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Food choice, acceptance, and consumption are not determined solely by physiological and 

nutritional needs. Some of the other factors that influence food choice in a conscious or 

unconscious manner include: economical, psychological, environmental, and cultural 

determinants. Flavor is also consistently reported as having a major influence on food 

behavior along with pleasantness. Flavor is a sensory percept induced by food or beverage 

tasting and relies on the integration of taste, smell and somatosensory stimuli. Working on 

food flavor perception should contribute to the creation of food products in agreement with 

consumers’ expectations and nutritional recommendations. To do so, a key goal is to gain 

insight into the link between the composition of food and its flavor and to develop relevant 

models with efficient predictive abilities. 

Among the sensory modalities involved in food flavor perception, this manuscript focuses on 

odor perception (smell). Food odor analysis usually relies on the quantification and 

identification of a list of odorants. Several approaches attempted to predict the odor of 

odorants on the basis of their molecular structure. Such methods focused on single odorants; 

however odors we perceive in every-day life are mixtures including many different odorants 

at varying concentrations. Therefore, the odor analysis process is not sufficient to predict the 

odor profile of a given food product since the perception of odorants’ mixture is not the 

simple sum of the odor of each odorants but the results of numerous and complex perceptual 

interactions. 

In order to improve the food odor analysis efficiency, there is a need to take into account the 

perception of odorants’ mixture to predict the odor profile of food products. To do so, the 

presented work explored two strategies. The first one is based on structure-odor relationships 

and aims to predict the similarity among odorants’ mixture on the basis of their molecular 

structure. The second one relies on an innovative strategy which combines food odor analysis 

with expert knowledge on aroma formulation through a modelling approach relying on fuzzy 

logic and optimization. This multidisciplinary thesis project combines methodologies from the 

modelling to the food science, chemical, and sensory disciplines. 

The developed strategies have been applied to the odorant composition of red wines, as a 

good example of a complex food matrix. Indeed, wine is a widely studied product in terms of 

odor/aroma. Moreover, the project was conducted in Dijon, capital of Burgundy known for its 

Grand cru wines: “the vines of France and milk of Burgundy” (King Lear, Shakespeare).  
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The thesis manuscript contains five chapters. 

The review of the literature (Chapter 1) firstly gives a definition of flavor. Then, odorants’ 

mixture perception is highlighted through examples of interactions between odorants at the 

perceptual level. Food odor measurements are then presented and are followed by the review 

of the predictive approaches applied to odor perception. Next, because expertise is integrated 

into the second strategy presented, the focus is set on food odor expertise. The chapter is 

concluded by a critical conclusion of the main literature items, followed by the presentation of 

the thesis core research questions and the scientific strategy of the thesis work. 

Chapter 2 details the methodologies used in this work. First, the wines used in the predictive 

approaches are characterized through analytical and sensory analysis. Secondly, the collection 

of expertise from flavorists is described. Then, the concept of ontologies is explained. Lastly, 

fuzzy logic is defined and an example of application is detailed. 

In the three following chapters (Chapter 3, Chapter 4, and Chapter 5), the work achieved 

during the thesis is presented through three articles. 

In Chapter 3, the first predictive modelling strategy is presented. The link between odorants’ 

molecular structure and mixture similarity is established for complex mixtures, including real 

food matrices (e.g. wines).  

In Chapter 4, the construction of an ontology for odor perceptual space is presented. This 

knowledge representation relies on semantic odor information in part collected from expert 

flavorists. The ontology is used in a predictive approach to predict odor quality perception 

from complex mixtures, namely wines. It will be implemented in the following chapter as a 

basis of an expert system. 

Chapter 5 presents the second predictive strategy which combines ontology, fuzzy logic and 

optimization methodologies to form an operational expert system. The developed model is 

able to predict the odor profile of wines qualitatively and quantitatively through the estimation 

of the intensity of odor sensory attributes. 

The manuscript ends with a general discussion about the work achieved, the perspectives 

addressed for further research and a general conclusion. 
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STATE OF THE ART 

 

I. Flavor 

 

Flavor is a multi-modal perception arising from the consumption of food and beverage 

(Thomas-Danguin, 2009). This perception results from the integration of simultaneous 

information transmitted by different sensory systems: gustatory, somatosensory and olfactory 

(Laing and Jinks, 1996). However, there continues to be a significant debate over just how 

many modalities should be included in flavor construction (Small, 2012): chemical sensations 

that arise from the mouth (gustatory and olfactory receptors), smell (olfactory receptors), 

sound (sound perception), texture (tactile receptors), and sight (visual perception)? In this 

manuscript, the flavor perception is defined as the one created from the activation of the 

chemical senses: taste, somatosensation (nasal and oral) and smell (Figure 1.1). 

 

 

Figure 1.1: Modalities of flavor perception. Flavor is the result of the integration of 

simultaneous information transmitted by the gustatory, somatosensory and olfactory systems. 
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1. Gustation 

Gustation refers to the sense of taste, corresponding to the sensation produced when tastants 

interact with taste receptors of taste receptor cells located on taste buds in the oral cavity, 

mainly on the tongue but also on the soft palate, and in the pharyngeal and the laryngeal 

regions of the throat (Breslin & Huang, 2006). Taste compounds belong to different chemical 

classes such as mineral salts, organic acids, amino acids, nucleotides, carbohydrates, peptides, 

proteins, and some phenolic or heteroatomic compounds (Thomas-Danguin et al., 2012; 

Briand & Salles, 2016).  

Our sense of taste allows us to detect five basic qualities: bitter, salty, sour, sweet, and umami. 

A sixth quality has recently been proposed regarding the ability to taste fatty acids (Mattes, 

2010). Astringency (Jiang et al., 2014), kokumi (mouthfullness) (Maruyama et al., 2012), and 

starchiness (Lapis et al., 2016) are also studied and might be added to the taste range. 

This sensory modality allows the evaluation of food and beverage in order to accept it by 

swallowing or reject it by expectoration. In addition, taste has a clear role in nutrient sensing 

and is thus highly involved in eating behavior (Boesveldt & de Graaf, 2017). 

 

2. Somatosensation 

Somatosensation refers to the process that conveys information regarding the body surface 

and its interaction with the environment. It can be subdivided into mechanoreception, 

thermosensation, and nociception. During food consumption, somatosensation is caused by 

the excitation of the trigeminal nerve by trigeminal compounds in the mouth or in the nose. 

The resulting perceptions are: spiciness (or pungency), astringency, burning or cooling. 

Trigeminal compounds can include taste or odor compounds as for example menthol (CAS 

1490-04-6) which induces a cooling sensation as well as a minty odor percept (Salles et al., 

2012). 
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3. Olfaction 

Olfaction refers to the sense of smell which also largely impacts eating behavior. In most 

cases, food odor reflects food identity and typicality. For instance, it has been demonstrated 

that odor exposure induces appetite specifically for the cued food (Boesveldt & de Graaf, 

2017).  

a. Odorants and odors 

There is a general agreement that molecules giving rise to an odor sensation should be 

referred to as odorants, however the usage of the term odor is less clear (Hudson, 2000). Thus, 

odorants are molecules capable of being translated by the olfactory nervous systems into odor 

percepts. As mentioned earlier, odorants can also stimulate the activation of the nasal 

trigeminal system (Doty et al., 1978).  

Odorants, as molecules, are objectively definable in terms of their physico-chemical 

characteristics. Odorants are typically organic volatile compounds of low molecular weight 

(<400 Dalton), they may be aliphatic or aromatic, may be saturated or unsaturated, and may 

have any of several polar functional groups. Molecular structures of odorants are available on 

different databases, such as PubChem (http://pubchem.ncbi.nlm.nih.gov/). In addition, with 

the advent of software such as Dragon (Talete, Milan, Italy), it is now possible to calculate a 

wide number of structural parameters (more than 4800) from the molecular structure of 

odorants. 

Odorants are also defined with their psychophysical characteristics such as detection 

threshold. Odor detection threshold corresponds to the minimum concentration at which 50% 

of a human panel can detect the presence of an odor without being able to characterize or 

recognize the stimulus. Thresholds of odorants differ by many orders of magnitude. For 

example, the thresholds in water for bis(2-methyl-3-furyl)disulphide (CAS 28588-75-2) and 

ethanol (CAS 64-17-5) are respectively 0.32x10
-9

 and 0.99 g.L
-1

 (Czerny et al., 2008). 

However it has to be noted that thresholds in literature vary widely due to the possible 

contamination with other odorants, and threshold determination methods (Chastrette, 1998). 

Furthermore, odorants are characterized by their intensity as a function of concentration. This 

relationship is not a simple binary function but a psychometric unique function for each 

odorant (Delahunty et al., 2006). Psychometric functions can best be considered as sigmoidal 

shape in a plot of log concentration against perceived intensity. Modelling attempts to predict 



  

22 

the intensity of odorants from a wide range of concentration concluded that models derived 

from the Hill equation should be preferred (Chastrette et al., 1998). 

Odorants can also be described with the odor percept they evoke, but we will see further that 

naming odors can be a complicate task and often lead to a so-called “tip-of-the-nose” 

phenomenon (Lawless & Engen, 1977). Recently, it has been estimated that humans can 

detect and discriminate more than one trillion different odorants (Bushdid et al., 2014), 

though the exact number remains unknown. Thus we can assume an even wider number of 

odor percepts. 

b. Orthonasal and retronasal olfaction 

Orthonasal olfaction refers to the route of sensing odors in our environment involving 

inhalation of odorants through the nares. However, odorants can also enter the nose from the 

mouth through internal nares in the upper palate during food consumption via the retronasal 

route (Delime et al., 2016) (Figure 1.2). This second mechanism of odorants perception only 

occurs when the velum tongue border is open to allow odorants released from food into the 

mouth to be transported by the swallowing breath into the nasal cavity (Buettner et al., 2001).  

 

 

Figure 1.2: Schematization of ortho- and retronasal olfaction pathways. 

 

Different terminologies are commonly used depending on the way molecules are involved in 

olfaction. Odor percept is used when odorants are stimulating the olfactory system via the 

orthonasal pathway whereas aroma percept is used when odorants are stimulating the 



CHAPTER 1: LITERATURE REVIEW 

23 

olfactory system via the retronasal pathway. Thus odor compounds and aroma compounds are 

the same compounds; the difference relies on the olfactory route and their processing by the 

brain (Heilmann & Hummel, 2004). We will further use only the term odorant for odor-active 

molecules; however the aroma terminology might be used according to the literature context. 

Perception via the ortho- and retronasal pathways have been shown to be different for the 

same odorants and odorants’ mixtures (Goldberg et al., 2018). Indeed, there are differences in 

the perception of the duration of odors. For example, the perceived intensity of the lemon 

odor of citral and the vanilla odor of vanillin persisted longer by retronasal olfaction (Kuo et 

al., 1993). Furthermore, it seems that different neural processes occur according to the 

olfactory pathway (Small et al., 2005; Ishii et al., 2008). 

c. Mechanisms of olfaction 

Now that we have defined the concepts of odors, odorants and the differences between 

orthonasal and retronasal olfaction, the next step is to understand how odorants elicit odor 

percepts. Although we focus on the human olfactory system, studies which have provided 

information about the olfactory system structure and cellular functioning were done mostly on 

animals and especially rodents. 

Odorants enter the nasal cavity either via the nose, by sniffing (orthonasal olfaction), or via 

the mouth, during eating or drinking (retronasal olfaction). Then odorants dissolve in the 

mucus that lines the superior portion of the cavity and are detected by the olfactory receptors 

(OR) located on the dendrites of olfactory sensory neurons (OSN). 

Once an OR has been activated, a cascade of events is initiated transforming the chemical-

structural information contained in the stimulus into a neural signal, i.e. a membrane potential. 

This signal is projected to a first relay in the brain, the olfactory bulb, from where it is 

transmitted to the olfactory cortex and higher regions of the brain. This activity pattern is then 

decoded as a particular odor percept. 

Each OSN expresses a single olfactory receptor gene (Monahan & Lomvardas, 2015; Nagai et 

al., 2016). As shown in Figure 1.3, axons from OSN expressing the same OR gene converge 

in the same regions of the olfactory bulb, so that each OR gene has a corresponding 

glomerulus in the olfactory bulb (Ressler et al., 1994; Vassar et al., 1994; Mombaerts et al., 

1996). 
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Figure 1.3: Mechanisms of olfaction. 1. Odorants enter in the nasal cavity and bind to 

olfactory receptors (OR) on the dendrites of olfactory sensory neurons (OSN). 2. Olfactory 

receptor cells, i.e. OSN, are activated and transduce signals, which are sent to the olfactory 

bulb. 3. Once in glomeruli, signals are transmitted to second order neurons in the olfactory 

bulb. 4. Signals are then heading to the olfactory cortex and other regions of the brain to 

create an odor percept. Figure adapted from Rinaldi (2007). 

 

A given odorant activate a specific group of glomeruli in the olfactory bulb and the resulting 

signal lead to odorant discrimination (Duchamp et al., 1974). The human genome contains 

~400 OR functional genes (Zozulya et al., 2001; Malnic et al., 2004) which belong to the 

large gene family of G protein-coupled receptors (Buck & Axel, 1991). Each OR is thought to 

recognize more than one odorant and each odorant can be recognized by more than one OR so 

that each odorant activates a specific combination of OR (Figure 1.4) (Malnic et al., 1999). 
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Figure 1.4: Combinatorial coding of odorants. Olfactory receptors (OR) colored are 

activated by the odorant on the left. Each odorant has its own receptor’s code. The wide 

number of possible combinations explains the ability of the olfactory system to discriminate a 

wide number of odorants. Figure adapted from Malnic et al. (1999). 

 

Olfactory coding mechanisms depend on which odorant activates a given OR, and at which 

concentration. On the one hand, the existence of many OR and the wide number of possible 

ligands makes the deorphanization of these receptors a challenging task (Peterlin et al., 2014). 

So far only a very small fraction of the human OR has been linked to their ligands (Mainland 

et al., 2015). However, new techniques should contribute to the identification of human OR 

that recognize odorants of interest (Armelin-Correa & Malnic, 2017). On the other hand, 

changes in odorant concentration result in changes in the combination of receptors that 

recognize the odorant. Indeed, the increase of an odorant’s concentration leads to the 

activation of additional OR (Malnic et al., 1999). 

Thus, transduction of olfactory stimulation into odor percepts depends on various parameters 

such as the odorant’s structure and its concentration-intensity curve. Moreover, we should not 

forget that sensitivity to single odorants varies greatly among subjects with a normal sense of 

smell (Keller et al., 2012) which is another issue in the prediction of OR activation and odor 

percepts elicited by odorants. 

d. Verbalizing odors 

Even though odorants are omnipresent in our daily lives, verbalizing odor percepts is not an 

easy task. If asked to name everyday odors like peanut butter, cinnamon or strawberry, most 
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people can only name half of them correctly (Cain, 1979). However, accurate description of 

odors is crucial for communication purposes in food, flavoring and fragrance industries. 

Characterizing odors in verbal terms is a complex process that consists in identifying a set of 

descriptors that best synthesizes the olfactory perception. Generally, this semantic 

characterization results in a limited set of odor descriptors (Abe et al., 1989; Zarzo & Stanton, 

2006; Iatropoulos et al., 2018), also called odor descriptions (Tromelin et al., 2017), odor 

notes (Chastrette et al., 1991), perceptual descriptors (Kumar et al., 2015), or flavor 

descriptors (Martínez‐Mayorga et al., 2011). In this manuscript, we used the term odor 

descriptors to describe odors. 

When asked to describe odors in verbal terms, neophytes provide sets of odor descriptors 

relying mainly on the source of the smell, as “odor of/the/a N” where N denotes an odor 

source (Rouby et al., 2005; Dubois, 2006), and focused on the stimulus intensity (weak or 

strong) and its pleasantness (“it smells good” or “it smells bad”) (Vassiliadou & Lammert, 

2011). Such terms are subjective and thus cannot be shared among individuals (Barkat-

Defradas & Motte-Florac, 2016). It was also demonstrated that odor naming for neophytes is 

facilitated by forced choice among a list of descriptors. Such finding supports the hypothesis 

that odor naming relies more on global semantic discriminations than on lexical access 

(Rouby et al., 2005). 

On the contrary, experts seem to put the hedonic tone of odor percepts aside when they 

characterize an olfactory perception (Sezille et al., 2014). Indeed, expert flavorists and 

perfumers learn a common language to calibrate the description/characterization of odors. We 

can mention the Champ des odeurs© (Jaubert et al., 1995) and Sense It
TM

, a global flavor 

language at Givaudan (Veinand, 2015). Wheels of odors can also help trained sensory 

panelists or experts to share a common referential to qualify odors of specific food products 

(caramel: Paravisini et al., 2014; honey: International Honey Commission (IHC) 

http://www.ihc-platform.net/reports.html; wine: Noble et al., 1987).  

Databases compiling odor descriptors for large sets of odorants are available (The good scents 

company: Luebke, 1980; Atlas of odor character profiles: Dravnieks, 1985; Arctander’s 

handbook: Arctander, 1969; Fenaroli's handbook: Burdock, 2010; Flavornet: Arn & Acree, 

1998; Flavor-Base: Leffingwell & Associates, http://www.leffingwell.com; Flavors and 

Fragrances of Sigma-Aldrich: http://www.sigmaaldrich.com/industries/flavors-and-

fragrances.html). The number of odorants in each database and the methodology to obtain the 
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odor descriptors is detailed in Table 1.1. As an example, the odor description of the odorant 

Ethyl propionate (CAS 105-37-3) is presented according to the seven databases. This 

highlights the lack of consensus among the databases and of agreement about the number of 

descriptors essential to cover the complete range of odor stimuli which varies from 4 to 146 

(Chastrette, 2002). Thus, the evaluation of what we could expect to be the most simple odor 

percept, which is related to a single odorant, is already highly variable. 

It also important to mention that the odor percept elicited by an odorant may change 

according to its concentration (Gross-Isserof & Lancet, 1988). Indole, for example, has an 

“extremely diffusive and powerful odor, almost tarry-repulsive and choking” when 

concentrated but is perceived as floral and pleasant when diluted (Arctander, 1969). Such 

phenomenon may rely on peripheral processes as well central processing, including quality 

encoding and mnemonic devices (Cain, 1979). 

Another issue not discussed here about odor verbalization is linked to cultural differences 

which can affect the ability to identify or describe odors (Chrea et al., 2004; Ferdenzi et al., 

2016). 

 

The flavor of food, along with its appearance and texture, is considered to be decisive 

for the consumer in the selection and ingestion of food (Fisher & Scott, 1997). Because flavor 

perception arises from the central integration of multiple sensory inputs (Small & Prescott, 

2005), modalities contributing to flavor are commonly confused (Murphy & Cain, 1980; 

Rozin 1982; Chaudhari & Roper, 2010; Fondberg et al., 2018). Distinguishing the different 

modalities is still possible, especially when attention is drawn to particular sensory 

characteristics. Among the sensory dimensions involved in food flavor perception, the 

olfactory component is critical because it determines most of the time the identity and the 

typicality of the food, which drive its overall quality and recognition by consumers (Hornung 

& Enns, 1986).  
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Table 1.1: Comparison of seven odor descriptors databases. *: descriptors are presented 

along with the percent of subjects who used the given descriptor (only percentages of more 

than 20% are shown). 
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II. Mixtures of odorants 

 

We outlined that transduction of olfactory stimuli into odor percepts depends on many 

characteristics of single odorants. However, smelling single odorants in every-day life rarely 

occurs, instead we perceive complex mixtures of tens, hundreds or even thousands of 

odorants. For example, chemical aroma analyses of wines usually reveal about 60 to 80 

odorants regardless of the wines’ color (Aznar et al., 2001; Lee & Noble, 2003; Zhao et al., 

2017). 

Within the context of odorants’ mixtures, the overlapping response profiles of olfactory 

receptors (OR) and thus olfactory sensory neurons (OSN) introduce the possibility of 

interactions which occur at the peripheral level of the olfactory system or its first relay in the 

brain and may further influence the perceived intensity of mixtures and the odor percepts they 

evoke (Berglund et al., 1976; Goyert et al., 2007). 

 

1. Peripheral interactions 

Peripheral interactions can occur during the first step of the olfactory process, when odorants 

bind to OR and the resulting activity pattern is transmitted to the olfactory bulb (OB) in the 

brain via the OSN. 

a. Olfactory receptor (OR) level 

Odorants activate different but sometimes overlapping subset of OR, which defines an activity 

pattern specific to one odorant. When odorants are mixed, a code for the mixture is expected 

to be the sum of the coding patterns of its components. However, there can be competitive 

interactions when odorants bind to the same receptors. For example in Figure 1.4, odorant 4 

can bind to the same OR as the odorants 1 and 2. 

This mechanism could involve either two agonist odorants, i.e. both odorants bind to the same 

receptor and activate it, or one agonist and one antagonist. An antagonist blocks or dampens 

the biological response by binding to and blocking a receptor rather than activating it (Spehr 

et al., 2003; Oka et al., 2004; Sanz et al., 2005; Jacquier et al., 2006). For example, the 

odorant bourgeonal (CAS 18127-01-0) is a powerful agonist for the human olfactory receptor 
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hOR17-4, while the odorant undecanal (CAS 112-44-7) fails to activate this receptor. 

However, when the two odorants are mixed, the hOR17-4 response is suppressed, which 

indicates that undecanal inhibits the receptor activation by bourgeonal (Spehr et al., 2003). 

Moreover the interaction identified at the OR level between bourgeonal and undecanal 

exhibits a strong inhibitory effect on bourgeonal odor at the perceptual level in humans 

(Brodin et al., 2009). Odorants could act both as agonist for some OR and as antagonist for 

others (Oka et al., 2004). As illustrated, when antagonism between odorants occurs, a smaller 

number of OR are activated than the additive number of active OR by single odorants (Figure 

1.5). This dual function as agonist or antagonist to OR provides complexity in the encoding 

mechanism of an odorants’ mixture at the receptors level (Rospars et al., 2008). 

 

 

Figure 1.5: Combinatorial coding of odorants’ mixture is not the sum of the code of each 

odorant. Olfactory receptors (OR) colored are activated. Taking the example of the odorants 

1 and 4 in Figure 1.4, odorant 1 is an agonist for the violet receptor but an antagonist for the 

green receptor whereas odorant 4 is an agonist of the receptors violet and green. 

 

b. Olfactory sensory neuron (OSN) responses 

Different types of interactions were observed in rodents regarding the responses of OSN to 

binary mixtures and their components (Duchamp-Viret et al., 2003). The response of OSN to 

binary mixtures was observed to be lower, higher or equivalent to the highest single odorant 

response. Interactions also depend on the odorants included in the mixtures and their 
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concentration ratios because a shift between interaction types was reported as a function of 

odorant concentration (Duchamp-Viret et al., 2003; Chaput et al., 2012). 

Interactions in rat OSN responses to binary mixtures of isoamyl acetate (CAS 123-92-2) and 

whiskey lactone (CAS 39212-23-2) were in concordance with the perceptual responses to the 

same mixtures in humans (Chaput et al., 2012). Indeed, rat OSN responses to the mixtures 

were enhanced or reduced depending on the concentration of whiskey lactone in the mixture. 

Similarly, in humans, the fruity intensity given by isoamyl acetate was increased by low 

concentrations of whiskey lactone and decreased by high concentrations. 

c. Olfactory bulb (OB) responses 

Each OR has a corresponding glomerulus in the olfactory bulb (Figure 1.3). Thus, several 

glomeruli are activated by OSN when OR are stimulated with odorants’ mixtures. However, 

as for the OR, the number of glomeruli activated differs from the sum of the glomerulus 

activated by each odorant of the mixture (Bell et al., 1987; Lin et al., 2006; Grossman et al., 

2008). This suggests that spatial activity patterns within the olfactory bulb are not sufficient to 

predict odorant recognition in mixtures. 

Together these results suggest that mixtures’ perception is reshaped at each level of 

processing and signal integration (OR, OSN, OB), odorants being encoded differently when 

they are stimulating the olfactory system alone or in mixtures. This also implies further 

processing which occur in higher brain areas (Boyle et al., 2009). 

 

2. Perceptual interactions 

Peripheral interactions shape the odor signal, which seems to determine the perceptual 

features of complex mixtures (Kay et al., 2003). The consequences of the non-linear 

integration of the chemical information carried by an odorants’ mixture can indeed be 

observed at the level of odor perception, i.e. their quality, intensity and pleasantness. 

a. Odor percept 

The odor percept resulting from an odorants’ mixture, as defined by Berglund et al. (1976), 

can be homogeneous when a single odor is perceived from the mixture or heterogeneous 

when several odors are perceived from the mixture. 
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A homogeneous percept is elicited when the odors of the mixed odorants lose their individual 

odor quality and blend into a new odor perceived as an entity, this is called odor blending. 

The perception of such mixtures is considered as configural or synthetic (Berglund & Olsson, 

1993; Laing, 1994; Jinks & Laing, 2001; Kay et al., 2005). Overshadowing (Kay et al., 2005) 

and masking (Cain & Drexler, 1974) are also considered as homogeneous percepts because 

the odor quality of one component completely covers the odors of the other components. 

A heterogeneous percept is elicited when at least some of the component odors can be 

perceived within the mixture. The perception of such mixtures includes analytical (Berglund 

& Olsson, 1993) or elemental (Kay et al., 2005) perception which occurs when the stimuli 

keep their individual qualities. 

Figure 1.6 illustrates the perceptual interactions in binary mixtures. In the case of more 

complex mixtures, it has been suggested that the odor percept of the mixture is more 

frequently different from the odor qualities of their constituting odorants. In other words, 

complex mixtures are more inclined to evoke the perception of a new odor (Livermore & 

Laing, 1998; Ferreira, 2012b; Lindqvist et al., 2012). The case of partial blending highlights 

the fact that both mechanisms can occur at the same time. Indeed, in the case of complex 

mixtures, subjects are only able to identify three or four components, the remaining being 

perceived as a single entity or masked (Laing & Francis, 1989). 
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Figure 1.6: Perceptual interactions regarding the odor percept of a binary mixture. One 

odorant is described as the odor percept A and the other as the odor percept B, while the odor 

percept C is specific to the mixture (configural). Figure inspired by Thomas-Danguin et al. 

(2014). 

 

b. Odor intensity 

Perceptual interactions can also impact the perception of mixtures’ intensity. Intensity 

interactions in binary mixtures are usually demonstrated by comparing a mixture’s intensity 

with the intensities of its components alone or their sum (Cain, 1975; Patte & Laffort, 1979; 

Berglund & Olsson, 1993; Thomas-Danguin & Chastrette, 2002). Such interactions are 

categorized depending on whether the mixture quality is homogeneous or heterogeneous 

(Cain & Drexler, 1974; Berglund et al., 1976; Ferreira, 2012a). 

On the one hand, heterogeneous binary mixtures, i.e. when both odorants keep their individual 

qualities, may smell as strong, more intense or less intense than the sum of both intensities 

due to respectively independence, synergy or antagonism effects. Such effects applied to one 

or both of the odorants. In Figure 1.7, odorant A illustrates independence, synergy and 

antagonism effects whereas odorant B illustrates only independence because its intensity stays 

equal to the unmixed intensity. Synergy and antagonism occur when the intensity of one 

odorant in the mixture is respectively higher or weaker than its intensity when unmixed. 
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On the other hand, as shown in Figure 1.7, homogeneous binary mixtures may smell 1) as 

strong as the sum of the perceived intensities of the unmixed components, i.e. complete 

addition; 2) more intense, i.e. hyper-addition, or 3) less intense, i.e. hypo-addition. Cain & 

Drexler (1974) subdivided hypo-addition in three classes: if the mixture quality intensity is 

greater than that of the single intensities, intermediate, or smaller, the terms “partial addition”, 

“compromise”, and “subtraction” are used. 

 

 

Figure 1.7: Perceptual interactions regarding the odor intensity of a binary mixture. In 

this example, the perceived intensity of odorant A smelled alone is 4 and the perceived 

intensity of odorant B smelled alone is 6. The perceived intensity of the binary mixture may 

result in a complete addition, hypo-addition or hyper-addition. Figure adapted from Cain & 

Drexler (1974) and Thomas-Danguin et al. (2014). 

 

The studies presented above concern binary mixtures with odorants at supra-threshold 

intensities because compounds present above their odor threshold are usually considered as 

key compounds in odor construction. However, there are also interactions at intensities below 

threshold. Atanasova et al. (2005) showed the impact of sub- and peri-threshold odorants on 

the olfactory perception of mixtures.  
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Thus, considering complex food matrices composed of hundreds of odorants at various 

intensities (supra- and sub-threshold), interaction effects might be more complex. Moreover, 

the odor intensity of the mixture usually does not increase additively when increasing the 

number of components (Laffort & Dravnieks, 1982; Ferreira, 2012a). 

 

When studying the perception of odorants’ mixtures it is thus of importance to consider 

the odorants through their structural and perceptual variables when they are presented and 

perceived separately as well as when they are perceived in a mixture. In the following 

paragraphs, the techniques used to measure and evaluate food odor will be presented. 

 

III. Food odor and its measurement 

 

The odor of food is due to the processing by the olfactory system of many chemical molecules 

embedded in complex mixtures often recognized as single percepts due to odor blending. The 

odor of food products can be measured through chemical analysis to identify odorants in the 

products and/or through sensory analysis to give an overview of the product perceptual 

profile. 

 

1. Chemical analyses 

Food odor chemical analysis is classically performed by separating, identifying, and 

quantifying the volatile molecules included in food products using gas chromatography (GC) 

technique coupled with various detectors or electronic noses with various sensors or the 

human nose (GC-Olfactometry, GC-O). 

a. Gas chromatography (GC) techniques 

Because volatiles are contained within a food matrix, they first have to be extracted (Da Costa 

& Eri, 2009). Extraction techniques for GC analysis can be divided in solvent extraction 

methods, steam distillation methods, headspace techniques, and sorptive techniques. Among 

the wide variety of extraction methodologies, there is no universal extraction method to 
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produce a representative extract (Barba et al., 2017). In order to achieve the most complete 

volatile profile, i.e. to detect as many volatiles as possible, flavor chemists are then using 

combination of techniques. For example, Ferreira et al. (2002) combined micro extraction, 

solid phase extraction, and solid phase micro extraction techniques to identify 47 compounds 

in Grenache rosé wines.  

Once volatiles are extracted from the food matrix, they are injected in a chromatograph along 

with a solvent (column and solvent choices are determined by the aim of the analysis and the 

characteristics of the extract). Each separated odorant, eluted by the GC, will be detected and 

identified with different methods according to the chosen detectors. The most common 

chemical detectors coupled with GC are mass spectrometer (MS, GC-MS for gas 

chromatography coupled to mass spectrometry) and flame ionization detector (FID). The 

visual output of such techniques is a chromatogram. In the case of an optimal separation, the 

different peaks on the chromatogram correspond to the volatiles included in the food product. 

Peak areas are linked to the relative amount of the volatiles in the extract but not to their odor 

intensities. As mentioned before, the link between concentration and perceived odor intensity 

is volatile-dependent. 

Some volatiles identified might be odorless, whereas some volatiles might not be revealed by 

the chromatogram because they are present at such low concentrations that the chemical 

detectors cannot detect them because of the detector’s limit of detection. Thus, a notable 

improvement in odor identification consisted in coupling GC-MS with olfactometric detection 

(GC-MS-O) (Delahunty et al., 2006). The GC-MS still allows the identification and 

quantification of volatiles molecules and the human nose is a second detector (Figure 1.8). 

Indeed, human assessors are a sensitive detector and can distinguish some odorants at 

concentration below ppt (Nagata, 2003). In addition to odorant presence, assessors are able to 

measure the duration of the odor activity (start to end), to describe the quality of the odor 

perceived, and to quantify its intensity (Delahunty et al., 2006; Bratolli et al., 2013). 
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Figure 1.8: Food odor analysis through gas chromatography coupled to mass 

spectrometry and olfactory detections technique (GC-MS-O). Food product volatile 

compounds extract is injected in the gas chromatography (GC) column. Volatiles are 

separated and distributed both to the mass spectrometer (MS) and to the nose of a human 

assessor at the sniffing port. The MS detection allows the identification of volatiles whereas 

the olfactory detection allows the detection of the odorants among the volatiles. In this 

example, odorants are identified according to their CAS number. Intensity of odorants is 

calculated with their nasal impact frequency (NIF) scores which is the ratio of panelists who 

smelled the odorants on the total number of panelists. 

 

Thus, GC methods associated to olfactometric detection have been developed in flavor 

research to determine the odor active compounds (i.e. odorants) among the volatile 

compounds present in food products and to determine their relative importance in a sample 

(van Ruth, 2001; d’Acampora Zellner et al., 2008; alcoholic beverages: Plutowska & 

Wardencki, 2008). These methods can be categorized into three groups: frequency detection, 

dilution to threshold, and direct intensity methods (Delahunty et al., 2006). In addition, we 

will present the concept of odor activity value (OAV). 

- Frequency detection 
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The frequency detection method involves a panel of 6-12 people who analyze the same 

sample in order to provide the proportion of subjects from the panel who perceive an odor at a 

given retention time; this proportion is called the nasal impact frequency (NIF) value (Pollien 

et al., 1997; Le Fur et al., 2003). The NIF value is 1 when all the subjects perceived a given 

odor, and 0 when no subject perceived any odor at a given retention time (Figure 1.8). 

Simplicity is the main advantage of detection frequency-based methods which do not 

necessitate qualified evaluators. However, odorants present in different concentrations but all 

above the detection threshold will obtain a NIF value of 1. 

- Dilution to threshold 

Dilutions to threshold methods provide the odor potential of a given odorant based on the 

ratio between its concentration in the sample and its sensory threshold in air. These methods 

consist of preparing a dilution series of an extract, using twofold, threefold, fivefold or 10-

fold dilution levels and then analyzing them with GC-O. The assessors state under which 

dilution the compound analyzed can still be perceived, and usually describe the type of smell. 

The most frequently reported dilution methods are Aroma Extract Dilution Analysis (AEDA) 

(Ullrich & Grosch, 1987) and Combined Hedonic Aroma Response Measurement 

(CharmAnalysis
TM

) (Acree et al., 1984). Such methods allow ranking odorants according to 

their potency (i.e. the larger the dilution value, the greater the potential contribution of that 

compound to the overall aroma). A disadvantage of dilution methods is the length of time 

required to complete the analyses on each dilution for a single extract. 

- Direct intensity 

The odor intensity and its duration can be measured with direct intensity rating methods using 

different kinds of quantitative scales (category or unstructured line). These methods include a 

single time-averaged measurement registered after the elution of the odorant (posterior 

intensity evaluation method) or a dynamic measurement, where the appearance of an odor, its 

maximum intensity and decline are registered in a continuous manner. One potential 

drawback of direct-intensity methods is the substantial amount of training that assessors 

require in order to obtain individual reproducibility and agreement with one another. 

- Odor activity value (OAV) 

The OAV aims to estimate the importance of an odorant based on the ratio of the compound 

concentration in the food to its threshold concentration (Patton & Josephson, 1957). The ratio 
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indicates by how much the actual concentration of a compound exceeds its sensory threshold. 

Therefore this method does not explicitly rely on sensory evaluation within the analysis 

procedure. Whereas in AEDA or Charm analysis the threshold of each odorant is actually 

estimated during the analysis procedure, thresholds in the OAV approach are collected from 

the literature. Often defined in air or water, these non-specific thresholds are often misleading 

and not efficient (Audouin et al., 2001). Another drawback of the OAV approach is related to 

the linear concentration-intensity relationship assumption which is not an accurate estimation. 

b. Electronic noses 

The use of a human nose as a detector is useful as we just outlined but also limited by the fact 

that our sense of smell is subjective and gets tired easily. This led to the development of 

instruments that aim to mimic the human sense of smell such as electronic nose (Loufti et al., 

2015). This instrument consists of an array of sensors for chemical detection and a pattern 

recognition unit usually coupled with artificial intelligence systems. The odor recognition 

process does not give information on sample composition but rather gives a digital signature 

or pattern (Haddad et al., 2010; Banerjee et al., 2016). Patterns comparison allows quality 

estimation (authenticity assessment), quality control (detection of bacteria and spoilage), and 

discrimination of various food products including wines (Rodríguez-Méndez et al., 2016). 

However difficulties in robustness, selectivity and reproducibility of the sensors, and the need 

for pattern recognition algorithms which can cope with the complex signal analysis are the 

main drawback of these instruments. 

c. Limitations 

Chemical analyses are at the core of flavor analysis. They are required to identify and 

quantify odorants in various food products. However, such methods consider the odorants 

separately and do not take into account the perceptual interactions among odorants which 

occur at the food product level. Furthermore, as mentioned previously, odorants present at 

sub-threshold impact the perception of food products. Moreover, the food matrix composition 

can impact on the perception of odorants in food products (Ickes & Cadwallader, 2017). 

Though analytical methods are useful in understanding the odor construction of food 

products, key information might be missed. Thus, researchers now consider AEDA, Charm 

and OAV as methodologies to determine which odorants most likely make a contribution to 

the food odor recognizing that additional sensory work is needed to determine which aroma 
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compound are truly contributory (Audouin et al., 2001). This additional sensory work mostly 

relies on recombination studies that will be presented below. 

 

2. Sensory analyses 

Food odor sensory analyses rely on measuring characteristics of a food product as they are 

perceived by the sense of smell. Besides hedonic evaluations, several methods are used 

according to the aim of the analysis: food odor comparison or description. These methods are 

conducted with human subjects selected on their skills to obtain reliable and valid results. 

a. Comparative methods 

Comparative methods include discrimination, similarity and preference measurements 

between food odor samples. 

Discriminative tasks aim to identify if several samples are perceived differently. Results are 

obtained through paired-comparison, duo-trio, triangle, or dual-standard tests (Stone & Sidel, 

2004). In addition to these tests, the magnitude of the difference can be determined between 

the products. To do so, subjects first make a discrimination decision followed by a measure of 

the perceived magnitude on a category-type scale (e.g. weak, moderate, and strong) or a 

numeric-scale. Another modification to the discrimination test may require subjects to 

indicate why they discriminate the products. 

Similarity tasks follow the same procedure as the discriminative tasks, the aim being to 

identify the perceived similarity among food products. 

b. Descriptive methods 

Descriptive tasks aim to provide a sensory description of products and thus allow constructing 

sensory profile following qualitative and/or quantitative analysis (Stone & Sidel, 2004). There 

are several descriptive sensory analysis methods available, such as quantitative descriptive 

analysis (QDA), Spectrum, or Flavour Profile (Lawless & Heymann, 2010). Accuracy of the 

methods depends on whether panelists are trained or not. The more trained the panelists, the 

less variable are the results.  

Whereas Flash Profile and Free Choice Profiling require panelists with none or little training, 

QDA methodology requires trained panelists. The first step is the training of panelists to 
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select the sensory attributes further used to describe the food products. Usually the training is 

done with food products close to the ones to be evaluated. During the training sessions, the 

list of attributes might be reduced as the subjects evaluate and discuss their responses and 

realize that many of the words have a common sensory basis. There is also a step of training 

using references dedicated to each attribute. Once the sensory attributes are consensual and 

relevant for the panel, the samples are evaluated on different type of scales depending on the 

method. As a result, QDA methodology provides the quantitative description of food products 

for all the sensory attributes selected (Figure 1.9). Thus, QDA methodologies are widely used 

in the food industry to gain insights on how products are perceived by the consumers relative 

to their sensory differences. Furthermore, such analyses are useful to compare products 

according to their change over time (storage testing) or in product development to determine 

whether experimental formulations match a target.  

 

 

Figure 1.9: Visual display of the odor sensory attributes of two wines A and B based on 

the results of a QDA test. For each attribute, the relative intensity increases as it moves 

farther away from the center point. Figure adapted from Ferreira et al. (2016). 

 

c. Limitatios 

The choice of a method among the diversity of sensory analysis is determined by the objective 

of the analysis. Hence, if the question is “are there differences among the products”, a 

discrimination test is indicated. If the question is to know which attributes have changed in 

the sensory attributes of a new product, a descriptive analysis procedure is required. Such 
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procedure has proven to be the most comprehensive and informative sensory evaluation tool. 

Nevertheless, such analysis is time-consuming because training of panelists is often required. 

 

3. Relationships between analytical and sensory analyses 

Several studies had been conducted in correlating attributes from sensory analyses with 

volatile data obtained by GC analyses. Such attempts aimed to predict the odor of food 

product based on their chemical composition to skip sensory methods which are expensive to 

implement, time consuming and difficult to implement on-line for immediate feedback 

(Chambers & Kopple, 2013). 

a. Statistical approaches 

The most common approaches to correlate analytical and sensory spaces are statistical 

approaches. Various statistical methods can be used and include principal component analysis 

(PCA), generalized procrustes analysis (GPA), and partial least squares regression (PLSR). 

These three methods have been widely used to correlate sensory profiles of wines according 

to their odorants composition (PCA: de la Presa Owens et al., 1998; GPA: Le Fur et al., 2003; 

PLSR: Lee & Noble, 2003, Aznar et al., 2003, Campo et al., 2005 and González Alvarez et 

al., 2011). PCA is used for dimensionality reduction of multivariate datasets based on linear 

combinations of the original variables (GC peaks or sensory attributes) which are principal 

components. PCA can be used to identify combinations or patterns of variables having the 

largest contribution to variability in the data set. GPA is a method, which can be used to find a 

common structure between two datasets like sensory and volatiles data. As a result, each 

sample is mapped with three markers: based on sensory results, based on GC results and the 

consensus spot of sensory and GC results. The resulting map gives an indication of how the 

samples are grouped and also shows the correlations between patterns in sensory data and 

GC-O results. PLSR, the main statistical tool in correlating analytical and sensory data 

(Seisonen et al., 2016), is a method for relating two data matrices in order to estimate linear 

combinations of one set of variables (e.g. analytical data) that predict much of the variation in 

another set of variables (e.g. sensory attribute ratings). An illustrative example of PLSR 

results is shown in Figure 1.10. 
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Figure 1.10: Illustrative example of a partial least square regression (PLSR) to correlate 

analytical and sensory data. The simplified figure presents four wine samples described 

according to four odorants and three sensory attributes and gives an overview of the variation 

found in the mean data from a plot of PLSR correlation loadings for odor-active compounds 

(X-matrix) and samples and sensory attributes (Y-matrix). Results highlight correlations 

between samples, odorants and sensory attributes. For example, odorants 2 and 3 have a 

strong positive correlation with the sensory attributes Woody and characterize the wine C. 

Figure inspired by Lee & Noble, 2003. 

 

The main disadvantage of the statistical methods is that they only propose linear-based 

statistical relationships among the variables. Such relationships can help establishing 

correlations between odorants and sensory attributes to indicate that the variables are 

changing in the same manner rather than identify causality. Indeed, statistical analyses are not 

suitable to give insights on construction of odor perception. In addition, such methods are 

focusing on the impact of single odorants on sensory attributes perception. However, in 

complex products, combinations of odorants may lead to different odors than those expected 

from individual components because of non-linear perceptual interactions detailed in the 

previous part of this literature review.  
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To overcome the statistical relationships, alternative procedures are developed but they 

require pre-treatment of the data. The use of multivariate methods will give more complex 

relations. The reliability of the results should still be interpreted with caution (Macfie & 

Hedderley, 1993). 

b. Recombination and omission approaches 

Whereas statistical approaches consider single odorants, recombination and omission 

approaches aim to identify key odorants which may impact the odor/aroma of food once in 

mixtures. 

First, the recombination strategy step is to recreate the full odor of a food product as a model. 

Usually, only odorants with an OAV higher than 1 are kept. The model is then compared to 

the real food odor (Lorrain et al., 2006). If no differences are perceived, the omission study 

follows. The preparation of aroma models is simple for liquid foods, as it is easy to obtain a 

homogenous blend of odorants (Grosch, 2001). Difficulties arise, however, in the case of solid 

foods, because in general it is not easy or even possible to reproduce the composition and 

distribution of the non-volatile components of the real food matrix in a model system. 

Omission studies evaluate the aroma model with the model minus a single odorant or a group 

of odorants. If a sensory difference is perceived between the models, the odorant or the group 

of odorants omitted is considered responsible for the sensory difference perceived (baijiu: 

Zheng et al., 2016; wine: Lytra et al., 2013; Ferreira et al., 2016). For example, in omission 

tests carried out on Grenache rosé wines, 3-mercapto-1-hexanol (CAS 51755-83-0) can be 

considered as an impact compound because its omission changes greatly the aroma of the 

wine by reducing the citric and fruity notes and increasing the floral and caramel notes 

(Ferreira et al., 2002). Several recent studies also highlighted the impact of higher alcohol 

compounds on the perception of animal, fruity and woody notes in red wines (Cameleyre et 

al., 2015; de-la-Fuente-Blanco et al., 2016; de-la-Fuente-Blanco et al., 2017). 

These approaches have proven the indirect contribution of odorants to the overall odor of food 

product. However, reconstitutions and omission experiments are long processes and require 

panelists for the sensory evaluation of the various aroma models and sub-models. 

Furthermore, as already discussed, the use of odorants with high OAV into the model 

formulation may not be accurate. Indeed, odorants with lower OAV can impact the overall 

property of a food product (Escudero et al., 2004). 
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Most attempts to relate sensory profile to analytical measurements probably failed 

because of seeking for direct relationship between two datasets that are fundamentally 

different in nature (Chambers & Kopple, 2013). Recombination strategies have the advantage 

to focus on odorants’ mixtures but may miss information because of considering mostly 

odorants with high OAV. In order to correlate sensory and instrumental datasets, it is thus 

important to use non-linear modelling approaches that might result in efficient predictive tool. 

The fact that odorants are contained in various food matrices should also not be forgotten. 

Indeed the perception of odorants in different matrices varies, which is rarely taken into 

account when relating compounds with sensory attributes. 

 

IV. Predicting odorant characteristics 

 

While classical statistical approaches have been widely used in food flavor and sensory 

related studies, these techniques may be inadequate in fully describing a complex and 

potentially non-linear system found in the odor of food products (Yu et al., 2018). Thus, 

olfactory research is still challenged by predicting odor characteristics of molecules such as 

their detection threshold, pleasantness or their smell. Apart from the statistical approaches, a 

dynamic research field is the development of artificial intelligence-based approaches. Several 

methodological tools proposed by this area of study have been implemented in the food 

science domain, such as machine learning (including optimization and algorithms). A brief 

look at the literature indicates that most studies focused on predicting characteristics of single 

odorants (Table 1.2). Furthermore, the table highlights the predominant use of molecular 

structure approaches to predict odorant characteristics. These approaches are combined with 

different modelling strategies and aimed to classify odorants according to their characteristics 

(intensity, quality, pleasantness) or to predict their characteristics. 
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Table 1.2: Predicting odorant characteristics. A non-exhaustive list of studies is presented 

in order of occurrence with first studies applied on single odorants, then studies applied to 

mixtures of less than 10 odorants and finally mixtures of more than 10 odorants. The column 

“Input” concerns the data used for the prediction of the characteristics in the next column. The 

term “odor quality” refers to the description of the odor percepts in verbal terms. In the 

column “Method”, the data available about the method used are provided. 
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1. Molecular structure approaches 

Early approaches based on the structure-odor-relationships (SOR) (Rossiter, 1996), identified 

many specific rules linking odorants’ chemical structure to odor (e.g. which structure features 

may provide a “woody” note), but failed to produce a general framework for measuring smell. 

Indeed, molecules that have a close structure can elicit very different responses, for example 

(−) carvone (CAS 6485-40-1) smells minty, whereas its enantiomer (+) carvone (CAS 2244-

16-8) smells like caraway (Friedman & Miller, 1971) (Figure 1.11). On the opposite, 

molecules with different structures such as muscone (CAS 541-91-3), musk ketone (CAS 81-

14-1), traseolide (CAS 68140-48-7), and helvetolide (CAS 141773-73-1) have similar musk 

odors (Figure 1.11). Such results were confirmed by studies at the peripheral level of the 

olfactory system where odorants with similar structure did not activate the same pattern of 

olfactory receptors (Araneda et al., 2000). 

 

 

Figure 1.11: Structurally similar molecules but dissimilar odors and vice versa. Figure 

adapted from Sell (2006). 

 

For this reason, modern attempts to characterize molecular structure have focused on 

modelling approaches, hoping that a systematic analysis will capture what direct correlation 
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or statistical analyses missed. In addition, recent progress in software that provides molecular 

descriptors (e.g. Dragon software, Talete, Milan, Italy) now allows the consideration of 

thousands of structural parameters for any molecule. These quantitative molecular descriptors 

represent measures such as constitutional indices (molecular weight, number of atoms), ring 

descriptors (aromatic ratio), functional group counts (number of thiols), 3D atom pairs (sum 

of geometrical distances between S-Br)… 

Researchers from several different groups have been working to find models based on the 

structural parameters of molecules to predict the intensity, pleasantness or smell quality of a 

new set of molecules (Table 1.2). Abraham et al. (2012) worked on predicting the odor 

detection thresholds of molecules using several structural parameters (molar refractivity, 

solute dipolarity, number of hydrogen bond, gas to hexadecane partition coefficient, 

functional group). Their results showed a good correlation between the odor detection 

thresholds calculated and observed (R
2 

= 0.759). Another study (Kumar et al., 2015) showed 

that it is possible to use selective structural parameters to predict the perceptual qualities of 

odorants (e.g. “butter”, “fruity”, “leather”). To do so, they collected the structural parameters 

and odor descriptors of more than 3000 molecules. They found a significant overlap between 

the spatial positioning of the clustered odorants in the structural and perceptual spaces. Then, 

they developed a random forest classifier to predict the odor quality of a novel odorant using 

its structural parameters. A step forward was working on the link between the structural 

parameters of molecules and their hedonic dimension (i.e. pleasantness). Khan et al. (2007) 

found that their model can provide a good prediction of the perceived pleasantness or un-

pleasantness of novel molecules (R = 0.55). In addition Kermen et al. (2011) showed that the 

more structurally complex a molecule, the more numerous the olfactory notes it evokes and 

the less pleasant the molecule is perceived. Other strategies are also using machine learning 

algorithms to predict several odor characteristics of molecules based on their structural 

parameters. Keller et al. (2017) presented modelling results from 22 teams which were given 

a large dataset containing sensory and structural data (Keller & Vosshall, 2016). Sensory data 

were gathered from 49 subjects who profiled 476 molecules on 20 odor descriptors. Structural 

data represented 4884 structural parameters for each of the molecule smelled by the subjects. 

The resulting models accurately predicted odor intensity, pleasantness and also successfully 

predicted 8 semantic descriptors (“garlic,” “fish,” “sweet,” “fruit,” “burnt,” “spices,” 

“flower,” and “sour”). For instance, one of the participating team (Li et al., 2017) developed a 
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random forest model consisting of multiple decision trees which successfully predicted 

personalized odor descriptors of structurally diverse molecules. 

Although these predictive approaches were successful, they all applied to single odorants. 

Snitz et al. (2013) began to work on the odor characteristics of mixtures. They developed an 

angle distance model coupled with an algorithm that can look at the structural parameters of 

two novel odorants’ mixtures in order to predict their perceptual similarity. The main idea was 

to consider the odorants in mixtures as single structural vectors to take into account the 

mixture as a whole and not only a sum of its constituents’ chemical features. This is consistent 

with a configural rather than an analytical processing of odor mixtures (Thomas-Danguin et 

al., 2014). Their algorithm provided consistent correlations between predicted and actual 

perceptual odor similarity between mixtures (r = 0.49, p < 0.001). An optimized version of 

this model (selection of 21 structural parameters among the 1433 used in the first model) 

yielded a correlation of r = 0.85 (p < 0.001) between predicted and actual mixtures’ similarity. 

Despite this improvement, two main points should also be taken into account. The angle 

distance model was constructed with mixtures of odorants at iso-intensity and the output of 

the model is the similarity among two mixtures but no prediction in terms of odor percept. On 

the one hand, iso-intense mixtures, when all the odorants embedded in the mixture are 

perceived at the same intensity when evaluated alone, are experimentally created but do not 

occur in nature. The following step is then to inject intensity parameters into the predictive 

approach (Snitz, 2016). On the other hand, the predictive model helps to group mixtures of 

odorants according to their similarity but is unsuitable to predict characteristics of mixtures 

such as the odor percept they evoke. 

 

2. Modelling strategies 

Several modelling approaches were listed in Table 1.2. Such models are usually divided in 

three groups (white-box, black-box, and grey-box) regarding the level of details required 

(Perrot et al., 2011). 

a. White-box models 

When the modelling approach is primarily guided by the knowledge of the underlying 

mechanisms, the resulting model is usually termed as white-box. Such models can be based 

on equations (e.g. kinetic, power law). For example, these analytical models were used in 
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predicting intensity of single odorants or mixtures according to the odorants’ concentration; 

they rely on mathematical non-linear relationships (Patte & Laffort, 1979; Laffort & 

Dravnieks, 1982; Berlung & Olsson, 1993a; Berlung & Olsson, 1993b; Chastrette et al., 1998; 

Thomas-Danguin & Chastrette, 2002). 

b. Black-box models 

In contrast, empirical data-driven or black-box models describe observed tendencies in 

experimental data by arbitrary mathematical functions such as artificial neural networks 

(ANN) or random forests. However, the internal working of the device is not described, and 

the model simply solves a numerical problem without reference to any underlying physical or 

biological processes.  

ANN is a method that tries to simulate the way a human brain works. The model consists of 

different layers of neurons: an input layer, one to several hidden layers and an output layer, 

and there are connections between neurons in each layer. Each neuron is in fact a 

mathematical function linking inputs variables to outputs variables. When dealing with 

sensory-instrumental relationships, the input layer could be considered as independent 

variables (e.g. volatile composition) and the output layer as dependent variables (e.g. sensory 

attributes). Therefore, a model with a sufficient number of hidden layers can be created and 

transformed by different mathematical algorithms to predict sensory characteristics from 

volatiles data, by using a training dataset. After this, the reliability of the model with new 

known data can be tested and used for predicting sensory parameters of unknown samples. 

The main advantage of ANN over statistical analysis such as PLSR is the capability to 

account for non-linear relationships. Quick and easy-to-use when sufficient experimental data 

is available, such models nevertheless encounter important limitations when applied to food 

systems: risk of over-parameterization, interpretation difficulty, lack of generalization ability 

(Perrot et al., 2011). Some parameters are not easy to set up and/or optimize like the number 

of neurons and number of hidden layers. Moreover, the numbers of required measurements 

increase exponentially with the number of studied factors and thus with the complexity of the 

problem to solve. Because sensory analyses are often time consuming, the sensory data 

gathered is quite small. This can explain why the use of ANN for modelling sensory-

instrumental relations is not very common (Chastrette & de Saint Laumer, 1991; Boccorh & 

Paterson, 2002; Michishita et al., 2010; Cancilla et al., 2014). 
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c. Grey-box models 

An intermediate approach consists in designing a model based on black-box structure and to 

complete missing information by empirical relationships derived directly from experimental 

data or expertise knowledge. Such models are sometimes called grey-box because methods 

from the white-box and black-box are combined. The advantage being that some elements 

within the model can be approximated by rules. Inference rules can be created as fuzzy rules. 

Fuzzy rules are used within fuzzy logic systems to infer an output based on input variables. 

Fuzzy logic is an extension of the classical logic and introduces additional values between 

standard 0 and 1 and is often used in sensory science for pattern recognition and clustering 

with limited use in predictive modelling (Yu et al., 2018). For instance, fuzzy logic can be 

used along with ANN in classification tasks (Yea et al., 1994; Scott et al., 2006). Combined 

with sensing devices such as electronic noses, the use of fuzzy logic as a classifier led to good 

discrimination among odors (Upadhyay et al. 2017). Indeed, fuzzy concepts introduced by 

Zadeh (1965) provide interesting alternative solutions to the classification problems within the 

context of imprecise categories. A recent study (Szulczyński et al., 2018) applied fuzzy logic 

to determine the odor intensity of odorants mixtures. Analytical measurements were 

performed with an electronic nose. From the sensor results, two systems were built: a multi-

linear regression and fuzzy logic system. The results obtained using fuzzy logic were closer to 

the results from sensory evaluation compared to results obtained with the multi-linear 

regression. However, the authors highlighted that the creation of fuzzy rules is more 

complicated than the determination of linear model parameters because it requires experts’ 

knowledge. 

 

Owing to the complex relationships between mixtures’ composition and sensory 

attributes, most of the predictive approaches presented here applied to single odorants or to 

unrealistic mixtures. The increasing use of machine learning techniques along with grey-box 

models might help to conduct predictive work on a wider range of odorants’ mixtures. To do 

so, expertise might be embedded in modelling strategies (Szulczyński et al., 2018). 
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V. Expertise 

 

Expertise about food odor perception might provide insights in food flavor analysis and be 

useful in approaches aiming to predict the odor of a food product. Although numerous studies 

analyze expertise both in psychology and in artificial intelligence, it is not possible to provide 

a consensual definition of this notion (Shanteau, 1992). Nevertheless, the prevalent criteria to 

distinguish novices and experts are based on seniority, i.e. duration of practice, skills, and 

peer recognition (Cellier et al., 1997; Sicard et al., 2011). 

 

1. Food experts 

Food experts can be divided in two groups. On the one hand, experts dealing with dynamic 

environments and managing food processes. On the other hand, experts dealing with static 

environment to provide sensory description of food products (wine, coffee, or beer for 

example). 

a. Process 

Dynamic environments are defined by the stage of the process that changes, irrespective of 

operator action (Cellier et al., 1997). Hence, the complexity of such processes is a result of 

temporal constraints that compel experts to make decisions before a full diagnosis can be 

made. They must not only take the present situation into account but past situations and 

forecasted future situations as well. For example, in cheese ripening process, the major 

difficulty is the delay between an action and its observed effect.  

Experts have higher performance levels than novices in managing dynamic processes (Chi et 

al., 1981) because they have a more global and functional view of the situation. They can 

control food processes based on their skills and mental heuristics (i.e. interpretation of the 

situation in order to respond directly). Skills and heuristic rules are acquired during the 

experts practice. 

b. Products 

Overall, it seems that experts are better than novices to describe, memorize, and discriminate 

between sensory stimuli, but the difference in performance is not always as impressive. On 
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the one hand, some studies concluded that regarding flavors, experts only have a limited 

advantage over novices and highlighted sensory expertise as domain-specific expertise (coffee 

and wine: Croijmans & Majid, 2016). On the other hand, experts were shown to have a better 

ability to identify odors or for instance to separate wines according to their grape varieties 

(wine: Ballester et al., 2008; Tempere et al., 2016).  

The wine sector is highly dependent on experts. Indeed, purchase decisions for wine 

consumers are influenced by wine experts who help to remove some of the perceived risk 

involved in purchasing wine by providing guidance on quality, taste profile, and relative value 

to consumers (Hayes & Pickering, 2012). This professional expertise relies both on 

chemosensory and technical knowledge. The chemosensory knowledge is acquired through 

repeated wine tastings and sniffings. The technical knowledge encompasses knowledge in 

chemistry, viticulture, oenology, or wine making processes. The reason why wine experts 

perform better than novices may rely on two explanations. First, experts might be using a 

more efficient wine-tasting procedure including a more analytical approach than novices. This 

more efficient procedure could lead to a superior ability to discriminate and identified wines 

(Ballester et al., 2008). Second, experts’ perception could be enhanced by top down processes 

in which knowledge on different wine styles and varieties affects their sensory assessment. 

Experts having a deeper knowledge of wine styles than novices would then be able to focus 

on the individual features which differentiate samples the best (Solomon 1997; Hughson & 

Boakes, 2002). 

 

2. Flavor experts 

Whereas food experts are considered domain-specific, flavor experts possess a general ability 

to express common odors in language contrary to novices (Sezille et al., 2014). Indeed, the 

ability to communicate about flavors is a matter not only of perceptual training, but specific 

linguistic training too. Flavor experts have an extensive knowledge of the numerous 

molecules and ingredients that can be combined to develop or create flavors. A typical part of 

their studies consist in learning both semantically and perceptually an extensive list of flavor 

molecules along with their corresponding smell and/or taste and their usage in flavor 

formulation.  
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Flavor creation is the fusion of science, experience, and artistry, as there are likely numerous 

possibilities for combining molecules to achieve a desired flavor perception. The two main 

methods in flavor creation are linear and block formulation. The choice of the method 

depends on the flavorist’s seniority and the aim of the formulation (e.g. creating a new flavor 

or improving an existing one). In linear addition, compounds are added one by one and the 

impact of each molecule on the mixture is evaluated. In block addition, mixtures of 

compounds (i.e. blocks) are first formulated to target a specific odor quality and are further 

assembled. For example, a coffee flavor might be the result of the combination of burnt, 

caramel, cocoa, fruity/floral and toasty blocks (Lissarrague, personal communication). Final 

results of each method are subjected to rearrangement to obtain a balanced flavor. Hence, 

flavorists are mostly relying on the creation of blocks, also called odor qualities. The way 

flavorists are combining odor qualities or molecules to create a target odor represents their 

expertise. 

Regarding sensory evaluations, the mental process used by flavorists is very different from 

that used by sensory experts. Flavorists use an analytical process to deconstruct their flavor 

perception, in the sense that they try to find which molecules or ingredients were combined to 

generate each flavor direction. The sensory experts would for instance describe the 

differences between a targeted flavor and a created match proposal in order to determine what 

aspects of the targeted flavor profile have already been reached, but do not provide ingredient 

information. This will lead flavorists to focus on very specific flavor aspects of the products, 

which might not be a focus for sensory experts as they rather consider the food product’s 

flavor as a whole (Veinand, 2015). 

 

3. Modelling expertise 

Modelling human expertise was made possible by the development of tools able to take into 

account non-numerical data. 

Ontologies allow to structure and organize expertise into a meaningful structure at the 

knowledge level. The objective is to collect and formalize scientific knowledge from experts 

or bibliography to construct an informative system. An example is the construction of a 

Process and Observation Ontology (PO²) applied to dairy gels (Ibanescu et al., 2016). The aim 

of this ontology was to provide a consensual structure representative of the production and 
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transformation of dairy gels and to solve the lack of communication between domain experts 

because data were gathered for different purposes by different experts with their own 

experimental itineraries, vocabularies, and methods. Thus, nutrition, microbiology, 

biochemistry, physico-chemistry, chemistry, process engineering, food science, and sensory 

analysis experts participated to the construction of PO². Explicit and implicit knowledge from 

these domain experts helped to design decision support systems allowing to compare different 

production scenarios and therefore suggesting improvements concerning the product quality 

(e.g. its sensory properties) while reducing the environmental impact. 

Fuzzy logic, presented earlier, is a convenient mathematical approach to cope with 

applications where expertise is present (Perrot et al., 2006). This theory is particularly well 

adapted for dealing with the symbolic data manipulated by experts (Perrot et al., 2011). Thus, 

fuzzy logic has been used to deal with the implementation of expert knowledge encoded in 

fuzzy rules using several modelling strategies (Linko, 1998). Several applications are reported 

in the modelling of expertise on dynamic food processes to control food quality (review: 

Perrot et al., 2006 / Allais et al., 2007). Examples cover a wide range of food products: cheese 

ripening (Perrot et al., 2004; Sicard et al., 2011), biscuit baking (Perrot et al., 1996), milled 

rice (Zareiforoush et al., 2015). Ioannou et al. (2002) developed an approach based on fuzzy 

set theory to predict the sensory properties of crusting sausages. By means of a camera and an 

adapted image processing, the color of sausages was estimated. Operators’ expertise was then 

integrated in the model to estimate the degree of sausage crusting according to the sausages’ 

color. Nevertheless, the bottleneck of these approaches is the difficulty to capture the 

dynamics of the system using the expert knowledge.  

Fuzzy logic has the advantage to be able to mimic human reasoning and thus allow the 

creation of fuzzy rules which can be implemented in grey-box models. However, within the 

food science framework, expertise modelling was mainly applied to processes. To the best of 

our knowledge, studies combining fuzzy logic and expertise on food odor or odor mixtures do 

not exist or have not been published. A recent paper presented during the 254th American 

Chemical Society National Meeting (Tomasino & Tomasino, 2017) applied fuzzy-set logic 

analysis to establish the relationships between chemical composition and sensory perception 

of wines. Starting from the chemical composition of wines they aimed to determine the 

molecules or group of molecules (norisoprenoids, furaneols, lactones, esters) responsible for 

red fruit aroma in Pinot noir wines.  
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CRITICAL CONCLUSIONS AND THESIS PROBLEMATIC 

Among the sensory dimensions involved in food flavor perception, the odor component is 

critical because it determines most of the time the identity and the typicality of the food, 

which drives its overall quality and recognition by consumers.  

Nowadays, aroma analysis, namely the chemical analysis of the odor component of food, is 

performed by separating, identifying, and quantifying the molecules included in an extract 

using a variety of efficient GC methodologies. This well-established analytical procedure 

provides a list of odorants, but does not give any information about the perception of these 

odorants within a mixture, still critical to the overall food odor construction. Indeed, 

peripheral and perceptual interactions occur during the perception of odorants’ mixtures by 

the olfactory system. Mixtures are often recognized as single percepts due to odor blending 

resulting from configural processing. At the same time, we are also able to discriminate odors 

within complex mixtures through their elemental processing but not all components are 

perceived because of perceptual masking effects. Since the biological and neurobiological 

mechanisms of the underlying integration processes are still poorly known, it is very difficult 

to predict the odor of a given food product on the basis of its molecular composition. 

Indeed, the search for a molecule-based classification system to define perceptual space and 

facilitate objective communication about odors is widely recognized as, and remains, a major 

challenge in olfaction research. We have seen that different teams have been working on 

establishing predictive approaches from the structural parameters of molecules but many of 

them apply to single odorants or unrealistic mixtures. These approaches relied on several 

modelling strategies. To date, the most advanced approaches are based on correlations or 

ANN methods. If such modelling strategies were found to have rather good abilities to predict 

the odor qualities of a given odorant using semantic descriptors, no studies attempted to 

develop such predictive method for odor mixtures. Moreover, these black-box models are not 

able to give cues on the underlying mechanisms of odor percept construction. 

In order to get insight into complex odorants’ mixtures perception and to develop efficient 

odor percept prediction tools, an interesting path would be to use grey-box models, which 

may integrate expertise knowledge. In the case of odor perception, we have seen that 

flavorists have extensive experience in combining molecules to create a targeted odor. This 

expertise can be useful to predict the odor of odorants’ mixture. Therefore, it is likely that 

general expertise would be of interest to provide global knowledge on odor mixture 
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perception and especially critical molecules association rules. Such an approach would 

require the integration of heterogeneous data (e.g. chemical, sensory, expert knowledge) in a 

single model. Mathematical and computational tools are available within the applied machine 

learning and knowledge integration fields to support such heterogeneous data modelling. 

However, to our knowledge no study developed an approach to predict how a multi-molecular 

mixture will smell and could be qualified using verbal descriptors.  

These scientific questions are at the core of this thesis, which attempts to develop modelling 

approaches that are efficient to predict the odor quality of complex odorants’ mixtures such as 

those elicited by food products. The literature review suggests that molecular structure and/or 

olfactometry data would be an interesting basis for the modelling approach and that expert 

knowledge integration may provide an innovative strategy to cope with complex perceptual 

interactions. The issue is to develop a modelling strategy that can support the integration of 

these heterogeneous data. Finally, it is expected that the developed models can support a real 

breakthrough in the research field of flavor analysis and perception. 
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THESIS AIM AND OVERALL STRATEGY 

The challenge of the present PhD project is to contribute to increase the efficiency of the food 

flavor analysis procedure by taking into account knowledge on odor mixture perception along 

the analytical path. The central aim is thus to develop a grey-box modelling approach able to 

predict the odor quality of complex mixtures of odorants into semantic descriptors such as 

sensory profiles of food odors. 

Throughout the literature review, various food products were mentioned but the focus was set 

on wines. Indeed, there are numerous studies on wines’ composition and their related odor. 

Hence, the odor prediction of such complex matrices is of interest. Thus, the PhD work was 

applied to 16 red wines. The choice of focusing on wines was motivated by the willingness to 

study a complex real food product and the availability of the chemical and sensory data on the 

16 wines in the laboratory.  

In the following Chapter (Chapter 2), the data collection and methodologies used are 

presented. First, the characterization of the 16 wines used along the thesis work is described in 

a data paper (Villière et al., Data paper included in this manuscript). Second, the method to 

collect flavorists’ expertise is described. Then, two modelling methods relying respectively on 

an ontology and a fuzzy logic formalization are detailed. 

The PhD work was divided into two distinct but complementary axes. 

 

First axis: Molecular structure approach 

The literature review highlights several predictive approaches based on structural parameters 

of odorants. One study has been applied to odorants’ mixtures to predict perceptual similarity 

between mixtures (Snitz et al., 2013). In Chapter 3, an article is presented (Roche et al., 

Article 1 of the manuscript) to describe the application and improvement of the Snitz’s 

model using a benchmark dataset containing elemental and configural mixtures of different 

level of complexity. The upgraded model was then applied to real food mixtures, namely to 

the 16 wines for which the predicted similarity was compared to the one inferred from 

experimental sensory profile data. 
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Second axis: Expertise integration approach 

Chapter 4 focuses on the collection and representation of flavorists’ expertise. The article 2 

(Roche et al., Article 2 of this manuscript) presents the development of the Ontology for the 

Odor Perceptual Space (OOPS) that aimed to fix the vocabulary and identify the properties 

and relations between three lexical concepts: odor descriptors used for odorants and available 

in several databases, odor qualities used by experts and odor sensory attributes used in 

sensory profiles. The ontology approach was selected because it is suitable to formalize 

explicit experts’ knowledge on the relationships within the odor perceptual space. OOPS was 

implemented in a computer interface and was tested as a predictive tool to estimate wines 

odor profiles. 

In Chapter 5, an integrated modelling strategy, which combines chemical analysis results 

obtained on the 16 wines with expert flavorists knowledge as formalized in the OOPS 

ontology is described in a dedicated article (Roche et al., Article 3 of this manuscript). The 

modelling approach relies on fuzzy logic and optimization and was coded in MATLAB. 

Fuzzy logic is a methodology that allows to build a set of fuzzy rules of odorants associations 

to produce a given odor percept. The rules were optimized using a suitable genetic algorithm. 

This strategy was applied to predict the odor profiles of the 16 wines, which were compared 

to experimental sensory profile data. 
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I. Introduction 

 

In this chapter we firstly describe how we collected and organized the data used in the 

modelling approaches. Two types of data were collected and are detailed: food odor data 

characterizing 16 red wines from two grape varieties and expertise from flavorists. Then, two 

modelling methods relying respectively on an ontology and a fuzzy logic formalization are 

explained. 

 

II. Food odor data 

 

The study of wines’ odor along with their aroma and taste is of importance because the 

consumption of wine is driven by its flavor (Lee & Noble, 2003). 

Two approaches are suitable for wine odor analysis: chemical analysis and sensory analysis 

(Le Fur et al., 2003). As part of the project INNOVAROMA, both analyses were performed 

on 16 red-wines. The methods used to characterize the flavor of these wines were submitted 

as a DATA PAPER and are presented in the following pages. 

The results obtained were compiled in a single dataset and made available on an open-access 

repository (Villière et al., 2018). The data further used in the manuscript were extracted from 

this dataset. 
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Abstract 

This paper describes data that were collected on 2 sets of 8 French red wines from two grape 

varieties, Pinot Noir (PN) and Cabernet Franc (CF). It provides, for the 16 wines, (i) sensory 

descriptive data obtained with a trained panel, (ii) volatile organic compounds (VOC) 

quantification data obtained by gas chromatography - mass spectrometry (GC-MS) and (iii) 

odorant composition obtained by gas chromatography - mass spectrometry - olfactometry 

(GC-MS-O). The raw data are hosted on an open-access research data repository (Villière et 

al., 2018). 

 

Specifications Table 

Subject area Food science 

More specific subject 

area 

Wine research 

Type of data Microsoft Excel Worksheet containing 8 sheets (Information, 

Experimental factors, List sensory descriptors, Sensory descriptive 

analysis, List VOC, VOC quantification and GC-MS-O) 

How data were 

acquired 
 Sensory descriptive analysis 

The intensity of 33 sensory descriptors was rated by 16 trained 

panelists 

 VOC quantification 

Volatile compounds in wines were analyzed using gas 

chromatography coupled with mass spectrometer (GC-MS) 

 Odorant composition 

Odor-active compounds were identified using gas chromatography 

coupled with mass spectrometry and olfactometry (GC-MS-O) 

Data format Table in raw format (.xlsx) 

Experimental factors The experimental factors are: the grape variety, the vintage and the 

Protected Designation of Origin (PDO) of the wines 

Experimental features  Sensory descriptive analysis 

Sensory odor profile of the wines 

 VOC quantification 

Quantified the volatile compounds from the GC chromatogram 

 GC-MS-O 

Quantified the volatile compounds and their odor from the 

olfactometry and identified the compounds from the GC 

chromatogram 

Data source location France 

Data accessibility The raw data, provided as a Microsoft Excel Worksheet, are 

available on the Zenodo open-access research data repository 

http://doi.org/10.5281/zenodo.1213610 
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Value of the Data 

 The data can help researchers to link sensory qualities of wines to their chemical 

composition (Vigneau et al., 2015). 

 The data can be used as a benchmark to develop methods and tools to predict the odor 

of wines (Roche et al., 2017). 

 The data can be compared to other wines varying in grape variety and vintage. 

 

Data 

The dataset gathers, for the 16 wines from two grape varieties, 4 blocks of data: (1) the 

experimental factors (the grape variety, the vintage and the protected designation of origin; 

Table 1), (2) the sensory descriptive data obtained with a trained panel using 33 sensory 

descriptors (Table 2), (3) the volatile organic compounds (VOC) quantification data obtained 

for 45 target odorants by gas chromatography - mass spectrometry (Table 3) and (4) the 

composition data, in terms of odor-active compounds, obtained by gas chromatography - mass 

spectrometry - olfactometry (Table 4). 

 

Experimental Design, Materials, and Methods 

 

Wines 

Two sets of French red wines from two grape varieties, 8 Pinot Noir wines (PN) and 8 

Cabernet Franc wines (CF) were analyzed (Table 1). The wines were selected out of 40 wines 

previously studied (Loison et al., 2015). The main factors allowed for were vintage (2009 and 

2010) and protected designation of origin (PDO). 
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Table 1: Wines experimental factors. 

 

 

Sensory descriptive analysis 

The sensory descriptive analysis of the 16 wines was performed at Groupe ESA, USC 

GRAPPE Senso’Veg (Angers, France). 

Wines preparation 

The wines were opened 30 minutes before the sensory evaluation and served (5 cL) in white 

ISO wine tasting glasses (ISO 3591:1977 / Sensory analysis - Apparatus - Wine-tasting glass) 

at room temperature.  

Sensory evaluation 

Sixteen trained panelists, 6 women and 10 men (age range 35-71), participated in the study. 

Before the sensory descriptive experiment, the judges were trained in 17 training sessions of 1 

hour each. This training consists in familiarization with the task and the vocabulary and a 

selection of sensory descriptors applied to the wines. During the familiarization step, the 

panelists did odor recognition tests on testing strip and on wines to become familiar with the 

specific vocabulary of the sensory descriptors of wines and smelled different standard 

aromatic references. During the sensory descriptors selection, the panelists were provided 

Wine Grape_variety Vintage PDO

PN1 Pinot Noir 2010 Bourgogne

PN2 Pinot Noir 2009 Bourgogne

PN3 Pinot Noir 2009 Bourgogne

PN4 Pinot Noir 2009 Bourgogne Hautes Côtes de Beaune

PN5 Pinot Noir 2009 Savigny-lès-Beaune

PN6 Pinot Noir 2010 Maranges

PN7 Pinot Noir 2009 Côte de Nuits-Villages

PN8 Pinot Noir 2009 Ladoix

CF1 Cabernet Franc 2010 Bourgueil

CF2 Cabernet Franc 2010 Chinon

CF3 Cabernet Franc 2009 Chinon

CF4 Cabernet Franc 2010 St-Nicolas-de-Bourgueil

CF5 Cabernet Franc 2010 Bourgueil

CF6 Cabernet Franc 2010 Bourgueil

CF7 Cabernet Franc 2010 Bourgueil

CF8 Cabernet Franc 2010 Saumur 
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with an initial list of 84 descriptors. The list was elaborated by compiling terms from other 

lists employed in the description of wines from different varieties and geographical origins. 

Descriptors were arranged in the list by odor families: animal, burnt, floral, fruity, 

herbaceous, mineral, nut, spicy, undergrowth and others. Panelists modified the initial list of 

terms by eliminating those terms they considered irrelevant, ambiguous, or redundant and by 

adding attributes they considered pertinent while describing 15 wines of similar 

characteristics (grape variety and origin) as those of the study. Furthermore, those terms cited 

by less than 15% of the panel were eliminated from the list. At the end of the training, the list 

included 33 descriptors (Table 2).  

 

Table 2: Sensory descriptors used by the trained panel for the sensory descriptive 

analysis. 

 

 

During the sensory descriptive experiment, the judges had to evaluate monadically the 16 

wines (orthonasal and retronasal olfaction) and to rate the intensity of 33 sensory descriptors 

on 14 cm linear scales; ratings were transformed into scores from 0 to 10. The protocol 

consisted in 3 repetitions by panelist for the orthonasal olfaction and 2 repetitions by panelist 

for the retronasal olfaction and a randomization of the presentation order of the wines 

according to the Williams Latin square.  

The configuration of the set of wines evaluated through orthonasal olfaction is represented 

after Principal Components Analysis (PCA) in Figure 1. 

  

Artichoke Cherry fresh Leather Strawberry fresh

Bell pepper Cherry stone Musk Toasty

Blackberry fresh Clove Pepper Undergrowth

Blackcurrant bud Cut grass Plum cooked Vanilla

Blackcurrant fresh Elderflower Plum fresh Violet

Blueberry fresh Ethanol Prune Woody

Brioche Firestone Raspberry fresh

Butter Geranium Smoky

Cherry cooked Hay Strawberry cooked
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Figure 1: PCA maps based on the two first dimensions illustrating the configuration of 

the 16 wines (individuals) evaluated orthonasaly during sensory profiling on 33 sensory 

descriptors (variables). Mean for each sensory descriptor was taken into account. 
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Volatile organic compounds quantitative analysis 

The 16 wines were analyzed by GC-MS to quantify 45 target compounds. The odorants listed 

in Table 3 were analyzed by a subcontracting external laboratory. 

 

Table 3: Volatile organic compounds (VOC) quantified by GC-MS analysis and their 

corresponding CAS number. 

 

 

After adding a standard to the wines, they were acidified and salt saturated. The extraction of 

the volatile compounds was realized with a SPME fiber (CAR‐DVB‐PDMS) placed in the 

headspace of the vial for 60 min at 45°C. Extracts were analyzed by GC (Shimadzu 2010) 

coupled with a mass spectrometer (Shimadzu QP2010+). Volatile compounds were desorbed 

in the injection port (splitless/split) of the GC and separated on a PEG modified column (DB‐

FFAP 30m × 0.32mm × 0.25 µm). Mass spectra were recorded in electron impact mode (70 

VOC CAS number VOC CAS number

1-Hexanol 111-27-3 Ethyl acetate 141-78-6

1-Octanol 111-87-5 Ethyl butyrate 105-54-4

1-Phenoxy-2-propanol 770-35-4 Ethyl caproate 123-66-0

2,3-Butanedione 431-03-8 Ethyl isobutyrate 97-62-1

2-Ethylhexan-1-ol 104-76-7 Ethyl isovalerate 108-64-5

2-Isobutyl-3-methoxypyrazine 24683-00-9 Ethyl lactate 97-64-3

2-Methyl-1-butanol 137-32-6 Ethyl octanoate 106-32-1

2-Methylbutyl acetate 624-41-9 Ethyl propionate 105-37-3

2-Phenylethanol 60-12-8 Furaneol 3658-77-3

3-Methyl-1-butanol 123-51-3 Hexyl acetate 142-92-7

4-Ethyl-2-methoxyphenol 2785-89-9 Homofuraneol 27538-10-9

4-Ethylphenol 123-07-9 Isoamyl acetate 123-92-2

Acetaldehyde 75-07-0 Isoamyl propionate 105-68-0

Acetic acid 64-19-7 Isovaleric acid 503-74-2

alpha-Ionone 127-41-3 Methional 3268-49-3

beta-Ionone 79-77-6 Methionol 505-10-2

Butyl acetate 123-86-4 Pentyl propionate 624-54-4

Butyric acid 107-92-6 Phenol 108-95-2

Damascenone 23726-93-4 Phenylacetaldehyde 122-78-1

Dimethyl Sulfide 75-18-3 Phenylacetic acid 103-82-2

Ethyl 2-methylbutyrate 7452-79-1 Propionic acid 79-09-4

Ethyl 3-hydroxybutyrate 5405-41-4 trans-3-Hexen-1-ol 544-12-7

Ethyl 6-hydroxyhexanoate 5299-60-5
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eV) with a scan/SIM scanning method. The identification of Acetaldehyde, Dimethyl sulfide, 

Ethyl acetate, Acetic acid, 2-Ethylhexan-1-ol, Propionic acid and Phenol were performed by 

comparison with mass spectra from the literature (WILEY257, NIST, AROMALYSIS 

databases). Their quantification is based on an internal calibration by isotopic dilution with 

the compounds ethanal-13C2, dimethylsulfide-d6, ethyl acetate-13C2, acetic acid-d4, 2-

Ethylhexan-1-ol-d17, propionic acid-d5 and phenol-d6. The identification and quantification 

of all other compounds are based on a calibration of the method with these same reference 

compounds. 

 

Analysis of wines by GC-MS-O 

The 16 wines were analyzed by GC-MS-O at ONIRIS, UMR CNRS 6144 GEPEA Flavor 

group (Nantes, France). 

Extraction methods  

The wines were firstly oxygenated by a Venturi aerator, and then 7 mL of wine was poured in 

a 22 mL vial tightly capped with a Teflon/silicon septum. Volatile compounds from the wine 

samples were extracted by a representative procedure (Villière et al., 2012). Prior to 

extraction, vials were incubated at 34°C for 1 hour. After that, volatile compounds were 

extracted by headspace solid phase micro-extraction with a Car/PDMS fiber (10 mm length, 

85 μm film thickness; Supelco, Bellefonte, PA, USA) placed in the headspace of the vial for 

10 min at 34°C. 

Chromatographic conditions 

The extracts were analyzed by GC (Agilent Technologies 6890N, Wilmington, DE, USA) 

coupled with a quadripolar mass spectrometer (Agilent Technologies, 5973 Net- work), FID 

and sniffing port (ODP2, Gerstel, Baltimore, MD, USA) to identify odorant compounds. 

Volatile compounds were desorbed in the injection port of the GC (T: 260°C; splitless mode 

for 5 min) and separated on a DB-Wax column (length: 30 m, internal diameter: 0.25 mm, 

film thickness: 0.5 µm). Hydrogen was used as carrier gas at constant flow (1 mL.min
-1

). The 

oven temperature program was set from 50°C (0 min) to 80°C at 5°C min
-1

, from 80°C to 

200°C at 10°C min
-1

 and from 200 to 240°C (4 min) at 20°C min
-1

. Effluent from the end of 

the GC column was split 1:1:1 between the MS, the FID (250°C, air/H2 flow: 450/40 mL.min
-
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1
), and the sniffing port. Peaks were integrated with MSD Chemstation software (Agilent 

Technologies). Mass spectra were recorded in electron impact mode (70 eV) between 33 and 

300 m/z mass range at a scan rate of 2.7 scan.s
-1

. 

Olfactometry 

GC effluent was carried to the sniffing port using a deactivated and uncoated fused silica 

capillary column, heated to 200°C. The sniffing port was supplied with humidified air at 40°C 

with a flow of 600 mL.min
-1

.  

Olfactometry was conducted by eight judges experienced in GC-O analysis. They were asked 

to express their perceptions via the olfactometric software interface, representing an aroma 

wheel designed for wine analysis with 56 descriptors (Villière et al., 2015). Characteristics of 

the perceptions were recorded throughout each judge’s analysis and results were directly 

obtained from the olfactometric software. 

Odorant compounds identification 

The identification of compounds corresponding to each odorant zone was performed by 

comparing linear retention index and mass spectra of detected compounds with those of the 

databases (Wiley 6.0 and in-house databases), by injection of the standard compounds when 

available, and by comparison of the odor perceived with those referenced in databases (in 

house database and The good scents company database (Luebke, 1980)). The results of the 

identification are shown in Table 4 with the list of 49 odorants. Compounds non-identified 

were named after their apex indice number (34 non-identified compounds) (Villière et al., 

2018). 
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Table 4: Odorant compounds identified by GC-MS-O analysis and their corresponding 

CAS number. 
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Odorant CAS number Odorant CAS number

1-Octen-3-one 4312-99-6 Dimethyl sulfide 75-18-3

2,3-Butanedione 431-3-8 Ethanol 64-17-5

2,3-Pentanedione 600-14-6 Ethyl acetate 141-78-6

2,6-Dimethoxyphenol 91-10-1 Ethyl butanoate 105-54-4

2-Methoxyphenol 90-05-1 Ethyl decanoate 110-38-3

2-Methylpropyl acetate 110-19-0 Ethyl dodecanoate 106-33-2

3-Ethylphenol 620-17-7 Ethyl hexanoate 123-66-0

3-Isobutyl-2-methoxypyrazine 24683-00-9 Ethyl octanoate 106-32-1

3-Isopropyl-2-methoxypyrazine 25773-40-4 Ethyl propanoate 105-37-3

3-Mercapto-1-hexanol 51755-83-0 Ethyl-2-methylbutanoate 7452-79-1

3-Methyl-1-butanol 123-51-3 Ethyl-2-methylpropanoate 97-62-1

3-Methylbutanal 590-86-3 Ethyl-3-methylbutanoate 108-64-5

3-Methylbutyl acetate 123-92-2 Hexanoic acid 142-62-1

4-Ethyl guaïacol 2785-89-9 Isovaleric acid 503-74-2

4-Ethylphenol 123-07-9 m-Cresol 108-39-4

4-Methyl-1-pentanol 626-89-1 Methanethiol 74-93-1

Acetaldehyde 75-07-0 Methional 3268-49-3

Acetic acid 64-19-7 Methionol 505-10-2

Benzaldehyde 100-52-7 Methyl-2-methylpropenoate 80-62-6

Benzene acetaldehyde 122-78-1 p-Cresol 106-44-5

Benzene ethanol 60-12-8 Phenethyl acetate 103-45-7

Benzene methanol 100-51-6 Phenol 108-95-2

Butyric acid 107-92-6 Sulphur dioxide 7446-09-5

Butyrolactone 96-48-0 Whyskeylactone 39212-23-2

Decanoic acid 334-48-5
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2. Summary of the results 

To sum up, we obtained chemical analysis and sensory analysis data from the characterization 

of eight red wines from Pinot Noir and eight red wines from Cabernet Franc.  

From the chemical analysis data we obtained the list of odorants contained in each wine (total 

of 49 odorants). Moreover the data allows the calculation of the relative intensity of each 

odorant by calculating their nasal impact frequency (NIF) score. NIF are calculated as the 

ratio of panelists who smelled the odorants on the total number of panelists (total = 8). 

From the sensory data, we focused on the orthonasal evaluation of the wines, so we have 3 

repetitions for each panelist and for each wine. We assessed the panel's performance through 

its capabilities to use efficient descriptors to discriminate between wines odor profile. In 

Table 2.1, the odor descriptors are ranked according to p-values associated with the F-test of 

ANOVA. Among the 33 sensory descriptors studied, 8 were identified as discriminant 

between the wines. On the one hand, results highlighted also the good repeatability of the 

panelists for the three repetitions, except for the descriptor Plum Fresh (p = 0.03). The low 

intra-individual variability showed that the training of the panelists was efficient. On the other 

hand, inter-individual variability was shown with a significant panelist effect for all the 

descriptors. In the following part of the work, we focused on the 17 more discriminant odor 

descriptors (p < 0.25) from now called odor sensory attributes (OSA). The OSA Ethanol was 

not taken into account because it corresponds to the name of a molecule rather than an odor 

percept such as Rummy or Wine-like. 
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Table 2.1: Discrimination of the wines according to 33 sensory descriptors and panelist’s 

performance assessed by the p-values associated with the F-test for each descriptor. For 

the 33 descriptors, the column “Wine” reports the p-value associated to the factor Wine in 

ANOVA and reflects the discrimination ability of the descriptors for the wines. The column 

“Panelists” reports the p-value associated to the factor Panelist in ANOVA and reflects the 

inter-individual variability for each descriptor. The column “Repetition” reports the p-value 

associated to the factor Repetition in ANOVA and reflects the intra-individual variability 

within the three repetitions. Significance is shown with the orange shading (p<0.05). Sensory 

descriptors in bold correspond to the odor sensory attributes (OSA) kept further in modelling 

studies. 

 

Wine Panelist Repetition

Woody 2.00E-08 5.77E-80 0.25

Smoky 2.25E-04 2.00E-24 0.59

Cherry cooked 8.71E-04 2.97E-86 0.85

Vanilla 1.45E-03 2.09E-131 0.97

Strawberry fresh 4.60E-03 1.06E-14 0.4

Musk 1.32E-02 1.35E-28 0.07

Violet 3.00E-02 2.70E-12 0.21

Leather 3.97E-02 5.77E-17 0.57

Cherry stone 5.16E-02 2.09E-37 0.42

Blackcurrant bud 5.37E-02 1.71E-45 0.61

Toasty 5.66E-02 4.50E-24 0.28

Artichoke 6.11E-02 5.02E-22 0.68

Prune 7.94E-02 6.57E-27 0.38

Cut grass 8.37E-02 3.22E-17 0.05

Ethanol 1.08E-01 7.60E-81 0.75

Blackcurrant fresh 1.14E-01 1.18E-32 0.32

Bell pepper 1.64E-01 4.00E-58 0.17

Cherry fresh 2.16E-01 1.73E-37 0.61

Raspberry fresh 3.27E-01 2.87E-08 0.06

Brioche 3.43E-01 3.55E-21 0.77

Hay 3.59E-01 1.01E-52 0.14

Clove 4.15E-01 7.54E-10 0.61

Plum cooked 4.48E-01 6.98E-31 0.99

Elderflower 4.55E-01 8.21E-16 0.83

Blackberry fresh 4.68E-01 1.26E-29 0.53

Geranium 5.51E-01 3.51E-10 0.61

Undergrowth 6.51E-01 2.52E-06 0.34

PlumFresh 6.62E-01 1.31E-09 0.03

Strawberry cooked 6.82E-01 6.21E-47 0.8

Butter 6.95E-01 3.65E-24 0.75

Firestone 8.49E-01 2.87E-21 0.93

Blueberry fresh 8.55E-01 1.83E-21 0.25

Pepper 8.89E-01 5.28E-51 0.74
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III. Expertise 

 

One of the innovative aspects of this work was to integrate flavor expertise knowledge into a 

predictive modelling strategy. Two types of expertise were collected: construction of the 

mixture rules for odor sensory attributes (OSA) and relationships between odor descriptors 

(OD) used for odorants’ description and odor qualities (OQ) used by expert flavorists. Thus, 

we gathered knowledge from three levels of the odor perceptual space: OD, OQ and OSA. 

 

1. Odor sensory attributes (OSA) 

The expertise of four senior flavorists was collected. Each expert was invited to participate in 

a semi-directed interview by phone for two sessions of 1 hour following the elicitation 

process described below. In the first session, experts were not aware of the studied food 

matrix (i.e. wine) and thus we collected generic knowledge. In the second session, experts 

were informed of the studied food matrix (data not used). 

a. Elicitation process 

Experts were presented the list of the 17 OSA selected from the sensory profiles of the 16 red 

wines previously characterized. They were asked, for each OSA, to tell if the OSA was 

composed of a single OQ or a combination of OQ. In the latter case, experts were asked to list 

the OQ they may use to construct the perception of the OSA and to precise the proportion of 

each OQ; they freely used their own OQ. Proportions were collected on a symbolic scale +++ 

(very high), ++ (high), + (medium), +/- (weak), near 0 (trace) further translated in a numeric 

scale (+++ = 3, ++ = 2, + = 1, +/- = 0.5, near 0 = 0.25). The numerical data were then 

converted into row-wise percentages to obtain proportions of OQ for each expert (for 

example, the value 0.33 obtained for the OQ Almond for the expert E1 is the result of 
1

1+2
, 1 

being the numerical value of the OQ Almond and 1+2 the sum of the values from the two OQ 

used by the expert). 

b. Results 

As for example, the data collected for the OSA Prune are presented in Table 2.2. The 

symbolic data, numerical data and proportions are detailed. The results highlighted several 
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combinations of OQ able to elicit the perception of the OSA Prune. Indeed, the OSA Prune 

was described as the combination of the OQ “Almond and Lactonic” for the expert E1, 

“Cooked, Fruity, Honey, and Lactonic” for the expert E2, or “Cooked and Fruity” for the 

expert E4. In this case, the expert E3 did not answer the question. 

 

Table 2.2: Combination of odor qualities (OQ) eliciting the perception of the odor 

sensory attribute (OSA) Prune. E1 to E4 refers to the four flavorists interviewed. 

Symbolic data 

Experts Almond Cooked Fruity Honey Lactonic 

E1 + Not used Not used Not used ++ 

E2 Not used ++ + Near 0 + 

E3 Missing data Missing data Missing data Missing data Missing data 

E4 Not used +++ + Not used Not used 

Numerical data 

Experts Almond Cooked Fruity Honey Lactonic 

E1 1 Not used Not used Not used 2 

E2 Not used 2 1 0.25 1 

E3 Missing data Missing data Missing data Missing data Missing data 

E4 Not used 3 1 Not used Not used 

Proportions 

Experts Almond Cooked Fruity Honey Lactonic 

E1 0.33 Not used Not used Not used 0.67 

E2 Not used 0.47 0.24 0.06 0.24 

E3 Missing data Missing data Missing data Missing data Missing data 

E4 Not used 0.75 0.25 Not used Not used 

 

The proportions of OQ corresponding to the data collected from the expert flavorists for all 

the 17 OSA are presented in Table 2.3. 
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Table 2.3: Combination of odor qualities (OQ) eliciting the perception of 17 odor 

sensory attributes (OSA). E1 to E4 refers to the four flavorists interviewed. Nu: Not used. 

Md: Missing data. 
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The OSA Cut-grass, Leather, Smoky, Toasty, Vanilla, Violet and Woody were considered as 

composed of 1 OQ for more than half of the experts and were further considered as so. We 

were not able to collect data concerning the OSA Artichoke, thus it was removed from the set 

of OSA to predict. The 8 remaining OSA were considered as composed of several OQ. 

 

2. Link between odor descriptors (OD) and odor qualities (OQ) 

As presented in the literature review, odorants can be described in verbal terms by a set of 

words, namely odor descriptors (OD), which can be found in several databases. The OD of 

the 49 odorants identified from the chemical analysis of the 16 red wines previously 

characterized were collected. We compiled the data of three databases: Arctander’s handbook 

(3102 chemicals described by Steffen Arctander himself), Flavor-Base (commercially 

available Leffingwell & Associates database, marketed as Flavor‐Base Pro © 2010, flavor 

descriptions collected from many sources over the course of more than 40 years), and The 

good scents company (publicly available database, the odor descriptions from one to several 

sources are listed in the "Organoleptic Properties" section). Then we aggregated the 

information of the three databases. For a given odorant, the set of OD was the union of the 

OD from the three databases. We ended up with a corpus of 175 different OD. 

However, the odor dimension used by flavorists when they create a flavor is a set of odor 

qualities (OQ). Hence, we wanted to establish the relationships between these two dimensions 

of the olfactory space: OD and OQ. A junior flavorist from the ISIPCA (International institute 

for perfumery, cosmetics, and food flavors) was interviewed through a check-all-that-apply 

(CATA) questionnaire (Dooley et al., 2010). The CATA list consisted of the corpus of 20 OQ 

defined by the experts during the elicitation step. For the 175 OD mentioned in the paragraph 

above, the flavorist was asked if the OD supported none, one, or several OQ. For instance for 

the OD “Apple”, the flavorist was asked to tick all the OQ that correspond to this OD (e.g. 

“Fruity”). 

These data collections (from databases and expertise) allowed us to translate the OD space 

into OQ space. The results were presented following an ontology approach. 
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IV. Ontology 

 

In computer science, ontology is expressed as a formal representation of knowledge by a set 

of concepts within a domain and the relationship between these concepts (Gruber, 1993). 

Ontology has gained much importance not only in the field of artificial intelligence, but also 

in the fields of natural language processing (Medjkoune et al., 2016) or knowledge 

representation and acquisition (Ibanescu et al., 2016). 

Ontology construction is an iterative process and involves two main steps. Firstly, the design 

and development step aims to specify the scope and purpose of the ontology and also reveals 

the relationship among classes and subclasses (taxonomic hierarchy). Secondly, the validation 

and feedback step are performed by experts. If modifications are identified by the experts, the 

changes are incorporated in the ontology. 

 

1. Definitions 

An ontology together with a set of classes and their properties constitutes a knowledge base, 

mathematically defined as a triplet {C, R, P} (Madalli et al., 2017), where C represents 

classes, R represents the hierarchical relations among classes and P represents the properties.  

A class, also called concept (Noy & McGuiness, 2001), is defined as a group of individuals 

sharing some properties. Classes can be organized in a specialization hierarchy using sub-

classes. Members of a subclass inherit the characteristics of their parent class. When two 

classes are disjoint, an individual cannot be a member of disjoint classes. 

The hierarchical relations denote the relations between classes and between properties and are 

defined by relations such as is_a, subclass_of, value_of.  

Properties are non-hierarchical relations and thus relate classes to other classes or individuals 

of one class to individuals of another class. Properties are divided in two groups: data 

property and relational property. For example, in the context of the domain food, color of 

wine or calorie content are data properties, whereas recipe of a meal is a relational property. 

Furthermore, ontologies can be used to describe a set of data by assigning instances belonging 

to a given set I to the classes C (such as specific persons, places, things). In this case, 
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ontologies are called populated ontologies (James et al., 2010) and are defined by the set {C, 

R, P, I, g}, where I represents the instances and g is a function which associates a finite 

number of instances to each classes of C. 

 

2. Example 

A highly simplified example of an ontology for wines is graphically presented in Figure 2.1. It 

is a very limited extract of an ontology where the class “Wines” represents all wines. This 

class can have subclasses that represent concepts which are more specific than the superclass. 

Here, the class “Wines” is divided in the classes of red, rosé, and white wines. Specific wines 

are instances of these classes. Thus, Vosne-Romanée and Meursault wines are respectively 

instances of the class Red wines and White wines. Because Vosne-Romanée and Meursault 

wines are made in Burgundy and more specifically in Côte d’Or, both instances are related to 

the “Côte-d’Or” subclass of “Region”. In this example, the knowledge was collected from the 

Bourgogne Wine Board’s website (BIVB: Bureau Interprofessionnel des Vins de Bourgogne) 

and translated into an ontology formalism. 

 

 

Figure 2.1: Graphical representation of very limited extract of an ontology in the wine 

domain. Black boxes represent classes, purple is used for instances. Arrows in black 

correspond to “subclass of” properties, green “is made in”, and blue “produces”. Figure 

adapted from Noy & McGuiness, 2001. 
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Ontologies define a common vocabulary for researchers who need to share information in a 

domain, for instance dairy gels (Ibanescu et al., 2016). Thus, they are valuable in sharing a 

common understanding of the structure of information among people or software agents. 

  

V. Fuzzy logic 

 

The term fuzzy logic was introduced with the 1965 proposal of fuzzy set theory by Zadeh. 

Unlike the conventional theory of sets, according to which an element either belongs (1) or 

does not belong (0) to a set, the approach of fuzzy logic imitates the way of decision making 

in humans that involves all intermediate possibilities within the interval [0,1] (Zadeh, 1965; 

Dubois & Prade, 1980). 

The differences between classical logic and fuzzy logic are presented in Figure 2.2 through 

the exemple of the membership degrees between food liking and the linguistic term 

“delicious”. Food liking correspond to a score on a 10-point scale. In classical logic, if a food 

product is given a score of 9 or higher, the food is part of the set “delicious”, whereas food 

with lower score are not part of the “delicious” set. In fuzzy logic, food with a liking score 

starting at 7 are part of the set “delicious” with membership degrees varying from 0 to 1. A 

fuzzy set is then characterized by a function represented by a real number within the interval 

[0,1]. This membership function is useful to introduce graduality in different concepts: 

similarity, uncertainty, and constraint. 

 

 

Figure 2.2: Comparison between classical and fuzzy logic. 
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The advantage of this formalism is to cope with human reasoning. Moreover, fuzzy functions 

can be created from expertise knowledge (Sicard et al., 2011). 

 

1. Mathematical definitions of a fuzzy set 

A fuzzy set E in universe of discourse U can be defined by Equation 2.1. 

 

Equation 2.1:    𝐸 = {(𝑢, µ𝐸(𝑢))\𝑢 ∈ 𝑈} 

µ𝐸: 𝑈 → [0,1] 

 

μE is the membership function of the set E. It represents the set of membership grades μE(u) of 

a value u defined in a universe of discourse U, often numerical. The value of the membership 

grade is a real number within the interval [0,1], representing the membership degree of u to E. 

The shape of the membership function is chosen arbitrarily by following the advice of the 

expert or by statistical studies: sigmoid, hyperbolic, tangent, exponential, Gaussian, or any 

other form can be used. Equation 2.2 and Figure 2.3 correspond to a trapezoidal 

representation. 

 

Equation 2.2:    µ𝐸(𝑢) =

{
 
 
 
 
 

 
 
 
 
 

0 (𝑢 ≤ 𝑎1)

𝑢−𝑎1

𝑎2−𝑎1
 (𝑎1 < 𝑢 ≤ 𝑎2)

1 (𝑎2 < 𝑢 ≤ 𝑎3)

𝑎4−𝑢

𝑎4−𝑎3
 (𝑎3 < 𝑢 ≤ 𝑎4)

0 (𝑎4 < 𝑢)
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Figure 2.3: Fuzzy trapezoidal function. a2 and a3 represent the bounds of the plateau. a1 

varies between 0 and a2, a4 varies between a3 and 1. 

 

2. Fuzzy algorithm 

Fuzzy logic systems are constructed with three main parts: a fuzzification module to 

transform the system inputs into fuzzy sets, fuzzy rules, and a defuzzification module to 

transform the fuzzy set obtained into output values. The parametrization of the fuzzy 

algorithm can be provided by experts (fuzzification and defuzzification, IF-THEN rules). The 

different parts of a fuzzy logic system are presented through a fuzzy system (adapted from 

Dernoncourt, 2011), which for instance can predict the tip given in a restaurant regarding the 

food liking and service quality. In this case, food liking and service quality are scored on a 10-

point scale. The output of the fuzzy system is the tip given as the percentage of the bill 

(Figure 2.4). 

 

 

Figure 2.4: Fuzzy system architecture. Example of a fuzzy system for predicting the tip 

given in a restaurant regarding the food liking and service quality. 

 

a. Fuzzyfication 

The membership functions link fuzzy input and linguistic variables. Each linguistic variable is 

defined by a respective range and fuzzy set. When fuzzy sets are defined for a linguistic 

variable, the goal is not to define the linguistic variable exhaustively. On the contrary, the 
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focus is set only on the sets that will be useful later in the definition of the fuzzy rules. In 

Figure 2.5, the fuzzyfication of the variable food liking, service quality and tip are presented. 

 

 

Figure 2.5: Fuzzy functions of the variables food liking, service quality and tip (adapted 

from Dernoncourt, 2011). 

 

b. Fuzzy rules 

As the choice of membership function’s shape, the definition of the operators in fuzzy logic is 

chosen according to the expertise modelled. Operators include intersection (AND), union 

(OR) and complement (NOT). Triangular norm (t-norm) and conorm (t-conorm) are 

operations corresponding to logical conjunction (i.e. intersection) and logical disjunction (i.e. 

union) in fuzzy logic systems. T-norm and conorm are used to combine criteria in multi-

criteria decision making. Zadeh’s definition of intersection used the Gödel t-norm, but other 

definitions are possible using different t-norms. Common examples are Product t-norm or 
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Lukasiewicz t-norm (Hudelot, 2014). In Table 2.4, the operators are presented according to 

Gödel’s and Product’s semantic. 

 

Table 2.4: Fuzzy operators. A and B are two fuzzy sets. Intersection (AND) is defined as 

µ𝐴∩𝐵(𝑥), union (OR) as µ𝐴∪𝐵(𝑥) and complement (NOT) as µ�̅�(𝑥). 

Operators AND OR NOT 

Zadeh min (µ𝐴(𝑥), µ𝐵(𝑥) max (µ𝐴(𝑥), µ𝐵(𝑥)) 1 − µ𝐴(𝑥) 

Product µ𝐴(𝑥) × µ𝐵(𝑥) µ𝐴(𝑥) + µ𝐵(𝑥) − µ𝐴(𝑥) × µ𝐵(𝑥) 1 − µ𝐴(𝑥) 

 

The operators allow to construct fuzzy rules such as “If 𝑥 ∈ 𝐴 AND 𝑦 ∈ 𝐵 then 𝑧 ∈ 𝐶”, with 

A, B, and C as fuzzy sets. By definition all the rules of a rule basis are activated at the same 

time and linked by an OR operator. 

To predict the tip given in a restaurant, three rules are created. These rules represent the 

knowledge-based expressing and predicting the state of the system. 

Rule 1: If (food is bad) and (service is bad) then (tip will be low) 

Rule 2: If (service is good) then (tip will be medium) 

Rule 3: If (food is delicious) and (service is excellent) then (tip will be high) 

For the application of this example, we suppose the input values equal to 8 for the food liking 

and 8.5 for the service quality. For each of the three fuzzy rules, we obtain an output (Figure 

2.6). For Rule 1 and Rule 3, operators are combined with a Product t-norm and we obtained 

respectively 0 (0 × 0) and 0.25 (0.5 × 0.5). For Rule 2, there is no combination because only 

one variable is considered. 

  



CHAPTER 2: DATA COLLECTION & METHODOLOGIES 

91 

 

Figure 2.6: Fuzzy rules. Inputs are food liking and service quality, both scored on a 10-point 

scale. Output is the percentage of tip given. Product t-norm is used to combine both inputs. 

 

Regarding the outputs, the remaining question is what will be the tip percentage, knowing that 

the food liking is rated 8 on 10 and the quality of the service 8.5 out of 10. The two activated 

rules (Rule 2 and Rule 3) are combined together using the OR operator. It leads to a fuzzy set 

output coupling both rules (trapezoids blues and orange of the Figure 2.7). In some 

applications where decision or prediction is needed, a following step, called defuzzification, 

translate the aggregated fuzzy set into a numerical result. 

c. Defuzzification 

As with the fuzzy membership functions and fuzzy operators, the fuzzy system designer must 

choose from several possible defuzzification methods. In Figure 2.7 the results are presented 

following the average maxima method. This defuzzification defines the output (decision of 

the percentage of the tip) as being the average of the abscissas of the maxima of the fuzzy set 

resulting from the aggregation of the outputs. In this case, the maxima are respectively 25 and 

30, thus the percentage of tip given will of 27.5 %. 
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Figure 2.7: Defuzzification of the outputs. 

 

The designer of a fuzzy system has to make a number of important choices (membership 

functions’ shape, operators, defuzzification method) which impact the final results. These 

choices are mainly based on the expert's advice or on statistical analysis of previous data, in 

particular to define the membership functions and the fuzzy rules. 

Thus, the power of fuzzy logic is to make possible the establishment of inference systems 

(choices of operators) whose decisions are seamless, flexible and non-linear, closer to human 

behavior than conventional logic. In addition, the rules are expressed in natural language. This 

has many advantages, such as including the knowledge of a non-computer expert at the heart 

of a decision-making system, or modelling more finely some aspects of natural language. 

 

VI. Conclusion 

 

The research question at the core of this thesis was tackled through a series of methods from 

several scientific disciplines: analytical chemistry, sensory evaluation, knowledge integration, 

modelling and optimization. In the three following chapters, the three main studies achieved 

during the thesis are presented. The 16 wines, characterized through analytical and sensory 

analysis (Villière et al., Data paper included in this manuscript), constitute the sample set. 

These data were used as input data and allowed the testing of modelling approaches on 

complex real food products. 
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In Chapter 3, a predictive modelling strategy based on molecular structure of odorants is 

presented (Roche et al., Article 1 of this manuscript). The aim was to predict complex 

mixtures perceptual similarity from odorants’ structural parameters obtained owing to the 

Dragon software (Talete, Milan, Italy). The model, once optimized (Roche et al., Article 1 of 

this manuscript), was applied to the 16 wines. The modelling performance was assessed 

through the correlation between perceptual wine odor similarity predicted by the model and 

similarity inferred from sensory profiling data. 

In Chapter 4, the construction of an ontology for odor perceptual space (OOPS) is presented 

(Roche et al., Article 2 of this manuscript). For the 49 odorants identified in the wines, we 

collected their odor descriptors (OD) from different databases. Owing to the flavorists’ 

expertise collected, we linked the corpus of OD to the corpus relying on expertise, namely 

odor qualities (OQ) and to the 15 odor sensory attributes (OSA) used by the sensory panel to 

perform the wines profiling. The ontology was implemented in the dedicated Protégé® 

software and was used as a prediction tool to predict the sensory profiles of two wines of the 

sample set on the basis of their molecular composition. 

Chapter 5 presents a broader predictive strategy, which combines ontology, fuzzy logic and 

optimization methodologies to form an operational expert system (Roche et al., Article 3 of 

this manuscript). Input values of the model were the 49 odorants identified in the 16 wines 

further translated in OD and OQ thanks to the ontology previously developed (Chapter 4). 

Fuzzy logic was applied for its ability to cope with non-linear systems expressed by expert 

flavorists, i.e. the combination of OQ contributing to the perception of OSA. The fuzzy rules 

were determined through data-driven optimization. The developed model was able to predict 

the odor profile of wines through the estimation of the intensity of OSA. Predictions were 

compared with the odor profile obtained by sensory evaluation. 
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I. Introduction 

Olfactory research was and is still challenged by predicting odor characteristics of odorants on 

the basis of their molecular structure. Different teams have been working on establishing 

successful predictive approaches, but many of them apply to single odorants. However, odors 

we perceive in every-day life are mixtures including many different odorants at varying 

concentrations. The odor quality of such mixtures can be perceived as elemental (components 

odors can be perceived within the mixture), configural (components odors blend into a new 

odor perceived as an entity) or partially elemental and/or configural (Thomas-Danguin et al., 

2014). 

An attempt to predict odor characteristic of mixtures of odorants was performed by Snitz et al. 

(2013). They developed an angle distance model which successfully predicts the similarity of 

complex mixtures composed of iso-intense components, on the basis of their molecular 

structure. In this chapter, we present how we tested this model using a dataset of elemental 

and configural mixtures made of 6 odorants, their sub-mixtures, and odorants alone, for which 

perceptual similarity data were obtained by a panel of 60 subjects for 63 pair comparisons 

(Romagny et al., 2018). Moreover, we present how we upgraded this model to take into 

account the intensity of each odorant in mixtures to be able to account for real odor mixtures 

such as the 16 wines considered in the thesis. 

The application of the Snitz’ model to the elemental and configural mixtures made of 6 

odorants, their sub-mixtures and odorants alone is presented in the ARTICLE 1 entitled 

“Predicting odor similarity of complex mixtures from molecular structure” (Roche, A, 

Thomas-Danguin, T, Perrot, N & Mainland, J, in preparation). The application of the 

upgraded model to the set of wines is presented in the second part of the chapter. 
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Abstract 

Predicting perceptual characteristics of odor stimuli on the basis of their molecular structure is 

a challenging task. To date, most approaches were applied to monomolecular odor stimuli. 

However, odors we encountered in our day-to-day lives result from the perception of complex 

mixtures of odorants. In this study, we applied the angle distance model, previously proposed 

to predict the similarity between mixtures of odorants on the basis of their structural 

parameters, to mixtures made of 6 odorants, their sub-mixtures and single odorants (63 pair 

comparisons). We extended the model to take into account the relative intensity of each 

odorant within the mixtures. The ratio-weighted angle distance model well predicted the 

perceptual similarity (r = 0.75, p < 0.001) between the odor stimuli of our experimental 

dataset that included mixtures with different levels of complexity and odorants at various 

intensities. Moreover, the model was found to be able to well predict perceptual similarity for 

mixtures processed in a more elemental or configural way by the human olfactory system. 

Therefore, the ratio-weighted angle distance model, modified to account for mixtures’ 

components intensity, constitutes a step forward to the science of smell since it is efficient to 

predict similarity between complex odor mixtures, and in a way consistent with the 

processing of odor objects by the human brain. 

 

Introduction 

Olfactory research was and is still challenged by predicting odor characteristics of odor 

stimuli such as their detection threshold (Abraham et al., 2012), pleasantness (Khan et al., 

2007; Kermen et al., 2011), intensity (Edwars & Jurs, 1989; Chastrette et al., 1998; Thomas-

Danguin & Chastrette, 2002) or their smell quality (Wise et al., 2000; Keller et al., 2017). 

Several predictive models embedded structural parameters of molecules in their approach. 

The number of structural parameters to be considered can rise to thousands thanks to recent 

progress in software (Dragon software, Talete, Milan, Italy) and represent a very large set of 

parameters of molecules, varying from simple functional group counts to normalized 

eigenvalue sums of the powers of connectivity matrices. 

Focusing on predicting the smell of molecules, approaches based on the structure-odor-

relationships (SOR), identified many specific rules linking structure to odor, i.e. what 

structure may provide a specific odor note (e.g. ‘‘musk’’ in Lavine et al., 2012), but failed to 
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produce a general framework for measuring smell (Rossiter, 1996). Indeed, molecules that 

have a close structure can elicit very different odors: carvone (−) (CAS 6485-40-1) smells 

minty, whereas its enantiomer (+) (CAS 2244-16-8) smells like caraway. In contrast, 

molecules that have a different structure can elicit similar odors: muscone (CAS 541-91-3) 

and musk ketone (CAS 81-14-1) both smell musky. With the aim to overcome this issue, 

machine learning approaches are emerging to construct systematic models in order to better 

characterize odorants on the basis of their molecular structure. 

Kumar et al. (2015) showed that it was possible to use selective structural parameters to 

predict the perceptual qualities of molecules (e.g. “butter”, “fruity”, “leather”…) by designing 

a random forest classifier. Following works kept developing machine learning algorithms to 

predict odor characteristics of molecules based on their structural parameters. For instance, 

the best-performing models from the DREAM Olfaction project (Keller et al., 2017) were 

able to accurately predict 8 out of 19 semantic descriptors “garlic,” “fish,” “sweet,” “fruit,” 

“burnt,” “spices,” “flower,” and “sour” (r>0.5) of a dedicated dataset of molecules (Keller & 

Vosshall, 2016).  

Although these predictive approaches were quite successful, only a few studies attempted to 

predict odor quality, and all applied to single molecules. If basic knowledge on 

monomolecular stimuli is essential, it does not reflect the ecological functioning of the sense 

of smell, which has to deal with complex mixtures of odorants at varying concentrations. To 

efficiently treat complex mixtures, it has been shown that the olfactory system can process 

odor mixture through a configural process in which components’ odors blend into a new odor 

perceived as a distinct odor object or through an elemental process in which components’ 

odors can be perceived within the mixture (Stevenson & Wilson, 2007; Thomas-Danguin et 

al., 2014). To our knowledge, the only predictive work dealing with odor quality of odorants’ 

mixtures was performed by Snitz et al. in 2013, who developed a model to predict the 

perceptual similarity of multi-molecular mixtures from the molecular structure of the 

components. In this approach, mixtures were represented as single structural vectors to take 

into account the mixture as a whole and not only as a sum of its constituents. Interestingly, 

such approach is consistent with a configural brain processing of complex odor mixtures 

(Gottfried, 2010; Thomas-Danguin et al., 2014). The algorithm, which considered a series of 

structural parameters of the mixed odorants, was found to provide consistent correlations 

between predicted and actual perceptual similarity (r = 0.49, p < 0.001). An optimized version 

of this model yielded a correlation of r = 0.85 (p < 0.001) between predicted and actual 
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perceptual similarity. Although applicable to mixtures of odorants, the main limitation of the 

model was to consider odorants only at the same intensity. Such iso-intense mixtures were 

experimentally created but do not occur in nature. 

In order to overcome this limitation, we developed an extended version of the angle distance 

model proposed by Snitz et al. (2013) that was able to account for non iso-intense mixtures, 

i.e. the ratio-weighted angle distance model. We tested the ratio-weighted angle distance 

model with a set of mixtures made of up to 6 odorants (Romagny et al., 2018), among which 

two mixtures of the same 6 odorants but in different proportions were known to be processed 

respectively configurally and elementally (Sinding et al., 2013). The dataset comprised 

similarity between these mixtures, sub-mixtures and single odorants corresponding to a total 

of 63 pair comparisons (Romagny et al., 2018; Table S1). 

 

Materials and methods 

 

Dataset of odor stimuli similarity 

The dataset of similarity between odor stimuli was from the study by Romagny et al. (2018). 

It included 63 similarity values corresponding to 63 comparisons between two stimuli 

including mixtures and single components. One mixture, the RC configural mixture (RC-

conf) contained 6 odorants (Table 1) at specific concentration and has been shown to elicit 

configural perception and to evoke the specific odor of grenadine (Red Cordial; Sinding et al. 

2013). The RC elemental mixture (RC-elem) contained the same 6 odorants but at different 

ratio and did not elicit the Red Cordial configural odor. The other stimuli in the dataset were 

30 sub-mixtures and the 6 single odorants. The sub-mixtures were coded with the acronym of 

the odorants in the stimuli and their ratio (either RC-conf or RC-elem). Sub-mixtures at the 

RC-conf ratio corresponded to Sub-con mixtures and the ones at RC-elem ratio corresponded 

to Sub-elem mixtures. For instance, the stimuli “BEA_RC-conf” corresponded to the sub-

mixture of β-ionone and Ethyl acetate at the RC-conf concentration levels and the stimuli 

“IAVFDB_RC-elem” corresponded to the sub-mixture of Isoamyl acetate, Vanillin, 

Frambinone, Damascenone and β-ionone at the RC-elem concentration levels. The summary 

of all the stimuli studied in Romagny et al. (2018) is shown in Table S1. 
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Table 1: The 6 odorants used in the mixture dataset. 

Odorant Acronym CAS Canonical SMILES 

Vanillin V 80-14-4 COC1=C(C=CC(=C1)C=O)O 

Frambinone F 5471-51-2 CC(=O)CCC1=CC=C(C=C1)O 

Isoamyl acetate IA 123-92-2 CC(C)CCOC(=O)C 

Damascenone D 23696-85-7 CC=CC(=O)C1=C(C=CCC1(C)C)C 

β-ionone B 79-77-6 CC1=C(C(CCC1)(C)C)C=CC(=O)C 

Ethyl acetate EA 141-78-6 CCOC(=O)C 

 

The 6-component mixtures, sub-mixtures and single odorants were rated on their similarity 

with the RC-conf or RC-elem 6-component mixtures. The similarity data were obtained by 

direct rating using a linear scale in pair comparison between the odor of the reference RC-

conf or RC-elem mixture and the odor of a sample including either a single odorant, a sub‐

mixture or the RC-conf or RC-elem mixtures (controls). A total of 63 pair comparisons were 

evaluated in four separate experiments as described in Romagny et al. (2018). Ratings were 

then converted into similarity scores ranging from 0 to 10 (Table S2). 

For each pair comparison we also calculated the overlap between the two stimuli following 

the Equation 1, n being the number of shared components between the two stimuli and N 

being the number of components in the largest mixture (6 components). 

 

Equation 1:    𝑂𝑣𝑒𝑟𝑙𝑎𝑝 =
𝑛

𝑁
  

 

Molecular structure of odorants 

The 6 odorants studied in this paper were described by 4870 structural parameters using 

Dragon software (v.6, Talete, Milan, Italy). In Table 2A, the odorants are described by the 

first 8 structural parameters obtained from the software. 

  



CHAPTER 3: MOLECULAR STRUCTURE APPROACH 

105 

Table 2: The 6 odorants described by the first 8 structural parameters (A) from the 

Dragon software as raw data and (B) as normalized data. MW: molecular weight, AMW: 

average molecular weight, Sv: sum of atomic van der Waals volumes, Se: sum of atomic 

Sanderson electronegativities, Sp: sum of atomic polarizabilities, Si: sum of first ionization 

potentials, Mv: mean atomic van der Waals volume, Me: mean atomic Sanderson 

electronegativity.  

 

 

Since the different structural parameters measure properties on differing scales we normalized 

the Dragon data. For each structural parameter we had a set of 6 values (sv) (e.g. 1.03, 1, 0.99, 

0.98, 0.98, 1.01 for the structural parameter Me). Each values v in the list sv was normalized 

to the value vn by the Equation 2. 

 

Equation 2:    𝑣𝑛 =
𝑣−min (𝑠𝑣)

max(𝑠𝑣)−min (𝑠𝑣)
      

 

We ended up with values for each structural parameter ranging between 0 and 1. Each 

component was then described by a structural vector of 4870 dimensions. The normalized 

values of the Table 2A are presented in Table 2B. 
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The angle distance model 

Snitz et al. (2013) developed the angle distance model that allowed predicting odorant-

mixture perceptual similarity from odorant-mixture structure. It consisted in summing the 

structural vectors of its components and dividing it by its norm to eliminate the effect of the 

number of components in a mixture on the size of the mixture vector. Then the distance 

between two mixtures vector (mixture U and mixture V) is defined as the angle between the 

two vectors, given by Equation 3 where the dot product between the vectors is �⃗⃗� ∙ �⃗�  and the 

norms of the vectors are |�⃗⃗� ||�⃗� |. 

 

Equation 3:    𝜃(𝑈,⃗⃗  ⃗ �⃗� ) = cos−1 (
�⃗⃗� ∙�⃗⃗� 

|�⃗⃗� ||�⃗⃗� |
) 

 

This angle distance was further developed in an optimized version. In this case, the dimension 

of the structural vectors was reduced to 21 structural parameters (Table 4). We considered 

both the angle distance model (non-optimized) and the optimized angle distance model. Table 

S3 contains the odorants we modeled and their structural parameters values for the optimized 

angle distance model. 
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Table 4: List of the 21 structural parameters for the optimized angle distance model. 

Listed are the names, indices and a brief definition of the 21 parameters, named molecular 

descriptors within the Dragon software. The Dragon descriptors SpMin3_Bh(v), 

SM02_EA(ed), SM03_EA(dm), SM10_EA(dm), SM13_EA(dm) and Eig05_EA(ed) were 

abbreviated respectively BELv3, ESpm02x, ESpm03d, ESpm10d, ESpm13d and EEig05x in 

Snitz et al. (2013) due to different software versions. 

 

 

Number
Index out of the 

4870 descriptors
Abbreviation Description

1 45 nCIR Number of circuits (ring descriptors)

2 76 ZM1 First Zagreb index (topological indices)

3 97 GNar Narumi geometric topological index (topological indices)

4 122 S1K 1-path Kier alpha-modified shape index (topological indices)

5 187 piPC08 Molecular multiple path count of order 8 (walk and path counts)

6 936 MATS1v
Moran autocorrelation of lag 1 weighted by van der Waals 

volume (2D autocorrelations)

7 942 MATS7v
Moran autocorrelation of lag 7 weighted by van der Waals 

volume (2D autocorrelations)

8 984 GATS1v
Geary autocorrelation of lag 1 weighted by van der Waals 

volume (2D autocorrelations)

9 1103 SpMin3_Bh(v)
Smallest eigenvalue n. 3 of Burden matrix weighted by van der 

Waals volume (Burden eigenvalues)

10 1286 SM02_EA(ed)
Spectral moment of order 2 from edge adjacency mat. weighted 

by edge degree (edge adjacency indices)

11 1315 SM03_EA(dm)
Spectral moment of order 3 from edge adjacency mat. weighted 

by dipole moment (edge adjacency indices)

12 1322 SM10_EA(dm)
Spectral moment of order 10 from edge adjacency mat. weighted 

by dipole moment (edge adjacency indices)

13 1325 SM13_EA(dm)
Spectral moment of order 13 from edge adjacency mat. weighted 

by dipole moment (edge adjacency indices)

14 1417 Eig05_EA(ed)
Eigenvalue n. 5 from edge adjacency mat. weighted by edge 

degree (edge adjacency indices)

15 1806 RDF035v
Radial Distribution Function - 035 / weighted by van der Waals 

volume (RDF descriptors)

16 2191 G1m
1st component symmetry directional WHIM index / weighted by 

mass (WHIM descriptors)

17 2202 G1v
1st component symmetry directional WHIM index / weighted by 

van der Waals volume (WHIM descriptors)

18 2213 G1e
1st component symmetry directional WHIM index / weighted by 

Sanderson electronegativity (WHIM descriptors)

19 2248 G3s
3rd component symmetry directional WHIM index / weighted by 

I-state (WHIM descriptors)

20 2452 R8u+
R maximal autocorrelation of lag 8 / unweighted (GETAWAY 

descriptors)

21 2646 nRCOSR number of thioesters (aliphatic) (Functional group counts)
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The angle distance model previously described (non-optimized and optimized versions) 

considered components at the same intensity. In the present study we upgraded the model to 

account for non iso-intense mixtures. To do so, we weighted each structural vector by the 

ratio of the corresponding odorant in the mixture. 

 

Data analysis 

Simple linear regressions were performed to model the relationships between two variables: 

variable 1 being the perceptual similarity of the stimuli and the second variable being the 

overlap of the stimuli (i.e. the number of shared components in both stimuli) or the angle 

distance of the stimuli. In addition, the Pearson correlation (r) was calculated as a measure of 

the linear correlation between the two variables. 

In order to compare the different correlations resulting from the different versions of the angle 

distance model, we estimated the statistical differences between two dependent correlations 

owing to the Steiger’s test (Steiger, 1980) following the function cordif.dep of the R 

“multilevel” package (Bliese, 2016). 

 

Results and discussion 

 

Perceptual similarity and molecular overlap 

First of all, we evaluated the relationship the perceived similarity and the molecular overlap 

between stimuli (6-components mixtures, their sub-mixtures and single odorants). We found a 

significant and rather high correlation (r = 0.65, p < 0.001; Figure 1), a result with those of 

Bushdid et al. (2014) suggested that similarity among mixtures increased with the number of 

shared components between the mixtures. However, when we considered only the red dots in 

Figure 1, which corresponded to either the similarity between the configural mixture (RC-

conf) and the elemental mixture (RC-elem) shown as dark red dots or the similarity between 

sub-mixtures of the configural mixture (Sub-conf) and the elemental mixture (RC-elem) 

shown as light red dots, then the correlation dropped and was no more significant (r = 0.1, p = 

0.73). This observation was important because the mixtures RC-conf and RC-elem were 
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composed of the same 6 molecules, only the ratio between the odorants was different, so their 

overlap is 100% but their perceptual similarity is low (3.66). With regard to sub-mixtures the 

overlap decreased as the number of components decreased, but the similarity was not at all 

related to this molecular overlap (no correlation). In contrast, considering the blue and green 

dots in Figure 1, especially for molecular overlap higher than 0.5, it can be seen that high 

similarity values were maintained, which underlined that even if similarity among mixtures 

increased with the number of shared components, for the most complex mixtures, the ratio 

between odorants was critical and likely drives the perceptual similarity. Therefore it became 

obvious that the integration of relative intensity of the components in a mixture is essential in 

odor quality prediction approaches since it can reflect the component ratio, a feature largely 

used by the olfactory system and the brain to code and process complex mixtures of odorants.  

 

 

Figure 1: Correlation between perceived similarity and molecular overlap of 63 pair of 

complex odor stimuli. Each dot reflected a comparison between two stimuli (6-component 

mixture RC-conf or RC-elem vs mixtures, sub-mixtures or single molecules). A linear 

regression was performed on the entire dataset (black line) and another one only considering 

the red shaded dots (red line). The size of the dots varied according to the number of 

molecules in the stimuli (from 1 to 6). 
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Prediction of perceptual similarity 

We applied the angle distance model following the methodology described in Snitz et al. 

(2013) first in its non-optimized version, i.e. by taking into account the 4870 structural 

parameters provided by the Dragon software (Figure 2A). The correlation between the 

perceived similarity and the angle distance for the 63 pair stimuli was good (r = -0.62, p < 

0.001). We also applied the optimized version of the angle distance model by taking into 

account only 21 structural parameters among the 4870 provided by the Dragon software. The 

optimized angle distance model led to a slight increase of the correlation coefficient (r = -

0.63, p < 0.001; Figure 2B). The slight correlation increase was not significant (p = 0.75 from 

the Steiger’s test), but since the optimized angle distance model was based on a lower number 

of structural parameters, it can be considered better than the original angle distance model. In 

this case, the 21 structural parameters selected by Snitz et al. (2013) to optimize their model 

well fitted to our dataset.  

We upgraded the angle distance model to take into account the difference in ratio between the 

components of the mixtures included in our dataset. Indeed, the original version (Snitz et al., 

2013) applied only to iso-intense mixtures. To do so, we weighted each structural vector by 

the ratio of the odorants included in the mixture. We obtained a ratio-weighted angle distance 

model, which was able to account for the ratio of each molecule within the mixtures. The 

ratio-weighted angle distance model, which used the 4870 structural parameters provided by 

the Dragon software, led to better correlation results (r = -0.75, p < 0.001; Figure 2C) 

compared to the angle distance model. The correlation increase was proven significant owing 

to the Steiger’s test (p = 0.03). Moreover, the ratio-weighted angle distance model pretty well 

succeed in predicting the similarity between the configural mixture (RC-conf) and the 

elemental mixture (RC-elem, dark red dot in Figure 2), which contained the same 6 odorants 

but in a different ratio. On the whole, the ratio-weighted angle distance model better predicted 

the similarity between sub-mixtures of the configural mixture (Sub-conf) and the elemental 

mixture (RC-elem, light red dots in Figure 2), as well as the similarity between sub-mixtures 

of the elemental mixture (Sub-elem) and the elemental mixture (RC-elem, light green dots in 

Figure 2). 

We then used only the 21 structural parameters from the optimized angle distance model 

(Snitz et al., 2013) but taking into account the ratio-weighted approach. However, this 

optimized ratio-weighted angle distance model led to less good correlation with perceptual 
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similarity (r = -0.69, p < 0.001; Figure 2D), confirmed by the Steiger’s test (p = 0.005). In this 

case, the 21 structural parameters selected by Snitz et al. (2013) did not fit to our dataset. 

Further work required to optimize the structural parameters to cope with such ratio-weighted 

angle distance model. 

 

 

Figure 2: Performance of the different versions of the angle distance model. Each dot 

reflected a comparison between two stimuli (6-component mixture RC-conf or RC-elem vs 

mixtures, sub-mixtures or single molecules). The size of the dots varied according to the 

number of molecules in the stimuli (from 1 to 6). A linear regression was performed (black 

line) to evaluate the prediction performances of (A) the angle distance model, (B) the 

optimized angle distance model, (C) the ratio-weighted angle distance model and (D) the 

optimized ratio-weighted angle distance model. 
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Conclusion 

We applied the angle distance model, previously proposed to predict the similarity between 

iso-intense mixtures of odorants on the basis of their structural parameters, to a dataset of 

similarity values obtained with mixtures made of 6 odorants at a different ratio, their sub-

mixtures and single odorants. One advantage of the angle distance model was to consider 

odorants mixture as a whole rather by constructing molecular structure vector for each 

mixture studied. This approach was consistent with object-oriented processing of complex 

olfactory mixtures. We demonstrated the need to extend the model to take into account the 

relative intensity of each molecule within the mixtures. The upgraded version of the model, 

the ratio-weighted angle distance model, better predicted the perceptual similarity between the 

odor stimuli of our experimental dataset. The upgraded model was found to be able to 

correctly predict the odor similarity for elmental or configural mixtures from the structural 

parameters of the components and their ratio. Therefore, the angle distance model, modified 

to account for mixtures’ components intensity, constitutes a step forward in the science of 

smell since it is efficient to predict similarity between complex odor mixtures, and in a way 

consistent with the processing of odor objects by the human brain. One limitation of our work 

was to use of concentration ratio of odorants in mixture instead of their intensity. Therefore, 

further work is needed to gain prediction power using intensity ratio for instance by 

integrating models of the non-linear dose-response curve of odorants (Chastrette et al., 1998). 
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Supplementary data 

Table S1: Composition of the stimuli. The stimuli are described by their number of 

components and their ratio of components either at the RC-conf ratio (+) or at the RC-elem 

ratio (o). 

 

Stimulus Number of components V F IA D B EA

B_RC-conf 1 +

B_RC-elem 1 o

D_RC-conf 1 +

D_RC-elem 1 o

EA_RC-conf 1 +

EA_RC-elem 1 o

F_RC-conf 1 +

F_RC-elem 1 o

IA_RC-conf 1 +

IA_RC-elem 1 o

V_RC-conf 1 +

V_RC-elem 1 o

BEA_RC-conf 2 + +

DB_RC-conf 2 + +

DEA_RC-conf 2 + +

EAB_RC-conf 2 + +

EAB_RC-elem 2 o o

FB_RC-conf 2 + +

FD_RC-conf 2 + +

FEA_RC-conf 2 + +

IAB_RC-conf 2 + +

IAD_RC-conf 2 + +

IAEA_RC-conf 2 + +

IAF_RC-conf 2 + +

IAV_RC-conf 2 + +

IAV_RC-elem 2 o o

VB_RC-conf 2 + +

VD_RC-conf 2 + +

VEA_RC-conf 2 + +

VF_RC-conf 2 + +

BDF_RC-conf 3 + + +

EABD_RC-conf 3 + + +

EABD_RC-elem 3 o o o

IAVF_RC-conf 3 + + +

IAVF_RC-elem 3 o o o

EABDF_RC-conf 4 + + + +

EABDF_RC-elem 4 o o o o

IAVFD_RC-conf 4 + + + +

IAVFD_RC-elem 4 o o o o

EABDFIA_RC-conf 5 + + + + +

EABDFIA_RC-elem 5 o o o o o

IAVFDB_RC-conf 5 + + + + +

IAVFDB_RC-elem 5 o o o o o

RC-conf 6 + + + + + +

RC-conf_RC-conf 6 + + + + + +

RC-conf2_RC-conf 6 + + + + + +

RC-elem 6 o o o o o o

RC-elem_RC-conf 6 + + + + + +

RC-elem_RC-elem 6 o o o o o o
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Table S2: The 63 pair comparisons to evaluate the similarity between the odor of the 

reference RC-conf or RC-elem mixture and the odor of a sample including either a 

single odorant, a sub‐mixture or the RC-conf or RC-elem mixtures (controls).  

 

Pair comparison Stimulus1 Stimulus2 Similarity on a 0-10 scale

1 B_RC-conf RC-conf 1.71

2 D_RC-conf RC-conf 1.12

3 EA_RC-conf RC-conf 0.69

4 F_RC-conf RC-conf 1.57

5 IA_RC-conf RC-conf 3.21

6 V_RC-conf RC-conf 2.37

7 B_RC-conf RC-elem 4.72

8 D_RC-conf RC-elem 4.65

9 EA_RC-conf RC-elem 1.97

10 F_RC-conf RC-elem 2.97

11 IA_RC-conf RC-elem 2.67

12 V_RC-conf RC-elem 2.8

13 B_RC-elem RC-elem 4.78

14 D_RC-elem RC-elem 4.75

15 EA_RC-elem RC-elem 1.18

16 F_RC-elem RC-elem 2.8

17 IA_RC-elem RC-elem 1.97

18 V_RC-elem RC-elem 1.29

19 BEA_RC-conf RC-conf 2.45

20 DB_RC-conf RC-conf 2.66

21 DEA_RC-conf RC-conf 2.28

22 FB_RC-conf RC-conf 2.86

23 FD_RC-conf RC-conf 2.53

24 FEA_RC-conf RC-conf 1.77

25 IAB_RC-conf RC-conf 4.3

26 IAD_RC-conf RC-conf 5.68

27 IAEA_RC-conf RC-conf 4.59

28 IAF_RC-conf RC-conf 5.77

29 IAV_RC-conf RC-conf 6.61

30 VB_RC-conf RC-conf 3.31

31 VD_RC-conf RC-conf 3.86

32 VEA_RC-conf RC-conf 3.41
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Pair comparison Stimulus1 Stimulus2 Similarity on a 0-10 scale

33 VF_RC-conf RC-conf 3.85

34 EAB_RC-conf RC-conf 2.14

35 IAV_RC-conf RC-conf 6.07

36 EAB_RC-conf RC-elem 4.89

37 IAV_RC-conf RC-elem 3.13

38 EAB_RC-elem RC-elem 5.65

39 IAV_RC-elem RC-elem 2.9

40 BDF_RC-conf RC-conf 4.11

41 EABD_RC-conf RC-conf 2.61

42 IAVF_RC-conf RC-conf 6.6

43 EABD_RC-conf RC-elem 6.78

44 IAVF_RC-conf RC-elem 3.43

45 EABD_RC-elem RC-elem 7.04

46 IAVF_RC-elem RC-elem 3.48

47 EABDF_RC-conf RC-conf 4.54

48 IAVFD_RC-conf RC-conf 7.28

49 EABDF_RC-conf RC-elem 5.21

50 IAVFD_RC-conf RC-elem 3.06

51 EABDF_RC-elem RC-elem 6.68

52 IAVFD_RC-elem RC-elem 6.57

53 EABDFIA_RC-conf RC-conf 5.76

54 IAVFDB_RC-conf RC-conf 7.41

55 EABDFIA_RC-conf RC-elem 4.29

56 IAVFDB_RC-conf RC-elem 2.76

57 EABDFIA_RC-elem RC-elem 7.53

58 IAVFDB_RC-elem RC-elem 7.22

59 RC-conf_RC-conf RC-conf 7.68

60 RC-elem_RC-conf RC-conf 3.66

61 RC-conf_RC-conf RC-conf 7.69

62 RC-elem_RC-conf RC-elem 7

63 RC-elem_RC-elem RC-elem 7.26
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Table S3: Normalized 21 structural parameters of the 6 odorants obtained with the 

Dragon software. 
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III. Additional results and partial discussion 

 

The angle distance model well predicted perceptual similarity (r = 0.63, p < 0.001) in our 

benchmark dataset that includes mixtures with different levels of complexity, using 

component odors at various intensities, and eliciting both elemental and configural percepts. 

The ratio-weighted angle distance model succeeded better at the predictive task (r = 0.75, p < 

0.001). Thus, taking into account components’ ratio along with their structural parameters 

improved not only the similarity prediction performances but also allowed to account for the 

elemental or configural processing of complex odor mixtures by the olfactory system. 

We further applied the ratio-weighted angle distance model on the chemical and sensory data 

of the 16 wines dataset. To do so, we used the odorants composition and sensory profiles of 

the wines from Villière et al. (Data paper included in this manuscript), and we followed the 

methodology described in Roche et al. (Article 1 of this manuscript) to collect the structural 

parameters of the molecules from the wines using the Dragon software. We applied the ratio-

weighted angle distance model while taking into account the proportion of the molecules in 

the wines. To be closer to perceptual aspects of this ratio, the proportions were based of the 

NIF scores of the odorants obtained from the GC-O analysis of the wines. NIF scores 

corresponded to the proportion of panelists who perceived the odorant. The last step was to 

translate the sensory profiles of the wines into similarity scores. From the sensory profile of 

the wines, we inferred similarity values using the Ruzicka similarity. The similarity 

calculation was carried out following the Equation 3.1.  

 

Equation 3.1:    Similarity = 
∑min{xi,yi}

∑max{xi,yi}
 

 

For example, if we consider two wines evaluated on 15 odor sensory attributes (OSA) as 

shown in Table 3.1, the similarity between the two wines will be equal to 

∑min{𝑂𝑆𝐴1,…,𝑂𝑆𝐴20}

∑max{𝑂𝑆𝐴1,…,OSA20}
=

0.25+0.19+1.29+1.02+0.80+0.78+0.26+0.64+0.94+0.62+0.19+0.51+0.55+0.13+1.61

0.45+0.46+1.51+1.20+0.82+1.20+0.38+0.73+0.95+0.68+0.33+0.61+0.94+0.15+2.23
, 

which resulted in a similarity value equal to 0.77. 
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Table 3.1: Example of the sensory evaluation of two wines on 15 odor sensory attributes. 

The two wines are from the 16 wines dataset. Sensory scores varying between 0 and 10. 
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The results showed a high correlation between the estimated similarity (Ruzicka) and the 

angle distances obtained from the ratio-weighted model (r = -0.72, p < 0.001, Figure 3.1 black 

line). Nevertheless, on the whole dataset, the results were mostly driven by the same-wine 

comparisons (dots at the (0;1) coordinates). When excluding this bias, the correlation 

remained significant but the predicting abilities drastically dropped (r = -0.25, p < 0.005, 

Figure 3.1 red line).  

 

 

Figure 3.1: Ratio-weighted angle distance model applied to the odorants’ composition of 

wines. Molecular structure vectors were weighted by the NIF scores of the odorants within 

mixtures. Each dot reflects a comparison between two wines. A linear regression was 

performed on the entire dataset (black line) and another one without the same-wine 

comparisons, i.e. dots at the (0;1) coordinates (red line). 

 

However, we should keep in mind some limitations which may account for the observed 

results. Firstly, experimental sensorysimilarity was not assessed between the wines. Indeed 

similarity data were inferred from the odor sensory profiles, which may explain why the 

similarity scores range from 0.6 to 0.8, namely a low variation range. Secondly, in contrast to 

the study with the 6-component mixtures (Roche et al., Article 1 of this manuscript), for the 

wines we used the NIF scores of odorants as we did not have the intensity or the ratio of each 
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odorant available. Subsequent work might focus on coupling structural approaches, such as 

the angle distance model and its extended versions, with intensity predictive models (e.g. 

Chastrette et al., 1998) to be able to integrate in a more accurate manner the intensity of the 

components of complex mixtures. 

Nevertheless, the results obtained in this first study have shed light on the possibility to 

efficiently predict the perceptual outcome of complex odorants’ mixtures on the basis of their 

molecular structure. This work focused on predicting the similarity among mixtures of 

odorants as a first step to predict perceptual features of complex odor mixtures. Still, the aim 

of this thesis was to predict what a mixture of odorants will smell in verbal terms with 

quantitative data as in an odor profile. Thus, the two following chapters are related to 

innovative strategies to predict how odorants’ mixtures will smell by integrating flavorists’ 

expertise in the modelling framework. 
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I. Introduction 

 

Odorants are commonly characterized using three dimensions: intensity, pleasantness, and 

odor quality, namely the type of percept. Whereas intensity and pleasantness can be rated 

using various numeric scales, the odor percept is qualified by semantic labels and thus can be 

described by a more or less large number of descriptors such as “apple”, “green”, “jasmin”, 

“meat”, “woody”… Several studies focused on odor descriptors (OD) to highlight the 

categorical dimensions of the Human odor space, for instance by identifying correlations and 

relationships among OD in databases gathering descriptions of odorants (Zarzo & Stanton, 

2006; Castro et al., 2013; Kumar et al., 2015).  

However, the OD dimension alone is not representative of the entire olfactory space, 

especially because most natural odors are caused by complex mixtures of odorants. The non-

linear integration mechanisms that underpin the perception of such mixture have prevented 

the investigation of the link between chemical composition and odor quality perception. In 

this chapter, we proposed a knowledge-representation approach based on an ontology to link 

the perceptual outcome of complex mixtures of odorants to the odor of the single odor 

compounds, namely odorants. The ontology was developed around three odor description 

corpuses: odor descriptors (OD) used for single odorants, odor sensory attributes (OSA) used 

to qualify complex odor objects for instance in odor profiling techniques, and odor qualities 

(OQ) which is the corpus of specific terms used by experts of odor creation. Indeed, we 

observed that flavorists did not use OD or OSA when creating a specific flavor but they relied 

on combinations of OQ such as “fruity”, “floral”, “smoky”...  

The construction of the ontology for the odor perceptual space (OOPS) is detailed in the 

dedicated ARTICLE 2. The expertise embedded in the ontology modelling was further used to 

predict the OSA profile of wines on the basis of their odorants’ composition. 
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Abstract 

When creating a flavor to elicit a specific odor object characterized by odor sensory attributes 

(OSA), expert perfumers or flavorists use mental combinations of odor qualities (OQ) such as 

Fruity, Green, Smoky. However, OSA and OQ are not directly related to the molecular 

composition in terms of odorants that constitute the chemical stimuli supporting odor object 

perception because of the complex non-linear integration of odor mixtures within the 

olfactory system. Indeed, single odorants are described with odor descriptors (OD), which can 

be found in various databases. Although classifications and aroma wheels studied the 

relationships between OD and OQ, the results are highly dependent of the studied products. 

Nevertheless, ontologies have proved to be very useful in sharing concepts across applications 

in a generic way but also to allow experts’ knowledge integration implying non-linear 

cognitive processes. In this paper we constructed the Ontology for Odor Perceptual Space 

(OOPS) to merge OD into a set of OQ best characterizing the odor further translated in a set 

of OSA thanks to expert knowledge integration. Results showed that OOPS can help to bridge 

molecular composition to odor perception and description as demonstrated in the case of 

wines. 

 

Introduction 

Within the physical world, colors are characterized by light wavelength, tones by sound 

frequency, and odors by the chemical composition of the stimulus. Within the perceptual 

space, colors are defined by specific words like red or blue, tones are referred to by dedicated 

notes like C or E♭, while odors are usually identified by naming their sources like rose or 

lemon (Dubois & Rouby, 2002). Therefore, if colors and tones can be well defined 

experimentally, odors are difficult to describe with a consensual vocabulary but also difficult 

to measure physically because they mostly results from the coding, by the olfactory system, of 

complex mixtures of odorants, which are volatile organic compounds varying in chemical 

nature and concentration (Thomas-Danguin et al., 2014).  

Olfactory coding of complex mixtures of odorants induces perceptual interactions, which can 

take place at several steps of the olfactory information processing, and the overall is not a 

simple sum of the odors of each odorant embedded in the mixture (Thomas-Danguin et al., 

2014). Synergy and masking effects have been often reported (Cain & Drexler, 1974; Ishii et 
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al., 2008; Ferreira, 2012a; Tempere et al., 2016), but also perceptual dominance (Ferreira, 

2012b), or configural and elemental perception (Jinks & Laing, 2001; Howard & Gottfried, 

2014; Romagny et al., 2018). For instance, a ternary mixture, composed of three odorants 

respectively described as “strawberry”, “caramel” and “violet”, elicits, at a specific proportion 

of each compound, the perception of a “pineapple” odor (Le Berre et al., 2008). The 

mechanisms behind these perceptual interactions are not well understood and still poorly 

investigated. Consequently, the description of the perceptual outcome of a complex mixture 

using odor sensory attributes (OSA) is not straightforward, but sensory descriptive analysis 

using OSA has been shown to be one of the most powerful, sophisticated and most 

extensively used tools in sensory science to provide a complete description of the sensory 

characteristics of a product (Varela & Ares, 2012). The global odor percept is especially 

hardly predictable on the basis of the mixtures’ chemical composition, namely each single 

odorant own odor, described with odor descriptors (OD). 

Several databases are compiling OD of large sets of odorants: Arctander’s handbook 

(Arctander, 1969), Atlas of odor character profiles (Dravnieks, 1985), Fenaroli’s handbook 

(Burdock, 2010), Flavor‐Base (Leffingwell & Associates, 

http://www.leffingwell.com/flavbase.htm), Flavornet (Arn & Acree, 2004), Flavors and 

Fragrances of Sigma-Aldrich (http://www.sigmaaldrich.com/industries/flavors-and-

fragrances.html), The good scents company (Luebke, 1980). If the use of semantic descriptors 

was found to be a stable method to provide the most reproducible characterization of odorous 

substances (Dravnieks, 1982), the vocabulary used in describing odor is extensive and 

ambiguous. As a matter of fact, are “citrus odor” and “odor of citrus” referring to the same 

odor descriptors? (Barkat-Defradas & Motte-Florac, 2016). Moreover, there is no agreement 

about the number of OD essential to cover the complete range of odor stimuli which varies 

from 4 to 146 (Chastrette, 2002). Though several teams worked on the different relationships, 

associations, or similarities between OD, none of them had yet gained wide acceptance 

(Chastrette 1988; Zarzo and Stanton, 2006; Kumar et al., 2015). 

In most cases, it is not possible to make a direct link between the OD of the odorants released 

from an odor source, e.g. a food product, and its perceived odor. This is probably the reason 

why experts, for instance flavorists who create specific odors from combinations of odor 

active raw materials such as molecules, are not using odorants’ OD but a rather different set 

of descriptors to organize their practical knowledge acquired along with experience (Langlois 

et al., 2011). Indeed, to conceptualize the perception of specific odor traits of an odor source, 
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flavorists use a set of odor qualities (OQ) that they can mentally combine, probably through 

mental imagery (Tempere et al., 2014). For example, according to an expert flavorist, the 

OSA “Cherry cooked” is composed of the OQ “Almond”, “Cooked”, “Floral”, “Fruity”, 

“Green”, “Peel” and “Spicy”. The OQ may be considered as “blocks”, where each block 

could be composed of several odorants referring to different OD (e.g. Jaubert et al., 1987). In 

a sense, OQ refer to broad odor categories, related more to odor material than to molecules 

(Zarzo & Stanton, 2009). Classifications and flavor wheels usually dedicated to a specific 

category of food products such as wine have been established and could help to make links 

between OD and OQ. However, these classifications are highly dependent of the studied 

databases and/or food product and are hardly reconcilable (Dravnieks, 1985; Zarzo and 

Stanton, 2006; caramel: Paravisini et al., 2014; honey: International Honey Commission 

(IHC) http://www.ihc-platform.net/reports.html; wine: Noble et al., 1987). For example, 

whereas the OD “Apple” is classified in the OQ “Fruity” in the five above cited sources, the 

OD “Vanilla” is classified in five different OQ “Spicy”, “Balsamic”, “Warm”, 

“Wood/Phenolic” or “Caramel/Vanilla” depending on the source.  

To overcome these issues, this paper had for aim to use the ontology approach to make the 

link between OSA, the odor sensory attributes used to describe a given odor source; OQ, the 

concepts manipulated by experts to conceptualize odors; and OD, the odor descriptors used to 

qualify odorants. With the help of expert flavorists, we developed and formalized the 

Ontology for Odor Perceptual Space (OOPS) to organize the vocabulary of the odor 

perceptual space and to describe the relationships between the OD, OQ and OQ. The aim was 

to merge the information expressed by OD in order to formally characterize odors into a 

conceptual and generic annotation of OQ, namely not associated to a specific food product. 

We further used the OOPS to predict the odor profiles of two red wines, that is to say the 

OSA used by a trained panel to describe these wines (Villière et al., Data paper included in 

this manuscript). 

 

  



 

132 

Materials and methods 

 

Wines 

Villière et al. (Data paper included in this manuscript) studied the sensory profiles and the 

chemical composition in terms of odor-active compounds of 16 red wines, varying according 

to their exemplarity for the grape variety (Loison et al., 2015). The experimental factors of the 

wines are listed in Table 1. Sensory profiles resulted in the identification of 15 discriminant 

OSA between the wines according to their grape varieties (Table 2). The results of Gas 

Chromatograpy - Mass Spectrometry - Olfactometry (GC-MS-O) analyses led to identify 46 

odorant zones (molecules and mixtures of molecules) which corresponded to 49 identified 

odorants (Table 3). Raw data are available on an open-source repository (Villière et al., 2018). 

 

Table 1: Wines experimental factors. List of the 16 red wines and their experimental 

factors: grape variety, vintage, PDO (Protected Designation of Origin) and exemplarity of the 

wine to its grape variety rated on a 10 point scale. 

 

  

Wine Grape variety Vintage PDO Exemplarity

PN-A Pinot Noir 2009 Ladoix 6.26

PN-B Pinot Noir 2009 Côte de Nuits-Villages 6.21

PN-C Pinot Noir 2010 Maranges 6.01

PN-D Pinot Noir 2010 Bourgogne 5.78

PN-E Pinot Noir 2009 Bourgogne 4.54

PN-F Pinot Noir 2009 Bourgogne Hautes Côtes de Beaune 4.48

PN-G Pinot Noir 2009 Savigny-lès-Beaune 4.38

PN-H Pinot Noir 2009 Bourgogne 4.19

CF-A Cabernet Franc 2010 Bourgueil 7.12

CF-B Cabernet Franc 2010 Bourgueil 6.54

CF-C Cabernet Franc 2009 Chinon 6.49

CF-D Cabernet Franc 2010 St-Nicolas-de-Bourgueil 6.35

CF-E Cabernet Franc 2010 Bourgueil 6.25

CF-F Cabernet Franc 2010 Saumur 4.09

CF-G Cabernet Franc 2010 Bourgueil 3.84

CF-H Cabernet Franc 2010 Chinon 3.26
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Table 2: List of the 15 odor sensory attributes (OSA) discriminant between the 16 wines 

according to their grape varieties. 

 

 

Table 3: Molecular space of the 16 red wines identified by GC-MS-O. List of the 49 

odorants identified across the 16 wines and identified by their CAS number and name. 

 

  

Bell pepper Prune

Blackcurrant bud Smoky

Blackcurrant fresh Strawberry fresh

Cherry cooked Toasty

Cherry fresh Vanilla

Cherry stone Violet

Cut-grass Woody

Leather
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Elicitation of odor qualities (OQ) by expert flavorists 

Four senior flavorists participated in the expert knowledge collection. The elicitation process 

was based on a 1-hour private guided interview. Flavorists were not aware of the studied food 

matrix in order to collect unbiased data regarding the food product. 

The experts received monadically the 15 OSA used in the wines’ sensory profiles (Table 1) 

and were asked i) if the OSA was composed of a single OQ or of more than one OQ and ii) in 

case the considered OSA was composed of several OQ, to enumerate the OQ that were 

needed to construct the OSA. We aggregated the information of the four flavorists following 

Equation 1, OSA being a given odor sensory attribute, Exp1[OQ(OSA)], Exp2[OQ(OSA)], 

Exp3[OQ(OSA)] and Exp4[OQ(OSA)] being the sets of OQ used to describe an OSA by the 

four experts. 

 

Equation 1: 𝑂𝑆𝐴 = 𝐸𝑥𝑝1[𝑂𝑄(𝑂𝑆𝐴)] ∪ 𝐸𝑥𝑝2[𝑂𝑄(𝑂𝑆𝐴)] ∪ 𝐸𝑥𝑝3[𝑂𝑄(𝑂𝑆𝐴)] ∪ 𝐸𝑥𝑝4[𝑂𝑄(𝑂𝑆𝐴)] 

 

As a result, we obtained a binary matrix made of in rows the 20 OQ elicited (Almond, 

Cooked, Cut-Grass, Floral, Fresh, Fruity, Green, Honey, Lactonic, Leather, Peel, Smoky, 

Spicy, Sulfurous, Toasty, Vanilla, Vegetable, Violet, Wine-like and Woody) and in columns 

the target OSA (Table 4).  
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Table 4: Link between the 20 OQ (rows) and the 15 OSA (columns), represented as a 

binary matrix. The value 1 indicates that the OQ was part of the composition of the OSA 

according to the experts. 

 

 

Quantitative description of the odorants 

We compiled the data of three databases to collect the odor descriptors (OD) of the 49 

odorants identified in the wines: Arctander’s handbook (3102 chemicals described by Steffen 

Arctander himself), Flavor-Base (commercially available Leffingwell & Associates database, 

marketed as Flavor‐Base Pro © 2010, flavor descriptions collected from many sources over 

the course of more than 40 years) and The good scents company (publicly available database, 

the odor descriptions from one to several sources are listed in the "Organoleptic Properties" 

section). 

We extracted manually the OD from these databases. The words describing the odorants were 

tokenized. Suffixes (e.g. “like”, “note”), auxiliary verbs (e.g. “has”) and some other words 
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Almond 1 1 1 1

Cooked 1 1 1 1 1

Cut-grass 1

Floral 1 1 1 1 1 1 1

Fresh 1 1 1

Fruity 1 1 1 1

Green 1 1 1 1 1 1 1

Honey 1

Lactonic 1

Leather 1

Peel 1 1 1

Smoky 1

Spicy 1 1 1

Sulfurous 1 1 1

Toasty 1 1

Vanilla 1 1

Vegetable 1

Violet

Wine-like 1 1

Woody 1
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that did not refer to olfactory information (e.g. “powerful”) were discarded. Unlike the 

analysis of the Arctander database proposed by Chastrette et al. (1988), we kept all the OD 

into account and we did not combine very similar descriptors (like Leather/Leathery or 

Wine/Winey) For instance, the odor of Ethyl butanoate (CAS 105-54-4) was specified in 

Arctander as “Powerful, ethereal-fruity odor suggestive of Banana and Pineapple, and very 

diffusive” these annotations resulted in the set of OD: “ethereal-fruity”, “banana” and 

“pineapple”.  

Then we created the OD database by aggregating the information of the three databases 

following Equation 2, M being a given odorant, Arct[OD(M)], Flavor-Base[OD(M)] and 

Goodscent[OD(M)] being the sets of OD of the odorant M by the Arctander, Flavor-Base and 

Goodscent databases. We ended up with 175 different OD for the 49 odorants. 

 

Equation 2: 𝑂𝐷 𝑑𝑎𝑡𝑎𝑏𝑎𝑠𝑒(𝑀) = 𝐴𝑟𝑐𝑡[𝑂𝐷(𝑀)] ∪ 𝐹𝑙𝑎𝑣𝑜𝑟𝐵𝑎𝑠𝑒[𝑂𝐷(𝑀)] ∪ 𝐺𝑜𝑜𝑑𝑠𝑐𝑒𝑛𝑡[𝑂𝐷(𝑀)] 

 

For a given odorant, the description was thus provided by the OD database as a set of terms in 

which each item may be associated to an “intensity”. We defined this intensity as the number 

of citation of the same OD for a given odorant across the databases: the higher the number of 

citation, the more “intense” the smell related to this OD was expected for the odorant. As an 

example, the odorant description of Ethyl butanoate was {ethereal-fruity; banana; pineapple} 

by Arctander, {ethereal; fruity; buttery; pineapple; banana; ripe fruit; juicy} by Flavor-Base 

and {fruity; juicy; pineapple; cognac} by The good scents company. The resulting 

quantitative description of Ethyl butanoate in the OD database was the following: OD(Ethyl 

butanoate) = [(banana, 2); (buttery, 1); (cognac, 1); (ethereal, 1); (ethereal-fruity, 1); (fruity, 

2); (juicy, 2); (pineapple, 3); (ripe fruit, 1)]. 

 

Relationships between odor descriptors (OD) and odor qualities (OQ) 

The correspondence between an OD and one or several OQ was obtained thanks to the 

expertise of a junior flavorist. This expert was not one of the four flavorists previously 

interviewed for OQ elicitation. The methodology used to obtain the relationships was based 

on a check-all-that-apply (CATA) questionnaire (Dooley et al., 2010). The CATA list 
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consisted of the 20 OQ defined by the experts during the elicitation step (see 2.2 above). For 

each OD of the OD database, the flavorist was asked if the OD supported none, one, or 

several OQ. For instance for the OD “Apple”, the flavorist was asked to tick all the OQ that 

correspond to this OD (e.g. “Fruity”). 

We obtained a binary matrix with the OQ in columns and OD in rows. These results allowed 

us to translate each OD sets into OQ sets. For example for Ethyl butanoate, described as 

OD(Ethyl butanoate) = [(banana, 2); (buttery, 1); (cognac, 1); (ethereal, 1); (ethereal-fruity, 

1); (fruity, 2); (juicy, 2); (pineapple, 3); (ripe fruit, 1)], the OD banana, ethereal-fruity, fruity, 

pineapple and ripe fruit were contributing to the OQ Fruity (Table 5). 

 

Equation 3:    𝑂𝑄(𝑀) = ∑ 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦(𝑂𝐷(𝑀) × 𝑂𝑄) 

 

Following the Equation 3 given for an odorant M, we could assume that the OQ set of Ethyl 

butanoate was the following: OQ(Ethyl butanoate) = [(Almond, 0); (Cooked, 0); (Cut-grass, 

0); (Floral, 0); (Fresh, 0); (Fruity, 9); (Green, 0); (Honey, 0); (Lactonic, 0); (Leather, 0); (Peel, 

0); (Smoky, 0); (Spicy, 0); (Sulfurous, 0); (Toasty, 0); (Vanilla, 0); (Vegetable, 0); (Violet, 0); 

(Wine-like, 0); (Woody, 0)]. 

 

Table 5: Link between the nine OD of Ethyl butanoate (rows) and the 20 OQ (columns), 

represented as a binary matrix. The intensity of each OD is specified in a supplementary 

column. 
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banana 2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

buttery 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

cognac 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ethereal 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ethereal-fruity 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

fruity 2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

juicy 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

pineapple 3 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ripe fruit 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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The Ontology for Odor Perceptual Space (OOPS) 

We formalized the Ontology for Odor Perceptual Space (OOPS) as a set {C, R, P}, where C 

corresponded to the three classes OD, OQ and OSA with respectively 175 sub-classes from 

the databases aggregation, 20 sub-classes from the expertise collection and 15 sub-classes 

from the sensory evaluation of the wines; R represented the hierarchical relations among the 

classes by “is-a” relations; and P, as properties, represented the non-hierarchical associative 

relations between classes as shown in Figure 1. 

 

 

Figure 1: Object properties between the classes OD, OQ and OSA of the OOPS 

ontology. 

 

Results from the data collection in table forms, were implemented in OWL using the software 

Protégé (open-source ontology editor, version 5.2.0; Musen, 2015). This allowed the 

visualization of the properties among the classes OD, OQ and OSA; an example is shown in 

Figure 2 for the OQ “Vanilla”. Such representation highlighted that the OD “vanilla” and 

“tonka” are part of the OQ “Vanilla”. Moreover, the OQ “Vanilla” is part of the OSA 

“VANILLA” and “BLACKCURRANT BUD”. From a practical point of view, these 

relationships illustrated that an odorant described as “vanilla” or “tonka” was part of the OQ 

category “Vanilla” and should contribute to the perceptual construction of the odor of Vanilla 

and Blackcurrant bud, which are OSA. 

 



CHAPTER 4: ONTOLOGY FOR THE ODOR PERCEPTUAL SPACE 

 

139 

 

Figure 2: Properties and relationships among the classes OD, OQ and OSA considering 

the OQ Vanilla. 

 

The implementation of the OOPS in OWL conferred the ability to mine the data through 

queries such as: 

- In which OQ, the OD “almond” is included? 

<OQ-including-OD some almond>:"Almond" 

-  Which OD are parts of the OQ “Almond”? 

<OD-part-of-OQ some Almond>:“almond” 

- In which OSA, the OQ “Almond” is included? 

<OSA-including-OQ some Almond>: “CHERRY_COOKED”, “CHERRY_FRESH”, 

“CHERRY_STONE”, “PRUNE” 

-  Which OQ are parts of the OSA “Prune”? 

<OQ-part-of-OSA some Prune>: “Almond”, “Cooked”, “Fruity”, “Honey”, “Lactonic” 
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All together the OOPS led to the fast visualization of relationships among the three classes of 

odor semantic descriptors OD, OQ and OSA in order to estimate the OQ or OSA profiles of 

odorants and conversly (Figure 3). As for example with the odorant Ethyl butanoate, 

described by the OD(Ethyl butanoate) = [(banana, 2); (buttery, 1); (cognac, 1); (ethereal, 1); 

(ethereal-fruity, 1); (fruity, 2); (juicy, 2); (pineapple, 3); (ripe fruit, 1)], we were able to 

estimate its contribution to the OQ “Fruity” and then to the OSA “Bell pepper”, “Blackcurrant 

bud”, “Blackcurrant fresh”, “Cherry cooked”, “Cherry fresh”, “Cherry stone”, “Prune” and 

“Strawberry fresh”.  

Intensities related to OD can be propagated along the relationships between OD and OQ as 

well as between OQ and OSA. The OQ set of Ethyl butanoate was equal to OQ(Ethyl 

butanoate) = [(Almond, 0); (Cooked, 0); (Cut-grass, 0); (Floral, 0); (Fresh, 0); (Fruity, 9); 

(Green, 0); (Honey, 0); (Lactonic, 0); (Leather, 0); (Peel, 0); (Smoky, 0); (Spicy, 0); 

(Sulfurous, 0); (Toasty, 0); (Vanilla, 0); (Vegetable, 0); (Violet, 0); (Wine-like, 0); (Woody, 

0)] , as previously mentioned. Regarding the OSA set, we obtained: 

OSA(Ethyl butanoate) = [(Bell pepper, 9); (Blackcurrant bud, 9); (Blackcurrant fresh, 9); 

(Cherry cooked, 9); (Cherry fresh, 9); (Cherry stone, 9); (Cut-grass, 0); (Leather, 0); (Prune, 

9); (Smoky, 0); (Strawberry fresh, 9); (Toasty, 0); (Vanilla, 0); (Violet, 0); (Woody, 0)].  
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Figure 3: Properties and relationships among the classes OD, OQ and OSA considering 

the OD of the odorant Ethyl butanoate. 

 

Application of the OOPS to wines 

We applied the OOPS to establish the OQ and OSA profiles of two wines starting on the basis 

of their molecular composition. Two wines were selected among the 16 used by Loison et al. 

(2015) presented in Table 1: one good example of the grape variety Pinot Noir (PN-A) and 

one good example of the grape variety Cabernet Franc (CF-A). 

We estimated the OQ and OSA sets of each odorant present in these two wines. For a given 

wine, we summed the OQ and OSA sets of the odorants included in the wine weighted by 

their intensities.  

Firstly, we obtained the OQ profiles of the wines PN-A and CF-A, respectively OQ(PN-A) 

and OQ(CF-A):  

OQ(PN-A) = [(Almond, 1); (Cooked, 3); (Cut-grass, 2); (Floral, 25); (Fresh, 1); (Fruity, 

118); (Green, 12); (Honey, 6); (Lactonic, 1); (Leather, 1); (Peel, 4); (Smoky, 24); (Spicy, 10); 
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(Sulfurous, 3); (Toasty, 2); (Vanilla, 4); (Vegetable, 8); (Violet, 0); (Wine-like, 9); (Woody, 

5)] 

OQ(CF-A) = [(Almond, 3); (Cooked, 4); (Cut-grass, 1); (Floral, 20); (Fresh, 1); (Fruity, 97); 

(Green, 15); (Honey, 3); (Lactonic, 0); (Leather, 4); (Peel, 4); (Smoky, 20); (Spicy, 1); 

(Sulfurous, 4); (Toasty, 0); (Vanilla, 0); (Vegetable, 21); (Violet, 0); (Wine-like, 10); 

(Woody, 4)] 

Values in bold corresponded to OQ with an intensity higher than 5% of the total intensity of 

the OQ in the corresponding wine. At this step, the two wines were described as Fruity wines 

with Floral, Green and Smoky notes, and CF-A mainly differed from PN-A according to its 

Vegetable note.  

We estimated the OSA profiles of the two wines PN-A and CF-A, respectively OSA(PN-A) 

and OSA(CF-A): 

OSA(PN-A) = [(Bell pepper, 51); (Blackcurrant bud, 172); (Blackcurrant fresh, 168); 

(Cherry cooked, 55); (Cherry fresh, 55); (Cherry stone, 55); (Cut-grass, 2); (Leather, 1); 

(Prune, 129); (Smoky, 24); (Strawberry fresh, 158); (Toasty, 2); (Vanilla, 4); (Violet, 0); 

(Woody, 5)] 

OSA(CF-A) = [(Bell pepper, 61); (Blackcurrant bud, 147); (Blackcurrant fresh, 147); 

(Cherry cooked, 47); (Cherry fresh, 47); (Cherry stone, 47); (Cut-grass, 1); (Leather, 4); 

(Prune, 107); (Smoky, 20); (Strawberry fresh, 136); (Toasty, 0); (Vanilla, 0); (Violet, 0); 

(Woody, 4)] 

Values in bold corresponded to OSA with an intensity higher than 5% of the total intensity of 

the OSA in the corresponding wine. From these OSA sets we were able to point out 

differences among the two wines (Figure 4). The PN-A wine was predicted to have higher 

intensity of the OSA Cut-grass, Toasty and Vanilla and lower intensity of the OSA Bell 

pepper and Leather than the CF-A wine. These results were consistent with the literature 

because PN and CF wines are described as Fruity wines, while CF wines are usually 

described as having a Bell pepper specific odor note (Lawrence et al., 2013). 

According to the actual sensory profiles of the wines obtained with a trained panel (Villière et 

al., Data paper included in this manuscript), PN-A was perceived as more Toasty and 

Vanilla than CF-A which was also predicted using the OOPS approach. However some 
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discrepancies between the wines odor profile could be noted. For instance, the sensory 

evaluation the CF-A wine revealed a higher intensity of the OSA Cut-grass and a lower 

intensity of the OSA Leather compared to the PN-A wine, while the predicted values obtained 

with the OOPS approach suggested the opposite situation. 

 

 

Figure 4: Radar plots illustrating the profile of the OSA in the PN-A and CF-A wines. 

Proportions of OSA are plotted in log scales (arbitrary units). OSA marked with * indicate 

significantly different intensities between the two wines (5%). 

 

Conclusions and future work 

In this paper, we presented the development of the OOPS, the Ontology for Odor Perceptual 

Space, designed for fixing the vocabulary of the odor perceptual space and the relationships 

between the different semantic framework involved: OD, OQ and OSA. 

An example of application of the OOPS on a food product was presented with the odorant 

composition of two red wines (Villière et al., Data paper included in this manuscript) to 

estimate their OQ and OSA profiles.  
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The originality of the OOPS is that it has been developed on the basis of experts’ knowledge 

with the aim to be disconnected from a given odor source of food product. Therefore, it was 

needed to integrate the specific vocabulary used by experts, that is the Odor Qualities (OQ) 

semantic space in top of the Odor Descriptors (OD) used for odorants and the Odor Sensory 

Attributes (OSA) used by descriptive panels. The knowledge formalized in OOPS is supposed 

to be quite generic and thus the ontology could provide a standard tool for communication 

among experts to increase knowledge sharing and can be helpful in training sensory panels for 

odor profiling (Medjkoune et al., 2016).  

The real olfactory world is made of a large variety of odor sources that comprise complex 

olfactory multi-molecular mixtures. For example, coffee, rose or red wine contain hundreds of 

different odor-active compounds (Thomas-Danguin et al., 2014). Therefore, a central question 

in olfaction research is to find a metric to be used to predict how such complex mixtures smell 

in verbal descriptor terms (Snitz et al., 2013). This was precisely the aim of the OOPS. 

Indeed, one of the strength of the OOPS approach was to provide a tool to estimate a 

quantitative odor profile of a given olfactory source knowing its chemical composition, i.e. 

the list of odorants released by the source. Indeed, from the list of molecules it is possible to 

predict intensities of OSA, which are the odor sensory descriptors of the global odor of the 

source. In that sense, the OOPS approach is very innovative since up to now, only the 

similarity between complex mixtures of odorants can be predicted on the basis of their 

chemical composition but not an ab initio sensory profile (Snitz et al., 2013). An example of 

application of the OOPS on a food product was presented. The sensory profiles of two wines 

from two different grape varieties were predict using the OOPS and the intensities of OSA 

were compared to those obtained with a trained descriptive panel (Loison et al., 2015) to 

estimate their OSA profiles. Overall, the predicted odor profiles of these real food products 

were mostly in line with experimentally obtained sensory profiles. Nevertheless, two 

limitations may also be highlighted. 

The first limitation concerns the knowledge currently integrated in the OOPS which is rather 

limited since it has been obtained after experts’ knowledge elicitation using a limited number 

of OSA. Even if several OSA were very common to several odor sources, especially food 

(e.g. Vanilla, Woody, Cut-grass), it is obvious that it is insufficient to cover the wide range of 

odors (Bushdid et al., 2014) even considered through a limited number of discrete clusters 

(Castro et al., 2013; Dunkel et al., 2014). The second limitation is related to odor profiles 

prediction. If the proof of concept based on wine odor is promising, it is important to keep in 
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mind that not all the molecules have been identified in the wines considered (Villière et al., 

Data paper included in this manuscript) and the concentration of odorants and their ratio 

also have an important role in odor mixtures perception (Thomas-Danguin et al., 2014). These 

two critical factors are not accounted for in the actual ontology approach and should be 

further investigated. 

Consequently, future work will be to increase the data and knowledge embedded in the 

ontology to allow more complete and accurate predictions. Moreover, further modelling 

approaches using OOPS may be developed to increase chemistry-based odor mixture 

prediction performance in order to take into account not only the chemical nature of odorants 

but also their intensity or concentration within the mixture. The OOPS is likely the first step 

towards generating a knowledge-based innovative modelling pathway to allow predicting 

complex odorant mixtures odor in verbal descriptor terms. 
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III. Partial discussion 

 

Within the ARTICLE 2, we proposed an approach based on knowledge representation 

techniques to formalize the odor perceptual space and the relationships among its corpuses of 

semantic description: odor descriptors (OD), odor qualities (OQ) and odor sensory attributes 

(OSA).  

This new method allowed combining OD of odorants found in a food product and compiled 

from databases to predict an OSA profile best characterizing the whole product or odor object. 

The Ontology for Odor Perceptual Space (OOPS) was used as a predictive tool to estimate 

odor profiles of wines. In Figure 4.1, the estimated odor profiles of the two wines PN-A and 

CF-A using OOPS were compared with those obtained from the experimental sensory 

characterization of the wines (Villière et al., Data paper included in this manuscript). The 

comparison between the predicted and experimental profiles showed a good agreement 

between both profiles for most OSA. However, some OSA were less well predicted. The 

OOPS approach failed to predict the OSA Cut-grass, Leather, Toasty, Vanilla, Violet, and 

Woody for both wines. The OSA Violet could not be predicted for both wines and the OSA 

Toasty and Vanilla for the CF-A wine (set arbitrarily at the minimum value in Figure 4.1). 

Regarding the OSA Violet, no identified molecules in the wines carried the OD that are part 

of the OQ Violet, which is directly linked to the OSA Violet since Violet is a simple OSA 

according to expert knowledge. The same explanation applied to the OSA Toasty and Vanilla 

for the CF-A wine. The OSA Cut-grass, Leather and Woody are also simple OSA according 

to expert knowledge, which suggests that simple OSA were likely not efficiently grasped by 

experts. Nevertheless, further work is needed to predict the profiles for the whole set of 16 

wines considered in the thesis using the OOPS approach. The expected results should help 

understanding why some of the OSA were less well predicted than others. 
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Figure 4.1: Radar plots illustrating the profile of the OSA in the PN-A and CF-A wines. 

Proportions of OSA are plotted in log scales (arbitrary units). 

 

Furthermore, the ontology for odor perceptual space (OOPS) relied on expertise toward a 

non-targeted food product, thus the OOPS is available to study various food products in 

contrast with usual odor wheels which are specific to the studied product. This proof of 

concept should be extended to include more expertise and scientific knowledge. For instance, 

the sets of OD, OQ, and OSA were constructed from wine data, thus they might not cover all 

the possible OD, OQ, and OSA useful to characterize other food products such as cheeses or 

tea.  

A limitation of this work was to consider the relationships among each odor space dimension 

as additive and linear. However, olfactory perception is inclined to be more complex as 

highlighted in the literature review. Indeed the odor of a mixture is most often not the sum of 

the odor of its components. To overcome the limitation of the OOPS, this knowledge 

representation relying on semantic odor information and expertise will be implemented in a 

broader model relying on a machine learning approach as detailed in the following chapter. 
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I. Introduction 

 

The chemical analysis of the odor component of food is performed by separating, identifying, 

and quantifying the molecules included in an extract. This well-established analytical 

procedure provides a list of key odorants, but does not give any information about the 

perceptual influence of mixed compounds, still critical to the overall food odor construction. 

Indeed, the odor of food is due to the processing by the olfactory system of many chemical 

molecules embedded in complex mixtures often recognized as single percepts due to odor 

blending (e.g. coffee odor). Because of the critical aspects of these perceptual integration 

processes, it is still very difficult to predict the odor features of a given food product on the 

basis of its molecular composition. 

In the previous chapter, we considered experts’ knowledge as a strategy to take into account 

the perception of odor mixture. Indeed, this knowledge was thought to fill the gap between the 

myriad of odor descriptors (OD) carried by odorants found in a food product and the few odor 

characteristics of the whole product, namely odor sensory attributes (OSA). We used an 

ontology as a knowledge-representation approach to formalize the experts’ knowledge and 

used it to predict sensory outcomes, but faced the limitation that the relationships among each 

odor space dimension relied on additive and linear approaches. 

In this chapter, we explored an innovative strategy relying on classical aroma analysis results 

which integrated the expert knowledge as formalized in the OOPS in a broader non-linear 

modelling approach relying on fuzzy logic and optimization. This strategy has been applied to 

predict the odor profile of the series of 16 wines and is detailed in ARTICLE 3. 
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Abstract 

Aroma analysis follows a well-established procedure which provides a list of odorants that 

contribute to a given food aroma. However, such a procedure does not allow establishing the 

actual odor profile of the food because the perceptual influence of mixed odorants is poorly 

considered. To improve the aroma analysis efficiency, we explored an innovative strategy 

which combines aroma analysis results with an artificial intelligence modelling approach 

coupling expert knowledge, fuzzy logic and machine learning. The approach queries 

analytical and sensory databases in order to predict the odor profile of complex mixtures of 

odorants, namely the intensity of a series of odor sensory attributes. The developed model 

gathering heterogeneous data was applied to a series of real food products, i.e. wines of two 

grape varieties. By comparing the output of different optimization strategies and the actual 

sensory data we estimated that the approach can predict sensory scores in a promising way. 

 

Introduction 

Knowledge about flavor components is strategic for the whole food industry because it is a 

major criterion for the formulation and reformulation of food and consequently for the 

adaptation of food products and beverages to the increasing constraints related to nutritional, 

organoleptic and environmental qualities. Among the sensory dimensions involved in food 

flavor perception, the odor component is critical because it determines most of the time the 

identity and the typicality of food, which drive its overall quality and recognition by 

consumers (Hornung & Enns, 1986; Lorrain et al., 2006). Odors result from the perception of 

specific volatile molecules through the sense of smell. These specific molecules are called 

odorants (Hudson, 2000). 

On the one hand, food odor profile can be established by sensory analysis which consists in 

measuring and evaluating the sensory characteristics of food through the sense of smell (Stone 

& Sidel, 2004). On the other hand, food odor chemical analysis is performed by separating, 

identifying and quantifying odorants in food products with techniques such as gas 

chromatography - mass spectrometry - olfactometry (GC-MS-O). This well-established 

analytical procedure provides a list of odorants (Lee & Noble, 2003; Ferrari et al., 2004; 

Pérez-Silva et al., 2006; Bratolli et al., 2013), but does not give any information about the 

perceptual influence of mixed odorants, still critical to the overall food odor construction. 
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Indeed, the odor of food is due to the processing by the olfactory system of odorants’mixtures 

often recognized as single percepts (e.g. coffee odor). An odor percept results from the 

configural processing of odor mixtures, but we are also able to discriminate odors within 

complex mixtures (e.g. off-odors) through the elemental processing (Thomas-Danguin et al., 

2014). Because of the critical aspects of these perceptual integration processes, it is still very 

difficult to predict the odor profile of a given food product on the basis of its chemical 

composition. Within the flavor analysis path, additional time-consuming omission tests are 

often required to ascertain the role of each odorant and/or their mixtures in the overall flavor 

(Grosh, 2001 / wine: Guth, 1997; Ferreira et al., 2002; Escudero et al., 2004; Ferreira et al., 

2016 / sesame: Zheng et al., 2016). 

Predictive approaches based on the molecular structure of odorants were developed to predict 

the odor characteristics of new sets of odorants (intensity: Cain, 1969; Edwards & Jurs, 1989 / 

detection threshold: Abraham et al., 2012 / perceptual qualities: Kumar et al., 2015 / 

pleasantness: Khan et al., 2007). Other strategies aimed to develop machine learning 

algorithms to predict several odor characteristics of odorants based on their structural 

parameters (Keller et al., 2017, Shang et al., 2017). Although these predictive approaches 

were successful, they all applied to single odorants. However, the odors we perceive in every-

day life are complex multi-molecular mixtures. Snitz et al. (2013) worked on the odor 

characteristics of such mixtures by predicting the similarity of multi-molecular mixtures on 

the basis of their structural parameters. However, to our knowledge no study has attempted to 

predict how a multi-molecular mixture will smell, namely to generate a quantitative sensory 

description of the mixtures’ odor using semantic descriptors. 

Because classical/mechanistic approaches (e.g. summation) are not sufficient to study both 

elemental and configural perceptions of odorants’ mixtures, we chose to integrate expertise 

from flavorists in a highly innovative predictive model. Indeed, the way flavorists combine 

odor qualities (e.g. Fruity, Green, Smoky) or molecules to create a target odor represents their 

expertise. Such expertise relied on a very personal process (Veinand, 2015) and at the same 

time is based on generic principles learnt in specialized schools (e.g. based on the field of 

odors described by Jaubert et al., 1995) or companies (e.g. Sense It
TM

, a global flavor 

language at Givaudan). Collecting this expertise was thought to better understand how flavor 

are created and thus how an odor profile is constructed. 
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Expertise can be formalized in the form of an in-silico model, using fuzzy logic (Sicard et al., 

2011), which is an extension of the set theory by the replacement of the characteristic function 

of a set by a membership function whose values range from 0 to 1 (Zadeh, 1965). Transitions 

between sets allow the representation of gradual concepts as well as the representation of 

rules, particularly adapted to cope with applications where expertise is present (Perrot et al., 

2006). Analogies exist between fuzzy entities and sensory entities (i.e. sensory scales as fuzzy 

sets, sensory attributes as fuzzy variables, and sensory answers as membership grades) (Tan et 

al., 1999; Davidson et al., 2001), which explains why fuzzy logic has been used successfully 

in several papers dealing with food systems (Perrot et al., 2011). We can cite its application to 

estimate the sensory properties of food products (sausage: Ioannou et al., 2002 / chhana podo: 

Mukhopadhyay et al., 2013 / tea liquor: Debjani et al., 2013 / jam: Shinde & Pardeshi, 2014) 

and predict consumer food acceptance (biscuits: Davidson et al., 2001 / bread: Folorunso et 

al., 2009). 

The challenge of the present research was to increase the efficiency of the odor analysis 

procedure by taking into account knowledge on odor mixture perception along the analytical 

path. In this proof-of-concept study, we tested the possibility that a machine learning based 

prediction model might be used to predict the odor profile of 16 red wines on the basis of their 

chemical composition. To construct this predictive model we integrated flavorists’ expertise, 

gathered in an ontology format (Roche et al., Article 2 of this manuscript) and artificial 

intelligence methodologies, i.e. fuzzy logic modelling and genetic algorithm’s based 

optimization; to formalize the expertise in a set of optimized rules of sensory relevant odor 

combinations. 

 

Materials & Methods 

 

Chemical and sensory data on wines 

Chemical and sensory characterizations of the wines were published in a data paper (Villière 

et al., Data paper included in this manuscript). Gas chromatography - olfactometry (GC-O) 

and gas chromatography - mass spectrometry (GC-MS) results were obtained for a set of 16 

French red wines, 8 from Pinot Noir (PN) and 8 from Cabernet Franc (CF) selected in order to 

cover the olfactory diversity of the commercial offer for each grape variety (Loison et al., 
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2015). GC-MS-O data provided the identification of a total of 46 odorant zones. GC-O 

technique assigns a relative importance to each odor-active compound by calculating their 

nasal impact frequency (NIF), which is the ratio of the number of panelists who smelled an 

odor on the number total of panelists (Pollien et al., 1997). The wines were submitted to an 

expert sensory panel to construct odor profiles. 

 

Odor description of the wines’ odorants 

We compiled three databases to collect the odor descriptors of the odorants identified by in 

the 16 wines: Arctander’s handbook (Arctander, 1969), Flavor-Base (Leffingwell & 

Associates, http://www.leffingwell.com) and The good scents company (Luebke, 1980). This 

step followed the methodology described in (Roche et al., Article 2 of this manuscript). 

 

Expert knowledge 

Four senior flavorists participated in the data collection. The elicitation process was based on 

a private guided interview which lasts 1 hour. The experts received monadically 15 odor 

sensory attributes (OSA) of interest to characterize the wines but were not informed that the 

descriptors were related to wines. For each attribute, they were asked to indicate the odor 

notes, further called odor qualities (OQ), needed to construct a given OSA. The collected 

knowledge was gathered in the form of an ontology (Roche et al., Article 2 of this 

manuscript). Proportions of OQ were calculated from the collected data, the sum of OQ for a 

given expert and OSA being equal to 1. One OSA can be composed of one OQ (simple OSA) 

or several OQ (complex OSA). Expert knowledge was formalized in a set of optimized rules 

of sensory relevant odor combinations using fuzzy logic. 

 

Modelling and fuzzification 

The expert model was developed on MATLAB (R2014b), using linear regression for the 

simple OSA and fuzzy reasoning (Zadeh, 1975; Dubois & Prade, 1980) for the complex OSA, 

in order to estimate the intensity of each OSA for a food product on the basis of its proportion 

in OQ. 
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The fuzzy reasoning parameters, which are defining the membership functions, were 

established based on the expert knowledge we collected. Considering an OSA described by 

the experts as a complex OSA composed of five odor qualities, 𝑂𝑄𝑖 𝑖=1
5 , with different 

proportions depending on the expert. A fuzzy set E in universe of discourse U can be defined 

for each odor quality by Equation 1 (Zadeh, 1965): 

 

 

Equation 1:    𝐸 = {𝑢, µ𝐸(𝑢)\𝑢 ∈ 𝑈} 

µ𝐸: 𝑈 → [0,1] 

 

μE(u) is the membership function of the set E. It represents the set of membership grades μE(u) 

of a numerical variable u (OQi) mapped to a fuzzy set E (OSA). The value of the membership 

grade is a real number within the interval [0,1], representing the membership degree of the 

proportion of each OQi to a given OSA intensity. The proportions were defined by the expert 

flavorists. Membership functions can be expressed through various representations and we 

chose to test our model with the trapezoidal representations using four parameters a1 to a4 

(Equation 2), represented graphically in Figure 1. 

 

Equation 2:    µ(𝑥) =

{
 
 
 
 
 

 
 
 
 
 

0 (𝑥 ≤ 𝑎1)

𝑥−𝑎1

𝑎2−𝑎1
 (𝑎1 < 𝑥 ≤ 𝑎2)

1 (𝑎2 < 𝑥 ≤ 𝑎3)

𝑎4−𝑥

𝑎4−𝑎3
 (𝑎3 < 𝑥 ≤ 𝑎4)

0 (𝑎4 < 𝑥)
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Figure 1: Fuzzy trapezoidal function. a2 and a3 represent the bounds of the proportion of 

the OQi when the membership degree to a given OSA equals to 1. a1 varies between 0 and a2, 

a4 varies between a3 and 1. 

 

The prediction of OSA is achieved using a generalization of the inference compositional rule 

proposed by Zadeh (1975) applied to the fuzzy symbolic descriptions (Mauris et al., 1994) of 

OQ. Mathematical product is used for the T-norm (Equation 3). 

 

Equation 3:    𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦(𝑂𝑆𝐴) = 10 ×∏ µ(𝑖
1 𝑂𝑄𝑖)  

 

Optimization 

The parameters (a1 to a4) of the fuzzy membership functions were optimized using a genetic 

algorithm (condition B) and an evolutionary covariance matrix adaptation evolutionary 

algorithm (condition C). 

The genetic algorithm (repetitions = 10) was set to minimize the difference between the 

sensory evaluated and sensory predicted values (cost function = fuzzy function, maximum 

number of iterations = 500, population size = 200, offspring size = 200, crossover percentage 

= 0.7, mutation percentage = 0.3, tournament size = 3). 

The evolutionary covariance matrix adaptation evolutionary algorithm was adapted from 

cmaes.m (Version 3.61.beta) and ran for 10 repetitions (cost function = fuzzy function, 

population size = 2000). 
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Validation 

The expert model was validated following a leave-one-out cross-validation (LOOCV) 

procedure, meaning that each sample (food product) is left out once and used for validation 

(Arlot & Celisse, 2010).  

The outputs of the fuzzy models were the intensity predicted for the 15 OSA. We compared 

these predicted intensities with the intensity evaluated from sensory evaluation. First, we 

calculated the percentage prediction error following Equation 4. The closer the sensory 

intensity evaluated and measured the lower percentage prediction error. In contrary, if the 

sensory intensity evaluated and measured are highly different, the percentage will be high 

(100% and more) (Guang et al., 1995). 

 

Equation 4:  𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑒𝑟𝑟𝑜𝑟 =
|𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑑−𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑|

𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑑
× 100 

 

In addition, we calculated the similarity (sim) between the intensities evaluated and predicted 

for each OSA following the Ruzicka similarity (Equation 5). The values vary from 0 (no 

similarity) to 1 (datasets identical). 

 

Equation 5:    𝑠𝑖𝑚(𝑋, 𝑌) =
∑𝑚𝑖𝑛{𝑥𝑖,𝑦𝑖}

∑𝑚𝑎𝑥{𝑥𝑖,𝑦𝑖}
  

Finally, we performed a normalized principal component analysis (PCA) and a hierarchical 

clustering on principle components (HCPC) on the sensory profile from sensory evaluation 

and from the predictive approach. 

 

Results 

 

The predictive approach 
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The developed predictive approach gathered different types of data and models (Figure 2). 

The data were the results of chemical analysis, expertise data collection and sensory analysis. 

Concerning the models, we used the Ontology for Odor Perceptual Space (OOPS) (Roche et 

al., Article 2 of this manuscript) and we constructed an artificial intelligence model to 

predict the odor profiles of a set of 16 red wines. First, we considered the chemical 

composition of the wines in terms of identified odorants and their NIF (Villière et al., Data 

paper included in this manuscript). Then, we aggregated the information of three databases 

to obtain the odor descriptors of the odorants identified in the wines. For a given odorant, a set 

of odor descriptors was obtained from the database aggregation in which each term was 

associated to an intensity (number of citation of a given odor descriptors in the three 

databases). For example, the set of odor descriptors of Isoamyl acetate (CAS 123-92-2) is the 

following: [(apple, 1); (banana, 3); (fruity, 2); (fruity-fresh, 1); (nauseating, 1); (pear, 2); 

(solvent, 1); (sweet, 3)]. Then we weighted each set of odor descriptors by the relative 

importance of the corresponding odorant in a given food product (i.e. its NIF score). Thus, the 

proportions of odor descriptors of Isoamyl acetate in a given food product with a NIF equals 

to NIF1 will be [(apple, 1xNIF1); (banana, 3xNIF1); (fruity, 2xNIF1); (fruity-fresh, 1xNIF1); 

(nauseating, 1xNIF1); (pear, 2xNIF1); (solvent, 1xNIF1); (sweet, 3xNIF1)]. This weighted set 

is translated into a set of odor qualities (OQ) thanks to the OOPS (Roche et al., Article 2 of 

this manuscript), which results in: [(Fresh, 1xNIF1); (Fruity, 9xNIF1)]. For a given food 

product, the OQ of each odorant identified in the product were summed. For instance, if one 

consider a mixture of Isoamyl acetate and Benzyl alcohol (CAS 100-51-6), with NIF scores 

respectively NIF1 and NIF2, it is possible to sum the OQ set of both odorants [(Fresh, 

1xNIF1); (Fruity, 9xNIF1)] and [(Almond, 1xNIF2); (Floral, 2xNIF2); (Fruity, 1xNIF2); 

(Smoky, 1xNIF2)], to end up with an OQ set being [(Almond, 1xNIF2); (Floral, 2xNIF2); 

(Fresh, 1xNIF1); (Fruity, 9xNIF1+1xNIF2); (Smoky, 1xNIF2)]. Then, we processed the data 

through an artificial-intelligence model based on flavorists’ expertise. Expertise was 

formalized and coded in fuzzy rules in order to estimate the odor sensory attributes (OSA) 

intensity of the wines from their OQ sets. The output of the predictive model was the odor 

sensory profile of a wine. The predicted profile was compared to the odor sensory profile of 

the same wines obtained by sensory evaluation. 
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Figure 2: Schematization of the predictive approach. The boxes represent the methods and 

arrows are pointing to the results obtained through the given method. On the one hand, the 

food product odor is analyzed by GC-MS-O (gas chromatography - mass spectrometry - 

olfactometry) which allows the identification of odorants and their intensity with their nasal 

impact frequency (NIF) scores. On the other hand, odor descriptors are compiled from the 

union of three databases (Arctander, Flavor-Base and The good scents company). From these 

two results, we obtain the proportion of odor descriptors in the food product which is then 

processed through the Ontology for Odor Perceptual Space (OOPS; Roche et al., Article 2 of 

this manuscript) to be translated in proportion of odor qualities (OQ). At this step, the 

artificial intelligence model computes the proportion of OQ in the food product owing to 

flavorists’ expertise to estimate the intensity of odor sensory attributes (OSA). The output of 

the model is the odor sensory profile of the food product which can be compared with the 

sensory profile obtained by sensory evaluation. 
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Artificial intelligence model 

Expertise 

Expert flavorists were asked to decompose 15 OSA (Table 1) in one or several OQ, i.e. simple 

or complex OSA. Usually flavorists have in mind a way to combine OQ to elicit the 

perception of a given OSA in complex mixtures and matrices. Here, their reasoning is 

formalized in a backwards way using fuzzy functions and fuzzy rules establishing a projection 

from the OQ space to the OSA space. Among the 15 OSA, 7 were identified as simple OSA 

(Cut-grass, Leather, Smoky, Toasty, Vanilla, Violet and Woody) and 8 as complex OSA (Bell 

pepper, Blackcurrant bud, Blackcurrant fresh, Cherry cooked, Cherry fresh, Cherry stone, 

Prune and Strawberry fresh). The detailed results of the interview for the OSA Prune 

(complex OSA) are presented below in Table 2. The compiled results of the interview (i.e. the 

proportions bounds: lower and higher proportions) for the 15 OSA are presented in Table 3. 

 

Table 1: List of the 15 odor sensory attributes (OSA). 

Bell pepper Prune 

Blackcurrant bud Smoky 

Blackcurrant fresh Strawberry fresh 

Cherry cooked Toasty 

Cherry fresh Vanilla 

Cherry stone Violet 

Cut-grass Woody 

Leather  
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Table 2: Composition of the OSA Prune in OQ from expertise. The proportions of each 

OQ composing the OSA Prune are indicated for each expert into symbolic scale (+++, ++, +, 

+/-, near 0) translated into numerical values. Nu means that the OQ is not used by the given 

expert. Values in bold represent the lower and higher proportion of each odor quality 

composing the OSA. 

Prune Almond Cooked Fruity Honey Lactonic 

Expert 1 
+ Nu Nu Nu ++ 

0.33 Nu Nu Nu 0.67 

Expert 2 
Nu ++ + near 0 + 

Nu 0.47 0.24 0.06 0.24 

Expert 3 Nu Nu Nu Nu Nu 

Expert 4 
Nu +++ + Nu Nu 

Nu 0.75 0.25 Nu Nu 

Lower proportion 0 0 0 0 0 

Higher proportion 0.33 0.75 0.25 0.06 0.67 
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Table 3: Composition of the 15 OSA in OQ from expertise: 7 simple OSA and 8 complex 

OSA. The proportions of each OQ composing the complex OSA are represented through their 

lower and higher proportions from the expertise data. 

OSA OQ1 OQ2 OQ3 OQ4 OQ5 OQ6 OQ7 

Cut-grass Cut-grass       

Leather Leather       

Smoky Smoky       

Toasty Toasty       

Vanilla Vanilla       

Violet Violet       

Woody Woody       

Bell pepper Floral Fruity Green Sulfurous Toasty Vegetable  

Lower proportion 0 0 0 0.17 0 0  

Higher proportion 0.17 0.33 0.80 0.25 0.5 0.33  

Blackcurrant bud Floral Fresh Fruity Green Sulfurous Vanilla Wine-like 

Lower proportion 0 0 0.10 0 0.11 0 0 

Higher proportion 0.22 0.33 0.67 0.20 0.40 0.20 0.38 

Blackcurrant 

fresh 
Floral Fresh Fruity Green Sulfurous Wine-like  

Lower proportion 0 0 0.25 0 0.07 0  

Higher proportion 0.13 0.53 0.44 0.22 0.25 0.25  

Cherry cooked Almond Cooked Floral Fruity Green Peel Spicy 

Lower proportion 0.13 0.14 0 0 0 0 0 

Higher proportion 0.29 0.38 0.07 0.57 0.21 0.06 0.21 

Cherry fresh Almond Cooked Floral Fruity Green Peel Spicy 

Lower proportion 0.12 0.22 0 0 0.22 0 0 

Higher proportion 0.26 0.24 0.07 0.35 0.24 0.06 0.22 

Cherry stone Almond Cooked Floral Fruity Green Peel Spicy 

Lower proportion 0.25 0 0 0 0 0 0 

Higher proportion 1 0.25 0.06 0.38 0.18 0.06 0.18 

Prune Almond Cooked Fruity Honey Lactonic   

Lower proportion 0 0 0 0 0   

Higher proportion 0.33 0.75 0.25 0.06 0.67   

Strawberry fresh Cooked Floral Fruity Green    

Lower proportion 0.17 0 0.33 0    

Higher proportion 0.40 0.33 0.5 0.27    
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Fuzzification and optimization 

In order to explain the general approach, we will keep the example of the OSA Prune, 

described by the experts as a complex OSA composed of five OQ (Almond, Cooked, Fruity, 

Honey, Lactonic) with different proportions depending on the expert. Five fuzzy membership 

functions, one per OQ, were created from expertise (Figure 3). The functions were used to 

link the proportion of the OQ to the intensity of the OSA.  

 

Figure 3: Fuzzy membership functions created for the OSA Prune for the non-optimized 

condition A. a2 and a3 represent the bounds of the proportion of the OQ when the 

membership degree to a given OSA equals to 1 (lower and higher proportion). a1 varies 

between 0 and a2 while a4 varies between a3 and 1, in this example we set a1 = 0 and a4 = 1 

for the five functions. 

 

Fuzzy rules were then computed following the Equation 6, meaning that if the membership 

degree of the five OQ to the intensity of the OSA Prune is equal to 1 (plateau), the intensity of 

the OSA Prune will be 10/10. 
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Equation 6:   𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦(𝑂𝑆𝐴 𝑃𝑟𝑢𝑛𝑒) = 10 × ∏ µ(𝑂𝑄𝑖
5
1 ) 

with 𝑂𝑄1 = 𝐴𝑙𝑚𝑜𝑛𝑑, 𝑂𝑄2 = 𝐶𝑜𝑜𝑘𝑒𝑑, 𝑂𝑄3 = 𝐹𝑟𝑢𝑖𝑡𝑦, 𝑂𝑄4 = 𝐻𝑜𝑛𝑒𝑦 𝑎𝑛𝑑 𝑂𝑄5 = 𝐿𝑎𝑐𝑡𝑜𝑛𝑦 

 

The parameters (a1 to a4) of the fuzzy membership functions were non-optimized or 

optimized for each OQ composing an OSA according to three conditions as described in the 

Table 4. The non-optimized condition (condition A) corresponded to the creation of the fuzzy 

membership functions in Figure 3. Then, the optimization of the parameters was done in order 

to minimize the gap between the sensory values (OSA intensity evaluated by sensory 

evaluation) and the predicted values (OSA intensity predicted by the model). We tested a first 

optimization based on a genetic algorithm (GA) (Mitchell, 1996) and a second based on a 

covariance matrix adaptation evolutionary algorithm (Hansen, 2006). The first one aimed to 

optimize 2 out of the 4 parameters and the second one optimized the 4 parameters of the 

membership functions. In both cases, 10 repetitions were carried out and we further 

considered the mean of the intensity predicted for these 10 repetitions as the intensity 

predicted for a food product. 

 

Table 4: Non-optimized and optimized parameters of the fuzzy memberships functions 

according to three conditions. Proportions of OQ are from the expert knowledge collection. 

 Optimization a1 a2 a3 a4 

Condition A Non-optimized 0-1 0 
Lower proportion 

of the OQ 

Higher proportion 

of the OQ  
1 

Condition B 
Optimized genetic 

algorithm 
optimized 

Lower proportion 

of the OQ  

Higher proportion 

of the OQ  
optimized 

Condition C Optimized cmaes optimized optimized optimized optimized 
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Predicting the intensity of OSA: illustrative example for Toasty and Prune  

We chose to present the predictive approach in details to predict the intensity of one simple 

OSA (Toasty) and one complex OSA (Prune) for the wine PN1, a Pinot Noir wine out of the 

16 wines of the sample set. The list of the 33 odorants identified in PN1 with their 

corresponding NIF scores and odor descriptors sets are shown in Table 5. The odor 

descriptors were translated into OQ thanks to the OOPS (Roche et al., Article 2 of this 

manuscript) and weighted by the NIF scores of the corresponding odorant.  

The odor qualities set of the 33 odorants were summed to obtain the odor qualities set of PN1: 

(Almond, 0.625); (Cooked, 2.375); (Cut-grass, 1.5); (Floral, 16.875); (Fresh, 0.125); (Fruity, 

58.625); (Green, 8.625); (Honey, 2.5); (Lactonic, 0.5); (Leather, 2.25); (Peel, 3.625); (Smoky, 

18.75); (Spicy, 6.375); (Sulfurous, 0.875); (Toasty, 1); (Vanilla, 2.625); (Vegetable, 3.5); 

(Violet, 0); (Wine-like, 4.25); (Woody, 3.25). This set was further represented as proportions 

of OQ, following 𝑝𝑟𝑜𝑝(𝐴𝑙𝑚𝑜𝑛𝑑) =
𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦(𝐴𝑙𝑚𝑜𝑛𝑑)

∑ 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦(20 𝑂𝑄)
=

0.625

138.3
= 0.005, to result in the odor 

quality set (Almond, 0.005); (Cooked, 0.017); (Cut-grass, 0.011); (Floral, 0.122); (Fresh, 

0.001); (Fruity, 0.424); (Green, 0.062); (Honey, 0.018); (Lactonic, 0.004); (Leather, 0.016); 

(Peel, 0.026); (Smoky, 0.136); (Spicy, 0.046); (Sulfurous, 0.006); (Toasty, 0.007); (Vanilla, 

0.019); (Vegetable, 0.025); (Violet, 0); (Wine-like, 0.031); (Woody, 0.024).  

Then we processed the odor quality set through the fuzzy model to determine the intensity of 

the OSA Toasty and Prune. We predicted the OSA intensity owing to a leave one out cross 

validation, so that the model was constructed on a set of 15 wines to predict the omitted one. 

The intensity predicted from the model was then compared to the intensity evaluated from 

sensory evaluation. 
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Table 5: List of odorants in the wine PN1. Odorants are identified by their CAS number, 

NIF scores, set of odor descriptors and set of odor qualities. NIF scores correspond to the ratio 

of the number of panelists who perceived the odorant on the number total of panelists (n = 8). 

The odor descriptors sets are obtained after compiling three databases (Arctander, Flavor-

Base, The good scents company). The odor qualities set are obtained following the Ontology 

for Odor Perceptual Space (OOPS) approach and are weighted with the NIF of the 

corresponding odorant. 

 

CAS Number NIF Odor descriptors Odor qualities

100-51-6 0.625
(almond, 1); (balsamic, 1); (floral, 1); (fruity, 

1); (phenolic, 1); (rose, 1); (sweet, 2)

(Almond, 0.625); (Floral, 1.25); (Fruity, 

0.625);(Smoky, 0.625)

105-54-4 0.875

(banana, 2); (buttery, 1); (cognac, 1); 

(ethereal, 1); (ethereal-fruity, 1); (fruity, 2); 

(juicy, 2); (pineapple, 3); (ripe fruit, 1)

(Fruity, 7.875)

106-32-1 0.125

(apricot, 2); (banana, 2); (brandy, 1); 

(fermented-winey, 1); (fruity, 2); (fruity-

winey, 1); (pear, 1); (pineapple, 1); (sweet, 

3); (waxy, 1); (winey, 2)

(Fruity, 1.125); (Wine-like, 0.5)

106-33-2 0.5

(fatty, 1); (floral, 2); (flower-petal, 1); (fruity, 

2); (leafy, 1); (oily, 1); (oily-fatty, 1); (soapy, 

1); (sweet, 1); (waxy, 2)

(Floral, 1.5); (Fruity, 1)

106-44-5 0.5

(animal, 1); (animalic, 1); (dry, 1); (dry-tarry, 

1); (leather, 1); (leathery, 1); (medicinal, 3); 

(medicinal-leathery, 1); (mimosa, 1); 

(narcissus, 1); (phenolic, 3); (smoky, 1); 

(tarry, 1); (tarry-smoky, 1); (woody, 1)

(Floral, 1); (Leather, 1.5); (Smoky, 5); 

(Woody, 0.5)

107-92-6 0.625

(acetic, 1); (buttery, 2); (cheese, 1); (cheesy, 

1); (fruity, 1); (rancid, 1); (rancid butter, 1); 

(sour, 2)

(Fruity, 0.625)

108-64-5 0.875

(apple, 3); (banana, 1); (blueberry, 1); 

(buttery, 1); (ethereal, 1); (fruity, 2); 

(pineapple, 1); (sweet, 2); (tutti fruit, 1); 

(wine-like-fruity, 1); (winey, 1)

(Fruity, 8.75); (Wine-like, 1.75)

108-95-2 0.125
(medicinal, 1); (phenolic, 2); (plastic, 1); 

(rubbery, 1)
(Smoky, 0.25)

122-78-1 0.75
(clover, 1); (cocoa, 1); (floral, 3); (green, 3); 

(honey, 2); (hyacinth, 3); (rose, 1); (sweet, 2)
(Floral, 5.25); (Green, 2.25); (Honey, 1.5)

123-07-9 0.75

(castoreum, 1); (guaiacol, 1); (phenolic, 1); 

(smokey, 1); (smoky, 1); (sweet, 1); (tarry-

medicinal, 1)

(Leather, 0.75); (Smoky, 3.75); (Spicy, 0.75)

123-51-3 1

(alcoholic, 3); (banana, 1); (fermented, 1); 

(fruity, 1); (fruity-winey, 1); (fusel, 1); 

(whiskey, 1)

(Fruity, 3); (Wine-like, 1)

123-66-0 1

(apple peels, 1); (banana, 3); (floral, 1); 

(fruity, 2); (fruity-winey, 1); (green, 1); (pear, 

1); (pineapple, 3); (strawberry, 1); (sweet, 1); 

(tropical, 1); (waxy, 1)

(Floral, 1); (Fruity, 13); (Green, 1); (Peel, 1); 

(Wine-like, 1)

123-92-2 0.125

(apple, 1); (banana, 3); (fruity, 2); (fruity-

fresh, 1); (nauseating, 1); (pear, 2); (solvent, 

1); (sweet, 3)

(Fresh, 0.125); (Fruity, 1.125)
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CAS Number NIF Odor descriptors Odor qualities

2785-89-9 0.625

(bacon, 2); (clove, 2); (eugenol, 1); (guaiacol, 

1); (phenolic, 2); (smoky, 2); (spicy, 2); 

(spicy-medicinal, 1); (sweet, 1); (vanilla, 1)

(Smoky, 3.125); (Spicy, 4.375); (Vanilla, 

0.625)

334-48-5 0.375

(cheese, 1); (citrus, 1); (dairy, 1); (fatty, 2); 

(rancid, 2); (sour, 1); (sour-fatty, 1); (waxy, 

1)

(Fruity, 0.375)

3268-49-3 0.625

(bouillon, 1); (creamy, 1); (earthy, 1); 

(meaty, 1); (musty, 1); (onion, 2); (onion-

meat, 1); (potato, 1); (tomato, 1); (vegetable, 

1)

(Vegetable, 1.875)

39212-23-2 0.5

(burnt, 1); (celery, 1); (coconut, 2); 

(coumarinic, 2); (lactonic, 1); (lovage, 1); 

(maple, 1); (nutty, 1); (toasted, 1); (tonka, 1); 

(woody, 1)

(Lactonic, 0.5); (Spicy, 0.5); (Toasty, 1); 

(Vanilla, 0.5); (Vegetable, 0.5); (Woody, 0.5)

431-03-8 0.875
(buttery, 3); (caramel, 1); (chlorine-quinone, 

1); (creamy, 1); (oily, 1); (sweet, 1)
(Cooked, 0.875)

4312-99-6 0.5
(earthy, 1); (herbal, 1); (metallic, 1); 

(mushroom, 2); (musty, 1)
(Cut-grass, 0.5); (Green, 0.5)

503-74-2 1

(acid-acrid, 1); (cheese, 1); (cheesy, 2); 

(fruity, 1); (herbaceous, 1); (sour, 2); 

(sweaty, 2); (tropical, 1)

(Cut-grass, 1); (Fruity, 2); (Green, 1)

505-10-2 0.25

(meaty, 2); (mushroom, 1); (onion, 1); (soup, 

2); (sulfuraceous, 1); (sulfurous, 1); (sweet, 

1); (sweet soup-meat, 1); (vegetable, 1)

(Sulfurous, 0.5); (Vegetable, 0.75)

590-86-3 0.25

(acrid, 1); (aldehydic, 1); (cheese, 1); 

(chocolate, 1); (cocoa, 1); (ethereal, 1); 

(fatty, 1); (fruity, 2); (green fruity, 1); (peach, 

2); (sweaty, 1)

(Fruity, 1.25); (Green, 0.25)

60-12-8 1
(earthy, 1); (floral, 2); (greener gassy, 1); 

(hyacinth, 1); (rose, 2); (rose-honey, 1)
(Floral, 6); (Green, 1); (Honey, 1)

64-17-5 0.625
(alcoholic, 3); (ethereal, 2); (medicinal, 1); 

(sweet, 1); (sweet-ethereal, 1)
(Fruity, 0.625)

64-19-7 1 (acidic, 1); (sour, 3); (vinegar, 2)

620-17-7 0.75
(medicinal, 1); (musty, 1); (sweet, 1); (woody-

phenolic, 1)
(Smoky, 0.75); (Woody, 0.75)

74-93-1 0.375
(cabbage, 1); (garlic, 1); (rotten cabbage, 1); 

(rotting cabbage, 1); (sulfurous, 1)
(Sulfurous, 0.375); (Vegetable, 0.375)

7452-79-1 0.875

(apple, 2); (apple peels, 1); (fruity, 3); (green, 

2); (green-fruity, 1); (peels of unripe plums, 

1); (pineapple skin, 1); (strawberry, 1); 

(sweet, 1)

(Fruity, 0.875); (Green, 2.625); (Peel, 2.625)

80-62-6 0.625
(acrylate, 1); (acrylic, 1); (apple, 1); (estery, 

1); (fruity, 2); (grape, 1)
(Fruity, 3.125)

90-05-1 0.75
(medicinal, 2); (phenolic, 2); (smoky, 3); 

(spicy, 1); (sweet, 1); (vanilla, 2); (woody, 1)

(Smoky, 3.75); (Spicy, 0.75); (Vanilla, 1.5); 

(Woody, 0.75)

91-10-1 0.375

(bacon, 1); (balsamic, 1); (medicinal, 1); 

(phenolic, 2); (powdery, 1); (smoky, 2); 

(woody, 2)

(Smoky, 1.5); (Woody, 0.75)

96-48-0 0.75
(buttery, 1); (caramel, 2); (creamy, 1); (fatty, 

1); (nutty, 1); (oily, 1); (sweet, 1)
(Cooked, 1.5)

97-62-1 0.875

(alcoholic, 1); (apple, 1); (ethereal, 2); (floral, 

1); (fruity, 3); (fusel, 1); (rum, 1); (rummy, 

1); (sweet, 3); (sweet-ethereal, 1)

(Floral, 0.875); (Fruity, 4.375)
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Predicted intensity of a simple OSA: Toasty 

For simple OSA, such as Toasty, a linear regression was performed between the proportion of 

the OQ Toasty and the intensity of the OSA Toasty for the set of 15 wines (16-1 for the cross 

validation). We obtained the linear equation y = 29.67x + 0.37 (r² = 0.2694, p = 0.03) which 

allowed the prediction of the intensity of the OSA Toasty in a food product from the 

proportion of the OQ Toasty in the product. Knowing that the proportion of the OQ Toasty is 

0.008 in the wine to predict (PN1), the intensity predicted for the OSA Toasty for PN1 was 

0.60 (to be compared to the actual intensity evaluated by sensory analysis = 0.61). 

Predicted intensity of a complex OSA: Prune 

Focusing on the specific OSA Prune, the OQ set was reduced to the proportions of the 5 OQ 

constituting this OSA. In this way, from the odor quality set of PN1 (Almond, 0.005); 

(Cooked, 0.017); (Cut-grass, 0.011); (Floral, 0.122); (Fresh, 0.001); (Fruity, 0.424); (Green, 

0.062); (Honey, 0.018); (Lactonic, 0.004); (Leather, 0.016); (Peel, 0.026); (Smoky, 0.136); 

(Spicy, 0.046); (Sulfurous, 0.006); (Toasty, 0.007); (Vanilla, 0.019); (Vegetable, 0.025); 

(Violet, 0); (Wine-like, 0.031); (Woody, 0.024), we kept the values corresponding to the OQ 

of the OSA Prune: (Almond, 0.005); (Cooked, 0.017); (Fruity, 0.424); (Honey, 0.018); 

(Lactonic, 0.004). The values were then converted in order to have the sum of the 5 OQ being 

equal to 1, we ended up with (Almond, 0.01); (Cooked, 0.037); (Fruity, 0.907); (Honey, 

0.039); (Lactonic, 0.008). 

In this case, the relationship between the chemical composition of the wine and the sensory 

data was modeled through fuzzy rules according to three conditions of optimization. Fuzzy 

membership functions linking the proportion of the five OQ Almond, Cooked, Floral, Fruity, 

Green, Peel, Spicy and the intensity of the OSA Prune in 15 wines (16-1 for the LOOCV) 

according to the three optimization conditions are shown in Figure 4 where the proportions of 

the five OQ Almond, Cooked, Fruity, Honey and Lactonic in the wine PN1 are represented as 

red triangles. Parameters of the fuzzy functions (a1 to a4) are represented in Table S2. 

Then we calculated the intensity predicted for the OSA Prune in the wine PN1 for the three 

optimization conditions, following Equation 3. The intensity evaluated by sensory analysis for 

the OSA Prune in the wine PN1 was 0.95. With regard to the predicted values, two of the 

three optimization conditions (condition A and condition B) did perform better by predicting 
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an intensity of this OSA being 1.20 compared to condition C which predicted an intensity of 

1.62. 

 

 

Figure 4: Fuzzy membership functions linking the proportion of the 5 OQ Almond, 

Cooked, Fruity, Honey and Lactonic to the intensity of the OSA Prune according to the 

three conditions of optimization. Red triangles are representing the proportions of the OQ in 

the wine to predict (PN1).  

 

Predicting the odor sensory profiles of wine and validation 

The predictive approach was applied to the 16 wines of the sample set. The goal was to 

predict the intensity of 15 OSA for the 16 wines. The quality of the prediction was estimated 

with linear regression between the measured and predicted intensity of the OSA. Figure S1 

illustrated the regressions of the 7 simple OSA and Figure S2 the 8 complex OSA for the 
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three conditions of optimization. In S3 and S4 Tables we presented respectively the detailed 

results of the prediction of the OSA Toasty and Prune (condition A of optimization). The 

accuracy of the prediction was assessed by the r-squared values and highlighted a good 

prediction of the simple OSA Cut-grass (r² = 0.68, p < 0.01). However, no significant results 

were found for the other linear regressions. Several intensity values were not predicted by the 

model (n < 16). The absence of prediction was due to the absence of OQ required to elicit the 

perception of the given OSA. Indeed, the absence of odorants belonging to the OQ Lactonic 

in the wines from the grape variety Cabernet Franc led to a membership degree equals to 0 

and thus resulted in an intensity predicted of the OSA Prune equal to 0 in the 8 Cabernet 

Franc wines. Focusing on the complex OSA, the condition A and B of optimization led to 

similar results, whereas condition C provide better prediction for the OSA Bell pepper and 

Cherry fresh. 

In Figure 5, we presented the similarity between the evaluated and predicted value for the 7 

simple OSA and the 8 complex OSA for the three conditions of optimization. In average, the 

similarity of the simple OSA is the highest (0.60). The ranking of the three conditions of 

optimization highlighted condition C as the most similar to the measured intensities (0.54) 

followed by condition A (0.40) and B (0.37). 

We wondered if the predictive approach we developed could highlight the differences 

between the wines, i.e. separating the wines on the same qualitative attributes. To do so, we 

performed a principal component analysis (PCA) and hierarchical clustering on principle 

components (HCPC) on the OSA intensity evaluated and predicted for the 16 wines (Figure 

6). Results from sensory evaluation showed a separation of the wines according to their grape 

varieties with the exception of CF3 grouped with the PN, and PN4 with the CF wines. CF 

wines were perceived as more Bell pepper, Blackcurrant, Cut-grass, Strawberry and Violet 

than the PN wines. Conditions A and B were also able to separate the wines according to their 

grape varieties, but with the exception of PN3 grouped with the CF. Similarity were also 

observed regarding the variables with CF wines perceived as more Blackcurrant and 

Strawberry but some variables were opposed compared to the results from sensory evaluation 

(Woody, Smoky). We further investigated the closeness of the PCA maps by calculating the 

RV coefficients (i.e. a multivariate generalization of the squared Pearson correlation 

coefficients) between the predicted values and the actual sensory ones according to the three 

conditions of otpimization. From this statistical test, the ranking of the three condition of 

optimization highlighted condition B as the closest to the evaluated profile (RV = 0.47), 



CHAPTER 5: INTEGRATIVE APPROACH BASED ON FUZZY LOGIC 

175 

followed by condition A (RV = 0.46) and lastly condition C (RV = 0.36). Indeed, condition C 

did only separate two PN wines from the other 14 wines. 

 

 

Figure 5: Similarities between the intensity evaluated by the sensory panel and intensity 

predicted by the model for the 15 OSA: (A) simple OSA and (B) complex OSA. 

Similarity varies from 0 to 1, 1 meaning that both intensities are equal. The three optimization 

conditions are shown (for condition C, the intensities predicted correspond to the means of the 

ten repetitions of the optimization). 
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Figure 6: PCA maps based on the two first dimensions illustrating the configuration of 

the 16 wines (individuals) evaluated on 15 odor sensory attributes (variables): from 

sensory evaluation and from the predictive approach. Circles on the individuals factor 

map reflect the results of the HCPC. Means for each sensory descriptor are taken into account. 

PN: Pinot Noir wines, CF: Cabernet Franc wines. 
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Discussion 

This research aimed at proposing an innovative strategy to predict the odor profile of food 

from its chemical composition. We chose to develop a holistic approach that combines 

knowledge and comprehension of scientific facts while relying upon computer science 

methods. This strategy especially took into consideration expertise to integrate non-linear 

perceptual computation of odorants’ mixtures. To the best of our knowledge, the developed 

model constitutes the first attempt to predict quantitative odor description from molecular 

composition, but it is also the first report on knowledge-based artificial intelligence approach 

related to odor perception. 

In contrast to most of previous modelling approaches in olfaction that concentrate on single 

odorants, the model was applied to a set of real food samples, namely wines. The model was 

able to predict the wines odor profiles through the estimation of the intensity of 15 odor 

sensory attributes (OSA). The previously developed Ontology for Odor Perceptual Space 

(OOPS; Roche et al., Article 2 of this manuscript) was used to establish the relationships 

between molecular content of food and perceptual concepts at the core of the expertise, while 

fuzzy logic was used to formalize expertise in order to make it useable for OSA prediction 

after optimization. 

Regarding simple OSA, the similarity between the predicted and evaluated intensity was high 

(0.60). However correlations at the basis of simple OSA prediction were not significant, 

except for the OSA Cut-grass. Thus, results may highlight that the 6 remaining OSA 

identified as simple by the experts might be the results of combinations of OQ in the wine 

matrix. Indeed the OSA Leather can for instance be defined as complex with the OQ Animal 

and Smoky or Coumarinic. 

Regarding complex OSA, they were predicted using fuzzy logic functions obtained following 

three conditions of optimization. Conditions varied according to the degree of expertise 

integrated in the model and thus on the definition of the fuzzy memberships functions. The 

membership functions for condition A relied on pure expertise: structure (the rules linking 

OSA to OQ) and parameters (the fuzzy function parameters) are fixed exclusively by experts. 

Condition B was a variant of condition A where the slopes of the fuzzy functions were 

optimized by a genetic algorithm. Results highlighted that conditions A and B were very 

similar because of the limited optimization possibilities. The membership functions for 

condition C relied also on expertise for the structure of the model (combination of OQ) but 
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not for the parameters. Those parameters were fully estimated using an evolutionary 

algorithm. Conditions A and B resulted in good similarities for some OSA (Blackcurrant 

fresh, Prune, Strawberry fresh) and a rather good classification of the wines (PCA, HCPC 

analyses). Condition C resulted in better similarity for some OSA (Cherry fresh, Cherry stone) 

and slightly better results in correlation between the intensity evaluated and predicted for 

three OSA (Bell pepper, Cherry fresh, and Prune; Figure S2). This finding tended to highlight 

that for some OSA like Cherry fresh, the expertise alone is not sufficient to predict what it 

perceived by the panelists. Hence, condition C might provide insights in combinations of OQ 

not explored by the experts. As illustrated in Figure 7, the optimized condition C highlighted 

that more OQ Fruity was needed to predict more accurately the intensity of the OSA Cherry 

fresh in the wines. Such result can be explained by the non-targeted approach we developed. 

Indeed, expertise was collected in a generic way and experts were not aware of the studied 

food matrix. However, the matrix of the product was shown to impact the perception of 

sensory attributes. Further investigations should be performed by presenting the results 

obtained to flavorists or wines experts in order to adapt the knowledge integrated in our 

modelling strategy. Such an approach might be of interest to underline which OSA are 

connected to the wine matrix and which one can be predicted independently. This could help 

to refine the experts rules related to odor associations that can underpin complex odor 

percepts. 

The complementarity between machine learning and expertise allowed getting insights into 

olfactory attributes construction Indeed, the predictive strategy developed mimics the 

cognitive integration of odor information by reducing the information collected from odorants 

to the perception of OSA: a pool of fifty odorants was translated into 175 OD further linked to 

20 OQ thanks to the OOPS, then, fuzzy logic was used to estimate the relationships between 

the OQ and the OSA. 
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Figure 7: Comparison of the fuzzy membership functions of the OSA Cherry fresh 

between condition A and C. 
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Supplementary data 

Figure S1: Linear regression between the intensities evaluated and predicted for the 7 

simple OSA. The r-squared value (r²), p-value (p) and number of observations (n, excluding 

NA) of the regression are presented. The plot of the OSA Violet is not shown because the 

model did not predict the intensity of this OSA (n = 0). 

  



CHAPTER 5: INTEGRATIVE APPROACH BASED ON FUZZY LOGIC 

185 

Figure S2: Linear regression between the intensities evaluated and predicted for the 8 

complex OSA. The r-squared value (r²), p-value (p) and number of observations (n, excluding 

NA) of the regression are presented. 
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Table S1: Results of the linear regression between the intensity evaluated of the 7 simple 

OSA and the proportion of the corresponding OQ for 15 wines. The 15 wines correspond 

to the leave-one-out cross-validation (LOOCV) to predict the OSA intensity of the wine PN1. 

The r-squared value (r²) and p-value (p) of the regression are presented. 

 Linear regression between intensity evaluated and OQ proportion 

Cut-grass r² = -0.04, p = 0.53 

Leather r² = 0.22, p = 0.05 

Smoky r² = 0.07, p = 0.18 

Toasty r² = 0.27, p = 0.03 

Vanilla r² = 0.09, p = 0.14 

Violet r² = 0, p = NA 

Woody r² = -0.07, p = 0.74 
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Table S2: Fuzzy parameters a1 to a4 of the fuzzy membership functions linking the 

proportion of the five OQ Almond, Cooked, Floral, Fruity, Green, Peel, Spicy to the 

intensity of the OSA Prune according to the three conditions of optimization. For 

conditions 3 and 4, the fuzzy parameters are the results of the first repetition of the 

optimization. 

Condition A a1 a2 a3 a4 

Almond 0 0 0.33 1 

Cooked 0 0 0.75 1 

Fruity 0 0 0.25 1 

Honey 0 0 0.06 1 

Lactonic 0 0 0.67 1 

Condition B (Rep1) 

(Rep 1) 

a1 a2 a3 a4 

Almond 0 0 0.33 0.61 

Cooked 0 0 0.75 1 

Fruity 0 0 0.25 1 

Honey 0 0 0.06 0.97 

Lactonic 0 0 0.67 1 

Condition C (Rep1) a1 a2 a3 a4 

Almond 0 0 0.43 0.68 

Cooked 0 0.03 0.32 0.72 

Fruity 0.85 0.94 0.97 0.99 

Honey 0.02 0.04 0.32 0.60 

Lactonic 0 0.03 0.37 0.66 
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Table S3: Intensity predicted for the OSA Toasty for the 16 wines. PN: Pinot Noir wines, 

CF: Cabernet Franc wines. The maximal score for the intensity is 10. The percentage 

prediction error is calculated for each wine between the intensity evaluated by the panel and 

the one predicted for the OSA Toasty. The similarity (sim) between the intensities evaluated 

and predicted for the 16 wines is calculated following the Ruzicka similarity (Eq 6). Finally 

we perform a linear regression between the sensory and predicted OSA intensities and 

determine the r-squared value (r²) and p-value (p) of the regression. 

 Intensity evaluated Intensity predicted Percentage prediction error 

PN1 0.61 0.60 1.61 

PN2 0.51 0.49 3.15 

PN3 0.65 0.33 49.56 

PN4 0.38 0.50 31.80 

PN5 0.75 0.78 4.23 

PN6 0.59 0.59 0.88 

PN7 0.71 0.58 18.24 

PN8 0.81 0.57 29.17 

CF1 0.29 0.47 61.48 

CF2 0.54 0.35 35.70 

CF3 0.63 0.38 40.62 

CF4 0.23 0.48 103.90 

CF5 0.32 0.38 19.92 

CF6 0.34 0.51 50.72 

CF7 0.25 0.39 60.24 

CF8 0.29 0.45 56.73 

 sim = 0.75, r² = 0.14, p = 0.08  
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Table S4: Intensity predicted for the OSA Prune according to the condition A of 

optimization for the 16 wines. PN: Pinot Noir wines, CF: Cabernet Franc wines. The 

maximal score for the intensity is 10. The percentage prediction error is calculated for each 

wine between the intensity evaluated by the panel and the one predicted for the OSA Prune. 

NA means that the percentage prediction error calculation is not applicable because the 

intensity of the OSA was not predicted by the model. The similarity (sim) between the 

intensities evaluated and predicted for the 16 wines is calculated following the Ruzicka 

similarity (Eq 6). Finally we perform a linear regression between the evaluated and predicted 

OSA intensities and determine the r-squared value (r²) and p-value (p) of the regression. 

 Intensity evaluated Intensity predicted Percentage prediction error 

PN1 0.95 1.09 14.7 

PN2 0.94 0.81 13.8 

PN3 0.74 Not Predicted NA 

PN4 0.56 1.02 8.1 

PN5 0.71 0.78 9.9 

PN6 0.81 0.77 4.9 

PN7 0.95 0.58 38.9 

PN8 0.75 0.79 5.3 

CF1 0.13 Not Predicted NA 

CF2 0.63 Not Predicted NA 

CF3 0.89 Not Predicted NA 

CF4 0.38 Not Predicted NA 

CF5 0.39 Not Predicted NA 

CF6 0.49 Not Predicted NA 

CF7 0.55 Not Predicted NA 

CF8 0.55 Not Predicted NA 

 sim = 0.80, r² = 0.27, p = 0.02  
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III. Partial discussion 

 

Within the ARTICLE 3, we proposed a machine learning approach relying on flavorists’ 

expertise to predict the odor profile of wines on the basis of their chemical composition. The 

results were promising and supported the idea that converting the chemical composition of 

food products into their corresponding odor description (odor descriptors, OD and odor 

qualities OQ) and using expert knowledge to rebuild overall odor sensory attributes (OSA) is 

a good modelling strategy.  

In Figure 5.1, the estimated odor profiles of the two wines PN8 and CF7 (respectively 

identified as PN-A and CF-A in Roche et al., Article 2 of this manuscript) obtained with the 

integrative approach based on fuzzy logic (condition B of optimization) are compared with 

those obtained from the experimental sensory characterization of the wines (Villière et al., 

Data paper included in this manuscript). The comparison between the predicted and 

experimental profiles showed a good agreement between both profiles except for the Cherry-

related attributes (Cherry cooked, Cherry fresh, and Cherry stone) for both wines. Moreover, 

the OSA Violet could not be predicted for both wines and the OSA Bell pepper, Blackcurrant 

bud, and Prune for the CF-A wine (set arbitrarily at the minimum value in Figure 5.1). For the 

OSA Violet, no identified molecules in the wines carried the OD that are part of the OQ 

Violet, which is directly linked to the OSA Violet since Violet is a simple OSA according to 

expert knowledge. For the OSA Bell pepper and Prune, no identified molecules in the CF-A 

wine carried the OD that are part of the OQ Lactonic, which was used by the fuzzy rules for 

these two OSA; for the OSA Blackcurrant bud, no molecules carried the OD part of the OQ 

Vanilla used in the Blackcurrant bud fuzzy rule. 
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Figure 5.1: Radar plots illustrating the profile of the OSA in the PN-A and CF-A wines. 

Proportions of OSA are plotted in log scales (arbitrary units). Results of the fuzzy 

optimization were obtained with the condition B. PN-A corresponds to the wine PN8 and CF-

A to the wine CF7.  

 

In conclusion, even if the model might be improved in order to more accurately reflect the 

sensory aspects of wines; it was proven able to predict the intensity of several wines’ OSA on 

the basis of their chemical composition. Several perspectives can be proposed to improve the 

accuracy of the model. On the one hand, various machine learning parameters can be 

modified (optimization condition, fuzzy rules parameters). On the other hand, the increase of 

the dataset of food products’ chemical composition and sensory evaluation may be 

considered. Nevertheless, we have to keep in mind that such data might contain a part of 

uncertainty related to incomplete volatile compounds identification or inter-individual 

variability among sensory panelists. 

This innovative work opens up the scope of possibilities to integrate expertise along with 

analytical data to predict the sensory outcomes of complex odor sources. The following 

general discussion aims to point the limitations of the approach compared to the previous 

studies and to highlight several perspectives. 
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The work presented in this PhD thesis manuscript aimed to improve food flavor analysis by 

developing efficient approaches to predict the odor resulting of complex odorants’ mixtures 

such as those elicited by wines odors. To do so, we worked on two distinct but 

complementary approaches which represent the two axes of the manuscript (Figure D.1). 

 

 

Figure D.1: The two approaches presented in this manuscript in order to improve food 

flavor analysis. 
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The first axis of the manuscript explored a structural approach to predict similarity between 

odor stimuli. We tested and upgraded the angle distance model developed by Snitz et al. 

(2013) on various odorants mixtures (up to 6 odorants). Results highlighted that taking into 

account the ratio of odorants within the mixtures improved the prediction accuracy of the 

model and furthermore allowed to account for the elemental and configural processing of 

odorants’ mixtures by the olfactory system (Roche et al., Article 1 of this manuscript). The 

application of the newly developed ratio-weighted angle distance model to predict the 

similarity between highly complex odorants mixtures, namely wines, resulted in a significant 

prediction ability highlighted by the significant correlation between wines odor similarity and 

angle distances obtained with the ratio-weighted angle distance model. However, the level of 

prediction remained weak (low correlation value) in part because of the poor wines odor 

similarity data reliability, which had to be inferred from experimental sensory profiles of the 

wines. Altogether, this axis focused on predicting the similarity among mixtures of odorants 

estimated on the basis of the molecular structure of odorants, which is a first, but major step in 

getting insights in the prediction of the perceptual outcome of odorants’ mixtures. However, 

the aim of this thesis was to go beyond the similarity dimension and to predict what an 

odorants’ mixture will smell, that is to provide verbal descriptors with a quantitative aspect as 

in an odor profile, usually obtained after quantitative descriptive analysis. 

The second axis of the manuscript explored a modelling approach integrating flavor expertise 

along with chemical data to predict the odor quality of complex (real) odorants’ mixtures. The 

expertise collection from expert flavorists led to the construction of the Ontology for Odor 

Perceptual Space (OOPS), detailed in Roche et al. (Article 2 of this manuscript). The OOPS 

aimed to represent the relationships between three levels of the odor perceptual space: odor 

descriptors (OD) used to describe single odorant and available in several databases, odor 

qualities (OQ) as the corpus used by flavorists to construct their operational perceptual space, 

and odor sensory attributes (OSA) used by sensory trained panels to describe food products. 

The ontology was used as a predictive tool to estimate wines’ odor profiles (i.e. OSA 

proportions) on the basis of their chemical composition. Despite interesting prediction 

abilities, which need to be further confirmed, this approach was limited since it relied more on 

a classification into odor categories and considered the relationships between each level of the 

odor perceptual space as additive, which do not reflect the behavior of the system and the 

actual integration processes of complex odorants’ mixtures stimuli. 
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Thus, in order to take into account non-additive relationships, we integrated the OOPS in a 

broader model relying on fuzzy logic and optimization (Roche et al., Article 3 of this 

manuscript). The OOPS allowed the translation of chemical stimuli into OQ proportions. 

Then OQ proportions were modeled according to the expertise of flavorists, who identified 

rules in odor mixtures perception to elicit specific OSA. These rules were formalized using 

fuzzy logic and optimized owing to data-driven optimization procedures. The fuzzy modelling 

was proven efficient to predict the odor profiles of 16 red wines; the input of the model being 

the chemical composition of the wines and the output being the intensity of several OSA.  

In the following paragraphs, a general discussion of the different approaches considered in 

this thesis work, their limitations, and corresponding perspectives are proposed. 

 

I. Chemical and sensory data 

 

The food odor data used throughout the manuscript to test the modelling approaches were 

obtained from the chemical and sensory characterization of 16 red wines. 

The chemical analysis of the wines presents some gaps. Indeed, the results of the odorants’ 

identification listed 49 odorants and 34 non-identified compounds (Villière et al., 2018). The 

compounds non-identified might have impacted the odor perception of the wines, but it was 

not possible to assign them an odor description from the databases. Therefore, they were not 

considered during the modelling studies. One solution to overcome this issue would have 

been to take into account the odor description collected from the subjects during the gas 

chromatography - olfactometry (GC-O) step. However, the descriptors list provided during 

GC-O was not exhaustive and high inter-individual variability was observed among the 

subjects; a first mandatory step would then be to align the GC-O vocabulary with the OD 

found in databases. 

The sensory evaluation of the wines present also some bias. Even if the panelists who 

evaluated the odors of the 16 red wines were highly trained for wine profiling, their use of the 

rating scales was not highly consensual and thus resulted in a high inter-individual variability. 

In addition, several attributes (i.e. OSA) were found not discriminant between the wines 

although they were selected for this aim (Villière et al., Data paper included in this 
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manuscript). These findings may reflect either low differences between the wines, which 

would have increased the prediction difficulty, or a lack of consensus with regards to many 

attributes. One possibility to address this last issue would be to pre-process the sensory data, 

using for instance the mixed assessor model (MAM) proposed by Brockhoff et al. (2015) to 

produce normalized OSA intensity values, which may reduce uncertainty propagation within 

the models. 

 

II. Structural approach to create odor profiles 

 

The structural approach we developed aimed to predict the perceptual similarity among 

various odorants’ mixtures, especially those released by real food products.  

The estimation of similarity is an interesting approach for odor quality prediction since it 

avoids the use of semantic descriptors (Snitz et al., 2013). Indeed, semantic descriptors are 

often considered subjective and may be prone to several biases as illustrated in this 

manuscript by the difficulty in odor naming and the rather low consensus regarding the 

databases providing the odor description of molecules. Hence, the results of similarity 

approach are relative by comparing two stimuli in a discriminative process, which is less 

prone to language-related biases (Wise et al., 2000). In this thesis work, the angle distance 

model was found rather suitable for predicting the odor similarity among complex stimuli 

knowing their molecular structure. 

Therefore, one possibility to use such predictive approach within the aroma analysis path 

would be to estimate similarity or dissimilarity in simulated omission tests, which would help 

identifying key odorants. Indeed, sub-mixtures tested within the angle distance model in 

Chapter 3 may be seen as omission situations and the model was found fully suitable for such 

situations. In the aroma analysis procedure, in order to assess the odor impact of odorants 

embedded in a food product, stimuli made of odorants alone or in mixtures are experimentally 

created and compared to a reference in sensory evaluation. This is a long process and most of 

the time all the possible combinations cannot be tested. For example, Xiao et al. (2017) 

identified 36 volatiles in mandarin juices and they tested only 23 omission models to verify 

the contribution of certain volatiles. However, if one wanted to test every possible omission 

models, the sensory evaluation of thousands models would be required. Thus, the angle 
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distance approach could be applied as a quick simulation approach to estimate the impact of 

each component or components’ mixtures on the overall perception of a food product. In that 

case the predicted similarity between the reduced mixtures stimulus and the complete 

formulation would help to determine the most potent odorants or odorants’ combinations 

(Romagny et al., 2018). If the similarity between the stimuli decreases, the omitted odorants 

might impact the overall odor of the food product. Further work would be needed to verify the 

validity of this hypothesis. 

With the aim to predict the odor of food product, semantic information remains the most 

suitable one because we have previously mentioned that odors are commonly qualified by 

terms related to odor sources. In spite of previous issues evoked concerning verbal 

descriptions of odors, quantitative descriptive analysis of odor, relying on the quantitative 

rating of odor sensory attributes (OSA) was proven to be a reliable method to characterize a 

food odor with verbal terms (Strigler et al., 2009). Thus, for further work we thought about 

using the structural approach to predict the semantic profile of molecules. To do so, we 

propose to rely on data from the Atlas of odor character profiles (Dravnieks, 1985) which 

contains the sensory description of 144 molecules. Each molecule was rated for 146 semantic 

descriptors (e.g. Animal, Cinnamon, Fruity, Meaty, Metallic, Smoky) on a 0-5 scale. The 

objective will be to determine the structural vector best characterizing each one of the 146 

semantic descriptors.  

To do so, optimization techniques could be used to maximize the correlation between (i) the 

angle distance between a given molecule structural vector with the semantic descriptor 

structural vector and (ii) the semantic score of this molecule provided in the Atlas of odor 

character profiles, which would result in 144 values corresponding to the 144 molecules. 

Once the 146 semantic descriptor structural vectors obtained, it would become possible to 

calculate, for any given stimulus (single odorant or odorants’ mixture), the angle distance 

between the structural vector of this stimulus and each one of the 146 semantic structural 

vectors, which results in 146 values of similarity that represent the odor profile of the 

stimulus. The result of the structural approach will then become a semantic profile (using the 

descriptors provided in the Atlas) instead of a similarity between stimuli. This proposed 

perspective may allow predicting semantic odor profile of molecules or mixtures on the basis 

of their molecular structure. 

  



 

200 

III. Expertise integration approach 

 

The construction of the OOPS and the integrative approach based on fuzzy logic relied on 

flavorists’ expertise. The following discussion is centered on expertise integration and the 

comparison between both approaches of integration. 

 

1. Data collection 

The expertise was collected in order to establish the relationships between the three 

dimensions of the odor perceptual space (OD, OQ, and OSA). To do so, the starting point of 

the expertise elicitation was based on 15 OSA related to the sensory characterization of red 

wines. Therefore, the number of OSA considered did not cover the whole olfactory space. 

Still, there is no consensus about the minimum number of descriptors or odor categories that 

are necessary to represent the olfactory space. For instance, Dravnieks (1985) proposed the 

use of 146 semantic descriptors to fully describe a set of 144 molecules. In a recent study, 

Kumar et al. (2015) studied several databases of odorants’ description and developed a 

graphical method to find the similarity between perceptual descriptors. They found 7 major 

communities each representing a certain class of perceptual quality (Herb-Wood, Green-

Vegetable, Floral, Citrus-Oil, Earth-Meat and Sweet-Fruit). However, within each major 

category, several sub-categories are likely to be required to cover the olfactory space with a 

sufficient accuracy. It would be interesting to select several of these categories as OSA to 

complete the expertise included in the ontology. Indeed, these OSA could be proposed to the 

experts to collect data on the relationships between these new attributes and the existing OQ 

or to define new ones if necessary. This is a major advantage of the ontology formalism since 

it is flexible and thus the tool can be adapted to different food products and/or extended to 

embed new knowledge.  

 

2. Genericity 

The expertise embedded in our approach was collected toward a non-targeted food product. 

Indeed during the expertise collection, the experts were not informed that the OSA they had to 
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consider were related to wine. Thus, the collected expertise can be viewed as generic and can 

be used for the study of various food products. 

During the elicitation process, the mental concept evoked for each expert for a given OSA 

might have been different. For example, the concept Strawberry fresh might have been 

mentally processed within the framework of different matrices such as yoghurts or candies, 

for instance according to the flavorist’s specific flavor application specialty. To evaluate the 

importance of such an issue, a perspective would be to compare the generic expertise against 

the non-generic one. As mentioned in the Chapter 2, the expertise was also collected from the 

expert flavorists after they had been informed that the OSA were related to a wine matrix (the 

data were not used in the thesis). Thus, comparing results between both types of data would 

be of interest to assess the genericity of the expertise integration approach. Furthermore, one 

can expect that the knowledge gathered toward a non-targeted or targeted product might 

highlight different rules of odor mixtures perception. 

Another issue related to the food matrix is linked to the fact that the composition of a food 

product impacts the release of the odorants, thus the proportion of the odorants reaching the 

olfactory mucosa, and therefore the perception of the food odor (Coureaud et al., 2011; 

Déléris et al., 2012). The release kinetics of odorants depends on the matrix properties 

(structure, viscosity) and its constituents. For example, interactions between odorants and fats 

(van Ruth et al., 2002) or proteins (Tromelin et al., 2006) were pointed out in the literature. 

Thus, non-volatiles compounds can indirectly impact odor perception of food products. 

Concerning wines and spirits, ethanol was found to have an impact on the flavor profile of the 

products (Le Berre et al., 2007; Ickes & Cadwallader, 2017). For instance, decreasing the 

ethanol concentration in wines led to an increase of the fruity and flowery odors (Grosch, 

2001). As soon as expert flavorists usually create flavors for a given application, it is likely 

that their expertise can also empirically take into account these effects so that it cannot be 

excluded that the collection of expertise out of a food product context may face some 

limitations. 

 

3. Experts’ validation of the fuzzy formalism 

The integrative approach based on fuzzy logic was built on flavorists’ expertise. As we 

highlighted in the methodology, several choices have to be made when constructing fuzzy 
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models: data and model structuration, choice of operators, parameter ranges, fuzzy rules, 

defuzzification method… Human choices have thus a major impact at various levels of the 

fuzzy formalism (Perrot & Baudrit, 2013). 

In order to validate the fuzzy model presented in Roche et al. (Article 3 of this manuscript), 

one perspective would be to validate the model created with the experts in an interactive 

manner. By showing them the fuzzy rules and results we obtained from the three conditions of 

optimization tested, experts may point out some parameters to correct. Indeed, the 

contribution of experts into a modelling’s design applied to a food science problematic was 

shown to provide a more accurate global model (Chabin et al., 2017). Hence, visual 

interaction with the experts could help to balance experts’ knowledge with information 

automatically extracted from the chemical and sensory data. For instance, the comparison of 

the three conditions of optimization may also help to get insights on odor construction and 

these information might be confirmed or not by expertise.  

Fuzzy logic can also cope with uncertainty assessment and management. In our approach, we 

did not take into account these parameters, but we previously mentioned this issue especially 

with regard to chemical and sensory data collected within the flavor analysis path. Moreover, 

expertise may also be sensitive to uncertainty so that one can go back to the experts and ask 

them to assess their confidence regarding their answers. From this information, a fuzzy rule 

for each expert could be created while integrating uncertainty parameters. This step should 

lead to the creation of different fuzzy rules representative of each expertise and by testing 

each rules, it would be possible to compare the expertise collected. If one rule predicts more 

accurately the intensity of a given OSA, one possibility can be then to show the results to 

experts to get a feedback on the rules and at the same time record insights on complex odor 

construction. 

 

4. Knowledge representation vs. Fuzzy formalization 

The OOPS and the integrative approach based on fuzzy logic allowed the prediction of the 

odor profiles of red wines. These two predictive modelling approaches were applied to predict 

the odor profile of two wines (PN-A and CF-A wines) selected from the initial set of 16 

wines. The results of the two modelling approaches can be compared against the experimental 

sensory evaluation for these two wines. 
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The OOPS approach failed to predict the OSA Cut-grass, Leather, Toasty, Vanilla, Violet, 

and Woody for both wines, namely 6 OSA among 15. The fuzzy logic based integrative 

approach failed to predict the Cherry-related OSA (Cherry cooked, Cherry fresh, and Cherry 

stone) and the OSA Violet for both wines, that is 4 OSA among 15. This last approach also 

failed to predict the OSA Bell pepper, Blackcurrant bud, and Prune for the CF-A wine only.  

In both cases, the OSA Violet was not predicted because in the OOPS formalism, no 

identified molecules in the wines carried the OD that are part of the OQ violet, which is 

directly linked to the OSA Violet since Violet is a simple OSA. One possibility to explain this 

issue is that the molecules related to the Violet odor were among the not identified ones. It 

would be possible to test this hypothesis by considering the descriptors proposed by the panel 

during the GC-O analysis. 

Concerning the other OSA, contrasting results were obtained following the two modelling 

pathways. In the integrative approach based on fuzzy logic, no molecule in the CF-A wine 

was linked to the OQ Lactonic or to the OQ Vanilla. However, according to experts’ 

knowledge, the OQ Lactonic is integrated in the fuzzy rules to predict the OSA Bell pepper 

and Prune whereas the OQ Vanilla is integrated in the OSA Blackcurrant bud. Hence with a 

lack of these OQ in the CF-A wine, the prediction of the three OSA was not possible. One 

may wonder why these OSA were nevertheless predicted in the CF-A wine with the OOPS 

approach. In fact, the OOPS relied on expertise but followed an additive process, which is not 

the case for the fuzzy experts’ rules. Thus, even if one OQ among an OQ set contributing to 

an OSA was missing, the respective OSA can be predicted in the OOPS approach if the other 

OQ were present. Therefore, to increase the fuzzy logic based approach flexibility, it would 

be interesting to consider the OOPS additive approach only in the case of non-predicted 

values. 

Regarding the OSA Cherry (Cherry cooked, Cherry fresh, and Cherry stone), the reasons 

explaining the differences in predicted values following the two approaches are less clear yet. 

One possible explanation would be that the profiles of the wines appeared to be closer to the 

sensory data with the OOPS prediction compared to the fuzzy prediction because the outputs 

of both models are not on the same scale: the OOPS predicted a proportion of OSA whereas 

the fuzzy rules allowed the prediction of the intensity of each OSA. 

Finally, the comparison between the two modelling approaches was performed on only two 

wines of the sample set. Indeed, the OSA profile prediction from the OOPS was only made 
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for two wines out of the 16. One perspective is to compute the predicted profiles for all the 

wines in order to compare the prediction from the OOPS and the integrative fuzzy model on 

the whole sample set and thus to compare the results using statistical tests (PCA, HCPC, and 

RV coefficients). 

 

5. Rules derived from expertise 

The expertise knowledge integrated in the modelling approaches was collected from 5 

flavorists. Experts from other domain can be interviewed to increase the representativity 

and/or genericity of the knowledge embedded in both the OOPS and the fuzzy formalization. 

On the one hand, chemical scientists have knowledge about odorant’s mixtures perception. 

Indeed, some studies about odorants’ mixtures identified combination rules. For instance, 

Ferreira et al. (2016) studied 6 odorants’ mixtures and their impact on the sensory perceptions 

of wines. In this case, odorants were grouped after their chemical characteristics 

(norisoprenoids, branched acids, enolones, branched ethyl esters, major alcohol, and oak 

related compounds). By considering this type of expertise, molecules could be gathered 

according to their chemical characteristics before the modelling step in order to balance the 

relative weights of their semantic descriptors. One the other hand, sensory scientists or food-

domain experts rely on specific semantic descriptors regarding the food product they have to 

characterize. For example, lists of standardized terminology are published (caramel: 

Paravisini et al., 2014; wine: Noble et al., 1987). Such knowledge may also be advantageously 

exploited. 

However, each expertise relies on specific and different corpuses (e.g. chemical names, 

specific sensory terms) and thus the combination of expertise from different domains should 

be done with caution and likely requires further development. For instance, it would be 

necessary to verify the knowledge aggregation in an interactive manner with the experts 

involved in order to validate the expertise formalization. The main outcome of such approach 

would be to facilitate communication among experts from different domains regarding odor 

mixtures perception. 
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Within this PhD thesis we demonstrated the possibility to predict the odor sensory profile of 

complex odorants’ mixtures on the basis of their chemical composition. We applied our 

research on real food odor products being red wines. Our challenge was to integrate expert 

knowledge in our modelling approach and levered some bottlenecks of this domain. Results 

have shown the interest of such an approach, but also the complexity and multidisciplinary 

skills required to aggregate heterogeneous data. 

This work brings innovation by its ability to predict the odor of a complex food product using 

semantic attributes associated to quantitative dimension. Indeed, to the best of our knowledge, 

the only previous work performed on odorants’ mixtures focused on predicting perceptual 

similarity to avoid biases introduced by semantic information. To overcome this issue, we 

relied on mixtures’ perception rules by integrating expertise into our modelling.  

Altogether, this predictive work can contribute to industrial applications since the prediction 

of odor profiles can guide the formulation of aromas or food products. For instance, the 

developed models might be valuable in the assemblage of wines, i.e. a wine-making technique 

involving the blending of different wines prior to bottling. The key behind assemblage is to 

know which wines can be combined in order to obtain a targeted and balanced flavor. If the 

chemical composition of the wines is known, their respective odor profiles can be predicted as 

well as their profile if blended.  

Concerning food flavor analysis, the predictive tools might be suitable to simulate omission 

experiments and thus might contribute to avoid fastidious experiments and thus to save time. 

In that sense, this work may improve the efficiency of the food flavor key volatile compound 

identification. 

Concerning fundamental research, since the modelling approaches are “grey box”, it is 

possible to extract rules from the expert system, which may increase our understanding of the 

complex integration processes that govern complex odor mixture perception. 
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I. Publications 

 

Publications appeared, submitted and in preparation (starting from the most recent). 

- Arising from the thesis 

Roche, A, Thomas-Danguin, T, Lutton, E & Perrot, N. 2018. Predicting the odor profile of 

food from its chemical composition with an artificial intelligence modelling approach 

coupling fuzzy logic and expertise. In writing. 

Roche, A, Perrot, N & Thomas-Danguin, T. 2018. OOPS, the Ontology for Odor Perceptual 

Space: from molecular composition to sensory attributes of odor objects. In writing. 

Roche, A, Thomas-Danguin, T, Perrot, N & Mailand, J. 2018. Predicting odor similarity of 

complex mixtures from molecular structure. In writing. 

Villière, A, Symoneaux, R, Roche, A, Eslami, A, Perrot, N, Le Fur, Y, Prost, C, Courcoux, P, 

Vigneau, E, Thomas-Danguin, T & Guérin, L. 2018. Characterization of two red wine 

varieties using sensory descriptive analysis, volatile organic compounds (VOC) quantitative 

analysis and gas chromatography – olfactometry / mass spectrometry (GC-O-MS). Submitted 

to Data in Brief, Elsevier. 

Roche, A, Perrot, N, Chabin, T, Villière, A, Symoneaux, R & Thomas-Danguin, T. 2017. In 

silico modelling to predict the odor profile of food from its molecular composition using 

experts' knowledge, fuzzy logic and optimization: Application on wines. 2017 ISOCS/IEEE 

International Symposium on Olfaction and Electronic Nose (ISOEN), Montréal, Canada, 28-

31 May. doi:10.1109/ISOEN.2017.7968875. 

- Anterior to the thesis 

Acree, TE, Roche, A, Charrier, A & Lavin, EH. 2015. Perception of odour mixtures: elements 

and images. Flavour Science, proceedings of the XIV Weurman Flavour Research 

Symposium. Context Products Ltd., Licestershire, UK, 279 - 284. 
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II. Communications arising from the thesis 

 

Communications in French and international conventions (starting from the most recent). 

European Chemoreception Research Organization (ECRO) annual meeting. Place: Würzburg, 

Germany. Date: 5-8 September 2018. Presentation: Poster titled “Predicting odor similarity of 

complex mixtures from molecular approach”. Travel grant ECRO 2018 award obtained from 

the European Chemoreception Research Organization. 

Human Chemosensation 2018 - the lab meeting. Place: Dresden, Germany. Date: 22 - 24 

February 2018. Presentation: Poster titled “How to predict the odor profile of complex odor 

mixtures from their chemical composition?”. 

Journée des doctorants (PhD students’ day). Place: INRA Dijon, France. Date: 19 December 

2017. Presentation: 15 minutes talk titled “Wine Tuesday: Prédiction de l’odeur de vins [2 

modèles pour le prix d’un]”. 

Pangborn 2017, Sensory Science Symposium. Place: Providence, Rhode Island, USA. Date: 

20 - 24 August 2017. Presentation: Poster titled “Predicting the aromatic profile of wines from 

their chemical composition: Similarity among wines at different levels”. 

ISOEN 2017, The International Symposium on Olfaction and Electronic Nose. Place: 

Montréal, QC, Canada. Date: 28 - 31 May 2017. Presentation: Poster titled “How to predict 

the odor profile of wine from its chemical composition? In silico modelling using experts’ 

knowledge, fuzzy logic and optimization”. 

EuroSense 2016, Seventh European Conference on Sensory and Consumer Research. Place: 

Dijon, France. Date: 11 - 14 September 2016. Presentation: Poster titled “In silico modelling 

to predict the odor profile of red wines from their molecular composition using experts’ 

knowledge, fuzzy logic and optimization”. 

Journée des doctorants (PhD students’ day). Place: INRA Dijon, France. Date: 12 August 

2016. Presentation: 15 minutes talk titled “Vini, Senti, Prédit: How to predict the odor of a 

wine?”.  

Forum des Jeunes Chercheurs (Young researchers’ event). Place: Université de Besançon, 

France. Date: 16 June 2016. Presentation: Poster titled “In silico modelling to predict the odor 
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profile of food from its molecular composition using experts’ knowledge, fuzzy logic and 

optimization”. 

 

III. Award 

 

Travel grant ECRO 2018 award obtained from the European Chemoreception Research 

Organization (ECRO) to attend the ECRO annual meeting in Würzburg (Germany). 

 

IV. Scientific popularization events 

 

Scientific popularization events in French. 

Salon International de l'Agriculture (Paris International Agricultural Show). Place: Paris, 

France. Date: March 2016. Activity: Teaching visitors about the 5 tastes (Sweet, Salty, Bitter, 

Sour and Umami) with sensory tastings and questionnaires. 

 

V. International environment 

 

In the context of my PhD work, I was selected to be part of the doctoral program of the 

Agreenium International School of Research (EIR-A). This program aims to enhance the 

knowledge of PhD students with large scientific questions during two seminars (the first one 

was about “Sustainable and efficient food system: food, water and energy nexus”, the second 

one will be about “Livestock issues of tomorrow's society”). Moreover this program is 

promoting the international employability of PhD students by encouraging them to do a 

scientific internship abroad. 

I spend five months abroad, from June 1st 2017 to November 1st 2017, as a Visiting Scholar 

at the Monell Chemical Senses Center (Philadelphia, USA). This is the world leading center 

for the study of taste and smell. I was under the supervision of Dr. Joel Mainland. From this 
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collaboration, a publication is in writing (Chapter 2) and further scientific questions might be 

addressed as future collaborations. 

 

VI. Training program and seminars 

 

In addition to my thesis project, I had the opportunity to follow university courses and to 

participate at seminars. 

Concerning the courses I studied mainly statistics (R) and modelling. Concerning the 

modelling, I followed courses about MATLAB programing and a two-week course titled 

“When nature inspires engineers: evolutionary algorithms, fuzzy logic, artificial neurons” at 

AgroParisTech (Paris). 

I also studied English and attended first-aid training. I obtained my workplace first-aider 

diploma in 2017.  

Finally, I attended a scientific seminar titled “Integration of data, knowledge and models: 

from the organization of information to its modelling” within the INRA facility. 
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ABSTRACT 

Among the sensory dimensions involved in food flavor, the odor component is critical because it often determines the 

identity and the typicality of the food. Chemical flavor analysis provides a list of the odorants contained in a food 

product but is not sufficient to predict the odor resulting from their mixture. Indeed, odor perception relies on the 

processing by the olfactory system of many odorants embedded in complex mixtures and several perceptual 

interactions can occur. Thus, the prediction of the perceptual outcome of a complex odor mixture remains challenging 

and two main approaches emerge from the literature review. On the one hand, predictive approaches based on the 

molecular structure of odorants have been proposed but have been limited to single odorants only. On the other hand, 

methodologies relying on recombination strategies after the chemical analyses of flavor have been successfully 

applied to identify those odorants that are key to the food odor. However, the choices of odorants to be recombined are 

mostly based on empirical approaches. Thus, two questions arise: How can we predict the odor quality of a mixture on 

the basis of the molecular structure of its odorants? How can we improve food flavor analysis in order to predict the 

odor of a food containing several tens of odorants? These two questions are at the basis of the thesis and of this 

manuscript which is divided in two main axes. 

The first axis describes the development of a model based on the concept of angle distances computed from the 

molecular structure of odorants in order to predict the odor similarity between mixtures. The results highlight the 

importance of taking into account the odor intensity dimension to reach a good prediction level. Moreover, several 

perspectives are proposed to extend the model prediction beyond the similarity dimension and to predict more 

qualitative dimensions of odors. 

The second axis presents an innovative strategy which allows integrating experts’ knowledge in the flavor analysis 

procedure. Three different types of heterogeneous data are embedded in a mathematical model: chemical data, sensory 

data and knowledge from expert flavorists. Experts’ knowledge is integrated owing to the development of an 

ontology, which is further used to define fuzzy rules optimized by evolutionary algorithms. The final output of the 

model is the prediction of red wines’ odor profile on the basis of their odorants’ composition. Overall, the thesis work 

brings original results allowing a better understanding of food odor construction and gives insights on the underlying 

relationships within the odor perceptual space for complex mixtures. 

Keywords: Food flavor, Olfaction, Mixture of odorants, Predictive modelling, Expert knowledge, Fuzzy logic. 

RESUME 

Parmi les dimensions sensorielles engagées dans la perception de la flaveur, la composante odorante est déterminante 

car elle porte le plus souvent l’identité et la typicité d’un aliment. L’analyse chimique de la composante odorante 

repose sur une stratégie séparative qui permet d’identifier les différents odorants présents dans l’aliment. Cependant, 

la perception des odorants en mélange induit des interactions au niveau perceptif qui ne sont pas prises en compte dans 

les techniques séparatives. Les mécanismes sous-jacents aux interactions perceptives sont mal connus, ce qui limite les 

possibilités de prédiction de l’odeur d’un aliment sur la base de sa composition chimique. En réponse à cette 

problématique deux approches émergent de la revue de la littérature. La première est basée sur la prédiction d’odeur 

d’après la structure moléculaire des odorants. Cependant, les études concernent des odorants seuls et non leurs 

mélanges. La seconde repose sur la recombinaison d’odorants en mélange après l’étape d’analyse séparative, mais le 

choix des odorants à associer est essentiellement empirique. Ainsi, deux questions se posent : Comment prédire 

l'odeur de mélanges de molécules d’après la structure moléculaire des odorants? Comment améliorer l'analyse de la 

flaveur dans le but de prédire l'odeur d’aliments complexes composés de plusieurs dizaine d’odorants en mélanges? 

Ces deux questions ont été abordées dans cette thèse dont les travaux sont décrits dans ce manuscrit selon deux axes 

principaux. 

Le premier axe décrit l'utilisation et le développement d’un modèle basé sur le concept des distances angulaires 

calculées à partir de la structure moléculaire des odorants avec pour objectif de prédire la similarité perceptive de 

mélanges plus ou moins complexes d’odorants. Les résultats soulignent l'importance de prendre en compte la 

dimension d'intensité des odorants afin d’améliorer la qualité de la prédiction. Des perspectives d’amélioration du 

modèle sont dégagées pour permettre de dépasser la dimension de similarité et prédire des dimensions qualitatives de 

l’odeur. 

Le deuxième axe présente une démarche originale d’intégration de connaissances liées à l’expertise dans la procédure 

d'analyse de la flaveur. Ainsi, trois types de données hétérogènes sont agrégés dans un modèle mathématique global : 

des données chimiques, des données sensorielles et des connaissances d’experts aromaticiens. L'expertise est intégrée 

à travers la création d'une ontologie qui est ensuite associée à une approche de logique floue optimisée par algorithme 

évolutionnaire. Le modèle développé permet de prédire le profil odorant de seize vins rouges sur la base de leur 

composition en odorants. Au final, l’ensemble des travaux menés dans cette thèse apporte des résultats originaux 

permettant une meilleure compréhension de la construction des odeurs des aliments et permet d’élaborer des 

hypothèses quant aux relations sous-jacentes de l'espace perceptif des odeurs en mélanges complexes. 

Mots-clés : Flaveur des aliments, Olfaction, Mélange d’odorants, Modélisation prédictive, Expertise, Logique floue. 


