E. Albert, J. Gricourt, N. Bertin, J. Bonnefoi, S. Pateyron et al., Genotype by watering regime interaction in cultivated tomato: lessons from linkage mapping and gene expression, Theor. Appl. Genet, vol.129, pp.395-418, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01353279

V. Baldazzi, A. Pinet, G. Vercambre, C. Bénard, B. Biais et al., In-silico analysis of water and carbon relations under stress conditions. A multi-scale perspective centered on fruit, Front. Plant Sci, vol.4, p.495, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02651667

N. Bertin, P. Martre, M. Génard, B. Quilot, and C. Salon, Under what circumstances can process-based simulation models link genotype to phenotype for complex traits? Case-study of fruit and grain quality traits, J. Exp. Bot, vol.61, pp.955-967, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01189446

A. Blum, Plant Breeding for Water-Limited Environments, 2011.

G. Bodner, A. Nakhforoosh, and H. Kaul, Management of crop water under drought: a review, Agron. Sustain. Dev, vol.35, pp.401-442, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01284303

K. J. Boote, M. J. Kropff, and P. S. Bindraban, Physiology and modelling of traits in crop plants: implications for genetic improvement, Agric. Syst, vol.70, pp.395-420, 2001.

K. W. Broman, H. Wu, ?. Sen, and G. A. Churchill, R/qtl: QTL mapping in experimental crosses, Bioinformatics, vol.19, pp.889-890, 2003.

P. Bussières, Water import in the young tomato fruit limited by pedicel resistance and calyx transpiration, Funct. Plant Biol, vol.29, pp.631-641, 2002.

P. Bussiéres, N. Bertin, C. E. Morris, C. Vigne, P. Orlando et al., High external sucrose concentration inhibits the expansion of detached tomato fruits grown in a novel semi-open device, Frontiers in Plant Science | www.frontiersin.org, vol.47, p.1841, 2011.

S. Chapman, M. Cooper, D. Podlich, and G. Hammer, Evaluating plant breeding strategies by simulating gene action and dryland environment effects, Agron. J, vol.95, pp.99-113, 2003.

D. J. Cosgrove, Plant cell wall extensibility: connecting plant cell growth with cell wall structure, mechanics, and the action of wall-modifying enzymes, J. Exp. Bot, vol.67, pp.463-476, 2016.

K. Deb, A. Pratap, S. Agarwal, and T. A. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Trans. Evol. Comput, vol.6, pp.182-197, 2002.

W. Ding, L. Xu, Y. Wei, F. Wu, D. Zhu et al., Genetic algorithm based approach to optimize phenotypical traits of virtual rice, J. Theor. Biol, vol.403, pp.59-67, 2016.

S. Dray and A. Dufour, The ade4 package: implementing the duality diagram for ecologists, J. Stat. Softw, vol.22, pp.1-20, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00434575

S. Fishman and M. Génard, A biophysical model of fruit growth: simulation of seasonal and diurnal dynamics of mass, Plant Cell Environ, vol.21, pp.739-752, 1998.
URL : https://hal.archives-ouvertes.fr/hal-02685785

A. Frary, T. C. Nesbitt, A. Frary, S. Grandillo, E. Van-der-knaap et al., Fw2. 2: a quantitative trait locus key to the evolution of tomato fruit size, Science, vol.289, pp.85-88, 2000.

P. Gong, J. Zhang, H. Li, C. Yang, C. Zhang et al., Transcriptional profiles of drought-responsive genes in modulating transcription signal transduction, and biochemical pathways in tomato, J. Exp. Bot, vol.61, pp.3563-3575, 2010.

A. J. Hall, P. E. Minchin, M. J. Clearwater, and M. Génard, A biophysical model of kiwifruit (Actinidia deliciosa) berry development, J. Exp. Bot, vol.64, pp.5473-5483, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02650407

J. A. Labate, L. D. Robertson, and A. M. Baldo, Multilocus sequence data reveal extensive departures from equilibrium in domesticated tomato (Solanum lycopersicum L.). Heredity (Edinb), vol.103, pp.257-267, 2009.

E. S. Lander and D. Botstein, Mapping mendelian factors underlying quantitative traits using RFLP linkage maps, Genetics, vol.121, pp.185-199, 1989.

M. Lechaudel, G. Vercambre, F. Lescourret, F. Normand, and M. Génard, An analysis of elastic and plastic fruit growth of mango in response to various assimilate supplies, Tree Physiol, vol.27, pp.219-230, 2007.
URL : https://hal.archives-ouvertes.fr/hal-02662635

L. Lecomte, V. Saliba-colombani, A. Gautier, M. Gomez-jimenez, P. Duffé et al., Fine mapping of QTLs for the fruit architecture and composition in fresh market tomato, on the distal region of the long arm of chromosome 2, Mol. Breed, vol.13, pp.1-14, 2004.

F. Lescourret and M. Génard, A virtual peach fruit model simulating changes in fruit quality during the final stage of fruit growth, Tree Physiol, vol.25, pp.1303-1315, 2005.
URL : https://hal.archives-ouvertes.fr/hal-02675141

F. Lescourret, M. Génard, R. Habib, and S. Fishman, Variation in surface conductance to water vapor diffusion in peach fruit and its effects on fruit growth assessed by a simulation model, Tree Physiol, vol.21, pp.735-741, 2001.
URL : https://hal.archives-ouvertes.fr/hal-02671705

V. Letort, P. Mahe, P. H. Cournède, P. De-reffye, and B. Courtois, Quantitative genetics and functional-structural plant growth models: simulation of quantitative trait loci detection for model parameters and application to potential yield optimization, Ann. Bot, vol.101, pp.1243-1254, 2008.
URL : https://hal.archives-ouvertes.fr/halsde-00288538

H. F. Liu, M. Génard, S. Guichard, and N. Bertin, Model-assisted analysis of tomato fruit growth in relation to carbon and water fluxes, J. Exp. Bot, vol.58, pp.3567-3580, 2007.
URL : https://hal.archives-ouvertes.fr/hal-02667654

C. Lu, J. L. Han, F. J. Hu, and T. G. Qin, Mathematical model of wheat stalk lodging-resistance during the later growth period, Math. Pract. Theory, vol.42, pp.46-53, 2012.

M. Mazzeo, Xylem Transport Efficiency and Calcium Accumulation in Fruit of Actinidia deliciosa: Implications for Fruit Quality, 2008.

S. Osorio, Y. Ruan, and A. R. Fernie, An update on sourceto-sink carbon partitioning in tomato, Front. Plant Sci, vol.5, p.516, 2014.

L. Pascual, E. Albert, C. Sauvage, J. Duangjit, J. P. Bouchet et al., Dissecting quantitative trait variation in the resequencing era: complementarity of bi-parental, multi-parental and association panels, Plant Sci, vol.242, pp.120-130, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02635859

R. Qi, Y. T. Ma, B. G. Hu, P. De-reffye, and P. H. Cournede, Optimization of source-sink dynamics in plant growth for ideotype breeding: a case study on maize, Comput. Electron. Agric, vol.71, pp.96-105, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00493526

B. Quilot, J. Kervella, M. Génard, and F. Lescourret, Analysing the genetic control of peach fruit quality through an ecophysiological model combined with a QTL approach, J. Exp. Bot, vol.56, pp.3083-3092, 2005.
URL : https://hal.archives-ouvertes.fr/hal-02675468

B. Quilot-turion, M. Ould-sidi, A. Kadrani, N. Hilgert, M. Génard et al., Optimization of parameters of the 'Virtual Fruit' model to design peach genotype for sustainable production systems, Eur. J. Agron, vol.42, pp.34-48, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02644612

D. Ran?i?, S. P. Quarrie, and I. Pe?inar, Anatomy of tomato fruit and fruit pedicel during fruit development, Microscopy: Science, Technology, Applications and Education, pp.851-861, 2010.

M. C. Rebolledo, M. Dingkuhn, B. Courtois, Y. Gibon, A. Clement-vidal et al., Phenotypic and genetic dissection of component traits for early vigour in rice using plant growth modelling, sugar content analyses and association mapping, J. Exp. Bot, vol.66, pp.5555-5566, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02636970

M. Reymond, B. Muller, A. Leonardi, A. Charcosset, and F. Tardieu, Combining quantitative trait loci analysis and an ecophysiological model to analyze the genetic variability of the responses of maize leaf growth to temperature and water deficit, Plant Physiol, vol.131, pp.664-675, 2003.

J. Ripoll, L. Urban, and N. Bertin, The potential of the MAGIC TOM parental accessions to explore the genetic variability in tomato acclimation to repeated cycles of water deficit and recovery. Front, Plant Sci, vol.6, p.1172, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01273701

J. Ripoll, L. Urban, B. Brunel, and N. Bertin, Water deficit effects on tomato quality depend on fruit developmental stage and genotype, J. Plant Physiol, vol.190, pp.26-35, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02638022

J. Ripoll, L. Urban, M. Staudt, F. Lopez-lauri, L. P. Bidel et al., Water shortage and quality of fleshy fruits-making the most of the unavoidable, J. Exp. Bot, vol.65, pp.4097-4117, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01268584

R. P. Rötter, F. Tao, J. G. Höhn, and T. Palosuo, Use of crop simulation modelling to aid ideotype design of future cereal cultivars, J. Exp. Bot, vol.66, pp.3463-3476, 2015.

Y. Ruan and J. W. Patrick, The cellular pathway of postphloem sugar transport in developing tomato fruit, Planta, vol.196, pp.434-444, 1995.

V. Saliba-colombani, M. Causse, D. Langlois, J. Philouze, and M. Buret, Genetic analysis of organoleptic quality in fresh market tomato. 1. Mapping QTLs for physical and chemical traits, Theor. Appl. Genet, vol.102, pp.259-272, 2001.
URL : https://hal.archives-ouvertes.fr/hal-02828106

A. Saltelli, M. Ratto, T. Andres, F. Campolongo, J. Cariboni et al., Global Sensitivity Analysis: The Primer. Chichester: John Wiley and sons, 2008.

M. A. Semenov, P. Stratonovitch, F. Alghabari, and M. J. Gooding, Adapting wheat in Europe for climate change, J. Cereal Sci, vol.59, pp.245-256, 2014.

S. Sevanto, Phloem transport and drought, J. Exp. Bot, vol.65, pp.1751-1759, 2014.

K. A. Shackel, C. Greve, J. M. Labavitch, and H. Ahmadi, Cell turgor changes associated with ripening in tomato pericarp tissue, Plant Physiol, vol.97, pp.814-816, 1991.

M. O. Sidi, B. Quilot-turion, A. Kadrani, M. Génard, and F. Lescourret, The Relationship between metaheuristics stopping criteria and performances: cases of NSGA-II and MOPSO-CD for sustainable peach fruit design, Int. J. Appl. Metaheuristic Comput. (IJAMC), vol.5, pp.44-70, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02637046

F. Tardieu, Virtual plants: modelling as a tool for the genomics of tolerance to water deficit, Trends Plant Sci, vol.8, pp.9-14, 2003.

F. Tardieu, Any trait or trait-related allele can confer drought tolerance: just design the right drought scenario, J. Exp. Bot, vol.63, pp.25-31, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02651328

, Frontiers in Plant Science | www.frontiersin.org, vol.16, p.1841, 2016.

S. Aflitos, E. Schijlen, and H. De-jong, Exploring genetic variation in the tomato (Solanum section Lycopersicon) clade by whole-genome sequencing, The Plant Journal, vol.80, issue.1, pp.136-184, 2014.

A. A. Albacete, C. Martínez-andújar, and F. Pérez-alfocea, Hormonal and metabolic regulation of source-sink relations under salinity and drought: From plant survival to crop yield stability, Biotechnology Advances, vol.32, issue.1, pp.12-30, 2014.

E. Albert, J. Gricourt, N. Bertin, J. Bonnefoi, S. Pateyron et al., Genotype by watering regime interaction in cultivated tomato: lessons from linkage mapping and gene expression, Theoretical and Applied Genetics, vol.129, issue.2, pp.395-418, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01353279

M. J. Asins, V. Raga, D. Roca, A. Belver, and E. A. Carbonell, Genetic dissection of tomato rootstock effects on scion traits under moderate salinity, Theoretical and Applied Genetics, vol.128, issue.4, pp.667-79, 2015.

H. Auerswald, P. Peters, and B. Bruckner, Sensory analysis and instrumental measurements of shortterm stored tomatoes (Lycopersicon esculentum Mill, Postharvest Biology and Technology, vol.15, pp.323-357, 1999.

R. S. Austin, D. Vidaurre, G. Stamatiou, R. Breit, N. J. Provart et al., Next-generation mapping of Arabidopsis genes, The Plant Journal, vol.67, pp.715-740, 2011.

F. Azanza, T. E. Young, D. Kim, S. D. Tanksley, and J. A. Juvik, Characterization of the effects of introgressed segments of chromosome 7 and 10 from Lycopersicon chmielewskii on tomato soluble solids, pH and yield, Theoretical and Applied Genetics, vol.87, pp.965-72, 1994.

E. Baldwin, J. Scott, C. Shewmaker, and W. Schuch, Flavor trivia and tomato aroma: biochemistry and possible mechanisms for control of important aroma components, Hortscience, vol.35, pp.1013-1035, 2000.

A. R. Ballester, J. Molthoff, and R. De-vos, Biochemical and molecular analysis of pink tomatoes: deregulated expression of the gene encoding transcription factor SlMYB12 leads to pink tomato fruit color, Plant Phys, vol.152, pp.71-84, 2010.

L. S. Barrero, B. Cong, and F. Wu, Developmental characterization of the fasciated locus and mapping of Arabidopsis candidate genes involved in the control of floral meristem size and carpel number in tomato, Genome, vol.49, pp.991-1006, 2006.

L. S. Barrero and S. D. Tanksley, Evaluating the genetic basis of multiple-locule fruit in a broad cross section of tomato cultivars, Theoretical and Applied Genetics, vol.109, pp.669-79, 2004.

C. S. Barry, G. M. Aldridge, and G. Herzog, Altered chloroplast development and delayed fruit ripening caused by mutations in a zinc metalloprotease at the lutescent2 locus of tomato, Plant Physiology, vol.159, issue.3, pp.1086-98, 2012.

C. S. Barry, R. P. Mcquinn, and M. Y. Chung, Amino acid substitutions in homologs of the STAY-GREEN protein are responsible for the green-flesh and chlorophyll retainer mutations of tomato and pepper, Plant Physiology, vol.147, issue.1, pp.179-87, 2008.

L. M. Bartoshuk and K. Hj, Better fruits and vegetables through sensory analysis, Current Biology, vol.23, pp.374-382, 2013.

G. W. Bassel, R. T. Mullen, and J. D. Bewley, Procera is a putative DELLA mutant in tomato (Solanum lycopersicum): effects on the seed and vegetative plant, Journal of Experimental Botany, vol.59, issue.3, pp.585-93, 2008.

G. Bauchet, S. Munos, C. Sauvage, J. Bonnet, . Grivet et al., Genes involved in floral meristem in tomato exhibit drastically reduced genetic diversity and signature of selection, BMC Plant Biology, vol.14, issue.2, p.279, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02641364

J. Beaulieu, T. K. Doerksen, and J. Mackay, Genomic selection accuracies within and between environments and small breeding groups in white spruce, BMC Genomics, vol.15, issue.1, pp.1-16, 2014.

. Bellec-gauche, Case Study: multidimensional comparison of local and global fresh tomato supply chains, p.56, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02800678

D. Bernacchi, T. Beck-bunn, D. Emmatty, Y. Eshed, S. Inai et al., Advanced backcross QTL analysis of tomato. II. Evaluation of near-isogenic lines carrying single-donor introgressions for desirable wild QTL-alleles derived from Lycopersicon hirsutum and L. pimpinellifolium, Theoretical and Applied Genetics, vol.97, pp.170-80, 1998.

D. Bernacchi, T. Beck-bunn, Y. Eshed, J. Lopez, V. Petiard et al., Advanced backcross QTL analysis in tomato. I. Identification of QTLs for traits of agronomic importance from Lycopersicon hirsutum, Theoretical and Applied Genetics, vol.97, pp.381-97, 1998.

R. Bernardo, Molecular markers and selection for complex traits in plants: learning from the last 20 years, Crop Science, vol.48, issue.5, pp.1649-64, 2008.

R. Bernardo and J. Yu, Prospects for Genomewide Selection for Quantitative Traits in Maize All rights reserved, Crop Science, vol.47, issue.3, pp.1082-90, 2007.

N. Bertin, S. Guichard, C. Leonardi, J. J. Longuenesse, D. Langlois et al., Seasonal evolution of the quality of fresh glasshouse tomatoes under Mediterranean conditions, as affected by air vapour pressure deficit and plant fruit load, Annals of Botany, vol.85, issue.6, pp.741-50, 2000.
URL : https://hal.archives-ouvertes.fr/hal-02691828

N. Bertin, P. Martre, M. Génard, B. Quilot, and C. Salon, Under what circumstances can processbased simulation models link genotype to phenotype for complex traits? Case-study of fruit and grain quality traits, Journal of Experimental Botany, p.377, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01189446

J. Blanca, J. Canizares, and L. Cordero, Variation Revealed by SNP Genotyping and Morphology Provides Insight into the Origin of the Tomato, PLoS ONE, vol.7, issue.10, p.48198, 2012.

J. Blanca, J. Montero-pau, and C. Sauvage, Genomic variation in tomato, from wild ancestors to contemporary breeding accessions, BMC Genomics, vol.16, issue.1, p.257, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02638064

A. Bolger, F. Scossa, and M. E. Bolger, The genome of the stress-tolerant wild tomato species Solanum pennellii, Nature Genetics, vol.46, issue.9, pp.1034-1042, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01204066

B. Da and M. H. Harpster, Cell wall metabolism in fruit softening and quality and its manipulation in transgenic plants, Plant Molecular Biology, vol.47, pp.311-350, 2001.

B. L. Busch, G. Schmitz, S. Rossmann, F. Piron, J. Ding et al., Shoot branching and leaf dissection in tomato are regulated by homologous gene modules, The Plant Cell, vol.23, issue.10, pp.3595-609, 2011.

D. Cantu, A. R. Vicente, and L. C. Greve, The intersection between cell wall disassembly, ripening, and fruit susceptibility to Botrytis cinerea, Proceedings of the National Academy of Sciences of the USA 105, pp.859-64, 2008.

M. Causse, M. Buret, K. Robini, and P. Verschave, Inheritance of nutritional and sensory quality traits in fresh market tomato and relation to consumer preferences, Journal of Food Science, vol.68, pp.2342-50, 2003.
URL : https://hal.archives-ouvertes.fr/hal-02676797

M. Causse, J. Chaïb, and L. Lecomte, Both additivity and epistasis control the genetic variation for fruit quality traits in tomato, Theoretical and Applied Genetics, vol.115, pp.429-471, 2007.
URL : https://hal.archives-ouvertes.fr/hal-02656767

M. Causse, P. Duffe, M. C. Gomez, M. Buret, R. Damidaux et al., A genetic map of candidate genes and QTLs involved in tomato fruit size and composition, Journal of Experimental Botany, vol.55, pp.1671-85, 2004.
URL : https://hal.archives-ouvertes.fr/hal-02679748

M. Causse, C. Friguet, and C. Coiret, Consumer preferences for fresh tomato at the European scale: a Appendix 2 common segmentation on taste and firmness, Journal of Food Science, vol.75, pp.531-572, 2010.

M. Causse, R. Stevens, B. Amor, and B. , Breeding for fruit quality, Breeding for Fruit Quality, pp.279-305, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02803544

J. Chaïb, M. F. Devaux, M. Grotte, K. Robini, M. Causse et al., Physiological relationships among physical, sensory, and morphological attributes of texture in tomato fruits, Journal of Experimental Botany, vol.58, pp.1915-1940, 2007.

M. Chakrabarti, N. Zhang, C. Sauvage, S. Munos, J. Blanca et al., A cytochrome P450 CYP78A regulates a domestication trait in tomato (Solanum lycopersicum), Proceedings of the National Academy of Sciences of the USA, vol.110, issue.42, pp.17125-17155, 2013.

N. H. Chapman, J. Bonnet, L. Grivet, J. Lynn, N. Graham et al., High-resolution mapping of a fruit firmness-related quantitative trait locus in tomato reveals epistatic interactions associated with a complex combinatorial locus, Plant Physiology, vol.159, pp.1644-57, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02645571

F. Q. Chen, M. R. Foolad, J. Hyman, C. St, . Da et al., Mapping of QTLs for lycopene and other fruit traits in a Lycopersicon esculentum × L. pimpinellifolium cross and comparison of QTLs across tomato species, Molecular Breeding, vol.5, pp.283-99, 1999.

G. P. Chen, R. Hackett, and D. Walker, Identification of a specific isoform of tomato lipoxygenase (TomloxC) involved in the generation of fatty acid-derived flavor compounds, Plant Physiology, vol.136, pp.2641-51, 2004.

C. Tabaeizadeh and Z. , Expression and molecular cloning of drought-induced genes in the wild tomato Lycopersicon chilense, Biochemistry and Cell Biology, vol.70, pp.199-206, 1992.

R. T. Chetelat, E. Klann, J. W. Deverna, Y. S. Bennett, and A. B. , Inheritance and genetic mapping of fruit sucrose accumulation in Lycopersicon chmielewskii, The Plant Journal, vol.4, pp.643-50, 1993.

B. Cong, L. S. Barrero, and S. D. Tanksley, Regulatory change in YABBY-like transcription factor led to evolution of extreme fruit size during tomato domestication, 2008.

D. J. Cosgrove, Cell wall loosening by expansins, Plant Physiology, vol.118, pp.333-342, 1998.

J. M. Costa, M. F. Ortuño, and M. M. Chaves, Deficit irrigation as a strategy to save water: physiology and potential application to horticulture, Journal of Integrative Plant Biology, vol.49, issue.10, pp.1421-1455, 2007.

J. N. Davies and G. E. Hobson, The constituents of tomato fruit -The influence of environment, nutrition and genotype, Critical Review of Food Science and Nutrition, vol.15, pp.205-80, 1981.

M. C. De-vicente and T. Sd, QTL analysis of transgressive segregation in an interspecific tomato cross, Genetics, vol.134, pp.585-96, 1993.

M. Dinar and M. A. Stevens, The relationship between starch accumulation and soluble solids content of tomato fruits, Journal of the American Society for Horticultural Science, vol.106, pp.415-433, 1981.

S. Doganlar, A. Frary, H. Ku, and S. D. Tanksley, Mapping quantitative trait loci in inbred backcross lines of Lycopersicon pimpinellifolium (LA1589), Genome, vol.45, pp.1189-202, 2002.

M. Dorais, A. P. Papadopoulos, and A. Gosselin, Greenhouse tomato fruit quality, Horticulture Review, vol.26, pp.239-319, 2001.

J. Duangjit, M. Causse, and C. Sauvage, Efficiency of genomic selection for tomato fruit quality, Molecular Breeding, vol.36, issue.3, pp.1-16, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01285248

M. El-soda, M. Malosetti, B. J. Zwaan, M. Koornneef, and M. G. Aarts, Genotype× environment interaction QTL mapping in plants: lessons from Arabidopsis, Trends in Plant Science, vol.19, issue.6, pp.390-398, 2014.

Y. Eshed and D. Zamir, An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield associated QTL, Genetics, vol.141, pp.1147-62, 1995.

Y. Eshed and D. Zamir, Less-than-additive epistatic interactions of quantitative trait loci in tomato, Genetics, vol.143, pp.1807-1824, 1996.

E. Fereres and M. A. Soriano, Deficit irrigation for reducing agricultural water use, Journal of Experimental Botany, vol.58, issue.2, pp.147-59, 2007.

S. Fishman and M. Génard, A biophysical model of fruit growth: simulation of seasonal and diurnal dynamics of mass, Plant, Cell & Environment, vol.21, issue.8, pp.739-52, 1998.
URL : https://hal.archives-ouvertes.fr/hal-02685785

A. Fodor, V. Segura, and M. Denis, Genome-Wide Prediction Methods in Highly Diverse and Heterozygous Species: Proof-of-Concept through Simulation in Grapevine, PLoS ONE, vol.9, issue.11, p.110436, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01268775

A. Frary, S. Doganlar, A. Frampton, T. Fulton, J. Uhlig et al., Fine mapping of quantitative trait loci for improved fruit characteristics from Lycopersicon chmielewskii chromosome 1, 2003.

, Genome, vol.46, pp.235-278

A. Frary, T. M. Fulton, D. Zamir, and S. D. Tanksley, Advance backcross QTL analysis of a Lycopersicon esculentum x L. pennellii cross and identification of possible orthologs in the Solanaceae, Theoretical and Applied Genetics, vol.108, pp.485-96, 2004.

A. Frary, T. C. Nesbitt, A. Frary, S. Grandillo, E. Van-der-knaap et al., fw-2.2: a quantitative trait locus key to the evolution of tomato fruit size, Science, vol.289, pp.85-93, 2000.

R. G. Fray and D. Grierson, Identification and genetic analysis of normal and mutant phytoene synthase genes of tomato by sequencing, complementation and co-suppression, Plant Molecular Biology, vol.22, issue.4, pp.589-602, 1993.

E. Fridman, F. Carrari, Y. S. Liu, A. R. Fernie, and D. Zamir, Zooming in on a quantitative trait for tomato yield using interspecific introgressions, Science, vol.305, pp.1786-1795, 2004.

E. Fridman, T. Pleban, and D. Zamir, A recombination hotspot delimits a wild-species quantitative trait locus for tomato sugar content to 484 bp within an invertase gene, Proceedings of the National Academy of Sciences of the USA 97, pp.4718-4741, 2000.

E. Fridman and D. Zamir, Functional divergence of a syntenic invertase gene family in tomato, potato, and Arabidopsis, Plant Physiology, vol.131, pp.603-612, 2003.

T. M. Fulton, T. Beck-bunn, D. Emmatty, Y. Eshed, J. Lopez et al., QTL analysis of an advanced backcross of Lycopersicon peruvianum to the cultivated tomato and comparisons with QTLs found in other wild species, Theoretical and Applied Genetics, vol.95, pp.881-94, 1997.

T. M. Fulton, P. Bucheli, E. Voirol, J. Lopez, V. Petiard et al., Quantitative trait loci (QTL) affecting sugars, organic acids and other biochemical properties possibly contributing to flavor, identified in four advanced backcross populations of tomato, Euphytica, vol.127, pp.163-77, 2002.

T. M. Fulton, S. Grandillo, T. Beck-bunn, E. Fridman, A. Frampton et al., Advanced backcross QTL analysis of a Lycopersicon esculentum x Lycopersicon parviflorum cross, Theoretical and Applied Genetics, vol.100, pp.1025-1067, 2000.

H. Gautier, V. Diakou-verdin, C. Bénard, M. Reich, M. Buret et al., How does tomato quality (sugar, acid, and nutritional quality) vary with ripening stage, temperature, and irradiance?, Journal of Agricultural and Food Chemistry, vol.56, issue.4, pp.1241-50, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02667193

H. Gautier, F. Lopez-lauri, C. Massot, R. Murshed, I. Marty et al., Impact of ripening and salinity on tomato fruit ascorbate content and enzymatic activities related to ascorbate Goulet, Proceedings of the National Academy of Sciences of the USA, vol.109, pp.19009-19023, 2010.

S. Grandillo, H. M. Ku, and S. D. Tanksley, Identifying the loci responsible for natural variation in fruit size and shape in tomato, Theoretical and Applied Genetics, vol.99, pp.978-87, 1999.

S. Grandillo and S. D. Tanksley, QTL analysis of horticultural traits differentiating the cultivated tomato from the closely related species Lycopersicon pimpinellifolium, Theoretical and Applied Genetics, vol.92, pp.935-51, 1996.

S. Guichard, N. Bertin, C. Leonardi, and C. Gary, Tomato fruit quality in relation to water and carbon fluxes, Agronomie, vol.21, issue.4, pp.385-92, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00886126

S. Guichard, C. Gary, C. Leonardi, and N. Bertin, Analysis of growth and water relations of tomato fruits in relation to air vapor pressure deficit and plant fruit load, Journal of Plant Growth Regulation, vol.24, issue.3, pp.201-214, 2005.
URL : https://hal.archives-ouvertes.fr/hal-01578859

A. Gur, Y. Semel, S. Osorio, M. Friedmann, S. Seekh et al., Yield quantitative trait loci from wild tomato are predominately expressed by the shoot, Theoretical and Applied Genetics, vol.122, issue.2, pp.405-425, 2011.

A. J. Hall, P. E. Minchin, M. J. Clearwater, and M. Génard, A biophysical model of kiwifruit (Actinidia deliciosa) berry development, Journal of Experimental Botany, p.317, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02650407

J. P. Hamilton, S. Sim, and K. Stoffel, Single Nucleotide Polymorphism Discovery In Cultivated Tomato Via Sequencing By Synthesis, Plant Gene, vol.5, issue.1, pp.17-29, 2012.

F. R. Harker, R. J. Redgwell, and I. C. Hallett, Texture of fresh fruit, Horticultural Reviews, vol.20, pp.121-224, 1997.

C. Henderson, Best linear unbiased estimation and prediction under a selection model, Biometrics, vol.31, issue.423, p.423, 1975.

L. C. Hileman, J. F. Sundstrom, and A. Litt, Molecular and phylogenetic analyses of the MADS-Box gene family in tomato, Molecular Biology and Evolution, vol.23, pp.2245-58, 2006.

L. C. Ho, The mechanism of assimilate partitioning and carbohydrate compartmentation in fruit in relation to the quality and yield of tomato, Journal of Experimental Botany, vol.47, pp.1239-1282, 1996.

G. E. Hobson and L. Bedford, The composition of cherry tomatoes and its relation to consumer acceptability, Journal of Horticulture Science, vol.64, pp.321-330, 1989.

R. Hovav, N. Chehanovsky, and M. Moy, The identification of a gene (Cwp1), silenced during Solanum evolution, which causes cuticle microfissuring and dehydration when expressed in tomato fruit, The Plant Journal, vol.52, issue.4, pp.627-666, 2007.

T. Isaacson, R. G. Zamir, and D. , Cloning of tangerine from tomato reveals a carotenoid isomerase essential for the production of beta-carotene and xanthophylls in plants, The Plant Cell, vol.14, issue.2, pp.333-375, 2002.

Y. Ito, M. Kitagawa, and N. Ihashi, DNA-binding specificity, transcriptional activation potential, and the Appendix 2 rin mutation effect for the tomato fruit-ripening regulator RIN, The Plant Journal, vol.55, pp.212-235, 2008.

R. C. Jansen, J. W. Van-ooijen, P. Stam, C. Lister, and C. Dean, Genotype-by-environment interaction in genetic mapping of multiple quantitative trait loci, Theoretical and Applied Genetics, vol.91, issue.1, pp.33-40, 1995.

S. Jin, C. Ccs, and A. L. Plant, Regulation byABAof osmoticstress-induced changes in protein synthesis in tomato roots, Plant, Cell & Environment, vol.23, pp.51-60, 2000.

L. Johansson, A. Haglund, and L. Berglund, Preference for tomatoes, affected by sensory attributes and information about growth conditions, Food Quality and Preference, vol.10, pp.289-98, 1999.

L. Johansson, A. Haglund, and L. Berglund, Preference for tomatoes, affected by sensory attributes and information about growth conditions, Food Quality and Preference, vol.10, pp.289-98, 1999.

P. R. Johnstone, T. K. Hartz, M. Lestrange, J. J. Nunez, and E. M. Miyao, Managing fruit soluble solids with late-season deficit irrigation in drip-irrigated processing tomato production, Hortscience, vol.40, issue.6, pp.1857-61, 2005.

E. Jonas and D. De-koning, Does genomic selection have a future in plant breeding?, Trends in Biotechnology, vol.31, issue.9, pp.497-504, 2013.

R. A. Jones, Breeding for improved post-harvest tomato quality: genetical aspects, Acta Horticulturae, vol.190, pp.77-87, 1986.

A. Kader, L. Morris, M. Stevens, and M. Albrightholton, Composition and flavor quality of fresh market tomatoes as influenced by some post-harvest handling procedures, Journal of the American Society for Horticultural Science, vol.103, pp.6-13, 1978.

H. J. Klee, Improving the flavor of fresh fruits: genomics, biochemistry, and biotechnology, New Phytologist, vol.187, pp.44-56, 2010.

K. Hj and D. M. Tieman, Genetic challenges of flavor improvement in tomato, Trends in Genetics, vol.29, pp.257-62, 2013.

A. Korte, B. J. Vilhjálmsson, V. Segura, A. Platt, Q. Long et al., A mixed-model approach for genome-wide association studies of correlated traits in structured populations, Nature Genetics, vol.44, issue.9, pp.1066-71, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01267803

S. Kumar, D. Chagnä, and M. C. Bink, Genomic selection for fruit quality traits in apple, Malus domestica Borkh.). PLoS ONE, vol.7, 2012.

J. A. Labate, S. Grandillo, T. Fulton, S. Muños, A. L. Caicedo et al., Genome Mapping and Molecular Breeding in Plants, vol.5, pp.11-135, 2007.

M. Léchaudel and J. Joas, Quality and maturation of mango fruits of cv. Cogshall in relation to harvest date and carbon supply, Crop and Pasture Science, vol.57, issue.4, pp.419-445, 2006.

L. Lecomte, V. Saliba-colombani, A. Gautier, M. C. Gomez-jimenez, P. Duffé et al., Fine mapping of QTLs of chromosome 2 affecting the fruit architecture and composition of tomato, Molecular Breeding, vol.13, pp.1-14, 2004.
URL : https://hal.archives-ouvertes.fr/hal-02675419

L. Lecomte, P. Duffé, and M. Buret, Marker-assisted introgression of five QTLs controlling fruit quality traits into three tomato lines revealed interactions between QTLs and genetic backgrounds, TAG Theoretical and Applied Genetics, vol.109, issue.3, pp.658-68, 2004.
URL : https://hal.archives-ouvertes.fr/hal-02675933

S. Li, J. Wang, and L. Zhang, Inclusive composite interval mapping of QTL by environment interactions Appendix 2 in biparental populations, PloS ONE, vol.10, issue.7, p.132414, 2015.

T. Lin, G. Zhu, and J. Zhang, Genomic analyses provide insights into the history of tomato breeding, Nature Genetics, vol.46, issue.11, pp.1220-1226, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02639866

Z. Lippman and S. D. Tanksley, Dissecting the genetic pathway to extreme fruit size in tomato using a cross between the small-fruited wild species Lycopersicon pimpinellifolium and L. esculentum var. giant heirloom, Genetics, vol.158, pp.413-435, 2001.

Z. B. Lippman, O. Cohen, and J. P. Alvarez, The making of a compound inflorescence in tomato and related nightshades, PLoS Biol, issue.11, p.288, 2008.

J. P. Liu, J. Van-eck, C. B. Tanksley, and S. D. , A new class of regulatory genes underlying the cause of pear-shaped tomato fruit, Proceedings of the National Academy of Sciences of the USA 99, pp.13302-13308, 2002.

H. F. Liu, M. Génard, S. Guichard, and N. Bertin, Model-assisted analysis of tomato fruit growth in relation to carbon and water fluxes, Journal of Experimental Botany, vol.58, issue.13, pp.3567-80, 2007.
URL : https://hal.archives-ouvertes.fr/hal-02667654

M. H. Mageroy, A Solanum lycopersicum catechol-Omethyltransferase involved in synthesis of the flavor molecule guaiacol, The Plant Journal, vol.69, pp.1043-51, 2012.

K. Manning, M. Tör, and M. Poole, A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening, Nature Genetics, vol.38, issue.8, pp.948-52, 2006.

K. Manning, M. Tor, M. Poole, Y. Hong, A. J. Thompson et al., A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening, Nature Genetics, vol.38, pp.948-52, 2006.

L. Mao, D. Begum, and H. W. Chuang, JOINTLESS is a MADS-box gene controlling tomato flower abscission zone development, Nature, vol.406, issue.6798, pp.910-923, 2000.

A. J. Matas, N. E. Gapper, and C. M. , Biology and genetic engineering of fruit maturation for enhanced quality and shelf-life, Current Opinion in Biotechnology, vol.20, pp.197-203, 2009.

S. Mathieu, V. D. Cin, and Z. J. Fei, Flavour compounds in tomato fruits: identification of loci and potential pathways affecting volatile composition, Journal of Experimental Botany, vol.60, pp.325-362, 2009.

W. B. Mcglasson, J. H. Last, and K. J. Shaw, Influence of the non-ripening mutants rin and nor on the aroma of tomato fruit, Hortscience, vol.22, pp.632-636, 1987.

A. E. Melchinger, U. Hf, and C. C. Scho¨n, QTL mapping using different testers and independent population samples in maize reveals low power of QTL detection and large bias in estimates of QTL effects, Genetics, vol.149, pp.383-403, 1998.

V. S. Meli, S. Ghosh, and T. N. Prabha, Enhancement of fruit shelf life by suppressing N-glycan processing enzymes, Proceedings of the National Academy of Sciences of the USA, vol.107, pp.2413-2431, 2009.

T. H. Meuwissen, B. J. Hayes, and M. E. Goddard, Prediction of Total Genetic Value Using Genome-Wide Dense Marker Maps, Genetics, vol.157, issue.4, pp.1819-1848, 2001.

Z. Minic, E. Jamet, and H. San-clemente, Transcriptomic analysis of Arabidopsis developing stems: a close-up on cell wall genes, BMC Plant Biology, vol.9, p.17, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00365273

J. P. Mitchell, C. Shennan, S. R. Grattan, and D. M. May, Tomato fruit yields and quality under water deficit and salinity, Journal of the American Society for Horticultural Science, vol.116, issue.2, pp.215-236, 1991.

N. Molinero-rosales, M. Jamilena, and S. Zurita, FALSIFLORA, the tomato orthologue of FLORICAULA and LEAFY, controls flowering time and floral meristem identity, The Plant Journal, vol.20, issue.6, pp.685-93, 1999.

N. Molinero-rosales, A. Latorre, and M. Jamilena, SINGLE FLOWER TRUSS regulates the transition and Appendix 2 maintenance of flowering in tomato, Planta, vol.218, issue.3, pp.427-461, 2004.

A. J. Monforte, M. J. Asins, and E. A. Carbonell, Salt tolerance in Lycopersicon species. IV. Efficiency of marker-assisted selection for salt tolerance improvement, Theoretical and Applied Genetics, vol.93, issue.5-6, pp.765-72, 1996.

A. J. Monforte, M. J. Asins, and E. A. Carbonell, Salt tolerance in Lycopersicon species. V. Does genetic variability at quantitative trait loci affect their analysis, Theoretical and Applied Genetics, vol.95, issue.1-2, pp.284-93, 1997.

A. J. Monforte, M. J. Asins, and E. A. Carbonell, Salt tolerance in Lycopersicon species VI. Genotypeby-salinity interaction in quantitative trait loci detection: constitutive and response QTLs, Theoretical and Applied Genetics, vol.95, issue.4, pp.706-719, 1997.

S. Muños, N. Ranc, E. Botton, A. Bérard, S. Rolland et al., Increase in tomato locule number is controlled by two key SNP located near Wuschel, Plant Physiology, vol.4, pp.2244-54, 2011.

H. L. Muranty, M. Troggio, and I. S. Sadok, Accuracy and responses of genomic selection on key traits in apple breeding, Horticulture Research, vol.2, p.15060, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02497555

A. C. Mustilli, F. Fenzi, and R. Ciliento, Phenotype of the tomato high pigment-2 mutant is caused by a mutation in the tomato homolog of DEETIOLATED1, The Plant Cell, vol.11, pp.145-57, 1999.

M. M. Nuruddin, C. A. Madramootoo, and G. T. Dodds, Effects of water stress at different growth stages on greenhouse tomato yield and quality, Hortscience, vol.38, issue.7, pp.1389-93, 2003.

Y. Okabe, E. Asamizu, T. Saito, C. Matsukura, T. Ariizumi et al., , 2011.

, Tomato TILLING technology: development of a reverse genetics tool for the efficient isolation of mutants from Micro-Tom mutant libraries, Plant and Cell Physiology, vol.52, issue.11, pp.1994-2005

S. Osorio, Y. L. Ruan, and A. R. Fernie, An update on source-to-sink carbon partitioning in tomato, Frontiers in Plant Science, vol.5, p.516, 2014.

D. Page, B. Gouble, and B. Valot, Down-regulated protective proteins in tomato correlating with decreased tolerance to low-temperature storage, Planta, 2010.

S. D. Pascale, A. Maggio, V. Fogliano, P. Ambrosino, and A. Ritieni, Irrigation with saline water improves carotenoids content and antioxidant activity of tomato, The Journal of Horticultural Science and Biotechnology, vol.76, issue.4, pp.447-53, 2001.

L. Pascual-banuls, J. Xu, and B. Biais, Deciphering genetic diversity and inheritance of tomato fruit weight and composition through a systems biology approach, Journal of Experimental Botany, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01208665

L. Pascual, N. Desplat, B. E. Huang, A. Desgroux, L. Bruguier et al., Potential of a tomato MAGIC population to decipher the genetic control of quantitative traits and detect causal variants in the resequencing era, Plant Biotechnology Journal, vol.13, pp.565-77, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01208731

L. Pascual, E. Albert, C. Sauvage, J. Duangjit, J. P. Bouchet et al., Dissecting quantitative trait variation in the resequencing era: complementarity of bi-parental, multi-parental and association panels, Plant Science, vol.242, pp.120-150, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02635859

A. H. Paterson, S. Damon, J. D. Hewitt, D. Zamir, H. D. Rabinowitch et al., , 1991.

, Mendelian factors underlying quantitative traits in tomato: comparison across species, generations, and environments, Genetics, vol.127, pp.181-97

A. H. Paterson, J. W. De-verna, L. B. Tanksley, and S. D. , Fine mapping of quantitative trait loci using Appendix 2 selected overlapping recombinant chromosomes, in an interspecies cross of tomato, Genetics, vol.124, pp.735-777, 1990.

A. H. Paterson, E. S. Lander, J. D. Hewitt, S. Peterson, L. Se et al., Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms, Nature, vol.335, pp.721-727, 1988.

L. Pnueli, L. Carmel-goren, and D. Hareven, The SELF-PRUNING gene of tomato regulates vegetative to reproductive switching of sympodial meristems and is the ortholog of CEN and TFL1, Development, vol.125, pp.1979-89, 1998.

F. Poiroux-gonord, L. P. Bidel, A. L. Fanciullino, H. Gautier, F. Lauri-lopez et al., Health benefits of vitamins and secondary metabolites of fruits and vegetables and prospects to increase their concentrations by agronomic approaches, Journal of Agricultural and Food Chemistry, vol.58, issue.23, pp.12065-82, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02665989

J. Poland, J. Endelman, and J. Dawson, Genomic Selection in Wheat Breeding using Genotyping-by-Sequencing, The Plant Genome, vol.5, issue.3, pp.103-116, 2012.

A. L. Powell, C. V. Nguyen, and T. Hill, Uniform ripening encodes a Golden 2-like transcription factor regulating tomato fruit chloroplast development, Science, vol.336, issue.6089, pp.1711-1726, 2012.

M. Prudent, A. Lecomte, J. P. Bouchet, N. Bertin, M. Causse et al., Combining ecophysiological modelling and quantitative trait loci analysis to identify key elementary processes underlying tomato fruit sugar concentration, Journal of Experimental Botany, vol.62, pp.907-918, 2011.

M. Prudent, M. Causse, M. Génard, P. Tripodi, S. Grandillo et al., Genetic and ecophysiological analysis of tomato fruit weight and composition -Influence of carbon availability on QTL detection, Journal of Experimental Botany, vol.60, issue.3, pp.923-960, 2009.

B. Quilot, J. Kervella, M. Génard, and F. Lescourret, Analysing the genetic control of peach fruit quality through an ecophysiological model combined with a QTL approach, Journal of Experimental Botany, vol.56, issue.422, pp.3083-92, 2005.
URL : https://hal.archives-ouvertes.fr/hal-02675468

J. L. Rambla, Y. M. Tikunov, and A. J. Monforte, The expanded tomato fruit volatile landscape, Journal of Experimental Botany, vol.65, pp.4613-4636, 2014.

N. Ranc, S. Munos, and S. Santoni, A clarified position for Solanum lycopersicum var. cerasiforme in the evolutionary history of tomatoes (solanaceae), BMC Plant Biology, vol.8, p.130, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02668658

M. Reymond, B. Muller, A. Leonardi, A. Charcosset, and F. Tardieu, Combining quantitative trait loci analysis and an ecophysiological model to analyze the genetic variability of the responses of maize leaf growth to temperature and water deficit, Plant Physiology, vol.131, issue.2, pp.664-75, 2003.

J. Ripoll, L. Urban, and N. Bertin, The potential of the MAGIC TOM parental accessions to explore the genetic variability in tomato acclimation to repeated cycles of water deficit and recovery, Frontiers in Plant Science, p.6, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01273701

J. Ripoll, L. Urban, B. Brunel, and N. Bertin, Water deficit effects on tomato quality depend on fruit developmental stage and genotype, Journal of Plant Physiology, vol.190, pp.26-35, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02638022

J. Ripoll, L. Urban, M. Staudt, F. Lopez-lauri, L. P. Bidel et al., Water shortage and quality of fleshy fruits-making the most of the unavoidable, Journal of Experimental Botany, vol.65, issue.15, pp.4097-117, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01268584

G. R. Rodríguez, S. Muños, C. Anderson, S. C. Sim, A. Michel et al., Distribution of SUN, OVATE, LC, and FAS Alleles in Tomato Germplasm and their Effect on Fruit Morphology, Plant Physiology, vol.156, pp.275-85, 2011.

G. Ronen, L. Carmel-goren, and D. Zamir, An alternative pathway to ?-carotene formation in plant chromoplasts discovered by map-based cloning of Beta and old-gold color mutations in tomato, Proceedings of the National Academy of Sciences of the USA 97, pp.11102-11109, 2000.

M. A. Rosales, J. M. Ruiz, J. Hernández, T. Soriano, N. Castilla et al., Antioxidant content and ascorbate metabolism in cherry tomato exocarp in relation to temperature and solar radiation, Journal of the Science of Food and Agriculture, vol.86, issue.10, pp.1545-51, 2006.

J. Rose, C. Catalá, and Z. Gonzalez-carranza, Plant cell wall disassembly, pp.264-324, 2003.

J. Rose, S. Bashir, J. J. Giovannoni, M. M. Jahn, and R. S. Saravanan, Tackling the plant proteome: practical approaches, hurdles and experimental tools, The Plant Journal, vol.39, pp.715-748, 2004.

J. Rose, D. J. Cosgrove, and P. Albersheim, Detection of Expansin Proteins and Activity during Tomato Fruit Ontogeny, Plant Physiology, vol.123, pp.1583-92, 2000.

V. Ruggieri, G. Francese, and A. Sacco, An association mapping approach to identify favourable alleles for tomato fruit quality breeding, BMC Plant Biology, vol.14, p.337, 2014.

J. E. Rutkoski, E. L. Heffner, and M. E. Sorrells, Genomic selection for durable stem rust resistance in wheat, Euphytica, vol.179, issue.1, pp.161-73, 2011.

A. Sacco, V. Ruggieri, and M. Parisi, Exploring a Tomato Landraces Collection for Fruit-Related Traits by the Aid of a High-Throughput Genomic Platform, PLoS ONE, vol.10, issue.9, p.137139, 2015.

A. A. Saïdou, A. C. Thuillet, M. Couderc, C. Mariac, and Y. Vigouroux, Association studies including genotype by environment interactions: prospects and limits, BMC Genetics, vol.15, issue.1, p.1, 2014.

M. Saladie, J. Rose, and D. J. Cosgrove, Characterization of a new xyloglucan endotransglucosylase/hydrolase (XTH) from ripening tomato fruit and implications for the diverse modes of enzymic action, The Plant Journal, vol.47, pp.282-95, 2006.

V. Saliba-colombani, M. Causse, D. Langlois, J. Philouze, and M. Buret, Genetic analysis of organoleptic quality in fresh market tomato. 1. Mapping QTLs for physical and chemical traits, Theoretical and Applied Genetics, vol.102, pp.259-72, 2001.
URL : https://hal.archives-ouvertes.fr/hal-02828106

M. Sari-gorla, T. Calinski, Z. Kaczmarek, and P. Krajewski, Detection of QTL3environment interaction in maize by a least squares interval mapping method, Heredity, vol.78, pp.146-57, 1997.

T. Sato, T. Iwatsubo, and M. Takahashi, Intercellular localization of acid invertase in tomato fruit and molecular cloning of a cDNA for the enzyme, Plant Cell Physiology, vol.34, issue.2, pp.263-272, 1993.

C. Sauvage, V. Segura, and G. Bauchet, Genome-Wide Association in Tomato Reveals 44 Candidate Loci for Fruit Metabolic Traits, Plant Physiology, vol.165, pp.1120-1152, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01268579

N. Schauer, Y. Semel, and U. Roessner, Comprehensive metabolic profiling and phenotyping of interspecific introgression lines for tomato improvement, Nature Biotechnology, vol.24, pp.447-54, 2006.

K. Schumacher, T. Schmitt, and M. Rossberg, The Lateral suppressor (Ls) gene of tomato encodes a new member of the VHIID protein family, Proceedings of the National Academy of Sciences of the USA, vol.96, issue.1, pp.290-295, 1999.

V. Segura, B. J. Vilhjalmsson, and A. Platt, An efficient multi-locus mixed-model approach for genome-wide association studies in structured populations, Nature Genetics, vol.44, issue.7, pp.825-855, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02796492

Y. Semel, J. Nissenbaum, N. Menda, M. Zinder, U. Krieger et al., Overdominant quantitative trait loci for yield and fitness in tomato, Proceedings of the National Academy of Sciences of the USA 103, pp.12981-12987, 2006.

Y. Semel, N. Schauer, U. Roessner, D. Zamir, and A. R. Fernie, Metabolite analysis for the comparison of irrigated and non-irrigated field grown tomato of varying genotype, Metabolomics, vol.3, issue.3, pp.289-95, 2007.

G. B. Seymour, K. Manning, E. M. Eriksson, A. H. Popovich, and G. J. King, Genetic identification and genomic organization of factors affecting fruit texture, Journal of Experimental Botany, vol.53, pp.2065-71, 2002.

G. B. Seymour, L. Ostergaard, N. H. Chapman, S. Knapp, and C. Martin, Fruit Development and Ripening, Annual Review of Plant Biology, vol.64, pp.219-260, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02521654

K. A. Shackel, C. Greve, and J. M. Labavitch, Cell turgor changes associated with ripening in tomato pericarp tissue, Plant Physiology, vol.97, pp.814-830, 1991.

S. Sim, A. Van-deynze, and K. Stoffel, High-Density SNP Genotyping of Tomato (Solanum lycopersicum L.) Reveals Patterns of Genetic Variation Due to Breeding, PLoS ONE, vol.7, issue.9, p.45520, 2012.

S. Sim, G. Durstewitz, and J. R. Plieske, Development of a Large SNP Genotyping Array and Generation of High-Density Genetic Maps in Tomato, PLoS ONE, vol.7, issue.7, p.40563, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02650989

A. J. Simkin, The tomato carotenoid cleavage dioxygenase 1 genes contribute to the formation of the flavor volatiles b-ionone, pseudoionone, and geranylacetone, The Plant Journal, vol.40, pp.882-92, 2004.

F. Sinesio, M. Cammareri, and E. Moneta, Sensory quality of fresh French and Dutch market tomatoes: a preference mapping study with Italian consumers, Journal of Food Science, vol.75, pp.55-67, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02662613

D. L. Smith, A. J. Gross, and K. C. , Down-regulation of tomato beta-galactosidase 4 results in decreased fruit softening, Plant Physiology, vol.129, pp.1755-62, 2002.

J. Speirs, E. Lee, and K. Holt, Genetic manipulation of alcohol dehydrogenase levels in ripening tomato fruit affects the balance of some flavor aldehydes and alcohols, Plant Physiology, vol.117, pp.1047-58, 1998.

M. A. Stevens, Inheritance of tomato fruit quality components, Plant Breeding Reviews, vol.4, pp.273-311, 1986.

R. Stevens, D. Page, B. Gouble, C. Garchery, D. Zamir et al., Tomato fruit ascorbic acid content is linked with monodehydroascorbate reductase activity and tolerance to chilling stress, Plant Cell and Environment, vol.31, issue.8, pp.1086-96, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02664973

R. Stikic, S. Popovic, M. Srdic, D. Savic, Z. Jovanovic et al., Partial root drying (PRD): a new technique for growing plants that saves water and improves the quality of fruit, Bulg. J. Plant Physiology, vol.29, issue.3-4, pp.164-71, 2003.

Y. Tadmor, E. Fridman, A. Gur, O. Larkov, E. Lastochkin et al., Identification of malodorous, a wild species allele affecting tomato aroma that was selected against during domestication, Journal of Agricultural and Food Chemistry, vol.50, pp.2005-2014, 2002.

S. D. Tanksley, Mapping polygenes, Annual Review of Genetics, vol.27, pp.205-238, 1993.

S. D. Tanksley, The genetic, developmental, and molecular bases of fruit size and shape variation in tomato, The Plant Cell, vol.16, pp.181-189, 2004.

S. D. Tanksley, S. Grandillo, T. M. Fulton, D. Zamir, T. Eshed et al., Advanced backcross QTL analysis in a cross between an elite processing line of tomato and its wild relative L. pimpinnellifolium, Theoretical and Applied Genetics, vol.92, pp.213-237, 1996.

T. Tomato-genome and . Consortium, The tomato genome sequence provides insights into fleshy fruit evolution, Nature, vol.485, issue.7400, pp.635-676, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02651748

. Thompson and J. E. Corlett, mRNA levels of four tomato (Lycopersicon esculentum Mill. L.) genes are related to fluctuating plant and soil water status, Plant, Cell & Environment, vol.18, pp.773-80, 1995.

D. M. Tieman and A. K. Handa, Regulation in pectin methylesterase activity modifies tissue integrity and cation levels in ripening tomato, Lycopersicon esculentum Mill.) fruits. Plant Physiology, vol.106, pp.429-465, 1994.

D. Tieman, M. Zeigler, and E. Schmelz, Functional analysis of a tomato salicylic acid methyl transferase and its role in synthesis of the flavor volatile methyl salicylate, The Plant Journalournal, vol.62, pp.113-136, 2010.

D. M. Tieman, M. Zeigler, E. A. Schmelz, M. G. Taylor, P. Bliss et al., Identification of loci affecting flavour volatile emissions in tomato fruits, Journal of Experimental Botany, vol.57, pp.887-96, 2006.

D. M. Tieman, Aromatic amino acid decarboxylases participate in the synthesis of the flavor and aroma volatiles 2-phenylethanol and 2-phenylacetaldehyde in tomato fruits, Proceedings of the National Academy of Sciences of the USA, vol.103, pp.8287-92, 2006.

D. M. Tieman, Tomato phenylacetaldehyde reductases catalyze the last step in the synthesis of the aroma volatile 2-phenylethanol, Phytochemistry, vol.68, pp.2660-2669, 2007.

Y. Tikunov, J. Molthoff, R. C. De-vos, J. Beekwilder, A. Van-houwelingen et al., NON-SMOKY GLYCOSYLTRANSFERASE1 Prevents the Release of Smoky Aroma from Tomato Fruit, The Plant Cell, vol.25, pp.3067-78, 2013.

Y. Tikunov, A. Lommen, and C. De-vos, A Novel Approach for Nontargeted Data Analysis for Metabolomics. Large-Scale Profiling of Tomato Fruit Volatiles, Plant Physiology, vol.139, pp.1125-1162, 2005.

Y. M. Tikunov, J. Molthoff, and R. C. De-vos, Non-smoky glycosyl transferase1 prevents the release of smoky aroma from tomato fruit, The Plant Cell, vol.25, issue.8, pp.3067-78, 2013.

N. A. Tinker, D. E. Mather, B. G. Rossnagel, K. J. Kasha, K. A. Hayes et al., Regions of the genome that affect agronomic performance in two-row barley, Crop Science, vol.36, pp.1053-62, 1996.

. Tomato-genome-consortium, The tomato genome sequence provides insights into fleshy fruit evolution, Nature, vol.485, pp.635-676, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02651748

G. Tucker, A. L. Price, and B. Berger, Improving the power of GWAS and avoiding confounding from population stratification with PC-Select, Genetics, vol.197, issue.3, pp.1045-1054, 2014.

A. Uozumi, H. Ikeda, M. Hiraga, H. Kanno, M. Nanzyo et al., The making of a bell pepper-shaped tomato fruit: identification of loci controlling fruit morphology in Yellow Stuffer tomato, Theoretical and Applied Genetics, vol.138, issue.2-3, pp.139-186, 2002.

F. A. Van-eeuwijk, M. C. Bink, K. Chenu, and S. C. Chapman, Detection and use of QTL for complex traits in multiple environments, Current Opinion In Plant Biology, vol.13, issue.2, pp.193-205, 2010.

F. Venter, Solar radiation and vitamin C content of tomato fruits, Acta Horticulturae, vol.58, pp.121-128, 1977.

A. P. Verbyla, C. R. Cavanagh, and K. L. Verbyla, Whole-Genome Analysis of Multienvironment or Multitrait QTL in MAGIC, Genes| Genomes| Genetics, vol.3, issue.9, pp.1569-84, 2014.

A. R. Vicente, M. Saladie, and J. Rose, The linkage between cell wall metabolism and fruit softening: looking to the future, Journal of the Science of Food and Agriculture, vol.87, pp.1435-1483, 2007.

J. T. Vogel, B. C. Tan, and D. R. Mccarty, The carotenoid cleavage dioxygenase 1 enzyme has broad substrate specificity, cleaving multiple carotenoids at two different bond positions, Journal of Biological Chemistry, vol.283, pp.11364-73, 2008.

J. Vrebalov, D. Ruezinsky, and V. Padmanabhan, A MADS-box gene necessary for fruit ripening at the tomato ripening-inhibitor (rin) locus, Science, vol.296, issue.5566, pp.343-349, 2002.

J. Vrebalov, D. Ruezinsky, V. Padmanabhan, R. White, D. Medrano et al., , 2002.

, A MADS-box gene necessary for fruit ripening at the tomato ripening-inhibitor (Rin) locus, Science, vol.296, pp.343-349

J. L. Weller, G. Perrotta, and M. E. Schreuder, Genetic dissection of blue-light sensing in tomato using mutants deficient in cryptochrome 1 and phytochromes A, B1 and B2, The Plant Journal, vol.25, issue.4, pp.427-467, 2001.

B. D. Whitaker, Postharvest flavor deployment and degradation in fruits and vegetables, Fruit Vegetable Flavour, pp.103-134, 2008.

J. Q. Wilkinson, M. B. Lanahan, and Y. H. , An ethylene-inducible component of signal transduction encoded by never-ripe, Science, vol.270, issue.5243, pp.1807-1816, 1995.

H. Xiao, N. Jiang, and E. Schaffner, A retrotransposon-mediated gene duplication underlies morphological variation of tomato fruit, Science, vol.319, pp.1527-1557, 2008.

C. Xu, K. L. Liberatore, C. A. Macalister, Z. Huang, Y. H. Chu et al., A cascade of arabinosyltransferases controls shoot meristem size in tomato, Nature Genetics, vol.47, pp.784-95, 2015.

J. Xu, N. Ranc, and S. Munos, Phenotypic diversity and association mapping for fruit quality traits in cultivated tomato and related species, Theoretical and Applied Genetics, vol.126, issue.3, pp.567-81, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02651895

E. Yamamoto, H. Matsunaga, and A. Onogi, A simulation-based breeding design that uses wholegenome prediction in tomato, Scientific Reports, vol.6, 2016.

S. Yelle, R. T. Chetelat, M. Dorais, J. W. Deverna, and A. B. Bennett, Sink metabolism in tomato fruit. IV. Genetic and biochemical analysis of sucrose accumulation, Plant Physiology, vol.95, pp.1026-1061, 1991.

S. Yelle, J. D. Hewitt, and N. L. Robinson, Sink metabolism in tomato fruit .3. Analysis of carbohydrate assimilation in a wild-species, Plant Physiology, vol.87, pp.737-777, 1988.

G. G. Yousef and J. A. Juvik, Evaluation of breeding utility of a chromosomal segment from Lycopersicon chmielewskii that enhances cultivated tomato soluble solids, Theoretical and Applied Genetics, vol.103, pp.1022-1029, 2001.

J. Yu, G. Pressoir, and W. H. Briggs, A unified mixed-model method for association mapping that accounts for multiple levels of relatedness, Nature Genetics, vol.38, issue.2, pp.203-211, 2006.

M. I. Zanor, J. L. Rambla, J. Chaïb, A. Steppa, A. Medina et al., Metabolic characterization of loci affecting sensory attributes in tomato allows an assessment of the influence of the levels of primary metabolites and volatile organic contents, Journal of Experimental Botany, vol.60, pp.2139-54, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02668215

J. Zhang, C. R. , and X. J. , A single-base deletion mutation in SlIAA9 gene causes tomato (Solanum lycopersicum) entire mutant, Journal of Plant Research, vol.120, issue.6, pp.671-679, 2007.

J. Zhang, J. Zhao, and Y. Liang, Genome-wide association-mapping for fruit quality traits in tomato, Euphytica, vol.207, issue.2, pp.439-51, 2016.

S. Zhou, S. Wei, B. Boone, and S. Levy, Microarray analysis of genes affected by salt stress in tomato, African Journal of Environmental Science and Technology, vol.1, issue.2, pp.14-26, 2007.

A. H. Paterson, E. S. Lander, J. D. Hewitt, S. Peterson, S. E. Lincoln et al., Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms, Nature, vol.335, pp.721-726, 1988.

M. J. Kearsey and A. G. Farquhar, QTL analysis in plants; where are we now? Heredity, vol.80, pp.137-142, 1998.

J. B. Holland, Genetic architecture of complex traits in plants, Curr. Opin. Plant Biol, vol.10, pp.156-161, 2007.

Z. B. Lippman, Y. Semel, and D. Zamir, An integrated view of quantitative trait variation using tomato interspecific introgression lines, Curr. Opin. Genet. Dev, vol.17, pp.545-552, 2007.

A. Price, Believe it or not, QTLs are accurate!, Trends Plant Sci, vol.11, pp.213-216, 2006.

A. Korte and A. Farlow, The advantages and limitations of trait analysis with GWAS: a review, Plant Methods, vol.9, p.29, 2013.

P. K. Gupta, S. Rustgi, and P. L. , Linkage disequilibrium and association studies in higher plants: present status and future prospects, Plant Mol. Biol, vol.57, pp.461-485, 2005.

P. M. Visscher, M. A. Brown, M. I. Mccarthy, and J. Yang, Five years of GWAS discovery, Am. J. Hum. Genet, vol.90, pp.7-24, 2012.

A. L. Price, N. A. Zaitlen, D. Reich, and N. Patterson, New approaches to population stratification in genome-wide association studies, Nat. Rev. Genet, vol.11, pp.459-463, 2010.

I. Baxter, J. N. Brazelton, D. Yu, Y. S. Huang, B. Lahner et al., A coastal cline in sodium accumulation in Arabidopsis thaliana is driven by natural variation of the sodium transporter AtHKT1, PLoS Genet, vol.1, p.1001193, 2010.

J. Yu, J. B. Holland, M. D. Mcmullen, and E. S. Buckler, Genetic design and statistical power of nested association mapping in maize, Genetics, vol.178, pp.539-551, 2008.

P. X. Kover, W. Valdar, J. Trakalo, N. Scarcelli, I. M. Ehrenreich et al., A multiparent advanced generation inter-cross to fine-map quantitative traits in Arabidopsis thaliana, PLoS Genet, vol.5, p.1000551, 2009.

N. Bandillo, C. Raghavan, P. A. Muyco, M. A. Sevilla, I. T. Lobina et al., Multi-parent advanced generation inter-cross (MAGIC) populations in rice: progress and potential for genetics research and breeding, vol.6, p.11, 2013.

B. E. Huang, A. W. George, K. L. Forrest, A. Kilian, M. J. Hayden et al., A multiparent advanced generation inter-cross population for genetic analysis in wheat, Plant Biotechnol. J, vol.10, pp.826-839, 2012.

W. Sannemann, B. E. Huang, B. Mathew, and J. Léon, Multi-parent advanced generation inter-cross in barley: high-resolution quantitative trait locus mapping for flowering time as a proof of concept, Mol. Breed, vol.35, 2015.

L. Pascual, N. Desplat, B. E. Huang, A. Desgroux, L. Bruguier et al., Potential of a tomato MAGIC population to decipher the genetic control of quantitative traits and detect causal variants in the resequencing era, Plant Biotechnol. J, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01208731

C. Cavanagh, M. Morell, I. Mackay, and W. Powell, From mutations to MAGIC: resources for gene discovery, validation and delivery in crop plants, Curr. Opin. Plant Biol, vol.11, pp.215-221, 2008.

N. Bardol, M. Ventelon, B. Mangin, S. Jasson, V. Loywick et al., Combined linkage and linkage disequilibrium QTL mapping in multiple families of maize (Zea mays L.) line crosses highlights complementarities between models based on parental haplotype and single locus polymorphism, Theor. Appl. Genet, vol.126, pp.2717-2736, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02642570

J. R. Klasen, H. Piepho, and B. Stich, QTL detection power of multi-parental RIL populations in Arabidopsis thaliana, Heredity (Edinb.), vol.108, pp.626-632, 2012.

M. Causse, N. Desplat, L. Pascual, M. Paslier, C. Sauvage et al., Whole genome resequencing in tomato reveals variation associated with introgression and breeding events, BMC Genomics, vol.14, p.791, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02652747

J. J. Giovannoni, Genetic regulation of fruit development and ripening, Plant Cell, vol.16, pp.170-180, 2004.

V. Saliba-colombani, M. Causse, L. Gervais, and J. Philouze, Efficiency of RFLP, RAPD, and AFLP markers for the construction of an intraspecific map of the tomato genome, Genome, vol.43, pp.29-40, 2000.
URL : https://hal.archives-ouvertes.fr/hal-02697767

L. M. Labate, J. A. , S. Grandillo, T. Fulton, S. Muños et al., Genome Mapp. Mol. Breed. Plants, vol.5, pp.11-135, 2007.

A. Frary, T. C. Nesbitt, S. Grandillo, E. Van-der-knaap, B. Cong et al., 2: a quantitative trait locus key to the evolution of tomato fruit size, Science, vol.2, pp.85-88, 2000.

E. Fridman, T. Pleban, and D. Zamir, A recombination hotspot delimits a wild-species quantitative trait locus for tomato sugar content to 484 bp within an invertase gene, Proc. Natl. Acad. Sci. U. S. A, vol.97, pp.4718-4723, 2000.

. Tomato-genome-consortium, The tomato genome sequence provides insights into fleshy fruit evolution, Nature, vol.485, pp.635-641, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02651748

S. Aflitos, E. Schijlen, and H. Jong, Exploring genetic variation in the tomato (Solanum section Lycopersicon) clade by whole-genome sequencing, Plant J, vol.80, pp.136-148, 2014.

T. Lin, G. Zhu, J. Zhang, X. Xu, Q. Yu et al., Genomic analyses provide insights into the history of tomato breeding, Nat. Genet, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02639866

A. Bolger, F. Scossa, M. E. Bolger, C. Lanz, F. Maumus et al., The genome of the stress-tolerant wild tomato species Solanum pennellii, Nat. Genet, vol.46, pp.1034-1038, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01204066

S. C. Sim, G. Durstewitz, J. Plieske, R. Wieseke, M. W. Ganal et al., Development of a large SNP genotyping array and generation of high-density genetic maps in tomato, PLoS ONE, vol.7, p.40563, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02650989

S. Sim, A. Van-deynze, K. Stoffel, D. S. Douches, D. Zarka et al., High-density SNP genotyping of tomato (Solanum lycopersicum L.) reveals patterns of genetic variation due to breeding, PLoS ONE, vol.7, p.45520, 2012.

C. Sauvage, V. Segura, G. Bauchet, R. Stevens, P. T. Do et al., Genomewide association in tomato reveals 44 candidate loci for fruit metabolic traits, Plant Physiol, vol.165, pp.1120-1132, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01268579

M. Chakrabarti, N. Zhang, C. Sauvage, S. Muños, J. Blanca et al., A cytochrome P450 regulates a domestication trait in cultivated tomato, Proc. Natl. Acad. Sci. U. S. A, vol.110, pp.17125-17130, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02646387

V. Saliba-colombani, M. Causse, D. Langlois, J. Philouze, and M. Buret, Genetic analysis of organoleptic quality in fresh market tomato. 1. Mapping QTLs for physical and chemical traits, Theor. Appl. Genet, vol.102, pp.259-272, 2001.
URL : https://hal.archives-ouvertes.fr/hal-02828106

J. W. Van-ooijen, JoinMap ® 4, Software for the Calculation of Genetic Linkage Maps in Experimental Populations, Kyazma B.V, 2006.

E. Lander and D. Botstein, Mapping Mendelian factors underlying quantitative traits using Rflp linkage maps, Genetics, vol.121, pp.185-199, 1989.

K. W. Broman, H. Wu, S. Sen, and G. A. Churchill, R/qtl. QTL mapping in experimental crosses, Bioinformatics, vol.19, pp.889-890, 2003.

B. E. Huang and A. W. George, R/mpMap: a computational platform for the genetic analysis of multiparent recombinant inbred lines, Bioinformatics, vol.27, pp.727-729, 2011.

L. , Plant Science, vol.242, pp.120-130, 2016.

J. Xu, N. Ranc, S. Muños, S. Rolland, J. P. Bouchet et al., Phenotypic diversity and association mapping for fruit quality traits in cultivated tomato and related species, Theor. Appl. Genet, vol.126, pp.567-581, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02651895

S. Sim, G. Durstewitz, J. Plieske, R. Wieseke, M. W. Ganal et al., Development of a large SNP genotyping array and generation of high-density genetic maps in tomato, PLoS ONE, vol.7, p.40563, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02650989

O. J. Hardy, X. Vekemans, and . Spagedi, A versatile computer program to analyse spatial genetic structure at the individual or population levels, Mol. Ecol. Notes, vol.2, pp.618-620, 2002.

D. Falush, M. Stephens, and J. K. Pritchard, Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies, Genetics, vol.164, pp.1567-1587, 2003.

G. Evanno, S. Regnaut, and J. Goudet, Detecting the number of clusters of individuals using the software structure: a simulation study, Mol. Ecol, vol.14, pp.2611-2620, 2005.

V. Segura, B. J. Vilhjálmsson, A. Platt, A. Korte, Ü. Seren et al., An efficient multi-locus mixed-model approach for genome-wide association studies in structured populations, Nat. Genet, vol.44, pp.825-830, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02796492

D. Steinbach, M. Alaux, J. Amselem, N. Choisne, S. Durand et al., GnpIS: an information system to integrate genetic and genomic data from plants and fungi, Database (Oxford), p.58, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02648084

K. Manning, M. Tör, M. Poole, Y. Hong, A. J. Thompson et al., A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening, Nat. Genet, vol.38, pp.948-952, 2006.

B. Mangin, A. Siberchicot, S. Nicolas, A. Doligez, P. This et al., Novel measures of linkage disequilibrium that correct the bias due to population structure and relatedness, Heredity (Edinb.), vol.108, pp.285-291, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01267769

Z. Huang and E. Van-der-knaap, Tomato fruit weight 11.3 maps close to fasciated on the bottom of chromosome 11, Theor. Appl. Genet, vol.123, pp.465-474, 2011.

L. Lecomte, V. Saliba-colombani, A. Gautier, M. C. Gomez-jimenez, P. Duffe et al., Fine mapping of QTLs of chromosome 2 affecting the fruit architecture and composition of tomato, Mol. Breed, vol.13, pp.1-14, 2004.
URL : https://hal.archives-ouvertes.fr/hal-02675419

Y. Huang, D. Madur, V. Combes, C. L. Ky, D. Coubriche et al., The genetic architecture of grain yield and related traits in Zea maize L. revealed by comparing intermated and conventional populations, Genetics, vol.186, pp.395-404, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02661097

J. W. Davey, P. A. Hohenlohe, P. D. Etter, J. Q. Boone, J. M. Catchen et al., Genome-wide genetic marker discovery and genotyping using next-generation sequencing, Nat. Rev. Genet, vol.12, pp.499-510, 2011.

E. L. Van-dijk, H. Auger, Y. Jaszczyszyn, and C. Thermes, Ten years of next-generation sequencing technology, Trends Genet, vol.30, pp.418-426, 2014.

A. A. Pai, J. K. Pritchard, and Y. Gilad, The genetic and mechanistic basis for variation in gene regulation, PLoS Genet, vol.11, p.1004857, 2015.

M. I. Mccarthy and J. N. Hirschhorn, Genome-wide association studies: potential next steps on a genetic journey, Hum. Mol. Genet, vol.17, pp.157-165, 2008.

Z. Bochdanovits, J. Simon-sanchez, M. Jonker, W. J. Hoogendijk, A. Van-der et al., Accurate prediction of a minimal region around a genetic association signal that contains the causal variant, Eur. J. Hum. Genet, vol.22, pp.238-242, 2013.

R. Rincent, L. Moreau, H. Monod, E. Kuhn, A. E. Melchinger et al., Recovering power in association mapping panels with variable levels of linkage disequilibrium, Genetics, vol.197, pp.375-387, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02634244

F. Cormier, J. L. Gouis, P. Dubreuil, S. Lafarge, and S. Praud, A genome-wide identification of chromosomal regions determining nitrogen use efficiency components in wheat (Triticum aestivum L, Theor. Appl. Genet, vol.127, pp.2679-2693, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02635490

R. Rincent, D. Laloë, S. Nicolas, T. Altmann, D. Brunel et al., Maximizing the reliability of genomic selection by optimizing the calibration set of reference individuals: comparison of methods in two diverse groups of maize inbreds (Zea mays L.), Genetics, vol.192, pp.715-728, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01019845

M. D. Robbins, S. C. Sim, W. Yang, A. Van-deynze, E. Van-der-knaap et al., Mapping and linkage disequilibrium analysis with a genome-wide collection of SNPs that detect polymorphism in cultivated tomato, J. Exp. Bot, vol.62, pp.1831-1845, 2011.

J. Ross-ibarra, P. L. Morrell, and B. S. Gaut, Plant domestication, a unique opportunity to identify the genetic basis of adaptation, Proc. Natl. Acad. Sci. U. S. A, vol.104, pp.8641-8648, 2007.

A. J. Lorenz, M. T. Hamblin, and J. Jannink, Performance of single nucleotide polymorphisms versus haplotypes for genome-wide association analysis in barley, PLoS ONE, vol.5, p.14079, 2010.

I. Gawenda, P. Thorwarth, T. Günther, F. Ordon, and K. J. Schmid, Genome-wide association studies in elite varieties of German winter barley using single-marker and haplotype-based methods, Plant Breed, vol.134, pp.28-39, 2015.

B. Brachi, N. Faure, M. Horton, E. Flahauw, A. Vazquez et al., Linkage and association mapping of Arabidopsis thaliana flowering time in nature, PLoS Genet, vol.6, p.1000940, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00468455

T. Mitchell-olds, The molecular basis of quantitative genetic variation in natural populations, Trends Ecol. Evol, vol.10, pp.324-328, 1995.

J. R. Stinchcombe and H. E. Hoekstra, Combining population genomics and quantitative genetics: finding the genes underlying ecologically important traits, Heredity (Edinb.), vol.100, pp.158-170, 2008.

T. Mitchell-olds, Complex-trait analysis in plants, Genome Biol, vol.11, p.113, 2010.

S. Atwell, Y. S. Huang, B. J. Vilhjálmsson, G. Willems, M. Horton et al., Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines, Nature, vol.465, pp.627-631, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00468440

G. Pagny, P. S. Paulstephenraj, S. Poque, O. Sicard, P. Cosson et al., Family-based linkage and association mapping reveals novel genes affecting Plum pox virus infection in Arabidopsis thaliana, New Phytol, vol.196, pp.873-886, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02649106

J. A. Poland and T. W. Rife, Genotyping-by-sequencing for plant breeding and genetics, Plant Genome J, vol.5, pp.92-102, 2012.

R. S. Austin, D. Vidaurre, G. Stamatiou, R. Breit, N. J. Provart et al., Next-generation mapping of Arabidopsis genes, Plant J, vol.67, pp.715-725, 2011.

H. Candela, R. Casanova-sáez, and J. L. Micol, Getting started in mapping-bysequencing, J. Integr. Plant Biol, 2014.

O. Sosnowski, A. Charcosset, and J. Joets, Biomercator V3: an upgrade of genetic map compilation and quantitative trait loci meta-analysis algorithms, Bioinformatics, vol.28, pp.2082-2083, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02646731

F. S. Khowaja, G. J. Norton, B. Courtois, and A. H. Price, Improved resolution in the position of drought-related QTLs in a single mapping population of rice by meta-analysis, BMC Genomics, vol.10, p.276, 2009.

D. Zamir, Where have all the crop phenotypes gone?, PLoS Biol, vol.11, p.1001595, 2013.

A. Bombarely, N. Menda, I. Y. Tecle, R. M. Buels, S. Strickler et al., The sol genomics network (solgenomics.net): growing tomatoes using Perl, Nucleic Acids Res, vol.39, pp.1149-1155, 2011.

L. B. Martin, Z. Fei, J. J. Giovannoni, and J. K. Rose, Catalyzing plant science research with RNA-seq, Front. Plant Sci, vol.4, p.66, 2013.

B. G. Hansen, B. A. Halkier, and D. J. Kliebenstein, Identifying the molecular basis of QTLs: eQTLs add a new dimension, Trends Plant Sci, vol.13, pp.72-77, 2008.

M. G. Palmgren, A. K. Edenbrandt, S. E. Vedel, M. M. Andersen, X. Landes et al., Are we ready for back-to-nature crop breeding?, Trends Plant Sci, vol.20, pp.155-164, 2014.

F. Piron, M. Nicolai, S. Minoia, E. Piednoir, A. Moretti et al., An induced mutation in tomato eIF4E leads to immunity to two potyviruses, PLoS ONE, vol.5, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02658059

R. Mauricio, Mapping quantitative trait loci in plants: uses and caveats for evolutionary biology, Nat. Rev. Genet, vol.2, pp.370-381, 2001.

S. Zhong, Z. Fei, Y. Chen, Y. Zheng, M. Huang et al., Singlebase resolution methylomes of tomato fruit development reveal epigenome Y11_40877070 (RIL, FW.Avi, pp.11-55409944

F. W. S11_50391249-(gwa, . Aga, S. Gwa, and . Avi, control specific') and S11_56007490 (GWA, SSC.Avi, 'differential'). Blue: Allelic effects under control condition, pp.11-53499851

, Distribution of the CI sizes expressed in bp in the GWA (A) and RIL (B) populations. Distribution of the number of genes underlying QTLs in the GWA (C) and RIL (D) populations, QTLs in the GWA and RIL populations