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Preamble 

Résumé 

Les plantes peuvent exprimer des réponses phénotypiques très variables en fonction des conditions 

environnementales auxquelles elles sont soumises. Cette aptitude généralement décrite sous le terme 

de plasticité phénotypique influence de manière très importante la productivité des espèces cultivées.  

La compréhension des bases moléculaires de la plasticité phénotypique est de ce fait un enjeu crucial 

pour l’amélioration variétale, notamment en raison des prédictions sur les changements climatiques. 

Cette thèse a pour objectif principal d’évaluer la réponse de la tomate (Solanum lycopersicum) aux 

stress hydrique, salin et thermique de caractériser l’architecture génétique de la plasticité 

phénotypique.  

Pour ce faire, une population multi-parentale (MAGIC) issue du croisement de huit lignées parentales 

a été évaluée dans un dispositif d’essais multi-environnement (MET) incluant des conditions optimales 

de culture avec une irrigation suffisante et des conditions de stress hydrique (WD), stress salin (SS) et 

stress thermique (HT) en France, en Israël et au Maroc. Au total 12 environnements ont été testés, 

chaque environnement constituant une combinaison de Traitement x Lieu géographique x Année. 

Plusieurs caractères phénotypiques ont été mesurés en lien avec la vigueur de la plante, la qualité du 

fruit, la phénologie et des traits liés au rendement.  

Les analyses phénotypiques ont révélé des interactions génotype-environnement (GxE) significatives 

pour la majorité des traits évalués. Ces interactions GxE ont par la suite été décomposées à travers 

différentes mesures de plasticité phénotypique en estimant la sensibilité génotypique des lignées 

MAGIC aux variations environnementales. Une analyse de cartographie de liaison a été réalisée en 

utilisant des modèles prenant en compte la probabilité haplotypique de l’origine parentale des allèles, 

pour identifier les locus contrôlant la variation des caractères quantitatifs (QTL) impliqués dans les 

variations de la moyenne et de la plasticité phénotypique. L’étude a mis en évidence la complexité de 

l’architecture génétique de la plasticité phénotypique chez la tomate, qui est en majorité (66% des 

QTLs de plasticité) contrôlée par des locus différents de ceux qui affectent la variation moyenne des 

traits.  

Nous avons pu proposer des gènes candidats de plasticité qui nécessitent des études plus approfondies 

pour leur validation et la compréhension de leur mode de fonctionnement. Dans le contexte 

agronomique, les résultats présentés dans cette étude ouvrent des perspectives intéressantes pour la 

création de variétés de tomate adaptées aux stress abiotiques en présentant d’une part des marqueurs 

génétiques intéressant pour les programmes de sélection assistée par marqueurs et d’autre part, des 

génotypes intéressants à évaluer dans de futurs programmes d’amélioration variétale. 
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Abstract 

Plants can express different phenotypic responses when exposed to different environmental 

conditions. This ability, commonly described as phenotypic plasticity, has a very important impact on 

crop productivity and performance. Understanding the molecular basis of phenotypic plasticity is 

therefore a crucial issue for plant breeding in the coming years, particularly challenged by climate 

change predictions. The main objective of this thesis was to assess the impact of tomato (Solanum 

lycopersicum) response to water deficit, high temperature and salinity stresses at the phenotypic level, 

and to characterize the genetic architecture of phenotypic plasticity. 

To this end, a multi-parental (MAGIC) population, derived from the cross of eight parental lines was 

evaluated in a multi-environment trial (MET) design including optimal culture conditions with adequate 

water irrigation and water deficit (WD), salinity stress (SS) and high temperature stress (HT) in France, 

Israel and Morocco. A total of 12 environments were tested, each environment being regarded as a 

combination of Treatment x Location x Year. Several phenotypic traits were measured in relation to 

plant vigor, fruit quality, phenology and yield component traits. 

Phenotypic analyses revealed significant genotype-environment (GxE) interactions for the majority of 

traits assessed. These GxE interaction were subsequently decomposed through various parameters of 

phenotypic plasticity by estimating the genotypic sensitivities of MAGIC lines to environmental 

variations. A linkage mapping analysis was performed using regression and mixed linear models, 

accounting for the haplotype probabilities of the inheritance of parental alleles, to identify the loci 

(QTL) involved in the variation of mean and phenotypic plasticity phenotypes. The study highlighted a 

complex genetic architecture of phenotypic plasticity in tomato, which is predominantly (66% of QTLs 

of plasticity) controlled by loci different from those affecting the phenotypic means. 

We proposed several plasticity candidate genes that require further investigation for functional 

validation and a clear understanding of their mode of action. In the agronomic context, the results 

presented in this study open interesting perspectives for the development of tomato varieties adapted 

to abiotic stresses by presenting on the one hand, interesting genetic markers for marker-assisted or 

genomic selection programs and, on the other hand, interesting genotypes to evaluate in future 

breeding programs. 
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forme d’articles m’a poussé à choisir de rédiger les différents chapitres en anglais. Un résumé en 

Français reprenant le contexte général de la thèse, les principaux résultats et les perspectives de notre 

étude sera présenté en Annexe (Appendix 1). Le plan ci-dessous présente les titres et un bref aperçu 

des différents chapitres. 

I. Chapter 1: General Introduction                                                                                                           1 

II. Chapter 2: Materials & Methods                                                                                                         47 

III. Chapter 3: Water deficit and Salinity stress reveal many specific QTLs for plant growth and 

fruit quality traits in tomato                                                                                                                 57 

IV. Chapter 4: Tomato transcriptome analysis reveals genotype and organ-specific variation 

under water-deficit stress                                                                                                                     71 

V. Chapter 5: Genetic architecture of tomato response to Heat stress                                            93 

VI. Chapter 6: Genetic control of genotype-by-environment interaction (GxE) and plasticity in 

tomato                                                                                                                                                   119 

VII. Chapter 7: General discussion                                                                                                           147 

Annexes 

• Annexe 1 : Résumé substantiel de la Thèse en Français 

• Annexe 2 : Article de revue Rothan C, Diouf I et Causse M “Trait discovery and editing in 

tomato”. Plant J 

• Annexe 3 : Données supplémentaires du chapitre 3 

• Annexe 4 : Données supplémentaires du chapitre 4 

• Annexe 5 : Données supplémentaires du chapitre 5 

• Annexe 6 : Données supplémentaires du chapitre 6 
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Chapter 1 

 

General Introduction  

Chapter 1 presents a general introduction contextualizing the objectives of this thesis. Tomato is 

presented both as an economically important and as a model species for genetic studies. The tomato 

genetic resources available are presented and the state of art of what is known about tomato response 

to some of the main environmental stresses depicted. This chapter also outlines the challenges and 

priorities of breeding for adaptation to abiotic stress for crop species in general. A short review of the 

importance of genotype-by-environment interaction (GxE) and methodologies available for its 

estimation is presented. Finally, multi-parental populations are presented with their major benefits as 

mapping populations for genetic studies.  
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Tomato (Solanum lycopersicum L.) is a major food crop which belongs to the large Solanaceae family. 

It is a self-pollinated crop and has a medium genome size (~950 Mb), a rapid cycle (2-3 cycles per year) 

and a relatively high rate of successful genetic transformation. All these attributes make it a model 

plant species. 

Tomato is cultivated worldwide and intended for human consumption with two main types of 

production: the fresh market and processing tomatoes. Tomato fruit is an important source of 

micronutrients and antioxidants giving a high nutritional value to the crop. The last five decades were 

marked by a steady increase of tomato production (Figure 1) emphasizing the considerable world-wide 

consumption and the economic importance of the crop.  

 

Figure 1: Total tomato production (in tons) per year over the world. 

A long breeding history has shaped the current diversity observed within the species. Domestication 

followed by local adaptation and more recently by molecular breeding always targeted agronomic 

traits mainly associated to increased yield and tolerance to biotic and/or abiotic stresses. Tomato 

production for fresh market consumption covers a range of environmental conditions and cultural 

practices; be it within greenhouse or field conditions, highlighting a high adaptability. Indeed, 

substantial genotype-by-environment interactions (GxE) have been noticed in response to different 

geographical location, years or conditions of cultivation. Tomato covers an extensive diversity of 

genetic and genomic resources that contributed greatly in the understanding of genotype-phenotype 
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association within the species. The main phenotypic traits studied in tomato are summarized in Figure 

2. 

 

Figure 2: Main phenotypic traits studied in cultivated tomato.  Left and right boxes: main tissues and associated phenotypic 
traits studied in tomato for their agricultural importance. Center boxes: main stresses that tomato is facing. * Traits selected 
during tomato domestication and improvement. § Traits highly susceptible to variations in environmental conditions.Figure 

2 

1 Genetic and Genomic resources  

Tomato domestication and diversification triggered a lot of phenotypic diversity which have been 

deeply characterized at the genetic level and increasingly depicted at the whole genome level. 

Databases exist for the tomato community gathering phenotypic, genetic and genomic information 

from different cultivars/mutant accessions.   

1.1 Tomato and its wild relatives 

Tomato clade species originated in the Andean region and 12 wild related species have been 

distinguished according to the classification in Peralta et al., (2008). The most closely related species 

to the cultivated clade is Solanum pimpinellifolium (SP) (Figure 3) from which started the process of 
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domestication resulting to Solanum lycopersicum var. cerasiforme (SLC, the cherry tomato) at first and 

Solanum lycopersicum lycopersicum (SLL) lately (Lin et al., 2014; Blanca et al., 2015). Possible crossing 

between the wild and cultivated tomatoes allowed to develop experimental populations and enhanced 

our understanding of the genetic basis of tomato diversity. This gave also opportunity to transfer 

specific alleles from wild species to modern varieties, notably for disease resistances. In addition, the 

wild species have distinct ecological habitats and are widely distributed, from desert to equatorial 

regions and in variable altitudes  (Pease et al., 2016). This highlights a huge potential of evolution of 

environmentally adaptive alleles. Indeed abiotic stress tolerance genes have been characterized in S. 

habrochaites (Liu et al., 2015; Munir et al., 2016) and S. pennellii (Li et al., 2013; Egea et al., 2018). 

These wild species represent therefore an important reservoir for biotic and abiotic stresses and have 

been successfully used to this end (Rothan et al., 2019).  Tomato genetic resources are conserved in a 

wide range of germplasm collections – the TGRC being the largest collection – which  include the 

conservation of diverse wild species (Labate et al., 2007). 

 

Figure 3: The phylogeny of Solanum section Lycopersicon. (A) A whole-transcriptome concatenated molecular clock 
phylogeny with section Lycopersicoides as outgroup. Branch colors indicate the four major subgroups (labels on right). (B) A 
“cloudogram” of 2,745 trees (grey) inferred from non-overlapping 100-kb genomic windows. For contrast, the consensus 
phylogeny is shown in black. Adapted from Pease et al., (2016). 



Chapter 1 

6 

 

1.2 Mutant collections 

Mutant collections provide an allelic series on a uniform genetic background and also constitute 

important resources for enhancing our genetic understanding of tomato phenotypic diversity. 

Different mutagenic agents are successfully applicable in tomato for mutant induced phenotypes 

(Rothan et al., 2019). Mutant accessions possibly express phenotypic variation not found in natural 

lines which may prove helpful for forward-genetic studies. For instance, a TILLING (targeting induced 

local lesions in genomes) approach allowed getting more insight into the functional mechanisms of 

genes involved in potyviruses resistance in tomato (Gauffier et al., 2016). A large variety of mutant 

resources in tomato are presented in Rothan et al., (2016) who reviewed besides the wide range of 

biological processes successfully depicted through the use of tomato mutant collections. 

1.3 Mapping populations  

Mapping populations used for gene/QTL discovery in tomato are very diverse and display specific and 

complementary features (Labate et al., 2007). The genomic era with cheaper and high throughput 

sequencing capacity facilitated the access to large number of polymorphisms between individuals even 

between closely related species or within cultivated tomato (which was impossible before SNP 

availability). This opens up a lot of possibilities for new population designs. The traditional populations 

used for gene discovery in tomato involved crosses between two parental lines and are commonly 

called bi-parental populations. Among these, we can count the early generation segregating 

population notably the F2 populations, the backross (BC) and advanced backcross (AB), the 

recombinant inbreed lines (RILs) and introgression lines (ILs/NILs/BILs). Significant genomic regions 

involved in the regulation of tomato for a range of phenotypes have been dissected through the use 

of such populations (Grandillo et al., 2013; Grandillo and Cammareri, 2016). Each of these bi-parental 

progenies has its specificity which could result in different genetic architecture regulation (Fulton et 

al., 2002). Introgression lines (ILs) are derived from two parental lines in a way that all the lines have 

almost all the genome similar to the recurrent parent except one or few fragments of the donor line. 

If there is just a single region studied, we refer to NILs and BILs. An ultra-high density genotyping of a 

BIL tomato population increased the fine mapping resolution and allowed to point several candidate 

genes for leaf morphology and flowering time traits (Fulop et al., 2016).   

Compared to bi-parental populations, multi-parental populations are generated from the cross of 

more than two parental lines, carrying a wider allelic diversity. Until now, two Multi-parental tomato 

populations have been developed, both generated from intraspecific and interspecific crosses of eight 

diverse lines. The first tomato MAGIC population involved the cross between four cherry accessions 

and four large fruit accessions and generated about 400 MAGIC lines (Pascual et al., 2015). The most 

recent tomato MAGIC population included seven parental lines selected within the cultivated species 
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for their resistance to fungi, bacteria and viruses and one wild relative belonging to Solanum 

cheesmaniae species and which was selected for tolerance to biotic and abiotic stresses (Campanelli 

et al., 2019). These two populations constitute highly relevant resources for genetic and genomic 

studies. Pascual et al., (2015) already demonstrated the potential of the MAGIC population to dissect 

quantitative trait variation in tomato. After the release of the tomato reference genome, genome wide 

association analysis (GWAS) was rapidly applied to the exploration of various traits. This has led to the 

establishment of different tomato GWAS panels encompassing core-collection of unrelated individuals 

from cultivated accessions, landraces and wild accessions (Ruggieri et al., 2014; Sauvage et al., 2014; 

Sacco et al., 2015; Bauchet et al, 2017; Albert et al., 2016b; Zhu et al., 2018). Genetic and genomic 

analyses using these panels furthered tomato understanding of genetic variation and allowed a meta-

GWAS analysis (Zhao et al., 2019).The different populations mentioned above have different benefits 

and limits for studying the genetic basis of trait variation as depicted in Figure 4. 

 

Figure 4: New populations developed in tomato for gene/QTL mapping and identification. (a) Mapping population 
development and linkage/association analysis. BILs are created by backrossing the F1 hybrid into the recurrent parent, 
followed by several selfing generations. A single (or a few) portion of the wild recurrent parent is introgressed. MAGIC 
population here involved crossing four parental lines producing two F1 hybrids thereafter crossed together. The derived 
progeny then follows several generations of selfing to reach inbred MAGIC lines. GWAS panels are constituted by natural 
accessions each of which has its own recombination history. For each population and the GWAS panel, appropriate statistical 
models are used to decipher the linkage/association between DNA polymorphism and the observed phenotypic variation. (b) 
The confidence intervals around the identified QTL can be aligned onto the physical map of the reference tomato genome 
and compared according to their positions. Candidate genes can be suggested when the intervals are not too large. (c) Key 
characteristics differentiating BIL, MAGIC and GWAS populations. 
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1.4 Genome sequences  

The improvement in sequencing technologies allowed successful completion of genome sequence in 

diverse animal and plant species (Goodwin et al., 2016). The first tomato genome reference was 

achieved thanks to the contribution of an international consortium and was published in 2012 (The 

Tomato Genome Consortium, 2012). The reference genome was sequenced from the inbred tomato 

cultivar ‘Heinz 1706’. About 900 megabase (Mb) of the genome was predicted across the 12 

chromosomes resulting in the assembly SL2.40 and ITAG2.3 annotation. The tomato community 

feedbacks and new annotation tools allowed improvements and the release of new assembly version 

(SL2.50) and ITAG2.4 which were used in most of the analysis carried on this thesis project. Different 

versions of the reference genome are available in the Solgenomic (SGN) database 

(https://solgenomics.net/) outlining the major differences between versions. A total of 34,727 

protein-coding genes were successfully predicted. A high proportion of gene similarity was noticed 

with Arabidopsis which is a model in plant genetics with a high quality reference genome (Cheng et al., 

2017) and the strong synteny with potato, eggplant and pepper underlined. Recently, Hosmani et al., 

(2019) published the last version of the reference genome (SL4.0; annotation ITAG4.0) with improved 

de novo assembly from PacBio long reads.  From this assembly, 4,794 novel genes were described, and 

29,281 genes conserved from the ITAG2.4 annotation. Unmapped contigs from the different genome 

assembly are standardly referred as chromosome 0 which measured 21.8 Mbp vs 9.6 Mbp considering 

SL2.50 and the last SL4.0 genome versions, respectively.  

Following the availability of the reference genome, whole-genome resequencing of several other 

genotypes from cultivated and wild tomato species have been achieved. For instance, the genome of 

the stress-tolerant wild tomato S. pennellii (LA716) was published (Bolger et al., 2014). This species is 

characterized by extreme drought tolerance and unusual morphology. Many stress-related candidate 

genes were mapped in this species. In addition to S. pennellii (LA716), the reference genome of two 

other wild species, S. habrochaites (LYC4) and S. arcanum (LA2157) were made available (Aflitos et al., 

2014). Interestingly, these species belong to the different subgroups of tomato species (Figure 3 from 

(Pease et al., 2016)). The full genome sequences of eight diverse cultivated accessions was also made 

available from Causse et al., (2013). Almost at the same time, Lin et al., (2014) re-sequenced at low 

depth 360 tomato accessions from SLL, SLC and wild SP accessions allowing a comprehensive analysis 

of domestication process in tomato. In an effort to achieve a better characterization of tomato gene 

function, Gao et al., (2019) presented the first pan-genome reference.  A total of 725 phylogenetically 

and geographically diverse accessions were included in this study and allowed to capture 4,873 novel 

genes absent from the reference genome ‘Heinz 1706’. Next generation sequencing technologies has 

allowed a better characterization of genome complexity in several species (Goodwin et al., 2016). This 
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has led to a substantial evolution of the genomic resources developed in tomato these last decades 

(Figure 5). Up to now, around 900 tomato accessions have been re-sequenced, with the sequence 

depth ranging from low (3-4x) to high (>20x)  (The Tomato Genome Consortium et al., 2012; Causse et 

al., 2013; Aflitos et al., 2014; Bolger et al., 2014b; Lin et al., 2014; Ye et al., 2017; Tranchida-Lombardo 

et al., 2018).These genomic resources are freely available (https://solgenomics.net) and will greatly 

facilitate modern breeding of tomato cultivars. 

 

 

 Figure 5: Evolution of the genomic resources developed in tomato 

1.5 Omics data  

The genomic era changed geneticist’s approaches to address the phenotype-genotype association 

analysis, notably through the integration of information from the related fields of transcriptomics, 

proteomics, metabolomics and phenomics (Edwards and Batley, 2004). Complex phenotypic traits 

result from multiple molecular factor interactions notably the allelic variants, transcript regulation, 

post-translational modifications, metabolic pathways networking, which besides may potentially vary 

according to the environment (Figure 6). Numerous studies have been conducted on tomato at these 

different levels to achieve better understanding of phenotypic variation. For instance, Zhu et al., (2018) 

generated a large dataset of genomes, transcriptomes, and metabolomes from hundreds of tomato 

genotypes providing a valuable resource for further studies. Multi-omics datasets usually allow the 

identification of hundreds and thousands of genes potentially acting as important regulators of key 

phenotypic traits. Tomato proteome dataset have been generated to characterize proteins involved in 
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variation at fruit pericarp level (Faurobert et al., 2007; Xu et al., 2013), for tomato pollen (Lopez-Casado 

et al., 2012; Chaturvedi et al., 2013) and for abiotic stress response (Jegadeesan et al., 2018; Parrine 

et al., 2018). Tomato transcriptome is deeply characterized for different organs and under different 

environmental conditions. Efforts to assemble the large amount of transcriptomic data resulted in the 

creation of some database such as the Tomato Expression Atlas (http://tea.solgenomics.net/) 

developed through a project funded by the National Science Foundation Plant Genome Research 

Program and the TomExpress platform (http://tomexpress.toulouse.inra.fr/), a friendly web interface 

developed by Zouine et al., (2017).  

 

 

Figure 6: Hypothesis A (grey arrow) is the theory that variation is hierarchical, such that variation in DNA leads to variation 
in RNA and so on in a linear manner. Hypothesis B (black arrow) is the idea that it is the combination of variation across all 
possible omic levels in concert that leads to phenotype. Adapted from Ritchie et al., (2015). 

2 Abiotic stress response in plants 

Plants are non-mobile organisms subjected to frequent environmental fluctuations in their growing 

habitats. Reproduction success and long-term survival for these organisms require sophisticated 

adaptive behaviors against the variety of environmental stimuli perceived throughout their life cycle. 

Environmental fluctuations arising mostly from climate variation are generally referred to abiotic 
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stresses when they lead to serious disruption of plant metabolism and homeostasis (Munns and 

Gilliham, 2015). Upon exposure to abiotic stress, plant responses involve regulation at the 

physiological, metabolic, biochemical and molecular levels which are ultimately related to visible 

morphological changes. Yield reduction is a symptomatic character of abiotic stress consequences in 

cultivated crops. It results from the activation of the multi-level plant’s defense mechanisms. 

Deciphering the complexity of plant response to abiotic stress is hence of primary importance for crop 

breeding under uneven growing conditions. Indeed, the climate change predictions expect rises in the 

temperatures in many areas over the world and the 2019 report of the Intergovernmental Panel on 

Climate Change (IPPC) group enumerated multiple potential risks of 1.5-2°C increase  on crop yield 

(Hoegh-Guldberg et al., 2019).  Indeed, considering four major cultivated crops (rice, wheat, maize and 

soybean) Zhao et al., (2017) predicted a significant yield decrease for 1°C of global increase of the mean 

temperature. The IPPC report also mentioned the emerging risk of the increase in frequency and 

intensity of abiotic stresses notably drought (changes in evapotranspiration and precipitation timing) 

and salinization of agricultural lands (rises of sea water level) (Hoegh-Guldberg et al., 2019). Several 

studies attempting to quantify the impact of abiotic stresses on crop productivity unequivocally come 

to the conclusion of a significant yield decrease, economic loss regarding crop production and potential 

food insecurity in some regions (Fuller et al., 2018; Kabubo-Mariara et al., 2018; Lv et al., 2018).  

Thus, important efforts have been deployed by the plant biology community for better characterizing 

how plants respond to abiotic stresses and the multi-level activation of defense mechanisms. Indeed, 

more precise description of the major physiological process and molecular regulation leading to plant 

adaptation to abiotic stresses have been produced. Water deficit (WD) – commonly referring to 

drought stress in plants – high-temperature (HT) and salinity stress (SS) are among the major abiotic 

stress affecting crop production across species. Extensive researches dedicated in understanding the 

defense mechanisms against these stresses emphasized their highly polygenic nature. They are 

interrelated and usually co-occur, especially under field conditions. Common and specific regulatory 

mechanisms may interfere, depending on the stress intensity, the stage of occurrence and the 

potential interaction with other environmental factors.  

2.1 Morphological consequences of WD, HT and SS in plants 

Drought stress (WD) is probably the most documented abiotic stress for plants in the literature. Bosco 

De Oliveira et al., (2013) defined it as a situation of water scarcity where water potential and cell turgor 

are reduced under levels altering the plant metabolism and homeostasis. Water deficit primarily 

affects germination potential and early seedling growth (Farooq et al., 2009). This is reflected by major 

morphological injuries commonly observed across species encompassing reduced hypocotyl length, 

vegetative growth and shoot and dry weight (Fahad et al., 2017). Stress symptoms are visible at the 
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vegetative growth stage where leaf development is altered with effects on leaf rolling, leaf wilting and 

leaf bleaching (Joshi et al., 2016), which might be related to impairment of mitosis and cell elongation 

inhibition. Indeed, when plants are exposed to WD, water flow from different cellular compartments 

is disturbed, leading to a loss of turgor and reduced cell expansion. Farooq et al., (2012) attested that 

crops are generally more sensitive to WD stress occurring during the flowering time stage which is 

particularly detrimental to reproduction and yield performance. 

Soil salinity has become problematic in agriculture, especially in the Mediterranean region where 

desertification and non-sustainable irrigation practices tend to increase the surface area of salty soils 

(Munns and Tester, 2008). Munns and Gilliham (2015) defined SS as the level of salinity up to which 

the energy for plant growth is redirected into defense response. Plants respond to SS in two distinct 

processes involving osmotic stress at first, occurring due to a limited ability of water uptake from the 

root medium and internal toxicity later, related to an excess of ion accumulation in cellular 

compartments (Parihar et al., 2015). Salinity may arise from the soil or the water irrigation causing in 

any case an excess of ion accumulation such as sodium (Na+) and chloride (Cl-), the two ions most used 

to study SS in plants. Seedling and early vegetative growth are particularly affected by salinity in plants. 

Poor germination rate under saline conditions have been recorded and linked to lower osmotic 

potential of germination media, changes in the activities of enzymes of nucleic acid metabolism, 

alteration in protein metabolism, hormonal imbalance and reduced utilization of seed reserves (Troyo-

Diéguez and Murillo-Amador, 2000; Parihar et al., 2015). An immediate response of SS is the reduction 

in the rate of leaf surface expansion consequently leading to stunted growth (Parida and Das, 2005). 

The accumulation of ions during SS in the roots prevents from optimal water uptake causing osmotic 

stress, stomatal closure and reduced growth rate. Besides, high Na+ concentration in the roots may 

concurrence the uptake of K+ ion, which is necessary for proper plant development. Long-term SS or 

failure to osmotic stress adaptation results in the accumulation of ion at a toxic level with cell death in 

older leaves (Munns and Tester, 2008). Negative correlation of the salinity level and yield component 

traits such as numbers of pods per plant, seeds per pod, seed weight and grain yield have been 

documented (Parida and Das, 2005). As well, yield reduction under SS could be associated to fertility 

impairment.  

Rising temperatures is among the most visible effect of climate change in different areas of the world. 

When plants are exposed to high temperatures (HT), ensuing stress are considered as short-term heat 

stress when the period of exposure to HT is short or long-term heat stress if plants experienced the HT 

for several consecutive days. The latter has more dramatic effects on agronomic performances of 

crops, especially when it occurs during the entire cropping season. In open field trials, seed 

germination is more generally impaired by HT of the soil and can differ to effects of elevated air 

temperatures. However, the flowering period is described as the most critical stage under HT stress 
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(Wahid et al., 2007). Severe yield decrease caused by HT stress arises from hampered reproduction 

performance with a high impact of HT on reproductive organs (Nadeem et al., 2018). In cereals 

however, HT stress during the period of grain filling highly impacts final yield. Nadeem et al., (2018) 

also documented reduced sucrose synthesis upon HT stress in sink organs which may be crucial in 

preventing fruit abortion. HT stress triggers osmotic stress through reduced water content induced by 

high transpiration rate. Wahid (2007) documented several morphological responses to HT stress in 

plants among which the most notable are delayed germination, loss of vigor, decline in growth rate 

(limit of leaf expansion, reduced inter-node); yield decrease (loss in kernel density, grain weight and 

grain number) and decreased fruit set (impairment of pollen and anther development).  

In summary, WD, HT and SS are all responsible of reproduction alteration and yield decrease across 

crop species. Morphological changes imposed by these stress usually show similar injuries as presented 

in Figure 7. Crop species show different level of tolerance regarding how they are affected for yield 

component traits Table 1. Besides, there is a large genetic variability within species for the different 

abiotic stresses in general. However, the molecular bases of these responses are highly polygenic and 

emphasize the action of hundreds of genes. 

 

Figure 7: Morphological consequences of water deficit (WD), high temperature (HT) and salinity stress (SS) in plants. 

2.2 Physiological responses  

Abiotic stresses induce many physiological disorders in plants, interplaying with signal perception and 

transduction and homeostasis restoration. These disorders mainly relate to the occurrence of 
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secondary stress such as osmotic and oxidative stresses which both arise upon exposure to WD, HT 

and SS.  

Plasma membrane is among the main cellular sites where the first impact of abiotic stresses occurs. As 

reviewed by many authors, WD, HT and SS all alleviate membrane fluidity favoring ion leakage from 

the cells which in turn lead to stress signal activation through the ionic imbalance. Solute uptake and 

efflux in mature guard cells occurs usually via ion channels and ion transporters located in the plasma 

membrane (Pandey et al., 2007). The Ca2+ ion is among the most well described which acts as a 

secondary messenger in the cell signaling network initiation (Bose et al., 2011). Variation in the 

cytosolic Ca2+ concentration opens various Ca2+ permeable channels on plasma membrane and triggers 

stress signaling. For instance, a transient Ca2+ increase have been described as a means to potentiate 

stress signal transduction and induce salt adaptation (Parida and Das, 2005). Rise in the cytosolic Ca2+ 

concentration is among the primary stress sensing activating the downstream responses in many 

abiotic stresses. Abiotic stress injuries importantly involve deleterious effects on photosynthesis 

activity. Photosynthesis is a vital function in plants and its maintenance is required for better stress 

adaptation (Farooq et al., 2012). Alteration in photosynthesis efficiency is related to the activation of 

secondary stresses, notably osmotic and oxidative stresses both occurring upon exposure to WD, HT 

and SS. Indeed, osmotic stress induced over limited water uptake modifies the plant water status 

leading to reduced stomatal conductance, leaf area, chlorophyll content and photosystem II (PSII) 

activity that are all important for proper photosynthesis activity. Moreover, the reduced leaf area and 

the closure of stomata for water-loss limitation consequently result in an increased level of internal 

CO2 increasing photorespiration and hampering photosynthesis activity. Oxidative stress is widely 

described as a consequence of many abiotic and/or biotic stresses. It is generated by an 

overproduction of reactive oxygen species (ROS) which could be amplified by the photorespiration 

activity. A variety of ROS have been described in the literature encompassing superoxide anions (O2
-), 

singlet oxygen (O2
1), hydrogen peroxide (H2O2) and hydroxyl radical (OH-) (You and Chan, 2015). 

However, although the accumulation of ROS products might be important in signal transduction and 

plant adaptation, its maintenance in non-toxic level is necessary to preserve cells from damaging effect 

of ROS. This implies an efficient activity of the antioxidative system of plants to alleviate the negative 

effect of ROS. Physiological consequences of WD, HT and SS involve mostly similar responses even 

though the ensuing molecular regulation activates different set of stress response genes some of which 

possibly stress specific.  

Table 1: Abiotic stress threshold documented in the literature for major crops 

A) Salinity stress 

Crop levels of salinity Yield reduction Reference 
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Rice 150mM NaCl 36 - 50% (Hasanuzzaman et al., 2009) 

Maize 7.4dS.m-1  34% (Cucci et al., 2019) 

Wheat 18dsm 50% (Chamekh et al., 2015) 

Bell Pepper 3-7dSm 61 - 98% (Kurunc et al., 2011) 

Eggplant 5-7dsm 47 - 63% (Ünlükara et al., 2008) 

Brassica 4.5-6.76dsm 57 - 83% (Chakraborty et al., 2016) 

Cowpea 9dsm 50% (Wests and Francois, 1982) 

Tomato (SLL) 6-14dSm 36 - 70% (Caro et al., 1991) 

Tomato (SLC) 6-14dSm 4-67% (Caro et al., 1991) 

Potato 40mM Nacl 63-87% (Zhang et al., 2005) 

B) Water deficit 

Crop Growth stage Yield reduction Reference 

Barley Seed filling 49 - 57% in (Farooq et al., 2009) 

Maize Reproductive 63 - 87% in (Farooq et al., 2009) 

Maize Vegetative 25 - 60% in (Farooq et al., 2009) 

Rice Grain filling (mild stress) 30 - 55% in (Farooq et al., 2009) 

Rice Reproductive 24 - 84% in (Farooq et al., 2009) 

Chickpea Reproductive 45 - 69% in (Farooq et al., 2009) 

Common beans Reproductive 58 - 87% in (Farooq et al., 2009) 

Soybean Reproductive 46 - 71% in (Farooq et al., 2009) 

Cowpea Reproductive 60 - 11% in (Farooq et al., 2009) 

Sunflower Reproductive 60% in (Farooq et al., 2009) 

Potato Flowering 13% in (Farooq et al., 2009) 

Pepper Vegetative 19 - 35% (Dorji et al., 2005) 

Eggplant Whole growing season 12-60% (Karam et al., 2011) 

Tomato Vegetative-Flowering 42 - 52% (Patanè and Cosentino, 2010) 

C) HT stress 

Crop Growth stage T° threshold Reference 

Cowpea Flowering 41°C in (Wahid et al., 2007) 

Corn Grain filling 38°C in (Wahid et al., 2007) 

Rice Grain yield 34°C in (Wahid et al., 2007) 

Pepper Yield per plant 29°C (Saha et al., 1970) 

Tomato Emergence 30°C in (Wahid et al., 2007) 

Brassica Flowering 29°C in (Wahid et al., 2007) 

Wheat Post-anthesis 26°C in (Wahid et al., 2007) 

Cotton Reproductive 45°C in (Wahid et al., 2007) 

Potato Flowering 38°C (Krystyna, 2017) 

 

 

2.3 Molecular responses  

A plethora of stress response genes have been dissected in plants, showing altered levels of gene 

expression upon signalization of abiotic stresses (Zhu, 2016). Acclimation regarding different abiotic 

stresses generally involves common molecular responses (Figure 8). However, stress-specific adaptive 
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responses have been also documented (Muthuramalingam et al., 2017; Shaar-Moshe et al., 2017).  

Three major types of gene categories are recognized as important under abiotic stresses referring to: 

i) water uptake and ion transports; ii) osmotic and protective function and iii) signaling cascades and 

transcriptional regulation related genes (Munns, 2005; Fang and Xiong, 2015).  

2.3.1 Water uptake and ion transports 

Osmotic stress and ion toxicity subsequently occurring after exposure to abiotic stresses are 

responsible of cellular homeostasis disequilibrium. Plant response to re-establish homeostasis implies 

the activation of different classes of ion transporters to guide ion movements through cell 

compartments. These involve among others the HKT1, mostly important for passive transport; the NHX 

family of antiporters, selective for Na+ especially under SS; the plasma/vacuole-type H+ ATPases, which 

hydrolyses ATP to pump H+ into the cell wall/vacuole; the salt overly sensitive genes (SOS) notably 

involved in efflux Na+/H+ antiporters and the cation /proton antiporter CHX which might be related to 

chloroplast envelope membrane (Wang et al., 2003; Munns, 2005).  

2.3.2 Osmotic and protective function 

Osmoprotectants are solute molecules synthesized to play a metabolic protective role, notably for 

membrane protein stabilization. For instance, osmoprotectants allow maintenance of cellular turgor 

pressure to improve stomatal conductance. The major solutes with known protective roles under 

abiotic stresses are proline, glycine betaine, sucrose, raffinose, mannitol, sorbitol and cyclic alcohols 

(Singh et al., 2015). Protective functions against abiotic stress injuries also involve the activity of genes 

preserving cells from ROS damaging effects (You and Chan, 2015). Proteins with protective roles in 

plant response to abiotic stresses are widely documented (Figure 8). These include essentially the 

glutamic-ϒ-semialdehyde (GSA) and D1-pyrroline-5-carboxylate (P5C) for proline synthesis; betaine 

aldehyde dehydrogenase (BADH); choline monooxygenase (CMO); catalase, superoxide dismutase 

(SOD), ascorbate peroxidase (APX) and glutathione reductase for ROS scavenging, the late-

embryogenesis-abundant proteins (LEAs) and their close relatives, dehydrins; and also chaperonins 

and Heat shock proteins (Hsp) in general.  

 

 



Chapter 1 

17 

 

 

Figure 8: The complexity of the plant response to abiotic stress. Primary stresses, such as drought, salinity and heat cause 
cellular damage and secondary stresses, such as osmotic and oxidative stress. The initial stress signals (e.g. osmotic and ionic 
effects, or temperature, membrane fluidity changes) trigger the downstream signaling process and transcription controls 
which activate stress-responsive mechanisms to re-establish homeostasis and protect and repair damaged proteins and 
membranes. Inadequate response at one or several steps in the signaling and gene activation may ultimately result in 
irreversible changes of cellular homeostasis and in the destruction of functional and structural proteins and membranes, 
leading to cell death; adapted from Wang et al., (2003). 

2.3.3 Signaling cascades and transcriptional regulation  

Signalization is an important step in plant defense mechanisms against abiotic stresses. Calcium is an 

important nutrient for plant metabolism and an ubiquitous ion for plant signaling and regulatory 

mechanisms. Abiotic stress signaling pathways involve many calcium-dependent protein kinases 

(CDPKs) and calcium-regulated phosphatases which are activated following Ca2+ increase. Indeed, 

phosphatases are important for triggering stress adaptation and are implicated in different abiotic 

stress responses. Mitogen activated protein kinases (MAPK) cascades are kinase proteins activated by 
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numerous abiotic stresses which could interact with hydrogen peroxide (involved in oxidative stress 

response) (Knight and Knight, 2001). 

Transcription factors (TFs) are specialized proteins which can bind to specific DNA elements in gene 

promoters and modulate gene expression in response to various external and internal stimuli (Spitz 

and Furlong, 2012). TFs are classified in different families based on their DNA-binding domains, some 

involved in stress regulation (Shaar-Moshe et al., 2017). Plant genomes contain multiple TFs some of 

which have been recognized as active in stress response mechanisms with conserved roles across 

species (Figure 8). Several transcriptomic analyses distinguished the major class of TFs with regulatory 

role under multiple abiotic stresses in plants, including AREB, AP2/ERF, NAC, bZIP, MYC, and MYB 

among others.  

2.3.4 Post-translational regulation in response to abiotic stresses 

Apart from transcription regulation, post-translational modifications are also involved in stress 

response mechanisms. It concerns notably epigenetic regulators and small RNAs which have been 

recently described with important roles in stress adaption.  

Environmental perturbations can induce several epigenetic processes via specific gene regulations. 

Epigenetic modifications involve DNA methylation, chromatin and small RNA regulations, which can 

have heritable component and play different roles in response to environmental stimuli. DNA 

methylation and histone modifications both interfere with the regulation of stress-response gene 

expression (Grativol et al., 2012). Inhibition of gene transcription may occur with DNA methylation and 

histone modification can induce the regulation of different genes through enhancement or repression 

of gene expression (Chinnusamy and Zhu, 2009). A number of genes regulated under various abiotic 

stresses through DNA methylation and histone modification mechanisms have been documented in 

plants with their associated phenotypes (Kim et al., 2010). Epigenetic marks represent heritable and 

reversible changes that do not alter the original DNA sequence. According to Chinnusamy and Zhu 

(2009), heritable epigenetic modifications may provide within-generation and transgenerational stress 

memory. 

MicroRNAs (miRNAs) are a class of small RNAs (about < 24 nucleotides) with effective roles in post-

transcriptional regulation of gene expression. MiRNA biogenesis in eukaryotes has been well 

documented and their role in plants described (Kumar, 2014). The regulation activity of miRNAs is 

thought to occur via directing mRNA cleavage, translational repression, chromatin remodeling, and/or 

DNA methylation (Shriram et al., 2016). Two main mechanisms of miRNA action have been pinpointed 

by Sun et al., (2019). The first mechanism which is the main mode of action involved that the miRNA 

and the open reading frame (ORF) of the messenger RNA (mRNA) are completely complementary to 
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each other to cleave and degrade mRNA, resulting in the inability of the mRNA to be translated. 

Another mode of action implies that miRNAs do not fully bind to the 3ʹUTR region of the target mRNA 

leading to inhibition of the translation initiation or specific degradation of synthetic ribosomes for 

translational inhibition. Given the rising evidence of their important role in abiotic stress response, 

more and more researches are conducted to identify and characterize miRNA and their functional role 

in plant adaptation mechanisms. High-throughput sequencing technologies facilitates nowadays wide 

characterization of genomes and several miRNAs databases are now available Shriram et al., (2016). 

In tomato and more generally in the Solanaceae genus, interesting miRNA that could be targeted for 

stress tolerance improvement have been identified. For instance, miRNAs participating in the 

activation of stress-response genes such as MYB and WRKY TFs have been identified in tomato (López-

Galiano et al., 2019) and pepper Capsicum annuum (Cheng et al., 2019). A tomato miRNA gene, Sp-

miR396a-5p from S. pimpinellifolium was detected as promoting tolerance to drought, salinity and cold 

stress through interaction with growth-regulating factor (GRFs) genes (Chen et al., 2015). Luan et al., 

(2014) identified several micro-RNAs with potential role in regulating stress-related genes. Among 

these, the sly-miR398 was involved in drought and salinity response. Using tobacco, Rabara et al., 

(2015) highlighted several drought-response genes representing interesting targets for drought-

tolerance improvement in Solanaceae. Salt stress altered the expression level of different ERF genes 

related to NICOTINE2 tobacco gene (Shoji and Hashimoto, 2015), and micro-RNA in wild eggplant 

(Zhuang et al., 2014).  

3 Tomato response to abiotic stresses  

Tomato domestication and improvement have focused for a long time on agronomic traits associated 

to productivity, quality and disease resistances. Crop resilience facing the global climate change 

nowadays represents one of the most challenging aspects in plant breeding, raising awareness in 

developing climate-smart crops. Understanding the complex genetic architecture of plant response to 

environmental changes appears to be central for the development of new cultivars. Indeed, crop’s 

agronomic performance is altered to some extent, as a result of morphological, physiological and 

molecular disorders occurring with variations in environmental conditions. Stress adaptation in plants 

requires at the molecular level, the activation of multiple stress-response genes that are involved in 

different metabolic pathways for growth maintenance and whose expression is regulated by various 

transcription factors (TFs). The genomic era facilitated the characterization of such stress-response 

genes across plant species that were assigned to diverse family of TFs. The major families of TFs playing 

significant roles in stress tolerance that were described in the literature include the basic leucine zipper 

(bZIP), dehydration-responsive element-binding protein (DREB), APETALA 2 and ethylene-responsive 
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element binding factor (AP2/ERF), zinc fingers (ZFs), basic helix-loop-helix (bHLH), Heat-Shock proteins 

(HSP) and the NAC, WRKY, MYB among others (Lindemose et al. 2013). The functions covered by these 

TFs are very common in the plant kingdom, however each species present specificities. In tomato, Bai 

et al. (2018) characterized for instance 83 WRKY genes identified in previous studies and displayed 

their different roles in response to pathogen infection, drought, salt, heat and cold stresses. Some 

genes were highlighted with expression level variation under different stresses such as drought and 

salinity stress (SlWRKY3; SlWRKY3 and SlWRKY33) pointing pertinent candidates for further 

investigation. The expression profiles of other tomato stress-response genes were also investigated 

for a class of genes belonging to the ERFs family (Klay et al., 2018) and Hsp20 gene family (Yu et al., 

2016). Examples of single genes involved in tomato tolerance to abiotic stress were also described 

including the SlJUB1 promoting drought tolerance; DREB1A and VP1.1 playing a role in salinity 

tolerance and ShDHN, MYB49 and SlWRKY39 for tolerance to multi-stress factors (Liu et al., 2015; Sun 

et al., 2015; Cui et al., 2018).  

Water deficit (WD), high temperature (HT) and salinity (SS) represent the most important abiotic 

stresses threatening tomato productivity and fruit quality. A brief review of the impact of these 

stresses on tomato will be presented below. 

3.1 Water deficit (WD) 

Tomato is a high water-demanding crop (Heuvelink, 2005) making water resource management one 

of the key factors essential for the crop. The amount of irrigation water in tomato production is usually 

managed according to the reference evapotranspiration (ET0) and the developmental stage. When 

water deficit (WD) occurs during the cropping period, morphological and molecular changes are usually 

observed that hamper the final yield production. Several studies assessed the impact of WD stress on 

tomato, most of which establishing WD as a percentage of water restriction, according to the optimal 

water requirement (Albert et al. 2016a,b; Ripoll et al. 2016). 

From an agronomic point of view, the main consequence of WD on tomato is yield reduction, that can 

be severe when stress occurs during fruit development (Chen et al., 2013). However, all developmental 

stages are susceptible to WD to a level depending on the cultivar and stress intensity. Seed germination 

is the first step exposed to environmental stress. In tomato, a delay or even an inhibition of seed 

germination was observed with the application of osmotic stress (Bhatt and Rao 1987). Water deficit 

during vegetative and reproductive development negatively affects the overall economic performance 

of the crop but positive effects on fruit quality are documented. Indeed, Costa et al. (2007)  described 

some trade-off between yield decrease and increase in quality component on fruit trees and 

vegetables including tomato, where enhancement in fruit quality compounds such as vitamin C, 

antioxidants and soluble sugars was observed under WD stress (Albert et al. 2016a; Ripoll et al. 2014; 
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Patanè and Cosentino 2010; Zegbe-Domıńguez et al. 2003). The two groups of accessions constituted 

of cherry tomato and large fruit accessions usually show different sensitivity to environmental stresses. 

For instance, a study using a panel of unrelated lines tested under control and WD conditions revealed 

that large fruit tomato accessions were more susceptible and show higher response to WD (Albert et 

al. 2016b). This study also showed that the increase in the sugar content in fruit under WD is linked to 

the reduction in fruit water content and not to an increased synthesis of sugars. However, Ripoll et al. 

(2016) found higher fructose and glucose synthesis in tomato fruits submitted to WD stress at different 

stages of fruit development, indicating that both dilution effect and higher sugar synthesis are 

responsible of fruit quality enhancement in tomato under WD. Targeting specific genes for reverse 

genetic studies is now possible with the evolution of omics approaches. Variation in the expression 

level of several genes has been assessed under different environmental conditions and some examples 

are documented for water deficit response in tomato. This is the case for SlSHN1 gene that induces 

tolerance to drought by activating downstream genes involved in higher cuticular wax accumulation 

on leaves (Al-Abdallat et al. 2014). Wang et al. (2018) identified a drought-induced gene (SlMAPK1) 

playing an active role in the antioxidant enzymes activities and ROS scavenging leading to higher 

drought tolerance. 

3.2 Salinity stress (SS) 

Considering yield as a measure of tolerance to SS, tomato is a crop that can tolerate up to 2.5dS.m-1 of 

salinity and cherry tomatoes are less salt sensitive than large fruit accessions (Caro et al., 1991; 

Scholberg and Locascio, 1999). Over the above-mentioned threshold, a significant yield decrease is 

observed. Yield reduction under SS in tomato was found to be associated to a reduction in both fruit 

size and fruit number (Scholberg and Locascio, 1999). As for WD, SS also leads to an increase in sugar 

content in tomato fruits (Mitchell et al. 1991). Besides, SS leads to changes in the cation/anion ratio 

and the increase in sugar content in fruits of salinized plants likely results from the interaction between 

reduced fruit water content, increased ion content, and maintained hexose accumulation (Navarro et 

al., 2005). These changes are the consequences of tomato response to osmotic adjustment. The 

threshold for salinity tolerance defined above was set upon the characterization of few selected 

tomato cultivars. However, Alian et al. (2000) noticed a high genotypic variability in response to salinity 

in fresh market tomato cultivars. This highlights the possibility and the potentiality for the crop to 

breed salt-tolerant cultivars. 

Facing SS, plants deploy a variety of response to rebalance and reestablish the cellular homeostasis. 

Physiological responses to SS involve the ionic channel transporters as they are highly needed to 

regulate the ionic imbalance (Apse et al., 1999). Rajasekaran et al. (2000) screened salinity tolerance 

in a number of tomato wild relatives and associated salinity tolerance mainly to a higher K+/NA+ ratio 
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in roots. High genetic variability was observed in S.pimpinellifolium accessions for yield and survival 

traits in response to SS (Rao et al., 2013). Among the yield component traits, fruit number was the 

most affected in both wild and cultivated populations (Rao et al., 2013; Diouf et al., 2018). Breeding 

salt-tolerant variety therefore seems possible by using either physiological traits or agronomic 

performance under salinity, as sufficient genetic variability is available in several tomato genetic 

resources. 

3.3 High-temperature stress 

All crop species have an optimal temperature range for growth. Tomato is known as a crop that can 

grow in a wide range of environments, from elevated areas with low temperatures to tropical and arid 

zones where high temperatures usually occur. Based on crop simulation model, Boote et al., (2012) 

indicated  that the optimal growth for tomato and its fruit development is about 25°C. Temperatures 

below 6°C and above 30°C severely limit growth, pollination and fruit development and could 

negatively impact final fruit yield. Studies on different accessions and wild relative species of tomato 

helped understanding how the crop is responding to low and high temperature stresses.  

In tomato, HT stress around flowering was shown to inhibit reproduction by altering male fertility at 

high degree and female fertility at a lower rate (Xu et al., 2017). Tomato male fertility could be 

considered as the main factor limiting reproduction success under HT stress. This has led some studies 

to use pollen traits as a measure of heat tolerance instead of only final yield (Driedonks et al., 2018). 

Male reproductive traits were highly variable among wild species and some accessions showed high 

pollen viability compared to cultivated cultivars. This emphasizes possibilities for transferring heat-

tolerance alleles from wild donors to cultivated tomato. A reduction of fruit setting was observed in 

cultivated tomato with a high rate of parthenocarpic fruits noticed under HT stress at 26°C in growth 

chambers (Adams et al. 2001). These authors noticed that fruit maturation is accelerated under higher 

temperature mostly when fruits are exposed themselves to heating periods, that could alter final fruit 

quality composition.  

Considering the important effect of HT on agriculture, numerous studies successfully tackled and 

identified several heat-response genes (Fragkostefanakis et al., 2016; Waters et al., 2017; Keller and 

Simm, 2018). Heat-response genes are commonly regulated by the activity of heat stress transcription 

factors (HSFs) as earlier described for different organisms. This has led to the investigation of the roles 

played by HSFs in thermo-tolerance and majors HSFs depicted across plant species could lead to the 

development of heat-tolerant tomato via genome editing (Fragkostefanakis et al. 2015). 

In addition to the major abiotic stresses, tomato is also affected for several traits by chilling stress 

(Heuvelink, 2005; Meena et al., 2018) and mineral nutrition deficiency (Sainju et al., 2003; de Groot et 

al., 2004). Essential and non-essential mineral elements required for normal plant growth have been 
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classified (Marschner, 1983). Their relative importance and their limiting effect in tomato are discussed 

in more details in Causse et al., (2019) (submitted). 

3.4 Stress combination   

Plant responses to individual stress at specific growth stage are well documented and avenues for crop 

breeding to enhance tolerance to a particular stress were provided. However, observations in the 

nature and in open field conditions clearly brought to light that stress combination is a common 

phenomenon, especially with the climate change that has an incidence on co-occurring environmental 

stresses such as WD and HT stress. Climate change trend has also an impact on pathogen spreading 

and new disease appearance and distribution (Harvell et al., 2002). Different scenarios of biotic and 

abiotic stress combination are then expected to arise, according to the geographical regions and areas 

of crop cultivation. Suzuki et al. (2014) presented a stress matrix with the potential positive and 

negative effects of various patterns of stress combination (Figure 9). The global effect of combined 

stresses on yield, morphological and physiological traits on plants can be highly different from those 

of a single stress. Thus the stress matrix proposed by Suzuki et al. (2014) would be highly useful if 

specified for tomato, to achieve a global view of how stress combinations could be managed in 

breeding programs. 

  

Figure 9: The stress matrix. 
Different combinations of 
potential environmental stresses 
that can affect crops in the field 
are shown in the form of a matrix. 
The matrix is color-coded to 
indicate stress combinations that 
were studied with a range of crops 
and their overall effect on plant 
growth and yield. From Suzuki et 
al., (2014). 
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Examples of studies conducted in tomato to assess the impact of combined stress on different traits 

are available in the literature. Zhou et al. (2017) showed that physiological and growth responses to 

the combined WD and HT stresses had a similar pattern across different cultivars, but the response 

was different from the single heat response. Combination of HT stress and SS on tomato showed 

however less damage on growth than the application of SS alone (Rivero et al. 2014). Beside 

morphological changes, some studies conducted on the model species Arabidopsis thaliana 

demonstrated that variations in gene expression under stress combination are highly independent of 

variation induced by single stress application (Rasmussen et al., 2013).  

4 Genotype-by-environment (GxE) analyses in plant 

4.1 GxE definition 

Genotype-by-environment interaction (GxE) is a common phenomenon in crops that has received 

considerable attention particularly because of its profound implication in breeding (Allard and 

Bradshaw, 1964). It occurs when different genotypes exposed to different environmental conditions 

exhibit distinct phenotypic responses (El-Soda et al., 2014). The presence of GxE is closely related to 

the concept of phenotypic plasticity as illustrated in Figure 10. Crop production suffers from the 

phenomenon of GxE when the commonly used varieties display non-stable agronomic performance 

from different growing conditions. Variation in the environment may arise from year-to-year 

cultivation, different cropping systems or different geographical locations. Moreover, the global 

climate change also affects greatly environmental fluctuations leading to GxE, especially in open field 

conditions. The analysis of GxE in the context of plant breeding usually include a set of genotypes 

selected by a breeder to test in a targeted population of environments (TPE) where the cropping are 

intended to take place. This might imply on one side elite varieties that have been selected for 

agronomic characters earlier and on the other side different locations or abiotic stress conditions 

(Admassu et al., 2008; Rodriguez et al., 2008; Tonk et al., 2011). This strategy allows to identify 

interesting genotypes that perform well in specific growing conditions and others that are more stable 

showing non-significant variation from one environment to another. Exploring the extent of GxE in a 

panel of genotypes from the breeder’s collection is judicious for the selection of environmentally 

adapted varieties. A more comprehensive approach for the study of GxE is to use experimental 

immortal populations with fixed lines that can be grown in different environments. Mapping 

populations such as RILs, MAGIC, NAM and GWAS panels are interesting because they also offer the 

possibility for including genotypic information in GxE modelling and dissect directly the genomic 

regions related to the occurrence of GxE (van Eeuwijk et al., 2010). Thus, molecular breeding could be 
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conducted on GxE component. Different analytical tools were proposed to analyze GxE in crops which 

will be developed below. 

 

Figure 10: Graphical representation of GxE and phenotypic plasticity. This graph depicts different situation for two genotypes 
(black and green line) in two environmental conditions (Env1 and Env2). In A) both genotypes show no response to the 
environment thus denoting no plasticity and no GxE. B) Represents a situation where both genotypes have positive response 
to Env2 hence the presence of plasticity, but the response was similar so denoting absence of GxE. In the situation C) the 
genotypes show different response (antagonistic in this case) showing in this way both plasticity and GxE. 

4.2 Methods for GxE estimation 

The characterization of GxE in plants requires the evaluation of a set of genotypes (or a population) in 

a range of environmental conditions for one or multiple traits referred as phenotypes. A statistical 

decomposition of the phenotype has been proposed via the following equation: P = G + E + GxE where 

a phenotype (P) is the sum of the combined effects of genetic (G), environment (E) and their interaction 

(GxE) factors (Lynch and Walsh, 1998). Malosetti et al., (2013) reviewed a series of model that can be 

used to explore, describe and predict GxE in plant. Table 2 present different models used in the 

literature for the analysis of GxE encompassing linear, bilinear and mixed models.  

The full factorial analysis of variance (ANOVA) model (1) describes the simplest and starting model to 

explore GxE. In this model, !"#  represents the phenotype for genotype i ($") in environment j (%#) and 

$%"#  and &"#'  represents GxE interaction and error terms, respectively. This model allows accounting 

simultaneously for the within and between environment variation. All the dataset is used for this 

purpose, although unbalanced dataset may lead to misinterpretation. Constant residual variances are 

assumed from the different environments which might not reflect the reality. Besides, this model does 

not allow accounting for any complexity of the trial design. Thus, its use is mainly restricted for GxE 

exploration. 
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Table 2: Commonly used statistical models for GxE analysis 

Model name Model formulation Model 

Full factorial !"# = 	* + $" + %# + $%"# + &"#'                          (1) 

Additive model !"# = 	* + $" + %# + &"#                                                     (2) 

Joint regression  !"# = 	* + $" + ,-%# + &"#                                             (3) 

Factorial regression !"# = 	* + $" + %# +	.,"'/#'
0

'12
+ &"#  (4) 

AMMI  !"# = 	* + $" + %# +	.,"'3#'
0

'12
+ &"#  (5) 

GGE !"# = 	* + %# +	.,"'3#'
0

'12
+ &"#  (6) 

Linear mixed models !"# = 	* + $" + %# + $%"# + &"#'                                (7) 

	
The additive ANOVA model (2) is preferably applied than the full factorial ANOVA. Here, the dataset 

input is summarized to the two-way table consisting of single values (average) per genotype and 

environment. These values are usually estimated by calculating the adjusted means derived from single 

environment analysis. Within-environment modelling is an important first step in GxE analysis as it 

allows environment-specific quality control and spatial heterogeneity correction which may arise from 

local effects of genotype positions (row/block effect) in the trial. The additive model (2) depicts the 

variation of a trait into parts attributed to intrinsic genotypic effect and external environmental effect. 

It is also an explorative model and do not allow to go beyond in interpreting what causes the observed 

GxE nor to assess directly the GxE significance. From this model, GxE is not directly estimated but rather 

it is incorporated in the residual errors from which it can be inferred (Malosetti et al., 2013).  

An attractive and widely used model for GxE analyses from the plant breeding perspective is the joint 

regression also called Finlay-Wilkinson model (Finlay and Wilkinson, 1963). The popularity of this 

model in crops lies in the fact that both the general performance and stability, within the range of 

environments recorded can be estimated for a given genotype (Romagosa et al., 2013). The joint 

regression model (3) uses the average performance of all genotypes in every environment as a proxy 

measuring a hypothetic environmental quality index. Environments are then ranked from the poorest 

to the highest environment and the GEI described by genotype-specific regression slopes on the 

environmental quality indexes (Malosetti et al., 2013). The estimated ,- terms represent the 

environmental sensitivity of the genotypes which is a measure of adaptability. Genotypes are then 

classified from the most adaptable (highest	,-) with a high potential of performance in good 

environments to the least adaptable, which do not increase performance in good environments 
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compared to the vast majority of the genotypes tested. The expected average performance of a 

genotype is represented by the sum of the intercept (*) and the estimated genotypic effect ($"). 
Factorial regression model is an alternative of the joint regression model in the case where 

environmental variables have been measured and the environments characterized according to 

embedded biological information. Environmental covariates are then used as explanatory variables 

and GxE described as differential genotypic sensitivity (,"'  terms in model 4) to these covariates 

(/#' 	terms	in	model	4) which could represent temperatures, water irrigation or soil characteristic 

(Malosetti et al., 2013). An important aspect for factorial regression model is the selection of the 

environmental covariates which could greatly impact the interpretation of the GxE. Using a high 

number of covariates is not straightforward for linear regression models. Thus covariates should be 

selected only if relevant and not correlated for parsimony and better interpretation of GxE (Brancourt-

Hulmel et al., 2000; Leflon et al., 2005). 

Other models have been proposed with the particularity of including multiplicative terms to 

characterize the GxE. The additive main effects and multiplicative interaction (AMMI) model (5) for 

example allows to use K multiplicative terms referring to the product of a genotypic sensitivity (,"') 

environmental quality (3#'). The multiplicative terms in the AMMI model are derived from the singular 

decomposition of the GxE interaction matrix which is computed from the residuals of the additive 

model (van Eeuwijk et al., 1995). The different PCA axes are then retrieved and used to depict GxE. A 

slight modification of the AMMI model (5) was proposed to consider GxE and the main genotype effect 

together leading to the Genotype main effects and GxE (GGE) model (6) described in (Yan et al., 2000). 

This model is very useful for visualizing the overall performance of the genotypes through biplot tools 

(Malosetti et al., 2013).  Biplots exploration can help to dissect the relationships between genotypes 

and environments for a given phenotypic trait. 

Linear mixed models allowed substantial improvement in quantitative genetic modelling through the 

inclusion of random effect for complex dataset (Smith et al., 2005). Malosetti et al., (2013) outlined 

the interest of considering genotype as random in the context of GxE modelling as it allows considering 

genetic covariances and correlations between performances in different environments. These models 

are useful to compare the relative importance of GxE regarding the main genotype effect. Mixed 

model’s framework offers a large flexibility in modelling variance structure in GxE. A simple and 

unrealistic model is the compound symmetry model which only considers genotype effects as random 

without structuration of the residual variances. When environments are highly heterogeneous (e.g 

stress vs non-stress environments), the heterogeneous model is more interesting for allowing 

environment specific residual variances (Malosetti et al., 2013; Romagosa et al., 2013). Besides, more 

complex models have been documented, notably the unstructured and factor analytic models which 

accounts for specific structure in the MET design (Boer et al., 2007). 
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4.3 Phenotypic plasticity 

Phenotypic plasticity is commonly defined as the ability of a single genotype to produce different 

phenotypes in response to the environment (Des Marais et al., 2013).  When multiple genotypes and 

different environments are considered, differences in their plasticity lead to GxE phenomenon. 

Plasticity has been considered as playing an important role in evolution given that it may procure 

adaptive features when the new phenotypes produced in new environments tend towards the 

optimum (Ghalambor et al., 2007). In crops, plasticity is intrinsically linked to the concept of stability 

which is important in the agronomic point of view. A stable or environmentally canalized genotype 

refers to individual with little or no phenotypic variation when exposed to new environments while a 

plastic genotype will display larger phenotypic variation in new environments. Phenotypic plasticity 

and environmental canalization may be viewed as two opposed concepts (Flatt, 2005) and could both 

be related to stability.  The concept of canalization was first reported by (Waddington, 1942) who 

considers it as developmental adjustment occurring in variation of the physical and/or genetic 

environment leading to conserved phenotypic expression. For crop production, plant breeders and 

farmers may prefer a canalized/stable genotype with considerably predictable behaviors compared to 

plastic genotypes. Various statistical methods for the estimation of stability have been documented 

and classified in three groups according to Lin et al., (1986). Three stability concepts were proposed by 

these authors who considered a genotype as stable when i) its among-environment variance is small; 

ii) its response to environments is parallel to the average response relatively to the test set of 

genotypes; iii) the residual mean-squares from the regression model on the environmental index (joint 

regression model defined in section 4.2 above) is small. These different concepts of stability have 

different implications. The first stability concept for example only teaches us about the extent of which 

a genotype is plastic /canalized with no inference about its performance. Thus, the second and third 

concepts have more implication for plant breeders; however, they are estimated relatively to the set 

of the genotypes included in the analysis and are then highly sensitive to the number and diversity of 

the selected genotypes test set. A variety of methods for quantification of phenotypic plasticity have 

been proposed in the literature (Valladares et al., 2006) and could be grouped in one of the three 

concept of stability proposed by (Lin et al., 1986). 

The genetic basis of phenotypic plasticity have been investigated and (Bradshaw, 2006) proposed the 

presence of specific genes controlling phenotypic plasticity of an organism that might be distinct from  

constitutive genes. This opens up the possibility for considering plasticity as a trait per se on which 

breeding could be carried out. However, phenotypic plasticity have different features that should be 

considered when studying it, notably its great dependence on the environmental range, the phenotype 

measured and the method used for its quantification (Pigliucci et al., 2006). 
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4.4 Genetic dissection of GxE  

From the genetic point of view, Des Marais et al., (2013) defined GxE as the effect of a locus that 

changes in magnitude or direction across environments. Different statistical models have been 

proposed in the literature to identify the genetic loci governing the expression of GxE, which are 

commonly referred as interactive QTLs or QTLxE (El-Soda et al., 2014). The simplest way to test for the 

presence of QTLxE is to compare QTL effects from the single environment QTL analyses. This strategy 

was applied by Paterson et al., (1991) for example, who was among the first describing QTLxE by 

comparing tomato QTLs detected in three different environments. Different QTLs types can be 

distinguished with this approach (Figure 11). Des Marais et al., (2013) reviewed 37 QTLxE analysis 

published before 2013 for 11 species and observed that about 57% of the QTLs identified were 

environment specific. However, whether these QTLs were undetectable in other environments due to 

methodological limitation or real QTLxE is not always evident.  

 

Figure 11: Patterns of quantitative trait loci additive effects for traits that show genotype-by-environment interactions (G×E) 
can fall into four main categories: (a) antagonistic pleiotropy (AP), the result of sign changing additive effects; (b) conditional 
neutrality (CN), additive effects limited to only specific environmental conditions; (c) differential sensitivity (DS), the result of 
changes in magnitude of additive effects; and (d)no G×E, no detectable change in additive effects across environments; 
adapted from Des Marais et al., (2013). 

More sophisticated methods to test for the presence of QTLxE have been proposed, most of them 

being based on the models used to describe GxE at the phenotypic level. Mixed models for instance 

are powerful for detecting QTLxE as they allow defining either fixed or random term for modelling 
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complex data sets. Indeed, Malosetti et al., (2013) extended the framework of mixed model analysis 

of GxE by integrating molecular marker information to detect the genomic regions governing QTLxE in 

maize. A review presenting the potentiality offered by mixed models to dissect QTLxE was proposed 

by (van Eeuwijk et al., 2010). Different steps are required for multi-environment QTLs detection 

through the use of mixed models. At first, the best variance-covariance model fitting the phenotypic 

data needs to be determined. This selection will mainly rely on detecting the best parsimonious 

variance structure regarding the quality of the model and the number of parameters integrated. A 

genome-wide QTL scan is then conducted using the genomic marker information for QTL detection 

where the QTLxE effects could be tested jointly or independently for the marker and marker-by-

environment interaction (van Eeuwijk et al., 2010; El-Soda et al., 2014).  

Recently, approaches for detecting QTLxE using phenotypic plasticity emerged in plants yielding 

promising results for crop breeding in the context of GxE. These methods use the estimates of 

phenotypic plasticity which is further considered as phenotype denoting trait-response to 

environment variation. Valladares et al., (2006) proposed different quantification of plasticity and 

presented the conditions of relevance of each. For instance, phenotypic plasticity could be computed 

by the difference or relative proportion of the phenotypic values in stress vs control condition when 

only two environmental conditions are considered. When a high number of environments are 

screened, relative approaches for plasticity quantification could be used based on the joint regression 

or factorial regression models (Laitinen and Nikoloski, 2019). Numerous studies explored the genetic 

basis of phenotypic plasticity with such approaches across species (Lacaze et al., 2009; Kusmec et al., 

2017; Mangin et al., 2017; Xavier et al., 2018).  

5 Multi-parental mapping populations 

Multi-parental populations have been proposed as alternative to overcome the limiting allelic diversity 

present in bi-parental mapping populations. Different types of multi-parental populations exist and 

are mostly categorized in Nested Association Mapping (NAM) or Multi-parent Advanced Generation 

Intercrosses (MAGIC) populations. These populations have interesting characteristics making them 

suitable resources for genetic studies in plants. 

5.1 NAM populations 

The Nested Association Mapping (NAM) populations are achieved by a complex mating design where 

multiple parental lines are crossed with a common parental line. The first NAM population in crops 

was developed for maize (Yu et al., 2008) and was characterized as a powerful experimental population 

exploiting the advantages of linkage and association mapping analyses. It was developed from the 
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crossing of 25 inbreed lines to a common reference parent ‘B73’ (Figure 12), selected from the 

important US inbreed lines and according to agronomic and physiological characteristics. NAM 

populations were also developed in soybean (Diers et al., 2018), sorghum (Jordan et al., 2011), barley 

(Maurer et al., 2015) and wheat (Bajgain et al., 2016). The genetic architecture of a lot of traits have 

been dissected in the NAM populations, highlighting interesting genomic regions for breeding 

perspectives and allowing the identification of candidate genes underlying trait variation in crops (Tian 

et al., 2011; Cook et al., 2012; Bajgain et al., 2016; Bouchet et al., 2017). 

 

Figure 12: Crossing design between 25 diverse founders and the common B73 generating 5000 immortal genotypes. Due to 
diminishing chances of recombination over short genetic distance and a given number of generations, the genomes of these 
recombinant inbred lines (RILs) are essentially mosaics of the founder genomes; X crossing; ᴓ selfing (SSD); adapted from 
Yu et al., (2008). 

5.2 MAGIC populations 

Multi-parent Advanced Generation Intercrosses (MAGIC) populations are issued from the crossing of 

multiple parental lines (> two parental lines) followed by intercrossing of the first generations of 

descendant lines then allele fixation of the whole offspring to generate recombinant inbreed lines 

(RILs). These populations are characterized by an important allelic diversity dependent on the genetic 
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distance between the selected parental lines. Each MAGIC RIL’s genome comprises an approximately 

equal proportion of alleles from every parent. 

 

 

Figure 13: Stages of an 8-way MAGIC population development from eight founders. A) Selection of founders based on 
geographic, genetic, phenotypic diversity. The maternal pedigree tree is presented at the bottom for an eight-way MAGIC 
population with each ring representing a subsequent generation; B) mixing of parents together in predefined patterns, or 
funnels (denoted by symbol on right); C) intercrossing of individuals (generations denoted by number within crossed circle) 
derived from different funnels for additional generations; D) selfing (generations denoted by number within circular arrow) 
or double haploidization of individuals either directly from funnels or after advanced intercrossing to form inbred lines; 
From Huang et al., (2015). 

5.2.1 MAGIC populations in plants 

Genetic analyses of MAGIC population was first described in mouse (Mott et al., 2000). Thereupon, 

MAGIC populations disseminated in plants and were developed for Arabidopsis thaliana (Kover et al., 

2009), wheat (Huang et al., 2012), rice (Bandillo et al., 2013) and tomato (Pascual et al., 2015) among 

other species. MAGIC populations accumulate a high number of recombination events rising the power 

and precision of quantitative trait loci mapping. The development of MAGIC populations takes 

relatively long time and requires different steps. At first, the selection of the parental lines must be 

carefully operated. Parental lines might be selected upon different characteristics, notably for disease 

or abiotic stress resistance (Bandillo et al., 2013; Stadlmeier et al., 2018; Campanelli et al., 2019) or for 

agronomic performance and breeding objectives  (Mackay et al., 2014; Pascual et al., 2015). However, 

parents should always include the maximum diversity if genetic and genomic analyses are intended. 
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Multiple two-way crossing is then carried from the chosen parental lines to generate the first hybrids 

(F1) generation. Ensuing intercrossing between the F1 and their direct descendent may happen 

through different strategies; with the most common – for a balanced allele distribution in the final 

offspring – presented in Figure 13. A brief comparison between MAGIC and other mapping populations 

have been presented in section 1.3 (Figure 3). Besides, MAGIC populations advantages have been 

documented in the literature including high accuracy of genetic maps (Pascual et al., 2015; Gardner et 

al., 2016); potential resource for pre-breeding/breeding (Mackay et al., 2014); great diversity for high 

order epistasis detection (Mathew et al., 2018; Ogawa et al., 2018) and ability to capture GxE (Diouf et 

al., 2018; Xavier et al., 2018). 

5.2.2 QTL detection in the MAGIC population 

Although MAGIC populations present multiple advantages, the use of suitable statistical models is 

required for genetic analyses especially in the QTL mapping. A review of different statistical modelling 

for quantitative analyses of MAGIC populations was proposed by (Huang et al., 2015). Two main 

approaches can be used for QTL mapping in MAGIC populations lying in the use of i) marker scores 

such as in bi-parental populations referring to the bi-allelic approach, or ii) the haplotype probabilities 

of parental allele’s origin referring to the parental probabilities approach, where the probabilities of 

parental allele affiliation are inferred at each marker positions. Mott et al., (2000) depicted some limits 

with the bi-allelic approach mainly because not all information of the parental polymorphisms is taken 

into account. Indeed, for n progenitor lines and for a given position, each MAGIC RIL has 1/n chance to 

inherit one of the parental alleles. Thus, assigning alleles to one of the parents may be ambiguous since 

different parents carrying the same allelic status might be observed. The limits with the bi-allelic 

approach is well illustrated in Figure 14 from Verbyla et al., (2014).  

Methods for reconstruction of the parental probabilities have been proposed (Huang and George, 

2011) and attested efficient in different analyses with real data (Huang et al., 2012; Pascual et al., 

2015). The R/mpMap package proposed by Huang and George, (2011) allows mapping QTLs through 

simple linear regression model where QTL effects are estimated for every parent at each marker 

position where parental probabilities are computed. On the basis of parental probabilities, Broman et 

al., (2019) proposed new methods allowing to account for more complex designs of MAGIC 

populations and implemented them in R/qtl2 package. This package offers possibility to use regression 

models based on the Haley-Knott regression method (Haley and Knott, 1992) or to perform genome 

scan with a linear mixed model which could account for polygenic residual variance by modelling 

genetic relatedness between individuals. Previous studies had already proposed the use of linear 

mixed model in the MAGIC population which modelled also the polygenic variance and allowed for 
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detection of more than one QTL per chromosome or linkage group (Verbyla et al., 2014; Wei and Xu, 

2016). Mixed models are highly powerful for MAGIC populations because of the flexibility they offer 

for modeling any complexity from the mating design. In maize for instance, Giraud et al., (2017) applied 

mixed model for QTL analysis and considered the structure from the parental belonging to different 

heterotic groups.  

 

Figure 14: MAGIC population generation for four founders and two loci tracked through the process. The histograms in a 
and b present the probability that the marker represents each founder allele   
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6 Context and objectives of the thesis 

This study was conducted with the general objective of identifying QTLs/genes, genotypes and 

phenotypes involved in tomato adaptation to several stresses, water deficit and salinity (in the frame 

of the ANR project ADAPTOM) and heat stress (in the frame of the ANR project TomEpiset). Indeed, 

tomato yield and fruit quality have been shown to vary under different abiotic stress conditions and 

the climate change is expected to exacerbate the occurrence of abiotic stresses pointing the needs to 

find new strategies for tomato breeding under unfavorable climatic conditions. The two ANR projects 

were funded by the French National Agency for Research (ANR) with the contribution of multiple 

research groups and private breeding companies. 

I was funded by the West Africa Agricultural Productivity Program (WAAPP) project through 

collaboration between the World Bank (WB) and the Senegalese National Institute for Agricultural 

Research (ISRA) 

Research questions 

The aim of the thesis was to assess the impact of abiotic stresses on tomato fruit quality, plant 

development and phenology traits and study their genetic control 

Three scientific questions were proposed to reach this objective: 

1. To what extent water deficit, salinity and heat stress affect tomato at phenotypic level? 

2. How do the genetic background and the amount of water irrigation affect the transcriptome 

variation on tomato? 

3. What are the genetic bases of tomato plasticity and GxE under abiotic stresses? 
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Materials and Methods 

 

This chapter presents a brief description of the materials and methods employed along the analyses 

process in this manuscript. 
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1. Plant material 

The plant material used in this project consisted of a multi-parental advanced generation intercross 

(MAGIC) population released in 2012 through an ANR project coordinated by INRA-GAFL in 

collaboration with Limagrain. The MAGIC population was developed from a cross of eight tomato 

lines selected from a diverse panel of 360 accessions. These lines were selected for their diversity 

and their genetic distance regarding the reference genome line ‘Heinz1706’.  Four parental lines 

were selected from the genetic group of the cherry tomatoes: Solanum lycopersicum var. cerasiforme 

(SLC) and four from the large fruit group: Solanum lycopersicum var. lycopersicum (SLL). Whole 

genome resequencing of the eight lines yielded a total of 4 millions SNPs (Causse et al., 2013). The 

number of polymorphisms was higher between the small fruited accessions and the reference than 

for the large fruit accessions (Table 1). About 400 MAGIC lines were generated from the cross design 

depicted in Figure 1. Four pairs of two-way parental cross firstly generated four F1 hybrids from 

which two pairs of two-way crosses generated each 120 hybrids for each pair. Crosses between the 

120 hybrids from the two series generated 480 F1-like hybrids. Three generation of single seed 

descent (SSD) were carried on and about 400 MAGIC RILs delivered (Pascual et al., 2015).  

Among the 4M SNPs released from the whole resequencing of the parental lines, a total of 1486 

SNPs were selected to be regularly spread and optimize parental haplotype identity for genotyping 

the whole population, which was performed using the Fluidigm 96.96 Dynamic Arrays according to 

the manufacturer’s protocol manufacturing (Pascual et al., 2015). A genetic map was constructed 

using the R package mpMap version 1.24.3 (Huang & George, 2011). The genetic map was composed 

of 1345 SNPs all presenting less than 20% of missing data and presented an average number of 

recombination of 1.36 per Morgan (Figure 2). The linkage map obtained showed an 87% increase in 

recombination frequencies compared to EXPEN 2012 an earlier bi-parental genetic map (Pascual et 

al., 2015). 

2. Experimental design 

The MAGIC population was grown in three different geographical regions (France, Israel and 

Morocco) and four specific stress treatments were applied. Trials were conducted in order that in a 

given trial any stress treatment was applied aside a control trial (Table 2). Treatments consisted in 

water deficit (WD), two levels of salinity – considered here as low salinity (LS) and high salinity (HS) – 

and high temperature (HT) stress. A detailed description of the treatments is presented in chapter 3 

(for WD and SS) and chapter 5 (for HT stress). For each trial, different phenotypic traits were 

recorded (Table 3). Climatic variables within greenhouses were recorded daily in each trial and 
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environmental covariate variables calculated to characterize the environments (see chapter 6 for 

details). The average values of all climatic covariates are presented in Table 2. 

 

 

 

Figure 2:  

Figure 1: Construction of the tomato        

8-way MAGIC population used in the 

present study. Large fruited founders 

noted as L1 (Levovil), L2 (Stupicke), L3 

(LA0147), L4 (Ferum); Small fruited 

founders noted as C1 (Cervil), C2 (Criollo), 

C3 (Plovdiv24A), C4 (LA1420).   
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3. Evaluation of stress impact at phenotypic level 

Phenotypic plasticity (PP) and the relative stress impact (RSI) indexes were calculated for each trial 

separately to measure the effects of specific stresses for each MAGIC RIL and for the whole 

population. For each trait (t) the PP was computed using the general formula !! =
($%&'(%%	*	$+,-&',.)

$+,-&',.
 

and              012 = 100	5	
(6%&'(%%	*	6+,-&',.)

6+,-&',.
  where t and T represent the average phenotypic value per 

genotype and across all genotype (population average), respectively.  

A global analysis of all trials together was conducted in chapter 6. Mixed linear models were used to 

estimate the level of genotype-by-environment interaction (GxE). Phenotypic plasticity was also 

computed in the multi-environment trial (MET) design through the factorial regression and joint 

regression models.  

4. Evaluation of stress impact at the genetic level 

Quantitative trait loci (QTL) mapping was conducted in the MAGIC population for every trait using 

the mean or plasticity phenotypes. Different QTL models were applied but all were based on the 

parental haplotype probabilities reconstruction. Figure 3 summarizes the principle of QTL mapping in 

the MAGIC population using the parental haplotypes. The R packages mpMap (Huang & George, 

2011), version 2.0 and R/qtl2 (Broman et al., 2019) were used for QTL detection analysis in chapter 3 

and chapters 5 and 6, respectively. These packages are designed for QTL mapping in MAGIC 

populations for single environment analysis. For the mapping of interactive QTLs (QEI), a home-made 

mixed model was developed which is an extension of the QTL model described by Giraud et al., 

(2017) to account for GxE in our case. The model is described in chapter 6 in details.  

5. Evaluation of water-deficit impact at transcriptome level 

RNA-sequencing was conducted on the eight parental lines used to generate the MAGIC population 

under control (fully irrigated) and WD conditions. Young leaf and fruit pericarp samples (at cell 

expansion stage) were collected and gene expression measured according to the sampling design 

depicted in Figure 4. The impact of WD and GxWD interaction on the transcriptome variation was 

evaluated through differentially expressed genes (DEG) analysis using the R-Bioconductor package 

DESeq2 1.14.1 (Love et al., 2014), and through analysis of variance (ANOVA) of the transcript levels 

(see chapter 4). 

6. Candidate genes identification 

A general procedure for selecting candidate genes underlying QTLs was applied throughout the 

different sections of this document. The strategy coupled the QTL founder allele effects with the 

polymorphisms detected along the QTL region to narrow the candidate gene list (Figure 5). This 
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strategy was first applied in our MAGIC population by Pascual et al., (2015). Plasticity candidate 

genes were also screened by combining the QTL allelic effect with variation in the gene expression 

level under WD to shorten candidate gene list within the plasticity QTLs detected under WD and SS 

(details in chapter 4). 

 
 

 

Figure 3: Principles of haplotype-based QTL mapping in MAGIC populations (example of an 8-way MAGIC population). 

Haplotype status of the MAGIC RILs denoting the inherited parental chromosome segments at the whole genome level. B) 

Phenotypic responses of the MAGIC RILs grouped according their haplotype status at a given region (i.e ***QTL). C) 

Statistical modelling to test for the presence of QTL. At every position where the genotypes are scored, the model test for 

significant association between the phenotypic variation and the parental haplotype status. Allelic effects could then be 

estimated for each parental line when a QTL is identified. D) The LOD score of the QTLs are derived along the whole 

genome scan and significance of the QTLs established through the estimation of a detection threshold.   
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Figure 4: RNA-Seq experimental design. Sampling for the RNA-Seq analysis was carried on young leaves and fruit pericarp 

(at a green fruit stage). Samples were collected (2-3 biological replicates) for the eight MAGIC parental lines under fully 

irrigated (control) and water deficit (WD) conditions. A total of 72 mRNA libraries were constructed and expression level 

accounted for about 34K genes. 

 
 

Figure 5: Schematic representation of the strategy used to narrow the candidate genes list for QTL detected in the MAGIC 

population. A) Represent a QTL significantly detected in a given genomic region. The confidence interval of the QTL (green 

region) hold many genes represnted in B). C) The mean centered of the estimated allelic effects for the eight parental lines 

at the pic QTL position. Parents likely carrying the positive allele are represented in green and parents with the negative 

allele in red. Candidate genes are selected then by filtering only genes affected by polymorphism varying according to the 

selected parents.
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Table 1: Number of common SNP (upper diagonal) and InDel (lower diagonal) in all the pairs of 

comparisons (SNPs were defined with a depth higher than 4 in both accessions). Accessions consist in 

four S. lycopersicum (SLL) and four cherry-type (SLC) accessions. The first line and column indicate 

the number of SNP and InDel detected when compared to the reference genome 

 

 Solanum lycopersicum lycopersicum Solanum lycopersicum cerasiforme  

SNP 

InDel 

Nb vs Ref LA0147 Levovil Ferum Stupicke Criollo LA1420 Plovdiv Cervil 

Nb vs Ref 182,371 271,458 306,083 356,655 1,042,928 1,358,257 1,457,098 2,028,568 

LA0147 7,969 82,46 85,695 116,904 63,915 79,616 76,642 87,389 

Levovil 2,894 517 49,318 80,009 54,538 49,482 53,472 78,907 

Ferum 4,532 715 353 71,995 122,094 116,987 68,448 64,689 

Stupicke 10,886 1,544 540 738 70,024 217,565 244,284 111,531 

Criollo 13,898 612 336 601 727 458,908 164,449 260,234 

LA1420 30,927 1,298 468 910 2,366 2,666 310,635 222,517 

Plovdiv 33,966 1,227 460 722 2,621 1,262 3,106 828,296 

Cervil 53,522 1,521 534 807 1,746 1,811 2,532 8,441   

 

 

Table 2: Experimental design with the 12 environments and their respective names. The locations of 

the trials, the stress applied, and the average value of the climatic variables recorded/calculated 

during the vegetative and flowering stages are indicated. For each environment, the total number of 

genotypes used is given. 

 

Environ-

ments 

Location  Water 

irrigation 

(%ETP) 

Treatment EC 

(dS/m) 

Tmin 

(°C) 

Tm 

(°C) 

Tmax 

(°C) 

Amp.Th 

(°C) 

RH 

(%) 

Vpd 

(kPa) 

Sum of 

degree 

day (SDD) 

Number 

of 

Genotypes 

Avi12 France 100%  Control 1.33 15.48 20.5 26.4 10.92 70.83 1.71 466.94 397 

Avi17 France 100%  Control 1.65 16.05 21.44 29.02 12.97 63.73 1.62 496.4 280 

HAvi17 France 100%  Heat 1.47 20.35 26.9 34.34 13.99 70.72 2.52 664.06 356 

Is14 Israel 100%  Control NA 20.16 28.6 38.72 18.56 67.4 2.64 800.23 288 

HIs14 Israel 100%  Heat NA 21.92 33.05 48.33 26.41 55.02 2.78 1022.73 288 

WDIs14 Israel -70%  
Water 
deficit 

NA 20.53 29.28 40.83 20.3 63.48 2.59 835.57 288 

Is15 Israel 100%  Control NA 17.39 26.78 37.54 20.15 65.38 2.3 685.12 288 

WDIs15 Israel -30%  
Water 
deficit 

NA 17.27 25.97 35.38 18.11 65.94 2.21 638.54 288 

Mor15 Morocco 100%  Control 2.17 8.11 18.17 35.91 27.8 62.42 1.3 484.9 241 

WDMor15 Morocco -50%  
Water 
deficit 

1.42 8.11 18.17 35.91 27.8 62.42 1.3 484.9 241 

LSMor16 Morocco 100%  Salinity 3.76 11.54 19.99 34.11 22.57 59.56 1.39 583.06 253 

HSMor16 Morocco 100%  Salinity 6.5 11.54 19.99 34.11 22.57 59.56 1.39 583.06 253 

 



Chapter 2 

 54 

Table 3: Phenotypic traits evaluated per trial in the MAGIC-MET design 

Trait Avi12 
Mor15 

WDMor15 

LSMor16 

HSMor16 

Is14 WDIs14 

HIs14 

Is15   

WDIs15 

Avi17  

HAvi17 

Fruit weight x x x x x x 

Fruit number  x x x  x 

Soluble solid 
content 

x x x  x x 

Fruit firmness x x x   x 

pH x     x 

Color x     x 

Time to ripe x x x    

Fruit length x      

Fruit size x      

Fruit width x      

Titrable acidity x      

Flowering time x x x   x 

Fruit set      x 

Number of 
flowers 

 x x x  x 

Leaf length  x x x  x 

Stem diameter x     x 

Plant height x   x  x 

Style exertion x     x 
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Water Deficit and Salinity Stress
Reveal Many Specific QTL for Plant
Growth and Fruit Quality Traits in
Tomato
Isidore A. Diouf 1, Laurent Derivot 2, Frédérique Bitton 1, Laura Pascual 1† and

Mathilde Causse 1*

1 INRA, UR1052, Génétique et Amélioration des Fruits et Légumes, Centre de Recherche PACA, Montfavet, France,
2GAUTIER Semences, Eyragues, France

Quality is a key trait in plant breeding, especially for fruit and vegetables. Quality

involves several polygenic components, often influenced by environmental conditions

with variable levels of genotype × environment interaction that must be considered

in breeding strategies aiming to improve quality. In order to assess the impact of

water deficit and salinity on tomato fruit quality, we evaluated a multi-parent advanced

generation intercross (MAGIC) tomato population in contrasted environmental conditions

over 2 years, one year in control vs. drought condition and the other in control vs. salt

condition. Overall 250 individual lines from the MAGIC population—derived from eight

parental lines covering a large diversity in cultivated tomato—were used to identify QTL

in both experiments for fruit quality and yield component traits (fruit weight, number of

fruit, Soluble Solid Content, firmness), phenology traits (time to flower and ripe) and a

vegetative trait, leaf length. All the traits showed a large genotype variation (33–86%

of total phenotypic variation) in both experiments and high heritability whatever the

year or treatment. Significant genotype × treatment interactions were detected for five

of the seven traits over the 2 years of experiments. QTL were mapped using 1,345

SNP markers. A total of 54 QTL were found among which 15 revealed genotype

× environment interactions and 65% (35 QTL) were treatment specific. Confidence

intervals of the QTL were projected on the genome physical map and allowed identifying

regions carrying QTL co-localizations, suggesting pleiotropic regulation. We then applied

a strategy for candidate gene detection based on the high resolution mapping offered by

the MAGIC population, the allelic effect of each parental line at the QTL and the sequence

information of the eight parental lines.

Keywords: tomato, fruit quality, MAGIC population, genotype by environment interaction, QTL mapping

INTRODUCTION

Abiotic stress is one of the main factors limiting crop productivity and yield in agriculture. It occurs
when plants experience any fluctuation in the growing habitat that alters or disrupts their metabolic
homeostasis (de Oliveira et al., 2013). Among the abiotic stresses, drought and salinity are the
most common threatening global food demand. Their adverse effect on agriculture is expected
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to increase with the predicted climate change (Dai, 2011;
Shrivastava and Kumar, 2015). Both drought and salinity
stresses drive a series of morphological, physiological, and
molecular changes in plants that are overall linked to adaptive
mechanisms triggered by the plant to survive, or may simply be
pathological consequences of stress injury (Zhu, 2002). Indeed,
water deficit has several impacts on plant development due to
the decrease of the plant’s relative water content and water
potential. Osmotic stress and limited nutrient uptake are then
observed with stomatal closure, reduced photosynthesis activity,
oxidative stress, and leaf growth inhibition. These behaviors
are well reviewed by Farooq et al. (2012) and Chaves et al.
(2003). For saline soil condition, plants are subjected to stress
in two phases: a rapid osmotic stress phase starting immediately
(due to the concentration of salt outside the roots) and a
second ionic phase that starts when the accumulation of salt
in the old leaves reaches a toxic level. The osmotic stress
triggered by salinity has almost the same effect as drought
with photosynthesis limitation, leaf growth inhibition, and ROS
accumulation (Munns and Tester, 2008). Plants deploy a variety
of adaptive strategies facing drought and salinity, including
osmotic adjustment with the accumulation of osmo-protectants
compounds, ROS detoxification, stomatal closure, and cellular
signaling.

Drought and salinity arise with other adverse environmental
factors threatening crop productivity in many species as a
consequence of global climate changes. This has led plant
breeders to renew their focus on understanding the molecular
basis of plant adaptation to environment, in order to maintain
high crop yielding by creating new varieties adapted to limited
environmental conditions. As noted byMarais et al. (2013), plant
responses to adverse conditions can be viewed as phenotypic
plasticity (PP) and may lead to GxE when there is a genetic
part shaping these responses. Understanding the molecular
mechanism entailing PP and GxE is of great relevance in
breeding strategies mainly if different growing areas (or cultural
conditions) are targeted. For both PP and GxE, different
underpinning models were suggested in the literature. PP can
be viewed as additive effect of environmentally sensitive loci
meaning that the same loci affect the phenotype in a set
of environments at variable degrees, or specific regulatory
loci altering differently the gene expression, in the different
environments (Via et al., 1995). Non-additive effect such as
over-dominance and epistasis or epigenetics can also be at
the basis of the occurring GxE. El-Soda et al. (2014) present
several statistical models to depict GxE into its individual
genetic components through the identification of interactive QTL
(QTLxE). Considering plasticity as an individual trait, some
studies showed that loci linked to PP are in the vast majority also
identified as QTLxE (Ungerer et al., 2003; Gutteling et al., 2007;
Tétard-Jones et al., 2011).

Cultivated tomato is a crop moderately sensitive to salinity
that can tolerate up to 2.5 dS/m EC, with minor negative
impact on yield (Scholberg and Locascio, 1999). Caro et al.
(1991) have found that small fruit accessions S. lycopersicum var
cerasiforme are less sensitive to salinity than the large fruit group
S. lycopersicum var lycopersicum. For drought, a negative impact

on yield is observed from a limitation of water supply by 50%
compared to control (well irrigated) (Ripoll et al., 2014; Albert
et al., 2016a). Under such stresses, tomato yield components
as well as fruit quality are greatly affected with different effects
depending on the variety, the stage and duration of stress
application and also the interaction with other environmental
conditions like temperature, light, or relative humidity (Maas and
Hoffman, 1977; Scholberg and Locascio, 1999; Ripoll et al., 2014).
Furthermore, the genetic background may strongly modify the
response to stress conditions (Albert et al., 2016b). This makes
selection of genotypes tolerant to water deficit and salinity with
high productivity and fruit quality a challenging task.

Several studies revealed that water deficit (WD) and salinity
stress (SS) can improve fruit quality through higher accumulation
of quality compounds and anti-oxidant (Mitchell et al., 1991;
Du et al., 2008; Huang et al., 2009; Albert et al., 2016a; Ripoll
et al., 2016). SS also increases inorganic ion content of salinized
plants (Mitchell et al., 1991; Navarro et al., 2005). Inmany species,
particularly for fruit and vegetables, quality is a main objective
for variety improvement. Breeding for quality arose with the
increasing demand of high quality products from consumers
these last decades. Accordingly to its definition (Shewfelt, 1999;
Causse et al., 2001), quality is complex and involves several
chemical, physical, and organoleptic characteristics that can be
directly related to consumer preferences or to the requirement of
market-oriented production. Many quantitative trait loci (QTL)
related to fruit quality traits were identified in several species
(Causse et al., 2001; Monforte et al., 2004; Kenis et al., 2008;
Eduardo et al., 2011). These studies revealed that most of
the quality components are polygenic and based on multiple
correlated traits, some of which being regulated by pleiotropic or
linked QTLs (Monforte et al., 2004; Kenis et al., 2008).

Multi-parent populations require crosses between more than
two inbred parental lines to generate RIL progeny. They include
Nested Association Mapping (called NAM, Yu et al., 2008) or
Multi-parent Advanced Generation Inter-cross (called MAGIC)
populations (Kover et al., 2009; Huang et al., 2012). The interest
of multi-parent populations relies on the mating design allowing
more genetic diversity to occur in the offspring, which besides
undergoes several recombination events. The first MAGIC
population was developed in mouse (Threadgill et al., 2002) and
expanded to several plant species (Kover et al., 2009; Huang et al.,
2012; Bandillo et al., 2013; Milner et al., 2016). The MAGIC
populations have some advantages with respect to association
panel for GWAS because of the absence of structure and the
balanced allelic frequencies. They already demonstrated their
capacity to increase length of genetic maps and detect QTL with
reduced confidence intervals compared to bi-parental progenies
(Pascual et al., 2015; Gardner et al., 2016). Nevertheless, due to
the complexity of the mating design, statistical methods used in
bi-parental or GWAS populations are not efficient. A regression
model estimating all parental effects was proposed by Huang and
George (2011).

In the present study we investigated the effect of salinity
stress and water deficit on tomato for quality, yield component,
vegetative, and phenology traits, using a MAGIC population
based on the cultivated tomato and which underwent several
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recombination generations. Thus, the objectives were: (1) to
assess and compare the impact of both WD and SS at phenotypic
level and the trait plasticity, (2) to study the genetic determinants
of tomato response to SS andWD and to identify interactive QTL
using plasticity and (3) to select candidate genes, based on the
parental allelic effect and their genomic sequences.

MATERIALS AND METHODS

Plant Materials
We analyzed the MAGIC tomato population created at INRA
center of Avignon (France). It was derived from the cross of eight
parental lines, four of them belonging to the small fruit group
S. lycopersicum var. cerasiforme (Cervil, Criolo, Plovdiv24A, and
LA1420) and four lines with large fruit from S. lycopersicum var.
lycopersicum group (Levovil, Stupicke Polni Rane, LA0147 and
Ferum). Parent’s selection was carefully operated within a core
collection of 360 cultivated tomatoes to comprise the maximum
diversity, notably the genomes of the four cerasiforme accessions
representing a mosaic between wild and cultivated tomato
genomes. A population of 400 families was obtained following the
crossing design detailed in Pascual et al. (2015). The genomes of
all parental lines were fully sequenced allowing the identification

of about 4 millions of single nucleotide polymorphisms (SNP)
(Causse et al., 2013).

Greenhouse Trials
The MAGIC population was grown in contrasted conditions in
Morocco (Gautier Semences breeding station) over 2 years in
greenhouse with similar experimental procedures. Plants were
grown in 5L plastic pots filled with loamy substrate (Klasmann
533) and treatments were applied by row. Stressed and control
rows were placed side-by-side, each genotype in the stressed row
facing its replicate in the control one. The first year of experiment
(Exp.1), water deficit and control (well irrigated) treatment were
applied, while the second year (Exp.2) was dedicated to salinity
stress and its control treatment. The average temperature and
relative humidity in the greenhouses were very similar in both
experiment with 20.82◦C and 60.68 HR for Exp.1 and 21.74◦C
and 61.60 HR for Exp.2. However, the management of electrical
conductivity (EC) differed between the two experiments. In
Exp.1, water supply was reduced for WD treatment with respect
to the control treatment where plants were subjected to the
optimal irrigation. WD treatment consisted in the reduction of
irrigation by 25% at the first flowering truss of Cervil (the earliest
parent) and by 50% at the second flowering truss. The EC of the
loamy substrate was measured in the pots for each plant with a
“GroSens HandHeld” instrument, giving an average value of 1.97
dS/m for the two treatments. In Exp.2, both control and salinity
treatments were not restricted in the amount of water intake but
differed in the EC application. A fertigation solution with a pH
of 6.1 and EC of 3 dS/m was used for both treatments at the
beginning of the culture until the 2nd truss flowering of at least
half of the plants. Then, salt treatment was enriched with NaCl
solution and salinity was evaluated by measuring the EC of the
substrate every week. On average, the EC of the substrate was 3.76
dS/m in control treatment and 6.50 dS/m in salinity treatment.

The average difference in EC between the controls treatments
over the two experiments was thus 1.79 dS/m. First and last rows
in the greenhouse were considered as border lines and border
genotypes were also placed at the end of rows. The eight parental
lines and four F1 hybrids were tested together with 241 MAGIC
lines in Exp.1 and 253 MAGIC lines in Exp.2.

Plant Phenotyping
Seven traits were measured in both experiments. For phenology,
flowering date (date of first open flower on 4th truss) and
maturity date (first ripe fruit on the 4th truss) were recorded.
Then time to flower (Flw) and time to ripe (RIP) were recorded
as the day number between the sowing date and flowering date
for Flw and between the flowering date and maturity date for
RIP. Leaf length (Leaf) was measured as vegetative trait for each
plant under the 5th truss. Fruits were harvested at maturity every
week and for each genotype, fruit number was recorded on plants
and fruit weight (FW) measured for at least 10 fruit per genotype
on truss 3, 4, 5, and 6. For sugar content in Exp.1, 3 fruits
harvested on truss 4 and 5 were pooled and crushed to obtain
a fluid on which the soluble solid content (SSC) was measured
with an electronic refractometer. In Exp.2 only fruits within each
truss were pooled for SSC measurements. A durometer was used
to measure fruit firmness (Firm), applying a pressure on the
surface of the fruit measuring the strength needed to retract the
durometer’s tip. Five fruits per genotype were used with two
measures per fruit.

For every trait in each experiment, phenotypic plasticity (PP)
was measured by the relative difference between the control and
stress treatments. For a trait (k) and for a single genotype, we
calculated PP as PPk = (Stressk–Controlk)/Controlk and used
these data to identify interactive QTL between stress and control
for each experiment. Considering all the genotypes, the average
effect of the stress was evaluated in a single experiment by the
mean relative variation as (Mean Stressk–Mean Controlk)/Mean
Controlk and converted in percentage of increase or decrease due
to the stress. For convenient comparison between salinity and
water deficit effects on phenotypes, the mean variation was also
calculated in a second step taking the control in Exp.1 as unique
control and all other conditions as stress.

Statistical Analyses
Statistical analyses were performed with the free software R
version 3.3.0. Data were firstly checked per trait and per
treatment. FW and NFr were log-transformed for normality
assumption. Analyses were conducted separately per experiment
to allow the comparison of each stress treatment against its
control. We tested the fixed effect of genotype and treatment
and their interaction by a two way ANOVA following the model:
Yij = µ + Gi + Tj + G∗Tij + εijk, where Yij represents the
phenotype of genotype i (Gi) and treatment j (Tj), G∗Tij the
interaction between genotype and treatment and εijk the residual
error. Pearson’s correlations were calculated between the mean
trait values per treatment and for each trait between treatments
within experiment and between the two control treatments. In
each treatment, the broad sense heritability (h2) was evaluated
by means of the following ANOVA model where the genotype
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was considered as random: Yi = µ + Gi + εij. Gi and εij are the
random effect of genotype and the residual error respectively. The
broad sense heritability was then calculated as h2 = σ

2G/(σ2G+
σ
2E/r) where σ

2G and σ
2E are the genetic and residual variance

respectively, and r is the average number of replicates per
genotype.

Haplotype Prediction
The MAGIC population is characterized by the complex mating
design of the eight parental lines. The parental origin of each
allele in the offspring is not intuitive, on the contrary to the
bi-parental population. To infer the allelic parental provenance,
we estimated the probability of each parent being at the origin
of each allele in the MAGIC lines with the function mpprob of
the mpMap package 2.0 (Huang and George, 2011). We fixed
a threshold of 50% above which allelic parental provenance is
assigned. These probabilities were further used to perform the
QTL identification.

QTL and QTL×E
The QTL were mapped by interval mapping (IM) procedure with
the R package mpMap. Parental probabilities were computed
every 2 cM along the genome and at each marker position and
then used to estimate parental effects. The regression on the
parental allelic effect, at each position where probabilities were
computed, allowed the QTL identification. A LOD threshold
of 3 was fixed to detect a significant QTL. Confidence interval
(CI) of a QTL was estimated with one unit decreasing of the
LOD threshold on both sides of a QTL position. Considering
one trait, constitutive QTLs were defined when two (or more)
QTLs were identified in different conditions (treatments) on the
same chromosome with their CI overlapping. They were then
considered as a unique QTL expressed in both conditions.

Then, PP was used as single trait for each phenotype, to
identify interactive QTL (QTL×E). Before analysis, plasticity
data were checked for normality and log transformed for FW and
NFr.

Candidate Genes Identification
We screened for candidate genes under QTL for the QTL×E
and QTL mapped in a CI shorter than 2Mb. For each QTL, we
listed the number of polymorphisms and genes present within
the CI region based on the sequence information of all parental
lines (Causse et al., 2013) and the reference genome (Tomato
Genome Consortium, 2012). We filtered the polymorphisms and
genes listed in accordance with the parental allelic effects at the
QTL.We focused on QTL that present pronounced divergence in
the allelic effect of the eight parents, keeping all polymorphisms
and genes commonly shared by the parents varying in the same
direction and different from those shared by the parents varying
in the opposite direction. The putative function of the remaining
genes (when annotated) were then checked on the Sol Genomic
Network (solgenomics.net) database in order to identify which
candidate’s annotated function is correlated to the QTL trait of
interest.

RESULTS

Phenotypic Variation in the MAGIC
Population
The phenotypic variation observed among the MAGIC lines
showed transgressions in both directions in comparison
to the eight parental values for every trait (Table 1;
Supplemental Figure 1). Except FW in control of Exp.2,
the highest value in MAGIC lines always exceeded the best
parent in every trait by treatment combination.

The comparison of control treatments between the two
experiments showed little mean differences for Firm, RIP and
Leaf, which had a relative mean variation below 10%. FW, SSC,
andNFr varied considerably between the controls by 38.54, 39.85,
and 61.11% respectively (Table 1). Statistical analyses were thus
conducted separately for each experiment to assess the impact of
WD and SS compared to their specific control treatment.

All traits across treatments exhibited heritability above 0.4
except firmness in Exp.1. Heritability ranged from 0.09 for
firmness inWD treatment to 0.92 for flowering time in control of
Exp.1. In average, Flw, RIP and FW had the highest heritability.
For both experiments, heritability varied between control and

stress treatment with the highest variation observed for SSC in
Exp.2 where h2 SSC was 0.69 for the control and 0.48 for the
salinity treatment. The heritability of a few traits like RIP was
poorly impacted by the stress treatments.

The total sum of square of the two way ANOVAs was
partitioned in proportion attributed to genotype, treatment and
their interaction. A large part of the phenotypic variation was
linked to genotype, accounting from 39 to 86% of the total sum
of square in Exp.1 and 33 to 72% in Exp.2 (Table 2). Significant
effects of treatment were found for every trait in Exp.1 while
Exp.2 showed significant treatment effect only for FW, SSC,
and Leaf. Similarly, all traits exhibited significant genotype ×

treatment interaction in both experiments except Firm in Exp.1
and NFr in Exp.2.

Significant correlations were observed between traits in each
treatment revealing the link between quality, phenology, and
vegetative traits. To assess the repeatability of phenotyping
measurement, single trait correlations between treatments within
each experiment and among control treatments were evaluated.
Most of the correlations were significant at P < 0.001 (Table 3).
The strongest Pearson’s correlation was found between FW and
leaf in Exp.1, which exhibited a positive correlation. In Exp.2, the
correlation between Flw and RIP was the strongest correlation.
For both experiments, Flw and RIP were significantly and
negatively correlated indicating that the later the truss flowered,
the shorter the time to ripe. FW was also negatively correlated
to SSC in every treatment. Across experiments, the sign of
correlations were conserved for all significant correlations.

Impact of Water Deficit and Salinity Stress
at Phenotypic Level
The effect of stress treatment was assessed by the mean relative
variation (MV) calculated as detailed in Materials and Methods.
In a first step, salinity and water deficit were compared to their
relative control treatment in each experiment. In accordance
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TABLE 1 | Phenotypic variation among MAGIC lines for all traits and treatments.

Traits Treatments P. range MAGIC lines MV_WD MV_Ctrl2 MV_SS h2

Min Max Mean

SSC Ctrl1 3.50–7.30 2.80 8.20 5.56 11.78 39.85 75.91 0.72

WD 4.30–10.10 3.10 10.10 6.21 0.80

Ctrl2 7.50–9.50 4.00 13.00 7.74 25.96 0.69

SS 8.50–11.00 6.00 12.5 9.75 0.48

Firm Ctrl1 50.00–72.00 44.00 73.00 59.58 −2.18 2.02 6.92 0.32

WD 50.00–68.00 45.50 73.00 58.28 0.09

Ctrl2 38.50–76.00 36.00 82.00 60.60 4.93 0.64

SS 57.00–70.00 31.00 84.00 63.58 0.57

FW Ctrl1 6.88–92.00 10.71 110.00 38.75 −23.05 −38.54 −54.62 0.85

WD 5.35–95.00 10.54 101.67 29.81 0.83

Ctrl2 5.00–110.00 5.00 95.00 23.84 −26.52 0.77

SS 5.00–23.84 2.50 74.28 17.52 0.60

NFr Ctrl1 6.50–45.50 2.50 105.00 15.61 −15.32 −61.11 −59.85 0.75

WD 3.00–47.00 3.00 50.00 13.22 0.56

Ctrl2 2.00–12.50 2.00 23.50 6.20 3.70 0.42

SS 2.00–15.50 2.00 21.00 6.43 0.40

Leaf Ctrl1 23.50–42.00 18.00 55.00 32.24 −17.97 −7.92 −16.05 0.85

WD 23.50–35.50 15.00 48.50 26.45 0.69

Ctrl2 20.50–35.00 11.00 45.50 29.51 −8.66 0.66

SS 25.00–31.00 11.50 40.00 26.97 0.58

Flw Ctrl1 77.50–110.00 77.50 117.00 88.76 −0.77 −10.26 −10.74 0.92

WD 76.50–107.00 75.50 124.00 88.07 0.92

Ctrl2 80.50–102.00 75.00 102.00 79.74 −0.60 0.85

SS 79.00–98.00 74.00 105.00 79.26 0.78

RIP Ctrl1 51.00–71.50 43.50 74.00 57.88 −2.87 −5.30 −6.59 0.87

WD 46.50–68.00 44.00 70.00 56.22 0.88

Ctrl2 46.50–72.00 36.00 79.00 55.72 −0.22 0.64

SS 47.00–66.00 35.50 75.00 55.59 0.75

Min, Max and mean are the minimum, maximum and mean values of MAGIC lines. P. range represents the range of the means of the eight parental lines. MV is the relative mean

variation, with respect to control in Exp.1 due to treatments under WD (MV_WD), control in Exp.2 (MV_Ctrl2) and salinity (MV_SS). h2 is the broad sense heritability calculated for each

treatment.

to the results of ANOVA, FW, SSC, and Leaf were the traits
most affected by stress treatments. Among all traits, SSC was
the only one positively impacted by WD and SS with more than
10% increase compared to controls (Table 1). On average, when
comparing each stress to its control, WD and SS affected all traits
in the same direction except NFr. Indeed, NFr was reduced by
WD condition (−15%) but slightly increased when comparing
salinity to its control. FW and Leaf were both reduced in stress
conditions while stress effects were less obvious for firmness and
phenology traits.

For a convenient comparison of WD and SS applied in
our study, we considered the control treatment in Exp.1 as
reference, taking a subset of 241 lines commonly tested in all
treatments. Indeed, the difference between the control in Exp.1

and treatments in Exp.2 lies mainly in the EC application that was
1.7 and 4.5 times higher in control of Exp.2 and SS, respectively.
We then calculated the effect of those treatments compared to
Ctrl1 and measured the effect of each of them in percentage of
increase or decrease (Supplemental Figure 2). Using the same
control revealed a growing negative effect of salt treatment while
control in Exp.2 seemed to be intermediate between WD and SS.

Nevertheless, these average behaviors did not fully reflect
the individual variations. FW plasticity was found negatively
correlated to FW in control in both experiments, meaning
that larger fruits were more affected by the stress. Indeed both
stress decreased FW of accessions with fruits larger than 55g
(Figures 1A,B). The plot of FW plasticity in SS against WD
showed clearly that only one genotype had an increased FW

Frontiers in Plant Science | www.frontiersin.org 5 March 2018 | Volume 9 | Article 279

Isidore Ambroi DIOUF
62



Diouf et al. Tomato Responses to Watering Stress

TABLE 2 | Phenotypic variation attributed to the genotype (G), the treatment (T) and the interaction (GxTreat) effects.

Traits G SSq G % Treat SSq Treat % GxTreat SSq GxTreat % SSq Resid %

EXP.1 (CONTROL vs. WD)

Firm *** 39.42 *** 0.86 ns 18.75 40.97

Flw *** 86.04 *** 0.44 *** 6.48 7.04

FW *** 54.16 *** 9.25 *** 4.67 31.92

Leaf *** 47.75 *** 14.85 *** 23.91 13.48

NFr *** 55.53 * 0.62 * 17.88 25.98

RIP *** 73.27 *** 2.77 *** 13.62 10.34

SSC *** 61.75 *** 6.7 *** 15.8 15.75

EXP.2 (CONTROL vs. SS)

Flw *** 68.76 ns 0.00 *** 15.4 15.83

FW *** 47.14 *** 6.87 *** 26.2 19.78

Leaf *** 52.36 *** 3.55 *** 18.9 25.19

NFr *** 42.04 ns 0.18 ns 23.59 34.19

RIP *** 59.06 ns 0.01 * 17.56 23.36

SSC *** 33.45 *** 27.24 *** 23.01 16.29

For each quantitative trait the significance of the explaining factors: G, T and the interaction GxTreat, and their relative proportion of sum of square (SSq G, SSq Treat and SSq GxTreat,

respectively) are shown.

***P < 0.001; *P < 0.05; ns = non significant.

TABLE 3 | Correlations among traits in each treatment and experiment.

Ctrl1 Ctrl1-Ctr2 Ctrl2

Firm Firm −0.17 Firm Firm

Flw 0.15 Flw 0.61 Flw ns Flw

FW ns 0.24 FW 0.4 FW ns ns FW

Leaf ns 0.18 0.37 Leaf 0.19 Leaf ns −0.15 ns Leaf

NFr ns ns –0.33 ns NFr ns NFr ns −0.15 –0.24 0.11 NFr

RIP 0.17 –0.26 0.22 ns –0.28 RIP 0.49 RIP ns –0.28 0.13 ns –0.18 RIP

SSC −0.13 ns –0.17 ns ns –0.26 0.23 SSC ns ns –0.25 ns ns ns

WD Ctrl1-WD Salt Ctrl2-SS

Firm Firm 0.34 Firm Firm 0.19

Flw ns Flw 0.86 Flw ns Flw 0.62

FW 0.18 0.14 FW 0.84 FW ns –0.29 FW 0.26

Leaf ns 0.29 0.4 Leaf 0.34 Leaf ns –0.29 0.15 Leaf 0.46

NFr −0.11 ns –0.38 −0.14 NFr 0.55 NFr ns –0.19 ns ns NFr 0.31

RIP 0.2 –0.31 0.23 ns −0.12 RIP 0.68 RIP −0.12 –0.38 ns ns ns RIP 0.5

SSC –0.17 ns –0.33 –0.17 ns –0.31 0.6 SSC ns 0.33 –0.22 ns ns 0.13 0.16

Single trait correlation among controls (Ctrl1-Ctrl2) which is a measure of repeatability or between control and stress (Ctrl1-WD and Ctrl2-SS) is presented. Only significant correlations

(P < 0.05) are indicated. They are in bold when significance is lower than 0.001. In bold P < 0.001; ns = non significant.

in both conditions while 23 genotypes increased FW under
WD and decreased it under SS and 10 genotypes react in the
opposite direction (Figure 1C). For SSC, all genotypes except
H10_84 increased SSC with SS treatment. Altogether, 67%
of the genotypes increased SSC under both stresses pointing
the possibility to improve sugar content in fruit by irrigation
practices. However, as for FW, some genotypes were affected
inconsistently by the stress treatments with 55 genotypes
(22.8%) that increased SSC only in SS and not under WD
(Figure 1D).

QTL Detection and Stability
QTL Detection

QTL mapping was performed using a genetic map constructed
with 1,345 polymorphic SNP selected from the parental line
resequencing data. This genetic map covers more than 84%
of the genome and measures 2,156 cM (details in Pascual
et al., 2015). With the available information of parental
polymorphisms, the offspring haplotype structure was predicted
by inferring the parental origin of each allele. On average,
88.7% of founder allele origin was accurately predicted with
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FIGURE 1 | Effect of stress treatments on individual lines for FW and SSC.

(A,B) plot the FW plasticity— which is the gain (above 0) or loss (below 0) of

FW due to stress—against the FW in control treatment of Exp.1. (C)

(respectively D) is the FW (respectively SSC) plasticity in WD against plasticity

in SS treatment both compared to the same control in Exp.1.

only 11% of the alleles that could not be strictly assigned to
any parent (Supplemental Figure 3). Among the parents, Levovil
and LA0147, with<10% of the allelic contribution in theMAGIC
lines genome deviated, themost from the expected value of 12.5%
of each parental allelic contribution.

Considering all treatments, 54 QTL were identified for
the seven traits evaluated and their plasticity. The number
of QTL per trait varied from four for Flw to 11 for FW
(Supplemental Table 1). Among these QTL, 19 were found in at
least two treatments and around 65% (35 QTL) were treatment
specific. Eleven QTL were common to WD and its control
condition, while SS and its control condition shared only four
QTL (Figure 2A).

Some QTL were specifically detected in one treatment or for
plasticity traits (interactive QTL; Supplemental Table 1). Indeed,
irrespective of interactive QTL, we observed eight and four QTL
specific to control treatments for Exp.1 and Exp.2, respectively.
Nine and 11 QTL were specific to WD and SS respectively,
pointing that stress treatments present higher number of specific
QTL. For interactive QTL, six were exclusively identified in
Exp.2 and one in Exp.1 and no interactive QTL were shared
between the two experiments (Figure 2B). This outlined the
specificity of the interactive QTL. Confidence intervals (CI)
of the QTL ranged from 4 to 60 cM (according to genetic

distance) and 0.43 to 71.49Mb (according to physical distance;
Supplemental Table 1). The high number of recombination
occurring in the MAGIC population allowed us to map 24 QTL
with CI lower than 2Mb. The chromosome 11 presented the
largest number of QTL, each trait except Flw presenting at least
one QTL on this chromosome, whereas per trait, FW and SSC
had the largest number of QTL (11 and 10, respectively).

Identification of Interactive QTL (QTLxE)

We call interactive QTL (QTLxE) those mapped for plasticity
traits in each experiment. Thus, for Exp.1, three QTLxE were
detected for RIP (two QTL) and SSC. The RIP QTLs (RIP9.1
and RIP10.1) were also mapped in control for Exp.1 and WD
treatment, respectively. The QTLxE SSC12.1 was specific to the
interaction. Likewise, 12 QTLxE were mapped in Exp.2, among
which six were specific to the interaction.

Co-Localization of QTL

Clusters of QTL were localized especially on chromosomes 1,
2, 3, 10, and 11 (Supplemental Figure 4). Most of these QTL
corresponded to correlated traits. For example, around 45 cM on
chromosome 1, QTLs linked to phenology traits, FW, SSC, and
NFr clustered and could be related to the pleiotropic effect of
one QTL. The same observation was noted on chromosome 2 for
quality traits and on chromosome 3 for phenology, quality and
vegetative traits.

Candidate Gene Selection
After the identification of constitutive and interactive QTLs, the
number of genes and polymorphisms within the CI of any QTL
mapped in a region lower than 2Mb was assessed using the
sequencing information of all parental lines (Causse et al., 2013).
For the 24 QTLs that had a CI shorter than 2Mb, the number
of genes within the CI (potential candidate genes) varied from
75 for Leaf9.1 to 269 genes for Firm11.1 with 3,804 and 12,530
polymorphisms associated, respectively (Table 4). We attempted
to reduce the number of candidate genes (CG) by applying a filter
in accordance to parental allelic effects at the QTL as described
in Materials and Methods. This procedure was efficient for some
QTL and allowed us to reduce the number of CG by nearly
80% of the total number of genes within the CI for Firm11.1
and Leaf10.1 Nevertheless, for FW11.3 and RIP4.1 the parental
allelic effect filtering wasn’t efficient; none of the genes in the
CI was discarded as a close haplotype was present in the region
(Supplemental Figure 5).

The interactive QTL Firm11.1, identified in Exp.2 contained
the largest number of genes within the CI (269 genes). Regarding
the parental allelic effect at this QTL (Figure 3A), we filtered
the candidates by keeping all polymorphisms that were specific
to Cervil parent. This reduced the number of candidates
to eight genes and polymorphisms with different effects
(Supplemental Table 2). For FW8.1, we kept all polymorphisms
identical between Cervil and Plovdiv and different from
Criollo (Figure 3C), decreasing the number of CG to 31 genes
(Supplemental Table 2). Five QTL presented <40 CG after the
filtering procedure according to allelic parental effect variation
(presented in Supplemental Table 2 with functional annotation

Frontiers in Plant Science | www.frontiersin.org 7 March 2018 | Volume 9 | Article 279

Isidore Ambroi DIOUF
64



Diouf et al. Tomato Responses to Watering Stress

FIGURE 2 | Venn diagram of the number of main effect QTL, detected on mean traits for all treatments (A) and interactive QTL, detected on plasticity traits for the two

experiments (B).

of the CG). FW2.2 QTL co-localized with a ripening time QTL
RIP2.1. These two QTL shared the same CI comprising 1.74Mb
of length and containing 234 genes and 9,957 polymorphisms
(Table 4). FW and RIP were highly positively correlated and
could be impacted by one pleiotropic QTL. Moreover, RIP2.1 and
FW2.2 presented the same pattern of parental allelic effect, at least
for Cervil, Stupicke and LA1420 that had the strongest QTL effect
(Figures 3B,D).

DISCUSSION

Parental lines of the MAGIC population did not include
any wild accession (from the S. pimpinellifolium species) but
had sufficient genetic diversity to allow QTL mapping on
the offspring. The progeny exhibited a large variability with
phenotypic transgressions in both directions in every tested
condition (Supplemental Figure 1), suggesting new favorable
allelic combinations obtained in theMAGIC population. Besides,
the slight impact of WD and SS on the heritability suggests
possibility for marker-assisted selection (MAS). Huang et al.
(2015) proposed an interesting MAS approach for MAGIC
populations called Multi-parent advanced generation recurrent
selection (MAGReS) involving the inter-cross of individuals
with the best allelic combinations for one (or more) trait(s)
of interest to produce highly performant RILs. The MAGIC
population tested here is thus a valuable resource to apply such
breeding strategy. However, our results showed high level of
GxE for the two experiments that affect also the QTL detection,
as 35 QTL (65%) were specifically detected on one condition.
Furthermore, FW and SSC, the most important agronomic traits,
carried ten or more QTL in all condition tested with only one
QTL (FW2.2) stable across all treatments. For these traits, MAS
may not be of great utility for breeding programs targeting
variable cultural areas. Thus, the breeding strategy should take

into account the specificity of the QTL to achieve optimal
benefit per environment. Applying the MAGReS strategy by
selecting genotypes to inter-cross following the performance per
environment in order to achieve rapidly performing crop, is an
innovative approach to sustain breeding effort.

On average, WD and SS impacted sugar content, fruit
weight and leaf length more than the other traits. They both
reduced FW and Leaf while SSC was the only trait positively
affected by up to 10% increase with respect to control in
Exp.1 (Supplemental Figure 2). Similar results were frequently
found in the literature (Villalta et al., 2007; Huang et al.,
2009). The higher SSC under WD and SS was assumed to
derive from the fruit water content reduction without necessarily
involving higher synthesis of soluble sugar. Indeed, several
studies reveal a negative correlation between FW and SSC,
pointing a physiological link of these two traits making a
simultaneous improvement difficult to be achieved. However,
Navarro et al. (2005) showed that when SS occurs, the increased
concentrations of sugars and acids were probably both due to the
decrease in water content in the fruit and additionally to new
sugars synthesis, since concentrations calculated on a dry weight
basis also increased. Our results showed 20 and 11 genotypes
that increased simultaneously FW and SSC under WD and SS
respectively. This may be linked to a positive regulation of SSC
during drought and salinity. These genotypes are interesting for
quality improvement in tomato with minor impact on FW.

The results of the QTL analyses confirmed the polygenic
architecture of fruit quality traits. SSC and FW that are among
the most important fruit quality traits had the highest number of
QTL identified. Besides this polygenic architecture, the positions
of these QTL are distributed along the genome. QTLs related
to FW and SSC were identified on six and seven chromosomes
respectively, considering all treatments but treatment specific
QTL were also identified. In optimal growth condition (Control
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TABLE 4 | Characteristics of the 24 QTL with a confidence interval (CI) smaller than 2Mb.

QTL CI Mb Cervil Levovil Criollo Stupicke Plovdiv LA1420 Ferum LA0140 Nb.Genes Nb.Pol Filter Nb.CG Nb.CP

Firm1.1 1.86 0.608 −1.266 −3.916 2.628 1.655 0.095 −0.629 0.824 245 10991 Criol # Stup 164 620

Firm1.2 1.05 −0.412 −0.539 −0.544 −0.541 −0.372 3.112 −0.428 −0.276 134 5630 LA14 # all 127 1719

Firm11.1 1.87 4.305 −0.651 −0.284 −2.169 −0.821 −0.435 −0.326 0.384 269 11903 Cerv # all 8 3

Firm3.1 1.44 −5.249 4.750 −3.842 3.354 −7.327 0.581 2.679 5.055 171 7051 Plov # (Lev=LA0) 36 29

Firm8.1 1.23 −0.411 −0.421 2.767 −0.815 −0.245 −0.636 −0.009 −0.231 117 7975 Criol # all 27 46

Flw9.1 1.00 0.292 1.523 −0.522 −1.460 3.004 −2.710 3.561 −3.690 119 6375 (Plov=Fer) # LA0 49 35

FW11.2 0.79 −0.131 0.664 −0.043 0.024 0.013 −0.040 0.003 −0.493 91 4478 Lev # LA0 29 32

FW11.3 1.42 −0.155 0.066 −0.049 0.130 −0.001 −0.022 NA 0.033 189 11532 Cerv # (Stup=Lev) 189 6989

FW12.1 0.43 0.008 −0.097 0.048 −0.142 −0.038 0.033 0.171 0.020 79 3407 Fer # (Stup=Lev) 77 562

FW2.2 1.74 −0.138 −0.031 0.050 −0.134 0.031 0.082 0.044 0.093 234 9957 (Cerv=Stup) # (LA14 =LA0) 52 1362

FW3.2 0.97 −0.049 −0.004 −0.087 0.056 0.162 −0.078 −0.005 0.003 122 6490 Criol # Plov 109 3026

FW3.3 1.52 −0.095 −0.007 −0.046 −0.038 0.056 −0.083 0.055 0.157 214 10182 (Cer=LA14) # LA0 142 377

FW8.1 1.63 −0.195 0.019 0.111 0.009 −0.132 0.046 0.097 0.047 180 7959 (Cer=Plov) # Criol 31 738

Leaf10.1 1.86 1.565 −0.622 2.628 −2.586 −0.070 3.058 −2.898 −1.073 264 13108 (Criol=LA14) # (Stup=Fer) 42 52

Leaf11.1 1.55 −2.416 2.005 2.040 3.103 −1.464 −2.799 0.890 −1.356 168 10084 Stup # (Cerv =LA14) 94 524

Leaf3.1 1.46 −2.985 2.944 −2.063 1.403 3.224 −1.286 −0.321 −0.918 193 9944 (Lev=Plov) # Cer 184 5803

Leaf9.1 0.76 0.798 −2.351 −1.744 5.031 −4.669 −2.079 3.154 1.861 75 3804 Plov # Stup 52 963

NFr10.1 1.53 −0.129 −0.021 0.039 0.354 0.063 −0.023 0.042 −0.326 212 5506 Stup # LA0 70 80

RIP2.1 1.74 −4.039 1.956 2.022 −3.948 −0.265 3.585 0.654 0.034 234 9957 (Cer=Stup) # LA14 103 1418

RIP4.1 1.21 −0.053 2.639 1.233 −0.053 1.788 −2.420 −0.653 −2.482 150 10794 (LA14 = LA0) # Lev 150 6629

SSC1.2 1.34 0.156 −0.250 −0.670 −0.207 0.194 −0.290 0.121 0.949 197 10528 LA0 # Criol 68 69

SSC11.2 1.56 0.970 −1.916 0.789 −0.594 0.018 0.398 NA 0.338 203 11813 (Cer = Criol) # Lev 78 681

SSC12.1 1.52 0.047 0.004 −0.007 −0.094 0.122 0.103 −0.153 −0.019 170 8232 (Plov=LA14) # Fer 110 395

SSC4.1 1.93 −0.792 0.363 0.214 0.441 0.811 0.252 −0.682 −0.606 211 15195 (Cerv=Ferum=LA0) # Plov 65 58

The columns of the eight parents present their respective allelic effect for each QTL. Nb Genes and Nb.Pol count the number of genes and the number of polymorphisms identified—via

the Solgenomic database—within the CI. After filtering these genes and polymorphisms according to the allelic effect of parents, the residual numbers of genes are counted as candidate

genes (Nb.GC) with the residual number of candidate polymorphisms (N.CP). The parents chosen for the CG filtering are presented in the column “Filter” where the symbols = and #

notified respectively parents where identical or divergent polymorphisms were kept.

of Exp.1), seven FW QTL (out of the 11 QTL mapped for FW)
were identified, explaining additionally 68.68% of the phenotypic
variation, while only one SSC QTL (SSC2.1; out of the 10 SSC
QTL) was identified, with 6.98% of phenotypic variation. This
suggests that SSC QTLs are easier detected in stress than control
conditions.

Among all the QTL identified in this study, 35 QTL were
treatment specific and only two QTL (Flw1.1 and FW2.2) were
stable across every treatment. Depending on the environmental
conditions, themainQTL responsible of the observed phenotypic
variation are not the same. Only one third of the QTL were
detected in at least two treatments. These results reinforce the
idea of targeted environment breeding strategy in order to
achieve better results per environment.

Fifteen interactive QTL were identified, three in Exp.1
and 12 in Exp.2 but none of them co-localized between the
two experiments suggesting different genetic control of the
phenotypic plasticity under WD and SS. Two main ideas were
developed concerning the genetic control of phenotypic plasticity
advocating that: (i) phenotypic plasticity can be caused by
environmentally sensitive loci associated with a phenotype,
directly influencing the trait value in both environments; (ii) or
it can be caused by regulatory genes that simply influence the
plasticity of a phenotype. This means that plasticity can be viewed

as the result of the action of alleles that have different effects in
different environments or being under the control of regulatory
loci (Via et al., 1995). Besides, QTL mapping study can be used to
address easily which one of these hypotheses is the most probable
(Ungerer et al., 2003; Tétard-Jones et al., 2011). When plasticity
QTL co-localized with QTL mapped on mean trait value in at
least one of the environment tested, they are assumed to be under
the control of allelic sensitivity loci. On the contrary, QTL that
are specific to plasticity are mainly linked to regulatory genes. In
Exp.1 three QTLxE were identified: RIP9.1, RIP10.1 and SSC1.2
but only the last one was specific to the interaction. At the same
time in Exp.2, among the 12 QTLxE, six were specific to the
interaction. One can assume these QTLxE to be under regulation
of WD (Exp.1) and SS (Exp.2) response genes, which make them
particularly interesting for breeding in stressful environment.

Multi-parental populations offer new insight into fine
mapping of quantitative traits (Kover et al., 2009; Milner et al.,
2016). The high recombination events occurring in this type
of population in addition to the infinite possibility of repeated
study are of major interest. One advantage is the high allele
segregation compared to bi-parental population and low LDwith
poor structure compared to GWAS, making them intermediate
and complementary between these types of mapping populations
(Pascual et al., 2016). Our results were compared to those
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FIGURE 3 | Example of QTL where the parental allelic effect allowed reducing

the number of candidate genes. The QTL effects were mean centered to

facilitate the visualization of allelic effect difference between parents. (A) Allelic

effect of the eight parental lines for the QTL Firm11.1. (B) Allelic effect of the

eight parental lines for the QTL FW2.2. (C) Allelic effect of the eight parental

lines for the QTL FW8.1. (D) Allelic effect of the eight parental lines for the QTL

RIP2.1.

of Albert et al. (2016a) and Albert et al. (2016b), that were
conducted respectively on bi-parental population and a GWAS
panel of tomato grown in similar condition of control and
WD treatment than Exp.1. Among the 30 QTL identified in
Exp.1, 18 QTL (60%) were also detected in the GWAS or
RILs population, but only Firm11.1 and SSC11.2 were shared
between the three panels. The ability to map QTL considerably
depends in the mapping population pointing the relevance of
combining different mapping population to identify stable QTL
and balanced the advantage and disadvantage of each type of
population.

The parental allelic information in the MAGIC population is
a real advantage to screen and reduce candidate polymorphisms
within the CI of a QTL as first described in Pascual et al.,
(2015). Indeed, the parents of the MAGIC population present
very diverse allelic effects depending on the QTL. Some QTL had
very divergent parental allelic effect while some other showed
one parent varying differently from others. For example, Firm1.2,
Firm8.1, and Firm11.1 had all one parent divergent that seem to
carry the allele responsible of the phenotypic variation. Besides,
those QTL present very strong percentages of variation explained,

that makes them interesting targets for breeding. These effects
efficiently facilitate the filtering procedure to reduce CG.

On the chromosome 2, in a nearly 8Mb region ranging from
44.55 to 52.92Mb, two FW QTL were identified in our study.
However, this region contains at least three already known QTL
impacting fruit size and fruit shape, two of them positionally
cloned: the fruit weight 2.2 (Solyc02g090740) cloned by Frary
et al. (2000) and the ovate locus (Solyc02g085500) cloned by
Liu et al. (2002). A third FW QTL was fine mapped by Muños
et al. (2011) in this region, corresponding to a locule number (lc)
locus. The first QTL identified on the chromosome 2 in our study
(FW2.1) falls in a region of 3.5Mb covering the lc and ovate loci.
462 genes and 20,742 polymorphisms were present in this region,
and the filtering procedure did not efficiently reduce the CG. The
second FW QTL on chromosome 2 (FW2.2) felt in a region of
1.74Mb and covered the QTL fw2.2 cloned by Frary et al. (2000).
However, this QTL was discarded when we attempt to reduce CG
according to allelic effect of Cervil and Stupicke (Figure 3B). This
suggests a second FW QTL closely linked to fw2.2. Nevertheless,
Pascual et al. (2015) suggested a possible bias in the estimation of
allelic parent’s effect in regions where many QTL for a given trait
are present. Indeed, in this case, the bias of allelic effect estimation
may arise if different allelic combinations control different QTL.
The QTL were mapped by interval mapping procedure meaning
that each interval was tested for linkage with the phenotype. A
whole genome mapping method, as proposed by Verbyla et al.
(2014) for MAGIC populations, would better capture all small
effect QTL and may limit the bias in QTL effect estimation.
Anyhow the region of FW2.2 is of great interest since several
studies conducted on different mapping populations identified
FW QTL within (Pascual et al., 2015; Albert et al., 2016a).

The number of candidate genes and polymorphisms was
reduced using the parental re-sequencing information that
allowed comparison of parental genotypes within CI of
any detected QTL. Five QTL presented <40 CG after the
filtering procedure (Supplemental Table 2). For these QTL,
the putative functions of CG were screened according to the
tomato genome annotation (SL2.50). Eight CG were retained
for the QTL Firm11.1 and all the polymorphisms related
to these CG were on intergenic regions (Modifier effect in
Supplemental Table 2). Among these CG, only Solyc11g006210
was not annotated. The functional annotation of the seven others
highlighted one interesting CG (Solyc11g005820) which is a
pectinesterase inhibitor. Pectinesterase inhibitors are involved
in the rigidification or loosening of the cell wall. Thus, the
Solyc11g005820 gene constitutes a good candidate for firmness
variation.

FW8.1 presented 31 CG after the filtering procedure but
the number of candidate polymorphisms was very high
(Supplemental Table 2). In this region, most of the CG were
affected by more than one polymorphism pointing the need of
deeper characterization of our candidate regions to confirm the
effectiveness of causal polymorphisms. Nevertheless, this region
carried three SNP that had a high effect modifying splice site or
start/stop codon whereas most of the candidate polymorphisms
remaining after the allelic filtering for other QTL were located in
intergenic regions. The three SNP with high effect in the CI of
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FW8.1 affected the genes Solyc08g075430, Solyc08g075470, and
Solyc08g075510.

We showed in this study the presence of high level of genotype
× environment interaction and how these interactions affect
the QTL detection according to the environment. Specific and
constitutive QTL were identified—in high precision for some—
for phenology, vegetative and quality traits and the availability
of the parental sequence information was useful for the genetic
and genomic characterization of polymorphisms responsible for
trait variation. The parental sequences allowed filtering CG
and polymorphisms for the QTL mapped on regions carrying
divergent parental haplotypes. The transcriptomic response
through RNA-sequencing analyses on all parental lines should
offer additional information that will be used to improve
and support the CG selection. Functional validation could
be envisaged afterward in order to detect the exact causal
polymorphisms under the QTL of interest.
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Supplemental Figure 1 | Distribution of mean values across MAGIC lines for

each trait in Exp.1 (A) and Exp.2 (B); For each trait, minimum (dotted lines) and

maximum (solid lines) parental values are plotted for control (green) and stress

(red) treatment.

Supplemental Figure 2 | Average variation caused by water deficit (WD), salinity

(SS) and control in Exp.2 (Ctrl2) relative to control in Exp.1. The effect of each

treatment was measured in percentage of increase or decrease against control in

Exp.1.

Supplemental Figure 3 | Haplotype prediction. Each of the 12 tomato

chromosomes is represented with the percentage of allelic contribution of every

parental line. NA represented all positions on the chromosomes where the

parental allelic origin could not be assigned.

Supplemental Figure 4 | Mapchart representation of detected QTL on the

genetic map for all chromosomes where a QTL was identified. The dashes on the

chromosomes barchart represent the centimorgan distances between markers

along the chromosomes. Each trait has a color code representation.

Supplemental Figure 5 | Allelic effect of parental lines for QTL that were mapped

in a confidence interval smaller than 2Mb.

Supplemental Table 1 | QTL detected in the different conditions. For each trait,

all the QTL found are identified by a specific name (QTL name column), the

treatment where the QTL was found (Treatment), the chromosome (Chr) and the

position (Pos) in cM. The peak region encompassing any QTL is defined by a pair

of marker (LeftMrk and RightMrk), corresponding to the lower and upper bound

expressed in genetic distances (Lower cM & Upper cM) as well as physical

distances (Lower Mb & Upper Mb). The confidence interval in centimorgan (CI cM)

and Mega-base (CI Mb) represent the corresponding differences between Upper

and Lower. R2 is the percentage of phenotypic variation explained by a QTL. Ctrl

1 and Ctrl2 are the controls treatment for Exp.1 and Exp.2 respectively where the

QTL were found. WD and SS are the stress treatment for water deficit and salinity.

When interactives QTL are identified in Exp.1 (respectively Exp.2) treatment CxWD

(respectively (CxSS) are the corresponding treatment designed.

Supplemental Table 2 | Functional annotation of CG retained after the filtering

procedure according to allelic parental effect. Only QTL that presented <40 CG

were screened. For each QTL, the chromosome and localization (position in pb)

were precised. The type of polymorphisms, depending if it is a single nucleotide

polymorphism (snp) or insertion deletion (indel) were in the column “Type.” The

number of snp or indel at a given gene is marked in brackets () when more than

one polymorphism affected a given gene. The impact of polymorphisms affecting

a gene were defined as MODIFIER when snp or indel are located in upstream or

downstream region; MODERATE and LOW when polymorphisms had respectively

non-synonymous or synonymous variant effect and HIGH when they affect splice

site variant or start/stop codon. The putative function of each CG was checked on

the annotation database of the tomato genome assembly (SL2.50).
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Abstract (200 words) 

Water deficit (WD) affects tomato growth and fruit quality inducing significant morphological 

changes. Understanding the molecular mechanisms underlying such phenotypic changes is crucial to 

develop cultivars with high WD tolerance. Transcriptome response to WD was investigated through 

RNA sequencing of fruit and leaf on eight genotypes grown in two irrigation conditions, in order to 

get insight into the complex genetic regulation of drought-response in tomato.  Genotype differences 

in WD response were firstly noticed at the phenotypic level for fruit composition and plant 

development traits.  A total of 14,065 differentially expressed genes under WD were detected among 

which 7,393 (53%) and 11,059 (79%) were genotype and organ specific, respectively. Water deficit 

impact on the transcriptome variation was much higher in leaf than in fruit pericarp at the cell 

expansion stage. A stronger effect of the genetic background, than the WD effect was detected on 

the transcript abundance, along with the presence of a set of genes showing significant genotype-by-

environment interaction. Integrating the DEG with previously identified stress response QTLs allowed 

us to narrow candidate gene lists within the regions of these QTLs. The results presented outlined 

valuable resources for further study intended to decipher the complexity of tomato adaptation to 

WD. 

 

Keywords: RNA sequencing, water deficit stress, Transcriptome, Genotype-by-environment 

interaction  
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INTRODUCTION 

Drought is among the most common abiotic stress affecting plant growth and crop yield; and more 

frequent episodes of drought are expected to arise with the climate change (Wang, 2005). Extensive 

research has been dedicated to understand the mechanisms driving plant adaptation to drought 

(Chaves et al., 2003). In crops, agricultural water deficit (WD) stress can be defined as a period of 

plant exposure to dry soil subsequently resulting to reduced crop production and plant growth (Dai, 

2011). The morphological changes triggered by WD – encompassing yield decrease – are inherent to 

the process of plant acclimation through physiological and molecular regulation. Indeed, WD disrupts 

cellular homeostasis eliciting signaling cascades and the regulation of several physiological processes 

(Farooq et al., 2012).  Plant hormone imbalance following mild to severe WD is associated to changes 

in gene expression and molecular regulation of different stress responsive genes. For instance,  

several genes showing susceptibility to WD condition have been characterized in Arabidopsis 

thaliana, which is considered as a model in plant genetics (Bray, 2002). In the same way, the 

expression level of hundreds of genes is modified under WD as shown in several other plant species 

(Albert et al., 2018; Ma et al., 2017; Opitz et al., 2016; Zhang et al., 2016).  

Cultivated crops usually show high sensitivity to WD, especially when it occurs during the 

reproductive stage (Daryanto et al., 2017). However, the degree of sensitivity to WD can vary widely 

between cultivars/genotypes within a species. In tomato, extensive genotype-by-environment 

interaction (GxE) has been observed in different experimental populations (Albert et al., 2016; Alian 

et al., 2000; Diouf et al., 2018; Foolad et al., 2003; Sánchez-Rodríguez et al., 2010). These authors 

showed that phenotypic response to WD significantly differed according to genotypes. The 

development of drought-adapted crop varieties is a major goal given the expanding drought area 

regions  (Korres et al., 2016). A global understanding of the complex interplay between genetic and 

environmental factors in tomato adaptation to WD is therefore a key aim, and should help for 

breeding purposes. 

Genetic determinants of plant response to WD have been studied in several species towards this 

goal. Genotype-phenotype association under WD condition yielded several quantitative trait loci 

(QTL) affecting plant response to WD across crop species (Gupta et al., 2017; Swamy et al., 2017; 

Wang et al., 2018), which ultimately pave the way for marker-assisted selection for drought 

tolerance. In tomato, WD-responsive QTLs have been identified using agronomic traits as well as eco-

physiological modelling parameters (Albert et al., 2016; Constantinescu et al., 2016; Diouf et al., 

2018). However, the genomic regions covered by the QTL governing WD response usually include 

many genes, frequently leading to failure to identify the causal genes. Nowadays, the availability of 
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high-throughput sequencing technologies allows more and more to bridge this gap through the 

analysis of gene expression regulation.  

A significant number of gene expression studies have been reported during the last decades, 

highlighting the effect of gene expression level on phenotypic variation (Boyes et al., 2001; Liu et al., 

2018; Ta et al., 2017). Besides, the changes in the gene expression level could importantly vary under 

different environmental conditions as well as according to the genetic background (Garg et al., 2016; 

Lenka et al., 2011; Sarazin et al., 2017). A promising and reliable approach to identify stress-tolerance 

genes and elucidate clearly the molecular mechanisms and biological pathways involved in abiotic 

stress adaptation lie therefore in the analysis of transcriptome variation at both genotype and 

environmental condition levels. There have been few studies depicting the transcriptome variation 

under WD in tomato and most of them included only one or two genotypes usually characterized as 

WD-tolerant/susceptible (Iovieno et al., 2016; Lee et al., 2018; Zhang et al., 2019). A recent study 

however characterized DEG under WD in a large and small tomato fruit accessions and their F1 

hybrid, highlighting the presence of GxE at gene expression level and identified interactive 

expression-QTLs (Albert et al., 2018).   

We aimed to assess genotype (G), environment (E) and GxE interaction under fully irrigated and WD 

conditions at the transcriptome level in eight tomato lines. The genotypes used in this study were the 

eight parental lines of the MAGIC population firstly presented by Pascual et al., (2015); which display 

a large genetic variability. Moreover Ripoll et al., (2016a), highlighted different responses to WD for 

the eight parental MAGIC lines at fruit and leaf level, suggesting genotype-specific adaptive 

strategies. The eight lines and the MAGIC population were already characterized at phenotypic level 

for agronomic and physiological response to WD and QTL mapped (Diouf et al., 2018). Differential 

expression analysis allowed us to identify tomato genes significantly affected by WD in young leaves 

and fruit pericarp tissue. Genes showing different expression level and a significant GxE interaction 

were highlighted and examined for their co-location under previously identified WD-response QTLs.  

 

MATERIALS AND METHODS 

Plant material 

The plant material was constituted by the eight tomato lines used to generate the MAGIC population 

presented in Pascual et al., (2015). The eight genotypes belong to different genetic groups with four 

genotypes (Cervil, Criollo, PlovdivXIVa and LA1420) from the Solanum lycopersicum cerasiforme 

group (SLC) and the four others (Levovil, Stupicke Polni Rane, Ferum and LA0147) from the Solanum 
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lycopersicum lycopersicum group (SLL). The experimental design and plant growth conditions are 

described in details in in Albert et al., (2018). Briefly, the eight lines were grown in the spring-

summer 2015 under greenhouse in Avignon under control and water-deficit (WD) conditions. Each 

plant was replicated at least twice in the greenhouse. The control condition consisted in full irrigation 

treatment according to evapotranspiration (ETP) while in WD condition; the amount of irrigation was 

reduced by 40% according to the control. Phenotypic measurements were carried out for different 

traits related to fruit composition and plant development (Supplemental Table 1).  

Statistical analyses of phenotypic data 

To test for WD effect at phenotypic level, a two-way analysis of variance was performed for each 

phenotypic trait separately. The level and significance of GxE was assessed through ANOVA analysis 

with the following model: yij = Gi + Ej + GxEij + εijk. In this model yij represents the phenotype of 

genotype i (Gi) and in environment j (Ej). The environments were constituted by the two watering 

regime (irrigated and WD). The GxEij and εijk are the genotype-by-environment interaction effect and 

residual errors, respectively.  

RNA extraction 

For each genotype total RNA was collected from the young leaves and fruit pericarp (at least five 

fruits) at the cell expansion stage. Given the differences in their phenological stage, SLC and SLL 

accessions were sampled for fruit pericarp at 14 days after anthesis (DAA) and 21 DAA, respectively. 

The samples were immediately frozen after collection then pooled per genotype, organ and 

condition with two to three biological replicates. Messenger RNA (mRNA) was extracted using the 

Spectrum Plant Total RNA kit and assessed on Nanodrop 1000 for each replicate. A total of 72 paired-

end strand specific libraries were generated from 1µg of the total RNA and sequencing was 

performed on Hiseq 3000 at the GenoTool platform (INRA Toulouse). Detailed information about the 

RNA extraction protocol and read sequencing processing are described in Albert et al., (2018). To 

prevent confounding technical effect for the differential expression analysis, the biological replicates 

in both conditions were disposed in the same lane for each genotype.  

Differential gene-expression analysis 

Differential expression (DE) analysis was performed with the Bioconductor R-package DESeq2 1.14.1 

(Love et al., 2014). The impact of WD on transcriptome variation was evaluated for each genotype 

and for fruit and leaf samples separately. The DE analysis was conducted only on genes with at least 

20 read counts, encompassing 23,552 and 22,864 genes for leaf and fruit samples, respectively. To 



Chapter 4 

 76 

identify differentially expressed genes (DEG), DESeq2 applied a negative binomial test on the 

expression level, after normalization process through the estimation of sample size factors across 

samples. The DE analysis model was constructed by adding an interaction grouping factor such that 

genotype-specific condition effect could be tested by defining individual contrasts. Thereafter, DEG 

under WD were selected by setting a threshold p-value of 0.05 after multiple-testing correction with 

Benjamin and Hochberg method (Benjamini and Hochberg, 1995). 

 

Two-way ANOVA of transcript level variation 

Analyses of variance were performed using the normalized pseudo-counts on the gene set used for 

the DE analysis. For each gene, a fixed two-way ANOVA with interaction was applied and the analyses 

were conducted for each organ separately. The model used was similar to the one for phenotypic 

traits with the only difference being that yij represents this time the transcript abundance of 

genotype (i) in environment (j) for each single gene included in the analysis. To account for the 

multiple-testing, adjusted p-value was set to the cut-off of 0.05 to consider significance of any factor. 

For each organ, the proportion of the sum of square attributed to genotype (G), environment (E) and 

GxE factors was retrieved and used to estimate the relative contribution of each factor to gene 

expression variation.  

Gene ontology enrichment analysis 

Gene ontology (GO) enrichment analysis was performed using the R-Bioconductor package goseq 

(version 1.36.0) (Young et al., 2010). Enriched GO terms were investigated for the set of DEG in fruit 

and leaf separately. Significant GO terms for biological process (BP) and molecular function (MF) 

were selected after multiple testing correction by setting a FDR threshold at 5% cutoff with the 

Benjamin and Hochberg method (Benjamini and Hochberg, 1995). The SL2.50 version of the 

reference genome ‘Heinz’ was used and correction for length bias has been carried out with the nullp 

function before GO enrichment testing. 

Co-localization of tomato WD-response QTLs and the DEG 

A previous study identified stress-response QTLs in the MAGIC population generated from the eight 

genotypes used in the present study (Diouf et al., 2018). The authors assessed phenotypic plasticity 

for different plant and fruit related traits by considering the difference between the trait values in 

stress vs control treatments. Stress treatments consisted of WD (-50% of irrigation) and salinity stress 

(SS: average substrate electro-conductivity of about 6.78 dSm
-1

). Fourteen QTLs were identified on 

fruit related plasticity traits. The respective genomic regions of these plasticity QTLs were confronted 
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to the fruit-DEG identified across the eight parental lines in order to know which DEG under WD 

were collocated with the reported QTLs. The comparison was made possible using the physical 

positions of the tomato reference genome (version SL2.50).  Correlations between the expression 

level and allelic effect at the QTL were assessed. 

 

RESULTS  

Phenotypic response to WD 

Phenotypic traits related to fruit composition and plant development were measured on the eight 

tomato lines grown under the same greenhouse in control and WD conditions. Considering the 

average response across genotypes, the dry matter weight (DMW) and fruit-weight (fw) were the 

most affected traits with +21.4% and -20.7% of variation induced by WD, respectively (Figure 1). All 

the genotypes were negatively affected under WD for fw and diameter while fruit DMW increased in 

every genotype. However, a large variability was observed among genotypes in their response to WD 

at the phenotype level. Ferum for instance showed the higher susceptibility to WD compared to the 

other genotypes for most of the traits (Supplemental Figure 1). This strong variability laid to 

significant genotypic effect for all traits revealed by the ANOVA analysis (Supplemental Table 2). The 

WD treatment significantly affected every trait except flowering time, Glucose, pH and SSC. GxE 

interaction was only significant for four traits (plant height, stem diameter, fruit weight and glucose 

content). Thus for flowering time, pH and SSC, only the genotype effect was significant.  

  

Figure 1: Average impact of WD at phenotypic level across the 

eight genotypes. The bar plots indicate for each trait the 

proportion by which WD decreased/increased its average value 

(across the eight genotypes) against the control. 
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Transcriptome variability across the eight genotypes 

RNA-sequencing was carried out using young leaves and fruit pericarp tissue samples of the eight 

MAGIC parental lines grown under normal and WD irrigation conditions. Overall, the expression level 

of 34,718 tomato genes was available after the RNA-sequencing processing. Before analysis, low 

expressed genes were removed by filtering out all genes with less than 20 read counts across 

samples, leaving 23,552 (67.8%) and 22,864 (65.8%) genes for leaf and fruit samples, respectively. 

The total read counts of the remaining set of genes was variable across genotypes and conditions 

(Supplemental Figure 2). Hence, specific sample size factors were computed through the 

estimateSizeFactors function implemented in DESeq2 package, and used for scaling the library size. 

Gene expression level was highly correlated between repetitions for all the genotype highlighting a 

good repeatability across biological replicates (Supplemental Table 3). Principal component analysis 

(PCA) on the normalized read counts showed a clear clustering of the samples according to 

genotypes and conditions (Figure 2). Normalized counts were transformed with the regularized log 

(rlog) transformation. The first two axes of the PCA explained about 51% of the gene expression level 

variation in fruit and leaf samples. For both organs, variability in the transcript levels according to 

genotypes was captured by both PC1 and PC2 axes. In addition, for leaf samples the PCA plot 

separated the conditions following the PC2 axis and Cervil and Levovil appeared as the most 

discriminant parents. In fruit, transcriptomic variation was highly specific for Cervil as observed on 

the PCA plot (Figure 2).  

 

  

Figure 2: PCA plot of the normalized read counts in fruit and leaf samples.  
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DEG under WD condition 

Considering the eight genotypes together, a total of 4,132 and 12,938 DEG between the two water 

conditions were identified in the DE analysis in fruit pericarp and young leaf, respectively 

(Supplemental Table 4). The number of DEG was variable among genotypes. In fruit, the number of 

DEG varied from 0 (Criollo) to 2,978 (Levovil) and in average, the SLL accessions showed a higher 

number of DEG than SLC genotypes (Figure 3A). Levovil and Ferum presented the highest number of 

DEG under WD, although, the proportion of up/down regulated genes differed. No DEG was detected 

at the fruit expansion stage for Criollo, which seemed to be the less susceptible genotype to WD. For 

leaf samples, the number of DEG was less discriminant between genotypes than in fruit. The total 

number of DEG on leaf varied from 2,240 (Ferum) to 6,177 (LA1420) and the proportion of up/down 

regulated genes was almost balanced. 

We observed an important variability in the transcriptomic response between samples according to 

the organ. The effect of WD on gene expression variation was more important in leaf than in fruit 

(Figure 3B). Besides, most of the DEG in fruit and leaf were organ-specific. For example, depending 

on the genotypes, 45 to 82% of the DEG in fruit were not differentially expressed in leaf highlighting 

organ-specific regulation of gene expression under WD.  

Consistent/Divergent patterns of transcriptome regulation (up/down) 

A small set of genes has been identified as DEG in both organs (Figure 3B), representing 0-13% of the 

total DEG according to the genotype. For most of the genotypes, the pattern of gene expression 

regulation was different between leaf and fruit. For instance, for the genotypes with more than 100 

consistent DEG between fruit and leaf – notably Cervil, Levovil and Ferum, the proportion of the 

genes up-regulated in one organ (leaf or fruit) and down-regulated in the other was non negligible 

representing 47, 44 and 79%, respectively (Supplemental Figure 3).  

ANOVA of transcript level 

A two-way analysis of variance (ANOVA) was performed using the log2 transformation values of 

normalized transcript level to test the effect of genotype, environment (irrigation condition) and 

their interaction (GxE) on the regulation of gene expression level. This analysis revealed a total of 

16,392 and 19,450 genes that were affected by at least one of the above-mentioned factors in fruit 

and leaf, respectively. A high proportion of the genes tested showed a significant genotype effect 

highlighting an important effect of the genetic background on gene expression regulation among the 

eight lines (Figure 4). A much smaller number of genes were specifically affected by WD or the GxE 
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interaction. For each gene showing a significant effect of the genotype, condition or GxE, the 

contribution of each factor to the variability was further visualized by computing the proportion of 

the sum of square attributed to each factor (Supplemental Figure 4).  

Figure 3: Representation of the number of DEG per genotype. A) Number of DEG under WD in fruit (top) and leaf (down) 

that were down/up regulated. B) Proportion of DEG that were detected in both organs (blue) and organ specific. 

Gene ontology enrichment analysis 

GO enrichment analysis was conducted on a set of 3,794 (92% of the total fruit DEG) and 11,804 

(92% of the total leaf DEG) DEG in fruit and leaf, respectively; yielding a total of 24 significantly 

enriched GO categories (Table 1). Gene ontology terms associated to ‘cell redox homeostasis’, 

‘metabolic process’, ‘microtubule-based movement’ and ‘protein phosphorylation’ were significantly 

over-represented regarding the biological process within the DEG in leaf. With reference to the 

molecular function, three GO terms related to ‘chlorophyll binding’, ‘structural constituent of 

ribosome’ and ‘metabolic process’ were enriched considering the DEG in fruit and leaf together.  

DEG co-location with previously identified WD-responsive QTLs 

Combination of gene expression and QTL information was used to identify candidate genes under the 

plasticity QTLs identified in the MAGIC population. To illustrate the approach, we focused on the 14 

QTLs detected in Diouf et al. (2018) which can be considered as WD and SS response QTLs.   
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Table 1: Enriched gene ontology (GO) terms within the differentially expressed genes under WD in 

fruit and leaf organs. 

Regulation GO 

category 

Number 

in DEG 

Number in 

gene space 

Ontology Corrected-

pavlue 

Description 

A) Fruit 

down GO:0003677 62 558 MF 0.010431148 DNA binding 

down GO:0003735 40 172 MF 3.77E-09 structural constituent of 

ribosome 

down GO:0005509 24 134 MF 0.004390055 calcium ion binding 

down GO:0005515 210 2233 MF 0.009968992 protein binding 

up GO:0008152 71 609 BP 0.044143524 metabolic process 

up GO:0016168 13 20 MF 2.61E-10 chlorophyll binding 

B) Leaf       

down GO:0003735 117 172 MF 2.98E-42 structural constituent of 

ribosome 

down GO:0007018 25 45 BP 0.002609063 microtubule-based 

movement 

down GO:0008017 19 32 MF 0.007931586 microtubule binding 

down GO:0008574 6 6 MF 0.046276125 ATP-dependent 

microtubule motor 

activity, plus-end-directed 

down GO:0009922 15 26 MF 0.001886462 fatty acid elongase activity 

down GO:0032183 21 32 MF 1.91E-05 SUMO binding 

down GO:0042802 85 245 MF 0.002057093 identical protein binding 

down GO:0051082 26 55 MF 0.003031927 unfolded protein binding 

up GO:0003700 183 725 MF 0.002891116 DNA-binding transcription 

factor activity 

up GO:0004364 20 52 MF 0.028991913 glutathione transferase 

activity 

up GO:0006468 128 430 BP 3.74E-05 protein phosphorylation 

up GO:0008152 161 609 BP 0.002201227 metabolic process 

up GO:0045454 27 75 BP 0.017828078 cell redox homeostasis 

up-down GO:0003735 23 172 MF 0.019020979 structural constituent of 

ribosome 

up-down GO:0004397 4 5 MF 0.019250117 histidine ammonia-lyase 

activity 

up-down GO:0016168 8 20 MF 0.003057246 chlorophyll binding 

up-down GO:0031683 5 8 MF 0.006592922 G-protein beta/gamma-

subunit complex binding 

up-down GO:0045548 4 6 MF 0.04287232 phenylalanine ammonia-

lyase activity 
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The selected QTLs were mapped on eight out of the 12 tomato chromosomes (Figure 5). The 

confidence interval regions of these QTLs encompassed hundreds of genes. However, the number of 

DEG within these regions varied from 18 to 104 genes reducing the set of potential candidates by 80-

94% according to the QTL (Figure 5B). The number of DEG per Mbp was assessed for each of the 

eight chromosome carrying plasticity QTLs. Interestingly, the genomic regions covered by plasticity 

QTLs were significantly enriched with DEG for some chromosomes (Figure 5C).  

Figure 4: Venn diagram representing the number of genes whose expression level was significantly affected by the 

genotype, the environment (irrigation treatment) and the GxE interaction for fruit and leaf.  

QTL detection using the parental haplotype probabilities in the MAGIC population allows estimation 

of the allelic effect for each parental line at every QTL position. Correlation analysis was further 

investigated between the allelic effect and expression level across the eight genotypes. A total of 40 

genes – located in 11 plasticity QTLs, showed significant correlation reinforcing their potential 

implication in regulating fruit phenotype variation under WD (Supplemental Table 6). The whole 

process of the candidate gene selection is depicted for the QTL SSC1.1 as an example on Figure 6. 

 

DISCUSSION 

Phenotypic response to WD 

Plant response to drought is a complex mechanism which ultimately results to morphological 

changes that can alter agronomic performance in crops. Such responses strongly rely on the genetic 

background, leading to the necessity of screening different genotypes/accessions. Genotype 

specificity has been depicted in tomato response to WD for different agronomic traits (Aghaie et al., 
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2018; Patanè et al., 2016; Ripoll et al., 2016b) as supported here.  The present study highlighted a 

strong genotype-dependent variation under WD at both phenotype and transcriptome level. 

 

Figure 5: Candidate gene screening for tomato plasticity QTLs. A) Position in Mbp of Water deficit and salinity stress 

plasticity QTLs identified in the MAGIC population in Diouf et al., (2018). Black bars represent the chromosome length and 

colored bar represent confidence interval regions of the plasticity QTLs according to the phenotypic traits. B) Plot the 

number of genes within the whole CI region of the QTL (in gray) and the number of genes showing significant differential 

expression under water deficit (in blue). C) Represent the number of DEG per Mbp within the whole chromosome (in 

orange) and within the regions covered by plasticity QTLs per chromosome (in green). 

The WD treatment induced a significant variability in the transcriptome across the eight genotypes. 

The RNA-sequencing design was constructed so that every biological replicates for a given genotype 

in both conditions were on the same lane, in order to remove potential technical effects. All the 

differences in the read counts for any genotype can therefore be attributed solely to the water 

irrigation condition. A total of 14,065 DEG under WD were detected among which 7,393 (53%) were 

genotype specific. Cervil and Levovil presented the most divergent pattern of gene expression 

variation at fruit level (Figure 2) which was consistent with the phenotypic variation since these two 

genotypes also presented the smallest and largest fruit weight, representing in average 6.1g and 

119g, respectively. Furthermore, these two genotypes were also identified as highly divergent at the 

whole genome level when comparing their polymorphism sequences against the reference genome 

(Causse et al., 2013). Moreover, a bi-parental population generated from these two lines yielded 

significant discovery of genetic loci controlling trait variation in tomato (Causse et al., 2001; Albert et 

al, 2016; 2018). 
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Organ and tissue sampling can significantly alter the gene expression profile in plants (Aceituno et al., 

2008; Matas et al., 2011; Van Veen et al., 2016). Besides, organ-specific transcript level might be 

exacerbated by the presence of stress factors occurring especially at a specific growth stage. The WD 

treatment in our study was applied from the 1
st

 inflorescence appearance until the end of the 

cropping. Fruit sampling was elaborated to limit differences that might arise from growth stages 

between the SLL (sampled at 21 DAA) and SLC (sampled at 14 DAA) accessions. The low number of 

fruit DEG in SLC accessions could have been linked to the sampling strategy we adopted. However, 

this hypothesis is not supported by the low number of fruit DEG observed for LA0147 and Stupicke 

which are both SLL accessions.  

The process of plant adaptation to drought usually starts with cellular sensing and signaling which 

activates downstream drought-responsive genes (Farooq et al., 2012). Activation of signaling 

pathway under WD at the early vegetative growth is hence expected to lead to better adaptation. 

This may explain the high number of DEG on young leaf organ. Ripoll et al., (2016a) have shown a 

higher WD impact on leaf than at the fruit level and outlined a prevalence of osmotic adjustment and 

photosynthetic adaptation in tomato response to WD. The source-sink relationship is highly altered 

under WD stress condition in tomato (Albacete et al., 2014), which could eventually reflect different 

transcriptome response.  

Comparative analysis of the whole transcriptome variation under WD has been conducted in several 

species; however most of the time only two genotypes are included (usually tolerant vs sensitive 

genotype). These classical designs are very powerful to detect DEG involved in specific stress 

response. Yet, the few studies which assessed the impact of a specific stress and the genetic 

background simultaneously, revealed significant effect of the genotype and GxE (Albert et al., 2018; 

Van Veen et al., 2016). The eight MAGIC parental lines were selected within a panel of 360 tomato 

accessions to represent the diversity observed within the cultivated tomato. Our results provide 

evidence of a strong genotype effect at the transcriptome level, independent of the growing 

condition. Expression QTL analysis in the MAGIC population should then yield significant results that 

could help to get more insight into the molecular mechanisms shaping tomato variation. 

Integrating QTL information and gene expression variation is a common strategy for candidate gene 

screening (Lin et al., 2019). This strategy yielded significant results in MAGIC populations in Maize 

(Septiani et al., 2019) and Cotton (Naoumkina et al., 2019), where the parental haplotypes were 

besides exploited to drastically narrow the potential candidate genes. We propose a strategy 

combining DEG and plasticity QTL to identify candidate genes affecting WD and or salinity stress 

response in tomato. The whole approach depicted in Figure 6 highlighted 40 CG which showed 

expression variability in the eight parental MAGIC lines under WD condition. Two interesting CG were 

indeed identified in the region of SSC1.1 QTL among which Solyc01g074030, a gene coding for Beta-
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glucosidase. In the literature, members of the β-glucosidase genes family have been described 

playing a role in response to drought (Wang et al., 2011) and salinity (Ngara et al., 2012). Regarding 

the allelic effect of SSC1.1 QTL, salinity stress increased SSC value in all parents except Cervil with the 

highest effect noticed for Ferum. A total of eight polymorphisms (4 SNPs and 4 INDELs) were 

identified for Solyc01g074030 among which one INDEL located up-stream the gene region at the 

position 81,350,515 bp, was discriminant between Ferum (the reference allele) vs all the other 

parents. A subsequent SNP polymorphism at position 81,363,697 bp also discriminated the parents 

with Cervil carrying the reference allele against all the other lines. The allelic variants of these 

polymorphisms are in accordance with the pattern of the gene expression and allelic effects across 

the eight parental lines. Further studies are however necessary to test the potential implication of 

these alleles in tomato fruit response to WD. 

Similarly, other interesting candidates were identified. For instance, RIP10.1 is a QTL detected on 

fruit ripening plasticity under WD condition which carried a total of 228 genes within its CI region 

among which only 34 genes (15%) showed significant differential expression level in fruit pericarp. 

Some of these last genes presented significant correlation between the plasticity of their expression 

level under WD and the allelic effect of the QTL across the eight parental lines encompassing 

Solyc10g006130 annotated as ‘Ethylene responsive transcription factor (ERF) 3a’ and 

Solyc10g006650 which is a ‘Flavoprotein wrbA’. In tomato, ERF have been described as being 

involved in fruit maturation process and also as drought inducible transcription factors (Cara and 

Giovannoni, 2008; Pan et al., 2012). Thus, Solyc10g006130 represents an interesting candidate for 

studying the interaction between drought and fruit maturation in tomato. Solyc10g006650 also 

constitute a good candidate; the role of flavoprotein on tolerance to osmotic stress has been 

depicted in Arabidopsis (Espinosa-Ruiz et al., 1999).  

Conclusion 

Understanding plant adaptation to drought requires the collection and integration of a great deal of 

information from phenotypic to omic (transcriptome, metabolome, proteome) responses, to 

apprehend the complex drought response mechanisms. The investigation of GxE at the 

transcriptome level has the potential to target interesting candidates for genetical genomic analyses. 

Collecting and gathering omics data from different organs, tissues, genotypes and conditions is the 

key step for omics-breeding in the coming years which will certainly help in developing climate 

resilient crops. The results presented here are then valuable resources for the tomato community for 

further studies intended to decipher drought response mechanisms. 
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Figure 6: Candidate gene selection for the WD-responsive fruit ripening QTL (SSC1.1) detected in Diouf et al. (2018). A) The 

genome LOD score for QTL detected for soluble sugar content (SSC) response to WD in the MAGIC population. B) Genes 

within the SSC1.1 QTL with all the genes showing differential expression under WD in red color. The DEG showing significant 

correlation between expression level and the estimated allelic effect for the eight genotypes at the QTL position are 

squared when the correlation was significant for the expression level in the control or drought condition and in triangles 

when the correlation related to the delta expression level (expression level in WD – expression level in control). C) 

Correlation between the estimated allelic effect at the QTL and differential expression level for three candidate genes with 

their functional annotation.   
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Supplementary Materials 

The supplemental figures and tables of this chapter are presented in Appendix 4. 

NB: Supplemental tables 3, 4 and 5 and the supplemental Data can be accessed online: 

Supplemental Figure 1: Phenotypic variation under WD for each genotype. Phenotypic traits are 

represented on the x-axis while the y-axis represents the percentage of increase/decrease of the trait 

value under the WD condition. In grey and black are all traits affected positively and negatively by 

WD condition, respectively. 

Supplemental Figure 2: Total number of read counts after RNA-sequencing processing for fruit (A) 

and leaf (B). 

Supplemental Figure 3: Expression pattern of the consistent DEG in fruit and leaf. The DEG were 

classified as up-up when up-regulated in both organs, up-down when up regulated in one organ (leaf 

or fruit) while down-regulated in the other and down-down when down regulated in both organs. 

Supplemental Figure 4: Proportion of the sum of square attributed to each factor (Genotype, 

Condition or GxC) in fruit and leaf samples through the ANOVA analysis on the normalized transcript 

level.  

 

Supplemental Table 1: Phenotypic traits evaluated on the eight genotypes under normal irrigation 

and WD condition. The greenhouse experiment is described in details in Albert et al. (2018). 

Supplemental Table 2: Results of the two-way interactive ANOVA analysis on the phenotypic traits. 

For each factor the associated sum of square and p-value of the test are highlighted. The ns p-values 

for the GxE factor stand for non-significant GxE. 

Supplemental Table 3: Correlation between replicates within each genotype. Information regarding 

the samples names can be found in the Supplemental Data. 

Supplemental Table 4 & 5: Differentially expressed genes under WD for each of the eight genotypes 

in fruit and leaf. 

Supplemental Table 6: Candidate genes under the plasticity QTLs. The genes presented in this table 

are all the DEG in fruit under the QTLs regions which besides showed significant correlation between 

the estimated allelic effect of the QTL and the expression level in control, drought or the expression 

level plasticity (expression in drought – expression in control). The functional annotation of the genes 

was retrieved from the reference annotation of SL2.50 version. 

Supplemental Data: The normalized read counts for fruit and leaf samples used to conduct the DE 

analysis. 
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Abstract (216 words) 

Tomato is a widely cultivated crop which can grow in different habitats including high temperature 

(HT) conditions. However, its reproduction is impaired above 30°C which can lead to significant yield 

reduction. We assessed the impact of HT-stress in tomato in two experimental populations 

composed of a multi-parental advanced generation intercross (MAGIC) population and a core-

collection (CC) of small fruited tomato accessions. The populations were evaluated in optimal growth 

conditions and in hot conditions. Yield components, fruit quality and phenology traits were recorded 

in both populations. Statistical analyses revealed a significant impact of HT-stress condition at the 

phenotypic level which decreased yield component traits (< 21-35%) and accelerated flowering time 

for almost all genotypes (96-99%) in both populations. The MAGIC and CC populations were 

genotyped with SNPs markers and the QTL/association analyses identified 244 QTLs that were in 

majority (92%) population specific. Phenotypic plasticity in response to HT-stress was computed for 

each trait and allowed the identification of 70 plasticity QTLs across populations. A high proportion 

(80 and 91%) of the QTLs identified within population (MAGIC and CC, respectively) was plasticity or 

condition specific. The present study gave insight into the polygenic architecture and complexity of 

tomato response to heat stress. Heat-tolerant genotypes were identified, and heat response 

candidate genes proposed to be used for future studies. 

 

 

Keywords: Tomato, heat stress, phenotypic plasticity, intraspecific population, QTL, GWAS. 
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INTRODUCTION 

Crop production is nowadays challenged by several environmental constraints – heat stress in 

particular – hampering the yield potential of cultivated varieties (Wahid et al., 2007). Global climate 

changes are predicted to raise temperature in most parts of the world and adversely impact crop 

productivity (Zhao et al., 2017). The urge to maintain acceptable crop yield and productivity under 

fluctuating temperatures becomes a challenge in breeding programs for most crop species. Hence, 

several approaches were investigated to better understand the genetic and physiological 

mechanisms underpinning plant tolerance to high temperature (HT) stress and the ways to breed 

thermo-tolerant cultivars.  

In plants, heat stress is usually declared when temperature rises above a threshold where disruptive 

effects on plant growth, development and/or homeostasis are perceptible. The upper temperature 

limit above which HT-stress have detrimental effects in plants is not only variable considering the 

species but also depends on developmental stages. Anthesis is the most susceptible period to HT-

stress (Wahid et al., 2007; Fahad et al., 2019). High temperatures around anthesis generally lead to 

unsuccessful reproduction (Hall, 1992) and has a direct impact on yield reduction (Nadeem et al., 

2018). Besides reproduction impairment, numerous consequences related to HT are documented in 

the literature. For instance, HT elicits morphological injuries in plants, usually expressed as reduced 

growth, improper development, leaf senescence and fruit abortion (Hasanuzzaman et al., 2013; 

Nadeem et al., 2018). The morphological injuries induced by HT generally results from plant 

responses involving the regulation activity of several heat-response-genes at the molecular level 

(Mittler et al., 2012).  

The development of heat-tolerant varieties requires the identification of genes and/or quantitative 

trait loci (QTL) associated to heat tolerance (Jha et al., 2014). The genomic era facilitates the 

identification of single genes responding to variation in environmental condition including heat 

stress. Hundreds of genes responding to HT were thus pinpointed through transcriptomic analyses. 

Most of these genes are  tightly linked to heat-shock transcription factors (HSFs) across species (Liu 

et al., 2012; Rienth et al., 2014; Waters et al., 2017). HSFs are considered as master regulators of 

heat response in plants and their functional mechanisms is well documented, opening an area for 

engineering thermo-tolerant crops through gene manipulation technologies (Fragkostefanakis et al., 

2015; Maruyama et al., 2017). However, HSFs have a broad spectrum of functions and it is necessary 

to state their pleiotropic effect on stress tolerance with any breeding-trait performance before their 

suitable use.  
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Marker-assisted selection remains a promising approach to develop heat-tolerant varieties for 

quantitative traits and in countries where genetically modified crops are not easily accepted. It 

requires the identification of molecular markers tightly linked to thermo-tolerance genes/QTLs for 

the trait of interest. Numerous studies have been dedicated to the identification of heat-tolerant 

QTLs in several species (Lin et al., 2010; Frey et al., 2016; Bhusal et al., 2017; Shanmugavadivel et al., 

2017; Xu et al., 2017a; Paul et al., 2018). Those studies used different indexes for the measurement 

of heat tolerance to conduct linkage mapping or association analysis including survival rates, growth 

recovery, physiological parameters or yield performance that remains more interesting in agronomic 

context. They underlie the complex polygenic nature of heat tolerance. Indeed, heat tolerance is 

generally viewed as plant’s ability to maintain vital functions when exposed to HT; and for breeders, 

a heat tolerant variety would be considered as the one maintaining a stable or even higher yield and 

economic quality under HT conditions relatively to control conditions. 

Tomato is a widely cultivated crop that can grow in different habitats, from low temperature areas to 

tropical zones. However its optimal temperature for growing is about 26°C based on crop simulation 

growth model (Boote et al., 2012). Above 30°C, impaired reproductive development could be 

observed and final productivity impacted. Xu et al., (2017b) highlighted that tomato reproduction 

under HT is impaired mainly due to male sterility, notably with higher style exertion and lower pollen 

viability. Wild relative species contain valuable genetic resources for abiotic stress tolerance and 

have been exploited for QTL mapping (Foolad, 2007; Driedonks et al., 2018). Yet, a few studies 

addressed the identification of QTL/association for heat tolerance in tomato (Grilli et al., 2007; Lin et 

al., 2010; Xu et al., 2017b). All these studies involved intra and inter-specific bi-parental populations. 

However new tomato experimental populations powerful in QTL mapping analyses are being more 

available (Rothan et al., 2019).  

In this study, tomato tolerance to heat stress was screened in two panels for 11 phenotypic traits. 

The panels were constituted by an intraspecific 8-way multi-parental (MAGIC) population (Pascual et 

al., 2015) and a core-collection of unrelated individuals (CC) suitable to genome-wide association 

study (GWAS) (Albert et al., 2016). The phenotypic responses to HT-stress of the two panels were 

compared, along with the consequences of HT-stress at the genetic level within each panel. The 

study was designed to: (i) measure the impact of HT on different breeding traits and genetic 

materials; (ii): identify useful heat-response QTLs in both panels; (iii) propose heat-response 

candidate genes controlling tomato phenotypic plasticity.  
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MATERIALS & METHODS 

Plant material & phenotyping 

The plant material used in this study was constituted of two populations: an 8-way tomato multi-

parental population (MAGIC) and a core-collection (CC) of small, cherry and admixed tomato 

accessions. The MAGIC population, derived from four large fruit and four small fruit accessions was 

developed as described in Pascual et al., (2015) and a subset of 265 MAGIC lines was used in the 

present study. The CC panel consisted of 139 diverse tomato accessions – including the four small 

fruit parents of the MAGIC population –as described in Albert et al., (2016). The tomato accessions in 

the CC panel included 108 genotypes from S. lycopersicum var cerasiforme (SLC), 10 genotypes from 

S. pimpinellifolium (SP) and 21 genotypes forming a mixture group between SLC, SP and S. 

lycopersicum var lycopersicum. The MAGIC and CC populations were evaluated in greenhouse the 

same greenhouse in Avignon (south of France) from March to July in 2017 and 2018, respectively. 

Each trial was conducted under optimal condition (timely-sown) and HT-stress condition (delayed-

sowing). The sowing date for the HT condition was delayed of two months compared to the optimal 

condition later referred as control. One-month old young seedlings were transferred in the 

greenhouse in March for optimal condition (control) and in May for HT condition (Heat stress) for 

each trial. In both conditions, the eight parental MAGIC lines and the four MAGIC-F1 of the first 

generation were used as control lines and replicated twice. In average, the daily mean/maximal 

temperatures were of 21.2°C/28.8°C in MAGIC-control, 22.7°C/31°C in CC-control, 26.9°C/34.4°C in 

MAGIC-heat and 27.5°C/35.5°C in CC-heat stress conditions, respectively. The experimental design in 

the MAGIC trial was conducted such that one plant per MAGIC line was evaluated in the control 

condition and one third of the genotypes replicated twice in the HT-stress condition. In the CC trial, 

all genotypes were randomly duplicated. External genotypes were used as border lines in both trials. 

The MAGIC and the CC populations were phenotyped for 11 traits including vegetative and growth 

traits, fruit quality, plant phenology and yield related traits. Stem diameter (diam) was measured 

with a digital caliper under the 4th and the 5th truss and for each single plant, two equatorial 

measurements were recorded. Leaf length (leaf) and plant height (height) were measured with a 

measuring ruler under the 4th and the 5th truss. Flowering time (flw) was recorded as number of days 

between the sowing date and the first flower appearance on the 5th truss for the MAGIC and on 

trusses 4 to 6 for the CC. The number of flowers (nflw = total number of peduncles) and number of 

fruits (nfr = total number of viable fruits) were measured on the 4th and 5th trusses in the MAGIC 

population (4th to 6th trusses in the CC). Fruit set was derived as fset = 100*fruit number/number of 

flowers, with fruit and flower number calculated as the mean value across the different trusses. Ripe 
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fruits under the 3rd to 6th trusses were weekly harvested and 6 to 10 fruits were used to measure 

average fruit weight (fw), fruit color (col_a). Fruit color was measured with a Minolta colorimeter 

using the “a” (red/green) coordinate of the L*a*b* color space. The harvested fruits (on three 

harvests) were then pooled and crushed, and the juice was used to measure soluble solid content 

(SSC) with an electronic refractometer and fruit pH with a pH-meter. 

Statistical analysis of phenotypic traits 

Both populations were submitted to the same statistical analysis. All statistical analyses were 

performed using R (R Core Team, 2019). First, outliers were removed and skewed data (including fw, 

nfr and nflw in both populations) log-transformed to meet normality assumptions. A fixed effect 

analysis of variance was conducted on the subset of 265 MAGIC lines (resp. 139 CC accessions) 

evaluated in both conditions to test for genotype, condition, and their interaction (gxc) effects with 

the following model: !"# = 	& + (" + )# + (*)"# + +"#  where y is the trait value, gi and cj represent 

the genotype and condition effects, respectively, gxcij the genotype-condition interaction and εijk the 

residual effect. Due to the absence of replicates in the control condition of the MAGIC trial, the 

interaction effect could not be tested for flw, diam, height and leaf. Average trait sensitivity to heat 

stress was evaluated by computing the relative stress impact (RSI) as:  RSI = (mean HT-stress 

condition – mean control condition)/ (mean control condition). The RSI was computed for every trait, 

so that a negative RSI value indicates that HT-stress decreased in average the trait value in the 

population compared to optimal condition and vice-versa. 

Broad-sense heritability (h2) was computed for every trait in each condition separately by using the 

following linear mixed model: !,- = 	& + (, + +,- where μ, gi and εij represent the intercept, the 

random genotype effect, and the random residual effect respectively. Then heritability was derived 

from the variance components of the model: h2 = σ2
g/ (σ2

g+ σ2
e) where σ2

g and σ2
e are the genetic and 

residual variance respectively. Pearson’s correlations between traits within a condition and between 

conditions for every trait were computed by using the mean phenotype values.  

Phenotypic plasticity was used to measure the heat susceptibility of individual genotypes. For all 

MAGIC and CC lines tested in both conditions, plasticity was calculated as (HT-stress value – control 

value)/ (control value). Phenotypic plasticity was further used as a single trait to perform the QTL 

mapping and GWAS analyses.  

QTL detection in MAGIC population 

The use of MAGIC populations in QTL mapping studies has demonstrated its efficiency when the 

founder probabilities are taken into account. Here we used the recently released package R/qtl2 
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(Broman et al., 2019) suitable for QTL analysis in multi-parental populations. For every trait, the 

presence of a QTL was queried by using the mixed linear model option offered by the package that 

integrates information of relatedness between individuals in the model. The LOCO procedure was 

thus applied which allows leaving-one-chromosome-out in the kinship matrix when QTLs are 

screened for that chromosome specifically. The eight MAGIC parental lines were fully re-sequenced 

and generated a set of 4 million SNPs (Causse et al., 2013). The genetic map used for this purpose 

was developed by Pascual et al., (2015) and is composed of 1345 SNP markers highly discriminant 

between the eight parental lines. A 5% Bonferroni threshold was then established to attest for the 

significance of each QTL. This led to a cut-off LOD score value of 4.12. The phenotypes for the QTL 

mapping procedure consisted of the mean value per genotype and per condition or for plasticity 

traits. 

GWAS analysis 

The GWAS panel was genotyped using the SolCAP Infinium array described in Sim et al., (2012). 

Quality control was performed through different steps including setting the threshold for minor allele 

frequency (MAF) at 0.05, fixing the maximum percentage of missing data at 25% per accession and a 

missing call rate of 10% per marker. A subset of 6099 SNP markers remained after filtering. The 

emma.kinship package (Kang et al., 2008) was used to account for the population stratification by 

calculating a kinship matrix based on identity by state between the 6099 SNP. The population 

structure was estimated through a Principal Coordinate Analysis on the genotype matrix 

(Supplemental Figure 1). The coordinates of the accessions on the first three components are 

available in Supplemental Table 1. 

The GWAS analysis was conducted using the multi-locus mixed model (MLMM) proposed by Segura 

et al., (2012). This step by step approach allows for an increased detection power by turning the 

successive associated markers into fixed effect cofactors, as well as decreasing the False Discovery 

Rate (FDR) by accounting for both population structure and stratification. Only cofactors displaying a 

raw P-value < 10-4 were kept as significant associated markers. The traits flw, nflw and nfr were first 

considered for each truss separately and GWAS analysis conducted on each of them, yielding a great 

number of associations. To avoid redundant information, we focused on a smaller set of associations 

for these traits by grouping the resulting associations for each condition and for plasticity so that 

overlapping associations found in the same condition but on different trusses were kept as a single 

QTL. For any significant association that was detected, the confidence interval (CI) around the pic 

position was built by calculating the markers pairwise LD for each chromosome with plink software.  

The CI around the significant associated marker was defined as the interval where r² was higher than 

0.5 in a region of 2Mbp. 
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Candidate genes screening and comparison of QTLs between populations and 

Heat-response candidate genes (CGs) were queried using all the QTLs identified for plasticity traits in 

both populations. The CI of the QTL in the CC panel was constrained so that most CI region did not 

exceed 2Mbp. Conversely, the CI in the MAGIC population were defined by decreasing the LOD-score 

of one unit on both sides of the pic position; additionally, when multiple peaks were detected on a 

given chromosome, the LOD-score was decreased by two units between peaks to define different 

QTLs. As a result, large CI could be found for the MAGIC population QTLs. In order to narrow down 

the set of potential causative genes for these QTLs, we looked for CG in light of the allelic effects 

estimated for the eight MAGIC parental lines, as described by Pascual et al., (2015).  

In order to compare the QTLs found in both populations and look for the underlying candidate genes 

(CGs), the physical positions of the QTLs were compared using the SL2.50 version of the reference 

genome. A QTL was considered as being common to both populations when the CI of the QTLs 

overlapped in the same region.  

 

RESULTS  

Phenotypic diversity in the two panels and two temperature conditions 

The 11 traits analyzed in the CC panel and in the MAGIC population, respectively showed a broad 

variability. In the MAGIC population, the phenotypic distribution went beyond parental values and in 

both directions except for fw. Indeed, all MAGIC lines that were evaluated in both conditions had fw 

larger than the smallest parent ‘Cervil’. Histogram plots were commonly overlapping between 

conditions for almost all traits but leaf and flw in the MAGIC population, and fset and flw in the CC 

panel (Supplemental Figure 2). These traits were highly impacted by the temperature.  

The broad-sense heritability (h2) was computed for each condition and population separately. Both 

the MAGIC and the CC populations showed high variability in h2 according to traits and conditions 

(Figure 1). The population affected h2 more than the condition notably for fw. The highest h2 was 

recorded for height and fw in the MAGIC and CC, respectively, regardless of the condition, 

highlighting that the traits contributing to the highest h2 were conserved between populations.  

Pearson’s correlations were calculated among traits within a condition and for each trait between 

the two conditions (Supplemental Table 2). Results revealed significant correlations between traits in 

the same condition. For the control condition, the highest correlations were noticed for nfr and nflw 

that were positively correlated in the MAGIC (0.60) and the CC (0.95) populations. Compared to the 
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control condition, the HT-stress condition weakened the nfr-nflw correlation although the direction 

and significance of the correlation remained unchanged. The CC population also showed high 

correlation between flw and height (0.67) in control condition, meaning that the tallest the plant 

was, the later the flowers bloomed. This observation was identical in the MAGIC population where 

flw and height were significantly positively correlated (0.36). The significant correlations found in the 

CC population were mostly in the same direction as in the MAGIC population underlining 

consistencies between the different genetic resources regarding the phenotypic links between traits. 

The same traits evaluated in both conditions additionally showed in majority significant correlations, 

with correlation coefficients ranging from 0.2 (fset) to 0.60 (height) in the MAGIC and 0.32 (fset) to 

0.86 (fw) in the CC populations.   

Figure 1: A) Proportion of the total sum of square (SSq) associated to genotype (G), condition (E), genotype-by-condition 

(GxE) interaction factors and to the residuals (Res) of the ANOVA. The broad-sense heritability of traits is indicated under 

the graph in the control and HT-stress condition. B) Impact of the HT-stress condition at the population level for all traits 

evaluated in the CC and MAGIC populations measured by the Relative Stress Impact (RSI). Traits that increased in average 

under HT-stress condition present a positive RSI and traits that were decreased in average present negative RSI. 
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Impact of the growth temperature  

The analysis of variance was conducted for every trait in each population separately, to measure the 

contribution and significance of the genotype, condition and their interaction (gxc) effects in the total 

phenotypic variation. The genotype and condition effects were significant for every trait except for 

height in the MAGIC where only the genotype effect was significant. A large genetic variability was 

detected in both panels as the proportion of the sum of square attributed to genotype effects varied 

from 18-93% in the CC and 32-79% in the MAGIC population. Besides, the gxc interaction effect was 

significant for every trait but fw and pH in the CC. Given the absence of replicates in MAGIC-control, 

the gxc effect couldn’t be evaluated for diam, flw, leaf and height; nonetheless significant interaction 

effects were found for all other traits. The proportion of the phenotypic variation attributed to the 

HT-stress and to the gxc interaction effect was most important for flw and leaf in both populations 

(Figure 1). 

The general impact of HT-stress (due to two months delay in the sowing date, leading to plant 

growth exposed to hot months) was evaluated by calculating a relative-stress-impact index (RSI). In 

the CC and the MAGIC populations, all the traits were in average impacted in the same direction 

(Figure 1). The lowest average impact was found for height in the MAGIC population, which besides 

showed non-significant effect of HT-stress in the ANOVA analysis. The strongest impact of HT-stress 

at the population level was recorded for flw and leaf in the CC and MAGIC population, respectively. 

Indeed HT-stress decreased flw (-40%) in the CC and leaf (-45%) in the MAGIC population that were 

besides the traits with the highest proportion of the phenotypic variation explained by the condition 

effect from the ANOVA analysis. The negative effect of HT-stress on leaf and diam was more 

remarkable in the MAGIC population than in the CC. The yield related traits (fw and nfr) were 

affected by HT-stress in the CC and the MAGIC at a rather similar level. The col_a and pH traits were 

positively impacted in both populations; an increase in col_a value corresponding to more reddish 

fruit. When considering flowering time which is a heat-susceptible trait in many plant species, the 

results showed an acceleration of flw with flowering at the 5th truss occurring 9 and 16 days earlier in 

average under the HT-stress condition, in the MAGIC and CC population, respectively. 

Phenotypic plasticity 

Individual response to the temperature was measured for each genotype by computing a phenotypic 

plasticity index. This allowed us to evaluate how much each genotype was impacted by the HT-stress 

condition. Although fw decreased in average in the MAGIC population, 25% of the MAGIC genotypes 

had a positive fw plasticity meaning that fw didn’t decrease in stress condition for those genotypes. 

Among them, 17 genotypes showed interesting trend as HT-stress did not reduce the nfr either 
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(Supplemental Table 3). In the CC panel, 79% of the CC lines exhibited a lower fw under HT-stress 

and 21% (29 genotypes) were positively affected. Based on fw and nfr plasticity, a total of 24 

genotypes (5% and 9% of the CC and MAGIC lines, respectively) were considered as heat-tolerant for 

yield component traits (under the 4th – 6th truss) across the populations. These heat-tolerant 

genotypes were besides negatively affected for growth traits under HT-stress condition and showed 

reduced leaf (-33%) and diam (-16%) (Supplemental Table 3).  

Considering the plasticity of the genotypes across populations, flowering time was the most heat-

responsive trait in both populations with 96% and 99% of all the MAGIC and CC genotypes flowering 

earlier in the HT-stress condition compared to the control condition, respectively. Irrespective of the 

population, the genotypes were then classified as ‘early’, ‘medium’ and ‘late’ responsive regarding 

their plasticity value for flw (Supplemental Figure 3). Among the 404 MAGIC and CC lines, 29% 

clustered in the ‘early’ group (plasticity of flw below -0.3) which flowered in average 18 days earlier 

in HT-stress condition compared to the control. The ‘medium’ group was the largest with 65% of the 

genotypes showing an average early flowering of eight days (plasticity of flw between -0.3 and 0). 

Only 3% of the genotypes (plasticity of flw above or equal to zero) were in the ‘late’ group with an 

average flowering occurring four days later than in the control condition. Comparing the populations, 

the majority of the CC lines (83%) clustered in the ‘early’ group and adversely, the MAGIC lines were 

in high proportion (95% of the MAGIC lines) assigned to the ‘medium’ group, highlighting population 

differences regarding flowering heat-susceptibility.  

Flowering plasticity was significantly correlated to heat-response for all the growth traits and also 

with plasticity of pH, fset and col_a (Figure 2). Indeed ‘early’ genotypes showed less susceptibility to 

HT-stress for diam an leaf compared to ‘medium’ and ‘late’ genotypes and the adverse effect was 

observed for height (Supplemental Figure 4). No significant correlation was detected for plasticity of 

fw and nfr, which are both contributing to final yield in tomato.  

QTL mapping in the MAGIC population 

QTL analysis was conducted in the MAGIC population first for each condition separately and then for 

plasticity. The analysis yielded 52 QTLs in control condition, 50 QTLs in HT-stress and 15 QTLs for 

plasticity traits (Supplemental Table 4). A total of 98 QTLs were detected for all the 11 traits among 

which 36 (37%) were specific to the control condition, 35 (36%) specific to HT-stress and 8 (8%) 

specific to plasticity. A minor proportion of the QTLs (19%) were common to both conditions, or at 

least between one condition and plasticity.  Frequent QTL co-localizations across traits were found, 

highlighting some important chromosomal regions having an impact on different traits.  The 
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confidence intervals of the MAGIC QTLs were highly variable according to the QTLs, ranging from 

0.58Mbp (leaf9.1) to 78Mbp (fset1.1). 

 

Figure 2: Pearson’s correlations between plasticity traits.  

 

GWAS in the CC population 

In the CC panel, a total of 166 unique associations were detected for the 11 traits measured with 61, 

67 and 55 associations detected for control, HT-stress condition and plasticity, respectively 

(Supplemental Table 4). Among these associations, we identified 151 unique QTLs mapping for one 

condition or plasticity, and 15 QTLs identified consistently between conditions or between one 

condition and plasticity. Interestingly, two QTLs (nfr11.5 and nflw11.4) were consistent between the 

two conditions and plasticity on chromosome 11. Besides, these two QTLs mapped in neighboring 

regions separated by less than 1Mbp. Confidence interval regions spanning a maximum of 2Mpb 
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were defined around 88% of the associated markers. The number of significant association per 

chromosome ranged from 11 (chromosome 9) to 26 (chromosome 11). 

Considering the two conditions and plasticity together, the number of QTLs per trait varied from 7 

(col_a) to 33 (flw) in the CC population and from 4 (SSC) to 12 (pH) in the MAGIC population. A high 

proportion of all the QTLs detected across populations were condition-specific or specific to the 

plasticity (Figure 3). However, this trend was highly variable according to the traits. For example, all 

diam and fset QTLs were specific to a condition or to the plasticity in both populations. The same was 

found for col_a and height in the CC panel. Conversely 22% of nfr QTLs were commonly detected 

between the two conditions or between at least one condition and plasticity in the CC. In the MAGIC 

population, 42% of fw QTLs showed consistency across conditions or between one condition and 

plasticity (Supplemental Table 5). 

Figure 3: Venn diagram of the number of QTLs per condition.  The number of QTLs specific to control, HT-stress condition 

and to the plasticity is highlighted in the CC panel and the MAGIC population. The numbers in the intersection of the circles 

represent QTLs that are common in both conditions or between condition and plasticity. 

 

QTLs across populations  

Combining both populations and conditions for the common traits, 244 QTLs were identified. The 

vast majority of these QTLs were population-specific (92% of the QTLs) with only 20 QTLs being 

simultaneously mapped in both populations. Among these, ten were identified for plasticity, or for 

the same condition between populations. The QTL SSC9.1 was detected in both populations either 

for control and HT-stress and its CI interval region covered the Lin5 gene (Solyc09g010080) which is 
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described as an Invertase, affecting sugar content in tomato (Fridman et al., 2000). For all the 20 

QTLs shared across populations, the CI regions were small, ranging from 7.45 Kbp to 5.07 Mbp and 

harbored from 2 to 704 genes (Table 1).  

Table 1: QTLs consistent between populations. For each QTL, the columns ‘Control’, ‘HT-stress’ and 

‘Plasticity’ highlight in which condition the QTL was detected and the corresponding population. The 

columns ‘CI_low’ and ‘CI_high’ present the lower and the upper bounds of the collapsing regions 

between the two panels. The confidence interval (CI) and positions of the lower and upper bounds of 

the overlapping regions are presented in mega-base-pair (Mbp). For each QTL in the table, the 

number of candidate genes (CG) and is presented. 

QTL-name  Control HT-stress Plasticity Chr CI low (Mbp) CI high 

(Mbp) 

Nb 

CG 

ht2.1  MAGIC CC 2 33,973517 35,214875 77 

nflw2.3  MAGIC ; CC MAGIC 2 44,705571 45,518495 115 

col_a3.1 MAGIC CC  3 53,650069 53,670496 
 

5 

flw3.3 MAGIC MAGIC ; CC CC 3 65,165483 65,312829 19 

fset3.1  MAGIC ; CC  3 63,674517 65,566055 246 

nflw3.2  MAGIC CC 3 63,446585 64,521327 132 

nfr3.2  CC MAGIC ; CC 3 53,08745 54,449864 104 

pH3.2 MAGIC CC  3 64,485318 64,588871 20 

diam4.2  MAGIC ; CC  4 65,611502 65,778385 26 

ht4.2 CC MAGIC  4 64,536101 65,778385 163 

nfr4.2 CC MAGIC  4 62,550134 63,900601 178 

pH6.2 MAGIC MAGIC ; CC  6 42,200096 47,27796 704 

col_a7.1 MAGIC ; CC   7 4,115593 6,385399 104 

fw9.2  MAGIC ; CC  9 30,502912 31,891757 16 

nfr9.2 MAGIC CC  9 66,014053 66,376508 33 

SSC9.1 MAGIC ; CC MAGIC ; CC  9 3,477432 3,48489 2 

flw11.5 MAGIC CC  11 55,330359 56,105593 91 

nflw11.3 MAGIC CC  11 53,964003 54,306131 34 

nfr11.4 MAGIC ; CC   11 7,763703 8,414574 45 

fw12.1  MAGIC CC 12 14,640634 15,670729 15 

 

Heat-response QTLs and candidate genes (CGs) 

Phenotypic plasticity was used as a trait per se to identify HT-response QTLs. Analyses of the two 

populations revealed 70 plasticity QTLs among which only one (ppnfr3.2) was common to both 

populations (Figure 4). This QTL was mapped in a region of 1.3 Mbp in the CC panel (53.08 – 54.44 

Mb), while in the MAGIC population the CI of the QTL spanned about 50 Mbp (region covering the 

centromere, between 11.26 – 61.92 Mbp). The number of plasticity QTLs varied widely across traits 

from one (diam) to 13 (flw). Flowering time was the most polygenic trait and all the plasticity QTLs 

for this trait were identified in the CC and not in the MAGIC population. For almost every trait, the 

number of plasticity QTLs identified was higher in the CC panel compared to the MAGIC except for 
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pH. Some regions gathered overlapping plasticity QTLs across traits and panels (Figure 4). For 

example, chromosome 3 carried the plasticity QTLs ppnflw3.2, ppfw3.2, ppflw3.3 and ppfset3.2 that 

were identified across populations, all of them overlapping in a common region. On chromosome 4, 

four plasticity QTLs uniquely identified in the CC panel (pppH4.1, ppnfr4.4, ppnflw4.3 and ppfw4.2) 

mapped in the same region spanning 2 Mbp. Another cluster of five plasticity QTLs (ppnflw11.2, 

ppflw11.4, ppnfr11.5, ppSSC11.2 and ppnflw11.4) identified in the CC panel were located in a 5 Mbp 

interval on chromosome 11. 

From one to 479 heat-response candidate genes (CGs) were then tagged within the plasticity QTLs by 

listing all the genes present in the CI of plasticity QTLs and following the filtering procedure described 

for the MAGIC population in the Materials & Methods section (Supplemental Table 6).  

 

Figure 4: Plasticity QTLs positions in the CC (red) and the MAGIC (blue) populations. Each square represents a chromosome 

with the number of the chromosome (1 to 12) highlighted. The horizontal bars represent the physical positions of the 

interval carrying the QTL. The y-axis labelled the different traits for which plasticity QTLs were screened and the x-axis 

represents the physical positions in Mbp, along the chromosomes. The CI of the CC QTLs were set at 2Mbp interval 

centered on the pic position for better visualization.  
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DISCUSSION 

Tomato response to heat stress 

Plant susceptibility to high temperatures strongly depends on the crop species. However different 

studies attest that flowering time is the growing period showing the highest susceptibility to heat 

stress (Wahid et al., 2007; Nadeem et al., 2018). Tomato reproduction is hampered when 

temperatures exceed the critical value of 30°C, mostly due to susceptibility of male reproductive 

traits (Xu et al., 2017b). In our experiment, the HT-stress condition was applied by delaying the 

sowing date of two month compared to the control condition; and the maximal temperatures 

averaged through the cropping period were 34.4°C and 35.5°C in the MAGIC and CC experiments, 

respectively. The period surrounding flowering of the parental lines in the HT-stress condition was 

marked by high temperatures exceeding by about 6°C the control condition (Supplemental Figure 5). 

Besides, no water limitation was applied in the HT-stress conditions in order to avoid confounding 

effects with drought, and both conditions received the same fertilization solution.   

Both tomato populations analyzed showed a large phenotypic variability under control and HT-stress 

conditions. Differences between the populations were mostly pronounced for fw which showed a 

coefficient of variation that almost doubled in the CC compared to the MAGIC population 

(Supplemental Figure 6). Indeed, the CC panel included only cherry tomatoes and S. 

pimpinellifoliumm accessions while the MAGIC lines were derived from the cross of cherry and large 

fruit accessions, which could explain the differences in the fw distribution between the populations. 

The other traits however showed quite homogeneous distributions across populations.  

Most of the traits were characterized by high heritability in both conditions suggesting the possibility 

to select tomato under heat condition using the resources described here. Heritability was found to 

vary more between populations than between conditions and in a trait-dependent manner. Fruit 

weight for example showed very high heritability in the CC compared to the MAGIC population 

(Figure 1) whatever the condition. High fw heritability was already observed in the CC population in a 

previous study conducted under control and water-deficit condition (Albert et al., 2016). This could 

be related to the structure in the CC population which is subdivided in three different genetic groups 

correlated to fw variation. The proportion of the phenotypic variation attributed to genotype effect 

for fw variation was indeed high (93%) in the CC population compared to the fw variation that was 

attributed to the condition and gxc effects (about 5%). However, HT-stress condition decreased fw by 

25% in the CC population (Figure 1). The HT-stress significantly affected all the traits but height in the 

MAGIC population. The direction of the effect of HT-stress condition was consistent between 

populations highlighting a similar overall pattern of heat response, with reduced plant development, 
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reduced fruit number and fw in average but no or little consequence on SSC. However, considering 

the extent of HT-stress impact, populations showed differences with the MAGIC population being on 

average more affected for vegetative growth and the CC more affected for yield related traits.  

Phenotypic plasticity was calculated to reflect individual response to HT-stress condition in both 

populations.  A set of 24 genotypes were identified as heat-tolerant regarding their plasticity for yield 

related traits. These genotypes were further screened for their multi-trait plasticity response and 

most of them showed early flowering phenotypes and impaired growth and leaf development (Figure 

5). The adaptive behavior of these genotypes seemed to be related to their capacity to reallocate 

their resources from growth to fruit development by increasing their yield capacity. Some of those 

genotypes were also positively affected for SSC (Supplemental Table 3) highlighting interesting 

candidates for tomato breeding under high temperature environments. Essentially, the results 

suggest that heat stress tolerance is a complex mechanism and should be addressed and interpreted 

in a trait dependent manner since the complex response pathways could result from various 

phenotypic expressions.  

 

 

Figure 5: Plasticity of heat-tolerant lines. This plot represents the 24 heat-tolerant lines for fruit weight (17 MAGIC and 7 

CC) and their growth response plasticity (diam and leaf). The color represents the population. The size of the circle is 

proportional to the increase in fruit weight under HT-stress condition. Below the horizontal zero line are plotted all heat-

tolerant genotypes that decrease in leaf length under HT-stress condition. The left side of the vertical zero line plot all heat-

tolerant genotypes that decrease stem diameter under HT-stress condition. 
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QTLs common or specific between populations 

Considering all traits and conditions, the CC panel yielded a higher number of QTLs than the MAGIC 

population (166 vs 97, respectively). Besides, we highlighted that the genetic control of heat-

response in tomato is highly dependent on the mapping population. Among the 244 unique QTLs 

identified for the same traits across populations, only 20 QTLs (8%) were consistently identified in 

both populations.  This is in agreement with Pascual et al., (2016), who identified a high proportion of 

population specific QTLs for fruit and plant related traits under optimal growing condition. The CC 

panel is composed of lines with diverse geographical origins (Supplemental Figure 8) and consisted 

of genotypes belonging to three distinct genetic groups (SLC, SP and mixture). The high level of 

population-specific QTLs probably arises from different allele’s segregation between the populations.  

Plasticity revealed a polygenic control of tomato heat-response 

This study was the first using plasticity traits to unravel heat-response QTLs in tomato, to the best of 

our knowledge. The previous QTL mapping studies on tomato response to high temperature were 

conducted on traits evaluated in a single heat-stress condition (Grilli et al., 2007; Lin et al., 2010; Xu 

et al., 2017a). In total, we identified 69 plasticity QTLs specific to populations and one plasticity QTL 

(ppnfr3.2) shared between the two populations, which denotes the polygenic nature of tomato heat-

response. Besides plasticity QTLs, 70 population-specific QTLs and 3 QTLs shared across populations 

were exclusively detected under the HT-stress condition which may also arise from the heat-

response effects (Figure 3). Xu et al., (2017a) used SNPs markers from the SolCAP SNP array (Sim et 

al., 2012) that was also used in our GWAS analysis. This allowed us to compare the physical positions 

of heat-response QTLs from both study. Interestingly, flw1.5 was identified in the MAGIC population 

under both control and HT-stress condition, and the region of the QTL overlapped with the 

previously identified qAL1 from Xu et al., (2017a) that affected variation of anther length under heat. 

Furthermore, the plasticity QTLs (ppnflw2.3 and ppnfr2.1) mapped in the same region in 

chromosome 2 and also encompass the positions of two QTLs affecting anther length (qAL2) and 

style length (qSL2) variation under heat identified in Xu et al., (2017a). The genomic regions holding 

these QTLs could be important for tomato adaptation to high temperature since heat-response 

reproductive QTLs were identified within, using different genetic resources.   

Focusing only on the plasticity QTLs, from one to 479 candidate genes were proposed per QTL. The 

plasticity CGs in the MAGIC population were narrowed using the estimated allelic effects of the eight 

parental lines (Supplemental Figure 7). A set of 5657 unique heat-response candidate genes were 

selected within the CI of the 70 plasticity QTLs (Supplemental Table 7). Previous studies identified 

tomato heat-response genes through expression analysis of male reproductive organs under high 
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temperature conditions (Fragkostefanakis et al., 2016; Jegadeesan et al., 2018; Keller and Simm, 

2018). Thus, tomato heat-inducible genes were then selected from these studies and compared to 

the candidate genes from our plasticity QTLs. Among the 5657 candidate plasticity genes, 114 genes 

encompassing 43 plasticity QTLs were selected as their expression in male organs and/or leaf was 

significantly altered under heat stress (Supplemental Table 8). Besides, we identified a set of 60 CGs 

that are functionally annotated as “chaperon” or “heat-shock” protein within 35 plasticity QTLs, six of 

which previously identified among the DEG under heat conditions. The candidate genes presented in 

the Supplemental Table 8 are thus valuable heat-response candidate genes affecting tomato 

phenotypic plasticity. Further studies are needed to evaluate in more details the impact of these 

selected candidate genes, at the phenotype and transcriptome levels in order to better understand 

the interaction between the regulatory pathways and the phenotypic expression induced by heat 

stress in tomato. 

Conclusion 

We identified here tomato genetic resources that are readily usable for breeding purposes and which 

are useful alternatives to the use of wild germplasm for developing heat tolerant varieties. Both 

populations broadly showed consistent phenotypic responses while at the genetic level, heat-

response QTLs were usually specific. Local adaptation within the CC population and the allelic 

recombination induced by the crossing design of the parental lines in the MAGIC population induced 

somewhat different allelic configurations leading to their genetic specificity. Heat-tolerant lines for 

yield component traits were identified in both populations and could be utilized for further 

evaluation. Crossing between the heat-tolerant lines from the different populations can be envisaged 

and could generate allele’s combination leading to higher tolerance under hot conditions. We 

showed that using the phenotypic plasticity as a trait per se for QTL identification is a powerful 

approach for detecting heat-response QTLs. The comparison of plasticity QTLs and QTLs identified in 

the control or HT-stress conditions identified a high proportion of plasticity QTLs that seem to be 

controlled by regulatory loci that probably interact with structural genes; besides several HSP located 

in these regions could be interesting to study in the future if one intended to decipher the molecular 

mechanisms of tomato heat tolerance.  
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Supplementary Materials: 

The supplemental figures and tables of this chapter are presented in Appendix 5. 

NB: Supplemental tables 1, 6, 7 and 8 can be accessed online:  

Supplemental Figure 1: Principal Coordinate Analysis (PCoA) in the CC panel, based on the Kinship 

matrix. 

Supplemental Figure 2: Distribution for all traits evaluated under optimal (light gray) and HT-stress 

(dark gray) conditions. A) Trait distribution in the CC population with the vertical lines representing 

the upper-range (solid lines) and lower-range (dashed lines) of the MAGIC parental lines distribution 

under optimal (green) and HT-stress (red) conditions. Only the four small parental lines included in 

the CC panel were considered. B) Trait distribution in the MAGIC population; the vertical lines are as 

in the CC panel but all the eight parental lines were considered. 

Supplemental Figure 3: Number of genotypes per group across populations.  

The groups were defined according to genotype’s susceptibility to HT-stress regarding the flowering 

time. The “early” (resp. “medium”) group clustered genotypes that flowered in average 18 days 

(resp. 8 days) earlier in the HT-stress condition. The genotypes that flowered later in the HT-stress 

condition are in the “late” group. 

Supplemental Figure 4: Phenotypic plasticity distribution for 404 MAGIC and CC lines regarding the 

group defined according to flowering time response under HT-stress condition. The stars highlight 

traits where a significant group effect was detected. 

Supplemental Figure 5: Daily temperature fluctuation in the greenhouse for the CC and MAGIC trials. 

The minimal, mean and maximal temperatures are presented from the plant’s transfer into the 

greenhouse to the end of flowering time. The red and black arrows in the MAGIC figures represent 

the period covering flowering time of the 5th truss (truss phenotyped for flw) in the MAGIC 

population.  

Supplemental Figure 6: Coefficient of variation (CV) for the 11 traits evaluated in both populations. 

The green and orange dots represent the Control and HT-stress conditions, respectively. The circle 

indicates CV in the CC population and the triangle, the MAGIC population.  

Supplemental Figure 7: Estimated allelic effects for all plasticity QTLs identified in the MAGIC 

population. 

Supplemental Figure 8: Geographical origin of the CC lines 

Each circle represents a country where CC lines were originated and the size of the circle is 

proportional to the number of genotypes that were selected from a region. 

 

Supplemental Table 1: Principal Coordinate Analysis of the genotype matrix in the CC population. 

The coordinates of the accessions in the first three axes are displayed. Coordinates of the first three 

axes are displayed. 

Supplemental Table 2: Pearson's correlation between traits and conditions in the CC (A) and the 

MAGIC (B) populations, resepectively. The upper sides of the table’s correspond to trait-correlations 
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in the HT-stress conditions and the lower sides to trait-correlations in the control condition. The 

column CorrEnv represents the correlation between HT-stress and control conditions for each single 

trait. The non-significant correlations were notified by empty cells. When significant at a threshold of 

0.05, the coefficient correlations were indicated. 

Supplemental Table 3: Heat tolerant genotypes regarding yield component traits in the MAGIC and 

the CC populations. For each genotype, the plasticity value (heat-response) of the other traits is 

presented. The flowering group (early, medium or late) of the genotypes is highlighted and for the CC 

lines, the genetic group and the country of origin are specified. 

Supplemental Table 4: List of the QTLs detected in the CC and MAGIC population, under control and 

HT-stress conditions. For each trait, the detected QTLs are specified in the column ‘QTL_name’. The 

chromosome and the physical position of the QTLs are presented in columns ‘Chromosome’ and 

‘Position (Mbp)’. For each QTL, the interval region is presented in mega-base-pair, with the upper 

interval ‘Left_bound (Mbp)’ and the lower interval ‘Right_bound (Mbp)’. The 'LOD_score' of the QTLs 

are indicated as well as the ‘Marker’ name at the pic position of the QTL. LOD scores were calculated 

as -log10 (P-value). The column ‘Condition’ indicates if the QTL was detected in control or HT-stress 

condition, or with the plasticity (PP) phenotype. The population and trait for which the QTL was 

found are indicated. For each significant QTL/association, the corresponding P-value is reported. 

Supplemental Table 5: Summary of the QTLs detected for 11 traits in the CC (A) and the MAGIC (B) 

populations. The number of QTLs detected per condition and on the plasticity (PP) is indicated for 

each trait. In brackets is the number of QTLs detected uniquely in one condition or for the plasticity 

(PP) only. The number of QTLs that co-localized between conditions and or plasticity is presented in 

the column 'Common'. The column 'Total_QTLs' present the total number of QTLs detected per trait. 

The last row in bold present the total number of QTLs detected across traits for each condition and 

for the plasticity and the number of QTLs that were commonly detected. The stars (*) highlight traits 

for which QTLs were consistently detected in control, HT-stress condition and plasticity within 

population. 

Supplemental Table 6: Plasticity (PP) QTLs across populations. For each PP QTL, the information is as 

presented in Supplemental Table 4. Besides, the numbers of candidate genes ‘NbCG’ in the interval 

region (for the CC QTLs) and the number of candidate genes remaining after the filtering procedure 

(MAGIC QTLs) are presented. For all plasticity QTLs in the MAGIC population, the estimated allelic 

effects (see Supplemental Figure 7) were used to narrow the candidate genes and the contrasting 

parents that were used for this filtering procedure are presented in the column ‘Filter’.  For each 

QTLs, the number of genes with unknown function (based on SL2.50 annotation version of the 

reference genome) is presented in the column NbUG.   

Supplemental Table 7: Candidate plasticity genes. For each QTL, the genes within the confidence 

interval of the QTL (in the CC population) and the genes selected after the filtering procedure (in the 

MAGIC population) are listed with their Solyc ID. The functional annotation (according to the SL2.50 

version of the reference genome) is provided. 

Supplemental Table 8: Candidate plasticity genes which are besides differentially expressed under 

heat (in male reproductive or leaf organs) and/or which functional annotation is related to 

Chaperone and Heat-shock proteins. The column 'Organ (DE)" indicates in which organ the gene was 

found differentially expressed. Differentially expressed genes were retrieved from (Fragkostefanakis 
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et al., 2016; Jegadeesan et al., 2018; Keller and Simm, 2018). The six genes that are identified as Heat 

shock/Chaperone protein and which altered expression under heat condition has been documented 

are marked with a star (**) and highlighted in bold. 
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Abstract (296 words) 

Abiotic stresses and cultural conditions can lead to different performances of a given genotype when 

exposed to different environments. This ability is commonly referred as phenotypic plasticity and has 

received a great interest these last decades. Plant geneticists are aware of the importance of 

measuring phenotypic plasticity and determining its genetic basis for breeding program purposes. 

Tomato is a widely cultivated crop that can grow in different geographical habitats and which evinces 

a great capacity of expressing phenotypic plasticity. We used a multi-parental advanced generation 

intercross (MAGIC) tomato population to explore trait variation and plasticity in a multi-environment 

trial (MET) design comprising optimal cultural conditions and water deficit, salinity and heat stress 

treatments. Genotype x environment interaction (GxE) was evaluated at phenotypic level for a total 

of ten traits – related to fruit quality, yield component plant growth and phenology traits – and its 

genetic basis investigated through quantitative trait loci (QTL) mapping analyses. The analyses 

revealed substantial GxE, explaining 15 to 68% of the phenotypic variance according to the different 

traits evaluated. A total of 104 unique QTLs were identified for mean phenotypes and different 

plasticity parameters among which only 21% were common to mean and plasticity. Mixed linear 

models were further used modelling the MAGIC-MET design to investigate the interactive QTLs (QEI). 

This analysis yielded 28 QEI which were in majority detected with the QTL analysis using either 

plasticity or mean phenotypes. The present study highlighted a complex genetic architecture of 

tomato plasticity and GxE. Plasticity QTLs were in majority distinctly located compared to mean 

phenotype QTLs for a given trait suggesting the possibility of breeding for plasticity independently. 

Candidate genes that might be involved in the occurrence of GxE in tomato were proposed, paving 

the way for functional characterization of stress response genes in tomato. 

 

Keywords: Tomato, MAGIC population, phenotypic plasticity, genotype x environment interaction 

(GxE), abiotic stresses, QTL.   
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INTRODUCTION 

Plants are sessile organisms which have to cope with environmental fluctuations to ensure species 

reproduction for persistence in nature. For a given genotype, the expression of different phenotypes 

according to the growing environment is commonly called phenotypic plasticity (PP) (Bradshaw, 

1965). It offers the possibility to plants to adapt to new environments, notably new locations, 

changes in climatic conditions or seasonal variations. In agriculture, the range of environmental 

variation for crop cultivation may also include different cultural practices or growing conditions, 

leading to the expression of PP on agronomic traits and non-stable performance. When different 

genotypes/accessions are examined for PP within a species, inter-individual variations in their 

responses usually lead to the common phenomenon of genotype-environment (GxE) interaction (El-

Soda et al., 2014). Understanding the genetic mechanisms driving PP and GxE in plants is a crucial 

step for being able to predict yield performance of crop cultivars and will certainly help to adapt 

breeding strategies according to the targeted environments. 

In plants, the genetic basis of PP has been investigated to assess whether PP has its own genetic 

regulation and thus could be directly selected. Three main genetic models, widely known as the over-

dominance, allelic-sensitivity and gene-regulatory models were proposed in the literature as 

underlying plant PP (Scheiner, 1993; Via et al., 1995). The over-dominance model suggests that PP is 

negatively correlated to the number of heterozygous loci (Gillespie and Turelli, 1989). The 

heterozygous status is favored by allele’s complementarity in this case. Allelic-sensitivity and gene-

regulatory models are assumed to arise from the differential expression of an allele according to the 

environment and epistatic interactions between structural and regulatory alleles, respectively. The 

latter assumes an independent genetic control of mean phenotype and plasticity of a trait. Using a 

wide range of environmental conditions, the prevalence of the allelic-sensitivity or gene-regulatory 

model in explaining the genetic architecture of PP was explored in different crop species including 

barley (Lacaze et al. 2009), maize (Gage et al., 2017; Kusmec et al., 2017), soybean (Xavier et al., 

2018) and sunflower (Mangin et al., 2017).  

Quantification of PP is however a common question when analyzing the genetic architecture of 

plasticity since different parameters for PP estimation are available as reviewed by Valladares et al. 

(2006). At a population level, when multiple genotypes are screened in different environments, 

different approaches can be used to assess plasticity (Laitinen and Nikoloski, 2019). The most 

common of these approaches is the joint regression model (Finlay and Wilkinson, 1963) that uses the 

average performance of the set of tested genotypes in each environment as an index on which the 

individual phenotypes are regressed. This model, commonly known as the Finlay-Wilkinson 
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regression model, allows to estimate linear (slopes) and non-linear (from the residual errors) 

plasticity parameters that presumably have different genetic basis (Kusmec et al., 2017). If the 

biological description of the environments is available, the environmental index used in the Finlay-

Wilkinson regression model can be replaced by environmental covariates such as stress indexes 

through factorial regression models (Malosetti et al. 2013). Thus plasticity could be estimated as the 

degree of sensitivity to a given stress continuum (Mangin et al., 2017).  

Climate change is predicted to increase the frequency and intensity of abiotic stresses with a high 

and negative impact on crop yield (Zhao et al., 2017). Plants respond to abiotic stresses by altering 

their morphology and physiology, reallocating the energy for growth to defense against stress 

(Munns and Gilliham, 2015). Consequences on agronomic performances are apparent and 

detrimental to productivity. The most common abiotic stress studied across species are water deficit 

(WD), salinity stress (SS) and high temperature stress (HT). The negative impact of these stresses on 

yield have been underlined for major cultivated crops; however, positive effects of WD and SS on 

fruit quality have been observed in fruit trees and some vegetables notably in tomato (Costa et al. 

2007; Mitchell et al. 1991; Ripoll et al. 2014).  

Tomato is an economically important crop and a plant model species which led to numerous studies 

that contributed much in understanding the genetic architecture of the crop and its response to 

environmental variation. However, most of the studies that addressed the genetic architecture of 

tomato response to environment were conducted on experimental populations exposed to two 

conditions (i.e. control vs stress). Albert et al. (2018) for example identified different WD-response 

quantitative trait loci (QTL) in a bi-parental population derived from a cross of large and cherry 

tomato accessions.  Tomato heat-response QTLs were also identified in different experimental 

populations including interspecific and intraspecific populations (Driedonks et al., 2018; Grilli et al., 

2007; Xu et al., 2017a). These studies investigated heat-response QTLs using mostly reproductive 

traits screened under heat stress condition. Villalta et al. (2007) and Diouf et al. (2018) investigated 

the genetic architecture of tomato response to SS and identified  different QTLs for physiological and 

agronomic traits, involved in salinity tolerance. However, no QTL study has yet been conducted on 

tomato plasticity assessed under a multiple stress design, although the coincidence of different stress 

is a more realistic scenario in crop cultivation especially with the climate change.  

Tomato benefits of a large panel of genetic resources that have been used in multiple genetic 

mapping analyses (Grandillo et al. 2013). Bi-parental populations were first used in QTL mapping and 

permitted the characterization of plenty of QTLs related to yield, disease resistance and fruit quality. 

In the genomic era, new experimental populations were developed offering higher power and 

advantages for QTL detection. These include mutant collections, BIL-populations and multi-parent 
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advanced generation intercross (MAGIC) as described in Rothan et al. (2019). The first tomato MAGIC 

population was developed at INRA-Avignon in France and was composed of about 400 RILs derived 

from an 8-way cross (Pascual et al. 2015). This population showed a wide intra-specific genetic 

variation under control and stress environments and is highly suitable for mapping QTLs.  

In the present study, we used the 8-way tomato MAGIC population described above and evaluated 

its response in a multi-environment trial (MET) design. The population was grown in 12 environments 

including control and several stress conditions and measured for agronomic traits related to yield, 

fruit quality, plant growth and phenology. Different plasticity parameters were computed and used 

together with mean phenotypes to decipher the genetic control of response to environmental 

variation. Multi-environment QTL analysis was performed in addition to identification of interactive 

QTLs (QEI) along with QTL mapping for plasticity traits.  

 

MATERIALS AND METHODS 

Plant material and phenotyping 

The MAGIC population was derived from a cross between eight parental lines that belong to SL. 

lycopersicum and SL. cerasiforme groups. More details about the population development can be 

found in Pascual et al. (2015). Briefly, the population was composed of about 400 8-way MAGIC lines 

that underwent three generations of selfing before greenhouse evaluations were carried out. In this 

study, a subset of 241 to 397 lines was grown in each environment (Supplemental Table 1).  

The full genome sequence of each parental line was available and their comparison with the 

reference tomato genome (‘Heinz 1706’) yielded 4 millions of SNPs (Causse et al., 2013). From these 

polymorphisms, a genetic map of 1345 discriminant SNPs was developed (Pascual et al., 2015) and 

used in the present study for the QTL analysis.  

Experimental design 

The MAGIC population was grown in three different geographical regions (France, Israel and 

Morocco) and four specific stress treatments were applied. Trials were conducted in order that in a 

given trial any stress treatment was applied aside a control trial (Supplemental Table 1). Treatments 

consisted in water deficit (WD), two levels of salinity – considered here as low salinity (LS) and high 

salinity (HS) – and high temperature (HT) stress. Water deficit was applied by reducing the water 

irrigation of about 70% and 30% according to the reference evapotranspiration in Israel in 2014 and 
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2015, respectively and by 50% in Morocco in 2015. Salinity treatment was managed as described in 

Diouf et al. (2018) and the average electrical conductivity of the substrate (Ec) in Morocco 2016 was 

3.76 and 6.50 dS.m-1 for LS and HS, respectively; while the Ec in the control condition in Morocco 

2015 was about 1.79 dS.m-1. For HT-stress, plants were sown during the late spring and phenotyped 

in the summer 2014 in Israel (HIs14) and summer 2017 in France (HAvi17). During HT treatments, 

greenhouse vent opening was managed all along the entire growing season, with opening the vent 

only when temperatures rose up to 25°C. Average mean/maximal temperatures calculated on daily 

(24 hours) measurements were 26/34°C for HAvi17 and 33/48°C for HIs14. Besides stress treatments, 

local conventional cultural conditions were applied for control treatments (as described in Diouf et 

al. 2018).     

Environments were considered as any combination of a geographical region, a year of trial and a 

treatment applied (Supplemental Table 1). Climatic sensors were installed in the greenhouses and 

climatic parameters recorded hourly in all environments, then stored and managed with a climate 

computer. From the climatic parameters, seven environmental covariates were defined 

(Supplemental Figure 1) including temperature parameters (mean, minimal and maximal daily 

temperatures and thermal amplitude), the sum of degree-day (SDD), the vapour-pressure-deficit 

(Vpd) and the relative humidity (RH) within the greenhouse. To characterize the environments, every 

covariate was calculated during the period covering flowering time of the population on the fourth 

truss. Indeed, phenotypic data analyzed here were mostly recorded on the fourth and fifth trusses. 

Hierarchical clustering was performed with ‘FactoMineR’ R package (Lê et al., 2008) using the 

environmental parameters to group environments according to their similarity regarding the within-

greenhouse climatic conditions.  

The MAGIC population, the eight parental lines and the four first generation hybrids (one hybrid per 

two-way cross) were evaluated for fruit weight by measuring the average fruit weight (fw) under the 

third and/or fourth plant truss in each environment. Phenotypic data were recorded across the 

different environments for nine supplemental traits related to fruit quality – fruit fruit firmness (firm) 

and soluble solid content (SSC), plant phenology – flowering time (flw), number of flowers (nflw) and 

fruit setting (fset), plant development – stem diameter (diam), leaf length (leaf) and plant height 

(height) and fruit number (nfr). Details about the phenotyping measurements are in Supplemental 

Table 2. At least two plants per MAGIC line were replicated in each environment except in Avi17 

where the average phenotype was recorded from single plant measurements. Parents and hybrids 

had more replicates per genotype (at least two) and served as control lines to measure within-

environment heterogeneity.  
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Evaluation of GxE and heritability 

Data were first analyzed separately in each environment to remove outliers and correct for spatial 

heterogeneity within the environment. The model (1) below was applied to test for micro-

environmental variation within the greenhouse where yijk represents the phenotype of the individual 

i, located in row j and position k in the greenhouse; µ is the overall mean; Ci and Li represents the 

fixed effect of control lines and the random effect of the MAGIC lines, respectively. In this model, a 0-

1 index ti was defined to distinguish between control and MAGIC lines; εijk is the random residual 

error.  

yijk = µ + Ci .ti + Li .(1-ti) + Rj + Pk + εijk (1)  

For every trait where row (Rj) and/or position (Pk) effects were significant, required corrections were 

applied by removing the BLUP of the significant effects from the raw data. Corrected data were 

gathered and used in model (2) in order to estimate the broad-sense heritability (ℎ"#$%) and the 

proportion of variance associated to the GxE. 

yij = µ + Ej + Ci.ti + C&Eij.ti + Li.(1-ti)+  + L&Eij.(1-ti)+  + εij (2) 

In model (2), yij represents the phenotype of the individual i, in environment j; µ, Ci and Li are as 

described in model (1); C&Eij and L&Eij are the fixed control-by-environment interaction effect and the 

random MAGIC lines-by-environment interaction effect, respectively. Within a given environment, 

random residuals error terms were assumed to be independent and identically distributed with a 

variance specific to each environment. From this model, the proportion of the total genotypic and 

GxE variance explained by the model was calculated as: '()'. +"#$% =	+
"
.$% +". + +

"
.$%)⁄ . The 

significance of GxE was tested with a likelihood ratio test (at 5% level) between the models with and 

without GxE. The broad-sense heritability at the whole design level (2") was derived from variance 

components of model (2) as:  2" =	+". (+". +
45678
9:.%

+	
458
9:.;

< ), where +". and +".$%  are the 

variance components associated to the MAGIC lines and MAGIC lines-by-environment interaction 

effects, respectively; =>. ? and =>. @ are the number of environments (e.g. 12 for fw) and the 

average number of repetitions over the whole design; +"% 	represents the average environmental 

variance (i.e. ∑+"%B/ =>. ?).  

Phenotypic plasticity 

Three different parameters of plasticity were estimated using the Finlay-Wilkinson regression (3) and 

a factorial regression (4) models.  
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In model (3), yij is the phenotype (averaged per environment and genotype) and μ the general 

intercept, Gi and Ej are the effects of the MAGIC line i and the environment j, respectively; βi 

represents the regression coefficient of the model. It measures individual genotypic sensitivity to the 

environment.  

yij= μ + Gi + βi&Ej + εij (3)               

Environments are described here as an index that represents the ‘quality’ of the environment (i.e. 

the average performance of all genotypes in a given environment). The εij are the error terms 

including the GxE and εij ~ N (0, σ2R). From model (3), three parameters were estimated:  

• The mean phenotype (mean) that is equivalent to the sum (μ + Gi) representing the average 

performance considering all environments. 

• The βi terms (slope), corresponding to genotypic responses to the environments. 

• The variance (VAR) of the εij terms that is a measurement of non-linear plasticity (Kusmec et 

al., 2017). 

All these parameters were used to characterize the genotypes according to their individual 

performance and their stability, from control to stress environments. For every trait, reaction norms 

were then computed from the model (3).  

The factorial regression model (4) was further applied to describe the GxE through the response of 

genotypes to the different environmental covariates (Tmin°, Tmax°, Tm°, Amp.Th°, Vpd, RH and 

SDD). The environmental covariates defined from the daily recorded climatic variables in the 

greenhouses were used for this purpose. For each trait, the most significant environmental covariate 

(p-value > 5%) was first identified – by testing successively the significance of each single covariate – 

and used as an explanatory variable represented by Cvj in model (4). 

yij= μ + Gi + Ej + xi.Cvj + εij. (4) 

The xi terms of the model were extracted and considered as a third plasticity parameter (SCv). They 

represent genotypic sensitivities to the most impacting environmental covariate for each trait. This 

measurement of plasticity is of interest as it allows identifying the direction and the intensity of each 

MAGIC line’s sensitivity to a biological meaningful environmental covariate. Throughout the rest of 

the document, the ‘slope’ and ‘VAR’ estimated from the Finlay-Wilkinson model and the ‘SCv’ from 

the factorial regression model will be considered as plasticity phenotypes – all of these parameters 

being trait-specific.   
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Linkage mapping on the mean and plasticity phenotypes 

Linkage mapping was carried out with a set of 1345 SNP markers selected from the genome 

resequencing of the eight parental lines. All the MAGIC lines were genotyped for those SNPs and at 

each SNP position, the founder haplotype probability was predicted with the function calc_genoprob 

from R/qtl2 package (Broman et al., 2019). Founder probabilities were then used with the Haley-

Knott regression model implemented in R/qtl2 for QTL detection. The response variables were the 

mean, slope, VAR and SCv for each trait. To attest for significance, the threshold for all phenotypes 

was set to a LOD = -log10 (α/number of SNPs) where α was fixed at 5% risk level. The VAR plasticity 

parameter was log transformed for all traits except fset (sqrt transformation) to meet normality 

assumption before QTL analysis. The function find_peaks() of R/qtl2 package was used to detect all 

peaks exceeding the defined threshold and the LOD threshold was dropped of two and one units to 

separate two significant peaks as distinct QTLs and to define the confidence interval of the QTLs, 

respectively.   

Multi-environment QTL analysis (QEI) 

The strength of QTL dependence on the environment was tested afterward in a second step by 

identifying QTLs that significantly interact with the environment (QEI). Two multi-environment 

forward-backward models (5 & 6) were used to test at each marker position the effect of the marker-

by-environment interaction.  

DEB = 	F + ?B + ∑ GHI ∗ &EHI	
K
ILM +∑ bHIB ∗ &EHI

K
ILM + NE + eEB 	(5) 

DEB = 	F + ?B + ∑ bHIB ∗ &EHI
K
ILM + NE +	eEB  (6) 

For model (5) and (6), yij represents the phenotype (=mean value per genotype and per 

environment), Ej reflects the fixed environment effect; GHI  and bHIB  represent the main and 

interactive parental allelic effects at marker k and in environment j for bHIB, respectively; &EHI is the 

probability of the parental allele’s origin for the MAGIC line i; Gi stands for a random genotype effect 

and the residual errors ε ~ N (0, σ2Rj) are specific to each environment. The residuals include a part of 

the GxE that is not explained by the detected QTLs. 

Significant QEI were declared in a two-step procedure. First, the main QTL and the QEI effects were 

tested separately in model (5). The QTL detection process was adapted from the script proposed by 

Giraud et al., (2017). Every marker showing a significant main-QTL or QEI was added as a fixed 

cofactor and the significance of the remaining markers tested again until no more significant marker 
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was found. All markers selected as cofactors are then jointly tested in the backward procedure and 

only significant QEI after the backward selection are reported. To determine the threshold level for 

QEI detection, 1000 simulations were performed on the adjusted means with the function sim.sightr 

of mpMap 2.0 R package (Huang and George, 2011). The second procedure used in model (6) to 

declare QEI consisted in a slight modification of model (5) where αkpj represents now the global effect 

of the marker. It allowed the detection of markers that had a main-QTL effect or QEI just below the 

threshold detection but whose global effect is significant when the two components are jointly 

tested. 

 

RESULTS 

Environment description 

The 12 environmental conditions were described by the daily climatic parameters recorded until the 

end of flowering of the 4th truss. Seven environmental covariates were selected, and the 

environments clustered according to these covariates in four groups (Figure 1). The first group 

included all trials from Morocco that were characterized by high thermal amplitude and low Vpd. The 

control environments in France (Avi12 and Avi17) clustered together in the 2nd group, defined by low 

maximal temperatures and high relative humidity. HIs14 clustered alone in the 4th group and formed 

the most extreme environment showing very high temperatures and dry climate with low relative 

humidity. The remaining environments clustered together in the 3rd and most disparate group.  

Phenotypic distributions were plotted for each trait regarding the environments where it was 

evaluated (Supplemental Figure 2) showing a distribution in accordance with the clustering of the 

environments for some traits (firm, height, nflw and leaf). Other traits such as fw, nfr, SSC and fset 

showed a distribution pattern with relatively high within-group variability, notably for environments 

clustering in group 1 from Morocco.  

GxE in the MAGIC population 

Genotype-by-environment interaction analysis was carried out after correcting data for micro-

environmental heterogeneity and removing outliers. As a first step, variance analysis was conducted 

with ASReml-R package and the variance components from model (2) used to estimate the 

proportion of GxE variance ('()'. +"#$%) and heritability at the whole design level (2"). Significant 

GxE was found for every trait and the '()'. +"#$%  varied from 0.15 (for nflw) to 0.68 (for leaf). 
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Although GxE was significant, seven out of the ten measured traits showed a higher proportion of 

genotypic variance compared to GxE (Supplemental Table 3). The broad-sense heritability of the 

whole design 2" was largely variable according to the trait, varying from 0.18 (nfr) to 0.77 (flw). Its 

calculation took into account the residual environment-specific variance which showed different 

range according to the trait, lowering heritability of traits such as nfr and fset (Supplemental Table 

3). Furthermore 2"#$%  was lower than the heritability computed in single environments 

(Supplemental Figure 3).  

 

Figure 1: Clustering environments according to seven environmental covariates, measured during the vegetative and 

flowering stage. 

Afterwards, the proportion of the GxE that could be predicted by the environmental covariates was 

assessed following the factorial regression model (4) (Supplemental Figure 4). Across traits, different 

environmental covariates significantly explained the GxE. Considering only the most significant 

covariate, from 18% (fw) to 47% (fset) of the GxE (proportion of the sum of squares) could be reliably 

attributed to the responses of genotypes to climatic parameters measured within the greenhouses. 

To perform the factorial regression model (4), the most important environmental covariate was first 

identified for each trait (Supplemental Figure 4). Growth traits, height and leaf were for example 

mostly affected by the thermal amplitude and maximal temperature, respectively, while yield 

component traits, fw and fruit number nfr were particularly sensitive to the sum of degree day. The 

vapour pressure deficit (Vpd, kPa) was the most important environmental factor affecting fruit 
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firmness (firm), fruit setting (fset) and soluble sugar content (SSC).  Flowering time (flw) and number 

of flowers (nflw) were mostly affected by minimal temperatures and relative humidity, respectively. 

Stem diameter was the only trait for which none of the environmental covariates significantly 

affected the trait; however, the minimal temperature was the covariate that explained the highest 

proportion of GxE.   

Phenotypic plasticity 

Three different parameters were used to quantify phenotypic plasticity in the MAGIC-MET design. 

For each trait, the slope and VAR from the Finlay-Wilkinson regression model and the genotypic 

sensitivity to the most important environmental covariate (SCv) from the factorial regression model 

were extracted. A large genetic variability was observed for plasticity of all traits (Supplemental 

Figure 5 and Supplemental Figure 6). Besides, significant correlations were found between the mean 

phenotypes and plasticity parameters (Figure 2) for most of the traits. The best average-performing 

genotypes were usually the most responsive to environmental variation as highlighted by the 

positive correlation between mean and the slope parameter from the Finlay-Wilkinson regression 

model. The majority of the MAGIC lines responded in the same direction to the environmental 

quality and only a few genotypes (none in the case of height) showed negative reaction norms; 

however, more divergent shapes of reaction norms were observed from the factorial regression 

model (Supplemental Figure 5). 

 

Figure 2: Pearson’s correlation between mean and plasticity parameters.  
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QTL mapping  

We used mean and plasticity measurements for every trait as input phenotypes to decipher the 

genetic architecture of tomato response to abiotic stresses. Considering the 10 traits, a total of 104 

unique QTLs were identified for mean and the plasticity parameters (Supplemental Table 4). The 

proportion of QTLs shared between mean and plasticity was about 21%, lower than QTLs that were 

plasticity or mean specific (79%). Considering only the 63 plasticity QTLs, 11 and 7 QTLs were 

specifically detected with the SCv and VAR plasticity parameters. Plasticity QTLs were detected on 

every chromosome (Figure 3); however, the chromosome 1 showed the highest number with 12 

plasticity QTLs. In this chromosome, plasticity QTLs were detected at least once for every trait. 

Chromosome 11 yielded a total of 11 plasticity QTLs and interestingly all these QTL (except 

ppnflw11.1) co-localized in a portion between 52-55 Mbp of the chromosome. The chromosomes 5, 

6 and 10 showed the lowest number (only 3) of plasticity QTLs. For QTLs detected on Mean, the 

number of QTLs per chromosome varied from 10 QTLs on chromosome 1 to 2 QTLs on chromosomes 

6 and 10.  

QTL-by-environment analysis (QEI) 

A multi-environment forward-backward model was used to assess the significance and the strength 

of the QTL effects across environments. The QEI analysis was conducted in two steps using the 1345 

SNP markers that were also used for the linkage mapping analysis as detailed in Materials and 

Methods. This analysis yielded 28 QEI (only those showing significant interaction) for the 10 traits 

(Supplemental Table 4). The number of QEI varied from 0 QEI for nfr to 6 QEI for flw. These two 

traits also demonstrated the lowest and highest ℎ"#$%.  

All QEI identified in this step were compared with the plasticity and mean QTLs using the physical 

positions of the QTLs and their confidence intervals. Interestingly, all QEI were also identified using 

either mean or plasticity parameters, in the linkage mapping analysis except two QEI located on the 

same region of chromosome 6 (flw6.1 and firm6.1). Among the 106 unique QTLs identified on mean, 

PP and QEI, a notable number of QTLs were plasticity or mean specific (30 and 32%, respectively) 

(Figure 4).  Eight QTLs involving five different traits (flw1.1, fw2.1, fw2.2, fw11.2, leaf6.1, nflw11.2, 

SSC1.2 and SSC9.1) were identified with all the three approaches highlighting their robustness and 

sensitivity to environmental variation. 
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Figure 3: Representation of plasticity QTLs along the genome. Numbers above the square represent the different 

chromosomes and the colors distinguished the different traits. The x-axis represents the physical distances in mega base 

pair (Mbp). 

 

  

Figure 4: Number of QTLs identified specifically 

on mean, plasticity or QEI and QTLs that were 

common to at least two of them. 
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Genetic location of the MAGIC-MET QTLs  

The physical positions based on the SL2.50 version of the reference genome, were used to compare 

the position of the different QTL category (mean – plasticity – QEI). A recent study has identified 

different tomato regions (Sweep regions) that were selected during domestication and improvement 

events (Zhu et al., 2018). These regions were cross checked against the positions of our QTLs. Some 

QTLs detected in the MAGIC-MET design were located in large regions thus collapsing with a high 

number of Sweep regions (Figure 5 & Supplemental Figure 7). Considering only the QTLs within less 

than 2Mbp intervals and all QEI, a total of 61 QTLs were selected and compared with the Sweep 

regions. Plasticity QTLs appeared to be in majority located within the Sweep regions and only 6% of 

the selected plasticity QTLs were outside the domestication/improvement selective sweeps 

(Supplemental Figure 8). Interestingly, the Sweep region SW75 located in chromosome 3 (located 

between 64.76 - 65.01 Mbp) carried a total of five QTLs (ht3.1, fset3.1, flw3.2, leaf3.1, fset3.1). 

Supplemental Table 5 presents all the Sweep regions holding at least one MAGIC-MET QTL. 

Chromosome 11 was highlighted as holding a number of plasticity QTLs for different traits (Figure 3). 

Indeed, seven different QTLs all identified with plasticity parameters, were located within the Sweep 

regions SW254 and SW255, from 53.81 – 55.62 Mbp on chromosome 11 (Supplemental Figure 9). 

Among the ten QTLs that were outside the Sweep regions, one QTL was identified for mean fw and 

located on chromosome 5 (fw 5.1) in position 4.52 Mbp. This QTL was mapped in a region holding 

other QTLs segregating in the MAGIC population for fruit size, fruit width and fruit length 

(Supplemental Table 6; data from the experiment in Pascual et al. (2015)).  

Candidate genes  

Confidence intervals of the MAGIC-MET QTLs varied from 0.45Mbp to 87Mbp including a variable 

number of genes. We thus focused on QTLs presenting CI regions smaller than 2Mbp for candidate 

gene screening. From 49 (nflw12.1) to 256 (diam4.1) genes were within the regions of the selected 

QTLs. Taking advantage of the parental allelic effect, the CG were narrowed for each QTL by 

contrasting the allelic effect of the eight parental lines. The selected candidates after the filtering 

procedure are presented in the   Supplemental Table 7, highlighting interesting candidates for 

further studies. Flowering time QTLs for instance included some CG with consistent matching 

regarding their functional annotation. For example, the QTL ppflw11.1 CI on chromosome 11 

included two CG: Solyc11g070100 and Solyc11g071250 corresponding to “Early flowering protein” 

(ELF) and “EMBYO FLOWERING 1-like protein” (EMF1), respectively. Among other potential flowering 

candidates, we noticed Solyc12g010490 (AP2-like ERF) for the QTL flw12.1 and Solyc03g114890 and 

Solyc03g114900 (COBRA-like proteins) for the QTL flw3.2. Aside flowering time, the selected 
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candidate genes for the QTLs diam4.1 and ppSSC1.1 included the Solyc04g081870 (annotated as an 

Expansin gene) and Solyc01g006740 (annotated as Sucrose phosphate phosphatase) genes, 

respectively.  

We could identify some plasticity QTLs showing sensitivity to the environmental conditions, notably 

the QTLs detected using the Scv plasticity parameter. Candidate genes were screened for some QTLs 

falling into this category. The ppfw9.1 QTL CI for example, showing susceptibility to the SDD day, 

carried a chaperone candidate (solyc09g091180) which might be involved in regulating fruit weight 

depending on the SDD variation. Similarly the QTL ppleaf11.1 is affected by the maximal temperature 

(Supplemental Table 4). Three CG (Solyc11g071830, Solyc11g071930 and Solyc11g071710) belonging 

to the Chaperone J-domain family, were retained after the filtering procedure in the region of the 

QTL. Notably, the DnaJ-like zinc-finger gene (Solyc11g071710) was among the candidate genes 

corresponding to several plasticity QTL including ppflw11.1, ppleaf11.1, ppnflw11.1, ppht11.1 and 

ppdiam11.2. This gene presented a total of 122 polymorphisms across the eight parental lines among 

which 35 and 68 are in the up-stream and down-stream gene region. Further investigation regarding 

this gene is needed to state its potential pleiotropic effect. 

 

Figure 5: Physical positions of the MAGIC-MET QTLs for fruit weight and flowering time. The following circle with black bars 

represents the different domestication/ improvement sweep regions identified in (Zhu et al. 2018). The other circles plot 

the CI of QTLs identified on mean, plasticity or with QEI analysis. 
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DISCUSSION 

Genetic variability in tomato response to environmental variation 

Genotype-by-environment interaction has been a long-standing challenge for breeders and the 

predicted climate change has encouraged plant geneticists to devote more attention into 

understanding its genetic basis. Tomato is a widely cultivated crop with high adaptability to a variety 

of environmental conditions (Rothan et al. 2019). However, important incidences of abiotic stress in 

the final productivity, fruit quality and reproductive performance have been noticed (Mitchell et al. 

1991; Estañ et al. 2009; Albert et al. 2016; Xu et al. 2017). We quantified the level of GxE and the 

subjacent phenotypic plasticity in a multi-environment trial – involving induced water-deficit, salinity 

and heat stresses – in a highly recombinant tomato population. An important genetic variability was 

observed for the plasticity traits related to yield, fruit quality, plant growth and phenology 

(Supplemental Figure 6). This highlights an important characteristic of the MAGIC population as a 

valuable resource for tomato breeding in dynamic changing environments. Tomato wild species have 

been also characterized as an important reservoir for abiotic stress tolerance genes (Foolad, 2007). 

However, their effective use in breeding programs could be difficult due to undesirable linkage drag 

notably for fruit quality. Unlikely, the MAGIC population characterized here is an intra-specific 

population with high diversity of fruit quality component which provides a great advantage as a 

breeding resource compared to wild populations.  

Several statistical models are available to explore, describe and predict GxE in plants (Yan et al. 2007; 

Malosetti et al. 2013). Factorial regression model is among the most attractive as it allows to 

describe the observed GxE regarding relevant environmental information. We used the factorial 

regression model with different environmental covariates that are readily accessible from year to 

year, which allowed us to predict a variable proportion of the observed GxE (Supplemental Figure 4). 

Besides, each MAGIC line was characterized for its sensitivity to the growing climatic conditions 

(Supplemental Data); opening avenues to effectively select interesting genotypes for further 

evaluation in breeding programs targeting stressful environments. 

Interestingly we found significant correlation between the genotypic sensitivities to the different 

environmental covariates and slopes from the Finlay-Wilkinson regression model (Supplemental 

Figure 10). This emphasizes the adequacy of the selected environmental covariates to explain 

differences observed in the average performance of the genotypes across environments. Conversely, 

slope and VAR showed less significant correlations, although they were both correlated to mean 

phenotypes in the same direction – except for SSC (Figure 2). This may be induced by distinct genetic 

regulation of these two plasticity parameters which reflect different types of agronomic stability (Lin 
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et al. 1986). Indeed, we identified 7 and 14 plasticity QTLs that were specific to VAR and slope, 

respectively (Supplemental Table 4). The correlation pattern of the different plasticity parameters 

evokes a complex regulation of plasticity which besides is seemingly trait-specific.  

Significant correlation at phenotypic level might result from the action of pleiotropic genes. The 

Figure 2 displays the correlations between mean and plasticity which were significant for almost 

every trait at variable degree. These correlations were reflected at the genetic level by 22 QTLs 

overlapping between mean and plasticity parameters, representing about 21% of all identified QTLs. 

A high proportion of the QTLs were mean or plasticity specific (Supplemental Figure 11) hence 

suggesting the action of both common and distinct genetic loci in the control of mean and plasticity 

variation in tomato.  

Genomic location of the MAGIC-MET QTLs 

The availability of substantial genomic information in tomato enabled the identification of different 

genomic regions (Sweeps) which were strongly selected during the domestication and improvement 

process (Lin et al. 2014; Zhu et al. 2018). When projected on the physical positions of the tomato 

reference genome (SL2.50 version), most of the plasticity QTLs we identified were located within the 

Sweep regions defined by Zhu et al. (2018). It therefore suggests that plasticity might have been 

selected together with other interesting agronomic traits during tomato domestication and 

improvement. For instance, this is corroborated by the positive correlation between slope (from the 

Finlay-Wilkinson regression model) and mean fruit weight variation. Indeed, genotypes with higher 

fw slope are characterized by good adaptability in high quality environments and will likely be 

intended to selection. Co-selection of allelic variants leading to higher performance in optimal 

condition together with plasticity alleles is a realistic assumption that would explain the significant 

correlation that we observed between mean and plasticity. In rice for instance, GhD7 has been 

described as a key high-yield gene simultaneously involved in the regulation of plasticity of panicle 

and tiller branching and involved in abiotic stress response (Herath 2019). This example highlights a 

gene carrying different allelic variants affecting together plasticity and mean phenotypes. Further 

investigations are needed to assess how domestication and breeding have affected plasticity in 

tomato and other crop species. 

An important genomic region involved in the genetic regulation of plasticity for six different traits 

was identified in chromosome 11 (Supplemental Figure 9). This region is obviously a regulatory hub 

carrying interesting plasticity genes. It remains to determine if the co-localization of the different 

plasticity QTLs in this region is due to the action of a pleiotropic gene or different linked genes. 

Nevertheless, the chromosome 11 region highlighted here is an interesting target for breeding as 
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well as for understanding the functional mechanisms of plasticity genes. 

Allelic-sensitivity vs Gene-regulatory model  

Sixty-three plasticity QTLs were identified among which 22 (35%) were identified as well with mean 

phenotypes and 65% were specific to plasticity. Via et al. (1995) proposed two genetic models – the 

allelic-sensitivity and gene-regulatory models –among the mechanisms involved in the genetic 

control of phenotypic plasticity. These two models are distinguishable through QTL analysis (Ungerer 

et al., 2003) with the expectation that allelic-sensitivity model will lead to co-localization of mean and 

plasticity QTLs, while a distinct location of QTLs affecting mean and plasticity corresponds to the 

gene-regulatory model (Kusmec et al., 2017).  Regarding our results, both models are suspected to 

regulate tomato plasticity, even though the gene-regulatory model is predominant with 65% of the 

plasticity QTLs that did not co-localize with mean QTLs for the same trait. In maize, using a larger 

number of environments and traits, Kusmec et al. (2017) found similar results and even a higher rate 

of distinct locations of plasticity and mean QTLs. Studying plasticity as a trait per se is therefore of a 

major interest since breeding in both direction (considering the mean phenotype and its plasticity) is 

achievable. Through transcriptomic analyses, Albert et al. (2018) observed that genotype-by-water 

deficit interaction was mostly associated to trans-acting genes which we can be assimilated to the 

gene-regulatory model in agreement with our results.   

 Although the distinct location of plasticity and mean QTLs could be confidently assigned to the 

action of genes in interaction, the co-localization of mean and plasticity QTLs is not necessarily a case 

of allelic-sensitivity regulation, especially if the QTL is in a large region. Indeed, the allelic-sensitivity 

model assumes that a constitutive gene is directly sensitive to the environment regulating its 

expression across different environmental conditions, inducing hence phenotypic plasticity. This is a 

very strong hypothesis regarding the QTLs since the overlapping region between mean and plasticity 

could carry different causal variants in strong linkage disequilibrium affecting for each either mean or 

plasticity. Thus, co-locating mean and plasticity QTLs should be not automatically imputed to the 

allelic-sensitivity model. We found a total of 22 constitutive QTLs between mean and plasticity for 

the ten measured traits (Supplemental Table 4). Considering the estimated QTL effects, the variation 

patterns of the eight parental allelic classes were compared between mean and PP QTL of the same 

trait. Only ten QTL showed consistent allelic effects (Spearman correlation significant at 0.05 

threshold level) strengthening the hypothesis of the allelic-sensitivity model for these QTLs (Figure 

6). Further studies should help to elucidate and validate the candidate plasticity genes and to clarify 

their functional mechanism.   
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Figure 6: Correlation of the estimated allelic effect for consistent QTLs between mean and plasticity phenotypes.  

 

Complementary methods to identify QTLs sensitive to environmental variation 

Different approaches have been proposed in the literature to dissect GxE into its genetic components 

(Malosetti et al. 2013; El-Soda et al. 2014). We used a mixed linear model with a random genetic 

effect accounting for the correlation structure of the MAGIC-MET design to identify the QEI. 

Extending the use of mixed linear models to MAGIC populations in the framework of MET analysis 

has been very rarely applied in crops. To our knowledge, only Verbyla et al., (2014) applied such 

approach in wheat and identified QEI for flowering time. Our model was adapted from Giraud et al. 

(2017) and was adequate to account for the complex mating design of the MAGIC population. 

Indeed, it allows estimating the QTL effect for each parental allelic class and for each environment at 

every SNP marker. Overall, 28 QEI were detected showing significant marker x environment 

interaction for ten traits. 

Methods using plasticity as a trait per se are also attractive to identify environmentally sensitive 

QTLs. This strategy was applied in maize, sunflower, barley and soybean to detect the loci governing 

GxE (Lacaze et al. 2009; Gage et al. 2017; Mangin et al. 2017; Kusmec et al. 2017; Xavier et al. 2018). 

With different plasticity parameters, we identified a total of 63 plasticity QTLs and only 24% were 

also identified with the QEI models. Thus both methods, using plasticity or mixed linear models, are 
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complementary approaches to study the genetic component of GxE.  

Candidate genes 

Multi-parental populations are powerful for QTL mapping studies (Huang et al. 2012; Kover et al. 

2009) and besides are interesting for fine mapping and candidate gene selection. Barrero et al. 

(2015) for instance considered the variation of the QTL effect estimated for the different parental 

lines, combined with transcriptomic analyses to efficiently identify candidate genes. Similarly, 

Septiani et al. (2019) narrowed candidate genes for Fusarium resistance in a maize MAGIC population 

using allelic effect of the MAGIC parents. 

A number of candidate genes were proposed in our study affecting both tomato mean and plasticity 

variation. These candidate genes were selected based on the parental allelic effect and represent 

valuable targets for future studies attempting to characterize the molecular mechanisms underlying 

plasticity genes in tomato.  Indeed, relevant candidate genes were proposed for flowering time 

plasticity including the Solyc11g071250 corresponding to an “EMBYO FLOWERING 1-like protein” 

(EMF1). The implication of EMF1 in flowering time has been observed in Arabidopsis by  Aubert et al., 

(2001) who highlighted an indirect effect of EMF1 on flowering time and inflorescence. More 

recently, Luo et al., (2018) outlined the role of EMF1 interacting with CONSTANS proteins in a 

complex pathway to regulate the expression of flowering time genes in Arabidopsis. Solyc11g070100 

which is annotated as “Early flowering protein” (ELF) gene is also an interesting candidate for 

flowering time regulation. It was observed across species that a consistent expression of ELF3 can 

extend the rapid transition to flowering (Huang et al., 2017). ELF3 loss of function is therefore 

expected to trigger early flowering according to these authors. Interestingly, Solyc11g070100 was 

affected by 69 SNPs and 14 INDELs polymorphisms, among which only one SNP showed 

polymorphism variation in line with the estimated allelic effect for the eight parental lines at this 

QTL. This SNP was localized at the position 54,632,225 bp in chromosome 11, upstream the gene 

Solyc11g070100. The parent LA1420 carried the reference allele at this SNP while the remaining 

parents held the alternative allele. Considering the estimated allelic effects at this QTL, we could 

assume that the LA1420 allele variant might induce an early flowering phenotype comparatively to 

the other parents.  

Conclusion 

We aimed to dissect the genetic architecture of tomato response to different environments involving 

control and stress growing conditions. The MAGIC population demonstrated a large genetic 

variability in response to abiotic stresses which was reflected by the identification of 63 plasticity 
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QTLs. This was achieved through the use of different plasticity parameter highlighting the importance 

of plasticity quantification for deciphering its genetic basis. The plasticity QTLs were in majority (65% 

of the plasticity QTLs) located in distinct regions than the QTLs detected for the mean phenotypes, 

suggesting a specific genetic control of mean trait variation and plasticity at some extent. Using 

plasticity as a trait per se in mapping analysis turned out to be a good method for identifying genetic 

regions underlying GxE. Almost all the QEI were also identified for at least one of the plasticity 

parameters.  

Overall, this study presents the MAGIC population as a powerful resource for tomato breeding under 

abiotic stress conditions, as well as for understanding the genetic mechanisms regulating tomato 

response to environmental variation.  
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Supplementary Materials: 

The supplemental figures and tables of this chapter are presented in Appendix 6. 

NB: Supplemental tables 6 and 7 and the supplemental Data can be accessed online:  

Supplemental Figure 1: Selection of 7 environmental covariates for the factorial regression model. 

Three periods – each of 20 days – were defined from planting to the end of flowering on the 4th truss. 

The period from 20 to 60 days after planting (DAP) covered vegetative growth and flowering on the 

4th truss and the measured climatic variables averaged during this period. The different 

environmental covariates are described 

Supplemental Figure 2: Boxplot distribution of the traits across environments. The colors of the 

boxplot are according to the groups defined by clustering of the environments 

Supplemental Figure 3: Heritability in the MAGIC-MET design. For each trait, heritability was 

computed at every environment and plotted with heritability of the full design  OP (in green) 

Supplemental Figure 4: Proportion of the sum of square attributed to the different factors in the 

factorial regression model. For each trait, the orange and green stacked bars represent the 

proportion of the SSq explained by the Genotype and Environment factors in model (4). The 

remaining colors represent the effect part of the GxE that could be explained by the different 

environmental covariates. Only significant covariates were highlighted within the bars. 

Supplemental Figure 5: Reaction norms from the Finlay-Wilkinson regression model (A) and the 

factorial regression model (B). In figure 5 A, the blue and orange lines represent the positive and 

negative reaction norms. In Figure 5 B, the green and purple lines represent the positive and negative 

reaction norms 

Supplemental Figure 6: Histogram distribution of mean and all plasticity parameters for each trait 

Supplemental Figure 7: Physical positions of the MAGIC-MET QTLs for diam, leaf, height, fset, nflw, 

nfr, firm and SSC. The outer circle with gray font represents the known and cloned QTL/gene for each 

trait. The following circle with black bars represents the different domestication/improvement sweep 

regions identified in (Zhu et al. 2018). The other circles plot the CI of QTLs identified on mean (green), 

plasticity (orange) or with QEI analysis (purple) 

Supplemental Figure 8: Number of the MAGIC-MET QTLs identified within or outside the 

domesticated/improved regions. Only the MAGIC-MET QTLs within short CI (lower than 2Mbp) were 

considered. The response specific category included QEI and plasticity specific QTLs; the common 

category correspond to QTLs that were commonly identified on mean, plasticity and QEI or at least 

two of them 

Supplemental Figure 9: Zoom plot on Chromosome 11 region from 53 -57 Mbp. Each color 

represents a different QTL located in this region and the top black bars are the Sweep regions SW254 

and SW255 

Supplemental Figure 10: Correlation between the genotypic sensitivities to environmental covariates 

from the factorial regression model and slopes from the Finlay-Wilkinson regression model 
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Supplemental Figure 11: Venn diagram of the number of QTL specific or commonly detected with 

mean, PP or using the QEI models.  

 

 

 

Supplemental Table 1: Description of the MAGIC-MET design with the 12 environments and their 

respective names 

Supplemental Table 2: Description of the phenotypic traits evaluated in the MAGIC-MET design 

Supplemental Table 3: Estimates of the variance components from model (2) 

Supplemental Table 4: Results of QTL and QEI analysis in the MAGIC-MET design 

Supplemental Table 5: Genetic location of the MAGIC-MET QTLs overlapping with the Sweep 

(domestication/improvement) regions. 

Supplemental Table 6: QTLs identified for fruit size, fruit width and fruit length in the MAGIC 

population 

Supplemental Table 7: Selected candidate genes for all the mean and plasticity QTLs located within 

2Mbp CI region 
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Chapter 7 

 

General Discussion  

 

Chapter 7 presents a global discussion of the results described in the previous chapters. This chapter 

presents on overall perspective for deciphering the complexity of the molecular mechanisms 

underlying plant response to environment. Prospects for breeding tomato under abiotic stresses 

scenario are suggested. 
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Understanding the molecular basis of plant response to environmental stresses is a main goal for 

breeding in the 21
st

 century due to climate change.  Indeed, the recent report of the 

Intergovernmental Panel on Climate Change (IPPC) emphasizes the need of developing strategies for 

adapting agriculture and cropping systems to a global increase in temperatures (Hoegh-Guldberg et 

al., 2019). Genetics and breeding can contribute achieving more sustainable agriculture through the 

development of climate-smart crops that would show high resilience to environmental variation and 

adequate yield and nutritional quality of crops intended for human consumption. It is in this context 

that researchers have deployed so much effort to understand and decipher the genetic basis of plant 

adaptation to environment for many cultivated crops including tomato. Tomato is among the major 

consumed vegetables with a high nutritional value (Rothan et al., 2019). It is available worldwide in 

many different environments. However, yield and quality in tomato are importantly affected by 

growing conditions notably the irrigation systems and ambient temperatures in either field or 

greenhouse (Mitchell et al., 1991; Rainwater et al., 1996). We thus conducted this project to get 

more insight into tomato behavior under water deficit (WD), high temperature (HT) and salinity 

stress (SS) conditions and its underlying genetic component. The major observation was that tomato 

is negatively affected by all these stresses regarding yield component traits. However, the reduction 

in yield is balanced by increasing fruit quality component with higher soluble solid content (SSC) 

notably, under WD and SS conditions (see Chap III). High temperature importantly affected 

reproductive and growth traits compared to the other stresses (Figure 1). These changes observed in 

different phenotypic traits were reflected by complex genetic regulation with a polygenic control 

(see chapter 3, 5 and 6). The chapter 4 also highlighted an important impact of WD on transcriptome 

variation which besides strongly interact with the genetic background. Bringing these results all 

together opens new perspectives for future studies attempting to decipher more sharply the 

molecular mechanisms of phenotypic plasticity in response to abiotic stresses. This also raises 

questions about the methodological approach to detect the genomic regions associated with plant 

response to environmental variations. Finally, breeding strategies for developing environmentally 

adapted crop will be discussed.  

1. Statistical modelling for the dissection of loci controlling GxE in MET designs 

This study was designed to identify tomato genetic loci involved in GxE in the context of abiotic 

stresses. A key step forward in the detection of such loci relies on the statistical models applied. El-

Soda et al., (2014) presented a number of models available in the literature that could be used in the 

context of multi-environment trials (MET). The early studies investigating interactive QTL (QEI) just 

compared QTLs detected in each environment separately (Paterson et al., 1991). Single environment 

QTL analyses were conducted for every trait and environment but these results were not fully 
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presented in the earlier chapters. A total of 240 QTLs were detected this way for 18 traits in 12 

environments (Appendix 7). The stress response QTLs presented in chapter III and V were detected 

with univariate approaches based on the calculation of plasticity parameters that were later 

considered as input phenotypes through classical QTL analysis methods. In chapter VI, multivariate 

mixed models which accounted for the correlation structure between environments were used and 

tested QTL main effects and QEI using the genotype means per environment data. QEI detection in 

the MAGIC populations has been scarcely conducted in plants through linear mixed models due to 

the complex mating design. Verbyla et al., (2014) presented a multivariate approach for multi-

environment or multi-trait QTL analysis in MAGIC populations implemented in the R-package 

mpwgaim. This method accounts for probabilities of inheriting founder alleles and is based in a 

forward QTL selection where the effects of significant QTLs are modelled as random effects (contrary 

to our model) in the course of the cofactors selection. The univariate and multivariate models are 

complementary methods to characterize the genetics of GxE. Nevertheless, considering plasticity as a 

trait per se identified some regions involved in the occurrence of GxE that were not detected using 

only the multivariate approach. 

  

Figure 1: Impact of water deficit (WD) high temperature (HT) and salinity stress (SS) at the phenotypic level. A) The 

proportion of variance attributed to genotype, stress condition and their interaction on different traits commonly measured 

across stress trials. B) Relative stress impact (RSI) induced by stresses on traits related to fruit quality, plant growth and 

phenology in the MAGIC population. 
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Environmental characterization was performed in our study by using the available climatic variables 

that were daily recorded within greenhouses.  Although these climactic covariates significantly 

explained a proportion of the GxE (see Chap VI), they do not fully represent all the environment 

features. Indeed, most of the studied environmental covariates were associated to temperature 

parameters measured in the ambient greenhouse environments. The inclusion of other parameters 

from the substrate conditions (notably the electro-conductivity and soil humidity) would have 

allowed better characterizing the environments and accounting for all stress-related climatic 

covariates. We used averaged values of the environmental covariates through the period covering 

flowering time (on the 4
th

 truss) of the MAGIC population. However, environmental covariates could 

also be derived by defining different stress thresholds and clustering the environments according to 

stress limiting factors as presented by (Bouffier et al., 2015). 

We identified four different groups through the clustering analysis of the MAGIC-MET design (see 

Chap VI). These different groups may be considered as representative of an environmental scenario 

and used directly in the GxE analysis. Prediction of the genotype performances might be possible for 

new environments that would cluster in one of the defined groups.  

2. Genetic control of phenotypic plasticity 

We first recall the definition of phenotypic plasticity (PP) which is considered as the ability of an 

organism to express different phenotypes when exposed to new environmental conditions 

(Bradshaw, 1965). It obviously play an important role in plant evolution; however distinction 

between adaptive and non-adaptive PP have been emphasized (Ghalambor et al., 2007). In the 

agronomic context, plasticity may be undesired as it causes non-stable agronomic performance when 

environmental variations are important. However, understanding its genetic basis is an important 

step for developing new cultivars adapted to specific conditions, especially stressful environments.  

We emphasized an important genetic variability for plasticity response under WD and SS in the 

MAGIC population with at least 15 plasticity QTLs (see chapter 3 Diouf et al., (2018)). The MAGIC 

lines also showed important variability for response to HT stress for which 16 PP QTLs were identified 

(see Chap V). Six traits (flowering time, leaf length, fruit firmness, SSC, fruit weight and number of 

fruits) were commonly measured in all the WD, SS and HT trials. Among the 20 PP QTLs detected for 

these traits no PP QTL was common to the different trials highlighting the presence of stress-specific 

regions involved in the MAGIC population in response to WD, SS and HT (Figure 2). The chapter VI 

intended to detect tomato genomic regions involved in a general response of environmental 

variation including controlled and stressed conditions. This analysis revealed 63 plasticity QTLs for a 

total of 10 phenotypic traits. Considering the six traits commonly measured in WD, SS and HT stress 
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conditions, a total of 51 plasticity QTLs were detected and a majority of these (82%) were specific 

(Figure 2). Thus we assume that the genetic control of plasticity is highly dependent on the range of 

the environments (and their characteristics) considered in the analysis and on the measured 

phenotypic traits. These results altogether revealed that tomato plasticity in response to abiotic 

stresses has a complex genetic control.  

 

 

Figure 2: Summary of QTL detection for plasticity traits in the single stress analysis (Water deficit, High temperature and 

Salinity stress) and in the combined stress analysis (MET design). Numbers in the circles and the triangle indicate the 

number of plasticity QTLs detected in the single stress analyses and the combined stress analysis, respectively. The double 

arrows show the number of plasticity QTLs commonly detect between experiments. 

2.1. Towards systems biology approach to better characterize genomic control of plasticity 

As for any complex trait, the final output of plant responses to the environment is not expected to be 

clearly and reliably dissected through a single data-type analysis approach. Indeed, complex traits 

result from the interaction of regulatory mechanisms at different levels as illustrated in Figure 3, 

adapted from Ritchie et al., (2015). We highlighted in the introduction that morphological changes 

induced by abiotic stress responses generally come from regulation at the physiological, metabolic, 

transcriptomic and even post-translational levels. These different regulations might importantly 

affect plasticity response; hence it is necessary to combine multiple data type for a comprehensive 

understanding of molecular mechanisms underlying plasticity. Systems biology aims to identify 

regulatory hubs involved in complex networks regulating plant responses, through the integration of 
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different high throughput omics data such as transcriptomes, metabolomes and proteomes. Such 

approaches have been successfully used to identify and validate key genes regulating stress tolerance 

in plants (Cramer et al., 2011). 

 

Figure 3: Biological systems multi-omics from the genome (single-nucleotide polymorphism, copy number variation, 

genomic rearrangement such as translocation), epigenome (DNA methylation, histone modification, chromatin 

accessibility, micro RNA (miRNA), transcription factor (TF) binding), transcriptome (gene expression and alternative 

splicing), proteome and metabolome to the phenome. Bold arrows indicate the flow of genetic information from the 

genome level to the metabolome level and, ultimately, to the phenome level. The red crosses indicate inactivation of 

transcription or translation and the green arrows the potential implication of environment at the different levels from 

genome to phenome. Adapted from (Ritchie et al., 2015). 

1.1.1. Combining plasticity QTL information and gene expression data 

Transcriptomic data are now routinely produced through microarray and RNA-seq technologies, 

enhancing our global understanding of plant transcriptome variation. Exploring gene expression 

variation patterns of the parental lines within QTL interval regions for a given mapping population is 

a practical approach to shorten the candidate gene list (Wayne and McIntyre, 2002; Lin et al., 2019). 

However, gene expression regulation have been widely investigated across species revealing a high 

variability according to genotypes, organs cells and tissues and the stages of RNA sampling (Van Veen 

et al., 2016; Sarazin et al., 2017). Thus the efficiency of such approach highly relies on the relevance 

of the gene expression data in relation to the measured phenotype for which QTLs were detected. 

The MAGIC populations offer besides higher resolution compared to bi-parental populations for 

narrowing candidate genes. For instance, candidate genes were selected based on the expression 
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level of genes within the interval region of QTLs for fusarium resistance (Septiani et al., 2019) and 

fiber length (Naoumkina et al., 2019) combined with polymorphism variations in maize and cotton 

MAGIC parental lines, respectively. A similar strategy was used in chapter IV where differentially 

expressed genes (DEG) under WD were selected within the WD and SS plasticity QTLs (Chap III, Diouf 

et al., (2018)) and candidate genes proposed based on the MAGIC parental haplotype status. 

1.1.2. Expression QTL (eQTL) analysis 

Another popular strategy combining QTL mapping and gene expression analysis is the expression QTL 

mapping approach (Waters et al., 2017; Albert et al., 2018). It relies mainly in the identification of 

genomic loci controlling variation in gene expression level. Early studies investigating eQTL in plants 

were conducted on Arabidopsis (Lall et al., 2004; Keurentjes et al., 2007). A key feature in eQTL 

analyses is that the detected regions could be classified as cis or trans regulatory category furthering 

our understanding of the regulatory mechanisms underlying gene expression control. Cis and trans-

eQTL are considered when the regulatory alleles are expected to affect the transcript level of the 

gene itself or other genes located in different genomic position, respectively. This classification can 

be mirrored to that of plasticity QTLs generally categorized as being under the “allele-sensitivity” or 

“gene-regulatory” genetic model. These classifications are both based on results from statistical 

modelling and cis-eQTL and allele-sensitivity QTL should be interpreted with the utmost cautious as 

their definition relies upon threshold used to define confidence interval regions of the e-QTL/QTL.  

Analyses of eQTL are usually conducted in a subset of genes selected upon the goals of the study. We 

believe that the genes identified within the interval regions of plasticity QTLs throughout this 

manuscript are good candidates for first screening and could be selected for further e-QTL mapping 

study. 

1.1.3. Metabolite QTL (mQTL)  

The biochemical pathways involved in plant response to abiotic stresses are highly impacted by 

metabolic regulation upon exposure to stress conditions. It is therefore rational to investigate the 

genomic regions associated to such changes, which is possible by considering metabolite level as a 

quantitative trait. The genetic basis of metabolite variation has been studied in plants through 

linkage and association analyses in order to detect loci involved in metabolic pathways regulation 

(Keurentjes et al., 2006; Luo, 2015). The physiological status of plants under abiotic stress conditions 

might be reflected by the metabolites accumulated in different tissues. The characterization of mQTL 

against specific stress conditions is therefore a straightforward method to detect mQTL affected by 

stress conditions. For instance Hill et al., (2013) conducted a parallel QTL analysis for 29 agronomic 

and 205 metabolic traits under WD conditions in wheat and identified several mQTLs coinciding with 
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QTLs for agronomic traits they interpreted as direct or indirect effects of metabolite flux on 

agronomic traits. Measuring metabolite accumulation in plants exposed to different environmental 

conditions could thus help to reliably identify the mQTL associated to GxE. 

Overall we believe that deciphering the complexity of plasticity molecular network is feasible and the 

“generalizing genetical genomics” (GGG) approach proposed by Li et al., (2008) is probably the most 

effective method to this end. It relies mainly in the identification of QTLs controlling transcript 

(eQTL), protein (pQTL) and metabolite (mQTL) variations in different environmental conditions. The 

major limit for such studies is the size of the experiments. 

2.2. Fine mapping and functional validation of plasticity candidate genes 

Fine mapping the identified plasticity QTLs is also possible using classical genetic approaches. 

Heterogeneous inbreed families (HIF) have been used for the development of NILs that contrast at 

specific QTLs for delineating more precisely the region of a QTL (Tuinstra et al., 1997). It requires 

however the identification of RILs with heterozygous status in the region of the selected QTL. 

Besides, for traits showing many QTLs, implementing such approach might be difficult and time 

consuming. Thus, prior screening for selecting the appropriate plasticity QTLs that might be used for 

fine mapping and candidate gene identification through the HIF approach is crucial. In chapter 6, we 

identified an interesting region in chromosome 11 (52 – 55 Mbp) which was significantly associated 

to the plasticity regulation of several phenotypic traits. Defining HIF based on residual heterozygosity 

in the MAGIC population should be possible. This region probably represents a hub of stress 

response genes affecting different agronomic traits. It may also hold a key master regulator gene 

importantly acting for tomato response to the environment. Screening the haplotype status of the 

MAGIC RILs in this region should help to identify interesting lines for developing different HIFs that 

might be precisely phenotyped for several traits under WD, SS and HT conditions then submitted to 

transcriptome and metabolome evaluation. This could be easily coupled with dense genotyping of 

this region to better characterize its involvement in multiple stress/trait responses. 

Fine mapping and the different processes used throughout our study to narrow the candidate genes 

in the QTL regions are based on statistical analyses. Functional validation is the final step to test for 

the effects of a given candidate gene. It allows characterizing the function of a gene notably through 

genetic transformation and different biotechnological tools are available to this end. In tomato, 

successful genetic transformation have been achieved many years ago and Fischhoff et al., (1987) 

documented among the first transgenic tomato plants expressing resistance against insects. Indeed, 

the principle of genetic transformation lies on targeting and modifying the sequence of a given gene 

and then studies its effect at wide scale. New tools such as Zinc-finger nucleases (ZFNs) and 
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transcription activator-like effector nucleases (TALENs) have been then used for tomato gene 

silencing. However, the CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats) 

technology revealed higher efficiency in several organisms for gene editing (Adli, 2018). CRISPR/Cas9 

was first proposed in tomato few years ago (Brooks et al., 2014) and rapidly showed a large potential 

and wide application for functional gene characterization and applied breeding. CRISPR/Cas9 system 

can efficiently introduce knockout mutation and is therefore a useful method to analyze candidate 

genes from forward genetics or natural mutation. It was successfully applied in tomato to 

characterize different genes related to fruit ripening (Ito et al., 2015; Lang et al., 2017; R. Li et al., 

2018), biotic resistance (Nekrasov et al., 2017), plant architecture traits (Rodríguez-Leal et al., 2017) 

and drought tolerance (Wang et al., 2017). Advances in the CRISPR/Cas9 technology have been 

achieved in tomato with increased probability of gene insertion and more precise mutation targeting 

single bases (Danilo et al., 2018, 2019; Veillet et al., 2019). These technologies are now available 

tools and are ready to use for functional validation of the QTL candidate genes. 

3. Breeding in the context of GxE  

We identified a large number of plasticity and interactive QTLs (QEI) both affecting the observed GxE 

interaction in the MAGIC population. From the identification of such QTLs and their estimated 

effects, different strategies are applicable to develop environmentally-adapted cultivars.  

3.1. Multi-parent advanced generation recurrent selection (MAGReS) 

The MAGRes strategy was first theorized by Huang et al., (2015) who proposed breeding new 

varieties based on the segregating QTLs in MAGIC populations. Basically, this strategy lies in 

identifying and combining the best alleles based on the parental haplotype QTL effects for the trait of 

interest. Mean and plasticity QTLs should then be combined, and the best allele selection should 

account for the significance of the QTL (LOD score, PVE), the direction of the allelic effect and the 

QTL size. Supporting tools (OptiMAS: Valente et al., (2014)) have been developed  to help 

accelerating the identification of the favorable alleles in the multi-allelic context of MAGIC 

populations. This helpful tool is conceived to characterize the optimal crossing design for best allele 

combination.  

3.2. Targeted-environment breeding strategy 

Environment characterization was carried in chapter VI and the 12 environments classified according 

to the climatic and growing conditions. Breeding strategies for specific group of environments is a 

possible scenario. A total of 28 QEI were detected in Chapter VI and allelic effects estimated for each 

parental haplotype in each environment for every QEI positions. Thus, plotting the QTL effects 

against the environments classified according to the different groups might help identifying the 
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parental haplotypes with the best alleles-by-environment combination (Figure 4). Classical marker 

assisted selection (MAS) with different strategies according to the targeted group of environments 

might then be conducted.  

 

Figure 4: Linear relationship between parental allelic effect and the environments for all the detected fruit weight QEI. 

Environments are ordered according the groups defined in hierarchical classification (see chapter 6). The estimated allelic 

effects are retrieved from the QEI model for which an allelic effect was estimated for each parent in each environment for 

every marker showing significant interaction effect. 

3.3. Genomic prediction combined with eco-physiological characterization  

Genomic prediction is a powerful tool that has been widely investigated in plants for breeding 

purposes this last decade. However, its performance might be hampered by environmental variation 

and statistical models to improve genomic prediction in the context of GxE have been proposed 

(Crossa et al., 2017). Accurate prediction of GxE for flowering time in Sorghum was documented by Li 

et al., (2018) who used phenotypic plasticity as a phenotypic trait. The high prediction power was 

achieved partly due to a good environmental characterization using photothermal time within 

appropriate phenological stages. Maize yield was also adequately predicted under GxE in a wide 

range of environmental scenarios by Millet et al., (2019). These authors characterized the 

environments using genotype-specific indices computed from biological information from the field 

trials. These studies highlighted opportunities to reach precise prediction of phenotypic plasticity in 

large panels evaluated in different environments. In our study, environments were characterized on 
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the basis of climatic variables measured in the greenhouses and the factorial regression model (see 

chapter 6) applied in a subset of the MAGIC population (genotypes with more than 2/3 of missing 

values across environments were excluded from the analysis). Genomic prediction in our MAGIC-MET 

design is achievable and should open the door for genomic selection of plasticity response to abiotic 

stresses in tomato.  

An attractive method combining quantitative genetics and eco-physiological modelling is to conduct 

QTL/association analysis by using model parameters as input phenotypes. Indeed, model parameters 

can be viewed as mathematical descriptions of complex traits. It intended to predict a trait variation 

in a given environmental context. QTLs for model parameters can then be investigated and their 

positions mirrored to QTLs for agronomic traits. It was proposed in tomato for predicting yield and 

fruit quality under drought condition by the use of several parameters influencing physiological 

processes (Constantinescu et al., 2016). However, it necessitates to appropriately define plant 

models for specific processes. For tomato, plant models were defined for carbon assimilation and 

allocation among sink sources, water transfer and accumulation, light absorption and photosynthesis 

and response to temperature (Heuvelink and Bertin, 1994; Boote et al., 2012; Fanwoua et al., 2013; 

Rybak et al., 2017). 

3.4. Implication of phenotypic plasticity in plant breeding  

Phenotypic plasticity has been described as an important driver of plant evolution when it triggers 

adaptive responses in new environments (Ghalambor et al., 2007). Adaptive plasticity indeed refers 

to environmental responses allowing tending towards the optimal phenotype that will be favored for 

selection. In the agricultural context, cultivated crops are usually exposed to the optimal conditions 

and the genotypes capable of expressing the best performance will be favored for selection. Thus, 

one might presumably imagine that genotypes with high adaptive plasticity regarding the cultural 

conditions have been selected for years for breeding purposes in crops. Conversely, the more stable 

genotypes unable of taking advantage of the optimal growing conditions might have been less 

selected. We discussed in chapter 6 that co-selection of allelic variants leading to higher performance 

in optimal condition together with plasticity alleles is a reasonable assumption that would explain the 

significant correlation that we observed between mean and plasticity, especially for fruit weight 

which has been a major driver of domestication and breeding in tomato. Gage et al., (2017) 

evidenced divergent selection that was based on maize plasticity for yield component traits in 

temperate regions. Alleles governing plasticity of specific traits (notably high performance) are then 

amenable to operate directional selection according to the growing conditions. This example 

demonstrates that high crop performance under certain conditions (that could be a specific abiotic 

stress) can be achieved through directional selection towards better performance in a constant 
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evaluation of diverse accessions in that specific condition. Mimicking the predicted climate 

conditions that are expected over the 50 coming years in greenhouses could be a good strategy to 

select for superior future climate-resilient lines. Long-term directional selection within optimal 

conditions retained different combinations of high performance alleles in elite varieties and have 

been probably a key driver of genetic progress. Voss-Fels et al., (2019) showed that wheat lines 

carrying such genetic configuration also perform better under low agrochemical input and stress 

conditions. Thus, selection under optimal conditions does not seem to be unfavorable for adaptation 

to limited conditions. However, if directional selection was operated at the same scale under optimal 

and stress conditions, genotypes carrying different allele’s configuration might arise under low input 

conditions and outperform the elite varieties. At the end, what is important to remember is that 

there is not a single variety outperforming all others in every environmental condition. Breeding 

strategies should always consider the targeted trait and environment and take advantage of what is 

documented about that specific trait x environment interaction. For several crops, the genetic loci 

involved in the regulation of GxE or plasticity have been dissected and constitute now valuable 

species specific resources on which variety improvement in changing environments should be based.  

4. Conclusion  

Globally, the present study explored tomato variability under different environmental conditions and 

highlighted a considerable plasticity of the crop, which perhaps explain its wide cultivation in very 

different geographical regions. We used a MAGIC population carrying an important intraspecific 

diversity of the cultivated tomato that revealed significant GxE. This emphasizes that breeding for 

environmentally adapted tomato is possible without reclaiming the wild reservoir. Tomato plasticity 

has been described throughout this document as being trait specific and heavily depending on the 

range of environmental conditions considered. However, the genetic architecture of tomato 

plasticity is very complex and deserves to be more precisely dissected at the molecular level. Several 

candidate genes that might be involved in plasticity regulation have been proposed. Overall, upon 

the results presented in the different chapters of this document, phenotypic plasticity may now be 

considered as a trait per se for which selection can be conducted. We identified common and distinct 

loci controlling mean phenotypes and plasticity in tomato. The work presented here clearly depicted 

potential avenues for the molecular characterization of plasticity genes in tomato and for the 

integration of phenotypic plasticity in breeding for environment resilient cultivars.  
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Annexe 1 : Résumé substantiel de la thèse 

Introduction 

Les plantes sont des organismes immobiles, fréquemment soumis à d’importantes fluctuations 

environnementales dans leurs habitats. La survie à long terme de ces organismes nécessite des 

mécanismes adaptatifs bien élaborés pour limiter les effets néfastes induits par les variations 

environnementales tout au long de leur cycle de vie. On parle généralement de stress abiotique 

lorsque les variations environnementales entraînent des perturbations importantes du métabolisme 

et de l'homéostasie des plantes (Munns and Gilliham, 2015). Lorsqu'elles sont exposées à un stress 

abiotique, les plantes activent des mécanismes de régulation à différent niveaux d’organisation 

cellulaire (régulations physiologique, métabolique, biochimique et moléculaire), résultant à des 

changements morphologiques visibles. La baisse du rendement est notamment un caractère 

symptomatique des conséquences des stress abiotique chez les espèces cultivés. 

Comprendre les mécanismes qui sous-tendent la réponse des plantes aux stress abiotiques revêt donc 

une importance capitale pour la sélection et l’amélioration variétale en conditions de cultures 

constamment variables ; d’autant plus que risques potentiels d’importantes pertes de rendement des 

cultures principales sont attendues avec les prédictions récentes sur une augmentation des 

températures de 1,5 à 2 ° C à l’échelle du globe (Hoegh-Guldberg et al., 2019). 

Ainsi, les biologistes des plantes ont fourni des efforts importants pour mieux caractériser la réaction 

des plantes face aux stress abiotiques, notamment par l’étude des processus physiologiques majeurs 

et de la régulation moléculaire à la base de l'adaptation des plantes aux stress abiotiques. Le Déficit 

hydrique, les hautes températures et à la salinité font partie des principaux stress abiotiques décrites 

dans la littérature, affectant la production agricole chez les espèces cultivées dont la tomate (Solanum 

lycopersicum L.). 

La tomate est une culture d’importance économique majeure, produite partout à travers le monde et 

fait partie des principaux légumes consommés à haute valeur nutritionnelle (Rothan et al., 2019). Elle 

appartient à la grande famille des solanacées. Il s’agit d’une culture autogame ayant un génome moyen 

(~ 950 Mb), un cycle rapide (2 à 3 cycles par an) et un taux intéressant de succès pour la transformation 

génétique. Tous ces attributs en font une plante modèle pour les études en génétique. Le rendement 

et la qualité du fruit chez la tomate sont fortement influencés par les conditions de croissance, 

notamment les systèmes d’irrigation et les températures ambiantes en champ ou en serre (Mitchell et 

al., 1991; Rainwater et al., 1996). Nous avons donc dans ce projet de thèse, souhaité étudier le 

comportement de la tomate dans les conditions de culture de déficit hydrique (WD), de fortes 

températures (HT) et de stress salin (SS) dans le but de mieux caractériser la composante génétique 

de la réponse de la tomate à différents stress abiotiques. 



Annexe 1 : Résumé substantiel de la thèse 

Objectifs de l’étude 

Cette étude avait pour objectif général d'identifier les QTLs/gènes, génotypes et phénotypes impliqués 

dans l'adaptation de la tomate aux différents stress énumérés ci-dessus (WD, HT et SS). Cela, dans le 

cadre de différents projets (ADAPTOM et TomEpiset), en partie financés par l’Agence National de la 

Recherche française (ANR) et avec la contribution de plusieurs groupes de recherche et de compagnies 

de sélection privées. 

Dans cette thèse, nous avons souhaité évaluer l'impact des stress abiotiques sur la qualité du fruit, la 

phénologie et le développement des plantes et le rendement de la tomate et d'étudier son 

architecture génétique. 

Plus spécifiquement, trois questions scientifiques ont été proposées pour atteindre cet objectif : 

1. Quelles variations phénotypiques sont induites par le déficit hydrique, la salinité et le stress 

thermique chez la tomate ? 

2. Comment le transcriptome de la tomate est-il affecté par le déficit hydrique mais aussi par 

différents génotypes ? 

3. Quelles sont les bases génétiques de la plasticité phénotypique et des interactions génotype x 

environnement (GxE) chez la tomate en réponse aux stress abiotiques ? 

 

Matériel et Méthodes 

Pour réaliser ce travail, nous avons utilisé une population multi-parentale (MAGIC) issue du croisement 

de huit lignées de tomate dont quatre de gros calibre et quatre tomates cerise. Une description 

détaillée du développement de la population est fournie au chapitre 2. La population MAGIC a été 

évaluée dans trois sites géographiques différents (France, Israël et Maroc) et quatre conditions de 

culture spécifiques ont été appliquées. Les essais ont été réalisés de sorte que dans un essai donné, 

un traitement contrôle (condition optimale de culture) soit toujours opposé à un traitement de stress 

(WD, HT ou SS). Une description détaillée des traitements est présentée au chapitre 3 (pour WD et SS) 

et au chapitre 5 (pour stress HT). Pour chaque essai, différents traits phénotypiques ont été mesurés. 

Les variables climatiques dans les serres ont été enregistrées quotidiennement dans chaque essai, à 

partir desquels des co-variables environnementales ont calculées pour caractériser les 

environnements (voir le chapitre 6 pour plus de détails). L’impact des différents stress a ainsi été 
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évaluée au niveau phénotypique, génétique et transcriptomique (uniquement pour WD : chapitre 4). 

Par la suite, des gènes candidats de réponse aux stress ont été proposés.  

 

 

Résultats et discussion 

Au cours de ce travail, nous avons pu mettre en évidence la complexité de la réponse de la tomate aux 

stress abiotique qui apparaît être sous le contrôle de plusieurs gènes encore non identifiés 

singulièrement pour la plupart, mais dont nous avons pu proposer des candidats.  

Dans le chapitre 3 nous avons évalué l’impact du déficit hydrique et de la salinité sur la qualité du fruit 

et la croissance de la tomate. Au total, 250 lignées individuelles de la population MAGIC ont été 

utilisées pour identifier les QTLs en lien avec le poids et le nombre de fruits, la teneur en sucre, la 

fermeté du fruit, le temps de floraison et de maturité et la longueur des feuilles. Tous ces traits 

présentaient une variation phénotypique importante attribuée en majorité à l’effet du génotype (33 à 

86% de la variation phénotypique totale). Ces traits ont par ailleurs montré héritabilité importante 

autant dans les conditions contrôle que dans les conditions de stress, signalant la capacité d’opérer de 

la sélection variétale sur ce trait en condition limitante. D’autre part des interactions significatives 

génotype × condition de culture ont été détectées pour la majorité des traits. Les QTLs ont été 

cartographiés à l'aide de 1345 marqueurs SNPs. Un total de 54 QTLs ont été trouvés parmi lesquels 15 

ont révélés des interactions génotype × environnement et 65% (35 QTLs) étaient spécifiques au 

traitement. Les intervalles de confiance des QTL ont été projetés sur la carte physique du génome ; ce 

qui a permis d'identifier les régions de co-localisations des QTLs, suggérant une régulation 

pléiotropique. Nous avons ensuite appliqué une stratégie de recherche des gènes candidats basée sur 

la cartographie à haute résolution offerte par la population MAGIC, l'effet allélique estimé des 

différentes lignées parentales pour chaque QTL détecté et les informations de polymorphisme de 

séquence des huit lignées parentales. 

Le chapitre 4 s’est focalisé sur l’étude de la variation du transcriptome en réponse au déficit hydrique 

chez la tomate. Les données transcriptomiques ont été recueillies par séquençage de l'ARN totale de 

jeunes feuilles et de fruits au stade d’expansion cellulaire en condition contrôle (irrigation optimale) 

et en condition de déficit hydrique (-40% ETP). Huit génotypes couvrant une importante diversité 

allélique des tomates cultivées ont été utilisés pour ce faire.  Ces génotypes ont d’abord montré des 

différences importantes de réponse au déficit hydrique au niveau phénotypique. En examinant 

l’expression des gènes dans les deux conditions, un total de 14 065 gènes différentiellement exprimés 

(DEG) en condition de déficit hydrique a été détecté, dont 7 393 (53%) et 11 059 (79%) spécifiques au 
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génotype et à l'organe, respectivement. L’impact du déficit hydrique sur la variation du transcriptome 

était plus important au niveau des feuilles que pour le péricarpe du fruit en expansion cellulaire. Cette 

étude a également mis en évidence un très fort effet du génotype sur le niveau d’expression des gènes 

ainsi que la présence d'un ensemble de gènes présentant une interaction significative génotype x 

environnement au niveau transcriptomique. L'intégration des DEG aux QTLs de réponse au stress 

hydrique et salin, précédemment identifiés dans le chapitre 3, nous a permis de réduire la liste de 

gènes candidats dans les régions de ces QTLs. Les résultats présentés ont mis en évidence des 

ressources intéressantes pour des études ultérieures visant à décrypter la complexité de l’adaptation 

de la tomate au stress hydrique. 

Dans le chapitre 5, nous avons évalué l'impact du stress thermique sur la tomate dans deux 

populations expérimentales constituées d'une population multi-parentale (MAGIC) et d'une collection 

(CC) regroupant plusieurs accessions de tomates cerise. Ces populations ont été évaluées dans des 

conditions de culture optimale et de stress lié à des températures élevées. Des traits liés au 

rendement, à la qualité du fruit et à la croissance phénologie des plantes ont été phénotypés dans les 

deux populations. Les analyses statistiques ont révélé un impact significatif des conditions de stress 

thermique au niveau phénotypique, qui a entraîné une diminution des traits de composante du 

rendement (<21-35%) et accélérer la floraison pour presque l’ensemble des génotypes (96-99%) dans 

les deux populations. Les deux populations ont été génotypées ave des marqueurs SNPs et les analyses 

de QTL et d’association ont identifié 244 QTLs dont la majorité (92%) était spécifique ç l’une des 

populations. La plasticité phénotypique en réponse au stress thermique a été calculée pour chaque 

caractère et a permis l'identification de 70 QTLs de plasticité. Une forte proportion (80 et 91%) des 

QTL identifiés au sein des populations MAGIC et CC, respectivement, était spécifique ou à la plasticité 

ou à une des deux conditions. La présente étude a permis de mieux comprendre l'architecture 

polygénique et la complexité de la réponse de la tomate au stress thermique. Des génotypes tolérants 

aux températures élevées ont été identifiés et des gènes candidats de réponse au stress thermique 

mis en évidence. 

Au chapitre 6, les données issues de l’évaluation de la population MAGIC dans le dispositif multi-

environnement (MET) ont été conjointement analysées. Au total, 10 traits phénotypique ont été 

analysés dans 5 à 12 environnements différents suivant le dispositif décrit dans le tableau 2 du chapitre 

2 des Matériels et Méthodes. Il a été mis en évidence une importante présence d’interactions GxE 

expliquant 15 à 68% de la variance phénotypique en fonction des différents traits évalués. Les analyses 

de cartographie génétique ont révélé au total 104 QTLs uniques identifiés en utilisant les phénotypes 

moyens et la plasticité phénotypique parmi lesquels, seul 221% étaient communs. Des modèles 
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linéaires mixtes ont par la suite été utilisés pour modéliser la complexité du dispositif MAGIC-MET afin 

d'étudier les QTL interactifs (QEI). Cette analyse a identifié 28 QEI dont la majorité a aussi été détecté 

avec l'analyse QTL sur plasticité et les phénotypes moyens. Le chapitre 6 a permis de mettre en 

évidence une architecture génétique complexe de la plasticité phénotypique et des interactions GxE 

chez la tomate. Les QTLs de plasticité ont été détectés majoritairement dans des régions distinctes par 

rapport aux QTLs de phénotype moyen pour un caractère donné ; ce qui suggère la possibilité d'une 

sélection indépendante pour la plasticité. Des gènes candidats potentiellement impliqués dans 

l'occurrence du GxE chez la tomate ont été proposés, ouvrant la voie à la caractérisation fonctionnelle 

des gènes de réponse aux stress chez la tomate. 

 

Conclusion 

En conclusion, cette thèse nous a permis d’explorer la variabilité de la tomate dans différentes 

conditions environnementales et a mis en évidence une plasticité phénotypique considérable chez 

cette espèce ; ce qui peut expliquer qu’elle soit cultivée partout dans le monde dans différentes 

régions géographiques et sous diverses conditions de culture. Nous avons utilisé une population 

MAGIC renfermant une importante diversité allélique intra-spécifique des tomates cultivées. Cette 

population a révélé une forte présence d’interactions GxE. Cela souligne que la sélection de tomates 

adaptées à l'environnement est possible sans aller puiser dans le réservoir des espèces sauvages qui 

généralement contiennent des fragments importants non désirables pour la sélection variétale. La 

plasticité phénotypique de la tomate a été décrite tout au long de ce document comme un caractère 

qui soit spécifique en fonction du trait étudié, et fortement dépendante de la gamme de variation 

environnemental considérée. De toute évidence, l'architecture génétique de la plasticité de la tomate 

est très complexe et mérite d'être étudié de façon plus précise au niveau moléculaire. Plusieurs gènes 

candidats potentiellement impliqués dans la régulation de la plasticité ont été proposés. Globalement, 

sur la base des résultats présentés dans les différents chapitres de ce document, la plasticité 

phénotypique peut maintenant être considérée comme un trait en soi pour lequel la sélection variétale 

peut être opérée. Nous avons identifié des locus communs et distincts contrôlant les phénotypes 

moyens et la plasticité chez la tomate. Les travaux présentés ici présentent clairement des pistes 

potentielles pour la caractérisation moléculaire des gènes de plasticité chez la tomate et l'intégration 

de la plasticité phénotypique dans les programmes de sélection variétale visant à développer des 

cultivars résilients. 
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SUMMARY

Tomato (Solanum lycopersicum), which is used for both processing and fresh markets, is a major crop spe-

cies that is the top ranked vegetable produced over the world. Tomato is also a model species for research

in genetics, fruit development and disease resistance. Genetic resources available in public repositories

comprise the 12 wild related species and thousands of landraces, modern cultivars and mutants. In addition,

high quality genome sequences are available for cultivated tomato and for several wild relatives, hundreds

of accessions have been sequenced, and databases gathering sequence data together with genetic and phe-

notypic data are accessible to the tomato community. Major breeding goals are productivity, resistance to

biotic and abiotic stresses, and fruit sensorial and nutritional quality. New traits, including resistance to var-

ious biotic and abiotic stresses and root architecture, are increasingly being studied. Several major muta-

tions and quantitative trait loci (QTLs) underlying traits of interest in tomato have been uncovered to date

and, thanks to new populations and advances in sequencing technologies, the pace of trait discovery has

considerably accelerated. In recent years, clustered regularly interspaced short palindromic repeats

(CRISPR)/Cas9 gene editing (GE) already proved its remarkable efficiency in tomato for engineering favor-

able alleles and for creating new genetic diversity by gene disruption, gene replacement, and precise base

editing. Here, we provide insight into the major tomato traits and underlying causal genetic variations dis-

covered so far and review the existing genetic resources and most recent strategies for trait discovery in

tomato. Furthermore, we explore the opportunities offered by CRISPR/Cas9 and their exploitation for trait

editing in tomato.

Keywords: tomato, Solanum lycopersicum, natural diversity and mutants, stress, QTL, GWAS, mapping-

by-sequencing, CRISPR/Cas9 gene editing, ’omics.

INTRODUCTION

Tomato is the top ranked vegetable grown over the world.

It accounts for more than 15% of world vegetable produc-

tion (over 177 million metric tons in 2016; www.fao.org/fa

ostat). Tomato is grown for both processing and fresh mar-

kets. It is a rich source of micronutrients in the human diet.

The major goals of tomato breeding (high productivity, tol-

erance to biotic and abiotic stresses, and high sensory and

health value of the fruit) require a good comprehension

and management of tomato genetic resources and diver-

sity. Tomato is also an acknowledged model species for

research in genetics, fruit development and disease resis-

tance. It has a short life cycle, is easy to cross and self-pol-

linate, has a medium-sized genome (approximately

900 Mb), can be transformed with a high success rate, and

benefits from a lot of genetic and genomic resources. Fur-

thermore, the tomato community has access to several

databases, gathering sequence data together with genetic

and phenotypic data.

Tomato and its 12 closely related species belong to the

Solanum genus in the large Solanaceae family (Peralta

et al., 2008). All these species come from the Andean

region of South America. Exploration of the tomato center

of origin has permitted major advances in the characteriza-

tion of its diversity. In parallel, ex situ conservation of

genetic resources in large national collections has ensured

the conservation of landraces and wild species (Labate

et al., 2007) and new artificially induced genetic diversity

has been generated (Meissner et al., 1997; Menda et al.,
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2004; Just et al., 2013). Modern genetics and breeding

methods have not only contributed to the understanding of

the genetic control of agronomical traits, but have also con-

tributed to the development of thousands of new cultivars.

The advent of molecular biology in the 1980s raised

great hopes in terms of characterization of the genetic

diversity present in both wild and cultivated compart-

ments. The development of molecular biological tech-

niques allowed pinpointing of genomic regions involved in

targeted traits (Paterson et al., 1988). Dissection of the

genetic control of complex traits, using ad hoc techniques

from quantitative genetics, has led to the identification of

key alleles involved in many agronomic traits, originating

from several wild relatives (Tanksley, 2004). Quantitative

trait locus (QTL) mapping techniques in natural popula-

tions or, more recently, genome-wide association studies

(GWAS) also facilitated the understanding of the genetic

architecture of complex traits and germplasm manage-

ment of both wild and cultivated tomatoes. Tomato has

been one of the first crops for gene and QTL cloning by a

map-based approach (Martin et al., 1993; Frary et al., 2000;

Fridman et al., 2000). Several reviews have reported the

numerous genes and QTL cloned (Labate et al., 2007; Foo-

lad and Panthee, 2012; Sato et al., 2012; Causse and

Grandillo, 2016; Grandillo and Cammareri, 2016).

The tomato genome is now fully sequenced, providing a

high quality reference genome (Sato et al., 2012). In addi-

tion, hundreds of new accessions have been resequenced

(Aflitos et al., 2014; Lin et al., 2014; Zhu et al., 2018) and

large transcriptome and metabolome datasets have been

made available (Tohge et al., 2015; Fernie and Tohge,

2017; Zouine et al., 2017; Shinozaki et al., 2018). Progress

in deep sequencing technologies have triggered, in paral-

lel, new developments such as GWAS (Bauchet et al.,

2017; Tieman et al., 2017; Zhu et al., 2018), QTL-seq (Illa-

Berenguer et al., 2015) and mapping-by-sequencing (MBS)

(Garcia et al., 2016) for the exploitation of natural and

induced genetic diversity, thus accelerating gene/allele dis-

covery. Together with the very recently developed CRISPR/

Cas9 gene editing (GE) system, which is highly successful

in tomato, these advances have contributed to the promo-

tion of tomato not only as a model crop species but also

as a model to further our understanding of plant biology.

In this review, we will present the recent progresses lead-

ing to the identification and characterization of genes and

QTLs of interest as well as the advances in tomato GE and

their exploitation for tomato breeding.

DISCOVERY OF GENETIC VARIATIONS UNDERLYING

MAJOR TRAITS IN TOMATO

Important traits in tomato breeding

Tomato is grown all over the world under much contrasted

conditions (from open field to soil-free greenhouses), so

there are many traits of interest for this species (Figure 1).

Apart from fruit size and yield, breeding efforts have

focused on fruit shape and composition, disease resis-

tance, adaptation to new growth conditions, and abiotic

stresses. Tomato is remarkable for the number of traits

used in the cultivated species that are controlled by a

unique locus (Figure 1). Since the early works of Steve

Tanksley and his colleagues who constructed the first high

density map of molecular markers (Tanksley et al., 1992),

many genes controlling such mutations have been

mapped and positionally cloned (Causse and Grandillo,

2016; see Supplementary Table S1 for synthesis). These

genes are involved in plant architecture (sp mutation;

Pnueli et al., 1998), fruit color (del; Ronen et al., 1999; Gr;

Barry et al., 2005; wf; Galpaz et al., 2006), fruit ripening

and shelf life (rin; Vrebalov et al., 2002; Gr; Barry et al.,

2005), and abscission (j; Mao et al., 2000). Since the first

cloning of the Pto gene, responsible for resistance to Pseu-

domonas tomato, more than 30 genes responsible for dis-

ease resistance have been mapped and most of these have

been positionally cloned (Foolad and Panthee, 2012).

In addition to these major mutations, several QTLs con-

trolling fruit size, shape, color intensity, firmness, and com-

position were mapped. With the development of high

throughput metabolome studies, the content of hundreds

primary and secondary metabolites was assessed (Carrari

et al., 2006; Bauchet et al., 2017; Tieman et al., 2017). Con-

cerning tomato sensory quality, many QTLs for sensory

traits were mapped as well as QTLs for volatile organic

compounds (Causse et al., 2002; Tieman et al., 2007) and a

few were positionally cloned (Supplementary Table S1).

Environmental conditions diversely affect tomato

phenotype

Several studies have evidenced a genetic variability in

tomato response to its environment among wild related

species and within the cultivated clade (Bai and Lindhout,

2007; Bolger et al., 2014). Indeed, environmental stress,

such as from drought, cold, salinity, or heat, generally

impairs tomato yield but can enhance to some extent fruit

quality (Ripoll et al., 2016). These responses depend on the

genotypes and the stress duration, intensity and stage of

application, as well as the trait under consideration. Geno-

type (G) 9 environment (E) interactions that arise from the

differential sensitivity of tomato cultivars to given environ-

mental conditions, and of the underlying genetic

determinism, were studied for several physiological

and/or agronomic traits and yielded hundreds of QTLs (see

Grandillo and Cammareri, 2016 for a recent review). Since

the pioneering work of Paterson et al. (1990), who com-

pared QTLs detected in three single environments, and

showed that different QTLs were detected for a same trait,

QTL and GWAS results have frequently presented variable

effects according to the environment (Sauvage et al., 2014;
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Zhang et al., 2015). Recent studies on the impact of con-

trolled abiotic stresses (water or salt stress) identified

specific QTLs controlling the GxE interaction (QTLxE;

Albert et al., 2016; Diouf et al., 2018). Therefore, to assess

QTLxE effects and identify the genes controlling their varia-

tion, future studies should include a wide range of environ-

mental conditions coupled with appropriate statistical

methods (Malosetti et al., 2013). With the current availabil-

ity of high-resolution populations, the impact of the envi-

ronment on candidate loci controlling important traits can

be deciphered. This information could be used both in

breeding programs, by allowing the accurate choice of the

QTL transferred into elite lines, and for functional valida-

tion studies.

While most QTLxE studies have involved two contrast-

ing environments (i.e. a single stress condition vs its

control), there is a knowledge gap in the identification of

QTLs involved in responses to combined stress. This

aspect is of capital importance as it was shown that stress

combination in tomato (biotic and/or abiotic) does not

always have an additive effect regarding physiological,

morphological, or biochemical responses compared with

single stress (Rivero et al., 2014; Bai et al., 2018; Martinez

et al., 2018).

Mapping populations for gene discovery in tomato

Mapping populations used for gene discovery in tomato

are very diverse and display specific and complementary

features (Labate et al., 2007). The genomic era with

cheaper and high-throughput sequencing capacity has

facilitated access to large number of polymorphisms

between individuals even between closely related varieties.

Biotic stress Abiotic stress 
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Meristem 

Plant Determinacy * (sp)

Side shoots * (c, ls)

Branching and yield *
(s, sft, WOX9)

Drought/Water limitation *

Heat
Cold
Light (CAB-13)

Salinity
Nutrient deficiency

Viruses * (Tm-2a, Ty-#, pot-1, Sw5)

Fungi * (I, I2, Ve, Cf-#, asc)

Bacteria * (Pto)

Insects (fly, butterfly …)
Spiders
Nematods * (Mi-1, Hero) Pollen quality

Sterility 
Colour (t)
Number * (s, sft)
Jointless pedicle * (j)

Flower

Ovary & Fruit 
Development

Ripe Fruit 

Parthenocarpy 

Fruit weight * (fw2.2, fw3.2, fw11.2)

Fruit shape * (lc, fas, Sun, ovate)

Skin appearance * (y)

Cuticular defects * (pe)

Ripening * (rin, nor, Nr, Cnr)

Colour * (u, y, r, B, og, t, Del, gf)

Texture *
Other sensorial traits 
(OA, sugars, aroma) *

(lin5, sucr, Agp, Smoky, Mal6.1, Fgr, LIP1)

Nutritional traits (vitamins, 
antioxidants, glycoalkaloids) *
(VTE3, MDHAR, hp-#, GAME-#)

Shelf-life * (rin, nor, alc)

Chilling 
Seed (germination, storage) 

Architecture (dgt)

Vigour 

Rootstock *

Mycorrhization

Reproductive organs

Stress

Vegetative system

Leaf and stem

Architecture (c)

Morphology (pro, e, clau)

Circadian clock * (eid1, lnk2)

Size (dgt, d)

Figure 1. Main phenotypic traits studied in tomato.

Left and right boxes: main tissues and associated phenotypic traits studied in tomato for their agricultural importance. Center boxes: main stresses that tomato

is facing. *, traits selected during tomato domestication and improvement. §, traits highly susceptible to variations in environmental conditions. In brackets,

nonexhaustive list of major genes and QTLs identified in natural genetic diversity (see Supplementary Table S1; Sato et al., 2012). Tomato phyllotaxis is not

faithfully represented for convenience.
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This has led to the development of new designs of map-

ping populations in tomato with saturated genetic maps

that amplify the power and precision of QTL detection.

Apart from the traditional bi-parental populations and

introgression line (IL) sets used to discover genes and

QTLs, new segregating populations were recently devel-

oped in tomato including backcross inbred lines (BILs) and

multi-parent advanced generation intercross (MAGIC) pop-

ulations. In addition, several panels of naturally evolved

accessions were used for GWAS. These populations have

different benefits and limits (Figure 2).

From the first ILs developed in tomato from S. lycoper-

sicum (cv M82) and the wild S. pennellii (LA716) (Eshed

and Zamir, 1995), Ofner et al. (2016) created a BIL popula-

tion sustained over 11 generations of selfing and carrying

smaller introgressions. The 446 BILs were densely

genotyped with the 10k Solcap Single Nucleotide

Polymorphism (SNP) array. The authors identified 1049

unique bins at the whole-genome level with half of the bins

presenting less than 10 genes. Using two well known QTL/

gene, fw2.2 and beta-carotene (B), they demonstrated the

high-resolution mapping offered by the population. The

genome of the S. pennellii accession was sequenced (Bol-

ger et al., 2014) and BILs enabled the characterization of

QTL involved in yield (Soyk et al., 2017a), leaf shape (Fulop

et al., 2016), leaf thickness (Coneva et al., 2017), and day

length response (M€uller et al., 2016; Soyk et al., 2017b).

To date, only one multi-parental population was devel-

oped in tomato with eight parental lines belonging to the

cultivated clade S. lycopersicum var lycopersicum. This

population demonstrated its potential to suitably decipher

the genetic architecture of fruit quality traits (Pascual et al.,

2015). It did not present any structure and had linkage dise-

quilibrium (LD) decay making it appropriate for linkage/

MAGICBILs GWAS

x 

QTL analysis

Parental crosses /

Panel selection

Selfing / Natural 

recombination 

Time consuming Time consuming Short timeTime to set up

Allelic diversity + ++ ++++

Population structure No structure No structure Structure 

Marker density required ++ + +++

Mapping resolution +++ + variable

BILs

MAGIC

x 

x x 

GWAS

F1 F1 

(a)

(b)

(c)

Figure 2. New populations developed in tomato for gene/QTL mapping and identification.

(a) Mapping population development and linkage/association analysis. BILs are created by backrossing the F1 hybrid into the recurrent parent, followed by sev-

eral selfing generations. A single (or a few) portion of the wild recurrent parent is introgressed. MAGIC population here involved crossing four parental lines

producing two F1 hybrids thereafter crossed together. The derived progeny then follows several generations of selfing to reach inbred MAGIC lines. GWAS pan-

els are constitued by natural accessions each of which has its own recombination history. For each population and the GWAS panel, appropriate statistical mod-

els are used to decipher the linkage/association between DNA polymorphism and the observed phenotypic variation.

(b) The confidence intervals around the identified QTL can be aligned onto the physical map of the reference tomato genome and compared according to their

positions. Candidate genes can be suggested when the intervals are not too large.

(c) Key characteristics differentiating BIL, MAGIC and GWAS populations.
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association mapping. It was also used for testing environ-

mental effects on traits of interest and for deciphering the

genetic basis of GxE interactions (Diouf et al., 2018). This

population was also used in a comparative study showing

its complementarity to bi-parental populations and GWAS

panels (Pascual et al., 2016). GWAS panels accumulate a

large diversity, notably if some wild accessions are

included in the panel, and therefore allow identification of

more loci significantly associated with the trait variation

than in the bi-parental and MAGIC populations.

After the release of the tomato reference genome,

GWAS has been rapidly applied to the exploration of vari-

ous traits including fruit composition and plant architec-

ture. The first panel studied included accessions of

cultivated tomato, cherry tomato and wild S. pimpinelli-

folium accessions (Sauvage et al., 2014). Collections of

unrelated accessions usually present some structure pat-

tern that can hamper the detection of significant associa-

tions or conduct false-positive associations, limiting the

potential of GWAS to detect reliable associations. Statisti-

cal modeling correcting for the effect of population struc-

ture can solve this problem, but may lead to missing some

true associations for traits correlated to the structure such

as fruit weight (Xu et al., 2013). To limit the impact of

panel structure, Albert et al. (2016) studied a new panel

composed of cherry fruit accessions that showed a limited

structure. Large panels of resequenced accessions also

allowed the identification of several genes related to

domestication traits (Lin et al., 2014) or composition (Zhu

et al., 2018). Other GWAS studies showed that associations

could be identified using a panel of landrace accessions

but this led to a limited number of associations (Ruggieri

et al., 2014; Sacco et al., 2015).

Important genes and QTLs recently discovered

The genetic basis of many agronomic important traits has

been dissected using segregating populations (as

described above). The availability of the genome sequence

allowed the identification of many new candidate genes,

but just a few mutations corresponding to major pheno-

types or QTLs have been identified and functionally vali-

dated so far. The function of several genes previously

cloned was also specified. Several fruit shape and size

mutations were described. Among the four genes respon-

sible for fruit shape diversity (Rodr"ıguez et al., 2011), Soyk

et al. (2017a) showed that the fasciated (fas) locus, which

leads to increased locule number and fruit size during

tomato domestication, results from a regulatory mutation

in CLAVATA3 (SlCLV3), which interacts with WUSCHEL

(SlWUS) in the region harboring two SNPs responsible for

the lc mutation (Mu~nos et al., 2011; Rodr"ıguez-Leal et al.,

2017). Two fruit weight QTLs were newly cloned, corre-

sponding respectively to a cytochrome P450 (fw3.2; Chak-

rabarti et al., 2013) and to a novel protein (cell size

regulator), which increases fruit weight predominantly

through enlargement of the pericarp areas (fw11.2; Bardol

et al., 2013; Mu et al., 2017).

In addition to fruit size increase, domestication has led

to many changes (Sauvage et al., 2017). Two mutations

involved in day length response were cloned. M€uller et al.

(2016) showed that the circadian clock of cultivated tomato

has slowed following domestication due to a variation in

the EID1 gene encoding a phytochrome A-associated F-box

protein. The other gene was the florigen paralog and flow-

ering repressor SELF-PRUNING 5G (SP5G). This was identi-

fied following a QTL-seq approach on an F2 population

and was validated by CRISPR/Cas9 (Soyk et al., 2017a). The

evolution of the inflorescence architecture was also dis-

sected and two transcription factors influencing the truss

ramification identified (Xu et al., 2015; Soyk et al., 2017b).

The two genes interact together, but exploiting natural and

engineered alleles for these genes produced a continuum

of inflorescence complexity that can be used by breeders

for increasing yield.

The mutation controlling fruit uniform ripening, which is

now used in every modern accession was characterized

(Powell et al., 2012). It is encoded by a Golden 2-like tran-

scription factor regulating chloroplast development in fruit.

With a lower photosynthetic capacity, the mutation was

shown to affect fruit sugar content, suggesting a role in

the poorer taste of modern varieties. Since cloning of long

shelf-life genes (Vrebalov et al., 2002), very few genes con-

trolling variation in fruit firmness have been discovered,

apart from a mutation in pectate lyase, which was shown

to correspond to a QTL for fruit firmness (Uluisik et al.,

2016; Wang et al., 2018).

Investigation of fruit sensorial and nutritional quality

was considerably aided by the large scale inventory of fruit

metabolites (metabolome) (Fernie and Tohge, 2017).

Increased analytical throughput and widening of the range

of metabolites identified and of genetic diversity studied

led to the detection of hundreds of metabolite QTLs

(mQTLs) controlling fruit composition (primary and spe-

cialized metabolites, volatiles, cuticle components, etc.)

(Alseekh et al., 2015, 2017; Ballester et al., 2016; Ofner

et al., 2016; Tieman et al., 2017; Albert et al., 2018; Gar-

bowicz et al., 2018; Zhu et al., 2018). This was the first step

for identification by map-based cloning of genes involved

in metabolite variations such as a glycosyltransferase con-

trolling smoky aroma (Tikunov et al., 2013) and a MYB

transcription factor responsible for pink fruit color (Balles-

ter et al., 2010). The genetic control of fruit anti-nutritional

alkaloids was also deciphered (Itkin et al., 2013). GWAS

studies coupled with mQTL analyses further identified sev-

eral loci of interest for improving major fruit quality traits

such as malic acid content (Ye et al., 2017) or aromas (Bau-

chet et al., 2017; Tieman et al., 2017). More recently, Zhu

et al. (2018) showed, by screening a large set of lines, that
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selection for agronomical traits (fruit size, fruit color, virus

resistance) during domestication and improvement led to

the modification of fruit metabolome through hitchhiking.

GENETIC RESOURCES FOR TRAIT DISCOVERY IN

TOMATO

Investigating the wild reservoir of genetic diversity

The 12 wild species related to tomato were rapidly used to

set up segregating populations and discover new traits or

genes of interest. All these populations allowed mapping

and characterization of a myriad of major genes and QTLs

involved in various traits (recent synthesis in Grandillo and

Cammareri, 2016). ILs, notably the set developed between

S. pennellii and S. lycopersicum (Eshed and Zamir, 1995),

were used to map many QTLs for fruit composition

(Schauer et al., 2006; Alseekh et al., 2015). A unique QTL

was shown to improve at the heterozygous level harvest

index, earliness and metabolite content (sugars and amino

acids) in processing tomatoes (Gur et al., 2010, 2011). ILs

were also used to fine map and positionally clone several

genes and QTL of interest. A natural mutation in the SFT

gene, involved in flowering time, was shown to corre-

spond to a single overdominant gene that increases yield

in hybrids of processing tomato (Krieger et al., 2010). The

BILs developed from this population were then used to

clone several genes (see above).

The comparison of whole genome SNP distribution in

the wild S. pimpinellifolium and the domesticated S. l.

cerasiforme (S.l.c.) or cultivated accessions identified

regions of genetic bottleneck, which occurred during

domestication and selection (Lin et al., 2014; Blanca et al.,

2015). The potential of other species was shown but to a

lesser extent. For instance an allelic variant increasing

sugar content was identified in the promoter of a gene

encoding an ADP-glucose pyrophosphorylase from S. hab-

rochaites (Petreikov et al., 2006). The mutation allowing an

extended gene expression led to higher starch accumula-

tion during fruit development and subsequent increase in

soluble solid content in ripe fruit. More recently a mutation

in a SWEET transporter in wild species was shown to be

responsible for a higher fructose to glucose ratio com-

pared with that in S. lycopersicum (Shammai et al., 2018).

Wild relative species were particularly useful as a source

of disease resistance. More than 100 pathogens attack cul-

tivated tomato. As landrace varieties are susceptible to

every pathogen, most of the resistance sources come from

the crop wild relatives. This has resulted in a large number

of genes mapped for marker-assisted selection and cloning

(Foolad and Panthee, 2012; Causse and Grandillo, 2016). In

recent years, the first gene conferring resistance to late

blight was cloned by Zhang et al. (2014) as well as several

genes conferring resistance to the Tomato Yellow Leaf Curl

virus: the allelic genes Ty1 and Ty3 (Verlaan et al., 2013);

Ty-5 (Lapidot et al., 2015);. Ty-2 (Yamaguchi et al., 2018).

Defense against insects remains challenging. Analysis of

natural and induced variation in tomato glandular trichome

flavonoids identified a myricetin O-methyltransferase gene

absent in the reference genome (Kim et al., 2014). The

acylsugars metabolism in trichomes and their role in insect

defense were also deciphered and the role of an isopropyl-

malate synthase and of acyltransferases underlined (Ning

et al., 2015; Schilmiller et al., 2015). Screening for the dis-

covery of markers for new resistance genes has also con-

tinued with a higher efficiency thanks to the availability of

reference genome sequences (Bao et al., 2015; Haggard

et al., 2015; Kim et al., 2016, 2017, 2018; Wang et al., 2016;

Hameed et al., 2017).

Artificially induced genetic diversity: an additional genetic

resource for trait discovery in cultivated tomato

Mutant collections offer a complementary alternative for

trait discovery in tomato and provide an allelic series on a

uniform genetic background. In tomato, the main physical

mutagenic agents are fast-neutron, which causes large

deletions and translocations, and gamma-ray bombard-

ments, which provoke small deletions and point mutations

(Meissner et al., 1997; Emmanuel and Levy, 2002; Shira-

sawa et al., 2016). The most widely used chemical muta-

gen is EMS, which induces point mutations (SNPs) evenly

distributed at high frequency over the genome. Because

up to 10 000 mutations per plant can be obtained in highly

mutagenized tomato populations (Garcia et al., 2016; Petit

et al., 2016; Shirasawa et al., 2016; Musseau et al., 2017;

Pulungan et al., 2018), a limited number of lines (<3000

lines) is sufficient to reach saturation mutagenesis. There-

fore, large allelic series, including strong and hypomorphic

alleles producing a range of phenotypic alterations (Park

et al., 2014; Musseau et al., 2017), can be obtained for a

given gene of interest. It is noteworthy that several traits

found in natural germplasm are not likely to be observed

in mutant collections, including the traits caused by trans-

position of mobile elements (Xiao et al., 2008) or by epige-

netic alterations (Manning et al., 2006; Kanazawa et al.,

2011; Chen et al., 2015).

Both determinate and indeterminate tomato cultivars

have been used for generating fast-neutron and EMS

mutant collections in the last decades (Meissner et al.,

1997; Menda et al., 2004; Minoia et al., 2010; Okabe et al.,

2011; Just et al., 2013). Mutant collections of the determi-

nate processing tomato cultivar M82 and model miniature

tomato Micro-Tom, well suited for laboratory use, have

been systematically screened for tens of phenotypic

descriptors of traits such as yield, plant architecture, leaf

shape and complexity, flower and fruit morphology, color

and ripening, etc. (Menda et al., 2004; Saito et al., 2011;

Just et al., 2013). Data stored in publicly available data-

bases (http://tomatoma.nbrp.jp/; http://zamir.sgn.cornell.ed
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u/mutants/) can be mined for mutants harboring specific

traits and the corresponding seeds can be ordered. Tomato

mutant collections have been successfully used for identifi-

cation by Targeting Induced Local Lesions IN Genomes

(TILLING) of allelic series for genes involved in a wide

range of biological processes (reviewed in Rothan et al.,

2016). Over the last few years, a growing number of muta-

tions that underlie remarkable tomato traits have been iso-

lated by forward genetics approaches. They proved to be

very efficient for (1) deciphering pathways controlling plant

architecture and yield heterosis (sft alleles; Krieger et al.,

2010; Park et al., 2014); and (2) for discovering new func-

tions involved in inflorescence branching and fruit size (fab

and fin alleles; Xu et al., 2015), leaf development (curl;

Pulungan et al., 2018), male and female sterility (Slses;

Hao et al., 2017), carotenoid sequestration in plastoglob-

ules (pyp; Ariizumi et al., 2014), and regulation of cutin for-

mation (cd2; Isaacson et al., 2009), biosynthesis

(cd3/cyp86a69 and gpat6; Shi et al., 2013; Petit et al., 2016),

and polymerization (cd1/gdsl1/cus1; Yeats et al., 2012; Petit

et al., 2014).

ACCELERATING TRAIT DISCOVERY IN TOMATO USING

DEEP SEQUENCING STRATEGIES

The natural and artificially induced genetic diversity avail-

able in tomato is considerable and holds a great potential

for trait discovery. However, while hundreds of QTLs con-

trolling various traits have been mapped, comparatively

few genetic variants that underlie QTLs have been identi-

fied to date (see above). Actually, until very recently, link-

ing trait to genetic variations relied mostly on map-based

cloning approaches using DNA markers and on the devel-

opment of specific populations. Once the chromosomal

region harboring the trait has been identified, its subse-

quent break-down to identify the causal polymorphism can

be a daunting task because of the high number of candi-

date genetic variants or, at the opposite end, the absence

of obvious candidate genes as well as the possible high LD

and low meiotic recombination in the target region. The

availability of high quality tomato reference genome

sequences and cheap deep sequencing technologies has

accelerated trait discovery via approaches such as QTL-seq

and MBS or integration of multiomics data.

Bulk segregant analysis coupled with whole-genome

sequencing approaches

By allowing comparison with reference genome

sequences, whole-genome sequencing (WGS) has enabled

the discovery of all polymorphisms in a given genotype,

including causal genetic variation. Association with fine

mapping reduced the number of polymorphisms to a chro-

mosomal region (Illa-Berenguer et al., 2015; Petit et al.,

2016; Hao et al., 2017). Usually, the target region still holds

a large number of candidate SNPs/indels and it is therefore

necessary to confirm their function by studying additional

alleles or by functional analyses. This strategy has been

successfully employed by Ariizumi et al. (2014) who

detected EMS tomato mutants that harbored pale colored

flowers, performed allelic tests to demonstrate that

mutants complement each other and demonstrated by

WGS sequencing that independent mutations in the PYP1

gene were responsible for the flower color trait.

Bulk segregant analysis (BSA) coupled with WGS allevi-

ates the need for previous mapping of the trait. Here QTL-

seq is used for BSA-WGS mapping of natural quantitative

variations (Illa-Berenguer et al., 2015; Bazakos et al., 2017);

MBS is used for mutation mapping (Schneeberger, 2014)

and is illustrated in Figure 3. Once the trait of interest has

been detected and its inheritance pattern is determined,

the line harboring the trait is crossed to either another

tomato genotype (QTL-seq) or to a wild-type (non-muta-

genized) parental line (MBS) to produce an F2 progeny

segregating for the trait. For QTL-seq, the line of interest

can be outcrossed with a not-too-distantly related geno-

type, typically S. pimpinellifolium, or even cherry tomato

(S.l.c.), because WGS allows the detection of all polymor-

phisms in tomato genome, c. millions of SNPs in S.l.c.

(Causse et al., 2013), and therefore produces enough DNA

markers for trait mapping (Illa-Berenguer et al., 2015). The

limitations of outcrossing the line of interest with a dis-

tantly related genotype are then avoided and the progeny

phenotyping is facilitated. In the MBS strategy, because

the mutant is backcrossed with the wild-type parental line,

the SNPs detected by WGS, (<10 000 SNPs per plant; Gar-

cia et al., 2016; Pulungan et al., 2018), are only due to

mutagenesis. Following phenotyping, F2 plants displaying

the same phenotype are pooled, DNA bulks are sequenced,

WGS reads are aligned to the reference genome and SNP

variants are filtered to exclude polymorphisms linked to

the parental genomes (Garcia et al., 2016). An alternative

strategy is to first select the exome (Pulungan et al., 2018).

This reduces sequencing effort but limits the information

to coding regions and exclude cis-regulatory regions.

Allele frequencies are then analyzed to delineate the chro-

mosomal region harboring the causal genetic variant.

Mapping precision will depend on the extent of recombi-

nation in the chromosomal region harboring the genetic

variant and on the size of the population studied. Pericen-

tromeric regions, which may account for 75% of the chro-

mosomes in tomato, display high LD and low

recombination rates, while chromosome ends are usually

highly recombigenic in this species (Sato et al., 2012). To

date, reported sizes for QTL-seq encompass several Mb

and several tens or hundreds of candidate genes (Illa-

Berenguer et al., 2015; Soyk et al., 2017a; Zheng and Kawa-

bata, 2017). DNA markers derived from WGS-detected

SNPs are then used to fine map the trait by recombinant

analysis. This may remain a tedious task, depending on
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the number of SNPs and indels and extent of LD found in

the candidate region (Illa-Berenguer et al., 2015; Zhu et al.,

2018). One possible way to alleviate this limitation is to

combine QTL mapping data with gene expression data

and/or with the predicted biological function of the protein.

Regarding MBS, because of the comparatively low number

of EMS-induced SNPs, reducing the candidate genetic vari-

ants to few SNPs or possibly to a single SNP when present

in a highly recombigenic region, can be straightforward.

Reported sizes for MBS-mapped traits are typically in the

1–4 Mb range and the number of candidate mutations is

<10, as indicated for the fruit color mutant psy1, cutin defi-

cient mutant gpat6-a and fruit parthenocarpy mutation in

SlAGL6 gene (Garcia et al., 2016; Petit et al., 2016; Klap

et al., 2017). Recombinant analysis is then usually per-

formed to unequivocally identify the causal mutation (Fig-

ure 3). The findings can also be strengthened by studying

independent allelic variants from the same population as

carried out for the curly leaf mutants (Pulungan et al.,

2018), or by reverse genetics strategies including CRISPR-

Cas9 mutagenesis.

In the very near future, the efficiency and precision of

trait mapping using classical map-based cloning or BSA-

WGS-based strategies will be accelerated by increased

meiotic recombination in tomato. The recent demonstra-

tion that an EMS-induced truncation mutation in the anti-

crossover DNA helicase RECQ4 increases crossovers in

tomato by approximately three-fold (Mieulet et al., 2018)

paves the way for such improvement. However, as the

RECQ4 mutation does not increase crossovers in the peri-

centromeric regions, work is still needed to extend this

finding to the whole tomato genome, including low recom-

bigenic regions.

Multiomics analyses

For nearly two decades, ’omics technologies including

transcriptomics, proteomics, and metabolomics have been

used alone or in combination to discover genes and
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Figure 3. Identification of causal mutation by mapping-by-sequencing (MBS).

(a) Fruit colour mutant (here a recessive orange fruit trait) is detected by screening a tomato EMS mutant collection. Homozygous mutant line is back-crossed to

parental (non-mutagenized) line, the BC1F1 hybrid is selfed and a BC1F2 population segregating for the orange fruit trait is generated. Tomato plants displaying

either the wild type trait (red fruit) or the mutant trait (orange fruit) are pooled and DNA is extracted from the bulks.

(b) DNA bulks are sequenced by whole-genome sequencing (WGS). Sequences are mapped onto the tomato reference genome, filtered, and allelic frequencies

(AF) of WT and mutant alleles are determined. In case of recessive mutation, genomic region carrying the causal mutation displays an AF > 0.8 for mutant alle-

les (orange line) and < 0.5 for WT alleles (red line). EMS-induced single nucleotide polymorphisms (SNPs) detected within the genomic region of interest are

then used as genetic markers to detect recombinants in the BC1F2 segregating population. BC1F2 plants homozygous for the mutant allele (orange bars) have

orange fruits, while plants heterozygous or homozygous for the WT allele (red bars) have red fruits. Genotype-to-phenotype association allows the unambigu-

ous identification of the mutation responsible for the orange fruit trait in the fruit colour mutant.
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networks underlying various traits of interest in tomato.

Examples of these are rootstock grafting (Ntatsi et al.,

2017), effect of root mycorhization on fruit quality (Zouari

et al., 2014), meristem maturation and inflorescence archi-

tecture (Park et al., 2012; Soyk et al., 2017a), leaf morphol-

ogy and thickness (Koenig et al., 2013; Coneva et al.,

2017), glandular trichome metabolism (Balcke et al., 2017),

seed composition (Toubiana et al., 2015), fruit set and

parthenocarpy (Wang et al., 2009; Ruiu et al., 2015), and

fruit development, ripening, and composition (Carrari

et al., 2006; Faurobert et al., 2007; Mintz-Oron et al., 2008;

Mounet et al., 2009; Matas et al., 2011; Osorio et al., 2011;

Itkin et al., 2013; Pan et al., 2013; Pattison et al., 2015; Fer-

nandez-Moreno et al., 2016; Szymanski et al., 2017; Li

et al., 2018b; Shinozaki et al., 2018; Stevens et al., 2018).

While fruit studies outnumber all others, considerable

efforts have also been devoted to the study of abiotic

stress, including heat (Keller and Simm, 2018), cold (Cruz-

Mend"ıvil et al., 2015; Barrero-Gil et al., 2016; Ntatsi et al.,

2017), water limitation (Albert et al., 2018), salinity stress

(Zhang et al., 2018) and nutrient deficiency (Zamboni et al.,

2012), and of plant reaction to biotic stress, causes of

which include viruses (Ramesh et al., 2017), bacteria

(French et al., 2018), fungi (Blanco-Ulate et al., 2013; Ghosh

et al., 2016), and nematodes ("Swie
z
cicka et al., 2017).

However, large scale ’omics analyses typically produce

tens or hundreds of candidate genes, which cannot all be

analyzed by reverse genetics. Even the precise knowledge

of when, where, and in response to what stimuli a gene or

a protein is expressed and/or to which pathway or network

it belongs is usually not sufficient to confidently predict its

implication in a trait of interest. In recent years, integration

of ’omics data with additional phenotypic and genetic

information, aided by the establishment of bi-parental and

multi-parental tomato populations and the mapping of

metabolic QTL (mQTL) and/or expression QTL (eQTL)

(Toubiana et al., 2012; Alseekh et al., 2015; Ranjan et al.,

2016; Albert et al., 2018; Garbowicz et al., 2018), has con-

siderably helped linking gene to phenotype. To cite a few

traits, candidate genes underlying tolerance to continuous

light (Velez-Ramirez et al., 2014) and to water limitation

(Albert et al., 2018), and fruit metabolic variations in cuticle

compounds (Ofner et al., 2016), fructose to glucose ratio

(Shammai et al., 2018), steroidal glycoalkaloids (Itkin et al.,

2013) and other secondary metabolites (Alseekh et al.,

2015), carotenoids (Lee et al., 2012), and flavor volatiles

(Garbowicz et al., 2018) have been uncovered and, for sev-

eral of these, functionally validated, using various combi-

nations of ’omics technologies, genetics, and functional

analysis.

The increased availability and low cost of deep sequenc-

ing now enabled the integration of ’omics and genetics

information. Over the last few years, GWAS combined with

extensive mapping of various traits including fruit

metabolite content (mGWAS) of up to 398 tomato geno-

types enabled both the identification of domestication and

improvement sweeps (see for example Tieman et al., 2017)

along the genome and the dissection of genetic and bio-

chemical bases of fruit primary metabolite and ascorbate

contents (Sauvage et al., 2014), malate content (Ye et al.,

2017), pink fruit color (Lin et al., 2014), and flavor compo-

nents (Bauchet et al., 2017; Tieman et al., 2017). Very

recently, association studies were brought to an unprece-

dented resolution level by integrating SNP data (~26 mil-

lion SNPs) with fruit transcriptome (RNA-seq, ~30 000

genes) and metabolome (362 annotated metabolites) data-

sets from between 399 and 610 accessions of wild tomato

species, S. pimpinellifolium, S. lycopersicum var. cerasi-

forme, and S. lycopersicum (Zhu et al., 2018). In this study,

mapping of mQTLs and eQTLs and the study of their asso-

ciation with SNPs by building a multiomics correlation net-

work revealed new metabolic genes and pathways

underlying major fruit metabolic traits such as the content

in anti-nutritional glycoalkaloids or the pink fruit color. In

addition, this study emphasized the metabolic selection

sweeps that modern tomato underwent along its history

and highlighted the contribution to fruit composition of

linkage drags associated with the introgression of fruit

weight QTLs and of seemingly unrelated traits such as

virus resistance.

We may expect that such powerful forward genetic strat-

egy will be used for the discovery of genetic variations

underlying many other tomato traits, for example plant

responses to various environmental stresses or pathogens.

We may also expect that it will be extended to the discov-

ery of traits under epigenetic regulation by analyzing the

methylome of germplasm collections. Recent studies have

paved the way for such advances by demonstrating that

fruit development and ripening was dependent upon the

methylation status of key regulatory and structural genes

(Manning et al., 2006; Kanazawa et al., 2011; Zhong et al.,

2013; Chen et al., 2015; Liu et al., 2015; Lang et al., 2017;

Corem et al., 2018) as was the accumulation of vitamin E

(Quadrana et al., 2014) and the production of flavor vola-

tiles in fruits submitted to chilling stress (Zhang et al.,

2016). Given the prominent role of epigenetics in develop-

mental processes and stress responses (Giovannoni et al.,

2017), it is likely that integration of phenotypic data with

information on the transcriptome, genome, and epigen-

ome will, in the very near future, give access to heritable

epigenetic changes underlying trait variation in tomato.

FROM TRAIT DISCOVERY TO TRAIT ENGINEERING: GENE

EDITING

Once a trait has been discovered, the genotype!phenotype

relationship must be established by screening tomato

germplasm for additional alleles or through reverse

genetic strategies such as gene complementation, gene
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disruption, or gene silencing (Figure 4). Over the last three

decades, various gene silencing (co-suppression, antisense

RNA and RNA interference) and gene complementation

strategies based on stable genetic transformation have

been used for functional analysis of target genes and

played crucial roles in the establishment of genotype!phe-

notype relationships in tomato (Frary et al., 2000; Fernan-

dez et al., 2009; Grierson, 2016). Over the last 15 years, fast

transient assay systems based on the use of viruses such

as the virus-induced gene complementation (VIGC) (Zhou

et al., 2012; Kong et al., 2013) or the widely used virus-

induced gene silencing (VIGS) (Liu et al., 2002) technolo-

gies were effectively developed in tomato for functional

analysis and validation of candidate genes. Virus-based

technologies have also been used for inducing stably

inherited mutational epi-modifications to target genes in

tomato (Kanazawa et al., 2011). In the last 5 years, CRISPR/

Cas9 system has been successfully established in tomato

and has undergone, since then, an overwhelming develop-

ment. All these technologies have already proved their

large interest for establishing genotype!phenotype rela-

tionships. In this review, we will purposely focus on the

most recent applications of GE to tomato and more specifi-

cally on the CRISPR/Cas9 system, which now allows pre-

cise gene disruption, base editing and even targeted gene

replacement in tomato.

Once the genotype!phenotype relationship has been

validated in planta, the trait can be exploited for tomato

improvement e.g. by pyramiding favorable alleles by mar-

ker-assisted selection for constructing superior tomato

varieties combining yield, fruit quality and stress resis-

tance. However, even with the help of advanced genotyp-

ing technologies and of recombination engineering

(Mieulet et al., 2018), this task can remain difficult as unfa-

vorable genes with large pleiotropic effects may be intro-

gressed together with the favorable alleles (Zhu et al.,

2018). Then, the ideal would be to reproduce directly in

elite lines the allelic variation(s) responsible for improve-

ment of the trait(s) of interest. Thanks to the recent

advances in GE technologies, reaching this objective can

be expected in the very near future, as very recently

demonstrated by several studies (Rodr"ıguez-Leal et al.,

2017; Li et al., 2018c; Zs€og€on et al., 2018).

Gene editing systems used for tomato mutagenesis

Zinc finger nucleases (ZFNs), transcription activator-like

effector nucleases (TALENs), and clustered regularly inter-

spaced short palindromic repeats (CRISPR) and its associ-

ated nuclease Cas (CRISPR-associated system) have been

successfully applied to tomato (Van Eck, 2018; Yamamoto

et al., 2018). All three technologies are designed to target

and edit a given sequence using sequence-specific binding

• Fine mapping

• Map-based cloning

• MBS/QTL seq

• RNAseq/proteome

• Allelic diversity

• Marker assisted-selection

• Genomic selection

• Gene editing

• Access to wild relatives 
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Figure 4. General strategy to breed a new trait of interest.

(1) New traits may be complex to assess, notably the response to multiple biotic and abiotic stresses or root-related traits. Automated high-throughput pheno-

typic platforms (PF) may contribute to phenotyping and ecophysiological modeling may help to define new ideotypes. (2) Once the target phenotype is defined,

genetic resources are screened and mapping populations or GWAS panels are used to map the genes/QTLs controlling the trait variation. For this purpose,

many SNP resources are available. (3) The discovery of the gene/allele underlying a specific QTL or a mutation requires either fine mapping and map-based

cloning or MBS/QTL-seq. Screening allelic diversity in genetic resources and mining ’omics data (RNA-seq, proteome) and literature may provide additional

information on the candidate gene. (4) Manipulation of the candidate gene through targeted gene editing of cis-regulatory or coding sequences can be used to

validate its role in the trait. Finally, the creation of a new cultivar will follow a combination of marker-assisted selection, genomic selection and gene editing

(when possible).
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domains fused to a non-specific nuclease that creates dou-

ble-stranded breaks (DSB) in adjacent sequences. Because

DNA DSBs, which occur naturally in the plant, may be

extremely damaging when left unrepaired, plants have

developed DSB repair mechanisms. DSBs can be repaired

by error prone non-homologous end joining (NHEJ), which

can introduce point mutations and/or small insertions/dele-

tions, or by homology-directed homologous recombina-

tion (HR) (Puchta, 2017). Because of inherent complexity

and incidence of off-targets, the use of ZFN (Hilioti et al.,

2016) and of TALEN (Lor et al., 2014; #Cerm"ak et al., 2015)

for tomato genome engineering has been limited, in con-

trast with the CRISPR/Cas9 system. Studied for decades for

its role in bacterial antiviral defense, CRISPR-Cas has been

recently developed into a simple, versatile, and cheap tech-

nology for cleaving and editing DNA sequences in eukary-

otes. CRISPR/Cas9 relies on the combination of the

Streptococcus Cas9 endonuclease with an engineered sin-

gle-guide RNA (gRNA) that can find a given DNA target.

Soon after its development, CRISPR/Cas9 was successfully

used in tomato either via Agrobacterium rhizogenes root

transformation (Ron et al., 2014) or via Agrobacterium

tumefaciens cotyledon transformation that generates heri-

table mutations (Brooks et al., 2014).

Gene disruption with CRISPR/Cas9 in tomato

Since the early applications of CRISPR/Cas9 GE to tomato,

the number of tomato traits engineered with this system

has exploded (see for review Scheben et al., 2017; Van Eck,

2018; Yamamoto et al., 2018). To date, CRISPR/Cas9 has

been chiefly used to knock out genes by creating NHEJ-

repaired DSBs in target coding regions. A dominant gain-

of-function mutation was also reported for a DELLA protein

(Tomlinson et al., 2018). In tomato, in which genetic trans-

formation is carried out via somatic embryogenesis, very

high frequencies of bi-allelic and homozygous heritable

mutations can be obtained in the first generation (up to

100%; Brooks et al., 2014; Pan et al., 2016; Ueta et al.,

2017), meaning that CRISPR engineered tomato plants can

be studied a few months after tissue culture. To further fix

the mutation and exploit it for breeding, the transgenes

have to be segregated out in the progeny (Yu et al., 2017;

Van Eck, 2018). The efficiency of gene disruption can be

improved using Cas9 nuclease with paired gRNAs target-

ing the two ends of a specific sequence (Puchta, 2017).

Standard protocols for Agrobacterium-mediated transfor-

mation have been published for main tomato varieties

(Van Eck, 2018) and can be adapted for recalcitrant geno-

types. User-friendly tools such as CRISPOR (http://crispor.

tefor.net/; Haeussler et al., 2016) , which takes into account

GC content and possible tomato off-targets for designing

gRNAs, are publicly available. In addition, non-profit plas-

mid repositories such as AddGene (https://www.addgene.

org/) provide plasmids useful for CRISPR/Cas9 editing of

tomato, including plant-optimized Cas9 (Li et al., 2013) and

modular cloning systems for multiplexing (Weber et al.,

2011).

In the recent years, many tomato genes have been suc-

cessfully targeted by CRISPR/Cas9, resulting in alteration

of traits such as root development (Ron et al., 2014), leaf

development (Brooks et al., 2014; Pan et al., 2016), day

neutrality and yield (Soyk et al., 2017a), meristem size and

inflorescence architecture (Xu et al., 2015), pollen develop-

ment (Chen et al., 2018; Qin et al., 2018), fruit partheno-

carpy (Klap et al., 2017), fruit ripening (Ito et al., 2015; Li

et al., 2018b), fruit composition (Nonaka et al., 2017), fruit

shelf life (Yu et al., 2017), chilling temperature tolerance (Li

et al., 2018d) as well as in enhanced resistance to the fun-

gal pathogen powdery mildew (Nekrasov et al., 2017). In

addition, the combination of natural and gene-edited muta-

tions of regulators of meristem maturation successfully

enabled the development of weakly branched tomato

hybrids with higher flower and fruit production (Soyk

et al., 2017a). Multiplex genome editing of up to six genes

with multiple gRNAs was also effective in increasing fruit

nutritional value by rewiring lycopene (Li et al., 2018a) and

GABA (Li et al., 2017) metabolic pathways.

Recent developments of CRISPR/Cas9 system and

exploitation for tomato breeding

The NHEJ mechanism was also harnessed for creating

new allelic diversity. Many natural variations favored by

domestication and improvement are found in cis-regula-

tory regions because mutations in coding regions may

have undesirable pleiotropic effects (Swinnen et al., 2016).

By targeting with many gRNAs the cis-regulatory regions

of SlWUS and SlCLV3 that are involved in the control of

tomato carpel number and thus of fruit size (Mu~nos et al.,

2011; Xu et al., 2015), Rodr"ıguez-Leal et al. (2017) could

produce a series of mutations including deletions, inser-

tions, inversion, and point mutations. The cis-regulatory

alleles, which induced a range of phenotypic changes reca-

pitulating the quantitative variations in carpel number/ fruit

size observed in cultivated tomato resources, could be fur-

ther combined and fixed in the progeny. Additionally, they

also showed that plant architecture and inflorescence pro-

duction could be engineered by targeting promoters from

COMPOUND INFLORESCENCE and SELF PRUNING, two

genes already known to control tomato yield (Park et al.,

2014).

Such a strategy, which produces transgene-free plants

that can be integrated into a breeding programme after

evaluation of their phenotypic value, can be extended to

the engineering of a wide range of traits in a single tomato

variety (Zs€og€on et al., 2017). Of special interest are those

traits that should be fine tuned because there is a trade-

off between plant fitness/productivity/quality and

adaptation to abiotic stresses (water limitation, salinity,
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etc.) (Mickelbart et al., 2015) or to biotic stresses e.g.

viruses (Gauffier et al., 2016). Very recently, Zs€og€on et al.

(2018) and Li et al. (2018c) engineered the S. pimpinelli-

folium wild ancestor of cultivated tomato by CRISPR multi-

plexing with six gRNAs, which resulted in the generation

of gene-edited plants with characteristics similar to those

of cultivated tomato, i.e. increased fruit yield and nutri-

tional value. GE targets were cis-regulatory regions, coding

regions or upstream lORF of domestication genes

involved in the regulation of plant architecture, fruit carpel

number, size and shape, and synthesis of lycopene and

ascorbate. In addition, the various accessions of S.

pimpinellifolium gene edited by Li et al. (2018c) displayed

salt tolerance and, for two of these, resistance to bacterial

spot disease.

A second recent breakthrough in tomato (GE) and engi-

neering of agricultural traits is the demonstration that the

HR mechanism can be effectively harnessed for gene

replacement. HR enables the integration of an intended

mutation into the target site, providing that a DNA repair

template is available. However, because HR is much less

efficient than NHEJ in somatic plant cells, it requires con-

siderable efforts for screening large numbers of trans-

formed plants or the use of selection markers. Recently,

geminivirus amplicons were shown to considerably

increase the efficiency of donor template delivery for HR

DNA repair in tomato (#Cerm"ak et al., 2015, 2017). Dahan-

Meir et al. (2018) combined, in a single vector designed for

Agrobacterium-mediated transformation, the CRISPR/Cas9

DSB induction system with a geminivirus replicon carrying

a WT 3’ truncated CAROTENOID ISOMERASE (CRTISO)

gene as donor. The defective deletion allele responsible for

tangerine mutation was effectively replaced by the WT

allele, thus restoring the red fruit color phenotype.

Although these achievements still require confirmation for

additional targets, the very high proportion of HR observed

in this study (25% of first generation plants), without selec-

tion during tissue culture, is very promising. Prospects

such as the reproduction of natural genetic diversity in

tomato elite lines, the precise editing in planta of cis-regu-

lating elements or of proteins with the desired properties,

e.g. for creating new virus resistance (Bastet et al., 2018),

can now be considered.

The application for crop improvement of CRISPR/Cas9

system is expanding continuously (Scheben et al., 2017).

New Cas enzymes offer increased fidelity or RNA targeting

possibilities (Puchta, 2017). Marker-free and new multiplex-

ing systems have been developed for tomato (#Cerm"ak

et al., 2017). One possible exploitation of Cas9 is the gener-

ation of a deactivated dCas9 or a nickase nCas9, which rec-

ognizes a DNA!gRNA complex but does not induce DSBs.

Cytidine deaminase fused to dCas9 or nCas9 induces point

mutations at cytidines within the target range, as success-

fully established in several crops including tomato

(Shimatani et al., 2017). Recently, a dCas9 fused to a

human demethylase was shown to induce heritable epige-

netic changes at specific loci in Arabidopsis (Gallego-

Bartolom"e et al., 2018) opening the way for epigenome

editing of gene regulation in tomato.

CONCLUSION

The pace of trait discovery in tomato has considerably

accelerated in the recent years. Whole genome sequenc-

ing and RNA-seq has enabled easier mapping and nar-

rowing down of the region harboring the traits of

interest or even the direct identification of EMS-induced

causal mutations. Genes, SNPs, indels, or methylation

patterns underlying remarkable phenotypes are currently

being identified for major fruit traits. In addition, current

technologies allow the integration of SNP, transcriptome,

and metabolome data gathered at genome-wide level

from hundreds of tomato genotypes for discovering and

tracing back the history of genetic variations that under-

lie complex traits. At last, the tomato EMS and gene-edi-

ted recombination mutants now available, which

increase meiotic crossovers by at least three-fold (Mieu-

let et al., 2018), should considerably reduce the work

necessary to identify genetic variants and accelerate trait

discovery.

In the very near future, genetic variations that underlie

additional phenotypic variations will continue to be discov-

ered, including for environment-dependent traits. One of

the main limitations is now the availability and throughput

of phenotyping technologies, notably for the study of envi-

ronmental stress impact. The availability of high-density

genotyping techniques and large collections of rese-

quenced collections may help to set up genomic selection

for quantitative traits (Duangjit et al., 2016; Yamamoto

et al., 2017), which should be combined with single muta-

tions for breeding purposes (Figure 4).

Tomato is ideally suited for trait engineering by GE and

several techniques can now be exploited for breeding

superior tomato varieties. However, the exploitation of

CRISPR/Cas9 technologies for breeding is facing huge reg-

ulatory issues in several countries. While the USA consid-

ers that CRISPR-edited organisms are not genetically

modified organisms (GMOs) (Waltz, 2016), the European

Union (EU) has very recently considered, in a preliminary

judgment, that CRISPR mutagenesis constitutes alterations

made to the genetic material and therefore satisfies the

definition of a GMO (Callaway, 2018). In practice, new

tomato varieties obtained through GE technologies ,includ-

ing CRISPR, will have to undertake the long process of

GMO authorization and will face social acceptance issues

in Europe. This caveat will probably prohibit their use

within the EU market over the coming years, while other

tomato markets will be largely open to GE tomato

varieties.
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Appendix 3 
 

Supplemental Figures 

A) 

 
B) 

 
Supplemental Fig.  1: distribution of mean values within magic lines for each trait in Exp.1 (A) and Exp.2 (B); For each trait, 

minimum (dotted lines) and maximum (solid lines) parental values are plotted for control (green) and stress (red) treatment. 
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Supplemental Fig. 3: Haplotypes prediction. Each of the 12 tomato chromosome is represented with the percentage of allelic 

contribution of every parental line. NA represented all positions on the chromosomes where the parental allelic provenance 

could not be assigned

Supplemental Fig.  2: Average variation 

caused by water deficit (WD), salinity (SS) 

and control in Exp.2 (Ctrl2) relatively to 

control in Exp.1. The effect of each 

treatment was measured in percentage of 

increase or decrease against control in 

Exp.1. 
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Supplemental Fig. 4: Mapchart representation of detected QTL on the genetic map for all chromosomes where a QTL was identified. The dashes on the chromosomes barchart 

represent the centimorgan distances between markers along the chromosomes. Each trait has a color code representation. 
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Supplemental Fig.  5: Allelic effect for parental lines for QTL that were mapped in a region of < 2Mb of confidence interval. 
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Supplemental Tables: 

Supplemental Table 1: QTL detected in the different conditions 
QTL name Treatment Chr Pos Lower cM Upper cM CI cM LeftMrk RightMrk pvalue Lower 

Mb 

Upper 

Mb 

CI 

Mb 

R2 

Firmness (Firm)              

Firm1.1 WD 1 19,28 8,00 26,54 18,54 Y01_01730558 Y01_2446381 0,000917 1,25 3,12 1,86 7 

Firm1.2 CxSS 1 164,00 160,07 170,00 9,93 Y01_91212721 Y01_91314498 2,10E-05 91,21 92,27 1,05 25,39 

Firm2.1 CxSS 2 0,24 0,00 6,44 6,44 Y02_19236455 Y02_19860103 0,000931 5,86 33,97 28,12 9,86 

Firm3.1 SS 3 160,54 144,22 164,44 20,22 Y03_63211070 Y03_63370267 0,000637 61,93 63,37 1,44 14,35 

Firm8.1 CxSS 8 44,00 38,00 56,00 18,00 Y08_57208257 Y08_57585344 0,000864 57,21 58,44 1,23 18,48 

Firm8.1 Ctrl2 8 84,00 52,00 111,13 59,13 Y08_61097319 Y08_61170209 0,000532 58,36 64,25 5,89 10,98 

Firm9.1 Ctrl1 9 96,00 80,00 126,00 46,00 Y09_8333659 Y09_11384066 0,000345 4,55 66,55 62,00 7,87 

Firm11.1 CxSS 11 22,00 0,00 30,00 30,00 Y11_1378678 Y11_01987728 9,77E-07 0,11 1,99 1,87 30,09 

Firm11.2 WD 11 98,00 84,33 101,73 17,40 Y11_7241787 Y11_7826292 0,000127 4,48 41,47 36,99 8,74 

Flowering time (Flw)                           

Flw1.1 WD 1 40,80 38,73 48,00 9,27 Y01_29162422 Y01_31257802 1,20E-11 4,61 76,84 72,22 19,6 

Flw1.1 Ctrl2 1 40,80 38,73 46,00 7,27 Y01_29162422 Y01_31257802 4,59E-14 4,61 76,19 71,57 22,19 

Flw1.1 Ctrl1 1 42,00 40,00 48,00 8,00 Y01_75855371 Y01_76186755 3,11E-15 4,96 76,84 71,88 24,09 

Flw1.1 SS 1 66,00 38,73 80,00 41,27 Y01_77436487 Y01_77656130 8,82E-07 4,61 82,58 77,96 11,95 

Flw2.1 Ctrl1 2 2,00 0,00 7,92 7,92 Y02_2784466 Y02_33973517 0,00027 5,86 34,87 29,01 7,87 

Flw3.1 Ctrl1 3 160,54 148,00 186,00 38,00 Y03_63211070 Y03_63370267 0,000964 62,33 65,39 3,06 6,76 

Flw3.1 WD 3 178,00 158,00 186,00 28,00 Y03_64701243 Y03_64793561 0,000142 62,94 65,39 2,45 8,41 

Flw9.1 WD 9 155,58 145,00 178,00 33,00 Y09_68638813 Y09_68807596 2,09E-06 68,30 69,71 1,41 11,72 

Flw9.1 Ctrl1 9 162,30 145,41 188,00 42,59 Y09_69261614 Y09_69332969 4,39E-05 68,41 69,96 1,54 9,37 

Flw9.1 Ctrl2 9 165,03 146,00 172,00 26,00 Y09_69468865 Y09_69553678 0,000991 68,64 69,64 1,00 6,56 

Fruit Weight (FW)                           

FW1.1 WD 1 60,67 36,00 72,00 36,00 Y01_77436487 Y01_77656130 4,04E-05 4,34 82,58 78,24 9,44 

FW1.1 Ctrl2 1 60,67 38,73 76,00 37,27 Y01_77436487 Y01_77656130 1,15E-05 4,61 82,58 77,96 11,45 

FW1.1 Ctrl1 1 62,00 36,00 74,00 38,00 Y01_77436487 Y01_77656130 1,40E-05 4,34 82,58 78,24 10,39 

FW2.1 Ctrl1 2 149,75 136,00 154,00 18,00 Y02_47822111 Y02_48195716 1,16E-05 45,45 48,90 3,45 10,54 

FW2.1 WD 2 152,00 132,00 159,14 27,14 Y02_47822111 Y02_48195716 3,30E-06 44,55 49,68 5,13 11,38 

FW2.2 Ctrl2 2 172,00 164,00 188,00 24,00 Y02_51182657 Y02_51775968 2,82E-05 50,24 52,92 2,68 9,44 

FW2.2 Ctrl1 2 182,95 172,00 192,00 20,00 Y02_52855746 Y02_52920159 4,36E-08 51,18 52,92 1,74 14,61 

FW2.2 WD 2 184,00 172,00 194,00 22,00 Y02_52855746 Y02_52920159 7,95E-08 51,18 53,92 2,74 14,04 

FW2.2 SS 2 194,00 176,00 200,16 24,16 Y02_53919170 Y02_54014597 2,54E-05 51,18 55,10 3,91 9,73 

FW3.2 WD 3 174,00 168,00 189,68 21,68 Y03_64450921 Y03_64521327 0,000152 63,93 66,10 2,16 8,35 

FW3.2 Ctrl1 3 175,02 168,00 180,00 12,00 Y03_64450921 Y03_64521327 4,65E-05 63,93 64,90 0,97 9,43 



Appendix 3: Supplementary materials of Chapter 3 

 

FW3.3 SS 3 189,68 182,73 194,00 11,27 Y03_66167743 Y03_66194454 3,80E-05 65,24 66,77 1,52 9,42 

FW3.4 SS 3 215,20 198,13 215,20 17,07 Y03_70526945 Y03_70741861 0,000278 67,00 70,74 3,75 7,61 

FW8.1 Ctrl2 8 74,00 68,00 82,00 14,00 Y08_59925589 Y08_60170203 2,20E-05 59,54 61,17 1,63 9,6 

FW8.1 CxSS 8 98,00 68,00 104,00 36,00 Y08_62618151 Y08_62799864 0,000958 59,54 63,24 3,69 6,77 

FW11.1 Ctrl1 11 82,00 66,00 100,00 34,00 Y11_04342018 Y11_4478344 0,000103 4,15 21,80 17,65 8,78 

FW11.1 WD 11 92,00 64,00 100,00 36,00 Y11_5023403 Y11_5476941 1,54E-05 4,15 21,80 17,65 10,2 

FW11.1 Ctrl2 11 96,00 88,13 112,00 23,87 Y11_5023403 Y11_5476941 0,000102 4,71 50,68 45,97 8,43 

FW11.1 CxSS 11 97,56 88,13 104,97 16,85 Y11_7241787 Y11_7826292 0,000722 4,71 50,50 45,79 6,91 

FW11.2 Ctrl2 11 134,00 125,19 141,67 16,48 Y11_53206534 Y11_53423887 1,64E-05 52,51 53,82 1,31 9,82 

FW11.2 Ctrl1 11 137,34 130,70 141,67 10,97 Y11_53423887 Y11_53532037 0,000312 53,04 53,82 0,79 7,84 

FW11.2 WD 11 137,34 130,70 141,67 10,97 Y11_53423887 Y11_53532037 6,95E-05 53,04 53,82 0,79 9 

FW11.3 CxSS 11 155,27 142,00 183,33 41,33 Y11_54599648 Y11_54684047 0,000582 53,82 56,11 2,28 6,88 

FW11.3 Ctrl2 11 155,27 152,35 164,00 11,65 Y11_54599648 Y11_54684047 1,34E-06 54,27 55,76 1,49 11,27 

FW11.3 WD 11 158,66 153,09 164,00 10,91 Y11_55100360 Y11_55214790 2,36E-06 54,33 55,76 1,42 11,22 

FW12.1 Ctrl1 12 1,89 0,00 4,00 4,00 Y12_252368 Y12_289700 0,000732 0,01 0,44 0,43 7,09 

Leaf lenght (Leaf)                           

Leaf3.1 WD 3 178,00 168,00 184,00 16,00 Y03_64701243 Y03_64793561 0,000292 63,93 65,39 1,46 7,81 

leaf7.1 CxSS 7 150,06 140,00 160,00 20,00 Y07_63972793 Y07_64025084 0,000576 60,03 64,92 4,89 7,11 

Leaf9.1 Ctrl1 9 46,01 27,27 50,00 22,73 Y09_02673326 Y09_2926053 0,000109 2,29 3,05 0,76 8,63 

Leaf9.2 Ctrl2 9 120,00 80,00 132,00 52,00 Y09_66029792 Y09_66172567 0,000478 4,55 66,55 62,00 7,08 

Leaf10.1 SS 10 102,00 94,00 118,00 24,00 Y10_63191372 Y10_63277141 0,000197 62,56 64,42 1,86 8,01 

Leaf11.1 WD 11 138,12 126,00 153,09 27,09 Y11_53532037 Y11_53823685 0,000732 52,92 54,46 1,55 7,01 

Fruit Number (NFr)                           

NFr1.1 SS 1 72,00 28,00 88,00 60,00 Y01_77656130 Y01_82578583 0,000857 3,12 83,43 80,32 6,71 

NFr2.1 WD 2 108,70 94,00 152,00 58,00 Y02_42916250 Y02_43090566 0,000419 41,34 48,33 6,99 7,5 

NFr2.1 Ctrl1 2 150,00 134,00 154,00 20,00 Y02_47822111 Y02_48195716 0,000153 44,55 48,90 4,35 8,51 

NFr2.2 SS 2 188,00 178,77 196,43 17,66 Y02_52855746 Y02_52920159 1,19E-05 51,78 54,43 2,65 10,44 

NFr10.1 SS 10 6,00 0,00 10,89 10,89 Y10_164588 Y10_354213 0,000773 0,02 1,55 1,53 6,99 

NFr11.1 CxSS 11 113,75 112,27 140,00 27,73 Y11_51851128 Y11_51976036 0,000634 50,68 53,82 3,15 7,33 

NFr12.1 SS 12 166,00 154,63 186,18 31,55 Y12_65148027 Y12_65419995 0,000372 64,13 67,14 3,02 10,19 

Time to ripe (RIP)                           

RIP1.1 Ctrl1 1 42,00 38,73 64,00 25,27 Y01_75855371 Y01_76186755 1,76E-05 4,61 77,66 73,04 10,17 

RIP1.1 Ctrl2 1 48,00 38,73 64,00 25,27 Y01_76569293 Y01_76839188 5,01E-05 4,61 77,66 73,04 9,13 

RIP2.1 Ctrl1 2 182,95 176,00 188,00 12,00 Y02_52855746 Y02_52920159 2,70E-10 51,18 52,92 1,74 17,86 

RIP2.1 WD 2 182,95 176,00 188,00 12,00 Y02_52855746 Y02_52920159 1,62E-11 51,18 52,92 1,74 19,48 

RIP3.1 Ctrl1 3 142,00 124,00 154,00 30,00 Y03_43631616 Y03_61927295 6,61E-05 43,63 62,46 18,83 9,11 

RIP3.2 SS 3 189,04 168,00 196,00 28,00 Y03_65831575 Y03_66097622 0,000459 63,93 66,92 2,99 7,3 

RIP4.1 WD 4 12,05 0,00 17,94 17,94 Y04_892348 Y04_928038 0,000207 0,12 1,33 1,21 6,9 

RIP6.1 Ctrl1 6 117,29 96,00 128,00 32,00 Y06_45218536 Y06_45401935 0,000959 41,98 47,28 5,30 6,82 
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RIP9.1 CxWD 9 36,00 26,72 78,00 51,28 Y09_02673326 Y09_2926053 0,000772 2,29 4,55 2,26 7,04 

RIP9.1 Ctrl1 9 73,23 58,00 92,00 34,00 Y09_04289476 Y09_04316025 0,000771 4,29 11,38 7,09 7,02 

RIP10.1 CxWD 10 8,66 0,00 18,00 18,00 Y10_1166916 Y10_01323966 5,85E-05 0,02 2,22 2,19 9,24 

RIP10.1 WD 10 34,00 5,25 48,00 42,75 Y10_02344795 Y10_3586564 0,00021 0,16 5,03 4,86 8,12 

RIP12.1 WD 12 64,00 42,00 76,00 34,00 Y12_4892313 Y12_5047381 0,000533 3,25 38,65 35,40 7,32 

Sugar Content (SSC)                           

SSC1.1 CxSS 1 74,00 42,00 88,00 46,00 Y01_77656130 Y01_82578583 0,00082 75,86 83,43 7,58 10,55 

SSC1.2 WD 1 209,26 198,00 214,45 16,45 Y01_97105238 Y01_97391336 0,000735 97,11 98,44 1,34 7,03 

SSC2.1 Ctrl1 2 148,00 124,29 159,14 34,85 Y02_45447408 Y02_45645810 0,000825 44,16 49,68 5,52 6,98 

SSC3.1 SS 3 206,74 190,06 215,20 25,14 Y03_68995959 Y03_69010838 0,000347 66,34 70,74 4,40 7,81 

SSC4.1 CxSS 4 116,00 100,71 142,00 41,29 Y04_60952746 Y04_61094261 0,000138 59,79 62,84 3,05 9,41 

SSC4.1 SS 4 127,40 120,00 142,51 22,51 Y04_61842938 Y04_62002311 0,000128 61,28 63,21 1,93 8,66 

SSC4.1 Ctrl2 4 130,00 88,00 142,00 54,00 Y04_61842938 Y04_62002311 9,00E-04 58,90 62,84 3,94 7,22 

SSC7.1 SS 7 73,31 52,81 88,00 35,19 Y07_5490176 Y07_6096064 0,000242 2,95 57,33 54,38 10,89 

SSC10.1 WD 10 14,00 0,00 44,00 44,00 Y10_1707763 Y10_02216078 0,000282 0,02 5,03 5,00 7,86 

SSC11.1 Ctrl2 11 104,45 98,00 113,75 15,75 Y11_41466599 Y11_39071789 0,000417 7,24 51,85 44,61 7,93 

SSC11.2 Ctrl2 11 162,00 155,27 183,33 28,06 Y11_55578287 Y11_55755602 9,56E-05 54,55 56,11 1,56 9,27 

SSC11.2 CxSS 11 164,00 148,00 183,33 35,33 Y11_55578287 Y11_55755602 0,000976 54,09 56,11 2,01 9,86 

SSC11.2 SS 11 164,00 155,27 183,33 28,06 Y11_55578287 Y11_55755602 4,40E-05 54,55 56,11 1,56 9,18 

SSC12.1 CxWD 12 130,00 110,00 143,30 33,30 Y12_62976697 Y12_63690753 0,000326 62,60 64,13 1,52 7,83 

For each trait, all the QTL found are identified by a specific name (QTL name column), the treatment where the QTL was found (Treatment), the chromosome (Chr) and the position (Pos) in cM. 

The peak region encompassing any QTL is defined by a pair of marker (LeftMrk and RightMrk), corresponding to the lower and upper bound expressed in genetic distances (Lower cM & Upper 

cM) as well as physical distances (Lower Mb & Upper Mb). The confidence interval in centimorgan (CI cM) and Mega-base (CI Mb) represent the corresponding differences between Upper and 

Lower. R2 is the percentage of phenotypic variation explained by a QTL. Ctrl 1 and Ctrl2 are the controls treatment for Exp.1 and Exp.2 respectively where the QTL were found. WD and SS are 

the stress treatment for water deficit and salinity.  When interactives QTL are identified in Exp.1 (respectively Exp.2) treatment CxWD (respectively (CxSS) are the corresponding treatment 

designed. 
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Supplemental Table 2: Functional annotation of CG retained after the filtering procedure according to allelic parental effect. 
Chromosome Localization Type impact gene Function 

Firm11.1 specific to CxSS (8GC & 3 pol) 

SL2.50ch11 668462 snp MODIFIER Solyc11g005820 Pectinesterase inhibitor 

SL2.50ch11 668462 snp MODIFIER Solyc11g005830 NifS-like protein Aminotransferase class V family 

SL2.50ch11 668462 snp MODIFIER Solyc11g005840 Cysteine desulfurase 

SL2.50ch11 901124 indel MODIFIER Solyc11g006130 Methyltransferase-like protein 6 

SL2.50ch11 901124 indel MODIFIER Solyc11g006140 DNAJ heat shock N-terminal domain-containing protein 

SL2.50ch11 958779 indel MODIFIER Solyc11g006200 Homeobox transcription factor Hox7-like protein 

SL2.50ch11 958779 indel MODIFIER Solyc11g006210 Unknown Protein 

SL2.50ch11 958779 indel MODIFIER Solyc11g006220 Myosin XI 

Firm8.1 common to CxSS and Ctrl2 (27GC & 46 Pol)  

SL2.50ch08 57391527 - 57393693 snp (3) MODIFIER Solyc08g068290 Os01g0786800 protein 

SL2.50ch08 57392863 - 57407143 snp (3) ; indel (1) MODIFIER Solyc08g068300 Coiled-coil domain-containing protein 25 

SL2.50ch08 57405098 - 57413668 snp (5) ; indel (1) MODIFIER Solyc08g068310 RNA-binding La domain protein 

SL2.50ch08 57413668 - 57429092 snp (3) MODIFIER Solyc08g068320 Transcription factor myb 

SL2.50ch08 57424926 - 57435833 snp (3) MODIFIER Solyc08g068330 Aspartate aminotransferase 

SL2.50ch08 57435833 - 57446365 snp (2) MODIFIER Solyc08g068340 Eukaryotic translation initiation factor 3 subunit 6-interacting protein 

SL2.50ch08 57446365 snp MODIFIER Solyc08g068350 Unknown Protein 

SL2.50ch08 57460516 snp MODIFIER Solyc08g068370 Class E vacuolar protein-sorting machinery protein HSE1 

SL2.50ch08 57513432 - 57525807 snp (3) MODIFIER Solyc08g068390 Fatty acid oxidation complex subunit alpha 

SL2.50ch08 57518954 - 57525807 snp (2) MODIFIER Solyc08g068400 Dienelactone hydrolase domain protein 

SL2.50ch08 57531214 - 57897103 snp (4) MODIFIER Solyc08g068410 Unknown Protein 

SL2.50ch08 57564151 - 57570883 snp (4) MODIFIER Solyc08g068420 FAD-linked oxidoreductase 

SL2.50ch08 57574499 - 57578506 snp (2); indel (1) MODIFIER Solyc08g068430 Galactosylgalactosylxylosylprotein 3-beta-glucuronosyltransferase 1 

SL2.50ch08 57868081 - 57909685 snp MODIFIER Solyc08g068720 Tyramine hydroxycinnamoyl transferase 

SL2.50ch08 57868081 snp  MODIFIER Solyc08g068730 N-acetyltransferase 

SL2.50ch08 57897103 snp MODIFIER Solyc08g068750 Unknown Protein 

SL2.50ch08 57897103 snp MODIFIER Solyc08g068760 Growth-regulating factor 3 

SL2.50ch08 57897103 - 57902392 snp (3) MODIFIER Solyc08g068770 N-acetyltransferase 

SL2.50ch08 57902308 - 57902392 snp (2) LOW Solyc08g068780 N-acetyltransferase 

SL2.50ch08 57902308 snp (3); indel (1) MODIFIER Solyc08g068790 Tyramine hydroxycinnamoyl transferase 

SL2.50ch08 57909549 - 57916200 snp (10) ; indel (1) MODIFIER Solyc08g068800 Glutathione peroxidase 

SL2.50ch08 57909549 - 57917666 snp (11) ; indel (1) MODIFIER Solyc08g068810 Ubiquitin carboxyl-terminal hydrolase 

SL2.50ch08 57917666 - 57921322 snp (2) MODIFIER Solyc08g068820 Zinc finger CCCH domain-containing protein 18 

SL2.50ch08 57921322 - 57929734 snp (2) MODIFIER Solyc08g068830 Zinc finger CCCH-type with G patch domain-containing protein 

SL2.50ch08 57929734 - 57935634 snp (2) MODIFIER Solyc08g068840 Transcription factor IIIB 90 kDa subunit 

SL2.50ch08 57929734 - 57935634 snp (2) MODIFIER Solyc08g068850 Proton pump interactor 1 

SL2.50ch08 57935634 snp MODIFIER Solyc08g068860 Aspartic proteinase nepenthesin-1 
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Firm3.1 specific to SS (36 CG & 29 Pol) 

SL2.50ch03 61944128 indel MODIFIER Solyc03g111330.2 UPF0235 protein yggU 

SL2.50ch03 61944128 - 61955812 indel (2) MODIFIER Solyc03g111340.2 Ubiquitin-like modifier-activating enzyme 5 

SL2.50ch03 61955812 indel MODIFIER Solyc03g111350.2 Deoxycytidylate deaminase-like 

SL2.50ch03 61955812 indel MODIFIER Solyc03g111360.2 Oxygen-independent coproporphyrinogen III oxidase-like protein sll1917 

SL2.50ch03 61955812 indel MODIFIER Solyc03g111370.2 Zinc finger protein 

SL2.50ch03 61994574 indel MODIFIER Solyc03g111400.1 Xanthine/uracil permease family protein 

SL2.50ch03 61994574 - 62005711 indel (2) MODIFIER Solyc03g111410.2 B3 domain-containing protein Os01g0905400 

SL2.50ch03 62028535 indel MODIFIER Solyc03g111430.1 Unknown Protein 

SL2.50ch03 62028535 indel MODIFIER Solyc03g111440.1 DNAJ heat shock N-terminal domain-containing protein 

SL2.50ch03 62064922 indel MODIFIER Solyc03g111460.1 Nuclear transcription factor Y subunit C-2 

SL2.50ch03 62099020 snp MODIFIER Solyc03g111490.1 Ulp1 protease family C-terminal catalytic domain containing protein 

SL2.50ch03 62099020 snp MODIFIER Solyc03g111500.2 B3 domain-containing protein Os01g0905400 

SL2.50ch03 62117618 - 62117956 indel (3) MODIFIER Solyc03g111510.2 Zinc finger family protein 

SL2.50ch03 62131267 - 62131953 indel (2) MODIFIER Solyc03g111530.2 Cysteine-rich receptor-like protein kinase 

SL2.50ch03 62415608  - 

62418765 

indel (4) MODIFIER Solyc03g111780.1 WD-40 repeat family protein 

SL2.50ch03 62415608 - 62418765 indel (4) MODIFIER Solyc03g111790.2 Centromere protein X 

SL2.50ch03 62418765 indel MODIFIER Solyc03g111800.2 Receptor like kinase%2C RLK 

SL2.50ch03 62594981 indel MODIFIER Solyc03g112050.2 Serine/threonine kinase 

SL2.50ch03 62594981 indel MODIFIER Solyc03g112060.2 Quinolinate synthase A 

SL2.50ch03 62689442 indel MODIFIER Solyc03g112190.2 Pentatricopeptide repeat-containing protein 

SL2.50ch03 62689442 indel MODIFIER Solyc03g112200.1 Unknown Protein 

SL2.50ch03 62689442 indel MODIFIER Solyc03g112210.1 Unknown Protein 

SL2.50ch03 62689442 indel MODIFIER Solyc03g112220.1 Unknown Protein 

SL2.50ch03 62765101 indel MODIFIER Solyc03g112330.2 U-box domain-containing protein 33 

SL2.50ch03 62765101 indel MODIFIER Solyc03g112340.1 Ring H2 finger protein 

SL2.50ch03 62869719 indel MODIFIER Solyc03g112460.2 Alliinase 

SL2.50ch03 62889969 indel MODIFIER Solyc03g112490.1 Unknown Protein 

SL2.50ch03 62928738 - 62933195 indel (2) MODIFIER Solyc03g112540.2 Retinol dehydrogenase 12 

SL2.50ch03 62933195 indel MODIFIER Solyc03g112550.2 Kinetochore protein Spc25 

SL2.50ch03 62965799 indel MODIFIER Solyc03g112580.2 Receptor like kinase%2C RLK 

SL2.50ch03 63001033 indel MODIFIER Solyc03g112600.2 JmjC domain-containing protein 

SL2.50ch03 63001033 indel MODIFIER Solyc03g112610.1 Unknown Protein 

SL2.50ch03 63001033 - 63002483 indel (2) MODIFIER Solyc03g112620.2 Carboxyl-terminal proteinase 

SL2.50ch03 63016924 indel MODIFIER Solyc03g112630.2 Fas-associated factor 1-like protein 

SL2.50ch03 63016924 indel MODIFIER Solyc03g112640.2 CRAL/TRIO domain containing protein 

SL2.50ch03 63231925 - 63239632 indel (2) MODIFIER Solyc03g112940.2 Serine/threonine-protein kinase ATM 

FW8.1 common to CxSS and Ctrl2 (31GC & 738 Pol) 

SL2.50ch08 59544733 - 59546703 indel (3); snp (20) MODIFIER Solyc08g075390 Isopentenyl-diphosphate delta-isomerase family protein 
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SL2.50ch08 59544733 - 59550417 indel (3); snp (30) MODIFIER/MODERATE Solyc08g075400 SWIB/MDM2 domain protein 

SL2.50ch08 59544733 - 59553646 indel (3); snp (38) MODIFIER Solyc08g075410 50S ribosomal protein L2 

SL2.50ch08 59546159 - 59561420 indel (5); snp (54) MODIFIER Solyc08g075420 Uncharacterized zinc finger CCHC domain-containing protein At4g19190 

SL2.50ch08 59560930 _ 

59572063 

indel (6); snp (45) MODIFIER/LOW/MODERATE/HIGH Solyc08g075430 ABC transporter G family member 14 

SL2.50ch08 59586672 - 59600670 indel (6); snp (54) MODIFIER/MODERATE/LOW Solyc08g075440 Conserved oligomeric Golgi complex subunit 6 

SL2.50ch08 59594411 - 59614436 indel (8); snp (72) MODIFIER Solyc08g075450 Nodulin-like protein 

SL2.50ch08 59610214 - 59622431 indel (7); snp (49) MODIFIER/MODERATE Solyc08g075460 Nodulin-like protein 

SL2.50ch08 59615722 - 59630904 indel (12); snp(67) MODIFIER/MODERATE/LOW/HIGH Solyc08g075470 Nodulin-like protein 

SL2.50ch08 59622559 - 59630904 indel (10); snp(45) MODIFIER/MODERATE/LOW Solyc08g075480 Carotenoid cleavage dioxygenase 4A 

SL2.50ch08 59640117 - 59651492 indel (13); snp (61) MODIFIER/MODERATE/LOW Solyc08g075490 Carotenoid cleavage dioxygenase 4B 

SL2.50ch08 59655124 - 59662369 indel (5); snp (54) MODIFIER/MODERATE/LOW/HIGH Solyc08g075500 Pentatricopeptide repeat-containing protein 

SL2.50ch08 59656921 - 59669780 indel (9); snp (39) MODIFIER/MODERATE Solyc08g075510 JmjC domain protein 

SL2.50ch08 59667562 - 59681711 indel (6); snp (50) MODIFIER/MODERATE/LOW Solyc08g075520 Binding protein 

SL2.50ch08 59687841 - 59713033 indel (10); snp (60) MODIFIER/LOW Solyc08g075530 Alpha glucosidase-like protein 

SL2.50ch08 59707355 - 59718596 indel (9); snp (36) MODIFIER/LOW Solyc08g075540 Alternative oxidase 

SL2.50ch08 59712704 - 59723088 indel (17); snp (49) MODIFIER/MODERATE/LOW Solyc08g075550 Alternative oxidase 

SL2.50ch08 59723852 - 59733339 indel (11); snp (39) MODIFIER/MODERATE/LOW Solyc08g075560 Unknown Protein 

SL2.50ch08 59729935 - 59742458 indel (13); snp (58) MODIFIER/MODERATE/LOW Solyc08g075570 Urea active transporter-like protein 

SL2.50ch08 59734828 - 59742458 indel (7) ; (41) MODIFIER Solyc08g075580 DNA-directed RNA polymerase III subunit F 

SL2.50ch08 59735219 - 59742458 indel (4); snp (33) MODIFIER/MODERATE/LOW Solyc08g075590 Receptor like kinase%2C RLK 

SL2.50ch08 60630281 - 60630307 snp (2) MODIFIER Solyc08g076690 Inositol-tetrakisphosphate 1-kinase 1 

SL2.50ch08 60793358 indel MODIFIER Solyc08g076870 Unknown Protein 

SL2.50ch08 60897111 _ 

60897121 

indel; snp MODIFIER Solyc08g076960 Abscisic acid receptor PYR1 

SL2.50ch08 60907932 indel MODIFIER Solyc08g076970 Acetylornithine deacetylase or succinyl-diaminopimelate desuccinylase 

SL2.50ch08 60923434 - 60926657 indel (4) MODIFIER Solyc08g076980 Acetylornithine deacetylase or succinyl-diaminopimelate desuccinylase 

SL2.50ch08 60926657 - 60936272 indel (2) MODIFIER Solyc08g076990 Acetylornithine deacetylase 

SL2.50ch08 61065341 indel MODIFIER Solyc08g077160 NAD 

SL2.50ch08 61101245 indel MODIFIER Solyc08g077190 Unknown Protein 

SL2.50ch08 61101245 - 61102430 indel (3) MODIFIER Solyc08g077200 Ribose-phosphate pyrophosphokinase 

SL2.50ch08 61131025 indel MODIFIER Solyc08g077220 Tetraspanin family protein 

FW11.2 common to Ctrl1, WD and Ctrl2 (29 CG & 32 Pol) 

SL2.50ch11 53040997 indel MODIFIER Solyc11g067300.1 Lipid A export ATP-binding/permease protein msbA 

SL2.50ch11 53124062 indel MODIFIER Solyc11g068370.1 BZIP transcription factor 

SL2.50ch11 53158885 - 53159771 snp (1) ; indel (1) MODIFIER Solyc11g068430.1 Ferredoxin 

SL2.50ch11 53171810 - 53177163 snp (2) ; indel (3) MODIFIER Solyc11g068440.1 Glucan endo-1 3-beta-glucosidase 7 

SL2.50ch11 53177163 indel MODIFIER Solyc11g068450.1 Biogenesis of lysosome-related organelles complex-1 subunit 1 

SL2.50ch11 53177163 indel MODIFIER Solyc11g068460.1 Calpain-2 catalytic subunit 

SL2.50ch11 53225598 - 53225601 snp (1) ; indel (1) MODIFIER Solyc11g068520.1 Rho GTPase activating protein 2 
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SL2.50ch11 53225598 - 53225601 snp (1) ; indel (1) MODIFIER Solyc11g068530.1 Genomic DNA chromosome 5 P1 clone MWD9 

SL2.50ch11 53225598 - 53225601 snp (1) ; indel (1) MODIFIER Solyc11g068540.1 N-carbamoylputrescine amidase 

SL2.50ch11 53336896 - 53337562 indel (3) MODIFIER Solyc11g068700.1 Unknown Protein 

SL2.50ch11 53336896 - 53343358 snp (1) ; indel (3) MODIFIER Solyc11g068710.1 F-box family protein 

SL2.50ch11 53356856 - 53358330 snp (1) ; indel (1) MODIFIER Solyc11g068720.1 Os04g0625000 protein 

SL2.50ch11 53358330 - 53372493 snp (1) ; indel (1) MODIFIER Solyc11g068730.1 Nitrilase 4A 

SL2.50ch11 53372493 indel MODIFIER Solyc11g068740.1 Methyl binding domain protein 

SL2.50ch11 53400655 indel MODIFIER Solyc11g068760.1 Unknown Protein 

SL2.50ch11 53415455 indel MODIFIER Solyc11g068780.1 Plant-specific domain TIGR01568 family protein 

SL2.50ch11 53415455 indel MODIFIER Solyc11g068790.1 Chromosome 20 open reading frame 108 ortholog 

SL2.50ch11 53425133 indel MODIFIER Solyc11g068800.1 Transcription factor 

SL2.50ch11 53425133 indel MODIFIER Solyc11g068810.1 Unknown Protein 

SL2.50ch11 53494458 indel MODIFIER Solyc11g068930.1 Autophagy-related 7 

SL2.50ch11 53494458 indel MODIFIER Solyc11g068940.1 U-box domain-containing protein 24 

SL2.50ch11 53547091 - 53549750 indel (3) MODIFIER Solyc11g068970.1 Aluminum-activated malate transporter 

SL2.50ch11 53556394 indel MODIFIER Solyc11g068980.1 Mitochondrial import inner membrane translocase subunit tim22 

SL2.50ch11 53601247 - 53603756 indel (2) MODIFIER Solyc11g069030.1 MYB transcription factor 

SL2.50ch11 53668484 indel MODIFIER Solyc11g069080.1 Os09g0549700 protein 

SL2.50ch11 53682719 indel MODIFIER Solyc11g069090.1 ATP-binding cassette protein 

SL2.50ch11 53731840 indel MODIFIER Solyc11g069130.1 Unknown Protein 

SL2.50ch11 53759795 indel MODIFIER Solyc11g069150.1 Proteasome subunit beta type 

SL2.50ch11 53759795 indel MODIFIER Solyc11g069160.1 Sumo ligase 

Only QTL that presented less than 40 CG were screened.  For each QTL, the chromosome and localization (position in pb) were precised. The type of polymorphisms, depending if it is a single 

nucleotide polymorphism (snp) or insertion deletion (indel) were in the column "Type". The number of snp or indel at a given gene is marked in brackets () when more than one polymorphism 

affected a given gene. The impact of polymorphisms affecting a gene were defined as MODIFIER when snp or indel are located in upstream or downstream region; MODERATE and LOW when 

polymorphisms had respectively non-synonymous  or synonymous variant effect and HIGH when they affect splice site variant or start/stop codon. The putative function of each CG was checked 

on the annotation database of the tomato genome assembly (SL2.50)
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Appendix 4 
Supplemental Figures: 

 

Supplemental Figure 1: Phenotypic variation under WD for each genotype. Phenotypic traits are represented on the x-axis 

while the y-axis represents the percentage of increase/decrease of the trait value under the WD condition. In grey and black 

are all traits affected positively and negatively by WD condition, respectively. 

 

 

Supplemental Figure 2 A): Total number of read counts after RNA-sequencing processing for fruit. 
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Supplemental Figure 2 B): Total number of read counts after RNA-sequencing processing for leaf. 

 

 

 

 

Supplemental Figure 3: Expression pattern of the consistent DEG in fruit and leaf. The DEG were classified as up-up when up-

regulated in both organs, up-down when up regulated in one organ (leaf or fruit) while down-regulated in the other and 

down-down when down regulated in both organs. 
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Supplemental Figure 4: Proportion of the sum of square attributed to each factor (Genotype, Condition or GxC) in fruit and 

leaf samples through the ANOVA analysis on the normalized transcript level.  

 

Supplemental Tables: 

 

Supplemental Table 1: Phenotypic traits evaluated on the eight genotypes under normal irrigation and 

WD condition. The greenhouse experiment is described in details in Albert et al. (2018). 

Trait Abbreviation Truss 

phenotyped 

Measurements 

Flowering time flw T4 Number of days from the 1st of january 

Plant height height T4 Plant height in cm at the 4th truss 

Stem diameter diam T4 Equatorial measurement os stem diameter (in mm) under the 4th 

truss 

Soluble solid 

content 

SSC T3-to-T6 Brix of pooled fruits from the 3rd to the 6th truss 

fruit weight fw T3-to-T6 Average fruit weight (in grams) of pooled fruits from the 3rd to 

the 6th truss 

pH pH T3-to-T6 Brix of pooled fruits from the 3rd to the 6th truss 

Dry matter 

weight  

DMW T3-to-T6 Percentage of dry matter after fruit samples dried in an oven for 4 

days. Fruits were pooled from the 3rd to 6th truss 

Glucose 

content 

Gluc T3-to-T6 g 100 g-1 of fresh matter from a pool of fruits harvested on the 

3rd - 6th truss 

Fructose 

content 

Fruct T3-to-T6 g 100 g-1 of fresh matter from a pool of fruits harvested on the 

3rd - 6th truss 

Vitamine C VitC T3-to-T6 mg 100 g-1 of fresh matter from a pool of fruits harvested on the 

3rd - 6th truss 
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Supplemental Table 2: Results of the two-way interactive ANOVA analysis on the phenotypic traits. 

For each factor the associated sum of square and p-value of the test are highlighted. The ns p-values 

for the GxE factor stand for non-significant GxE. 

Trait Factor SSQ p-value 

diameter Geno 182,497536 1,29E-16 

diameter Env 166,796934 1,15E-19 

diameter GxE 50,1595955 2,22E-05 

DMW Geno 161,146561 4,56E-09 

DMW Env 16,0913547 0,0014867 

DMW GxE 31,592869 ns 

flw Geno 2701,3381 1,08E-55 

flw Env 1,42074058 0,39463091 

flw GxE 194,378776 ns 

Fructose Geno 12,9844224 5,78E-12 

Fructose Env 1,09974856 0,00077117 

Fructose GxE 3,31885506 ns 

fw Geno 65400,9879 1,46E-22 

fw Env 2519,56424 1,22E-07 

fw GxE 3296,64439 6,96E-06 

Glucose Geno 16,0933101 3,60E-16 

Glucose Env 0,09180106 0,15403216 

Glucose GxE 2,12293183 3,75E-05 

height Geno 35211,5739 1,61E-42 

height Env 1549,16667 3,04E-07 

height GxE 1038,54167 0,00876656 

pH Geno 0,53180262 3,90E-06 

pH Env 0,00832775 0,34551452 

pH GxE 0,34683558 ns 

SSC Geno 100,780933 4,75E-13 

SSC Env 4,67E-05 0,99259824 

SSC GxE 20,87862 ns 

vitamin C Geno 651,71389 0,0001262 

vitamin C Env 1,28027436 0,77898539 

vitamin C GxE 608,99548 ns 
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Supplemental Table 6: Candidate genes under the plasticity QTLs. The genes presented in this table are all the DEG in fruit under the QTLs regions which 

besides showed significant correlation between the estimated allelic effect of the QTL and the expression level in control, drought or the expression level 

plasticity (expression in drought – expression in control). The functional annotation of the genes was retrieved from the reference annotation of SL2.50 

version. 

QTL_name Candidate genes Chr Start2.5 End2.5 r2 

(expression 

in control) 

r2 

(expression 

in WD) 

r2 

(plasticity 

expression) 

Annotation 

SSC1.1 Solyc01g067890 1 76868469 76872760 -0,786 0,262 0,667 1-deoxy-D-xylulose 5-phosphate synthase 1 

SSC1.1 Solyc01g068030 1 77067061 77069661 -0,810 -0,357 0,714 Cyclase/dehydrase 

SSC1.1 Solyc01g068360 1 77571932 77576464 -0,524 0,786 0,690 Receptor like kinase%2C RLK 

SSC1.1 Solyc01g068470 1 77706812 77716549 -0,738 -0,143 0,190 CM0216.540.nc protein 

SSC1.1 Solyc01g073950 1 81294817 81299295 0,762 0,119 -0,333 Bromodomain protein 

SSC1.1 Solyc01g074030 1 81355107 81362077 -0,667 0,810 0,833 Beta-glucosidase 01 

SSC1.1 Solyc01g079080 1 78147650 78153323 -0,238 0,833 0,762 Coiled-coil protein 

SSC1.1 Solyc01g079820 1 78948285 78952100 -0,738 0,214 0,643 Redoxin domain protein 

SSC1.1 Solyc01g080010 1 79139189 79140725 0,810 -0,190 -0,500 Xylanase inhibitor 

SSC1.1 Solyc01g080280 1 79528933 79534220 -0,667 0,738 0,786 Glutamine synthetase 

SSC1.1 Solyc01g080810 1 80090183 80113075 -0,810 0,190 0,738 Isoleucyl-tRNA synthetase 

SSC1.1 Solyc01g081010 1 80319039 80322870 0,667 -0,095 -0,738 Nucleolar GTP-binding protein 

SSC1.1 Solyc01g081490 1 80688400 80694078 -0,738 0,595 0,762 RNA polymerase sigma factor 

SSC1.1 Solyc01g087040 1 81964948 81965916 -0,214 0,762 0,643 Thylakoid lumenal 19 kDa protein%2C chloroplastic 

SSC1.1 Solyc01g087200 1 82128176 82131412 -0,476 -0,762 -0,310 Cc-nbs-lrr%2C resistance protein 

SSC1.1 Solyc01g087610 1 82558349 82575296 -0,762 0,000 0,452 Alpha-N-acetylglucosaminidase 

SSC1.1 Solyc01g087620 1 82578141 82582009 0,786 0,095 -0,619 Unknown Protein 

SSC1.1 Solyc01g087750 1 82671716 82676297 -0,833 0,095 0,762 Homology to unknown gene 

SSC1.1 Solyc01g087810 1 82696867 82699405 0,786 0,381 -0,262 Subtilisin-like protease 

SSC1.1 Solyc01g087980 1 82828688 82829937 0,429 -0,381 -0,762 Unknown Protein 

Firm1.2 Solyc01g102450 1 91256276 91257499 -0,167 -0,738 -0,357 Transmembrane protein 34 

Firm1.2 Solyc01g103350 1 91979041 91985730 0,357 -0,143 -0,738 Cell division protein kinase 13 

Firm2.1 Solyc02g021270 2 22396831 22398073 0,738 0,571 -0,119 Unknown Protein 

SSC4.1 Solyc04g076110 4 61064632 61068969 0,500 -0,119 -0,810 Genomic DNA chromosome 5 TAC clone K2I5 

SSC4.1 Solyc04g077140 4 62081239 62083601 0,762 0,310 -0,190 Unknown Protein 

SSC4.1 Solyc04g077470 4 62384500 62387723 -0,071 0,238 0,857 Cellulose synthase-like C1-2 glycosyltransferase family 2 protein 

SSC4.1 Solyc04g077670 4 62603103 62610325 -0,143 0,762 0,595 Serine carboxypeptidase 1 

Firm8.1 Solyc08g068180 8 57296261 57299703 0,190 0,905 0,357 Ribosomal protein L37 

Firm8.1 Solyc08g068300 8 57396636 57404421 0,381 0,762 0,429 Coiled-coil domain-containing protein 25 
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Firm8.1 Solyc08g068320 8 57418440 57426724 0,405 0,833 0,262 Transcription factor myb 

Firm8.1 Solyc08g068600 8 57730921 57733032 -0,095 -0,738 -0,524 Decarboxylase family protein 

Firm8.1 Solyc08g068680 8 57812621 57814771 0,333 -0,833 -0,667 Decarboxylase family protein 

Firm8.1 Solyc08g068690 8 57820371 57821093 -0,476 -0,762 -0,762 N-acetyltransferase 

Firm8.1 Solyc08g069010 8 58091099 58104720 0,000 0,762 0,262 Pentatricopeptide repeat-containing protein 

FW8.1 Solyc08g075540 8 59711798 59713604 -0,810 0,619 0,881 Alternative oxidase 

FW8.1 Solyc08g075840 8 59923376 59927498 0,810 -0,119 -0,762 Single-stranded DNA-binding replication protein A large subunit 

FW8.1 Solyc08g075960 8 60037421 60047282 -0,810 0,357 0,476 Mps one binder kinase activator-like 1A 

FW8.1 Solyc08g076170 8 60199376 60199624 0,905 -0,238 -0,310 Unknown Protein 

FW8.1 Solyc08g076200 8 60216924 60225205 -0,881 -0,095 0,429 ATP dependent RNA helicase 

FW8.1 Solyc08g076250 8 60252381 60254194 0,762 0,738 -0,167 Cytochrome P450 

FW8.1 Solyc08g076420 8 60428964 60437672 -0,952 0,238 0,714 Poly polymerase catalytic domain containing protein expressed 

FW8.1 Solyc08g076650 8 60585195 60590640 0,643 -0,167 -0,833 Alpha alpha-trehalose-phosphate synthase 

FW8.1 Solyc08g076810 8 60710899 60723537 0,786 0,190 -0,048 GPI-anchored wall transfer protein 1 

FW8.1 Solyc08g077440 8 61326655 61336566 -0,833 0,048 0,738 ATP-dependent protease La 

FW8.1 Solyc08g078040 8 61908800 61911939 -0,810 -0,214 0,143 Monooxygenase FAD-binding 

FW8.1 Solyc08g078050 8 61911855 61912154 -0,719 -0,286 0,000 CTF2A 

FW8.1 Solyc08g078100 8 61950808 61952214 0,762 -0,262 -0,667 Amino acid permease-like protein 

FW8.1 Solyc08g078670 8 62449831 62451757 0,810 0,238 -0,310 Aspartyl protease 

FW8.1 Solyc08g079260 8 62866686 62872031 -0,738 0,000 0,238 Serine/threonine-protein phosphatase 

FW8.1 Solyc08g079280 8 62887252 62889535 0,905 0,119 -0,429 cytochrome P450 

FW8.1 Solyc08g079450 8 62967637 62975950 0,238 -0,381 -0,833 Maspardin 

FW8.1 Solyc08g083410 8 62913369 62915364 0,405 0,786 -0,238 cytochrome P450 

RIP9.1 Solyc09g009030 9 2377785 2382402 -0,786 -0,095 0,619 Histone deacetylase 2a-like 

RIP9.1 Solyc09g009510 9 2924885 2929510 0,619 -0,524 -0,810 Hydrolase alpha/beta fold family protein 

RIP9.1 Solyc09g010520 9 3897831 3901988 -0,381 0,357 0,905 ADP-ribosylation factor GTPase activating protein 1 

RIP9.1 Solyc09g010630 9 3965253 3968837 -0,619 -0,048 0,810 heat shock protein 

RIP9.1 Solyc09g010700 9 4021734 4024116 0,810 0,024 -0,238 CM0545.320.nc protein 

RIP9.1 Solyc09g010870 9 4200163 4209478 0,762 -0,024 -0,619 Exoribonuclease R/ribonuclease II 

RIP9.1 Solyc09g011140 9 4499977 4502723 0,429 -0,095 -0,810 Tropinone reductase I 

RIP10.1 Solyc10g005100 10 92148 94188 -0,252 -0,802 -0,575 Salt stress root protein RS1 

RIP10.1 Solyc10g006130 10 863907 864572 0,359 -0,371 -0,755 Ethylene responsive transcription factor 3a 

RIP10.1 Solyc10g006180 10 887356 891118 0,731 -0,731 -0,826 Unknown Protein 

RIP10.1 Solyc10g006190 10 899319 905588 -0,431 -0,743 -0,299 Cell differentiation protein rcd1 

RIP10.1 Solyc10g006650 10 1157432 1161954 0,216 -0,335 -0,731 Flavoprotein wrbA 

Firm11.1 Solyc11g005700 11 547491 548753 0,119 -0,762 -0,429 U-box domain-containing protein 

FW11.1 Solyc11g011910 11 4841188 4847641 0,333 0,881 0,714 Transmembrane 9 superfamily protein member 1 

FW11.1 Solyc11g017440 11 8383387 8384626 0,143 -0,786 -0,714 Snakin-2 
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FW11.1 Solyc11g017470 11 8422146 8423170 -0,619 0,190 0,762 NAC domain protein IPR003441 

FW11.1 Solyc11g020040 11 10015582 10019521 -0,500 0,310 0,833 Chaperone DnaK 

FW11.1 Solyc11g020610 11 11747788 11752875 -0,238 -0,738 -0,333 Neutral invertase like protein 

FW11.1 Solyc11g040050 11 40024447 40028245 -0,738 0,000 0,548 RNA binding protein 

FW11.1 Solyc11g040180 11 39214219 39232913 -0,143 0,810 0,619 mRNA-capping enzyme subunit alpha 

FW11.1 Solyc11g044510 11 32553978 32555063 -0,524 0,833 0,905 Unknown Protein 

FW11.1 Solyc11g062420 11 49461521 49461894 0,881 -0,299 -0,976 Unknown Protein 

NFr11.1 Solyc11g065520 11 50941268 50942947 0,738 -0,262 -0,786 Unknown Protein 

NFr11.1 Solyc11g065700 11 51233185 51238585 -0,762 0,000 0,310 Nuclear transcription factor Y subunit A-1 

NFr11.1 Solyc11g065930 11 51514472 51526784 0,357 -0,833 -0,810 Xanthine dehydrogenase/oxidase 

NFr11.1 Solyc11g066380 11 52152003 52154883 0,857 -0,690 -0,833 Auxin-regulated protein 

NFr11.1 Solyc11g067080 11 52823676 52828937 -0,381 -0,833 -0,071 Protein kinase like protein 

NFr11.1 Solyc11g068540 11 53230361 53236610 -0,786 -0,071 0,524 N-carbamoylputrescine amidase 

FW11.3 Solyc11g069570 11 54189529 54193187 0,000 0,881 0,619 Cytokinin riboside 5%26apos%3B-monophosphate phosphoribohydrolase LOG 

FW11.3 Solyc11g069600 11 54231913 54237114 0,738 0,786 0,310 Inter-alpha-trypsin inhibitor heavy chain H4 

SSC11.2 Solyc11g069800 11 54429028 54430560 0,119 -0,762 -0,405 cytochrome P450 

SSC11.2 Solyc11g071270 11 54800949 54808782 0,000 -0,357 -0,762 Class E vacuolar protein-sorting machinery protein HSE1 

FW11.3 Solyc11g071620 11 55041360 55048950 0,762 -0,167 -0,405 Aldehyde oxidase 

SSC11.2 Solyc11g071620 11 55041360 55048950 -0,524 0,738 0,690 Aldehyde oxidase 

FW11.3 Solyc11g071920 11 55240769 55250182 0,762 0,357 -0,381 Serine/threonine-protein phosphatase 

SSC12.1 Solyc12g057020 12 63099371 63100778 0,833 0,156 -0,524 Acetyl xylan esterase A 

SSC12.1 Solyc12g088400 12 63800346 63800636 0,524 0,810 0,714 Zinc-finger protein 

SSC12.1 Solyc12g088430 12 63811082 63811432 0,262 -0,714 -0,762 Unknown Protein 
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Appendix 5 
 

Supplemental Figures 

 

 
 
Supplemental Figure 1: Principal Coordinate Analysis (PCoA) in the CC panel, based on the Kinship matrix. 

 

 
Supplemental Figure 2 A): Distribution for all traits evaluated under optimal (light gray) and HT-stress (dark gray) conditions, 

in the CC population with the vertical lines representing the upper-range (solid lines) and lower-range (dashed lines) of the 

MAGIC parental lines distribution under optimal (green) and HT-stress (red) conditions. Only the four small parental lines 

included in the CC panel were considered. 
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Supplemental Figure 2 B): Distribution for all traits evaluated under optimal (light gray) and HT-stress (dark gray) conditions, 
in the MAGIC population; the vertical lines are as in the CC panel, but all the eight parental lines were considered. 

 

 

 

 
Supplemental Figure 3: Number of genotypes per group across populations. The groups were defined according to 

genotype’s susceptibility to HT-stress regarding the flowering time. The “early” (resp. “medium”) group clustered genotypes 

that flowered in average 18 days (resp. 8 days) earlier in the HT-stress condition. The genotypes that flowered later in the 

HT-stress condition are in the “late” group. 
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Supplemental Figure 4: Phenotypic plasticity distribution for 404 MAGIC and CC lines regarding the group defined according 

to flowering time response under HT-stress condition. The stars highlight traits where a significant group effect was detected. 

 

 
Supplemental Figure 5: Daily temperature fluctuation in the greenhouse for the CC and MAGIC trials. The minimal, mean and 

maximal temperatures are presented from the plant’s transfer into the greenhouse to the end of flowering time. The red and 

black arrows in the MAGIC figures represent the period covering flowering time of the 5th truss (truss phenotyped for flw) in 

the MAGIC population.  
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Supplemental Figure 6: Coefficient of variation (CV) for the 11 traits evaluated in both populations. The green and orange 

dots represent the Control and HT-stress conditions, respectively. The circle indicates CV in the CC population and the triangle, 

the MAGIC population.  

 
Supplemental Figure 7: Estimated allelic effects for all plasticity QTLs identified in the MAGIC population. 
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Supplemental Figure 8: Geographical origin of the CC lines. Each circle represents a country where CC lines were originated, 

and the size of the circle is proportional to the number of genotypes that were selected from a region. 

 

Supplemental Tables 
 

Supplemental Table 2: Pearson's correlation between traits and conditions in the CC (A) and the MAGIC (B) 

populations, respectively. The upper sides of the table’s correspond to trait-correlations in the HT-stress 

conditions and the lower sides to trait-correlations in the control condition. The column CorrEnv represents the 

correlation between HT-stress and control conditions for each single trait. The non-significant correlations were 

notified by empty cells. When significant at a threshold of 0.05, the coefficient correlations were indicated. 

A) CC             

Traits leaf diam height flw nflw nfr fset fw col_a SSC pH CorrEnv 

leaf leaf 0.286  -0.417   0.218  -0.184   0.343 

diam 0.36 diam   -0.192 -0.195  0.297  -0.207  0.471 

height   height 0.3      -0.195  0.524 

flw -0.227  0.674 flw  -0.324 -0.607   -0.246  0.7 

nflw  -0.27  -0.207 nflw 0.641      0.57 

nfr  -0.228  -0.201 0.95 nfr 0.402 -0.256  0.389 0.186 0.475 

fset     -0.293  fset   0.492 0.237 0.321 

fw  0.268  0.213  -0.2255 -0.227 fw  -0.352 -0.364 0.861 

col_a   -0.181 -0.207     col_a   0.786 

SSC  -0.225  -0.23 0.282 0.338  -0.504  SSC 0.49 0.826 

pH      0.204  -0.24 -0.196 0.529 pH 0.706 

                          

B) MAGIC                         

Traits diam height leaf pH SSC fw col nflw nfr fset flw CorrEnv 

diam diam -0.127 0.145      0.138 0.158 -0.341 0.435 

height  height -0.18  0.136  0.128 0.108   0.287 0.602 

leaf 0.133  leaf    0.12  0.116 0.179 -0.115 0.505 

pH    pH 0.205 -0.119      0.385 

SSC  0.154   SSC -0.286 0.148     0.291 

fw     -0.227 fw   -0.136   0.331 

col 0.12 0.164  -0.147   col  -0.136   0.54 

nflw -0.151     -0.158  nflw 0.438 -0.224  0.352 

nfr      -0.231 -0.19 0.604 nfr 0.495 -0.292 0.4 

fset 0.226 0.148      -0.364 0.26 fset -0.377 0.187 

flw   0.358   -0.134 0.147   0.282       flw 0.536 
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Supplemental Table 3: Heat tolerant genotypes regarding yield component traits in the MAGIC and the CC populations. For each genotype, the 

plasticity value (heat-response) of the other traits is presented. The flowering group (early, medium or late) of the genotypes is highlighted and 

for the CC lines, the genetic group and the country of origin are specified. 

Genotype col_a diam flw fset fw height leaf nflw nfr pH SSC Pop group SeedBank Country Genetic_group  

H10_136 0.02 -0.03 -0.10 0.33 0.09 -0.07 -0.36 0.61 1.75 0.04 0.21 MAGIC Medium NA NA mixture 

H10_148 0.11 -0.10 -0.17 1.80 0.44 0.05 -0.32 -0.57 0.17 0.01 -0.09 MAGIC Medium NA NA mixture 

H10_185 0.15 0.13 -0.10 1.04 0.41 0.10 -0.58 0.14 1.09 0.01 0.14 MAGIC Medium NA NA mixture 

H10_207 -0.18 -0.45 -0.01 0.47 0.66 -0.06 -0.27 -0.14 0.18 -0.02 -0.47 MAGIC Medium NA NA mixture 

H10_225 -0.02 -0.39 -0.14 0.41 0.15 -0.13 -0.35 -0.19 0.09 0.06 -0.12 MAGIC Medium NA NA mixture 

H10_256 0.00 -0.29 -0.13 0.45 0.03 0.18 -0.47 -0.13 0.33 -0.03 -0.22 MAGIC Medium NA NA mixture 

H10_52 0.39 -0.28 -0.22 -0.04 0.09 0.21 -0.45 -0.25 0.00 0.18 0.09 MAGIC Medium NA NA mixture 

H10_53 -0.12 -0.33 -0.14 4.13 3.20 -0.14 -0.56 -0.78 0.00 0.11 -0.22 MAGIC Medium NA NA mixture 

H10_77 -0.02 -0.13 -0.18 2.13 0.25 0.10 -0.36 0.44 4.75 0.01 -0.17 MAGIC Medium NA NA mixture 

LA1456 0.40 NA NA -0.50 1.37 -0.13 -0.20 0.80 0.33 0.05 -0.42 CC Undefined TGRC Mexico SP 

LA1464 -0.02 -0.25 -0.52 -0.24 0.14 -0.23 -0.14 0.00 0.00 -0.01 -0.26 CC Early TGRC Honduras SLC 

LA1482 -0.08 -0.23 -0.55 -0.17 0.11 -0.12 0.00 0.56 0.60 0.03 0.03 CC Early TGRC Malaysia SLC 

LA2670 -0.03 -0.31 -0.48 -0.39 0.07 -0.12 -0.26 1.40 0.75 0.02 0.05 CC Early TGRC Peru SLC 

Mex-104 0.27 0.19 -0.46 0.07 0.00 -0.12 -0.05 0.00 0.08 -0.07 -0.10 CC Early MALAGA Mexico SLC 

Mex-85 0.03 0.08 -0.45 -0.01 0.07 -0.05 -0.15 0.08 0.10 -0.01 0.01 CC Early MALAGA Mexico SLC 

MT_148 0.01 -0.32 -0.20 1.84 0.21 -0.11 -0.30 0.17 1.80 -0.04 -0.06 MAGIC Medium NA NA mixture 

MT_149 0.03 -0.27 -0.16 -0.21 0.45 -0.12 -0.47 0.24 0.01 0.02 0.09 MAGIC Medium NA NA mixture 

MT_166 0.12 0.09 -0.14 0.54 0.71 0.25 -0.48 0.07 0.75 0.10 -0.14 MAGIC Medium NA NA mixture 

MT_177 0.08 -0.38 0.05 -0.14 0.34 0.16 -0.44 0.20 0.44 0.09 -0.18 MAGIC Late NA NA mixture 

MT_234 0.24 -0.04 -0.20 0.11 0.85 -0.32 -0.24 0.36 0.45 0.07 0.08 MAGIC Medium NA NA mixture 

MT_277 0.02 -0.34 -0.10 0.44 0.13 0.46 -0.50 -0.23 0.17 0.16 0.09 MAGIC Medium NA NA mixture 

MT_41 0.47 0.05 -0.13 -0.25 0.41 0.00 -0.61 3.59 2.53 -0.02 -0.20 MAGIC Medium NA NA mixture 

MT_84 0.10 0.00 -0.07 -0.68 0.23 -0.07 NA 1.74 0.00 -0.03 0.00 MAGIC Medium NA NA mixture 

Piguti 0.22 -0.10 -0.52 -0.23 0.17 -0.20 -0.09 0.06 0.07 -0.01 -0.14 CC Early INRA UR1075 NA SLC 
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Supplemental Table 4: List of the QTLs detected in the CC and MAGIC population, under control and HT-stress conditions. For each trait, the 

detected QTLs are specified in the column ‘QTL_name’. The chromosome and the physical position of the QTLs are presented in columns 

‘Chromosome’ and ‘Position (Mbp)’. For each QTL, the interval region is presented in mega-base-pair, with the upper interval ‘Left_bound (Mbp)’ 

and the lower interval ‘Right_bound (Mbp)’. The 'LOD_score' of the QTLs are indicated as well as the ‘Marker’ name at the pic position of the 

QTL. LOD scores were calculated as -log10 (P-value). The column ‘Condition’ indicates if the QTL was detected in control or HT-stress condition, 

or with the plasticity (PP) phenotype. The population and trait for which the QTL was found are indicated. For each significant QTL/association, 

the corresponding P-value is reported. 

QTL_name Chromosome Position(Mb) Left_bound(Mb) Right_bound(Mb) LOD_score Marker Trait Condition Panel 

ppcol_a1.1 1 2.446381 1.253219 3.704725 4.66 X01_2446381 col_a PP MAGIC 

col_a2.1 2 36.853283 36.076859 37.733992 5.42 S02_36853283 col_a Control CC 

col_a2.2 2 40.332255 40.289804 40.915583 5.93 S02_40332255 col_a HT-stress CC 

col_a3.1 3 53.298712 5.936744 54.662217 4.89 X03_48065704 col_a Control MAGIC 

col_a3.1 3 53.670389 53.650069 53.670496 4.40 S03_53670389 col_a HT-stress CC 

col_a3.2 3 64.701243 63.21107 65.387833 5.34 X03_58654154 col_a Control MAGIC 

col_a4.1 4 53.86254 52.381185 58.89901 6.80 X04_53010310 col_a HT-stress MAGIC 

col_a4.2 4 59.84641 59.334003 60.163622 8.36 X04_57439780 col_a Control MAGIC 

ppcol_a4.2 4 61.830034 59.990653 63.900601 4.63 X04_59423404 col_a PP MAGIC 

ppcol_a6.1 6 36.880315 34.368124 38.363876 4.48 X06_32606690 col_a PP MAGIC 

col_a7.1 7 4.481678 0.020971 55.770848 4.44 X07_5213521 col_a Control MAGIC 

col_a7.1 7 4.925959 4.115593 6.385399 3.01 S07_04925959 col_a Control CC 

col_a7.2 7 65.692641 65.041543 65.926032 4.03 S07_65692641 col_a HT-stress CC 

col_a8.1 8 3.613518 2.645233 34.267974 3.07 S08_03613518 col_a HT-stress CC 

col_a8.2 8 60.397157 59.101552 61.873039 4.60 X08_57644162 col_a HT-stress MAGIC 

col_a9.1 9 4.316025 2.926053 4.732408 5.86 X09_4316025 col_a Control MAGIC 

ppcol_a11.1 11 2.068777 1.152677 2.850057 3.68 S11_02068777 col_a PP CC 

col_a11.2 11 4.478344 4.151798 5.476941 5.75 X11_4478344 col_a HT-stress MAGIC 

col_a12.1 12 3.722833 2.821857 5.047381 5.05 X12_3722833 col_a HT-stress MAGIC 

ppcol_a12.2 12 64.941176 64.125346 65.419995 4.73 X12_63282226 col_a PP MAGIC 

col_a12.2 12 66.385245 64.125346 66.824887 4.70 X12_64734762 col_a Control MAGIC 

diam1.1 1 75.879505 75.093616 76.687312 4.54 S01_75879505 diam Control CC 

diam1.2 1 96.218696 96.217112 96.277795 3.59 S01_96218696 diam HT-stress CC 

diam3.1 3 53.105002 52.536734 53.82511 4.46 S03_53105002 diam HT-stress CC 

diam3.2 3 64.899693 64.450921 65.312829 8.55 X03_58952743 diam HT-stress MAGIC 

ppdiam4.1 4 54.067864 52.291246 55.127267 3.88 S04_54067864 diam PP CC 

diam4.2 4 65.236362 63.82458 65.778385 6.12 X04_62829732 diam HT-stress MAGIC 
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diam4.2 4 66.063525 65.611502 66.446769 6.47 S04_66063525 diam HT-stress CC 

diam5.1 5 8.403486 5.638011 60.985149 5.00 X05_8403486 diam Control MAGIC 

diam7.1 7 60.093644 59.849207 60.884595 3.82 S07_60093644 diam Control CC 

diam9.1 9 2.445969 2.411368 2.446934 3.13 S09_02445969 diam Control CC 

diam9.2 9 4.550994 4.289476 63.711556 4.58 X09_4550994 diam HT-stress MAGIC 

diam10.1 10 54.449604 54.294074 54.449899 3.43 S10_54449604 diam Control CC 

diam11.1 11 5.023403 4.342018 41.466599 5.37 X11_5023403 diam Control MAGIC 

diam11.2 11 54.931292 54.076798 55.686487 3.64 S11_54931292 diam HT-stress CC 

diam12.1 12 3.246101 2.109522 3.722833 4.68 X12_3246101 diam HT-stress MAGIC 

diam12.2 12 37.115899 37.08155 37.253156 4.07 S12_37115899 diam Control CC 

flw1.1 1 2.461631 2.371872 2.463253 4.32 S01_02461631 flw Control CC 

flw1.5 1 4.96157 4.340507 82.578583 8.23 X01_4961570 flw Control MAGIC 

flw1.2 1 5.087451 4.597945 5.726521 3.59 S01_05087451 flw HT-stress CC 

flw1.3 1 6.843787 6.229659 7.576706 5.09 S01_06843787 flw Control CC 

flw1.4 1 69.368609 69.260744 69.594028 4.98 S01_69368609 flw Control CC 

flw1.5 1 77.65613 75.855371 82.578583 7.51 X01_70046630 flw HT-stress MAGIC 

flw1.6 1 93.702068 93.123997 93.899137 3.52 S01_93702068 flw HT-stress CC 

flw2.1 2 36.741888 36.696643 36.790187 4.57 S02_36741888 flw HT-stress CC 

ppflw2.2 2 37.702336 36.853283 38.543388 4.09 S02_37702336 flw PP CC 

flw2.3 2 48.095271 47.122672 49.257681 3.66 S02_48095271 flw HT-stress CC 

flw2.4 2 53.624203 52.855746 54.014597 5.61 X02_47897284 flw HT-stress MAGIC 

ppflw3.1 3 2.735111 1.877032 2.913577 6.43 S03_02735111 flw PP CC 

ppflw3.2 3 4.277648 3.805614 5.431516 3.18 S03_04277648 flw PP CC 

flw3.3 3 64.793561 63.93268 65.312829 5.32 X03_58846611 flw Control MAGIC 

flw3.3 3 64.793561 64.450921 65.312829 9.44 X03_58846611 flw HT-stress MAGIC 

flw3.3 3 66.062007 65.165483 66.277952 14.15 S03_66062007 flw HT-stress CC 

ppflw3.3 3 66.062007 65.165483 66.277952 3.57 S03_66062007 flw PP CC 

flw4.1 4 55.462759 53.669515 58.245959 3.68 S04_55462759 flw Control CC 

flw5.1 5 2.246416 1.337513 3.386465 9.67 S05_02246416 flw HT-stress CC 

flw5.2 5 8.354789 8.156622 8.400766 3.58 S05_08354789 flw Control CC 

ppflw5.3 5 62.636863 62.34382 62.699296 7.84 S05_62636863 flw PP CC 

ppflw5.4 5 63.309656 62.957456 63.954891 4.97 S05_63309656 flw PP CC 

ppflw6.1 6 1.240331 1.240271 1.240605 8.08 S06_01240331 flw PP CC 

flw6.2 6 38.363876 34.368124 39.859867 4.95 X06_35263157 flw Control MAGIC 

flw7.1 7 63.768352 60.02716 64.92064 4.68 X07_61296293 flw HT-stress MAGIC 

ppflw8.1 8 0.393921 0.362038 0.417491 6.41 S08_00393921 flw PP CC 

flw8.2 8 4.744584 4.103562 34.267974 8.09 S08_04744584 flw HT-stress CC 
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ppflw8.3 8 53.749644 53.08483 54.694932 3.59 S08_53749644 flw PP CC 

flw8.4 8 62.964944 62.865804 63.270879 5.97 S08_62964944 flw Control CC 

flw8.5 8 65.140992 65.055799 65.158843 3.65 S08_65140992 flw Control CC 

flw9.1 9 2.314204 2.279826 2.557959 4.93 S09_02314204 flw HT-stress CC 

ppflw9.2 9 17.882178 17.564933 18.302492 5.18 S09_17882178 flw PP CC 

flw9.3 9 68.297506 67.694814 68.807596 6.62 X09_63545979 flw Control MAGIC 

flw9.4 9 69.805632 69.805632 69.822374 6.03 S09_69805632 flw Control CC 

flw9.4 9 69.805632 69.767245 69.822374 6.41 S09_69805632 flw HT-stress CC 

ppflw10.1 10 56.027008 55.950776 56.778945 4.24 S10_56027008 flw PP CC 

flw11.1 11 3.393788 3.158623 3.457164 6.39 S11_03393788 flw Control CC 

flw11.2 11 6.627532 6.622017 7.104482 4.87 S11_06627532 flw Control CC 

ppflw11.3 11 48.733611 47.291349 50.328082 5.08 S11_48733611 flw PP CC 

ppflw11.4 11 52.448642 51.489767 53.375561 3.19 S11_52448642 flw PP CC 

flw11.5 11 54.684047 53.823685 56.105593 4.63 X11_52087433 flw Control MAGIC 

flw11.5 11 56.227124 55.330359 56.151029 6.34 S11_56227124 flw HT-stress CC 

flw12.1 12 0.608247 0.60074 0.714884 3.50 S12_00608247 flw HT-stress CC 

flw12.2 12 1.701268 1.374935 2.870235 4.00 S12_01701268 flw HT-stress CC 

flw12.2 12 2.494987 1.461833 3.475605 4.41 S12_02494987 flw Control CC 

fset1.1 1 77.436487 4.158194 82.578583 4.60 X01_69374178 fset Control MAGIC 

fset1.2 1 94.540622 91.047287 96.379226 4.78 X01_86301422 fset Control MAGIC 

fset2.1 2 50.666161 48.471214 51.775968 5.32 X02_45368716 fset Control MAGIC 

fset2.2 2 54.663481 54.024321 54.758149 3.28 S02_54663481 fset Control CC 

fset3.1 3 63.93268 63.21107 66.339796 5.95 X03_57985730 fset HT-stress MAGIC 

fset3.1 3 64.689793 63.674517 65.566055 3.69 S03_64689793 fset HT-stress CC 

ppfset3.2 3 67.512964 66.978561 68.413314 7.06 S03_67512964 fset PP CC 

ppfset4.1 4 2.936538 2.915842 2.97985 5.07 S04_02936538 fset PP CC 

fset4.2 4 26.12367 26.123473 27.392008 4.87 S04_26123670 fset HT-stress CC 

fset4.3 4 62.8371 61.281208 63.82458 5.54 X04_60805933 fset HT-stress MAGIC 

fset4.4 4 65.853888 65.828262 66.446769 6.20 S04_65853888 fset Control CC 

ppfset6.1 6 1.453632 0.488346 1.807844 6.55 S06_01453632 fset PP CC 

fset6.2 6 32.798578 2.400995 36.11689 4.58 X06_30638016 fset Control MAGIC 

ppfset6.3 6 48.24401 48.167692 48.740122 4.05 S06_48244010 fset PP CC 

ppfset7.1 7 0.136225 0.051543 1.852616 4.85 X07_136225 fset PP MAGIC 

fset7.2 7 66.986639 66.431183 67.729281 6.66 S07_66986639 fset Control CC 

fset8.1 8 0.849696 0.029999 0.98595 3.22 S08_00849696 fset HT-stress CC 

ppfset8.2 8 59.460898 21.047529 59.925589 5.11 X08_56626898 fset PP MAGIC 

fset9.1 9 64.781171 8.333659 66.029792 5.36 X09_59808022 fset HT-stress MAGIC 
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fset10.1 10 0.354213 0.0221 1.323966 4.98 X10_354213 fset HT-stress MAGIC 

fset11.1 11 0.496383 0.436089 0.719356 3.16 S11_00496383 fset Control CC 

ppfset11.2 11 7.254423 6.544596 8.14031 3.57 S11_07254423 fset PP CC 

fset11.3 11 55.10036 54.599648 56.105593 7.61 X11_52183860 fset Control MAGIC 

fset12.1 12 0.621594 0.60074 0.714884 3.10 S12_00621594 fset HT-stress CC 

fset12.2 12 39.287937 39.24928 39.418026 3.84 S12_39287937 fset HT-stress CC 

fw1.1 1 91.314498 91.212721 93.092756 4.85 X01_83540760 fw Control MAGIC 

ppfw1.1 1 92.266398 91.77996 93.992823 4.82 X01_84027198 fw PP MAGIC 

fw2.1 2 37.817429 37.184874 37.817539 7.02 S02_37817429 fw Control CC 

lc2 2 47.822111 44.228646 51.966463 7.24 X02_42399961 fw HT-stress MAGIC 

lc2 2 48.471214 47.822111 48.89947 7.62 X02_43049064 fw Control MAGIC 

fw2.2 2 51.966463 51.182657 54.014597 11.18 X02_47139889 fw Control MAGIC 

fw2.3 2 54.663481 54.024321 54.758149 4.11 S02_54663481 fw HT-stress CC 

fw3.1 3 54.485146 54.449864 54.903836 3.45 S03_54485146 fw Control CC 

fw3.2 3 65.121559 63.93268 67.141095 5.62 X03_59209883 fw Control MAGIC 

ppfw3.2 3 66.768294 64.701243 67.141095 4.45 X03_60821344 fw PP MAGIC 

fw4.1 4 0.928038 0.005106 2.926444 6.52 X04_928038 fw HT-stress MAGIC 

ppfw4.2 4 65.703025 65.518119 66.290484 7.17 S04_65703025 fw PP CC 

fw5.1 5 4.527122 4.01884 4.96699 4.90 X05_4829681 fw Control MAGIC 

fw5.2 5 7.251936 5.638011 60.985149 5.98 X05_7143867 fw HT-stress MAGIC 

ppfw6.1 6 1.006581 0.056871 1.999894 3.72 S06_01006581 fw PP CC 

ppfw6.2 6 38.323491 38.006394 39.276193 8.04 S06_38323491 fw PP CC 

ppfw6.3 6 48.545669 48.343798 48.940051 4.55 S06_48545669 fw PP CC 

fw7.1 7 6.05398 4.478922 6.385399 4.18 S07_06053980 fw HT-stress CC 

fw7.2 7 57.37349 57.31849 57.465601 3.89 S07_57373490 fw Control CC 

fw7.3 7 63.768352 60.02716 64.92064 7.60 X07_61091852 fw HT-stress MAGIC 

ppfw8.1 8 2.095997 0.062757 2.769368 5.05 X08_645215 fw PP MAGIC 

fw8.2 8 60.195041 60.170203 60.405484 5.13 S08_60195041 fw HT-stress CC 

fw9.1 9 2.445969 2.411368 2.446934 4.28 S09_02445969 fw Control CC 

fw9.1 9 2.445969 2.411368 2.446934 5.10 S09_02445969 fw HT-stress CC 

fw9.2 9 30.503025 30.502912 31.891757 4.87 S09_30503025 fw HT-stress CC 

fw9.2 9 56.141247 4.289476 66.172567 5.17 X09_51738766 fw HT-stress MAGIC 

fw11.1 11 4.342018 3.18835 55.21479 4.48 X11_4342018 fw Control MAGIC 

fw11.1 11 53.206534 52.915345 53.823685 11.04 X11_50290034 fw HT-stress MAGIC 

fw12.1 12 1.244394 0.493722 63.690753 4.57 X12_1244394 fw HT-stress MAGIC 

ppfw12.1 12 15.121088 14.640634 15.670729 3.25 S12_15121088 fw PP CC 

fw12.2 12 64.046622 61.864756 65.148027 4.75 X12_62487572 fw Control MAGIC 
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ht1.1 1 4.96157 4.158194 76.983678 6.15 X01_4614252 height HT-stress MAGIC 

ht1.1 1 75.855371 3.117977 76.186755 4.80 X01_65297730 height Control MAGIC 

ppht1.2 1 82.521565 82.448405 82.528806 4.78 S01_82521565 height PP CC 

ht1.3 1 88.232834 86.437181 88.891242 7.45 X01_79993634 height HT-stress MAGIC 

ht1.3 1 88.688358 87.871613 89.607229 5.41 X01_80449158 height Control MAGIC 

ppht2.1 2 34.220988 30.577483 35.214875 10.52 S02_34220988 height PP CC 

ht2.2 2 36.696643 36.076859 37.733992 3.05 S02_36696643 height HT-stress CC 

ht2.3 2 41.120028 40.334709 42.323124 6.13 S02_41120028 height Control CC 

ht2.1 2 44.1631 33.973517 44.547467 4.62 X02_38740950 height HT-stress MAGIC 

ht2.4 2 51.182657 50.236462 51.775968 5.84 X02_45760507 height HT-stress MAGIC 

ht3.1 3 2.071126 0.575656 2.360361 4.76 X03_2163723 height Control MAGIC 

ppht3.2 3 56.592085 55.547354 59.338993 3.07 S03_56592085 height PP CC 

ht3.3 3 64.655137 64.450921 65.048732 6.66 X03_58708187 height Control MAGIC 

ht3.3 3 64.793561 63.910162 65.387833 4.99 X03_58846611 height HT-stress MAGIC 

ht4.1 4 55.472455 53.669515 58.218186 4.50 S04_55472455 height Control CC 

ht4.2 4 63.900601 2.865239 65.778385 4.57 X04_61493971 height HT-stress MAGIC 

ht4.2 4 65.396498 64.536101 66.324715 3.92 S04_65396498 height Control CC 

ppht5.1 5 3.877262 3.580143 4.164928 4.72 S05_03877262 height PP CC 

ht6.1 6 31.089509 1.454568 45.401935 4.68 X06_28844482 height HT-stress MAGIC 

ppht6.1 6 32.354682 19.382154 36.11689 5.22 X06_28844482 height PP MAGIC 

ht6.2 6 45.218536 44.762672 45.401935 4.98 X06_41608436 height Control MAGIC 

ht9.1 9 1.38199 1.221555 1.38199 5.99 S09_01381990 height HT-stress CC 

ht9.2 9 2.498892 2.314204 2.557959 3.20 S09_02498892 height Control CC 

ht9.3 9 4.645709 4.561644 4.666246 4.83 S09_04645709 height Control CC 

ht11.1 11 50.280765 49.226488 51.334347 3.39 S11_50280765 height HT-stress CC 

ht11.2 11 55.489444 55.003933 56.105593 4.90 X11_52298290 height Control MAGIC 

ht12.1 12 0.440913 0.010859 0.972302 4.48 X12_440913 height HT-stress MAGIC 

ht12.2 12 4.162345 3.240286 5.158348 4.08 S12_04162345 height HT-stress CC 

leaf1.1 1 83.434428 77.65613 84.468518 7.77 X01_75195228 leaf HT-stress MAGIC 

ppleaf2.1 2 20.334143 20.334143 20.375312 5.78 S02_20334143 leaf PP CC 

leaf2.2 2 36.741888 36.696643 36.790187 6.36 S02_36741888 leaf Control CC 

ppleaf2.3 2 37.733992 36.853283 38.543388 4.87 S02_37733992 leaf PP CC 

leaf3.1 3 63.910162 43.631616 64.521327 7.45 X03_57963212 leaf Control MAGIC 

ppleaf4.1 4 59.199728 59.104097 60.179408 3.79 S04_59199728 leaf PP CC 

leaf4.2 4 61.146494 60.952746 63.900601 4.44 X04_58739864 leaf HT-stress MAGIC 

leaf5.1 5 7.143867 0.990309 60.985149 4.80 X05_7251936 leaf Control MAGIC 

leaf6.1 6 45.401935 45.218536 46.657691 12.92 X06_42278140 leaf Control MAGIC 
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leaf6.1 6 46.170878 45.218536 46.657691 20.77 X06_41791835 leaf HT-stress MAGIC 

leaf7.1 7 57.777838 4.089402 61.06426 4.65 X07_54651566 leaf Control MAGIC 

leaf7.2 7 67.237086 66.333377 67.582423 4.76 S07_67237086 leaf Control CC 

leaf8.1 8 54.324737 4.252804 57.585344 6.65 X08_46285705 leaf HT-stress MAGIC 

leaf9.1 9 2.09513 1.631719 2.214099 4.76 X09_1759444 leaf HT-stress MAGIC 

leaf9.2 9 9.225943 9.225943 10.504685 8.87 S09_09225943 leaf Control CC 

ppleaf10.1 10 60.664352 60.586463 60.966693 3.35 S10_60664352 leaf PP CC 

leaf10.2 10 63.48653 62.687551 64.603497 3.35 S10_63486530 leaf Control CC 

leaf11.1 11 54.921323 53.960745 55.766399 3.88 S11_54921323 leaf HT-stress CC 

leaf12.1 12 63.784031 63.772969 63.854913 4.72 S12_63784031 leaf Control CC 

leaf12.1 12 63.784031 63.772969 63.854913 4.52 S12_63784031 leaf HT-stress CC 

ppnflw2.1 2 33.742091 30.577483 34.220988 4.80 S02_33742091 nflw PP CC 

nflw2.2 2 40.332187 40.289804 40.915583 4.99 S02_40332187 nflw HT-stress CC 

nflw2.3 2 44.228646 39.456131 50.309536 4.56 X02_38806496 nflw HT-stress MAGIC 

nflw2.3 2 45.515428 44.705571 45.518495 4.20 S02_45515428 nflw HT-stress CC 

ppnflw2.3 2 50.58521 50.236462 51.775968 4.77 X02_45163060 nflw PP MAGIC 

nflw3.1 3 4.407686 4.011014 4.427906 4.85 S03_04407686 nflw Control CC 

nflw3.2 3 63.689122 62.939432 64.521327 6.63 X03_57678338 nflw HT-stress MAGIC 

ppnflw3.2 3 64.348252 63.446585 65.147049 3.20 S03_64348252 nflw PP CC 

nflw3.3 3 68.476718 66.996042 69.242078 4.80 X03_62529768 nflw Control MAGIC 

ppnflw4.1 4 0.767236 0.744896 0.845631 5.95 S04_00767236 nflw PP CC 

nflw4.2 4 2.926444 2.001092 55.861058 5.05 X04_2926444 nflw Control MAGIC 

ppnflw4.3 4 65.17345 64.717474 66.152971 5.73 S04_65173450 nflw PP CC 

nflw5.1 5 8.403486 6.932595 61.248466 4.88 X05_7251936 nflw HT-stress MAGIC 

ppnflw5.2 5 63.13104 62.159914 63.954891 3.77 S05_63131040 nflw PP CC 

nflw5.2 5 64.214037 63.217046 65.176391 5.32 S05_64214037 nflw HT-stress CC 

nflw6.1 6 45.953573 45.03513 47.223776 5.79 S06_45953573 nflw HT-stress CC 

nflw8.1 8 54.072286 53.749644 54.074828 4.13 S08_54072286 nflw Control CC 

nflw8.2 8 55.964915 55.937442 56.07594 3.14 S08_55964915 nflw Control CC 

nflw8.3 8 60.793734 60.730948 60.811459 3.60 S08_60793734 nflw Control CC 

nflw8.3 8 60.967774 59.9886 61.910573 3.28 S08_60967774 nflw HT-stress CC 

nflw9.1 9 65.618957 63.711556 66.553493 5.90 X09_61268966 nflw HT-stress MAGIC 

nflw9.1 9 65.771347 0.015806 66.553493 4.46 X09_61116576 nflw Control MAGIC 

nflw9.2 9 66.751411 66.562001 66.926136 4.58 S09_66751411 nflw HT-stress CC 

nflw9.3 9 69.587566 68.423124 70.467811 5.02 S09_69587566 nflw Control CC 

nflw10.1 10 54.449899 54.449604 54.523401 3.72 S10_54449899 nflw HT-stress CC 

nflw10.2 10 58.195213 57.237943 58.307818 3.73 S10_58195213 nflw HT-stress CC 
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nflw11.1 11 5.667281 4.912781 6.227985 6.75 S11_05667281 nflw Control CC 

ppnflw11.2 11 51.503469 50.764231 52.281041 5.11 S11_51503469 nflw PP CC 

nflw11.3 11 53.472342 52.780186 54.306131 4.53 S11_53472342 nflw HT-stress CC 

nflw11.3 11 55.10036 53.964003 56.105593 4.86 X11_52183860 nflw Control MAGIC 

nflw11.4 11 55.958042 55.766807 56.005145 4.41 S11_55958042 nflw HT-stress CC 

ppnflw11.4 11 56.008109 55.023449 56.151029 3.19 S11_56008109 nflw PP CC 

nflw11.4 11 56.078411 55.146006 56.151029 7.32 S11_56078411 nflw Control CC 

nflw12.1 12 1.690492 1.20595 2.109522 5.14 X12_1590967 nflw HT-stress MAGIC 

nflw12.2 12 9.91793 9.150573 9.972015 4.12 S12_09917930 nflw Control CC 

ppnfr1.1 1 94.722622 94.705626 94.72345 4.93 S01_94722622 nfr PP CC 

ppnfr2.1 2 51.182657 50.58521 51.966463 5.70 X02_45506212 nfr PP MAGIC 

nfr2.1 2 52.920159 51.182657 54.42757 5.30 X02_48202053 nfr HT-stress MAGIC 

nfr3.1 3 2.735111 1.877032 2.913577 5.72 S03_02735111 nfr HT-stress CC 

ppnfr3.1 3 2.735111 1.877032 2.913577 7.05 S03_02735111 nfr PP CC 

ppnfr3.2 3 49.326696 11.265495 61.927295 5.76 X03_42873199 nfr PP MAGIC 

nfr3.2 3 53.670496 53.08745 54.449864 7.32 S03_53670496 nfr HT-stress CC 

ppnfr3.2 3 53.670496 53.08745 54.449864 5.67 S03_53670496 nfr PP CC 

nfr4.1 4 0.767236 0.744896 0.845631 8.70 S04_00767236 nfr HT-stress CC 

nfr4.2 4 62.8371 61.281208 63.900601 4.81 X04_60556749 nfr HT-stress MAGIC 

nfr4.2 4 63.225199 62.550134 64.09501 8.51 S04_63225199 nfr Control CC 

ppnfr4.3 4 65.17872 64.536101 66.152971 3.69 S04_65178720 nfr PP CC 

nfr4.3 4 66.063525 65.611502 66.446769 5.37 S04_66063525 nfr HT-stress CC 

nfr6.1 6 42.4926 41.602831 44.387315 8.05 S06_42492600 nfr Control CC 

nfr7.1 7 65.161289 64.45 65.926032 4.08 S07_65161289 nfr Control CC 

ppnfr7.1 7 65.168391 64.45 65.692641 3.72 S07_65168391 nfr PP CC 

nfr8.1 8 53.08483 52.904532 53.749644 5.24 S08_53084830 nfr HT-stress CC 

nfr8.2 8 54.372654 54.296663 54.444193 5.25 S08_54372654 nfr Control CC 

ppnfr8.3 8 59.460898 57.208257 59.736554 4.91 X08_56626898 nfr PP MAGIC 

ppnfr8.4 8 64.275214 64.156513 64.630487 3.21 S08_64275214 nfr PP CC 

nfr9.1 9 0.835037 0.447776 1.221555 4.62 S09_00835037 nfr HT-stress CC 

nfr9.2 9 64.781171 56.141247 67.30117 5.58 X09_59808022 nfr Control MAGIC 

nfr9.2 9 66.103125 66.014053 66.376508 5.88 S09_66103125 nfr HT-stress CC 

nfr10.1 10 54.449604 54.294074 54.449899 3.41 S10_54449604 nfr HT-stress CC 

nfr10.2 10 58.003053 57.397425 58.189616 3.89 S10_58003053 nfr HT-stress CC 

nfr10.3 10 63.245547 62.249522 64.218704 3.98 S10_63245547 nfr HT-stress CC 

nfr11.1 11 1.163118 1.152677 1.182112 3.12 S11_01163118 nfr HT-stress CC 

nfr11.2 11 5.667281 4.912781 6.227985 7.31 S11_05667281 nfr Control CC 
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ppnfr11.3 11 6.627532 6.622017 7.104482 3.06 S11_06627532 nfr PP CC 

nfr11.4 11 7.863337 7.763703 8.414574 3.41 S11_07863337 nfr Control CC 

nfr11.4 11 50.495947 7.241787 51.525667 5.34 X11_47579447 nfr Control MAGIC 

nfr11.5 11 53.320055 52.428128 54.429101 9.47 S11_53320055 nfr HT-stress CC 

ppnfr11.5 11 53.90264 53.88505 53.906868 5.60 S11_53902640 nfr PP CC 

nfr11.5 11 54.429488 52.030767 55.475645 6.16 S11_54429488 nfr Control CC 

nfr12.1 12 62.343961 62.08802 62.975968 3.21 S12_62343961 nfr Control CC 

pH1.1 1 2.446381 1.253219 2.579748 4.98 X01_2446381 pH Control MAGIC 

pH1.2 1 76.839188 4.340507 82.578583 4.81 X01_69316870 pH Control MAGIC 

pppH1.3 1 90.225849 90.111583 90.240188 3.18 S01_90225849 pH PP CC 

pH2.1 2 44.1631 41.740574 50.309536 5.89 X02_38740950 pH Control MAGIC 

pH3.1 3 3.34422 3.334661 3.510178 4.77 S03_03344220 pH Control CC 

pH3.2 3 62.520086 43.631616 64.899693 5.19 X03_56718661 pH Control MAGIC 

pH3.2 3 64.512996 64.485318 64.588871 4.27 S03_64512996 pH HT-stress CC 

pppH4.1 4 65.664182 64.360786 66.290965 3.08 S04_65664182 pH PP CC 

pH5.1 5 63.43264 63.422638 63.449989 3.77 S05_63432640 pH HT-stress CC 

pH5.1 5 63.85689 63.212646 63.880865 4.64 S05_63856890 pH Control CC 

pH6.1 6 40.544466 39.549809 41.363544 4.63 S06_40544466 pH Control CC 

pH6.2 6 41.977944 40.585009 45.218536 4.76 X06_38367844 pH Control MAGIC 

pH6.2 6 43.189771 42.200096 44.272401 3.38 S06_43189771 pH HT-stress CC 

pH6.2 6 44.965734 44.762672 47.27796 6.03 X06_41355634 pH HT-stress MAGIC 

pH8.1 8 0.849696 0.029999 0.98595 8.98 S08_00849696 pH HT-stress CC 

pH8.2 8 65.055199 63.651251 65.865539 4.50 X08_62221199 pH Control MAGIC 

pH9.1 9 0.413648 0.41189 0.754579 3.59 S09_00413648 pH Control CC 

pH9.2 9 68.169953 67.468084 68.174329 5.84 S09_68169953 pH HT-stress CC 

pH9.3 9 69.906993 68.638813 69.958773 5.20 X09_65147785 pH HT-stress MAGIC 

pppH10.1 10 5.025642 2.216078 57.291194 5.38 X10_7899410 pH PP MAGIC 

pH11.1 11 5.023403 4.342018 5.476941 5.22 X11_5023403 pH Control MAGIC 

pH11.2 11 52.128564 50.676545 53.035288 4.71 X11_49508530 pH Control MAGIC 

pH12.1 12 8.722237 4.892313 38.647373 6.43 X12_8722237 pH HT-stress MAGIC 

pH12.2 12 66.050838 65.580355 66.385245 5.49 X12_64391888 pH HT-stress MAGIC 

SSC1.1 1 82.549018 82.128743 82.552739 3.80 S01_82549018 SSC Control CC 

ppSSC2.1 2 17.652025 17.651901 17.970996 3.89 S02_17652025 SSC PP CC 

ppSSC2.2 2 46.637841 45.546741 47.717105 4.41 S02_46637841 SSC PP CC 

SSC2.3 2 48.89947 47.822111 51.775968 4.54 X02_43612183 SSC Control MAGIC 

SSC3.1 3 54.662217 5.936744 59.85627 4.95 X03_49788273 SSC HT-stress MAGIC 

SSC4.1 4 61.830034 59.990653 62.8371 7.19 X04_59423404 SSC HT-stress MAGIC 
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SSC4.1 4 62.374445 60.952746 63.900601 4.47 X04_59967815 SSC Control MAGIC 

SSC4.2 4 66.307772 66.300765 66.446769 9.64 S04_66307772 SSC Control CC 

SSC5.1 5 64.464346 64.457548 64.593171 4.88 S05_64464346 SSC HT-stress CC 

SSC8.1 8 54.500456 53.749644 55.175977 5.15 S08_54500456 SSC Control CC 

SSC8.2 8 57.724788 56.88112 57.899064 8.47 S08_57724788 SSC Control CC 

ppSSC8.3 8 60.195041 60.170203 60.405484 4.43 S08_60195041 SSC PP CC 

SSC9.1 9 2.673326 2.09513 3.942061 5.93 X09_2673326 SSC Control MAGIC 

SSC9.1 9 3.398797 2.926053 4.550994 7.57 X09_3502151 SSC HT-stress MAGIC 

SSC9.1 9 3.477979 3.477432 3.48489 7.47 S09_03477979 SSC Control CC 

SSC9.1 9 3.477979 3.477432 3.48489 9.74 S09_03477979 SSC HT-stress CC 

SSC10.1 10 54.449604 54.294074 54.449899 4.91 S10_54449604 SSC HT-stress CC 

SSC11.1 11 2.589031 2.585263 2.5937 12.02 S11_02589031 SSC HT-stress CC 

ppSSC11.2 11 54.93092 53.960745 55.766399 5.62 S11_54930920 SSC PP CC 

ppSSC12.1 12 39.287937 39.24928 39.418026 7.40 S12_39287937 SSC PP CC 
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Supplemental Table 5: Summary of the QTLs detected for 11 traits in the CC (A) and the 

MAGIC (B) populations. The number of QTLs detected per condition and on the plasticity (PP) 

is indicated for each trait. In brackets is the number of QTLs detected uniquely in one condition 

or for the plasticity (PP) only. The number of QTLs that co-localized between conditions and 

or plasticity is presented in the column 'Common'. The column 'Total_QTLs' present the total 

number of QTLs detected per trait. The last row in bold present the total number of QTLs 

detected across traits for each condition and for the plasticity and the number of QTLs that 

were commonly detected. The stars (*) highlight traits for which QTLs were consistently 

detected in control, HT-stress condition and plasticity within population. 

A) CC POPULATION 

Trait Control HT_stress PP Common Total_QTLs 

col 2 (2) 4 (4) 1 (1)  0 7 

diam 5 (5) 4 (4) 1 (1) 0 10 

flw 11 (9) 12 (9) 13 (12) 3 33 

fset 4 (4) 5 (5) 5 (5) 0 14 

fw 4 (3) 5 (4) 5 (5) 1 13 

height 5 (5) 4 (4) 4 (4) 0 13 

leaf 5 (4) 2 (1) 4 (4) 1 10 

nflw 8 (6) 10 (7) 7 (5) 3* 21 

nfr 8 (6) 12 (8) 8 (3) 5* 22 

pH 4 (3) 5 (4) 2 (2) 1 10 

SSC 5 (4) 4 (3) 5 (5) 1 13 

Total 61 (51) 67 (53) 55 (47) 15 166 
 

 

 

B) MAGIC POPULATION 

Trait Control HT_stress PP Common Total_QTLs 

col 6 (4) 4 (4) 4 (2) 2 12 

diam 2 (2) 4 (4) 0 0 6 

flw 5 (3) 4 (2) 0 2 7 

fset 5 (5) 4 (4) 2 (2) 0 11 

fw 7 (3) 7 (5) 3 (1) 4 13 

height 6 (3) 8 (4) 1 (0) 4 11 

leaf 4 (3) 5 (4) 0 1 8 

nflw 4 (3) 5 (3) 1 (0) 2 8 

nfr 2 (2) 2 (1) 3 (2) 1 6 

pH 8 (7) 4 (3) 1 (1) 1 12 

SSC 3 (1) 3 (1) 0 2 4 

Total 52 (36) 50 (35) 15 (8) 19 98 
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Appendix 6 
Supplemental Figures 

 

 

Supplemental Figure 1: Selection of 7 environmental covariates for the factorial regression model. Three periods – each of 

20 days – were defined from planting to the end of flowering on the 4th truss. The period from 20 to 60 days after planting 

(DAP) covered vegetative growth and flowering on the 4th truss and the measured climatic variables averaged during this 

period. The different environmental covariates are described 

  

Supplemental Figure 2: Boxplot 

distribution of the traits across 

environments. The colors of the 

boxplot are according to the groups 

defined by clustering of the 

environments 
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Supplemental Figure 3: Heritability in the MAGIC-MET design. For each trait, heritability was computed at every environment 

and plotted with heritability of the full design  !" (in green) 
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Supplemental Figure 4: Proportion of the sum of square attributed to the different factors in the factorial regression model. 

For each trait, the orange and green stacked bars represent the proportion of the SSq explained by the Genotype and 

Environment factors in model (4). The remaining colors represent the effect part of the GxE that could be explained by the 

different environmental covariates. Only significant covariates were highlighted within the bars. 

 

Supplemental Figure 5-A: Reaction norms from the Finlay-Wilkinson regression model. Blue and orange lines represent the 

positive and negative reaction norms  
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Supplemental Figure 5-B: Reaction norms from the factorial regression model. Green and purple lines represent the 

positive and negative reaction norms  

  

 

Supplemental Figure 6: Histogram 

distribution of mean and all plasticity 

parameters for each trait 
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Supplemental Figure 7: Physical positions of the MAGIC-MET QTLs for diam, leaf, height, fset, nflw, nfr, firm and SSC. The 

outer circle with gray font represents the known and cloned QTL/gene for each trait. The following circle with black bars 

represents the different domestication/improvement sweep regions identified in (Zhu et al. 2018). The other circles plot the 

CI of QTLs identified on mean, plasticity or with QEI analysis. 
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Supplemental Figure 9: Zoom plot on Chromosome 11 region from 53 -57 Mbp. Each color represents a different QTL located 

in this region and the top black bars are the Sweep regions SW254 and SW255 
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Supplemental Figure 8: Number 

of the MAGIC-MET QTLs 

identified within or outside the 

domesticated/improved regions. 

Only the MAGIC-MET QTLs within 

short CI (lower than 2Mbp) were 

considered. The response specific 

category included QEI and 

plasticity specific QTLs; the 

common category correspond to 

QTLs that were commonly 

identified on mean, plasticity and 

QEI or at least two of them 
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Supplemental Figure 10: Correlation between the genotypic sensitivities to environmental covariates from the factorial 

regression model and slopes from the Finlay-Wilkinson regression model 

 

 

 

Supplemental Figure 11: Venn diagram of the number of QTL specific or commonly detected with mean, PP or using the QEI 

models 
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Supplemental Tables 

Supplemental Table 1: Description of the MAGIC-MET design with the 12 environments and their 

respective names 

Environ-

ments 

Location  Water 

irrigation 

(%ETP) 

Treatment EC 

(dS/m) 

Tmin 

(°C) 

Tm 

(°C) 

Tmax 

(°C) 

Amp.Th 

(°C) 

RH 

(%) 

Vpd 

(kPa) 

Sum of 

degree 

day (SDD) 

Number 

of 

Genotypes 

Avi12 France 100%  Control 1.33 15.48 20.5 26.4 10.92 70.83 1.71 466.94 397 

Avi17 France 100%  Control 1.65 16.05 21.44 29.02 12.97 63.73 1.62 496.4 280 

HAvi17 France 100%  Heat 1.47 20.35 26.9 34.34 13.99 70.72 2.52 664.06 356 

Is14 Israel 100%  Control NA 20.16 28.6 38.72 18.56 67.4 2.64 800.23 288 

HIs14 Israel 100%  Heat NA 21.92 33.05 48.33 26.41 55.02 2.78 1022.73 288 

WDIs14 Israel -70%  
Water 

deficit 
NA 20.53 29.28 40.83 20.3 63.48 2.59 835.57 288 

Is15 Israel 100%  Control NA 17.39 26.78 37.54 20.15 65.38 2.3 685.12 288 

WDIs15 Israel -30%  
Water 

deficit 
NA 17.27 25.97 35.38 18.11 65.94 2.21 638.54 288 

Mor15 Morocco 100%  Control 2.17 8.11 18.17 35.91 27.8 62.42 1.3 484.9 241 

WDMor15 Morocco -50%  
Water 

deficit 
1.42 8.11 18.17 35.91 27.8 62.42 1.3 484.9 241 

LSMor16 Morocco 100%  Salinity 3.76 11.54 19.99 34.11 22.57 59.56 1.39 583.06 253 

HSMor16 Morocco 100%  Salinity 6.5 11.54 19.99 34.11 22.57 59.56 1.39 583.06 253 

 

Supplemental Table 2: Description of the phenotypic traits evaluated in the MAGIC-MET design 

Trait 
Truss 

Phenotyped 
Trait Description  

diam T4 Stem diameter (mm) measured on individual plants (two measures) 

firm T4 Mean firmness of viable fruits harvested (3-10 fruits per individual plant) 

flw T4 Number of days between plant sowing and first flower appareance on the truss 

fset T4-T5 

Fruit set was calculated as: 100*(number of viable fruits / number of 

peduncles)/truss 

fw T4 Mean weight (g) of viable fruits harvested (3-10 fruits per individual plant) 

height T6 Height (cm) of the plant at 6th truss 

leaf T5 Length (cm) of the leaf under the 5th truss  

nflw T4-T5 Total number of flowers per truss 

nfr T4 Total number of viable fruits per truss 

SSC T4 

Soluble Solid content (°Brix) of a pool of at least 3 fruits (when avalaible) per 

genotype. 
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Supplemental Table 3: Estimates of the variance components from model (2) 

Trait Geno GxE Res.E min Res.E max Res.E prop. σ²GxE h²GxE nb.Env nb.MAGIC 

diam 2.74 2 4.56 2.62 6.57 0.42 0.46 5 334 

firm 17.36 13.49 4.11 16.29 62.37 0.44 0.38 7 251 

flw 17.46 5.04 7.6 4.6 10.62 0.22 0.77 7 327 

fset 59.11 59.74 402.03 81.41 947.34 0.5 0.19 6 252 

fw 69.93 52.4 93.34 15.26 186.1 0.43 0.6 12 283 

height 281.02 128.57 214.13 136.94 296.91 0.31 0.68 6 286 

leaf 8.27 17.57 23.36 12.75 38.95 0.68 0.33 6 253 

nflw 68.75 12.06 84.08 41.11 135.75 0.15 0.56 6 253 

nfr 4.69 1.82 34.35 10.01 96.38 0.3 0.18 6 253 

SSC 0.35 0.53 0.86 0.33 1.57 0.6 0.36 9 274 
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Supplemental Table 4: Results of QTL and QEI analysis in the MAGIC-MET design 

Trait QTL_ID Type Pheno Chromosome -log10(pvalue) Pos (Mbp) ci_lo (Mbp) ci_hi (Mbp) marker 

height ht1.1 QEI QEI 1 4.30 75.855371 74.355371 77.355371 X01_68245871 

fw fw1.1 Mean Mean 1 4.44 77.436487 4.96157 82.578583 X01_69826987 

fset ppfset1.2 PP VAR 1 4.50 84.468518 77.436487 86.422123 X01_76229318 

fw ppfw1.2 PP VAR 1 4.53 90.867735 4.96157 92.266398 X01_82628535 

height ht1.2 Mean Mean 1 4.64 88.232834 87.293634 93.992823 X01_79993634 

fw fw1.2 Mean Mean 1 4.65 90.535223 90.211101 92.266398 X01_82296023 

nflw ppnflw1.1 PP Slope 1 4.72 93.992823 91.212721 94.672603 X01_85753623 

fset ppfset1.1 PP Slope 1 4.76 0.066253 0.043522 1.049955 X01_66253 

diam diam1.2 Mean Mean 1 4.92 86.437181 85.571496 88.688358 X01_78197981 

SSC ppSSC1.1 PP Slope 1 4.94 1.253219 0.892936 1.730558 X01_1253219 

diam diam1.1 Mean Mean 1 4.98 1.730558 0.23258 2.579748 X01_1730558 

nfr ppnfr1.1 PP S.SDD 1 5.04 1.049955 0.066253 1.730558 X01_1049955 

height ppht1.2 PP S.Th.Amp 1 5.14 91.047287 90.211101 92.266398 X01_82808087 

fset fset1.3 QEI QEI 1 5.29 93.092756 91.592756 94.592756 X01_84853556 

flw ppflw1.1 PP Slope 1 5.33 76.186755 4.96157 84.468518 X01_68577255 

firm ppfirm1.3 PP Slope 1 5.34 93.475357 91.212721 95.392835 X01_85236157 

firm firm1.1 Mean Mean 1 5.42 2.446381 1.253219 2.579748 X01_2446381 

SSC ppSSC1.2 PP S.Vpd 1 5.45 91.608878 90.211101 93.092756 X01_83369678 

leaf ppleaf1.1 PP VAR 1 5.49 82.578583 77.65613 83.574745 X01_74339383 

fset fset1.3 Mean Mean 1 5.62 93.092756 91.212721 93.32137 X01_84853556 

height ppht1.2 PP Slope 1 6.07 91.047287 90.211101 91.314498 X01_82808087 

flw flw1.1 QEI QEI 1 6.25 76.569293 75.069293 78.069293 X01_68959793 

firm ppfirm1.2 PP S.Vpd 1 6.40 82.578583 77.436487 83.434428 X01_74339383 

flw ppflw1.1 PP S.Tmin 1 6.87 76.186755 4.96157 77.65613 X01_68577255 

height ht1.1 Mean Mean 1 8.16 75.855371 4.96157 77.65613 X01_68245871 

SSC SSC1.2 Mean Mean 1 10.94 91.608878 91.212721 92.266398 X01_83369678 

SSC SSC1.2 QEI QEI 1 12.14 91.77996 90.27996 93.27996 X01_83540760 

flw flw1.1 Mean Mean 1 19.25 76.186755 4.96157 77.65613 X01_68577255 

diam diam2.1 QEI QEI 2 4.00 40.592217 39.092217 42.092217 X02_35170067 

SSC SSC2.1 QEI QEI 2 4.15 45.158686 43.658686 46.658686 X02_39736536 

diam diam2.1 Mean Mean 2 4.66 40.592217 39.456131 41.80934 X02_35170067 

nflw ppnflw2.1 PP Slope 2 4.71 40.592217 39.456131 41.642759 X02_35170067 

nfr nfr2.1 Mean Mean 2 4.88 41.740574 41.274596 48.195716 X02_36318424 

leaf ppleaf2.1 PP Slope 2 5.05 48.329646 47.822111 48.89947 X02_42907496 

fw fw2.1 Mean Mean 2 5.14 48.329646 47.822111 48.89947 X02_42907496 

height ht2.1 QEI QEI 2 5.22 47.822111 46.322111 49.322111 X02_42399961 

SSC ppSSC2.1 PP Slope 2 5.39 44.547467 41.740574 45.64581 X02_39125317 

SSC SSC2.2 Mean Mean 2 5.60 50.666161 48.471214 51.966463 X02_45244011 
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fw fw2.1 QEI QEI 2 5.72 48.195716 46.695716 49.695716 X02_42773566 

flw flw2.1 Mean Mean 2 5.92 27.224828 5.855256 38.423331 X02_17932477 

fw fw2.2 QEI QEI 2 7.17 52.10546 50.60546 53.60546 X02_46683310 

fw ppfw2.2 PP S.SDD 2 7.29 52.920159 51.775968 54.014597 X02_47498009 

fw ppfw2.2 PP VAR 2 7.48 52.920159 51.182657 54.014597 X02_47498009 

fw ppfw2.1 PP S.SDD 2 7.95 48.195716 47.822111 48.89947 X02_42773566 

height ht2.1 Mean Mean 2 8.61 47.822111 45.447408 48.195716 X02_42399961 

fw fw2.2 Mean Mean 2 8.96 51.775968 51.182657 54.014597 X02_46353818 

fw ppfw2.2 PP Slope 2 9.02 52.920159 51.182657 54.014597 X02_47498009 

fw ppfw2.1 PP Slope 2 9.63 48.195716 47.822111 48.89947 X02_42773566 

fw fw3.2 QEI QEI 3 4.38 64.793561 63.293561 66.293561 X03_58846611 

flw ppflw3.1 PP Slope 3 4.52 62.328005 60.528754 62.457723 X03_56381055 

flw ppflw3.3 PP VAR 3 4.87 70.040809 65.831575 70.741861 X03_64093859 

leaf leaf3.1 QEI QEI 3 5.11 64.450921 62.950921 65.950921 X03_58503971 

fw ppfw3.2 PP Slope 3 5.29 68.052409 63.93268 68.476718 X03_62105459 

height ht3.1 Mean Mean 3 5.75 64.701243 63.93268 64.899693 X03_58754293 

firm firm3.1 Mean Mean 3 5.80 62.520086 62.328005 64.333413 X03_56573136 

fw ppfw3.2 PP VAR 3 6.14 65.387833 63.21107 67.141095 X03_59440883 

diam diam3.1 Mean Mean 3 6.18 63.93268 63.21107 64.333413 X03_57985730 

flw flw3.2 Mean Mean 3 6.25 64.793561 64.450921 65.387833 X03_58846611 

leaf leaf3.1 Mean Mean 3 6.46 64.450921 62.328005 65.244029 X03_58503971 

fset fset3.1 Mean Mean 3 6.49 64.701243 63.93268 64.899693 X03_58754293 

fw fw3.2 Mean Mean 3 6.82 64.701243 63.93268 66.923413 X03_58754293 

height ppht3.1 PP S.Th.Amp 3 7.63 64.521327 63.93268 65.387833 X03_58574377 

fset fset3.1 QEI QEI 3 7.80 64.601104 63.101104 66.101104 X03_58654154 

height ppht3.1 PP Slope 3 8.05 64.521327 63.93268 64.899693 X03_58574377 

flw flw3.2 QEI QEI 3 14.61 64.793561 63.293561 66.293561 X03_58846611 

nfr ppnfr4.1 PP S.SDD 4 4.55 1.850859 1.37403 2.926444 X04_1850859 

nfr nfr4.1 Mean Mean 4 4.58 1.850859 1.670584 3.481942 X04_1850859 

diam ppdiam4.1 PP Slope 4 4.67 62.374445 61.281208 65.236362 X04_59967815 

SSC SSC4.1 Mean Mean 4 5.15 62.374445 59.990653 62.8371 X04_59967815 

firm firm4.1 Mean Mean 4 5.24 61.830034 55.727428 63.370382 X04_59423404 

nflw ppnflw4.2 PP S.RH 4 5.42 64.634125 64.034949 64.879538 X04_62227495 

fset fset4.1 Mean Mean 4 5.57 62.002311 60.952746 62.8371 X04_59595681 

nflw nflw4.1 Mean Mean 4 5.60 2.050817 1.670584 3.481942 X04_2050817 

nflw nflw4.2 Mean Mean 4 5.81 64.534853 63.422266 64.879538 X04_62128223 

SSC ppSSC4.1 PP Slope 4 5.88 61.842938 61.281208 62.8371 X04_59436308 

nfr ppnfr4.1 PP VAR 4 6.50 2.149071 2.050817 2.926444 X04_2149071 

height ht4.2 QEI QEI 4 6.93 64.034949 62.534949 65.534949 X04_61628319 

height ppht4.1 PP S.Th.Amp 4 7.02 62.083632 61.842938 62.8371 X04_59677002 

height ppht4.1 PP Slope 4 7.20 62.083632 62.002311 62.8371 X04_59677002 
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nflw ppnflw4.2 PP Slope 4 7.79 64.634125 64.034949 64.879538 X04_62227495 

diam diam4.1 QEI QEI 4 8.58 64.034949 62.534949 65.534949 X04_61628319 

SSC SSC4.1 QEI QEI 4 9.16 61.842938 60.342938 63.342938 X04_59436308 

height ht4.2 Mean Mean 4 10.46 64.034949 63.82458 64.879538 X04_61628319 

diam diam4.1 Mean Mean 4 11.17 64.034949 63.82458 65.778385 X04_61628319 

SSC SSC5.1 QEI QEI 5 4.30 2.02052 0.52052 3.52052 X05_2020520 

SSC SSC5.1 Mean Mean 5 4.48 65.774446 0.11876 65.870042 X05_64920796 

firm ppfirm5.1 PP Slope 5 4.50 7.143867 6.932595 61.632828 X05_7143867 

flw flw5.1 Mean Mean 5 4.64 56.142303 5.638011 61.248466 X05_55288653 

leaf ppleaf5.1 PP S.Tmax 5 4.79 4.322124 0.990309 4.373269 X05_4322124 

fw fw5.1 Mean Mean 5 4.79 4.527122 4.01884 5.180595 X05_4527122 

diam diam5.1 Mean Mean 5 4.97 6.932595 5.638011 60.985149 X05_6932595 

flw flw5.1 QEI QEI 5 5.47 7.251936 5.751936 8.751936 X05_7251936 

SSC ppSSC5.1 PP S.Vpd 5 6.16 2.538011 2.339908 3.669112 X05_2538011 

flw flw6.1 QEI QEI 6 4.30 42.249026 40.749026 43.749026 X06_38638926 

height ht6.2 Mean Mean 6 4.55 45.218536 40.585009 46.657691 X06_41608436 

firm firm6.1 QEI QEI 6 4.55 40.585009 39.085009 42.085009 X06_36974909 

nflw ppnflw6.2 PP Slope 6 4.65 48.782813 46.748971 49.687274 X06_45072813 

nflw ppnflw6.1 PP Slope 6 5.08 37.965369 36.880315 38.363876 X06_34355269 

leaf ppleaf6.1 PP S.Tmax 6 5.32 46.657691 45.218536 48.206369 X06_43047591 

height ht6.1 Mean Mean 6 5.37 0.733825 0.015422 32.798578 X06_733825 

leaf leaf6.1 QEI QEI 6 12.32 46.170878 44.670878 47.670878 X06_42560778 

firm ppfirm7.1 PP S.Vpd 7 4.52 4.481678 3.122017 64.215168 X07_4481678 

SSC ppSSC7.1 PP Slope 7 4.57 67.773594 61.06426 67.908188 X07_64997194 

SSC SSC7.1 Mean Mean 7 4.68 63.768352 60.02716 65.832471 X07_61091852 

height ppht7.1 PP S.Th.Amp 7 4.84 61.06426 60.02716 63.768352 X07_58387760 

diam diam7.1 Mean Mean 7 4.88 63.972793 57.242195 67.908188 X07_61296293 

SSC ppSSC7.1 PP S.Vpd 7 4.90 63.64279 61.06426 63.768352 X07_60966290 

height ppht7.1 PP Slope 7 5.14 61.06426 60.02716 63.768352 X07_58387760 

firm firm7.2 Mean Mean 7 5.78 67.029958 64.764273 67.908188 X07_64253558 

flw ppflw7.1 PP VAR 7 6.11 59.709404 58.415562 60.02716 X07_57032904 

height ppht8.1 PP Slope 8 4.45 1.199042 0.062757 2.769368 X08_1199042 

SSC SSC8.2 Mean Mean 8 4.45 61.170209 59.101552 64.624556 X08_58336209 

fset ppfset8.1 PP S.Vpd 8 4.47 0.390964 0.062757 2.769368 X08_390964 

firm ppfirm8.1 PP S.Vpd 8 4.54 0.062757 0.062757 2.769368 X08_62757 

fw ppfw8.1 PP VAR 8 4.64 59.736554 57.208257 61.170209 X08_56902554 

flw flw8.1 Mean Mean 8 4.95 28.732034 3.036877 65.225414 X08_15744258 

fw ppfw8.1 PP Slope 8 5.17 59.736554 59.101552 60.397157 X08_56902554 

SSC SSC8.1 Mean Mean 8 5.18 21.047529 3.523236 57.585344 X08_31903516 

fw fw8.1 Mean Mean 8 5.97 60.170203 59.543193 61.170209 X08_57336203 

leaf leaf9.1 QEI QEI 9 4.06 63.711556 62.211556 65.211556 X09_59309075 
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nfr ppnfr9.1 PP Slope 9 4.58 0.490136 0.015806 1.235265 X09_490136 

diam diam9.1 Mean Mean 9 4.86 56.141247 4.289476 64.210503 X09_51738766 

flw ppflw9.1 PP S.Tmin 9 5.09 63.711556 8.333659 65.618957 X09_59309075 

SSC ppSSC9.1 PP Slope 9 5.43 4.550994 3.942061 4.732408 X09_4550994 

fw ppfw9.1 PP S.SDD 9 5.71 69.958773 69.906993 71.056445 X09_65306642 

leaf leaf9.1 Mean Mean 9 5.88 66.172567 52.555625 66.553493 X09_61670186 

flw flw9.2 Mean Mean 9 7.65 69.553678 69.130616 69.958773 X09_64901547 

SSC SSC9.1 Mean Mean 9 8.93 4.316025 2.926053 4.550994 X09_4316025 

SSC SSC9.1 QEI QEI 9 9.67 3.398797 1.898797 4.898797 X09_3398797 

flw ppflw10.1 PP S.Tmin 10 4.58 1.146092 0.164588 62.294422 X10_1146092 

leaf leaf10.1 Mean Mean 10 4.59 63.191372 62.556165 65.499448 X10_62515904 

fset fset10.1 Mean Mean 10 4.88 0.164588 0.0221 1.323966 X10_164588 

SSC ppSSC10.1 PP S.Vpd 10 5.01 0.354213 0.0221 2.216078 X10_354213 

fset ppfset10.1 PP Slope 10 5.31 1.166916 0.0221 1.323966 X10_1166916 

SSC ppSSC10.1 PP Slope 10 5.74 3.586564 1.707763 53.439459 X10_3586564 

flw flw11.1 QEI QEI 11 3.75 54.464915 52.964915 55.964915 X11_51548415 

nflw ppnflw11.2 PP VAR 11 4.46 53.532037 53.206534 55.21479 X11_50615537 

flw ppflw11.1 PP Slope 11 4.59 54.224712 53.964003 55.21479 X11_51308212 

nflw nflw11.2 QEI QEI 11 4.63 55.578287 54.078287 57.078287 X11_52661787 

nfr ppnfr11.1 PP VAR 11 4.63 7.241787 5.023403 55.21479 X11_51849675 

height ppht11.1 PP Slope 11 4.72 54.766175 53.964003 55.755602 X11_51849675 

nfr ppnfr11.1 PP Slope 11 4.76 54.766175 52.915345 55.21479 X11_51849675 

leaf ppleaf11.1 PP S.Tmax 11 4.83 55.10036 53.964003 55.87912 X11_52183860 

fset fset11.1 Mean Mean 11 4.84 55.003933 53.823685 55.824549 X11_52087433 

nflw nflw11.2 Mean Mean 11 4.91 55.10036 53.532037 55.755602 X11_52183860 

height ppht11.1 PP S.Th.Amp 11 5.04 55.10036 53.964003 55.755602 X11_52183860 

firm ppfirm11.1 PP S.Vpd 11 5.25 53.423887 1.136159 54.224712 X11_50507387 

flw flw11.1 Mean Mean 11 5.48 54.599648 53.206534 55.755602 X11_51683148 

diam diam11.1 Mean Mean 11 5.64 4.781218 4.151798 5.476941 X11_4781218 

nflw ppnflw11.1 PP S.RH 11 6.15 7.241787 4.151798 7.826292 X11_7241787 

fw ppfw11.2 PP S.SDD 11 6.37 53.423887 53.206534 53.823685 X11_50507387 

diam ppdiam11.2 PP Slope 11 6.40 55.578287 53.964003 55.824549 X11_52661787 

nflw ppnflw11.2 PP S.RH 11 7.00 55.10036 54.599648 55.755602 X11_52183860 

SSC ppSSC11.2 PP VAR 11 7.61 54.599648 52.42503 55.824549 X11_51683148 

nflw ppnflw11.1 PP Slope 11 7.72 5.476941 4.151798 7.826292 X11_5476941 

nflw ppnflw11.2 PP Slope 11 7.81 55.10036 54.599648 55.755602 X11_52183860 

SSC SSC11.1 Mean Mean 11 8.38 48.659366 25.747752 50.676545 X11_45742866 

fw ppfw11.2 PP Slope 11 8.48 53.423887 53.206534 53.823685 X11_50507387 

fw fw11.3 QEI QEI 11 8.65 55.10036 53.60036 56.60036 X11_52183860 

fw fw11.3 Mean Mean 11 8.86 55.10036 54.268855 55.21479 X11_52183860 

firm firm11.1 QEI QEI 11 8.93 50.495947 48.995947 51.995947 X11_47579447 



Appendix 6: Supplementary materials of Chapter 6 

fw ppfw11.3 PP VAR 11 9.88 55.003933 54.464915 56.105593 X11_52087433 

firm firm11.1 Mean Mean 11 11.74 53.035288 52.42503 53.423887 X11_50118788 

fw fw12.2 Mean Mean 12 4.45 4.892313 3.666238 37.355136 X12_4892313 

nflw ppnflw12.1 PP S.RH 12 4.45 2.15924 1.921369 2.821857 X12_2159240 

height ppht12.2 PP Slope 12 4.54 65.945275 65.580355 67.142748 X12_64286325 

nflw ppnflw12.1 PP Slope 12 4.75 2.36717 1.921369 2.821857 X12_2367170 

diam ppdiam12.2 PP VAR 12 4.86 64.125346 36.724611 65.419995 X12_62566296 

fw fw12.1 Mean Mean 12 4.87 0.409174 0.010859 0.972302 X12_409174 

nfr ppnfr12.1 PP VAR 12 4.99 2.36717 2.109522 2.821857 X12_2367170 

height ppht12.1 PP S.Th.Amp 12 5.07 0.882566 0.493722 66.824887 X12_882566 

flw flw12.1 Mean Mean 12 5.23 2.821857 1.921369 3.722833 X12_2821857 

height ppht12.1 PP Slope 12 5.28 0.882566 0.493722 0.972302 X12_882566 

nflw nflw12.1 Mean Mean 12 5.31 2.713152 2.36717 2.821857 X12_2713152 

flw flw12.1 QEI QEI 12 5.45 2.821857 1.321857 4.321857 X12_2821857 

diam diam12.1 Mean Mean 12 5.86 2.15924 1.921369 2.56488 X12_2159240 
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Supplemental Table 5: Genetic location of the MAGIC-MET QTLs overlapping with the Sweep (domestication/improvement) regions. 

Region Chromosome Start End QEI Mean Plasticity 

SW8 Chr1 420000 520000   fset1.1; nfr1.1 

SW9 Chr1 870000 1220000   fset1.1; nfr1.1; SSC1.1 

SW22 Chr1 75720000 77870000 ht1.1; flw1.1   

SW34 Chr1 90290000 90580000   ht1.2 

SW35 Chr1 91440000 91650000  SSC1.2  
SW36 Chr1 93170000 93700000 fset1.3   

SW37 Chr1 93900000 94000000 fset1.3   

SW47 Chr2 40940000 41180000 diam2.1   

SW49 Chr2 44300000 45020000 SSC2.1   

SW50 Chr2 45420000 46660000 SSC2.1   

SW51 Chr2 46830000 46970000 ht2.1   

SW52 Chr2 48130000 48280000 ht2.1 fw2.1 fw2.1; leaf2.1 

SW54 Chr2 52990000 53290000 fw2.2   

SW55 Chr2 53740000 53890000 fw2.2   

SW74 Chr3 62310000 62950000   flw3.1 

SW75 Chr3 64760000 65010000 leaf3.1; fset3.1; fw3.2 ht3.1; fset3.1; flw3.2 ht3.1 

SW78 Chr4 1470000 1960000  nflw4.1  
SW79 Chr4 2780000 2880000  nfr4.1; nflw4.1 nfr4.1 

SW80 Chr4 3280000 4130000  nflw4.1  
SW82 Chr4 64300000 64500000 diam4.1; ht4.2 diam4.1; ht4.2; nflw4.2 nflw4.2 

SW85 Chr5 2160000 2530000 SSC5.1   

SW86 Chr5 7670000 7820000 flw5.1   

SW114 Chr6 42230000 43700000 flw6.1   

SW116 Chr6 45370000 47400000 leaf6.1   

SW152 Chr7 59360000 59500000   flw7.1 

SW207 Chr8 59490000 59960000  fw8.1 fw8.1 

SW208 Chr8 60240000 60630000  fw8.1 fw8.1 

SW213 Chr9 1000000 1220000   nfr9.1 

SW215 Chr9 4530000 4890000   SSC9.1 

SW217 Chr9 63490000 64600000 leaf9.1   

SW222 Chr9 69020000 69260000  flw9.2  
SW223 Chr9 69460000 69570000  flw9.2  
SW224 Chr9 69990000 70570000   fw9.1 

SW225 Chr10 610000 850000  fset10.1 fset10.1 

SW226 Chr10 1150000 1450000  fset10.1 fset10.1 

SW253 Chr11 52740000 53040000 firm11.1 firm11.1  
SW254 Chr11 53810000 53980000 flw11.1  fw11.2; flw11.1; ht11.1; leaf11.1; diam11.2 

SW255 Chr11 55240000 55620000 flw11.1; fw11.3 fw11.3 flw11.1; fw11.3; nflw11.2; ht11.1; leaf11.1; diam11.2 
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SW256 Chr12 50000 350000  fw12.1  
SW257 Chr12 790000 1310000  fw12.1;  ht12.1 

SW258 Chr12 2710000 3070000 flw12.1 nflw12.1; flw12.1 nflw12.1; nfr12.1 

SW263 Chr12 65270000 66040000     ht12.2 



 

  



 

  



 

 


