC
ACADS Symbol; Acc:HGNC:90] A 72 P077821 2 2 7 2
ACATI1 | acetyl-CoA acetyltransferase 1 [Source:HGNC Symbol;Acc:HGNC:93] A 72 P414863 2 5 5 5
AOAM | ADAMTS like 3 [Source: HGNC Symbol;AccHGNC:14633] A_72_P365958 1 5 1 1
alcohol dehydrogenase 5 (class I1I), chi polypeptide [Source: HGNC
ADHS | o/ mbol; Ace:HGNC:253] 01836 8 ! 3 3
Q;DIPO adiponectin receptor 2 [Source:HGNC Symbol;Acc:HGNC:24041] 013159 9 2 1 2
AKAP1 . . .
1 A-kinase anchoring protein 11 [Source:HGNC Symbol;Acc:HGNC:369] 01634 3 3 3 3
AKR7A | aldo-keto reductase family 7 member A2 [Source:HGNC
2 Symbol;Acc:HGNC:389] 04483 4 4 4 4
ALKBH | alkB homolog 5, RNA demethylase [Source: HGNC
5 Symbol;Acc:HGNC:25996] A_72_P016101 4 4 4 4
. . . A . 2i47523627|ref]
ANPEP | alanyl aminopeptidase, membrane [Source:HGNC Symbol;Acc:HGNC:500] NM 214277.1] 9 6 2 5
ANXA?2 | annexin A2 [Source:HGNC Symbol;Acc:HGNC:537] A 72 P554722 5 5 1 1
ANXA3 | annexin A3 [Source:HGNC Symbol;Acc:HGNC:541] A 72 P149216 3 3 3 3
. i L . 2i|115547936|dbj
ANXAS | annexin A5 [Source:HGNC Symbol;Acc:HGNC:543] IAK234913.1] 5 5 2 5
APOO apolipoprotein O [Source:HGNC Symbol;Acc:HGNC:28727] A 72 P350828 2 2 7 2
ARF3 ADP ribosylation factor 3 [Source:HGNC Symbol;Acc:HGNC:654] A 72 P154956 7 2 7 2
ARHG | Rho GTPase activating protein 11A [Source:HGNC
AP11A | Symbol;Acc:HGNC:15783] A_T2_P342588 ’ 3 ’ 3
ADP ribosylation factor like GTPase 3 [Source:HGNC
ARL3 Symbol: Acc:HGNC:694] A_72_P035416 5 5 5 5
ankyrin repeat and SOCS box containing 11 [Source:HGNC
ASBI11 Symbol: Acc:HGNC: 17186] A_72 P029861 6 6 4 6
ATATI | alpha tubulin acetyltransferase 1 [Source:HGNC Symbol;Acc:HGNC:21186] 00(;1;'(1;§I7JST00000 2 2 7 2
ATF5 activating transcription factor 5 [Source:HGNC Symbol;Acc:HGNC:790] 07841 4 4 4 4
ATPIB | ATPase Na+/K+ transporting family member beta 4 [Source:HGNC
4 Symbol: Acc:HGNC:808] A_72_P223637 4 4 4 4
ATP2A | ATPase sarcoplasmic/endoplasmic reticulum Ca2+ transporting 1
1 [Source:HGNC Symbol:Acc:HGNC:811] A_72_P127906 2 2 7 2
ATP2A | ATPase sarcoplasmic/endoplasmic reticulum Ca2+ transporting 2
2 [Source:HGNC Symbol;Acc:HGNC:812] A_72_P601148 6 3 3 3
ATP2B | ATPase plasma membrane Ca2+ transporting 4 [Source:HGNC
4 Symbol;Acc:HGNC:817] 012415 6 6 7 3
ATP synthase, H+ transporting, mitochondrial F1 complex, beta polypeptide
ATPSB | 10 urce:HGNC Symbol;Acc:HGNC:830] A_T72_P563576 2 2 7 2
ATP synthase, H+ transporting, mitochondrial F1 complex, O subunit
ATPS0 |10 irce:HGNC Symbol; Ace:HGNC:850] A_T72_P695881 2 6 6 6
ATP6V | ATPase H+ transporting VO subunit al [Source:HGNC
0Al Symbol: Acc:HGNC:865] A_72_PO8IIT1 8 ! 0 3
ATP6V | ATPase H+ transporting VO subunit d1 [Source: HGNC
0DI Symbol:Acc:HGNC:13724] 010518 3 3 8 4
ATXN3 | ataxin 3 [Source:HGNC Symbol;Acc:HGNC:7106] 04703 4 3 8 4
B3GNT | UDP-GlcNAc:betaGal beta-1,3-N-acetylglucosaminyltransferase like 1 012993 3 3 3 3
L1 [Source:HGNC Symbol;Acc:HGNC:21727]
bromo adjacent homology domain containing 1 [Source:HGNC
BAHDL | o0 bol; Ace:HGNC:29153] 010500 ! 6 0 2
branched chain amino acid transaminase 2 [Source:HGNC
BCAT2 | 5 mbol; Acc:HGNC:977] 09326 8 2 7 2
BLVRB | biliverdin reductase B [Source:HGNC Symbol;Acc:HGNC:1063] A 72 P037556 8 3 3 3
BNIP1 BCL2 interacting protein 1 [Source:HGNC Symbol;Acc:HGNC:1082] A 72 P081211 9 6 5 5
BSG basigin (Ok blood group) [Source:HGNC Symbol;Acc:HGNC:1116] A 72 P064421 8 2 3 2
basic leucine zipper and W2 domains 2 [Source:HGNC
BZW2 Symbol;Acc:HGNC:18808] 09786 4 4 4 4
C8G complement C8 gamma chain [Source:HGNC Symbol;Acc:HGNC:1354] A 72 P077791 8 3 3 4
CAMK | calcium/calmodulin dependent protein kinase kinase 1 [Source:HGNC
K1 Symbol:Acc: HGNC: 1469] 013469 3 3 3 3
OCAPNI calpain 10 [Source:HGNC Symbol;Acc:HGNC:1477] A_72_P165216 6 6 2 2
CCNGl | cyclin G1 [Source:HGNC Symbol;Acc:HGNC:1592] A 72 P313048 4 3 3 3
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CD81 CD81 molecule [Source:HGNC Symbol;Acc:HGNC:1701] A 72 P698441 1 6 6 6
CDK6 cyclin dependent kinase 6 [Source:HGNC Symbol;Acc:HGNC:1777] 014748 2 2 7 2
CDK9 cyclin dependent kinase 9 [Source:HGNC Symbol;Acc:HGNC:1780] A 72 P623883 4 4 4 4
CDKNI1 | cyclin dependent kinase inhibitor 1C [Source:HGNC
C Symbol;Acc:HGNC:1786] A_T2_P240467 3 3 8 4
cerebellar degeneration related protein 2 like [Source: HGNC
CDR2L Symbol: Acc:HGNC:29999] A_72 P263187 7 5 2 5
CELF1 | CUGBP Elav-like family member 1 [Source:HGNC Symbol;Acc:HGNC:2549] | 05626 4 4 3 4
cell cycle exit and neuronal differentiation 1 [Source: HGNC
CEND1 Symbol; Acc:HGNC:24153] A_T72_P572049 6 4 4 4
CEP128 | centrosomal protein 128 [Source:HGNC Symbol;Acc:HGNC:20359] A_72 P141351 3 3 3 3
CEP72 | centrosomal protein 72 [Source:HGNC Symbol;Acc:HGNC:25547] A 72 P410118 7 5 7 5
CHMP2 | charged multivesicular body protein 2A [Source: HGNC
A Symbol:Acc:HGNC:30216] A_T72_P272689 ! 3 8 4
CHRD chordin [Source:HGNC Symbol;Acc:HGNC:1949] 014303 6 6 6 6
CISD1 CDGSH iron sulfur domain 1 [Source:HGNC Symbol;Acc:HGNC:30880] A_72 P560709 8 2 7 2
Cbp/p300 interacting transactivator with Glu/Asp rich carboxy-terminal
CITEDI domain 1 [Source:HGNC Symbol;Acc:HGNC:1986] 010495 3 3 3 3
CKM creatine kinase, M-type [Source:HGNC Symbol;Acc:HGNC:1994] A 72 P650270 3 3 3 3
2i/6002628|gb|A
CLCN2 | chloride voltage-gated channel 2 [Source:HGNC Symbol;Acc:HGNC:2020] F093592.1|AF09 6 6 4 1
3592
CLCNS | chloride voltage-gated channel 5 [Source:HGNC Symbol;Acc:HGNC:2023] A_72 P080321 2 5 5 5
CLUH | clustered mitochondria homolog [Source:HGNC Symbol;Acc:HGNC:29094] A 72 P275574 2 2 7 2
i?LlZ collagen type XII alpha 1 chain [Source:HGNC Symbol;Acc:HGNC:2188] A 72 P496541 2 2 7 2
i(l)Ll6 collagen type XVI alpha 1 chain [Source:HGNC Symbol;Acc:HGNC:2193] A_72_P427844 1 5 1 1
COLIA . . . X 2i|115553423|dbj
1 collagen type I alpha 1 chain [Source:HGNC Symbol;Acc:HGNC:2197] JAK236626.1] 1 5 1 1
COLIA . . A . 2i|115551911|dbj
5 collagen type I alpha 2 chain [Source:HGNC Symbol;Acc:HGNC:2198] JAK236318.1] 1 5 1 1
fouA collagen type IIT alpha 1 chain [Source:HGNC Symbol:Acc:HGNC:2201] A_72_P107126 1 5 1 1
COL4A .
1 collagen type IV alpha 1 chain [Source:HGNC Symbol;Acc:HGNC:2202] A_72_P316078 5 6 4 4
COL5A .
1 collagen type V alpha 1 chain [Source:HGNC Symbol;Acc:HGNC:2209] A_72_P077826 1 3 1 1
COL5A .
N collagen type V alpha 2 chain [Source:HGNC Symbol;Acc:HGNC:2210] A_72_P657188 1 5 1 1
COLEC . .
L collectin subfamily member 12 [Source:HGNC Symbol;Acc:HGNC:16016] A_72_P403848 1 5 1 1
COQ7 coenzyme Q7, hydroxylase [Source:HGNC Symbol;Acc:HGNC:2244] 09545 2 2 7 1
COX6C | cytochrome ¢ oxidase subunit 6C [Source:HGNC Symbol;Acc:HGNC:2285] A 72 P764976 6 6 6 6
CPTIB | carnitine palmitoyltransferase 1B [Source:HGNC Symbol;Acc:HGNC:2329] A 72 P273299 2 2 2 2
CRAT carnitine O-acetyltransferase [Source:HGNC Symbol;Acc:HGNC:2342] A 72 P670021 8 2 3 3
CREB3 | cAMP responsive element binding protein 3 like 4 [Source:HGNC
L4 Symbol:Acc:HGNC: 18854] A_72_P402968 4 4 4 4
cysteine rich transmembrane BMP regulator 1 [Source:HGNC
CRIMI Symbol;Acc:HGNC:2359] 01283 4 4 4 4
2i|74360255|gb|
CRLF1 | cytokine receptor like factor 1 [Source:HGNC Symbol;Acc:HGNC:2364] AJ943513.1|1AJ9 5 5 1 1
43513
CS citrate synthase [Source: HGNC Symbol;Acc:HGNC:2422] A 72 P537441 2 2 7 2
CUL7 cullin 7 [Source:HGNC Symbol;Acc:HGNC:21024] A 72 P443764 1 5 1 1
CYBR | cytochrome bs reductase 1 [Source: HGNC Symbol:Ace:HGNC:13397] A_72_P004426 8 4 6 6
DBF4 DBF4 zinc finger [Source:HGNC Symbol;Acc:HGNC:17364] A 72 P141791 2 5 4 4
BZBND dysbindin domain containing 2 [Source:HGNC Symbol;Acc:HGNC:15881] A_72_P245492 8 2 2 2
DCN decorin [Source:HGNC Symbol;Acc:HGNC:2705] A 72 P180841 2 5 8 1
DCUNI | defective in cullin neddylation 1 domain containing 2 [Source:HGNC
D2 Symbol:Acc:HGNC:20328] A_T72_P028376 3 3 3 2
dihydrolipoamide S-acetyltransferase [Source:HGNC
DLAT | g mbol; Ace:HGNC:2896] A_72_P704857 2 7 2
DLD dihydrolipoamide dehydrogenase [Source:HGNC Symbol;Acc:HGNC:2898] A 72 P592144 2 2 7 2
deleted in lung and esophageal cancer 1 [Source:HGNC
DLEC1 Symbol:Acc:HGNC:2899] A_72 P333958 4 3 4 3
delta like non-canonical Notch ligand 1 [Source:HGNC
DLK1 Symbol; Acc:HGNC:2907] A_72 P035731 3 3 8 1
DNAL4 | dynein axonemal light chain 4 [Source:HGNC Symbol;Acc:HGNC:2955] A_72 P072746 3 3 8 4
DNMTI1 | DNA methyltransferase 1 [Source:HGNC Symbol;Acc:HGNC:2976] A 72 P688426 5 5 1 1
L . . L . 2i47523581 ref]
DPP4 dipeptidyl peptidase 4 [Source:HGNC Symbol; Acc:HGNC:3009] NM 214257.1| 7 5 4 4
DPYSL | dinydropyrimidinase like 3 [Source:HGNC Symbol: Ace:HGNC:3015] 0398 8 1 3 4
dishevelled segment polarity protein 2 [Source:HGNC
DVLZ | mbol; Acc: HGNC:3086] 010386 2 2 7 2
ETNCZ dynein cytoplasmic 2 heavy chain 1 [Source:HGNC Symbol;Acc:HGNC:2962] | A_72 P362953 8 1 8 5
DYNLL A .
1 dynein light chain LC8-type 1 [Source: HGNC Symbol;Acc:HGNC:15476] A_72_P088696 5 5 1 5
ECI1 enoyl-CoA delta isomerase 1 [Source: HGNC Symbol;Acc:HGNC:2703] 014547 2 2 7 2
eukaryotic translation elongation factor 1 alpha 1 [Source:HGNC
EEF1A1 Symbol:Acc:HGNC:3189] A_72 P746511 4 4 4 4
EGFR epidermal growth factor receptor [Source:HGNC Symbol;Acc:HGNC:3236] 8i(47522839ref] 6 3 4 3

NM_214007.1|




EHHAD

enoyl-CoA hydratase and 3-hydroxyacyl CoA dehydrogenase [Source: HGNC

H Symbol;Acc:HGNC:3247] 09867 3 4 3 4
eukaryotic translation initiation factor 4E family member 3 [Source:HGNC

EIF4E3 Symbol: Acc:HGNC:31837] A_72 P054986 5 5 8 4

EMP3 epithelial membrane protein 3 [Source:HGNC Symbol;Acc:HGNC:3335] 011983 1 1 1 1

ENCI1 ectodermal-neural cortex 1 [Source: HGNC Symbol;Acc:HGNC:3345] A 72 P311268 7 5 7 2

ENDOG | endonuclease G [Source: HGNC Symbol;Acc:HGNC:3346] A 72 P196482 2 2 7 2

ENGAS | endo-beta-N-acetylglucosaminidase [Source: HGNC

E Symbol:Acc:HGNC:24622] 010819 4 4 4 4

EPAS1 | endothelial PAS domain protein 1 [Source:HGNC Symbol;Acc:HGNC:3374] A 72 P441713 8 4 3 3
erythrocyte membrane protein band 4.2 [Source: HGNC

EPB42 Symbol;Acc:HGNC:3381] 05966 6 4 4 4

ESR1 estrogen receptor 1 [Source: HGNC Symbol;Acc:HGNC:3467] A 72 P444427 3 3 3 3

EXT2 exostosin glycosyltransferase 2 [Source:HGNC Symbol;Acc:HGNC:3513] A 72 P337783 5 5 1 1
enhancer of zeste 2 polycomb repressive complex 2 subunit [Source:HGNC

EZH2 | o mbol; Acc:HGNC:3527] 010045 7 3 7 3

FABP3 | fatty acid binding protein 3 [Source:HGNC Symbol;Acc:HGNC:3557] A 72 P440921 6 2 7 2

FAP fibroblast activation protein alpha [Source:HGNC Symbol;Acc:HGNC:3590] A 72 P207492 7 5 7 1
phenylalanyl-tRNA synthetase alpha subunit [Source: HGNC

FARSA | §vmbol; Acc:HGNC:3592] 012975 8 2 7 2

FBLN7 | fibulin 7 [Source:HGNC Symbol;Acc:HGNC:26740] A 72 P431264 7 5 7 5

FBN1 fibrillin 1 [Source:HGNC Symbol;Acc:HGNC:3603] A_72 P088351 5 5 1 1
farnesyl-diphosphate farnesyltransferase 1 [Source:HGNC

FDFTI1 Symbol;Acc:HGNC:3629] A 72 P098361 6 2 2 2

FGF11 fibroblast growth factor 11 [Source:HGNC Symbol;Acc:HGNC:3667] 05710 1 2 1

FGFR1 | fibroblast growth factor receptor 1 [Source:HGNC Symbol;Acc:HGNC:3688] | A 72 P046056 1 6 1

2i[7055965|gb|A
FGFR4 | fibroblast growth factor receptor 4 [Source:HGNC Symbol;Acc:HGNC:3691] | W485859.11AW 9 5 1 5
485859

FGGY carbohydrate kinase domain containing [Source:HGNC

FGGY | g mbol; Acc:HGNC:25610] A_72_P153686 ° 2 7 !

FKBP10 | FK506 binding protein 10 [Source:HGNC Symbol;Acc:HGNC:18169] A_72 P154676 1 5 5 1
flavin adenine dinucleotide synthetase 1 [Source:HGNC

FLADI Symbol;Acc:HGNC:24671] 012800 8 2 2 2
fibronectin leucine rich transmembrane protein 2 [Source:HGNC

FLRT2 | g mbol; Ace:HGNC:3761] 08020 3 3 ! !

FSTL1 | follistatin like 1 [Source:HGNC Symbol;Acc:HGNC:3972] 010038 2 2 2 5
FXYD domain containing ion transport regulator 6 [Source: HGNC

FXYD6 Symbol;Acc:HGNC:4030] 09076 6 6 ! 4
FYN proto-oncogene, Src family tyrosine kinase [Source: HGNC

FYN' | gymbol; Ace:HGNC:4037] A_72_P146946 ! 3 3 3

(BiANA glucosidase II alpha subunit [Source:HGNC Symbol;Acc:HGNC:4138] 012854 1 6 6 1

GFRA1 | GDNF family receptor alpha 1 [Source:HGNC Symbol;Acc:HGNC:4243] A 72 P002701 7 5 7 4
growth hormone inducible transmembrane protein [Source: HGNC

GHITM Symbol;Acc:HGNC:17281] 011946 2 7 2

GLT8D | glycosyltransferase 8 domain containing 1 [Source:HGNC

1 Symbol:Acc:HGNC:24870] A_72_P594034 ! 6 6 6

GLUDI | glutamate dehydrogenase 1 [Source:HGNC Symbol;Acc:HGNC:4335] A 72 P615755 4 4 4 4
GDP-mannose pyrophosphorylase B [Source:HGNC

GMPPB Symbol: Acc:HGNC:22932] A_72 P230202 6 6 6 6

GNAI3 | G protein subunit alpha i3 [Source:HGNC Symbol;Acc:HGNC:4387] 012082 7 6 7 2

GPI glucose-6-phosphate isomerase [Source:HGNC Symbol;Acc:HGNC:4458] A 72 P146806 7 2 7 2

GPRAS | G protein-coupled receptor associated sorting protein 2 [Source: HGNC

P2 Symbol;Acc:HGNC:25169] A_72_P205372 ’ 6 ’ 2

GPSM1 | G protein signaling modulator 1 [Source: HGNC Symbol;Acc:HGNC:17858] A 72 P218247 3 3 3 3

GPX3 glutathione peroxidase 3 [Source:HGNC Symbol;Acc:HGNC:4555] A 72 P671275 2 2 2 2
HAUS augmin like complex subunit 1 [Source:HGNC

HAUSL | o bol; Acc: HGNC:25174] 010898 3 ! 3 !
hes family bHLH transcription factor 6 [Source:HGNC

HES6 | o/ mbol; Acc:HGNC: 18254] AT2_P6TT517 3 3 3 3

HK1 hexokinase 1 [Source:HGNC Symbol;Acc:HGNC:4922] 05171 2 5 5 5
5-hydroxymethylcytosine binding, ES cell specific [Source:HGNC

HMCES Symbol;Acc:HGNC:24446] 04725 9 3 3 3

HMGB2 | high mobility group box 2 [Source:HGNC Symbol;Acc:HGNC:5000] A 72 P558174 5 2 7 2

HMGN | high mobility group nucleosome binding domain 1 [Source:HGNC 09747 5 5 5 5

1 Symbol;Acc:HGNC:4984]

HSP90B | heat shock protein 90 beta family member 1 [Source:HGNC

i Symbol;Acc:HGNC:12028] A_72_P232707 ! 3 1 !

HSPA1 | heat shock protein family A (Hsp70) member 13 [Source: HGNC

3 Symbol:Ace:HGNC:11375] A_T2_P435494 3 3 2 3
heat shock protein family A (Hsp70) member 9 [Source: HGNC

HSPA9 Symbol: Acc:HGNC:5244] A_72 P388638 2 2 7 2
IBAS57 homolog, iron-sulfur cluster assembly [Source:HGNC

IBA57 Symbol; Acc:HGNC:27302] A_72 P067206 8 2 6 2

ICOSL | inducible T-cell costimulator ligand [Source: HGNC

G Symbol;Acc:HGNC:17087] A_72_P287144 ! 5 ! !
isocitrate dehydrogenase 3 (NAD(+)) gamma [Source:HGNC

IDH3G | o/ bol; Acc: HGNC:5386] 06582 8 4 4 4

IGF2 insulin like growth factor 2 [Source: HGNC Symbol;Acc:HGNC:5466] A 72 P303139 3 3 8 1
immunoglobulin superfamily member 1 [Source:HGNC

IGSF1 Symbol;Acc:HGNC:5948] A_72_P466893 2 2 5 2
immunoglobulin superfamily member 3 [Source: HGNC

IGSF3 | §ombol; Acc:HGNC:5950] 013413 7 3 2 3

IL12RB | interleukin 12 receptor subunit beta 2 [Source: HGNC

2 Symbol;Acc:HGNC:5972] A_T2_POT77956 4 4 4 4
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gi[47522819]ref]

1L18 interleukin 18 [Source:HGNC Symbol;Acc:HGNC:5986] NM 213997.1| 2 2 5 5
inositol polyphosphate-5-phosphatase F [Source: HGNC

INPPSF Symbol;Acc:HGNC:17054] A 72 P579372 4 3 3 4
inositol polyphosphate-5-phosphatase J [Source: HGNC

INPPSJ Symbol; Acc:HGNC:8956] A 72 P659813 5 3 3 4

IPO13 importin 13 [Source:HGNC Symbol;Acc:HGNC:16853] 09886 8 4 3
interleukin 1 receptor associated kinase 1 [Source:HGNC

IRAK1 Symbol:Acc:HGNC:6112] A_72_P175791 4 4 4

IISYNA inositol-3-phosphate synthase 1 [Source:HGNC Symbol;Acc:HGNC:29821] 06349 3 3 8 4

ITGA9 | integrin subunit alpha 9 [Source:HGNC Symbol;Acc:HGNC:6145] 014127 6 3 4 4

ITGB1 integrin subunit beta 1 [Source: HGNC Symbol;Acc:HGNC:6153] 05530 7 6 7 2
inter-alpha-trypsin inhibitor heavy chain family member 4 [Source: HGNC

ITIH4 | g mbol; Ace:HGNC:6169] 09843 3 ! 3 !

JTB jumping translocation breakpoint [Source:HGNC Symbol;Acc:HGNC:6201] A 72 P387573 4 4 4 4
potassium voltage-gated channel subfamily C member 4 [Source: HGNC

KONC4 | & 1 Acc- HGNC-6236] A 72 P055116 8 2 5 2
potassium voltage-gated channel modifier subfamily G member 2

KENG2 | 160 iree: HGNC Symbol; Ace:HGNC:6249] 06864 6 4 4 2
potassium voltage-gated channel subfamily Q member 1 [Source:HGNC

KCNQ1 Symbol; Acc:HGNC:6294] A_72_P162961 3 3 3 3

KDELR | KDEL endoplasmic reticulum protein retention receptor 2 [Source: HGNC 05029 7 5 7 5

2 Symbol;Acc:HGNC:6305]

KLF3 Kruppel like factor 3 [Source:HGNC Symbol;Acc:HGNC:16516] A 72 P419349 1 3 3 3

IZ“ACTB lactamase beta 2 [Source:HGNC Symbol; Acc:HGNC:18512] A_72_P680071 3 3 3 3

LAMA4 | laminin subunit alpha 4 [Source:HGNC Symbol;Acc:HGNC:6484] A 72 P379818 1 5 1 1
LASI like, ribosome biogenesis factor [Source: HGNC

LASIL Symbol; Acc:HGNC:25726] A_72 P531544 8 2 6 2

LBH limb bud and heart development [Source:HGNC Symbol;Acc:HGNC:29532] 03615 7 5 1 1

LDHD lactate dehydrogenase D [Source:HGNC Symbol;Acc:HGNC:19708] 07218 9 3 3 4
LFNG O-fucosylpeptide 3-beta-N-acetylglucosaminyltransferase

LENG [Source:HGNC Symbol;Acc:HGNC:6560] A_T72_P232052 ! 6 ! !

LHX2 LIM homeobox 2 [Source:HGNC Symbol;Acc:HGNC:6594] A_72 P444597 3 3 3 3

LOXL2 | lysyl oxidase like 2 [Source:HGNC Symbol;Acc:HGNC:6666] A 72 P359358 7 5 2 5

LPAR4 | lysophosphatidic acid receptor 4 [Source:HGNC Symbol;Acc:HGNC:4478] A 72 P211927 7 5 7 4

LPIN2 lipin 2 [Source:HGNC Symbol;Acc:HGNC:14450] A 72 P292904 7 5 7 5

LRRKI1 [ leucine rich repeat kinase 1 [Source:HGNC Symbol;Acc:HGNC:18608] A 72 P098446 7 6 7 2

MAFK | MAF bZIP transcription factor K [Source:HGNC Symbol;Acc:HGNC:6782] A 72 P278329 8 1 3 4

I];IIAGE MAGE family member D1 [Source:HGNC Symbol;Acc:HGNC:6813] A_72_P149681 9 5 5 5

MAGE | MAGE family member D2 [Source:HGNC Symbol; Acc:HGNC:16353] A_72_P348613 2 5 5 5

MAGIX | MAGI family member, X-linked [Source:HGNC Symbol;Acc:HGNC:30006] 07544 2 2 2

MAPRE | microtubule associated protein RP/EB family member 1 [Source:HGNC

1 Symbol;Acc:HGNC:6890] A_T72_P165071 3 5 3 !

MB myoglobin [Source:HGNC Symbol;Acc:HGNC:6915] A 72 P302979 3 3 3 3

MCEE | methylmalonyl-CoA epimerase [Source:HGNC Symbol;Acc:HGNC:16732] A 72 P178091 8 3 3 2

MDHI malate dehydrogenase 1 [Source:HGNC Symbol;Acc:HGNC:6970] A 72 P303074 2 2 7 2

ME3 malic enzyme 3 [Source:HGNC Symbol;Acc:HGNC:6985] A 72 P250467 8 1 3 3
maternally expressed 3 (non-protein coding) [Source:HGNC

MEG3 Symbol; Acc:HGNC: 14575] A_72 P442171 4 4 8 1

ngSDC Mesoderm Development LRP Chaperone A_72_P501549 5 5 1 1
mesoderm posterior bHLH transcription factor 1 [Source: HGNC

MESP1 Symbol: Ace:HGNC:29658] A_T72_PAT77678 3 3 3 3

MEST | mesoderm specific transcript [Source: HGNC Symbol;Acc:HGNC:7028] A 72 P442223 2 5 8 1

MFAPS | microfibril associated protein 5 [Source:HGNC Symbol;Acc:HGNC:29673] A 72 P293494 1 6 6 2
microsomal glutathione S-transferase 3 [Source:HGNC

MGST3 | o/ bol: Aco: HGNC:7064] 013326 6 2 7 4
melanogenesis associated transcription factor [Source:HGNC

MITE | o ol Ace: HGNC.7105] A 72 P444157 8 6 3 3

MPP6 membrane palmitoylated protein 6 [Source:HGNC Symbol;Acc:HGNC:18167] | A 72 P380523 3 3 3 3

MRPL3 | mitochondrial ribosomal protein L37 [Source:HGNC

7 Symbol: Acc:HGNC: 14034] 010627 4 3 3 4
mitochondrial ribosomal protein S2 [Source:HGNC

MRPS2 | g/ mbol; Acc:HGNC: 14495] 06203 ° 2 7 2

MRPS2 | mitochondrial ribosomal protein S28 [Source:HGNC

8 Symbol;Acc:HGNC: 14513] O11321 4 2 7 2

MSANT | Myb/SANT DNA binding domain containing 4 with coiled-coils

D4 [Source:HGNC Symbol;Acc:HGNC:29383] A_72_P089866 3 ! 3 3

MSL2 MSL complex subunit 2 [Source:HGNC Symbol;Acc:HGNC:25544] 012026 9 3 8 4

MUT methylmalonyl-CoA mutase [Source:HGNC Symbol;Acc:HGNC:7526] A 72 P441374 3 1 7 1

MXRA7 | matrix remodeling associated 7 [Source:HGNC Symbol;Acc:HGNC:7541] A 72 P298914 1 5 5 5

MYBL2 | MYB proto-oncogene like 2 [Source:HGNC Symbol;Acc:HGNC:7548] A 72 P350008 7 5 5 5

Q/IYBPC myosin binding protein C, fast type [Source:HGNC Symbol;Acc:HGNC:7550] | O11393 4 3 3 4

MYH3 | myosin heavy chain 3 [Source:HGNC Symbol;Acc:HGNC:7573] A 72 P414973 3 3 3 1

MYPN | myopalladin [Source:HGNC Symbol;Acc:HGNC:23246] A 72 P089766 6 6 6 4

NCAMI | neural cell adhesion molecule 1 [Source:HGNC Symbol;Acc:HGNC:7656] A 72 P117001 9 5 3 3
neutral cholesterol ester hydrolase 1 [Source: HGNC

NCEH1 Symbol; Acc:HGNC:29260] A_72 P286854 2 3 3 2

NDP NDP, norrin cystine knot growth factor [Source:HGNC A 72 P290889 3 3 3 3

Symbol;Acc:HGNC:7678]




NDUFA | NADH:ubiquinone oxidoreductase subunit A12 [Source:HGNC
12 Symbol;Acc:HGNC:23987] 010344 8 2 7 2
NDUFA | NADH:ubiquinone oxidoreductase subunit A3 [Source:HGNC 07196 3 5 7 2
3 Symbol;Acc:HGNC:7686]
NDUFB | NADH:ubiquinone oxidoreductase subunit BS [Source:HGNC
5 Symbol; Ace:HGNC:7700] A_T72_P293684 8 2 7 2
NDUFS | NADH:ubiquinone oxidoreductase core subunit S1 [Source:HGNC
1 Symbol;Acc:HGNC:7707] A_72_P089311 ! 2 7 2
NES nestin [Source:HGNC Symbol;Acc:HGNC:7756] A 72 P002891 2 5 1 5
I;FATC nuclear factor of activated T-cells 3 [Source: HGNC Symbol;Acc:HGNC:7777] | 01743 8 1 3 3
NFATC .
4 nuclear factor of activated T-cells 4 [Source: HGNC Symbol;Acc:HGNC:7778] | A_72_P119516 1 6 1 1
nuclear transcription factor, X-box binding like 1 [Source:HGNC
NFXLL | ¢ ol Aco: HONC: 18726] A 72 P132466 3 3 3 3
NMNA | nicotinamide nucleotide adenylyltransferase 3 [Source: HGNC
e Symbol;Acc:HGNC:20989] A_T2_P147316 2 2 7 2
nicotinamide nucleotide transhydrogenase [Source: HGNC
NNT Symbol;Acc:HGNC:7863] A_T2_P397893 2 2 3 2
NT5DC | S'-nucleotidase domain containing 1 [Source:HGNC
1 Symbol;Acc:HGNC:21556] A_T2 P732133 4 4 3 4
N-terminal Xaa-Pro-Lys N-methyltransferase 1 [Source:HGNC
NTMTI1 Symbol;Acc:HGNC:23373] A 72 P036826 2 2 7 2
NUP188 | nucleoporin 188 [Source: HGNC Symbol;Acc:HGNC:17859] A_72 P545332 6 6 4 6
OARDI | O-acyl-ADP-ribose deacylase 1 [Source:HGNC Symbol;Acc:HGNC:21257] 09345 4 4 4 4
ODC1 ornithine decarboxylase 1 [Source:HGNC Symbol;Acc:HGNC:8109] %Iéi};g;oofpmz 5 5 8 3
OGN osteoglycin [Source:HGNC Symbol;Acc:HGNC:8126] A 72 P255032 7 5 2 5
OXAI1L, mitochondrial inner membrane protein [Source: HGNC
OXAIL Symbol;Acc:HGNC:8526] 014558 2 2 7 2
P2RXS5 | purinergic receptor P2X 5 [Source:HGNC Symbol;Acc:HGNC:8536] A 72 P236932 6 6 6 6
prolyl 4-hydroxylase subunit alpha 3 [Source:HGNC
P4HA3 Symbol: Acc:HGNC:30135] A_72 _P367073 3 1 3 3
progestin and adipoQ receptor family member 9 [Source:HGNC
PAQRY | g0 mbol; Ace:HGNC:30131] A_72_P048236 4 4 3 4
. . L . 2i|46391809|gb|
PAX3 paired box 3 [Source:HGNC Symbol;Acc:HGNC:8617] AY579430.1| 4 4 4 4
PAX7 paired box 7 [Source:HGNC Symbol;Acc:HGNC:8621] A 72 P185391 3 3 3 3
PBX3 PBX homeobox 3 [Source:HGNC Symbol;Acc:HGNC:8634] A 72 P543607 7 6 6 2
PCDHI 2i]90235591]gb|
0 protocadherin 10 [Source:HGNC Symbol;Acc:HGNC:13404] BX924774.2|BX 4 4 4 4
924774
PDE4A | phosphodiesterase 4A [Source:HGNC Symbol;Acc:HGNC:8780] A 72 P106041 3 3 3 3
PDHAI1 | pyruvate dehydrogenase alpha 1 [Source:HGNC Symbol;Acc:HGNC:8806] A 72 P645767 2 2 7 2
pyruvate dehydrogenase complex component X [Source:HGNC
PDHX Symbol;Acc:HGNC:21350] A_72_P190556 2 2 3 5
pyruvate dehyrogenase phosphatase catalytic subunit 1 [Source: HGNC
PDP1 Symbol:Acc:HGNC:9279] A_T72_P199457 4 3 3 3
phosphatidylethanolamine binding protein 4 [Source:HGNC
PEBP4 | g0 mbol; Acc:HGNC:28319] 0620 6 3 3 6
PEG10 | paternally expressed 10 [Source:HGNC Symbol;Acc:HGNC:14005] A 72 P564724 3 3 8 4
PGD phosphogluconate dehydrogenase [Source:HGNC Symbol;Acc:HGNC:8891] 08797 7 6 7 1
. . . 2i[74362209|gb|
PHKB phosphc?rylas'e kmas‘e regulatory subunit beta [Source: HGNC AJO45467.1|AJ9 9 | 5 3
Symbol;Acc:HGNC:8927]
45467
PHLDB | pleckstrin homology like domain family B member 1 [Source:HGNC
1 Symbol:Acc:HGNC:23697] 09044 6 4 4 3
PIN2/TERF]I interacting telomerase inhibitor 1 [Source: HGNC
PINX1 Symbol; Acc:HGNC:30046] A_72 P101001 4 3 3 3
PKDRE | polycystin family receptor for egg jelly [Source: HGNC
J Symbol;Acc:HGNC:9015] 06639 4 4 4 4
cAMP-dependent protein kinase inhibitor alpha [Source: HGNC
PKRIA | Symbol; Acc:HGNC:9017] A_T72_P620119 3 ! 3 3
TEXPC plexin domain containing 1 [Source: HGNC Symbol; Ace:HGNC:20945] A_72 P357753 3 1 3 3
PEXNB 1 plexin B2 [Source: HGNC Symbol:Ace:HGNC:9104] A_72_P183761 1 6 6 6
PM20D | peptidase M20 domain containing 1 [Source: HGNC
1 Symbol:Acc:HGNC:26518] A_T72_P178791 3 3 3 3
PMEPA | prostate transmembrane protein, androgen induced 1 [Source:HGNC
1 Symbol;Acc:HGNC:14107] A_72_P315448 7 6 ! 5
peptidase, mitochondrial processing beta subunit [Source: HGNC
PMPCB Symbol:Acc:HGNC:9119] A_72 P071856 1 6 6 6
POSTN | periostin [Source: HGNC Symbol;Acc:HGNC:16953] A 72 P632486 1 5 1 1
PPAI pyrophosphatase (inorganic) 1 [Source:HGNC Symbol;Acc:HGNC:9226] A 72 P597416 4 4 4 4
protein phosphatase 1 catalytic subunit gamma [Source:HGNC
PPPICC Symbol:Acc:HGNC:9283] A_72 P671741 4 4 4 4
PPPIR1 | protein phosphatase 1 regulatory inhibitor subunit 14C [Source:HGNC
4C Symbol:Acc:HGNC: 14952] A_T72_P092786 4 4 4 4
PPPIRY | protein phosphatase 1 regulatory subunit 9A [Source:HGNC
A Symbol:Acc:HGNC: 14946] A_T72_P401473 3 4 4 4
PTC7 protein phosphatase homolog [Source: HGNC
PPTC7 Symbol; Acc:HGNC:30695] A_72 P099021 5 5 1 1
PRDX6 | peroxiredoxin 6 [Source:HGNC Symbol;Acc:HGNC:16753] A 72 P575489 4 4 4 4
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i[40391838]gb|

II)RELID PRELI domain containing 1 [Source:HGNC Symbol;Acc:HGNC:30255] BP142367.1|BP1 5 5 5 1
42367

PRICK | prickle planar cell polarity protein 2 [Source:HGNC

LE2 Symbol;Acc:HGNC:20340] A_T2P398358 7 3 7 3

PRKCQ | protein kinase C theta [Source: HGNC Symbol;Acc:HGNC:9410] A 72 P442547 2 2 2 2

gTGES prostaglandin E synthase 2 [Source: HGNC Symbol;Acc:HGNC:17822] 09510 2 2 2 2
prostaglandin 12 (prostacyclin) receptor (IP) [Source:HGNC

PTGIR | &1 ol Ace: HGNC.9602] A 72 P230127 8 1 3 5

PTMA | prothymosin, alpha [Source:HGNC Symbol;Acc:HGNC:9623] A 72 P441011 6 5 7 4
protein tyrosine phosphatase, receptor type F [Source: HGNC

PTPRF Symbol; Acc:HGNC:9670] A 72 P133066 1 6 1 1
protein tyrosine phosphatase, receptor type J [Source: HGNC

PTPRI | &0 bol-Aco: HGNC-0673] A 72 P404358 6 6 4 4
glycogen phosphorylase, muscle associated [Source: HGNC

PYGM Symbol: Acc:HGNC:9726] A_T72_P516452 8 2 7 2
RAB3A, member RAS oncogene family [Source: HGNC

RAB3A Symbol:Acc:HGNC:9777] A_72_P549961 6 4 6 2

RAB3IP | RAB3A interacting protein [Source:HGNC Symbol;Acc:HGNC:16508] A _72 P378108 3 3 3 3

. . 2i|59806756|gb

RAP2B RAP2B, member of RAS oncogene family [Source:HGNC DN113023.1[DN 7 5 7 4
Symbol;Acc:HGNC:9862] 113023

RASA4 | RAS p21 protein activator 4 [Source:HGNC Symbol;Acc:HGNC:23181] A_72 P244002 3 4 3 3

?AVER ribonucleoprotein, PTB binding 1 [Source:HGNC Symbol;Acc:HGNC:30296] | A 72 P202207 7 6 7 2

RBM10 | RNA binding motif protein 10 [Source:HGNC Symbol;Acc:HGNC:9896] A_72 P418079 6 6 7 6

EBMIS RNA binding motif protein 15B [Source:HGNC Symbol;Acc:HGNC:24303] A_72_P046046 5 6 4 2

RCOR3 | REST corepressor 3 [Source:HGNC Symbol;Acc:HGNC:25594] A 72 P283769 2 2 5 1

RGS2 regulator of G protein signaling 2 [Source:HGNC Symbol;Acc:HGNC:9998] A 72 P057121 3 1 5 1

RHOC ras homolog family member C [Source:HGNC Symbol;Acc:HGNC:669] A 72 P158146 5 5 5 5

RNF34 | ring finger protein 34 [Source:HGNC Symbol;Acc:HGNC:17297] A 72 P426884 1 3 3 3

RPLI1 ribosomal protein L11 [Source:HGNC Symbol;Acc:HGNC:10301] A 72 P041441 8 3 6 2

RPL3 ribosomal protein L3 [Source:HGNC Symbol;Acc:HGNC:10332] 010058 5 5 1 1

RPL31 ribosomal protein L31 [Source:HGNC Symbol;Acc:HGNC:10334] A 72 P294119 3 3 4 4

RPL32 | ribosomal protein L32 [Source:HGNC Symbol;Acc:HGNC:10336] A 72 P735568 3 3 8 1

RPS27A | ribosomal protein S27a [Source:HGNC Symbol;Acc:HGNC:10417] A 72 P391738 5 3 8 4
related RAS viral (r-ras) oncogene homolog 2 [Source: HGNC

RRAS2 Symbol;Acc:HGNC:17271] A_72_P130806 5 3 8 3

RTN4IP . . .

1 reticulon 4 interacting protein 1 [Source:HGNC Symbol;Acc:HGNC:18647] 013685 2 2 7 2

SATBI1 | SATB homeobox 1 [Source:HGNC Symbol;Acc:HGNC:10541] 012598 9 5 2 5
sodium voltage-gated channel beta subunit 1 [Source:HGNC

SCN1B Symbol; Acc:HGNC: 10586] A_72_P058596 9 3 8 4

SCT secretin [Source:HGNC Symbol;Acc:HGNC:10607] A 72 P414018 5 5 5 5

SDC2 syndecan 2 [Source:HGNC Symbol;Acc:HGNC:10659] A 72 P634951 5 5 5 5

SEC61B | Sec61 translocon beta subunit [Source:HGNC Symbol;Acc:HGNC:16993] 09969 1 5 5 5

;EI;EN sclenium binding protein 1 [Source:HGNC Symbol;Acc:HGNC:10719] A_72_P720208 3 3 3 3

SELO Selenoprotein O 010811 8 2 7 2

SGCE sarcoglycan epsilon [Source:HGNC Symbol;Acc:HGNC:10808] A 72 P136566 2 2 5 2

SKI SKI proto-oncogene [Source:HGNC Symbol;Acc:HGNC:10896] A 72 P079116 6 6 6 6
S-phase kinase associated protein 2 [Source: HGNC

SKP2 Symbol;Acc:HGNC:10901] 02895 7 5 7 !

SLBP stem-loop binding protein [Source:HGNC Symbol;Acc:HGNC:10904] A 72 P080921 5 5 1 1

?LC] A solute carrier family 1 member 3 [Source:HGNC Symbol;Acc:HGNC:10941] 013275 2 2 5 2

SLC22 | solute carrier family 22 member 16 [Source: HGNC

Al6 Symbol;Acc:HGNC:20302] 08716 4 4 3 4

SLC25 solute carrier family 25 member 12 [Source:HGNC

AL2 Symbol;Acc:HGNC:10982] A_T72_P342738 3 3 3 3

SLC25 solute carrier family 25 member 19 [Source:HGNC

A19 Symbol; Acc:HGNC: 14409] A_T72_P614041 4 3 3 4

8L Solute carrier family 25 member 3 [Source:HGNC Symbol:Ac:HGNC:10989] | A_72_P549036 2 2 7 2

SLC25 | solute carrier family 25 member 37 [Source: HGNC

A37 Symbol:Acc:HGNC:29786] A_T2_P48TSTI 4 3 3 4

A solute carrier family 2 member 12 [Source:HGNC Symbol:Acc:HGNC:18067] | 02906 3 3 3 3

SLC3A . . . A . 2i|115554863|dbj

5 solute carrier family 3 member 2 [Source:HGNC Symbol;Acc:HGNC:11026] IAK233675.1] 3 4 4 4

ZLIC‘“ solute carrier family 41 member 1 [Source:HGNC Symbol; Acc:HGNC:19429] | 011000 3 3 3 3

i§C46 solute carrier family 46 member 3 [Source:HGNC Symbol;Acc:HGNC:27501] | A_72 P131741 8 3 3 3

SECPA | Solute carrier family 9 member A2 [Source:HGNC Symbol:Acc:HGNC:11072] | A_72_PO88396 4 4 4 3

SMIMS | small integral membrane protein 5 [Source:HGNC Symbol;Acc:HGNC:40030] | A 72 P190151 4 3 3 4

SP7 Sp7 transcription factor [Source:HGNC Symbol;Acc:HGNC:17321] A 72 P175886 4 4 4 4

?PAGI Sperm Associated Antigen 11 A_72_P209602 5 1 3 5

. . . . . 2i|84128395|gb|
SPG7 SPG7, paraplegin matrix AAA peptidase subunit [Source:HGNC CV874435.1/CV 3 2 5 5

Symbol;Acc:HGNC:11237]

874435




gi[49274644]ref]

SPI1 Spi-1 proto-oncogene [Source: HGNC Symbol;Acc:HGNC:11241] NM_001001865. 4 4 3 4
1]
SRI sorcin [Source:HGNC Symbol;Acc:HGNC:11292] A 72 P402828 1 1 6 3
SS18, nBAF chromatin remodeling complex subunit [Source: HGNC
SSI8 | gymbol:Acc:HGNC:11340] 05598 8 6 7 2
SSR2 signal sequence receptor subunit 2 [Source:HGNC Symbol;Acc:HGNC:11324] | 011071 1 5 5 1
STS suppression of tumorigenicity 5 [Source:HGNC Symbol;Acc:HGNC:11350] 011683 8 3 3 3
gTEAP STEAP3 metalloreductase [Source: HGNC Symbol;Acc:HGNC:24592] A_72_P426009 4 3 3 4
STMNI1 | stathmin 1 [Source:HGNC Symbol;Acc:HGNC:6510] A 72 P731693 5 5 5 5
STIP1 homology and U-box containing protein 1 [Source:HGNC
STUBL | symbol:Acc:HGNC:11427] 014020 8 2 ! 2
;TXBP syntaxin binding protein 2 [Source:HGNC Symbol;Acc:HGNC:11445] 06461 4 4 4 4
SVIL supervillin [Source:HGNC Symbol;Acc:HGNC:11480] 03767 1
synapse defective Rho GTPase homolog 1 [Source: HGNC
SYDEL | & - Acc HGNC.25824] A 72 P327048 1 5 1 1
SYT17 | synaptotagmin 17 [Source:HGNC Symbol;Acc:HGNC:24119] A 72 P138296 5 5 5 5
TBR1 T-box, brain 1 [Source:HGNC Symbol;Acc:HGNC:11590] A 72 P471478 4 4 4 1
TENMI | teneurin transmembrane protein 1 [Source:HGNC Symbol;Acc:HGNC:8117] A 72 P291424 2 2 7 2
TFRC transferrin receptor [Source:HGNC Symbol;Acc:HGNC:11763] A 72 P035411 4 4 4 4
TGFB3 | transforming growth factor beta 3 [Source:HGNC Symbol;Acc:HGNC:11769] %;1‘\1752211417938‘16\11 7 5 7 2
TIMP1 | TIMP metallopeptidase inhibitor 1 [Source: HGNC Symbol;Acc:HGNC:11820] 010493 5 3 8 4
TLE4 transducin like enhancer of split 4 [Source:HGNC Symbol;Acc:HGNC:11840] | A 72 P254987 9 5 5 5
”lfé\/[EMl transmembrane protein 119 [Source:HGNC Symbol;Acc:HGNC:27884] A_72_P311568 1 6 2 1
TMEM1 . .
S0A transmembrane protein 150A [Source:HGNC Symbol;Acc:HGNC:24677] 013818 4 3 3 3
TMEMO | transmembrane protein 9 [Source:HGNC Symbol;Acc:HGNC:18823] A 72 P266237 3 3 3 3
TNNT2 | troponin T2, cardiac type [Source:HGNC Symbol;Acc:HGNC:11949] 012845 2 5 5 5
TPBG trophoblast glycoprotein [Source: HGNC Symbol;Acc:HGNC:12004] A 72 P328828 5 5 4 1
TPM1 tropomyosin 1 [Source:HGNC Symbol;Acc:HGNC:12010] A 72 P74639%4 4 4 4 4
tubulin polymerization promoting protein family member 3 [Source: HGNC
TPPP3 | Symbol:Acc:HGNC:24162] 04242 5 5 5 5
translocation associated membrane protein 2 [Source: HGNC
TRAM2 Symbol;Acc:HGNC:16855] 09031 7 3 6 2
TRIM17 | tripartite motif containing 17 [Source:HGNC Symbol;Acc:HGNC:13430] 06090 4 4 4 4
. . . 2i|40800175|gb|
TRIP6 thyroid bormone rec.eptor interactor 6 [Source: HGNC CK452961.1ICK 3 3 3 3
Symbol;Acc:HGNC:12311]
452961
TRNP1 | TMF1-regulated nuclear protein 1 [Source: HGNC Symbol;Acc:HGNC:34348] | A 72 P210252 2 2 5 5
3SPAN tetraspanin 7 [Source:HGNC Symbol;Acc:HGNC:11854] A_72_P499239 9 3 8 4
TUBA4 .
A tubulin alpha 4a [Source:HGNC Symbol;Acc:HGNC:12407] A_72_P209947 4 4 3 4
TUBAS | tubulin alpha 8 [Source:HGNC Symbol;Acc:HGNC:12410] 09364 2 1 7 1
;rXNRD thioredoxin reductase 2 [Source:HGNC Symbol;Acc:HGNC:18155] 01892 2 2 7 2
TYRO3 | TYRO3 protein tyrosine kinase [Source:HGNC Symbol;Acc:HGNC:12446] ‘%;‘11(12?‘%5253%313“%] 7 5 7 5
UCP3 uncoupling protein 3 [Source: HGNC Symbol;Acc:HGNC:12519] A 72 P443167 1
UNESC 1 une-5 family C-terminal like [Source: HGNC Symbol:Ace:HGNC:21203] A_72_P600728 2 2 7 2
ureidoimidazoline (2-oxo0-4-hydroxy-4-carboxy-5-) decarboxylase
URAD [Source:HGNC Symbol;Acc:HGNC:17785] 013849 4 4 4 4
USsP25 ubiquitin specific peptidase 25 [Source:HGNC Symbol;Acc:HGNC:12624] 03111 5 5 2 5
VASN vasorin [Source:HGNC Symbol;Acc:HGNC:18517] A 72 P379898 3 1 3 3
VCAN versican [Source:HGNC Symbol;Acc:HGNC:2464] A 72 P409933 2 5 5 5
VDACI | voltage dependent anion channel 1 [Source:HGNC Symbol;Acc:HGNC:12669] | A 72 P114441 2 2 2 2
VDAC?2 | voltage dependent anion channel 2 [Source:HGNC Symbol;Acc:HGNC:12672] | A 72 P641463 1 2 1 1
VIM vimentin [Source:HGNC Symbol;Acc:HGNC:12692] A 72 P036391 2 2 7 2
XYLB xylulokinase [Source:HGNC Symbol;Acc:HGNC:12839] A 72 P173691 9 6 2 5
YWHA | tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein
B beta [Source:HGNC Symbol:Ace:HGNC:12849] A_72_P330693 7 6 7 2
YWHA | tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein 2i|115546630|dbj 7 2 7 2
Q theta [Source:HGNC Symbol;Acc:HGNC:12854] |AK234468.1|
ZCCHC | zinc finger CCHC-type containing 17 [Source:HGNC
17 Symbol;Acc:HGNC:30246] A_72_P046551 8 ! 3 3
AFP6L | 7EP36 ring finger protein like | [Source: HGNC Symbol:Ace:HGNC:1107] | A_72_P601188 1 6 6 2
ZHX1 zinc fingers and homeoboxes 1 [Source:HGNC Symbol;Acc:HGNC:12871] A 72 P500455 5 1 5 5
ZNF521 | zinc finger protein 521 [Source:HGNC Symbol;Acc:HGNC:24605] A 72 P292659 9 3 8 4
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Appendix 3. Biological network reconstructed following Ingenuity data
analyses.

(a) The genes list from cluster 1 of Network 3 was submitted to IPA (Ingenuity Pathway Analysis).
Here, only consistent information from the proposed networks was used to reconstruct a biological
network. The three first IPA proposed networks were merged. Only genes from cluster 1 of Network 3
(red bold) and nodes (genes/molecules, black bold) necessary to connect the cluster genes, were kept.
Genes tested by 3D DNA FISH are in green bold. (b) Upstream Regulators analysis (extraction of
relevant information) allowed to identify some transcription factors that could explain unexpected co-
expression and nuclear co-localization (especially between IGF2 and MYH3 genes) identified in this
study. (c¢) The list of genes from the final reconstructed network was submitted to IPA for biological
interpretation (extraction of relevant information).

(a) IPA networks analysis

Analysis | Score Focus Top D.|seases and Molecules in Network
Molecules Functions

Network | 105 49 Cancer, Connective | ABI3 bp, ADAMTSL3, ADGRG6, ADRB2, AMELX, ANXA2, AR-HSP90, Akt,

1 Tissue Disorders, Akt-Calmodulin-Hsp90-Nos3, CANX, CD28, CDK4, CDKN3, CFAP44,
Organismal Injury CHADL, CLCN2, COL12A1, COL13A1, COL16A1, COL19A1, COL1A1,
and Abnormalities | COL1A2, COL20A1, COL21A1, COL22A1, COL23A1, COL24A1, COL25A1,

COL27A1, COL28A1, COL3A1, COL4A4, COL4AG6, COL5A1, COL5A2,
COL6A5, COL6A6, COL9A2, COL9A3, COLEC12, COQ7, CRLF1, CUL7,
Calmodulin-Hsp90-Nos3, Col10a1l, Collagen type I, Collagen type IlI,
Collagen type X, Collagen type XVIlI, Collagen(s), DCN, DLK1, DNMT1,
DUSP28, Dnajc7-Hsp90-Nrli3, ELAVL1, EMP3, EPYC, EXT2, Erbb2 dimer,
FAP, FBN1, FBXO6, FGF dimer, FGF11, FGF14, FGF22, FGFR1, FKBP10,
FLRT1, FLRT2, Fgf, GANAB, GPR137, GPR146, GRK5, HNF4A, HPN,
HSP90B1, Histone h3, Hsp84-2, Hsp90, Hsp90-Ppard,
ICOSLG/LOC102723996, IGF2, ITGA10, ITGA11, ITGA3, ITGAM, ITGB3,
ITIH4, Integrin, JAK2, KERA, KIAA0895, KLF12, KRT40, LAIR2, LAMAA4,
MESDC2, MEST, MUT, NFATC4, NUDT11, Nlrp4a, OPTC, PGD, PLXNC1,
POSTN, PPTC7, PTPRF, RCOR3, RGD1560020_predicted, RGS2, RPL3,
RPL32, RUNX2, SKP2, SLBP, SMIM12, SMIM7, SSR2, TMEM101,
TMEM119, TMPRSS6, TRAM2, TSSK4, TUBAS, TWIST1, VDAC2, VN1R1,
WWOX, XPNPEP2, Xap2-Hsp90-Ppara, adenosine triphosphate, bilirubin,
collagen, factor XIlI, riboflavin, ribose

Network |9 8 Cell Cycle, Cell ABCB1, ABLIM1, ACTR3, ADD1, ADD3, AICDA, AMER1, ANK3, ANP32A,

2 Morphology, ANP32B, AP3D1, APC/APC2, APC2, ARFGAP3, ARMCS, AXIN1, AXIN2,
Cellular Assembly BCL3, BEGAIN, CA9, CBY1, CC2D1A, CCDC85C, CDCA8, CDH16, CEACAM1,
and Organization CEP290, CEP350, CLASP1, CLASP2, CLINT1, CLTA, COPSS8, CPSF4, CRYAB,

CRYBG1, CSNK1D, CTNNB1, DES, DIAPH3, DMD, DNAJB4, DNAJBS6,
DNAJC11, DNAJC6, DNAIC8, DR1, DVL3, EIF5A, ERBIN, FANCG, FBRS,
FERMT2, FOXC1, FOXC2, FOX04, GFAP, GNB4, HAUS1, HAUS2, HAUS3,
HAUS4, HAUS5, HAUS6, HAUS7, HAUSS, HMG20B, HNRNPM, HOOK2,
HSPB11, HSPBS, HSPE1, IGF2 bp1, KIAA2013, KIF20A, L3 MbTL3, LBH,
LEO1, LFNG, MAML1, MAPKAPK2, MAPRE1, MIS12, MYH3, MYH6, MYL4,
MYLK, Macf1, NEURL2, NIPSNAP1, NIPSNAP2, NUMB, NUP62, PACSIN3,
PDAP1, PDE4B, PDE4DIP, PIBF1, PKN1, PKP3, POC5, PPP1R13L, PPP1R2,
PRELID1, PRKACB, PTH1R, RAB11FIPS, RANBP3, RAPGEF2, RPL21, Rnr,
S100A4, SAA1, SCN5A, SEPT9, SHOX2, SIX1, SPAG5, STARD7, STIM1,
STRN3, STXBP1, SYDE1, TADA3, TANC2, TBL1X, TBL1XR1, TBR1, TELO2,
TFPT, TIAL1, TOB2, TRA, TRIM29, TRIM33, TTC26, TUBA4A, VPS52, XPO1,
miR-92a-3p (and other miRNAs w/seed AUUGCAC)

Network | 2 1 Cancer, Cell Cycle, | BMI1, MEG3

3 Cellular
Development

Network |2 1 Cellular GIPC1, TPBG

4 Movement,

Embryonic

Development,

Amino Acid

Metabolism
Network |2 1 Cellular Assembly EAF1, FGGY, NSFL1C
5 and Organization,

Cellular Function

and Maintenance,

Molecular

Transport




(b) IPA Upstream regulators analysis (extract)

Analysis | Upstream p-value of Molecule Type Number of genes | Gene names
Regulator overlap
Upstrea MYOD1 1.42E-02 transcription 3 IGF2, MYH3, POSTN
m regulator
Regulato
rs
Upstrea CTNNB1 1.50E-02 transcription 6 COL1A1, IGF2, LBH, LFNG, MYH3, TBR1
m regulator
Regulato
rs

(c) Biological functions analysis of the IPA reconstructed network.

Categorie | Diseases or p-Value Molecules Molecules
s Functions
Annotation
Tissue Quantity of 2,48E-09 31 ADRB2, CD28, CDK4, COL1A1, CRLF1, CTNNB1, CUL7, DCN, DLK1, DNMT1,
Morphol | cells ELAVL1, FGFR1, HNF4A, HSP90B1, ICOSLG/LOC102723996, IGF2, ITGA3,
ogy ITGAM, ITGB3, JAK2, LAMA4, LFNG, MYOD1, POSTN, PTPRF, RAPGEF2,
RUNX2, SKP2, STARD7, TBR1, TWIST1
Cell Sprouting 1,75E-08 14 ANXA2, CTNNB1, DCN, ELAVL1, FGFR1, IGF2, ITGA3, ITGB3, JAK2, LAMA4,
Morphol NFATC4, PTPRF, RAPGEF2, RUNX2
ogy
Organ Formation of | 2,98E-05 10 CTNNB1, ELAVL1, FGFR1, HSP90B1, IGF2, MYH3, MYOD1, NFATC4, RGS2,
Develop | muscle TWIST1
ment
Tissue Morphology of | 1,27E-04 8 ADRB2, CDK4, CLCN2, DLK1, ITGB3, MEST, POSTN, RUNX2
Morphol | connective
ogy tissue cells
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Appendix 4. Information about BACs used as probes for 3D DNA FISH
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Appendix 5. Quality check of nuclear integrity in Hi C experimental steps.

Before crosslinking After crosslinking

After digestion After ligation
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Appendix 6. Evolution of the betweenness and degree values of a subset of
genes from Network 0 to Network 3.

Genes are sorted by alphabetical order. Genes that were tested by 3D DNA FISH are in red bold.

Comparison
between Network 0

Network 0 Network 1 Network 2 Network 3 and Network 3 (% of
variation)

ssj:rr:i)ol degree betweeness degree betweeness degree betweeness degree betweeness Degree betweeness
ADIPOR2 15 646,65 14 487,32 15 628,78 14 660,97 -7 2
AKR7A2 19 492,63 17 436,71 15 474,10 14 291,90 -26 -41
CD81 17 551,17 18 616,7 15 478,76 17 600,58 0 9
CRAT 19 716,24 15 518,26 16 738,30 14 573,58 -26 -20
DCN 16 438,86 18 560,83 9 288,82 6 357,74 -63 -18
DLK1 10 103,52 6 81,7 5 74,22 5 24,13 -50 =77
DPP4 15 568,91 16 672,01 15 674,94 15 597,87 0 5
EGFR 16 624,92 12 375,87 12 385,35 11 354,78 -31 -43
GHITM 16 578,58 17 588,76 16 592,35 14 496,63 -13 -14
GLUD1 13 575,69 13 553,28 12 574,48 12 586,27 -8 2
IGF2 10 118,26 11 231,09 8 260,58 7 622,44 -30 426
LPAR4 14 464,31 17 644,76 18 812,81 16 798,82 14 72
MEG3 13 282,32 5 55,75 6 120,18 5 24,13 -62 -91
MESP1 12 228,49 14 320,34 14 483,27 14 775,31 17 239
MEST 13 148,2 12 121,44 10 345,69 7 385,27 -46 160
MRPS28 16 743 15 743,29 16 953,42 15 796,14 -6 7
MYH3 14 610,73 14 656,6 11 455,62 4 0,00 -71 -100
NMNAT3 17 562,63 18 664,84 16 473,55 17 573,15 0 2
RAVER1 16 613,84 16 665,73 16 696,35 16 745,66 0 21
RPL32 18 717,96 15 557,65 7 149,80 5 243,11 -72 -66
SELO 18 692,52 14 438,35 14 459,46 15 587,32 -17 -15
SYDE1 15 436,75 17 530,29 14 459,66 18 745,52 20 71
TFRC 15 595,1 15 534,83 13 437,38 17 846,81 13 42
TYRO3 20 785,95 18 659,9 16 603,94 17 700,03 -15 -11
YWHAB 20 670,22 17 470,35 17 538,41 17 547,17 -15 -18

Appendix 7. Clusters parameters.

Network Cluster Com_munlty Density  Transitivity
sizes
1 39 0,1525 0,2167
2 57 0,1197 0,2062
3 47 0,1582 0,2306
4 51 0,1435 0,2502
0 5 44 0,1533 0,2145
6 28 0,1958 0,3115
7 36 0,1714 0,237
8 39 0,1498 0,2218
9 18 0,2484 0,3169
1 27 0,1966 0,2404
2 76 0,1035 0,1703
1 3 74 0,1085 0,2253
4 50 0,138 0,2371
5 88 0,0925 0,2015
6 44 0,129 0,2619
1 39 0,1404 0,2231
2 24 0,2065 0,3279
3 78 0,1012 0,189
2 4 50 0,129 0,2285
5 45 0,1384 0,1927
6 24 0,1993 0,3456
7 76 0,1 0,1848
8 23 0,2174 0,4249
1 60 0,0977 0,2255
2 86 0,0848 0,1587
3 3 62 0,1163 0,205
4 80 0,0972 0,2107
5 56 0,1169 0,2191
6 15 0,2762 0,4021




Appendix 8. Pairwise contingency tables between clusterings.

Percentage of genes for each cluster in Network 0 found in each cluster of Network 3. In bold, the
most resembling values between clusters.

Clusters in Network 3

1 2 3 4 5
1 64,10 7,69 7,69 2,56 7,69 10,26

2 8,77 68,42 0,00 1,75 19,30 1,75

3 14,89 0,00 65,96 19,15 0,00 0,00

4 3,92 1,96 11,76 82,35 0,00 0,00
ﬁ'gtf,\tgrrsk'c’; 5 34,09 6,82 4,55 11,36 43,18 0,00
6 3,57 17,86 14,29 32,14 0,00 32,14

7 11,11 38,89 0,00 11,11 38,89 0,00

8 0,00 48,72 33,33 10,26 5,13 2,56

9 5,56 11,11 16,67 27,78 38,89 0,00

Appendix 9. Comparison of GOBP between Network 0 and Network 3.

GO terms enriched in one of the clusters as well as all GO terms associated to one of the three target
genes at least (even if not significantly enriched). In bold, the smallest FDR value for a given GOBP
term when the difference between the FDR of the two clusters is higher than one order of magnitude.
Genes tested by 3D DNA FISH are in red bold. * GO analysis by using a data base of redundant BP
instead of non-redundant BP.

Network 0 - Cluster 1

Network 3 - Cluster 1

Items

development

7

GOID GOBP Terms Genes FDR Genes FDR
0043062 Extracellular structure COL3A1, COL5A1, 5,76E-05 ’ ' ! 1,14E-08
COL16A1 LAMAZ. MFAPS COL5A2, COL16A1, DCN, FAP,
! ! FBN1, ABI3 bp, ANXA2, LAMA4
Cellular responseto  COL1A1, COL1A2,COL3A1, COL1A1, COL1A2,COL3AL,
0071417 organonitrogen COL5A2, COL16A1, FYN, 6,80E-04 COL5A2, COL16A1, DNMT1, 1,16E-02
compound KLF3, ZFP36L1, HSPO0B1 FBN1, IGF2, HSP90B1
0045995 E;%‘;'ﬁ’g of COL5AL, COL5A2, FGFR,  , ,, oo COLSAL, COL5A2, FGFRY, 1 16E.02
Y LAMA4, LFNG ! LAMA4, LFNG !
development
Reponse to
- POSTN, COL1A1, COL1A2, POSTN, COL1A1,
0071559 };i’:s:oggg'”g 9rowth o1 3A1, FYN, ZFP36LL 235803 - 1A2,COL3AL, FBNL 1,248-01
Multicellular organism COL1A1, COL1A2,COL3A1, COL1A1, COL1A2,COL3A1L,
0044236 | etabolic process ~ COL5AL, COLEA2 2358-03 oo 5A1. COLBAZ, FAP 3,05E-03
. COL1A1, COL1A2, COL3AL, COL1A1, COL1A2, COL3AL,
0043588 Skin development COLBAL. COL5A2. ZFP36L1 3,18E-03 COLBAL COL5A2 1,44E-01
. COL1A1, COL1A2,COL3A1
Reponse to acid COL1A1, COL1A2,COL3AL, ’ ; :
0001101 chemical COL5A2, COL16A1, NFATCA 1,17E-02 (lecz)l,&'?'éi COL16A1, DNMT1, 2,27E-02
Skeletal system POSTN, COL1A1, COL1A2, POSTN, COL1A1, COL1AZ2,
0001501 develo m)ént COL3A1, COL5A2, FGFR1, 1,43E-02 COL3A1L, COL5A2, FBN1, 3,05E-03
p TMEM119 FGFR1, ANXA2, TMEM119, IGF2
0001764  Neuron migration COLSAL FGFRL PLXNBZ, 8202 COL3AL FGFRI, FLRT2 4,37E-01
Reponse to fibroblast POSTN, COL1A1, FGFR1, . POSTN, COL1A1, FGFR1, }
0071774 growth fator ZFP36L1 3,008-02 FLRT2 1,448-01
Regulation of neuron
> FGFR1, PLXNB2, FYN, TBR1, FGFR1, NFATC4, PTPRF,
0010975 projection NFATCA4, PTPRF. CUL7 3,07E-02 CcUL? 4,93E-01
development -
0007498 ~ Mesoderm % EXT2, FGFR1, MESDC2, MEST  1,24E-01
development
0010171 Body morphogenesis COL1A1, MYH3 4,37E-01
0060324 Face development COL1A1, MYH3 4,37E-01
0007517 ~ Muscle organ COL3AL, DCN, FGFR1, MYH3  8,35E-01
2

31



Collagen fibril COL1A1, COL1A2, COL3A1
. , } , , , )
0030199 ori;anization COL5A1. COL5A2 LI10E-04 o5 501 COLBA2, ANXA2 1,02E-05
Network 0 - Cluster 2 Network 3 - Cluster 2
Items GOBP Terms Genes FDR Genes FDR
Tricarboxylic acid CS, DLAT, DLD, NNT, CS, DLAT, DLD, NNT, MDHZ,
0072350 1 etabolic process MDH1, PDHA1 3.02E-06  pppiag 2,11E-05
COQ7, DLAT, DLD, NNT
. ’ DL, NN DLAT, DLD, IBA57, NNT, GPI,
oos1186  cofactormetabolic  HK1, ACACB, NMNATS, 2,97E-05 ACACB, NMNAT3, MDHL, 1,34E-03
process ACAT1, MDH1, PDHAL, PDHAL FLAD1. MCEE
PDHX ' '

Pyridine-containig
0072524 compound metabolic
process

DLD, NNT, HK1, NMNAT3, 1.00E-04 DLD, NNT, GPI, NMNAT3, 1.11E-02

MDH1, PDHA1L, PDHX ’ MDH1, PDHA1

CPT1B, ECI1, DLAT, DLD,

CPT1B, ECI1, DLAT, DLD, FABP3. ACACB. ACADS

Fatty acid metabolic

0006631 ACACB, ACADS, ACATL, 1,00E-04 ' i ' 1,17E-03
process PDHAL PTGES?, PDHX 'I\D/I%IEAEL ADIPOR2, PTGES2,
CS, DLAT, DLD, NNT, GPI,
Generation of CS, DLAT, DLD, NNT, HK1, MDH1, NDUFA3, NDUFBS5,
0006091  precursor metabolites MDH1, OXA1L, ATP5B, 1,09E-04 NDUFS1, OXAI1L, ATP5B, 1,32E-07
and energy PDHAL, SLC25A3 PDHAL, SLC25A3, CISD1,
NDUFA12, PYGM
Pyruvate metabolic DLAT, DLD, HK1, PDHA1,
0006090 process PDHX 5,42E-03 DLAT, DLD, GPI, PDHAL, BSG 2,32E-02
VCAN, DCN, DLAT, DLD,
oooe79o  Sulfurcompound - sopcp ACATI PDHAL  7,47E-03 DLAT, DLD, IBAS7, ACACE, 4,79E-01
metabolic process PDHX PDHA1, MCEE
Cellular ketone COQ7, DLAT, DLD, ACACB, DLAT, DLD, FABP3, GP!I,
0042180 1\ etabolic process PDHA1, PDHX 1,46E-02 ACACB, PDHA1 8,05E-02
Cell redox TXNRD2, DLD, NNT,
0045454 & tasis PTGESZ 1,46E-02 TXNRD2, DLD, NNT, PTGES2 4,91E-02
Small molecule CPT1B, ECI1, DLD, HK1, CPT1B, ECI1, DLD, GPI,
0044282 catabolic process ACACB, ACADS, ACAT1 1,88E-02 ACACB, ACADS, BCAT2, MCEE 4,51E-02
Anion
CLCN5, CPT1B, ACACB, CPT1B, ACACB, SLC25A3,
0098656 ggﬂg?ﬂ‘bra”e SLC25A3, sLC1A3, vDACL  231B-02 g ~1a3 vpact 3.778-01
ooogog1  Cellular aldehyde DLAT, DLD, PDHAL, PDHX  2,59E-02 DLAT, DLD, GPI, PDHAL 8,73E-02
metabolic process
Dicarboxylic acid DLD, NMNAT3, MDH1, DLD, NMNAT3, MDH1, BCAT2,
0043648 metabolic process SLC1A3 3,138-02 SLC1A3 2,138-02
0016042  LiPid catabolic CPT1B, ECI1, ACACB, 365E.02 CPT1B, ECIl FABP3 ACACB, 6.50E-02

process ACADS, ACAT1, NCEH1 ' ACADS NC
Maintenance of HK1, ACACB, MEST

EE
0051235  location ATP2AT ' 5,62E—01

CPT1B, ACACB, MEST,
0010876  Lipid localization AP o 7,54E-01 |

NADH
NDUFA3, NDUFB5, NDUFS1,
0010257 dehydrogenase OXALL, NDUFA12 3,29E-03
complex assembly
Mitochondrial
. . NDUFA3, NDUFB5, NDUFS1,
0097031 respiratory (_:haln _ OXAI1L, NDUFA12 3,29E-03
complex | biogenesis
Mitochondrial
. . NDUFA3, NDUFB5, NDUFS1,
0033108 respiratory chain OXALL, NDUFA12 1,41E-02
complex assembly .
Nucleoside DLD, GNAI3, GPI, NDUFA3,
0009141 triphosphate DLD, HK1, ATP5B, ATP50 5,55E-01 NDUFB5, NDUFS1, ATP5B, 1,97E-02
metabolic process NDUFA12
0097194 Execution phase of ENDOG, PRKCQ 6,59E-01 CAPN10, ENDOG, HMGB2, 4,91E-02
apoptosis PRKCQ
TXNRD2, CPT1B, CS, ECI1,
COQ7, TXNRD2, CPT1B, DLAT, DLD, FABP3, FDFT1,
NNT, GPI, GPX3, ACACB,
Oxidation-reduction CS, ECI1, DLAT, DLD, NNT, ACADS, MDH1, NDUFA3
0055114~ GPX3, HK1, ACACB, 2,23E-06 . . ; 5,63E-09
process NDUFB5, NDUFS1, OXALL,
ACADS, MDH1, OXA1L,
PDHA1, PTGES2, RTN4IP1 PDHAL, CISD1, NDUFA12,
! ! PYGM, ADIPOR2, PTGES2,
FLAD1, RTN4IP1
Citrate metabolic CS, DLAT, DLD, NNT, CS, DLAT, DLD, NNT, MDH1, 1.93E-05
0006101* process MDH1, PDHAL1 2,23E-06 PDHA1l !
Carboxviic acid CPT1B, CS, VCAN, ECI1, CPT1B, CS, ECI1, DLAT, DLD,
0019752* Xy DCN, DLAT, DLD, NNT, HK1, 2,23E-06 FABP3, FARSA, NNT, GPI, 3,44E-05

metabolic process ACACB, NMNAT3, ACADS, ACACB, NMNAT3, ACADS,



ACAT1, MDH1, PDHAL, MDH1, PDHAL, BCAT2, SLC1A3,
SLC1AS, PTGES2, PDHX BSG, ADIPOR2, PTGES2, MCEE

CS, DLAT, DLD, NNT, MDH1,

CS, DLAT, DLD, NNT, NDUFA3, NDUFB5, NDUFS1,

. o X -
0045333 Cellular respiration MDHL1, OXALL. PDHAL 5,33E-04 OXALL, PDHAL, CISDL, 2,65E-07
. NDUFA12

Energy derivation by % CS, DLAT, DLD, NNT, MDH1,
0015980*  oxidation of organic NDUFA3, NDUFBS, NDUFST, 4 ggr gg
compounds OXAL1L, PDHA1, CISD1, !
P NDUFA12, PYGM
Network 0 - Cluster 3
Items GOBP Terms Genes FDR
0071514 Genetic imprinting CDKN1C, IGF2, KCNQ1 3,82E-02
Multicellular
0050879  organismal MB, MYH3 8,56E-01
movement
Cellular nitrogen
0044270 compound catabolic Fle\Fill?gZD 1, PDE4A, RPL3L, 1,00E+00
process
Striated muscle
* -
0006941 contraction KCNQ1, MB, MYH3, RGS2 5,47E-01
Network 0 - Cluster 5
Items GOBP Terms Genes FDR
Negative regulation of
0031115* microtubule MAPREL, INPP5J, STMN1 1,06E-02
polymerization
»  Microtubule MAPREL, INPP5J, STMNL1,
0046785 1 lymerization TPPP3 3.41E-02
Network 0 - Cluster 8 Network 3 - Cluster 2
Items GOBP Terms Genes FDR Genes FDR
CS, DLAT, DLD, NNT, GPI,
Generation of MES, IDH3G, NDUFAS3, MDH1, NDUFA3, NDUFB5,
0006091 precursor metabolites NDUFABS, CISD1, 1,64E-02 NDUFS1, OXALL, ATP5B, 1,32E-07
and energy NDUFA12, PYGM PDHA1, SLC25A3, CISD1,
NDUFA12, PYGM
TXNRD2, CPT1B, CS, ECI1,
DLAT, DLD, FABP3, FDFT1,
MES3, ADH5, CRAT, IDH3G, NNT, GPI, GPX3, ACACB,
., Oxidation-reduction NDUFA3, NDUFABS5, ACADS, MDH1, NDUFAS3,
0055114 process CYB5R1, CISD1, NDUFA12, 7,25E-03 NDUFB5, NDUFS1, OXA1L, 5,63E-09
PYGM, BLVRV, FLAD1 PDHA1, CISD1, NDUFA12,
PYGM, ADIPOR2, PTGES2,
FLAD1, RTN4IP1
Energy derivation by ME3, IDH3G, NDUFA3, ESUIID:IX:TN%IIJDFB'\'ISNLD’\:IJ[I)%}.
0015980* oxidation of organic NDUFABS, CISD1, 8,17E-03 o ' o S ’ 1,88E-06
compounds NDUFA12, PYGM XALL, PDHAL CISD,
! NDUFA12, PYGM
CS, DLAT, DLD, NNT, MDH1,
0045333+  Cellular respiration M= IDHSG, NDUFAS, 8,17€-03 NDUFA3 NDUFBS, NDUFSL, 5 g5 g7

NDUFABS, CISD1, NDUFA12 OXA1L, PDHAL, CISD1,

NDUFA12
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Appendix 10. Gene expression profiles from the normalized expression data
from the transcriptome study of Voillet et al., 2014.

IGF2 DLK1 MEG3 MEST
17.049 18+ =
Th*, e | - Ty i Cherie
16.51 w 111 * 1744 .
16.0 * + 10+ -+ . .
i) . + 9- * L > * 10 *-
' 8- ] e
15.0 18 91 .
DCN MYH3 RPL32 MYOD1
16.0 181 ]
'§ 15.5 -*** **hh 18'004*** y +
@ ? iad 17.75 1 ** 10'0-+*‘ Y
o 15.041 ™ 9.5+ ®e
5 17.50 4 S -
D 1451 ..* 141 Ui — . 9.0 *.
S ;
o 14.01 = - * 8.5 °
= . 17.00
CTNNB1 FGFRT IGF2BP1 COL1A1
®
; *-‘. 8.04* 16-***‘
14.0{‘ 14--F9-2 -
7.54 * ** 15+ * [ ]
13.5 131 *i o 70 ‘*
Pad " B
rrrrrrrrrrrrr | 6'5- T T Ll L L] T Ll Ll Ll Ll T 1 Ll Ll Ll L
S c% SO0 PRSP @\\ SRRNS N Q,Q SO0 NP qe SO0
LRDBANAD  DRRBAINS &%’%‘b y&\\& &%‘b«% AN
g\g@\‘ RANRET BN AP V%\‘ \‘é\, R Vox‘s‘ w\ﬁ;\%\@
¥R W& R WR



Appendix 11. Hi-C raw matrices of the 18 autosomic chromosomes and the 2

sex chromosomes obtained at 200 Kb resolution.

Rep1-90 Rep1-90 Rep1-90 Rep1-90
chrl chr2 chr3 chr4
Rep1-90 Rep1-90 Rep1-90 Rep1-90
chr5 chré chr7 chr8
Rep1-90 Rep1-90 Rep1-90 Rep1-90
chr9 chri0o chri1 chr12
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Apendix 12. Correlation matrices of the 18 autosomic chromosomes and the
2 sex chromosomes obtained from the merged-90 matrices.
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Appendix 13. Correlation matrices of the 18 autosomic chromosomes and the
2 sex chromosomes obtained from the merged-110 matrices.
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Appendix 14. Gene density in A and B compartments.
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Appendix 15. Distribution of raw and normalized counts per sample.
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Appendix 16. Global MA plot between samples at 90 and 110 days before and
after normalization.
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Appendix 17. Proportion of differential bin pairs with positive and negative
logFC across chromosomes.
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Appendix 18. Density plots of frans vs. cis connections along each

chromosome at 200 Kb resolution.
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Appendix 19. Density plots of frans vs. cis connections along each

chromosome at 500 Kb resolution.
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Appendix 20. Gene expression in A and B compartments.
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Appendix 21. Published article in Scientific reports.

SCIENTIFIC REPg}RTS

OFEN - A new approach of gene co-
“expression network inference
reveals significant biological
T processes involved in porcine
T muscle development in late
gestation

M. Marti-Marimon®, N. Vialaneix®, V. Voillet?, M. Yerle-Bouissou?, Y. Lahbib-Mansais* &
L. Liaubet*

i The integration of genetic information in the cellular and nuclear environments is crucial for deciphering

| the way in which the genome functions under different physiological conditions. Experimental

. technigues of 3D nuclear mapping, a high-flow approach such as transcriptomic data analyses, and

: statistical methods for the development of co-expressed gene networks, can be combined to develop

. an integrated approach for depicting the regulation of gene expression. Our work focused more

. specifically on the mechanisms invobheed in the transcriptional regulation of genes expressed in muscle
during late foetal development in pig. The data generated by a transcriptomic analysis carried out on

| muscle of fostuses from two extreme genetic lines for birth mortality are used to construct networks of

. differentially expressed and co-regulated genes. We developed an innovative co-expression networking

: approach coupling, by means of an iterative process, a new statistical method for graph inference with

. data of gene spatial co-localization (30 DNA FISH) to construct a robust network grouping co-expressed

. genes. This enabled us to highlight relevant biclogical processes related to foetal muscle maturity and

. todiscover unexpected gene associations between IGF2, MYH2 and DLK1/MEG3Z in the nudear space,

. genes that are up-regulated at this stage of muscle development.

o Cell type diversily in a given organism cannol be explained only by DNA sequences. Cis- and frans-acling
¢ regulatory sequences are nol the only delerminants of gene cxpression: olher epigenelic mechanisms are also
¢ responsible for tissue-specific expression of genes. Indeed, more recently, numerous studies link the genome
. organizalion in the nuclens lo an additional level of gene expression regulation' %, 1L is known thal in higher
. cukaryoles, genomes are organized into individual chromosomes that occupy discrete territories in the nucleus®,
¢ which means that the distribution of the genome is nol random. Moreover, inlerphase chromosome regions ofien
¢ loop oul of their chromosome territories’, and neighbouring chromosomes can intermingle, resulling in potential
. Iunclional conlacls between regions lecated on dilferent chromosomes® 42, ‘There is evidence Uhal long-range
¢ inleractions between genomic regions contribule o gene expression regulation?® and might facilitale the con-
. solidation of co-regulaled genes in specialized foci of active RNA polymerase 11 as well as al nuclear speckles
o (pre-mEMNA processing)® . These insights give us some clues aboul e contribulion of the spatial genome organ-
¢ izalion in interphase nucled o pene expression regulation (for review®).

: Micruscopy approaches such as 31 lluorescent in site hybridization (F1S1H)"", cnable a global view of whal is
. happening at the level of individual cells. Recently, we focused on this last ilem to study interchromosomal inter-
- aclions belween co-cxpressed genes belonging to the Imprinted Gene Network (16N} We chose the penomic

 tGenPhySE, Université de Toulouse, INRA, ENVT, Castanet Tolosan, France. 2MIAT, Université de Toulouse, INRA,
. Castanet Tolosan, France. Y. Lahbib-Mansais and L. Liaubet jointly supervised this work. Correspondence and
© requests for materials should be addressed to L.L. (email: lavrence._liaubet@inra.fr)
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imprinting mode] becawse il can compare, in the same nucleus, the environment of an active allele with an allele
maintained as repressed due (o ils :III:IFH.Ilt’Nl status. Wi focused our analysis on JGFZ because il is involved in
pig muscle growlh and fal deposition™", being therelore a major gene of inleres! in the conlexd of agronomic
projects. In humans, 1GE2 is well known Lo be a key dlement in foelal growth and development'®. We highlighted
associations between the capressed alleles of 1GE2 and DLK N MEGS locus (DLK] being related to the control of
muscle development and regencration'), in foetal muscle and liver cells'”. These results illustrale the implication
in frams-interactions of penes associaled wilth quantitative trait loci ((FI'Ls) for growth trails, providing new evi-
dence that penome organization could influcnce pene expression and phenotypic outcome in livestock species.

In this context, we focused on the study of the muscle maturily process (essential for the survival of piglets) o
better understand how interesting phenotypes are elaborated, by combining transcriptome and co-localization
data with network modelling. Indeed in pigs, and in general in mammals, one of the most critical period for
survival is the perinatal period, and an important determinant of carly mortality is maturity, defined as the
slage of [ull development leading Lo survival at birth'®, Piglel maturily involves biological processes ocourring
between Uhe 90 day and Lhe end of gestalion, ¢.g. glycogen accumulalion in muscle and liver, as well as malura-
tion of lissues'™ . ‘The maturily of skeletal muscles plays an important role in piglet survival al birth becawse of
ils involvement in motor functions and thermoregulation. On this subject, we previously performed a microarray
analysis of foetal musce o identifly candidate genes for piglet maturity, which revealed genes that were differ-
enlially expressed belween the 90 and the 110™ day of gestation®. Using Pearson correlation a relevance gene
co-expression network was buill from these differentially expressed penes (DEGS) for four pestational apes. The
network revealed and confirmed Chal: (i) genes imvolved in muscle development were up-regulated al the 90" day
of gestation, (i) al the 110" day, the enriched biological lunclions were imvolved in energy metabolism.

An increasing mumber of studics use gene co-expression nelworks o deal with large gene expression datasels
in order lo decipher biological M, Modclling co-expression with network models is uselul for provid-
ing a global overview of the co-expression relationships belween genes and enables a sel of genes (o be analysed
globally with specific network tools. This approach has been found relevant for extracting biological information
such as important genes with respect o their centrality in the nelwork structure™, densdly connected groups of
genes™ or frequent motifs".

For the study described in this article, we developed a new method for the construction of a co-capression
gene nelwork with genes involved in the foelal muscle maturalion process, using an original approach coupling
a stalistical model and observed data in an ilerative process (o further our understanding of the mechanisms
involved in muscle development. More precisely, we combined pene expression data and pene spatial co-location,
thus crealing a new statistical method for graph inference. Our approach is based on Gaussian Graphical Models
{GCMs™) thal enable the compulation of partial correlations and Gl direct relations belier than Pearson-based
correlation networks, Such networks have been found to be morne efficient for grouping penes with a common
function™. This enabled us 1o oblain more reliable networks in which connections belween genes were validated
ileratively using biological evidence. In practical lerms, we performed 31 DMA FISH experimenls Lo lest pairwise
whether co-cxpressed genes (connecled in the network) were co-localized in the 3D nuclear space

‘The study enabled us (o oblain a robust gene co-cxpression network thal highlights significant Gene Ontology
(GO terms associaled with biological processes related (o foetal muscle maturity. In addition, unexpected asso-
clations were identified between M Y13 and the imprinted loc 1GF2 and DLKT, which might help elucidate the
mechanisms involved in the porcine musde development process at the end of gestation.

Results

Data selection. ‘The 44,368 probes from the expression datasel of the muscle ranscriplome sludy [rom
Voillel ef al. ! were found o correspond o 13,855 unique annolated genes, among which 1,131 unigue genes were
foumd (o be dilferentially cxpressed between the two gestational ages and for the four genolypes characlerizing
Lhe establishment of piglet maturity. Among them, 358 DEGs (Supplementary Table 1) were selecled for being
highly correlated with IGF2, DLKY and MEG3 (7 > 0.84), also identiicd as DEG, and were used in all subsequent
network inferences (see further details in “Materials and Methods”, the section on “Microarray data description
and pre-processing” ).

Metwork inference iteration and 3D FISH validations.  The whole process imvolving the data selection,
the network inference and the 312 FISH validations is summarized in Fig. 1. Metwork 0 was inferred with no a
priori knowledge and contained 2,279 edges for 359 nodes (density: 3.55%). A sub-network extracted around the
three target genes is shown in Fig. 2a.

Metwork 1 was built based on the triple co-localization of IGF2, DLKT and MEG3 found in our previous
study'”. This a priori information was used to reinforce the existence of an edge between the pairs IGF2-DLKI,
IGF2-MEG3 and DLKI-MEG3 in Network 1 (sub-network in Fig. 2b), which contained 2,250 edges (density:
3.50%). In both graphs (Metwork 0 without a prieri and Metwork | with a priori), we found a direct connection
between the genes IGF2 and RPL32. The IGF2-RPL32 association was thus tested by 3D DNA FISH, because it
invalved one of our 3 initial target genes (JGF2, DLET and MEG3), and because it was also found in the IGN of
Varrault ef al."". The 31 DMA FISH assay revealed that IGF2 and RPL32 were associated in 20% of the analysed
nuclei (Table 1. Fig. 3a).

Additionally, we used 31 DNA FISH to analyse MEST and IMCN associations with each of the three target
genes, because they were also connected in the IGM (Table 1 and Fig. 3b-e).

This new information about spatial co-localization in the nucleus was entered in our model as an a pri-
ori to build Metwork 2 (with 2,001 edges and 3.25% of density) (sub-network in Fig. Zc). Specifically, in addi-
tion to the three pairs IGF2-DLEI, IGF2-MEG3 and DLET-MEG3 given as associated in Network 1, we gave
the following pairs of genes as known to be co-localized: IGF2-MEST (34% of analysed nuclei presenting an

SCIENTIFIC REFORTS | (2018) 810150 | DOI:10.1038/:51598-018-28173-8 2
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Figure 1. i design. Published data are represented in green squares (microarray data and 3D
DNA FISH data), statistical methods are represented in blue (GGM: Gaussian Graphical Models) and new
information about spatial localization used for network inference is represented in red.

association), (DLK1/MEG3)- MEST (in 34% of analysed nuclei), (DLK1/MEG3)-DCN (in 15% of analysed nuclei)
and RPL32-1GF2 (in 20% of analysed nuclei). The pair IGF2-DCN was given as not co-localized (with 10% of
nuclei presenting an association) (Table 1, Fig. 3b-¢). DLKT and MEG3 are two imprinted genes located in the
same cluster, and are both present in the same Bacterial Artificial Chromosome (BAC) used for the 3D DNA FISH
experiments, because of their proximity on Uvjjfmomic sequence (Supplementary Table $2). Consequently, we
considered DLK1/MEGS3 as a simple locus for all 3D DNA FISH analyses, even though they are considered to be
single genes for network inference.

To obtain the last network (Network 3), we used 3D DNA FISH to test for associations involving MYH3
because it was found to be connected to DLKT and MEG3 in Network 0 and to DLKT in Network 1. We found
MYH3 associated with (i) IGF2 in 52% of the analysed nudlei, (i) DLK1/MEG3 in 45% of the nuclei, and
(iii) MEST in 26% of the analysed nuclei (Table 1, Fig, 3f-h). Thus, in addition to the @ priori i ation given
in Networks 1 and 2, we gave the following new associations (IGF2-MYH3, DLK1-MYH3, MEG3-MYH3 and
MEST-MYH3) to infer Network 3 (2,091 edges, density — 3.25%) (Sub-network in Fig. 2d).

Network mining (network structure with key genes).  For each network, two main numerical charac-
teristics (degree and betweenness) were used to detect key genes with respect to the network structure. The degree
of a node (in this case, of a gene) is the number of edges afferent to this gene. The betweenness of the node (gene)
is the number of shortest paths between pairs of genes in the network that pass through that gene. High-degree

SCIENTIFIC REPORTS | (2018)8:10150 | ©01:10.1038/541598-018-28173-8 3
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Az

sub-netwark of Network 2 Suh-netwark of Network 3

Figure 2. Analysis of gene associations. Pink nodes represent target genes, red edges represent the known
associations observed by 3D DNA FISH and the dotted orange edge represents the observed as not associated
after 3D FISH validations. Because networks are very dense and contain many genes, a sub-network restricted
to the target genes and their direct neighbors is extracted from each network, and presented in this figure.

(a) Network 0 is inferred without a priori information, and restricted to the nodes corresponding to IGF2,
DLK ! and MEG3 (in yellow). To infer Networks 1, 2 and 3, new a priori information of spatial localization is
introduced for the following pairs of genes: (b) IGF2-DLK 1, IGF2-MEG3 and DLKI-MEG3 for Network 1;

(c) IGF2-MEST, (DLK I/MEG3)-MEST., (DL.K1/MEG3)-DCN, RPI1.32-IGF2, IGF2-DCN for Network 2;

(d) IGF2-MYH3, DLKI-MYH3, MEG3-MYH3 and MEST-MYH3 for Network 3.

genes are connected to many other genes while high-betweenness genes are central and more likely to disconnect
the network if removed. We analysed the evolution of the betweenness and degree from Network 0 to Network
3. Supplementary Table $3 shows a subset of 25 genes sclected as key genes for the network structure because
they showed a high betweenness or a high degree value or both a high betweenness and a high degree, or because
they were among genes whose associations Lested positive with 3D DNA FISIL Most of the genes ing the
highest betweenness values in Network 0, still kept or increased this numerical characteristic in Network 3 after
network inference iterations. However, important changes were observed in some genes. For instance, AKR7A2,
DLKI, EGFR, MEG3, MY113 and RPL32, showed more than a 40% decrease in betweenness accompanied by a
decrease in degree (>25%) when Network 3 was oblained. DCN showed a pronounced decrease in its degree
while its betweenness was slightly modified. Interestingly, MEST and IGF2 were found to have a mixed profile
of betweenness and degree: in Network 3, we observed a 46% loss for MEST in gene connections, as compared
Lo Network 0, while its betweenness increased by 160%. Similarly, a 30% loss of connections and a 426% gain in
betweenness was observed for IGF2.

Network clustering. To analyse the evolution of the network structure from Network 0 to Network 3, clus-
tering of the genes was performed on each network (for more details, see “Network mining and clustering” in

SCIENTIFIC REPORTS | (2018)8:10150 | DOI:10.1038/s41598-018-28173-8 4
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Table 1. Association percentages of tested gene pairs, Associated signals (close -+ oo-localized) are considersd
as those separated by 2 30 distance (d) < 1 pm, and are divided into two different classes: “close” signals
(5 < d = 1 pm), and “co bocalized” signals (d < 0.5 pm). *Genes imprinted in pig,

“Materials and Methods™ and Supplementary Tables 51 and $4). Four significant clusterings (p-value << 0.002)
were obtained, one for each network. A todal of nine clusters were obtained in Network 0, six in Network 1, eight
in Metwork 2 and six in Network 3. Networks 0 and 3 were analysed in depth to search for any correspondence
between clusters (Supplementary Table $5). Four clusters in Network 0 were found to share at least two thirds of
their nodes with the corresponding clusters in Metwork 3. More precisely, 64.1% of the genes in cluster 1, 68.4%
in cluster 2, 56% in cluster 3 and 82.4% in cluster 4, were observed in the corresponding clusters of Network 3,
The other clusters in Network 0 (clusters 5 6, 7, 8 and 9) were mainly spread each into two different clusters of
Metwaork 3. Additionally, the Normalized Mutoal Information (MM value was caloulted to quantify the similar-
ity between clusterings for pairs of networks (Table 2), Interestingly, we observed that the custering obiained in
Metwork 0 was the most similar to the clustering obtained in NMetwork 1 (MM — (.389). Similarly, the clustering
in Metwork 1 was the most similar to the one obtained in Network 2 (NMI— 0,401 ), and the clustering in Metwork
2 was the most similar to the one obtained in Network 3 (M1 —0.401). This finding suggests that clusterings
become more consistent when introducing new biological information in each network inference iteration.

Functional enrichment analysis.  To lest the biological relevance of cach cusler in Nelworks 0 and 3,2
[unctional enrichment analysis was performed for cach custer from both networks. Significant GO lerms for
Biological Processes (GOBP) were observed in clusters 1 and 2 of Networks 0 and 3, and in custers 3, 5 and 8 of
Network 0 (Table 3 and Supplementary Table 56). Table 3 shows the four clusters presenting the non-redundant
GOBF with the smallest False Discovery Rale (FDR). When comparing cluster 1 in Metworks 0 and 3, eight
common enriched GO lerms were observed, mainly involved in extracellular matrix formation, embryonic
development, metabolic processes and cellular response (o stimulus. Besides, fourteen common enriched GOs
were ebserved in cluster 2 of Networks 0 and 3. These GO terms were mainly invelved in cellular respiration,
energy melabolism, cellular metabolic processes and metabolism of Tty acids. Additionally, two GO lerms wene
observed only in cluster 2 of Network 3, both involved in the mitochondrial respiratory processes. Interestingly,
the smallest FDR were observed in Network 3: (i) for duster 1 (containing all genes tested by 300 DA FISL),
referring to the “Extracellular structure” term (involving the Decorin gene (DCN); FDR — 1.14e-08): (i) for dus-
ter 2, referring Lo the “Generation of precursor melaboliles and energy” term (FDR — 1.32¢-07) (Table 3).

These resulls sugpesl thal our approach o nelwork inference by incorporaling a priord biological informa-
tion enables us o oblain relevant GO lerms while conserving the lunctional enriched terms found in the initial
network (Network 0). Moreover, we unexpectedly observed thal two (1GF2 and DOCN) of our seven largel genes
showed more significant GO terms in Metwork 3 than in the initial network. Specifically, 1GFZ was observed
Lo be unigquely involved in the “Genelic imprinting” lerm in cluster 3 of Network 0 (FDR — 3.82e-02), while in
duster 1 of Network 3 il was found to be imvolved in two new significant GO lerms, the one with the smaller FIE
being “Skeletal system development” (FDR — 3.05e-03) (lable 5 and Supplementary Table $6). DCN was in lurn
observed Lo be involved in the “Sulphur compound metabolic process” lerm (FDE — 7.47e-03) in cluster 2 of
Metwork 0, while in duster 1 of Metwork 3 il appeared (o be involved in the “Extracellular strocture” term present-
ing the smallest FOR value (1.14¢-08) of all dusters. Concerning MEST, M Y13 and DLKT, also tested by 30 DMA
FISLL, even though the observed FDR were higher than 5%, interesting GO lerms were observed for these genes
in cluster 1 of Network 3 (Supplementary Table 56). For instance, MEST was found to be involved in “Mesoderm
development’, MY in “Body morphogenesis”, DLKT in “Molch signalling pathway™ and DCN and MYE were
both found to be involved in “Muscle organ development”.

Another lunctional analysis was performed with Ingenuity Palhway Analysis (IPA) specilically on duster 1
ol Metwork 3, which conlains the largel genes (IGE2, DLKT, MEGE, RPL32, MEST, DCN and MYII3). IPA pro-
posed o connecling 49 (82%) oul of 60 genes in a network including all tarpel genes cxcepl MEGT and MYI3
MY 113 was found in a small network with & ool of 60 genes, and MEG3 in another small network of only 1 oul
ol 60 genes. Furthermore, MYOD? and CYNNE] were idenlilied by upstream regulalor analysis as polential
transcriptivnal factors for a group of penes incluoding 1GF2 and MYT13. As 1IPA offers the possibility of merging
networks (il there are links between nodes in the Ingenuity Pathways Knowledge Base), a reconstructed network
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Figure 3. Analysis of gene associations by DNA FISH. Extended focus of 31 image sections from confocal
microscopy and overlay of the 3 channels (blue, red and green) were obtained with Volocity v6.0 software
(Perkin Elmer). The four signals in the nuclei correspond to the two alleles of each gene. Nuclei are
counterstained with DAPT (blue). In all experiments, the percentage of association between genes was higher
than 10% except for (e). Scale = 1.7 pm.

[ Network0 | Network | | Network 2 | Network 3 |
Network0 | 1 0.3893 03381 03244

| Network 1| 03893 1 04007 0393 |

[Network2 | 03381 | 0.4007 1 0A1S2

[Network3 | 03244 03923 152 1 |

Table 2. Normalized mutual information (NMT) between pairs of clusterings. NMT measure the similarity
between two clusterings. The value is comprised between 0 and | and is equal to | when the two clusterings are
identical.

was oblained (Fig. 4), and analysed around the target genes. Fourleen genes, among them 7 genes from cluster 1
(including DCN and IGF2), were observed to be related to “Cell Morphology™ (p-value — 1.75¢-08). DCN, DLK]
and IGF2 were likewise involved in the “Quantity of cells” function with 31 genes, including 16 genes from cluster
1 (p-value — 2.48¢-09).

“Morphology of conncective tissue cells™ with 8 genes (p-value — 1.27¢-04) induded DLKT and MEST.
“Formation of musclc’, with 10 genes (p-value — 2.98¢-05), involved IGF2 and MYI13 together with the two tran-
scription factors CINNBI and MYODI (Supplementary Table $8).

Discussion
We present here a new approach based on GGM that enables the user to introduce previously acquired bio-
logical knowledge to build gene co-expression networks. Since an observed correlation between two genes in
the co-expressed gene network does not necessarily mean that these genes are related to a common biological
process, we used information of gene nuclear co-localizations to reinforce observed links in the co-expressed
gene network. Some studies have shown examples of co-expressed and co-localized genes being implicated ina
particular process, e.g. the Hbb and Hba KIfl -regulated globin genes were found to be co-localized in special-
ized KIf!1-enriched transcription factories of erythroid cells’. Others have observed a role of co-expressed and
co-localized genes in gene expression regulation, e.g. in the HUVECs endothelial cell line, SAMD4A, TNFAIP2
and SLC6A5 TNFa-induced genes were hierarchically transcribed when engaged in chromosomal interactions™.
In order to determine which pairs of genes would present a reinforced edge in the networks, we performed
two negative controls (see “gene-gene associations” in the “Materials and Methods™ section). As discussed in
our previous study'’, it can be difficult to define a suitable non-associating control. Sandhu ef al. established a
threshold of 2%, while others used the expected frequency of random co-localization based on the volume of the
nudeus and individual gene signals (< 1%)". This estimation of random co-localization does not take into account
other constraints such as: (1) chromosomes occupy specific territories™; (2) transcriptionally silent domains
reside at the nuclear periphery™; (3) chromatin regions are preferentially associated in topological domains
(TADs)*. Fixing an arbitrary threshold of 10% was a more restrictive way of analysing co-expressed genes that
might tend to interact preferentially. Consequently, the pair IGF2-DCN was given as not co-localized by enforcing
the absence of an edge between both genes.
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Table 3. Comparison of GOBF in dlusters 1 and 2 between Network 0 and Network 3. GO terms enriched in one
of the dusters as well as all GO terms associated to one of the three target genes at least (even if not significantly
enriched). In bold, the smallest FDE value for a given GOBF term when the difference between the FDR of the
two dusters is higher than one order of magnitude. Genes tested by 30 DNA FISH are in underline bold.

the nuclear co-localization of IGF2 and RPL32 by 30 DNA FISH proved interesting, as this connection
concerned an imprinted gene (IGF2, involved in muscle growth-refated traits') and a ribosomal protein codin
gene RPL32%. This experiment revealed that these penes are associated. Additionally, it was interesting to fi
co-localized pairs of genes such as IGF2-MEST, (DLK1/MEG3)-MEST, (DLE1/MEG3)-IMCN, that were ohserved
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Figure 4. Reconstructed network of genes in cluster | of Network 3, based on Ingenuity Pathways Knowledge
Base. Nodes are displayed using various shapes that represent the functional class of the gene product. The
reconstriscted network was generated through the wse of Tngenuity Pathway Analysis (IPA) (Ingenuity Systems;
QIAGEM, Inc., Valencia, CA, TT5A).

Lo be connecled in co-expression nelworks in other studics'™, even though they were nol directly connected by
an edge in our network (Network 1) but via intermediary genes, Besides, surprising resulls showed the highest
association we have ever observed belween two penes {neither in the present study, nor in previows ones). This
association concerns MYU3 and 1GF2, MY plays an imporlant role in foclal muscle development™, and
encodes for the embryonic Myosin Heavy Chain (MYIC) 3 protein. To the best of our knowledpe, no previous
association between these two genes, whatever its origin (nuclear or functional), has ever been observed, even
though the two genes are known Lo be invelved in muscle development ™. 'l determine the impact of the o
priori co-localization information introduced to enforce the presence or the absenoe of an edge, we analysed the
evolution from Nelwork 0 lo Nelwork 3, [irst globally {with conserved cdges and key genes) and then locally (with
network clustering and funclional enrichment). The global analyses revealed that 82% of edges in Network 0 wene
conserved in Network 3 and that the most important genes (with respect o network structure) in Network 0 were
among those showing the highest valees of beiweenness and degree in Betwork 3. These indings sugpest that the
introduction of enforced edges is nol linked (o the appearanoe of major disturbances in the network structure.
However, when foousing on the larget genes analysed by 30 DNA FISLL we observed a general decrease in the
depgree value, meaning that MGF2, DLKT, MEGE, RPL3Z, MEST, DCN and M Y113 were less connected with the rest
of the other genes in Metwork 3. Despite this observed isolation concerning genes for which edges were enforced,
this elfect was nol always accompanied by a loss of betweenness. In other wonds, reinforcing a limited number of
edpes did not chanpe vither the plobal network structure or the imporiance of target genes in the inal network. In
the local analysis, the MM value revealed that the clusters resembled one another more with cach new network
inferred. In addition, four oul of six duslers in the Onal network (MNetwork 3) conserved more than 62% of penes
in the corresponding clusters of Network 0. 'This concarred with the resulits of the funclional entichment analy-
siz, which revealed that the GOs found were conserved between Metworks 0 and 3. All these resulls support the
evidence that our approach did not introduce any substantial disturbance. In fact, this ilerative process brought
subslantial improvements; nodably, il enabled us Lo oblain reliable networks in terms of relevant biological infor-
malion, especially around our target genes. This was supported by the following findings: (1) the biological pro-
cesses presenting (he smallest FUR were found in Metwork 3, even though one of them involved DOCN, for which
vilge estimations were modifed by the introduction of @ priori information; (2} two new significant GO lerms
related to energy metabolism appearcd in duster 2 of Network 3; (3] two genes (BGF2 and DCN) analysed by 30
DMA FISH were imvolved in biological processes with smaller FOR in Network 3 than in Metwork 0. Morcover,
1GEZ was found in an additional GO of Network 3, while only present in one GO of Metwork 0.

One of the most imporiant goals of the present article was o clucidate the mechanisms thal govern por-
cine skeletal muscle development in late pestation. Many studies have been performed in pig o address this
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question® 841 In our model, we proposed a [inal network (Metwork. 3) in which enriched biological lunc-
tions related w muscle development were observed. These observations wene in agreement with the resulis
oblained by Voillel ef @l In addilion, in the resulling 1PA reconsiructed network, we highlighted MYODI
and CTNNET among the proposed (ranscriplion factors because they were especially interesling due to their
connection o two imporiant tarpgel penes, 1GFZ and MY13. Although MYODT and CTNNE? were nol present
in Lhe 358 genes uwsed for network inference, they were up-regulated atl 0 days of gestation in all penolypes
{Supplementary Fig. 571, MYOD] encodes for a myopgenic factor thal regulates skeletal musde cell differenti-
alion by aclivaling transcriplion of muscle-specilic largel genes (for review'S). CTNNBI (P-calenin 1), encodes
for a transcriptional co-activator thal was found to be reguired for muscle differentistion in murine myoblasts
by interacting directly with MyoD and promoting its binding to the E box elements enhancing ils transcriplional
activily". The co-expression and nuclear co-localization of 1GF2 and M Y113 suggest they are each subjected Lo
similar lranscriplional regulation by these wo ranscription Golors. The studics of Shang ef ol * and Ramazzolti
el @l % are in agreement with this hypothesis. Shang ef al. revealed that in mesenchymal stromal cells from rats,
an eclopic expression of Clanbl inhibits adipogenetic dilferentiation and induces the formation of long muli-
inucleated cells expressing myogenic penes, such as Myol? and Myhc, by promoting (he expression of skeletal
muscle-specilic transcription [actors. Ramazeolli ¢f ol. observed that an overexpression and acoumulation of
[F-catenin in the nucled of dilferentiating murine myoblasts resulls in higher MypoD activation and Myhe induction.
Additionally, 1GF2 was found (o be up-regulated in pig during myogenesis and, more precisely, involved in pri-
mary and secondary muscle fibre differentiation!. Moreover, Myod and fg/2 were observed Lo be involved in the
swilch belween myogenic and adipose lincages in mouse™. In addition, we found 1682 indirectly associated wilh
CTNNEI (through the infermediary gene 1GF2BPL) in the reconsiructed network. 1GF2BPT was nol used for nei-
work inference bul was found cxpressed al the 0™ day of gestation (Supplementary Fig. 7). Indeed, [-calenin
was observed o induce JGEZBP] in LEK293 cells, which in lurn was observed o regulale 1GF2 mBNA subcel-
lular bocation and translation in neurons (for review*). Lhis sugpgesls thal in muscle cdls, a similar mechanism
could possibly be involved for the regulation of 1GF2 via the CINNE] transcription [actor. Moreover, the long
non-coding DMA of Myol? (IncMyold), directly activated by Myol), may negatively regulate Jg/2bpI-mediated
translation of prolileralion genes in murine myoblasts™. This could explain how Myol blocks proliferation lo
creale a permissive stale of differentiation. Moreover, DLET and MYODT were nol connected in the reconstrocted
network. However, DLKT which encodes for a preadipocyte factor thal inhibits adipocyte dilferentialion™, might
inhibil cell proliferation and enhance cell differentiation by regulating the expression of MyoD)'. Combining
all this information with the observed up-regulation at 90 days of gestation of the above-mentioned penes, our
resulls highlight a network of interrelated penes associaled with skeletal muscle regulation and that are mainly
responsible for inhibition of proliferation and muscle differentiation.

Conclusion

‘The inmawalive approach presented here has proven to be consistent, robust and reliable for the inference of gene
co-capression nelworks in combination with gene nudear co-localizations. The information generated by the
final network brought o light relevant fonctions imvolved in the development and maturity of foetal muscle. In
this contexl, the challenge for future studics will be o broaden (his approach and render it more powerful by com-
bining co-expression dala with information aboul genome-wide interactions™* lo enforee edges in the nelwork.
‘Lhis study also spollights inleresting gene associalions in the three-dimensional nuclear space of muscle cells
such as the associations found between MYH3-1GE2 or MYU3-(DLENMEG3). The three genes are up-regulated
in LW al 90 days of gestation and are involved in musde development. Determining through further functional
studies whether and how these penes are co-regulated, will help us to understand the mechanisms involbved in the
eslablishment of pig muscle maturity.

Materials and Methods

Ethics Statement.  All lissues sampled for the experiments were collected on pigs bred for another project
(ANE-09-GENM-005-01, 2000-2015). The experiment authorizalion number for the experimental farm GenESL
(Genetics, lesting and innovative systems experimental unit) is A-17-661. The procedures performed in this study
and the treatment of animals complied with European Union legislation { Directive 2000/63/EU) and French leg-
islation in the Midi- Pyrénées Region of France { Decree 20001 -464). The ethical committes of the Midi- Pyrénées
Begional Council approved the cxperimental design (anthorization MPAO1T01A01/11). All the foeluses used in
this study were males and were oblained by cacsarcan.

Microarray data description and pre-processing.  Expression dala were oblained from skeletal muscle
for two foetal pestational ages (90 and 110 days of gestation) associated with four foetal penotypes (two extreme
breeds for mortality al birth - Large White (LW) and Meishan (M5)- and two reciprocal crosses - MSxLW and
LwaMS). The final datasel consisted of 44,368 probes for 61 samples under cight different conditions (foor geno-
Lypes al lwo gestational ages). A precise descriplion of the experimental design and data collection can be found
in Voillel ef al. . Normalized expression data (log2-ransformed) and sample information are available in NCBI
(GEOQ acoession mmber GSESG301).

issing values were impuled with k-NN (R package “impule” funclion, with & — 3). Gene annolation was
updated (nblast/NCBL July 2017, Sscrofal(.2) and the 40,647 annolated probes were found o correspond (o
13,855 unique penes. For cach pene, the probe with the highest average correlation with the other probes associ-
aled with the same gene was selected (o serve as a representative in further stalistical analyscs.

Metwork inference. Networks were inferred using Gaussian Graphical Models (GGMs™) from n= 61 sam-
ples. From expression data, GGMs build a graph (or network) in which vertices are genes and edges represent
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the conditional dependency structure between those genes. GGMs are based on (he estimation of partial correla-
Lioms (i.e., corrclations belween two gene expressions when the expression of all the other penes is known ). They
were preferred over relevance nelworks™ because Lhey improve measurement of direct relations belween gene
expressions by accounting for the effect of all expression data, and because they were found to be more ellicient
for grouping logether penes with a commeoen funclion in a previous stedy®®.

Since Lhe number of samples was smaller than the number of genes used for network inference, (he models
were [ilted with a sparse penally™ (o address the issues ol high-dimensional data and odge selection. In addition,
a5 many cxamples have shown thal co-cxpressed penes occasionally temd to inleract preferentially or consolidate
in specialized foci of the nudear environment® %, when a prisri information aboul nuclear gene co-localization is
available, the latler was included in the model using the approach described in Villa-Vialancix ef al. ™. The details
ol the method and of the uning of the different parameters are given in Supplementary Methods online.

Practical implementation of network inference. Lhe slarling point of the analysis was the inference
of a network with no  prior information aboul co-localization. Since network inference based on partial corre-
lation can only be performed with a limiled number of genes (because of the number of samples) and since the
number of unigue genes (p— 13,855) was oo greal compared o the number of samples (n — 61}, we applicd two
restrictions (o the original list. First, we restricted the list o penes that were reported as differentially expressed
(DEGY. Secondly, among these DEGs, only those thal had an absolule value for their correlation with either
IGFZ, DLKT or MEGS larger than 084 were kepl. 'Lhis Gnal list contained 358 genes, provided in Supplementary
Table 51.

MNetwork inference iteration and 3D FISH validations.  Based on network inference resulls or on gencs
found to be connecled in the 1GN of Varraull ef ol'%, 30 DNA FISH experiments were performed Lo check
whether pairs of penes of interest were co-localized in the 3D nudear space. These experiments were conducted in
an iteralive manner wilh nelwork inference. More precisely, network inferenee was performed with the following
a prieri conditions: (1) Metwork 0: was inferred with no a prieri information, as a bascline for comparison; (2)
Metwork 1: was inferred using & prieri information from the triple association found in Lahbib-Mansais ef al."”
by giving the (hree pairs IGF2-DLKT, IGF2-MEGS and DLKT-MEG3 as known co-localized penes. Network 1
wits Lhen used to propose candidate pairs of genes for testing by 30 DNA FISH for Metwork 2 (1GF2-RPL3Z) and
MNetwork 3 (DLKT-MY113): (3) Network 2: in addition 1o the initial three pairs, Network 2 was inferred using o
priori information provided by the results of the new 30 DNA FISH experiments by giving the pairs [GF2-MEST,
DLE]-MEST, MEG3-MEET, MEG3-DON, DLKI-DUN, and RPL32-IGEZ as known Lo be co-localized and
JGFZ-DON as known nol (o be co-localized: (4) Network 3: in addition (o the 10 previous pairs, Network 3 was
inferred using @ prior information provided by the results of new 30 DA FISLH experiments by giving the addi-
tiomal pairs IGF2-M Y3, DLEKT-MY I3 MEG3-MYI3 and MEST-M Y13 as known oo-localized genes.

All simulations were performed with the [ree statistical sofiware R (hilps-(/cran.r-projecLorg). The inference
wis performed using our own scripis (available al https:/github.com/tuxetie/internet30) and the graphs were
displayed and analysed using the B packape igraph (Csandi and Nepus:z)™.

Metwork mining and clustering. Nodes of importance to the network structure were obtained by com-
puting the degree and the betweenness centrality measurement for every node. Node clustering was performed
by applying the Lowvain algorithm™, which performs fast approximate optimization of the modularity™. All
clusterings were found to be significant using the permutation test described in Montastier ef al.™ by generating
500 random networks with the same degree distribution (all clusterings were found to have a modularity larger
than that obtained on the 500 random networks, p-value < 0.002). Clusters were compared using two methods:
first, pairwise conlingency lables between dusters were computed. Second, the normalized mutual information
{MMI*) between pairs of dusterings was obtained. The MM is a number between 0 and | measuring the similar-
ity between two clusterings and is maximum (equal to 1) when the two dusterings are identical.

Functional analysis of the networks. Functional enrichment analysis based on GO was performed
using the web tool Webgestalt (WEB-based GEne SeT Analysis Toolkit, hitp://www.webgestalt orgfoption.php)
updated on January 27, 2017%" The web tool uses the Fisher exact test and controls for the number of false
positives among the declared significant GOs terms. The False Discovery Rate was used (Benjamini-Hochberg
procedure™, FINR < 5%). The analysis was performed using the Overrepresentation Enrichment Analysis (ORA)
method, selecting non-redundant Biological Processes (BPs). The final network was analysed through the use
of Ingenuity Pathway Analysis version 01-12 {updated on March 31%, 2018). Ingenuity Pathway Analysis (IPA,
Ingenuity Systems; QIAGEN, Inc., Valencia, CA, USA, hitps:/ fanalysis. ingenuity.com/pa) contains a large bibli-
ographic database (Ingenuity Pathways Knowledge Base) with various molecular relationships already identified
betwieen two genes (protein-protein interaction, ligand-receptor regulation, enzymatic modification, transcrip-
tional expression regulation, etc.). The obtained network is a graphic representation of the molecular relation-
ships between molecules. All edges are supported by at least one reference from the literature, or from canonical
information stored in the Ingenuity Pathways Knowledge Base. The obtained networks were improved for rep-
resentation using Path Designer. Modes are displayed using various shapes that represent the functional class of
the gene product. The Functional Analysis identified the biological functions, the canonical pathways and the
upstream regulators that were the most relevant to the dataset. Molecules from the dataset that were associated
with biological functions, canonical pathways or upstream regulators in the Ingenuity Knowledge Base were
considered for the analysis. Fisher's exact test was used to caloulate a right-tailed p-value determining the proba-
bility that each function and pathway assigned to that dataset is due to chance alone. The networks proposed by
IPA were cleaned (some nodes/genes were discarded) in order to keep only the genes necessary to connect the
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co-cupressed genes. The three fist networks were menged and regulation information was added 1o highlight
transcriplion factors that could explain unexpected gene co-cxpression and nuclear co-localization (eg. MY
and IGF2; Supplementary Table 58).

Tissue preparation.  Foelal muscle lissue was oblained from the Longuissimus dors muscle of 90-day pes-
lalion QMSxLWd pig and prepared as described in'” with slight modifications. When needed, slored muscle
fibre packels wene permeabilised for 8 min in cytoskeleton extraction bulfer (100 mM MNaCl, 300 mM sucrose,
3mM MgCl2, 10mM PIPES pll 6.8) containing 0.5% Triton X-100 and then fixed in cold 4% paraformaldchyde
for 5min. Afler washing in cold PBS, muscle packets were manually dilaceraled directly on Superfrost glass
slides (CML, Memours, France) (o isolate individual fibres, and air-dried before adding DNA probes for in site
hybridizali

Probes construction.  Baclerial artificial clones (BACs) conlaining genes were isolaled from porcine BAC
libraries (available at the Biological Resources Cenler-GADIE, INRA, Jouy-en-Josas, France hitp:/fabridge. inra i)
using specific primers designed with Primer3 soflware (hitp://primer3.sourceforge.nelf) (Supplementary
‘Table 52). For multiple-label experiments, approximately 120ng of cach BAC DMA was random-priming labelled
directly by incorporation of dUTF Alexa Fluor (488 or 568) or indirectly with Biolin-6-dUTF detected by
immuno-FISH (Bioprime DNA labelling kit, Invitrogen, Cergy Ponloise, France). Chromosomal localizations of
all BAC probes were controlled by 210 DMNA FIS1 on porcine melaphases prepared (rom lymphocyles according
Lo standard protocols™.

1GE2 had been localized previously on $5C2p17, DLKI/MEG3 on $SC7¢26 and ZARI on SSC8q11-127. In
this study, additional genes were localized on pig melaphases: MY3 on $35C12q, MEST on 55C18, RPL3Z on
S5C13g24-33, DON on $3C5qler, and PRLR on SSC16 (Supplementary Table 52).

3D DMA-FISH on interphase nuclei. 3D DMA FISH experiments were conducted using specific probes
to label each gene with a ditferent colour as described in'? with slight modifications. Probes were resuspended in
hybridization buffer (50% formamide, 10% dextran sulphate, 2 mgfm] BSA, 2x 55C) at a final concentration of
110 ng/pl. Nuclear DNA and probes were simultaneously denatured at 74*C for 7 min and then incubated over-
night at 37 °C in a wet atmosphere {DAKO hybridizer). Washes were then performed with gentle agitation, first
twice in 23 S5C at room temperature (RT) for 8 min, then twice for 3min in 2 $5C, 50% formamide pH 7.0 at
40°C, and finally twice for 15 min in 2= 85C, then in PBS at RT. When a biotin-labelled probe was used, biotins
were detected by incubating the slides with streptavidin-Alexa 568 or 488 for 1 hour at RT.

Confocal microscopy and image analyses.  Image stacks were captured at different depths with 2
Leica TCSSP2 confocal microscope (Leica Instruments, Heidelberg, Germany) equipped with an oil immer-
sion objpective {plin achromatic 63 N.A, — 1.4). The Z-stacks (around 60 confocal planes per capture) were
acquired at 1024 % 1024 pixels per frame using an 8-bit pixel depth for each channed at a constant voxel size
of 0077 % 0.077 0,284 un. Images were analysed with specific software for measuring the 3D distances
{centre-to-centre) between signals (genes) (NEMO®) as described in', Euclidean distances were computed with
respect to the x, ¥ and 2 resolutions, Given the resolution on the & axis, af least three pixels corresponding to
0852 pum (00,284 0 3) were reguired for a high resolution between two separate signals; consequently, 1 pum was
chosen as the upper cut-off for associated signals,

Gene-gene associations.  In all 31 DNA FISH experiments, nuclei were only analysed when 4 signals
{corresponding to the 2 alleles of each gene) were present. “Associated” signals were considered to be those sep-
arated by a distance (d) < 1 pm, and were divided into two different classes: “close™ signals (0.5 = d < 1 pm), and
“co-localized” signals (d << 0.5 pm). The great majority of associations concerned uniquely one allele from each
gene. To establish the threshold for distinguishing between associated and non-associated genes, two 31 DNA
FISH experiments were performed as negative controls: first, between two genes (ZART and PRLR) located on dif-
&Tmtd'lmu:l:lamnesandzrgrmed at a very low level in musdle cells”, second, between IGF2 (highly expressed)
and ZART (low expression) . In both cases, the two genes were found to be associated in only 8% of the analysed
nuclei. Considering this value as a sporadic association between loci not expected to be associated, a 10% value
was arbitrarily chosen to distinguish between associated and non-associated genes.

Data availability. The data sets supporting the results of this article are available in the NCEI's Gene
Expression Ommnibus repository, and are available through GEO Serles sccession number GSES6301.
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Dans le secteur de I’¢levage porcin, les truies ont été sélectionnées pendant des décennies pour leur prolificité
afin de maximiser la production de viande. Cependant, cette sélection a été associée a une mortalité plus élevée
des nouveau-nés. Dans ce contexte, le muscle feetal squelettique est essentiel a la survie du porcelet, car il est
nécessaire pour les fonctions motrices et la thermorégulation. Par ailleurs, la structure tridimensionnelle du
génome s'est avérée jouer un réle important dans la régulation de l'expression génique. Ainsi, dans ce projet,
nous nous sommes intéressés a la conformation 3D du génome et l'expression des génes dans les noyaux des
cellules musculaires porcines a la fin de la gestation. Nous avons initialement développé une approche
originale dans laquelle nous avons combiné des données transcriptomiques avec des informations de
localisations nucléaires (évaluées par 3D DNA FISH) d'un sous-ensemble de génes, afin de construire des
réseaux de génes co-exprimés. Cette étude a révélé des associations nucléaires intéressantes impliquant les
genes IGF2, DLKI et MYH3, et a mis en évidence un réseau de génes interdépendants spécifiques du muscle
impliqués dans le développement et la maturité du muscle feetal. Nous avons ensuite évalué la conformation
globale du génome dans les noyaux musculaires a 90 jours et & 110 jours de gestation en utilisant la méthode
de capture de conformation de chromatine a haut débit (Hi-C) couplée au séquengage. Cette étude a permis
d'identifier des milliers de régions génomiques présentant des différences significatives dans la conformation
3D entre les deux ages gestationnels. Fait intéressant, certaines de ces régions génomiques impliquent les
régions télomériques de plusieurs chromosomes qui semblent former des clusters préférentiellement a 90 jours.
Plus important, les changements observés dans la structure du génome sont associés de maniere significative
a des variations d'expression géniques entre le 90°™ et le 110°™ jour de gestation.

Mots-clés : Architecture nucléaire, muscle feetal porcin, Hi-C, cartes de contact, 3D DNA FISH, réseau de
co-expression génique.

3D genome conformation and gene expression in fetal pig muscle at late gestation.

In swine breeding industry, sows have been selected for decades on their prolificacy in order to maximize meat
production. However, this selection is associated with a higher mortality of newborns. In this context, the
skeletal fetal muscle is essential for the piglet’s survival, as it is necessary for motor functions and
thermoregulation. Besides, the three-dimensional structure of the genome has been proven to play an important
role in gene expression regulation. Thus, in this project, we have focused our interest on the 3D genome
conformation and gene expression in porcine muscle nuclei at late gestation. We have initially developed an
original approach in which we combined transcriptome data with information of nuclear locations (assessed
by 3D DNA FISH) of a subset of genes, in order to build gene co-expression networks. This study has revealed
interesting nuclear associations involving /GF2, DLKI and MYH3 genes, and highlighted a network of
muscle-specific interrelated genes involved in the development and maturity of fetal muscle. Then, we assessed
the global 3D genome conformation in muscle nuclei at 90 days and 110 days of gestation by using the High-
throughput Chromosome Conformation Capture (Hi-C) method. This study has allowed identifying thousands
of genomic regions showing significant differences in 3D conformation between the two gestational ages.
Interestingly, some of these genomic regions involve the telomeric regions of several chromosomes that seem
to be preferentially clustered at 90 days. More important, the observed changes in genome structure are
significantly associated with variations in gene expression between the 90™ and the 110%™ days of gestation.

Keywords: Nuclear architecture, porcine fetal muscle, Hi-C, contact maps, 3D DNA FISH, gene
co-expression network.
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