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1 Abstract 

In swine breeding industry, sows have been selected for decades on their prolificacy in order to 
maximize meat production. However, this selection is associated with a higher mortality of newborns. 
In this context, the skeletal fetal muscle is essential for the piglet’s survival, as it is necessary for motor 
functions and thermoregulation. Besides, the three-dimensional structure of the genome has been proven 
to play an important role in gene expression regulation. Thus, in this project, we have focused our 
interest on the 3D genome conformation and gene expression in porcine muscle nuclei at late gestation. 
We have initially developed an original approach in which we combined transcriptome data with 
information of nuclear locations (assessed by 3D DNA FISH) of a subset of genes, in order to build gene 
co-expression networks. This study has revealed interesting nuclear associations involving IGF2, DLK1 
and MYH3 genes, and highlighted a network of muscle-specific interrelated genes involved in the 
development and maturity of fetal muscle. Then, we assessed the global 3D genome conformation in 
muscle nuclei at 90 days and 110 days of gestation by using the High-throughput Chromosome 
Conformation Capture (Hi-C) method. This study has allowed identifying thousands of genomic regions 
showing significant differences in 3D conformation between the two gestational ages. Interestingly, 
some of these genomic regions involve the telomeric regions of several chromosomes that seem to be 
preferentially clustered at 90 days. More important, the observed changes in genome structure are 
significantly associated with variations in gene expression between the 90th and the 110th days of 
gestation.
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2 General introduction 

Pig breeding is one of the most important divisions in the French feed industry, being the French 
swine sector the third producer in EU, and the pork, the most consumed meat in France. In order to reach 
such levels of production, farmers have developed over the last fourty years breed selection programs 
based on cross-breeding plans designed to select phenotypic traits of interest. In that context, sows have 
been selected for their prolificacy. Unfortunately, the increasing number of piglets per litter has been 
correlated with an increase of newborns mortality. A key factor in this issue is the piglet’s maturity, 
defined as the stage of full development leading to survival at birth. Indeed, developmental problems 
occurring at late gestation can lead to maturity defects during the perinatal period and consequently, to 
death. Therefore, it is important to understand the biological processes taking place in late gestation. For 
instance, the skeletal muscle represents the first reserve of glycogen in piglets, which is used during the 
first 24h after birth for piglet’s thermoregulation.  

Many studies have been performed in muscle tissue to identify key genes or molecular processes 
involved in muscle development and maturity. Nevertheless, it remains unclear how these genes or 
processes are regultated, not only in muscle tissue but generally in all kind of tissues. In fact, all cell 
types of a living organism have the same genetic material yet, they are morphologically and functionally 
different from each other. It is known that cell-type specific genes are responsible of phenotypic 
differences observed between cells, as it is also known that modulations of expression levels of a given 
gene can explain differences observed in a specific cell type under different conditions. Although in 
many cases the mechanisms of gene regulation have been well described, for many others some 
questions remain open: Which are all the factors and mechanisms responsible of gene expression 
regulation? How these mechanisms of gene regulation work? Some features present in the genome 
sequence itself such as promoters or enhancers, have been identified as key elements involved in gene 
expression regulation. Others, such as transcription factors or non-coding RNAs, associate to specific 
DNA sequences in order to regulate gene expression. Also, epigenetic modifications on histones or DNA 
have been show to play as well an important role in this regulation. All this knowledge has provided 
many clues to unravel the mechanisms involved in gene expression regulation but it remains insufficient 
to explain all phenotypic differences observed between cells. In the last fifteen years, numerous studies 
have emerged addressing the question of the 3D genome organization role in the regulation of gene 
expression. It has been proven that it exists an intimate relation between chromatin structure and gene 
expression, as will be presented in more detail in the third chapter of the “Bibliographic review”. 

The main objective of this thesis has been to explore any change on the 3D genome 
structure occurring in fetal porcine muscle between two developmental ages that could explain 
phenotypic differences observed at the level of gene expression at 90 and 110 days of gestation. 
For that purpose two different strategies were used. 

Our fisrt approach combined the inference of gene co-expression networks with nuclear location 
information of a small set of genes. The expression data of a previous transcriptome study performed  
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by microarray analysis on muscle samples from 90 days and 110 days fetuses (Voillet et al., 2014) was 
used to build the networks. Concretely, we used the expression values of differentially expressed genes, 
identified in this previous study as genes having a potential role in piglet’s maturity. Then, the 3D 
nuclear proximity between some pairs of genes was tested by 3D DNA Fluorencence in situ Hybridation 
(FISH) because either they appeared connected in the networks, they were identified as key genes in 
muscle development, or both. The resulting information of these 3D DNA FISH assays was used each 
time to infer a new gene co-expression network by reinforcing the edges between genes when they were 
found co-localized in the nucleus, or by preventing connexions between genes found distant in the 
nuclear space. This integration of gene expression and nuclear co-localization proved to be relevant as 
it revealed clusters of genes, around our target genes, related to muscle development. 

 In this first approach, we analyzed the nuclear proximity (distance) of a small number of genes 
in few (~ 60 - 100) nuclei. On our second approach, we sought to extend the scale of the analysis in 
order to explore the genome-wide structure of the DNA in a large population of muscle cells. We used 
the High-throughput Chromosome Conformation Capture (Hi-C) molecular approach, coupled to DNA 
sequencing and bioinformatics data analysis. This enabled to identify all genomic regions that were in 
nuclear proximity. Hi-C assays were performed on muscle samples from two gestational ages (90 and 
110 days, 3 fetuses per condition). Large genomic regions, the so-called “A and B compartments”, which 
are functionally different, were also identified. Although these compartments were highly conserved, 
we identifyied some genomic regions switching of compartment type between the two conditions. At a 
smaller scale, topologically associated domains (TADs), were also identified in both conditions. The 
differential analysis revealed global differences in the 3D chromatin structure between the two 
gestational ages. More precicely, it allowed identifying genomic regions that were proximal at 90 days 
of gestation but distant at 110 days and vice versa. Finally, we explored whether the differential of 
genome organization between the two gestational ages was associated with a differential in gene 
expression previously reported in the muscle transcriptome study. Small althought significant 
differences in gene expression were associated with those genomic regions showing a differential 
conformation between the two gestational ages. 

The present manuscript is divided into four sections. The first one is a bibliographic review 
about the pig breeding context, which exposes the issue of neonatal mortality, the concept of maturity, 
and the role of muscle development and maturity in survival at birth. This is followed by a review about 
pig genome sequencing and annotation and the main transcriptome studies performed on fetal muscle. 
Lastly, a detailed review about the nuclear architecture will be presented to uncover: first, the general 
principles of the 3D genome organization then, the different approaches that allow to study this aspect 
and final, some specificities observed in pig. The methods used in this project will be presented in the 
second section. The third and fourth sections show respectively the results obtained with the two 
strategies mentioned before, used to study the 3D genome structure during fetal development and the 
integration of gene expression. In these two last sections, the results are presented and then discussed. 
The main results of this thesis are summarized in a final conclusion, followed by the presentation of the 
perspectives.    



 

 

 

 

 

 

 

Figure 1. Evolution of average number of piglets per litter in France from 1975 to 2015. The data 
used to build this graph were collected and treated by the GTTT (Technical Management of Sow Herds) 
of the French Porc and Pig Institut (IFIP). 
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3 Bibliographic review 

3.1 Chapter 1. Breeding context 

3.1.1 Early mortality: a major breeding issue in pig farming 

3.1.1.1 Background 

Pig sector is an important economic motor of the livestock industry in France. In 2016, around 
8.9% (24.3 million pigs) of the global production in the European Union (EU) was obtained in France 
(data obtained from the National Establishment of Agricultural and Sea products, FranceAgriMer, 
2017). This makes the French swine sector into the third producer in EU after Germany and Spain. 
Actually, pork is the most consumed meat in France, before poultry and cattle, which makes France the 
fourth consumer (FranceAgriMer, 2017). To ensure this demand of meat, farmers have had to find 
strategies in order to increase their production. 

3.1.1.2 Selection towards prolificacy 

Beyond the breeding conditions (feeding, bedding, health, etc.), genetics and breed selection 
programs are among the most important aspects handled by farmers to increase their production. In this 
context, cross-breeding plans are used to combine different genotypes and select the best animals 
regarding genealogy, reproductive performance, growth, carcass type, and meat quality. For instance, 
pig males have been selected to improve feed conversion efficiency and carcass quality criteria, and 
sows from Large White (LW) line have been prolificness-enhanced to increase the number of live-born 
piglets per litter. 

The selection towards increasing the prolificacy and meet production, has been unfortunately 
associated to an increment of perinatal mortality. Figure 1 shows data collected from the French Porc 
and Pig Institute (IFIP). A shift is observed between the years 1975 and 2015, with an increase in: (i) 
progeny (4.1 more piglets per litter), (ii) premature mortality (0.6 more still-born per litter) and (iii) 
postnatal mortality (1.5 of piglets died before reaching the weaning age in 1975 while 1.9 perished 
before weaning in 2015). The last, presenting the highest rate around the first 48-72 hours 
(corresponding to the perinatal mortality). In brief, the incidence of mortality has considerably raised in 
the last forty years, especially during the last fifteen years because of the application of novel selection 
practices for genetic improvement. This early mortality generates not only important economic losses 
(10-20% of total operating costs) for the swine industry but also raises ethical questions about animal 
welfare. 

Early mortality is not a phenomenon restricted to the swine industry, other species in the 
agronomic sector suffer from the same losses. In the sheep industry, the mortality rate before the sixtieth 
day after birth is 13.6% and, before 48 hours of lambs’ life, mortality represents more than 50% (data  
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obtained from the Sheep Breeding Institute, Idele, 2016). Although less pronounced than in the pig and 
sheep sectors, the proportion of perinatal mortality in the cattle industry is 5.2% (Perrin et al., 2011). 

To finish with this overview of perinatal mortality, I would like to underline that humans are 
unfortunately not exempt from this problem, despite all the advances in medicine in the last years. In 
2016, 5.6 million deaths were registered in children under five years old. Neonatal deaths (the first 28 
days of life) accounted for 46% of all under-five deaths. Although the majority of them were attributable 
to neonatal infections, intrapartum-related events and congenital abnormalities, almost 35% of the 
neonatal mortality was due to preterm birth complications (data obtained from UNICEF, “Levels and 
Trends in Child Mortality Report 2017”), the last, especially regarding immaturity problems of 
newborns (hypothermia, hypoglycemia, respiratory distress, etc.). 

3.1.1.3 Critical factors of piglets mortality 

 Many factors are responsible of pig losses, the most commons, the ones affecting the perinatal 
period and involved in stillbirths (prenatal stage), and deaths during the first 72 hours after birth 
(neonatal stage). Fetal losses can be explained by maternal effects (uterus anatomy, placenta 
development, and number of embryos). Neonatal deaths happening during farrowing can also be 
explained by maternal effects (farrowing issues, intrauterine hypoxia and hyperthermia caused by 
acidosis). Those happening in early breastfeeding can be due to maternal effects, breeding conditions or 
effects specific to the piglets. The piglet’s weakness (malnutrition by low-quality colostrum and/or milk 
production from the sow) and maternal crushing are the most common causes of pre-weaned mortality. 
Other factors are important for piglet survival like the maternal skills/abilities (resource management 
(relationship with its appetite and body condition), its dairy milk production, the farrowing efficiency, 
the weight and size of the piglets and the maternal behavior). And last, but not less important, the vitality 
of the piglet defined as the piglet characteristics that will influence its survival and growth during the 
breastfeeding stage (Canario, 2006). This thesis is focused on this last item which is developed in the 
coming section.  

3.1.2 Maturity and survival 

3.1.2.1 Critical factors for piglets survival 

Some studies have been performed to investigate and understand which conditions during pig 
fetal development alter the genetic merit for piglet survival. It has been observed that postnatal 
performance in pigs is mainly affected by the placental development, the size and weight of fetuses, and 
the levels of cortisone and glycogen. For instance, litters with high estimated breeding values for piglet 
survival present smaller and more regular placenta, smaller fetuses, higher cortisol concentrations, 
higher concentrations of glycogen in liver and skeletal muscle (longissimus dorsi) and higher 
percentages of carcass fat (Leenhouwers et al., 2002a). Similarly, intrauterine growth retardation 
(IUGR) have been associated with variation in birth weight within litters, pre-weaning survival and 
postnatal growth. Actually, IUGR is often produced due to high ovulation leading to high fetuses 
surviving to 30 days gestation. This is in detriment of a proper placenta development, especially limiting 



 

 

  

Figure 2. Specific mechanisms during pig maturation process in late gestation. (Voillet, 2016).  

 

 

 

 

 

Figure 3. Primary trunk muscle embryonic development. Skeletal striated muscle derives from the 
myotome, the middle layer of the somite segments. Myogenesis is initiated by delamination of cells of 
the dermomyotome that differentiate into skeletal muscle of the myotome (Yusuf and Brand-Saberi, 
2012). 
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the availability of nutrients to the embryo during myogenesis (Foxcroft et al., 2006). These aspects 

support the idea that by selecting hyperprolific females to increase the number of pigs born, piglet 

survival is strongly impacted. Therefore, this strategy of selection should be critically evaluated in the 

context of pork production, as well as selection should be optimized to obtain slightly smaller but 

stronger piglets in terms of piglet survival. 

3.1.2.2 Piglet’s maturity 

The ability of piglets to cope with hazards during birth or within the first days of life is closely 
linked to the fetal physiological maturity (van der Lende et al., 2001). A state of full development, due 
to a successful maturation process, promotes early survival after birth (Leenhouwers et al., 2002b, 
2002a). Concretely, the maturity is described by the weight of birth, the body composition, the levels of 
metabolites, the ability to thermoregulate, the immune response and behavioral aspects (Canario, 2006; 
Foxcroft et al., 2006; Leenhouwers et al., 2002a). The fetal maturation process in pigs involves 
biological processes occurring between the 90th day and the term of gestation (around the 114th day) 
(Leenhouwers et al., 2002a). During this period, the most important events happening over the 
maturation process are the ones described in the previous section: an increase of plasma cortisol, the 
glycogen accumulation in muscle and liver and the maturation of tissues (Figure 2, (Voillet, 2016)). 

Experimental results have also shown that breed-specific mechanisms could influence the 
physiological processes at the end of development and during the maturation process. Indeed, there are 
examples of breeds having different performances for piglet survival. For instance, the survival rate 
differs between the LW European breed and the Meishan (MS), a Chinese domestic breed. The LW 
breed which has been highly selected, presents a high incidence of mortality, while the primitive breed 
MS exhibits a strong potential for survival (Herpin et al., 1993). This disparity between extreme breeds 
in terms of maturity can be explained by breed-specific particularities happening during the muscle 
development and maturation, due to the fact that a proper functioning of this tissue is essential for piglet 
postnatal performance as mentioned before. The role of muscle maturity in survival at birth will be 
discussed in the following section, by focusing attention on the skeletal muscle.  

3.1.3 The role of muscle maturity in survival at birth 

There are three types of muscle in vertebrates, the skeletal muscle (“voluntary muscle” 
responsible of the skeletal movement), the smooth muscle (“involuntary muscle”, in organs, blood 
vessels, skin, etc.) and the cardiac muscle (also “involuntary” but more similar in structure to the skeletal 
muscle). In this thesis, the interest is focused on the skeletal muscle, concretely on the longuissimus 
dorsi which is located in the trunk and it extends from the thoracic region to the sacrolumbar. 

3.1.3.1 Myogenesis: the fetal skeletal muscle development 

 Skeletal muscle in the trunk of vertebrate embryo derives from the somites, segments of the 
paraxial mesoderm germ layer which is formed in the primitive blastopore during gastrulation 
(Figure 3). Somites are located at both sides of the neural tube and notocorde, and they are composed 



 

 

 

 

 

 

 

 

Figure 4. Myogenesis during embryonic development. Myogenic progenitors from dermomyotome 
proliferate until the expression of myogenic regulatory factors (MRFs) that will determine cell 
commitment and differentiation through the sequential expression of different MRFs (Jin et al., 2016). 
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by three structures: the sclerotome (ventral compartment that originates vertebrae, ribs and cartilage), 
the myotome (middle layer originated from the dermomyotome, gives rise to skeletal striated muscles), 
and the dermomyotome (dorsal compartment originates dermis and hypodermis). After demomyotome 
formation, myogenesis is initiated by delamination of cells from the inward-curled borders (lips) of the 
dermomyotome. These detached cells move under the dermomyotome to generate the primary myotome 
and rapidly differentiate into skeletal muscle of the myotome. The dorsomedial portion of the myotome 
gives rise to the intrinsic back muscles (Buckingham, 2006; Chal and Pourquié, 2017; Yusuf and Brand-
Saberi, 2012). 

 Cells in the dermomyotome express the Pax3 and Pax7 transcription factors, they are myogenic 
proliferating precursors in somites and do not express myogenic regulatory factors (MRFs) or muscle 
proteins (Figure 4). This is the so-called proliferation step. The determination step happens during the 
myotome formation, when myogenic precursors retreat from the cell-cycle. Then, these cells start to 
express Myf5 (myogenic factor 5), MyoD (MyoD1, myogenic determination factor), MRF4 (Myf6, 
myogenic factor 6) and to downregulate Pax3 (Paired box 3), becoming committed myoblasts 
(Buckingham, 2006; Chal and Pourquié, 2017; Yusuf and Brand-Saberi, 2012). In early development, 
myoblasts can either proliferate or differentiate. The differentiation step begins when myoblasts start 
expressing myogenin (Myf4/MYOG), MyoD and MRF4 (Buckingham, 2006). At this stage, the 
differentiating myoblasts are often named myocytes, which express specialized cytoskeletal proteins: 
Myh7 and Myh3 myosin heavy chains (MyHC), α-actine (Actc1), desmin, the Notch ligand jagged 2 
and metabolic enzymes. Myocytes elongate and align to span the entire somite length and this process 
is controlled by Wnt11 signaling. Then they fuse leading to the formation of multinucleated myotubes 
which latter mature into myofibers. Myogenesis separated into two phases: an early embryonic or 
primary phase and a latter fetal or secondary phase. The first one results in the formation of primary 
myofibers (muscle cell polynucleated) (expressing slow MyHC and myosine light chain 1, MyLC1). 
During the second phase, myogenic precursors fuse among themselves or to the primary fibers and give 
rise to secondary myofibers expressing β-enolase, Nfix or MyLC3. Then these fibers also start to express 
fast MyHC isoforms (Chal and Pourquié, 2017). 

 Myofibers are filled of myofibrils which are bundles of protein filaments and responsible of 
muscle contraction. The process of myofibrils formation is called myofibrillogenesis. Myofibrils are 
composed of a repetitive contractile modules called sarcomeres and they are surrounded by the 
sarcolemma, a specialized plasma membrane for neural signal transduction by depolarization upon 
neural excitation. The filaments in a sarcomere are composed of actin and myosin (Chal and Pourquié, 
2017). 

 It exists three main types of myofibers classified depending on their MyHC isoforms and 
metabolism. These are the slow-twitch oxidative (oxidative metabolism), the fast-twith oxydative 
(oxido-glycolytic meatabolism) and the fast-twitch glycolytic (glycolitic metabolism) fibers (Picard et 
al., 2002). There are eight isoforms of MyHC: four adult (I, IIa, IIx and IIb), 3 developmental 
(embryonic, fetal and α-cardiac), and one extraocular isoform (Perruchot et al., 2012). Oxidative 
slow-twitch fibers express slow MyHC (type I, Myh7), whereas glycolytic fast-twitch fibers express fast  



 

 

 

 

 

 

 

 

Figure 5. Schematic representation of the time-course of muscle fiber development in pig. The muscle 
mass will be determined by the total number of fibers (TNF), established after the first and second wave 
of fiber formation, and by the prenatal and postnatal hypertrophy of those fibers (Foxcroft et al., 2006). 
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MyHC (types IIa (Myh2), IIb (Myh4) and IIx (Myh1)). Being the embryonic (Myh3) and slow MyHC 
the first to be expressed in early myogenesis phase, then fetal and neonatal fibers express perinatal 
MyHC (Myh8), finally the fast isoforms start to be expressed during late fetal myogenesis (Chal and 
Pourquié, 2017). 

 To finish with this section, hereafter a brief introduction about the adult muscle stem cells. They 
are the so-called satellite cells and are located between the basal lamina and the sarcolemma of each 
myofiber. They origined during embryogenesis from myogenic progenitors of the central 
dermomyotome expressing Pax7. The Pax7 progenitors pool is maintained by the Notch signaling. 
Satellite cells have a limited ability to replicate and will remain as quiescent Pax7+ satellite cells in adult 
muscle. They are required for skeletal muscle regeneration, growth and maintenance through adulhood 
(Chal and Pourquié, 2017) (see (Crist et al., 2012) for more details). 

3.1.3.2 Peculiarities of pig skeletal myogenesis and muscle 
metabolism 

 In pigs, and more generally in livestock animals, muscle fiber characteristics and ontogenesis 
influence the quality of meat. As discussed before, during myogenesis, two succesive waves of 
myoblasts are responsible of the myofiber ontogenesis and will lead to the formation of primary and 
secondary myofibers. In larger species as bovines, sheeps, pigs, but also in humans, it exists a third 
generation of myofibers (Picard et al., 2002; Rehfeldt et al., 2000). These tertiary myofibers appear 
during fetal life except for pigs, in which the third generation appears during the early postnatal period. 
Therefore, in the pig gestational timeline, the first wave of myoblast generation arrives around the 35th 

day of fetal life, the second around the 55thday, and the third between birth and the first 15thdays after 
birth (Picard et al., 2002). The total number of muscle fibers (TNF) and the myofibers size are important 
parameters playing a key role in meat quality and they have been influenced by lean meat growth 
selection (Rehfeldt et al., 2000). In pigs, the TNF is fixed around the 90th day of gestation suggesting 
that the third generation of fibers (postnatal) is not quantitatively important. Primary and secondary 
fibers are under genetic and epigenetic (environmental) control respectively. The genetic aspect is 
explained by differences between breeds and the epigenetic one is mainly explained by maternal effects 
(maternal nutrition and offspring) (Picard et al., 2002; Rehfeldt et al., 2000). Regarding the maternal 
effects, intrauterin growth retardation has been observed in some fetuses of hyperprolific sows 
presenting high rates of conceptuses surviving to 30 days of gestation, resulting in detrimental effects 
of placental development. This limites the availability of nutrients to the embryo during the myogenesis 
and is translated into a decrease of the number of muscle fibers at 90 days of gestation (Foxcroft et al., 
2006). Muscle mass is determinated not only by the TNF but also by the size of those fibers. Increases 
in muscle mass due to the fiber size are subjected to the prenatal and postnatal fiber hypertrophy 
(Figure 5). The hypertrophy depends on the accumulation of myonuclei (satellite cell proliferation) and 
muscle specific proteins. 

 Porcine muscle shows a unique distribution of fibers consisting in clusters of slow type I fibers 
surrounded by fast type II fibers. Primary and secondary myofibers express type I MyHC (embryonic 



 

 

 

 

Figure 6. Schematic evolution of fiber type differentiation. Myosin heavy chain (MYHC) isoform 
transitions in developing skeletal muscle of pig. Original figure created by (Picard et al., 2002) and 
modified to add the MYHC isoform genes in color. 
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and fetal) but, in secondary fibers, type I MyHC is not expressed until late gestation (Figure 6). Fast 

type II MyHCs are mostly expressed after birth with exception of type IIa which expression increases 

from the last third of gestation. Another characteristic of porcine muscle is that the α-cardiac MyHC 

(Myh6) is also detected in early postnatal development (Picard et al., 2002). It seems that the fiber type 

composition could differ between different breeds. For instance, it was observed that MS pigs exhibited 

a decrease in the expression of the fastest isoform compared with LW pigs (Lefaucheur et al., 2004). 

 The oxidative metabolism represents the principal source of energy during fetal porcine life. At 
birth all muscles are oxidative, and glycolytic metabolism increases during the first postnatal weeks 
(from 0 to 15 days after birth in pigs). Globally, contractile and metabolic muscle fibers differentiate 
during the two first postnatal weeks, meaning that the main events occur soon after birth whereas they 
occur during fetal life in human, bovine and ovine (Picard et al., 2002). The carbohydrates metabolism 
is related to viability in perinatal period. Muscle glycogen reserves are the first source of energy for heat 
production used for piglets’ thermoregulation during the first hours of life (Leenhouwers et al., 2002a; 
van der Lende et al., 2001). 

3.1.3.3 Muscle and maturity 

Low birth piglets born from hyperprolific sows are generally more immature, they present low 
number of secondary fibers, and exhibit lower postnatal growth performance and lean percentage than 
their mature littermates. To compensate, they tend to develop extremely large muscle fibers (giant fibers) 
to increase muscle mass solely through muscle fiber hypertrophy. This is associated with problems in 
fibers capacity to adapt to activity-induced demands, stress susceptibility and meat quality in modern 
meat-type pigs. Larger fibers present less mitochondria, and probably energy and oxygen supply are 
limited due to reduced capillarity density. Nuclear control of cellular processes may also be impaired 
because these kind of fibers present a low nuclear/cytoplasm ratio. Moreover, larger fibers belong to the 
white fast type, correlated with pale, soft, exudative meat conditions and their metabolism contributes 
to a fast pH decline which cannot be removed (Foxcroft et al., 2006; Rehfeldt and Kuhn, 2006; Rehfeldt 
et al., 2000). Mature piglets exhibiting a strong potential for survival show high concentrations of 
glycogen in longissimus dorsi muscle and liver, stimulated by an increase in cortisol concentrations. 
This may allow piglets to have a higher ability to maintain glucose levels during and after farrowing and 
to maintain body temperature in situation of late colostrum intake (Leenhouwers et al., 2002a). 

The maturity process of the fetal muscle occurs during the last third of gestation, concretely 
between the 90th day and the perinatal period (Figures 2 and 5). Muscle studies regarding this gestational 
period, and performed in extreme breeds in terms of maturity, are particularly interesting to reveal 
biological processes involved in piglets survival. In this context, numerous transcriptome studies have 
been performed in porcine muscle tissue in the last decades. This approach is valuable because it allows 
assessing the gene expression profile easily in a particular tissue or condition (age, genotype, etc.). In 
the next chapter, a review of the different transcriptome approaches and studies will be presented 
focusing on studies performed in fetal muscle pig. 



 

 

 

 

 

 

Figure 7. Representative GTG-banded male pig karyotype (Gustavsson, 1988). 
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3.2 Chapter 2. Muscle transcriptome studies 

 The majority of phenotypes are complex and quantitative in nature. Understanding the rules that 
govern the transition from genotype to phenotype requires a comprehensive knowledge of the genome 
sequence information. Numerous projects of the Encyclopedia of DNA Elements (ENCODE) have been 
addressed in humans and classical model species. However, transcriptome complexity differs 
significantly between species (Barbosa-Morais et al., 2012), and little information is available for 
non-model species such as livestock animals compared with model species. Before addressing the 
subject of muscle transcriptome studies in pig, a brief description about specific features of the porcine 
genome sequence and annotation will be presented. 

3.2.1 Functional Annotation of porcine genome  

3.2.1.1 Main efforts in pig genome sequencing and annotation 

 The porcine genome is organized in 38 chromosomes (2n): 18 pairs of chromosomes and 2 sex 
chromosomes. The first five chromosomes are sub-metacentric as shown in Figure 7, chromosomes 6 
and 7 are sub-telocentric, chromosomes 8 to 12 are metacentric, and the remaining six are telocentric 
(Gustavsson, 1988).  

A prerequisite for mapping functional elements is a reference genome assembly. Contrary to the 
human or mouse genomes, which first drafts of their reference sequences were published in 2001 and 
2002 respectively, first pig reference genome assembly was published in 2012 (Groenen et al., 2012), 
after more than 9 years of efforts since the Swine Genome Sequencing Consortium (SGSC) was created 
in 2003 (Schook et al., 2005). This pig whole genome de novo sequencing and assembly (Sscrofa10.2) 
was produced after the generation of genetic and physical maps (microsatellite linkage and 
whole-genome radiation hybrid maps). The SGSC adopted then the strategy of shotgun Sanger 
sequencing of bacterial artificial chromosome (BAC) clone end sequences (Humphray et al., 2007), and 
complemented latter with Illumina next-generation sequencing. For more details see: (Archibald et al., 
2010; Chen et al., 2007; Groenen et al., 2012). 

The current pig genome assembly (Sscrofa11.1) was produced and released in December 2016, 
and produced by the SGSC. Sequence data were largely obtained at 65x genome coverage in whole 
genome shotgun (WGS) Pacific Biosciences long reads. Sanger and Oxford Nanopore sequence data 
from a few BAC clones were used to fill gaps and, for final error correction, Illumina HiSeq2500 WGS 
paired-end and mate pair reads were used. Sscrofa11 replaces the previous assembly, Sscrofa10.2, which 
was largely established from the same Duroc DNA source. Sscrofa11.1 genome version is estimated to 
be ~2,500 Mb, with 41.97% of GC content. The total number of scaffolds is 706, with 583 unplaced 
scaffolds. It contains 1,118 contigs, and the N50 length for the contigs is 48,231,277. The final assembly 
is available in the public databases (GenBank/EMBL) under the accession number GCA_000003025.6. 
The primary source of the Sscrofa11.1 assembly is in the NCBI site 
https://www.ncbi.nlm.nih.gov/assembly/GCF_000003025.6/ (WGS in GenBank accession number:  

https://www.ncbi.nlm.nih.gov/assembly/GCF_000003025.6/
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AEMK00000000.2). Genome annotation for this genome version was available in July 2017 Ensembl 
v90. Sus scrofa genome contains 22,452 coding genes, 3,250 non coding genes, 178 pseudogenes and 
49,488 gene transcripts. 

Today, a few percentage of the human and mouse genomes (~0.37% and ~0.14% respectively) 
is found in unplaced scaffolds, while this percentage is higher in pig genome (~2.66%). Genome 
annotation is also poorer in pig than in model animals. In general, the annotation of genome sequence 
in domesticated and farmed species is limited to gene models using RNA expression and DNA variation 
data, which is insufficient to characterize the complexity of the transcriptomes in domesticated animals. 
These aspects highlight the difficulties that scientist must confront when working with species other 
than model ones. 

In an effort to improve the annotation of newly assembled genomes of domesticated and 
non-model organisms, the Consortium of Functional Annotation of Animal Genomes (FAANG) was 
recently created (www.faang.org, (Andersson et al., 2015; Tuggle et al., 2016)). The aim of this 
Consortium is to produce comprehensive maps of functional elements based on common standardized 
protocols and procedures. Studies performed in the FAANG context have been mainly focalized on 
chicken, pig, cattle, and sheep, at neonatal and mature stages. Studied tissues include: skeletal muscle, 
adipose, liver and tissues collected from reproductive, immune and nervous systems. The main assays 
are based on RNA sequencing, chromatin accessibility and architecture, and histone marks. In this 
context, a French pilot project (FrAgENCODE) of the French National Institute of Agronomic Research 
(INRA) has been developed to asses the expression profiles, chromatin accessibility and structure in 
several tissues of four different farm species. This will be presented latter in more details. 

3.2.2 Transcriptome technologies and approaches 

3.2.2.1 DNA microarray and RNA-seq 

 The full range RNA molecules expressed by an organism comprise messenger RNA (mRNA), 
transfer RNA (tRNA), ribosomal RNA (rRNA), and regulatory RNAs (miRNA, RNAi, siRNA, piRNA, 
lncRNA, snRNA, snoRNA or circRNA), being the most abundant the rRNA, the tRNA and the mRNA. 
The transcriptome is defined as the full range of RNA molecules expressed by an organism, tissue, or 
cell type, in a particular condition, and is generally referred to the messenger RNA (mRNA) but it can 
also refer to other RNA types. Therefore, a transcriptome analysis allows determining expressed (active) 
and non-expressed (inactive) genes in a population of cells. 

 The two most commonly used transcriptomic techniques are DNA microarrays and RNA 
sequencing (RNA-seq). Microarrays, also known as DNA chip or biochip, are used since early 80s: (a) 
to measure thousands of genes at the same time, (b) for gene expression profiling, (c) to genotype 
multiple regions of a genome (d) for single nucleotide polymorphisms (SNP) or alternative splicing 
detection, etc. On the microarray, specific DNA sequences called “probes” or “oligos”, are used to 
hybridize anti-sense RNA or complementary DNA (cDNA, synthesized from a single stranded RNA). 
Probe-target is quantified by the detection of a fluorophore. RNA-seq, also named whole transcriptome 

http://www.faang.org/


 

 

 

Figure 8. Schematic illustration of pairwise correlations and partial correlation assumptions. Circles 
represent nodes (genes) and black arrows represent an observed correlation between nodes.  Left: 
Computing pairwise correlations can lead to misconceptions. In the example, when two genes “B” and 
“C” are regulated by a common gene “A”, the coefficient between the expression of “B” and the 
expression of “C” is strong as a consequence (dotted line). Right: By computing partial correlations 
there is no undesirable effects of strong indirect correlations.    

 

 

 

 

Figure 9. Basic steps of network inference. First, pairwise similarities are computed (correlations in 
the simplest case). Second, the smallest (or less significant) similarities are filtered (using a threshold 
chosen either heuristically, or other more sophisticated methods). Third, the network is built from the 
remaining similarities. 
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sequencing (WTSS), is a more recent technology, first used in 2008 (Lister et al., 2008) and based on 
next-generation sequencing (NGS). This technology is useful not only to obtain gene expression 
profiling but to detect alternative gene spliced transcripts, post-transcriptional modifications, or SNPs. 
It needs to prepare cDNA from isolated RNA before sequencing. RNA can be enriched for a specific 
type (i.e. by using 3’ polyadenylated (poly (A)) tails to include only mRNA). After sequencing, 
transcriptome assembly and annotation are necessary before analyzing data. One common way for 
analyzing transcriptome data is by constructing gene co-expression networks. In the section below is 
presented a brief review about the methods and characteristic of these networks.  

3.2.2.2 Co-expression networks 

Gene co-expression networks are mathematical representations to model relations between genes 
behaving in a similar way across tissues and experimental conditions. In these kind of networks, each 
vertex (node) corresponds to a gene, and pairs of genes are connected by an edge when a significant 
co-expression relationship exists between the pairs. The first step to infer a co-expression network is to 
calculate pairwise similarities between pairs of genes (often by computing Pearson correlations for 
“relevance networks”) (Zhang and Horvath, 2005). Although this approach can be useful to have a first 
look at relationships between co-expressed genes, it can also lead to misconceptions because Pearson 
correlations are sensitive to unwanted indirect effects, such as the effect of a common strong correlation 
with another gene (Figure 8). To account for the effect of all expression data and obtain a measure closer 
to direct interactions between genes, it is thus advised to use more sophisticated methods, such as 
Graphical Gaussian Models (GGM) (Edwards, 1995). GGM base the definition of the network on the 
measure of a partial correlation, i.e., a correlation between two gene expressions knowing the 
expression of all the other genes. This method was found more efficient, for instance, to group genes 
with a common function (Villa-Vialaneix et al., 2013). After computing pairwise similarities, those less 
significant in the similarity matrix are filtered by fixing a threshold to discard the less significant ones, 
then, the network is built from the remaining pairwise similarities between genes (Figure 9). 

Once the network inferred, many network characteristics can be used to extract information 
about the most important nodes, or group of nodes, which will be helpful for interpreting the biological 
meaning of co-expressed genes. This is the so-called process of “Network mining”. Network features 
can be classified as global characteristics of the network (i.e. density, transitivity), or as individual 
characteristics of a node (i.e. degree, betweenness). The individual characteristics are particularly 
interesting to extract the most important nodes, or genes in the case of gene co-expression networks. 
The degree of a node is the number of edges afferent to this node and the betweenness of the node is the 
number of shortest paths between pairs of nodes in the network that pass through that node. High-degree 
genes are connected to many other genes while high-betweenness genes are central and more likely to 
disconnect the network if removed. Finally, a clustering of the nodes can be performed to partition the 
network into groups of densely connected genes (sharing more edges than with other groups). These 
groups are called clusters or communities, and they are often used to find enriched biological processes 
or molecular functions by using Gene Ontology (GO) approaches. 

 



 

 

 

Figure 10. The probable roles of differentially expressed (DE) genes in the molecular regulation of 
myogenesis. Red dots indicate the promoting roles of these genes in myogenesis and blank striping 
indicate the repressing roles (Zhao et al., 2011). 
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3.2.3 Muscle transcriptome studies in pigs 

 Many transcriptome studies have been performed in pig to elucidate the mechanisms that govern 
porcine skeletal muscle development and maturity, but few of them address the gestational period when 
the skeletal muscle maturation process takes place (90th day of gestation and the end of gestation) 
(Voillet et al., 2014; Zhao et al., 2015). Some of these studies include, or are centered on the period 
before the maturation process (Cagnazzo et al., 2006; Tang et al., 2015a; Zhao et al., 2011, 2015), and 
some others include or mainly concern the study of the postnatal period (Ayuso et al., 2015; Óvilo et 
al., 2014; Sodhi et al., 2014; Xu et al., 2012; Zhao et al., 2011, 2015). Generally, most of them are based 
on comparisons between transcriptomes of two extreme breeds. Often, between highly selected breeds 
(selected for lean meet), and non-selected breeds. Four of these studies are particularly interesting as 
they explain phenotypic traits observed in breeds highly selected for muscle growth, and characterized 
by a high incidence of perinatal mortality. Firstly, some authors observed in Duroc (DU, high 
intramuscular fat) and Pietrain (PT, low intramuscular fat) breeds that myogenesis is more intense in 
late PT fetuses than in DU ones, and genes related to energy metabolism are expressed at a higher level 
in PT than in DU prenatal pigs (Cagnazzo et al., 2006). Then, a similar study performed in Lantang (LT, 
obese) and Landrace (LR, lean) breeds (Zhao et al., 2011) revealed that some differentially expressed 
genes might contribute in later myogenesis and more muscle fibers in LR than in LT. Another study, 
focused on the maturation process  period in the MS (strong potential for survival) and the LW (high 
incidence of mortality) breeds, reported that: (a) genes involved in muscle development were enriched 
at 90 days of gestation, while those involved in metabolic functions were enriched at 110 days, (b) it 
exists a delay of gene expression in LW fetuses at 110 days of gestation which concerns globally genes 
involved in muscle development and metabolic functions (Voillet et al., 2014). Lastly, another study 
performed in the Tongcheng breed (TC, slow growth) and the American version of the LW, the 
Yorkshire breed (YK, fast growth, low back fat and high lean meat), revealed a higher number of 
myoblasts (myogenic progenitor cells) in early TC embryos than in YK embryos (Tang et al., 2015a). 
These results suggest that pig breeds characterized by low back fat and high lean meet composition as 
LW, LR, PT or YK, present a delay in expression of genes involved in muscle development and 
maturity. 

 To finish with this overview of the porcine muscle transcriptomes, the study of Zhao et al. (2011) 
performed at several time points of the prenatal and postnatal periods, nicely illustrates the whole 
process of myogenesis by indicating the main expressed genes for each step (Figure 10). 
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3.3 Chapter 3. Nuclear architecture 

 Genome sequence alone is not sufficient to explain cell type diversity and the overall 
coordination of nuclear activity in a particular tissue. Even though cis- and trans-acting regulatory 
sequences are among the most studied regulatory elements, they are not the only determinants of gene 
expression. For instance, epigenetic mechanisms such as histone and DNA modifications can also be 
responsible for tissue-specific expression of genes (Rothbart and Strahl, 2014). Nevertheless, numerous 
studies have demonstrated that the genome organization in the nucleus acts as an additional level of 
gene expression regulation (Osborne et al., 2004; Rieder et al., 2014; Schoenfelder et al., 2010; Zhao et 
al., 2006). 

 In the present section, the main generalities about nuclear architecture, more specifically about 
genome organization, will be presented. Additionally, an overview of the principal experimental 
methodologies and applications to study this matter will be presented, together with a description of 
current studies about genome organization performed in pig. 

3.3.1 Higher order genome organization 

3.3.1.1 Generalities 

 Genome organization extremely differs among biological organisms. The most important 
distinction regarding genome structure is the one found between prokaryotes and eukaryotes organisms. 
Prokaryotes lack of nuclear membrane, genome has relatively small size, is often circular, it generally 
contains only one chromosome, and may have additional DNA molecules (plasmids). In contrast, in 
eukaryotes the genome is located inside a nuclear membrane, and it contains larger and multiple linear 
DNA molecules (except for mitochondrial and chloroplast circular DNAs) which are condensed into 
chromosomes by association with histone proteins. Eukaryotic genome is also more complex with 
longer genes, and around only 1.22% of coding sequence (for protein-coding exons in human (ENCODE 
Project Consortium, 2012)) while prokaryotes has up to 90%. 

 The fundamental units of the genome are the chromosomes, which are made of chromatin in 
eukaryotic cells (DNA compacted by association to histone proteins). The higher level of DNA 
compaction is found in mitotic cells, with the metaphase chromosomes. Chromatin is subdivided into 
euchromatin, correlated to “open” and transcribed chromatin (R-bands of metaphasic chromosomes), 
and heterochromatin, more condensed chromatin (G-bands of metaphasic chromosomes) enriched into 
inactive and silenced chromatin regions. In interphase nuclei, the distribution of the chromatin is not 
random and is constrained by the presence of several nuclear structures such as, proteinaceous nuclear 
bodies (PML bodies, Cajal bodies or Polycomb bodies), nucleolus, nuclear lamina, nuclear pores, 
transcription factories (TFs) or splicing speckles (Schneider and Grosschedl, 2007). 

 

 



 

 

 

 

Figure 11. Chromosome territories (CTs). (A) Random chromosomal distribution vs. the CTs model 
(Lieberman-Aiden et al., 2009). (B) Representation and classification of chromosomes in a human 
fibroblast nucleus. Left: CTs were targeted by 3D FISH using seven different fluorochromes to construct 
the CT painting probes, and DAPI to counterstain the DNA. Right: False color representation of all 
CTs (Bolzer et al., 2005). (C) Models of chromatin organization in mammalian nuclei. Up: In the CT-IC 
model, also called interchromatin domain (ICD) model, chromatin from different chromosomes is 
separated by an ICD compartment rich in nuclear machinery but poor in chromatin. Rare chromatin 
loops extending from CTs may invade the ICD space. Down: In the ICN model, chromatin from different 
chromosomes is allowed to expand into the surrounding territories; the presence of adjacent 
chromosomes, the nuclear membrane, and larger nuclear compartments restrict the amount of 
intermingling. (Branco and Pombo, 2006). 
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3.3.1.2 Chromosome territories 

 In situ hybridization techniques have allowed visualizing individual chromosomes in the 
interphase nuclei. This permitted to accept the theory that chromosomes occupy discrete territories in 
the nucleus, the so-called chromosome territories (CTs), against the theory of global intermingling of 
interphase chromosomes (Figure 11A-B) (Bolzer et al., 2005). CTs are the basic principle of nuclear 
organization in animals, plants and yeast (Cavalli and Misteli, 2013; Cremer and Cremer, 2010). 
Although chromosomes occupy discrete regions in the nuclear volume, they are not necessarily 
completely separated one from each other. Different models are proposed, the most popular ones: the 
chromosome territory-interchromatin compartment (CT-IC) model, and the interchromatin network 
(ICN) model (Branco and Pombo, 2006) (Figure 11C). The CT-IC model postulates that two spatial 
compartments are present in the nucleus, one formed by the CTs, and the other one called the 
interchromatin-compartment (IC) and defined as a DNA-free space, rich in soluble nuclear machinery 
such as TFs or splicing speckles. The ICN model establishes that CTs are not separated by a DNA-free 
compartment, but chromatin expands into the surrounding CTs allowing a certain degree of 
intermingling at the interfaces of neighboring chromosomes with the presence of nuclear machinery in 
intermingling regions. In the CT-IC model, trans-chromosomal interactions could occur via extended 
chromatin loops, while in the ICN model, regions of intermingling would be more likely to produce 
trans-chromosomal interactions. A more recent study argues against these two models (Nagano et al., 
2013). Firstly, local dissociations from CTs (necessary for extended loop formation in the CT-IC model) 
were not observed. Secondly, the observed preferential location of trans-chromosomal interactions 
associating some pairs of chromosomes, and the lack of contacts between other chromosome pairs, argue 
against the idea of domains completely immersed in other territories. These results do not exclude CT 
intermingling, but propose an intermediate model that includes preferential regions of intermingling 
altogether with DNA-free interface regions. It is not excluded that other eukaryotic organisms show a 
different chromosomal conformation. For instance, the CTs of the yeast S. cerevisiae are spatially less 
well defined and intermix to a much greater extent than those of higher eukaryotes.  This is possibly due 
to yeast genome specificities (more decondensed chromatin, lack of large heterochromatin domains and 
smaller genome size) (Cavalli and Misteli, 2013).  

Aside from the special distribution of chromosomes in CTs, it has been observed that p and q 
arms of metacentric chromosomes are also quite separated entities (Bickmore, 2013). Moreover, a 
special localization of centromeres has been observed in yeast, fly, mouse and human (Li et al., 2017). 
Indeed, the centromeres tend to cluster and are positioned at the periphery of the nucleolus during 
interphase, and this process is thought to play a role in determining the overall genome architecture. 
Finally, a specific phenomenon of homologous chromosomes pairing called transvection has been 
observed in D. melanogaster and other dipteran insects. This pairing can influence gene expression by 
forming interactions between regulatory elements on homologous chromosomes (Li et al., 2017).   

Other elements influencing genome organization are gene density, active and repressive 
domains, and specialized nuclear structures. Regarding gene density, it has been observed in human, 
rodents, cattle and birds, that gene-rich chromosomes tend to be located towards the center of the nucleus 



 

 

 

 

 

 

Figure 12. Nuclear architecture and genome organization. This picture illustrates the principal 
components of the nucleus involved in the nuclear organization (nuclear lamina, nuclear pore and 
nucleolus), and the main genome domains (CTs, LADs, NADs, NPCs, A/B compartments and TADs). 
CTs are represented by different chromatin colors (blue, yellow, pink and purple).  
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and gene-poor chromosomes toward the nuclear periphery (Cremer and Cremer, 2010; Gibcus and 
Dekker, 2013). Moreover, a polarized nuclear organization within chromosomes was observed, with 
gene-poor regions located towards the nuclear periphery compared with gene-rich regions from the same 
chromosome (Bickmore, 2013). Correlation between this non-random radial localization and gene 
activity has been observed in selected cases however, the nuclear periphery is not entire restrictive to 
transcription (Deng and Blobel, 2014). 

3.3.1.3 NPCs, LADs, NADs, TFs and PcG domains    

The main structures responsible of genome organization at the nuclear periphery are the nuclear 
lamina (NL) and the nuclear pores (NP) (Figure 12). NL is a protein network that covers the inner part 
of the nuclear envelope, and many studies have reported associations of the chromatin to this structure 
(Holwerda and de Laat, 2012). These are the so-called lamina-associated domains (LADs), reported 
before in human, fly and mouse (Li et al., 2017). They are characterized by heterochromatic regions, 
low gene density, transcriptional inactivity and depletion for transcription marks such as RNA 
polymerase II (RNAPII) and histone marks. LADs are large domains spanning (0.1-10 Mb) representing 
almost half the genome in a given cell population but not all LADs can physically be associated with 
the NL in each cell (Bickmore, 2013; Gibcus and Dekker, 2013). The differences in genome organization 
between a cell population and a single cell will be discussed later. Whereas NL associates with 
heterochromatin (inactive domains), NP are in some cases enriched for associations with euchromatin 
and active genes. These are the so-called nuclear pore complexes (NPCs) (Deng and Blobel, 2014; 
Gibcus and Dekker, 2013). For instance, in yeast active genes reside proximal to nuclear pores while in 
mammals, active genes did not exhibit such positioning preferences. Nevertheless, nuclear envelope is 
not the only organizer of genome structure, other nuclear bodies such as nucleolus, Polycomb bodies or 
TFs play an important role in genome organization. 

Nucleoli are subnuclear structures specialized in ribosome biogenesis and enriched in RNA 
polymerase I (RNAPI) responsible of 45S rDNA transcription (Pombo and Dillon, 2015). In human, 
over 2000 clustered rRNA copies dispersed over five chromosomes (in human) are recruited together 
and transcribed on the surface of the fibrillar center within the nucleolus (Mercer and Mattick, 2013). 
Moreover, actively transcribed RNAPIII-dependent genes can also be found at the nucleoli, and some 
groups of RNAPII-dependent genes such as olfactory receptors have been also identified at the nucleoli; 
however these RNAPII-dependent genes are silent (Gibcus and Dekker, 2013). All these loci that 
associate at or near nucleoli are described as nucleolus-associated domains (NADs) (Figure 12). Hence, 
nucleoli are genome organizing structures bringing together actively transcribed RNAPI and RNAPII-
dependent genes, as well as silenced repressive loci surrounding the sites of ribosomal synthesis (Deng 
and Blobel, 2014; Gibcus and Dekker, 2013). Nucleoli are a highly specialized example of RNAPI 
transcription factories (TFs) responsible of rDNA transcription but it is not the only one. TFs are defined 
as large nuclear assemblies containing a range of transcription factors and machinery constituents along 
with additional accessory proteins for RNA processing and splicing (Mercer and Mattick, 2013). 
RNAPII is associated to the transcription of most protein-coding genes. RNAPIII is responsible for the 
synthesis of 5S rRNA and tRNA and is also associated with clusters of 5S rRNA and tRNA transcripts 
(Rieder et al., 2012). RNPII and RNAPIII TFs are distributed through the nucleoplasm in foci, are more  
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abundant than RNAPI TFs, but contain far fewer polymerases (Pombo and Dillon, 2015). The number 
of TFs, and of polymerase molecules appears to depend on the cell type and species, for example, in 
HeLa cells there are about 8000 RNAPII factories and 2000 RNAPIII factories, each containing 
approximately 6 to 8 active enzymes (Pombo and Dillon, 2015; Rieder et al., 2012). In terms of nuclear 
structure, there is some evidence that TFs can lead to the clustering of co-regulated genes. Indeed it 
exists some cases where transcriptionally-related genes are transcribed in specialized TFs. A 
well-known example of this are the TFs enriched with the Klf1 transcription factor that mediates 
preferential co-associations with Klf1-responsive globin genes in erythroid cells (Schoenfelder et al., 
2010). 

 Another structure playing a role in genome organization are the Polycomb bodies, identified in 
fly and mammals. They are composed by the Polycomb group (PcG) proteins, a collection of 
transcriptional regulatory factors mainly involved in gene silencing. PcG transcriptional repression 
occurs by imposing post-transcriptional modifications on histones and inducing chromatin 
condensation, which in turns restrain RNAPII elongation. More recently, PcG proteins have also been 
identified as coactivators of gene expression by regulating local topological interactions (Aranda et al., 
2015). Regarding the regulation of chromatin structure, it was observed in mouse that most 
PcG-associated genes are contained within a loop flanked by CTCF/cohesin sites. These genes are 
included in the so-called chromatin structures PcG domains that average 112 Kb, and include repressive 
histone methylation marks (Dowen et al., 2014). Some of the best characterized PcG domains are the 
Hox gene clusters (Vieux-Rochas et al., 2015). PcG shapes intra-TADs (topologically associated 
domains) interactions and might help to stabilize and consolidate TADs of transcriptionally inactive 
regions of the genome (Aranda et al., 2015). A detailed view about the TADs will be discussed latter. 

3.3.1.4 A and B compartments 

 Besides CTs, subchromosomal compartments within CTs have been identified. They are 
made-up of groups of multi-Mb chromosomal domains (median size ~3 Mb in mice, (Dixon et al., 
2012)), mostly located in the same chromosome but can also be on different chromosomes (Gibcus and 
Dekker, 2013). Those are the A and B compartments, first described by Lieberman-Aiden et al. in human 
cells (Lieberman-Aiden et al., 2009). The A compartments are defined as transcriptionally permissive, 
euchromatic regions, which are gene-rich and DNase I hypersensitive areas, also referred as open 
compartments. Inversely, B compartments are considered as transcriptionally inert regions enriched for 
features of heterochromatin and nuclear lamina associations, which are gene-poor, DNase I insensitive, 
and are also referred as closed compartments (Bonora et al., 2014; Gibcus and Dekker, 2013). Different 
strategies have been adopted to define A and B compartments: by using High throughput Chromosome 
Conformation Capture (Hi-C) data, DNA methylation microarray data, DNase I hypersensitive 
sequencing, single cell whole-genome bisulfite sequencing, and Assay for Transposase Accessible 
Chromatin with high-throughput sequencing (ATAC-seq) (Fortin and Hansen, 2015). 

 Hi-C data allow to identify genomic compartments or domains at different scale levels 
depending on data resolution. Lieberman-Aiden et al. first defined the A and B compartments by 
analyzing low resolution matrices of a human lymphoblastoid cell line (Lieberman-Aiden et al., 2009).  



 

 

 

 

 

 

 

Table 1. Specific characteristics of each A and B subcompartment according to Rao et al. 2014. 

 

A and B subcompartments 

A1 A2 B1 B2 B3 B4 

activating 
chromatin marks 

H3K36me3 + + - - - + 

H3K79me2 + + 
 

- - 
 

H3K27ac + + 
 

- - 
 

H3K4me1 + + 
 

- - 
 

silencing 
chromatin marks 

H3K9me3 
 

+ 
 

- - + 

H3K27me3 
  

+ 
   

H4K20me3 
     

+ 

gene features 
density + + 

    
expression + + 

    
genomic 
domains 

LADs - - 
 

+ + 
 

NADs - - 
 

+ - 
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Later, they performed new experiments in the same cell line that allow obtaining high resolution 
matrices (1 Kb), and six nuclear subcompartments were identified (Table1) (Rao et al., 2014). These 
subcompartments were associated with distinct patterns of histone modifications and named: A1, A2, 
B1, B2, B3 and B4. A1 and A2 are gene dense, have highly expressed genes, harbor activating chromatin 
marks (H3K36me3, H3K79me2, H3K27ac and H3K4me1) and are depleted at LADs and NADs. A2 is 
more strongly associated with the presence of H3K9me3, has lower GC content, and contains longer 
genes than A1. B1 correlates positively with H3K27me3 and negatively with H3K36me3, suggestive of 
facultative heterochromatin. B2 and B3 tend to lack all of the above-noted marks. B2 includes 62% of 
pericentromeric heterochromatin and is enriched at LADs and NADs, while B3 is only enriched at LADs 
but strongly depleted at NADs. Finally, B4 is only present in a region highly enriched with members of 
the KRAB-ZNF superfamily genes, which exhibit a highly distinctive chromatin pattern, with strong 
enrichment for activating chromatin marks (H3K36me3) and heterochromatin-associated marks 
(H3K9me3 and H4K20me3). 

It remains unclear whether these A and B compartments are stable or if they change in specific 
conditions. A recent study showed that changes in gene expression were associated with switches 
between compartments in 36% of the genome during mammalian development (Dixon et al., 2015). The 
A and B compartments are further subdivided into Topologically Associated Domains (TADs), which 
are further partitioned into smaller substructures and contact domains (Rao et al., 2014; Zhan et al., 
2017). Last studies have been focused on the description of these smaller domains (TADs), and little 
work is available about descriptions of A and B compartments behavior in different conditions. 

3.3.1.5 Topologically associated domains 

 Decreasing in the genome organization scale, domains smaller than A and B compartments were 
first identified by Nora et al. in mice active and inactive X chromosomes, and were named topologically 
associated domains (TADs) (Nora et al., 2012). TADs are contiguous genomic regions that range 
approximately 1 Mb size (Dixon et al., 2012; Nora et al., 2012). They are defined as chromatin domains 
enriched in highly-self interacting regions, with a frequency of intra-domain interactions higher than 
inter-domain interactions. These domains are highly conserved between cell types and across species, 
including human, mouse, fly, bacteria, yeast and plants (Björkegren and Baranello, 2018; Dixon et al., 
2012), and genes located within the same TAD tend to have coordinated dynamics of expression during 
differentiation. Hence, TADs may play a role in coordinating the activity of groups of neighboring genes 
(Gibcus and Dekker, 2013).  

A very characteristic feature of TADs is that their boundaries are enriched in DNA-binding 
proteins such as the CCCTC-binding factor (CTCF) in mouse, human and fly cells (Figure 13A) (Dixon 
et al., 2012; Li et al., 2017). This could suggest that CTCF might be involved in the establishment of 
TAD boundaries. However, in Drosophila, CTCF does not seem to have a role in loops formation 
(Björkegren and Baranello, 2018). Moreover, in human and mouse, only 15% of CTCF binding sites 
are located within boundary regions while the other 85% are present inside TADs (Dixon et al., 2012) 
indicating that CTCF alone is insufficient to separate different TADs (Ong and Corces, 2014). The role 
of CTCF at these sites will be addressed later. 



 

 

 

Figure 13. Topological domains and boundaries regions. Images obtained from a study performed in 
mouse embryonic stem cells (mESC) (Dixon et al., 2012). (A) TADs obtained from Hi-C data (red 
triangles), overlayed on ChIP-seq data. (B) Density of peaks for different histone marks, transcription 
start sites, genome-wide nuclear run-on sequencing (GRO-Seq: short transcripts generated by engaged 
RNA polymerase) and SINE elements around TAD boundaries. 
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CTCF is not the only element found enriched at TAD boundaries. Cohesin, a conserved 
ring-shaped protein complex, is often found co-localized with CTCF and enriched at TAD boundaries 
(Uusküla-Reimand et al., 2016). In fact, both CTCF and cohesin have been observed to be involved in 
gene expression regulation by shaping chromatin through loops formation (Björkegren and Baranello, 
2018; Hnisz et al., 2016a; Rao et al., 2014). Chromatin marks associated with active transcription (more 
concretely with active promoters) of nearby genes, such as H3K4me3 and H3K36me3, have also been 
found enriched at boundaries. In contrast, non-promoter associated marks, such as H3K4me1 (associated 
with enhancers) and H3K9me3 (associated with heterochromatin), have been found not enriched or 
specifically depleted at boundary regions (Figure 13A and B). Likewise, transcription start sites (TSS) 
and repeat classes such as Short Interspersed Nuclear Element (SINE), are enriched at boundaries 
regions (Figure 13B), and “housekeeping genes” have been found strongly enriched near TAD 
boundaries (Cournac et al., 2016; Dixon et al., 2012). SINE-repetitive elements preferentially 
co-localize in the nuclear space and are enriched in transcription factors in human, mouse and fly, which 
may explain the global conservation of genome folding (Cournac et al., 2016). Besides, some 
non-coding RNAs may be involved in genome folding and gene expression regulation, such as the 
non-coding RNAs derived from Long Interspersed Nuclear Elements (LINEs) (Nozawa and Gilbert, 
2014), or the intergenic long non-coding RNAs (lincRNAs). Indeed, lincRNAs show a preferential 
location at TAD boundaries, and are enriched in enhancer-like signatures, suggesting a regulation of 
proximal gene expression by modulating local chromosomal architecture (Tan et al., 2017). The fact 
that DNA associating proteins, transcriptional histone marks, TSS, repetitive elements, and lncRNAs, 
are preferentially enriched at TAD boundaries, together with coding genes localized near boundaries, 
strongly points to a potential role of boundary regions in the regulation of gene expression.  

Smaller domains than the TADs (1 Mb) described by Dixon et al. have been observed in other 
studies (Rao et al., 2014; Sexton et al., 2012; Zhan et al., 2017) employing higher resolution maps. These 
domains range in size from 40 Kb to 3 Mb (median size 185 Kb), and are described as “contact domains” 
or sub-TAD structures (Rao et al., 2014). They were probably not observed by Dixon et al. because 
detecting smaller structures (sub-TADs) requires higher resolutions than the ones used in their study as 
discussed in Rao et al. (2014). As mentioned before, CTCF and cohesin are enriched at TAD boundaries 
but they also bind pervasively within TADs and are involved in the formation of sub-TAD structures, 
which are strongly associated with active regulatory sequences (Phillips-Cremins et al., 2013). It is not 
clear whether these subdomains are different from TADs or if they simply represent a further level of 
hierarchical organization (Björkegren and Baranello, 2018). 

The 3D genome organization offers a hierarchical complexity (including from higher to lower 
scales: CTs, LADs and NADs, A and B compartments and subcompartments, TADs and sub-TADs) 
which is achieved with the presence of chromatin loops observed at the highest resolutions. The role of 
CTCF and cohesin, among other factors, in the mechanisms of loop formation has been quite well 
studied and will be detailed in the following section.   

 

 



 

 

 

 

 

 

 

Figure 14. Mechanisms of loop formation. The loop extrusion model here illustrated includes the 
cooperation of cohesin, CTCF, RNAP, and supercoiling. (A) Higher order organization of chromatin 
into A and B compartments, formed by topological domains (TADs), that are in turn subdivided into 
smaller domains. (B) Loop extrusion model, which main actors are cohesin and CTCF (yellow arrow), 
the last acting as a blocker. (C) RNAP introduces positive supercoiling  that may be responsible of 
cohesin progression (Björkegren and Baranello, 2018). 
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3.3.2 Chromatin loops and gene-gene interactions 

3.3.2.1 CTCF and cohesin functions 

CTCF is an architectural protein conserved in most animals, and it contains a highly conserved 
DNA-binding domain (Kim et al., 2007). Around the 55,000-65,000 sites in mammalian genomes, 
approximately 5,000 are ultraconserved among species and tissues, whereas 30-60% of CTCF sites show 
cell-type specific distribution (Ong and Corces, 2014). This CTCF target selectivity can be explained 
by differential methylation in specific CpG dinucleotides at the CTCF recognition sequence (Wang et 
al., 2012). Classically, CTCF was initially associated to the roles of chromatin barrier (function to 
prevent repressive heterochromatin from spreading into a neighboring domain) and enhancer activity 
blocker (by association with insulators, sequences that block the action of enhancers on promoters). 
However, recent studies argue against these two proposed functions. Indeed, there is little evidence to 
support a generalized functional role for CTCF in separating domains with different epigenetic marks, 
and CTCF could participate in both, enhancer blocker and enhancer facilitator functions (Ong and 
Corces, 2014). New functions associated to CTCF are related to its ability to: (i) bring together distant 
sequences such as enhancer-promoters or distant gene segments, (ii) control transcriptional events such 
as RNAPII pausing and alternative mRNA splicing, (iii) stabilize interactions required for the formation 
of TAD borders together with the cooperation of other architectural proteins (Ong and Corces, 2014). 

Cohesin is essential to establish sister chromatid cohesion during the S phase of the cell cycle, 
and maintaining it through G2 and mitosis, by forming a ring structure loaded onto DNA during G1. A 
large number of cohesin-binding sites co-localizes with binding of CTCF, and it is been suggested that 
both proteins are primary involved in promoting promoter-enhancer interactions by forming chromatin 
loops. But, they could also have some involvement in delineating boundaries between TADs (Pombo 
and Dillon, 2015).  

3.3.2.2 Insulated neighborhoods (CTCF/cohesin-mediated loops) 

 One hypothesis to explain the mechanism of loop formation mediated by CTCF and cohesin is 
the loop extrusion model. Björkegren et al. proposed cohesin as a loop extruding factor, in a way that 
DNA could pass through the ring and the extrusion would stop when the ring meets an obstacle. This 
obstacle could be a DNA site occupied by CTCF on each side of the growing loop (Figure 14B). In 
addition, they proposed that RNAP may be involved in this mechanism, which could also contribute to 
the formation of TADs structure (Figure 14A-C). Indeed RNAPII has been detected in loop structures 
included within CTCF-mediated in chromatin contact domains, suggesting that CTCF-anchor regions 
are the foci for transcriptional activity (Tang et al., 2015b). Positive supercoiling introduced by RNAP, 
could “push” cohesin along the double helix, providing an impulse for the extrusion of the loop 
(Björkegren and Baranello, 2018). 

This mechanism of loops formation likely involves CTCF dimerization due to the convergent 
orientation of the two CTCF motif present at the loop anchors (Rao et al., 2014), suggesting that CTCF 
may participate to the stabilization and maintain of the loop. Rao et al. observed that the vast majority 



 

 

 

 

Figure 15. Models of loop domains to constitute TAD structure and sub-structure. (A) Identification 
of TADs (black and blue bars) by Hi-C and cohesin ChIA-PET. (B-D) Models of a TAD that consist of 
(B) an insulated neighborhood, (C-D) nested insulated neighborhoods (sub-TADs within a TAD) (Hnisz 
et al., 2016a). 
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of detected loops bound CTCF and two proteins of the cohesin complex (RAD21 and SMC3) at the loop 
anchor region. Two-thirds of loops contain a single CTCF-binding motif, but 92% of motif pairs are 
facing one another. Many of the loops detected by Rao et al. demarcate sub-TADs (contact domains, 
185 Kb median size), suggesting that CTCF delimits structural and regulatory domains, and that the two 
anchor sequences of the loop are located at these domain boundaries. These are referred as “loop 
domains”. Figure 15 illustrates possible models of loop domain to form TAD structures and 
sub-structures (Hnisz et al., 2016a). Finally, they also observed that loops frequently have a promoter at 
one anchor locus and an enhancer at the other one. Enhancers are defined as segments of DNA occupied 
by multiple transcription factors that recruit co-activators and RNAPII to target genes, which are 
generally located far away from the gene promoter (Hnisz et al., 2016a). Genes whose promoters are 
associated to a loop are higher expressed than those that do not associate, and cell type-specific loops 
are associated with changes in expression (Rao et al., 2014). 

CTCF-CTCF loops have been called “insulated neighborhoods”, defined as chromatin loops 
formed by a CTCF-CTCF homodimer, co-bound with cohesin, and containing at least one gene. The 
median of an insulated neighborhood is ~190 Kb and contains three genes (Figure 16B). The majority 
of enhancer-gene interactions occur within these loops, which are necessary for normal gene activation 
and repression (Figure 16C). Perturbation of their loop anchors (i.e. deletion of CTCF binding sites) 
leads to local gene dysregulation (Figure 16D). Insulated neighborhood boundaries serve either to 
constrain the activity of enhancers, or maintain repression of genes within the neighborhood (Figure 
16E).  

 Above, a detailed view about CTCF-CTCF mediated loops is presented. However, as mentioned 

before, not all the loops involve a CTCF dimer (two-thirds of loops contain a single CTCF-binding 

motif), and some loops are detected without the presence of CTCF (Rao et al., 2014). This suggest that 

other mechanisms of loop formation exist and may be involved in different functions than those 

explained by the insulator-mediated looping. For instance, intrachromosomal looping may be required 

for: (i) efficient recycling of RNAPII after transcription termination (Figure 17A); (ii) bringing distant 

enhancers in contact with promoters without CTCF dimerization (Figure 17B); (iii) 

polycomb-dependent repression (Figure 17C) (Cavalli and Misteli, 2013). 

3.3.2.3 Gene-gene interactions 

 After this description of genomic compartments/regions from the highest order of organization 
(CTs) to the smallest one (chromatin loops), some well-described examples of gene-gene interactions 
will be presented in this section (see (Hou and Corces, 2012) for review).  

The β-globin locus has been probably one of the most studied example of association between 
genes and regulatory sequences. 3D DNA and RNA Fluorescence In Situ Hybridization (FISH) 
combined with 3C assays revealed that distal genomic regions co-localize in mouse erythroid nuclei 
(Osborne et al., 2004; Tolhuis et al., 2002). Concretely, the locus control region (LCR), located 40-60 Kb 



 

Figure 16. Insulated neighborhood functions. (A) Hierarchy of chromosome structures: CTs, TADs, 
and insulated neighborhoods. Loop anchor establishes by CTCF dimerization and cohesion binding. 
(B) Features of insulated neighborhoods in human embryonic stem cells (ESCs). (C) 90% of 
enhancer-gene interactions occur within insulated neighborhoods in human ESCs. (D) Deletion of 
insulated neighborhood anchors leads to gene misregulation. (E) Mutations of insulated neighborhood 
anchors in tumor cells lead to oncogene activation (Hnisz et al., 2016a). 
 

 

Figure 17. Transcription regulatory chromatin loops. (A) Intragenic loops joining the 5’ and 3’ end of 
genes may allow recycling of RNAPII. (B) Enhancer-promoter loops mediated by sequence-specific 
transcription factors (possibly assisted by ncRNAs, or CTCF and cohesin). (C) Loops between 
polycomb-bound regions and promoters, prevent RNAPII recruitment. (D) Insulator-mediated loops, 
mediated by insulator proteins such as CTCF  (Cavalli and Misteli, 2013). 



BIBLIOGRAPHIC REVIEW 
 

53 
 

away from the active genes, come in close spatial proximity with these globin genes. The nuclear 
co-localization was observed not only between erythroid-specific genes but between highly transcribed 
genes that co-localize in the same transcription factory (TF) at high frequencies, and movement into or 
out of these factories results in activation or abatement of transcription (Osborne et al., 2004).  

Another example in mouse olfactory neurons, is the nuclear aggregation of silent olfactory 
receptor (OR) genes from different chromosomes (Clowney et al., 2012). In this study, a spatial 
segregation between active and silent OR alleles was observed by combining DNA and RNA FISH with 
immunofluorescence against heterochromatic marks and transcriptional active marks. Inactive alleles 
were found associated with heterochromatic foci, while active alleles were found associated with Pol II 
in euchromatic territories. This phenomenon might explain the monoallelic nature of OR expression. 

Allele specific regulation of imprinted genes through long-range chromosomal interactions has 
been studied in detail in the human and mouse Igf2/H19 loci (see (Hou and Corces, 2012) for review). 
In this locus, Igf2 is expressed from the paternal allele and H19 from the maternal allele. The imprinting 
control region (ICR) which is methylated on the paternal but not on the maternal alleles, is responsible 
for the regulation of this allele-specific expression (Macdonald, 2012). This ICR contains CTCF-binding 
sites and, when the ICRs are non-methylated, CTCF can bind to these sites. 3C assays showed that the 
CTCF-loop structure formed in the maternal allele prevents the accessibility of the enhancer to Igf2 
(Hou and Corces, 2012), avoiding Igf2 expression. Additionally, trans-interactions between the H19 
ICR and other imprinted loci have been observed using 4C assays (Zhao et al., 2006). In this study, 
perturbations of the CTCF recognition site or CTCF binding lead to a loss of interactions and 
miss-regulation of imprinted genes. 

 Co-expressed genes have been found co-localized in TFs, this is the case of erythroid-specific 
and highly transcribed genes, mentioned at the beginning of this section (Osborne et al., 2004), but this 
is not the only example. For instance, it was observed by 3D FISH that upon differentiation of human 
multipotent stem cells, co-expressed genes associated with either the same splicing speckle or with the 
same TF (Rieder et al., 2014). In another study which combined 3D RNA FISH, Immuno-FISH and 
4C-derived assays, it was observed that mouse globin genes interact with many other transcribed genes, 
and Klf1-regulated genes preferentially co-associate with specialized TFs enriched with the transcription 
factor Klf1 (Schoenfelder et al., 2010). This idea of gene associations driven by specialized factors has 
been also formulated in a study performed in estrogen-treated human breast adenocarcinoma cells 
(MCF-7) (Fullwood et al., 2009). In this study, the ChIA-PET assay was used to determine interacting 
chromatin regions associated with the estrogen receptor alpha (ER-α), and it was proposed that ER-α 
form chromatin looping structures around target genes for coordinated transcriptional regulation of these 
genes. 

Another example of co-expressed genes interacting in the nucleus was observed in Human 
Umbilical Vein Endothelial Cells (HUVECs) when upon TNFα (a major proinflamatory cytokine) 
stimulation, TNFα-induced genes were hierarchically transcribed when engaged also hierarchically in 
chromosomal interactions (Fanucchi et al., 2013). This is an elegant illustration of the dynamic aspect 
of genome organization, which will be discussed in the following section. 
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All the studies presented here, are examples of long-range interactions between active genes. 
However, there are some cases where silent genes form repressive interactions such as 
polycomb-repressed Hox genes in Drosophila and mammalian cells (see (Hou and Corces, 2012) for 
review). For instance, it was observed that Hox genes only co-localize in polycomb bodies in tissues 
where these genes are repressed (Bantignies and Cavalli, 2011). 

3.3.3 Dynamic organization of the genome 

 The position of genes in the nucleus is not fixed, for instance genes can move in and out of TFs, 
resulting in activation or abetment of their transcription (Osborne et al., 2004). The ability of 
chromosome large domains (such as A and B compartments) to move in a given cell is limited because 
of their several megabases in size. At scales of several hundreds of kilobases, chromatin is considerably 
more dynamic. The mobility and movements of gene loci have been studied by live cell imaging, 
showing that loci have a constrained radius of diffusion of ~0.5 µm. This volume corresponds to the 
TADs scale (1 Mb), suggesting that interactions between any two loci located within a TAD are 
sufficiently dynamic to have an opportunity to engage in long-range interactions (Gibcus and Dekker, 
2013). Imaging of relative positions of individual genes or subnuclear compartments by 3D FISH in 
fixed cells, has shown that locations can change at different stages of gene activation and/or cell 
differentiation (Schneider and Grosschedl, 2007). Nevertheless, other studies show that genes can 
change expression without altering nuclear location (Hakim et al., 2009; Kocanova et al., 2010). 

Sometimes changes in chromatin location can happen at great scale. Striking changes in 
chromosome positioning are rare, but have been reported to occur within minutes (Pombo and Dillon, 
2015). Another example of chromatin dynamics is observed in LADs, which can be classified in 
constitutive (cLADs) and facultative (fLADs) LADs. It was observed in mouse that cLADs are 
maintained across a wide range of cell types and across species (between human and mouse), contrary 
to fLADs which are rather cell-type specific (Meuleman et al., 2013). Moreover, in vivo analyses in a 
human fibrosarcoma cell line show that some LADs relocate to the periphery of the nucleolus after 
mitosis (Kind et al., 2013). TAD reorganization has also been observed in the regulation of the Hox gene 
clusters, one of the best characterized PcG domains. Hox genes form large H3K27me3-marked 
(inactive) TADs, located within an A compartment. In mouse ES cells, when transcription is activated, 
specific Hox genes progressively segregate into an active TAD and this process is accompanied by a 
switch in histone modifications (Aranda et al., 2015). 

 Little is known about how DNA moves or is relocated in some of these examples of genome 
dynamics. One possibility is that active polymerase can function as a motor that pulls in its template. 
Alternatively, other molecular motors such as actin and myosin could be involved in the relocalization 
of the DNA template (Schneider and Grosschedl, 2007). Moreover, it has been proposed that the 
nucleoskeleton (a dense, filamentous structure containing many proteins: lamins, titin, actin, myosins, 
DNA binding proteins and the general transcription machinery) may direct the traction of genes to 
nuclear bodies such as TFs (Mercer and Mattick, 2013). Recent studies argue in favor to this hypothesis 
by suggesting that an actin-based nucleoskeleton would be involved in gene regulation and genome  



  



BIBLIOGRAPHIC REVIEW 
 

57 
 

organization (Xie and Percipalle, 2017). For instance, some authors suggested that nuclear actin is 
required for rapid long-range movement of U2 genes towards Cajal bodies in HeLa cells (Dundr et al., 
2007). Other authors observed that after transcriptional activation, the migration of a chromosomal locus 
from nuclear periphery to the interior was perturbed in actin or myosin mutants in a rat cell line (Chuang 
et al., 2006). More recently, it was observed in budding yeast that both cytoskeletal and nuclear actin 
drive local chromosomal movements, such as telomeres dynamics (Spichal et al., 2016). In addition, 
chromatin modifications such as post-transcriptional histone modifications could directly affect the 
structure of the chromatin and may also have a role in the positioning of chromosomes (Schneider and 
Grosschedl, 2007). Possible mechanisms explaining the role of post-transcriptional modified histones 
in chromatin (during cell differentiation in mammals) or telomeres (in yeast) anchoring to the nuclear 
periphery, have been recently reviewed (Harr et al., 2016).  

3.3.4 Single cell genome organization 

Due to this capacity of individual loci to diffuse in the nuclear space, is quite difficult that two 
cells exhibit exactly the same genome organization at the same time. Most of the recent studies 
performed to uncover the global organization of the genome have been performed on cell populations. 
Therefore, the average interaction maps generated using population-based methods are an ensemble of 
many different genome landscapes (Cavalli and Misteli, 2013) and do not show the reality of what is 
happening in an individual cell. Single-cell approaches have permitted to fill this gap (Nagano et al., 
2013; Stevens et al., 2017). For instance, Nagano et al. showed that it exists cell-to-cell variability in 
chromosome structure, and that intradomain contacts are more robust (generally conserved) at the 
single-cell level that interdomain contacts, which are highly variable between individual cells. They also 
observed that some domains are more likely to present trans-chromosomal contacts at the surface of 
CTs than others (Nagano et al., 2013). A recent study highlighted that the structure of TADs and loops 
vary substantially from cell-to-cell. However, A/B compartments, LADs, active enhancers and 
promoters are quite stable among all cells in a population. This suggests that the last could drive 
chromosome and genome folding (Stevens et al., 2017). Thus, data coming from cell population-based 
methods, need to be interpreted carefully and if possible combined with single-cell data. All chromatin 
contacts occurring in a cell population, cannot be present simultaneously in an individual cell, 
cell-to-cell variability and other physical constrains will prevent this to happen.   

3.3.5 3D genome architecture and disease 

 The structural integrity of the 3D genome topology is crucial for the correct functioning of an 
organism. In the normal human population, approximately 5% of the genome is structurally variable, 
including deletions, duplications (copy number variants, CNVs), inversions, and translocations 
(Lupiáñez et al., 2015). Chromosomal rearrangements (CRs), more concretely the breakpoints, occur in 
evolutionary “fragile” genomic regions characterized by the presence of high chromatin contacts 
(Berthelot et al., 2015). Balanced rearrangements such as inversions, or CNVs limited to non-coding 
DNA, have the potential to disrupt the integrity of the genome, leading to alteration of gene expression 



 

 

 

 

Figure 18. Chromosomal rearrangement (CR) events affect TAD structures. (A) Model of chromatin 
TAD variation caused by CR. Every red triangle represents one TAD. The loss of a TAD boundary due 
to a CR event may cause a phenomenon of TAD fusion, bringing in proximity a promoter and an 
enhancer initially separated by the TAD boundary. (B) Model for pathogenicity of CR events that alter 
gene expression through 3D chromosome structure  (Li et al., 2016). 
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levels and patterns. Only a fraction of enhancers contact the nearest promoter, whereas most skip one or 
more genes (de Laat and Duboule, 2013), and these contacts are restricted by the TADs structure. When 
CR events affect the structure of TADs, more concretely the TAD boundaries, they alter the interactions 
between enhancers and promoters, leading to abnormal expression of genes (Figure 18) (Li et al., 2016). 
CR associated disease, such as developmental diseases and cancer can potentially be caused by 
chromosomal 3D structure alterations when a TAD boundary is deleted or a novo TAD boundary is 
created. A recent study shows that CR events cause polydactyly diseases through altering 
CTCF-associated TAD boundary domains (Lupiáñez et al., 2015). Global and more specific alterations 
in the 3D genome organization have been described in cancer. For instance, higher order chromosomal 
changes were detected between breast cancer cells and a normal epithelial cell line (Barutcu et al., 2015). 
In this study, a decrease on the interaction frequencies in breast cancer cells was observed in small 
gene-rich chromosomes, associated with a higher occurrence of open compartments of these 
chromosomes. Moreover, telomeric and subtelomeric regions displayed more frequent 
intra-chromosomal interactions in epithelial cells than in cancer cells. Another study in breast cancer 
cells, allowed detecting differentially interacting loci enriched for cancer proliferation and 
estrogen-related genes after hormone stimulation. These loci were correlated with higher estrogen 
receptor α-binding events and gene expression, suggesting a role of estrogen hormone on genome 
reorganization (Mourad et al., 2014). Besides these global changes, more precise disruptions in genome 
topology may explain pathological processes. For instance, a disruption in the insulated neighborhood 
structures may be also involved in cancer processes. An aberrant activation of proto-oncogenes by 
enhancers, normally located outside the neighborhoods, might be due to a loss of an insulated 
neighborhood boundary (Figure 16E). This was observed in acute lymphoblastic leukemia, where 
T-cells contain recurrent microdelections that eliminate boundary sites of insulted neighborhoods 
containing proto-oncogenes (Hnisz et al., 2016b). 

3.3.6 3D genome architecture approaches 

Initially, genome organization has been studied by microscopy, particularly with fluorescence 
in situ hybridization (FISH). This approach has permitted to obtain valuable information about the 
nuclear organization although uncompleted. These assays allow analyzing specific aspects of genome 
folding, but do not permit to uncover global aspects of chromatin structure and genome topology. Since 
2002, the development of Chromosome Conformation Capture (3C)-based technologies, has led to a 
kind of revolution in the domain of genome topology. The reason is that these technologies have the 
potential to quantify almost all frequency contacts between distal DNA segments in a cell population. 

3.3.6.1 Population-based methods (3C, 4C, 5C, Capture-C, Hi-C, 
ChIA-PET) 

All 3C-derived methods are based on the same principle. First, chromatin is fixed, often using 
formaldehyde agent to create covalent bounds between DNA fragments bridged by proteins. Second, 
DNA is digested by using a restriction enzyme. Third, sticky ends are religated under diluted conditions 
(to promote intramolecular ligations between cross-linked fragments), which creates “hybrid” 



 

Figure 19. Common principle in 3C-based techniques. The chromatin fiber is initially digested into 
short restriction fragments (represented by beads), after which a ligation reaction is performed to create 
large DNA concatemers in which the order of the fragments reflects the three-dimensional structure of 
the chromatin at the time of fixation. (Davies et al., 2017). 

 

 

 

Figure 20. Overview of the different 3C-based technologies. Cross-linking, digestion and ligation steps 
are common to all 3C-based methods (Davies et al., 2017). 
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fragments. Only ~5% of the restriction fragments in a 3C library ligate back to their original partner 
(Figure 19) (Davies et al., 2017). The final step consists in reversion of cross-linking, and DNA 
extraction containing the hybrid fragments (Figure 20). The idea is that DNA fragments being far away 
on the linear sequence of the genome, but co-localizing in space, can be ligated to each other (Figure 
19). In the initial method (termed 3C), Dekker et al. performed PCR amplification using primers 
designed near and towards ligation junctions, followed by gel electrophoresis (Dekker et al., 2002) 
(Figure 20). Nowadays, to quantify interaction frequencies, electrophoresis has been replaced by 
real-time PCR. 3C method allows uniquely detecting contacts between small numbers of fixed 
restriction fragments for suspected interactions, rather than identifying new interactions. Actually, 3C 
is known as a “one vs. one” strategy, because it serves to obtain pairwise interaction frequencies between 
a known pair of loci (de Wit and de Laat, 2012). 

 An evolution of the 3C method was the development of circular chromosome conformation 
capture (4C), also termed as a “one vs. all” approach (Zhao et al., 2006). This method allows identifying 
all potential partners for any specific loci of interest in the genome, through an additional step of 
circularization after decross-linking of 3C fragments (Figure 20). Small circularized fragments are 
generally generated with a second digestion by using a different restriction enzyme. Then, an inverse 
PCR is performed by using primers designed close to the first restriction enzyme site of the target locus, 
and oriented towards the unknown sequence to amplify any interacting partners. Initially, microarray 
was used to identify interacting partners, but this has now been replaced by high-throughput sequencing. 
An improvement of the 4C method is the recently developed protocol described as Unique Molecular 
Identifier (UMI)-4C (Schwartzman et al., 2016). Without circularization step, 3C fragments are 
sonicated and sequencing adapters ligated uniquely to one end of each 3C sonicated fragment. Hybrid 
fragments are then amplified by using a universal adaptor primer and a primer in the target sequence. 
UMI-4C also allows multiplexing by using different sequencing adapters. 

 The first jump from interrogating only one target sequence to many at a time (genome-scale 
assays), came with the development of the chromosome conformation capture carbon copy (5C) 
technology (Dostie et al., 2006). 5C can be described as a “many vs. many” method, because it allows 
the simultaneous detection of millions of interactions by using a mix of primers in a single assay. This 
approach allows to define functional contacts for all the genes in a locus simultaneously. 5C primer pairs 
anneal to either site of all the ligation junctions in the sequence of interest. Forward and reverse primers 
contain universal tails (usually T7 and T3 respectively) joined at the ends of 5C primers, a middle 
specific sequence complementary to the target locus, followed by half of the restriction enzyme site 
(Figure 20). Reverse primers have in addition a phosphate group at the 5’ end of the half restriction 
enzyme site. Only primers annealed next to each other at the ligation junction can be ligated with Taq 
ligase by means of the phosphate group. All ligated 5C primers are simultaneously amplified using a 
pair of universal primers that anneal on the T7 and T3 sequences. In brief, this method allows detecting 
contact events concerning different regions within a particular locus. 

 A more recent 3C-based technology is the Capture-C, which can generate genome-wide 
interaction profiles from hundreds of viewpoints in a single assay. This method was developed to  
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analyze hundreds of cis-regulatory landscapes (Hughes et al., 2014). In Capture-C, 3C fragments are 
sonicated, and sequencing adapters with indexed barcodes are added (Figure 20).  This unique random 
ends allow identifying and removing PCR duplicates in a subsequent data analysis. The library is then 
enriched for fragments of interest using biotinylated probes designed for each viewpoint, before 
amplification and sequencing. An improvement of this method is the so-called next-generation (NG) 
Capture-C (Davies et al., 2016), which uses a different method of probes design that increases the 
efficiency of the oligonucleotide capture process. 

 The method that has permitted to interrogate interaction frequencies between all parts of the 
genome is the High throughput chromosome conformation capture (Hi-C), which is referred as an “all 
vs. all” method (Lieberman-Aiden et al., 2009). In Hi-C, the protocol for creating the 3C template is 
slightly modified (Figure 20). Before ligation, the digested ends are filled-in with a biotynilated 
nucleotide, followed by a blunt-end ligation. Then DNA is purified and sheared. Ligation junctions are 
enriched by a streptavidin bead pull-down, and sequenced by high-throughput sequencing. Hi-C has 
been found very appropriate for determining megabase-scale contacts and large-scale chromatin 
structure, such as A and B compartments and TADs. An improvement of this method is the so-called in 
situ or in-nucleus Hi-C. In this protocol the ligation step is performed within preserved nuclei, instead 
of performing in-solution diluted cross-linked chromatin ligation (Nagano et al., 2013). This allows 
capturing chromatin interactions more consistently and reducing experimental noise and bias, compared 
to the in-solution method (Nagano et al., 2015). A variant of the Hi-C method is the capture Hi-C, which 
combines capture-C and Hi-C libraries to enrich in target sequences and to exclude further uninformative 
background. In addition to determining interaction frequencies and chromatin structure, Hi-C has been 
found useful for other applications, such as in de novo assembly (Burton et al., 2013), and in 
metagenome analysis (Marbouty and Koszul, 2015). 

Another “all vs. all” method is the chromatin interaction analysis by paired-end tag (ChIA-PET) 
sequencing (Fullwood et al., 2009). This method combines chromatin immunoprecipitation (ChIP) with 
3C, an offers the possibility to analyze all chromatin interactions between sites bound by a specific 
protein. After cross-linking and sonication, ligation junctions between DNA sites are pulled-down with 
an antibody against the protein of interest. Then, DNA sequences tethered together and to the target 
protein are connected through proximity ligation with DNA linkers. These linkers are biotynilated and 
contain MmeI restriction sites. MmeI is able to recognize these sites and cut DNA few bases away of 
the restriction site, allowing short fragments to be extracted with a streptavidin bead pull-down, and then 
identified by paired end (PE) sequencing. 

 A little mention about the ChIP-seq (chromatin immunoprecipitation sequencing) approach will 
be done in this section. Even though this is not an approach to study DNA-DNA interactions, ChIP-seq 
has allowed to uncover important aspects of genome organization and function. ChIP-seq is based on 
cross-linking of DNA-protein interactions, and enrichment of DNA sequences associated with the target 
protein, by using specific antibodies, followed by DNA sequencing. It was first developed to study 
genome sequences associated to histone modifications (Barski et al., 2007). Later, it was assessed to 
study regions associated with structural proteins such as CTCF and cohesin (Rao et al., 2014), and other  
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DNA-binding proteins. The integration of ChIP-seq and Hi-C data has permitted to study mechanisms 
of loop formation and TAD structure, and to define active and repressed chromatin domains.   

3.3.6.1.1 Hi-C resolution 

 An important parameter that will determine the scale level of study of the 3D genome 
organization is the resolution. For instance, in a Hi-C approach which has the potential to capture all 
genomic regions in proximity, high resolutions will permit to detect “small” chromatin structures such 
as loops. However, lower resolutions for the same Hi-C experiment will not allow to identify such 
structures, but could permit identifying larger domains such as A and B compartments or TADs. The 
resolution depends on many factors, the most important concerns the choice of the restriction enzyme 
and the sequencing depth. The most limiting, the restriction enzyme, because contacts between DNA 
sequences can be detected only at restriction enzyme cut sites (Davies et al., 2017; Han et al., 2018). 
This means that contacts within two restriction enzyme sites will not be identified. For instance a 
four-cutter enzyme will produce smaller fragments than a six-cutter enzyme (256 bp vs. 4096 bp), 
increasing in 16-fold the resolution of the library. This is a global approximation considering that 
resolution will not be the same all over the genome, because the distribution of restriction sites is not 
uniform. Therefore, an increase of resolution can be achieved by substituting restriction enzymes by 
other enzymes. This is the case of Hi-C variants using DNase and MNaseI (termed micro-C), which can 
cut at any site along the genome and have the potential to generate single base pair resolution. 
Theoretically, if 1 bp fragment size is achieved, the resolution is no longer dependent on the restriction 
enzyme but is determined by the sequencing depth. However, the sequencing depth is intimately linked 
to the restriction enzyme choice and to the genome size. Indeed, the sequencing requirements of the 3C 
libraries are related to the square of the number of restriction fragments in the genome (Davies et al., 
2017). Moreover, because of the quadratic nature of “all vs. all” data, an increase in resolution by 10-fold 
requires a 100-fold increase in depth (de Wit and de Laat, 2012). For instance, the 1 Mb resolution 
achieved by performing Hi-C experiments in mammals, was based on 10 million PE reads (Lieberman-
Aiden et al., 2009). In this case, an increase in resolution from 1 Mb to 100 Kb, would need 1 billion PE 
reads instead of 10 million. Likewise, generating contact profiles with a resolution from 40 Kb to 1 Kb 
in the human genome, requires from hundreds of millions to multiple billion PE reads. Therefore, the 
cost and computational resources are far too expensive for most laboratories (Han et al., 2018). 

 3C library complexity is another critical factor for resolution, and it is mainly affected by the 
initial number of cells used, the digestion and ligation efficiency and the cumulative loss of material 
from each step before sequencing (Davies et al., 2017). When library complexity and/or sequencing are 
insufficient to explore contacts at the level of individual restriction fragments, the resolution will be 
determined by an appropriate bin size. Binning improves the signal strength and reduce biases, the 
inconvenient is that: (i) the profile becomes skewed by density of restriction enzyme sites, (ii) the 
original signal is smoothed, hiding the quality of underlying data, (iii) the resolution decrease (Davies 
et al., 2017). 
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3.3.6.1.2 Limits and biases of 3C-based methods 

 Regarding the limits and biases of the 3C-based methods, 3C is limited to the detection of spatial 
relationships between known DNA sequences and it can detect contacts only in a limited range (not 
exceeding a few hundred of kilobases) (Han et al., 2018). 4C allows very long-range contacts to be 
detected, however, the amplification of GC-rich fragments by inverse PCR is inefficient, resulting in 
biases in the interaction profile. In addition, it is not possible to differentiate between PCR duplicates 
and unique ligation junctions (Davies et al., 2017). In contrast, UMI-4C allows removing PCR 
duplicates during data analysis (Han et al., 2018). In 5C, the resolution is determined by the spacing 
between neighboring probes on the linear chromosome template (de Wit and de Laat, 2012). It can never 
reach the resolution of 4C, Hi-C, and Capture-C, as not every end of each restriction fragment will allow 
the design of a 5C probe. It can also miss weak, long-range contacts, which are detectable by 4C, Hi-C 
and Capture-C. Moreover, differences in the hybridization efficiency of the probes can cause bias, and 
it is only possible to determine contacts between forward and reverse probes. As in 4C, the levels of 
PCR duplication cannot be determined. Although Capture-C can be used to detect hundreds of 
informative interactions, individual interactions themselves do not have the depth of data of a good 4C 
experiment for the same region.  NG Capture-C is then a better alternative in terms of sensivity and 
resolution, which allows weak cis long-range and trans interactions to be quantified (Davies et al., 2017; 
Han et al., 2018). Regarding Hi-C, the number of contacts determined from any individual restriction 
fragment is around 100-fold lower than in 4C and Capture-C, even in the recent Hi-C data sets at 1 Kb 
resolution (Rao et al., 2014). That makes Hi-C a relative insensitive method to determine fine-scale (<40 
Kb) interactions between regulatory elements present within TADs (Davies et al., 2017). Even though 
Hi-C has relative low biases, it is still systematically affected by the distance between restriction sites, 
the G+C content and the presence of repetitive regions. But, several methods have been developed to 
attempt to correct these biases (Davies et al., 2017). Compared to the high levels of enrichment of NG 
Capture-C, the two-fold increase in resolution in capture Hi-C seems negligible and has been balanced 
against the more extended protocol (Hi-C) and extra loses in library complexity due to decreases on cell 
numbers in each step (Davies et al., 2017). Regarding the ChIA-PET method, a limitation is the low 
library complexity due to the relative low levels of enrichment of ChIP, which implies that the number 
of reads used to identify individual interactions is usually low (Davies et al., 2017).  

 In conclusion, the Hi-C method is unique in its ability to determine genome-wide interaction 
profiles, and to define whole genome large domains to globally determine basic rules of genome 
organization. However, to define the details of small-scale interactions that dictate regulation of 
individual genes, 4C or NG Capture-C are more appropriate because need less requirements in terms of 
sequencing depth than high resolution Hi-C experiments (Davies et al., 2017).  

3.3.6.2 Single-cell methods (single-cell Hi-C, 3D DNA and 
RNA-FISH) 

As mentioned before, the 3D genome organization is not static but dynamic, which makes 
almost impossible that two cells exhibit exactly the same genome organization. The techniques 
described above, give an overview of all possible chromatin interactions in a cell population. However, 



 

 

Table 2. Comparison of super-resolution microscopy techniques (Sydor et al., 2015).   
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a single cell will not be able to present all of them in a given moment due to physical constrains. To 
study this aspect, a variant of the in situ Hi-C method termed “single-cell Hi-C” has been developed 
(Nagano et al., 2013). Basically the protocol is the same, except that before reverse the crosslinks and 
purify the biotinilated Hi-C ligation junctions, individual nuclei are selected under the microscope and 
placed into individual tubes, which allows creating single-cell libraries. Although this approach gives 
an idea of the global chromatin structure in an individual cell, several single-cell Hi-C experiments need 
to be performed to identify conserved and variable regions among cells. 

Before the appearance of the 3C-based methods, classical genome architecture studies were 
mainly performed by 3D Fluorescence In Situ Hybridization (FISH). This method allows labelling 
specific loci (DNA FISH), whole chromosomes (chromosome painting), nascent RNAs (RNA FISH), 
and protein complexes such as transcription factories (immuno-FISH). Performing these approaches in 
3D-preserved interphase nuclei has permitted to uncover important aspects of the 3D nuclear 
organization (Bickmore, 2013; Chaumeil et al., 2013). FISH experiments can be done by using direct or 
indirect detection. For direct detection, probes are labelled by incorporation of a nucleotide associated 
to a fluorophore. For indirect detection, probes are labelled with biotin, and revealed with 
avidin/streptavidin associated to fluorophore. Chromosomes can be labelled by using paint probes, a 
mix of several probes that cover a large portion of the whole chromosome. DNA probes are generally 
constructed with bacterial artificial chromosomes (BACs) containing the gene of interest, and then 
hybridize on the corresponding gene sequence after DNA denaturation. RNA probes are constructed 
with PCR products from the amplification of the target gene, or synthetically (RNA FISH oligo probes, 
40-50 nucleotides), and hybridization occurs without DNA denaturation. Protein complexes labelled by 
immuno-FISH use generally primary antibodies that recognize the protein of interest, and are revealed 
with secondary antibodies labelled with a fluorophore. For 3D FISH, the nuclear integrity must be 
preserved during all the process, including a fixation step, and soft conditions of permeabilization. All 
these methods permit multiple labelling to visualize several loci in a single experiment. Nuclei are 
generally analyzed by confocal microscopy, and 3D distances between loci, RNAs, or protein 
complexes, can be measured by using specific software. However, the smallest measured distance will 
depend on the resolution, which is determined by microscopy characteristics and parameters. Classical 
confocal microscopy has a relative low resolution (200 nm at the best in the x and y axes), which means 
that two loci located at less than 200 nm cannot be separated. Other technologies have been developed 
since 1994, termed super-resolution fluorescence microscopy, or nanoscopy, achieving up to 10-fold 
improvement in resolution (Table 2). These instruments allow obtaining up to 20-40 nm resolution in 
the focal plane (x and y), and 50-80 nm in the depth direction (z plane). More recently, a new technology 
offering ultra-high resolution have been developed, achieving up to 10-20 nm of isotropic resolution (x, 
y and z) (Huang et al., 2016). These new technologies have been widely used for imaging proteinaceous 
nanostructures such as bacteriophages, PLM bodies, nuclear pore complex or centriole. However, 
imaging sequence-specific chromatin loci remains more challenging even though some progress have 
been done (Cremer et al., 2017; Sieben et al., 2018; Sydor et al., 2015). 

Transcription activator-like effectors (TALEs) conjugated with fluorescent proteins, or 
clustered regulatory interspersed short palindromic repeat (CRISPR)/CRISPR-associated protein 9 



 

 

 

 

 

Figure 21. Illustrated relationship between 3C and FISH. (A) FISH obtains information for all cells 
in a population to build up a full distribution of pairwise distances between labeled loci. (B) 3C-based 
approaches (including 4C, 5C, Hi-C) capture contacts from the small fraction of cells where two loci 
are within the capture radius. (C) Illustration of a PDF pairwise spatial distance, R, between two loci 
for a large population of cells. Theoretically, FISH can measure the full pairwise spatial distance 
distribution. 3C captures contacts that occur at distances less than the capture distance (Fudenberg and 
Imakaev, 2017). 
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(Cas9) system, have been used for fluorescence labelling of specific loci in live cells. Concretely, 
CRISPR/Cas9 system has permitted multicolor labeling and measuring of 3D distances between 
different loci (Ma et al., 2015; Qin et al., 2017). A version of the CRISPR/Cas9 system uses 
nuclease-inactive Cas9 (dCas9), to label three orthogonal Cas9 variants by fusion to green, red or blue 
fluorescent proteins (GFP, RFP and BFP respectively). Then, single-guide RNAs (sgRNAs) are 
designed to target the specific loci. These two constructions (fluorescent dCas9, and sgRNAs containing 
the target sequences) are each subcloned into a different plasmid vector. Then, both plasmids are 
co-transfected in the cells. The dCas9-fluorescent protein and the sgRNAs will be then expressed into 
the cells and will associate to form a complex able to target the loci of interest by fluorescence labelling. 

3.3.6.3 Comparison between FISH and 3C-based methods 

 FISH and 3C-based methods, are both used to detect spatial chromatin interactions, and many 
3C-based studies used FISH to validate some of the detected interactions. However, both techniques 
differ in many aspects and must be interpreted with caution. FISH are low-throughput assays, because 
they are restricted to viewpoints corresponding to regions targeted by specific probes. In contrast, 
3C-based methods offer a genome-wide view of genome organization. FISH has limited spatial 
resolution but distances are measured directly in individual cells. 3C methods extrapolate physical 
proximity by considering that ligation frequency is inversely proportional to the real spatial separation 
between to loci. Moreover, they provide average frequencies across all cells in a population. Some 
studies have proposed an equivalence between direct 3D measured distances and interaction frequencies. 
For instance, Wang et al. observed that Hi-C contact frequency was inversely proportional to the fourth 
power of the mean spatial distance (Wang et al., 2016). Nevertheless, these kind of comparisons must 
be taken with caution. Indeed, it has been demonstrated that contact frequency is distinct to average 
spatial distance (Fudenberg and Imakaev, 2017), and that data coming from FISH and 3C-type 
experiments are not always concordant (Williamson et al., 2014). Comparing the simplest case of 3C 
and FISH, in which each method probes the relationship between a pair of loci, large shifts can be 
observed due to the nature of each approach. Measuring 3D spatial distances between a pair of loci in 
several cells, allows the measurement of the probability density function (PDF) between a pair of loci 
(Figure 21). While FISH makes possible measuring distances at any location of the two loci (except for 
the limits of microscopy resolution) (Figure 21A), 3C only capture contacts when the loci are closer 
than the contact radius. Such small “distances” detected by 3C correspond to very rare contacts in the 
cell population (Figure 21B-C). Thus, to compare 3C and FISH, it would be necessary imaging much 
more cells than conventionally done in FISH studies (around 100 nuclei or even less), and overcome the 
resolution limits of microscopy to obtain the full spatial distribution of two loci.  

 Other intrinsic factors of both methods could hinder the reconciliation of both approaches. In 
FISH, the probe size and the chromatin movement during denaturation and hybridization could affect 
the distances (Fudenberg and Imakaev, 2017). FISH may be no appropriate to capture weak or transient 
interactions. In 3C, formaldehyde preferentially crosslinks with lysine, tryptophan, and cysteine side 
chains in proteins, which could bias interaction frequencies (Williamson et al., 2014). It seems that FISH 
and 3C-based methods, such as Hi-C or 5C, may agree or may be more comparable when comparing 
large-scale domains such as CTs, A and B compartments or TADs. However at higher resolution, 3C  
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interaction frequency may not always simply reflect physical distances (Wang et al., 2016; Williamson 
et al., 2014). Finally, the dynamics of chromatin structure and cell-to-cell variation, is not appreciable 
by 3C-based methods. It cannot be determined whether interactions between multiple loci occur 
simultaneously or sequentially and/or whether they are mutually exclusive, which is possible by FISH 
(de Wit and de Laat, 2012). In conclusion, visual and molecular approaches should be complementary 
to each other and models of 3D genome organization should be extrapolated from data validated by 
independent methods. 

3.3.7 3D Pig genome organization 

3.3.7.1 Assessed by 3D DNA FISH  

 Few studies have been performed in pig regarding the nuclear architecture and genome 
organization. The majority of them are based on FISH assays to assess different aspects of nuclear bodies 
and gene-gene associations related to gene expression profiles. For instance, it was observed during in 
vitro adipogenesis that some up-regulated genes are relocated more internally, found on loops and 
projections of chromatin away from CTs, associated (often in clusters) to splicing speckles, and their 
CTs are decondensed (Szczerbal and Bridger, 2010; Szczerbal et al., 2009). However, another study on 
the same in vitro adipogenesis system showed that the relationship between transcription activity and 
gene positioning exists only for some genes but not all (Kociucka et al., 2012). A more recent study 
about nuclear substructures changes during differentiation of porcine mesenchymal stem cells (MSCs) 
into adipocytes has been performed by the same research group (Stachecka et al., 2018). After 
differentiation, they observed changes in nuclear size and shape (smaller and less spherical nuclei), as 
well as a preferential location in nuclear interior of nucleoli, and a clustering of telomeres. In 
differentiated cells, they also observed that chromocenters (a densely staining aggregation of 
heterochromatic regions) were more diffused than in MSCs, but no change in speckles and PML bodies’ 
number were detected.  

Other studies have been performed in neutrophils before and after activation by 
lipopolysaccharide (LPS) stimulation to mimic bacterial infection (Yerle-Bouissou et al., 2009). In both 
conditions, it was observed that centromeres associate to form chromocenters (preferentially between 
chromosomes with the same morphology), but after activation, some of these chromocenters disperse. 
Telomeres were observed to form clusters but no difference was observed upon LPS activation. They 
presented a more internal position than chromocenters, which were found significantly closer to nuclear 
border after activation. It was observed as well, that some chromosomes decondense upon LPS 
activation. Similar studies were performed in macrophages and neutrophils before and after LPS 
activation (Solinhac et al., 2011). In this study, it was observed that some up-regulated genes change 
their position with respect to CTs upon activation by increasing the distances to CTs edges, while 
down-regulated genes did not change their position. 
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3.3.7.2 Assessed by population-based methods 

As mention in the second chapter, current efforts to improve functional annotation of livestock 
species have been made thanks to the creation of the FAANG Consortium (Andersson et al., 2015). The 
core assays of this Consortium are mainly focused on three aspects: identification of transcribed 
elements, study of the chromatin accessibility, histone modification marks, and genome organization. 
Although most of the studies are in progress, many FAANG contributors have already produced relevant 
data for these three aspects of the functional annotation (Tuggle et al., 2016). For instance, RNA-seq 
data have been generated in liver, muscle and T cells for chicken, cattle, pig and goat by the French 
National Institute of Agronomic Research (INRA), and by the University of California-Davis (UC 
Davis). ChIP-seq data for histone marks and CTCF protein have been also generated for chicken, cattle 
and pig by the UC Davis group. 

Regarding genome organization, Hi-C assays have been performed on liver samples of pig 
(LW), chicken, and goat, from adult animals (two males and two females) by the INRA contributors to 
the FAANG Consortium (FR-AgENCODE project). Chromatin accessibility as well as transcriptome 
profiles have been also assessed by ATAC-seq and RNA-seq assays respectively on the same samples. 
These data have been integrated and are issue of a recent publication (Foissac et al., 2018). This study 
has permitted to: (1) extend the catalog of protein-coding and non-coding transcripts; (2) reveal 
differentially expressed transcripts with unknown function (including new lncRNAs in syntenic 
regions); (3) detect differentially accessible ATAC-seq peaks mapped to putative regulatory regions and 
enriched with predicted transcription factor binding sites; (4) show a consistency with results from gene 
expression (RNA-seq) and chromatin accessibility (ATAC-seq) in topological A and B compartments 
of the genome (Hi-C).   

3.4 Chapter 4: Objective and strategy of this thesis 

The main objective of this thesis has been to establish the relationship between genome 
organization and gene expression in muscle tissue during late fetal development.Two main approaches 
were developped for this purpose: 

3.4.1 Combining 3D DNA FISH and gene expression for network 
inference 

First, a single-cell approach was used to determine by 3D DNA FISH specific gene associations 
in the nuclear space for a small selected group of genes. Initially, we performed a study mainly focused 
on three target genes (IGF2, DLK1 and MEG3). These genes correspond to two imprinted loci of 
particular interest in the agronomic context: IGF2 for being a key element in fetal growth and 
development, involved in pig muscle growth and fat deposition (Nezer et al., 1999; St-Pierre et al., 2012; 
Van Laere et al., 2003) and DLK1 for being related to the control of muscle development and 
regeneration (Waddell et al., 2010).This preliminary study allowed us to detect by 3D DNA FISH trans- 
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interactions between these three genes in fetal liver and muscle tissues, and to reveal that these 
interactions involve the expressed alleles in muscle cells (Lahbib-Mansais et al., 2016). To extend this 
study, we further analyzed other nuclear associations between these three initial genes and four new 
genes (MEST and DCN imprinted genes, and MYH3 and RPL32 non-imprinted), MYH3 being also a 
gene of major interest because of its important role in fetal muscle development (Schiaffino et al., 2015; 
Voillet et al., 2018).  

Beyond these, a transcriptome study previously performed in our laboratory on muscle tissue, 
revealed differentially expressed genes (DEGs) associated with two fetal gestational ages (90 and 110 
days of gestation) and four genotypes (Large White (LW), Meishan (MS), and the two reciprocal 
crossbreeds) (Voillet et al., 2014). The expression data and the information about DEGs observed in this 
study, together with the information of nuclear gene associations obtained by 3D DNA FISH, were 
combined to develop a new iterative method of gene co-expression network inference. This approach 
has enabled to obtain a robust gene co-expression network that spotlights significant biological 
processes related to foetal muscle development through the combination of spatial gene association and 
gene expression data. This study has recently been issue of a publication in the Scientific Reports journal 
(Marti-Marimon et al., 2018) and is further detailed after the “Materials and methods” section.  

3.4.2 Global genome organization assessed by Hi-C and gene 
expression analysis 

  Second, after this initial single-cell approach focussed on a reduced number of genes 
associations analyzed on a few number of cells, a population-based approach was used to explore 
globally the changes occurring at the level of chromatin structure for a large cell population of muscle 
tissue during late fetal development. For that purpose we first assessed the 3D genome organization in 
pig fetal muscle at the 90th and the 110th day of gestation, by determining all interacting regions in the 
genome. To do this, Hi-C assays were performed by adapting the FAANG experimental protocol of 
Hi-C to fetal muscle tissue. As being a contributor of the FAANG Consortium, Hi-C data pipeline 
implementation was done in collaboration with the INRA research group in charge of Hi-C data 
production and analysis. Then, we further explored whether significant differences in the 3D genome 
organization exist between the two gestational ages. Finally, we combined the Hi-C and transcriptome 
data to investigate whether changes in genome organization are linked to changes in gene expression. 
This approach is further detailed on the “Global genome organization assessed by Hi-C and gene 
expression” section. 
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4 Materials and methods 

4.1 Ethics statement 

All tissues sampled for the 3D DNA FISH experiments were collected on pigs bred for the 
project (ANR-09-GENM-005-01, 2010–2015). The ethical committee of the Midi-Pyrénées Regional 
Council approved the experimental design (authorization MP/01/01/01/11). Tissues sampled for the 
Hi-C and ChIP-seq experiments were collected on pigs bred and financed by the AAP INRA of the 
Animal Genetics Division, 2014. The experimental design was approved and authorized by the ethical 
committee (No. 84) in animal experimentation of the French Ministry of National Education, Higher 
Education, and Scientific Research (authorization No. 02015021016014354). 

 For both samplings, the experiment authorization number for the experimental farm GenESI 
(Genetics, testing and innovative systems experimental unit) is A 17 661. All the fetuses used in this 
study were males and were obtained by caesarean after euthanasia of sows and fetuses. The procedures 
performed in this study and the treatment of animals complied with European Union legislation 
(Directive 2010/63/EU) and French legislation in the Midi-Pyrénées Region of France (Decree 2001-
464). 

4.2 Gene co-expression network approach 

4.2.1 Transcriptome data 

4.2.1.1 Microarray data description 

Expression data were obtained from a previous transcriptome study of skeletal muscle in pig for 
two fetal gestational ages (90 and 110 days of gestation) associated with four fetal genotypes (two 
extreme breeds for mortality at birth –Large White (LW) and Meishan (MS)– and two reciprocal crosses 
–MSxLW and LWxMS). The final dataset consisted of 44,368 probes for 61 samples under eight 
different conditions (four genotypes at two gestational ages). A precise description of the experimental 
design and data collection can be found in (Voillet et al., 2014). Normalized expression data (log2 
transformed) and sample information are available in NCBI (GEO accession number GSE56301). 

4.2.1.2 Microarray data pre-processing  

Missing values were imputed with k NN (R package “impute” function, with k = 3). Gene 
annotation was updated (nblast/NCBI July 2017, Sscrofa10.2) and the 40,847 annotated probes were 
found to correspond to 13,855 unique genes. For each gene, the probe with the highest average 
correlation with the other probes associated with the same gene, was selected to serve as a representative 
in further statistical analyses. 
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4.2.2 Network inference and analysis 

4.2.2.1 Network inference 

Networks were inferred using Gaussian Graphical Models (GGMs (Edwards, 1995)) from n = 
61 samples. From expression data, GGMs build a graph (or network) in which vertices are genes and 
edges represent the conditional dependency structure between those genes. GGMs are based on the 
estimation of partial correlations (i.e., correlations between two gene expressions when the expression 
of all the other genes is known). They were preferred over relevance networks (Butte and Kohane, 2000) 
because they improve measurements of direct relations between gene expressions by accounting for the 
effect of all expression data, and because they were found to be more efficient for grouping together 
genes with a common function in a previous study (Villa-Vialaneix et al., 2013). 

Since the number of samples was smaller than the number of genes used for network inference, 
the models were fitted with a sparse penalty (Meinshausen and Bühlmann, 2006) to address the issues 
of high-dimensional data and edge selection. In addition, as many examples have shown that 
co-expressed genes occasionally tend to interact preferentially or consolidate in specialized foci of the 
nuclear environment (Osborne et al., 2004; Rieder et al., 2014; Schoenfelder et al., 2010; Zhao et al., 
2006), when a priori information about nuclear gene co-localization is available, the latter was included 
in the model using the approach described in (Villa-Vialaneix et al., 2014). The details of the method 
and of the tuning of the different parameters are given in Appendix 1 “Description of the model used 
for network inference”. 

4.2.2.2 Practical implementation of network inference 

The starting point of the analysis was the inference of a network with no a priori information 
about co-localization. Since network inference based on partial correlation can only be performed with 
a limited number of genes (because of the number of samples) and since the number of unique genes (p 
= 13,855) was too high compared to the number of samples (n = 61), we applied two restrictions to the 
original list. First, we restricted the list to genes that were reported as differentially expressed (DEG) 
(Voillet et al., 2014). Secondly, among these DEGs, only those that had an absolute value for their 
correlation with either IGF2, DLK1 or MEG3 larger than 0.84 were kept. This final list contained 359 
genes, provided in the Appendix 2 “Gene description and cluster allocation”. 

4.2.2.3 Network inference interactions and 3D FISH validations 

Based on network inference results or on genes found to be connected in the IGN of (Varrault 
et al., 2006), 3D DNA FISH experiments were performed to check whether pairs of genes of interest 
were co-localized in the 3D nuclear space. These experiments were conducted in an iterative manner 
with network inference. More precisely, network inference was performed with the following a priori 
conditions: (1) Network 0: was inferred with no a priori information, as a baseline for comparison; (2) 
Network 1: was inferred using a priori information from the triple association found in (Lahbib-Mansais 
et al., 2016) by giving the three pairs IGF2-DLK1, IGF2-MEG3 and DLK1-MEG3 as known 
co-localized genes. Network 1 was then used to propose candidate pairs of genes for testing by 3D DNA  
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FISH for Network 2 (IGF2-RPL32) and Network 3 (DLK1-MYH3); (3) Network 2: in addition to the 
initial three pairs, Network 2 was inferred using a priori information provided by the results of the new 
3D DNA FISH experiments by giving the pairs IGF2-MEST, DLK1-MEST, MEG3-MEST, MEG3-DCN, 
DLK1-DCN, and RPL32-IGF2 as known to be co-localized and IGF2-DCN as known not to be 
co-localized; (4) Network 3: in addition to the 10 previous pairs, Network 3 was inferred using a priori 
information provided by the results of new 3D DNA FISH experiments by giving the additional pairs 
IGF2-MYH3, DLK1-MYH3, MEG3-MYH3 and MEST-MYH3 as known co-localized genes. 

All simulations were performed with the free statistical software R (https://cran.r-project.org). 
The inference was performed using our own scripts (available at https://github.com/tuxette/internet3D) 
and the graphs were displayed and analyzed using the R package igraph (Csárdi and Nepusz, 2006). 

4.2.2.4 Network mining and clustering 

Nodes of importance to the network structure were obtained by computing the degree and the 
betweenness centrality measurement for every node. Node clustering was performed by applying the 
Louvain algorithm (Blondel et al., 2008), which performs fast approximate optimization of the 
modularity (Clauset et al., 2004). All clusterings were found to be significant using the permutation test 
described in (Montastier et al., 2015) by generating 500 random networks with the same degree 
distribution (all clusterings were found to have a modularity larger than that obtained on the 500 random 
networks, p-value < 0.002). Clusters were compared using two methods: first, pairwise contingency 
tables between clusters were computed. Second, the normalized mutual information (NMI (Danon et al., 
2005)) between pairs of clusterings was obtained. The NMI is a number between 0 and 1 measuring the 
similarity between two clusterings and is maximum (equal to 1) when the two clusterings are identical. 

4.2.3 Functional analysis of the networks 

4.2.3.1 Gene Ontology (Webgestalt) 

Functional enrichment analysis based on GO was performed using the web tool Webgestalt 
(WEB-based GEne SeT AnaLysis Toolkit, http://www.webgestalt.org/option.php) updated on January 
27, 2017 (Wang et al., 2013; Zhang et al., 2005). The web tool uses the Fisher exact test and controls 
for the number of false positives among the declared significant GOs terms. The False Discovery Rate 
procedure was used ((Benjamini and Hochberg, 1995), FDR < 5%). The analysis was performed using 
the Overrepresentation Enrichment Analysis (ORA) method, selecting non-redundant Biological 
Processes (BPs). 

4.2.3.2 Ingenuity Pathway Analysis 

The final network was analysed through the use of Ingenuity Pathway Analysis version 01-12 
(updated on March 31st, 2018). Ingenuity Pathway Analysis (IPA, Ingenuity Systems; QIAGEN, Inc., 
Valencia, CA, USA, https://analysis.ingenuity.com/pa) contains a large bibliographic database 
(Ingenuity Pathways Knowledge Base) with various molecular relationships already identified between 
two genes (protein-protein interaction, ligand-receptor regulation, enzymatic modification, 

https://cran.r-project.org/
https://github.com/tuxette/internet3D
http://www.webgestalt.org/option.php
https://analysis.ingenuity.com/pa


 

 

 

Figure 22. Verification of BAC probes specificity and location by 2D DNA FISH on porcine 
methaphases. DNA probes were labeled with alexa fluor-568 (red), chromosomes with DAPI (blue) and 
images were obtained by fluorescence microscopy wide field. Each metaphase was shown before with 
G-banding for chromosome identification. (A) Example for the DLK1/MEG3 locus. The comparison of 
the two images allows the identification of chromosomes bearing spots. (B) The same procedure was 
applied for the other genes.  
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transcriptional expression regulation, etc.). The obtained network is a graphic representation of the 
molecular relationships between molecules. All edges are supported by at least one reference from the 
literature, or from canonical information stored in the Ingenuity Pathways Knowledge Base. The 
obtained networks were improved for representation using Path Designer. Nodes are displayed using 
various shapes that represent the functional class of the gene product. The Functional Analysis identified 
the biological functions, the canonical pathways and the upstream regulators that were the most relevant 
to the dataset. Molecules from the dataset that were associated with biological functions, canonical 
pathways or upstream regulators in the Ingenuity Knowledge Base were considered for the analysis. 
Fisher’s exact test was used to calculate a right-tailed p-value determining the probability that each 
function and pathway assigned to that dataset is due to chance alone. The networks proposed by IPA 
were cleaned (some nodes/genes were discarded) in order to keep only the genes necessary to connect 
the co-expressed genes. The three first networks were merged and regulation information was added to 
highlight transcription factors that could explain unexpected gene co-expression and nuclear co-
localization (e.g. MYH3 and IGF2; see Appendix 3 “Biological network reconstructed following 
Ingenuity data analyses”). 

4.2.4 Gene-gene nuclear associations 

4.2.4.1 3D DNA FISH in interphase nuclei 

 Tissue preparation: Foetal muscle tissue was obtained from the Longuissimus dorsi muscle of 
90-day gestation ♀MSxLW♂ pig and prepared as described in (Lahbib-Mansais et al., 2016) with slight 
modifications. In addition, muscle sample from the LW breed at 90-day gestation was also used to test 
some gene associations. When needed, stored muscle fibre packets were permeabilised for 8 min in 
cytoskeleton extraction buffer (100 mM NaCl, 300 mM sucrose, 3 mM MgCl2, 10 mM PIPES pH 6.8) 
containing 0.5% Triton X 100 and then fixed in cold 4% paraformaldehyde for 5 min. After washing in 
cold PBS, muscle packets were manually dilacerated directly on Superfrost glass slides (CML, 
Nemours, France) to isolate individual fibres, and air-dried before adding DNA probes for in situ 
hybridization. 

DNA probes construction: Bacterial artificial clones (BACs) containing genes were isolated 
from porcine BAC libraries (available at the Biological Resources Center-GADIE, INRA, Jouy-en-
Josas, France http://abridge.inra.fr/) using specific primers designed with Primer3 software 
(http://primer3.sourceforge.net/) (Appendix 4 “Information about BACs used as probes for 3D DNA 
FISH experiments”). For multiple label experiments, approximately 120 ng of each BAC DNA were 
random priming labelled (Bioprime DNA labelling kit, Invitrogen, Cergy Pontoise, France) directly by 
incorporation of dUTP Alexa Fluor (488 or 568) or indirectly with Biotin 6 dUTP detected by immuno-
FISH. Chromosomal localizations of all BAC probes were controlled by 2D DNA FISH on porcine 
metaphases (Figure 22) prepared from lymphocytes according to standard protocols (Yerle et al., 1994).   

IGF2 was previously localized on SSC2p17, DLK1/MEG3 on SSC7q26 and ZAR1 on 
SSC8q11-12 (Lahbib-Mansais et al., 2016). In this study, additional genes were localized on pig 

http://abridge.inra.fr/
http://primer3.sourceforge.net/


 

 

 

Figure 23. Illustrative exemple of a NEMO analysis window. Nuclei are initially segmented and 
numbered from the raw images of a confocal field. Left panel: list of all segmented nuclei of a confocal 
field. For each nuclei, the deteted objects for each channel are listed (blue: nucleus; red: the alleles of 
MEST; and green: the two alleles of MYH3). Right panel: decomposition of each channel and final 
merge. The detected objects are visualized in the left column, and the raw images in the right column. 
Lower panel: distance measures and percentage of co-localization between each object. The 
center-to-center 3D distances (Dist. center) were chosen for further analyses.   
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metaphases: MYH3 on SSC12q, MEST on SSC18, RPL32 on SSC13q24-33, DCN on SSC5qter, and 
PRLR on SSC16. 

 3D DNA Fluorescence in situ hybridization: 3D DNA FISH experiments were conducted using 
specific probes to label each gene with a different colour as described in (Lahbib-Mansais et al., 2016) 
with slight modifications. Probes were resuspended in hybridization buffer (50% formamide, 10% 
dextran sulphate, 2 mg/ml BSA, 2× SSC) at a final concentration of 110 ng/µl. Nuclear DNA and probes 
were simultaneously denatured at 74°C for 7 min and then incubated overnight at 37°C in a wet 
atmosphere (DAKO hybridizer). Washes were then performed with gentle agitation, first twice in 2× 
SSC at room temperature (RT) for 8 min, then twice for 3 min in 2× SSC, 50% formamide pH 7.0 at 
40°C, and finally twice for 15 min in 2× SSC, then in PBS at RT. When a biotin-labelled probe was 
used, biotins were detected by incubating the slides with streptavidin-Alexa 568 or 488 at a final 
concentration of 5 µg/ml for 1 hour at RT. 

4.2.4.2 Confocal microscopy and image analysis 

 Image captures: 3D acquisitions were performed at the T.R.I. Genotoul (Toulouse Réseau 
Imagerie, http://trigenotoul.com/en) imaging core facility in Toulouse (France). Image stacks were 
captured at different depths with a Leica TCSSP2 confocal microscope (Leica Instruments, Heidelberg, 
Germany) equipped with an oil immersion objective (plan achromatic 63× N.A. = 1.4). The Z-stacks 
(around 60 confocal planes per capture) were acquired at 1024 × 1024 pixels per frame using a 8-bit 
pixel depth for each channel at a constant voxel size of 0.077 × 0.077 × 0.284 μm. 

 Image analyses: Images were analysed with a specific software for measuring the 3D distances 
between signals (genes) (NEMO (Iannuccelli et al., 2010)) (Figure 23) as described in (Lahbib-Mansais 
et al., 2016). Euclidean distances were computed with respect to the x, y and z resolutions. Given the 
resolution on the z axis, at least three pixels corresponding to 0.852 μm (0.284 x 3) were required for a 
high resolution between two separate signals; consequently, 1μm was chosen as the upper cut-off for 
associated signals. 

Gene-gene associations: In all 3D DNA FISH experiments, nuclei were only analysed when 4 
signals (corresponding to the 2 alleles of each gene) were present. “Associated” signals were considered 
to be those separated by a distance (d) ≤ 1 µm, and were divided into two different classes: “close” 
signals (0.5 < d ≤ 1 µm), and “co-localized” signals (d ≤ 0.5 µm). The great majority of associations 
concerned uniquely one allele from each gene. To establish the threshold for distinguishing between 
associated and non-associated genes, two 3D DNA FISH experiments were performed as negative 
controls: first, between two genes (ZAR1 and PRLR) located on different chromosomes and expressed 
at a very low level in muscle cells (Voillet et al., 2014), second, between IGF2 (highly expressed) and 
ZAR1 (low expression) (Lahbib-Mansais et al., 2016). In both cases, the two genes were found to be 
associated in only 8% of the analysed nuclei. Considering this value as a sporadic association between 
loci not expected to be associated, a 10% value was arbitrarily chosen to distinguish between associated 
and non-associated genes. 

http://trigenotoul.com/en


 

 

 

 

Figure 24. Hi-C experimental procedure. (A) Illustration of the main steps performed in the Hi-C 
assays (Rao et al., 2014). (B) Detailed view of the digestion, ends filling and ligation steps. Figure 
adapted from (Lieberman-Aiden et al., 2009).   
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4.3 Nuclear architecture and gene expression approach 

4.3.1 Transcriptome data 

4.3.1.1 Microarray data description 

Expression data were obtained from the previous transcriptome study of skeletal muscle in pig 
during development (Voillet et al., 2014). The dataset consists of 44,368 probes for 17 samples (LW 
animals) at two different gestational stages (8 samples for the 90 days gestational age and 9 samples for 
the 110 days). A precise description of the experimental design and data collection can be found in 
(Voillet et al., 2014). Normalized expression data (log2 transformed) and sample information are 
available in NCBI (GEO accession number GSE56301). 

4.3.1.2 Microarray probes alignment and annotation  

Since the microarray was originally designed on a former version of the pig genome, the probes 
were aligned to the Sscrofa11.1 assembly version by using BLAT (v.35x1) with the 
parameters -minIdentity=95 -mask=lower. Alignments were obtained and processed by keeping unique 
best hits only with a minimum score of 30, and  in case of several "blocks" in the alignment of a given 
probe -across two exons for instance-  the longest block (with a minimum length of 20) was kept. The 
42,885 resulting probes were then annotated depending on their mapping position relatively to the 
annotated genes of the Ensembl v90 annotation. Probes that overlapped an annotated gene from the 
Ensembl annotation -either within the entire genic region or on an annotated exon- were assigned to the 
corresponding gene ID. A total of 38,043 probes could be assigned to a gene, from which, 30,594 
correspond to probes mapped to exonic regions. The total of distinct genes targeted with probes mapped 
to genes was 13,530 and those targeted with probes mapped to exons were 12,465. 

4.3.2 High-throughput chromosome conformation capture (Hi-C) 

 The experimental FAANG protocol, based on the in situ Hi-C protocol used in (Rao et al., 2014) 
(available in http://ftp.faang.ebi.ac.uk/ftp/protocols/assays/INRA_SOP_Hi-C_HA_v1_20160610.pdf), 
was slightly modified in terms to adapt the Hi-C experiments and libraries to the fetal muscle tissue. A 
detailed description of the experimental procedure (Figure 24A) is presented below. 

4.3.2.1 Hi-C experiments 

 Muscle nuclei isolation and crosslink: Longissimus dorsi muscle samples from three 90- and 
three 110-day post coitum (p.c.) fetus (3 males at 90 days, 2 males and 1 female at 110 days) of a 
European Large White (LW) breed (F1 ♂LW x LW♀), were frozen in isopentane cooled with liquid 
nitrogen and stored at -80 ⁰C until needed. For each sample, around 1.5 g of frozen stored fetal muscle 
was thawed at Room Temperature (RT) and dissected with scalpel blades to obtain a homogenate of 
mashed muscle. Dissected tissue was washed in phosphate-buffered saline (PBS) to remove blood. 
Nuclei were disaggregated by rubbing (pipetting up-down many times), filtered through a cell strainer 

http://ftp.faang.ebi.ac.uk/ftp/protocols/assays/INRA_SOP_Hi-C_HA_v1_20160610.pdf


 

 

 

Figure 25. PCR quality control of Hi-C products. A couple of forward primers (blue arrows) and a 
couple of forward and reverse primers (green arrows) were used to amplify the same genomic region 
in the Control, 3C and Hi-C tubes (left side of the A panel), as well as in genomic DNA (gDNA) and in 
absence of DNA (H2O). (A) In the Control tube, where the steps of digestion and ligation were not 
performed (similar to gDNA), the region was amplified with the forward and reverse primers but no 
amplification was observed with the couple of forward primers as expected. In both 3C and Hi-C tubes, 
digestion and religation were performed allowing in some religation events switching the sense of one 
DNA fragment thus permitting the amplification with the couple of forward primers. (B) Migration of 
the PCR products in a 1% agarose gel. 
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(70 µm) and centrifuged at 1200g 5 min to get a high yield of cells. Pellet was resuspended in 3 ml 
Dulbecco's Modified Eagle's Medium (DMEM) with glutamax (1% formaldehyde) and incubated 10 
min at RT. To quench fixation, 0.125 M final glycine was added 5 min at RT, then cooled 5 min on ice. 
After 5 min centrifugation at 1200 g, pellet was washed in ice-cold PBS (with protease inhibitors). An 
aliquot of cell suspension was stained with 4',6-diamidino-2-phénylindole (DAPI) and phalloidin to 
check nuclei quality and integrity (see Appendix 5 “Quality check of nuclear integrity in Hi-C 
experimental steps”). 

 Nuclei permeabilization and endonuclease-based DNA fragmentation: For each Hi-C 
experiment, 3 pellets were prepared with around 5 million cells per tube (named: Hi-C, 3C and control). 
Pellet in control tube was resuspended in 200 µl of water and kept at 4 °C. Tubes Hi-C and 3C were 
resuspended in 0.05 % Sodium Dodecyl Sulfate (SDS) and incubated 10 min at 62 °C. To quench the 
SDS, 0.1 % final Triton X-100 was added for 15 min at 37 °C, then 100U of HindIII in 25 µl of 10X 
NEbuffer 2.0 were added to digest overnight at 37 °C on the wheel. Fifty µl of water were added to the 
3C tube. 

 Biotinylation, ligation and decrosslink: To fill overhangs with marked dNTPs and obtain blunt 
ends 50 µl of fill-in master mix (200 nM dATP, dGTP, dTTP, biotin-14-dCTP, 50U Klenow) were 
added to the Hi-C tube only, and both tubes (Hi-C and 3C) were incubated at 37 °C, 1 hour on the wheel. 
Then they were incubated at 62 °C 20 min to inactivate the enzyme and 900 µl of ligation mix was added 
to each tube (1.3X T4 DNA ligase reaction buffer, 1.1% Triton X-100, 130 ng/ml BSA, 2000U T4 DNA 
ligase) and incubated 1 hour at RT and then overnight at 4°C on the wheel. Proteins were degraded by 
incubating the three tubes (Hi-C, 3C and control) with 50 µl of Proteinase K (20 mg/ml) and 120 µl of 
10% SDS at 55 °C for 30 min, then with 130 µl of NaCl 5M at 68°C overnight. 

DNA purification and enrichment of biotinylated DNA: DNA was precipitated with 1.6 volume 
of 100% ethanol and 0.1 volume of 3M sodium acetate (pH5.2) at -80°C 15 min, then centrifuged at 
4°C (15400rpm, 10 min), the pellet was resuspended in 70% ethanol, centrifuged at 4 °C (15400rpm, 5 
min) and dissolved in nuclease-free water (20 min at 37°C). To desalt and purify DNA, 1.8 volume of 
CleanPCR magnetic beads were added and incubated 5 min and after washing twice for 30 seconds with 
80% ethanol and letting dry for 3 min, the beads were resuspended in TE (10:1, Tris 10 mM pH8.0, 
EDTA 0.1 mM) buffer solution for control and 3C tubes and in TE (10:0.1) for Hi-C tubes. 

Removing non-ligated biotinylated DNA: To remove non-ligated biotinylated DNA, 28 µl of T4 
DNA polymerase mix reaction (714 ng/ml bovine serum albumin (BSA), 5.3X NE Buffer 2, 357 nM 
dATP, 357 nM dGTP and 30U T4 DNA polymerase) were added to the Hi-C tubes and incubated at 
12 °C for 90 min. The reaction was stopped by adding 2 µl of 0.5 M Ethylenediaminetetraacetic acid 
(EDTA) and heating 20 min at 75 °C. Then DNA was purified with magnetic beads as explained before 
and resuspended in TE (10:0.1). 

 

 



 

 

 

 

 

 

 

Figure 26. Digestion quality control of the PCR products. PCR products from the 3C and Hi-C tubes 
amplified with a couple of forward primers were digested with HindIII (H) and NheI (N) restriction 
enzymes and the digestion products were migrated in a 1% agarose gel. The digestions were also 
performed in absence of DNA (Ctrl), and absence of enzymes (H2O) as negative controls. 3C tubes, 
where no filling ends with biotin incorporation was performed, were digested only with HindIII (smaller 
band ~210 bp). Hi-C tubes, where biotin incorporation was performed with the resulting formation of 
a NheI target site, were mainly digested with NheI (~210 bp) and slightly digested with HindIII. 
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4.3.2.2 Quality control of Hi-C experiment 

The quality control is based on the following principle: when DNA is digested with HindIII, after filling 
and ligation of the digested ends, the HindIII target site disappears and a new site, which is recognized 
by the NheI restriction enzyme, is created instead (Figure 24B). To check the efficiency of the Hi-C 
assays, PCR are performed around one HindIII restriction site with two forward primers (Fwd1: 5’ 
TCTGGGCAGGTCACTCATT 3’; Fwd2: 5’ TCTCGGGATGCTGAGTGTTT 3’; product size = 425 
bp). A reverse primer combined with Fwd1 was used as a control (Rv1: 5’ 
AAACACTCAGCATCCCGAGA 3’; product size = 465 bp). In Hi-C and 3C assays, some religation 
events allow switching the sense of one DNA fragment and PCR amplification with these primers is 
possible (Figure 25). Then the PCR amplification products from the couple of forward primers are 
digested either with HindIII or NheI (product sizes = 201 + 215 bp). For 3C experiments, HindIII should 
cleave the PCR products while NheI should not. For Hi-C experiments, NheI should cleave most of the 
PCR products while HindIII should cleave only a small fraction (Figure 26). 

4.3.2.3 Hi-C libraries production and sequencing 

The whole process of Hi-C libraries production and sequencing was performed at the GeT-
PlaGe (Génome & Transcriptome - Plateforme Génomique) (https://get.genotoul.fr/en/ in Toulouse, 
France). 

DNA fragmentation and sizing: 1.4 µg of DNA from the Hi-C experiments were fragmented 
with a Covaris machine. Then, 0.55 volumes of CleanPCR magnetic beads were added to the fragmented 
DNA to select fragments < 600 bp (5 min incubation and keeping the supernatant), and 0.7 volumes of 
beads were added again (5 min incubation and removing supernatant) to remove fragments < 200 bp. 
Then beads were washed with 80% ethanol and DNA was recovered with Resuspension Buffer.  

Biotinylated DNA purification: To purify biotinylated DNA, 1 volume of M-280 streptavidin 
magnetic Dynabeads was added and after 15 min incubation, the supernatant was removed and the beads 
were washed 4 times with beads wash buffer (Nextera Mate Pair Preparation Kit, Illumina) and twice 
with Resuspension buffer. From this point, all steps were performed while DNA remains attached to the 
beads.  

End repair, 3’ adenylation and adapters ligation: To repair DNA breaks, 60 µl of water and 40 
µl of End Repair Mix 2 (TruSeqNano DNA library prep, Illumina) were added and incubated 30 min at 
30°C, then beads were washed as explained before. To allow the adapters ligation, an ‘A’ nucleotide 
was added to the 3’ ends by adding 17.5 µl of water and 12.5 µl of A-Tailing Mix (TruSeqNano DNA 
library prep, Illumina) and incubating 30 min at 37 °C and then 5 min at 70°C to inactivate the enzyme. 
To ligate the adapters to the DNA extremities, 2.5 µl of Resuspension Buffer, 2.5 µl of DNA Ligase 
Mix and 2.5 µl of DNA Adapter Index (TruSeqNano DNA library prep, Illumina) were added (10 min 
incubation at 30°C, then 5 µl of Stop ligation Buffer) and then beads were washed as before.  

PCR enrichment and DNA purification: DNA was amplified by 12 PCR cycles (15 sec at 98 °C 
– 30 sec at 60 °C – 30 sec at 72 °C) by resuspending beads in 50 µl of PCR mix (25 µl Enhanced PCR 

https://get.genotoul.fr/en/


Table 3. Libraries size and concentration estimations of the libraries. 

  
library size estimated 

with FA (bp) 
library concentration 

by qPCR (nM) 

Rep1-90 619 10,74 

Rep2-90 635 4,19 

Rep3-90 547 15,01 

Rep1-110 540 19,87 

Rep2-110 570 19,86 

Rep3-110 644 35,69 

 

  

 

 

Figure 27. Fragment analyzer profiles of the Hi-C libraries. Missing data for Rep3-110. 
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Figure 28. Digestion quality control of the Hi-C libraries. All six initial Hi-C libraries were digested 
with HindIII (H) and NheI (N) restriction enzymes and run in a 1% agarose gel. After an initial low 
depth sequencing and Hi-C data processing (see below), two Hi-C libraries (110 days gestation) 
presented low percentages of valid pairs and high of dangling ends compared with the others. This 
corresponds with the less efficient digestion profile observed in these two libraries (upper panel). Two 
new Hi-C libraries were prepared in order to replace these two, but only one (Rep3-110) showed a good 
digestion profile (lower panel) and was used to replace the one presenting a less proportion of valid 
pairs. 

 

 

 



 

Figure 29. Hi-C pipeline workflow. Figure created with images obtained from (Servant et al., 2015).  
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mix, 5 µl PCR primer Cocktail and 20 µl water, TruSeqNano DNA library prep, Illumina). To recover 
DNA from the beads, 0.6 volume of CleanPCR magnetic beads were added and incubated 5 min, then 
washed twice with 80% ethanol, resuspended in 30 µl of Resupension Buffer and after placing in a 
magnetic rack, supernatant containing the libraries was recovered.  

Size selection control and sequencing: Libraries size was then controlled with the Fragment 
Analyzer (FA) (Figure 27) and quantified by qPCR (Table 3). In addition an aliquot was digested by 
using the NheI and HindIII enzymes to verify if selected fragments are the ones containing the filled-in 
biotinylated religation sites as done in (Belton et al., 2012) (Figure 28) and they were sequenced in pool 
in one HiSeq3000 lane to validate their quality. For depth sequencing, the pool was paired end (PE) 
sequenced in 9 lines of a HiSeq3000 (reads size = 150 bases), producing from ~ 476 M to 685 M read 
pairs per library in total. 
 

4.3.2.4 Hi-C data processing 

The total 3,447,428,742 PE reads were processed with a bioinformatics pipeline developed in 
the context of the FAANG consortium (Andersson et al., 2015) (Foissac et al., 2018). This pipeline 
mainly combines existing software: HiC-Pro v2.9.0 for mapping the reads (with Bowtie 2 v2.3.3.1 
(Langmead and Salzberg, 2012)) and obtaining the contact matrices (Servant et al., 2015), ICE to 
normalize the matrices (Imakaev et al., 2012), HiTC v1.18.1 for various tools (Servant et al., 2012) and 
Armatus v2.1 to call TADs (Filippova et al., 2014). Figure 29 shows the main steps of the pipeline 
described below: read cleaning, trimming, mapping and pairing, detection and filtering of valid 
interaction products, binning, contact map normalization, and TADs finding. 

Mapping: A first smaller dataset was initially mapped to the Sus scrofa genome version 10.2, 
and latter mapped to Sscrofa11.0. Then after re-sequencing, the full dataset of reads was mapped to the 
Sus scrofa genome (version 11.1) in two steps. First, during what is called “global alignment” in the 
HiC-Pro software, both reads of each pair were mapped independently in single-end (SE) mode with 
bowtie2 using the full read sequences. The reason for this SE mode is that paired-end (PE) mappers 
typically use the genomic distance between potential positions of reads to assist the mapping process 
since the read-to-read distances are expected to fit the size distribution of the sequenced fragments. Here, 
this genomic distance is irrelevant since the goal of the Hi-C protocol is to capture long-range and trans 
ligation events, so reads from the same pair are initially mapped separately. Also, due to their chimeric 
nature, many reads might not directly map on the genomic sequence over their entire length. Indeed, Hi-
C hybrid fragments are issue of digestion and religation events that bring together two interacting loci. 
Therefore, a single read might contain sequences from distant genomic regions when spanning the 
ligation junction, which hampers the mapping process. Consequently, around 30-40% of reads were not 
mapped during the global alignment. These chimeric reads need to be trimmed in order to remove the 
portion beyond the ligation junction, and then re-mapped during a “local alignment” step, still in SE 
mode. To do that HiC-Pro needs to be provided with the re-ligation sequence (AAGCTAGCTT) 
resulting from the HindIII digestion, fill-in, and ligation. Global and local alignments use bowtie2-

2.3.3.1-linux-x86_64 and bowtie2 options: --very-sensitive -L 30 (global) or -L 20 (local);  
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--score-min L,-1,-0.1 (global) or L,-0.6,-0.2 (local); --end-to-end; and –reorder. From 
46.2 to 73.7% of the previously unmapped reads could be successfully mapped and therefore retrieved 
after trimming. In the last step of the mapping process, read pairs were rebuilt whenever possible using 
the set of all SE-mapped reads (either from the global or local alignment) to generate the final alignment 
files in bam format. Singletons (reads for which the “mate” could not be mapped: ~14% of the initial 
material) were discarded, resulting in a total of 2,367,601,471 read pairs (68.7% of the initial material). 

Detection of valid interactions: Mapped read pairs were classified into valid and invalid pairs. The valid 
pairs are those with reads in the expected mapping configuration, meaning that both reads map near a 
HindIII restriction site. More precisely, the cumulative distance between their 5’-end to the closest 
HindIII site downstream should fit within the range of the expected molecular size distribution of the 
library. The distribution of these genomic distances (read1-to-HindIIIsite1 + read2-to-HindIIIsite2) is 
estimated during the quality control step and used to define the threshold values of the accepted range: 
from 20 bp to 1 Kb. Invalid pairs with a fragment size outside of this range were therefore discarded by 
specifying the parameters -i 20 (MIN_INSERT_SIZE) -I 1000 (MAX_INSERT_SIZE). Read pairs 
classified as dangling end and self-cycle ligation were discarded. These are obtained when both reads 
of the read pair belong to the same restriction fragment of the genome. The self-circularized ligation 
products correspond to pairs with reads in opposite directions within the same restriction fragment, and 
the unligated dangling end products correspond to pairs with reads facing each other (Figure 29) 
(Imakaev et al., 2012). PCR duplicates (redundant pairs with both reads at the same positions: about 
13.6% of the initial material) were also filtered out.                                                                                                                

Contact map generation: Only valid pairs involving two different restriction fragments are used 
to build the contact maps. To build them, the genome is segmented into intervals of equal number of 
bases, called bins. Then, the number valid read pairs (number of contacts or counts) per bin pair is 
reported. In this study, the binning was generated at 500, 200 and 40 Kb (bin size), which define the 
resolution of the Hi-C matrices. Large bin sizes allow identifying higher order chromatin conformation 
features, while smaller bin sizes allow identifying local chromatin structures. Therefore, the smaller is 
the bin size, the higher will be the resolution. However, this parameter of resolution is intimately linked 
to the sequencing depth. For instance, at high resolutions, the genome is highly segmented, and the 
number of read counts per bin pair is low. Therefore, high resolution Hi-C matrices need higher 
sequencing depth in order to compensate this effect. 

Intra-matrix normalization and display of contact maps: HiC-Pro uses for normalization a fast 
sparse-based implementation of the iterative correction and eigenvector decomposition (ICE) method 
(matrix balancing ICE normalization). Contrary to any parametric normalization approaches, this 
method does not explicitly model specific biases introduced by experimental procedures and by intrinsic 
properties of the genome (such as GC content, mappability or restriction site density), but treat them 
globally instead. ICE normalization assumes that the bias for detecting contacts between two regions 
can be represented as the product of the individual biases of these regions. Concretely, this method 

 



 

Figure 30. Method for predicting Hi-C A and B compartments. Illustration of the A/B compartment 
calling workflow using the 90 days merged matrices of chromosome 1.  Lower panel:  the first three 
eigenvectors are shown along the chromosome to illustrate the relevance of PC#1 as the discriminative 
value to segregate bins between A and B compartments. 



MATERIALS AND METHODS 
 

101 
 

assumes an equal exposure to contacts for each region with all the others (Imakaev et al., 2012; Servant 
et al., 2015). 2% of bins showing the lowest counts were filtered out by fixing the following parameter: 
FILTER_LOW_COUNT_PERC = 0.02. The maximum number of iterations was also fixed to 100 (MAX_ITER 

= 100). 

The pipeline here presented uses HiTC R / Bioconductor package v1.18.1 (Servant et al., 2012) 
to visualize the normalized contact maps generated by HiC-Pro. 

TADs finding: Only the longest 25 chromosomes/scaffolds were considered for TAD calling, 
with a specific focus on the 18 autosomes. 40-Kb resolution matrices (HiC-Pro output format) were 
extracted for each chromosome separately and converted to square matrices before running Armatus 
(http://www.cs.cmu.edu/~ckingsf/software/armatus/  (Filippova et al., 2014)) to generate TADs. 
Armatus uses a multiscale approach to find TADs at various size scales. This method uses a score 
function that encodes the quality of putative domains based on their local density of interactions. The 
algorithm used to identify topological domains in chromatin from interaction matrices uniquely requires 
a single specific parameter γmax, which was fixed to 0.5. Armatus generates then TADs at different γ 
values (from 0 to 0.5) by incrementing this parameter in steps of 0.05. As γ decreases, the average size 
of the domains increase, conform to a hierarchical domain structure. Armatus offers additionally the 
possibility to obtain a consensus set of TADs, which have been showed to persist across multiple 
resolutions (Filippova et al., 2014). Therefore, consensus TADs were used in this study for subsequent 
analysis. 

CTCF prediction: The position specific frequency matrix corresponding to the CTCF-binding 
motif was recovered from the JASPAR Transcription Factor Binding Sites (TFBS) catalogue 
(http://jaspar.genereg.net/, (Mathelier et al., 2016)). CTCF genomic occurrences were predicted by 
running FIMO v.4.11.1 (Grant et al., 2011) software with the JASPAR CTCF frequency matrix. Then, 
the density of CTCF predicted motifs with respect to TADs was obtained.  

A/B compartments detection: A and B compartments were obtained for each chromosome after 
matrix balancing ICE normalization, followed by a distance-based normalization, using the method 
described in (Lieberman-Aiden et al., 2009) (Figure 30). ICE-normalized counts, 𝐾𝑖𝑗, were corrected 
for a distance effect with: 

�̂�𝑖𝑗 =
𝐾𝑖𝑗 − �̅�𝑑

𝜎𝑑
 

in which �̅�𝑖𝑗 is the distance-corrected count for the bins 𝑖 and 𝑗, �̅�𝑑 is the average count over all pairs 
of bins at distance 𝑑 = 𝑑(𝑖, 𝑗) and 𝜎𝑑 is the standard deviation of the counts over all pairs of bins at 
distance 𝑑. Then, Pearson correlations were computed between bins, by using interaction counts with 
all the other bins of the same chromosome, and a Principal Component Analysis (PCA) was performed 
on the correlation matrix. The overall process was performed similarly to the method implemented in 
the R/Bioconductor package HiTC (Servant et al., 2012). Boundaries between A and B compartments 
were identified according to the sign of the first PC (eigenvector). Since PCAs had to be performed on 
each chromosome separately, the average counts on the diagonal of the normalized matrix were used to  

http://www.cs.cmu.edu/~ckingsf/software/armatus/
http://jaspar.genereg.net/


 

 

 

 

 

 

 

 

 

Figure 31. DNA sonication testErreur ! Signet non défini.. Before running the sonication on the real 
samples, several sonication cycles (from 1 to 12) were performed on fetal porcine muscle cells to 
determine the number of cycles necessary to obtain DNA fragments of 300 bp. Six cycles were observed 
to be appropriate for the obtention of 300 bp DNA fragments.  
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identify which PC sign (+/-) should be assigned to A and B compartments for each chromosome. This 
allowed to automatically obtain a homogeneous assignment across chromosomes. 

4.3.3 Chromatin Immunoprecipitation sequencing (ChIP-seq) 

All ChIP-seq experiments and ChIP-seq libraries production were performed during a three 
months PhD mobility in the context of a collaboration with FAANG contributor members of the ABG 
(Animal Breeding and Genetics) group at Wageningen University, Netherlands. The sequencing of the 
ChIP-seq libraries was performed at the GeT-PlaGe (Génome & Transcriptome - Plateforme 
Génomique) (https://get.genotoul.fr/en/ in Toulouse, France). 

4.3.3.1 ChIP-seq experiments 

Muscle nuclei isolation and crosslink: Muscle samples from the same six animals used in Hi-C 
assays (3 fetuses at 90 days of gestation and 3 fetuses at 110 days) were used for ChIP-seq assays. For 
each sample, nuclei from around 0.8g of frozen stored fetal muscle were obtained as explained before 
for Hi-C experiments. Pellet was resuspended in 1/10 volumes of buffer A with formaldehyde (148 mM 
NaCl, 1.48 mM EDTA, 0.74 mM Egtazic Acid (EGTA), 74 mM 4-(2-hydroxyethyl)-1-
piperazineethanesulfonic acid (HEPES), 11% formaldehyde) and incubated 10 min at RT. 1/10 volume 
of ice-cold 1.25 M glycine was added for 2 min at RT to quench fixation. Nuclei were centrifuged 5 min 
at 1600g, then the pellet was washed with ice-cold PBS (with protease inhibitors) and nuclei were 
centrifuged again 5 min (4 °C, 1600g) and resupended in 28 ml buffer C (150 mM NaCl, 1 mM EDTA, 
0.5 mM EGTA, 50 mM HEPES) at 4 °C for 10 min. An aliquot of cell suspension was stained with 
DAPI and phalloidin to check nuclei quality and integrity. Nuclei were then centrifuged 5 min (4 °C, 
1600g) and the pellet resuspended in 1X incubation buffer (0.75% SDS, 5% Triton X-100, 750 mM 
NaCl, 5 mM EDTA, 2.5 mM EGTA, 100 mM HEPES, 1/50 volume PIC reagent) so the final 
concentration was around 15 million cells/ml.  

DNA fragmentation: A preliminary test of DNA sonication was performed in fetal muscle nuclei 
to define the number of sonication cycles needed to obtain DNA fragments of approximately 300 bp 
(Figure 31). The suspension was then sonicated in a water bath at 4 °C using the Bioruptor Pico sonicator 
(6 cycles, 30 seconds on/30 seconds off in order to favor fragments of 300 bp), and after 5 min 
centrifugation (4 °C, 13000rpm) the supernatant was snap freeze and stored at -80 °C. An aliquot of 
supernatant was used for a decrosslink test by adding 2 µl of 10 mg/ml of Proteinase K (PK) at 65 °C 
for 1hour.   

Chromatin Immunoprecipitation: When needed, 300 µl chromatin (around 4.5 million cells) 
was thawed and incubated overnight at 4 °C in final concentration 0.1% BSA, 1X PIC, 1X incubation 
buffer, 3 µl CTCF antibody). To recover CTCF binding fragments, 15 µl of protein A/G magnetic beads 
(50% slurry), previously washed and resuspended with incubation buffer (0.1% BSA), were added to 
the 300 µl of chromatin and incubated 90 min at 4 °C on the wheel. Then beads were washed at 4 °C 
for 5 min twice with wash buffer 1 (0.1% SDS, 0.1% sodium deoxycholate (DOC), 1% Triton, 150 mM 
NaCl, 1 mM EDTA, 0.5 mM EGTA, 20 mM HEPES), once with wash buffer 2 (same as wash buffer 1  

https://get.genotoul.fr/en/
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but 500 mM NaCl), once with wash buffer 3 (250 mM LiCl, 0.5% DOC, 0.5% Nonidet P-40, 1 mM 
EDTA, 0.5 mM EGTA, 20 mM HEPES) and twice with wash buffer 4 (1 mM EDTA, 0.5 mM EGTA, 
20 mM HEPES). After washing steps, 400 µl of fresh elution buffer (1% SDS, 0.1 M sodium 
bicarbonate) were added and incubated 20 min at RT.  

Decrosslink and DNA purification: 0.2 M final NaCl and 100 ng/ml final PK were added to the 
supernatant and to 10% input sample (30 µl of sonicated DNA before immunoprecipitation in 370 µl of 
elution buffer) and were incubated at 65 °C overnight (shaking at 1000rpm). DNA was purified in a 
MinElute column (MinElute purification kit Qiagen) by adding 5 volumes of PB buffer and 
centrifugation 1 min at 13000rpm (removing flow through), then eluted in 20 µl EB buffer (1 min at 37 
°C, then 1 min at 13000rpm). The elution product was the final ChIP sample. 

4.3.3.2 ChIP-seq libraries production and sequencing 

End repair, 3’ adenylation and adapters ligation: To repair DNA breaks and allow the adapters 
ligation, 7 µl End Repair & A-Tailing buffer, and 3 µl of End Repair & A-Tailing Enzyme Mix (Kapa 
Hyper Prep Kit) were added to 50 µl of fragmented double-stranded DNA (5 ng) and incubated 30 min 
at 20°C, then 30 min at 65 °C to inactivate the enzyme. To ligate the adapters, the 60 µl End Repair & 
A-Tailing reaction product were incubated at 20 °C for 15 min in the thermo-shacker with 30 µl of 
ligation buffer and 10 µl of DNA ligase (Kapa Hyper Prep Kit), 5 µl of nuclease free water and 5 µl of 
final 28 nM NEXTflex-96™ DNA Barcodes. The adapter ligation reaction product was then purified by 
incubating with 0.8 volume of Agencourt AMPure XP reagent at RT for 15 min, then beads were washed 
twice with 80% ethanol, resuspended in 22.5 µl of elution buffer (10 mM Tris-HCl, pH 8.0) and 
incubated for 2 min to elute the DNA from the beads (keeping supernatant).  

PCR enrichment, DNA purification, size selection and sequencing: Libraries were amplified by 
10 PCR cycles (15 sec at 98 °C – 30 sec at 60 °C – 30 sec at 72 °C) by adding to the 20 µl of Adapter-
ligated library 25 µl of PCR mix (25 µl of 2X KAPA HiFi Hotstart Ready Mix and 5 µl of 10X Library 
Amplification Primer Mix). PCR product was purified in a MinElute column as described before. A 
final step of size selection was performed by loading the 20 µl of amplified libraries in an E-Gel™ iBase 
Power System (2% agarose, program 2) and running for 16 min and 30 seconds to collect the 300 bp 
band. Afterwards, a qPCR with specific primers was performed as a quality control and libraries size 
was controlled on the Bioanalyzer. The 6 libraries and the 2 input DNAs were PE sequenced in one 

HiSeq 3000 lane. 

4.3.3.3 ChIP-seq data analyses 

Mapping: PE reads were mapped to the Sus scrofa genome version 11.1.90 (obtained from the 
NCBI and released in December 2016) with bwa mem (bwa v.0.7.12-r1039) and the option –M. Resulting 
sam files were converted to the bam format with samtools view –bS (samtools v.1.3.1 (Li et al., 
2009)), sorted with samtools sort and indexed with samtools index. PCR duplicates were removed with 
samtools rmdup. 
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Peak calling: The peaks were called using macs2 callpeak (MACS2 v2.1.1.20160309 (Feng et 
al., 2012)) with the options -f BAMPE, -g 2.4e9, --keep-dup all and –q 0.01. 

4.3.4 Differential analyses 

A differential analysis was performed to extract bin pairs that are significantly differentially 
connected between the two conditions (90 and 110 days of gestation), at three different resolutions (500, 
200 and 40 kb). A method similar to the one described in (Lun and Smyth, 2015), with some adaptations, 
was used to perform this task. More precisely, a 3-step approach was used which consisted in three 
steps: 

1) Filtering step, in which low count bin pairs were removed from the dataset: this step is used to 
leverage the effect of multiple testing correction (and improve the testing procedure power) by 
removing low count bin pairs that have a very low chance to be found differentially expressed. 
We choose to use a fixed threshold ( = 30, which corresponds to a minimum of 5 reads per 
sample on average) based on the total number of reads, across the 6 samples, associated to a 
given bin pair, to filter out irrelevant bin pairs from the differential analysis. 
 

2) Normalization step (inter-matrices normalization), to make the different matrices comparable. 
As stressed in Lun and Smyth (2015), contrary to RNA-seq data, a normalization based on the 
(potentially corrected) library size is not sufficient for Hi-C data. Indeed, the complexity of the 
protocol generally generates additional biases that result in trended differences between libraries 
(as visible on MA plots). To correct such biases, we used the method proposed in (Ballman et 
al., 2004) and implemented in the Bioconductor R package csaw (Lun and Smyth, 2016) that 
performs a non-linear normalization based on a fast loess algorithm. Gene and sample specific 
offsets were computed and incorporated in the Generalized Linear Model (GLM) described in 
the next step, to correct trended differences. 
 
The efficiency of the normalization was controlled using PCA and MA plots on pseudo counts 
(log2 transformed counts), before and after normalization. 
 

3) Differential analysis step: this step was performed using a Generalized Linear Model (GLM) 
based on the Negative Binomial (NB) distribution with a condition (two-level factor: 90/110 
days) fixed effect. The model was estimated with the implementation of the R package edgeR 
(Robinson et al., 2010) and log ratio tests were used to assess the significativity of the condition 
effect on each bin pair proximity. p-values were corrected using (Benjamini and Hochberg, 
1995) procedure to control the False Discovery Rate. 

4.3.5 Gene ontology (GO) analysis 

The GO functional analysis was performed among the human homologs of genes mapped to the 
differential bin pairs. The enrichment of ontological categories was tested with the hypergeometric test   
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implemented in the R package GOstats v2.32.0 (Falcon and Gentleman, 2007) using the following 
ontologies: biological processes (BP), molecular functions (MF) and cellular components (CC). 
Ensembl gene IDs were converted to entrez gene IDs via the R package org.Hs.eg.db v3.1.2, and mapped 
to gene ontology through the R package GO.db v3.0.0.  

The GO terms associated with the biological process hierarchy are sorted by their p values 
corrected for multiple testing (Benjamini–Hochberg correction (Benjamini and Hochberg, 1995)). 

4.3.6 Integrative analysis with expression data 

Expression data was obtained from a previous transcriptome study in pig using microarray 
probes (Voillet et al., 2014). For each probe ID of that study the following information was available: 

1) The corresponding sequence of the probe 
2) The average expression value that was measured with the probe in fetal muscle samples from Large 
White pigs at 90 days of development (log-normalized value) 
3) The same for samples at 110 days of development. 
4) Log fold change (logFC) of these expression values at 110 vs. 90 days. As the reference time point 
was 90 days, a positive logFC involves a higher expression in 110-days pigs. 

As the transcriptome characterization -including the microarray design- was performed using a 
former version of the pig genome (Sscrofa 10.2)- we first proceeded to remap the probe sequences on 
the more recent 11.1 genome version in order to anchor expression data on reliable genomic positions. 
Stringent filtering steps were applied to keep only high quality hits (unique best hits with more than 30 
matches).  

To compare the average expression in A vs. B compartment we simply computed the mean 
expression value of all the probes in each compartment using bedtools map and considered the resulting 
distribution in A vs. B compartments. This was done separately for 90 and 110 days, using expression 
values and compartments from the same condition. To investigate the dynamic of expression in 
compartment-switching regions we considered the logFC expression values of the probes and split them 
into compartment-switching categories using bedtools: no switch, A to B, B to A. The distribution of all 
logFC in each category was then compared. Boxplots and statistical tests were carried on in R.  

The same approach was used to compare logFC expression values in the regions that were 
identified by the differential analysis of Hi-C data. Since a same genomic region (bin) can be 
simultaneously involved in both a bin pair with a positive logFC proximity value and a bin pair with a 
negative logFC proximity value (for instance, a chr1 region that is both significantly closer from a chr2 
region at 90 days and significantly closer from chr3 at 110 days) we chose to discard such regions. We 
therefore considered the distribution of probe logFC expression values in three categories of bins based 
on the Hi-C differential analysis: bin that were not involved in any significantly different bin pair, bins 
that were only found in bin pairs with negative logFC and bins that were only found in pairs with positive 
logFC.
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Figure 32. Experimental design. Published data are represented in green squares (microarray data 
and 3D DNA FISH data), statistical methods are represented in blue (GGM: Gaussian Graphical 
Models) and new information about spatial localization used for network inference is represented in 
red. 



 

 

Figure 33. Analysis of gene associations. Pink nodes represent target genes, red edges represent the 
known associations observed by 3D DNA FISH and the dotted orange edge represents the observed as 
not associated after 3D FISH validations. Because networks are very dense and contain many genes, a 
sub-network restricted to the target genes and their direct neighbors is extracted from each network, 
and presented in this figure. (a) Network 0 is inferred without a priori information, and restricted to the 
nodes corresponding to IGF2, DLK1 and MEG3 (in yellow). To infer Networks 1, 2 and 3, new a priori 
information of spatial localization is introduced for the following pairs of genes: (b) IGF2 DLK1, IGF2 
MEG3 and DLK1 MEG3 for Network 1; (c) IGF2 MEST, (DLK1/MEG3) MEST, (DLK1/MEG3) DCN, 
RPL32 IGF2, IGF2 DCN for Network 2; (d) IGF2 MYH3, DLK1 MYH3, MEG3 MYH3 and MEST MYH3 
for Network 3. 
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5 Combining 3D DNA FISH and gene 
expression for network inference 

The results presented in this study have been issue of a recent publication in the journal of 
Scientific Reports (Marti-Marimon et al., 2018). The whole article is provided at the end of this thesis 
(Apendix 21). 

5.1 Results 

5.1.1 Network inference iteration and 3D FISH validations 

The whole process involving the data selection, the network inference and the 3D FISH 
validations is summarized in Figure 32. Network 0 was inferred with no a priori knowledge and 
contained 2,279 edges for 359 nodes (density: 3.55%). A sub-network extracted around the three target 
genes is shown in Figure 33a. 

Network 1 was built based on the triple co-localization of IGF2, DLK1 and MEG3 found in our 
previous study (Lahbib-Mansais et al., 2016). This a priori information was used to reinforce the 
existence of an edge between the pairs IGF2-DLK1, IGF2-MEG3 and DLK1-MEG3 in Network 1 
(sub-network in Figure 33b), which contained 2,250 edges (density: 3.50%). In both graphs (Network 0 
without a priori and Network 1 with a priori), we found a direct connection between the genes IGF2 
and RPL32. The IGF2-RPL32 association was thus tested by 3D DNA FISH, because it involved one of 
our 3 initial target genes (IGF2, DLK1 and MEG3), and because it was also found in the Imprinted Gene 
Network (IGN) of (Varrault et al., 2006). The 3D DNA FISH assay revealed that IGF2 and RPL32 were 
associated in 20% of the analyzed nuclei (Table 4, Figure 34a).

Additionally, we used 3D DNA FISH to analyze MEST and DCN associations with each of the 
three target genes, because they were also connected in the IGN (Table 4 and Figure 34b-e).  

 This new information about spatial co-localization in the nucleus was entered in our model as 
an a priori to build Network 2 (with 2,091 edges and 3.25% of density) (sub-network in Figure 33c). 
Specifically, in addition to the three pairs IGF2-DLK1, IGF2-MEG3 and DLK1-MEG3 given as 
associated in Network 1, we gave the following pairs of genes as known to be co-localized: IGF2-MEST 
(34% of analyzed nuclei presenting an association), (DLK1/MEG3)-MEST (in 34% of analyzed nuclei), 
(DLK1/MEG3)-DCN (in 15% of analyzed nuclei) and RPL32-IGF2 (in 20% of analyzed nuclei). The 
pair IGF2-DCN was given as not co-localized (with 10% of nuclei presenting an association) (Table 4, 
Figure 34b-e). DLK1 and MEG3 are two imprinted genes located in the same cluster, and are both 
present in the same Bacterial Artificial Chromosome (BAC) used for the 3D DNA FISH experiments, 
because of their proximity on the genomic sequence (Appendix 4). Consequently, we considered  
  



Table 4. Association percentages of tested gene pairs. Associated signals (close + co localized) are 
considered as those separated by a 3D distance (d) ≤ 1 µm, and are divided into two different classes: 
“close” signals (0.5 < d ≤ 1 µm), and “co localized” signals (d ≤ 0.5 µm). * Genes imprinted in pig. 

Gene associations 
Number 
of nuclei 
analysed 

Percentage of nuclei with signals 
Distant  

(d > 1 µm) 
Close             

(0,5 < d ≤ 1 µm) 
Co-localized 
(d < 0.5 µm) 

Associated 
(d ≤ 1 µm) 

MEST* - IGF2* 100 66 32 2 34 
MEST* - (DLK1-MEG3)* 90 66 28 6 34 
DCN - (DLK1-MEG3)* 73 85 15 0 15 
RPL32 - IGF2* 80 80 16 4 20 
DCN - IGF2* 98 90 7 3 10 
IGF2* - MYH3 58 48 43 9 52 
(DLK1-MEG3)* - MYH3 69 55 38 7 45 
MEST* - MYH3 103 74 23 3 26 
ZAR1 - IGF2* 61 92 8 0 8 
ZAR1 - PRLR 63 92 8 0 8 

 

 

Figure 34. Analysis of gene associations by DNA FISH. Extended focus of 3D image sections from 
confocal microscopy and overlay of the 3 channels (blue, red and green) were obtained with Volocity 
v6.0 software (Perkin Elmer). The four signals in the nuclei correspond to the two alleles of each gene. 
Nuclei are counterstained with DAPI (blue). In all experiments, the percentage of association between 
genes was higher than 10% except for (e). Scale = 1.7 µm. 
44 

Table 5. Normalized mutual information (NMI) between pairs of clusterings. NMI measure the 
similarity between two clusterings. The value is comprised between 0 and 1 and is equal to 1 when the 
two clusterings are identical. 

  Network 0 Network 1 Network 2 Network 3 

Network 0 1 0.3893 0.3381 0.3244 

Network 1 0.3893 1 0.4007 0.3923 

Network 2 0.3381 0.4007 1 0.4152 

Network 3 0.3244 0.3923 0.4152 1 
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DLK1/MEG3 as a simple locus for all 3D DNA FISH analyses, even though they are considered to be 
single genes for network inference.  

To obtain the last network (Network 3), we used 3D DNA FISH to test for associations involving 
MYH3 because it was found to be connected to DLK1 and MEG3 in Network 0 and to DLK1 in 
Network 1. We found MYH3 associated with i) IGF2 in 52% of the analyzed nuclei, ii) DLK1/MEG3 in 
45% of the analyzed nuclei, and iii) MEST in 26% of the analyzed nuclei (Table 4, Figure 34f-h). Thus, 
in addition to the a priori information given in Networks 1 and 2, we gave the following new 
associations (IGF2-MYH3, DLK1-MYH3, MEG3-MYH3 and MEST-MYH3) to infer Network 3 (2,091 
edges, density = 3.25%) (Sub-network in Figure 33d). 

5.1.2 Network mining (network structure with key genes)  

 For each network, two main numerical characteristics (degree and betweenness) were used to 
detect key genes with respect to the network structure. The degree of a node (in this case, of a gene) is 
the number of edges afferent to this gene. The betweenness of the node (gene) is the number of shortest 
paths between pairs of genes in the network that pass through that gene. High-degree genes are 
connected to many other genes while high-betweenness genes are central and more likely to disconnect 
the network if removed. We analyzed the evolution of the betweenness and degree from Network 0 to 
Network 3. Appendix 6 “Evolution of the betweenness and degree values of a subset of genes from 
Network 0 to Network 3” shows a subset of 25 genes selected as key genes for the network structure 
because they showed a high betweenness or a high degree value or both a high betweenness and a high 
degree, or because they were among genes whose associations tested positive with 3D DNA FISH. Most 
of the genes presenting the highest betweenness values in Network 0, still kept or increased this 
numerical characteristic in Network 3 after network inference iterations. However, important changes 
were observed in some genes. For instance, AKR7A2, DLK1, EGFR, MEG3, MYH3 and RPL32, showed 
more than a 40% decrease in betweenness accompanied by a decrease in degree (> 25%) when 
Network 3 was obtained. DCN showed a pronounced decrease in its degree while its betweenness was 
slightly modified. Interestingly, MEST and IGF2 were found to have a mixed profile of betweenness 
and degree: in Network 3, we observed a 46% loss for MEST in gene connections, as compared to 
Network 0, while its betweenness increased by 160%. Similarly, a 30% loss of connections and a 426% 
gain in betweenness was observed for IGF2.  

5.1.3 Network clustering 

To analyze the evolution of the network structure from Network 0 to Network 3, clustering of 
the genes was performed on each network (for more details, see “Network mining and clustering” in 
“Materials and Methods” and Appendix 2 and 7 “Gene description and cluster allocation” and “Cluster 
parameters”). Four significant clusterings (p-value < 0.002) were obtained, one for each network. A 
total of nine clusters were obtained in Network 0, six in Network 1, eight in Network 2 and six in 
Network 3. Networks 0 and 3 were analyzed in depth to search for any correspondence between clusters 
(Appendix 8 “Pairwise contingency tables between clusterings”). Four clusters in Network 0 were found  



Table 6. Comparison of GOBP in clusters 1 and 2 between Network 0 and Network 3. GO terms 
enriched in one of the clusters as well as all GO terms associated to one of the three target genes at 
least (even if not significantly enriched). In bold, the smallest FDR value for a given GOBP term when 
the difference between the FDR of the two clusters is higher than one order of magnitude. Genes tested 
by 3D DNA FISH are in red bold. 

  Network 0 - Cluster 1 Network 3 - Cluster 1 

GO ID GOBP Terms Genes FDR Genes FDR 

43062 Extracellular structure POSTN, COL1A1, COL1A2, 
COL3A1, COL5A1, COL16A1, 
LAMA4, MFAP5 

5,76E-05 POSTN, COL1A1, 
COL1A2,COL3A1, COL5A1, 
COL5A2, COL16A1, DCN, FAP, 
FBN1, ABI3 bp, ANXA2, LAMA4 

1,14E-08 

71417 Cellular response to 
organonitrogen 
compound 

COL1A1, COL1A2,COL3A1, 
COL5A2, COL16A1, FYN, KLF3, 
ZFP36L1, HSP90B1 

6,80E-04 COL1A1, COL1A2,COL3A1, 
COL5A2, COL16A1, DNMT1, 
FBN1,IGF2, HSP90B1 

1,16E-02 

45995 Regulation of embryonic 
development 

COL5A1, COL5A2, FGFR1, LAMA4, 
LFNG 

2,24E-03 COL5A1, COL5A2, FGFR1, 
LAMA4, LFNG 

1,16E-02 

71559 Reponse to transforming 
growth factor beta 

POSTN, COL1A1, COL1A2, 
COL3A1, FYN, ZFP36L1 

2,35E-03 POSTN, COL1A1, 
COL1A2,COL3A1, FBN1 

1,24E-01 

44236 Multicellular organism 
metabolic process 

COL1A1, COL1A2,COL3A1, 
COL5A1, COL5A2  

2,35E-03 COL1A1, COL1A2,COL3A1, 
COL5A1, COL5A2, FAP  

3,05E-03 

43588 Skin development COL1A1, COL1A2, COL3A1, 
COL5A1, COL5A2, ZFP36L1 

3,18E-03 COL1A1, COL1A2, COL3A1, 
COL5A1, COL5A2 

1,44E-01 

1101 Reponse to acid 
chemical 

COL1A1, COL1A2,COL3A1, 
COL5A2, COL16A1, NFATC4  

1,17E-02 COL1A1, COL1A2,COL3A1, 
COL5A2, COL16A1, DNMT1, 
NFATC4  

2,27E-02 

1501 Skeletal system 
development 

POSTN, COL1A1, COL1A2, 
COL3A1, COL5A2, FGFR1, 
TMEM119 

1,43E-02 POSTN, COL1A1, COL1A2, 
COL3A1, COL5A2, FBN1, FGFR1, 
ANXA2, TMEM119, IGF2 

3,05E-03 

  Network 0 - Cluster 2 Network 3 - Cluster 2 

72350 Tricarboxylic acid 
metabolic process 

CS, DLAT, DLD, NNT, MDH1, 
PDHA1 

3,02E-06 CS, DLAT, DLD, NNT, MDH1, 
PDHA1 

2,11E-05 

51186 Cofactor metabolic 
process 

COQ7, DLAT, DLD, NNT, HK1, 
ACACB, NMNAT3, ACAT1, MDH1, 
PDHA1, PDHX 

2,97E-05 DLAT, DLD, IBA57, NNT, GPI, 
ACACB, NMNAT3, MDH1, 
PDHA1, FLAD1, MCEE 

1,34E-03 

72524 Pyridine-containig 
compound metabolic 
process 

DLD, NNT, HK1, NMNAT3, MDH1, 
PDHA1, PDHX 

1,00E-04 DLD, NNT, GPI, NMNAT3, MDH1, 
PDHA1 

1,11E-02 

6631 Fatty acid metabolic 
process 

CPT1B, ECI1, DLAT, DLD, ACACB, 
ACADS, ACAT1, PDHA1, PTGES2, 
PDHX 

1,00E-04 CPT1B, ECI1, DLAT, DLD, FABP3, 
ACACB, ACADS, PDHA1, 
ADIPOR2, PTGES2, MCEE 

1,17E-03 

6091 Generation of precursor 
metabolites and energy 

CS, DLAT, DLD, NNT, HK1, MDH1, 
OXA1L, ATP5B, PDHA1, SLC25A3 

1,09E-04 CS, DLAT, DLD, NNT, GPI, MDH1, 
NDUFA3, NDUFB5, NDUFS1, 
OXA1L, ATP5B, PDHA1, SLC25A3, 
CISD1, NDUFA12, PYGM 

1,32E-07 

6090 Pyruvate metabolic 
process 

DLAT, DLD, HK1, PDHA1, PDHX 5,42E-03 DLAT, DLD, GPI, PDHA1, BSG 2,32E-02 

6790 Sulfur compound 
metabolic process 

VCAN, DCN, DLAT, DLD, ACACB, 
ACAT1, PDHA1, PDHX 

7,47E-03 DLAT, DLD, IBA57, ACACB, 
PDHA1, MCEE 

4,79E-01 

42180 Cellular ketone 
metabolic process 

COQ7, DLAT, DLD, ACACB, 
PDHA1, PDHX 

1,46E-02 DLAT, DLD, FABP3, GPI, ACACB, 
PDHA1 

8,05E-02 

45454 Cell redox homeostasis TXNRD2, DLD, NNT, PTGES2 1,46E-02 TXNRD2, DLD, NNT, PTGES2 4,91E-02 

44282 Small molecule catabolic 
process 

CPT1B, ECI1, DLD, HK1, ACACB, 
ACADS, ACAT1 

1,88E-02 CPT1B, ECI1, DLD, GPI, ACACB, 
ACADS, BCAT2, MCEE  

4,51E-02 

98656 Anion transmembrane 
transport 

CLCN5, CPT1B, ACACB, SLC25A3, 
SLC1A3, VDAC1 

2,31E-02 CPT1B, ACACB, SLC25A3, 
SLC1A3, VDAC1 

3,77E-01 

6081 Cellular aldehyde 
metabolic process 

DLAT, DLD, PDHA1, PDHX 2,59E-02 DLAT, DLD, GPI, PDHA1 8,73E-02 

43648 Dicarboxylic acid 
metabolic process 

DLD, NMNAT3, MDH1, SLC1A3 3,13E-02 DLD, NMNAT3, MDH1, BCAT2, 
SLC1A3 

2,13E-02 

16042 Lipid catabolic process CPT1B, ECI1, ACACB, ACADS, 
ACAT1, NCEH1 

3,65E-02 CPT1B, ECI1, FABP3, ACACB, 
ACADS, NCEH1, MCEE 

6,59E-02 

10257 NADH dehydrogenase 
complex assembly 

  NDUFA3, NDUFB5, NDUFS1, 
OXA1L, NDUFA12 

3,29E-03 

97031 Mitochondrial 
respiratory chain 
complex I biogenesis 

    NDUFA3, NDUFB5, NDUFS1, 
OXA1L, NDUFA12 

3,29E-03 
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to share at least two thirds of their nodes with the corresponding clusters in Network 3. More precisely, 
64.1% of the genes in cluster 1, 68.4% in cluster 2, 66% in cluster 3 and 82.4% in cluster 4, were 
observed in the corresponding clusters of Network 3. The other clusters in Network 0 (clusters 5, 6, 7, 
8 and 9) were mainly spread each into two different clusters of Network 3. Additionally, the Normalized  
Mutual Information (NMI) value was calculated to quantify the similarity between clusterings for pairs 
of networks (Table 5). Interestingly, we observed that the clustering obtained in Network 0 was the most 
similar to the clustering obtained in Network 1 (NMI = 0.389). Similarly, the clustering in Network 1 
was the most similar to the one obtained in Network 2 (NMI = 0.401), and the clustering in Network 2 
was the most similar to the one obtained in Network 3 (NMI = 0.401). This finding suggests that 
clusterings become more consistent when introducing new biological information in each network 
inference iteration. 

5.1.4 Functional enrichment analysis 

To test the biological relevance of each cluster in Networks 0 and 3, a functional enrichment 
analysis was performed for each cluster from both networks. Significant GO terms for Biological 
Processes (GOBP) were observed in clusters 1 and 2 of Networks 0 and 3, and in clusters 3, 5 and 8 of 
Network 0 (Table 6 and Appendix 9 “Comparison of GOBP between Network 0 and Network 3”). Table 
6 shows the four clusters presenting the non-redundant GOBP with the smallest False Discovery Rate 
(FDR). When comparing cluster 1 in Networks 0 and 3, eight common enriched GO terms were 
observed, mainly involved in extracellular matrix formation, embryonic development, metabolic 
processes and cellular response to stimulus. Besides, fourteen common enriched GOs were observed in 
cluster 2 of Networks 0 and 3. These GO terms were mainly involved in cellular respiration, energy 
metabolism, cellular metabolic processes and metabolism of fatty acids. Additionally, two GO terms 
were observed only in cluster 2 of Network 3, both involved in the mitochondrial respiratory processes. 
Interestingly, the smallest FDR were observed in Network 3: (i) for cluster 1 (containing all genes tested 
by 3D DNA FISH), referring to the “Extracellular structure” term (involving the Decorin gene (DCN); 
FDR = 1.14e-08); (ii) for cluster 2, referring to the “Generation of precursor metabolites and energy” 
term (FDR = 1.32e-07) (Table 6).  

These results suggest that our approach to network inference by incorporating a priori biological 
information enables us to obtain relevant GO terms while conserving the functional enriched terms 
found in the initial network (Network 0). Moreover, we unexpectedly observed that two (IGF2 and 
DCN) of our seven target genes showed more significant GO terms in Network 3 than in the initial 
network. Specifically, IGF2 was observed to be uniquely involved in the “Genetic imprinting” term in 
cluster 3 of Network 0 (FDR = 3.82e-02), while in cluster 1 of Network 3 it was found to be involved 
in two new significant GO terms, the one with the smaller FDR being “Skeletal system development” 
(FDR = 3.05e-03) (Table 6 and Appendix 9 “Comparison of GOBP between Network 0 and Network 
3”). DCN was in turn observed to be involved in the “Sulphur compound metabolic process” term 
(FDR = 7.47e-03) in cluster 2 of Network 0, while in cluster 1 of Network 3 it appeared to be involved 
in the “Extracellular structure” term presenting the smallest FDR value (1.14e-08) of all clusters. 
Concerning MEST, MYH3 and DLK1, also tested by 3D DNA FISH, even though the observed FDR  



 

 

 

 

 

 

Figure 35. Reconstructed network of genes in cluster 1 of Network 3, based on Ingenuity Pathways 
Knowledge Base. Nodes are displayed using various shapes that represent the functional class of the 
gene product. The reconstructed network was generated through the use of Ingenuity Pathway Analysis 
(IPA) (Ingenuity Systems; QIAGEN, Inc., Valencia, CA, USA). 
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were higher than 5%, interesting GO terms were observed for these genes in cluster 1 of Network 3 
(Appendix 9 “Comparison of GOBP between Network 0 and Network 3”). For instance, MEST was 
found to be involved in “Mesoderm development”, MYH3 in “Body morphogenesis”, DLK1 in “Notch 
signaling pathway” and DCN and MYH3 were both found to be involved in “Muscle organ 
development”. 

Another functional analysis was performed with Ingenuity Pathway Analysis (IPA) specifically 
on cluster 1 of Network 3, which contains the target genes (IGF2, DLK1, MEG3, RPL32, MEST, DCN 
and MYH3). IPA proposed to connecting 49 (82%) out of 60 genes in a network including all target 
genes except MEG3 and MYH3. MYH3 was found in a small network with 8 out of 60 genes, and MEG3 
in another small network of only 1 out of 60 genes. Furthermore, MYOD1 and CTNNB1 were identified 
by upstream regulator analysis as potential transcriptional factors for a group of genes including IGF2 
and MYH3. As IPA offers the possibility of merging networks (if there are links between nodes in the 
Ingenuity Pathways Knowledge Base), a reconstructed network was obtained (Figure 35), and analyzed 
around the target genes. Fourteen genes, among them 7 genes from cluster 1 (including DCN and IGF2), 
were observed to be related to “Cell Morphology” (p-value = 1.75e-08). DCN, DLK1 and IGF2 were 
likewise involved in the “Quantity of cells” function with 31 genes, including 16 genes from cluster 1 
(p-value = 2.48e-09). “Morphology of connective tissue cells” with 8 genes (p-value = 1.27e-04) 
included DLK1 and MEST. “Formation of muscle”, with 10 genes (p-value = 2.98e-05), involved IGF2 
and MYH3 together with the two transcription factors CTNNB1 and MYOD1 (Appendix 3 “Biological 
network reconstructed following Ingenuity data analyses”). 

5.2 Discussion 

We present here a new approach based on GGM that enables the user to introduce previously 
acquired biological knowledge to build gene co-expression networks. Since an observed correlation 
between two genes in the co-expressed gene network does not necessarily mean that these genes are 
related to a common biological process, we used information of gene nuclear co-localizations to 
reinforce observed links in the co-expressed gene network. Some studies have shown examples of 
co-expressed and co-localized genes being implicated in a particular process, e.g. the Hbb and Hba 
Klf1-regulated globin genes were found to be co-localized in specialized Klf1-enriched transcription 
factories of erythroid cells (Schoenfelder et al., 2010). Others have observed a role of co-expressed and 
co-localized genes in gene expression regulation, e.g. in the HUVECs endothelial cell line, SAMD4A, 
TNFAIP2 and SLC6A5 TNFα-induced genes were hierarchically transcribed when engaged in 
chromosomal interactions (Fanucchi et al., 2013). 

In order to determine which pairs of genes would present a reinforced edge in the networks, we 
performed two negative controls (see “gene-gene associations” in the “Materials and Methods” section). 
As discussed in our previous study (Lahbib-Mansais et al., 2016), it can be difficult to define a suitable 
non-associating control. Sandhu et al. established a threshold of 2% (Sandhu et al., 2009), while others 
used the expected frequency of random co-localization based on the volume of the nucleus and  
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individual gene signals (<1%) (Osborne et al., 2004). This estimation of random co-localization does 
not take into account other constraints such as: (1) chromosomes occupy specific territories (Bolzer et 
al., 2005; Rieder et al., 2014); (2) transcriptionally silent domains reside at the nuclear periphery (Boyle 
et al., 2001); (3) chromatin regions are preferentially associated in topological domains (TADs) (Dixon 
et al., 2012). Fixing an arbitrary threshold of 10% was a more restrictive way of analysing co-expressed 
genes that might tend to interact preferentially. Consequently, the pair IGF2-DCN was given as not co-
localized by enforcing the absence of an edge between both genes. 

Testing the nuclear co-localization of IGF2 and RPL32 by 3D DNA FISH proved interesting, 
as this connection concerned an imprinted gene (IGF2, involved in muscle growth-related traits (Van 
Laere et al., 2003)) and a ribosomal protein coding gene RPL32 (Young and Trowsdale, 1985). This 
experiment revealed that these genes are associated. Additionally, it was interesting to find co-localized 
pairs of genes such as IGF2-MEST, (DLK1/MEG3)-MEST, (DLK1/MEG3)-DCN, that were observed to 
be connected in co-expression networks in other studies (Al Adhami et al., 2015; Varrault et al., 2006), 
even though they were not directly connected by an edge in our network (Network 1) but via 
intermediary genes. Besides, surprising results showed the highest association we have ever observed 
between two genes (neither in the present study, nor in previous ones). This association concerns MYH3 
and IGF2. MYH3 plays an important role in foetal muscle development (Schiaffino et al., 2015; Voillet 
et al., 2018), and encodes for the embryonic Myosin Heavy Chain (MYHC) 3 protein. To the best of our 
knowledge, no previous association between these two genes, whatever its origin (nuclear or functional), 
has ever been observed, even though the two genes are known to be involved in muscle development 
(Livingstone and Borai, 2014; Schiaffino et al., 2015). To determine the impact of the a priori co-
localization information introduced to enforce the presence or the absence of an edge, we analysed the 
evolution from Network 0 to Network 3, first globally (with conserved edges and key genes) and then 
locally (with network clustering and functional enrichment). The global analyses revealed that 82% of 
edges in Network 0 were conserved in Network 3 and that the most important genes (with respect to 
network structure) in Network 0 were among those showing the highest values of betweenness and 
degree in Network 3. These findings suggest that the introduction of enforced edges is not linked to the 
appearance of major disturbances in the network structure. However, when focusing on the target genes 
analysed by 3D DNA FISH, we observed a general decrease in the degree value, meaning that IGF2, 
DLK1, MEG3, RPL32, MEST, DCN and MYH3 were less connected with the rest of the other genes in 
Network 3. Despite this observed isolation concerning genes for which edges were enforced, this effect 
was not always accompanied by a loss of betweenness. In other words, reinforcing a limited number of 
edges did not change either the global network structure or the importance of target genes in the final 
network. In the local analysis, the NMI value revealed that the clusters resembled one another more with 
each new network inferred. In addition, four out of six clusters in the final network (Network 3) 
conserved more than 62% of genes in the corresponding clusters of Network 0. This concurred with the 
results of the functional enrichment analysis, which revealed that the GOs found were conserved 
between Networks 0 and 3. All these results support the evidence that our approach did not introduce 
any substantial disturbance. In fact, this iterative process brought substantial improvements; notably, it 
enabled us to obtain reliable networks in terms of relevant biological information, especially around our 
target genes. This was supported by the following findings: (1) the biological processes presenting the  
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smallest FDR were found in Network 3, even though one of them involved DCN, for which edge 
estimations were modified by the introduction of a priori information; (2) two new significant GO terms 
related to energy metabolism appeared in cluster 2 of Network 3; (3) two genes (IGF2 and DCN) 
analysed by 3D DNA FISH were involved in biological processes with smaller FDR in Network 3 than 
in Network 0. Moreover, IGF2 was found in an additional GO of Network 3, while only present in one 
GO of Network 0. 

One of the most important goals of the present article was to elucidate the mechanisms that 
govern porcine skeletal muscle development in late gestation. Many studies have been performed in pig 
to address this question (Cagnazzo et al., 2006; Tang et al., 2015a; Voillet et al., 2014; Xu et al., 2012; 
Zhao et al., 2011, 2015). In our model, we proposed a final network (Network 3) in which enriched 
biological functions related to muscle development were observed. These observations were in 
agreement with the results obtained by Voillet et al.(Voillet et al., 2014). In addition, in the resulting 
IPA reconstructed network, we highlighted MYOD1 and CTNNB1 among the proposed transcription 
factors because they were especially interesting due to their connection to two important target genes, 
IGF2 and MYH3. Although MYOD1 and CTNNB1 were not present in the 359 genes used for network 
inference, they were up-regulated at 90 days of gestation in all genotypes (Appendix “Gene expression 
profiles”) (Voillet et al., 2014). MYOD1 encodes for a myogenic factor that regulates skeletal muscle 
cell differentiation by activating transcription of muscle-specific target genes (for review (Berkes and 
Tapscott, 2005)). CTNNB1 (β-catenin 1), encodes for a transcriptional co-activator that was found to be 
required for muscle differentiation in murine myoblasts by interacting directly with MyoD and 
promoting its binding to the E box elements enhancing its transcriptional activity(Kim et al., 2008). The 
co-expression and nuclear co-localization of IGF2 and MYH3 suggest they are each subjected to similar 
transcriptional regulation by these two transcription factors. The studies of (Shang et al., 2007) and 
(Ramazzotti et al., 2016) are in agreement with this hypothesis. Shang et al. revealed that in 
mesenchymal stromal cells from rats, an ectopic expression of Ctnnb1 inhibits adipogenetic 
differentiation and induces the formation of long multinucleated cells expressing myogenic genes, such 
as MyoD and Myhc, by promoting the expression of skeletal muscle-specific transcription factors. 
Ramazzotti et al. observed that an overexpression and accumulation of β-catenin in the nuclei of 
differentiating murine myoblasts results in higher MyoD activation and Myhc induction. Additionally, 
IGF2 was found to be up-regulated in pig during myogenesis and, more precisely, involved in primary 
and secondary muscle fibre differentiation (Zhao et al., 2011). Moreover, Myod and Igf2 were observed 
to be involved in the switch between myogenic and adipose lineages in mouse (Borensztein et al., 2012). 
In addition, we found IGF2 indirectly associated with CTNNB1 (through the intermediary gene 
IGF2 bp1) in the reconstructed network. IGF2 bp1 was not used for network inference but was found 
expressed at the 90th day of gestation (Appendix 10 “Gene expression profiles”) (Voillet et al., 2014). 
Indeed, β-catenin was observed to induce IGF2 bp1 in HEK293 cells (Noubissi et al., 2006), which in 
turn was observed to regulate IGF2 mRNA subcellular location and translation in neurons (for review 
(Bell et al., 2013)). This suggests that in muscle cells, a similar mechanism could possibly be involved 
for the regulation of IGF2 via the CTNNB1 transcription factor. Moreover, the long non-coding DNA 
of MyoD (lncMyoD), directly activated by MyoD, may negatively regulate Igf2 bp1-mediated translation 
of proliferation genes in murine myoblasts (Gong et al., 2015). This could explain how MyoD blocks  



 

Figure 36. Summary of the main steps in data analysis. The Hi-C hybrid fragment (result of a 
religation event) is paired-end (PE) sequenced (first line). Read1 (R1) and read2 (R2) are mapped to 
the reference genome (second line). Valid read pairs with an estimated insert size between 20 bp and 1 
Kb (sum of distances from each read pair to their closest downstream HindIII genomic site) are kept, 
the others are discarded. The genome is segmented into genomic intervals of an equal number of bases 
(binning), the so-called “bins”. Matrices are obtained at different resolutions (bin size) by adding the 
number of valid pairs (counts) per bin pair. The numbers in the matrices were made up for illustrative 
purpose and do not come from real data. 
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proliferation to create a permissive state of differentiation. Moreover, DLK1 and MYOD1 were not 
connected in the reconstructed network. However, DLK1 which encodes for a preadipocyte factor that 
inhibits adipocyte differentiation(Wang et al., 2010), might inhibit cell proliferation and enhance cell 
differentiation by regulating the expression of MyoD (Waddell et al., 2010). Combining all this 
information with the observed up-regulation at 90 days of gestation of the above-mentioned genes, our 
results highlight a network of interrelated genes associated with skeletal muscle regulation and that are 
mainly responsible for inhibition of proliferation and muscle differentiation.

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure 37. Hi-C read pairs statistics summary of the full dataset mapped to Sscrofa11. (A) Total pairs: 
total number of sequenced read pairs. Valid pairs: uniquely mapped read pairs used to build the 
interaction matrices. The valid pairs have an estimated insert size between 20 bp and 1 Kb (sum of 
distances from each read pair to their closest downstream HindIII genomic site). (B) Percentage of 
mapped and valid pairs over the initial read pairs for each library. Two data sets (light colors) obtained 
from Hi-C assays performed in human ES cells (Dixon et al., 2015) and mouse CH12 cells (Rao et al., 
2014) were analyzed with our bioinformatics pipeline, together with our six data sets (dark colors). 
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6 Global genome organization assessed by 
Hi-C and gene expression 

6.1 Results 

6.1.1 Descriptive analysis of genome global organization in fetal 
muscle by Hi-C 

 In order to assess the 3D genome organization in fetal muscle, six Hi-C libraries (three per 
condition: 90 days and 110 days of gestation), called Rep1-90, Rep2-90, Rep3-90, Rep1-110, Rep2-110 
and Rep3-110, were sequenced in two batches. First, an initial sequencing run was performed on 4 lanes 
of a HiSeq3000 to estimate the level of resolution that could be achieved in practice with these libraries. 
This first set was analyzed using the assembly version Sscrofa10 of the pig genome that was available 
at the time. Since a more recent version of the reference genome came out during the study, we 
reanalyzed this first dataset on the Sscrofa11 version. Later, in order to achieve a better resolution, we 
re-sequenced the same libraries over six new lanes. This full dataset was analyzed on the most recent 
assembly version Sscrofa11 and most of the results we present come from this entire set of data. 
However, in order to estimate the effect of the reference genome assembly on the analysis, we will 
sometimes compare results from the initial subset on both assembly versions. We will refer to these 
datasets as “subset_v10” and “subset_v11” in the text. In addition, in order to validate both our data and 
the analysis pipeline, we downloaded two public datasets from Hi-C assays performed in human and 
mouse cells (GEO Accessions SRR1030718 and SRR1658732 respectively) (Dixon et al., 2015; Rao et 
al., 2014). These two datasets, hereafter referred as “human ES cells” and “mouse CH12 cells” have 
been analyzed in parallel using their respective reference genomes (GRCh38 and GRCm38) as a control. 
The main steps of the analysis are summarized in Figure 36 (from raw data to matrix construction) as a 
remainder of the bioinformatics pipeline used to process Hi-C data (see Material and methods for more 
details). 

6.1.1.1 Read statistics 

6.1.1.1.1 Mapped pairs 

Between ~ 476 M and 685 M read pairs were obtained per library after the two runs of 
sequencing (Figure 37A), which represents a total of ~ 3.45 billion of sequenced reads for the entire 
experiments. Around 63% - 73% of the read pairs could be mapped to the reference genome (Sscrofa11) 
(Figure 37B). All replicates showed a similar mapping ratio except for Rep2-110 which showed lower 
mapping rates. These mapping rates are lower than usually reported for human and mouse (Rao et al., 
2014), as expected due to the lower quality of the porcine reference genome in terms of completion and 
assembly. Processing public datasets from human and mouse studies with our pipeline led to results in 
line with the literature (Figure 37B). 



 

 

Figure 38. Selection of “valid read pairs” issue of a Hi-C religation event.  Upper panel (A and B): 
Images adapted from (Yaffe and Tanay, 2011) to illustrate how spurious ligation products are filtered 
out. (A) Hi-C ligation products are expected to map near restriction sites. The sum of distances from 
mapped Hi-C sequences to the nearest restriction sites (d1 + d2) is computed for each Hi-C paired read. 
(B) Then, the distribution of this sum of distances is reconstructed. (C) Example of the distribution of 
the sum of the distances from the reads to their closest downstream HindIII sites for Rep2-110. This 
distribution is consistent with the expected size of the fragments to be sequenced after the experimental 
step of size selection (see Materials and methods). 
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6.1.1.1.2 Valid pairs 

The next step of the Hi-C data analysis is to obtain, among the total read pairs, the so-called 
“valid pairs”. The bioinformatics pipeline based on HiC-Pro (Servant et al., 2015) applies a filter to 
remove read pairs that do not have a mapping configuration consistent with a Hi-C religation event (see 
Materials and Methods). More precisely, since the Hi-C protocol aims to sequence chimeric fragments 
that contain a religation site, each read is expected to be mapped close to a HindIII restriction site on the 
genome. In addition, for a given read pair, the sum of the distances from the reads to their closest HindIII 
sites downstream (d1 + d2) should correspond to the size of the sequenced fragment (Figure 38A-B). 
The distribution of this sum is computed across all read pairs as a quality control, and pairs with extreme 
values (min and max threshold of 20 bp and 1 Kb respectively) are discarded (Figure 38C). This 
distribution corresponds to the insert size of the libraries (420- 520 bp), which was experimentally 
estimated after subtracting 120 bp (size of the adapter sequences) to the observed size (540 – 640 bp) of 
the libraries that was measured with the Fragment Analyzer (see Materials and Methods, Figure 27).  

After applying this filter, between 122 M and 283 M valid pairs were obtained per library on 
the genome version Sscrofa11 (Figure 37A). This corresponds to ~ 26% – 47% of the total pairs (Figure 
37B). Globally, libraries showed a good ratio (> 50%) of valid/mapped pairs, except Rep2-110 for which 
both mapping rates and proportion of valid pairs were lower compared to the other libraries. Despite 
this decrease on valid/mapped pair ratio, we still kept the Rep2-110 library because the fragment size 
distribution estimated from the valid pairs was consistent with a Hi-C religation event (Figure 38C), 
which supported the quality of the filtered data. The valid/mapped pair ratio obtained in pig was higher 
than the one observed in human, except for Rep2-110, meaning that our Hi-C libraries were generally 
more enriched in valid pairs than the data set obtained from human (Figure 37B). This could be the 
results of small variations in the experimental protocols for instance, or of intrinsic differences due to 
tissue and/or species specificities. 

As mentioned above, a subset of the data was both analyzed on the 10 and on the 11 version of 
the pig genome. The results of these analyses are summarized in Figure 39. Running the pipeline by 
using the Sscrofa11 genome version allowed a ~ 8% - 10% increase on the mapping rates compared 
with Sscrofa10. These resulted in a ~2% - 4% increase on valid pairs, which is consistent with the 
considerable improvement on the sequence completion and assembly of the more recent genome 
version. 

6.1.1.1.3 Cis and trans valid pairs 

The valid pairs were then classified into cis and trans pairs depending on whether reads from 
the same pair mapped to the same or to different chromosomes respectively. Around 41% - 56% were 
classified into trans pairs and ~48% - 59% into cis pairs. Last, cis pairs were divided into short-range 
pairs (genomic distance within mapped reads ≤ 20 Kb; ~ 0.9% - 3.8%) and long-range pairs (genomic 
distance within mapped reads > 20 Kb; ~ 43% - 56%). These results were obtained using the Sscrofa11 
genome version (Figure 40). Compared with results on the previous genome version, this represents 
~4.5% less trans pairs (Figure 41). This difference could be explained by the assembly improvement. 
Indeed, read pairs with one read on a chromosome and the other one on an unplaced scaffold are 



 

 

 

 

 

 

Figure 39. Results from a subset of the data on the previous genome version (Sscrofa10) and on the 
current genome version (Sscrofa11). Comparison of the percentages of mapped and valid pairs 
obtained with the two assembly versions.  
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Figure 40. Valid read pairs per category after mapping the full dataset of reads on the Sscrofa11 
genome version. (A) Cis valid pairs: pairs with reads on the same chromosome (short-range: separated 
by a genomic distance ≤ 20 Kb; long-range: distance > 20 Kb). Trans valid pairs: pairs with reads on 
different chromosomes. (B) Percentage of valid pairs per category of our six datasets (dark colors). 
Results from two public datasets  from human ES cells (Dixon et al., 2015) and mouse CH12 cells (Rao 
et al., 2014), analyzed with our bioinformatics pipeline, are also shown (light colors).  

 

 

 



 

Figure 41. Results from a subset of the data on the previous genome version (Sscrofa10) and on the 
current genome version (Sscrofa11). Comparison of the percentage of valid read pairs per category 
obtained with the two assembly versions. 

 

Figure 42. Hi-C contact matrices at different resolutions. Illustration of Hi-C contact matrices of 
chromosomes 1 and 18 obtained at 500, 200 and 40 Kb resolution (Rep1-90). The darker the red color, 
the more contacts (valid read pairs) present in a pair of bins. Visualizations made with the HiTC R 
library. 
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automatically classified as trans pairs. Consequently, if the number of unplaced scaffolds decreases 
between assembly versions, the number of trans pairs should decrease too. In fact, the Sscrofa10 version 
contains 4,562 unplaced scaffolds (7.54% of the genome; genome size ~ 2.8 Gb), vs. 583 unplaced 
scaffolds in the 11 version (2.65% of the genome; genome size ~ 2.5 Gb). Accordingly, the proportion 
of valid pairs that involved unplaced scaffolds (i.e. with at least one read mapped on a scaffold) dropped 
from 11.7% to 4.6% between versions, which can explain part of the drop in trans pairs. 

Interestingly, we observed higher percentages of trans pairs in the porcine libraries than in the 
human one. Moreover, the percentage of cis short-range pairs were lower in pig than in human or mouse 
(Figure 40B). These unexpected results could be in part explained by differences on the assembly of the 
human and pig genomes, similarly to the differences observed between Sscrofa10 and Sscrofa11 as 
presented above. The human reference genome (GRCh38) contains 169 unplaced scaffolds (0.37% of 
the genome; genome size ~ 3.1Gb), compared with the 583 unplaced scaffolds in Sscrofa11 (2.65% of 
the genome). However, even if a small proportion of the increased values of trans pairs reported in fetal 
muscle pig can be explained by the quality of the reference genome, the percentages of trans pairs 
remain still high. This means that most of the differences in the cis/trans pair ratio underline specificities 
regarding the genome organization of the biological material (fetal pig muscle tissue vs. human 
embryonic stem cells).  

6.1.1.2 Construction of genome-wide contact maps 

 The next step of the analysis is the generation of the contact matrices using valid read pairs. For 
that purpose, the genome was segmented into intervals of equal size (number of bases) called bins. To 
explore the data at different resolutions, we generated the matrices using several bin sizes (500 Kb, 200 
Kb and 40 Kb). The larger the bin size, the lower the resolution, similarly to pixel size in pictures. Each 
cell of the matrix corresponds to a pair of bins, to which is associated the raw number of valid read pairs 
(referred as “counts” when talking about bin pairs) connecting the corresponding genomic intervals. The 
total number of bin pairs –hence the size of the matrix- therefore depends on the genome size and on the 
resolution (15,182,805, 83,650,645 and 1,973,647,378 bin pairs for the 500, 200 and 40 Kb resolutions 
respectively). An example of Hi-C contact matrices (also called interaction matrices or contact 
heatmaps) obtained at different resolutions for chromosomes 1 (the biggest one) and 18 (the smallest 
autosomal chromosome) is provided in Figure 42.  

6.1.1.2.1 Main features of Hi-C matrices  

   

Globally, Hi-C contact matrices share similar properties. The first one is that they are balanced 
(or symmetric) matrices, which means that the rows and columns of the matrix represent the same 
feature, in this case the same succession of genomic intervals. For instance, if we observe Figure 42, the 
500 Kb resolution Hi-C matrix of chromosome 1 is displayed by dividing the length of the chromosome 
into 500 Kb genomic intervals to form the rows and columns respectively. The first row and column 
both represent the genomic interval Chr1:1-500,000 (assigned to bin1), the second ones represent the 
interval chr1:500,001-1,000,000 (assigned to bin2), and so on. Thus, the first cell of the matrix  



 
 

 

Figure 43. Distribution of count values in the 40 Kb matrices. The number of occurrences of each 
count value (number of bin pairs with that value) is shown after log-transformation. Only positive values 
up to 60 are shown.  
 
 
 
 
 
Table 7. Percentage of cis and trans bin pairs in a virtual matrix with one count in each cell. Values 
obtained in Hi-C matrices at different resolutions. 

 
500 Kb 200 Kb 40 Kb 

Total number of bin pairs 15,182,805 83,650,645 1,973,647,378 

Cis bin pairs (%) 4.73 5.34 5.65 

Trans bin pairs (%) 95.27 94.66 94.35 
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Figure 44. Schematic representation of the relationship between binning (resolution) and sparsity. 
Read counts represented over one dimension genomic region to illustrate the positive correlation 
between resolution and sparsity on the Hi-C matrices. For an equal number of counts on a specific 
chromosome, when the last is divided into smaller genomic intervals (bins), the number of counts per 
bin decreases while the number of bins with no count increases. Consequently, the sparsity increases at 
higher resolutions. 
 
 
 

Table 8. Statistics of bin pairs counts of Hi-C matrices obtained at three different resolutions (R) for 
the six replicates. The percentages of bin pairs with no count or at least one count were calculated over 
the total number of bin pairs (showed in Table 7). The percentages of cis and trans bin pairs with at 
least one count were calculated over the total bin pairs with at least one count. 

 
R 
(Kb) Rep1-90 Rep2-90 Rep3-90 Rep1-110 Rep2-110 Rep3-110 Mean 

%bin 
pairs 
count=0 

500 13.17 12.87 15.98 13.31 18.85 13.00 14.53 

200 29.66 28.83 42.15 27.48 52.32 29.21 34.94 

40 91.60 91.42 94.11 91.60 95.77 91.52 92.67 

%bin 
pairs 
count>0 

500 86.83 87.13 84.02 86.69 81.15 87.00 85.47 

200 70.34 71.17 57.85 72.52 47.68 70.79 65.06 

40 8.40 8.58 5.89 8.40 4.23 8.48 7.33 

%cis bin 
pairs 
count>0 

500 5.42 5.40 5.60 5.42 5.79 5.41 5.50 

200 7.44 7.33 8.88 7.23 10.47 7.41 8.13 

40 29.04 25.72 33.61 27.32 35.45 29.21 30.06 

%trans 
bin pairs    
count>0 

500 94.58 94.60 94.40 94.58 94.21 94.59 94.50 

200 92.56 92.67 91.12 92.77 89.53 92.59 91.87 

40 70.96 74.28 66.39 72.68 64.55 70.79 69.94 

 
  



 

Figure 45. Distribution of counts in cis and trans bin pairs. (A) Proportion of trans bin pairs among 
pairs of different count values. Proportions were computed within each set of bin pairs with 1 to 100 
counts on the 500 Kb resolution matrix of each replicate. Pairs of bins with no count are not represented. 
Most of bin pairs harboring few counts correspond to genomic regions located on different 
chromosomes. Inversely, most of bin pairs harboring many counts correspond to genomic regions 
located on the same chromosomes. (B) Heatmap representation of a whole genome Hi-C matrix (sample 
Rep1-90 - only the 18 autosomes are represented). The matrix is proportional to the chromosome sizes. 
Interactions between proximal regions in the genomic space correspond to the area next to the diagonal 
(between dotted blue lines), where most of the high counts are located. 
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(row1-column1) contains the number of counts (reported valid read pairs) between genomic regions 
mapped to bin1, the second one contains the reported counts between bin1 and bin2, and so on. These 
Hi-C matrices are symmetric because, for instance, the number of counts in the matrix cell 
“row1-column2” (bin1-bin2) is the same than in “row2-column1” (bin2-bin1).  

The second property of the Hi-C matrices is the high density of counts all along the diagonal, 
which represents the number of valid read pairs mapped to genomic regions located in the same genomic 
interval (bin) or consecutive genomic intervals (bins), as observed in Figure 42. This is an expected 
observation as proximal genomic regions in the linear sequence of the genome cannot be far from each 
other in the 3D nuclear space and thus, the probability of a Hi-C religation event between these regions 
is higher than between genomically distal regions. Hence, as we move away from the diagonal, the 
number of counts decreases along with the probability of contact between distal genomic regions. Far 
from the diagonal, inter-chromosomal bin pairs (trans) usually have low counts. These trans bin pairs 
represent the vast majority (~ 95%) of all bin pairs in a typical matrix (Table 7), meaning that most of 
the bin pairs have low or no counts. As the distribution of the count values shows in Figure 43, bin pairs 
with few counts (~ 1 – 5) are more abundant than those with many counts. 

As mentioned above, the third property of the Hi-C matrices is the sparsity. In numerical 
analysis, a sparse matrix is defined as a matrix in which most of elements (in our case, most of counts) 
are zero, which is the opposite of a dense matrix. This can be observed in Figure 42, where outside the 
diagonal most of the matrix is white (absence of contacts). The sparsity increases as the resolution 
increases and pairs of bins become less dense in counts. In other words, for an equal number of counts 
in a contact matrix, when the genomic intervals (bins) are smaller (i.e. 40 Kb vs. 500 Kb resolution), the 
proportion of bins with no count increases (Figure 44). In our data for instance, the proportion of bin 
pairs with no count represents about 14.5% of the matrix at 500 Kb and 34.9 % at 200 Kb. At 40 Kb, it 
reaches 92.7 % of the matrix (Tables 7 and 8). 
 

6.1.1.2.2 Proportion of cis and trans read pairs 

As the cis/trans ratio is often mentioned as an informative statistic to describe Hi-C data (Dixon 
et al., 2015), we further analyzed the proportion of read pairs (counts) in cis and trans bin pairs. Within 
each set of bin pairs with a specific value (from 1 to 100 counts), we computed the proportion of trans 
bin pairs (Figure 45A). The first observation is that most of bin pairs (genomic regions) containing a 
low number of counts correspond to trans bin pairs. These results were expected due to the direct 
correlation between the number of counts and the genomic distance. By measuring digestion-religation 
events between proximal genomic regions in the 3D nuclear space, we are indirectly measuring the 
spatial distance between these genomic regions.  

A second observation is that all curves in Figure 45A show a quite drastic transition from a high 
number of trans bin pairs with few counts, to a high number of cis bin pairs with many counts. This is 
reflected by the marked increase in count density around the diagonal in the heatmap representation of 
the Hi-C matrix genome-wide (the 25 longest scaffolds, including the 18 autosomes and the 2 sex 
chromosomes, Figure 45B). Moreover, we observed a shift between all six curves and a progressive  



 

Figure 46. Individual Hi-C contact matrices for each replicate. Illustration of Hi-C raw contact 
matrices of chromosome 1 obtained at 200 Kb resolution. Left column: the three replicates at 90 days. 
Right column: the three replicates at 110 days. 
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Figure 47. Individual Hi-C contact matrices for each replicate. Illustration of Hi-C raw contact 
matrices of chromosome 18 obtained at 200Kb resolution. Left column: the three replicates at 90 days. 
Right column: the three replicates at 110 days. 



 

 

  

Figure 48. Merged Hi-C contact matrices. The three Hi-C contact matrices of each condition (90 days 
and 110 days of gestation) were merged before normalization. Example of the merged matrices obtained 
at 200 Kb resolution for chromosomes 1 (top) and 18 (bottom). 
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decrease in their slopes (Figure 45A). The first curve on the left corresponds to Rep2-110, the library 
with the lowest number of sequenced and mapped read pairs (Figure 37A), and the last curve on the 
right corresponds to Rep2-90, which shows the highest number of mapped read pairs. This means that 
the distribution of counts in cis and trans bin pairs is highly dependent on the genome coverage. In other 
words, as the coverage increases, we find more bin pairs with high counts in cis and more with small 
counts in trans and vice versa, and the observed transition on the cis/trans ratio between pair of bins 
with few and many counts becomes smoother due to the saturation of the matrix in counts. This 
emphasizes the need of an efficient normalization method to compare replicates and/or conditions.  

6.1.1.2.3 Hi-C matrices comparison 

Sixty Hi-C matrices were generated for each replicate: 3 resolutions x 20 chromosomes (18 
autosomes + 2 sex chromosomes) (Appendix 11). To limit the effect of the sexual chromosomes on the 
results (due to experimental constraints, samples from both genders were collected) we focused our 
analysis on the 18 autosomes. A rough visual comparison of these Hi-C matrices shows that they look 
very different across chromosomes while very similar across the three replicates of the same condition 
(Figures 46 and 47) suggesting that results are reproducible. Considering the apparent similarity across 
replicates, merged matrices were generated for each condition (90_merged and 110_merged) by adding 
the raw counts of the individual matrices across animals for each pair of bins (Figure 48). Matrices from 
different conditions (90 vs. 110 days) also seem to be generally conserved overall, as previously reported 
in several studies ((Dixon et al., 2015; Rao et al., 2014; Sexton et al., 2012). 

Globally, the general features we observed in our data (matrix sparsity, high density of counts 
over the diagonal) are consistent with the ones previously published in human and mouse. As far as we 
know this is the first characterization of the genome organization made by Hi-C in cells from fetal 
muscle tissues. Moreover, at that level of analysis, the apparent similarity between conditions globally 
shows a high level of conservation in the 3D genome structure as previously reported between different 
cell lines or tissues, even between different species (Rao et al., 2014). 

6.1.1.3 Hi-C intra-matrices normalization 

Hi-C matrices are subject to specific and non-specific biases that need to be corrected before 
being analyzed. The non-specific ones are the classical biases of sequencing (regions with high GC 
content) and mapping (repetitive DNA regions). In addition, the genomic density in restriction sites, 
which are the target of the restriction enzyme used in the DNA digestion step of the Hi-C experiment, 
is a specific source of biases when performing Hi-C assays. Regions that are enriched on the specific 
restriction site tend to be cut more frequently that those poor in restriction sites and consequently present 
a higher probability of Hi-C religation events. In order to remove such biases (GC content, mappability 
or restriction site density), all matrices were normalized using the non-parametric ICE method (Imakaev 
et al., 2012) implemented in HiC-Pro (Servant et al., 2015) (see Materials and Methods). Globally, the 
ICE (Iterative Correction and Eigenvector decomposition) normalization assumes that the bias for 
detecting contacts between two regions can be represented as the product of the individual biases of 
these regions. Briefly, this normalization is done in order to make all bins of a given matrix comparable 
by means of an iterative process. This method ensures that the total counts that involve a given bin (sum 



 

 

  

Figure 49. Normalization of Hi-C matrices. Example of the Hi-C matrix of chromosome 1 before and 

after ICE normalization (Rep1-90) obtained at 200 Kb resolution. The “smoothing” effect of the 

normalization is visible at specific positions (example indicated by the black arrows). 

 
  



GLOBAL GENOME ORGANIZATION ASSESSED BY HI-C AND GENE EXPRESSION 
 

143 
 

of all the values throughout a row or a column) is the same for all the bins. Figure 49 shows an example 
of Hi-C contact matrices before and after normalization. 

The normalized matrices obtained at a 500 Kb resolution were used for the detection of large 
genomic compartments (known as A and B compartments), and those obtained at 40 Kb resolution were 
used to detect smaller genomic domains (TADs) (this will be further detailed in the next section). The 
200 Kb contact matrices were obtained to work at an intermediate resolution. Accordingly to the “map 
resolution” definition described in (Rao et al., 2014), which refers to the smallest bin size such that 80% 
of the loci have at least 1,000 contacts, we achieved a good map resolution as 99.98%, 99.98% and 
99.56% of bins in our 500, 200 and 40 Kb resolution matrices showed more than 1,000 contacts. 

6.1.2 Identification of higher order chromosomal structures 

6.1.2.1 A and B compartments 

The so-called “A” and “B” compartments are large genomic regions often defined as “open 
active” and “close inactive” compartments respectively. “A” compartments are characterized as 
transcriptionally permissive, euchromatic, gene-rich and DNase I hypersensitive regions. Inversely, “B” 
compartments are considered as transcriptionally inert, heterochromatic, nuclear lamina-associated, 
gene-poor and DNase I insensitive (Bonora et al., 2014; Gibcus and Dekker, 2013). From our Hi-C data, 
we sought to investigate the compartmentalization of the genome in order to determine whether: (a) 
these functional compartments previously reported in other studies exist in porcine fetal muscle, and 
whether they are similar or they differ compared to model species, (b) they vary between the two 
conditions (90 days and 110 days of gestation). In brief, the method used to identify these compartments 
relies on a Pearson correlation matrix made from the bins to distinguish the two groups of genomic 
positions assigned to A and B compartments in each chromosome. The segmentation into A and B 
compartments can be observed in these correlation matrices in the form of a plaid pattern with red and 
blue stripes (see the corresponding section in Materials and Methods for more details). Correlation 
matrices for chromosomes 1 and 13 are shown in Figures 50 and 51. A complete set of all chromosome 
correlation matrices (obtained from the merged matrix of the 3 replicates at 90 days of gestation and the 
merged one at 110 days) is provided in the Appendix 12 and 13.  

 A first look at the resulting Pearson correlation matrices allowed us to note the presence of these 
A/B compartments in all chromosomes of our six samples, and to see that they look like the ones from 
the literature. Due to insufficient coverage and other filtering steps of the compartment calling method 
HiTC ((Servant et al., 2012), see Materials and methods), several genomic regions were not assigned to 
any compartment, resulting in white stripes in the visualizations. Nonetheless, we observed that these 
matrices appear to be quite similar within and between conditions (Figures 50 and 51) while, very 
different across chromosomes (Appendix 12 and 13). For instance, some chromosomes (i.e.  chr1, chr3, 
chr15 and chr16) are highly segmented while others (i.e. chr5, chr6, chr8 and chr17) show quite large 
compartments. 

 



 

Figure 50. Hi-C A and B compartments for individual matrices (chromosome 1). Illustration of 
Pearson correlation matrices obtained between bins on chromosome 1 at 90 days (left column) and 110 
days (right column) of gestation, to predict A and B compartments. The color code in a pair of bins (cell 
of the matrix) represents the correlation coefficient between the normalized values of the corresponding 
bins (blue=low correlation, red=high correlation). Sharp transitions between blue/red stripes define 
boundaries between A and B compartments. Occasional white stripes characterize regions with no 
prediction from the method due to insufficient coverage and other filtering steps. 
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Figure 51. Hi-C A and B compartments for individual matrices (chromosome 13). Same as above 
(Figure 49). 

 



 

 

 

 

Figure 52. Size distribution of AB compartments for each replicate. All pairwise comparisons of A/B 
compartments size distributions between replicates from the two conditions were significant and no 
significant differences on size distribution were found between pairs of the same condition. 
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About 733 compartments per replicate were predicted on average, with a mean size between 1.5 
Mb and 2 Mb, which are in the same order of magnitude that those reported from Hi-C experiments in 
human or mouse cells (Dixon et al., 2012; Lieberman-Aiden et al., 2009). 

6.1.2.1.1 Differences in size and number of A/B compartments 

 Next, we investigated whether A and B compartments differ between conditions. To address 
this question, we first compared the number of A/B compartments across replicates. We noted that this 
number varies substantially (598, 586, 594 and 767, 781, 768 for the 3 replicates at 90 days and the 3 at 
110 days respectively), and that the variability is higher between conditions than across replicates of 
each condition. In addition, analyzing the number of A and B compartments separately we found 
approximatively 51% of A and 49% of B compartments in each replicate. Consistently with the 
variability in number of A/B compartments observed between conditions, the compartments are 
remarkably larger at 90 days than at 110 days of gestation as shown in Figure 52. To confirm this 
observation, we tested the significance of all pairwise combinations across replicates and confirmed that 
the observed differences on size distribution inter-conditions were significant (Wilcoxon test, 3.166e-
09 ≤ p-value ≤ 4.83e-04) while no significant differences were found intra-conditions (0.1308 ≤ p-value 
≤ 0.8823). This outcome has two plausible explanations: it could be either, the result of a real biological 
difference of size between the two gestational ages, or it could be an artifact, resulting for instance from 
differences of sequencing depth, as previously observed with the number of counts in cis and trans bin 
pairs.  

In order to explore the potential impact of sequencing depth on the size of compartments, we 
computed the correlation between the mean compartment size of each replicate and the number of valid 
read pairs. A relatively weak yet notable correlation was obtained (Pearson correlation coefficient r = 
0.45), suggesting that the size of the detected compartments could be affected by the quantity of data. 
As we observed with the white stripes in the correlation matrices, regions with low coverage could be 
filtered out by the A/B compartment calling method. Such filtered bins, when present within 
compartments, would result in a fragmentation of the predicted compartments and consequently in a 
general shortening of their sizes. To answer if the observed difference in size distributions could be due 
to a difference in coverage via filtered bins, we computed the number of genomic regions (bin size: 500 
Kb) that could not be assigned to an A or B compartment in each replicate. This number varies between 
500 and 709, which represents between 11.3% and 16.9% of the total number of bins, meaning that 
considerable parts of the genome are not assigned to any compartment. This number of unassigned bins 
was negatively correlated with the mean size of the compartments across replicates (Pearson correlation 
r = -0.89), which is supportive of a potential impact of the available data on the size of the compartments 
via a fragmentation effect of the prediction method. We concluded that the significant difference in 
compartment sizes that we observed between conditions may be partially explained by an artefact of the 
prediction method via a difference in the quantity of available data. This emphasizes the importance of 
considering regions with enough information for any comparison between conditions. 

 



 

Figure 53. Distribution of Hi-C A and B compartments along each chromosome for each replicate. 
Genome-wide overview of compartment labels per 500 Kb bin. A general consistency can be observed 
across replicates. Dotted lines delimit the beginning and the end of each chromosome. White regions 
are devoid of any called compartment.  



GLOBAL GENOME ORGANIZATION ASSESSED BY HI-C AND GENE EXPRESSION 
 

149 
 

 

Figure 54. A/B compartments and gene annotation along the two Hi-C merged contact matrices (90 
days vs. 110 days). The figure shows as example the comparison of the two merged matrices obtained 
for chromosome 2. A/B compartments are represented as red intervals for the merged matrix obtained 
at 90 days of gestation, and as a blue intervals for the one obtained at 110 days. Gene annotation is 
represented in green, in the middle of the image. 
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6.1.2.1.2 Differences in A/B compartments assignment 

 Since the compartment size could be affected by the sequencing depth, we wanted to make sure 
that it was not the case for the A/B assignation itself and sought to investigate: (a) the consistency of the 
A/B calling method across replicates from the same condition and (b) the differences in A/B calling 
between conditions. We therefore looked whether each genomic region (bin) was assigned to the same 
or to a different compartment type across replicates (Figure 53). Any bin containing missing data (lack 
of compartments assignment) in any of the six replicates was not considered for this analysis. Over 
3,371 bins (bin size = 500 Kb), 2,809 (83.3%) were assigned to the same compartment type (either A or 
B) in all six replicates, which is consistent with a general conservation of the higher structural 
organization level of the genome even in different cells as previously observed in human (Barutcu et al., 
2015). Interestingly, 94.1% and 90.7% of the bins were assigned to the same compartment type in all of 
the three replicates at 90 days and 110 days of gestation respectively. Considering pairwise comparisons, 
the average number of bins with the same label is 3,201 (95.0%) between replicates from the same group 
and 3,038 (90.1%) between replicates from different groups. Altogether, these results confirm the high 
consistency of the A and B compartments prediction method when the A/B information is available. 

After verifying that the variability intra-condition was low, we focused our interest on analyzing 
the variability between conditions and, more precisely, on the proportion of bins switching from one 
compartment type to another. Again, considering only bins with assigned compartments, different 
approaches are possible. First, we performed the compartment calling after merging the three Hi-C 
contact matrices per condition, which allowed to increase the genomic coverage of the Hi-C matrix and 
therefore to reduce the number of unassigned bins (down to 7.6% and 8.2% for 90 days and 110 days 
respectively). The pairwise comparison of the A/B assignment between the merged matrices indicated 
that among the 4,026 bins (88.7%) with an assigned compartment in both conditions, 3592 of them 
(89%) have the same compartment (Figure 54). Among the remaining 444 variable bins (11.0%), which, 
at 500 Kb resolution, represents ~222 Mb of the genome, 181 (40.8%) indicate a switch from an A 
compartment at 90 days of gestation to a B compartment at 110 days (A  B) and 263 (59.2%) showed 
a switch from B to A between the two gestational stages (B  A). Alternatively, another approach to 
identify these compartment switches is to take advantage of our experimental design by considering the 
A/B compartment calling that was made on all the replicates separately. Among the 3,371 bins (74.3%) 
with an assigned compartment in all the 6 replicates, 2,809 (83.3%) have the same assignment. As 
expected, this proportion is slightly lower than the one we obtained from comparing only two merged 
matrices (88.7%) but still indicative of a strong consistency across replicates. To identify switching bins, 
we required a total consistency between the assignments within each condition, meaning a switch from 
a triple A to a triple B or the other way around. Eventually, 104 bins (3.1%) fulfilled this stringent 
condition (~52 Mb of the genome), among which 45 (43.3%) and 59 (56.7%) indicated an A  B and 
a B  A switch, respectively. Consistently, a large majority of them (92 out of 104) were also detected 
by the previously described approach using merged matrices. These bins, with a strong and consistent 
AB or BA switch, have been further investigated for integrative analyses with gene expression data 
in the section “Gene expression and nuclear organization”. 
 



 

Figure 55. Gene density in A and B compartments. The A and B compartments were estimated from 
the two merged matrices obtained at 90 days and 110 days of gestation. The differences observed 
between the two types of compartments were found significant (Wilcoxon test). 

      

 

Figure 56. Size distribution of TADs for each replicate. 
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6.1.2.1.3 Gene density in A/B compartments 

In model organisms, A compartments have been reported to be transcriptionally active and gene-
rich, while B compartments were transcriptionally inactive and gene-poor (Lieberman-Aiden et al., 
2009). We estimated whether this general organization was preserved in our samples by computing the 
gene density in the A and B compartments estimated from the two merged matrices obtained at 90 days 
and 110 days of gestation. For that purpose, we used the reference gene annotation ENSEMBL (Figure 
55) and considered for each bin the number of annotated genes in the corresponding 500 Kb. As reported 
in human and mouse, gene density was significantly higher in A vs. B compartments (Wilcoxon test: 
p-value < 6.2e-06). Similar results were obtained on the individual matrices (Appendix 14).  

6.1.2.2 Topologically associated domains (TADs) 

 At a smaller scale than A/B compartments, we investigated the structural organization of the pig 
genome at the level of the Topologically Associated Domains (TADs). TADs are defined as chromatin 
domains enriched in self-interacting regions, with a frequency of intra-domain interactions higher than 
inter-domain interactions (Dixon et al., 2012; Matharu and Ahanger, 2015; Nora et al., 2012). They can 
generally be observed in contact heatmaps as darker triangles on each side of the diagonal (see Figure 
46 for an example of visible TADs in our data). We used the armatus program (Filippova et al., 2014) 
in order to find TADs in the 40 Kb resolution matrices (see Materials and methods for more details). In 
a first step, TAD finding was performed on individual matrices of each replicate separately in order to 
assess the reproducibility of the results, then on the merged matrices to obtain a set of TADs for each 
condition.  Globally, thousands of TADs could be identified in each replicate (from 4,941 to 7,176), 
with 78.9% of the genome being part of a TAD in at least one of the replicates. The average TAD size 
per replicate varies from 181 to 309 Kb (Figure 56), which is lower but in the same order of magnitude 
than the reported range of TADs found in human and mouse (median size: 880 Kb) (Dixon et al., 2012). 
Unlike for the A/B compartments, no strong correlation was found between the mean TAD size and the 
sequencing depth (valid pairs) across replicates (Pearson r=0.3). 

6.1.2.2.1 CTCF and TADs 

 In several mammals, the CTCF DNA binding protein, which plays an important role in genome 
architecture, is enriched at TADs boundaries and involved in the mechanisms of loop formation 
(Björkegren and Baranello, 2018; Dixon et al., 2012; Rao et al., 2014). No information being available 
for pig, we wondered whether this protein could play a similar role in this species. Thus, we sought to 
identify the CTCF-binding sites in fetal porcine muscle and to map them in our detected TADs. In order 
to identify CTCF-binding genomic regions we tried two approaches, one experimental in vitro and one 
in silico. First, we performed ChIP-seq (Chromatin Immuno-Precipitation sequencing) assays on fetal 
muscle samples from the same animals than the ones used for Hi-C experiments. This method allows 
capturing chromatin regions associated to a protein of interest, in our case, the CTCF protein. In brief, 
all DNA-protein interactions are cross-linked and then, target sequences are enriched by using a specific 
antibody (see Materials and methods for more details). The six ChIP-seq libraries (Rep1-90, Rep2-90, 
Rep3-90, Rep1-110, Rep2-110 and Rep3-110) were pooled and sequenced on one lane of a HiSeq3000, 



  

Figure 57. Genomic density profiles of predicted CTCF motifs around TADs. Mean density of CTCF 
binding sites predicted on Sscrofa10 (A) and Sscrofa11 (B) relative to TADs positions detected on the 
corresponding genome versions. Dotted vertical lines represent the TAD boundaries and delimit the 
relative position inside the domains (from 0 to 100% of the TAD length). Outside of the domains, up to 
500 Kb upstream and downstream flanking regions are represented. These density plots were obtained 
for Rep1-110, and similar profiles were observed for the other five samples. 
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together with two input DNA libraries (input-1 and input-2) which are later required as a control for the 
data analysis. Input DNA represents a 10% fraction of the fragmented and cross-linked DNA set aside 
before any specific selection for CTCF-binding fragments, and which processing resumes at the reverse 
crosslink. Because the input DNA is essentially genomic DNA, it is used as a background sequencing 
control to compare with libraries that are enriched in CTCF-bound fragments. Between ~ 69 M and 96 
M read pairs were sequenced per library. From them, around 76% - 81% and 73% - 82% could be 
mapped to the reference genome (Sscrofa11) for the three replicates at 90 and 110 days of gestation 
respectively. CTCF-enriched regions (called “CTCF peaks”) were obtained by comparing the read 
mapping density along the genome between CTCF-immunoprecipitated libraries and input DNA using 
the MACS2 software (see “ChIP seq data analyses”, Materials and methods). Between 909 and 5,491 
CTCF peaks were predicted per replicate (mean size= ~ 340 bp). To control the quality of these data, 
we searched for the known sequence consensus of the CTCF recognition site in the peaks. To do this, 
we provided the FIMO motif detection software (Grant et al., 2011) with a model of the CTCF consensus 
binding site (PWM for Positional Weight Matrix, see Materials and methods), which is highly conserved 
in vertebrates (Kim et al., 2007). Unfortunately, only ~ 9% - 15% of the peaks contained the CTCF 
consensus motif sequence, contrary to an expected percentage of ~ 90% for a real enrichment (results 
obtained on porcine cell line samples from another project, data not shown). In light of these negative 
quality controls, we concluded that some issue could have happened during the ChIP-seq experiments 
(defective batch of CTCF antibody, some problem in the immunoprecipitation or size selection steps, 
not enough starting material, etc.) and we discarded these data. 

 In the absence of available CTCF ChIP-seq data obtained from the Hi-C muscle samples, we 
used an in silico approach to validate the biological relevance of the detected TADs. The CTCF 
consensus motif was used again, but instead of looking for binding sites in peaks only, we performed 
this time a genome-wide scan in order to identify all potential CTCF sites in the pig genome. Then, we 
computed the genomic density profiles of the predicted CTCF sites within and around TADs. This 
analysis was performed on the previous (Sscrofa10) and the current (Sscrofa11) reference genome 
versions. In both versions, the CTCF predicted sites tend to accumulate at TAD boundaries (see Figure 
57 for Rep1-110; similar density profiles were obtained for the other five replicates, data not shown). 
Moreover, on the improved genome version (Sscrofa11), CTCF predicted sites were not only enriched 
at the TAD boundaries but also depleted inside TADs. Last, we performed the same analysis by 
considering the orientation of the predicted CTCF sites. Similar plots were obtained with asymmetrical 
peaks, showing a prevalence of “forward” CTCF sites at the beginning of the TADs and of “reverse” 
CTCF sites at the end of the TADs (Figure 58). This is supportive of the model provided in the literature 
for other mammals, where pairs of CTCF sites involved in DNA structures tend to display a convergent 
(“head-to-head”) orientation (Rao et al., 2014). These results allowed us to validate the method used for 
TADs detection as well as the detected TADs. Moreover, the notable improvement of the CTCF 
enrichment in TAD borders we observed between the 10 and the 11 assembly versions emphasizes again 
the importance of a good genomic reference for this kind of study, in particular when considering large 
structural features like TADs. 

 



 

Figure 58. Genomic density profiles of forward and reverse predicted CTCF motifs around TADs. 
Mean density of CTCF binding sites predicted on Sscrofa11 relative to TADs positions detected on the 
merged matrix at 90 days (the 110 merged matrix lead to similar results). TADs show an accumulation 
of forward CTCF sites at the beginning of the TAD and reverse CTCF sites at the end. The two shifted 
peaks correspond to boundaries of the upstream and downstream respective TADs. 

 

 

Table 9. Number and proportion of tested bin pairs after the filtering step. 

Resolution 
(Kb)  

Number of bin pairs with at least one count  
Before filtering After filtering 

500 10,293,777 9,262,199 (89.98%) 

200 63,872,799 3,844,272 (6.02%) 

40 523,799,997 2,872,786 (0.55%) 

 
  



GLOBAL GENOME ORGANIZATION ASSESSED BY HI-C AND GENE EXPRESSION 
 

157 
 

6.1.3 Differential analysis of the genome organization 

6.1.3.1  Global differences in the 3D genome organization of fetal 
muscle between 90 and 110 days of gestation 

In order to investigate global changes occurring at the level of chromatin structure, we did a 
differential analysis to explore whether significant differences in the 3D genome organization exist 
between the two gestational ages. The differential analysis was performed on the raw matrices obtained 
for the 18 autosomes at 500, 200 and 40 Kb resolution.   

As described in the Materials and Methods section, the first step was to discard pairs of bins 
with low read counts (5 per sample on average). Raw read counts from the remaining bin pairs (from 3 
to 9 M, see Table 9) were then normalized in order to make matrices comparable across replicates. This 
inter-matrix normalization relies on the assumption that: (1) library sizes should be equal and, (2) MA 
plots should not show any strong trend between samples (Figure 59, Figure 60 and Appendix 15 and 
16).  

At each resolution, a Principal Component Analysis (PCA) was performed on the samples 
before and after normalization to investigate the organization of the data. Although the PCAs do not 
clearly show two distinct groups, which is expected since differences between conditions might not 
involve most of the genome, we observed that the resulting projection of the samples on the two first 
principal components (normalized data) allowed to separate the 90 and the 110 days samples along the 
first axis (Figure 61). Thus, we hypothesized that differences in conformation between gestational ages 
can explain part of the variability between samples, and that changes might occur at the level of the 3D 
genome organization between the 90th day and the 110th day of gestation. 

6.1.3.2 Differential genome regions in late fetal muscle development 

Using the normalized counts and the experimental design (2 groups, 3 replicates per group), a 
differential analysis has been conducted to identify pairs of genomic regions with a significant difference 
in the number of read pair connections between the two groups of samples. The analysis has been 
performed at the three resolutions (40, 200 and 500 Kb) as described in Materials and Methods. 

 A total of 10,183, 3,417 and 83 differential bin pairs were obtained at the 500, 200 and 40 Kb 
resolution respectively (Table 10). This represents a small proportion of the tested bin pairs (from 0.003 
to 0.11%). Among them, between 82 and 95% bin pairs were located on the same chromosome at 500 
and 200 Kb resolution, while only 58% at 40 Kb resolution. The observed differences between 
resolutions in both, the number and the cis/trans ratio of differential bin pairs, can be explained by the 
number of read counts per bin pairs. At smaller bin sizes, many bin pairs are filtered out because the 
number of counts per bin pair is low. Consequently, there are less remaining bin pairs to be compared 
between conditions and less differential bin pairs to be detected. Similarly, most of the bin pairs bearing 
low counts are those in trans, even after filtering. Consequently, small variations in the number of read 
counts per bin pairs between conditions may imply bigger contrasts in trans bin pairs than in cis bin 
pairs, thus increasing the number of differential bin pairs in trans at smaller bin sizes. This means that 



 

Figure 59. Distribution of raw (A) and normalized (B) counts per sample (200 Kb).  
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Figure 60. Global MA plot between samples at 90 and 110 days before and after normalization (200 
Kb). The MA plot represents for each bin pair (dots) the log-average count across all samples (A-value, 
x axis) and the average log-fold change between samples of different groups (M-value, y axis). The 
lowess fit (purple line) indicates the potential bias related to the average counting value (close to zero 
after normalization).    



 

Figure 61. Principal component analysis of the samples using raw (left column) and normalized 
(right column) counts. Data normalization resulted in separating the developmental stages along the 
first principal component (x axis). Replicates are shown in red (90 days of gestation) or blue (110 days). 

Table 10. Number and properties of the differential bin pairs 

 
500 Kb 200 Kb 40 Kb 

Total bin pairs with any count 9,262,199 3,844,272 2,872,786 

Differential bin pairs 10,183 3,417 83 

% differential bin pairs 0.11 0.09 0.003 

% differential bin pairs in trans 18.2 5.5 42.2 

% differential bin pairs in cis 81.8 94.5 57.8 

% differential bin pairs with logFC(+) 56.9 50.7 59.0 

% differential bin pairs with logFC(-) 43.1 49.3 41.0 
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Figure 62. Distribution of differential bin pairs per chromosome at 500, 200 and 40 Kb resolution. 
The number of differential bin pairs per chromosome are plotted against the chromosome length. The 
five smallest chromosomes are represented in green, and the five biggest ones in pink. The number of 
differential bins is globally correlated with the chromosome length. As expected because of lower 
counts, the higher the resolution the higher the variability. 



 

Figure 63. Differential bin pairs at 500 and 200 Kb resolution. Each dot represents a bin pair which 
is associated to a log-fold change (logFC) value (blue-white-red gradient scale). Positive values of 
logFC correspond to genomic regions spatially closer at 110 days of gestation than at 90 days (red 
dots). Inversely, negative values correspond to genomic regions spatially closer at 90 days (blue dots). 
Only differential bin pairs of the 18 automosomes are represented.  
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in order to detect local (fine) variations, the quantity of data needed to show significant changes between 
conditions is higher than for detecting global (large) changes. Approximately, 56% of the differential 
bin pairs on average showed a positive log-fold change (logFC), meaning that they bear significantly 
more counts at the 110 days condition than at the 90 days one. As the number of counts depends on the 
probability of a Hi-C religation event which in turn depends on the spatial distance between two genomic 
regions, these differential bin pairs with a positive logFC represent genomic regions that get closer from 
each other at 110 days of gestation than they were at 90 days. Inversely, ~44% of the differential bin 
pairs were found spatially closer at 90 days than at 110 days.   

Then, we sought to investigate whether the distribution of these differential bin pairs across the 
chromosomes was homogeneous or whether some chromosomes were more represented than others. We 
observed that globally, the biggest chromosomes were those having the highest number of differential 
bin pairs (Figure 62). This confirms again that the results highly depend on the chosen resolution. 
Nevertheless, the global correlation between the chromosome sizes and the number of differential bin 
pairs suggests a widespread and homogenous distribution of the differential bin pairs along the genome. 
In order to normalize by the chromosome size, we computed for each chromosome the percentage of 
bins involved in at least one differential bin pair with respect to all bins in the chromosome. We noted 
that chromosome 11, with a relatively small length (79 Mb), presents the highest percentage of bins 
(93%, 45% and 1%) with respect to its size, involved in differential interactions in all three resolutions 
(500, 200 and 40 Kb respectively). 

Then, among the bin pairs with a significant difference in read counts between conditions, we 
examined the distribution of cis and trans interactions, as well as the proportion of the ones with a 
positive logFC (significantly closer at 110 days) vs. negative logFC (significantly closer at 90 days). 
Figure 63 shows the positions of the differential bin pairs with a positive (red) and a negative (blue) 
logFC along the genome matrix (because of the low number of differential bins at 40 Kb only the other 
resolutions were shown). Globally, we observed a concentration of differential bin pairs along the 
diagonal (intra-chromosomes). The proportion of differential bin pairs with positive and negative logFC 
is highly heterogeneous across chromosomes (Appendix 17), suggesting various degrees of contribution 
to the topological difference between the developmental stages. 

Another observation is that many differential bin pairs seem to be located close to the transitions 
between chromosomes (dotted vertical/horizontal lines, Figure 63), suggesting the presence of abundant 
trans interactions between terminal parts of the chromosomes. To investigate the positions of cis and 
trans interactions along the chromosomes with a better resolution, we used “circos plot” visualizations 
to represent significantly distal bin pairs. In these plots, we visualized separately the cis and trans 
differential bin pairs by representing the genome sequence as a circumference inside which, the relations 
between two genomic regions (a pair of differential bins) are represented as red (positive logFC) or blue 
(negative logFC) loops connecting the two regions (Figures 64 and 65). We first considered cis 
connections, and observed that some chromosomes show large genomic regions of differential bins with 
a specific logFC type (either positive or negative). For instance, chromosome 2 seems to be divided in 
two blocks: the first one (blue), smaller, with most of the bins having a negative log-fold change; the 



 

Figure 64. Distribution of differential bin pairs along the genome obtained at 500 Kb resolution. Each 
bin pair is represented by a loop connexion between the two genomic regions (bins) involved in a 
differential bin pair. Chromosome positions are oriented clockwise. Differential bin pairs are 
represented in red (positive logFC) or blue (negative logFC). Upper panel:  Differential bin pairs 
mapped to regions located on the same chromosome. Lower panel: Differential bin pairs mapped to 
regions located on different chromosomes. 
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second one (red), mostly composed by bins with positive log-fold change (Figure 64, upper panel). 
Similarly, chromosome 3 seems to have a large blue region at the beginning, as well as chromosomes 6 
and 14 show large blue regions in their second half. Other chromosomes show mixed profiles, 
alternating bins with positive and negative logFC (i.e. chromosomes 5 and 16). These results suggest 
that large portions of certain chromosomes contain genomic regions that behave in the same way by 
either becoming closer “condensation” or further “decondensation” from each other at 110 days of 
gestation with respect to their initial position at 90 days. These differentially distal regions define large 
chunks of adjacent regions behaving in the same way, similar as TADs or compartments but intrinsically 
dynamic because originating from a comparative analysis. Focusing on trans interactions allowed to 
confirm that many interchromosomal differential bin pairs seem to involve the extremities of the 
chromosomes, in particular with a negative logFC (Figure 64, lower panel). Moreover, these differential 
bin pairs seem to implicate the telomeric regions of both the “q” arm (e.g. chromosomes 3, 4, 8, 9, 10, 
13 and 15) and  the “p” arm (e.g. chromosomes 1, 2, 5 and 11), all with a prevalence of negative log-fold 
changes (blue connections). Density plots of trans vs. cis connections along each chromosome 
highlighted this trend for the trans connections to accumulate at the chromosome extremities (Appendix 
18 and 19). In fact, by considering the first 5 and last bins of each chromosome as a “terminal region”, 
about 4%, 10% and 38% of the trans interactions involved a terminal region at the 500, 200 and 40 Kb 
resolution respectively, while only 2%, 1% and 4% of the cis interactions did at the same resolution. 
This indicates a significant difference in the proximity of telomeric and subtelomeric regions between 
90 and 110 days, being more proximal at 90 days than at 110 days, which might suggests a clustering 
of telomeric regions from different chromosomes in the 3D nuclear space at 90 days of gestation. 

From this differential analysis, we concluded that it exists two global dynamic changes in 
muscle cells between the two gestational ages. The first one concerned intra-chromosomal interactions 
(global chunks of consecutive regions with a coordinated condensation/decondensation), and the second 
one concerned inter-chromosomal interactions with a strong component located at the chromosome 
extremities. 

6.1.3.3 Functional analysis of differential bin pairs 

We wanted to investigate in more details to which genes correspond the differential genomic 
regions and what their roles are. We wondered whether these differential regions are enriched in specific 
biological functions or not. In order to address this question, we performed a gene ontology (GO) 
analysis over all genes located in the differential bin pairs with a positive logFC, or a negative logFC 
obtained at 40, 200 and 500 Kb resolution. We searched for biological processes (BP), molecular 
functions (MF) and cellular components (CC) enriched among the human homologs of genes mapped 
to the differential bin pairs with respect to those mapped to all bin pairs. Obviously, this type of analysis 
highly relies on the quality of the genome annotation and on the proximity of the target genome with 
the human reference. Common functions enriched among genes found in differential bins with both, a 
positive and a negative logFC, were mainly biological processes referred to the synaptic transmission, 
signal transduction, metabolic processes and catalytic activity (Tables 11 and 12). The olfactory receptor 
activity was a specific biological process among differential bins with a positive log-fold change, while 
the response to stimulus was specific of differential bins with a negative log-fold change. No enriched 
functions were found at 200 and 500 Kb in differential bins with a negative log-fold change. 

 



 

 

Figure 65. Distribution of differential bin pairs along the genome obtained at 200 and 40 Kb 
resolution. Each bin pair is represented by a loop connexion between the two genomic regions (bins) 
involved in a differential bin pair. Chromosome positions are oriented clockwise. Differential bin pairs 
are represented in red (positive logFC) or blue (negative logFC). Left:  Differential bin pairs mapped 
to regions located on the same chromosome. Right: Differential bin pairs mapped to regions located on 
different chromosomes. 
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No apparent enrichment in muscle functions was detected from this analysis. This could be 
partly due to the specific nature of the topological differences between stages. Indeed, the main features 
revealed by the differential analysis (large regions of differential compaction in cis and telomere 
clustering in trans) tend to support a global reorganization of the genomic structure with a major 
structural component rather than a targeted gene expression regulatory program.     

6.1.4 Gene expression and nuclear organization 

In this last section we combined Hi-C and expression data to investigate whether changes in 
genome organization are linked to gene expression. To do that, we used the expression data obtained by 
microarray experiments in a previous study of the muscle transcriptome at 90 and 110 days of gestation 
(Voillet et al., 2014). In that transcriptome study, the expression data of 12,465 genes were measured 
by targeted microarray probes in samples from different breeds, including 8 Large White samples at 90 
days of gestation and 9 Large White samples at 110 days. For each microarray probe, that study provided 
us two types of information: (1) an average expression value for both developmental stages (90 and 110 
days); (2) statistical results from a differential analysis comparing both stages with a log-fold change 
(logFC) and an associated p-value. As the previous study was based on a former version of the reference 
genome and annotation -which highly impacts the microarray design- we decided to re-map the sequence 
of each probe on the more recent Sscrofa11 version and to keep only unambiguous matches with 
annotated exons from the Ensembl v90 annotation (see Methods). Importantly, while the previous study 
and the current project were conducted on different animals, we hypothesized that biological effects 
with strong and general impacts might be detected by broad integrative analyses. 

6.1.4.1 Gene expression in A and B compartments 

We first wanted to confirm the difference in gene expression that can be expected between A 
and B compartments. For each A or B compartment predicted from our Hi-C data at a given stage (90 
or 110 days using the merged matrices), a mean expression value was computed by considering all the 
probes within the compartment across the 8 or 9 samples of the corresponding stage of gestation. The 
distributions of these average expression values in A and B compartments are shown in Figure 66. As 
shown in model organisms (Lieberman-Aiden et al., 2009; Rao et al., 2014), we observed a significantly 
higher gene expression in A vs. B compartments (Wilcoxon test, p-value < 2.2e-16 for both tests with 
576 and 769 probes at 90 and 110 days respectively). Similar results were observed for the probes in A 
and B compartments obtained from the individual matrices (Appendix 20). This integration of 
transcriptome data from a previous project reveals a high consistency between 3D genome structure and 
function, considering that the transcriptome data were not obtained from the same animals than the ones 
used to perform the Hi-C experiments. 

 

 

 



 

 

 

Table 11. Enriched GO terms found in genes mapped to differential bin pairs with a positive logFC. 
Categories: BP (Biological Processes), MF (Molecular Functions) and CC (Cellular Components). 

Resolu-
tion Category GOBPI

D Pvalue Count Size Term 

40 Kb 

BP 

0002091 0.002 1 5 negative regulation of receptor internalization 

0032482 0.002 1 5 Rab protein signal transduction 

0035418 0.004 1 11 protein localization to synapse 

0006677 0.004 1 13 glycosylceramide metabolic process 

0035640 0.004 1 13 exploration behavior 

0097503 0.006 1 20 sialylation 

0048488 0.007 1 22 synaptic vesicle endocytosis 

CC 
0097060 0.002 2 200 synaptic membrane 

0030054 0.003 3 911 cell junction 

0060076 0.005 1 12 excitatory synapse 

MF 0008373 0.008 1 20 sialyltransferase activity 

200 Kb 

BP 

0036150 3.00E-07 11 16 phosphatidylserine acyl-chain remodeling 

0007268 2.00E-06 120 641 synaptic transmission 

0036148 3.00E-06 10 16 phosphatidylglycerol acyl-chain remodeling 

0036152 6.00E-06 11 20 phosphatidylethanolamine acyl-chain remodeling 

0036149 8.00E-06 9 14 phosphatidylinositol acyl-chain remodeling 

0051966 1.00E-05 16 40 regulation of synaptic transmission, glutamatergic 

0050911 2.00E-05 25 85 
detection of chemical stimulus involved in 
sensory perception of smell 

0051932 2.00E-05 13 30 synaptic transmission, GABAergic 

0052646 2.00E-05 13 30 alditol phosphate metabolic process 

CC 0005578 5.00E-06 65 303 proteinaceous extracellular matrix 

0044456 1.00E-05 72 353 synapse part 

MF 0004984 2.00E-05 25 85 olfactory receptor activity 

500 Kb 
BP 0050911 7.00E-08 70 85 

detection of chemical stimulus involved in 
sensory perception of smell 

MF 0004984 6.00E-08 70 85 olfactory receptor activity 

0038023 5.00E-07 522 833 signaling receptor activity 
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Table 12. Enriched GO terms found in genes mapped to differential bin pairs with a negative logFC. 
No enriched functions were found at 200 and 500 Kb in differential bins with a negative log fold change. 

Resolu-
tion Category GOBPID Pvalue Count Size Term 

40 Kb 

BP 

0021897 7.00E-04 1 1 forebrain astrocyte development 

0051460 7.00E-04 1 1 negative regulation of corticotropin secretion 

1900011 7.00E-04 1 1 
negative regulation of corticotropin hormone 
receptor activity 

0070593 1.00E-03 1 2 dendrite self-avoidance 

0071314 1.00E-03 1 2 cellular response to cocaine 

0060060 2.00E-03 1 3 
post-embryonic retina morphogenesis in camera-
type eye 

0097211 2.00E-03 1 3 
cellular response to gonadotropin-releasing 
hormone 

0007162 2.00E-03 2 101 negative regulation of cell adhesion 

0048593 2.00E-03 2 102 camera-type eye morphogenesis 

0002125 3.00E-03 1 4 maternal aggressive behavior 

0035021 3.00E-03 1 4 
negative regulation of Rac protein signal 
transduction 

0035865 3.00E-03 1 4 cellular response to potassium ion 

0007270 3.00E-03 2 115 neuron-neuron synaptic transmission 

0046929 4.00E-03 1 5 negative regulation of neurotransmitter secretion 

0042445 4.00E-03 2 137 hormone metabolic process 

0007406 4.00E-03 1 6 negative regulation of neuroblast proliferation 

0048842 5.00E-03 1 7 
positive regulation of axon extension involved in 
axon guidance 

CC 
0030424 6.00E-04 3 267 axon 

0031088 3.00E-03 1 4 platelet dense granule membrane 

0043196 4.00E-03 1 6 varicosity 

0005767 5.00E-03 1 7 secondary lysosome 

MF 

0051424 7.00E-04 1 1 corticotropin-releasing hormone binding 

0016404 1.00E-03 1 2 
15-hydroxyprostaglandin dehydrogenase (NAD+) 
activity 

0004719 2.00E-03 1 3 
protein-L-isoaspartate (D-aspartate) O-
methyltransferase activity 

0010340 3.00E-03 1 4 carboxyl-O-methyltransferase activity 

0008429 4.00E-03 1 5 phosphatidylethanolamine binding 

 

 

 

 

 

 

 

 



 

Figure 66. Average gene expression in AB compartments. The A and B compartments were estimated 
from the merged matrices at 90 and 110 days of gestation. The gene expression data used to compute 
the average expression in both compartments was obtained from a muscle transcriptome study 
performed at 90 and 110 days of gestation respectively (Voillet et al., 2014). 

 

Figure 67. Distribution of differential expression values of probes mapped to genomic regions 
switching A/B compartment vs. probes mapped to regions with no compartment switch. LogFC values 
of probes mapped to genomic regions: (left) switching from an A compartment at 90 days to a B 
compartment at 110 days (A-B switch); (middle) showing no compartment switch; (right) switching from 
a B compartment at 90 days to an A compartment at 110 days (B-A switch).  
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6.1.4.2 Gene expression in A/B switching compartments 

To better investigate potential correlations between high-order chromosomal compartments and 
gene expression, we compared results from the differential expression analysis with those from the 
compartment calling in the different stages. More precisely, we compared the distributions of the probe 
logFC values (110 days vs. 90) in distinct types of genomic regions according to the predicted A/B 
compartments. A positive logFC expression value indicates that the probe was significantly more 
expressed at 110 days than at 90 days. Inversely, a negative logFC expression value indicate that the 
probe was more expressed at 90 days than at 110 days. In particular, we considered the previously 
identified 2,809 regions (500 Kb bins) that showed a consistent A/B labelling in all 6 replicates on the 
one hand (see the “Differences in A and B compartments assignment” section) and the 104 regions with 
a consistent switch on the other hand. Within this second category, the distinction was made between 
A  B and B  A switches (switching sense: 90  110 days). We could identify 26,083 probes in 
“conserved” regions, 200 in A  B switches and 686 in B  A switches. As shown in Figure 67, probes 
that mapped to A  B switching regions showed lower log-fold changes than both probes in stable 
regions and probes in B  A switching regions. Differences between these distributions were all 
statistically significant (Wilcoxon test, p-values equal to 1.2e-4 and 1.0e-15, respectively). In other 
words, genes in genomic regions that switch from an “active” state at 90 days of gestation to an 
“inactive” one at 110 days are likely to show a consistent decrease of expression, in line with previously 
reported results in human and mouse (Dixon et al., 2015). 

Altogether, these results validate the biological relevance of the reported switching regions, as 
the observed differences in gene expression are consistent with the reported changes in the 3D genome 
structure. Although the differences in gene expression in these switching compartments were relatively 
subtle in terms of average logFC (-0.16 for AB vs. 0.23 for BA), they were significant. Moreover, 
as mentioned before, the expression values used in this analysis were not obtained from the same fetuses 
than those of the Hi-C experiments, supporting the hypothesis of a general and important regulatory 
mechanism.  

6.1.4.3 Gene expression in differentially located genomic regions  

To further study the relationship between expression and chromatin structure, we examined the 
expression profiles of genes located on the differential genomic regions responsible of the observed 
global differences in 3D genome structure between the two developmental ages (Figure 61). For that 
purpose, we investigated whether increases or decreases in gene expression could be associated with 
significant variations of the spatial proximity between genomic regions, similarly as we did with the 
switching A/B compartments. We therefore computed and compared again the distributions of 
differential expression values of probes mapped to different categories of genomic regions. Because 
some genomic region can be involved in both positive and negative log-fold changes (depending on the 
interacting partner), this time we considered separately regions that: (1) were not involved in any bin 
pair with a significantly different distance between conditions (2) were only reported in differential bin 
pairs with a significant p-value and a positive logFC, meaning a smaller 3D distance at 110 days vs. 90 
days (3) inversely, regions that were only involved in significantly closer bin pairs at 90 days (negative  



 

 

 

 

 

 

Figure 68. Distribution of differential expression values (logFC) of probes mapped to differentially 
located bin pairs (200 Kb resolution) with a positive or negative logFC vs. probes mapped to regions 
with no significant difference in spatial proximity. 
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logFC). The results of this analysis are shown in Figure 68. Interestingly, although the trends are 
relatively subtle again, the expression values of probes in genomic regions closer at either 90 days or 
110 days of gestation are significantly lower both at 90 or 110 days (p-value < 2.2e-16, Wilcoxon test). 

Altogether, these results suggest that the local variations in the 3D genome organization that we 
reported in fetal muscle may be involved in mechanisms of gene expression regulation occurring in late 
gestation, which supports our initial hypothesis. 

6.2 Discussion 

6.2.1 First insights in porcine muscle genome architecture at late 
gestation 

The development of the High throughput chromosome conformation capture (Hi-C) method 
nearly 10 years ago (Lieberman-Aiden et al., 2009), has allowed to obtain a global view of the three 
dimensional (3D) architecture of genomes. Since the appearance of this approach, many studies about 
the 3D genome conformation have been carried on animal models such as human, mouse and fly (Dixon 
et al., 2012, 2015; Lieberman-Aiden et al., 2009; Rao et al., 2014; Sexton et al., 2012), as well as many 
other organisms such as fish, plants, yeast or bacteria (Dong et al., 2017; Kaaij et al., 2018; Kim et al., 
2017; Marbouty and Koszul, 2015). However, to the best of our knowledge, no previous work has been 
published regarding the spatial organization of livestock genomes assessed by Hi-C. Although Hi-C 
assays were perfomed on goat blood samples, data were not used to study the chromatin structure but to 
improve instead de novo genome assembly of Capra hircus (Ghurye et al., 2017). 

Indeed, the sequence and functional annotation of livestock genomes are not as well 
characterized as in model species. In order to fill this gap, the Functional Annotation of Animal Genomes 
(FAANG) initiative emerged recently to support and coordinate several projects on domesticated species 
(Andersson et al., 2015; Tuggle et al., 2016). As part of this initiative started the FR-AgENCODE 
project, a French pilot project centered on the functional analysis of pig, chicken, cattle and goat 
genomes (Foissac et al., 2018). This study has permitted to describe the global features of pig, chicken 
and goat genome architecture by obtaining the first Hi-C genome-wide contact maps in these species. 
Although this project has been proven highly valuable to describe the 3D genome organization of pig 
genome, the Hi-C assays were uniquely performed on a specific tissue (adult liver). Thus, this thesis has 
been conceived in parallel of the FR-AgENCODE project in order to investigate on another important 
tissue (muscle), in first place, the dynamic changes occurring at the level of the chromatin structure 
between two different conditions and next, to determine in which extent these variations in genome 
conformation are linked to differences in gene expression. 

In the present project we focused on the study of porcine muscle tissue at 14 and 4 days before 
birth (the 90th and the 110th day of gestation respectively). During this period, important biological 
processes take place affecting the capacity of piglets survival at birth (Foxcroft et al., 2006; Rehfeldt 
and Kuhn, 2006; Rehfeldt et al., 2000). This makes our experimental design of special interest for the  
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agronomic research (in terms of meat production), as well as a potential biomedical model for human 
diseases and developmental issues considering the anatomical, physiological and genetic homologies 
between human and pig (Lunney, 2007). As far as we know, our study is the first performed on fetal 
muscle tissue regarding the 3D genome structure of muscle nuclei in this critical period of gestation. 
The closest study to our approach was published last year (Doynova et al., 2017) in which, Hi-C was 
used to capture the genome organization of mouse muscle progenitor cells before and after 
differentiation to myotubes. However, the experiments were performed on an in vitro model (cell 
lineage), thus not as close to real physiological conditions as we could investigate. Moreover, their in 
vitro model targeted a more premature stage of the muscle developmental process which includes the 
proliferation and differentiation of myoblast occurring during myogenesis (Buckingham, 2006; Chal 
and Pourquié, 2017; Yusuf and Brand-Saberi, 2012), while we focused on the maturity process of 
differentiated muscle fibers. 

6.2.2 Adaptation of the in situ Hi-C protocol to porcine fetal muscle 

To perform the Hi-C experiments we used the in situ Hi-C protocol (Rao et al., 2014) which 
reduces the risks to obtain spurious contacts due to random ligation events occuring in dilute solution 
(Nagano et al., 2015), when applying the initial in solution Hi-C protocol (Lieberman-Aiden et al., 
2009). This is because in the in situ (or in nuclei) protocol, all main steps (crosslinking, digestion and 
religation of DNA) occur inside the nuclei. The in situ protocol was initially conceived to be applied in 
human embryonic and mouse lymphoblastoid cell lines. Indeed, most of the published work in this 
domain have been performed on cultured cell lines. One case of Hi-C experiments performed in fresh 
tissue was a study of chromosome conformation in developing human brain (Won et al., 2016). Our first 
challenge was to adapt the in situ Hi-C protocol to fetal muscle tissue preserved at -80°C in isopentane. 
The main difference when working with tissue compared with cell cultures is the need of a preliminary 
step of cell dissociation. Skeletal striated muscle is a quite particular tissue, as the specialized muscle 
fibers form a syncytium (fusion on thousands of individual muscle cells), which is surrounded by the 
sarcolemma (cell membrane) and the basement membrane (a support structure of connective tissue 
formed by collagen fibrils and laminin proteins) (Chal and Pourquié, 2017). Muscle nuclei have oval 
shapes because they are constrained by the basement membrane from the outside, and by myofibrils 
from the inside. As the preservation of nuclear shape is probably one of the most important factors when 
investigating 3D nuclear architecture, we paid special attention to this first step of nuclei isolation. Using 
an enzymatic treatment (collagenases) in order to dissociate both the sarcolemma and the basement 
membrane, resulted in nuclear lysis and loss of material. Indeed we found that when working with fetal 
frozen tissue, there is no need to use enzymatic digestion, a manual dissection of muscle fibers with 
scalpel blades followed by a filtration through a cell strainer and a quick fixation in order to preserve 
the nuclear shape, proved sufficient to isolate the nuclei. With these experiments, we demostrated that 
it is possible to perform Hi-C assays on frozen tissue, which may be advantageous in situations where, 
due to experimental contrains, the Hi-C assays cannot be performed on fresh tissue straight away after 
sampling.  
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6.2.3 High resolution porcine genome maps  

As introduced in the “Hi-C resolution” section (see Chapter 3 of the bibliographic review), the 
sequencing depth is one of the most important factors to generate high resolution contact matrices. Thus, 
we sequenced our Hi-C libraries at high depth in order to obtain high resolutive 3D maps of the porcine 
genome. This allowed us to obtain a total of 3.45 billion read pairs for all our six libraries (575 M read 
pairs / library) from which, between 302 and 461 million per library were identified as valid read pairs. 
The Hi-C contact matrices described by (Rao et al., 2014) have been the most resolutive matrices 
obtained so far (between 395 M and 4.9 billion pairwise contacts in human maps from different cell 
lines and one mouse map). The number of sequenced read pairs obtained in some of these human 
libraries was in the same order of magnitude than the ones obtained in our experiment. However, the 
range of valid pairs was lower than the ones they obtained. This can be explained by: (1) differences in 
quality between the two reference genomes (affecting the mapping rates); (2) the selection criteria of 
valid pairs (pairwise contacts). Indeed, when analyzing one of their dataset with our pipeline, we 
obtained approximately the same proportion of valid/mapped pairs than in our libraries, which suggest 
that our selection criteria to discern read pairs issue from a Hi-C religation event may probably be more 
restrictive; (3) small variations or differences in performance of the experimental protocols, as observed 
in one of our Hi-C libraries (Rep2-110), which resulted less productive than the others. Despite this, 
even if lower, the quantity of valid data we obtained was in the same order of magnitude than the valid 
data reported in mouse (Rao et al., 2014). Indeed, comparing with the most relevant studies in this 
domain (Dixon et al., 2012, 2015; Lieberman-Aiden et al., 2009; Sexton et al., 2012), we obtained 
similar quantity of exploitable data, which underlines the high potential of our experimental design 
which, in addition, consisted in 3 replicates per condition, while in most of the studies, only one or two 
replicates were used. 

Regarding Hi-C resolution we must discern between two confusing concepts: “matrix 
resolution” and “map resolution”, as first described in (Rao et al., 2014). The first refers to the locus 
size (bin size) used to construct a contact matrix, and the second one was described as the smallest locus 
size such that 80% of the loci have at least 1,000 contacts. We obtained contact matrices at 500, 200 and 
40 Kb matrix resolutions, on which at least 99% of loci have more than 1,000 contacts. This means that 
theoretically, we could have obtained Hi-C matrices at smaller bin sizes than 40 Kb while still keeping 
good mapping resolutions. However, we did not decrease the bin size because the criteria of map 
resolution to perform a differential analysis, as we did, must be higher in order to identify significant 
differences between the two conditions. Indeed, the number of differential bin pairs detected at 40 Kb 
was too low compared with 200 and 500 Kb. This suggests that at 40 Kb, the quantity of valid data is 
probably insufficient to target all relevant differences in chromatin structure existing between the two 
stages of development.   

6.2.4 Main features of 3D genome folding in fetal muscle 

Before building Hi-C contact matrices, we investigated the number of cis and trans read pairs 
among the total valid pairs. Interestingly, we obtained across all six replicates relatively higher  
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percentages of inter-chromosomal interactions (48% on average) than in the human and mouse dataset 
(Dixon et al., 2015; Rao et al., 2014) used for comparison (29% and 43% respectively). In addition the 
reported percentages of short-range (< 20 Kb) intra-chromosomal interactions (~ 2.4%) were much 
lower compared with the human and mouse datasets (12% and 22% respectively). We first wondered 
whether these discrepancies were a consequence of differences in the quality of the reference genomes. 
Thus, we compared the impact of a genome assembly improvement by running our pipeline on a small 
dataset with the previous (Sscrofa10) and current (Sscrofa11) genome versions. However, the observed 
decrease on trans bin pairs in Sscrofa11 with respect to Sscrofa10 was not important enough to elucidate 
all differences, and we suggested that cell-type specificities (i.e. nuclear shape or genome compaction) 
may explain the observed differences. Indeed, in the study performed in human embryonic stem (ES) 
cells and four ES derived lineages (from which we exported the human dataset (Dixon et al., 2015)) 
between 11% - 51% of trans, and 16% -53% of cis (< 500 pb) read pairs were reported, showing a high 
variability among the different cell types. The high percentages of cis short-range interactions observed 
in this study, might be due to the proliferating state of these progenitor stem cells, as during some points 
of the cell cycle (mitosis) the chromatin is found in its highest level of compaction forming 
chromosomes. In another Hi-C assay performed in human fetal brain tissue around 53% of trans valid 
pairs were reported (Won et al., 2016), similar to the 51% reported in neural progenitor cells (Dixon et 
al., 2015), but no information is available for the cis-short range in this tissue of differentiated cells. 
Another evidence of cell-type specificities on the number of cis/trans interactions, was the the results 
found in our aforementioned Fr-AgENCODE project (adult liver) (Foissac et al., 2018), where the 
percentages of trans (30% - 38%) and cis short-range valid pairs (6.4% – 6.8%) in hepatocytes were 
quite conserved across the three species (goat, chicken and pig). As mentioned before, muscle nuclei 
have a particular oval shape due to their peculiar location along the syncytium formed by the muscle 
fiber, which might explain the observed differences on the cis/trans ratio compared with other cell types. 
In fact, in a study performed in differentiated myotubes (Doynova et al., 2017), although the criteria for 
classifying cis short-range interactions was different (< 10 Kb instead of 20 Kb), the percentage was in 
the same order of magnitude (2.5% – 3%) than in our fetal muscle libraries. However, only 36-37% of 
trans read pairs were reported compared with our 41% - 52%. Nevertheless, we must consider that in 
this study, an in vitro instead of an in tissue model was used to investigate the genome organization of 
differentiated muscle cells, which might explain the differences. In addition, their Hi-C experiments 
were performed by using the in solution Hi-C protocol which has been proven to increase both 
experimental noise and bias and, more specifically, to reduce the reproducibility of long-range intra- 
and inter-chromosomal contacts (Nagano et al., 2015). Altogether, our results support the idea that the 
cis/trans contacts ratio may be more cell-type specific than species specific, and probably they can be 
explained by differences in nuclear shape and cell state (proliferating or quiescent cells). 

In order to investigate the higher order structures of muscle genome, we obtained Hi-C contact 
matrices for individual chromosomes, as well as for the whole genome. The first observation was the 
high contrast between the density of intra- and inter-chromosomal contacts (Figure 45), displaying a 
clear delimitation of each chromosome in the whole genome matrix. These chromosomal structures 
correspond to the well-described chromosome territories (CTs) occupying discrete foci on interphase 
nuclei (Bolzer et al., 2005; Cremer and Cremer, 2001). 
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Then, we sought to investigate subchromosomal structures within the chromosome territories, 
the so-called A and B compartments. We identified about 682 compartments per replicate with a mean 
size between 1.5 and 2 Mb. These compartments are smaller than the ones previously observed in mouse 
(3 Mb median size) (Dixon et al., 2012). However, in our previous study on porcine liver 
(FR-AgENCODE project), we obtained A/B compartments which showed a mean size of ~ 3 Mb. These 
results suggest that there might be cell-type specific differences, apart from differences in the genomes 
and/or in the analysis method. Besides, we confirmed that, compared with the B compartments, A 
compartments show a higher density of genes, a higher gene expression, and a lower frequency of 
contacts, meaning that the chromatin is more decondensed (accessible), as previously described in 
(Lieberman-Aiden et al., 2009). We also observed that most of these compartments were highly 
conserved across all replicates, as previously reported in other studies (Barutcu et al., 2015; Doynova et 
al., 2017; Foissac et al., 2018), while their distribution is very heterogeneous across all chromosomes. 
For instance, some chromosomes (i.e. 1, 3, 15 and 16) seem highly segmented, while others (i.e. 5, 6, 8 
and 17) show quite large compartments. 

Beyond the CTs and the A/B compartments, we identified smaller chromatin structures defined 
as chromatin domains enriched in highly-self interacting regions, the so-called TADs (Dixon et al., 
2012; Nora et al., 2012). TADs seem to play a role in coordinating the activity of groups of neighboring 
genes (Gibcus and Dekker, 2013). Indeed, TADs boundaries are enriched in insulator proteins (such as 
CTCF), histone marks associated to active promoters, and transcription start sites (TSS) (Dixon et al., 
2012). Accordingly to this, we found a high density of genomic CTCF-binding sites around TAD 
borders, with a prevalence of “forward” CTCF sites at the beginning of the TADs and of “reverse” 
CTCF sites at the end of the TADs when considering the orientation of the CTCF-binding sites, as 
previously observed by (Rao et al., 2014). In fact, TAD boundaries have been suggested to be involved 
in the mechanism of loop formation, together with other proteins such as cohesin and RNAPII, which 
may need CTCF dimerization due to the convergent orientation of the two CTCF motifs present at the 
loop anchors (Björkegren and Baranello, 2018; Rao et al., 2014; Tang et al., 2015b). The mean size of 
our predicted TADs ranged between 181 and 309 Kb, which are considerably smaller than those initially 
described (~ 1 Mb) (Dixon et al., 2012; Nora et al., 2012), but similar in size than the “contact domains” 
and “physical domains” described in (Rao et al., 2014 and Sexton et al., 2012) respectively. Indeed, the 
TADs involved in loop formation have been proposed as “insulated neighborhoods” of approximately 
~ 190 Kb, which can associate to form nested insulated neighborhoods through the formation of nested 
boundaries (Hnisz et al., 2016a). This suggests the existence of nested TADs organized in a hierarchical 
way, as previously described (Fraser et al., 2015), meaning that we possibly detected additional 
boundaries beyond those previously observed, as proposed by (Rao et al., 2014). This would explain the 
size difference. Another evidence that supports this hypothesis is that our TADs showed not only a high 
density of CTCF-binding sites at the boundaries, but also a depletion of these sites inside TADs, while, 
in Dixon et al. 2012, 85% of the CTCF-binding sites were found inside TADs. As just mentioned, this 
is probably because they did not find additional boundaries inside their TADs which might have contain 
CTCF-binding sites. In addition, these differences could also be explained because we used a different 
TAD detection method, the Armatus program (Filippova et al., 2014), instead of the directionally index  
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(DI) approach (Dixon et al., 2012). Indeed, Armatus has been proven to have higher sensitivity in 
recovering TAD boundaries than other methods (Forcato et al., 2017).  

6.2.5 Major changes on chromatin conformation at late gestation 

In this study, we have been able to detect dynamic changes in the chromatin structure of muscle 
nuclei occurring at late gestation (between the 90th and the 110th day). Some of these changes were 
global, (identification of many genomic regions showing a significant differential on the interaction 
frequencies); others were more specific, such as clustering of telomeric regions; and others were more 
subtle, such as the detection of few genomic regions switching between A and B compartments. 

6.2.5.1 Switching compartments 

Regarding the A and B compartments, although the vast majority of genomic regions have the 
same compartment assignment across replicates, 11% of them switched between the two conditions 
when comparing the two merged matrices. However, when being more restrictive by comparing 
uniquely genomic regions with a compartment assignment in all replicates, and with a total coherence 
between the three replicates of each condition, only 3.1% of the genomic regions switched compartment. 
These dynamic changes seem less important compared with some studies where extensive A/B 
compartment switches were observed. For instance, up to 25% of switches were reported between 
human embryonary stem (ES) cells and mesenchymal stem cells (MSCs) (Dixon et al., 2015), 12% 
between epithelial and a breast cancer cells (Barutcu et al., 2015), and 8% between progenitor and 
differentiated myotubes (Doynova et al., 2017). However, analyzing more in detail the different 
approaches used for compartment detection, we realized that these values are not strictly comparable. 
Indeed, in all these three studies, the genomic regions switching compartment were identified after 
merging all replicates for each condition, rather than requiring for a total consistency between replicates. 
Obviously, this approach leads to a different number of switching regions. Moreover, the A/B 
compartments were identified at different resolutions in each study. The choice of resolution might 
considerably affect the number and assignment of A/B compartments. Fine changes in compartment 
assignments that could not be detected at large bin sizes, might be easily detected when using smaller 
bin sizes, and consequently, the number of variable genome regions may increase. This would explain 
the high percentage (25%) of switching compartments found in (Dixon et al., 2015), as they used 40 Kb 
resolution matrices to determinate the A/B compartments, while we did the compartment calling on the 
500 Kb resolution Hi-C matrices. Similarly, (Barutcu et al., 2015) obtained 12% of switches by using 
250 Kb resolution matrices, and Doynova et al. observed 8% of switches in 400 and 500 Kb resolution 
matrices, the last being in the same order of magnitude than the number of changes we detected at similar 
resolutions.  

Overall, when the different approaches are comparable, then it can be hypothesized that the 
magnitude of dynamic switches can be cell-type dependent, as reported in (Dixon et al., 2015), which 
observed huge differences in the number of switching compartments between different cell types. In this 
study, embryonic stem (ES) cells are derived in mesendoderm (ME) and mesenchymal stem cells 
(MSCs), being the first the initial progenitors and the last the most differentiated. ME cells and MSCs  
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showed 3.8% and 25% of switches with respect to ES cells respectively. It seems that the more divergent 
are the cell populations, the more important are the differences in chromatin structure. In this context, 
considering that we studied the dynamic changes between two populations of the same cell type 
(differentiated muscle fibers at two different points of the muscle maturation process), we observed a 
non negligible proportion (from 3% to 11%, depending on the approach) of genomic regions switching 
compartment types. These changes of chromatin state between the two conditions may potentially have 
a role in the regulation of gene expression, as variations in gene expression have been significantly 
associated to these switching compartments (further discussed bellow). 

6.2.5.2 Dynamic interacting regions 

Our differential analysis method allowed us to identify 10,183, 3,417 and 83 differential bin 
pairs at 500, 200 and 40 Kb resolution respectively between the two developmental stages. These 
differential bin pairs reflect dynamic interacting regions distributed all over the genome, and might be 
responsible of major changes in chromatin structure occurring between the 90th and the 110th day of 
gestation that explain the separation we observed between the two conditions (Figure 61). We were able 
to detect much more dynamic interacting regions, compared with the myogenesis in vitro model study 
performed in mice (Doynova et al., 2017), where only 55 differentially bin pairs were reported between 
myoblast and myotubes (400 Kb resolution). We could expect higher global changes during 
differentiation (myogenesis) than in our model of differentiated muscle fibers at two relatively close 
developmental stages. This is probably because we have a much better map resolution, which allowed 
us to identify more subtle changes. The functional analyses performed on these differential bin pairs 
show an enrichment in biological processes related to synaptic transmission, signal transduction, 
metabolic processes and catalytic activity. No apparent enrichment in muscle-associated functions was 
observed, unless the synaptic transmission refers in this case to the neuromuscular contraction. It must 
be considered that at 500 and 200 Kb resolution the differential genomic regions contain too many genes 
to be able to target specific genes. On the other side, althought at 40 Kb we could target more fine (gene 
scale level) differential genomic regions, the quantity of data was probably not enough to allow us 
identifying relevant differences in chomatin structure associated to expression regulatory programs. 
Further sequencing would be necessary in order to improve the results obtained in the differential 
analysis at 40 Kb resolution. 

Among all differential bin pairs, we highlighted two interesting findings involving several 
related genomic regions. The first concerns large chromosomal adjacent regions and the second one 
involved telomeric regions of most of the chromosomes. 

6.2.5.3 Differentially distal adjacent regions 

Interestingly, we observed large genomic regions of adjacent differential bin pairs that exhibit 
the same dynamic behavior when comparing the two gestational ages. Specifically, we found two large 
clusters in chromosome 2 that seem to correspond each to a chromosome arm, with a high density of 
differential bin pairs with a negative log-fold change in the p arm, and a positive log-fold change in the 
q arm. This indicates that the p arm becomes less condensed at 110 days of gestation and the q arm more  
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condensed, which suggests that globally, genes located on the p arm may show a more inactive state 
than those located on the q arm at the end of gestation. Similar results were observed on the fly genome, 
where higher-order clusters corresponding to each chromosome arm were organized into active and 
inactive clusters (Sexton et al., 2012). However, unlike in our study, this was not associated to dynamic 
changes because this study was mostly focused on an exhaustive description of 3D folding features in 
the fly genome. Beyond these clusters found on chromosome 2, similar large structures were observed 
for instance in chromosomes 6 and 14 (both with a negative log-fold change) or 1 and 13 (positive 
log-fold change), however, they did not involve the whole chromosome arm. It remains to verifiy if 
genes located in these dynamic adjacent regions are related and/or whether they show a coordinated 
regulation of gene expression, in which case we could suggest that the chromatin remodeling of large 
adjacent regions explain in part a coordinated regulation of related genes.   

6.2.5.4 Inter-chromosomal telomeres clustering 

Another interesting finding was that many inter-chromosomal differential bin pairs involved the 
telomeric regions of many different chromosomes (at least nine among eighteen) located in either the p 
or the q arm. Some of them, such as telomeric regions in the q arms of chromosomes 3, 9 and 15, 
involved differential bin pairs with telomeric regions belonging to at least four different chromosomes. 
Moreover, most of them showed a negative log-fold change indicating than telomeres exhibit dynamic 
coordinated nuclear organization in muscle cells during late development. More specifically, this 
suggests that telomeres seem to be preferentially clustered at 90 days of gestation and might dissociate 
later at 110 days. Indeed, these telomeres changes could be possible since telomeres have been observed 
to display rapid movements in live human cells (Wang et al., 2008). Similarly, preferential contacts 
between telomeres have been reported in fly embryonic nuclei, but these contacts were not associated 
to dynamic changes (Sexton et al., 2012). In another study, telomeric and sub-telomeric regions were 
found to display more frequent interactions in epithelial cells than in breast cancer cells (Barutcu et al., 
2015), however these interactions were only intra- but not inter-chromosomal, meaning that some 
chromosomes bend to bring in contact their two extremities. This phenomenon of telomeres clustering 
has been also observed in yeast meiotic and quiescent cells (Guidi et al., 2015; Lazar-Stefanita et al., 
2017; Yamamoto, 2014). Also in yeast, the telomere clustering has been associated to the formation of 
foci in which silencing factors concentrate, and it has also been proved the dynamic nature of 
aggregation or dissociation of these clusters (Hozé et al., 2013). There are also evidences of telomere 
clustering in mammals both in somatic cells and gametes (Solov’eva et al., 2004). For instance in human 
cancer and mouse cell lines, dynamic associations and dissociations of a subfraction of telomeres have 
been also observed in quiescent mammalian cells (Molenaar et al., 2003). In human fibroblasts, 
telomeres are known to associate preferentially in interphase nuclei than in their cycling counterparts 
(Nagele et al., 2001), and long telomeres have been observed to be involved in forming chromosome 
loops that can affect the higher order chromatin structure and gene expression (Robin et al., 2014). 
Interestingly, this study was performed in human myoblasts where it was proposed that telomere 
length-dependent long-range chromosomal interactions may repress gene expression by silencing genes 
close to the telomere. Or it may inversely enhance gene expression by activating those genes when 
telomeres became shorter with cellular aging. Moreover, a strong clustering of telomeres has also been  
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reported in porcine neutrophils and lymphocytes (Yerle-Bouissou et al., 2009). Another study focused 
on the cis telomeric associations in neutrophils revealed that when telomeric associations occur, the 
assotiations of p and q arm from the same chromosome are more frequent (Mompart et al., 2013). 
Besides, on one side, the SMARCA4 subunit of the SWI/SNF complex, which has a potential role in 
tissue-specific gene regulation during embryonic development, has been suggested to play a role in 
three-dimentional organization of telomeric regions (Barutcu et al., 2016). On the other side, the ATPase 
subunit of this same SWI/SNF complex has also been found to be required for the formation of 
inter-chromosomal interactions contributing to changes in gene positioning during myogenesis and 
temporal regulation during myogenic transcription (Harada et al., 2015).  

Our results of inter-chromosomal clustering of telomeric regions at 90 days of gestation, 
together with the aforementioned studies related to telomeres associations, suggest the possibility of a 
specific dynamic mechanism of gene expression regulation in fetal muscle cells through temporal 
formation-disruption of telomere clusters. Further studies by using 3D DNA FISH will be necessary to 
confirm this hypothesis. 

Interestingly, similarly to telomeres yet less obvious, we observed that some differential bin 
pairs seem to involve the centromeric regions of few chromosomes (i.e. chromosomes 2, 5, 8, 10, 11 
and 12) but in this case, they show a positive log-fold change. This suggest that centromeres might 
cluster preferentially at 110 days. This phenomenon of centromeres clustering has been previously 
observed in different studies (Botta et al., 2010; Sexton et al., 2012; Yerle-Bouissou et al., 2009). 
However, we were not able to prove it since their genomic location it is not available in the reference 
genome sequence.  

6.2.6 Genome organization and gene expression 

In order to investigate whether the observed structural changes in 3D genome folding (switching 
A/B compartments and differential bin pairs) were related to variations in gene expression, we integrated 
to our study muscle expression data obtained on fetuses of 90 days and 110 days gestational ages. 
Regarding A/B compartments, we observed that probes mapped to A  B switching regions (switching 
sense: 90 days  110 days) showed significantly lower fold changes than those mapped to B  A 
switching regions. This suggests that at 110 days of gestation, there is a downregulation of gene 
expression in these genomic regions, which seems to be associated to structural variations of the 
chromatin state (switch from an “active” state at 90 days of gestation to an “inactive” one at 110 days). 
Inversely, switches from B to A seem to be associated to upregulated genes in these genomic regions. 
This was in agreement with results reported previously in human and mouse (Barutcu et al., 2015; Dixon 
et al., 2015; Doynova et al., 2017; Won et al., 2016). Similarly, we found that the expression values of 
genomic regions (differential bin pairs) significantly closer either at 90 days or 110 days of gestation 
are significantly lower than in more distant regions. Although significant, the differences in gene 
expression, both in switching compartments and differential bin pairs, were subtle. This suggests that 
variations in chromatin structure, especially when considering large genomic regions, do not always 
imply a global regulation of gene expression but rather indicate fluctuations in the expression levels of  
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a subset of genes located in the interrogated region. In fact, the integration of gene expression and 
differentially located regions was done at 200 Kb resolution. When we used the differential bin pairs 
reported at 500 Kb, no significant differences in the logFC expression were found when comparing with 
stable regions (data not shown). This is probably because at 500 Kb the differentially located regions 
are too large to target genes potentially regulated (to many genes per genomic region) and/or because 
the genomic regions involved in differential genome conformation are not sufficiently specific of 
distancing/approaching phenomena. Despite these subtle but significant variations, these results strongly 
support our initial hypothesis that the differences in gene expression previously reported between the 
two developmental stages (Voillet et al., 2014), are at least in part associated to chromatin remodeling.
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7 General conclusion 

This project has permitted to explore the relations between 3D genome organization and gene 
expression. More specifically, it has allowed to shed light on the main changes occurring at the level of 
chomatin structure in porcine developmental muscle, which are associated at least in part with variations 
in gene expression. 

Our first study, in which a single-cell approach (3D DNA FISH) was used to asses the nuclear 
proximity of a selected group of genes, allowed us to reveal interesting associations involving IGF2, 
DLK1 and MYH3 genes, all of them related to muscle development (Schiaffino et al., 2015; Van Laere 
et al., 2003; Waddell et al., 2010). Moreover, we developed an innovative approach of gene 
co-expression network inference in which, by means of integrating information of gene nuclear 
co-localizations, we were able to obtain consistent, robust and reliable gene co-expression networks. As 
these networks were build from genes differentially expressed in fetal muscle of two extreme breeds in 
terms of survival, the information generated by these networks, brought to light relevant functions 
involved in the development and maturity of the fetal muscle. In addition, we proposed the MYOD1 and 
CTNNB1 transcription factors as potential co-regulators of the aforementioned IGF2 and DLK1 genes 
that we found co-localized in muscle nuclei. Globaly, we proved that by combining biological 
information of spatial proximity between genes, with pairwise partial correlations between gene 
expression levels, we are able to highlight a network of muscle-specific interrelated genes. 

In our second study, we investigated the 3D genome organization at a larger scale, by using a 
population-based method approach (Hi-C), which allowed to explore all genomic regions found in 
proximity in muscle cell nuclei. This study has permitted to provide the first 3D maps of the porcine 
muscle genome at 500, 200 and 40 Kb resolution, as well as to determine major chromatin structures 
such as the A/B compartments and TADs. More important, we have identified genomic regions showing 
significant differences in chromatin structure between the two gestational ages. Interestingly, a 
considerable proportion of these genomic regions involved the telomeric regions of several 
chromosomes, which seem to preferentially cluster at 90 days of gestation compared with 110 days. In 
addition, our data suggest that differences between conformations at the two developmental stages, can 
explain a part of the variability between conditions. Moreover, althought the A/B compartments were 
mostly conserved across replicates, we identified few genomic regions changing of compartment type 
between the two gestational ages. We proved an actual link between chromatin conformation and gene 
expression by first confirming that the gene expression was significantly higher in A vs. B compartments 
as expected. Second, we observed that swiching from an A compartment (at 90 days) to a B compartment 
(at 110 days) was accompaigned by a slight but significant decrease in gene expression at 110 days, 
which is consistent with the known genomic features of B compartments (related to close inactive 
regions associated to heterochromatic histone marks). Third, the genomic regions exhibing significant 
differences in chromatin conformation, showed as well subtle but significant differences in gene 
expression. More specifically, those regions significantly closer both at 90 days or at 110 days of  
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gestation, showed a significant decrease in gene expression than those regions significantly far from 
each other in the corresponding stage of gestation. 

Altogether, these new insights would help us to understand possible mechanisms of gene 
expression regulation dependent on genome structure in fetal porcine muscle, which is a valuable 
information in the context of the agronomic research. Further functional studies will be still necessary 
to uncover which are those mechanisms (potentially involved in muscle development and the 
establishment of muscle maturity in pig). Meanwhile, this thesis has allowed to characterize the main 
structural changes occurring in the 3D genome organization at late gestation, where important variations 
in the expression of genes related to muscle maturation process have been described.
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8 Perspectives 

In order to further exploit our data, it would be interesting in the short term to identify A/B 
compartments at smaller matrix resolutions than we did, in order to explore the impact of resolution on 
the compartment assignments and, eventually, to identify new genomic regions switching compartment 
type. The obtainment of Hi-C matrices at smaller bin sizes (i.e. at 10 Kb resolution), if we still keep a 
good “map resolution”, would allow us to search for loop structures as previously described in (Rao et 
al., 2014). As loop structures are known to be involved in mechanisms of gene expression regulation 
(by bringing genes and distal regulatory elements in proximity), these would be a first step to identify 
potential regulatory elements of target genes such as distal enhancers. In line with this, it would be 
highly valuable to integrate our Hi-C data with ChIP-seq (chromatin immunoprecipitation sequencing) 
data, which would allow us to capture DNA sequences bound by proteins (RNAPII, H3K36me3, 
H3K79me2, H3K27ac, H3K4me1, and H3K27me3) associated to transcriptionally active or inactive 
regions. As it would be worth repeating the ChIP-seq experiment targeting the CTCF protein, as well as 
the SMARCA4 subunit of the SWI/SNF complex which has been found to be involved in the telomere 
structure, but also found enriched in open chromatin regions and TAD boundaries (Barutcu et al., 2016). 

Obviously, if we could further increase the sequencing depth of our Hi-C libraries, we will be 
able to achieve a better resolution in order to target structural variations of specific genes (even of the 
regulatory sequences of those genes), as well as to allow performing the differential analysis at lower 
resolutions. Moreover, if we could achieve such a level of resolution, we will be able to detect chromatin 
contacts between pairs of genes at the whole genome scale. This information, combined with the 
appropriate expression data, could be used in our model of network inference in order to extend the 
approach by using data of gene-gene interactions at the whole genome level, which will allow us to 
obtain highly relevant and informative gene co-expression networks. 

In addition, it would be interesting to use expression data from RNA-seq assays, which would 
be more appropriate to be integrated with our Hi-C data. Indeed, the expression data used in our study 
were obtained from a porcine microarray, in which probes related to adipose tissue, immune system and 
skeletal muscle specific genes were overrepresented. On the microarray some genes were characterized 
by several probes while others were represented by a unique probe, and probes were designed when the 
available reference genome was still of relatively low quality. Using RNA-seq data would allow us to 
have a better representation of the whole genome transcripts, and a more accurate measure of gene 
expression levels, which would rend the expression and chromatin conformation data more comparable.   

Because we studied a diploid genome, the results obtained for each chromosome are indeed a 
mixture of chromatin structures from the two homologs. It would be interesting to investigate whether 
we obtain the same chromosome folding patterns between the paternal and maternal homologs. In order 
to do this, we could detect allele-biased genomic regions in terms of chromatin structure by identifying 
SNPs overlapping to our reads. These new results could be integrated with the new RNA-seq data to  
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explore whether allelic imbalances in gene expression (i.e. genes subject to genomic imprinting) are 
associated to allelic differences on the interacting frequencies. 

Finally, as we observed that the telomeric regions seem to preferentially cluster at 90 days of 
gestation, it would be interesting to perform 3D DNA FISH experiments in order to find out whether 
these clusters are just more prevalent at 90 days than at 110 days or whether they remarkably dissociate 
at 110 days.
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Appendix 1. Description of the model used for network inference. 
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Appendix 2. Gene description and cluster allocation.  

Expression data of the 359 genes is available on the NCBI/GEO database with the following accession 
number GSE56301. The gene annotation was improved compared to the one given in the original 
publication (Voillet et al., 2014). Target genes tested by 3D DNA FISH are in red bold.  
 
      Netwrork 

0 
Netwrork 

1 
Netwrork 

2 
Netwrork 

3 
Gene 
symbol Gene description ProbeName cluster cluster cluster cluster 

ABCB7 ATP binding cassette subfamily B member 7 [Source:HGNC 
Symbol;Acc:HGNC:48] 

gi|115551474|dbj
|AK236152.1| 6 2 7 4 

ABI3 bp ABI family member 3 binding protein [Source:HGNC 
Symbol;Acc:HGNC:17265] A_72_P039386 5 1 5 1 

ABR active BCR-related [Source:HGNC Symbol;Acc:HGNC:81] A_72_P496416 3 3 1 3 
ACACB acetyl-CoA carboxylase beta [Source:HGNC Symbol;Acc:HGNC:85] A_72_P582352 2 2 2 2 

ACADS acyl-CoA dehydrogenase, C-2 to C-3 short chain [Source:HGNC 
Symbol;Acc:HGNC:90] A_72_P077821 2 2 7 2 

ACAT1 acetyl-CoA acetyltransferase 1 [Source:HGNC Symbol;Acc:HGNC:93] A_72_P414863 2 5 5 5 
ADAM
TSL3 ADAMTS like 3 [Source:HGNC Symbol;Acc:HGNC:14633] A_72_P365958 1 5 1 1 

ADH5 alcohol dehydrogenase 5 (class III), chi polypeptide [Source:HGNC 
Symbol;Acc:HGNC:253] O1836 8 1 3 3 

ADIPO
R2 adiponectin receptor 2 [Source:HGNC Symbol;Acc:HGNC:24041] O13159 9 2 1 2 

AKAP1
1 A-kinase anchoring protein 11 [Source:HGNC Symbol;Acc:HGNC:369] O1634 3 3 3 3 

AKR7A
2 

aldo-keto reductase family 7 member A2 [Source:HGNC 
Symbol;Acc:HGNC:389] O4483 4 4 4 4 

ALKBH
5 

alkB homolog 5, RNA demethylase [Source:HGNC 
Symbol;Acc:HGNC:25996] A_72_P016101 4 4 4 4 

ANPEP alanyl aminopeptidase, membrane [Source:HGNC Symbol;Acc:HGNC:500] gi|47523627|ref|
NM_214277.1| 9 6 2 5 

ANXA2 annexin A2 [Source:HGNC Symbol;Acc:HGNC:537] A_72_P554722 5 5 1 1 
ANXA3 annexin A3 [Source:HGNC Symbol;Acc:HGNC:541] A_72_P149216 3 3 3 3 

ANXA5 annexin A5 [Source:HGNC Symbol;Acc:HGNC:543] gi|115547936|dbj
|AK234913.1| 5 5 2 5 

APOO apolipoprotein O [Source:HGNC Symbol;Acc:HGNC:28727] A_72_P350828 2 2 7 2 
ARF3 ADP ribosylation factor 3 [Source:HGNC Symbol;Acc:HGNC:654] A_72_P154956 7 2 7 2 
ARHG
AP11A 

Rho GTPase activating protein 11A [Source:HGNC 
Symbol;Acc:HGNC:15783] A_72_P542588 7 5 7 5 

ARL3 ADP ribosylation factor like GTPase 3 [Source:HGNC 
Symbol;Acc:HGNC:694] A_72_P035416 5 5 5 5 

ASB11 ankyrin repeat and SOCS box containing 11 [Source:HGNC 
Symbol;Acc:HGNC:17186] A_72_P029861 6 6 4 6 

ATAT1 alpha tubulin acetyltransferase 1 [Source:HGNC Symbol;Acc:HGNC:21186] OTTSUST00000
001027 2 2 7 2 

ATF5 activating transcription factor 5 [Source:HGNC Symbol;Acc:HGNC:790] O7841 4 4 4 4 
ATP1B
4 

ATPase Na+/K+ transporting family member beta 4 [Source:HGNC 
Symbol;Acc:HGNC:808] A_72_P223637 4 4 4 4 

ATP2A
1 

ATPase sarcoplasmic/endoplasmic reticulum Ca2+ transporting 1 
[Source:HGNC Symbol;Acc:HGNC:811] A_72_P127906 2 2 7 2 

ATP2A
2 

ATPase sarcoplasmic/endoplasmic reticulum Ca2+ transporting 2 
[Source:HGNC Symbol;Acc:HGNC:812] A_72_P601148 6 3 3 3 

ATP2B
4 

ATPase plasma membrane Ca2+ transporting 4 [Source:HGNC 
Symbol;Acc:HGNC:817] O12415 6 6 7 3 

ATP5B ATP synthase, H+ transporting, mitochondrial F1 complex, beta polypeptide 
[Source:HGNC Symbol;Acc:HGNC:830] A_72_P563576 2 2 7 2 

ATP5O ATP synthase, H+ transporting, mitochondrial F1 complex, O subunit 
[Source:HGNC Symbol;Acc:HGNC:850] A_72_P695881 2 6 6 6 

ATP6V
0A1 

ATPase H+ transporting V0 subunit a1 [Source:HGNC 
Symbol;Acc:HGNC:865] A_72_P081171 8 1 6 3 

ATP6V
0D1 

ATPase H+ transporting V0 subunit d1 [Source:HGNC 
Symbol;Acc:HGNC:13724] O10518 3 3 8 4 

ATXN3 ataxin 3 [Source:HGNC Symbol;Acc:HGNC:7106] O4703 4 3 8 4 
B3GNT
L1 

UDP-GlcNAc:betaGal beta-1,3-N-acetylglucosaminyltransferase like 1 
[Source:HGNC Symbol;Acc:HGNC:21727] O12993 3 3 3 3 

BAHD1 bromo adjacent homology domain containing 1 [Source:HGNC 
Symbol;Acc:HGNC:29153] O10500 1 6 6 2 

BCAT2 branched chain amino acid transaminase 2 [Source:HGNC 
Symbol;Acc:HGNC:977] O9326 8 2 7 2 

BLVRB biliverdin reductase B [Source:HGNC Symbol;Acc:HGNC:1063] A_72_P037556 8 3 3 3 
BNIP1 BCL2 interacting protein 1 [Source:HGNC Symbol;Acc:HGNC:1082] A_72_P081211 9 6 5 5 
BSG basigin (Ok blood group) [Source:HGNC Symbol;Acc:HGNC:1116] A_72_P064421 8 2 3 2 

BZW2 basic leucine zipper and W2 domains 2 [Source:HGNC 
Symbol;Acc:HGNC:18808] O9786 4 4 4 4 

C8G complement C8 gamma chain [Source:HGNC Symbol;Acc:HGNC:1354] A_72_P077791 8 3 3 4 
CAMK
K1 

calcium/calmodulin dependent protein kinase kinase 1 [Source:HGNC 
Symbol;Acc:HGNC:1469] O13469 5 5 5 5 

CAPN1
0 calpain 10 [Source:HGNC Symbol;Acc:HGNC:1477] A_72_P165216 6 6 2 2 

CCNG1 cyclin G1 [Source:HGNC Symbol;Acc:HGNC:1592] A_72_P313048 4 3 3 3 



CD81 CD81 molecule [Source:HGNC Symbol;Acc:HGNC:1701] A_72_P698441 1 6 6 6 
CDK6 cyclin dependent kinase 6 [Source:HGNC Symbol;Acc:HGNC:1777] O14748 2 2 7 2 
CDK9 cyclin dependent kinase 9 [Source:HGNC Symbol;Acc:HGNC:1780] A_72_P623883 4 4 4 4 
CDKN1
C 

cyclin dependent kinase inhibitor 1C [Source:HGNC 
Symbol;Acc:HGNC:1786] A_72_P240467 3 3 8 4 

CDR2L cerebellar degeneration related protein 2 like [Source:HGNC 
Symbol;Acc:HGNC:29999] A_72_P263187 7 5 2 5 

CELF1 CUGBP Elav-like family member 1 [Source:HGNC Symbol;Acc:HGNC:2549] O5626 4 4 3 4 

CEND1 cell cycle exit and neuronal differentiation 1 [Source:HGNC 
Symbol;Acc:HGNC:24153] A_72_P572049 6 4 4 4 

CEP128 centrosomal protein 128 [Source:HGNC Symbol;Acc:HGNC:20359] A_72_P141351 3 3 3 3 
CEP72 centrosomal protein 72 [Source:HGNC Symbol;Acc:HGNC:25547] A_72_P410118 7 5 7 5 
CHMP2
A 

charged multivesicular body protein 2A [Source:HGNC 
Symbol;Acc:HGNC:30216] A_72_P272689 1 3 8 4 

CHRD chordin [Source:HGNC Symbol;Acc:HGNC:1949] O14303 6 6 6 6 
CISD1 CDGSH iron sulfur domain 1 [Source:HGNC Symbol;Acc:HGNC:30880] A_72_P560709 8 2 7 2 

CITED1 Cbp/p300 interacting transactivator with Glu/Asp rich carboxy-terminal 
domain 1 [Source:HGNC Symbol;Acc:HGNC:1986] O10495 3 3 3 3 

CKM creatine kinase, M-type [Source:HGNC Symbol;Acc:HGNC:1994] A_72_P650270 3 3 3 3 

CLCN2 chloride voltage-gated channel 2 [Source:HGNC Symbol;Acc:HGNC:2020] 
gi|6002628|gb|A
F093592.1|AF09
3592 

6 6 4 1 

CLCN5 chloride voltage-gated channel 5 [Source:HGNC Symbol;Acc:HGNC:2023] A_72_P080321 2 5 5 5 
CLUH clustered mitochondria homolog [Source:HGNC Symbol;Acc:HGNC:29094] A_72_P275574 2 2 7 2 
COL12
A1 collagen type XII alpha 1 chain [Source:HGNC Symbol;Acc:HGNC:2188] A_72_P496541 2 2 7 2 

COL16
A1 collagen type XVI alpha 1 chain [Source:HGNC Symbol;Acc:HGNC:2193] A_72_P427844 1 5 1 1 

COL1A
1 collagen type I alpha 1 chain [Source:HGNC Symbol;Acc:HGNC:2197] gi|115553423|dbj

|AK236626.1| 1 5 1 1 

COL1A
2 collagen type I alpha 2 chain [Source:HGNC Symbol;Acc:HGNC:2198] gi|115551911|dbj

|AK236318.1| 1 5 1 1 

COL3A
1 collagen type III alpha 1 chain [Source:HGNC Symbol;Acc:HGNC:2201] A_72_P107126 1 5 1 1 

COL4A
1 collagen type IV alpha 1 chain [Source:HGNC Symbol;Acc:HGNC:2202] A_72_P316078 5 6 4 4 

COL5A
1 collagen type V alpha 1 chain [Source:HGNC Symbol;Acc:HGNC:2209] A_72_P077826 1 3 1 1 

COL5A
2 collagen type V alpha 2 chain [Source:HGNC Symbol;Acc:HGNC:2210] A_72_P657188 1 5 1 1 

COLEC
12 collectin subfamily member 12 [Source:HGNC Symbol;Acc:HGNC:16016] A_72_P403848 1 5 1 1 

COQ7 coenzyme Q7, hydroxylase [Source:HGNC Symbol;Acc:HGNC:2244] O9545 2 2 7 1 
COX6C cytochrome c oxidase subunit 6C [Source:HGNC Symbol;Acc:HGNC:2285] A_72_P764976 6 6 6 6 
CPT1B carnitine palmitoyltransferase 1B [Source:HGNC Symbol;Acc:HGNC:2329] A_72_P273299 2 2 2 2 
CRAT carnitine O-acetyltransferase [Source:HGNC Symbol;Acc:HGNC:2342] A_72_P670021 8 2 3 3 
CREB3
L4 

cAMP responsive element binding protein 3 like 4 [Source:HGNC 
Symbol;Acc:HGNC:18854] A_72_P402968 4 4 4 4 

CRIM1 cysteine rich transmembrane BMP regulator 1 [Source:HGNC 
Symbol;Acc:HGNC:2359] O1283 4 4 4 4 

CRLF1 cytokine receptor like factor 1 [Source:HGNC Symbol;Acc:HGNC:2364] 
gi|74360255|gb|
AJ943513.1|AJ9
43513 

5 5 1 1 

CS citrate synthase [Source:HGNC Symbol;Acc:HGNC:2422] A_72_P537441 2 2 7 2 
CUL7 cullin 7 [Source:HGNC Symbol;Acc:HGNC:21024] A_72_P443764 1 5 1 1 
CYB5R
1 cytochrome b5 reductase 1 [Source:HGNC Symbol;Acc:HGNC:13397] A_72_P004426 8 4 6 6 

DBF4 DBF4 zinc finger [Source:HGNC Symbol;Acc:HGNC:17364] A_72_P141791 2 5 4 4 
DBND
D2 dysbindin domain containing 2 [Source:HGNC Symbol;Acc:HGNC:15881] A_72_P245492 8 2 2 2 

DCN decorin [Source:HGNC Symbol;Acc:HGNC:2705] A_72_P180841 2 5 8 1 
DCUN1
D2 

defective in cullin neddylation 1 domain containing 2 [Source:HGNC 
Symbol;Acc:HGNC:20328] A_72_P028376 5 5 5 2 

DLAT dihydrolipoamide S-acetyltransferase [Source:HGNC 
Symbol;Acc:HGNC:2896] A_72_P704857 2 2 7 2 

DLD dihydrolipoamide dehydrogenase [Source:HGNC Symbol;Acc:HGNC:2898] A_72_P592144 2 2 7 2 

DLEC1 deleted in lung and esophageal cancer 1 [Source:HGNC 
Symbol;Acc:HGNC:2899] A_72_P333958 4 3 4 3 

DLK1 delta like non-canonical Notch ligand 1 [Source:HGNC 
Symbol;Acc:HGNC:2907] A_72_P035731 3 3 8 1 

DNAL4 dynein axonemal light chain 4 [Source:HGNC Symbol;Acc:HGNC:2955] A_72_P072746 3 3 8 4 
DNMT1 DNA methyltransferase 1 [Source:HGNC Symbol;Acc:HGNC:2976] A_72_P688426 5 5 1 1 

DPP4 dipeptidyl peptidase 4 [Source:HGNC Symbol;Acc:HGNC:3009] gi|47523581|ref|
NM_214257.1| 7 5 4 4 

DPYSL
3 dihydropyrimidinase like 3 [Source:HGNC Symbol;Acc:HGNC:3015] O398 8 1 3 4 

DVL2 dishevelled segment polarity protein 2 [Source:HGNC 
Symbol;Acc:HGNC:3086] O10386 2 2 7 2 

DYNC2
H1 dynein cytoplasmic 2 heavy chain 1 [Source:HGNC Symbol;Acc:HGNC:2962] A_72_P362953 8 1 8 5 

DYNLL
1 dynein light chain LC8-type 1 [Source:HGNC Symbol;Acc:HGNC:15476] A_72_P088696 5 5 1 5 

ECI1 enoyl-CoA delta isomerase 1 [Source:HGNC Symbol;Acc:HGNC:2703] O14547 2 2 7 2 

EEF1A1 eukaryotic translation elongation factor 1 alpha 1 [Source:HGNC 
Symbol;Acc:HGNC:3189] A_72_P746511 4 4 4 4 

EGFR epidermal growth factor receptor [Source:HGNC Symbol;Acc:HGNC:3236] gi|47522839|ref|
NM_214007.1| 6 3 4 3 



 

221 
 

EHHAD
H 

enoyl-CoA hydratase and 3-hydroxyacyl CoA dehydrogenase [Source:HGNC 
Symbol;Acc:HGNC:3247] O9867 3 4 3 4 

EIF4E3 eukaryotic translation initiation factor 4E family member 3 [Source:HGNC 
Symbol;Acc:HGNC:31837] A_72_P054986 5 5 8 4 

EMP3 epithelial membrane protein 3 [Source:HGNC Symbol;Acc:HGNC:3335] O11983 1 1 1 1 
ENC1 ectodermal-neural cortex 1 [Source:HGNC Symbol;Acc:HGNC:3345] A_72_P311268 7 5 7 2 
ENDOG endonuclease G [Source:HGNC Symbol;Acc:HGNC:3346] A_72_P196482 2 2 7 2 
ENGAS
E 

endo-beta-N-acetylglucosaminidase [Source:HGNC 
Symbol;Acc:HGNC:24622] O10819 4 4 4 4 

EPAS1 endothelial PAS domain protein 1 [Source:HGNC Symbol;Acc:HGNC:3374] A_72_P441713 8 4 3 3 

EPB42 erythrocyte membrane protein band 4.2 [Source:HGNC 
Symbol;Acc:HGNC:3381] O5966 6 4 4 4 

ESR1 estrogen receptor 1 [Source:HGNC Symbol;Acc:HGNC:3467] A_72_P444427 3 3 3 3 
EXT2 exostosin glycosyltransferase 2 [Source:HGNC Symbol;Acc:HGNC:3513] A_72_P337783 5 5 1 1 

EZH2 enhancer of zeste 2 polycomb repressive complex 2 subunit [Source:HGNC 
Symbol;Acc:HGNC:3527] O10045 7 5 7 5 

FABP3 fatty acid binding protein 3 [Source:HGNC Symbol;Acc:HGNC:3557] A_72_P440921 6 2 7 2 
FAP fibroblast activation protein alpha [Source:HGNC Symbol;Acc:HGNC:3590] A_72_P207492 7 5 7 1 

FARSA phenylalanyl-tRNA synthetase alpha subunit [Source:HGNC 
Symbol;Acc:HGNC:3592] O12975 8 2 7 2 

FBLN7 fibulin 7 [Source:HGNC Symbol;Acc:HGNC:26740] A_72_P431264 7 5 7 5 
FBN1 fibrillin 1 [Source:HGNC Symbol;Acc:HGNC:3603] A_72_P088351 5 5 1 1 

FDFT1 farnesyl-diphosphate farnesyltransferase 1 [Source:HGNC 
Symbol;Acc:HGNC:3629] A_72_P098361 6 2 2 2 

FGF11 fibroblast growth factor 11 [Source:HGNC Symbol;Acc:HGNC:3667] O5710 1 2 1 1 
FGFR1 fibroblast growth factor receptor 1 [Source:HGNC Symbol;Acc:HGNC:3688] A_72_P046056 1 6 1 1 

FGFR4 fibroblast growth factor receptor 4 [Source:HGNC Symbol;Acc:HGNC:3691] 
gi|7055965|gb|A
W485859.1|AW
485859 

9 5 1 5 

FGGY FGGY carbohydrate kinase domain containing [Source:HGNC 
Symbol;Acc:HGNC:25610] A_72_P153686 9 2 7 1 

FKBP10 FK506 binding protein 10 [Source:HGNC Symbol;Acc:HGNC:18169] A_72_P154676 1 5 5 1 

FLAD1 flavin adenine dinucleotide synthetase 1 [Source:HGNC 
Symbol;Acc:HGNC:24671] O12800 8 2 2 2 

FLRT2 fibronectin leucine rich transmembrane protein 2 [Source:HGNC 
Symbol;Acc:HGNC:3761] O8020 5 5 1 1 

FSTL1 follistatin like 1 [Source:HGNC Symbol;Acc:HGNC:3972] O10038 2 2 2 5 

FXYD6 FXYD domain containing ion transport regulator 6 [Source:HGNC 
Symbol;Acc:HGNC:4030] O9076 6 6 1 4 

FYN FYN proto-oncogene, Src family tyrosine kinase [Source:HGNC 
Symbol;Acc:HGNC:4037] A_72_P146946 1 5 5 5 

GANA
B glucosidase II alpha subunit [Source:HGNC Symbol;Acc:HGNC:4138] O12854 1 6 6 1 

GFRA1 GDNF family receptor alpha 1 [Source:HGNC Symbol;Acc:HGNC:4243] A_72_P002701 7 5 7 4 

GHITM growth hormone inducible transmembrane protein [Source:HGNC 
Symbol;Acc:HGNC:17281] O11946 2 2 7 2 

GLT8D
1 

glycosyltransferase 8 domain containing 1 [Source:HGNC 
Symbol;Acc:HGNC:24870] A_72_P594034 1 6 6 6 

GLUD1 glutamate dehydrogenase 1 [Source:HGNC Symbol;Acc:HGNC:4335] A_72_P615755 4 4 4 4 

GMPPB GDP-mannose pyrophosphorylase B [Source:HGNC 
Symbol;Acc:HGNC:22932] A_72_P230202 6 6 6 6 

GNAI3 G protein subunit alpha i3 [Source:HGNC Symbol;Acc:HGNC:4387] O12082 7 6 7 2 
GPI glucose-6-phosphate isomerase [Source:HGNC Symbol;Acc:HGNC:4458] A_72_P146806 7 2 7 2 
GPRAS
P2 

G protein-coupled receptor associated sorting protein 2 [Source:HGNC 
Symbol;Acc:HGNC:25169] A_72_P205372 7 6 7 2 

GPSM1 G protein signaling modulator 1 [Source:HGNC Symbol;Acc:HGNC:17858] A_72_P218247 3 3 3 3 
GPX3 glutathione peroxidase 3 [Source:HGNC Symbol;Acc:HGNC:4555] A_72_P671275 2 2 2 2 

HAUS1 HAUS augmin like complex subunit 1 [Source:HGNC 
Symbol;Acc:HGNC:25174] O10898 5 1 5 1 

HES6 hes family bHLH transcription factor 6 [Source:HGNC 
Symbol;Acc:HGNC:18254] A_72_P677517 5 5 5 5 

HK1 hexokinase 1 [Source:HGNC Symbol;Acc:HGNC:4922] O5171 2 5 5 5 

HMCES 5-hydroxymethylcytosine binding, ES cell specific [Source:HGNC 
Symbol;Acc:HGNC:24446] O4725 9 3 3 3 

HMGB2 high mobility group box 2 [Source:HGNC Symbol;Acc:HGNC:5000] A_72_P558174 5 2 7 2 
HMGN
1 

high mobility group nucleosome binding domain 1 [Source:HGNC 
Symbol;Acc:HGNC:4984] O9747 5 5 5 5 

HSP90B
1 

heat shock protein 90 beta family member 1 [Source:HGNC 
Symbol;Acc:HGNC:12028] A_72_P232707 1 5 1 1 

HSPA1
3 

heat shock protein family A (Hsp70) member 13 [Source:HGNC 
Symbol;Acc:HGNC:11375] A_72_P435494 5 5 2 5 

HSPA9 heat shock protein family A (Hsp70) member 9 [Source:HGNC 
Symbol;Acc:HGNC:5244] A_72_P388638 2 2 7 2 

IBA57 IBA57 homolog, iron-sulfur cluster assembly [Source:HGNC 
Symbol;Acc:HGNC:27302] A_72_P067206 8 2 6 2 

ICOSL
G 

inducible T-cell costimulator ligand [Source:HGNC 
Symbol;Acc:HGNC:17087] A_72_P287144 1 5 1 1 

IDH3G isocitrate dehydrogenase 3 (NAD(+)) gamma [Source:HGNC 
Symbol;Acc:HGNC:5386] O6582 8 4 4 4 

IGF2 insulin like growth factor 2 [Source:HGNC Symbol;Acc:HGNC:5466] A_72_P303139 3 3 8 1 

IGSF1 immunoglobulin superfamily member 1 [Source:HGNC 
Symbol;Acc:HGNC:5948] A_72_P466893 2 2 5 2 

IGSF3 immunoglobulin superfamily member 3 [Source:HGNC 
Symbol;Acc:HGNC:5950] O13413 7 5 2 5 

IL12RB
2 

interleukin 12 receptor subunit beta 2 [Source:HGNC 
Symbol;Acc:HGNC:5972] A_72_P077956 4 4 4 4 



IL18 interleukin 18 [Source:HGNC Symbol;Acc:HGNC:5986] gi|47522819|ref|
NM_213997.1| 2 2 5 5 

INPP5F inositol polyphosphate-5-phosphatase F [Source:HGNC 
Symbol;Acc:HGNC:17054] A_72_P579372 4 3 3 4 

INPP5J inositol polyphosphate-5-phosphatase J [Source:HGNC 
Symbol;Acc:HGNC:8956] A_72_P659813 5 3 3 4 

IPO13 importin 13 [Source:HGNC Symbol;Acc:HGNC:16853] O9886 8 4 3 3 

IRAK1 interleukin 1 receptor associated kinase 1 [Source:HGNC 
Symbol;Acc:HGNC:6112] A_72_P175791 4 4 4 4 

ISYNA
1 inositol-3-phosphate synthase 1 [Source:HGNC Symbol;Acc:HGNC:29821] O6349 3 3 8 4 

ITGA9 integrin subunit alpha 9 [Source:HGNC Symbol;Acc:HGNC:6145] O14127 6 3 4 4 
ITGB1 integrin subunit beta 1 [Source:HGNC Symbol;Acc:HGNC:6153] O5530 7 6 7 2 

ITIH4 inter-alpha-trypsin inhibitor heavy chain family member 4 [Source:HGNC 
Symbol;Acc:HGNC:6169] O9843 3 1 5 1 

JTB jumping translocation breakpoint [Source:HGNC Symbol;Acc:HGNC:6201] A_72_P387573 4 4 4 4 

KCNC4 potassium voltage-gated channel subfamily C member 4 [Source:HGNC 
Symbol;Acc:HGNC:6236] A_72_P055116 8 2 5 2 

KCNG2 potassium voltage-gated channel modifier subfamily G member 2 
[Source:HGNC Symbol;Acc:HGNC:6249] O6864 6 4 4 2 

KCNQ1 potassium voltage-gated channel subfamily Q member 1 [Source:HGNC 
Symbol;Acc:HGNC:6294] A_72_P162961 3 3 3 3 

KDELR
2 

KDEL endoplasmic reticulum protein retention receptor 2 [Source:HGNC 
Symbol;Acc:HGNC:6305] O5029 7 5 7 5 

KLF3 Kruppel like factor 3 [Source:HGNC Symbol;Acc:HGNC:16516] A_72_P419349 1 3 3 3 
LACTB
2 lactamase beta 2 [Source:HGNC Symbol;Acc:HGNC:18512] A_72_P680071 3 3 3 3 

LAMA4 laminin subunit alpha 4 [Source:HGNC Symbol;Acc:HGNC:6484] A_72_P379818 1 5 1 1 

LAS1L LAS1 like, ribosome biogenesis factor [Source:HGNC 
Symbol;Acc:HGNC:25726] A_72_P531544 8 2 6 2 

LBH limb bud and heart development [Source:HGNC Symbol;Acc:HGNC:29532] O3615 7 5 1 1 
LDHD lactate dehydrogenase D [Source:HGNC Symbol;Acc:HGNC:19708] O7218 9 3 3 4 

LFNG LFNG O-fucosylpeptide 3-beta-N-acetylglucosaminyltransferase 
[Source:HGNC Symbol;Acc:HGNC:6560] A_72_P232052 1 6 1 1 

LHX2 LIM homeobox 2 [Source:HGNC Symbol;Acc:HGNC:6594] A_72_P444597 3 3 3 3 
LOXL2 lysyl oxidase like 2 [Source:HGNC Symbol;Acc:HGNC:6666] A_72_P359358 7 5 2 5 
LPAR4 lysophosphatidic acid receptor 4 [Source:HGNC Symbol;Acc:HGNC:4478] A_72_P211927 7 5 7 4 
LPIN2 lipin 2 [Source:HGNC Symbol;Acc:HGNC:14450] A_72_P292904 7 5 7 5 
LRRK1 leucine rich repeat kinase 1 [Source:HGNC Symbol;Acc:HGNC:18608] A_72_P098446 7 6 7 2 
MAFK MAF bZIP transcription factor K [Source:HGNC Symbol;Acc:HGNC:6782] A_72_P278329 8 1 3 4 
MAGE
D1 MAGE family member D1 [Source:HGNC Symbol;Acc:HGNC:6813] A_72_P149681 9 5 5 5 

MAGE
D2 MAGE family member D2 [Source:HGNC Symbol;Acc:HGNC:16353] A_72_P348613 2 5 5 5 

MAGIX MAGI family member, X-linked [Source:HGNC Symbol;Acc:HGNC:30006] O7544 2 2 2 2 
MAPRE
1 

microtubule associated protein RP/EB family member 1 [Source:HGNC 
Symbol;Acc:HGNC:6890] A_72_P165071 5 5 5 1 

MB myoglobin [Source:HGNC Symbol;Acc:HGNC:6915] A_72_P302979 3 3 3 3 
MCEE methylmalonyl-CoA epimerase [Source:HGNC Symbol;Acc:HGNC:16732] A_72_P178091 8 3 3 2 
MDH1 malate dehydrogenase 1 [Source:HGNC Symbol;Acc:HGNC:6970] A_72_P303074 2 2 7 2 
ME3 malic enzyme 3 [Source:HGNC Symbol;Acc:HGNC:6985] A_72_P250467 8 1 3 3 

MEG3 maternally expressed 3 (non-protein coding) [Source:HGNC 
Symbol;Acc:HGNC:14575] A_72_P442171 4 4 8 1 

MESDC
2 Mesoderm Development LRP Chaperone A_72_P501549 5 5 1 1 

MESP1 mesoderm posterior bHLH transcription factor 1 [Source:HGNC 
Symbol;Acc:HGNC:29658] A_72_P477678 3 3 3 3 

MEST mesoderm specific transcript [Source:HGNC Symbol;Acc:HGNC:7028] A_72_P442223 2 5 8 1 
MFAP5 microfibril associated protein 5 [Source:HGNC Symbol;Acc:HGNC:29673] A_72_P293494 1 6 6 2 

MGST3 microsomal glutathione S-transferase 3 [Source:HGNC 
Symbol;Acc:HGNC:7064] O13326 6 2 7 4 

MITF melanogenesis associated transcription factor [Source:HGNC 
Symbol;Acc:HGNC:7105] A_72_P444157 8 6 3 3 

MPP6 membrane palmitoylated protein 6 [Source:HGNC Symbol;Acc:HGNC:18167] A_72_P380523 3 3 3 3 
MRPL3
7 

mitochondrial ribosomal protein L37 [Source:HGNC 
Symbol;Acc:HGNC:14034] O10627 4 3 3 4 

MRPS2 mitochondrial ribosomal protein S2 [Source:HGNC 
Symbol;Acc:HGNC:14495] O6203 9 2 7 2 

MRPS2
8 

mitochondrial ribosomal protein S28 [Source:HGNC 
Symbol;Acc:HGNC:14513] O11321 4 2 7 2 

MSANT
D4 

Myb/SANT DNA binding domain containing 4 with coiled-coils 
[Source:HGNC Symbol;Acc:HGNC:29383] A_72_P089866 5 1 5 5 

MSL2 MSL complex subunit 2 [Source:HGNC Symbol;Acc:HGNC:25544] O12026 9 3 8 4 
MUT methylmalonyl-CoA mutase [Source:HGNC Symbol;Acc:HGNC:7526] A_72_P441374 3 1 7 1 
MXRA7 matrix remodeling associated 7 [Source:HGNC Symbol;Acc:HGNC:7541] A_72_P298914 1 5 5 5 
MYBL2 MYB proto-oncogene like 2 [Source:HGNC Symbol;Acc:HGNC:7548] A_72_P350008 7 5 5 5 
MYBPC
2 myosin binding protein C, fast type [Source:HGNC Symbol;Acc:HGNC:7550] O11393 4 3 3 4 

MYH3 myosin heavy chain 3 [Source:HGNC Symbol;Acc:HGNC:7573] A_72_P414973 3 3 3 1 
MYPN myopalladin [Source:HGNC Symbol;Acc:HGNC:23246] A_72_P089766 6 6 6 4 
NCAM1 neural cell adhesion molecule 1 [Source:HGNC Symbol;Acc:HGNC:7656] A_72_P117001 9 5 3 3 

NCEH1 neutral cholesterol ester hydrolase 1 [Source:HGNC 
Symbol;Acc:HGNC:29260] A_72_P286854 2 3 3 2 

NDP NDP, norrin cystine knot growth factor [Source:HGNC 
Symbol;Acc:HGNC:7678] A_72_P290889 3 3 3 3 
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NDUFA
12 

NADH:ubiquinone oxidoreductase subunit A12 [Source:HGNC 
Symbol;Acc:HGNC:23987] O10344 8 2 7 2 

NDUFA
3 

NADH:ubiquinone oxidoreductase subunit A3 [Source:HGNC 
Symbol;Acc:HGNC:7686] O7196 8 2 7 2 

NDUFB
5 

NADH:ubiquinone oxidoreductase subunit B5 [Source:HGNC 
Symbol;Acc:HGNC:7700] A_72_P293684 8 2 7 2 

NDUFS
1 

NADH:ubiquinone oxidoreductase core subunit S1 [Source:HGNC 
Symbol;Acc:HGNC:7707] A_72_P089311 7 2 7 2 

NES nestin [Source:HGNC Symbol;Acc:HGNC:7756] A_72_P002891 2 5 1 5 
NFATC
3 nuclear factor of activated T-cells 3 [Source:HGNC Symbol;Acc:HGNC:7777] O1743 8 1 3 3 

NFATC
4 nuclear factor of activated T-cells 4 [Source:HGNC Symbol;Acc:HGNC:7778] A_72_P119516 1 6 1 1 

NFXL1 nuclear transcription factor, X-box binding like 1 [Source:HGNC 
Symbol;Acc:HGNC:18726] A_72_P132466 3 3 3 3 

NMNA
T3 

nicotinamide nucleotide adenylyltransferase 3 [Source:HGNC 
Symbol;Acc:HGNC:20989] A_72_P147316 2 2 7 2 

NNT nicotinamide nucleotide transhydrogenase [Source:HGNC 
Symbol;Acc:HGNC:7863] A_72_P397893 2 2 5 2 

NT5DC
1 

5'-nucleotidase domain containing 1 [Source:HGNC 
Symbol;Acc:HGNC:21556] A_72_P732133 4 4 3 4 

NTMT1 N-terminal Xaa-Pro-Lys N-methyltransferase 1 [Source:HGNC 
Symbol;Acc:HGNC:23373] A_72_P036826 2 2 7 2 

NUP188 nucleoporin 188 [Source:HGNC Symbol;Acc:HGNC:17859] A_72_P545332 6 6 4 6 
OARD1 O-acyl-ADP-ribose deacylase 1 [Source:HGNC Symbol;Acc:HGNC:21257] O9345 4 4 4 4 

ODC1 ornithine decarboxylase 1 [Source:HGNC Symbol;Acc:HGNC:8109] CUST_500_PI42
7286967 5 5 8 3 

OGN osteoglycin [Source:HGNC Symbol;Acc:HGNC:8126] A_72_P255032 7 5 2 5 

OXA1L OXA1L, mitochondrial inner membrane protein [Source:HGNC 
Symbol;Acc:HGNC:8526] O14558 2 2 7 2 

P2RX5 purinergic receptor P2X 5 [Source:HGNC Symbol;Acc:HGNC:8536] A_72_P236932 6 6 6 6 

P4HA3 prolyl 4-hydroxylase subunit alpha 3 [Source:HGNC 
Symbol;Acc:HGNC:30135] A_72_P367073 3 1 3 3 

PAQR9 progestin and adipoQ receptor family member 9 [Source:HGNC 
Symbol;Acc:HGNC:30131] A_72_P048236 4 4 3 4 

PAX3 paired box 3 [Source:HGNC Symbol;Acc:HGNC:8617] gi|46391809|gb|
AY579430.1| 4 4 4 4 

PAX7 paired box 7 [Source:HGNC Symbol;Acc:HGNC:8621] A_72_P185391 3 3 3 3 
PBX3 PBX homeobox 3 [Source:HGNC Symbol;Acc:HGNC:8634] A_72_P543607 7 6 6 2 

PCDH1
0 protocadherin 10 [Source:HGNC Symbol;Acc:HGNC:13404] 

gi|90235591|gb|
BX924774.2|BX
924774 

4 4 4 4 

PDE4A phosphodiesterase 4A [Source:HGNC Symbol;Acc:HGNC:8780] A_72_P106041 3 3 3 3 
PDHA1 pyruvate dehydrogenase alpha 1 [Source:HGNC Symbol;Acc:HGNC:8806] A_72_P645767 2 2 7 2 

PDHX pyruvate dehydrogenase complex component X [Source:HGNC 
Symbol;Acc:HGNC:21350] A_72_P190556 2 2 5 5 

PDP1 pyruvate dehyrogenase phosphatase catalytic subunit 1 [Source:HGNC 
Symbol;Acc:HGNC:9279] A_72_P199457 4 3 3 3 

PEBP4 phosphatidylethanolamine binding protein 4 [Source:HGNC 
Symbol;Acc:HGNC:28319] O620 6 3 3 6 

PEG10 paternally expressed 10 [Source:HGNC Symbol;Acc:HGNC:14005] A_72_P564724 3 3 8 4 
PGD phosphogluconate dehydrogenase [Source:HGNC Symbol;Acc:HGNC:8891] O8797 7 6 7 1 

PHKB phosphorylase kinase regulatory subunit beta [Source:HGNC 
Symbol;Acc:HGNC:8927] 

gi|74362209|gb|
AJ945467.1|AJ9
45467 

9 1 5 3 

PHLDB
1 

pleckstrin homology like domain family B member 1 [Source:HGNC 
Symbol;Acc:HGNC:23697] O9044 6 4 4 3 

PINX1 PIN2/TERF1 interacting telomerase inhibitor 1 [Source:HGNC 
Symbol;Acc:HGNC:30046] A_72_P101001 4 3 3 3 

PKDRE
J 

polycystin family receptor for egg jelly [Source:HGNC 
Symbol;Acc:HGNC:9015] O6639 4 4 4 4 

PKIA cAMP-dependent protein kinase inhibitor alpha [Source:HGNC 
Symbol;Acc:HGNC:9017] A_72_P620119 5 1 3 5 

PLXDC
1 plexin domain containing 1 [Source:HGNC Symbol;Acc:HGNC:20945] A_72_P357753 3 1 3 3 

PLXNB
2 plexin B2 [Source:HGNC Symbol;Acc:HGNC:9104] A_72_P183761 1 6 6 6 

PM20D
1 

peptidase M20 domain containing 1 [Source:HGNC 
Symbol;Acc:HGNC:26518] A_72_P178791 3 3 3 3 

PMEPA
1 

prostate transmembrane protein, androgen induced 1 [Source:HGNC 
Symbol;Acc:HGNC:14107] A_72_P315448 7 6 1 5 

PMPCB peptidase, mitochondrial processing beta subunit [Source:HGNC 
Symbol;Acc:HGNC:9119] A_72_P071856 1 6 6 6 

POSTN periostin [Source:HGNC Symbol;Acc:HGNC:16953] A_72_P632486 1 5 1 1 
PPA1 pyrophosphatase (inorganic) 1 [Source:HGNC Symbol;Acc:HGNC:9226] A_72_P597416 4 4 4 4 

PPP1CC protein phosphatase 1 catalytic subunit gamma [Source:HGNC 
Symbol;Acc:HGNC:9283] A_72_P671741 4 4 4 4 

PPP1R1
4C 

protein phosphatase 1 regulatory inhibitor subunit 14C [Source:HGNC 
Symbol;Acc:HGNC:14952] A_72_P092786 4 4 4 4 

PPP1R9
A 

protein phosphatase 1 regulatory subunit 9A [Source:HGNC 
Symbol;Acc:HGNC:14946] A_72_P401473 3 4 4 4 

PPTC7 PTC7 protein phosphatase homolog [Source:HGNC 
Symbol;Acc:HGNC:30695] A_72_P099021 5 5 1 1 

PRDX6 peroxiredoxin 6 [Source:HGNC Symbol;Acc:HGNC:16753] A_72_P575489 4 4 4 4 



PRELID
1 PRELI domain containing 1 [Source:HGNC Symbol;Acc:HGNC:30255] 

gi|40391838|gb|
BP142367.1|BP1
42367 

5 5 5 1 

PRICK
LE2 

prickle planar cell polarity protein 2 [Source:HGNC 
Symbol;Acc:HGNC:20340] A_72_P398358 7 5 7 5 

PRKCQ protein kinase C theta [Source:HGNC Symbol;Acc:HGNC:9410] A_72_P442547 2 2 2 2 
PTGES
2 prostaglandin E synthase 2 [Source:HGNC Symbol;Acc:HGNC:17822] O9510 2 2 2 2 

PTGIR prostaglandin I2 (prostacyclin) receptor (IP) [Source:HGNC 
Symbol;Acc:HGNC:9602] A_72_P230127 8 1 3 5 

PTMA prothymosin, alpha [Source:HGNC Symbol;Acc:HGNC:9623] A_72_P441011 6 5 7 4 

PTPRF protein tyrosine phosphatase, receptor type F [Source:HGNC 
Symbol;Acc:HGNC:9670] A_72_P133066 1 6 1 1 

PTPRJ protein tyrosine phosphatase, receptor type J [Source:HGNC 
Symbol;Acc:HGNC:9673] A_72_P404358 6 6 4 4 

PYGM glycogen phosphorylase, muscle associated [Source:HGNC 
Symbol;Acc:HGNC:9726] A_72_P516452 8 2 7 2 

RAB3A RAB3A, member RAS oncogene family [Source:HGNC 
Symbol;Acc:HGNC:9777] A_72_P549961 6 4 6 2 

RAB3IP RAB3A interacting protein [Source:HGNC Symbol;Acc:HGNC:16508] A_72_P378108 3 3 3 3 

RAP2B RAP2B, member of RAS oncogene family [Source:HGNC 
Symbol;Acc:HGNC:9862] 

gi|59806756|gb|
DN113023.1|DN
113023 

7 5 7 4 

RASA4 RAS p21 protein activator 4 [Source:HGNC Symbol;Acc:HGNC:23181] A_72_P244002 3 4 3 3 
RAVER
1 ribonucleoprotein, PTB binding 1 [Source:HGNC Symbol;Acc:HGNC:30296] A_72_P202207 7 6 7 2 

RBM10 RNA binding motif protein 10 [Source:HGNC Symbol;Acc:HGNC:9896] A_72_P418079 6 6 7 6 
RBM15
B RNA binding motif protein 15B [Source:HGNC Symbol;Acc:HGNC:24303] A_72_P046046 5 6 4 2 

RCOR3 REST corepressor 3 [Source:HGNC Symbol;Acc:HGNC:25594] A_72_P283769 2 2 5 1 
RGS2 regulator of G protein signaling 2 [Source:HGNC Symbol;Acc:HGNC:9998] A_72_P057121 3 1 5 1 
RHOC ras homolog family member C [Source:HGNC Symbol;Acc:HGNC:669] A_72_P158146 5 5 5 5 
RNF34 ring finger protein 34 [Source:HGNC Symbol;Acc:HGNC:17297] A_72_P426884 1 3 3 3 
RPL11 ribosomal protein L11 [Source:HGNC Symbol;Acc:HGNC:10301] A_72_P041441 8 3 6 2 
RPL3 ribosomal protein L3 [Source:HGNC Symbol;Acc:HGNC:10332] O10058 5 5 1 1 
RPL31 ribosomal protein L31 [Source:HGNC Symbol;Acc:HGNC:10334] A_72_P294119 3 3 4 4 
RPL32 ribosomal protein L32 [Source:HGNC Symbol;Acc:HGNC:10336] A_72_P735568 3 3 8 1 
RPS27A ribosomal protein S27a [Source:HGNC Symbol;Acc:HGNC:10417] A_72_P391738 5 3 8 4 

RRAS2 related RAS viral (r-ras) oncogene homolog 2 [Source:HGNC 
Symbol;Acc:HGNC:17271] A_72_P130806 5 3 8 3 

RTN4IP
1 reticulon 4 interacting protein 1 [Source:HGNC Symbol;Acc:HGNC:18647] O13685 2 2 7 2 

SATB1 SATB homeobox 1 [Source:HGNC Symbol;Acc:HGNC:10541] O12598 9 5 2 5 

SCN1B sodium voltage-gated channel beta subunit 1 [Source:HGNC 
Symbol;Acc:HGNC:10586] A_72_P058596 9 3 8 4 

SCT secretin [Source:HGNC Symbol;Acc:HGNC:10607] A_72_P414018 5 5 5 5 
SDC2 syndecan 2 [Source:HGNC Symbol;Acc:HGNC:10659] A_72_P634951 5 5 5 5 
SEC61B Sec61 translocon beta subunit [Source:HGNC Symbol;Acc:HGNC:16993] O9969 1 5 5 5 
SELEN
BP1 selenium binding protein 1 [Source:HGNC Symbol;Acc:HGNC:10719] A_72_P720208 3 3 3 3 

SELO Selenoprotein O O10811 8 2 7 2 
SGCE sarcoglycan epsilon [Source:HGNC Symbol;Acc:HGNC:10808] A_72_P136566 2 2 5 2 
SKI SKI proto-oncogene [Source:HGNC Symbol;Acc:HGNC:10896] A_72_P079116 6 6 6 6 

SKP2 S-phase kinase associated protein 2 [Source:HGNC 
Symbol;Acc:HGNC:10901] O2895 7 5 7 1 

SLBP stem-loop binding protein [Source:HGNC Symbol;Acc:HGNC:10904] A_72_P080921 5 5 1 1 
SLC1A
3 solute carrier family 1 member 3 [Source:HGNC Symbol;Acc:HGNC:10941] O13275 2 2 5 2 

SLC22
A16 

solute carrier family 22 member 16 [Source:HGNC 
Symbol;Acc:HGNC:20302] O8716 4 4 3 4 

SLC25
A12 

solute carrier family 25 member 12 [Source:HGNC 
Symbol;Acc:HGNC:10982] A_72_P342738 5 5 5 5 

SLC25
A19 

solute carrier family 25 member 19 [Source:HGNC 
Symbol;Acc:HGNC:14409] A_72_P614041 4 3 3 4 

SLC25
A3 solute carrier family 25 member 3 [Source:HGNC Symbol;Acc:HGNC:10989] A_72_P549036 2 2 7 2 

SLC25
A37 

solute carrier family 25 member 37 [Source:HGNC 
Symbol;Acc:HGNC:29786] A_72_P487571 4 3 3 4 

SLC2A
12 solute carrier family 2 member 12 [Source:HGNC Symbol;Acc:HGNC:18067] O2906 3 3 3 3 

SLC3A
2 solute carrier family 3 member 2 [Source:HGNC Symbol;Acc:HGNC:11026] gi|115554863|dbj

|AK233675.1| 3 4 4 4 

SLC41
A1 solute carrier family 41 member 1 [Source:HGNC Symbol;Acc:HGNC:19429] O11000 3 3 3 3 

SLC46
A3 solute carrier family 46 member 3 [Source:HGNC Symbol;Acc:HGNC:27501] A_72_P131741 8 3 3 3 

SLC9A
2 solute carrier family 9 member A2 [Source:HGNC Symbol;Acc:HGNC:11072] A_72_P088396 4 4 4 3 

SMIM5 small integral membrane protein 5 [Source:HGNC Symbol;Acc:HGNC:40030] A_72_P190151 4 3 3 4 
SP7 Sp7 transcription factor [Source:HGNC Symbol;Acc:HGNC:17321] A_72_P175886 4 4 4 4 
SPAG1
1 Sperm Associated Antigen 11 A_72_P209602 5 1 3 5 

SPG7 SPG7, paraplegin matrix AAA peptidase subunit [Source:HGNC 
Symbol;Acc:HGNC:11237] 

gi|84128395|gb|
CV874435.1|CV
874435 

8 2 2 2 
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SPI1 Spi-1 proto-oncogene [Source:HGNC Symbol;Acc:HGNC:11241] 
gi|49274644|ref|
NM_001001865.
1| 

4 4 3 4 

SRI sorcin [Source:HGNC Symbol;Acc:HGNC:11292] A_72_P402828 1 1 6 3 

SS18 SS18, nBAF chromatin remodeling complex subunit [Source:HGNC 
Symbol;Acc:HGNC:11340] O5598 8 6 7 2 

SSR2 signal sequence receptor subunit 2 [Source:HGNC Symbol;Acc:HGNC:11324] O11071 1 5 5 1 
ST5 suppression of tumorigenicity 5 [Source:HGNC Symbol;Acc:HGNC:11350] O11683 8 3 3 3 
STEAP
3 STEAP3 metalloreductase [Source:HGNC Symbol;Acc:HGNC:24592] A_72_P426009 4 3 3 4 

STMN1 stathmin 1 [Source:HGNC Symbol;Acc:HGNC:6510] A_72_P731693 5 5 5 5 

STUB1 STIP1 homology and U-box containing protein 1 [Source:HGNC 
Symbol;Acc:HGNC:11427] O14020 8 2 7 2 

STXBP
2 syntaxin binding protein 2 [Source:HGNC Symbol;Acc:HGNC:11445] O6461 4 4 4 4 

SVIL supervillin [Source:HGNC Symbol;Acc:HGNC:11480] O3767 8 1 3 3 

SYDE1 synapse defective Rho GTPase homolog 1 [Source:HGNC 
Symbol;Acc:HGNC:25824] A_72_P327048 1 5 1 1 

SYT17 synaptotagmin 17 [Source:HGNC Symbol;Acc:HGNC:24119] A_72_P138296 5 5 5 5 
TBR1 T-box, brain 1 [Source:HGNC Symbol;Acc:HGNC:11590] A_72_P471478 4 4 4 1 
TENM1 teneurin transmembrane protein 1 [Source:HGNC Symbol;Acc:HGNC:8117] A_72_P291424 2 2 7 2 
TFRC transferrin receptor [Source:HGNC Symbol;Acc:HGNC:11763] A_72_P035411 4 4 4 4 

TGFB3 transforming growth factor beta 3 [Source:HGNC Symbol;Acc:HGNC:11769] gi|47523473|ref|
NM_214198.1| 7 5 7 2 

TIMP1 TIMP metallopeptidase inhibitor 1 [Source:HGNC Symbol;Acc:HGNC:11820] O10493 5 3 8 4 
TLE4 transducin like enhancer of split 4 [Source:HGNC Symbol;Acc:HGNC:11840] A_72_P254987 9 5 5 5 
TMEM1
19 transmembrane protein 119 [Source:HGNC Symbol;Acc:HGNC:27884] A_72_P311568 1 6 2 1 

TMEM1
50A transmembrane protein 150A [Source:HGNC Symbol;Acc:HGNC:24677] O13818 4 3 3 3 

TMEM9 transmembrane protein 9 [Source:HGNC Symbol;Acc:HGNC:18823] A_72_P266237 3 3 3 3 
TNNT2 troponin T2, cardiac type [Source:HGNC Symbol;Acc:HGNC:11949] O12845 2 5 5 5 
TPBG trophoblast glycoprotein [Source:HGNC Symbol;Acc:HGNC:12004] A_72_P328828 5 5 4 1 
TPM1 tropomyosin 1 [Source:HGNC Symbol;Acc:HGNC:12010] A_72_P746394 4 4 4 4 

TPPP3 tubulin polymerization promoting protein family member 3 [Source:HGNC 
Symbol;Acc:HGNC:24162] O4242 5 5 5 5 

TRAM2 translocation associated membrane protein 2 [Source:HGNC 
Symbol;Acc:HGNC:16855] O9031 7 5 6 2 

TRIM17 tripartite motif containing 17 [Source:HGNC Symbol;Acc:HGNC:13430] O6090 4 4 4 4 

TRIP6 thyroid hormone receptor interactor 6 [Source:HGNC 
Symbol;Acc:HGNC:12311] 

gi|40800175|gb|
CK452961.1|CK
452961 

3 3 3 3 

TRNP1 TMF1-regulated nuclear protein 1 [Source:HGNC Symbol;Acc:HGNC:34348] A_72_P210252 2 2 5 5 
TSPAN
7 tetraspanin 7 [Source:HGNC Symbol;Acc:HGNC:11854] A_72_P499239 9 3 8 4 

TUBA4
A tubulin alpha 4a [Source:HGNC Symbol;Acc:HGNC:12407] A_72_P209947 4 4 3 4 

TUBA8 tubulin alpha 8 [Source:HGNC Symbol;Acc:HGNC:12410] O9364 2 1 7 1 
TXNRD
2 thioredoxin reductase 2 [Source:HGNC Symbol;Acc:HGNC:18155] O1892 2 2 7 2 

TYRO3 TYRO3 protein tyrosine kinase [Source:HGNC Symbol;Acc:HGNC:12446] gi|115555033|dbj
|AK240232.1| 7 5 7 5 

UCP3 uncoupling protein 3 [Source:HGNC Symbol;Acc:HGNC:12519] A_72_P443167 3 1 3 3 
UNC5C
L unc-5 family C-terminal like [Source:HGNC Symbol;Acc:HGNC:21203] A_72_P600728 2 2 7 2 

URAD ureidoimidazoline (2-oxo-4-hydroxy-4-carboxy-5-) decarboxylase 
[Source:HGNC Symbol;Acc:HGNC:17785] O13849 4 4 4 4 

USP25 ubiquitin specific peptidase 25 [Source:HGNC Symbol;Acc:HGNC:12624] O3111 5 5 2 5 
VASN vasorin [Source:HGNC Symbol;Acc:HGNC:18517] A_72_P379898 3 1 3 3 
VCAN versican [Source:HGNC Symbol;Acc:HGNC:2464] A_72_P409933 2 5 5 5 
VDAC1 voltage dependent anion channel 1 [Source:HGNC Symbol;Acc:HGNC:12669] A_72_P114441 2 2 2 2 
VDAC2 voltage dependent anion channel 2 [Source:HGNC Symbol;Acc:HGNC:12672] A_72_P641463 1 2 1 1 
VIM vimentin [Source:HGNC Symbol;Acc:HGNC:12692] A_72_P036391 2 2 7 2 
XYLB xylulokinase [Source:HGNC Symbol;Acc:HGNC:12839] A_72_P173691 9 6 2 5 
YWHA
B 

tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein 
beta [Source:HGNC Symbol;Acc:HGNC:12849] A_72_P330693 7 6 7 2 

YWHA
Q 

tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein 
theta [Source:HGNC Symbol;Acc:HGNC:12854] 

gi|115546630|dbj
|AK234468.1| 7 2 7 2 

ZCCHC
17 

zinc finger CCHC-type containing 17 [Source:HGNC 
Symbol;Acc:HGNC:30246] A_72_P046551 8 1 3 3 

ZFP36L
1 ZFP36 ring finger protein like 1 [Source:HGNC Symbol;Acc:HGNC:1107] A_72_P601188 1 6 6 2 

ZHX1 zinc fingers and homeoboxes 1 [Source:HGNC Symbol;Acc:HGNC:12871] A_72_P500455 5 1 5 5 
ZNF521 zinc finger protein 521 [Source:HGNC Symbol;Acc:HGNC:24605] A_72_P292659 9 3 8 4 

 

 



Appendix 3. Biological network reconstructed following Ingenuity data 
analyses. 

(a) The genes list from cluster 1 of Network 3 was submitted to IPA (Ingenuity Pathway Analysis). 
Here, only consistent information from the proposed networks was used to reconstruct a biological 
network. The three first IPA proposed networks were merged. Only genes from cluster 1 of Network 3 
(red bold) and nodes (genes/molecules, black bold) necessary to connect the cluster genes, were kept. 
Genes tested by 3D DNA FISH are in green bold. (b) Upstream Regulators analysis (extraction of 
relevant information) allowed to identify some transcription factors that could explain unexpected co-
expression and nuclear co-localization (especially between IGF2 and MYH3 genes) identified in this 
study. (c) The list of genes from the final reconstructed network was submitted to IPA for biological 
interpretation (extraction of relevant information). 
 
(a) IPA networks analysis 

Analysis Score 
Focus 
Molecules 

Top Diseases and 
Functions 

Molecules in Network 

Network 
1 

105 49 Cancer, Connective 
Tissue Disorders, 
Organismal Injury 
and Abnormalities 

ABI3 bp, ADAMTSL3, ADGRG6, ADRB2, AMELX, ANXA2, AR-HSP90, Akt,  
Akt-Calmodulin-Hsp90-Nos3,  CANX,  CD28, CDK4, CDKN3, CFAP44, 
CHADL, CLCN2, COL12A1, COL13A1, COL16A1, COL19A1, COL1A1, 
COL1A2, COL20A1, COL21A1, COL22A1, COL23A1, COL24A1, COL25A1, 
COL27A1, COL28A1, COL3A1, COL4A4, COL4A6, COL5A1, COL5A2, 
COL6A5, COL6A6, COL9A2, COL9A3, COLEC12, COQ7, CRLF1, CUL7, 
Calmodulin-Hsp90-Nos3, Col10a1, Collagen type I, Collagen type III, 
Collagen type X, Collagen type XVIII, Collagen(s), DCN, DLK1, DNMT1, 
DUSP28, Dnajc7-Hsp90-Nr1i3, ELAVL1, EMP3, EPYC, EXT2, Erbb2 dimer, 
FAP, FBN1, FBXO6, FGF dimer, FGF11, FGF14, FGF22, FGFR1, FKBP10, 
FLRT1, FLRT2, Fgf, GANAB, GPR137, GPR146, GRK5, HNF4A, HPN, 
HSP90B1, Histone h3, Hsp84-2, Hsp90, Hsp90-Ppard, 
ICOSLG/LOC102723996, IGF2, ITGA10, ITGA11, ITGA3, ITGAM, ITGB3, 
ITIH4, Integrin, JAK2, KERA, KIAA0895, KLF12, KRT40, LAIR2, LAMA4, 
MESDC2, MEST, MUT, NFATC4, NUDT11, Nlrp4a, OPTC, PGD, PLXNC1, 
POSTN, PPTC7, PTPRF, RCOR3, RGD1560020_predicted, RGS2, RPL3, 
RPL32, RUNX2, SKP2, SLBP, SMIM12, SMIM7, SSR2, TMEM101, 
TMEM119, TMPRSS6, TRAM2, TSSK4, TUBA8, TWIST1, VDAC2, VN1R1, 
WWOX, XPNPEP2, Xap2-Hsp90-Ppara, adenosine triphosphate, bilirubin, 
collagen, factor XIII, riboflavin, ribose 

Network 
2 

9 8 Cell Cycle, Cell 
Morphology, 
Cellular Assembly 
and Organization 

ABCB1, ABLIM1, ACTR3, ADD1, ADD3, AICDA, AMER1, ANK3, ANP32A, 
ANP32B, AP3D1, APC/APC2, APC2, ARFGAP3, ARMC8, AXIN1, AXIN2, 
BCL3, BEGAIN, CA9, CBY1, CC2D1A, CCDC85C, CDCA8, CDH16, CEACAM1, 
CEP290, CEP350, CLASP1, CLASP2, CLINT1, CLTA, COPS8, CPSF4, CRYAB, 
CRYBG1, CSNK1D, CTNNB1, DES, DIAPH3, DMD, DNAJB4, DNAJB6, 
DNAJC11, DNAJC6, DNAJC8, DR1, DVL3, EIF5A, ERBIN, FANCG, FBRS, 
FERMT2, FOXC1, FOXC2, FOXO4, GFAP, GNB4, HAUS1, HAUS2, HAUS3, 
HAUS4, HAUS5, HAUS6, HAUS7, HAUS8, HMG20B, HNRNPM, HOOK2, 
HSPB11, HSPB8, HSPE1, IGF2 bp1, KIAA2013, KIF20A, L3 MbTL3, LBH, 
LEO1, LFNG, MAML1, MAPKAPK2, MAPRE1, MIS12, MYH3, MYH6, MYL4, 
MYLK, Macf1, NEURL2, NIPSNAP1, NIPSNAP2, NUMB, NUP62, PACSIN3, 
PDAP1, PDE4B, PDE4DIP, PIBF1, PKN1, PKP3, POC5, PPP1R13L, PPP1R2, 
PRELID1, PRKACB, PTH1R, RAB11FIP5, RANBP3, RAPGEF2, RPL21, Rnr, 
S100A4, SAA1, SCN5A, SEPT9, SHOX2, SIX1, SPAG5, STARD7, STIM1, 
STRN3, STXBP1, SYDE1, TADA3, TANC2, TBL1X, TBL1XR1, TBR1, TELO2, 
TFPT, TIAL1, TOB2, TRA, TRIM29, TRIM33, TTC26, TUBA4A, VPS52, XPO1, 
miR-92a-3p (and other miRNAs w/seed AUUGCAC) 

Network 
3 

2 1 Cancer, Cell Cycle, 
Cellular 
Development 

BMI1, MEG3 

Network 
4 

2 1 Cellular 
Movement, 
Embryonic 
Development, 
Amino Acid 
Metabolism 

GIPC1, TPBG 

Network 
5 

2 1 Cellular Assembly 
and Organization, 
Cellular Function 
and Maintenance, 
Molecular 
Transport 

EAF1, FGGY, NSFL1C 
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(b) IPA Upstream regulators analysis (extract) 

Analysis Upstream 
Regulator 

p-value of 
overlap 

Molecule Type Number of genes Gene names 

Upstrea
m 
Regulato
rs 

MYOD1 1.42E-02 transcription 
regulator 

3 IGF2, MYH3, POSTN 

Upstrea
m 
Regulato
rs 

CTNNB1 1.50E-02 transcription 
regulator 

6 COL1A1, IGF2, LBH, LFNG, MYH3, TBR1 

  
(c) Biological functions analysis of the IPA reconstructed network. 

Categorie
s 

Diseases or 
Functions 
Annotation 

p-Value Molecules Molecules 

Tissue 
Morphol
ogy 

Quantity of 
cells 

2,48E-09 31 ADRB2, CD28, CDK4, COL1A1, CRLF1, CTNNB1, CUL7, DCN, DLK1, DNMT1, 
ELAVL1, FGFR1, HNF4A, HSP90B1, ICOSLG/LOC102723996, IGF2, ITGA3, 
ITGAM, ITGB3, JAK2, LAMA4, LFNG, MYOD1, POSTN, PTPRF, RAPGEF2, 
RUNX2, SKP2, STARD7, TBR1, TWIST1 

Cell 
Morphol
ogy 

Sprouting 1,75E-08 14 ANXA2, CTNNB1, DCN, ELAVL1, FGFR1, IGF2, ITGA3, ITGB3, JAK2, LAMA4, 
NFATC4, PTPRF, RAPGEF2, RUNX2 

Organ 
Develop
ment 

Formation of 
muscle 

2,98E-05 10 CTNNB1, ELAVL1, FGFR1, HSP90B1, IGF2, MYH3, MYOD1, NFATC4, RGS2, 
TWIST1 

Tissue 
Morphol
ogy 

Morphology of 
connective 
tissue cells 

1,27E-04 8 ADRB2, CDK4, CLCN2, DLK1, ITGB3, MEST, POSTN, RUNX2 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix 4. Information about BACs used as probes for 3D DNA FISH 
experiments. 
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Appendix 5. Quality check of nuclear integrity in Hi C experimental steps. 

 

 

 

 

 

 



Appendix 6. Evolution of the betweenness and degree values of a subset of 
genes from Network 0 to Network 3.  

Genes are sorted by alphabetical order. Genes that were tested by 3D DNA FISH are in red bold.  
           

  Network 0 Network 1 Network 2 Network 3 
Comparison 

between Network 0 
and Network 3 (% of 

variation) 
gene 
symbol degree betweeness degree betweeness degree betweeness degree betweeness Degree betweeness 

ADIPOR2 15 646,65 14 487,32 15 628,78 14 660,97 -7 2 
AKR7A2 19 492,63 17 436,71 15 474,10 14 291,90 -26 -41 
CD81 17 551,17 18 616,7 15 478,76 17 600,58 0 9 
CRAT 19 716,24 15 518,26 16 738,30 14 573,58 -26 -20 
DCN 16 438,86 18 560,83 9 288,82 6 357,74 -63 -18 
DLK1 10 103,52 6 81,7 5 74,22 5 24,13 -50 -77 
DPP4 15 568,91 16 672,01 15 674,94 15 597,87 0 5 
EGFR 16 624,92 12 375,87 12 385,35 11 354,78 -31 -43 
GHITM 16 578,58 17 588,76 16 592,35 14 496,63 -13 -14 
GLUD1 13 575,69 13 553,28 12 574,48 12 586,27 -8 2 
IGF2 10 118,26 11 231,09 8 260,58 7 622,44 -30 426 
LPAR4 14 464,31 17 644,76 18 812,81 16 798,82 14 72 
MEG3 13 282,32 5 55,75 6 120,18 5 24,13 -62 -91 
MESP1 12 228,49 14 320,34 14 483,27 14 775,31 17 239 
MEST 13 148,2 12 121,44 10 345,69 7 385,27 -46 160 
MRPS28 16 743 15 743,29 16 953,42 15 796,14 -6 7 
MYH3 14 610,73 14 656,6 11 455,62 4 0,00 -71 -100 
NMNAT3 17 562,63 18 664,84 16 473,55 17 573,15 0 2 
RAVER1 16 613,84 16 665,73 16 696,35 16 745,66 0 21 
RPL32 18 717,96 15 557,65 7 149,80 5 243,11 -72 -66 
SELO 18 692,52 14 438,35 14 459,46 15 587,32 -17 -15 
SYDE1 15 436,75 17 530,29 14 459,66 18 745,52 20 71 
TFRC 15 595,1 15 534,83 13 437,38 17 846,81 13 42 
TYRO3 20 785,95 18 659,9 16 603,94 17 700,03 -15 -11 
YWHAB 20 670,22 17 470,35 17 538,41 17 547,17 -15 -18 

 

Appendix 7. Clusters parameters. 

Network Cluster Community 
sizes Density Transitivity 

0 

1 39 0,1525 0,2167 

2 57 0,1197 0,2062 

3 47 0,1582 0,2306 

4 51 0,1435 0,2502 

5 44 0,1533 0,2145 

6 28 0,1958 0,3115 

7 36 0,1714 0,237 

8 39 0,1498 0,2218 

9 18 0,2484 0,3169 

1 

1 27 0,1966 0,2404 

2 76 0,1035 0,1703 

3 74 0,1085 0,2253 

4 50 0,138 0,2371 

5 88 0,0925 0,2015 

6 44 0,129 0,2619 

2 

1 39 0,1404 0,2231 

2 24 0,2065 0,3279 

3 78 0,1012 0,189 

4 50 0,129 0,2285 

5 45 0,1384 0,1927 

6 24 0,1993 0,3456 

7 76 0,1 0,1848 

8 23 0,2174 0,4249 

3 

1 60 0,0977 0,2255 

2 86 0,0848 0,1587 

3 62 0,1163 0,205 

4 80 0,0972 0,2107 

5 56 0,1169 0,2191 

6 15 0,2762 0,4021 
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Appendix 8. Pairwise contingency tables between clusterings. 

Percentage of genes for each cluster in Network 0 found in each cluster of Network 3. In bold, the 
most resembling values between clusters. 
        

  Clusters in Network 3 

    1 2 3 4 5 6 

Clusters in 
Network 0 

1 64,10 7,69 7,69 2,56 7,69 10,26 

2 8,77 68,42 0,00 1,75 19,30 1,75 

3 14,89 0,00 65,96 19,15 0,00 0,00 

4 3,92 1,96 11,76 82,35 0,00 0,00 

5 34,09 6,82 4,55 11,36 43,18 0,00 

6 3,57 17,86 14,29 32,14 0,00 32,14 
7 11,11 38,89 0,00 11,11 38,89 0,00 

8 0,00 48,72 33,33 10,26 5,13 2,56 

9 5,56 11,11 16,67 27,78 38,89 0,00 

 

Appendix 9. Comparison of GOBP between Network 0 and Network 3. 

GO terms enriched in one of the clusters as well as all GO terms associated to one of the three target 
genes at least (even if not significantly enriched). In bold, the smallest FDR value for a given GOBP 
term when the difference between the FDR of the two clusters is higher than one order of magnitude. 
Genes tested by 3D DNA FISH are in red bold. * GO analysis by using a data base of redundant BP 
instead of non-redundant BP.   

  Network 0 - Cluster 1 Network 3 - Cluster 1 
Items 
GOID GOBP Terms Genes FDR Genes FDR 

0043062 Extracellular structure 
POSTN, COL1A1, COL1A2, 
COL3A1, COL5A1, 
COL16A1, LAMA4, MFAP5 

5,76E-05 

POSTN, COL1A1, 
COL1A2,COL3A1, COL5A1, 
COL5A2, COL16A1, DCN, FAP, 
FBN1, ABI3 bp, ANXA2, LAMA4 

1,14E-08 

0071417 
Cellular response to 
organonitrogen 
compound 

COL1A1, COL1A2,COL3A1, 
COL5A2, COL16A1, FYN, 
KLF3, ZFP36L1, HSP90B1 

6,80E-04 
COL1A1, COL1A2,COL3A1, 
COL5A2, COL16A1, DNMT1, 
FBN1, IGF2, HSP90B1 

1,16E-02 

0045995 
Regulation of 
embryonic 
development 

COL5A1, COL5A2, FGFR1, 
LAMA4, LFNG 

2,24E-03 
COL5A1, COL5A2, FGFR1, 
LAMA4, LFNG 

1,16E-02 

0071559 
Reponse to 
transformaing growth 
factor beta 

POSTN, COL1A1, COL1A2, 
COL3A1, FYN, ZFP36L1 

2,35E-03 POSTN, COL1A1, 
COL1A2,COL3A1, FBN1 

1,24E-01 

0044236 
Multicellular organism 
metabolic process 

COL1A1, COL1A2,COL3A1, 
COL5A1, COL5A2  

2,35E-03 
COL1A1, COL1A2,COL3A1, 
COL5A1, COL5A2, FAP  

3,05E-03 

0043588 Skin development 
COL1A1, COL1A2, COL3A1, 
COL5A1, COL5A2, ZFP36L1 

3,18E-03 COL1A1, COL1A2, COL3A1, 
COL5A1, COL5A2 

1,44E-01 

0001101 
Reponse to acid 
chemical 

COL1A1, COL1A2,COL3A1, 
COL5A2, COL16A1, NFATC4  

1,17E-02 
COL1A1, COL1A2,COL3A1, 
COL5A2, COL16A1, DNMT1, 
NFATC4  

2,27E-02 

0001501 
Skeletal system 
development 

POSTN, COL1A1, COL1A2, 
COL3A1, COL5A2, FGFR1, 
TMEM119 

1,43E-02 
POSTN, COL1A1, COL1A2, 
COL3A1, COL5A2, FBN1, 
FGFR1, ANXA2, TMEM119, IGF2 

3,05E-03 

0001764 Neuron migration 
COL3A1, FGFR1, PLXNB2, 
FYN 

2,82E-02 COL3A1, FGFR1, FLRT2 4,37E-01 

0071774 
Reponse to fibroblast 
growth fator 

POSTN, COL1A1, FGFR1, 
ZFP36L1 

3,00E-02 
POSTN, COL1A1, FGFR1, 
FLRT2 

1,44E-01 

0010975 
Regulation of neuron 
projection 
development 

FGFR1, PLXNB2, FYN, 
NFATC4, PTPRF, CUL7 

3,07E-02 TBR1, FGFR1, NFATC4, PTPRF, 
CUL7 

4,93E-01 

0007498 
Mesoderm 
development 

  EXT2, FGFR1, MESDC2, MEST 1,24E-01 

0010171 Body morphogenesis   COL1A1, MYH3 4,37E-01 

0060324 Face development   COL1A1, MYH3 4,37E-01 

0007517 
Muscle organ 
development 

  COL3A1, DCN, FGFR1, MYH3 8,35E-01 



0007219 
Notch signaling 
pathway 

  POSTN, LFNG, DLK1 5,56E-01 

0030199* 
Collagen fibril 
organization 

COL1A1, COL1A2, COL3A1, 
COL5A1, COL5A2 

1,10E-04 
COL1A1, COL1A2, COL3A1, 
COL5A1, COL5A2, ANXA2 

1,02E-05 

 

  Network 0 - Cluster 2 Network 3 - Cluster 2 
Items GOBP Terms Genes FDR Genes FDR 

0072350 
Tricarboxylic acid 
metabolic process 

CS, DLAT, DLD, NNT, 
MDH1, PDHA1 

3,02E-06 
CS, DLAT, DLD, NNT, MDH1, 
PDHA1 

2,11E-05 

0051186 
Cofactor metabolic 
process 

COQ7, DLAT, DLD, NNT, 
HK1, ACACB, NMNAT3, 
ACAT1, MDH1, PDHA1, 
PDHX 

2,97E-05 
DLAT, DLD, IBA57, NNT, GPI, 
ACACB, NMNAT3, MDH1, 
PDHA1, FLAD1, MCEE 

1,34E-03 

0072524 
Pyridine-containig 
compound metabolic 
process 

DLD, NNT, HK1, NMNAT3, 
MDH1, PDHA1, PDHX 

1,00E-04 DLD, NNT, GPI, NMNAT3, 
MDH1, PDHA1 

1,11E-02 

0006631 
Fatty acid metabolic 
process 

CPT1B, ECI1, DLAT, DLD, 
ACACB, ACADS, ACAT1, 
PDHA1, PTGES2, PDHX 

1,00E-04 
CPT1B, ECI1, DLAT, DLD, 
FABP3, ACACB, ACADS, 
PDHA1, ADIPOR2, PTGES2, 
MCEE 

1,17E-03 

0006091 
Generation of 
precursor metabolites 
and energy 

CS, DLAT, DLD, NNT, HK1, 
MDH1, OXA1L, ATP5B, 
PDHA1, SLC25A3 

1,09E-04 

CS, DLAT, DLD, NNT, GPI, 
MDH1, NDUFA3, NDUFB5, 
NDUFS1, OXA1L, ATP5B, 
PDHA1, SLC25A3, CISD1, 
NDUFA12, PYGM 

1,32E-07 

0006090 
Pyruvate metabolic 
process 

DLAT, DLD, HK1, PDHA1, 
PDHX 

5,42E-03 DLAT, DLD, GPI, PDHA1, BSG 2,32E-02 

0006790 
Sulfur compound 
metabolic process 

VCAN, DCN, DLAT, DLD, 
ACACB, ACAT1, PDHA1, 
PDHX 

7,47E-03 DLAT, DLD, IBA57, ACACB, 
PDHA1, MCEE 

4,79E-01 

0042180 
Cellular ketone 
metabolic process 

COQ7, DLAT, DLD, ACACB, 
PDHA1, PDHX 

1,46E-02 
DLAT, DLD, FABP3, GPI, 
ACACB, PDHA1 

8,05E-02 

0045454 
Cell redox 
homeostasis 

TXNRD2, DLD, NNT, 
PTGES2 

1,46E-02 TXNRD2, DLD, NNT, PTGES2 4,91E-02 

0044282 
Small molecule 
catabolic process 

CPT1B, ECI1, DLD, HK1, 
ACACB, ACADS, ACAT1 

1,88E-02 
CPT1B, ECI1, DLD, GPI, 
ACACB, ACADS, BCAT2, MCEE  

4,51E-02 

0098656 
Anion 
transmembrane 
transport 

CLCN5, CPT1B, ACACB, 
SLC25A3, SLC1A3, VDAC1 

2,31E-02 CPT1B, ACACB, SLC25A3, 
SLC1A3, VDAC1 

3,77E-01 

0006081 
Cellular aldehyde 
metabolic process 

DLAT, DLD, PDHA1, PDHX 2,59E-02 DLAT, DLD, GPI, PDHA1 8,73E-02 

0043648 
Dicarboxylic acid 
metabolic process 

DLD, NMNAT3, MDH1, 
SLC1A3 

3,13E-02 
DLD, NMNAT3, MDH1, BCAT2, 
SLC1A3 

2,13E-02 

0016042 
Lipid catabolic 
process 

CPT1B, ECI1, ACACB, 
ACADS, ACAT1, NCEH1 

3,65E-02 
CPT1B, ECI1, FABP3, ACACB, 
ACADS, NCEH1, MCEE 

6,59E-02 

0051235 
Maintenance of 
location 

HK1, ACACB, MEST, 
ATP2A1 5,62E-01   

0010876 Lipid localization 
CPT1B, ACACB, MEST, 
APOO 7,54E-01   

0010257 
NADH 
dehydrogenase 
complex assembly 

  
NDUFA3, NDUFB5, NDUFS1, 
OXA1L, NDUFA12 

3,29E-03 

0097031 
Mitochondrial 
respiratory chain 
complex I biogenesis 

  
NDUFA3, NDUFB5, NDUFS1, 
OXA1L, NDUFA12 

3,29E-03 

0033108 
Mitochondrial 
respiratory chain 
complex assembly 

 
NDUFA3, NDUFB5, NDUFS1, 
OXA1L, NDUFA12 

1,41E-02 

0009141 
Nucleoside 
triphosphate 
metabolic process 

DLD, HK1, ATP5B, ATP5O 5,55E-01 
DLD, GNAI3, GPI, NDUFA3, 
NDUFB5, NDUFS1, ATP5B, 
NDUFA12 

1,97E-02 

0097194 
Execution phase of 
apoptosis 

ENDOG, PRKCQ 6,59E-01 
CAPN10, ENDOG, HMGB2, 
PRKCQ 

4,91E-02 

0055114* 
Oxidation-reduction 
process 

COQ7, TXNRD2, CPT1B, 
CS, ECI1, DLAT, DLD, NNT, 
GPX3, HK1, ACACB, 
ACADS, MDH1, OXA1L, 
PDHA1, PTGES2, RTN4IP1 

2,23E-06 

TXNRD2, CPT1B, CS, ECI1, 
DLAT, DLD, FABP3, FDFT1, 
NNT, GPI, GPX3, ACACB, 
ACADS, MDH1, NDUFA3, 
NDUFB5, NDUFS1, OXA1L, 
PDHA1, CISD1, NDUFA12, 
PYGM, ADIPOR2, PTGES2, 
FLAD1, RTN4IP1 

5,63E-09 

0006101* 
Citrate metabolic 
process 

CS, DLAT, DLD, NNT, 
MDH1, PDHA1 2,23E-06 

CS, DLAT, DLD, NNT, MDH1, 
PDHA1 

1,93E-05 

0019752* 
Carboxylic acid 
metabolic process 

CPT1B, CS, VCAN, ECI1, 
DCN, DLAT, DLD, NNT, HK1, 
ACACB, NMNAT3, ACADS, 

2,23E-06 
CPT1B, CS, ECI1, DLAT, DLD, 
FABP3, FARSA, NNT, GPI, 
ACACB, NMNAT3, ACADS, 

3,44E-05 
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ACAT1, MDH1, PDHA1, 
SLC1A3, PTGES2, PDHX 

MDH1, PDHA1, BCAT2, SLC1A3, 
BSG, ADIPOR2, PTGES2, MCEE 

0045333* Cellular respiration 
CS, DLAT, DLD, NNT, 
MDH1, OXA1L, PDHA1 

5,33E-04 

CS, DLAT, DLD, NNT, MDH1, 
NDUFA3, NDUFB5, NDUFS1, 
OXA1L, PDHA1, CISD1, 
NDUFA12 

2,65E-07 

0015980* 
Energy derivation by 
oxidation of organic 
compounds 

  

CS, DLAT, DLD, NNT, MDH1, 
NDUFA3, NDUFB5, NDUFS1, 
OXA1L, PDHA1, CISD1, 
NDUFA12, PYGM 

1,88E-06 

 

  Network 0 - Cluster 3 

 

Items GOBP Terms Genes FDR 

0071514 Genetic imprinting CDKN1C, IGF2, KCNQ1 3,82E-02 

0050879 
Multicellular 
organismal 
movement 

MB, MYH3 8,56E-01 

0044270 
Cellular nitrogen 
compound catabolic 
process 

PM20D1, PDE4A, RPL31, 
RPL32 

1,00E+00 

0006941* 
Striated muscle 
contraction 

KCNQ1, MB, MYH3, RGS2 5,47E-01 

 

  Network 0 - Cluster 5 

 

Items GOBP Terms Genes FDR 

0031115* 
Negative regulation of 
microtubule 
polymerization 

MAPRE1, INPP5J, STMN1 1,06E-02 

0046785* 
Microtubule 
polymerization 

MAPRE1, INPP5J, STMN1, 
TPPP3 

3,41E-02 

 

  Network 0 - Cluster 8 Network 3 - Cluster 2 
Items GOBP Terms Genes FDR Genes FDR 

0006091 
Generation of 
precursor metabolites 
and energy 

ME3, IDH3G, NDUFA3, 
NDUFAB5, CISD1, 
NDUFA12, PYGM 

1,64E-02 

CS, DLAT, DLD, NNT, GPI, 
MDH1, NDUFA3, NDUFB5, 
NDUFS1, OXA1L, ATP5B, 
PDHA1, SLC25A3, CISD1, 
NDUFA12, PYGM 

1,32E-07 

0055114* 
Oxidation-reduction 
process 

ME3, ADH5, CRAT, IDH3G, 
NDUFA3, NDUFAB5, 
CYB5R1, CISD1, NDUFA12, 
PYGM, BLVRV, FLAD1 

7,25E-03 

TXNRD2, CPT1B, CS, ECI1, 
DLAT, DLD, FABP3, FDFT1, 
NNT, GPI, GPX3, ACACB, 
ACADS, MDH1, NDUFA3, 
NDUFB5, NDUFS1, OXA1L, 
PDHA1, CISD1, NDUFA12, 
PYGM, ADIPOR2, PTGES2, 
FLAD1, RTN4IP1 

5,63E-09 

0015980* 
Energy derivation by 
oxidation of organic 
compounds 

ME3, IDH3G, NDUFA3, 
NDUFAB5, CISD1, 
NDUFA12, PYGM 

8,17E-03 

CS, DLAT, DLD, NNT, MDH1, 
NDUFA3, NDUFB5, NDUFS1, 
OXA1L, PDHA1, CISD1, 
NDUFA12, PYGM 

1,88E-06 

0045333* Cellular respiration 
ME3, IDH3G, NDUFA3, 
NDUFAB5, CISD1, NDUFA12 

8,17E-03 

CS, DLAT, DLD, NNT, MDH1, 
NDUFA3, NDUFB5, NDUFS1, 
OXA1L, PDHA1, CISD1, 
NDUFA12 

2,65E-07 

 

 

 

 



Appendix 10. Gene expression profiles from the normalized expression data 
from the transcriptome study of Voillet et al., 2014. 
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Appendix 11. Hi-C raw matrices of the 18 autosomic chromosomes and the 2 
sex chromosomes obtained at 200 Kb resolution. 

 

 

 



Apendix 12. Correlation matrices of the 18 autosomic chromosomes and the 
2 sex chromosomes obtained from the merged-90 matrices. 
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Appendix 13. Correlation matrices of the 18 autosomic chromosomes and the 
2 sex chromosomes obtained from the merged-110 matrices. 

 



Appendix 14. Gene density in A and B compartments. 
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Appendix 15. Distribution of raw and normalized counts per sample.  
  
 

 
 
 
 
 
 
  



Appendix 16. Global MA plot between samples at 90 and 110 days before and 
after normalization.  
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Appendix 17. Proportion of differential bin pairs with positive and negative 
logFC across chromosomes. 

 



Appendix 18. Density plots of trans vs. cis connections along each 
chromosome at 200 Kb resolution. 
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Appendix 19. Density plots of trans vs. cis connections along each 
chromosome at 500 Kb resolution. 

 

 



Appendix 20. Gene expression in A and B compartments. 
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Appendix 21. Published article in Scientific reports. 
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Conformation 3D du génome et expression génique dans la cellule musculaire porcine en fin de gestation. 
Maria Marti-Marimon – Vendredi 9 novembre 2018, Toulouse – Biologie moléculaire 
UMR 1388 GenPhySE, INRA, 24 chemin de Borde Rouge – Auzeville, CS 52627, 31326 Castanet-Tolosan 
Directeurs de thèse : Martine BOUISSOU-MATET et Sylvain FOISSAC.  

Dans le secteur de l’élevage porcin, les truies ont été sélectionnées pendant des décennies pour leur prolificité 
afin de maximiser la production de viande. Cependant, cette sélection a été associée à une mortalité plus élevée 
des nouveau-nés. Dans ce contexte, le muscle fœtal squelettique est essentiel à la survie du porcelet, car il est 
nécessaire pour les fonctions motrices et la thermorégulation. Par ailleurs, la structure tridimensionnelle du 
génome s'est avérée jouer un rôle important dans la régulation de l'expression génique. Ainsi, dans ce projet, 
nous nous sommes intéressés à la conformation 3D du génome et l'expression des gènes dans les noyaux des 
cellules musculaires porcines à la fin de la gestation. Nous avons initialement développé une approche 
originale dans laquelle nous avons combiné des données transcriptomiques avec des informations de 
localisations nucléaires (évaluées par 3D DNA FISH) d'un sous-ensemble de gènes, afin de construire des 
réseaux de gènes co-exprimés. Cette étude a révélé des associations nucléaires intéressantes impliquant les 
gènes IGF2, DLK1 et MYH3, et a mis en évidence un réseau de gènes interdépendants spécifiques du muscle 
impliqués dans le développement et la maturité du muscle fœtal. Nous avons ensuite évalué la conformation 
globale du génome dans les noyaux musculaires à 90 jours et à 110 jours de gestation en utilisant la méthode 
de capture de conformation de chromatine à haut débit (Hi-C) couplée au séquençage. Cette étude a permis 
d'identifier des milliers de régions génomiques présentant des différences significatives dans la conformation 
3D entre les deux âges gestationnels. Fait intéressant, certaines de ces régions génomiques impliquent les 
régions télomériques de plusieurs chromosomes qui semblent former des clusters préférentiellement à 90 jours. 
Plus important, les changements observés dans la structure du génome sont associés de manière significative 
à des variations d'expression géniques entre le 90ème et le 110ème jour de gestation. 

Mots-clés : Architecture nucléaire, muscle fœtal porcin, Hi-C, cartes de contact, 3D DNA FISH, réseau de 
co-expression génique. 

3D genome conformation and gene expression in fetal pig muscle at late gestation. 
In swine breeding industry, sows have been selected for decades on their prolificacy in order to maximize meat 
production. However, this selection is associated with a higher mortality of newborns. In this context, the 
skeletal fetal muscle is essential for the piglet’s survival, as it is necessary for motor functions and 
thermoregulation. Besides, the three-dimensional structure of the genome has been proven to play an important 
role in gene expression regulation. Thus, in this project, we have focused our interest on the 3D genome 
conformation and gene expression in porcine muscle nuclei at late gestation. We have initially developed an 
original approach in which we combined transcriptome data with information of nuclear locations (assessed 
by 3D DNA FISH) of a subset of genes, in order to build gene co-expression networks. This study has revealed 
interesting nuclear associations involving IGF2, DLK1 and MYH3 genes, and highlighted a network of 
muscle-specific interrelated genes involved in the development and maturity of fetal muscle. Then, we assessed 
the global 3D genome conformation in muscle nuclei at 90 days and 110 days of gestation by using the High-
throughput Chromosome Conformation Capture (Hi-C) method. This study has allowed identifying thousands 
of genomic regions showing significant differences in 3D conformation between the two gestational ages. 
Interestingly, some of these genomic regions involve the telomeric regions of several chromosomes that seem 
to be preferentially clustered at 90 days. More important, the observed changes in genome structure are 
significantly associated with variations in gene expression between the 90th and the 110th days of gestation. 

Keywords: Nuclear architecture, porcine fetal muscle, Hi-C, contact maps, 3D DNA FISH, gene 
co-expression network.  
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