

Dualités fonctionnelles de GASP-1 et GASP-2, deux protéines multi-domaines antagonistes de la myostatine

Alexis Parenté

► To cite this version:

Alexis Parenté. Dualités fonctionnelles de GASP-1 et GASP-2, deux proté
ines multi-domaines antagonistes de la myostatine. Autre [q-bio.OT]. Université de Limoges, 2019. Français.
 NNT: . tel-02790534v1

HAL Id: tel-02790534 https://hal.inrae.fr/tel-02790534v1

Submitted on 5 Jun 2020 (v1), last revised 21 Sep 2020 (v2)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0 International License

Thèse de doctorat

Université de Limoges ED 615 - Sciences Biologiques et Santé (SBS) Laboratoire Peirene EA7500 – USC-INRA-1061

Thèse pour obtenir le grade de Docteur de l'Université de Limoges Aspects Moléculaires et Cellulaires de la Biologie

Présentée et soutenue par Alexis PARENTÉ

Le Vendredi 20 septembre 2019

Dualités fonctionnelles de GASP-1 et GASP-2, deux protéines multi-domaines antagonistes de la myostatine.

Thèse dirigée par le Pr. Véronique BLANQUET et le Dr. Laetitia MAGNOL

JURY :

Président du jury Pierre-Marie PREUX, P.U.P.H., UMR1094 INSERM, Université de Limoges

Rapporteurs

Athanassia SOTIROPOULOS, D.R. INSERM, Institut Cochin, UMR8104 CNRS-INSERM, Paris Fanny PILOT-STORCK, P.U., U955 INSERM, Université Paris-Est-Créteil

Examinateurs

Jean-Charles GABILLARD, D.R. INRA, UR1037 INRA - Rennes

Véronique BLANQUET, P.U., Laboratoire Peirene, EA7500 INRA, Université de Limoges Laetitia MAGNOL, M.C.U., Laboratoire Peirene, EA7500 INRA, Université de Limoges

Thèse de doctorat

Université de Limoges ED 615 - Sciences Biologiques et Santé (SBS) Laboratoire Peirene EA7500 – USC-INRA-1061

Thèse pour obtenir le grade de Docteur de l'Université de Limoges Aspects Moléculaires et Cellulaires de la Biologie

Présentée et soutenue par Alexis PARENTÉ

Le Vendredi 20 septembre 2019

Dualités fonctionnelles de GASP-1 et GASP-2, deux protéines multi-domaines antagonistes de la myostatine.

Thèse dirigée par le Pr. Véronique BLANQUET et le Dr. Laetitia MAGNOL

JURY :

Président du jury Pierre-Marie PREUX, P.U.P.H., UMR1094 INSERM, Université de Limoges

Rapporteurs

Athanassia SOTIROPOULOS, D.R. INSERM, Institut Cochin, UMR8104 CNRS-INSERM, Paris Fanny PILOT-STORCK, P.U., U955 INSERM, Université Paris-Est-Créteil

Examinateurs

Jean-Charles GABILLARD, D.R. INRA, UR1037 INRA - Rennes

Véronique BLANQUET, P.U., Laboratoire Peirene, EA7500 INRA, Université de Limoges Laetitia MAGNOL, M.C.U., Laboratoire Peirene, EA7500 INRA, Université de Limoges

A mes grands-parents, Sans votre ADN, tout cela aurait été impossible.

A mes parents, Aucune thèse n'aurait pu vous préparer à mon excentricité. « Accrochons-nous à nos rêves car ensemble nous pouvons changer le monde et le monde a besoin de changer. Tout est possible à qui rêve, ose, travaille et n'abandonne jamais »

Xavier Dolan, Cannes, 2014

REMERCIEMENTS

D'après un vieux proverbe doctorant, « la thèse, c'est un peu comme le mariage. Quand on est pas dedans, on rêve d'y entrer. Et puis une fois qu'on est en plein milieu, on rêve d'en sortir ». Je vous rassure, ce proverbe ne caractérise pas mes années de thèse, si bien que j'ai rempilé pour une petite année supplémentaire ! A croire que le mariage fût heureux ! Et si ma thèse a été réussie et fructueuse, c'est parce qu'elle a été riche de nombreuses rencontres, des personnes bienveillantes et aidantes que je souhaite remercier ici.

Je tiens tout d'abord à remercier chaleureusement l'ensemble des membres de mon jury de thèse, pour avoir pris le temps d'examiner et de juger mon travail.

J'adresse mes plus sincères remerciements à **Fanny PILOT-STORCK** et à **Athanassia SOTIROPOULOS** de m'avoir fait l'honneur d'être rapportrices de cette thèse. Ce fut un réel plaisir de vous avoir rencontrées. Merci Fanny pour votre investissement et le merveilleux souvenir que je garde de ma formation à l'Expérimentation Animale à l'Ecole Vétérinaire d'Alfort. Merci Athanassia de m'avoir permis de présenter mes travaux lors du «Club Muscle» de l'Institut Cochin.

Je remercie également Jean-Charles GABILLARD d'avoir accepté de prendre connaissance de mon travail et de le juger en tant qu'examinateur.

J'adresse mes plus sincères remerciements à **Pierre-Marie PREUX** d'avoir accepté de présider mon jury de thèse. Merci pour votre bienveillance à mon égard lors des nombreux conseils de l'Université. Pierre-Marie, veuillez trouver ici mon plus profond respect.

Je remercie très sincèrement Véronique BLANQUET, ma directrice de thèse, pour l'aventure scientifique et humaine que nous partageons depuis quelques années. Je vous témoigne toute ma reconnaissance pour votre confiance et votre soutien sans faille dans nos projets. Merci également de m'avoir permis de communiquer mes résultats dans de nombreux congrès. Que de souvenirs, d'échanges (et de bières partagées) ! Au delà d'une vision «directrice-doctorant », une thèse peut aussi devenir une vraie symbiose collaborative et je pense que nous avons réussi le challenge ! Danke Chef !

Je remercie chaleureusement Laetitia MAGNOL, ma co-directrice de thèse, d'avoir embarqué sur le navire un peu plus tardivement mais d'avoir toujours porté un regard bienveillant sur mon travail. Merci d'avoir été patiente avec moi, de m'avoir enseigné l'art de l'animalerie, de ton aide et de nos nombreuses chamailleries, nécessaires à l'accomplissement de ce travail ! Merci pour tout !

Véronique, Laetitia, j'espère que vous serez fières de ce que nous avons accompli ensemble !

Je remercie très affectueusement l'équipe du Collège Doctoral de l'Université de Limoges. Merci à Adeline, Sabrina et Claire B. pour votre travail, votre humanité et votre gentillesse. Merci à Bertrand Courtioux et à Rachida Zerrouki, directeurs d'Ecoles doctorales de choc. Je remercie affectueusement la « team » de « Ma thèse en 180 secondes », **Hendrik**, la **COMUE**, **Maggie** et **Christophe**, pour cette superbe aventure jusqu'en finale nationale !

Je remercie également très chaleureusement notre président, Alain Célérier. Merci pour votre sympathie à chacune de nos rencontres et pour m'avoir accompagné jusqu'à Toulouse pour un moment plus qu'épique ! (On recherche encore la Talisman !)

Je souhaite également remercier les personnes et équipes qui ont collaboré avec nous lors de ce travail de thèse. Merci à **Florent Di Meo** et **Patrick Trouillas** pour leur collaboration en modélisation moléculaire. Merci à l'équipe du **CIPA d'Orléans** pour votre gentillesse et votre aide dans l'imagerie du petit animal. Merci à **Claire Carrion** pour son aide indéfinissable au plateau « microscopie » (et pour tout ce que j'ai pu emprunter au CBRS). Merci à **Anne Druilhe** pour son investissement à l'animalerie et sa gentillesse permanente. Je remercie aussi très chaleureusement **Arymantas Lionikas**, pour notre collaboration écossaise et pour m'avoir permis de venir présenter mes résultats à Aberdeen.

J'adresse mes remerciements les plus sincères à l'équipe du département d'enseignement « Sciences du vivant ». **Fabrice**, merci de m'avoir permis de goûter au monde de l'enseignement durant ma thèse. **Sylvie F.** merci pour ton investissement dans notre formation à l'enseignement, pour nos séances de médiations scientifiques et pour ta jovialité. Merci à **Valérie**, pour tes sourires et nos belles discussions ! Merci à **Karine P.** et **Florence D.** pour nos merveilleux moments en TP, au labo ou ailleurs. Merci infiniment les filles, vous avez été de réelles échappatoires ! Karine, merci à toi pour ton investissement et ton aide à l'animalerie, toujours dans la joie et le rire !

Je remercie bien sûr profondément tous les membres de mon laboratoire, pour leur aide et leur bonne humeur :

Odile, gestionnaire de choc, merci pour ton enthousiasme à toute épreuve, ton anticipation et ton dévouement. Merci pour ton travail, ta disponibilité et ta gentillesse sans égale. Ma thèse n'aurait pas été la même sans toi. Merci pour tout !

Fabienne, ma petite dame, merci pour ton aide sans faille, ta motivation et ta bonne humeur. Je n'oublierai jamais nos nombreux fous-rires, nos manips loupées (c'est du bruit de fond ou du marquage ?) et nos petites séances de bières et de blind-tests lorsque les enfants sont en vacances ! La « Paix Dieu » est brassée les nuits de pleine Lune ! Merci à toi !

Nathalie, coéquipière de choc, merci à toi pour ton aide dans mes nombreuses manips d'«ARN », ta dextérité et ta minutie (oui c'est moi qui jette tout ce qu'il n'faut pas dans la poubelle biologique !). Merci pour ta jovialité permanente, nos petites « virées sushi » entre les sorties à l'azote et aux plastiques (c'est qui déjà d'azote cette semaine ??). Merci à toi !

Lionel, Karine, merci à vous deux pour ces nombreux moments de rigolade et de bouffonneries, on peut bien l'dire ! Merci pour votre humour douteux, entre les sorties abattoirs (encharlottés s'il vous plait), nos discussions « politiques » du déjeuner et nos pauses-cafés du « deuxième ». Merci de m'avoir toujours considéré ! *Emilie*, un énorme merci pour m'avoir sauvé plus d'une fois dans mes demandes informatiques et protéiques ! Tu devrais inventer la notion de « protéo-informatique » !

Romain, **Stéphanie D.** (alias Dudu), mes p'tits « bio-nymphos », merci à vous deux pour votre joie de vivre, vos encouragements et les bons moments passés ensemble. Le club des « vapoteurs » est une institution qui doit poursuivre ! Merci pour tout ! Un grand merci également à **Guy**, pour tes mots toujours gentils et ta gentillesse.

Patrick, mon p'tit Patou, merci à toi pour l'aventure que nous avons débuté lors de mon Master II, pour notre superbe collaboration « biochimique » et pour ta sympathie inébranlable à mon égard. Merci éperdument pour la qualité de tes rapports humains, l'immense gentillesse qui te caractérise et tes mots toujours réconfortants.

Didier, « ça fait peur » heiin Didou ? Merci à toi pour ton altruisme et ta bonté. Merci de m'avoir permis de goûter régulièrement à tes mets succulents (tes lentilles c'est la vie !). Merci pour ton regard toujours protecteur et pour nos nombreuses discussions.

Laure, Merci infiniment pour tout ce que tu as fait pour moi. Tes récits, tes voyages et nos discussions m'ont permis de m'évader. Merci à toi de m'avoir choyé. Merci de ta bienveillance et d'avoir pris le temps pour ce manuscrit. Merci à toi de m'avoir permis de souffler, le temps d'un thé à l'odeur du jasmin, d'un verre de vin près des cyprès ensoleillés ... Finalement, notre amitié c'est un peu comme un carpaccio qui rencontre un tartare ! (Sur une échelle de 1 à 10, on est à combien ?) Merci pour tout ça !

Je remercie l'ensemble des doctorants ou anciens doctorants du laboratoire pour les bons moments partagés, leur bonne humeur au quotidien, les petits mots réconfortants et les coups de gueules communs ! Merci à **Bruno**, **Julien**, **Abdelmajid**, **Florian**, **Tiffany**, **Marlène** et **Louise** ...

Une pensée très chaleureuse pour les anciens, **Benoit, Mélanie P. Claire B.**, **Vincent.** Merci à vous pour les bons moments passés et tous les moments que nous allons encore passer ensemble ! Benoit & Laurence, merci pour votre demande, j'essaierai d'être à la hauteur le jour de votre mariage !

Je remercie sincèrement les nombreux stagiaires qui sont passés par ici, pour un stage dans l'équipe ! Éric, Axel, Jonathan, Marion, Manon, Mathieu, Clément ... Merci pour votre sympathie, votre aide et merci de m'avoir supporté également !

Je voudrais aussi remercier très chaleureusement les membres et anciens membres de notre association doctorante « ADPLim »! Merci pour toutes ces bonnes soirées, barbecues & CO ! Sabrina, Ophélie, Hugo, Martial, Matthias, Robin, Hélène... c'est toujours un plaisir de vous retrouver et de partager des bons moments avec vous !

Merci à **Caroline** et **Jessica**, mes deux compères durant ces années de thèse ! Merci à vous pour la superbe aventure que nous avons partagé tous les trois à Limoges. Merci également pour nos merveilleuses soirées (j'emmène le Graves !), nos escapades parisiennes, lotoises et à la mer... Tellement de souvenirs et de partages, mais ce n'est que le début d'une belle amitié ! Merci les filles !

Luce, ma Lucette, ça y est je crois que moi aussi j'y suis arrivé ! Flashback en 2014, lors de mon premier jour de stage de Master 1 où tu m'as si bien accueilli ! (Non sérieux t'es du quatre/six toi aussi?). Merci éperdument pour tout, ton amitié, ton enthousiasme débordant, ta bonté et ta générosité ! Je n'oublierai jamais notre Road Trip dans l'Ouest Américain mais également tout le reste. Merci aussi pour toutes nos collaborations plus scientifiques, nos discussions et ton émulation. Je suis très fier de ton parcours, je te souhaite le meilleur, ne change pas, tu es une superbe personne. Merci pour tout.

Je voudrai bien évidemment remercier de tout mon cœur mes amis, de Limoges, du Lot et d'ailleurs. Sachez que je vous aime et que je suis riche de vous tous. Je ne citerai et ne remercierai pas tout le monde car sinon je ne pourrai plus m'arrêter.

Laura, comment ne pas te remercier pour ces merveilleuses années d'« étudiant » à tes cotés ... La « team » BBMCG ... Nos soirées étudiantes ! Tu as commencé avec moi puis tu as choisi un autre chemin qui te rend heureuse, j'en suis très fier. Merci pour tout ce que tu m'as apporté.

Héloïse, nous nous sommes assis ensemble sur les bancs de la Fac des Sciences il y a presque 9 ans ... Merci à toi pour tous ces bons moments, qui m'ont permis de sortir du labo le temps d'un dîner, d'une soirée (trop) arrosée (Mathaaa lâche les cleps !), d'un weekend à la plage ... Merci d'avoir partagé avec moi notre séjour humanitaire en Afrique, notre road-trip jusqu'à Miami (la chaleur tropicale c'est pas pour nous !) et notre prochain trip au Sri Lanka. Ce n'est que le début ma belle ! Merci !

Manon, Etienne, je ne vous remercierai jamais assez d'être entré dans ma vie. Je suis profondément heureux de vous compter parmi mes amis les plus chers. Vous m'avez fait le plus beau des cadeaux lorsque je suis devenu le tonton de la petite Gabrielle. Merci pour votre soutien et votre amour.

Marlène, ma meilleure ! Merci à toi d'être toujours là après 22 ans d'amitié. Il est loin le temps du CP dans la cour de récré de l'école de Payrac. Depuis, notre amitié est inébranlable. Nous avons traversé tellement de choses ensemble. Je te dédie une part de cette thèse puisque je te dois une part de moi. Merci pour tout !

Je terminerai enfin par remercier **ma famille**, mes **grands-parents** tellement aimants. Je suis extrêmement fier de mon héritage culturel. Sans votre ADN, tout cela aurait été impossible.

Je remercie **mes parents** et mon frère **Cédric** : ça y est, enfin, on y est ! Vous n'avez pas toujours compris ce que je faisais. Mais si j'en suis là aujourd'hui, soyez en sûrs, c'est parce que vous étiez derrière moi. Ce travail correspond à ce que vous avez fait de moi. Alors pudiquement, sincèrement et plus que tout, merci !

Un immense merci à vous tous.

Alexis

DROITS D'AUTEURS

Cette création est mise à disposition selon le Contrat : « **Attribution-Pas d'Utilisation Commerciale-Pas de modification 3.0 France** » disponible en ligne : <u>http://creativecommons.org/licenses/by-nc-nd/3.0/fr/</u>

PUBLICATIONS ET COMMUNICATIONS

PUBLICATIONS

• Enhancement of C2C12 myoblast proliferation and differentiation by GASP-2, a myostatin inhibitor

Périé L., **Parenté A.**, Brun C., Magnol L., Pélissier P., Blanquet V. *Biochemistry and Biotechnology Reports, 2016 - <u>DOI: 10.1016/j.bbrep.2016.03.001</u>*

• Alterations in adiposity and glucose homeostasis in adult Gasp-1 overexpressing mice

Parenté A.*, Périé L.*, Baraige F., Magnol L., Blanquet V. Cellular Physiology and Biochemistry, 2017 – DOI: 10.1159/000485878

• Overexpression of both full length and truncated isoforms of bovine PGC-1alpha enhances myoblasts differentiation

Bamba J., **Parenté A.**, Duprat N., Forestier L., Blanquet V. *Gene Report, 2018 – <u>DOI: 10.1016/j.genrep.2018.10.012</u>*

• A siRNA Mediated Screen During C2C12 Myogenesis

Parenté A., Périé L., Magnol L., Bouhouch K., Blanquet V. Methods in Molecular Biology, 2019 – <u>DOI: 10.1007/978-1-4939-8897-6_13</u>

• GASP-1 and GASP-2, two closely structural related proteins with a functional duality in anti-trypsin inhibition specificity: a mechanistic point of view

Parenté A., Di Meo F., Lapeyronie E., AL Mansi M., Delourme D., Pelissier P., Bremaud L., Touillas P., Blanquet V.

En révision mineure- FEBS Journal

• Myostatin inhibition is differentially mediated in vivo by GASP-1 and GASP-2 to improve skeletal muscle mass

Parenté A., Boukredine A., Baraige F., Duprat N., Gondran-Tellier V., Magnol L., Blanquet V. *Soumis dans FASEB Journal*

GASP-2 overexpression increases bone mass and osteoblastogenesis in mouse
 Parenté A., Baraige F., Magnol L., Blanquet V.

En préparation

COMMUNICATIONS ECRITES

Conférences internationales

• Molecular control of muscle mass: roles of the proteins GASP/WFIKKN, two myostatin antagonists

Gondran-Tellier V., Pèrié L., Parenté A., Blanquet V., Magnol L.

5th International Congress of Myology – 2016, March 14-18 – Lyon, France

• Effects of GASP-1 or GASP- 2 overexpression on muscle development and metabolism

Parenté A., Baraige F., Duprat N., Magnol L., Blanquet V.

Muscle Development, Regeneration and Disease - 2018, April 22-27 - Berlin, Germany

• In vivo knock-down of novel murine myogenic actors identified by a siRNA-based screen in C2C12 myoblasts.

Parenté A., Baraige F., Duprat N., Magnol L., Blanquet V.6th International Congress of Myology – 2019, March 25-28 – Bordeaux, France

 Morphometric analysis of muscle cross sections using multicolor immunofluorescence imaging

Parenté A., Baraige F., Magnol L. and Blanquet V.

Myogenesis Gordon Research Conference - 2019, March 9-14 - Lucca, Italia

Conférences nationales

• Study of the mutation Mstn^{BA} discovered in the Blonde d'Aquitaine myostatin gene

Parenté A., Bamba J., Magnol L., Oulmouden A., Blanquet V.

19th Seminar of the Genetic Animal Department INRA - 2016, March 16-17 – Toulouse, France

• Study of the mutation Mstn^{BA}: in vitro and in vivo effects in mouse

Parenté A., Oulmouden A., Blanquet V.

Student Seminar of the ED-524 Doctoral School – 2016, March 7-8 – Pouligny-Notre-Dame, France

• Structure / Function studies of GASPs proteins, two myostatin inhibitors

Al-Mansi M., Lapeyronnie E, **Parenté A.**, Delourmes D., Pelissier P., Bremaud L., Blanquet V. Student Seminar of the ED-524 Doctoral School – 2017, March 9-10 – Pouligny-Notre-Dame, France

• In vivo knock-down of novel murine myogenic partners identified by a siRNA-based screen in C2C12 myoblasts.

Parenté A., Duprat N., Baraige F., Magnol L. and Blanquet V.

JSFM, Société Française de Myologie - 2018, November 21-23 - Brest, France

COMMUNICATIONS ORALES

Conférences internationales

• Control of muscle development: Study of the GASP-2 protein

Parenté A., Baraige F., Vuillier-Devillers K., Duprat N., Magnol L. and Blanquet V.

2nd European Advanced School for Mouse Phenogenomics – 2017, June 12-16 –Liebfrauenberg, Alsace, France

 Morphometric analysis of muscle cross sections using multicolor immunofluorescence imaging

Parenté A., Baraige F., Magnol L. and Blanquet V.

International Conference on Biomedical Engineering – 2018, October 5-6, Marrakech, Morocco.

• Study of the genetic determinism of muscular development

Parenté A., Magnol L., and Blanquet V.

University of Aberdeen - School of Medicine and Dentistry - 2019, February 5 - Aberdeen - Scotland

Conférences nationales

• Control of muscle development variability: Study of the mutation Mstn^{BA}

Parenté A., Forestier L., Magnol L., Blanquet V.

20th Seminar of the Genetic Animal Department INRA - 2017, May 9-10 – Rennes, France

• Control of muscle development: Study of the GASP-2 protein

Parenté A., Baraige F., Duprat N., Vuillier-Devillers K., Magnol L., Blanquet V.

Student Seminar of the ED-524 Doctoral School – 2017, March 9-100 – Pouligny-Notre-Dame, France

• Control of muscle development: Study of the GASP proteins

Parenté A., Baraige F., Vuillier-Devillers K., Duprat N., Magnol L. and Blanquet V.

The GEIST Institute Seminar - 2017, December 20 - Limoges, France

- Control of muscle development: Study of the GASP-1 & 2 proteins
 Parenté A., Baraige F., Duprat N., Vuillier-Devillers K., Magnol L. and Blanquet V. JSFM, Société Française de Myologie 2017, November 22-24 Colmar, France
- Identification and functional characterization of genes involved in muscle development

Parenté A., Magnol L., and Blanquet V.

Club Muscle of Cochin Institute - 2019, March 6 - Institut Cochin - Paris, France

Vulgarisation scientifique

• « Ma Thèse en 180 secondes » : Recherche de nouveaux partenaires pour lutter contre les maladies musculaires

Parenté A.

Finale Locale – 8 Mars 2018 – Limoges, France Finale Régionale – 22 Mars 2018 – La Rochelle, France Demi-Finale Nationale – 5-7 Avril 2018 – Paris, France Finale Nationale – 13 Juin 2018 – Toulouse, France

• Vulgarisation Scientifique et Accès aux sciences par le grand public

Parenté A.

32^{eme} forum des Professions Pharmaceutiques et des Industries de Santé – 2018, October 9 – Faculté de Pharmacie Paris-Descartes, France

• Recherche de nouveaux partenaires pour lutter contre les maladies musculaires

Parenté A.

Gala des 50 ans de l'Université de Limoges - 2018, October 25 - Zénith de Limoges, France

LISTE DES ABREVIATIONS

AAV: Adeno Associated Virus ActRIIa/IIb: Activin Receptor type-IIa/IIb AcvRIIb: Activin Receptor type IIb Akt: Protein kinase B Alk: Activin-like kinase **ALP:** Phosphatase Alkaline **AMPK:** AMP-activated Protein Kinase **Asp:** Aspartate ATP: Adénosine Triphosphate **bHLH:** basic Helix-Loop-Helix **BMP:** Bone Morphogenetic Protein c-met: MNNG HOS transforming gene CCL12: Chemokine (C-C motif) Ligand 12 **CDK:** Cyclin-Dependent Kinase CHO: Chinese Hamster Ovay cell **CMV:** Cytomégalovirus COL-1a: Collagenase de type 1a GASP: GDF-Associated Serum Protein **GDF:** Growth and Differentiation Factor **GLUT:** GLUcose Transporter GRMD: Golden Retriever Model of Duchenne muscular dystrophy **GSK3:** Glycogen Synthase Kinase 3 **Hox**: HomeobOX hSGT: human Small Glutamine-rich Tetratricopeptide repeat containing-protein **HSPG2:** Heparan Sulfate ProteoGlycan 2 IgC2: Immunoglobulin Complement 2 IGF-1: Insulin-like Growth Factor-1 **IGFR:** IGF Receptor **IRS:** Insulin Receptor Substrate

CXCL: C-X-C motif chemokine Ligand Cys: Cystéine DAPI: 4',6-diamidino-2-phénylindole DCN: Décorine DMD: Duchenne Muscular Dystrophy Dpc: Days post-coïtum **E-Box**: Enhancer-Box ERK: Extracellular signal-Regulated Kinase Fc: Fragment cristallisable des Ig FDL: Flexor Digitorum Longus muscle FoxO: Forkhead box protein FST/FS: Follistatine **FSTL3/FLRG:** Follistatin-Like 3/Follistatin Related-Gene GAPDH:D-GlycérAldéhyde-3-Phosphate DésHydrogénase J.p.c: Jour post-coitum JNK: c-Jun N-terminal Kinase **KOH** : Potassium hydroxide **LGMD:** Limb-Girdle Muscular Dystrophy **LTBP:** Latent TGF-β Binding Protein MAPK: Mitogen-Activated Protein Kinase MDX: X-linked Muscular Dystrophy of the mouse MEF2: Myocyte Enhancer Factor-2 miR/miRNA: microARN **MMP:** Matrix Metallo-Proteinases **MRF:** Muscle Regulatory Factor Mstn: Myostatine **mTOR:** mammalian Target Of Rapamycin

MuRF1: Muscle RING-Finger protein 1 sFRPs: secreted Frizzled-Related Myf: Myogenic factor Proteins Myh: Myosine shRNA: short haipin RNA MyHC: Myosin Heavy Chain siRNA: small interfering RNA MyoD: Myoblast Determination protein 1 SLA: Sclérose Latérale Amyotrophique MyoG: Myogénine **SMA:** Atrophie Musculaire Spinale **OC:** Ostéocalcine SMAD: Sma Mothers Against **OPG:** Oséoprotegerine Decapentaplegic homolog **OPN:** Osteopontine SRF: Serum Response Factor **ORF:** Open Reading Frame T-cap: Titin-cap TA: Tibialis anterior **OSX:** Osterix P21: cyclin-dependent kinase inhibitor 1 Tg: Transgénique **PAX:** Paired box protein **TGF:** Transforming Growth Factor **PFA:** ParaFormAldehyde TIMP-1: Tissue Inhibitor of **PGC-1**α: PPAR Gamma Coactivator-1α Metalloproteinase-1 Phospho: Phosphorylation **TLDA:** TaqMan Low Density Array PI3K: Phospholnositide 3-Kinase **TNFα:** Tumor Necrosis Factor α **PPAR:** Peroxisome Proliferator-Activated VIH: Virus de l'Immunodéficience Receptor Humaine WAP: Whey Acidic Protein **PS:** Peptide Signal Runx: Runt-related transcription factor 2 WFIKKN: WAP, Follistatin, Kazal. Immunoglobulin, Kunitz, Kunitz, Netrin **RUNX2:** Runt-related transcription factor 2 Ser: Sérine

TABLE DES MATIERES

TABLE DES MATIERES	L
INTRODUCTION GENERALE	L
EXPOSE BIBLIOGRAPHIQUE	5
PARTIE I : LA MYOSTATINE 6 DECOUVERTE DE LA MYOSTATINE, LA PROTEINE QUI « LIMITE » LA CROISSANCE MUSCULAIRE. 6 GENESE DES MUSCLES SQUELETTIQUES ET RÔLES DE LA MYOSTATINE • Le muscle squelettique • Les différentes fibres musculaires • La myogenèse embryonnaire et fœtale • La myostatine et la myogenèse embryonnaire 12 LES CELLULES SATELLITES ET LA MYOSTATINE : CROISSANCE POSTNATALE PRECOCE ET REGENERATION	5 3 3 3 3 3 3 3 3
LA CROISSANCE POSTNATALE MUSCULAIRE : UNE BALANCE ENTRE LA MYOSTATINE	-
 ET IGF-1 ?	1 5 7 3 3 9 1 2
 GDF-11 et le développement osseux	23
MYOSTATINE ET PATHOLOGIES MUSCULAIRES	5 5 5 7 5
 L'inhibition spécifique de la myostatine dans les essais cliniques	,) 1
PARTIE II : LES PROTEINES GASPs 33 UNE DOUBLE APPROCHE POUR LA DECOUVERTE DES PROTEINES GASPs 33 LES PROTEINES GASPs, DES PROTEINES « CHAPERONNES » SUBTILES DES TGF-βs. 35 LES PROTEINES GASPs, UNE DUALITE DANS L'INHIBITION IN VITRO DES TGF-βs ? 36 LES PROTEINES GASPs, DEUX INHIBITEURS DE PROTEASES ? 37	3 5 5 7
L'EMERGENCE D'UN LIEN ENTRE LES PROTEINES GASPS ET LE DEVELOPPEMENT MUSCULAIRE.39 ETUDES FONCTIONNELLES DES PROTEINES GASPS DANS LE CONTEXTE MYOGENIQUE42) L

OBJECTIFS DE LA THESE	. 44
RESULTATS & DISCUSSION	. 46
CHAPITRE I : EFFET DE LA SUREXPRESSION DE GASP-1 SUR LE TISSU ADIPEUX ET LE METABOLISME DU GLUCOSE	. 46
CHAPITRE II : ANALYSE FONCTIONNELLE DE LA PROTEINE GASP-2 AU COURS DU DEVELOPPEMENT MUSCULAIRE PARTIE I : ANALYSES FONCTIONNELLES <i>IN VITR</i> O DE LA PROTEINE GASP-2 DANS LE PROCESSU MYOGENIQUE.	. . 49 JS 49
PARTIE II : EFFET DE LA SUREXPRESSION DE GASP-2 IN VIVO.	. 53
TISSU OSSEUX	. 57
CHAPITRE IV: ETUDE <i>IN VITRO</i> DE LA RELATION STRUCTURE / FONCTION DES PROTEINES GASP-1 ET GASP-2 DANS LE CONTEXTE ANTIPROTEASIQUE	61
DISCUSSION GENERALE & PERSPECTIVES	. 65
REFERENCES	. 75

INDEX DES FIGURES

Figure 1. Inactivation de la myostatine chez la souris	6
Figure 2. Mutations naturelles de la myostatine chez les mammifères	6
Figure 3. La myostatine : du gène à la protéine	7
Figure 4. La signalisation des TGF-βs	7
Figure 5. Le muscle squelettique : du tissu à la fibre musculaire	8
Figure 6. Rôle de la myostatine dans le « typage » des fibres musculaires	9
Figure 7. La formation des muscles squelettiques10	0
Figure 8. Les différentes étapes et la régulation génique de la myogenèse10	0
Figure 9. Les deux vagues anténatales de la myogenèse1	1
Figure 10. Effet de la myostatine sur la myogenèse1	1
Figure 11. Croissance postnatale précoce : L'accrétion myonucléaire	2
Figure 12. La régénération musculaire via les cellules satellites	3
Figure 13. L'hypertrophie compensatoire postnatale14	4
Figure 14. La voie hypertrophique d'IGF-114	4
Figure 15. Dialogue dynamique entre les voies d'IGF-1 et de la myostatine1	5
Figure 16. Les voies canonique et non canonique de la myostatine	6
Figure 17. Le « cross-talk » entre le muscle et le métabolisme du glucose1	7
Figure 18. L'autorégulation de l'expression de la myostatine1	8
Figure 19. La biosynthèse de la myostatine19	9
Figure 20. Les partenaires de la myostatine20	0
Figure 21. Comparaison GDF-11 / Myostatine22	2
Figure 22. Le rôle de GDF-11 dans la mise en place de l'axe antéro-postérieur22	2
Figure 23. Le rôle de GDF-11 dans le développement osseux	3
Figure 24. Effet de l'inhibition de GDF-11 sur le développement osseux	3
Figure 25. Effet de GDF-11 sur le vieillissement et le développement musculaire24	4
Figure 26. Mécanismes associés à la sarcopénie2	7
Figure 27. Structure des protéines GASPs	3
Figure 28. Structure des gènes GASPs	3

Figure 29. Evolution des protéines GASPs	34
Figure 30. Expression tissulaire des protéines GASPs chez l'Homme	34
Figure 31. Les protéines GASPs : des inhibiteurs de la myostatine	35
Figure 32. Différence d'interaction entre les protéines GASPs et la myostatine	36
Figure 33. Mécanismes d'action des protéases	37
Figure 34. La balance protéases / antiprotéases	
Figure 35. Le rôle anti-protéasique putatif des protéines GASPs	39
Figure 36. Surexpression transitoire de Gasp-1 via AAV	41
Figure 37. Le phénotype des souris <i>Tg</i> (<i>Gasp-1</i>) surexprimant <i>Gasp-1</i>	42
Figure 38. La surexpression de Gasp-1 s'accompagne d'une up-régulation de Mstn	42
Figure 39. Phénotype musculaire des souris Gasp-1 ^{-/-} et Gasp-2 ^{-/-}	43

Pour ne pas en alourdir la lecture, dans les légendes des figures, j'ai choisi de ne pas redéfinir toutes les abréviations (déjà rassemblées et définies dans la liste des abréviations).

Index des tableaux

Tableau 1. Classification des fibres musculaires selon leurs caractéristiques structurales métaboliques et fonctionnelles. 9	,)
Tableau 2. Principaux composés ciblant la myostatine dans les essais cliniques. 29)
Tableau 3. Principaux composés ciblant la myostatine et d'autres TGF-βs dans les essais cliniques)
INTRODUCTION GÉNÉRALE

INTRODUCTION GENERALE

Le muscle squelettique constitue près de la moitié de la masse corporelle et joue un rôle essentiel dans la locomotion chez les vertébrés. C'est aussi un organe endocrine qui sécrète de nombreuses cytokines permettant le dialogue inter-organe, à l'image de l'homéostasie glucidique. Mieux comprendre le contrôle génétique de l'homéostasie de la masse musculaire représente un enjeu réel dans le domaine de la santé. En effet, il existe de nombreuses pathologies musculaires d'origines diverses mais qui conduisent souvent à un rapport masse/force musculaire amoindri, on parle alors d'atrophie musculaire. Parmi ces pathologies, les myopathies représentent environ 300 maladies différentes, dont environ 80% d'entre elles ont une origine génétique. Les plus fréquentes sont la myopathie de Duchenne et l'amyotrophie spinale infantile. De plus, la sarcopénie, une dystrophie musculaire liée à l'âge, représente une des principales causes de perte de mobilité chez les personnes âgées. Enfin, la cachexie cancéreuse, syndrome complexe, se caractérise par une perte de la masse musculaire aggravant la réponse aux chimiothérapies.

Une piste thérapeutique pertinente pour traiter ces pathologies consiste à inhiber la voie de la myostatine (MSTN), un régulateur négatif de la croissance musculaire afin d'augmenter la taille, la force et la régénération des muscles. La myostatine est une cytokine musculaire appartenant à la superfamille des TGF- β s (Transforming Growth Factor β). Les souris *Mstn*^{-/-}, déficientes pour le gène de la myostatine, présentent une hyperplasie et une hypertrophie des myofibres. Outre son rôle sur la croissance musculaire, la perte de fonction de la myostatine, chez les souris *Mstn*^{-/-}, entraîne également une diminution de la masse adipeuse, une protection contre l'obésité liée à l'âge et une augmentation de la sensibilité à l'insuline.

La myostatine est ainsi au coeur de nombreuses stratégies thérapeutiques visant à améliorer la fonction musculaire. Au cours des 10 dernières années, différents essais cliniques visant à inhiber la voie de signalisation de la myostatine par l'action d'une forme soluble de son récepteur (ACE-031), d'anticorps anti-myostatine (MYO-29) ou d'anticorps ciblant son récepteur (Bimagrumab) ont conduit à des résultats controversés. En effet, l'efficacité de ces traitements semble être dépendante de l'importance de l'atteinte musculaire de la pathologie ciblée. Cependant, de nouveaux traitements, ciblant la myostatine ainsi que d'autres membres de la famille TGF- β , fournissent des résultats prometteurs et permettent de remettre la myostatine au centre des recherches. De même, à l'heure actuelle dans le cadre d'une thérapie génique de la myosite à inclusions, l'inhibition

de la myostatine par la follistatine, un de ses inhibiteurs naturels, donne des résultats encourageants.

C'est dans ce contexte que s'inscrivent mes travaux de thèse dans l'équipe de recherche du professeur V. Blanquet, avec un intérêt particulier pour 2 autres inhibiteurs naturels de la myostatine, les protéines GASP-1 et GASP-2, cibles thérapeutiques potentielles. L'analyse fonctionnelle de ces protéines est réalisée *in vitro* et *in vivo* à l'aide de modèles murins, afin de déterminer leurs fonctions dans un contexte myogénique mais également à une échelle plus globale. En effet, pour comprendre les mécanismes sous-jacents de pathologies musculaires humaines et développer de nouveaux traitements, le modèle souris est un outil incontournable. Mon projet de recherche, basé sur une telle approche, a ainsi un double objectif (i) fondamental : étudier les rôles des protéines GASPs et (ii) appliqué : évaluer l'effet de la surexpression des protéines GASPs, cible thérapeutiques potentielles, dans le muscle mais également dans d'autres contextes physiologiques chez la souris.

Dans un premier temps, au sein de mon équipe d'accueil et avant mon arrivée, une lignée de souris transgéniques Tg(Gasp-1), surexprimant ubiquitairement le gène Gasp-1, a été générée. Cette lignée présente, à l'âge adulte, une augmentation globale du poids des muscles squelettiques due à une hypertrophie des myofibres. De manière intéressante, contrairement aux souris $Mstn^{-/-}$, cette lignée ne présente ni d'hyperplasie ni de diminution de la masse adipeuse.

Afin de comprendre ce phénotype, je me suis intéressé dans une première partie de ma thèse à déterminer le rôle de GASP-1 dans le métabolisme lipidique en caractérisant le phénotype adipeux des souris Tg(Gasp-1). Nous avons travaillé sur des souris jeunes et âgées afin d'appréhender l'effet de la surexpression de Gasp-1 sur les différents processus impliqués dans le métabolisme des glucides et notamment ceux associés au vieillissement. A l'opposé des souris $Mstn^{-/-}$, les souris Tg(Gasp-1) âgées présentent une dérégulation globale de l'homéostasie du glucose avec des défauts métaboliques, résultant d'un rétrocontrôle positive de la myostatine. Ces résultats ont été valorisés dans la publication suivante : « Alterations in adiposity and glucose homeostasis in adult Gasp-1 overexpressing mice» (Parenté et al., 2017; Cellular Physiology and Biochemistry).

Contrairement à GASP-1, très peu d'études ont été réalisées sur GASP-2 dans un contexte musculaire. Afin de mieux appréhender le rôle de GASP-2 au cours de la myogenèse, dans une deuxième partie de ma thèse, j'ai participé aux études fonctionnelles

de GASP-2 via un modèle myoblastique in vitro C2C12 qui mime les grandes voies de la myogenèse. Les résultats montrent que GASP-2, comme son paralogue GASP-1, entraîne une augmentation de la prolifération et de la différentiation de ces cellules musculaires en inhibant la voie de signalisation de la myostatine. Ces résultats ont été valorisés dans une publication: « Enhancement of C2C12 myoblast proliferation and differentiation by GASP-2, a myostatin inhibitor » (Périé, Parenté et al., 2016; Biochemistry and Biotechnology Reports).

Au vu des résultats précédents, j'ai conduit l'analyse phénotypique, cellulaire et moléculaire de différentes lignées de souris transgéniques surexprimant de manière ubiquitaire le gène Gasp-2. La caractérisation de ce modèle m'a permis de mettre en évidence, à l'âge adulte, une augmentation globale du poids des muscles squelettiques due à une hypertrophie des fibres musculaires sans hyperplasie. Ce phénotype est semblable à celui précédemment observé chez les souris surexprimant Gasp-1. Ces travaux montrent que la surexpression de GASP-2 entraîne une augmentation de l'activité des cellules souches musculaires dans les premières phases de la vie ainsi qu'une augmentation de la synthèse protéique. De manière intéressante, les souris Tg(Gasp-2) ne présentent pas de mécanisme d' « up-régulation » de la myostatine et ne développent pas de défauts métaboliques retrouvés chez les souris Tq(Gasp-1). De plus, les souris Tq(Gasp-2)présentent, comme les souris Mstn^{-/-}, un « switch » des myofibres de contraction lente à rapide alors que les souris Tg(Gasp-1) montrent un « switch » inversé. L'ensemble de ces résultats nous a permis de souligner l'existence d'une dualité fonctionnelle entre GASP-1 et GASP-2 dans un contexte musculaire et de proposer la protéine GASP-2 comme étant un meilleur candidat thérapeutique. De plus, nos résultats ont permis de mettre en évidence un réseau de régulation de l'expression des gènes des membres de la famille TGF-β et de leurs inhibiteurs dans le muscle. Ces résultats sont en cours de valorisation dans une publication soumise à Faseb Journal : « Myostatin inhibition is differentially mediated in vivo by GASP-1 and GASP-2 to improve skeletal muscle mass.." (Parenté et al., soumis).

Outre la myostatine, la protéine GASP-2 est capable d'inhiber *in vitro* la protéine GDF-11. Si la myostatine est associée principalement au développement musculaire, GDF-11 est, quant à elle, associée majoritairement à la mise en place de l'axe squelettique et au développement osseux. De récents travaux montrent que GDF-11 entraîne une diminution de la masse osseuse en inhibant la différentiation ostéoblastique. Dans une troisième partie de ma thèse, j'ai pu mettre en évidence l'effet pro-ostéoblastique de GASP-2. La surexpression de *Gasp-2* entraîne une augmentation globale de la densité osseuse chez les souris Tg(Gasp-2) associée à des défauts squelettiques. Les ostéoblastes primaires ainsi que des lignées ostéoblastiques surexprimant *Gasp-2* prolifèrent et se différencient plus vite. Ces résultats seront valorisés dans une publication: « *GASP-2 overexpression increases bone mass and osteoblastogenesis* » (Parenté *et al., en préparation*).

A ce jour, la majorité des études portant sur ces 2 protéines concernent leur rôle au cours du développement musculaire par inhibition de la myostatine. Cependant, les protéines GASPs sont des protéines singulières possédant de nombreux domaines antiprotéasiques. Dans une dernière partie de ma thèse, une étude de la relation structure/fonction *in vitro* nous a permis de montrer, pour la première fois, le rôle antiprotéasique des protéines murines entières GASP-1 et GASP-2. Cette étude révèle que les 2 protéines recombinantes exprimées dans un système procaryote sont capables d'inhiber la trypsine *in vitro*, selon 2 mécanismes distincts soulignant alors une nouvelle fois une dualité fonctionnelle entre GASP-1 et GASP-2. Ces derniers résultats ont été valorisés dans la publication suivante: « *GASP-1 and GASP-2, two closely structural related proteins with a functional duality in anti-trypsin inhibition specificity: a mechanistic point of view. »* (Parenté *et al.,* 2019; *Febs Journal*).

L'ensemble de ces résultats sera détaillé dans mon manuscrit sous la forme de 5 articles discutés faisant suite à un exposé bibliographique sur l'état de l'art concernant la myostatine et les protéines GASPs. Enfin, la dernière partie de mon manuscrit de thèse sera consacrée à une discussion générale et les perspectives engendrées par ce travail sur l'implication de GASP-1 et de GASP-2 dans un contexte musculaire mais également dans un contexte métabolique, osseux et antiprotéasique. Ce dernier chapitre permet de s'interroger sur une potentielle redondance de fonction où à contrario sur une dualité fonctionnelle de ces 2 protéines GASPs dans un contexte musculaire et plus globalement.

Mon doctorat a été financé par l'I.N.R.A (Institut National de la Recherche Agronomique), la région Limousin et la Fondation pour la Recherche Médicale (F.R.M).

EXPOSÉ BIBLIOGRAPHIQVE

EXPOSE BIBLIOGRAPHIQUE

La compréhension des mécanismes moléculaires et des voies de signalisation impliqués dans la mise en place du tissu musculaire est essentielle pour identifier des cibles éventuelles afin de lutter, entre autres, contre les atrophies musculaires. La myostatine est l'une des cibles thérapeutiques potentielles les plus prometteuses apparues au cours des dernières années pour pallier l'atrophie musculaire. Dans le cadre de ces études, mon projet de thèse s'est orienté vers la compréhension de(s) fonction(s) et l'étude structure/fonction des protéines GASP-1 et GASP-2, 2 inhibiteurs de la myostatine.

Cet exposé bibliographique est divisé en 2 grands chapitres, ayant chacun pour objectif de présenter la problématique générale autour de laquelle s'articulent mes travaux de recherche.

Ainsi, le premier chapitre offre une description structurale et fonctionnelle de la myostatine dans le contexte du développement musculaire. Les dernières connaissances sur les interactions moléculaires en amont et en aval de la voie de signalisation de la myostatine seront présentées, ainsi que la signalisation croisée de cette voie avec d'autres voies également impliquées dans le phénotype musculaire, métabolique et osseux. Enfin, les résultats précliniques ciblant la myostatine *via* l'utilisation de modèles animaux seront présentés avant de réaliser une mise à jour des différents essais cliniques anti-myostatine chez l'homme.

Le second s'articule autour des 2 protéines GASPs, chacune inhibitrice de la myostatine et moins étudiées actuellement. Ce chapitre permet de mettre en lumière la singularité de ces 2 protéines, de par leur structure multi-domaine mais également de par leur subtile fonction de protéines chaperonnes des TGF- β s. Enfin ce chapitre permet de s'interroger sur une potentielle redondance de fonction ou *a contrario* sur une dualité fonctionnelle de ces 2 protéines GASPs.

Figure 1. Inactivation de la myostatine chez la souris.

Les souris *Mstn*^{-/-} (droite) présentent une forte augmentation de la masse musculaire en comparaison avec les souris sauvages (gauche) (Lee and McPherron, 1999).

Figure 2. Mutations naturelles de la myostatine chez les mammifères.

Des mutations naturelles « perte de fonction » de la myostatine sont identifiées chez le taureau Blanc Bleu Belge (McPherron and Lee, 1997), un jeune enfant (Schuelke *et al.*, 2004), le mouton Texel (Clop *et al.*, 2006), le cheval pur-sang (Bower *et al.*, 2012) et le chien de course lévrier (Mosher *et al.*, 2007). Ces mutations entraînent un phénotype hypermusclé marqué, quelque soit l'espèce.

PARTIE I : LA MYOSTATINE

DECOUVERTE DE LA MYOSTATINE, LA PROTEINE QUI « LIMITE » LA CROISSANCE MUSCULAIRE.

La myostatine, préalablement connue sous le nom de facteur de croissance GDF-8 (Growth Differentiation Factor-8), fait partie de la superfamille des TGF-ß et a été identifiée chez la souris il y a plus de 20 ans (McPherron et al., 1997). La myostatine est un régulateur négatif important de la croissance et du développement musculaires. Ainsi, la délétion du gène chez la souris entraîne une forte augmentation de la masse musculaire (McPherron et al., 1997) (Figure 1). Au cours de la même année, 3 équipes ont identifié des mutations « perte de fonction » dans le gène myostatine (Mstn) chez les bovins Blanc Bleu Belges et Piémontais, présentant une masse musculaire (Grobet et al., 1997; Kambadur et al., 1997; McPherron and Lee, 1997). Au cours des années suivantes, de nouvelles mutations «perte de fonction» de la myostatine ont été identifiées dans d'autres espèces présentant un phénotype hypermusclé, comme le mouton Texel (Clop et al., 2006), le chien de course lévrier (Mosher et al., 2007) ou encore le cheval pur-sang (Bower et al., 2012; Petersen et al., 2013) (Figure 2). Plus récemment, mon laboratoire d'accueil a mis en évidence, dans la race bovine Blonde d'Aquitaine, une mutation intronique dans le gène Mstn entraînant une rétention d'intron due à un défaut d'épissage qui conduit à l'apparition d'un codon STOP prématuré (Bouyer et al., 2014). L'ensemble de ces études montre que la myostatine présente une fonction bien conservée au cours de l'évolution et entre les différents mammifères. S'il existe un seul gène chez les mammifères, chez d'autres vertébrés, à l'instar des poissons, 2 copies du gène Mstn (et jusqu'à 4 chez les salmonidés) sont présentes et résultent de duplications géniques. Chez les poissons, la myostatine agit comme un inhibiteur général de la prolifération et de la croissance cellulaires mais ne semble pas spécifique aux muscles (Gabillard et al., 2013).

L'effet de l'invalidation de la myostatine chez l'homme a été établi dans une étude où les auteurs ont identifié une mutation intronique dans le gène *Mstn* d'un jeune garçon conduisant également à un défaut d'épissage de l'ARNm et à l'apparition d'un codon STOP prématuré provoquant une hypertrophie musculaire prononcée (Schuelke *et al.*, 2004).

Puisque sa perte de fonction permet une augmentation spécifique de la masse musculaire sans entraîner d'effets secondaires prononcés chez les mammifères, la myostatine est devenue, tout naturellement, une cible thérapeutique « potentielle » pour lutter contre l'atrophie musculaire.

Figure 3. La myostatine : du gène à la protéine.

Le gène de la myostatine est situé sur le chromosome 1 murin (*MMU1*) et est composé de 3 exons de 479, 314 et 1829 pb. Le cadre de lecture ouvert du transcrit mature de la myostatine code une protéine de 42,9 kDa constituée de 376 acides aminés. A l'instar des autres membres de la famille TGF- β , la myostatine est synthétisée sous la forme d'un précurseur constitué du propeptide et de la forme mature de la myostatine.

Figure 4. La signalisation des TGF- βs.

La superfamille TGF-β peut être divisée en 2 groupes selon la signalisation intracellulaire activée : *via* les récepteurs de type Alk1/2/3/6 et les protéines SMAD1/5/8 (BMPs/GDFs) ou *via* les récepteurs de type Alk4/5/7 et les protéines SMAD2/3 (activines, myostatin, GDF-11, TGF-β). Le co-smad SMAD4 est recruté par les 2 voies de signalisation pour réguler l'expression des gènes cibles (D'après Pieck *et al.*, 1999).

Structurellement, le gène de la myostatine est localisé sur le chromosome 1 murin et le chromosome 2 humain. Le gène murin est composé de 3 exons de 479, 314 et 1829 pb (**Figure 3**). L'expression de *Mstn* est détectée dès le stade embryonnaire chez la souris à partir de 9,5 jour *post-coitum (j.p.c)* dans les somites et se restreint ensuite aux muscles squelettiques et cardiaque à l'âge adulte, bien qu'une faible expression puisse être décelée dans le tissu adipeux, la glande mammaire, l'épiderme et les cellules neuronales des bulbes et du cortex olfactifs (McPherron *et al.*, 1997; Ji *et al.*, 1998; Sharma *et al.*, 1999; Zhang *et al.*, 2012; Iwasaki *et al.*, 2013).

La myostatine fait partie de la famille des TGF-βs : c'est donc une protéine sécrétée qui agit *via* sa fixation à un récepteur. La myostatine, sécrétée dans la circulation, peut ainsi agir de manière autocrine, paracrine ou endocrine. La famille TGF-β se compose de TGFβs, d'activines, de BMPs (Bone Morphogenetic Proteins) et de GDFs. Cette superfamille peut être divisée en 2 groupes selon la signalisation intracellulaire activée : *via* les protéines Smad1/5/8 (BMPs/GDFs) ou *via* les protéines Smad2/3 (activines, myostatine, GDF-11, TGF-β).

La myostatine se fixe aux récepteurs à activité sérine/thréonine kinase de type II de l'activine : les récepteurs ActRIIA (Activin Receptor type IIA) et ActRIIB. Cependant, la myostatine présente une meilleure affinité pour le récepteur ActRIIB. Ces récepteurs sont également utilisés par d'autres protéines de la famille TGF-β comme la protéine GDF-11 (Thies *et al.*, 2001; Rebbapragada *et al.*, 2003). Lorsque la myostatine est fixée, le récepteur de type II ActRIIB forme un complexe hétérodimérique avec le récepteur de type I ALK4 (Anaplastic Lymphoma Kinase-5) ou ALK5, induisant ainsi la phosphorylation de SMAD2 (Small worm-phenotype Mothers Against Decapentaplegic) et SMAD3. SMAD2/3 phosphorylés se fixent à SMAD4 (**Figure 4**). Ces complexes sont alors transloqués dans le noyau où ils pourront jouer leur rôle de facteurs de transcription (Thies *et al.*, 2001; Langley *et al.*, 2002; Rebbapragada *et al.*, 2003). C'est principalement par cette voie canonique des SMADs que la myostatine régule la mise en place et le développement musculaire.

Le tissu musculaire est un tissu hétérogène possédant une plasticité remarquable face aux conditions externes. C'est également un tissu complexe qui est en perpétuel remodelage. Sa mise en place a lieu dès le stade embryonnaire mais sa croissance se poursuit aussi au stade postnatal. Le tissu musculaire est également capable de se régénérer lors de lésions musculaires grâce à des cellules « souches » musculaires adultes, appelées les cellules satellites. Le maintien de cette homéostasie musculaire est finement régulé et l'impact de la myostatine dans ces différentes phases de développement, anténatale ou postnatale, sera détaillé dans cette introduction bibliographique.

Figure 5. Le muscle squelettique : du tissu à la fibre musculaire.

Les muscles squelettiques sont constitués d'un ensemble de faisceaux de fibres musculaires, également appelées myofibres. Chaque myofibre est entourée par un tissu conjonctif appelé endomysium. Les fibres sont regroupées en faisceaux musculaires, petits groupes de 10 à 100 fibres, entourées par le périmysium. L'ensemble de ces faisceaux de fibres forme le muscle qui est recouvert lui-même d'un tissu conjonctif, l'epimysium. Les fibres contiennent des « myofibrilles » qui sont des structures constituées d'une répétition de sarcomères, les unités contractiles du muscle, chacun étant constitué de filaments épais de myosine associés à des filaments fins d'actine. Ces 2 types de filaments sont indispensables à la contraction musculaire et sont capables de glisser les uns sur les autres pour entraîner le changement de conformation des sarcomères.

GENESE DES MUSCLES SQUELETTIQUES ET RÔLES DE LA MYOSTATINE

La mise en place des muscles, ou myogenèse, est le processus biologique à l'origine du développement et de la croissance musculaire. Le tissu musculaire représente un des tissus les plus abondants chez les mammifères et les muscles squelettiques constituent près de 40% de la masse corporelle chez l'être humain. Les muscles squelettiques permettent, *via* la transformation de l'énergie chimique en énergie mécanique, le déplacement, le maintien de la posture ou encore la thermorégulation.

• Le muscle squelettique

Architecturalement, le muscle squelettique est un ensemble de faisceaux de fibres musculaires, également appelées myofibres ou cellules musculaires. Ces myofibres sont de longues cellules multinucléées, résultant de la fusion de cellules progénitrices musculaires (**Figure 5**). Chaque myofibre est entourée par un tissu conjonctif appelé endomysium, composé essentiellement de fibroblastes et de vaisseaux sanguins. Les fibres sont regroupées en faisceaux musculaires, petits groupes de 10 à 100 fibres entourés par le périmysium. L'ensemble de ces faisceaux de fibres forme le muscle qui est recouvert luimême d'un tissu conjonctif, l'epimysium. Les prolongements des nerfs atteignent le périmysium pour former les jonctions neuromusculaires. Les vaisseaux sanguins assurent la vascularisation du muscle grâce aux capillaires qui rejoignent l'endomysium.

Les fibres contiennent des « myofibrilles », structures constituées d'une répétition de sarcomères (unités contractiles du muscle), chacun étant composé de filaments épais de myosine associés à des filaments fins d'actine (Sanger *et al.*, 2010). Ces 2 types de filaments sont indispensables à la contraction musculaire et sont capables de glisser les uns sur les autres pour entraîner le changement de conformation relâchée ou contractée des sarcomères (Frontera and Ochala, 2015). Du fait de leurs arrangements et de l'alternance de bandes claires et de bandes sombres, les cellules musculaires squelettiques apparaissent striées (Huxley and Kress, 1985; Sanger *et al.*, 2010).

Les différentes fibres musculaires

Le muscle squelettique est un tissu hétérogène et endocrine, composé de différents types de fibres, contribuant ainsi à une diversité morphologique et fonctionnelle. L'identité des fibres musculaires est déterminée dès le stade embryonnaire. La proportion des différents types de fibres qui composent le muscle varie entre les espèces et également d'un muscle à l'autre au sein d'un même individu. Les fibres musculaires squelettiques sont

 Tableau
 1. Classification
 des
 fibres
 musculaires
 selon
 leurs
 caractéristiques

 structurales, métaboliques et fonctionnelles.

	Types de fibres			
Caractéristiques	Туре І	Туре IIa	Туре IIх	Type IIb
Myosine majoritaire	Myh7	Myh2	Myh1	Myh4
Isoforme de Myosine (MyHC)	MyHC I	MyHC IIa	MyHC IIx	MyHC IIb
Métabolisme	Oxydatif	Oxydatif/Glycolytique	Glycolytique	Glycolytique
Vitesse de contraction	Lente	Intermédiaire	Rapide	Rapide
Fatigabilité	Résistante	Intermédiaire	Rapide	Rapide

Figure 6. Rôle de la myostatine dans le « typage » des fibres musculaires.

Chez les souris $Mstn^{+/+}$, la myostatine est principalement exprimée dans les fibres glycolytiques de type II. Elle inhibe MyoD et limite la proportion de fibres de type II. L'absence de myostatine, chez Les souris $Mstn^{-/-}$, conduit à une augmentation des fibres glycolytiques rapides de type II et une diminution des fibres lentes de type I.

classées selon 2 critères: leur vitesse maximale de contraction (lente ou rapide) et leur métabolisme énergétique: oxydatif ou glycolytique (Schiaffino and Reggiani, 2011). La vitesse de contraction musculaire est directement reliée à l'isoforme de la chaîne lourde de myosine exprimée et *in fine* à son activité ATPase. Les fibres exprimant les myosines à faible activité ATPase sont considérées comme des fibres lentes (type I) alors que les fibres avec une forte activité ATPase sont classées parmi les fibres à contraction rapide (type II) (Schiaffino and Reggiani, 2011) (Tableau 1).

Les fibres musculaires squelettiques peuvent également être classées selon le type de voie métabolique majoritaire utilisée pour la synthèse de l'ATP. Les fibres lentes (type I) expriment principalement la myosine MyHC7 (Myosin Heavy Chain 7). Elles possèdent de nombreuses mitochondries et sont des fibres oxydatives. Ces fibres de type I se caractérisent par une forte résistance à la fatigabilité et sont engagées lors de mouvements prolongés et réguliers. Les fibres rapides (type II) sont divisées en 2 catégories en fonction de leur fatigabilité. Les fibres de type lla utilisent à la fois un métabolisme glycolytique et un métabolisme oxydatif, car elles possèdent également de nombreuses mitochondries. Elles expriment de façon majoritaire la myosine MyHC2 et possèdent une vitesse de contraction et une fatigabilité intermédiaire. Ces fibres sont engagées lors des activités prolongées qui nécessitent néanmoins des contractions rapides. Les fibres de type IIx et IIb utilisent le glycogène comme source d'énergie et sont donc classées parmi les fibres glycolytiques. De ce fait, elles ont peu de mitochondries. Les fibres de type IIx expriment principalement la myosine MyHC1 alors que les fibres de type IIb expriment principalement MyHC4. Ce sont des fibres facilement fatigables et sont adaptées pour des actions rapides et intenses (Westerblad et al., 2010). En plus de ces 4 types de fibres, il existe également 3 formes hybrides, les fibres I/IIa, IIa/IIx et IIx/IIb.

La myostatine est impliquée dans la régulation du typage et du métabolisme des fibres musculaires (**Figure 6**). En effet, le gène *Mstn* est principalement exprimé dans les muscles présentant une contraction rapide et l'activité de son promoteur est majoritairement détectée dans les fibres musculaires à contraction rapide (type IIb) chez la souris (Carlson *et al.*, 1999; Salerno *et al.*, 2004). L'impact direct de la myostatine dans la « spécification » du typage de fibres musculaires a été démontré chez les souris *Mstn^{-/-}* qui présentent une diminution des fibres lentes de type I et une augmentation des fibres glycolytiques rapides de type II (Amthor *et al.*, 2007; Hennebry *et al.*, 2009). Bien que les souris *Mstn^{-/-}* présentent une forte augmentation de la masse musculaire et un « *switch* » du type de fibres, la force spécifique musculaire ne semble pas augmentée (Amthor *et al.*, 2007).

Figure 7. La formation des muscles squelettiques : des somites aux bourgeons des membres.

Au cours de l'embryogenèse des vertébrés, le dermomyotome, partie dorsale des somites, participe à la formation du derme et des muscles squelettiques. Chez la souris, autour du neuvième *j.p.c* et sous l'influence de signaux provenant des structures avoisinantes, les cellules précurseurs musculaires subissent une délamination du dermomyotome hypaxial autorisant leur migration vers les bourgeons des membres.

Figure 8. Les différentes étapes et la régulation génique de la myogenèse.

Après leur délamination, les cellules progénitrices du muscle sont déterminées dans la voie myogénique *via* l'expression de *Pax3*, *Pax7*, *MyoD* et *Myf5*. Certaines cellules restent en quiescence, les cellules satellites et n'expriment alors que le marqueur *Pax7*. Les myoblastes vont ensuite proliférer de manière accrue, associés à l'expression de *Myf5* et de *MyoD*. Les cellules s'alignent lors de leur différenciation en myocytes puis fusionnent pour former des myotubes sous l'action d'autres facteurs myogéniques *MyoG* et *Mrf4*. Les myotubes expriment la myosine, marqueur terminal de la myogenèse, au cours de leur maturation en myofibre.

Le tissu musculaire squelettique représente donc un tissu complexe constitué de nombreuses fibres musculaires singulières mais qui agissent cependant de concert afin de produire l'énergie nécessaire aux différentes fonctions physiologiques. La genèse de ces différentes myofibres se déroule durant le développement anténatal lors de la myogenèse.

• La myogenèse embryonnaire et fœtale

Au cours de l'embryogenèse des vertébrés, les muscles squelettiques se forment principalement à partir du mésoderme paraxial qui est segmenté en somites *via* l'action de signaux provenant de la notochorde et du tube neural. C'est le dermomyotome, partie dorsale des somites, qui participe *in fine* à la formation du derme et des muscles squelettiques (**Figure 7**). Chez la souris, autour de 9,5 *j.p.c* et sous l'influence de signaux provenant des structures avoisinantes, les cellules précurseurs musculaires subissent une délamination du dermomyotome hypaxial autorisant leur migration vers les bourgeons des membres (Buckingham *et al.*, 2003). Ces processus nécessitent la transcription de *c-met* (MNNG HOS transforming gene) directement dépendant de l'expression du gène *Pax3* (Paired-box 3) (Buckingham *et al.*, 2003). La survie des progéniteurs musculaires dépend de l'expression de *Pax3* mais aussi de *Pax7*, 2 facteurs de transcription à homéo-domaine. Les souris *Pax3^{-/-}/Pax7^{-/-}* présentent une absence presque totale des cellules musculaires (Relaix *et al.*, 2005; Buckingham and Relaix, 2007).

Lorsque les précurseurs musculaires Pax3⁺/Pax7⁺ ont achevé leur migration, les cellules progressent dans une voie de détermination en « myoblastes » puis prolifèrent intensivement (Figure 8). Elles fusionnent alors en myotubes multinucléés et subissent enfin une étape de maturation afin de devenir des fibres musculaires matures. Ces différentes étapes sont finement régulées par un ensemble de facteurs de transcription, dont les « facteurs de régulation myogénique » ou MRFs (Sabourin and Rudnicki, 2000; Buckingham and Relaix, 2007). Ces facteurs de transcription à domaine bHLH (basic-Helix-Loop-Helix) sont activés de manière séquentielle (Rudnicki et al., 1993). Parmi ces MRFs, l'expression de Myf5 (Myogenic Factor 5) à 8,5 j.p.c et de MyoD (Myoblast Determination protein 1) à 10,5 *j.p.c* marque la spécification terminale de la lignée musculaire et transforme les cellules précurseurs en « myoblastes » qui prolifèrent (Rudnicki and Jaenisch, 1995). Ce changement d'état provoque l'expression d'autres MRFs, dont la myogénine et MRF4 (également appelé Myf6) (Rudnicki et al., 1993). À l'issue de ces expressions consécutives, les myoblastes poursuivent leur différenciation, par le biais des modifications morphologiques, tels que leur allongement puis leur fusion en myotubes multinucléés.

Figure 9. Les deux vagues anténatales de la myogenèse.

La fusion des myoblastes embryonnaires conduit à la formation des fibres primaires (type I) lors de la myogenèse primaire. La myogenèse secondaire débute autour du 13,5ème j.p.c lorsque des myoblastes fœtaux fusionnent entre eux pour donner les fibres secondaires (type II) ou fusionnent avec les fibres primaires préexistantes. Le nombre de myofibres est alors déterminé avant la naissance. Des cellules souches en quiescence, les cellules satellites, sont retrouvées en périphérie de myofibres pour permettre la croissance postnatale précoce et la régénération musculaire adulte.

Figure 10 . Effet de la myostatine sur la myogenèse.

Hybridation *in situ* révélant l'expression de *MyoD*, *Myf-5*, *Myogenine* et *Pax-3* dans les bourgeons des membres de poussins avec ou sans implantation de billes recouvertes de myostatine recombinante. La myostatine bloque la prolifération et la différenciation des myoblastes par inhibition de l'expression de *Pax3*, *MyF5*, *MyoD* et *MyoG* (D'après Amthor *et al.*, 2006).

Ce même processus cellulaire hautement régulé, prolifération-différenciation-fusion, se déroule lors de 2 phases distinctes avant la naissance : la myogenèse primaire (embryonnaire) et secondaire (fœtale) (**Figure 9**). La myogenèse primaire débute chez la souris à 10,5 *j.p.c* et correspond à la fusion des myoblastes embryonnaires conduisant à la formation des fibres primaires de type I. La myogenèse secondaire débute à 14,5 *j.p.c* du développement et permet la fusion des myoblastes fœtaux entre eux ou avec les fibres primaires préexistantes, donnant les fibres secondaires de type II (Sabourin and Rudnicki, 2000). Cette deuxième vague de myogenèse permet alors une croissance hyperplasique (augmentation du nombre) et hypertrophique (augmentation de la taille) des myofibres. Le nombre de myofibres est alors déterminé avant la naissance. Physiologiquement, la croissance postnatale ne dépendra alors que d'une croissance hypertrophique.

• La myostatine et la myogenèse embryonnaire

Après sa découverte en 1997, de nombreuses études se sont intéressées aux mécanismes moléculaires et cellulaires modulés par la myostatine dans les muscles squelettiques. Les souris *Mstn*^{-/-} présentent une augmentation de la masse musculaire due à la fois à une hypertrophie et à une hyperplasie des fibres musculaires, indépendamment du type de muscle (McPherron *et al.*, 1997). L'hyperplasie observée chez les souris *Mstn*^{-/-} suggère une implication de la myostatine au cours du développement embryonnaire et fœtal, lieu de la mise en place du nombre de myofibres.

L'expression de la myostatine est détectée au stade embryonnaire dans les somites et les bourgeons des membres, suggérant son rôle régulateur lors de la myogenèse (Manceau *et al.*, 2008). De plus, en comparaison avec des souris sauvages, les souris *Mstn* ^{-/-} présentent davantage de myofibres dès 14,5 *j.p.c* (fin de la myogenèse primaire) mais également à 18,5 *j.p.c* (fin de la myogenèse secondaire). Les souris hétérozygotes *Mstn*^{+/-} présentent un phénotype intermédiaire, suggérant un effet de la myostatine dosedépendant sur la croissance hyperplasique primaire et secondaire (Matsakas *et al.*, 2009).

Le rôle de la myostatine au cours du développement musculaire embryonnaire a été confirmé *in vivo* dans une étude réalisée sur des embryons de poulet (Amthor *et al.*, 2006) (**Figure 10**). L'implantation de billes recouvertes de myostatine, dans les membres en cours de développement chez des embryons, inhibe l'expression de *Pax3*, *MyoD* et *Myog* et *de facto* inhibe la prolifération et la fusion des myoblastes embryonnaires (Amthor *et al.*, 2006). De manière intéressante, l'expression du gène est elle-même régulée positivement par MYOD qui peut se fixer sur son promoteur (Spiller *et al.*, 2002). De plus, la surexpression de la myostatine dans les somites de poulet conduit à la surexpression de *p21*, un inhibiteur du

Figure 11. Croissance postnatale précoce : L'accrétion myonucléaire.

Les cellules satellites sont les premiers acteurs du développement musculaire post-natal. Chez la souris, de la naissance à la troisième semaine de vie, ces cellules participent à la croissance musculaire en fusionnant avec les fibres préexistantes, favorisant ainsi le processus d'hypertrophie.

cycle cellulaire, forçant alors les progéniteurs musculaires à quitter le cycle cellulaire. Ces progéniteurs vont alors subir une différenciation prématurée conduisant à un épuisement presque complet de la population progénitrice musculaire, entraînant une réduction de la masse musculaire (Manceau *et al.*, 2008).

En accord avec ces précédentes études *in vivo*, la surexpression de la myostatine inhibe la prolifération des myoblastes C2C12 en augmentant l'expression de *p21* et en induisant la dégradation de la cycline D1, nécessaire au cycle cellulaire (Thomas *et al.*, 2000; Ríos *et al.*, 2001; Taylor *et al.*, 2001). De plus, la myostatine ralentit la différenciation myogénique des myoblastes C2C12 en inhibant l'expression des facteurs régulateurs myogéniques *MyoD* et *Myog* (Langley *et al.*, 2002; Ríos *et al.*, 2002).

La myostatine joue donc un rôle de « *garde-fou* » aux stades embryonnaire et foetal, en inhibant les processus de prolifération/fusion des myoblastes afin de limiter le nombre de myofibres créées. Son invalidation conduit ainsi à un phénotype hyperplasique. Après leur formation, les myofibres subissent un mécanisme de croissance hypertrophique dès la naissance grâce aux cellules satellites.

LES CELLULES SATELLITES ET LA MYOSTATINE : CROISSANCE POSTNATALE PRECOCE ET REGENERATION.

À la naissance, des cellules quiescentes, faisant office de précurseurs myogéniques inductifs, sont retrouvées à la périphérie des myofibres (Mauro, 1961). Ces cellules satellites, véritables cellules souches musculaires, sont les premiers acteurs du développement musculaire postnatal. En effet, chez la souris, de la naissance à la troisième semaine de vie, ces cellules participent à la croissance musculaire en fusionnant avec les fibres préexistantes, favorisant ainsi le processus d'hypertrophie. C'est le phénomène d'accrétion myonucléaire. Cette étape permet d'augmenter la quantité de noyaux dans les myofibres pour assurer une croissance hypertrophique (White *et al.*, 2010) (**Figure 11**).

Toutes les cellules satellites ne participent pas à cette croissance musculaire puisque certaines d'entre elles entrent en quiescence en périphérie des myofibres. Ces cellules quiescentes permettent de maintenir un pool cellulaire adulte, essentiel au maintien et à la régénération musculaire (Buckingham and Montarras, 2008; Yin *et al.*, 2013). En cas de blessure ou de lésions, ces cellules pourront être activées au cours de la régénération musculaire, puis proliférer et fusionner avec les myofibres existantes pour former de nouvelles fibres. Lors de la régénération, le renouvellement et le maintien du pool de cellules satellites sont dépendants de la division asymétrique des cellules satellites pour générer une

Figure 12. La régénération musculaire via les cellules satellites.

Après une lésion, les cellules satellites sont activées lors de la régénération musculaire, puis prolifèrent et fusionnent avec les myofibres endommagées. Le renouvellement et le maintien du pool de cellules satellites sont dépendants de la division asymétrique des cellules satellites pour générer une cellule satellite souche et une cellule satellite engagée. Au contraire, la division symétrique permet d'amplifier la cellule satellite engagée avant de fusionner avec les myofibres endommagées.

cellule satellite souche et une cellule satellite engagée (Kuang *et al.*, 2007; Tajbakhsh, 2009) (**Figure 12**). La division symétrique permet d'amplifier les cellules satellites « engagées » avant qu'elles fusionnent avec les myofibres endommagées. Ces 2 modes de divisions des cellules participent à l'auto-renouvellement de la population des cellules souches satellites dans le muscle adulte. Les cellules satellites activées et quiescentes peuvent être distinguées *via* les marqueurs exprimés. En effet, les cellules satellites quiescentes expriment *Pax7* alors que les cellules satellites activées, en plus de *Pax7*, expriment également *MyoD* et *Myf5* (Seale *et al.*, 2000). Malgré une prolifération régulée, leur nombre chute au cours de la vie de l'individu : de 35 % des cellules de la lame basale à la naissance, elles ne représentent que 5 % après 3 semaines (White *et al.*, 2010).

Si son action anténatale a bien été décrite, l'effet postnatal de la myostatine sur les cellules satellites des muscles squelettiques est controversé. Certaines études montrent que les transcrits de la myostatine et de son récepteur *ActRIIB* sont bien détectés dans les cellules satellites des muscles murins adultes. De plus, l'inhibition de la myostatine augmente le taux de prolifération des myoblastes primaires issus des cellules satellites (McCroskery *et al.*, 2003; Guardiola *et al.*, 2012; McKay *et al.*, 2012). En plus de la régulation du cycle cellulaire et de la différenciation myogénique, la myostatine est également impliquée dans la régulation de l'auto-renouvellement des cellules satellites en réprimant l'expression du marqueur cellulaire satellite *Pax7* (McFarlane *et al.*, 2008). L'implication fonctionnelle *in vivo* de la myostatine sur les cellules satellites a également été démontrée par des études comparant l'efficacité de la régénération musculaire chez les souris *Mstn^{-/-}* et les souris sauvages. La régénération musculaire, après une lésion induite par la cardiotoxine, est accélérée chez les souris *Mstn^{-/-}*. Elle est associée à une augmentation de l'expression de *MyoD* et de *Myog* ((McCroskery *et al.*, 2005; Wagner *et al.*, 2007).

A l'inverse, d'autres études suggèrent que la myostatine n'aurait peu ou pas d'effet sur les cellules satellites. Les fibres isolées du muscle *extensor digitorum longus* de souris *Mstn^{-/-}* âgées de 2 semaines ne présentent ni d'augmentation du nombre de cellules satellites ni d'augmentation du nombre de noyaux par myofibre (Amthor *et al.*, 2009). Cependant, dans une autre étude, l'inhibition de la voie de la myostatine après la naissance avec un inhibiteur du récepteur ActRIIB entraîne un faible niveau d'activation des cellules satellites (Wang and McPherron, 2012).

Les contradictions concernant l'effet de la myostatine sur les cellules satellites ne sont toujours pas levées aujourd'hui. Cependant le rôle de la myostatine sur la croissance

Figure 13. L'hypertrophie compensatoire postnatale.

En réponse à une sollicitation trop importante du muscle, SRF module, dans les myofibres, l'expression d'hormones qui permettent une activation paracrine de la prolifération et de la fusion des cellules satellites avec les myofibres (D'après Guerci *et al.*, 2012).

Figure 14. La voie hypertrophique d'IGF-1.

IGF-1 active une cascade de phosphorylations intracellulaires en se liant à son récepteur IR entraînant ainsi l'activation d'AKT. La protéine AKT phosphorylée inhibe la dégradation protéique en réprimant les facteurs de transcription de la famille FoxO et la protéine GSK3-β. En revanche, elle active la synthèse protéique par l'activation de la protéine mTOR.

postnatale *via* la balance synthèse/dégradation protéique est au cœur de nombreuses études concordantes.

LA CROISSANCE POSTNATALE MUSCULAIRE : UNE BALANCE ENTRE LA MYOSTATINE ET IGF-1 ?

Suivant le processus d'accrétion myonucléaire qui conduit à la croissance musculaire postnatale précoce, la croissance hypertrophique du muscle dépend principalement d'un « *turn-over* » protéique au sein des myofibres. Elle conduit à une augmentation du volume cytoplasmique des fibres due principalement à une accumulation de protéines contractiles (Sambasivan and Tajbakhsh, 2007).

Cependant, les fibres musculaires peuvent également subir une hypertrophie *via* l'acquisition de nouveaux noyaux grâce à la fusion des cellules satellites, même après la phase d'accrétion myonucléaire. Ainsi, lors de l'ablation du *tibialis anterior*, les cellules satellites sont réquisitionnées pour permettre l'hypertrophie « compensatoire » de l'*extensor digitorum longus* (Rosenblatt and Parry, 1992; Rosenblatt *et al.*, 1994). De récentes études montrent que le facteur de transcription SRF (Serum Response Factor) est un régulateur clé de ce processus, en stimulant la prolifération des cellules satellites et leur fusion aux myofibres *via* un mécanisme paracrine. En effet, les myofibres (en surcharge de travaille) expriment *Srf* qui à son tour entraîne l'expression d'IL-6 (Interleukine 6) et d'IL-4, qui permettent respectivement la prolifération et la fusion des cellules satellites aux myofibres en croissance (Guerci *et al.*, 2012; Randrianarison-Huetz *et al.*, 2018) (**Figure 13**).

Outre cette hypertrophie compensatoire, dans certains cas physiologiques particuliers, différents acteurs participent à la régulation de la taille et de l'homéostasie des muscles, avec un équilibre dynamique entre « synthèse » et « dégradation » protéiques médié par 2 voies essentielles : la voie d'IGF-1 et la voie de la myostatine.

Le facteur sécrété IGF-1 agit comme un régulateur positif du développement musculaire squelettique et fait intervenir la voie PI3K (Phospholnositide 3-Kinase) / AKT (Protéine kinase B), nécessaire à la synthèse protéique (Bodine *et al.*, 2001) (**Figure 14**). La surexpression d'*Igf-1* chez la souris entraîne ainsi une hypertrophie musculaire importante (Musarò *et al.*, 2001). *A contrario*, l'inactivation de son récepteur entraîne une altération de la croissance musculaire due à une diminution du nombre et de la taille des myofibres (Mavalli *et al.*, 2010). Après fixation à son récepteur, IGF-1 active la cascade de signalisation AKT qui initie la synthèse protéique en activant la voie de signalisation mTOR (mammalian Target Of Rapamycin) et en inhibant la protéine GSK3-β (Glycogen Synthase

Figure 15. Dialogue dynamique entre les voies d'IGF-1 et de la myostatine.

IGF-1 active la voie de signalisation PI3K/Akt/mTOR et favorise l'hypertrophie par augmentation de la synthèse protéique *via* mTOR. En revanche la myostatine inhibe la voie AKT et active la dégradation protéique en activant FoxO, MAFbx et MurF1.

Kinase 3-β), une protéine inhibitrice de la traduction protéique (Schiaffino and Mammucari, 2011). De plus, IGF-1 inhibe la dégradation protéique en inhibant de la protéine FoxO (Forkhead box O) (Manning and Cantley, 2007).

A l'inverse, la myostatine régule négativement la masse musculaire postnatale. Afin de vérifier cette hypothèse et d'exclure les effets de son inactivation sur la myogenèse embryonnaire, différentes études ont permis d'inactiver la myostatine après la naissance. Le knock-out conditionnel de la myostatine chez des souris adultes conduit à une hypertrophie des fibres musculaires et à une augmentation de la force musculaire (Grobet *et al.*, 2003). De même, l'administration d'un anticorps anti-myostatine chez des souris adultes entraîne une augmentation de la masse mais aussi de la force musculaire squelettique (Whittemore *et al.*, 2003).

Ces données montrent que la myostatine agit bien comme un régulateur négatif de la croissance des muscles squelettiques après la naissance. De même, la surexpression de la myostatine par électroporation dans le muscle *tibialis anterior* de rats mâles adultes entraîne une diminution significative de la masse musculaire associée à une atrophie des myofibres et à une diminution du taux de protéines musculaires (Durieux *et al.*, 2007). La myostatine provoque l'atrophie musculaire en induisant les voies « cataboliques » et en réprimant les voies impliquées dans la traduction *via* la voie canonique des SMADs et ses voies non-canoniques. La croissance musculaire postnatale dépend de ces facteurs moléculaires intrinsèques mais dépendant également de facteurs extrinsèque et environnementaux, à l'instar de la nutrition et de l'entraînement physique/sportif, qui ne seront pas détaillés dans ce manuscrit.

• Effet de la « voie canonique » de la myostatine sur le muscle squelettique

Comme les cytokines qui lui sont structurellement apparentées, telles que l'activine ou GDF-11, la myostatine active sa voie de signalisation par phosphorylation des protéines SMAD2 et SMAD3 (Rebbapragada *et al.*, 2003). Après phosphorylation par le récepteur de la myostatine, les protéines phospho-SMAD2/3 se complexent à SMAD4 et sont transloquées dans le noyau où elles pourront jouer leur rôle de facteurs de transcription (Langley *et al.*, 2002; Thies *et al.*, 2001) (**Figure 15**). Cette voie entraîne l'augmentation de l'expression de *p21* et la diminution de l'expression de *Cdk2*, conduisant à une inhibition des processus de prolifération myoblastique (Thomas *et al.*, 2000). La voie canonique de la myostatine inhibe également la myogenèse par l'intermédiaire phosho-SMAD3 qui peut physiquement interagir et inhiber la protéine MYOD mais aussi se fixer à son récepteur pour inhiber sa transcription (Liu *et al.*, 2001). Enfin, la voie de signalisation de la myostatine

Figure 16. Les voies canonique et non canonique de la myostatine.

En plus de sa voie canonique SMAD2/3, la myostatine peut réguler négativement la myogenèse *via* ses 3 voies non canoniques MAPKs (ERK1/2, JNK, p38).

conduit à l'inhibition de l'expression de 2 autres MRFs, la myogénine et *Myf5* pour inhiber *in fine* la prolifération et la différentiation des myoblastes (Ríos *et al.*, 2002).

D'un point de vue catabolique, la surexpression *in vitro* de la myostatine dans les cellules C2C12 entraîne, par sa voie canonique, la surexpression d'*Atrogin-1* et de *MuRF-1* (Muscle Ring Finger 1), impliquées dans la dégradation protéique (Lokireddy *et al.*, 2011). *In vivo*, la surexpression de la myostatine augmente également l'expression de ces 2 acteurs dans les muscles squelettiques des souris (McFarlane *et al.*, 2006). De même, chez la souris, la dénervation musculaire entraîne une atrophie musculaire accompagnée d'une surexpression de ces 2 protéines associée à une augmentation des taux de phospho-SMAD2/3 (Tando *et al.*, 2016).

De multiples études montent une signalisation « croisée » entre la voie de la myostatine et la voie d'IGF-1. Les souris *Mstn^{-/-}* présentent une augmentation du taux d'AKT phosphorylée dans les muscles squelettiques (Morissette *et al.*, 2009a). De plus, l'inhibition postnatale de la myostatine chez la souris entraîne une augmentation de la synthèse des protéines cibles de mTOR (Welle *et al.*, 2009). Enfin, des études *in vitro* démontrent également que la myostatine inhibe la voie IGF-1/PI3K/AKT/mTOR dans les myoblastes C2C12 (Trendelenburg *et al.*, 2009). Cette régulation est réciproque puisque la voie d'IGF-1 a également un effet inhibiteur sur la signalisation de la myostatine dans les cellules C2C12 (Retamales *et al.*, 2015).

• Effet des « voies non-canoniques » de la myostatine sur le muscle squelettique

Outre sa voie canonique médiée par les SMAD2/3, la myostatine est également connue pour activer d'autres voies intracellulaires. Des études *in vitro* dans des myoblastes ont montré que la myostatine peut induire la phosphorylation de différentes protéines MAPK (Mitogen-Activated Protein Kinases) : JNK (c-Jun N-terminal Kinase) , p38-MAPK et ERK1/2 (Extracellular signal-Regualted Kinase 1/2) (Huang *et al.*, 2007; Philip *et al.*, 2005; Yang *et al.*, 2006) (**Figure 16**). Bien que la contribution relative de ces voies dans la myogenèse *in vivo* ne soit pas encore bien connue, des expériences *in vitro* suggèrent que les protéines ERK1/2 sont nécessaires à l'effet de la myostatine sur la différenciation myogénique et le renouvellement des cellules satellites. Ainsi, l'inhibition des protéines ERK1/2 contrebalance l'effet inhibiteur de la myostatine sur la prolifération des myoblastes en C2C12 (Yang *et al.*, 2006). Inversement, une augmentation locale de la phosphorylation des ERK1/2 dans les muscles squelettiques est associée à une atrophie musculo-squelettique (Barreto *et al.*, 2016). Enfin, la surexpression de la myostatine inhibe l'expression de *Pax7 via* ERK1/2 dans les myoblastes primaires (McFarlane *et al.*, 2008).

Figure 17. Le « cross-talk » entre le muscle et le métabolisme du glucose.

Lorsque le niveau de glucose circulant est élevé, l'insuline est libérée par le pancréas et se fixe sur son récepteur musculaire IRS1. Ceci entraîne l'expression de GLUT4 permettant alors l'absorption du glucose dans les muscles. La myostatine induit la dégradation du récepteur de l'insuline IRS1, inhibant ainsi l'expression de GLUT4 et l'absorption de glucose. Les souris surexprimant *Mstn* présentent alors une forte diminution d'IRS1, conduisant à une insulino-résistance et une hyperglycémie. En revanche, les souris *Mstn*^{-/-} présentent une augmentation de l'insulino-sensitivité due à un nombre élevé de récepteurs IRS1 et une augmentation de la tolérance au glucose.

Grâce à ses voies canonique et non canoniques, la myostatine régule négativement la croissance du tissu musculaire au stade prénatal mais également postnatal.

De nombreux travaux s'intéressent également à l'étude fonctionnelle de la myostatine en dehors de son rôle conventionnel dans la croissance musculaire.

LA MYOSTATINE ET LE « CROSS-TALK » ENTRE LE TISSU MUSCULAIRE ET LE TISSU ADIPEUX

Outre le phénotype musculaire, l'absence de la myostatine affecte également le métabolisme corporel. En effet, les souris *Mstn^{-/-}* présentent une réduction significative de leur masse graisseuse dès 3 mois et une prévention contre l'obésité liée à l'âge. Ces souris *Mstn^{-/-}* acquièrent également une augmentation de l'insulino-sensibilité et une augmentation de la tolérance au glucose (McPherron and Lee, 2002; Zhao *et al.*, 2005). De plus, l'invalidation de la myostatine dans un modèle murin « obèse » conduit à la suppression partielle de l'accumulation de graisse et du métabolisme anormal du glucose (McPherron and Lee, 2002). A l'inverse, la surexpression muscle-spécifique de la myostatine induit une accumulation accrue de graisse éctopique chez la souris (Reisz-Porszasz *et al.*, 2003). Ceci permet de mettre en évidence un « *cross-talk* » entre le muscle et le tissu adipeux, *via* la sécrétion de la myostatine.

La myostatine se présenterait alors comme une cible thérapeutique de choix, tant dans un contexte musculaire que dans un contexte métabolique. Ainsi, des taux élevés de myostatine ont été révélés chez la souris et l'Homme souffrant d'obésité (Allen *et al.*, 2008; Hittel *et al.*, 2009; Amor *et al.*, 2018). De plus, des myotubes dérivés de biopsies musculaires de femmes atteintes d'obésité se caractérisent par une sécrétion accrue de la myostatine (Hittel *et al.*, 2009). Enfin, l'injection exogène de myostatine entraîne une insulino-résistance musculaire chez la souris (Hittel *et al.*, 2010).

Physiologiquement, lorsque le niveau de glucose circulant est élevé, l'insuline est libérée par le pancréas et se fixe sur son récepteur musculaire IRS1 (Insulin Receptor Substrate 1) présent dans les muscles (**Figure 17**). Ceci induit l'expression du transporteur de glucose insulino-dépendant GLUT4 permettant alors l'absorption du glucose dans les muscles (Saltiel and Kahn, 2001; Thirone *et al.*, 2006). La myostatine induit une insulino-résistance en altérant la voie de signalisation de l'insuline. La myostatine conduit à la dégradation du récepteur de l'insuline IRS1 et *in fine* entraîne une inhibition de l'expression de *Glut4* et de l'absorption de glucose (Cleasby *et al.*, 2014; Liu *et al.*, 2018).

Collectivement, ces études suggèrent, qu'en plus de réguler la croissance musculaire, la myostatine se comporte également comme un facteur crucial dans la

Figure 18. L'autorégulation de l'expression de la myostatine.

Les protéines SMAD2/3 activées par la myostatine peuvent réguler positivement l'expression de SMAD7. SMAD7 se fixe à son tour sur les SMAD box du promoteur de la myostatine pour inhiber sa transcription. SMAD7 peut aussi directement inhiber physiquement SMAD2/3.

régulation du métabolisme du glucose. C'est pourquoi la myostatine est soumise à une régulation complexe tout au long de son expression, de sa maturation et de son activité.

LA REGULATION FINE DE L'ACTIVITE DE LA MYOSTATINE

• Régulation transcriptionnelle et post-transcriptionnelle de la myostatine

La région promotrice du gène *Mstn* contient plusieurs motifs de séquence E-Box conservés au cours de l'évolution, typiquement retrouvés dans de nombreux gènes exprimés dans le muscle (Salerno *et al.*, 2004). Le motif E-Box est le site de liaison privilégié de nombreux MRFs, tels que MYOD et MYF5. Le promoteur du gène *Mstn* est préférentiellement activé par MYOD (Spiller *et al.*, 2002). Des motifs de liaison à MEF2 (Myocyte Enhancer Factor-2) sont également présents dans ce promoteur, même si leur nombre varie selon les espèces (Ma *et al.*, 2001; Li *et al.*, 2012). MEF2 est capable d'augmenter l'expression de la myostatine dans les myoblastes, provoquant alors une inhibition de la différenciation musculaire (Li *et al.*, 2012).

Compte tenu de son fort impact sur la myogenèse, la myostatine est également capable d'autoréguler sa propre transcription (**Figure 18**). En effet, la transcription de la *myostatine* est réduite dans des cellules musculaires traitées avec de la myostatine exogène (Forbes *et al.*, 2006). Cette inhibition est médiée par SMAD7 qui réprime l'expression de *Mstn* (Zhu *et al.*, 2004; Forbes *et al.*, 2006). Lors de l'activation de la voie de la myostatine, phospho-SMAD2/3 se lie au promoteur de *Smad7*, qui inhibe alors l'expression de la myostatine. *A contrario*, lors de l'inactivation de la voie de la myostatine est « uprégulée » (Forbes *et al.*, 2006). Les souris *Smad7*^{-/-} présentent ainsi une perte musculaire importante et une altération de la régénération musculaire (Cohen *et al.*, 2015). Inversement, la surexpression de *Smad7* stimule la différenciation des myoblastes *in vitro* et augmente la masse musculaire *in vivo* (Kollias *et al.*, 2006; Winbanks *et al.*, 2016).

La régulation post-transcriptionelle de la myostatine est réalisée essentiellement par l'action des microARNs. C'est chez le mouton Texel, que leur implication dans la régulation des transcrits de la myostatine a été mise en évidence pour la première fois (Clop *et al.*, 2006). Cette régulation ne sera pas détaillée dans cette introduction bibliographique. Cependant depuis 2006, de nombreux microARNs régulant la *myostatine* ont été découverts (Pour revue, (Hitachi and Tsuchida, 2014)).

La myostatine étant un régulateur négatif fort de la myogenèse, son expression nécessite également une régulation post-traductionnelle complexe qui débute dès sa

Figure 19. La biosynthèse de la myostatine.

La myostatine est synthétisée sous forme d'un précurseur inactif qui nécessite différents clivages protéolytiques. Dans le réticulum endoplasmique, la myostatine se dimérise et le peptide signal est clivé. Dans l'appareil de golgi, la furine sépare le propeptide (vert foncé) de la forme active (vert clair). Cependant le propeptide reste lié à la myostatine formant un complexe latent inactif sécrété. Un dernier clivage dans le milieu extracellulaire par les BMP-1/Tolloid permet la dégradation du propeptide et la libération de la myostatine active.

synthèse dans le réticulum endoplasmique et se poursuit, après sa sécrétion, par de nombreux inhibiteurs extracellulaires.

• Régulation post-traductionnelle de la myostatine.

A l'instar des autres TGF-ßs, la myostatine est synthétisée sous forme inactive et subit différentes étapes de maturation (Kingsley, 1994). Trois clivages protéolytiques indépendants vont permettre la libération finale de la forme bioactive de la myostatine (Figure 19). Un premier clivage permet l'élimination du peptide signal de sécrétion de 24 résidus dans le réticulum endoplasmique (Lee and McPherron, 2001). Un deuxième clivage, dans l'appareil de Golgi, permet de scinder la pro-myostatine en 2 fragments : le domaine Nterminal (propeptide) et le domaine C-terminal. Ce clivage est effectué au niveau d'une séquence consensus Arg-Ser-Arg-Arg (RSRR) par une protéase à sérine, la furine (Lee and McPherron, 2001). L'homodimère formé par 2 fragments C-terminaux reliés par un pont disulfure correspond à la forme active de la myostatine. Néanmoins le propeptide reste lié de façon non covalente à ce dimère actif, empêchant ainsi sa fixation à son récepteur (Thies et al., 2001). Ce complexe inactif est dit « complexe latent ». Le complexe « semi-latent » est intermédiaire et correspond à une seule molécule de propeptide liée au dimère Cterminal mature. Contrairement au complexe latent, le complexe semi-latent est capable de se fixer aux récepteurs mais de manière moins efficace que le dimère C-terminal libre (Thies et al., 2001; Walker et al., 2017). Enfin, le mécanisme d'activation de la myostatine est dépendant d'un dernier clivage du propeptide réalisé par les membres de la famille des métallo-protéases BMP-1/tolloid (Wolfman et al., 2003). C'est ainsi que l'invalidation de Bmp-1/tolloid chez la souris entraîne également une hypertrophie musculaire significative (Lee, 2008).

Les multiples régulateurs protéiques de la myostatine

Le propeptide de la myostatine peut être considéré comme un « garde-fou » de l'activité de la myostatine. De multiples études ont montré que la surexpression *in vivo* du propeptide entraîne une réduction de l'activité de la myostatine associée à une hypertrophie musculaire chez la souris (Matsakas *et al.*, 2009; Qiao *et al.*, 2008). Divers travaux ont mis en évidence que la fonction de la myostatine est également régulée par d'autres interactions protéine-protéine.

La glycoprotéine follistatine (FST) est l'une des protéines inhibitrices de la myostatine la plus étudiée (Lee and McPherron, 2001). La follistatine inhibe également de nombreux autres membres de la superfamille des TGF-βs, comme l'activine ou GDF-11 (Patel, 1998;

Figure 20. Les partenaires de la myostatine.

A l'instar de son propeptide (vert foncé), la myostatine active (vert clair) est régulée négativement par un ensemble de protéines inhibitrices tout au long de son processus de maturation.

Gamer *et al.*, 1999; Lee and McPherron, 2001). Au vu de son activité ubiquitaire, son invalidation chez les souris $Fst^{-/-}$ est létale (Matzuk *et al.*, 1995). A l'opposé, les souris transgéniques, surexprimant spécifiquement le gène *Fst* dans les muscles, présentent une hypertrophie et une hyperplasie des myofibres (Lee and McPherron, 2001) (**Figure 20**).

La glycoprotéine FLST3 (follistatin-like 3), également appelée FLRG (Follistatin-Related Gene), est aussi une protéine inhibitrice extracellulaire de la myostatine et présente une forte homologie structurale avec la follistatine (Schneyer *et al.*, 2001; Tsuchida *et al.*, 2000). A l'instar de la follistatine, FLST3 peut aussi se lier à d'autres membres de la famille TGF-β dont l'activine ou BMP-2 (Tsuchida *et al.*, 2000; Hill *et al.*, 2002). La surexpression spécifique de *Flst3* dans le tissu musculaire entraîne une augmentation de la masse musculaire due à une hyperplasie et à une hypertrophie des myofibres (Lee, 2007).

L'utilisation du système double-hybride a permis de mettre en évidence l'interaction directe entre la protéine sarcomérique Titin-cap (T-cap) et la myostatine, résultat validé ensuite par le système de résonance des plasmons de surface (Nicholas *et al.*, 2002). La surexpression de *Titin-cap* entraîne une augmentation de la prolifération des myoblastes par rétention de la myostatine dans la cellule (Nicholas *et al.*, 2002).

La protéine hSGT (human Small Glutamine-rich Tetratricopeptide repeat-containing protein) est également capable de réguler la sécrétion de la myostatine. C'est une protéine intracellulaire qui interagit, par sa partie C-terminale, avec la partie N-terminale de la myostatine (Wang *et al.*, 2003). hSGT jouerait un rôle dans la régulation de la sécrétion et de l'activation de la myostatine.

L'activité locale de la myostatine est également régulée grâce à son interaction avec différentes protéines associées à la matrice extracellulaire. La décorine (DCN) est un protéoglycane riche en résidus leucine. Elle est fortement exprimée dans les muscles squelettiques et présente dans la matrice extracellulaire. Elle inhibe l'activité des membres de la famille TGF- β et de la myostatine par interaction *via* son domaine protéique central et nécessite des ions zinc (Miura *et al.*, 2006). La surexpression de *Dcn* contrecarre l'effet inhibiteur de la myostatine sur la fusion myoblastique (Li *et al.*, 2007). De plus, la surexpression de *Dcn* chez la souris accélère la régénération des muscles squelettiques et diminue la fibrose lors de blessures induites (Li *et al.*, 2007).

Un autre protéoglycane, la protéine « perlecane » ou HSPG2 (Heparan Sulfate ProteoGlycan 2), régule l'activité de la myostatine. Les souris knockout pour HSPG2 présentent ainsi un phénotype atrophique (Xu *et al.*, 2010). Une expérience *in vitro* a démontré que la myostatine interagit spécifiquement avec les chaînes de

glycosaminoglycanes du perlecane (Sengle *et al.*, 2011). La lamine, une autre protéine de la matrice extracellulaire, peut également interagir avec la myostatine mature mais également avec son récepteur AcrRIIB (Yasaka *et al.*, 2013).

Enfin, la myostatine peut également se lier aux protéines LTBP (Latent TGF-beta Binding Protein) connues pour interagir avec les protéines de la matrice extracellulaire d'une part, et les protéines TGF- β d'autre part. Plus précisément, LTBP2 et LTBP3 lient la promyostatine par des interactions non covalentes qui nécessitent à la fois le propeptide et le domaine mature de la myostatine (Anderson *et al.*, 2008). LTBP3 peut séquestrer la promyostatine non clivée dans la matrice. Cette forme non clivée semble être la principale forme présente dans la matrice extracellulaire des muscles squelettiques (Pirruccello-Straub *et al.*, 2018). La surexpression *in vivo* de *Ltbp3* dans les muscles squelettiques chez la souris entraîne une hypertrophie musculaire marquée (Anderson *et al.*, 2008). De plus, des expériences de co-immunoprécipitation ont démontré une interaction directe entre la myostatine et LTBP4. Les souris transgéniques surexprimant *Ltbp4*, présentent un phénotype musculaire comparable à celui des souris *Mstn^{-/-}* (Lamar *et al.*, 2016).

En résumé, de multiples protéines sont impliquées dans la régulation de l'activité de la myostatine et les thérapies utilisant ces protéines sont prometteuses pour tenter de stimuler la croissance et la régénération musculaires. Dans mon laboratoire d'accueil, nous nous intéressons à 2 autres inhibiteurs de la myostatine, les protéines paralogues GASP-1 et GASP-2, que nous détaillerons dans la deuxième partie de cette introduction bibliographique.

GDF-11, LA PROTEINE « JUMELLE » DE LA MYOSTATINE ?

Après la découverte de la myostatine en 1997, l'équipe de McPherron a identifié un nouveau membre de la famille TGF- β en utilisant des amorces « myostatine » : la protéine GDF-11, également appelé BMP11 (McPherron *et al.*, 1999). Simultanément, une autre équipe a mis en évidence le gène *Gdf-11* en utilisant de l'ARN dentaire de rat (Nakashima *et al.*, 1999). L'hybridation *in situ* sur embryon montre que *Gdf-11* est exprimé dès 8,5 *j.p.c* avec une forte expression dans le bourgeon caudal. À 10,5 *j.p.c*, *Gdf-11* est exprimé dans de nombreux structures embryonnaires tels que les arcs branchiaux, le bourgeon des membres, le bourgeon caudal et le tube neural postérieur dorsal. *Gdf-11* est exprimé ensuite dans les odontoblastes, l'épithélium nasal, la rétine et des régions spécifiques du cerveau (Nakashima *et al.*, 1999). Une troisième équipe a cloné et démontré le rôle de GDF-11 dans la formation des tissus mésodermiques et neuraux chez l'Homme et la souris (Gamer *et al.*, 1999, 2001).

Figure 21. Comparaison GDF-11/Myostatine.

Les protéines GDF-11 et myostatine possèdent une forte identité de séquence protéique. A l'instar de la myostatine et des autres membres TGF- β s, GDF-11 est synthétisé sous forme d'un précurseur inactif qui nécessite différents clivages protéasiques avant de se fixer à son récepteur et d'initier la voie SMAD2/3.

Figure 22. Le rôle de GDF-11 dans la mise en place de l'axe antéro-postérieur embryonnaire.

Contrairement aux souris sauvages qui présentent 13 côtes dont 7 liées au sternum, les souris GDF-11^{+/-} et GDF-11^{-/-} présentent une antériorisation de leur squelette axial de manière dose dépendante, avec une augmentation du nombre de vertèbres et de côtes. Les embryons mutants présentent des altérations dans les schémas d'expression des gènes *Hox*, suggérant que GDF-11 agit en amont (D'après McPherron *et al.*, 1999 et Liu *et al.*, 2006). Les protéines GDF-11 et myostatine possèdent une forte identité de séquence protéique chez l'Homme, le rat et la souris (envrion 90 % dans leur partie bio-active) (McPherron *et al.*, 1999; Nakashima *et al.*, 1999) (**Figure 21**). A l'instar de la myostatine et des autres membres TGF- β , GDF-11 est synthétisée sous forme d'un précurseur inactif qui nécessite différents clivages protéasiques avant de se fixer à son récepteur et d'activer la voie SMAD2/3 (Ge *et al.*, 2005).

Cependant, contrairement à la myostatine, *Gdf-11* est peu exprimé dans les muscles squelettiques et sa délétion génétique n'entraîne pas d'hypertrophie musculaire. Au lieu de cela, GDF-11 joue un rôle important pendant le développement embryonnaire précoce et principalement dans la mise en place de l'axe antéro-postérieur (McPherron *et al.*, 1999, 2009).

• GDF-11 et la mise en place de l'axe antéro-postérieur embryonnaire

Gdf-11 s'exprime dans les régions primitives des bourgeons caudaux de l'embryon de souris et contrôle la régionalisation antéro-postérieure. GDF-11 régule l'expression des gènes *Hox* (Homeobox) impliqués dans l'établissement de l'axe antéro-postérieur du mésoderme au cours de l'embryogénèse (McPherron *et al.*, 1999) (**Figure 22**). Au stade embryonnaire, les souris *Gdf-11^{-/-}* présentent d'importants défauts squelettiques avec une antériorisation du squelette axial et ne sont pas viables à l'âge adulte. Les souris hétérozygotes *Gdf-11^{+/-}* présentent des transformations du squelette axial, mais ne présentent aucun défaut spécifique dans le développement craniofacial (Lee and Lee, 2015). En comparaison des souris sauvages qui présentent 13 vertèbres thoraciques, les souris knock-out pour *Gdf-11* possèdent 4 à 5 paires de côtes supplémentaires pour un total de 17 à 18 segments thoraciques (McPherron *et al.*, 1999). Les souris mutantes pour les récepteurs de GDF-11 (ActRIIA/ActRIIB) présentent ce même phénotype squelettique (Oh *et al.*, 2002; Andersson *et al.*, 2006).

• GDF-11 et le développement osseux

L'ostéogenèse est le processus de dépôt du nouveaux matériaux osseux par les ostéoblastes lors du remodelage osseux. A l'opposé, les ostéoclastes résorbent le tissu osseux. La structure osseuse est divisée en zone « compacte» (ou externe) et en zone « spongieuse » (ou trabéculaire). Bien que le mécanisme exact du développement osseux ne soit pas clairement établi, les membres de la superfamille TGF- β semblent jouer un rôle essentiel dans ce processus (Oka *et al.*, 2007).

Figure 23. Le rôle de GDF-11 dans le développement osseux.

L'ostéogenèse est le processus de dépôt du nouveau matériau osseux par les ostéoblastes lors du remodelage osseux. A l'opposé, les ostéoclastes résorbent le tissu osseux. GDF-11 induit ainsi l'ostéoclastogenèse (résorption de l'os) et inhibe l'ostéoblastogenèse (formation de l'os).

Figure 24. Effet de l'inhibition de GDF-11 sur le développement osseux.

La surexpression du propeptide de GDF-11 entraîne une augmentation de l'ossification à 16,6 *j.p.c.*, déterminée par coloration au Rouge Alizarine et Bleu Alcian, marquant respectivement l'os et le cartilage (D'après Li *et al.*, 2011).

La myostatine peut réguler le développement osseux puisque les souris *Mstn^{-/-}* présentent une augmentation de la formation osseuse (Elkasrawy and Hamrick, 2010; Hamrick *et al.*, 2007). La protéine GDF-11 semble d'avantage impliquée dans le développement osseux et la plupart des études montrent un rôle négatif de GDF-11 sur l'ostéogenèse.

GDF-11 inhibe la différenciation ostéoblastique des cellules souches mésenchymateuses de la moelle osseuse par la signalisation *Smad2/3-Runx2* (Runt-related transcription factor 2). GDF-11 inhibe ainsi la formation osseuse en accélérant la perte osseuse liée au vieillissement chez la souris (Liu *et al.*, 2016b). Des injections de GDF-11 chez des souris jeunes ou âgées provoquent l'inhibition des ostéoblastes et l'activation des ostéoclastes responsables d'une diminution du volume osseux. GDF-11 induit ainsi l'ostéoclastogenèse (résorption de l'os) et inhibe l'ostéoblastogenèse (formation de l'os) (Liu *et al.*, 2016b) (**Figure 23**).

Les inhibiteurs de GDF-11 font donc l'objet de nombreuses études, à l'instar de son propeptide qui est capable d'interagir avec la forme active de GDF-11 et d'inhiber son action (Lee and McPherron, 2001; Thies *et al.*, 2001). En 2010, il a été montré que la surexpression du propeptide de GDF-11 chez des souris provoque la formation d'une paire de côtes supplémentaire. Cela se produit de manière symétrique ou asymétique (Li *et al.*, 2010). Ces auteurs ont également observé que ces souris transgéniques, âgées de 10 semaines, présentent une augmentation de leur contenu minéral osseux et de la densité minérale osseuse (**Figure 24**). Ces souris possèdent aussi un volume relatif de l'os trabéculaire augmenté de façon importante et localisé dans la cavité de la moelle osseuse. Le fait que la formation osseuse soit améliorée chez les souris transgéniques résulte de l'augmentation des activités ostéoblastiques (Li *et al.*, 2011).

De même, l'utilisation d'anticorps anti-GDF-11, chez des souris âgées de 18 mois, améliore le nombre, le volume et l'épaisseur de l'os trabéculaire (Liu *et al.*, 2016b). Ce traitement avec l'anticorps anti-GDF-11 prévient la perte osseuse et améliore l'ostéoporose liée à l'âge. Ceci semble indiquer que l'inhibition de GDF-11 serait une approche thérapeutique potentielle pour prévenir la perte osseuse ostéoporotique.

• GDF-11 et le développement du tissu musculaire

Même si les souris $Gdf-11^{-/-}$ ne présentent pas de phénotype musculaire, la forte homologie en séquence protéique entre la myostatine et GDF-11 a conduit certaines équipes à émettre l'hypothèse d'une redondance fonctionelle entre ces 2 protéines. Les souris double knockout $Mstn^{-/-}$; $Gdf-11^{-/-}$ présentent une aggravation du phénotype

Figure 25. Effet de GDF-11 sur le vieillissement et le développement musculaire.

Alors que l'expression de la myostatine diminue de 6 à 24 mois dans les muscles squelettiques murins, l'expression de GDF-11 augmente pendant cette même période. GDF-11 et la myostatine se lient aux récepteurs ACTRIIB et ALK-4/5 pour activer les voies canoniques des SMAD2/3. Les voies de signalisation myostatine/GDF-11 régulent négativement la prolifération et la différenciation des cellules musculaires, conduisant à une atrophie musculaire à l'âge adulte. (D'après Brun *et al.*, 2015).

squelettique par rapport aux souris Gdf-11^{-/-} (McPherron *et al.*, 2009). En revanche, elles ne présentent pas d'augmentation de l'hypertrophie musculaire en comparaison avec les souris $Mstn^{-/-}$ (McPherron *et al.*, 2009). Ces observations ont permis d'affirmer l'existence d'une redondance de fonction entre GDF-11 et la myostatine dans le contexte squelettique mais pas dans le contexte musculaire. Pourtant, depuis quelques années, de nombreux travaux s'intéressent à l'impact de GDF-11 dans le développement musculaire.

Deux premières études ont montré que les taux de GDF-11 sont réduits dans le sérum de souris âgées et que l'injection de GDF-11 peut réduire la perte musculaire liée au vieillissement (Sinha *et al.*, 2014; Poggioli *et al.*, 2016). Ces études suggèrent donc que GDF-11 pourrait être un facteur de rajeunissement, en activant le développement musculaire. Ces résultats sont surprenants puisque GDF-11 est fortement homologue à la myostatine, qui elle inhibe le développement musculaire. De nombreuses nouvelles études ont démontré que GDF-11 est un facteur catabolique et anti-myogénique comme la myostatine et qu'il inhibe la myogenèse et la régénération musculaire.

L'équipe d'Egerman montre que les taux sériques de GDF-11 ne diminuent pas avec l'âge mais qu'au contraire ils augmentent. De plus, GDF-11 inhibe la différenciation des myoblastes et la régénération musculaire. Les différences observées dans les taux de GDF-11 au cours du vieillissement sont donc difficilement reproductibles en raison de problèmes méthodologiques liées à la réactivité croisée entre les anticorps anti-GDF-11 et anti-myostatine (Egerman *et al.*, 2015) (**Figure 25**).

Le traitement avec GDF-11 provoque un retard de différenciation des myotubes C2C12 (Souza *et al.*, 2008) De même, GDF-11 inhibe le développement musculaire et la différenciation des lignées cellulaires myogéniques chez les embryons de poussins (Gamer *et al.*, 2001). Une administration *in vivo* de GDF-11 entraîne une atrophie des muscles cardiaque et squelettiques (Zimmers *et al.*, 2017). La surexpression *in vivo* de Gdf-11 via AAV (Adeno Associated Virus) dans des muscles adultes de souris conduit à une atrophie musculaire importante (Hammers *et al.*, 2017). De même, l'administration intraveineuse d'AAV-*Gdf-11* chez des souris nouveaux-nés induit une inhibition importante de la croissance musculaire des membres ainsi qu'une réduction de la force musculaire (Jin *et al.*, 2018). À l'inverse, le traitement dans les muscle *via* des AAV surexprimant le propeptide de GDF-11 entraîne une augmentation de la masse/force musculaire des membres (Jin *et al.*, 2018). En résumé, l'ensemble de ces nouveaux résultats suggère que la surexpression de GDF-11 a un effet inhibiteur sur la croissance des muscles squelettiques.

MYOSTATINE ET PATHOLOGIES MUSCULAIRES

Comme mentionné précédemment, l'augmentation « artificielle » du taux de myostatine induit une atrophie musculaire *in vivo* chez la souris. A l'inverse, son knockout provoque une forte hypertrophie musculaire. Cependant, de telles expériences ne fournissent pas de preuves directes de l'implication de la myostatine dans les pathologies musculaires. Cette partie bibliographique présente plus en détail le lien entre « pathologies musculaires » et « myostatine », ainsi que l'effet de son inhibition dans différents modèles murins.

• La myostatine et l'atrophie musculaire induite par immobilisation/dénervation.

La « non-sollicitation » musculaire entraîne des conditions cataboliques qui conduisent à une atrophie musculaire en augmentant l'expression d'atrogènes tels que *MuRF-1* et *Atrogin-1*. De même, l'expression de la myostatine est induite après une période d'immobilité des muscles squelettiques chez la souris, le rat et l'Homme (Lalani *et al.*, 2000; Wehling *et al.*, 2000; Reardon *et al.*, 2001). De manière intéressante, l'expression de la myostatine est augmentée préférentiellement dans les muscles à contraction rapide lors de l'atrophie induite par une immobilisation (Wehling *et al.*, 2000). Inversement chez la souris, l'inhibition de la myostatine à l'aide d'anticorps, lors d'une l'immobilisation par suspension des membres postérieurs, contrecarre la perte de masse musculaire et provoque la diminution de l'expression de *MuRF-1* et d'*Atrogin-1* (Murphy *et al.*, 2011; Latres *et al.*, 2015).

Contrairement à l'atrophie musculaire induite par immobilisation, la contribution de la myostatine lors de l'atrophie obtenue par dénervation reste aujourd'hui encore très discutée. Bien que l'expression de la myostatine augmente localement dans les muscles squelettiques pendant l'atrophie médiée par dénervation, l'effet de son inhibition donne des résultats contradictoires. Une première étude montre que la surexpression du propeptide de la myostatine atténue l'atrophie musculaire induite par dénervation (Tsai *et al.*, 2016). L'utilisation d'un récepteur soluble de la myostatine ACVR2B-Fc ne permet pas de lutter efficacement contre ce type d'atrophie musculaire (MacDonald *et al.*, 2014). De même, la surexpression de la follistatine *via* un AAV, après dénervation chirurgicale, n'empêche pas l'atrophie musculaire chez la souris (Sepulveda *et al.*, 2015).

Certaines formes de maladies neuromusculaires ont des effets similaires à l'atrophie musculaire induite par dénervation, telles que la sclérose latérale amyotrophique (SLA) et l'atrophie musculaire spinale (SMA). Dans les modèles murins de SLA, l'inhibition de la myostatine, en utilisant un anticorps anti-myostatine, atténue l'atrophie musculaire durant les premiers stades de la maladie, mais le traitement n'apporte pas d'amélioration fonctionnelle au stade terminal de la maladie (Holzbaur *et al.*, 2006). Le traitement des souris atteintes de SLA par un récepteur soluble de la myostatine provoque également un retard dans l'apparition de la faiblesse, une augmentation du poids corporel et de la force de préhension (Morrison *et al.*, 2009).

Dans les modèles animaux SMA, qui miment les variantes légères ou sévères de la maladie, l'effet de l'inhibition de la myostatine semble dépendre du degré de gravité de la maladie. Ainsi, l'inactivation de la myostatine n'améliore pas la survie des souris gravement atteintes (Sumner *et al.*, 2009; Rindt *et al.*, 2012). Au contraire, chez les souris légèrement atteintes, la surexpression de la follistatine, donc l'inhibition de la myostatine, diminue efficacement l'atrophie musculaire (Feng *et al.*, 2016). De même, le traitement par un récepteur soluble de la myostatine permet d'atténuer la pathologie musculaire chez des souris légèrement atteintes (Liu *et al.*, 2016a).

• La myostatine et la cachexie

La cachexie est un syndrome provoqué par des maladies chroniques, tels que le cancer ou le sida. Elle se caractérise par une perte de poids, une atrophie des fibres musculaires et une fatigue généralisée. Les concentrations sérique et intramusculaire de la myostatine sont augmentées chez les personnes infectées par le VIH (Virus de l'Immunodéficience Humaine) avec une perte de poids par rapport aux individus sains (Gonzalez-Cadavid *et al.*, 1998). La myostatine contribue donc à la fonte musculaire chez les sujets infectés par le VIH. De plus, de nombreuses études montrent que l'inhibition de la myostatine combat l'atrophie musculaire et améliore la fonction musculaire dans des modèles murins de cachexie cancéreuse (Benny Klimek *et al.*, 2010; Smith *et al.*, 2015; Hatakeyama *et al.*, 2016). L'inhibition de la myostatine a également empêché l'atrophie musculaire dans d'autres pathologies cachectiques, comme les maladies rénales chroniques chez la souris et le SIDA chez les macaques (Zhang *et al.*, 2011; O'Connell *et al.*, 2015).

La myostatine et la sarcopénie

La sarcopénie est généralement définie comme une fonte musculaire multifactorielle liée au vieillissement et provoquant une faiblesse musculaire prononcée chez les personnes âgées (Tieland *et al.*, 2018). C'est une combinaison entre la vieillesse physiologique, l'immobilité, la perte d'unités motrices, le changement alimentaire et l'altération des cellules

Vieillissement

Figure 26. Mécanismes associés à la sarcopénie.

La figure est interprétée directionnellement des anneaux externes vers les anneaux internes conduisant finalement à une perte des protéines myofibrillaires et à une diminution de la masse musculaire. (\mathbf{a}) indique une régulation à la hausse et (\mathbf{a}) correspond à la diminution d'une voie spécifique (D'après Buford *et al.*, 2010).

satellites qui contribue à ce phénomène de sarcopénie (Ballak *et al.*, 2014; Larsson *et al.*, 2018) (Figure 26).

Chez la souris, l'invalidation du gène de la myostatine protège de la sarcopénie. En effet, l'élimination de la myostatine provoque une hypertrophie des fibres musculaires et une amélioration de la régénération musculaire chez les souris âgées (Siriett *et al.*, 2006; Morissette *et al.*, 2009b). De plus, les souris hétérozygotes *Mstn*^{+/-} sont également protégées contre la perte de masse musculaire liée à l'âge (Mendias *et al.*, 2015). Le traitement de souris âgées avec des anticorps anti-myostatine entraîne une augmentation de la masse musculaire et de la force musculaire ainsi qu'une diminution des processus apoptotiques musculaires (Camporez *et al.*, 2016).

L'ensemble de ces études suggère que l'inhibition de la myostatine pourrait constituer une stratégie thérapeutique prometteuse pour lutter contre l'atrophie musculaire lors de cachexie ou de sarcopénie.

La myostatine et les maladies neuromusculaires

Les maladies neuromusculaires génétiques, telle que la dystrophie musculaire de Duchenne, sont généralement dues à des mutations dans des gènes importants régulant la fonction musculaire (*i.e* la dystrophine). Bien que le ciblage de la myostatine n'élimine pas les causes primaires de la pathologie, l'inhibition de sa voie pourrait néanmoins atténuer l'atrophie musculaire induite dans ces maladies dégénératives. De plus, l'inhibition de la myostatine pourrait diminuer certains effets pathologiques secondaires comme l'altération de la régénération musculaire ou l'apparition de fibrose.

Contrairement aux atrophies induites par l'immobilisation/dénervation, la sarcopénie ou la cachexie, des études récentes montrent que les patients atteints de maladies neuromusculaires présentent généralement une diminution des concentrations circulantes de myostatine (Burch *et al.*, 2017; Mariot *et al.*, 2017). Lors de traitements anti-myostatine, ces faibles taux sériques pourraient rendre alors le traitement inefficace. Cependant, la myostatine étant produite dans le muscle, les personnes ayant une masse musculaire réduite présentent logiquement une quantité de myostatine sérique anormalement faible. Lorsqu'elles sont normalisées en fonction du poids corporel ou du poids du muscle *gastrocnémien*, les différences dans les taux sériques de myostatine ne sont plus observées (Long *et al.*, 2019). Ces résultats suggèrent que les taux sériques de myostatine doivent être considérés comme un « biomarqueur » du contenu musculaire global (Long *et al.*, 2019). La myostatine est produite et agit localement dans le muscle. Les taux de myostatine circulant

ne peuvent donc pas être un marqueur de « capacité à répondre » aux agents antimyostatine (Lee *et al.*, 2016).

C'est ainsi que de nombreuses études menées sur des modèles animaux précliniques montrent que l'inhibition de la myostatine atténue la pathologie musculaire dans différentes maladies neuromusculaires. L'invalidation de la myostatine sous fond mdx (modèle murin de la dystrophie musculaire de Duchenne) entraîne une augmentation de la masse et de la force musculaire à différents âges (Wagner et al., 2002). De plus, la quantité de fibrose diminue chez ces souris $Mstn^{-/-}$ sous fond mdx. Cependant, l'inhibition de la myostatine dans les souris mdx ne montre pas d'effet significatif sur la régénération musculaire (Amthor et al., 2009; Relizani et al., 2014). Une étude récente montre que l'inhibition de la myostatine n'aurait pas d'effet sur les chiens GRMD atteints de myopathie de Duchenne, possédant des atteintes plus sévères que les souris mdx (Kornegay et al., 2016). Cependant, de nombreuses autres études montrent, en revanche, des effets positifs de l'inhibition de la myostatine dans les souris mdx, à l'aide d'anticorps anti-myostatine (Bogdanovich et al., 2002; Murphy et al., 2010; St Andre et al., 2017), de son propeptide (Bogdanovich et al., 2005; Qiao et al., 2008), de son récepteur soluble (Morine et al., 2010; Pistilli et al., 2011; Béchir et al., 2016) ou de la surexpression de la FST (Haidet et al., 2008; Nakatani et al., 2008; Rodino-Klapac et al., 2013).

L'effet du ciblage de la myostatine a également été testé sur d'autres modèles murins de dystrophies musculaires, telles que les dystrophies musculaires des ceintures. L'inhibition de la myostatine par des inhibiteurs donne des résultats prometteurs dans plusieurs modèles murins LGMD (Limb-Girdle Muscular Dystrophy) : modèle LGMD1C (souris *Caveolin3^{-/-}*), LGMD2A (souris *calpain3^{-/-}*) et LGMD2C (*sarcoglycan^{-/-}*) (Ohsawa *et al.*, 2006; Bartoli *et al.*, 2007; Bogdanovich *et al.*, 2008). Cependant, dans un modèle murin LGMD2B (*Dysferlin^{-/-}*), la pathologie s'est aggravée après traitement par les protéines FST ou ACRV2B-Fc (Lee *et al.*, 2015).

Ainsi, l'ensemble de ces résultats suggère que le ciblage de la myostatine pourrait pallier certaines maladies dégénératives musculaires, mais des recherches plus approfondies sur de nouveaux inhibiteurs de la myostatine et sur des modèles animaux précliniques plus pertinents sont encore nécessaires. Cependant, la majorité des résultats positifs de l'inhibition de la myostatine dans ces modèles animaux a permis d'initier des essais cliniques chez l'homme.
 Tableau 2. Principaux composés ciblant la myostatine dans les essais cliniques.

Nom	Laboratoire	Ciblage	Mécanisme d'action	Conditions	Statut de l'essai clinique
Stamulumab (MYO-029)	Wyeth Pharm.	MSTN	Anticorps anti-MSTN	BMD, FSHD, LGMD	Phase I/II terminée (sain)
					Phase I/II terminée
					(BMD, FSHD, LGMD)
Landogrozumab (LY2495655)	Lilly	MSTN	Anticorps anti-MSTN	sain, cachexie	Phase II terminée(cachexie)
				sarcopenie	Phase II terminée (sarcopénie)
Domagrozumab (PF-06252616)	Pfizer	MSTN	Anticorps anti-MSTN	sain, DMD, LGMD2I	Phase I terminée (Sain)
					Phase I/II en cours (LGMD2I)
					Phase II en cours/recrutement
					(DMD)
Trevogrumab (REGN1033)	Regeneron	MSTN	Anticorps anti-MSTN	sain, sarcopenie	Phase I recrutement (Sain)
SRK-015	Scholar Rock	Complexe latent	Anticorps anti-MSTN	SMA	Phase II en cours
PINTA 745 (AMG745)	Amgen	MSTN	Peptide anti- myostatine	ADT (cancer)	Phase I terminée
					Phase II terminée
BMS-986089	Bristol-Myers Squibb	MSTN	Adnectine anti-MSTN	sain, DMD	Phase 1 en cours
					(Sain)
					Phase I/II en cours (DMD)
					Phase II/III recrutement (DMD)

ESSAIS CLINIQUES CIBLANT LA MYOSTATINE DANS LES MALADIES MUSCULAIRES

A la suite de sa découverte chez la souris, des essais pour inhiber l'atrophie musculaire à l'aide de traitements spécifiques ciblant la myostatine se sont développés. Ces traitements peuvent soit cibler spécifiquement la myostatine, soit cibler d'autres membres de la famille TGF- β en plus de la myostatine. Les résultats de ces différents essais n'étant pas tous concordants, j'ai fait le choix de les présenter sous forme de tableaux afin d'en faciliter la lecture (**Tableaux 2 et 3**).

Un essai clinique est une expérimentation scientifique ou l'effet d'un traitement est étudié chez l'homme afin d'en évaluer sa tolérance et son efficacité. Le traitement est alors testé au cours de différentes phases. Lors de l'essai de phase I, le traitement est testé chez un petit groupe de personnes, généralement sains, afin d'étudier sa tolérance, sa toxicité et les éventuels effets secondaires. L'essai de phase II est réalisé sur un petit groupe homogène de volontaires atteints de la maladie ciblée pour étudier l'efficacité du produit. L'essai de phase III se fait alors sur une plus grande population de volontaires atteints de la maladie ciblée. Enfin l'essai de phase IV est réalisé après la mise sur le marché du médicament afin de réajuster si nécessaire les différents paramètres du traitement (El Mouelhi, 2016).

• L'inhibition spécifique de la myostatine dans les essais cliniques

Le premier essai clinique d'inhibition de la myostatine a été réalisé il y a une dizaine d'années avec un anticorps anti-myostatine, le Stamulumab (MYO-029), neutralisant son activité en empêchant sa liaison au récepteur ActRIIB. Cette étude a été menée chez des sujets atteints de dystrophie musculaire de Becker, de dystrophie facio-scapulo-humérale ou de dystrophie musculaire des ceintures. Malgré un bon profil d'innocuité et peu d'effets secondaires, cet anticorps n'a pas apporté d'amélioration significative dans la fonction musculaire (Wagner *et al.*, 2008). L'étude clinique de phase II s'est ainsi arrêtée principalement à cause d'un faible échantillonnage et d'un manque de puissance statistique (Wagner *et al.*, 2008). Une étude récente démontre que MYO-029 est moins efficace chez l'homme que chez la souris puisque sa clairance est plus élevée (Singh *et al.*, 2016).

Un nouvel anticorps anti-myostatine humanisé, le Landogrozumab (LY2495655), a ensuite été développé et testé dans une étude clinique de phase II sur des patients âgés de plus de 75 ans ayant une faible masse musculaire. Ce traitement augmente significativement la masse appendiculaire, la masse maigre totale et la fonctionnalité musculaire (Becker *et al.*, 2015). Cependant, dans une autre étude clinique parallèle de

Tableau 3. Principaux composés ciblant la myostatine et d'autres TGF-βs dans les essais cliniques.

Nom	Laboratoire	Ciblage	Mécanisme d'action	Conditions	Statut de l'essai clinique
Bimagrumab (BYM338)	Novartis	ACVR2B	Anticorps anti- récepteur	sIBM, sarcopenie cachexie, atrophie COPD, diabetes	Phase II terminée (Cachexie, COPD, sarcopenie, atrophie)
					Phase II/III terminée (sIBM)
					Phase 2 en cours (Sarcopénie, diabètes type 2)
ACE-031	Acceleron	MSTN ACTIVINS	Récepteur soluble	sain, DMD	Phase I/II terminée (Sain)
		BMPs	ACVR2B		Phase I/II arrêtée (DMD)
ACE-083	Acceleron	MSTN	FST	sain, FSHD, CMT	Phase I terminée (Sain)
		ACTIVINS			Phase II en cours (FSHD)
		BMPs			Phase II en cours (CMT)
ACE-2494	Acceleron	MSTN ACTIVINS	Récepteur soluble ACVR2B	sain, Maladies neuromusculaires	Phase I en cours (Sain)
AA Follistatine	Milo Biotech.	MSTN ACTIVINS	FST	BMD, sIBM	Phase I terminée (BMD, sIBM)

phase II, le Landogrozumab entraîne un gain de masse musculaire sans gain fonctionnelle chez des patients avec une prothèse de hanche (Woodhouse *et al.*, 2016). D'autres essais cliniques de phase II sont actuellement en cours sur des patients atteints de cachexie cancéreuse (ClinicalTrials.gov NCT01505530 et NCT01524224).

En parallèle, des études sont réalisées avec un anticorps anti-myostatine « nouvelle génération », le Domagrozumab (PF-06252616), qui présente un bon profil d'innocuité et un taux de clairance ralenti (Bhattacharya *et al.*, 2018b, 2018a). Cet anticorps augmente efficacement la masse et le volume musculaire chez des souris *mdx* et chez le singe cynomolgus (St Andre *et al.*, 2017). Actuellement, le Domagrozumab fait l'objet d'une étude clinique de phase II chez des patients atteints de dystrophie musculaire de Duchenne (ClinicalTrials NCT02310763) et d'une étude de phase I/II chez des patients atteints de myopathie des ceintures de type 2I (ClinicalTrials NCT0284126). Un essai clinique est également prévu chez d'autres patients (ClinicalTrials NCT02907619).

D'autres essais de phase II, utilisant différents anticorps anti-myostatine (Trevogrumab (REGN1033) (ClinicalTrials NCT03710941) et SRK-015 (ClinicalTrials NCT03921528)) sont actuellement en cours. Contrairement aux autres anticorps qui inhibent la myostatine mature, SRK-015 se lie spécifiquement à la pro-myostatine et au complexe latent (Pirruccello-Straub *et al.*, 2018).

Plusieurs autres méthodes spécifiques de ciblage de la myostatine ont également été développées et testées dans des essais cliniques. C'est le cas d'un peptide bloquant la myostatine à l'image de son propeptide; le PINTA-745 entraîne une augmentation de la masse et de la fonction musculaire dans différents modèles murins (Desgeorges *et al.*, 2017). Cependant, l'essai clinique de phase I/II a été abandonné par manque d'effet significatif. De manière plus concluante, une adnectine anti-myostatine (BMS-986089) est actuellement évaluée chez de jeunes patients atteints de dystrophie musculaire de Duchenne. Les adnectines sont des variants génétiquement modifiés de la fibronectine humaine (*Z*hu *et al.*, 2016). L'essai en phase I/II du BMS-986089 a montré des résultats positifs et encourageants (Wagner *et al.*, 2018). Une étude de phase II/III est donc actuellement en cours avec un nombre plus important des patients et devrait se terminer en 2024 (ClinicalTrials NCT03039686).

En résumé, contrairement aux premiers anticorps, les anticorps anti-myostatine de « deuxième génération » ou l'adnectine anti-myostatine donnent des premiers résultats positifs. L'efficacité de ces traitements ciblant la myostatine sera déterminée dans les années à venir, lorsque de nouveaux essais cliniques sur des patients atteints de troubles musculaires seront annoncés.

• Les traitements à cibles multiples dans les essais cliniques

Différentes études cliniques se sont également concentrées sur l'effet d'inhibiteurs qui ciblent, en plus de la myostatine, d'autres membres de la famille TGF-β.

Par exemple, l'ACE-031 est un variant soluble du récepteur ActRIIB couplé au fragment constant d'immunoglobuline (ActRIIB-Fc). Le récepteur ActRIIB est ciblé par la myostatine mais également par GDF-11, l'activine mais aussi par certains BMPs (Souza *et al.*, 2008). Des études cliniques initiales ont montré que le traitement par l'ACE-031 conduit à une augmentation significative de la masse corporelle chez des femmes ménopausées en bonne santé (Attie *et al.*, 2013). Bien qu'un essai clinique a également démontré des effets similaires chez des patients atteints de dystrophie musculaire de Duchenne, d'autres essais ont mis en évidence l'apparition d'effets indésirables non musculaires comme des saignements de nez ou la dilatation des vaisseaux sanguins (Campbell *et al.*, 2017). Ainsi de nouvelles études ont été engagées avec l'ACE-2494, un variant de l'ACE-031, qui cible la masse musculaire aussi efficacement que l'ACE-031 chez la souris (Pearsall *et al.*, 2015). Un essai de phase I est actuellement en cours avec des volontaires sains (ClinicalTrials NCT03478319).

Le Bimagrumab (BYM338) est un anticorps anti-récepteurs ActRIIB et ActRIIA. Le BYM338 bloque ainsi l'interaction de ces récepteurs avec leurs multiples ligands, à savoir la myostatine, GDF-11, l'activine et les BMPs (Morvan *et al.*, 2017). L'utilisation de cet anticorps chez la souris provoque une hypertrophie musculaire plus prononcée que lors du ciblage de la myostatine seule (Lach-Trifilieff *et al.*, 2014; Morvan *et al.*, 2017). Lors d'un premier essai clinique, le Bimagrumab a entraîné une augmentation de la masse musculaire et une amélioration de la marche chez des patients atteints de myosite à inclusion sporadique (Amato *et al.*, 2014). Cependant, un essai clinique de phase II/III chez d'autres patients atteints de la même maladie n'a malheureusement pas atteint ses critères d'évaluation principaux (ClinicalTrials NCT01925209). Dans une autre étude clinique de phase II, le traitement au Bimagrumab a induit une augmentation significative du volume musculaire et une amélioration de la vitesse/distance de marche chez des patients raisons, de nouvelles études cliniques de phase II sont en cours afin d'évaluer l'effet de cet anticorps sur la sarcopénie (ClinicaTrials NCT02152761).

Enfin, c'est une thérapie génique visant à surexprimer un inhibiteur naturel de la myostatine *via* un AAV, la follistatine, qui montre les résultats les plus prometteurs chez des patients atteints de maladies musculaires. Une étude clinique de phase I/II, portant sur un

petit groupe de patients atteints de dystrophie musculaire de Becker, démontre qu'une unique de AAV-FST injection intramusculaire dans les quadriceps augmente significativement la distance parcourue à pied (Al-Zaidy et al., 2015). De plus, des biopsies musculaires de patients traités montrent des signes d'amélioration de l'histologie musculaire avec une diminution de la fibrose musculaire, une réduction de myofibres centronucléées et une hypertrophie des fibres (Mendell et al., 2015). Une autre étude clinique de phase I/II a également montré une amélioration fonctionnelle de la distance de marche après une injection intramusculaire AAV-FST chez des patients atteints de myosite à inclusion sporadique (Mendell et al., 2017). De même, le traitement par un dérivé de la follistatine, l'ACE-083, conduit à des résultats prometteurs dans un essai clinique de phase I chez des volontaires sains. L'injection locale de différentes doses d'ACE-083 dans le tibilais anterior entraîne une augmentation de la masse musculaire (Glasser et al., 2018). Des essais cliniques de phase II avec l'ACE-083 sont prévus chez les patients atteints de la maladie de Charcot-Marie-Tooth (ClinicalTrials NCT03124459) et la dystrophie musculaire facioscapulohumérale (ClinicalTrials NCT02927080).

L'ensemble de ces études cliniques suggère que le ciblage simultané de plusieurs ligands appartenant à la famille TGF- β peut améliorer efficacement la masse et la fonction musculaire. En revanche, des effets secondaires graves peuvent apparaitre comme lors de l'utilisation du récepteur soluble ACE-031. Il est donc nécessaire de poursuivre des études sur d'autres inhibiteurs de la myostatine et plus largement sur les inhibiteurs de TGF- β . Ultérieurement, il sera nécessaire de comprendre plus en détail les mécanismes d'action de ces molécules inhibitrices pour tester leur efficacité en limitant les effets secondaires.

C'est dans ce contexte que s'inscrivent mes travaux de thèse effectués dans l'équipe de Pr. Véronique Blanquet, avec un intérêt particulier pour l'étude de la voie de signalisation de la myostatine et de 2 de ses inhibiteurs naturels, les protéines GASP-1 et GASP-2.

Figure 27. Structure des protéines GASPs.

Les protéines GASPs sont 2 glyco-protéines secrétées dans le milieu extracellulaire. GASP-1 est une protéine de 63,3 kDa comprenant 571 acides aminés. GASP-2 est une protéine de 59,8 kDa possédant 552 acides aminés. Les protéines GASPs sont composées d'une séquence signale de sécrétion (SS), un domaine WAP, un domaine follistatine (F) incluant un motif Kazal (K), 2 domaines Kunitz (Ku) et un domaine Nétrine (NTR).

Figure 28. Structure des gènes GASPs.

Le gène *Gasp-1* est constitué de 2 exons donnant un transcrit de 1716 b. Le gène *Gasp-2* possède également 2 exons codant un transcrit de 1659 b.

PARTIE II : LES PROTEINES GASPs

UNE DOUBLE APPROCHE POUR LA DECOUVERTE DES PROTEINES GASPS.

L'étude des protéines multi-domaines GASP-1 et GASP-2 (GDF-Associated Serum protein) s'inscrit dans une découverte à double niveau; via leurs domaines anti-protéasiques et via leur domaine Follistatine. En effet, les 2 protéines GASPs ont été initialement découvertes au début des années 2000 à la suite d'analyses bio-informatiques sur le génome et le protéome humains par l'équipe de Laszlo Patthy, qui travaillait sur le domaine anti-protéasique Nétrine (Trexler et al., 2001). Ces 2 nouvelles protéines multi-domaines ont d'abord été appelées WFIKKN-2 (GASP-1) et WFIKKN-1 (GASP-2) en raison de l'organisation commune de leurs domaines : WAP (Whey Acidic Protein), Follistatine/Kazal, Immunoglobuline, Kunitz1, Kunitz2 et Nétrine (Trexler et al., 2001, 2002) (Figure 27). Parmi les différents domaines conservés retrouvés dans ces 2 protéines, plusieurs d'entre eux (WAP, Kazal, Kunitz1/2 et Nétrine) agiraient comme des inhibiteurs de protéases. Ces observations ont conduit l'équipe de Patthy à suggérer que ces protéines agiraient comme des inhibiteurs putatifs multi-domaines de protéases pouvant contrôler de multiples sérineprotéases ainsi que des métallo-protéases (Trexler et al., 2001, 2002). En plus des domaines anti-protéasiques, ces 2 protéines présentent également un domaine Follistatine. Les protéines « follistatine-like » sont des protéines impliquées dans la régulation fine des facteurs de croissance de la famille des TGF-ßs, en modulant notamment négativement l'action de l'activine et de la myostatine (Tsuchida et al., 2000). Ainsi, les protéines GASPs seraient des inhibiteurs de protéases appartenant à la famille des protéines à domaine Follistatine. De ce fait, les études menées sur ces 2 protéines ont porté à la fois sur leur rôle potentiel d'inhibiteur de protéase via leurs domaines anti-protéasiques ainsi que sur leur rôle potentiel de protéines chaperonnes des TGF-βs *via* leur domaine Follistatine.

Les protéines GASP-1 et GASP-2 partagent une même structure protéique multidomaine mais également une même organisation génomique aboutissant à la formation de protéines de taille similaire. Le gène *Gasp-1*, situé sur le chromosome 17 chez l'Homme et le chromosome 11 chez la souris, comporte 2 exons (353 pb et 3163 pb) séparés par un intron (3236 pb). Il permet l'expression d'un transcrit de 3516 bases codant une protéine murine sécrétée de 571 acides aminés (63,3 kDa) (**Figure 28**). Son paralogue *Gasp-2*, localisé sur le chromosome 16 chez l'Homme et le chromosome 17 chez la souris, est constitué, chez cette dernière, de 2 exons (442 pb et 1539 pb) et d'un intron (695 pb). Il génère un transcrit de 1981 bases codant une protéine sécrétée de 552 acides aminés (59,8

Figure 29. Evolution des protéines GASPs.

D'un point de vue évolutif, les protéines GASPs présentent, chez tous les deutérostomiens, une même organisation commune associée à ces différents domaines. Les deux gènes paralogues *Gasp-1* et *Gasp-2* ont divergé lors de la duplication d'un gène ancestral (D'après Monestier et Blanquet, 2016).

Figure 30. Expression tissulaire des protéines GASPs chez l'Homme.

Les gènes *Gasps* sont exprimés dans différents tissus et leurs profils d'expression varient au sein d'une même espèce et selon les stades embryonnaire et adulte. (D'après Trexler *et al.*, 2002).

kDa). GASP-1 et GASP-2 présentent une identité de séquence globale de 57 %, pouvant atteindre jusqu'à 72 % pour le domaine Follistatine.

Les protéines GASPs sont des protéines sécrétées dans le milieu extracellulaire et sont retrouvées dans la circulation sanguine. Elles possèdent à leur extrémité N-terminale, en amont du domaine WAP, un peptide signal de sécrétion (Kondás *et al.*, 2011a). La protéine GASP-1 possède 2 sites de N-glycosylation portés par les résidus ASN314 et ASN514, ainsi que des O-glycanes de type mucine localisés entre les domaines Follistatine et IgC2 (Brun *et al.*, 2012). Si des études de mutagenèse dirigée ont permis de montrer que l'absence des N-glycanes n'affecte pas l'activité myogénique de GASP-1, elle est cependant responsable d'une diminution de sa sécrétion (Brun *et al.*, 2012). A ce jour, aucune étude n'a été réalisée pour démontrer l'impact de la O-glycosylation sur l'activité de GASP-1.

D'un point de vue évolutif, les protéines GASPs présentent, chez tous les deutérostomiens, une même organisation commune associée à ces différents domaines. Les 2 gènes paralogues *Gasp-1* et *Gasp-2* ont divergé lors de la duplication d'un gène ancestral (**Figure 29**). La séquence codant initialement ce gène ancestral est elle-même issue de la fusion de 2 « gènes voisins » présents chez les premiers métazoaires (Monestier *et al.*, 2012a). Chez les mammifères, le domaine Follistatine est d'avantage conservé dans la protéine GASP-1 que dans la protéine GASP-2, suggérant une interaction différentielle des 2 protéines GASPs avec les différents membres de la superfamille des TGF-βs. Enfin, le premier domaine Kunitz des 2 protéines GASPs est beaucoup plus variable que le second, suggérant une plus faible activité anti-protéasique putative (Monestier *et al.*, 2012a).

Afin d'attribuer un rôle biologique à chacune de ces protéines, les profils d'expression transcriptionnelle de *Gasp-1* et *Gasp-2* ont été analysés dans de nombreux tissus humains au cours du développement fœtal et au stade adulte. Au stade fœtal, *Gasp-1* est préférentiellement exprimé dans les muscles squelettiques et dans le cerveau mais aussi dans le rein et le thymus; *Gasp-2* est exprimé principalement dans les poumons, le muscle squelettique et le foie (**Figure 30**). Au stade adulte, *Gasp-1* est principalement exprimé dans les ovaires, les testicules et le pancréas alors que *Gasp-2* est majoritairement exprimé dans le pancréas, le foie et le thymus (Trexler *et al.*, 2001, 2002). Ce même profil d'expression est retrouvé chez la souris pour le gène *Gasp-1* (Hill *et al.*, 2003). Ainsi, si les 2 protéines GASPs se ressemblent par leur organisation structurale commune, leurs profils d'expression sensiblement différents laissent supposer des rôles physiologiques distincts. Malgré des profils d'expression globalement différents, les 2 gènes s'expriment, chez l'adulte, à un niveau important dans le pancréas, un organe dans lequel de nombreuses protéases sont

Figure 31. Les protéines GASPs : des inhibiteurs de la myostatine.

Les protéines GASP-1 et GASP-2 interagissent de 2 manières différentes avec la myostatine afin de l'inhiber: le domaine Follistatine permet l'interaction avec la myostatine active alors que le domaine Nétrine permet l'interaction avec le propeptide du complexe latent. Ainsi, les protéines GASPs interagissent aussi bien avec la forme mature de la myostatine qu'avec le complexe latent.

exprimées, ce qui pourrait supposer un rôle anti-protéasique pour ces 2 protéines dans cet organe.

LES PROTEINES GASPS, DES PROTEINES « CHAPERONNES » SUBTILES DES TGF- β s.

En 2003, une première étude fonctionnelle des protéines GASPs a été réalisée par l'équipe de Wolfman lors de la recherche de nouveaux partenaires de la myostatine par coimmunoprécipitation à partir de sérum murin. Cette étude a mis en évidence une interaction directe entre GASP-1 et la myostatine. Par dosage du gène rapporteur de la luciférase, cette équipe a démontré que GASP-1 inhibe *in vitro* l'activité biologique de la myostatine mature (Hill *et al.*, 2003). En 2008, l'équipe de Patthy, en plus de confirmer l'affinité de GASP-1 pour la myostatine par des tests *in vitro* d'interaction par la méthode de résonance des plasmons de surface, a montré que GASP-2 possèderait également une grande affinité pour la myostatine (Kondás *et al.*, 2008).

De manière intéressante, les protéines GASP-1 et GASP-2 interagissent de 2 façons différentes avec la myostatine afin de l'inhiber: le domaine Follistatine permet l'interaction avec la myostatine active alors que le domaine Nétrine permet l'interaction avec le propeptide du complexe latent (Kondás *et al.*, 2008) (**Figure 31**). Ainsi, les protéines GASPs interagissent aussi bien avec la forme mature de la myostatine qu'avec le complexe latent. GASP-2 présente cependant une meilleure affinité avec le complexe latent que GASP-1 *in vitro* (Kondás *et al.*, 2008, 2011a; Szláma *et al.*, 2013).

Si GASP-1 et GASP-2 peuvent inhiber *in vitro* la myostatine, elles ne sont cependant pas capables d'inhiber l'activine (Hill *et al.*, 2003; Kondás *et al.*, 2008). C'est ce qui les différencie fondamentalement d'un autre inhibiteur de la myostatine, la follistatine. La follistatine possède également un domaine Follistatine/Kazal et est capable d'inhiber à la fois la myostatine et l'activine.

Hormis leur interaction avec la myostatine, les protéines GASP-1 et GASP-2 peuvent également interagir avec GDF-11 (Kondás *et al.*, 2008, 2011b). Pour rappel, la myostatine et GDF-11 présentent un fort degré d'homologie puisqu'elles partagent plus de 90 % d'identité en acides aminés dans leur domaine actif. Si la myostatine est principalement impliquée dans le développement musculaire, GDF-11 est, quant à elle, impliquée dans la formation du squelette. Des tests *in vitro* d'interaction par la méthode de résonance plasmon de surface ont indiqué que les protéines GASPs sont capables d'interagir aussi avec les

Figure 32. Différence d'interaction entre les protéines GASPs et la myostatine.

Cette illustration représente la première structure de faible résolution des protéines GASP-1 et GASP-2 complexées avec la myostatine. La protéine GASP-1 se lie de manière préférentielle à la myostatine sous forme d'un complexe asymétrique avec une stoechiométrie 1:1, la protéine GASP-2 se lie à la myostatine sous forme symétrique avec une stoechiométrie 2:1 (D'après Walker *et al.*, 2015).

dimères actifs de GDF-11 par leur domaine follistatine, ainsi qu'avec le propeptide par leur domaine Nétrine (Hill *et al.*, 2003; Kondás *et al.*, 2008, 2011b).

Une étude a également montré que les protéines GASPs présentent une affinité pour BMP-2, BMP-4 et TGF- β 1, 3 autres membres de la famille des TGF- β s (Szláma *et al.*, 2010). Cependant, ces interactions ne conduisent pas à l'inhibition de leur voie de signalisation (Hill *et al.*, 2003; Kondás *et al.*, 2008; Szláma *et al.*, 2010). L'équipe de Patthy attribue aux protéines GASPs un rôle de localisation extracellulaire de ces facteurs de croissance permettant l'agencement et le maintien de gradients de concentration de ces protéines. Les protéines GASPs seraient donc assimilées à des protéines « chaperonnes » des TGF- β s en inhibant seulement l'activité de la myostatine et de GDF-11. De la même manière, ces auteurs émettent l'hypothèse que la protéine GASP-2 modulerait et localiserait l'action de BMP-4 lors du développement de l'oreille interne puisque ces 2 protéines sont exprimées dans cet organe (Gerlach *et al.*, 2000; Szláma *et al.*, 2010). Une autre étude réalisée chez le rat montre que OC29, l'homologue de GASP-2, participerait au développement embryonnaire de l'oreille interne (Nishida *et al.*, 2004).

LES PROTEINES GASPS, UNE DUALITE DANS L'INHIBITION IN VITRO DES TGF- β s ?

Si les premières études ont mis en évidence une affinité *in vitro* relativement équivalente de GASP-1 et de GASP-2 pour la myostatine et GDF-11, de nouvelles études mettent en lumière une certaine dualité entre ces 2 protéines paralogues. Une récente étude décrit la première structure de faible résolution des protéines GASP-1 et GASP-2 complexées avec la myostatine (Walker *et al.*, 2015). Cette étude révèle que GASP-1 possède *in vitro* 100 fois plus d'affinité que GASP-2 pour la myostatine. Bien que ces 2 protéines soient structuralement similaires, elles utilisent 2 modes de liaison différents pour inhiber la myostatine (**Figure 32**). En effet, la protéine GASP-1 se lie de manière préférentielle à la myostatine sous forme d'un complexe asymétrique avec une stoechiométrie 1:1, tandis que la protéine GASP-2 se lie à la myostatine sous forme symétrique avec une stoechiométrie 2:1. Autrement dit, 2 molécules de GASP-2 sont nécessaires pour inhiber un dimère actif de myostatine alors qu'une seule molécule de GASP-1 et GASP-2 n'ont pas la même structure tridimensionnelle.

De manière intéressante, les protéines GASP-1 et GASP-2 régulent de manière différentielle la voie de signalisation de la myostatine : GASP-1 bloque à la fois la dimérisation du récepteur et la voie de signalisation en aval de la myostatine alors que

Figure 33. Mécanismes d'action des protéases.

Les différentes classes de protéases, sérine-, cystéine-, aspartyl- et métallo-protéases possèdent un mécanisme d'action similaire. Cependant, les aspartyl- et les métallo-protéases utilisent une molécule d'eau pour l'attaque nucléophile de la liaison peptidique (D'après Erez *et al.*, 2009).

GASP-2 ne bloque que la signalisation en aval, sans interférer sur la dimérisation du récepteur de la myostatine (Khalil *et al.*, 2016).

L'équipe de Patthy a montré en 2008 que GASP-2, tout comme GASP-1, était capable d'inhiber le complexe latent de la myostatine par l'intermédiaire de son domaine Nétrine (Kondás *et al.*, 2008). De manière inattendue, cette nouvelle étude montre que le degré de clivage de la myostatine latente par les protéases BMP-1/Tolloid est significativement augmenté en présence de GASP-2 (Szláma *et al.*, 2016).

L'ensemble de ces données présente GASP-1 comme étant un meilleur inhibiteur de la myostatine que GASP-2. De plus, GASP-1 aurait plus d'affinité *in vitro* pour la myostatine alors que GASP-2 aurait plus d'affinité *in vitro* pour GDF-11 (Kondás *et al.*, 2008, 2011b; Walker *et al.*, 2015).

LES PROTEINES GASPs, DEUX INHIBITEURS DE PROTEASES ?

A ce jour, la majorité des études sur les protéines GASPs se concentre sur leurs rôles au cours de la myogenèse par l'inhibition de la myostatine, et non leur rôle potentiel d'inhibiteur de protéases.

Les protéases et leurs inhibiteurs forment un équilibre dans l'organisme permettant de réguler de nombreux mécanismes tels que la digestion, l'homéostasie, la réponse inflammatoire, la reproduction ou encore la coagulation. En clivant d'autres protéines, les protéases régulent le devenir, la localisation et l'activité de nombreux substrats mais créent également de nouvelles molécules bioactives et modulent l'interaction protéine-protéine (López-Otín and Bond, 2008). Selon "l'Union Internationale de Biochimie", les protéases peuvent être classées en 4 grandes familles : cystéine-, aspartyl-, sérine- et métallo-protéases (Figure 33). Cette classification est basée sur la composition en acides aminés de leur site catalytique (Cys, Asp, Ser) ou l'utilisation d'ions métalliques conduisant à différents mécanismes d'action.

Parmi les enzymes à activité protéolytique, les sérine-protéases représentent plus de 30% des 26 000 protéases référencées à ce jour (Barrett and Rawlings, 1995). Produite par le pancréas, la trypsine est la sérine-protéase de référence la plus utilisée dans les études *in vitro*.

Un dysfonctionnement des activités protéasiques peut conduire à des états pathologiques, tels que de nombreux cancers (DeClerck *et al.*, 2004). L'activité des protéases est donc soumise à des mécanismes de régulation extrêmement précis mettant

Figure 34. La balance protéases/anti-protéases.

Les protéases et leurs inhibiteurs forment un équilibre dans l'organisme permettant de réguler de nombreux processus physiologique tels que la digestion, l'homéostasie, la réponse inflammatoire, la reproduction ou encore la coagulation. Un dysfonctionnement des activités protéasiques peut conduire à des états pathologiques, tels que de nombreux cancers.

en jeu divers inhibiteurs présents au sein de la cellule tels que les inhibiteurs de protéases à serine et qui sont impliqués dans un très grand nombre de fonctions biologiques (Potempa *et al.*, 1994)(**Figure 34**).

Les inhibiteurs de protéases constituent le troisième groupe fonctionnel de protéines dans le plasma humain après l'albumine et les immunoglobulines. Cette classe de protéines représente environ 10% des protéines circulantes. Il existe différents types d'inhibiteurs regroupés en plusieurs familles établies par homologie de séquence des sites réactifs (Rawlings *et al.*, 2004) et la plupart d'entre eux sont spécifiques d'une classe de protéases. Trois mécanismes d'inhibition ont été décrits :

i - Le premier type d'inhibition dont le représentant le plus connu est l' α -2macroglobuline humaine (Travis and Salvesen, 1983) est un processus dans lequel la liaison de l'inhibiteur à l'enzyme induit un changement de conformation de la protéase.

ii - Le deuxième mécanisme est représenté par les serpines, acronyme pour «SERine Protease Inhibitors», qui constituent la principale famille des inhibiteurs de protéases à sérine. Les serpines inhibent leur protéase cible selon un mécanisme de «substrat suicide» (Patston *et al.*, 1991). Ce mécanisme conduit à l'inactivation complète de la protéase et de l'inhibiteur.

iii - Le dernier mécanisme d'inhibition est considéré comme un mécanisme standard et regroupe un grand nombre de familles d'anti-protéases. Ces inhibiteurs agissent de façon réversible et établissent une liaison « substrat-like » avec le site catalytique de l'enzyme formant ainsi un complexe de haute affinité. La famille des inhibiteurs de type Kazal ou de type Kunitz appartiennent à ce groupe (Ascenzi *et al.*, 2003; Li *et al.*, 2009). Parmi ces inhibiteurs sont distingués les inhibiteurs dits composés qui possèdent plus d'une unité inhibitrice. Il peut s'agir de la répétition d'une même unité pour les inhibiteurs homotypiques, ou de différents types d'unités dans le cas d'inhibiteurs hétérotypiques. Ainsi, les protéines GASPs sont classées parmi les rares inhibiteurs composés hétérotopiques.

Bien que présentes dans la base de données MEROPS (Rawlings *et al.*, 2012), les protéines GASPs sont catégorisées comme étant des inhibiteurs de protéase putatifs. Ainsi, le rôle potentiel d'inhibiteur de protéase(s) des protéines GASPs reste aujourd'hui incertain, bien qu'elles présentent une diversité de modules décrits comme inhibiteurs putatifs de protéases. Les modules WAP (Whey Acidic Protein), le domaine Kazal et les 2 domaines Kunitz présents en tandem sont impliqués dans l'inhibition de sérine-protéases. Le domaine WAP peut également agir sur les cystéine-protéases (Chhikara *et al.*, 2012). Le domaine Nétrine lié à l'inhibition des métallo-protéases est retrouvé dans des protéines aussi diverses

Figure 35. Le rôle anti-protéasique putatif des protéines GASPs.

Par le biais de leurs domaines inhibiteurs de protéases, les protéines GASPs pourraient directement participer à la maturation de la myostatine. Leurs domaines anti-sérine protéases pourraient inhiber les protéases de type « furine» impliquées dans le clivage de la promyostatine. Ceci conduirait à une myostatine non clivée inactive. De plus, leur domaine Nétrine pourrait aussi inhiber directement les métallo-protéases BMP-1/tolloid impliquées dans la maturation de la myostatine après clivage de la pro-protéine.

que les TIMPs (Tissue Inhibitors of MetalloProteinases) inhibant les MMPs (Matrix MetalloProteinases) ou les sFRPs (secreted Frizzled-Related Proteins) qui modulent la voie Wnt (Bányai and Patthy, 1999; lyer *et al.*, 2012; von Maltzahn *et al.*, 2012).

Cependant, à ce jour, seul le second domaine Kunitz de la protéine GASP-2 humaine a été décrit comme capable d'inhiber *in vitro* la trypsine (Nagy *et al.*, 2003; Liepinsh *et al.*, 2006). Aucune activité anti-protéasique n'a été montrée pour les protéines entières. Les protéines GASPs font pourtant partie des rares inhibiteurs composés hétérotopiques avec les protéines «Red sea turtle chelonianine» et «human eppin» (Richardson *et al.*, 2001), puisqu'elles contiennent 5 domaines anti-protéasiques (WAP, Kazal, Kunitz, Kunitz et « Nétrine-like »). Par le biais de leurs domaines inhibiteurs de protéases, les protéines GASPs pourraient directement participer à la maturation de la myostatine. En effet, leurs domaines anti-sérine protéases pourraient inhiber les protéases de type « furine» qui sont impliquées dans le clivage de la promyostatine. Ceci conduirait à une myostatine non clivée inactive. De plus, leur domaine Nétrine pourrait aussi inhiber directement les métallo-protéases BMP-1/tolloid potentiellement impliquées dans la maturation de la myostatine après clivage de la proprotéine (**Figure 35**).

L'EMERGENCE D'UN LIEN ENTRE LES PROTEINES GASPS ET LE DEVELOPPEMENT MUSCULAIRE.

L'ensemble des précédentes études, réalisées majoritairement *in vitro*, font des protéines GASP-1 et GASP-2 des inhibiteurs singuliers de la myostatine, en les positionnant directement dans un contexte musculaire : (1) leur expression dans le muscle squelettique au stade fœtal pourrait réguler la myostatine durant les différentes phases du développement musculaire; (2) contrairement à la follistatine, elles n'inhibent pas l'activine et semblent donc plus spécifiques de la myostatine; (3) elles peuvent inhiber la myostatine sous sa forme mature mais aussi sous sa forme latente; (4) elles pourraient, grâce à leur domaine anti-protéasique, inhiber les protéases (furine et BMP-1/Tolloid) participant à la maturation de la myostatine.

Une première étude *in vivo* a permis de mettre en lumière, pour la première fois, le lien existant entre la myostatine et GASP-1 dans un contexte de croissance musculaire (Aoki *et al.*, 2009). Cette étude d'expression génique a été réalisée lors de la croissance longitudinale du muscle squelettique *soleus* chez le rat soumis à un protocole d'étirement. Des étirements prolongés conduisent à une augmentation de la masse musculaire associée à une augmentation du nombre de sarcomères dans les myofibres. De plus, après 96 heures d'étirement, l'expression de la myostatine est diminuée alors que l'expression de

Gasp-1 est augmentée, suggérant une forte régulation négative de celle-ci sur la voie de signalisation de la myostatine en réponse à un étirement prolongé (Aoki *et al.*, 2009).

De la même manière, chez l'Homme, l'hypertrophie musculaire observée après des exercices de résistance est associée à une diminution de l'expression de l'ARNm de la myostatine et à une augmentation de l'expression de *Gasp-1* (Laurentino *et al.*, 2012). De plus, l'expression de *Gasp-1* est augmentée de manière significative dans le muscle *vastus lateralis* chez les femmes ménopausées soumises à des exercices physiques et soignées ou non par thérapie hormonale (Dieli-Conwright *et al.*, 2012).

D'un point de vue protéique, le dosage de la myostatine et de GASP-1 dans le sang d'une trentaine de sujets masculins sains soumis à des entraînements de résistance montrent une diminution significative des taux sériques de myostatine *versus* une augmentation des taux sériques de GASP-1. De plus, la prise de créatine tout au long des entraînements conduit à une diminution plus importante de la myostatine sérique sans avoir d'effet supplémentaire sur GASP-1 (Saremi *et al.*, 2010). En revanche, dans le cas de sarcopénie, les concentrations sériques de la myostatine et de GASP-1 ne différent pas entre les hommes jeunes et âgés sarcopéniques (Ratkevicius *et al.*, 2011). Une étude plus récente montre qu'au contraire, il existe une augmentation concomitante de la myostatine et de GASP-1 chez les femmes âgées dans un contexte sarcopénique (Bergen *et al.*, 2015).

D'un point de vu moléculaire, l'équipe de Kambadur a tenté d'établir le lien de la régulation transcriptionelle entre le gène *Gasp-1* et le gène de la myostatine : des travaux réalisés *in vitro* sur des myoblastes murins et humains montrent que PPAR β / δ (Peroxisome Proliferator-Activated Receptor beta) est un régulateur positif de la myogenèse, qui fonctionne par une modulation négative de la myostatine *via* une activation de l'expression de *Gasp-1* (Bonala *et al.*, 2012). Cependant ces auteurs se sont par la suite rétractés.

Les protéines GASPs ont également été étudiées dans un contexte myogénique chez les animaux de rente tels que le mouton et le poulet. Une étude transcriptomique comparative chez le poulet montre que *Gasp-1* est exprimé différentiellement entre les lignées de gallinacés modernes et traditionnelles qui présentent une musculature différente. Le gène *Gasp-1* est extrêmement polymorphe chez les ovins et certains variants du gène pourraient être associés avec une variation de la croissance musculaire ovine (Wang *et al.*, 2014). Dans une étude plus détaillée, cette même équipe montre qu'un variant particulier est associé à une diminution du poids à la naissance, au sevrage et post-sevrage chez les agneaux mâles uniquement. Ces résultats suggèrent que la variation du gène *Gasp-1* ovin pourrait avoir un effet différentiel sur la croissance des agneaux mâles et femelles. Par

Figure 36. Surexpression transitoire de *Gasp-1 via* AAV.

L'injection intramusculaire postnatale d'un AAV codant le transgène *Gasp-1* ou *Follistatine* entraînent une augmentation de la masse corporelle globale associée à une augmentation de la masse des muscles (D'après Haidet *et al.*, 2008).

conséquent, le gène pourrait être exprimé ou agir de manière spécifique au sexe (Wang *et al.*, 2015a).

Ainsi, les différentes données qui relient étroitement les protéines GASPs (principalement GASP-1) avec la myostatine dans le contexte myogénique se restreignent à des études d'expression comparatives entre la myostatine et ses inhibiteurs chez différents organismes et dans certains cas particuliers. Dans la littérature, peu d'études visent à mieux comprendre le rôle des protéines GASPs sur la myogenèse en se basant sur des études fonctionnelles.

ETUDES FONCTIONNELLES DES PROTEINES GASPS DANS LE CONTEXTE MYOGENIQUE.

La première étude fonctionnelle concernant GASP-1 a été réalisée dans le cadre de l'identification de protéines anti-myostatine capables d'améliorer la masse musculaire murine postnatale par thérapie génique (Haidet et al., 2008). L'injection intramusculaire postnatale a été réalisée dans les muscles quadriceps et tibiaux de souris sauvages par le biais d'un AAV de sérotype 1 (montrant une grande capacité de transduction musculaire) codant le transgène Gasp-1 sous le contrôle du promoteur fort CMV (Cytomégalovirus) (Figure 36). L'ensemble des animaux traités avec Gasp-1 présentent une augmentation de leur masse corporelle globale associée à une augmentation de la masse des muscles. Cette augmentation a été constatée dans les muscles des membres postérieurs injectés et dans les muscles distants du site d'injection, tels que les triceps. L'augmentation de la masse musculaire est accompagnée d'une amélioration fonctionnelle et d'une augmentation de la force musculaire des membres postérieurs (Haidet et al., 2008; Rodino-Klapac et al., 2009). Cependant, cette étude est restreinte à une analyse phénotypique et in fine, aucune voie moléculaire impliquée lors de la surexpression de Gasp-1 dans un contexte musculaire n'a été étudiée. De plus, l'inhibition de la myostatine n'a pas été démontrée lors de cette augmentation de la masse musculaire due à la surexpression de Gasp-1.

Ainsi, dans le cadre d'un projet global visant à mieux comprendre le rôle des protéines GASP-1 et GASP-2 lors de la myogenèse mais également dans un contexte plus large, mon laboratoire d'accueil a réalisé des études fonctionnelles de ces 2 protéines basées à la fois sur des approches *in vitro* et *in vivo* chez la souris.

La surexpression de *Gasp-1* dans les myoblastes murins C2C12 entraîne à la fois une augmentation de la prolifération et de la différenciation/fusion des cellules par inhibition de la myostatine et de sa voie de signalisation. Le traitement des cellules C2C12 par

Figure 37. Phénotype musculaire des souris *Tg(Gasp-1)* qui surexpriment *Gasp-1*.

Les souris *Tg*(*Gasp-1*) transgéniques surexprimant de manière ubiquitaire *Gasp-1*, présentent un phénotype hypermusculé visible au stade hétérozygote (*Ht*) et homozygote (*Hm*). L'augmentation du poids global est associée à une augmentation du poids des muscles due à une hypertrophie des myofibres sans hyperplasie (D'après Monestier *et al.*, 2012).

Up-regulation de la myostatine

Figure 38. La surexpression de *Gasp-1* s'accompagne d'une *« up-régulation »* de la myostatine.

La surexpression de *Gasp-1* s'accompagne d'une augmentation de la quantité de transcrits/protéines de la myostatine dans les souris Tg(Gasp-1) dès les premiers stades embryonnaires et tout au long de la vie. Cette « *up-régulation* » de la myostatine par rétrocontrôle positif pourrait expliquer l'absence d'hyperplasie observée dans les souris Tg(Gasp-1) (D'après Brun *et al.*, 2014).

différentes formes de la protéine GASP-1 mutées sur les sites de N-glycosylation montre que les N-glycanes ne sont pas nécessaires à l'inhibition de la myostatine (Brun *et al.*, 2012).

In vivo, les souris Tg(Gasp-1) surexprimant Gasp-1 de manière ubiquitaire présentent une augmentation globale de leur poids associée à une augmentation de la masse musculaire due à une hypertrophie sans hyperplasie des fibres musculaires (Monestier *et al.*, 2012b) (**Figure 37**). Cette absence d'hyperplasie est surprenante puisque les souris $Mstn^{-/-}$ présentent à la fois une hypertrophie et une hyperplasie des myofibres (McPherron *et al.*, 1997). De plus, si les souris $Mstn^{-/-}$ présentent une adiposité moins élevée que la moyenne, les souris Tg(Gasp-1) ne montrent aucune altération du tissu adipeux à 3 mois. Néanmoins cette étude s'est restreinte à une analyse des tissus musculaires et adipeux sur des souris âgées de 3 mois.

Une étude moléculaire plus détaillée montrent que la surexpression de *Gasp-1* entraîne une augmentation de l'accrétion myonucléaire entre la naissance et le sevrage des souris (3-4 semaines postnatales). De manière intéressante, les cellules myoblastiques primaires surexprimant *Gasp-1*, issues des cellules satellites, présentent une augmentation de leur prolifération et de leur différenciation en comparaison avec les cellules primaires sauvages (Brun *et al.*, 2014). La surexpression de *Gasp-1* semble donc intéressante d'un point de vue thérapeutique pour permettre une augmentation de la masse musculaire mais également dans le cas de réparation musculaire suite à une lésion.

De façon inattendue, la surexpression de *Gasp-1* s'accompagne d'une augmentation de la quantité de transcrits/protéines de la myostatine dans les souris Tg(Gasp-1) dès les premiers stades embryonnaires et tout au long de la vie. Cette « *up-régulation* » de la myostatine, par rétrocontrôle positif, pourrait expliquer l'absence d'hyperplasie observée dans les souris Tg(Gasp-1) (Figure 38). En effet, l'augmentation de l'expression de la myostatine durant les phases embryonnaire et fœtale des souris Tg(Gasp-1) (lieu de la mise en place du nombre de myofibres) contrebalancerait la surexpression de *Gasp-1* et pourrait expliquer l'absence d'hyperplasie (Brun *et al.*, 2014).

Des 2 protéines, GASP-1 est la plus étudiée dans le contexte musculaire. C'est la preuve d'interaction directe entre GASP-1 et la myostatine par co-immunoprecipitation qui est la cause principale de ce déséquilibre d'intérêt (Hill *et al.*, 2003). Pourtant les 2 protéines présentent une organisation protéique commune et un fort pourcentage d'identité protéique. De plus, l'activité inhibitrice de GASP-2 envers la myostatine a été démontrée à plusieurs reprises *in vitro* (Kondás *et al.*, 2008, 2011b; Walker *et al.*, 2015). Cependant l'ensemble des études « d'affinité » place GASP-1 comme étant un meilleur inhibiteur de la myostatine

Figure 39. Phénotype musculaire des souris Gasp-1^{-/-} et Gasp-2^{-/-}.

Les souris knock-out pour *Gasp-1* ou pour *Gasp-2*, *Gasp-1*^{-/-} et *Gasp-2*^{-/-}, présentent une atrophie musculaire de différents muscles, assez tardivement vers 8 mois. Les souris *Gasp-1*^{-/-} présentent une atrophie légèrement plus prononcée que les souris *Gasp-2*^{-/-} avec une perte musculaire de 10 et de 7% respectivement. (D'après Lee *et al.*, 2013).

devant GASP-2. Depuis sa découverte en 2000 et jusqu'en 2013, aucune étude *in vitro*, sur des cellules myoblastiques, ou *in vivo*, dans un modèle murin, ne s'est intéressée à l'impact de GASP-2 sur le développement musculaire.

En 2013, 2 modèles de souris knock-out pour Gasp-1 ou pour Gasp-2 (souris Gasp-1^{-/-} et Gasp-2^{-/-}) ont été générés (Lee and Lee, 2013) Les souris Gasp-1^{-/-} et Gasp-2^{-/-} présentent une atrophie musculaire, assez tardivevers 8 mois (Figure 39). Les souris Gasp-1^{-/-} présentent une atrophie légèrement plus prononcée que les souris Gasp-2^{-/-} avec une perte musculaire de 10% et de 7% respectivement. Une redondance fonctionnelle possible entre ces 2 protéines et d'autres protéines inhibitrices de la myostatine pourrait être une explication possible à ce phénotype modéré (Lee and Lee, 2013). Des effets beaucoup plus prononcés de l'extinction de Gasp-1 et de Gasp-2 ont été observés lors de la régénération musculaire suite à une lésion induite à la cardiotoxine. Histologiquement, les muscles des souris mutantes présentent une augmentation des dommages et une régénération musculaire altérée par rapport aux souris sauvages. Par exemple, des fibres calcifiées apparaissent dès 3 jours après la lésion chez les souris Gasp-2^{-/-} et Gasp-1^{-/-} alors qu'elles n'apparaissent que 7 jours après la lésion chez les souris sauvages (Lee and Lee, 2013). Bien que succincte, cette étude était la seule qui permettait de faire le lien direct entre la protéine GASP-2 et le développement musculaire. Cependant, cette analyse ne précise pas les voies moléculaires impliquées dans les souris Gasp-2^{-/-}. De plus, contrairement à un knock-out, une étude de surexpression de Gasp-2 est plus intéressante afin d'obtenir un phénotype hypermusclé via l'inhibition de la myostatine, plus favorable pour un traitement thérapeutique.

Pour ces différentes raisons, mon projet de thèse s'est orienté vers la compréhension de l'effet de la surexpression de GASP-1 et de GASP-2 mais également vers l'étude structure/fonction des protéines GASP-1 et GASP-2 dans un contexte musculaire mais également plus global.

OBJECTIFS DE LA THESE

OBJECTIFS DE LA THESE

La myostatine étant un régulateur négatif puissant du développement musculaire, une des pistes thérapeutiques les plus pertinentes pour traiter certaines pathologies musculaires consiste à inhiber sa voie de signalisation afin d'augmenter la taille, la force et la régénération des muscles. Cependant, au cours des dernières années, les différents essais cliniques visant à inhiber cette voie ont conduit à des résultats controversés. En effet, l'efficacité de ces traitements semble être dépendante du degré d'atteinte musculaire et du type d'«inhibiteur» utilisé. Aussi, plus récemment, de nouveaux traitements ciblant à la fois la myostatine et d'autres membres de la famille TGF- β ont été testés et apportent des résultats plus satisfaisants. Ainsi, dans le cadre d'une thérapie génique de la myosite à inclusions, l'inhibition de la myostatine par la follistatine, un de ses inhibiteurs naturels, présente des résultats encourageants. Il est donc nécessaire d'approfondir les études sur des molécules qui inhibent la myostatine mais aussi plus largement différents membres de la famille des TGF- β s. Ceci nécessite cependant également de comprendre plus en détail les mécanismes d'action de ces molécules inhibitrices pour tester leur efficacité tout en limitant les effets secondaires.

C'est dans ce contexte que s'inscrivent mes travaux de thèse dans l'équipe de recherche USC1061 GAMAA « Génomique AniMale, Amélioration, Adaptation » dirigée par le Professeure Véronique Blanquet au sein du laboratoire PEREINE EA7500. Ces travaux portent un intérêt particulier pour 2 inhibiteurs naturels de la myostatine, les protéines GASP-1 et GASP-2.

Ainsi mes travaux ont consisté en l'analyse fonctionnelle de ces protéines, réalisée *in vitro* et *in vivo* en utilisant des modèles murins, afin d'appréhender les fonctions de ces protéines GASPs dans un contexte myogénique mais également à une échelle plus globale. Avant mon arrivée, mon équipe d'accueil avait généré une lignée de souris transgénique Tg(Gasp-1) surexprimant ubiquitairement le gène Gasp-1. Cette lignée présente, à l'âge adulte, une augmentation globale du poids des muscles squelettiques due à une hypertrophie des myofibres. De manière intéressante, contrairement aux souris $Mstn^{-/-}$, elle ne présente ni d'hyperplasie ni de diminution de la masse adipeuse à 3 mois.

Durant mes travaux de thèse, je me suis alors attaché à répondre à différentes questions:

- Quel est le phénotype adipeux et métabolique des souris Tg(Gasp-1) jeunes et âgées ?
- La protéine GASP-2 inhibe-t-elle la voie de la myostatine au cours de la myogenèse in vitro? Quel est l'impact musculaire et métabolique de la surexpression de Gasp-2 in vivo chez la souris ?

A l'image de la myostatine, les protéines GASPs sont capables d'inhiber *in vitro* la protéine GDF-11. Si la myostatine est associée principalement au développement musculaire, GDF-11 est, quant à elle, associée principalement à la mise en place de l'axe squelettique et au développement osseux. De récents travaux montrent que GDF-11 entraîne une diminution de la masse osseuse en inhibant la différentiation ostéoblastique.

La surexpression des protéines GASPs peut-elle induire un phénotype osseux et/ou squelettique ?

Les protéines GASPs sont des protéines hétérotypiques possédant de nombreux domaines anti-protéases. A ce jour, la majorité des études portant sur ces 2 protéines concernent leur(s) rôle(s) au cours du développement musculaire par inhibition de la myostatine. Il existe très peu de données dans la littérature concernant leur rôle potentiel d'inhibiteur de protéases.

Les protéines GASPs sont-elles de véritables anti-protéases ?

L'ensemble de ces différents résultats est présenté dans la section « Résultats & discussion », sous forme de 4 chapitres et de 5 articles scientifiques. Pour chacun de ces articles, j'ai préalablement choisi de resituer, en amont, succinctement mes travaux. Des informations expérimentales sont rajoutées lorsque nécessaires. Chaque article est suivi d'une discussion spécifique.

Enfin, la dernière partie de mon manuscrit de thèse sera consacrée à une discussion générale et aux perspectives soulevées lors de ce travail.

RÉSULTATS & DISCUSSION

RESULTATS & DISCUSSION

CHAPITRE I : EFFET DE LA SUREXPRESSION DE GASP-1 SUR LE TISSU ADIPEUX ET LE METABOLISME DU GLUCOSE

Outre son rôle de régulateur négatif de la croissance musculaire, de nombreuses études *in vivo* et *in vitro* rapportent que la myostatine intervient également dans le métabolisme glucidique. En effet, les souris *Mstn^{-/-}* présentent une réduction significative de l'accumulation de graisse dès 3 mois. Ces souris se caractérisent également par une augmentation de l'insulino-sensitivité, une diminution de l'adiposité et une résistance à l'obésité liée à l'âge (McPherron and Lee, 2002; Zhao *et al.*, 2005) (pour rappel, **Figure 17**).

A la différence des souris $Mstn^{-/-}$, les souris Tg(Gasp-1) montrent un phénotype hypermusclé sans diminution de leur masse graisseuse à 3 mois. Au cours de ce travail, nous avons alors entrepris, d'une part la caractérisation phénotypique de ces souris mutantes jeunes et âgées en mettant en oeuvre différentes analyses métaboliques et d'autre part, des analyses moléculaires afin de mieux appréhender les mécanismes sousjacents. Au final, ces études nous permettent de vérifier si GASP-1 serait un bon candidat lors d'essais thérapeutiques pouvant potentiellement conduire à une augmentation de la masse musculaire tout en réduisant la masse adipeuse.

De façon inattendue, nos résultats montrent que le poids des souris Tg(Gasp-1) augmente avec l'âge. Cette augmentation de la masse graisseuse est associée à une accumulation de graisse ectopique. De plus, les souris mutantes développent une hypertrophie adipocytaire, une hyperglycémie, une hyperinsulinémie et une stéatose hépatique. Nous montrons aussi que tous ces symptômes sont liés à une insulino-résistance développée par les souris Tg(Gasp-1) âgées. D'un point de vue moléculaire, nous avons observé une diminution de l'expression du transporteur de glucose musculaire GLUT-4 et une augmentation de l'expression des cytokines et adipokines musculaires pro-inflammatoires. Les souris Tg(Gasp-1) présentent donc les symptômes métaboliques observés lors de la surexpression de *Mstn*, phénotype contraire à celui des souris *Mstn*^{-/-}. Des analyses moléculaires indiquent que les souris Tg(Gasp-1) présentent effectivement une « *up-régulation* » de la myostatine tout au long de leur vie, directement responsable du syndrome métabolique développé. Ces résultats ont fait l'objet d'une publication dans la revue *Cellular Physiology and Biochemistry* : « *Alterations in adiposity and glucose homeostasis in adult Gasp-1 overexpressing mice* » (Parenté, Périè *et al.*, 2017).

Cellular Physiology and Biochemistry Published online: xxxxx, 2017

Cell Physiol Biochem 2017;42:xx-xx

DOI:

Accepted:

© 2017 The Author(s) Published by S. Karger AG, Basel www.karger.com/cpb

1

This article is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Interna-tional License (CC BY-NC-ND) (http://www.karger.com/Services/OpenAccessLicense). Usage and distribution for commercial purposes as well as any distribution of modified material requires written permission.

Original Paper

Alterations in Adiposity and Glucose Homeostasis in Adult Gasp-1 **Overexpressing Mice**

Luce Périè Alexis Parenté Fabienne Baraige Laetitia Magnol Véronique Blanquet

University of Limoges, INRA, UMR 1061, UGMA, Limoges, France.

Key Words

Gasp-1 • Glucose homeostasis • Insulin resistance • Myostatin • Aging

Abstract

Background/Aims: Myostatin is known as a powerful negative regulator of muscle growth playing a key role in skeletal muscle homeostasis. Recent studies revealed that myostatindeficient mice lead to an increase of insulin sensitivity, a decrease of adiposity and a resistance to obesity, showing that myostatin can also impact on metabolism. Thus, myostatin appeared as a potential therapeutic target to treat insulin resistance. *Methods:* We generated transgenic mice overexpressing *Gasp-1*, a myostatin inhibitor. **Results:** Surprisingly, we found that these mice gained weight with age due to an increase in fat mass associated with ectopic fat accumulation. In addition, these mice developed an adipocyte hypertrophy, hyperglycemia, hyperinsulinemia, muscle and hepatic insulin resistance. Understanding the molecular networks controlling this insulin resistance responsiveness in overexpressing Gasp-1 mice is essential. Molecular analyses revealed a deregulation of adipokines and muscle cytokines expression, but also an increase in plasma myostatin levels. The increase in myostatin bioactivity by a positive feedback mechanism in the Ta(Gasp-1) transgenic mice could lead to this combination of phenotypes. **Conclusion:** Altogether, these data suggested that overexpressing Gasp-1 mice develop most of the symptoms associated with metabolic syndrome and could be a relevant model for the study of obesity or type 2 diabetes.

> © 2017 The Author(s) Published by S. Karger AG, Basel

Introduction

The Transforming Growth Factor β (TGF- β) superfamily members are essential regulators of diverse developmental and homeostatic processes in vertebrates and invertebrates including proliferation, growth, differentiation, migration, and death, as well as physiological processes such as wound healing, and muscle regeneration [1]. More than thirty closely related proteins form this superfamily which can be divided into two main functional L. Périè and A. Parenté contributed equally to this work.

Véronique Blanquet

Université de Limoges, UMR 1061, Unité de Génétique Moléculaire Animale, Faculté des Sciences et Techniques, 123, av. A. Thomas, Limoges Cedex (France) Tel. +33 555457664, E-Mail veronigue.blanguet@unilim.fr

Cellular Physiology	Cell Physiol Biochem 2017;42:xx-xx	
and Biochemistry	DOI: Published online: xxx, 2016	© 2017 The Author(s). Published by S. Karger AG, Basel www.karger.com/cpb
	Párià et al : Polo of CASP 1 in Inculir	Posistanco Molocular Mochanisms

groups, the TGF β -like group that induces the receptor-regulated SMAD transcription factors 2 and 3 and the Bone Morphogenetic Proteins (BMP)-like group activating the R-Smads 1, 5 and 8 [2].

Mutations or alterations in the expression of components of these signaling pathways have been associated with a wide range of human pathologies such as cancer, cardiovascular or muscle disorders [3, 4]. Therefore, several TGF- β members have frequently been assessed as diagnostic or prognostic markers and are also remarkable targets for drug development [5-7]. TGF- β superfamily signaling is not limited to Smad-mediated pathways, as they can also mediate signaling responses through non-Smad pathways, in particular the Mitogen Activated Protein Kinase (MAPK) pathways, including Extracellular-signal-Regulated Kinase (ERK), p38, and Jun N-terminal Kinase (JNK); the Phosphoinositide 3-Kinase (PI3K)/Akt pathway, and the NF- κ B pathway with a crosstalk between canonical and non-canonical TGF- β pathways.

Myostatin (MSTN), also named Growth and Differentiation Factor-8, signals through the TGF- β branch and acts as a powerful negative regulator of muscle growth and plays a key role in skeletal muscle homeostasis. Loss-of-function mutations of the myostatin gene cause in different species increase of skeletal muscle mass resulting from a combination of muscle fiber hypertrophy and hyperplasia [8-11] while myostatin overexpression is associated with dramatic muscle atrophy in mice and lower skeletal muscle mass in male transgenic mice with muscle-specific overexpression of myostatin [12, 13].

In addition to its roles in skeletal muscle growth, many *in vivo* and *in vitro* studies have reported that MSTN also regulates metabolism by effects on muscle as well as on other metabolic sites such as adipose tissue or liver. The $Mstn^{-/-}$ mice have a significant reduction in fat accumulation, an increase of insulin sensitivity on both standard chow and high fat diet (HFD). As Guo et al. reported, $Mstn^{-/-}$ mice have increased carbohydrate utilization for energy but the overall lipid utilization per animal did not change [14]. These mice have improved glucose and insulin tolerance and reduced blood glucose and insulin levels [14]. In a hyperinsulinemic–euglycemic clamp study, myostatin deficient mice have increased whole body glucose utilization rate with increases in glucose utilization by white and brown adipose tissue. Treatment with a myostatin antagonist also increased insulin sensitivity during HFD and a resistance to obesity [14-20]. Interestingly, loss of myostatin partially attenuates the obese and diabetic phenotypes of two mouse models of obesity and diabetes, agouti lethal yellow (A^{y}) and obese ($Lep^{ob/ob}$) [16, 21-24].

Myostatin activity is mostly regulated by proper proteolytic processing as well as by extracellular inhibitors such as the myostatin propeptide, follistatin, follistatin like 3 (FSTL3), GASP-1 (Growth and Differentiation Factor-Associated Protein Serum 1) and GASP-2 [25-28]. Transgenic mice overexpressing follistatin or Fstl3 in skeletal muscle have increased skeletal muscle mass due to hypertrophy and hyperplasia and associated with a loss of global fat mass and adipose tissue [29, 30]. Likewise, transgenic overexpression of myostatin propeptide at three months of age prevents diet-induced obesity and insulin resistance [24]. Altogether, these data would suggest that transgenic mice for which myostatin is inhibited or reduced present a resistance to diet induced obesity and are protected against the development of insulin resistance. But compared to these models, overexpressing *Gasp-1* or *Tg(Gasp-1)* mice present only a myofiber hypertrophy without hyperplasia and without a switch of fiber types [27, 31]. Using protein arrays on satellite cell derived myoblasts from Tg(Gasp-1) mice, we have shown an upregulation of myostatin associated with an activation ERK1/2 signaling pathway and a decrease of Pax7 expression, which could explain the absence of hyperplasia in our model [31]. Moreover, no significant loss of fat mass was observed in Ta(Gasp-1) [27]. To better understand this alteration in metabolism, we characterized in more details young and old Tq(Gasp-1) mice phenotypes. Unexpectedly, we showed that Ta(Gasp-1) animals gained weight with age due to an increase in fat mass associated with ectopic fat accumulation. In addition, *Tg(Gasp-1)* mice develop an adipocyte hypertrophy, hyperglycemia, hyperinsulinemia and an hepatic steatosis. We show that all these symptoms are linked to an insulin resistance developed by old *Tg(Gasp-1)* mice.

Cellular Physiology	Cell Physiol Biochem 2017;42:xx-xx		
and Biochemistry	DOI: Published online: xxx, 2016	© 2017 The Author(s). Published by S. Karger AG, Basel www.karger.com/cpb	
,	Périè et al.: Role of GASP-1 in Insulin Resistance Molecular Mechanisms		

3

At the molecular level, we observed a decrease of the muscle-specific glucose transporter GLUT-4 and an upregulation of muscle proinflammatory muscle cytokines and adipokines. Altogether, these data show an insulin resistance phenotype in old Tg(Gasp-1) mice. Finally, the upregulation of myostatin also found in old Tg(Gasp-1) mice reveals that myostatin influences the metabolism of skeletal muscle, adipose tissue and liver, contributing to the development of a metabolic syndrome in old transgenic mice.

Materials and Methods

Animals

Transgenic mice overexpressing Gasp-1 - Tg(Gasp-1) were generated in our team as previously described [27]. Briefly, these mice present an ubiquitously overexpression of GASP-1 which leads to a hypermuscular phenotype. At 3 months of age, these mice present a muscle hypertrophy but no hyperplasia. All mice were bred and housed in the animal facility of University of Limoges under controlled conditions (21°C, 12-h light/12-h dark cycle) with free access to standard mouse chow (RM1 (P) 801151, Special diets services and tap water. All analyses were realized with young (3-month-old) and old (16-month-old) mice, independently of animal sex.

Phenotypic analyses

To monitor body weight gain, animals were weighed once a week during 16 months. Body composition analysis to determine fat contents was performed on conscious young and old mice, using the EchoMRI-500TM whole body composition analyzer (Echo Medical Systems). Before blooding sampling, WT and *Tg(Gasp-1)* mice were fasted 16 h. Blood samples were collected in lithium heparin tubes under isofluorane anesthesia following the recommendations of ethical guidelines. At the collection day, blood samples were centrifuged at 4000 rpm for 10 min and plasmas were harvested then analyzed on a KONELAB 30 automat as previously described [32].

Muscle and adipose tissue weights were measured following dissection of young and old mice. Individual muscles (*tibialis anterior, gastrocnemius* and *soleus*) from both sides of the animal were taken and the average weight was used for each muscle.

Histological analyses

Tissues (liver and inguinal adipose tissue) were collected from WT and Tg(Gasp-1) mice at different ages and fixed in formol for 3 days. Then, tissues were embedded in paraffin and sectioned with microtome in 4 µm thickness. The sections were stained with hematoxylin and eosin. Measurements of area/size and quantification of adipocytes were realized with ImageJ software (http://rsbweb.nih.gov/ij/).

Oil Red O solution was prepared in propylene glycol (5 g.l⁻¹) and heated at 100°C for 10 min. Frozen liver were sectioned with a cryostat (8 μ m thick) and dried for 15 min at 37°C. Sections were then fixed for 10 min in 10% formol /PBS (v/v). To detect neutral lipid accumulation, sections were stained with Oil Red O for 10 min at RT and counterstained with hematoxylin for 2 min at RT.

Immunofluorescence staining protocol

Dissected skeletal muscles (*tibialis anterior* and *gastrocnemius*) were frozen in liquid nitrogen-cooled isopentane and stored at -80°C for further analysis or sectioned for immunostaining. The immunofluorescence staining protocol was optimized for GLUT-4 analysis in mouse skeletal muscle. Cryosections were thawed at room temperature, air-dried and fixed for 5 min in 75% acetone 25% ethanol. Subsequently sections were washed 3 times for 5 min in phosphate-buffered saline (PBS). Then, cryosections were blocked for 30 min in blocking buffer consisting of 10% goat serum (NGS, Invitrogen) and 1% bovine serum albumin (BSA) in PBS, at room temperature. GLUT-4 antibody (rabbit IgG, Abcam) was applied to the sections at a dilution of 1:1000 in 5% normal goat serum (NGS, Invitrogen) for 1 h at 37°C. Following primary antibody incubation, sections for 30 min at 37°C at a dilution of 1:2000 in PBS. GLUT-4 antibody was targeted with goat anti-rabbit IgG 488 (Invitrogen). DAPI (Sigma Aldrich) staining for cell nuclei was added to the secondary antibody at a 0.5 μ g·mL⁻¹ concentration. After secondary antibody incubation, sections were washed 3 times

Cellular Physiology	Cell Physiol Biochem 2017;42:xx-xx		
and Biochemistry	DOI: Published online: xxx, 2016	© 2017 The Author(s). Published by S. Karger AG, Basel www.karger.com/cpb	
· · · · · · · · · · · · · · · · · · ·	Périè et al.: Role of GASP-1 in Insulin Resistance Molecular Mechanisms		

4

for 5 min in Tween-20 1%/PBS. We used the MetaMorph software (Molecular Devices, Sunnyvale, USA) to acquire images with a Leica DMI6000B inverted epifluorescence microscope and to determine the total intensity of GLUT-4 fluorescence for each image.

Metabolic analyses

For intraperitoneal glucose tolerance tests (IPGTTs), overnight-fasted mice were injected with 20% D-glucose (2 mg.g⁻¹ body weight). Blood glucose levels were monitored using a glucose meter (Roche Applied Science) from 2.5 μ l of tail blood at 0, 15, 30, 60 and 120 min after glucose injection. Serum insulin levels were also measured after glucose injection in 10 μ l of serum from blood collected from the tip of the tail vein by sandwich ELISA (Rat/Mouse Insulin ELISA kit, Millipore). All measurements were performed in triplicate and data for the standard curve were fitted to a logistic plot with the MARS Data Analysis Software (BMG Labtech) to determine the levels of insulin.

RNA isolation, retrotranscription and qPCR

Total RNA from tissues (*tibialis anterior, gastrocnemius*, liver and inguinal adipose tissue) were isolated using RNeasy midi kit (Qiagen). Synthesis of cDNA was performed with the High Capacity cDNA Archive kit

Genes	Primers	Sequences	GenBank	
ббрс	G6pc-Fwd	CCTCGTCTTCAAGTGGATTCTGT	CTGT NM_008061 TTGGC	
	G6pc-Rev	AAACACCGGAATCCATACGTTGGC		
Pck1	Pck1-Fwd	GAACACAAGGGCAAGATCATC		
	Pck1-Rev	TTGCCATCTTTGTCCTTCCG	NM_011044	
Myh1	Myh1-Fwd	AAGCCGATGGGCATCTTCTC	NM_030679	
	Myh1-Rev	GGACTTTCCAAGATGCTGCTC		
Myh2	Myh2-Fwd	AATGCAGGGGACGCTGGAGGA	NM_001039545	
	Myh2-Rev	CATTCCTCACGGTCTTGGCG		
Myh4	Myh4-Fwd	TCTGGCACCACACCTTCTA	NM_010855	
	Myh4-Rev	AGGCATACAGGGACAGCAC		
Myh7	Myh7-Fwd	ACCTACTCGGGGCCTCTTCTGC	NM_080728	
	Myh7-Rev	AGGGGCCTCGCTCCTCTTCTT		
Pgc1-α	Pgc1-α-Fwd	AAGTGTGGAACTCTCTGGAACTG	NM_008904	
	Pgc1-α-Rev	GGGTTATCTTGGTTGGCTTTATG		
FoxO1	FoxO1-Fwd	GCGGGCAATTCAATTCGCCACAA	NM_019739	
	FoxO1-Rev	CAGCTCTTCTTCGGGGGTGATTTT		
Mstn	Mstn-Fwd	CAGACCCGTCAAGACTCCTACA	NM 010924	
	Mstn-Rev	CCTGCTTCACCACCTTCTTGA	NM_010834	
B2m	B2m-Fwd	CAGTGCCTGGGCTCATGTCAAG	NM_009735	
	B2m-Rev	GTTCGGCTTCCCATTCTCC		
β-actin	β-actin-Fwd	TCTGGCACCACACCTTCTA	NM 007202	
	β-actin-Rev	AGGCATACAGGGACAGCAC	INIM_007333	
Gapdh	Gapdh-Fwd	TGTGTCCGTCGTGGATCTGA		
	Gapdh-Rev	CCTGCTTCACCACCTTCTTGA	NM_008084	

Table 1. List of the primers used for SybrGreen analyses

Cellular Physiology and Biochemistry Cell Physiol Biochem 2017;42:xx-xx DOI: Published online: xxx, 2016 © 2017 The Author(s). Published by S. Karger AG, Basel www.karger.com/cpb

Périè et al.: Role of GASP-1 in Insulin Resistance Molecular Mechanisms

(Applied Biosystems) to convert 2 μ g of total RNA into single-stranded cDNA. Real-time quantitative PCR was performed on an ABI PRISM 7900 Sequence Detection System (Applied Biosystems) in triplicate using 20 ng of cDNA. The total reaction volume of 17.5 μ l was made of 8.75 μ l 2×Master Mix SYBR Green (Applied Biosystems) and 300 nM of primers (Table 1). Relative mRNA expression values were calculated by the $\Delta\Delta$ Ct method with normalization of each sample to the average change in cycle threshold value of the controls.

Western blotting

Tissues (*tibialis anterior, gastrocnemius*, pancreas, liver and inguinal adipose tissue) were crushed, centrifuged (12, 000 × g, 4°C, 20 min) and then lysed in a RIPA buffer (50 mM Tris, pH 8, 150 mM NaCl, 0.1% SDS, 1% NP-40, 0.5% sodium deoxycholate, and protease inhibitors). Proteins were quantified at A_{s95nm} using the Bradford assay (Bio-Rad). Equal amounts of proteins (50 µg) were resolved on SDS-polyacrylamide gels (4-12% gradient, Invitrogen) and then transferred onto 0.2 µm nitrocellulose membranes. Membranes were then blocked using 5% non-fat dry milk (w/v) in TBST 0.1% buffer (50 mM Tris-HCl, 150 mM NaCl, pH 7.4, 0.1% Tween-20) for 1 h at room temperature, followed by incubation with specific primary antibodies overnight at 4°C. Primary antibodies were used at a dilution of 1:1000 for anti-GLUT-4 (MAB1272, R&D Systems) and for anti-GASP-1 (AF2070, R&D Systems) and 1:2000 for anti-GAPDH (AF5718, R&D Systems) antibodies. After 4 washes in TBST 0.1% (v/v), membranes were incubated for 1 h at room temperature with 1:1000 dilution of secondary antibodies: anti-goat IgG horse-radish peroxidase (HRP) conjugate (P0449, Dako) or anti-mouse IgG HRP conjugate (P0447, Dako). After 4 more washes in TBST 0.1% (v/v), immunoblots were developed by enhanced chemiluminescence. The developed films were analyzed using ImageQuant TL software (GE Healthcare). The graphs (densitometric analysis) were obtained using Image J software to quantify GLUT-4 signals normalized with GAPDH signals of three different experiments.

Enzyme-linked immunosorbent assay (ELISA) of myostatin and insulin

Myostatin and insulin concentrations for mouse plasmas were determined in a sandwich ELISA (GDF8/ Myostatin ELISA kit, R&D Systems) and (RAT/Mouse Insulin Elisa, Millipore) as previously described [31]. All measurements were performed in triplicate and data for the standard curve were fitted to a logistic plot with the MARS Data Analysis Software (BMG Labtech) to determine the levels of myostatin and insulin.

Cytokines and adipokines antibodies array

Mouse cytokine array (Proteome Profiler Mouse Cytokine Array Kit, R&D Systems) were used following the manufacturer's instructions on mouse *tibialis anterior*. Mouse Adipokine Array (Proteome Profiler Mouse Adipokine Array Kit, R&D Systems) were used following the manufacturer's instructions on mouse inguinal adipose tissue. The arrays were incubated overnight at 4°C on a rocking platform shaker. The blots were detected using an enhanced chemiluminescence (BM Chemiluminescence Western Blotting Substrate (POD)) (Roche Applied Science) and exposed to a film (GE Healthcare Hyperfilm ECL, GE Healthcare). Densitometric analysis of the array image files were performed using ImageQuant TL software (GE Healthcare).

Statistical analyses

Unless otherwise stated, results are expressed as means \pm SEM. Two-way ANOVA was performed to examine the effect of genotype (wild type vs. *Tg(Gasp-1)*) and the effect of age (3 months-old vs. 16 months-old) on each parameter. Statistical significance was set at p< 0.05. A minimum of three replicates were performed for each experimental condition.

Results

Overexpression of Gasp-1 leads to an increase of body weight and fat mass with age

The myostatin knockout mice phenotype, i.e. increase of muscle mass and reduced adipose tissue, do not vary with age [16]. As GASP-1 acts as an inhibitor of myostatin, we checked if age-related variations in Tg(Gasp-1) phenotype occurs. First, we compared the body weight of wild type (WT) and Tg(Gasp-1) mice at 3 and 16 months of age. While we observed that both genotypes took weight with aging, this increase was twice more important

Fig. 1. Body weight, muscle and fat mass ratio in Tg(Gasp-1) mice. A. Morphological appearance of 3-month (upper panel) and 16-month- old (bottom panel) WT and overexpressing Gasp-1 mice, Tg(Gasp-1). B. Mean body weight. C. Fat mass/body weight ratio. D. Muscle mass/body weight ratio. Significance was assessed by comparing each sample with young WT mice in ANOVA statistical analysis (*: p value < 0.05; **: p value < 0.005; ***: p value < 0.001) and old Tg(Gasp-1) versus old WT mice (###: p value < 0.001) (n=6 per group in all experiments). Tg: Tg(Gasp-1), T. anterior: tibialis anterior.

for aged *Ta*(*Gasp-1*) mice than WT (Fig. 1A-B). One hypothesis is that the body weight gain is related to an increase of global fat mass. Therefore, we calculated the percentage of fat mass of *Tq(Gasp-1*) mice compared to wild type (Fig. 1C). Only, an increase of fat mass was observed in old *Tq(Gasp-1)* mice. No significant difference was observed in young mice (Fig. 1C). We then tested if this fat mass increase is associated with an increase of muscle mass in old Tg(Gasp-1). Three different muscles representative of each muscular metabolism: the soleus (slow, oxidative), the tibialis anterior (fast, glycolytic), and the gastrocnemius (both oxidative and glycolytic myofibers) were used. As already shown in young Tg(Gasp-1) mice [27], we observed an increase about 10% (tibialis) and 18% (gastrocnemius) in Tg(Gasp-1) mice at 16 months of age. No variation was detected in *soleus* (Fig. 1D). We observed a decrease of muscle mass associated with aging in WT and transgenic mice but this effect is weaker in muscles of *Tg(Gasp-1*) mice still presenting the hypermuscular phenotype (Fig. 1D). To check whether any change in the expression of *Gasp-1* occurred during aging, we measured mRNA levels in muscle of both genotypes. No significant difference of endogenous *Gasp-1* was observed in WT mice. The overexpression of *Gasp-1* was similar in both young and old *Ta*(*Gasp-1*) animals (Fig. 2A). Moreover, we showed that *Gasp-1* overexpression is still found in liver and adipose tissue of old transgenic mice (Fig. 2B).

Fat mass accumulation is due to both WAT mass increase and ectopic fat deposition in liver To determine the localization of the fat mass accumulation in old Tg(Gasp-1) mice, we analyzed the relative proportion of epididymal and inguinal masses, two white adipose

Cellular Physiology and Biochemistry

Périè et al.: Role of GASP-1 in Insulin Resistance Molecular Mechanisms

tissues (WAT), compared to body weight (Fig. 3A). While the increase of WAT is observed in old wild type and mutant mice compared to young animals, the variation was more important in transgenic mice (Fig. 3A). Histological analyses revealed an increased adipocyte crosssectional area (CSA) in old Tg(Gasp-1) with а higher incidence of larger adipocytes compared to WT mice (Fig. 3B-D). In a lesser extent, this distribution was also slightly shifted towards larger adipocytes in young and old transgenic mice (Fig. 3C-D). Altogether, these results highlighted an adipocyte hypertrophy in *Tg(Gasp-1)* animals.

As liver tissue is capable of storing fat mass, we realized an Oil red O staining on liver frozen sections of young and aged WT and Tg(Gasp-1) mice 4A). We observed (Fig. extensive macrovesicular microvesicular lipid and in hepatocytes of old *Tg(Gasp-1)*, and to a lesser extent in young mutant mice, revealing a hepatic

Fig. 2. Gasp-1 expression levels in old Tg(Gasp-1) mice. A. Relative mRNA expression levels of Gasp-1 were measured by quantitative PCR in tibialis anterior. Statistical significance was assessed by an ANOVA analysis when compared with the young WT mice (***: p value < 0.001). (n=6 per group in all experiments). B. Western blot analysis of GASP-1 expression in old Tg(Gasp-1) mice. Total proteins were extracted from liver, pancreas and inguinal white adipose tissue (WAT) from 16-month-old WT and Tg(Gasp-1) mice. GASP-1 was detected using a polyclonal goat anti-GASP-1. Secondary HRP-anti-goat IgG was used for signal visualization with chemiluminescence. GAPDH was used as a loading control. (n=4 per group in all experiments). Tg: Tg(Gasp-1).

steatosis (Fig. 4A). To check if the mice developed a hepatic necrosis too, the alanine aminotransferase (ALT C) and asparagine aminotransferase (AST C) enzymes activities were scored in both genotypes (Table 2). Aged transgenic mice present a significant higher level of ALT C and AST C enzymes (Table 2). These results underlined a global deregulation of fat storage with an increase of fat mass and ectopic fat deposition in aged Tg(Gasp-1) mice. It is well known that an insulin resistance phenotype is associated with an accumulation of triglycerides in liver. Therefore, we measured their levels in liver of young and old mice as well as cholesterol level. No variation of triglycerides and cholesterol levels was observed in young WT and Tg(Gasp-1) mice (Fig. 4B). However, a significant increase of triglycerides was detected in aged transgenic mice (Fig. 4B) highlighting an alteration of liver metabolism.

Old Tg(Gasp-1) mice develop an insulin resistance

Metabolic syndrome is often associated to insulin resistance phenotype. To test this hypothesis, we performed the intraperitoneal glucose tolerance tests (IPGTTs) and monitoring the serum insulin level. No difference of glucose clearance and insulin sensitivity was observed between young WT and Tg(Gasp-1) mice (Fig. 5A-C). However, aged Tg(Gasp-1) mice cleared glucose much slower than WT mice at same age, indicating a glucose intolerance

7

Fig. 3. Effect of Gasp-1 overexpression on fat mass. A. Relative proportion of epididymal and inguinal masses. B. Hematoxylin and eosin staining of inguinal adipose tissue sections. C-D. Distribution of adipocytes area in adipose tissue. Significance was assessed by comparing each sample with young WT mice in ANOVA statistical analysis (*: p value < 0.05; **: p value < 0.005; ***: p value < 0.001). (n=6 per group in all experiments). Tg: Tg(Gasp-1).

Fig. 4. Ectopic fat accumulation in liver of Tg(Gasp-1) mice. A. Oil Red and hematoxylin staining of frozen liver sections confirms vesicular steatosis (arrows). B. Triglycerides and cholesterol rates in liver. Significance was assessed by comparing each sample with young WT mice in ANOVA statistical analysis. (**: p value < 0.005). (n=6 per group in all experiments). Tg: Tg(Gasp-1).

KARGER

Cellular Physiology	Cell Physiol Biochem 2017;42:xx-xx		
and Biochemistry	DOI: Published online: xxx, 2016	© 2017 The Author(s). Published by S. Karger AG, Basel www.karger.com/cpb	
	Périè et al.: Role of GASP-1 in Insulin Resistance Molecular Mechanisms		

9

Table 2. Measurement of metabolic parameters in Tg(Gasp-1) mice. Aged transgenic mice present a significant higher level of ALT C and AST C enzymes, emphasizing a hepatic necrosis. The increase of creatinine, CK and lactate plasma levels in young and old Tg(Gasp-1) confirmed the muscle hypertrophy observed in these animals. An alteration of glucose homeostasis and fat metabolism in the transgenic mice was also revealed by an increase of LDH, triglycerides and glucose levels. Statistical significance was assessed by an ANOVA analysis (*: p value < 0.05; **: p value < 0.005; ***: p value < 0.001). (n=5 per group in all experiments). Tg: Tg(Gasp-1)

1 , 0	WT 3mo	Ta 3mo		WT 16mo	Τσ 16mo	
	vvi Sillo	ig Jillo		WI IOIIIO	ig iomo	
AST C	48.12	56.75		50.33	82.00	**
LDH	302.34	479.67	**	314.67	461.00	*
Creatinine	8.97	12.25	*	8.67	11.00	*
LDL	0.42	0.44		0.52	0.63	
HDL	4.26	3.56		5.23	4.72	
Triglycerides	2.12	1.89		2.16	2.60	*
Total Proteins	50.24	51.00		49.33	43.33	
Cholesterol	3.98	4.23		4.70	3.90	
СК	102.35	398.67	*	95.67	249.00	**
Lactate	978.32	1235.67	*	886.67	1428.67	*
СК МВ	85.23	138.33		87.33	85.33	
Glucose	10.32	10.17		9.27	13.27	*
ALT C	41.22	38.67		31.00	54.33	***

in the mutant mice (Fig. 5B). This glucose intolerance was accompanied by significantly elevated plasma insulin levels during the IPGTT confirming an insulin resistance in Tg(Gasp-1) mice (Fig. 5D). Altogether, these results assess a glucose homeostasis deregulation and an insulin resistance phenotype in old Tg(Gasp-1) mice.

Deregulation of muscle and liver metabolism in Tg(Gasp-1) mice

The insulin resistance can alterate glucose uptake and muscle metabolism. Thus, we analyzed the expression of the glucose transporter GLUT-4, which is regulated by insulin and found specifically in heart tissue, skeletal muscle, and adipose tissue. Western blot analysis revealed a decrease of 50% of GLUT-4 expression in *gastrocnemius* muscle of old Tg(Gasp-1) mice compared to WT regardless of age (Fig. 6A-B). It was confirmed by immunofluorescence, the total GLUT-4 fluorescence in basal condition decreased significatively in *gastrocnemius* of old Tg(Gasp-1) mice (Fig. 6C-D). Moreover, this analysis showed that GLUT-4 seemed more accumulate in fibers rather that plasma membrane in Tg(Gasp-1) mice (data not shown).

Fig. 5. Insulin resistance phenotype in Tg(Gasp-1) mice. A-B. (IPGTT) Overnight-fasted mice were injected with glucose (2 mg.g-1 body weight). Blood glucose levels were monitored at 0, 15, 30, 60 and 120 min after glucose injection of (A) 3-month and (B) 16-month-old mice. C-D. The serum level of insulin after glucose administration (i.p.) to mice was quantified by ELISA at 0, 15, 30, 60 and 120 min of (C) 3-month and (D) 16-month-old mice. *: p value < 0.05; ***: p value < 0.001; n=7 per group in all experiments. Tg: Tg(Gasp-1).

These data confirmed an alteration of muscle metabolism.

To go further, we decided to test if $Pgc1\alpha$ and FoxO1, potent actors of muscle metabolism, were also altered by the insulin resistance. Thus, we quantified the expression level of these two genes. $Pgc1\alpha$ expression was increased in young Tg(Gasp-1) mice compared to WT (Fig. 7A). In Tg(Gasp-1) mice, $Pgc1\alpha$ expression was decreased at 16 months of age compared to young mice while no variation of FoxO1 expression was observed (Fig. 7A). Moreover, $Pgc1\alpha$ and FoxO1 genes are essentially expressed in slow-type and fast-type myofibers respectively. The slow-type myofibers mostly express Myh7 and the fast-type myofibers express Myh2, Myh1 and Myh4. Q-PCR analyses on *tibialis anterior* show that young Tg(Gasp-1) mice present an upregulation of Myh7 compared to WT (Fig. 7B). Interestingly, Myh7 is drastically decreased in aged Tg(Gasp-1) mice compared to young transgenic mice (Fig. 7B).

The insulin resistance can also lead to modifications of liver metabolism. If insulin cannot act on liver, the gluconeogenesis gene expression should increase. We checked the expression of two key enzymes of this metabolic pathway, *Phosphoenolpyruvate carboxykinase 1 (Pck1)* and *Glucose-6-Phosphatase (G6Pc)*. *Pck1* expression was up-regulated by 3-fold in aged Tg(Gasp-1) while a slight increase of G6Pc (1.5-fold) was observed (Fig. 7C). There was no significant variation of *Pck1* and *G6Pc* expression in young mice (Fig. 7C). This result confirmed an elevation of hepatic gluconeogenesis which is associated to hepatic insulin resistance and contributes to hyperglycemia (Fig. 7D). These results showed the development of a metabolic syndrome with aging, responsible for the deregulation of glucose and fat homeostasis in Tg(Gasp-1) mice.

10

KARGER

Périè et al.: Role of GASP-1 in Insulin Resistance Molecular Mechanisms

11

Fig. 6. Decrease of GLUT-4 expression in Tg(Gasp-1) mice. A-B. Western Blot analysis of GLUT-4. Total proteins extracted from gastrocnemius of WT and Tg(Gasp-1) mice were resolved by SDS-PAGE. Membranes were immunoblotted with anti-GLUT-4 antibody. Nitrocellulose membranes were also probed with anti-GAPDH antibodies to show equal loading. The graphs were obtained using Image J software to quantify GLUT-4 signal normalized with GAPDH signals of three different animals and experiments. C-D. Representative GLUT-4 immunofluorescence images of skeletal muscle of 16-month-old mice. GLUT-4 localization in gastrocnemius muscle (a and b), DAPI (b and e) and merge images (c and f) (scale bars 100 μ m). C. The MetaMorph software was used to determine the total intensity of GLUT-4 fluorescence for each image. Significance was assessed by comparing each sample with young WT mice in ANOVA statistical analysis (**: p value < 0.005; ***: p value < 0.005). (n=7 per group in all experiments). Tg: Tg(Gasp-1).

Deregulation of adipokines and muscle cytokines expression in Tg(Gasp-1) mice

The adipose tissue represents an active endocrine organ that releases a large number of bioactive mediators (adipokines) regulating fat mass and glucose homeostasis. To highlight the metabolic syndrome observed in aged Tg(Gasp-1), we analyzed adipokines expression in white adipose tissue. Out of 38 adipokines tested, eight were found upregulated in old mutant mice compared to WT at the same age. Old transgenic mice present a significant increase of C-Reactive Protein, ICAM-1 and Lipocalin-2 as well as growth factors, FGF acidic and HGF, TNF- α , TIMP-1 and Serpin E1 (Fig 8A). All these overexpressed cytokines are often associated with insulin resistance phenotype.

The same study was realized in skeletal muscle which can also participate in glucose and fat homeostasis by secreting proinflammatory cytokines. *Tg(Gasp-1)* mice present a significant increase of TNF- α , IP-10, the interleukins IL-23, IL-27 and the chemokine CCL5 and to a lesser extent the CXCL 1, 2, 11, 12, IL-17 and TIMP-1 (Fig. 8B).

One of the most cytokines studied in muscle is myostatin which is known to participate in muscle development and glucose metabolism. Our previous molecular analysis performed on young Tg(Gasp-1) mice revealed an increase of myostatin expression responsible for the absence of hyperplasia [31]. We hypothesized that this upregulation of myostatin could also be implicated in the insulin resistance phenotype observed in old mutant mice. Therefore, we measured myostatin expression on *tibialis anterior* and found a myostatin expression

Fig. 7. Muscle and hepatic insulin resistance observed in Tg(Gasp-1) mice. A-B. Relative mRNA expression levels of (A) Pgc1- α and FoxO, (B) Myh7, Myh2, Myh4, Myh1 were measured by quantitative PCR in tibialis anterior. C. Relative mRNA expression levels of gluconeogenic genes (Pck1 and G6Pc) by quantitative PCR in liver. D. Insulin plasma levels. Significance was assessed by comparing each sample with young WT mice in ANOVA statistical analysis (*: p value < 0.005; **: p value < 0.005; ***: p value < 0.001). (n=6 per group in all experiments). Tg: Tg(Gasp-1).

Fig. 8. Deregulation of adipokines and muscle cytokines expression in old Tg(Gasp-1) mice. A. Adipokine levels were measured in adipose tissue of 16-month-old mice and using the proteome adipokine array. B. Cytokine levels were measured in tibialis anterior of 16-month-old mice using the proteome cytokine array. The level of each cytokine was quantified by densitometry. *: p value < 0.05; **: p value < 0.005; ***: p value < 0.001; n=5 per group in all experiments. Tg: Tg(Gasp-1).

KARGER

Fig. 9. Myostatin expression in muscles of Tg(Gasp-1) mice. A. Relative mRNA expression levels of myostatin were measured by quantitative PCR in tibialis anterior. B. Quantification of myostatin measured by an ELISA test. Significance was assessed by comparing each sample with young WT mice in ANOVA statistical analysis (*: p value < 0.005; **: p value < 0.001). (n=6 per group in all experiments). Tg: Tg(Gasp-1).

increase by 5-fold in old Tg(Gasp-1) mice compared to WT mice (Fig. 9A). In serum, this upregulation is also observed (Fig. 9B). Altogether, these data would suggest the existence of a crosstalk between muscle, adipose tissue and liver in old Tg(Gasp-1) mice responsible for the insulin resistance in which myostatin played a central role.

Discussion

Myostatin acts as a powerful negative regulator of muscle growth and plays a key role in skeletal muscle homeostasis [8]. Recent studies have shown that Mstn-/- mice leads to an increase of insulin sensitivity, a decrease of adiposity and a resistance to obesity, demonstrating that myostatin can also impact on metabolism [14, 15]. In previous studies, we have shown that transgenic mice overexpressing *Gasp-1*, a myostatin inhibitor, present a muscle hypertrophy without hyperplasia but no loss of fat mass unlike *Mstn-/-* mice [27, 31]. To explore in more details the role of *Gasp-1* on energetic metabolism, we characterized young and old overexpressing *Gasp-1* mice phenotypes in comparison to young and old WT mice. First, we showed that the muscle hypertrophy observed at 3 months is still present in 16-month-old mice. In a unexpected way, we observed that $T_{q}(Gasp-1)$ animals gained weight with age due to an increase in fat mass associated with ectopic fat accumulation compared to WT and independently of animal sex. This fat mass increase was not due to a feeding alteration. In addition, old Tq(Gasp-1) mice develop an adjocyte hypertrophy, hyperglycemia, hyperinsulinemia and an hepatic steatosis. We showed that these symptoms are linked to insulin resistance in old $T_g(Gasp-1)$ mice. All these aging phenotypes are often associated with metabolic syndrome diseases like obesity or type II diabetes [33]. Since aging promotes phenotypes such as insulin resistance and glucose intolerance, we checked that the observed phenotype is not associated with an endogenous increase in *Gasp-1* expression with age. No age-related Gasp-1 increase was found in wildtype mice. In addition, the GASP-1 overexpression remains similar in young and old *Tg(Gasp-1)* mice.

To understand this insulin resistance phenotype, we investigated the adipose tissue secretome. Indeed, deregulation of adipokines and more precisely inflammatory responses in adipose tissue have been shown as a major mechanism to induce insulin resistance. Several adipokines associated with metabolic syndrome were found increased in adipose tissue of old Tg(Gasp-1) mice like CRP, TIMP, HGF, TNF- α , lipocalin-2, PAI-1 and FGF acidic [34-40]. CRP inhibits glucose uptake in muscle and liver and its increase could participate to the deregulation of glucose homeostasis, i.e. hyperglycemia, observed in Tg(Gasp-1) mice [41]. Similarly, TIMP and HGF known to increase adipocytes size and triglycerides levels in liver and increased size of pancreatic islets [42, 43] are also overexpressed in Tg(Gasp-1) mice. Altogether, these findings suggested that in our transgenic mice, insulin resistance

Cellular Physiology	Cell Physiol Biochem 2017;42:xx-xx		
and Biochemistry	DOI: Published online: xxx, 2016	© 2017 The Author(s). Published by S. Karger AG, Basel www.karger.com/cpb	
/	Périè et al.: Role of GASP-1 in Insulin Resistance Molecular Mechanisms		

14

might result from the alteration of adipokines expression at least in part.

Many studies have shown that glucose homeostasis is regulated by a crosstalk between adipose and muscle tissue involving adipokines and muscle cytokines. To check this potential crosstalk in *Ta(Gasp-1*) mice, we measured the expression level of a large number of muscle cytokines. We revealed an overexpression of proinflammatory cytokines on the one hand, and an increase of myostatin muscle expression and myostatin plasma levels on the other hand. To explain the muscle phenotype in $T_q(Gasp-1)$ mice, we have already shown an upregulation of myostatin due to a positive feedback mechanism [31]. It is known that absence of myostatin leads to an increase of insulin sensitivity with a reduce of fat mass whereas the myostatin treatment induces an insulin resistance phenotype [44]. Therefore, the myostatin upregulation still present in old *Ta(Gasp-1)* mice could be responsible for all of these metabolic phenotypes. Indeed, myostatin can inhibit GLUT-4, the muscle glucose transporter [45]. We found a GLUT-4 expression decrease in Ta(Gasp-1) muscle mice as well as an alteration of GLUT-4 membrane translocation, leading to an hyperglycemia. Furthermore, $Pgc1\alpha$ expression which promotes mitochondrial biogenesis and lipid oxidation is negatively regulated by myostatin through AKT or AMPK signaling pathways [15, 46-48]. In Mstn knockout mice, absence of myostatin induced AMPK/Irisin/PGC1α signaling pathway which improved insulin sensitivity and increased brown adipose tissue expansion [47, 48]. High levels of PGC1 α protein expression also promote a fast-to-slow switch fiber type identified by the expression of type I myosin heavy chain Myh7 [48-51]. In old Tg(Gasp-1) mice, the $Pac1\alpha$ expression decrease associated with a decrease of *Mvh7* expression showed a slowto-fast switch fiber type in these mice which confirmed the action of the deregulation of myostatin expression. Myostatin can also act indirectly on organs or tissues involved in glucose homeostasis by modulating the muscle secretome [19, 37]. For example, myostatin promotes the production of pro-inflammatory cytokines such as TNF- α , PAI-1 or CXCL10 [19, 52]. These two cytokines capable to induce an hepatic insulin resistance and pancreatic lipotoxicity are found overexpressed in Tq(Gasp-1) mice as in patients with metabolic disorders [19, 53]. Interestingly, other cytokines are overexpressed in $T_q(Gasp-1)$ animals such the chemokines CXCL11, CXCL2, CCL12 which are regularly found overexpressed in obese or diabetic individuals [33, 53, 54].

Finally, we cannot exclude a direct effect of *Gasp-1* on glucose homeostasis since it is ubiquitously overexpressed in our transgenic mice [27]. Its expression is higher in Tg(Gasp-1) adipose tissue and pancreas compared to wild type mice. This overexpression could be responsible for the slight adipocyte hypertrophy observed in Tg(Gasp-1) and thus independently of its action of myostatin. To determine a potential role of *Gasp-1* in adipocyte hypertrophy, we are currently generating a *Gasp-1* overexpression model on a myostatin deficient background. In addition, as GASP-1 is a secreted protein, its overexpression could affect all the organs involved in glucose homeostasis.

GASP-1 is also known to antagonize GDF-11, another TGF- β which promotes proliferation and differentiation of pancreatic islets [55]. The observed overexpression of *Gasp-1* in pancreas could deregulate GDF-11 signaling pathway and disturb the function of this tissue. Finally, GASP-1 by its multiple protease inhibitors domains can also participate in the balance between protease and inhibitors highly regulated in pancreas to control the glucose homeostasis [56, 57]. Treatment with recombinant protein GASP-1 on pancreatic cells will present a great interest to determine if *Gasp-1* can act independently of myostatin on proliferation, differentiation and insulin secretion capacity of these cells. It would be also interesting to check if overexpression of *Gasp-1* impacts on energy expenditure and fuel oxidation via age-dependent mechanisms.

Our data revealed that the upregulation of myostatin in overexpressing *Gasp-1* mice has significant impact on glucose homeostasis and fat distribution. Aged Tg(Gasp-1) mice present several metabolic defects and could be a relevant model to study insulin resistance mechanisms. These results also demonstrate the complexity of crosstalk between tissues regulating glucose homeostasis and the difficulty to determine the primary tissue responsible from the alteration of glucose metabolism.

Cellular Physiology	Cell Physiol Biochem 2017;42:xx-xx		
and Biochemistry	DOI: Published online: xxx, 2016	© 2017 The Author(s). Published by S. Karger AG, Basel www.karger.com/cpb	
,	Périè et al.: Role of GASP-1 in Insulin Resistance Molecular Mechanisms		

15

Acknowledgements

We are indebted to Dr. Brigitte Picard and Dr. Isabelle Cassar Malek for access to the EchoRMI-500TM analyzer. We also thank Karine Pasquier from the animal facility (SCA) for her technical help with animals.

All animal experiments were performed according to European directives (86/609/ CEE and 2010/63/UE) and approved by the Committee on Ethics of Animal Experiments from the Author's Institution, "Comité Régional d'Ethique de l'Expérimentation Animale" of the Limousin region (n° 11-2014-11). According to the European Directive 210-63-EU, mice were observed daily for the general health status and mortality scoring.

This project was co-financed by the European Union, the Limousin Regional Council and the French National Institute for Agricultural Research. LP and AP were supported by a PhD fellowship from INRA/Region Limousin.

Disclosure Statement

The authors have nothing to disclose.

References

- 1 Wakefield LM, Hill CS: Beyond TGFbeta: roles of other TGFbeta superfamily members in cancer. Nat Rev Cancer 2013;13:328-341.
- 2 Shi Y, Massague J: Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 2003;113:685-700.
- 3 Massague J, Blain SW, Lo RS: TGFbeta signaling in growth control, cancer, and heritable disorders. Cell 2000;103:295-309.
- 4 Gordon ES, Gordish Dressman HA, Hoffman EP: The genetics of muscle atrophy and growth: the impact and implications of polymorphisms in animals and humans. Int J Biochem Cell Biol 2005;37:2064-2074.
- 5 Burks TN, Cohn RD: Role of TGF-beta signaling in inherited and acquired myopathies. Skelet Muscle 2011;1:19.
- 6 Akhurst RJ, Hata A: Targeting the TGFbeta signalling pathway in disease. Nat Rev Drug Discov 2012;11:790-811.
- 7 Neuzillet C, Tijeras-Raballand A, Cohen R, Cros J, Faivre S, Raymond E, de Gramont A: Targeting the TGFbeta pathway for cancer therapy. Pharmacol Ther 2015;147:22-31.
- 8 McPherron AC, Lee SJ: Double muscling in cattle due to mutations in the myostatin gene. Proc Natl Acad Sci U S A 1997;94:12457-12461.
- 9 Grobet L, Martin LJ, Poncelet D, Pirottin D, Brouwers B, Riquet J, Schoeberlein A, Dunner S, Menissier F, Massabanda J, Fries R, Hanset R, Georges M: A deletion in the bovine myostatin gene causes the doublemuscled phenotype in cattle. Nat Genet 1997;17:71-74.
- 10 Kambadur R, Sharma M, Smith TP, Bass JJ: Mutations in myostatin (GDF8) in double-muscled Belgian Blue and Piedmontese cattle. Genome Res 1997;7:910-916.
- 11 Szabo G, Dallmann G, Muller G, Patthy L, Soller M, Varga L: A deletion in the myostatin gene causes the compact (Cmpt) hypermuscular mutation in mice. Mamm Genome 1998;9:671-672.
- 12 Zimmers TA, Davies MV, Koniaris LG, Haynes P, Esquela AF, Tomkinson KN, McPherron AC, Wolfman NM, Lee SJ: Induction of cachexia in mice by systemically administered myostatin. Science 2002;296:1486-1488.
- 13 Reisz-Porszasz S, Bhasin S, Artaza JN, Shen R, Sinha-Hikim I, Hogue A, Fielder TJ, Gonzalez-Cadavid NF: Lower skeletal muscle mass in male transgenic mice with muscle-specific overexpression of myostatin. Am J Physiol Endocrinol Metab 2003;285:E876-888.

Cellular Physiology and Biochemistry Cell Physiol Biochem 2017;42:xx-xx DDI: Published online: xxx, 2016 © 2017 The Author(s). Published by S. Karger AG, Basel www.karger.com/cpb

Périè et al.: Role of GASP-1 in Insulin Resistance Molecular Mechanisms

16

- 14 Guo T, Jou W, Chanturiya T, Portas J, Gavrilova O, McPherron AC: Myostatin inhibition in muscle, but not adipose tissue, decreases fat mass and improves insulin sensitivity. PLoS One 2009;4:e4937.
- 15 Zhang C, McFarlane C, Lokireddy S, Bonala S, Ge X, Masuda S, Gluckman PD, Sharma M, Kambadur R: Myostatin-deficient mice exhibit reduced insulin resistance through activating the AMP-activated protein kinase signalling pathway. Diabetologia 2011;54:1491-1501.
- 16 McPherron AC, Lee SJ: Suppression of body fat accumulation in myostatin-deficient mice. J Clin Invest 2002;109:595-601.
- 17 Elliott B, Renshaw D, Getting S, Mackenzie R: The central role of myostatin in skeletal muscle and whole body homeostasis. Acta Physiol (Oxf) 2012;205:324-340.
- 18 Feldman BJ, Streeper RS, Farese RV, Jr., Yamamoto KR: Myostatin modulates adipogenesis to generate adipocytes with favorable metabolic effects. Proc Natl Acad Sci U S A 2006;103:15675-15680.
- 19 Wilkes JJ, Lloyd DJ, Gekakis N: Loss-of-function mutation in myostatin reduces tumor necrosis factor alpha production and protects liver against obesity-induced insulin resistance. Diabetes 2009;58:1133-1143.
- 20 Hamrick MW, Pennington C, Webb CN, Isales CM: Resistance to body fat gain in 'double-muscled' mice fed a high-fat diet. Int J Obes (Lond) 2006;30:868-870.
- 21 LeBrasseur NK, Schelhorn TM, Bernardo BL, Cosgrove PG, Loria PM, Brown TA: Myostatin inhibition enhances the effects of exercise on performance and metabolic outcomes in aged mice. J Gerontol A Biol Sci Med Sci 2009;64:940-948.
- 22 Morissette MR, Stricker JC, Rosenberg MA, Buranasombati C, Levitan EB, Mittleman MA, Rosenzweig A: Effects of myostatin deletion in aging mice. Aging Cell 2009;8:573-583.
- 23 Tu P, Bhasin S, Hruz PW, Herbst KL, Castellani LW, Hua N, Hamilton JA, Guo W: Genetic disruption of myostatin reduces the development of proatherogenic dyslipidemia and atherogenic lesions in Ldlr null mice. Diabetes 2009;58:1739-1748.
- 24 Zhao B, Wall RJ, Yang J: Transgenic expression of myostatin propeptide prevents diet-induced obesity and insulin resistance. Biochem Biophys Res Commun 2005;337:248-255.
- 25 Lee SJ, McPherron AC: Regulation of myostatin activity and muscle growth. Proc Natl Acad Sci U S A 2001;98:9306-9311.
- 26 Lee SJ: Quadrupling muscle mass in mice by targeting TGF-beta signaling pathways. PLoS One 2007;2:e789.
- 27 Monestier O, Brun C, Heu K, Passet B, Malhouroux M, Magnol L, Vilotte JL, Blanquet V: Ubiquitous Gasp1 overexpression in mice leads mainly to a hypermuscular phenotype. BMC Genomics 2012;13:541.
- 28 Perie L, Parente A, Brun C, Magnol L, Pelissier P, Blanquet V: Enhancement of C2C12 myoblast proliferation and differentiation by GASP-2, a myostatin inhibitor. Biochem Biophys Rep 2016;6:39-46.
- 29 Brandt C, Hansen RH, Hansen JB, Olsen CH, Galle P, Mandrup-Poulsen T, Gehl J, Pedersen BK, Hojman P: Over-expression of Follistatin-like 3 attenuates fat accumulation and improves insulin sensitivity in mice. Metabolism 2015;64:283-295.
- 30 Gangopadhyay SS: Systemic administration of follistatin288 increases muscle mass and reduces fat accumulation in mice. Sci Rep 2013;3:2441.
- 31 Brun C, Perie L, Baraige F, Vernus B, Bonnieu A, Blanquet V: Absence of hyperplasia in Gasp-1 overexpressing mice is dependent on myostatin up-regulation. Cell Physiol Biochem 2014;34:1241-1259.
- 32 Magnol L, Monestier O, Vuillier-Devillers K, Wagner S, Cocquempot O, Chevallier MC, Blanquet V: A sensitised mutagenesis screen in the mouse to explore the bovine genome: study of muscle characteristics. Animal 2011;5:663-671.
- 33 Samuel VT, Shulman GI: Mechanisms for insulin resistance: common threads and missing links. Cell 2012;148:852-871.
- 34 Hotamisligil GS, Arner P, Caro JF, Atkinson RL, Spiegelman BM: Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance. J Clin Invest 1995;95:2409-2415.
- Wang Y, Lam KS, Kraegen EW, Sweeney G, Zhang J, Tso AW, Chow WS, Wat NM, Xu JY, Hoo RL, Xu A: Lipocalin-2 is an inflammatory marker closely associated with obesity, insulin resistance, and hyperglycemia in humans. Clin Chem 2007;53:34-41.
- 36 Juhan-Vague I, Alessi MC: PAI-1, obesity, insulin resistance and risk of cardiovascular events. Thromb Haemost 1997;78:656-660.
- 37 Hill JJ, Qiu Y, Hewick RM, Wolfman NM: Regulation of myostatin *in vivo* by growth and differentiation factor-associated serum protein-1: a novel protein with protease inhibitor and follistatin domains. Mol Endocrinol 2003;17:1144-1154.

Cellular Physiology and Biochemistry Cell Physiol Biochem 2017;42:xx-xx DOI: Published online: xxx, 2016 © 2017 The Author(s). Published by S. Karger AG, Basel www.karger.com/cpb

Périè et al.: Role of GASP-1 in Insulin Resistance Molecular Mechanisms

17

- 38 Tamura Y, Kawao N, Yano M, Okada K, Matsuo O, Kaji H: Plasminogen activator inhibitor-1 deficiency ameliorates insulin resistance and hyperlipidemia but not bone loss in obese female mice. Endocrinology 2014;155:1708-1717.
- 39 Hadad N, Burgazliev O, Elgazar-Carmon V, Solomonov Y, Wueest S, Item F, Konrad D, Rudich A, Levy R: Induction of cytosolic phospholipase a2alpha is required for adipose neutrophil infiltration and hepatic insulin resistance early in the course of high-fat feeding. Diabetes 2013;62:3053-3063.
- 40 Jonker JW, Suh JM, Atkins AR, Ahmadian M, Li P, Whyte J, He M, Juguilon H, Yin YQ, Phillips CT, Yu RT, Olefsky JM, Henry RR, Downes M, Evans RM: A PPARgamma-FGF1 axis is required for adaptive adipose remodelling and metabolic homeostasis. Nature 2012;485:391-394.
- 41 Tanigaki K, Vongpatanasin W, Barrera JA, Atochin DN, Huang PL, Bonvini E, Shaul PW, Mineo C: C-reactive protein causes insulin resistance in mice through Fcgamma receptor IIB-mediated inhibition of skeletal muscle glucose delivery. Diabetes 2013;62:721-731.
- 42 Araujo TG, Oliveira AG, Carvalho BM, Guadagnini D, Protzek AO, Carvalheira JB, Boschero AC, Saad MJ: Hepatocyte growth factor plays a key role in insulin resistance-associated compensatory mechanisms. Endocrinology 2012;153:5760-5769.
- 43 Meissburger B, Stachorski L, Roder E, Rudofsky G, Wolfrum C: Tissue inhibitor of matrix metalloproteinase 1 (TIMP1) controls adipogenesis in obesity in mice and in humans. Diabetologia 2011;54:1468-1479.
- 44 Hittel DS, Axelson M, Sarna N, Shearer J, Huffman KM, Kraus WE: Myostatin decreases with aerobic exercise and associates with insulin resistance. Med Sci Sports Exerc 2010;42:2023-2029.
- 45 Takahashi H, Sato K, Yamaguchi T, Miyake M, Watanabe H, Nagasawa Y, Kitagawa E, Terada S, Urakawa M, Rose MT, McMahon CD, Watanabe K, Ohwada S, Gotoh T, Aso H: Myostatin alters glucose transporter-4 (GLUT4) expression in bovine skeletal muscles and myoblasts isolated from double-muscled (DM) and normal-muscled (NM) Japanese shorthorn cattle. Domest Anim Endocrinol 2014;48:62-68.
- 46 Mann N, Rosenzweig A: Can exercise teach us how to treat heart disease? Circulation 2012;126:2625-2635.
- 47 Dong J, Dong Y, Dong Y, Chen F, Mitch WE, Zhang L: Inhibition of myostatin in mice improves insulin sensitivity via irisin-mediated cross talk between muscle and adipose tissues. Int J Obes (Lond) 2016;40:434-442.
- 48 Shan T, Liang X, Bi P, Kuang S: Myostatin knockout drives browning of white adipose tissue through activating the AMPK-PGC1alpha-Fndc5 pathway in muscle. FASEB J 2013;27:1981-1989.
- 49 Lin J, Arnold HB, Della-Fera MA, Azain MJ, Hartzell DL, Baile CA: Myostatin knockout in mice increases myogenesis and decreases adipogenesis. Biochem Biophys Res Commun 2002;291:701-706.
- 50 Luquet S, Lopez-Soriano J, Holst D, Fredenrich A, Melki J, Rassoulzadegan M, Grimaldi PA: Peroxisome proliferator-activated receptor delta controls muscle development and oxidative capability. FASEB J 2003;17:2299-2301.
- 51 Wang YX, Zhang CL, Yu RT, Cho HK, Nelson MC, Bayuga-Ocampo CR, Ham J, Kang H, Evans RM: Regulation of muscle fiber type and running endurance by PPARdelta. PLoS Biol 2004;2:e294.
- 52 Artaza JN, Singh R, Ferrini MG, Braga M, Tsao J, Gonzalez-Cadavid NF: Myostatin promotes a fibrotic phenotypic switch in multipotent C3H 10T1/2 cells without affecting their differentiation into myofibroblasts. J Endocrinol 2008;196:235-249.
- 53 Bouzakri K, Plomgaard P, Berney T, Donath MY, Pedersen BK, Halban PA: Bimodal effect on pancreatic beta-cells of secretory products from normal or insulin-resistant human skeletal muscle. Diabetes 2011;60:1111-1121.
- 54 Okamoto Y, Folco EJ, Minami M, Wara AK, Feinberg MW, Sukhova GK, Colvin RA, Kihara S, Funahashi T, Luster AD, Libby P: Adiponectin inhibits the production of CXC receptor 3 chemokine ligands in macrophages and reduces T-lymphocyte recruitment in atherogenesis. Circ Res 2008;102:218-225.
- 55 Harmon EB, Apelqvist AA, Smart NG, Gu X, Osborne DH, Kim SK: GDF11 modulates NGN3+ islet progenitor cell number and promotes beta-cell differentiation in pancreas development. Development 2004;131:6163-6174.
- 56 Koster JC, Remedi MS, Qiu H, Nichols CG, Hruz PW: HIV protease inhibitors acutely impair glucosestimulated insulin release. Diabetes 2003;52:1695-1700.
- 57 Walli R, Herfort O, Michl GM, Demant T, Jager H, Dieterle C, Bogner JR, Landgraf R, Goebel FD: Treatment with protease inhibitors associated with peripheral insulin resistance and impaired oral glucose tolerance in HIV-1-infected patients. AIDS 1998;12:F167-173.

Dans cette première étude, nous avons entrepris une caractérisation phénotypique des souris Tg(Gasp-1) jeunes et âgées en développant différentes analyses métaboliques et moléculaires. Nous montrons qu'à l'opposé des souris $Mstn^{-/-}$, les animaux Tg(Gasp-1) développent une obésité liée à l'âge associée à une augmentation de la masse graisseuse indépendamment du sexe de l'animal. La mise au point d'analyses histologiques nous a permis d'observer que les souris Tg(Gasp-1) présentent une hypertrophie adipocytaire. Pour visualiser les graisses, le foie a été coloré par des techniques spécifiques à l'huile rouge qui soulignent le développement d'une stéatose hépatique, signe d'une accumulation de graisse dans le foie. De plus, la mise au point d'analyses biochimiques ont permis de montrer que les souris Tg(Gasp-1) âgées développent une hypercholestérolémie, une hyperglycémie et une hyperinsulinémie. L'ensemble de ces symptômes est lié à une insulinorésistance. Ce phénotype est apparenté au syndrome métabolique observé lors de l'obésité ou de diabète de type II chez l'humain.

L'hyperglycémie observée chez les souris Tg(Gasp-1) peut s'expliquer par (i) une absence de synthèse de l'insuline ou par (ii) une insensibilité des récepteurs à l'insuline (insulinorésistance). Des tests de tolérance au glucose et des mesures de production d'insuline montrent que les souris Tg(Gasp-1) âgées synthétisent normalement l'insuline mais présentent une insulinorésistance. De nombreuses études montrent que l'homéostasie du glucose est régulée par un dialogue dynamique entre le tissu adipeux et le tissu musculaire. D'un point de vue moléculaire, ces défauts métaboliques sont associés à une dérégulation du sécrétome des tissus adipeux et musculaire.

Pour le tissu adipeux, plusieurs adipokines associées au syndrome métabolique sont surexprimées dans le tissu adipeux des souris Tg(Gasp-1) âgées à l'instar des protéines CRP (C-Reactive Protein), TIMP (metallopeptidase inhibitor 1) et HGF (Hepatocyte Growth Factor). La protéine CRP est capable d'inhiber l'absorption du glucose dans les muscles et le foie et sa surexpression pourrait participer à la dérégulation de l'homéostasie du glucose des souris Tg(Gasp-1) (Tanigaki *et al.*, 2013). Les protéines TIMP et HGF sont, quant à elles, connues pour entraîner une augmentation de la taille des adipocytes et du taux de triglycérides hépatiques (Meissburger *et al.*, 2011; Araújo *et al.*, 2012).

Pour le muscle, les souris Tg(Gasp-1) âgées présentent d'une part, une surexpression de cytokines musculaires pro-inflammatoires et d'autre part, une augmentation de l'expression musculaire et circulante de la myostatine. Si l'absence de la myostatine entraîne une augmentation de la sensibilité à l'insuline avec une réduction de la masse graisseuse, sa surexpression induit un phénotype d'insulinorésistance (Hittel *et al.*, 2009, 2010) (pour rappel, **Figure 17**). Par conséquent, l'augmentation de l'expression de la myostatine par « *up-régulation* » observée dans les souris Tg(Gasp-1) pourrait être à l'origine de l'ensemble de ces phénotypes métaboliques. En effet, la myostatine inhibe le transporteur de glucose musculaire GLUT-4 et entraîne alors une hyperglycémie (Takahashi *et al.*, 2014). Au cours de cette étude, nous avons alors entrepris des analyses de l'expression musculaire de GLUT-4 par Western-Blot et de sa localisation par immunohistochimie. Nous avons mis en évidence une diminution de l'expression de GLUT-4 dans les muscles des souris Tg(Gasp-1) ainsi qu'une altération de sa translocation à la membrane. La myostatine favorise la production de cytokines pro-inflammatoires telles que TNF- α , PAI-1 ou CXCL10 (Artaza *et al.*, 2008). Ces cytokines sont capables d'induire une insulinorésistance et sont surexprimées chez les souris Tg(Gasp-1) (Bouzakri *et al.*, 2011). Nos résultats montrent que d'autres cytokines sont également surexprimées chez les animaux Tg(Gasp-1) telles que les chimiokines CXCL11, CXCL2, CCL12 régulièrement surexprimées chez les individus obèses ou diabétiques (Okamoto *et al.*, 2008).

Enfin, nous ne pouvons exclure un effet direct de *Gasp-1* sur l'homéostasie du glucose, indépendamment de la myostatine, puisque *Gasp-1* est surexprimé ubiquitairement dans les souris transgéniques. Son expression est ainsi plus élevée dans le tissu adipeux et le pancréas des souris Tg(Gasp-1) que chez les souris sauvages. De même, *via* ses multiples domaines d'inhibiteurs de protéases, GASP-1 pourrait réguler la balance protéases/anti-protéases dans le pancréas, associée à l'homéostasie du glucose (Walli *et al.*, 1998; Koster *et al.*, 2003). De plus, l'effet de position des transgènes *Gasp-1* ne peut pas être responsable du phénotype métabolique puisque qu'une autre lignée surexprimant *Gasp-1*, provenant d'un fondateur différent, présente le même phénotype adipeux en vieillissant.

Pour conclure, nos données révèlent que le mécanisme d'«*up-régulation* » de la myostatine chez les souris surexprimant *Gasp-1* a un impact significatif sur l'homéostasie du glucose et la distribution des graisses. Les souris Tg(Gasp-1) âgées présentent plusieurs défauts métaboliques en vieillissant. Ces résultats suggèrent que GASP-1 ne représente pas un très bon candidat dans le cadre d'études thérapeutiques. En revanche, ce modèle reste pertinent pour étudier les mécanismes de l'insulinorésistance et les pathologies liées à l'âge. Ces résultats démontrent également la complexité du « *crosstalk* » entre les différents tissus qui régulent l'homéostasie du glucose.

CHAPITRE II : ANALYSE FONCTIONNELLE DE LA PROTEINE GASP-2 AU COURS DU DEVELOPPEMENT MUSCULAIRE

PARTIE I : ANALYSES FONCTIONNELLES *IN VITR*O DE LA PROTEINE GASP-2 DANS LE PROCESSUS MYOGENIQUE.

Contrairement à GASP-1, la protéine GASP-2 a été très peu étudiée dans le contexte musculaire. L'activité inhibitrice de GASP-2 envers la myostatine a été démontrée in vitro par des études d'interaction de type « résonance plasmon de surface » et des mesures d'activité de type « gène rapporteur » (Kondás et al., 2008; Szláma et al., 2010; Walker et al., 2015). En 2013, pour la première fois, une étude positionne GASP-2 comme étant un régulateur positif de la myogenèse, son extinction entraînant une atrophie musculaire. Cependant, cette étude ne précisait pas les voies moléculaires impliquées dans les souris Gasp-2^{-/-} (Lee and Lee, 2013). Dans ce contexte, nous nous sommes intéressés à définir plus précisément l'implication de GASP-2 dans la régulation de l'activité de la myostatine au cours de la myogenèse. Nous avons ainsi analysé les conséquences cellulaires et moléculaires de la surexpression de Gasp-2 versus son invalidation lors des processus de prolifération et de différenciation des myoblastes C2C12. Comme pour la plupart des protéines sécrétées, GASP-2 est une protéine glycosylée. En plus de jouer un rôle central sur la solubilité et la demie-vie de la protéine, la glycosylation est une modification posttraductionnelle pouvant moduler la fonction des protéines. Nous avons également analysé l'implication de cette modification post-traductionnelle sur l'activité anti-myostatine de la protéine GASP-2, en produisant la protéine recombinant dans un système hétérologue bactérien incapable de réaliser ce type de maturation.

La surexpression de *Gasp-2* entraîne une augmentation de la prolifération et de la différenciation/fusion des myoblastes C2C12 en inhibant la voie de signalisation SMAD2/3 de la myostatine. De même, le traitement des cellules C2C12 avec la protéine GASP-2 glycosylée ou non-glycosylée conduit à un phénotype cellulaire similaire. Au contraire, l'extinction de *Gasp-2*, réalisée par shRNA, provoque une diminution de la prolifération/différenciation des cellules musculaires. Ces travaux démontrent, pour la première fois, que GASP-2 favorise la prolifération et la différenciation des myoblastes en inhibant la voie canonique de la myostatine. Ces résultats ont fait l'objet d'une publication dans la revue *Biochemistry and Biophysics Reports* : *« Enhancement of C2C12 myoblast proliferation and differentiation by GASP-2, a myostatin inhibitor »* (Pèrié, Parenté *et al.,* 2016).

Contents lists available at ScienceDirect

Biochemistry and Biophysics Reports

journal homepage: www.elsevier.com/locate/bbrep

Enhancement of C2C12 myoblast proliferation and differentiation by GASP-2, a myostatin inhibitor

Luce Pèrié, Alexis Parenté, Caroline Brun¹, Laetitia Magnol, Patrick Pélissier, Véronique Blanquet^{*}

Univ. Limoges, INRA, UMR 1061, UGMA, F-87000 Limoges, France

ARTICLE INFO

Article history: Received 7 October 2015 Received in revised form 15 February 2016 Accepted 1 March 2016 Available online 3 March 2016

Keywords: GASP-2 Myostatin Myogenesis Glycosylation

ABSTRACT

Background: GASP-2 is a secreted multi-domain glycoprotein known as a specific inhibitor of myostatin and GDF-11. Here we investigate the role of GASP-2 on myogenesis and the effect of its glycosylation on its activity.

Methods: GASP-2 overexpression or knockdown by shRNAs were carried out on C2C12 myoblasts cells. *In silico* analysis of GASP-2 protein was performed to identify its glycosylation sites. We produced a mouse recombinant GASP-2 protein in a prokaryotic system to obtain a fully deglycosylated protein allowing us to study the importance of this post-translational modification on GASP-2 activity.

Results: Both mature and deglycosylated GASP-2 proteins increase C2C12 proliferation and differentiation by inhibiting the myostatin pathway. *In silico* and western-blot analyses revealed that GASP-2 presents one consensus sequence for *N*-glycosylation and six potential sites of mucin-type *O*-glycosylation.

Conclusions: GASP-2 promotes myogenesis and thus independently of its glycosylation.

General significance: This is the first report demonstrating that GASP-2 promotes proliferation and differentiation of myoblasts by inhibiting the canonical pathway of myostatin.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

GASPs (Growth and Differentiation Factor Associated Serum Protein) are secreted glycoproteins known to interact with myostatin (MSTN), a key regulator of muscle development [1,2]. These proteins contain multiple protease inhibitors domains [3,4]. Thus, the two members, GASP-1 and GASP-2 (also named WFIKKN2 and WFIKKN1) are made of four serine proteases inhibitor modules (WAP, Follistatin/Kazal and two Kunitz), a Netrin domain which is implicated in inhibition of metalloproteinases and an Ig domain involved in protein folding (Igc2) [3,4]. These domains are highly conserved among mammals especially the Follistatin/Kazal, the second Kunitz and the Netrin domains [5]. This conservation strongly suggests the importance of their functions [5]. Since 2003

E-mail addresses: luce.perie@etu.unilim.fr (L. Pèrié),

alexis.parente@etu.unilim.fr (A. Parenté), cbrun@ohri.ca (C. Brun), laetitia.magnol@unilim.fr (L. Magnol), patrick.pelissier@unilim.fr (P. Pélissier),

veronique.blanquet@unilim.fr (V. Blanquet). ¹ Present address: Sprott Centre for Stem Cell Research, Ottawa Health Reand its discovery [6], most of the studies have focused on the role of GASP-1 as a myostatin antagonist. It was shown that GASP-1 interacts with and inhibits myostatin *via* its Follistatin domain [6-9]. The myostatin is a member of TGF β superfamily that negatively regulates myogenesis mainly *via* the SMAD2/3 pathway [10]. The disruption of the *MSTN* gene in mice leads to a dramatic increase of skeletal muscle mass due to both hyperplasia and hypertrophy [1]. Overexpression of myostatin inhibitors, like Follistatin and FSTL3, leads to an increase of myoblasts proliferation and differentiation and an increase of muscle mass in mice [11,12]. Recently, we also described in mice overexpressing *Gasp-1* a hypermuscular phenotype owing only to hypertrophy, without hyperplasia of the myofibers [13]. We demonstrated that in addition to the inhibition of its canonical pathway, myostatin is up-regulated in these mice leading to the absence of hyperplasia [14].

Unlike GASP-1, GASP-2 was never found associated with myostatin in serum although their interaction is well known [8]. As GASP-1 and GASP-2 share 54% of identity and are expressed, at few exceptions, in similar tissues including skeletal muscle [4], we asked if GASP-2 could also be involved in the regulation of myostatin during myogenesis. In this paper, we analyzed at cellular and molecular levels the consequences on myoblasts proliferation and differentiation of *Gasp-2* over or knockdown gene

http://dx.doi.org/10.1016/j.bbrep.2016.03.001

2405-5808/© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

^{*} Correspondence to: Université de Limoges, UMR 1061, Unité de Génétique Moléculaire Animale, Faculté des Sciences et Techniques, 123, av. A. Thomas, F-87060 Limoges Cedex, France.

search Institute, ON K1H 8L6 Ottawa, Canada.

expression. Like most of secreted proteins, GASP-2 is glycosylated. In addition to play a central role on the solubility and half-life of the protein, glycosylation is well known to modulate its function. We also analyzed the involvement of this post-translational modification on GASP-2 activity, focusing our study on its role as an inhibitor of myostatin.

2. Materials and methods

2.1. Cell culture

Mouse C2C12 myoblasts [15] were obtained from American Type Culture Collection (ATCC). C2C12 myoblasts were grown in Growth Medium (GM) consisting in Dulbecco's Modified Eagle Medium (DMEM; Invitrogen) supplemented with 10% Fetal Bovine Serum (FBS, Invitrogen), 100 units ml^{-1} penicillin and 100 μ g ml^{-1} streptomycin (Invitrogen). C2C12 differentiation was induced upon 70% confluence by serum withdrawal (DMEM with 2% horse serum (HS, Invitrogen)). For proliferation assay, C2C12 were grown or not with 1 μ g ml^{-1} of hGASP-2 or mGASP-2 deglycosylated (deglyco-mGASP-2).

2.2. Bioinformatics analyses

GASP-2 orthologs were retrieved from databases using BLAST (http://www.ncbi.nlm.nih.gov/BLAST) and Ensembl Genome Browser (www.ensembl.org). Alignment was performed using ClustalW program and analyzed with WebLogo. Asparagine and serine/threonine residues potentially glycosylated were identified using respectively NetNGlyc 1.0 Server (http://www.cbs.dtu.dk/ services/NetNGlyc/) and NetOGlyc 3.1 Server [16].

2.3. Transient transfections of C2C12 cells

Mouse C2C12 myoblasts at 70% confluence were transiently transfected using the XtremeGENE 9 Transfection Reagent (Roche Applied Science) with 5 μ g of pcDNA3.1-Gasp-2 or pcDNA3.1-empty in DMEM serum-free media. After 16 h of transfection, the medium was replaced and myoblasts were allowed to proliferate and differentiate for further analyses.

2.4. Production and purification of murine GASP-2 in prokaryotic system

The mouse Gasp-2cDNA coding sequence without peptide signal were amplified and cloned into the pGEX-4-T1 plasmid (Sigma Aldrich). Production was carried out in E.coli BL21 (DE3) in LB (Luria Bertani) supplemented with 0.2% glucose and 100 μ g ml⁻¹ ampicillin. Bacteria were grown to reach OD₆₀₀ at 0.5 and then induced with 0.025 mM IPTG at 20 °C for 14 h at 250 rpm. Bacterial growth was stopped by centrifugation (6000 g, 15 min; 4 °C). Bacteria were lysed in 20 ml of lysis buffer (20 mM Tris-HCl, pH7.5, 250 mM NaCl, 1 mM EDTA, 0.05% Triton X-100, 10 μg ml⁻¹ lysozyme) and centrifuged (48,000g, 20 min, 4 °C). Purification was carried out with the ÄKTAprime system (Amersham-Biosciences). Supernatant was loaded into a GST-Trap HP 5 ml column (GE Healthcare) equilibrated in 20 mM sodium phosphate, pH7.3, 0.15 M NaCl. Elution was performed at a rate of 1 ml min⁻¹ with 50 mM Tris-HCl, pH8, 10 mM reduced glutathione. Cleavage of the GST Tag located at the N-terminal region of the fusion protein was performed with 10 units mg^{-1} of recombinant thrombin protein (Sigma T68884) by incubation for 16 h at 4 °C. The sample was then concentrated on an Amicon Ultra 30 K filter (Millipore) by centrifugation (4000g, 4 °C).

2.5. Quantitative real-time PCR (qPCR)

Total RNA from cells and tissues was isolated using RNeasy midi kit (Qiagen). Synthesis of cDNA was performed with the High Capacity cDNA Archive Kit (Applied Biosystems) to convert 2 µg of total RNA into single-stranded cDNA. Real-time PCR was performed in triplicate using 50 ng of cDNA. Relative amounts of transcripts were determined using Taqman probes specific for *Gasp-2* (Mm01308311_m1), $\beta 2m$ (Mm00437762_m1), *Dffa* (Mm00507317) and *MyoG* (Mm00446194_m1), on an ABI PRISM© 7900 System. Relative mRNA expression values were calculated by the $\Delta\Delta$ Ct method with normalization of each sample to the average change in cycle threshold (Ct) value of the controls. For all analyses, three independent experiments have been performed, each assay corresponding to 3 wells /condition/ probe.

2.6. Proliferation assay

Three independent experiments have been carried out. Each experiment corresponds to the analysis of 12 wells with 2000 cells/well at t=0 h. The CellTiter 96[®] AQueous One Solution Cell Proliferation Assay (Promega) was used to evaluate the cell proliferation during 72 h. 20 μ l de MTS solution was added to the cells for 3 h and absorbance at 490 nm was then recorded with a 96-well plate reader.

2.7. Fusion index

The fusion index corresponds to the proportion of nuclei present within myotubes that contain two or more nuclei. Cells were washed with phosphate-buffered saline (PBS) and fixed with 4% paraformaldehyde (PFA) in PBS for 15 min. The fusion index was analyzed after hematoxylin and eosin (H&E) staining.

2.8. Lentiviral-mediated knockdown of Gasp-2

Individual shRNA constructs specifically designed to target the *Gasp-2* were purchased from Sigma Aldrich (Gasp-2_sh1: XM_128578.3-784s1c1; Gasp-2_sh2: XM_128578.3-500s1c1). Lentiviral particles, consisting of the shRNA transfer vector PLKO.1puro (which contains the sequence of shRNA as well as the cis acting sequences necessary for RNA production and packaging) and the mission lentiviral packaging (Sigma Aldrich). Mission lentiviral particles were generated from different components. The packaging vector contains the minimal set of lentiviral genes required to generate the virion structural proteins and packaging functions. The pCMV-VSV-G envelope vector provides the envelope vector for pseudo-typing. The PLKO.1-puro Gasp-2 shRNA or empty pLKO.1 and pCMV-VSVG vectors were transfected into HEK293Tcells using a Lipofectamine 2000 reagent (Invitrogen) following the manufacturer's instructions. Briefly, HEK293T cells were grown in GM at 70-80% confluence and were transfected with 1 µg of plasmid PLKO.1-puro with the mission lentiviral packaging mix. After 16 h of transfection, the medium was replaced with fresh GM and cells were incubated for a further 60 h. The supernatant was then collected as a source of viral particles. C2C12 myoblasts were infected with lentivirus-containing media for 24 h and selected with 2 μ g ml⁻¹ puromycin.

2.9. SDS-page and western blot analyses

Cells and tissues were collected in lysis buffer (50 mM Tris, pH8, 150 mM NaCl, 0.1% SDS, 1% NP-40, 0.5% sodium deoxycholate, and protease inhibitors) followed by centrifugation at 12,000 g, 20 min, 4 °C. Protein quantification was performed with a Bradford assay. Proteins were separated under denaturing conditions into a

10% SDS-polyacrylamide gel before being transferred during 1.5 h at 40 mA to a nitrocellulose membrane. Membranes were blocked in TBS (Tris-Buffered Saline) with 0.1% Tween 20% and 5% non-fat dry milk. Membranes were incubated overnight with a monoclonal mouse CDK2 (1:500, sc-6248, Santa Cruz), a mouse monoclonal p21 (1:400, sc-53870, Santa Cruz), a goat polyclonal SMAD2/3 (1:2000, AF3797, R&D Systems), a polyclonal rabbit phospho-SMAD3 (1:500, AB3226, R&D Systems), a polyclonal goat GASP-2 (1:1000, AF2136, R&D Systems), a polyclonal mouse MyHC (Myosin Heavy Chain, 1:4000, M4276, Sigma Aldrich) and polyclonal goat anti-mouse GAPDH antibody. (1:2000, AF5718, R&D Systems) diluted in 2% non-fat dry milk. After 4 washes in TBS-Tween 0.1% (v/v), membranes were incubated for 1 h at room temperature with 1:1000 dilution of secondary antibodies: antigoat IgG horse-radish peroxidase (HRP) conjugate (P0449, Dako), anti-mouse IgG HRP conjugate (P0447, Dako) or anti-rabbit IgG HRP conjugate (P0399, Dako). After 4 more washes in TBS-Tween 0.1% (v/v), immunoblots were developed by enhanced chemiluminescence. The films were analyzed using ImageQuant TL software (GE Healthcare).

2.10. Glycosylation analysis

N-deglycosylation: 250 ng of purified proteins were denatured at 95 °C for 10 min in 10 mM potassium phosphate and 0.2% SDS. The samples were then incubated overnight at 37 °C in a buffer (10 mM potassium phosphate, pH8, 10 mM EDTA, 0.5% Triton X-100, 0.2% SDS, 1% β -mercaptoethanol) containing 0.1–1 U of PNGase F (Roche Applied Science).

O-deglycosylation: The O-deglycosylation was performed with the EDEGLY kit (Sigma-Aldrich).

250 ng of purified proteins were denatured at 100 °C for 5 min in 2.5 µl of denaturation solution (Sigma-Aldrich) and 10 µl of reaction buffer 5X. Samples were incubated overnight at 37 °C with 1 µl of each enzyme (PNGase F, O-Glycosidase, α -(2 → 3,6,8,9)-Neuraminidase, β -N-Acetylglucosaminidase, β -(1 → 4)-Galactosidase).

3. Results

3.1. GASP-2 regulates myogenesis

To study the role of GASP-2 in myogenesis, we treated C2C12 myoblasts cells with 1 µg ml⁻¹ of hGASP-2 protein. Cell proliferation assay showed that hGASP-2 treatment improves significatively myoblast proliferation rate compared to control cells (29% at 48 h; 46% at 72 h) (Fig. 1A). We also analyzed the expression of cyclin-dependent kinase 2 (CDK2) that positively regulates cell-cycle progression. Western blot analyses showed an increase of CDK2 in C2C12 myoblasts treated with hGASP-2 compared to the control, consistent with an increased proliferation rate, while p21 expression, a cyclin-dependent kinase inhibitor (CKI), decreases in treated myoblasts (Fig. 1B-D). These results revealed that hGASP-2 treatment promotes cell-cycle progression. To determine whether the increase of C2C12 proliferation rate in presence of hGASP-2 was due to an inhibition of myostatin (MSTN), we evaluated the phospho-SMAD3 (pSMAD3) levels of C2C12 cells treated with MSTN and/or hGASP-2 (Fig. 1E-F). As expected C2C12 myoblasts treatment with MSTN leads to an increase of the pSMAD3 rate compared to the untreated myoblasts. However, hGASP-2 treatment decreases the pSMAD3 signal confirming that hGASP-2 inhibits the MSTN pathway. No change was shown in the total SMAD2/3 rates (Fig. 1E).

Then, we analyzed the effect of *Gasp-2* during C2C12 myoblast differentiation. We transiently transfected the C2C12 cells with a

vector containing the Gasp-2 cDNA sequence. Myoblast differentiation was assessed with two clones, Cl1 and Cl2 that overexpress Gasp-2 about 250 times and 80 times respectively (Fig. 2A). Cl2 presents an increase of 15% of myotube formation in 72 h and 17% at 96 h (Fig. 2B). Fusion index is also significantly increased in Cl1 at 96 h compared to C2C12 and control cells (Fig. 2B). No variation in myotubes size was observed in both clones. Consistent with the increase of C2C12 differentiation, myogenin expression, a Myogenic Regulatory Factor (MRF) required for myoblast differentiation, was up-regulated 10 times at 24 h and 48 h of differentiation in the Cl2 myotubes when compared to the control cells (Fig. 2C). *Myogenin* expression was also slightly up-regulated in Cl1 compared to control cells (Fig. 2C). Differences in transcript levels of Gasp-2 in both clones (Fig. 2A) and the observed Gasp-2 overexpression effect on differentiation (Fig. 2B and C) suggests that there is no dose-dependent consequence on cell differentiation.

In addition, we generated cell lines that underexpress Gasp-2 using two different lentivirus based-shRNA. These cell lines were named KD1 and KD2. Subsequent gPCR analyses revealed a significant reduction of Gasp-2 expression in both cell lines, around 60% for KD1 and 65% for KD2 (Fig. 3A). Next, we assessed proliferation and differentiation of both clones. KD1 and KD2 cell lines present a reduced myoblast proliferation as the number of myoblasts is significantly decreased after 48 h of culture (Fig. 3B). Furthermore, Gasp-2 knockdown also leads to a decreased differentiation (Fig. 3C). Indeed, the fusion index of both clones is decreased about 40% at 72 h and 60% at 96 h compared to the fusion index of C2C12 and control cells (Fig. 3C). No variation in myotubes size was observed in both clones. Myogenin expression is also down-regulated by 50% at 72 h and 96 h of differentiation in both Gasp-2 knockdown clones (Fig. 3D). Finally, we also observed a global decrease of MvHC expression and a global decrease of p21 (a cyclin-dependent kinase inhibitor) in KD1 cell lines compared to the control cells (Fig. 4A-C). Same results were observed in KD2 cell lines (data not shown). All these results correlated with an impairment of differentiation when Gasp-2 is down-regulated. Taken together, these data suggest that Gasp-2 plays an important role during the normal progression of myogenesis, specifically through regulation of both myoblast proliferation and differentiation.

3.2. In silico analysis of potential glycosylation sites of murine GASP-2

In silico analysis of GASP-2 with the NetNGlyc Server revealed one consensus *N*-glycosylation site at asparagine N497. The NetOGlyc Server allowed us to highlight 6 serine or threonine, S170, S171, T177, T178, T182, T206 with a mucin-type *O*-glycosylation potential higher than the threshold. All were located between the Follistatin/Kazal and the Igc2 domains except for T206 located in the Igc2 domains (Fig. S1).

To examine the conservation of these glycosylation sites, an alignment of GASP-2 primary sequences from 30 vertebrates was performed and represented as a logo. The logo indicated that the potential *N*-glycosylation site, N497, was highly conserved, correlating with the NetNGlyc result. In addition, all the potential *O*-glycosylation sites seemed conserved among vertebrates (Fig. S1).

3.3. In vitro validation of hGASP-2 state of glycosylation

We first investigated the glycosylation state of the human recombinant protein GASP-2 by enzymatic digestions. Western analyses after *N*-deglycosylation by PNGase F revealed that hGASP-2 migrated faster than the untreated protein but the observed molecular weight was still higher than the predicted one (Fig. 5).

Fig. 1. Enhancement of C2C12 cells proliferation by GASP-2 overexpression. (A) Proliferation analysis of C2C12 cells cultured for 72 h and treated in the absence (PBS) or presence of $1 \,\mu\text{g} \,\text{ml}^{-1}$ of hGASP-2 as measured by formazan assay. Each point corresponds to the mean \pm S.D. of three independent experiments. (B-D) Total proteins extracted from C2C12 treated with PBS orhGASP-2 ($1 \,\mu\text{g} \,\text{ml}^{-1}$) were resolved by SDS-PAGE. Membranes were immunoblotted with specific anti-CDK2 and anti-p21 antibodies. (E-F) Total proteins extracted from C2C12 treated with MSTN (250 ng ml⁻¹) and/or hGASP-2 ($1 \,\mu\text{g} \,\text{ml}^{-1}$) were resolved by SDS-PAGE. Membranes were isometod by SDS-PAGE. Membranes were immunoblotted with specific anti-CDK2 and anti-p21 antibodies. (E-F) Total proteins extracted from C2C12 treated with MSTN (250 ng ml⁻¹) and/or hGASP-2 ($1 \,\mu\text{g} \,\text{ml}^{-1}$) were resolved by SDS-PAGE. Membranes were immunoblotted with specific anti-GAPDH antibodies to show equal loading. The graphs were obtained using Image J software to quantify CDK2, p21, pSMAD3 and SMAD2/3 signals normalized with GAPDH signals of three different experiments.

PNGase F treatment was completed by four other enzymes (O-Glycosidase, α -(2 \rightarrow 3,6,8,9)-Neuraminidase, β -N-Acetylglucosaminidase, β -(1 \rightarrow 4)-Galactosidase) to remove the mucin-type Oglycans. This treatment allowed hGASP-2 to migrate at approximately 55 kDa, corresponding to its predicted molecular weight without post-translational modifications. This result confirmed that GASP-2 is *N*- and O-glycosylated and suggested that these glycosylations are the main post-translational modifications of GASP-2.

3.4. Fully deglycosylated GASP-2 protein can inhibit myostatin

To determine whether the *N*- and *O*-glycosylation is required for GASP-2 to inhibit myostatin, we produced and purified the murine GASP-2 in a prokaryotic system to obtain a recombinant protein without glycosylation. We then tested the activity of the deglycosylated GASP-2 on C2C12 myoblasts. C2C12 proliferation is increased in the presence of 1 μ g ml⁻¹ deglyco-mGASP-2 (Fig. 6). This increase of the proliferation rate was comparable with the

Fig. 2. Enhancement of C2C12 cells differentiation by GASP-2 overexpression. (A) qPCR analysis of *Gasp-2* expression in C2C12 transfected with pcDNA3.1-*Gasp-2* (Cl1 and Cl2) or pcDNA3.1-empty (pControl). Each histogram corresponds to the mean \pm S.D. of three independent experiments. The graph represents fold change normalized to *Dffa* and *β2m* expression.(B) Quantification of fusion index C2C12 myotubes transfected with pcDNA3.1-*Gasp-2* (Cl1 and Cl2) or pcDNA3.1-empty (pControl) and cultured for 96 h of differentiation. Each point corresponds to the mean \pm S.D. of three experiments. (C) qPCR analysis of *Myogenin* expression during 96 h of differentiation in C2C12 myotubes transfected with pcDNA3.1-*Gasp-2* (Cl1 and Cl2) or pcDNA3.1-empty (pControl). Each point corresponds to the mean \pm S.D. of three experiments. (C) qPCR analysis of *Myogenin* expression during 96 h of differentiation in C2C12 myotubes transfected with pcDNA3.1-*Gasp-2* (Cl1 and Cl2) or pcDNA3.1-empty (pControl). Each point corresponds to the mean \pm S.D. of three experiments. (C) qPCR analysis of *Myogenin* expression during 96 h of differentiation in C2C12 myotubes transfected with pcDNA3.1-*Gasp-2* (Cl1 and Cl2) or pcDNA3.1-empty (pControl). Each point corresponds to the mean \pm S.D. of three experiments. The graph represents fold change normalized to *Dffa* and *β2m*. Statistical significance was determined using a *t*-test analysis. *: p < 0.05; **: p < 0.01; ***: p value < 0.005.

one observed after the treatment of the fully glycosylated commercial hGASP-2 (Fig. 6).

4. Discussion

In this work, we investigated the function of GASP-2 during myogenesis and the importance of glycosylation on its protein activity. Although GASP-2 was shown to interact in vitro with myostatin [8,9], no data are available concerning the effect of this interaction in a muscular context. A recent study showed that knock-out Gasp-1^{-/-} or Gasp2^{-/-} mice, present a muscular atrophy from 8 months of age and defects in muscle regeneration [17]. strongly suggesting an involvement of GASP-2 in myostatin regulation during muscle development. To get a better understanding on GASP-2 functions at cellular and molecular levels, we treated C2C12 cells with either GASP-2 as recombinant proteins or viral particles containing several specific shRNAs against Gasp-2. We showed here for the first time that GASP-2, like its paralogue GASP-1, promotes the proliferation and the differentiation of myoblasts by the inhibition of the myostatin canonical pathway [14,18,19]. No significant differences were observed on the development of myoblasts treated with GASP-1 or GASP-2 (data not shown). These data are consistent with the phenotypes described in Gasp-1 and Gasp-2 knock-out mice, even if the atrophy is less pronounced in *Gasp-2^{-/-}*mice [17]. This could suggest that GASPs are equally involved in muscle development and have a functional redundancy. Therefore, it would be interesting to analyze *Gasp-1* and *Gasp-2* gene expression levels in *Gasp2^{-/-}* and *Gasp-1^{-/-}* mice respectively. In addition, double knock-out *Gasp1^{-/-}*; *Gasp2^{-/-}* mice analyses would confirm the involvement of these genes during muscle development. In addition to redundancy between GASP-1 and GASP-2, some studies have reported around myostatin and GDF11 redundancy by characterizing double knock-out *Mstn^{-/-}*; *Gdf11^{-/-}* [20–22]. These mice present only severe axial skeletal defects but no abnormality of skeletal muscle as *Gdf-11^{-/-}* single mice [20]. All these data suggested no function of GDF-11 in muscle development. Although GASP-2 can inhibit both myostatin and GDF-11, the effects on myogenesis that we observed should be the result of myostatin regulation [17].

We further investigated the structure/function relationship of GASP-2 during its interaction with myostatin. Particularly we focused our study on how GASP-2 glycosylation may influence the interaction between the two proteins and the inhibition function of GASP-2. The two main forms of glycosylation found on secreted glycoproteins are the *N*-glycans and the mucin-type *O*-glycans. Thus, we first identified by *in silico* analyses the potential sites where GASP-2 could be glycosylated. We determined that GASP-2 sequence present a single consensus sequence for *N*-glycosylation localized in the Netrin domain, that we have later found occupied, and six potential sites of *O*-glycosylation between the Follistatin/ Kazal and the IgC2 domains. Although we are able to prove the presence of mucin-type *O*-glycans on GASP-2, we cannot determine their exact number and position on the protein. In the aim

Fig. 3. Inhibition of C2C12 cells proliferation and differentiation by *Gasp-2* knockdown. (A) qPCR analysis of *mGasp-2* transcriptional expression in C2C12 cells infected with lentivirus containing either empty shRNA (pControl) or shRNAs (KD1 and KD2) designed to specifically target and repress *mGasp-2*. Each histogram corresponds to the mean \pm S.D. of three independent experiments. The graph represents fold change normalized to *Dffa* and $\beta 2m$. (B) Proliferation analysis of C2C12 cells cultured for 48 h not infected or infected with lentivirus containing either empty shRNA (pControl) or shRNAs (KD1 and KD2) as measured by formazan assay. Each histogram corresponds to the mean \pm S.D. of three independent experiments. (C) Quantification of fusion index C2C12 myotubes infected with lentivirus containing either empty shRNA (pControl) or shRNAs (KD1 and KD2) as measured by formazan assay. Each histogram corresponds to the mean \pm S.D. of three independent experiments. (C) Quantification of fusion index C2C12 myotubes infected with lentivirus containing either empty shRNA (pControl) or shRNAs (KD1 and KD2) and cultured for 96 h of differentiation. Each point corresponds to the mean \pm S.D. of three experiments. (D) qPCR analysis of *Myogenin* expression during 96 h of differentiation in C2C12 myotubes infected with lentivirus containing either empty shRNA (pControl) or shRNAs (KD1 and KD2). Each point corresponds to the mean \pm S.D. of three independent experiments. The graph represents fold change normalized to *Dffa* and $\beta 2m$. Statistical significance was determined using a *t*-test analysis. *: p < 0.05; **: p < 0.05; **: p < 0.05.

of providing us a tool to analyze the effect of a fully deglycosylated protein, we decided to produce mGASP-2 in a bacterial system. C2C12 cells treated with deglyco-mGASP-2 did not present any difference in their proliferation compared to cells treated with the fully glycosylated hGASP-2. Nevertheless, we cannot exclude differences in effectiveness with lower protein concentration. Like its paralogue GASP-1, our result seems to prove that glycosylation is not necessary on GASP-2 inhibitor function of myostatin actions. Furthermore, the *N*-glycosylation could play a role in GASP-2 secretion like it was shown for GASP-1 [19].

We previously reported that the *N*-glycan site in the Netrin domain and the localization of the *O*-glycans sites are particularly well conserved among mammals and between the two GASPs [5]. This high degree of conservation tends to indicate that these glycans may play a role in other GASPs biological activities. As the Netrin domain is known to interact with myostatin propeptide, the *N*-glycosylation could modulate this interaction and help to maintain myostatin in its latent complex form [6,10,23]. An interaction test between the propeptide and the deglycosylated form of GASP-2 will help to confirm this hypothesis. It is well known that *O*-glycans participate in the tridimensional structure [24]. In a muscular context, their presence near the Follistatin/Kazal domain may modulate the interaction with myostatin. Moreover, mucintype *O*-glycans were shown to protect proteins against proteolysis [25]. During the interaction between GASPs and myostatin latent

complex, their presence may prevent the propeptide degradation and myostatin activation by hiding the cleavage site of the propeptide from BMP-1/Tolloid family [26].

In addition to skeletal muscle, GASPs proteins present a wide tissular expression pattern including kidney, ovary, testis, lung, brain and are highly expressed in pancreas [4]. This latter organ secrets large amount of digestive enzymes, such as trypsin, elastase and chymotrypsin, known to be targets of protease inhibitors. While only an antitrypsin activity of GASPs second Kunitz domain has been described, 3D structure studies indicate that trypsin is not the prime target of this domain [8,23,27], suggesting that most relevant proteases remain to be identified. The role of GASP glycosylation in this context should be explored.

5. Conclusions

This structure-function relationship study of GASP-2 demonstrates for the first time its effect on the myostatin signaling pathway during myogenesis. We also show that the lack of any type of glycosylation does not seem to affect its inhibitory role of myostatin actions. Nevertheless, these glycans structures could be involved in other GASP-2 biological activities and need to be investigated in the future.

Fig. 4. Expression of MyHC and p21 in *Gasp-2* knockdown cells. (A) Immunoblot analysis of MyHC and p21 from 0 h to 96 h of differentiation C2C12 myotubes infected with lentivirus containing either empty shRNA (pControl) or shRNAs (KD1). (B-C) Nitrocellulose membranes were also probed with anti-GAPDH antibodies to show equal loading. The graphs were obtained using Image J software to quantify MyHC and p21 normalized with GAPDH signals of three different experiments. Statistical significance was determined using a *t*-test analysis. *: p < 0.05; **: p < 0.01; **: p < 0.005.

Fig. 5. Characterization of the glycosylation state of hGASP-2 protein. Glycosylated (lane 1), *N*-deglycosylated (lane 3); *N*- and *O*-deglycosylated hGASP-2 protein were detected by Western blot with specific anti-GASP-2 antibody (1:1000).

Acknowledgments

This work was supported by the French National Institute of Agricultural Research (INRA) and by the Limousin Regional Council. LP was supported by a Ph.D. fellowship from INRA/Region

Fig. 6. Effects of deglycosylated mGASP-2 on C2C12 myoblast proliferation. Proliferation analysis of C2C12 cells in the absence (PBS) or presence of the murine deglycosylated GASP-2 protein (deglyco-mGASP-2, produced in *E.coli*) cultured for 72 h as measured by formazan assay. Each point corresponds to the mean \pm S.D. of three independent experiments. Statistical significance was determined using a *t*-test analysis. **:*p* < 0.01; ***: *p* < 0.005.

Limousin. We thank Pr. Fabrice Lalloué for his help during some of the experiments. The authors thank Dr. Benoît Laporte for his critical reading of the manuscript.

Appendix A. Transparency document

Transparency document associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.bbrep. 2016.03.001.

References

- A.C. McPherron, A.M. Lawler, S.J. Lee, Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member, Nature 387 (1997) 83–90, http: //dx.doi.org/10.1038/387083a0.
- [2] S.-J. Lee, Regulation of muscle mass by myostatin, Annu. Rev. Cell Dev. Biol. 20 (2004) 61–86, http://dx.doi.org/10.1146/annurev.cellbio.20.012103.135836.
- [3] M. Trexler, L. Bányai, L. Patthy, A human protein containing multiple types of protease-inhibitory modules, Proc. Natl. Acad. Sci. USA 98 (2001) 3705–3709, http://dx.doi.org/10.1073/pnas.061028398.
- [4] M. Trexler, L. Bányai, L. Patthy, Distinct expression pattern of two related human proteins containing multiple types of protease-inhibitory modules, Biol. Chem. 383 (2002) 223–228, http://dx.doi.org/10.1515/BC.2002.023.
- [5] O. Monestier, C. Brun, O. Cocquempot, D. Petit, V. Blanquet, GASP/WFIKKN proteins: evolutionary aspects of their functions, PLoS ONE 7 (2012) e43710, http://dx.doi.org/10.1371/journal.pone.0043710.
- [6] J.J. Hill, Regulation of myostatin in vivo by growth and differentiation factorassociated serum protein-1: a novel protein with protease inhibitor and follistatin domains, Mol. Endocrinol. 17 (2003) 1144–1154, http://dx.doi.org/ 10.1210/me.2002-0366.
- [7] D.J. Phillips, D.M. de Kretser, Follistatin: a multifunctional regulatory protein, Front. Neuroendocrinol. 19 (1998) 287–322, http://dx.doi.org/10.1006/ frne.1998.0169.
- [8] K. Kondas, G. Szlama, M. Trexler, L. Patthy, Both WFIKKN1 and WFIKKN2 have high affinity for growth and differentiation factors 8 and 11, J. Biol. Chem. 283 (2008) 23677–23684, http://dx.doi.org/10.1074/jbc.M803025200.
- [9] R.G. Walker, E.B. Angerman, C. Kattamuri, Y.-S. Lee, S.-J. Lee, T.B. Thompson, Alternative binding Modes identified for growth and differentiation factorassociated serum protein (GASP) family antagonism of myostatin, J. Biol. Chem. 290 (2015) 7506–7516, http://dx.doi.org/10.1074/jbc.M114.624130.
- [10] M. Thomas, Myostatin, a negative regulator of muscle growth, functions by inhibiting myoblast proliferation, J. Biol. Chem. 275 (2000) 40235–40243, http://dx.doi.org/10.1074/jbc.M004356200.
- [11] H. Amthor, G. Nicholas, I. McKinnell, C.F. Kemp, M. Sharma, R. Kambadur, et al., Follistatin complexes myostatin and antagonises myostatin-mediated inhibition of myogenesis, Dev. Biol. 270 (2004) 19–30, http://dx.doi.org/10.1016/j. ydbio.2004.01.046.
- [12] S.J. Lee, Extracellular regulation of myostatin: a molecular rheostat for muscle mass, Immunol. Endocr. Metab. Agents Med. Chem. 10 (2010) 183.
- [13] O. Monestier, C. Brun, K. Heu, B. Passet, M. Malhouroux, L. Magnol, et al., Ubiquitous Gasp1 overexpression in mice leads mainly to a hypermuscular phenotype, BMC Genom. 13 (2012) 541, http://dx.doi.org/10.1186/ 1471-2164-13-541.
- [14] C. Brun, L. Périé, F. Baraige, B. Vernus, A. Bonnieu, V. Blanquet, Absence of hyperplasia in *Gasp-1* overexpressing mice is dependent on myostatin upregulation, Cell. Physiol. Biochem. 34 (2014) 1241–1259, http://dx.doi.org/ 10.1159/000366335.
- [15] D. Yaffe, O. Saxel, Serial passaging and differentiation of myogenic cells isolated from dystrophic mouse muscle, Nature 270 (1977) 725–727.

- [16] K. Julenius, A. Mølgaard, R. Gupta, S. Brunak, Prediction, conservation analysis, and structural characterization of mammalian mucin-type O-glycosylation sites, Glycobiology 15 (2005) 153–164, http://dx.doi.org/10.1093/glycob/ cwh151.
- [17] Y.-S. Lee, S.-J. Lee, Regulation of GDF-11 and myostatin activity by GASP-1 and GASP-2, Proc. Natl. Acad. Sci. USA 110 (2013) E3713–E3722, http://dx.doi.org/ 10.1073/pnas.1309907110.
- [18] S. Bonala, S. Lokireddy, H. Arigela, S. Teng, W. Wahli, M. Sharma, et al., Peroxisome proliferator-activated receptor β/δ induces myogenesis by modulating myostatin activity, J. Biol. Chem. 287 (2012) 12935–12951, http://dx.doi. org/10.1074/jbc.M111.319145.
- [19] C. Brun, O. Monestier, S. Legardinier, A. Maftah, V. Blanquet, Murine GASP-1 N-glycosylation is not essential for its activity on C2C12 myogenic cells but alters its secretion, Cell. Physiol. Biochem. 30 (2012) 791–804, http://dx.doi. org/10.1159/000341458.
- [20] A.C. McPherron, T.V. Huynh, S.-J. Lee, Redundancy of Myostatin and growth/ differentiation factor 11 function, BMC Dev. Biol. 9 (2009) 24, http://dx.doi. org/10.1186/1471-213X-9-24.
- [21] C.E. Brun, M.A. Rudnicki, GDF11 and the mythical fountain of youth, Cell Metab. 22 (2015) 54–56, http://dx.doi.org/10.1016/j.cmet.2015.05.009.
- [22] M.A. Egerman, S.M. Cadena, J.A. Gilbert, A. Meyer, H.N. Nelson, S.E. Swalley, et al., GDF11 increases with age and inhibits skeletal muscle regeneration, Cell Metab. 22 (2015) 164–174, http://dx.doi.org/10.1016/j.cmet.2015.05.010.
- [23] K. Kondás, G. Szláma, A. Nagy, M. Trexler, L. Patthy, Biological functions of the WAP domain-containing multidomain proteins WFIKKN1 and WFIKKN2, Biochem. Soc. Trans. 39 (2011) 1416–1420, http://dx.doi.org/10.1042/ BST0391416.
- [24] T.A. Gerken, K.J. Butenhof, R. Shogren, Effects of glycosylation on the conformation and dynamics of O-linked glycoproteins: carbon-13 NMR studies of ovine submaxillary mucin, Biochemistry 28 (1989) 5536–5543.
- [25] A.G. Semenov, A.B. Postnikov, N.N. Tamm, K.R. Seferian, N.S. Karpova, M. N. Bloshchitsyna, et al., Processing of pro-brain Natriuretic peptide is suppressed by O-glycosylation in the region close to the cleavage site, Clin. Chem. 55 (2009) 489–498, http://dx.doi.org/10.1373/clinchem.2008.113373.
- [26] N.M. Wolfman, A.C. McPherron, W.N. Pappano, M.V. Davies, K. Song, K.N. Tomkinson, J.F. Wright, L. Zhao, S.M. Sebald, D.S. Greenspan, S.J. Lee, Activation of latent myostatin by the BMP-1/tolloid family of metalloproteinases, Proc. Natl. Acad. Sci. USA 100 (2003) 15842–15846.
- [27] E. Liepinsh, A. Nagy, M. Trexler, L. Patthy, G. Otting, Second kunitz-type protease inhibitor domain of the human WFIKKN1 Protein, J. Biomol. NMR 35 (2006) 73–78, http://dx.doi.org/10.1007/s10858-006-9013-1.

Dans cette deuxième partie, nous avons cherché à définir l'impact de GASP-2 au cours de la myogenèse et évaluer l'importance de la glycosylation sur son activité antimyostatine. Bien qu'il ait été démontré que GASP-2 interagit *in vitro* avec la myostatine, aucune donnée n'était disponible concernant l'effet de cette interaction dans un contexte musculaire. Seule, une étude réalisée en 2013 rapportait que les souris *Gasp-2^{-/-}* présentent une atrophie musculaire à partir de 8 mois (Lee and Lee, 2013).

Nous avons entrepris l'analyse cellulaire et moléculaire de l'effet de la surexpression *versus* la sous-expression de *Gasp-2* en utilisant le modèle cellulaire C2C12, qui mime les grandes étapes de la myogenèse. Afin d'obtenir des résultats optimaux, reproductibles et fiables, nous avons testé plusieurs conditions de transfection. Nous avons alors choisi d'établir des lignées surexprimant *Gasp-2* par lipofection ainsi que des lignées sous-exprimant *Gasp-2* par transfection de shRNA *via* lentivirus. Les lentivirus recombinants sont des outils particulièrement efficaces pour le transfert de gènes. Afin d'éviter la répétition de transfections transitoires, nous avons fait le choix d'établir des lignées stables, par pression de sélection, afin d'étudier l'impact de GASP-2 sur les phases de prolifération et de différenciation des cellules C2C12 (jusqu'à 144h de culture).

Nous montrons ici, pour la première fois, que GASP-2, comme sa protéine paralogue GASP-1, favorise la prolifération et la différenciation des myoblastes par inhibition de la voie canonique de la myostatine. En effet, la surexpression de *Gasp-2* induit une augmentation de la prolifération et de la différenciation/fusion des myoblastes C2C12 en inhibant la voie de signalisation SMAD2/3 de la myostatine. Au contraire, l'extinction de *Gasp-2* par shRNA, provoque une diminution de la prolifération/différenciation des cellules musculaires. L'ensemble de ces travaux démontre que GASP-2 favorise la prolifération et la différenciation des myoblastes en inhibant la voie canonique de la myostatine. Même si des études antérieures indiquaient que GASP-1 semble plus affine que GASP-2 pour la myostatine, dans notre étude, aucune différence significative n'est observée lors de la surexpression de GASP-1 ou de GASP-2. La protéine GASP-2 se présente ainsi comme un cible thérapeutique potentielle aussi intéressante que GASP-1.

Dans la deuxième partie de ce travail, nous nous sommes intéressés à déterminer l'impact de la glycosylation de GASP-2 sur son rôle anti-myostatine. Les principales formes de glycosylation des glycoprotéines sécrétées sont les N-glycanes et les O-glycanes de type mucine. Nos analyses *in silico* ont mis en évidence la présence d'une seule séquence consensuelle de N-glycosylation localisée dans le domaine « nétrine » et de 6 sites potentiels de O-glycosylation entre les domaines Follistatin/Kazal et IgC2. L'ensemble de ces modifications post-traductionnelles pourrait jouer un rôle dans l'activité anti-myostatine

de GASP-2 puisqu'elles sont placées dans les domaines « follistatine » et « Nétrine » responsables respectivement des interactions avec la myostatine et le complexe latent (Pour rappel, **Figure 17**).

Cette étude a nécessité la production préalable de GASP-2 sous forme de protéine recombinante. Si les systèmes bactériens représentent encore les moyens de production les moins onéreux et les plus faciles à mettre en œuvre, avec l'essor du génie génétique et le développement des technologies de cultures cellulaires à grande échelle, nous disposons aujourd'hui de nombreux systèmes d'expression cellule hôte/vecteur dont le choix dépend de différents critères tels que : i) les modifications post-traductionnelles que la protéine doit subir pour acquérir sa fonctionnalité biologique. Bien qu'il existe, depuis quelques années, la possibilité de modifier génétique ment la bactérie pour qu'elle réalise la glycosylation des protéines recombinantes, les protéines glycosylées sont souvent produites dans le compartiment extra-cytoplasmique de systèmes d'expression eucaryotes telles que la levure (Gerngross, 2004), les cellules animales (Wurm, 2004) ou végétales (Hellwig *et al.*, 2004). ii) le ou les compartiment(s) cellulaire(s) dans lesquels la protéine d'intérêt est produite ou exerce son activité biologique. En effet, la localisation de la protéine orientera le choix du vecteur qui devra posséder les séquences spécifiques permettant un adressage correct de la protéine.

Ainsi, afin de vérifier si les sites de glycosylation sont occupés, nous avons choisi de produire la protéine murine mGASP-2 sécrétée dans un système eucaryote, les cellules COS-7, afin de conserver un état de glycosylation proche de son état *in vivo*. Après production, la protéine recombinante est purifiée par chromatographie d'affinité grâce à son étiquette poly-histidine localisée du coté N-terminal. Un traitement à la PNGase F, clivant la liaison entre l'atome d'azote de l'asparagine et le N-glycane, montre que la protéine GASP-2 possède bien un résidu N-glycanique. Il n'existe cependant aucune enzyme qui permette l'élimination totale des O-glycanes. L'utilisation de 4 glycosidases (la O-Glycosidase, la β (1-4)-Galactosidase, la β -N-acetylglucosaminidase et la Neuraminidase A) nous a permis d'éliminer la totalité des résidus O-glycanes. La protéine GASP-2 possède donc plusieurs sites de O-glycosylation occupés. Les cellules C2C12 traitées avec la protéine GASP-2 recombinante entièrement glycosylée entraîne, à l'instar de sa surexpression, une augmentation de la prolifération et de la différenciation des cellules C2C12.

Afin de déterminer si ces modifications post-traductionnelles ont un impact sur l'activité de GASP-2, nous avons décidé de produire la protéine murine recombinante dans un système bactérien, incapable de réaliser ce type de modifications post-traductionnelles et de tester alors son activité anti-myostatine.

En plus de sa facilité et de son faible coût d'utilisation, ce système présente souvent l'avantage de permettre la production de grandes quantités de la protéine d'intérêt. Le système procaryote BL21/pGEX4T-1 choisi a permis de produire la protéine GASP-2 recombinante sous la forme d'une protéine de fusion avec une étiquette GST en position Nterminale permettant une purification partielle mais suffisante par chromatographie d'affinité. Cette étiquette est ensuite éliminée par un clivage à la thrombine. Lors des premiers tests de production, réalisés dans des conditions standard de température de croissance et de concentration en inducteur (IPTG), la protéine GASP-2 a été retrouvée majoritairement dans la fraction insoluble indiquant ainsi que la protéine est produite non pas dans son état natif mais qu'elle s'agrège sous forme de corps d'inclusion laissant supposer son inactivité biologique. Les corps d'inclusion correspondent à l'agrégation de protéines ayant adopté des conformations partiellement repliées ou instables. Les protéines produites sous forme de corps d'inclusion sont souvent inactives biologiquement. Nous avons alors déterminé les différents paramètres de culture qui optimisent l'expression et le bon repliement des protéines recombinantes. De façon générale, un abaissement de la température diminue la vitesse d'agrégation et favorise le repliement correct. De la même manière, la diminution de la concentration de l'inducteur abaisse le niveau de transcription de l'ADNc d'intérêt. La protéine recombinante est certes produite en plus faible quantité mais la proportion présente dans la fraction soluble est plus importante. Pour notre étude, l'optimisation de ces différents paramètres (abaissement de la température de 37 à 20°C et diminution de la concentration d'IPTG de 1 à 0,025 mM) nous a permis d'obtenir des quantités de GASP-2 soluble compatibles pour la poursuite de nos travaux.

Les cellules C2C12 traitées avec la protéine « deglyco-GASP-2 » présentent une augmentation de la prolifération et de la différenciation similaires à celle retrouvé lors d'un traitement avec la protéine GASP-2 native. A l'instar de son paralogue GASP-1, l'absence de modifications post-traductionnelles ne semble donc pas affecter la fonction de GASP-2 vis-à-vis de la myostatine. Par contre, la N-glycosylation pourrait jouer un rôle dans la sécrétion de GASP-2, comme démontré pour GASP-1 (Brun *et al.*, 2012) et dans la stabilité de la protéine.

Pour conclure, cette étude *in vitro* de la relation structure-fonction de la protéine GASP-2 montre, pour la première fois, son rôle sur la voie de signalisation de la myostatine au cours de la myogenèse. Nous observons également que l'absence de glycosylation ne semble pas affecter son rôle anti-myostatine, ce qui permet d'envisager une production de la protéine recombinante en système procaryote afin de s'affranchir de l'immunogénicité apportée par la glycosylation.

PARTIE II : EFFET DE LA SUREXPRESSION DE GASP-2 IN VIVO.

Les souris transgéniques Tg(Gasp-1) surexprimant Gasp-1 présentent un phénotype hypermusclé associé à une hypertrophie sans hyperplasie mais ces souris développent une insulinorésistance musculaire et hépatique avec l'âge (Monestier *et al.*, 2012b; Brun *et al.*, 2014; Périè *et al.*, 2017). Les analyses moléculaires ont révélé une augmentation de l'expression de la myostatine dès le stade embryonnaire et tout au long de la vie, responsable de l'absence d'hyperplasie et l'apparition de défauts métaboliques chez les souris Tg(Gasp-1) (Brun *et al.*, 2014; Périè *et al.*, 2017). Au vu de ces résultats, nous nous sommes alors intéressés à son paralogue, la protéine GASP-2. Comme nous l'avons démontré dans la partie précédente, la surexpression *in vitro* de *Gasp-2* favorise la prolifération et la différenciation des myoblastes C2C12 en inhibant la voie de signalisation de la myostatine.

Dans cette partie, nous avons réalisé des analyses phénotypiques, cellulaires et moléculaires de différentes lignées de souris transgéniques Tg(Gasp-2), surexprimant de manière ubiquitaire le gène Gasp-2. La caractérisation de ces lignées nous a permis de mettre en évidence, à l'âge adulte, une augmentation globale du poids des muscles squelettiques due à une hypertrophie des fibres musculaires sans hyperplasie. Ce phénotype est semblable à celui précédemment observé chez les souris surexprimant Gasp-1. De plus, la surexpression de Gasp-2 entraîne une augmentation de l'activité des cellules souches musculaires dans les premières phases de la vie et les myoblastes primaires surexprimant Gasp-2 prolifèrent et fusionnent plus rapidement. De manière intéressante, les souris Tq(Gasp-2) ne présentent pas d'« up-régulation » de la myostatine et ne développent pas les défauts métaboliques retrouvés chez les souris Tg(Gasp-1). De plus, les souris Tg(Gasp-2) présentent, comme les souris $Mstn^{-/-}$, un « switch » des myofibres de contraction lente à rapide alors que les souris Tg(Gasp-1) montrent un « switch » inversé. L'ensemble de ces résultats a permis de mettre en évidence une dualité fonctionnelle entre GASP-1 et GASP-2 dans un contexte musculaire et de proposer la protéine GASP-2 comme un meilleur candidat thérapeutique. De plus, nos résultats mettent en lumière un réseau de régulation de l'expression des membres de la famille TGF-β et de leurs inhibiteurs dans le muscle. Ces résultats sont en cours de valorisation dans une publication soumise à Faseb Journal : « Myostatin inhibition is differentially mediated in vivo by GASP-1 and GASP-2 to improve skeletal muscle mass » (Parenté et al., en soumission).

1 TITLE

2 Myostatin inhibition is differentially mediated in vivo by GASP-1 and GASP-2 to

3 improve skeletal muscle mass.

4 Alexis Parenté¹, Axel Boukredine¹, Fabienne Baraige¹, Nathalie Duprat¹, Victor Gondran-Tellier¹,

- 5 Laetitia Magnol^{1*} and Véronique Blanquet^{1*\$}
- ⁶ ¹Univ. Limoges, INRA, PEIRENE EA7500, USC1061 GAMAA, F-87060 Limoges, France
- 7 * V.B and L.M are considered co-last authors and contributed equally to this work
- 8 ^{\$}Correspondence to: V. Blanquet Email address: veronique.blanquet@unilim.fr Faculté des Sciences
- 9 et Techniques, 123, av. A. Thomas, F- 87060 Limoges Cedex, France. Tel: +33 555 457 664.
- 10 Mailing adress: alexis.parente@unilim.fr; axel.boukredine@unilim.fr; fabienne.baraige@unilim.fr;
- 11 nathalie.duprat@unlim.fr; laetitia.magnol@unilim.fr; veronique.blanquet@unilim.fr
- 12

13 DISCLOSURE SUMMARY

- 14 The authors have nothing to disclose.
- 15

16 SHORT TITLE

- 17 Functional duality of GASP-1 and GASP-2
- 18

19 ABSTRACT

Muscle atrophy is associated with many diseases including genetic disorders, sarcopenia or 20 cachexia syndromes. Myostatin (*Mstn*), a TGF- β member, plays a key role in skeletal muscle homeostasis 21 22 as a powerful negative regulator. Over the last decade, about 15 clinical trials aimed at inhibiting the myostatin pathway, failed to produce conclusive results. In this context, we investigated whether GASP-1 23 or GASP-2, two natural inhibitors of myostatin, might represent a potential therapeutic. As we previously 24 reported, mice overexpressing Gasp-1 (Tg(Gasp-1)) present an increase of muscle mass but develop 25 metabolic disorders with aging. Here, we showed that overexpression of Gasp-2 increases the muscular 26 mass without metabolic defects. We also found that Tg(Gasp-2) mice displayed, like $Mstn^{-/-}$ mice, a 27 switch from slow- to fast-twitch myofibers whereas Tg(Gasp-1) mice exhibit a reverse switch. Our 28 studies revealed for the first time that GASP-1 has more affinity than GASP-2 for myostatin in vivo, 29 leading to a constitutive myostatin upregulation, responsible for the observed phenotypic differences. 30 Thus, the GASP-2 protein might be a better candidate therapeutic. Altogether, our findings highlighted a 31 32 gene expression regulatory network of TGF- β members and their inhibitors in muscle.

33

34 KEYWORDS

35 Muscle, myostatin, GASP-1, GASP-2, hypertrophy, hyperplasia,

36

37 ABBREVIATIONS

β2m, Beta-2-microglobulin; Ccr5, C-C chemokine receptor type 5; CMV, Cytomegalovirus; Gapdh,
Glycéraldéhyde-3-Phosphate Deshydrogenase; Gasp, Growth and differentiation factor-Associated
Serum Protein; GDF, Growth and Differentiation Factor; Mstn, myostatin; Mrf-4, Myogenic regulatory
factor4; MyHC, Myosin Heavy Chain ; Myog, myogenin; Pax7, paired box 7; Tg, transgenic; TGF-β,

42 Transforming Growth Factor-beta ; Smad2/3, Sma Mothers Against Decapentaplegic homolog.

43

44 **INTRODUCTION**

Many diseases (neuromuscular or chronic inflammatory diseases, cancer...) are associated with skeletal muscle atrophy. Muscle wasting occurs also as a natural process of aging and can lead to sarcopenia, a generalized loss of muscle mass and function. These muscle tissue defects are highly disabling for patients, especially since there is a lack of adequate treatments (1). Improving our understanding of the mechanisms responsible for skeletal muscle atrophy in patients is important in order to develop therapies to prevent these clinical conditions.

Skeletal muscle is composed of heterogeneous muscle fibers bundled together and which differ in 51 their metabolism and contractile properties (2,3). This type of organization confers to skeletal muscle 52 remarkable levels of plasticity in the face of changes to the external environment. During embryonic 53 development, the number and the size of myofibers increase (hyperplasic and hypertrophic growth) until 54 birth (4). Postnatal muscle growth is then only achieved by myofibers hypertrophy and can be divided 55 into two distinct steps. Between birth and weaning in mouse, hypertrophy is supported by a rapid increase 56 57 of the nuclei number within myofibers via the activation and fusion of satellite cells (5). From 3 weeks 58 old to adulthood, muscle mass regulation is dependent of a balance between protein synthesis and 59 degradation. This protein turnover is induced in response to various stimuli such as exercise, inactivity or environmental factors (hypoxia, heat, nutrient availability, growth factors) (6). During the past two 60 decades, much progress has been made in unraveling the molecular mechanisms underlying either adult 61 muscular hypertrophy or atrophy (6,7). 62

Myostatin, a member of the TGF- β superfamily, is an important negative regulator of skeletal 63 muscle growth, homeostasis and repair (8,9). Myostatin knockout ($Mstn^{-/-}$) mice exhibit at 3 months an 64 increase in muscle mass due to both hyperplasia and hypertrophy of myofibers. Myostatin-null mice have 65 reduced body fat and increased tolerance to glucose, protecting them from age-related obesity (10,11). 66 Targeting the myostatin signaling pathway may offer promising therapeutic strategies for the treatment of 67 muscle-wasting disorders (12). Although several clinical trials by inhibiting myostatin are conducted, the 68 first results are controversial except in a gene therapy trial based on the inhibition of myostatin by 69 70 follistatin, one of its natural inhibitors (13,14). In this context, we investigated whether the paralogs GASP-1 and GASP-2, two other natural myostatin inhibitors, might represent a potential therapeutic. 71

GASP-1 and GASP-2 are two closely related multi-domain glycoproteins, playing a role of 72 chaperones for some TGF-β members and are able to inhibit *in vitro* myostatin and GDF-11, a myostatin-73 homologous protein (15,16). GASP-1 or GASP-2 overexpression promotes proliferation and 74 75 differentiation of C2C12 myoblast cells by inhibiting the myostatin pathway (17,18). As we have shown, transgenic Tg(Gasp-1) mice overexpressing Gasp-1 present a hypermuscular phenotype associated with 76 hypertrophy without hyperplasia and exhibit no decrease in fat mass at 3 months (19). Surprisingly, we 77 found that these mice gained weight with age and developed muscle/hepatic insulin resistance (20). 78 Molecular analyses revealed an upregulation of myostatin from the embryonic stage and throughout life, 79 80 responsible for the absence of hyperplasia and metabolic defects in Tg(Gasp-1) mice (20,21). Thus, GASP-1 does not constitute a good drug candidate with a high therapeutic potential. 81

82 Here, we investigated the effects of the overexpression of Gasp-2 by generating and characterizing the Tg(Gasp-2) mice. Phenotypic analyses revealed that the Tg(Gasp-2) exhibit an increase of muscle 83 mass due to a myofiber hypertrophy without hyperplasia as the Tg(Gasp-1) mice. Interestingly, the 84 Tg(Gasp-2) mice do not develop metabolic defects. At the molecular level, we showed that the Tg(Gasp-2)85 2) mice exhibit an upregulation of GDF-11 and a down-regulation of several myostatin inhibitors, leading 86 to the absence of hyperplasia. Our findings highlighted a functional duality between GASP-1 and GASP-87 2 as well as a gene expression regulatory network of TGF- β members and their inhibitors in muscle at the 88 embryonic stage. 89

90

91 METHODS

92 Animals

93 Myostatin deficient mice $(Mstn^{-/-})$ and Gasp-1 overexpressing mice (Tg(Gasp-1)) have been described 94 previously (19,22). The generated transgenic lines Tg(Gasp-2) overexpressing Gasp-2, $Mstn^{-/-}$, Tg(Gasp-95 1) and control animals are on FVB/N background. All mice were bred and housed in the animal facility of 96 Limoges University under controlled conditions (20°C, 12h light/12h dark cycle) with free access to 97 standard mouse chow and tap water. Experimental procedures were carried out in accordance with 98 European legislation on animal experimentation (Directive 2010/63/UE) and approved by the ethical 99 committee n°033 (APAFIS #1903-2015091612088147 v2).

Phenotypic and molecular analyses were performed on 3-weeks-old, 3-month-old and 16-month-old mice,
 independently of animal sex.

102

103 Generation of transgenic lines overexpressing Gasp-2

104 The 1656 bp coding sequence of the murine *Gasp-2* gene was amplified by primers 5'-105 ATGCCTGCCCCACAGCCATTC-3' and 5'-GTCTTGGAAGCGGTTGAGCAGTTC-3' (transcript 106 sequence ENSEMBL ENSMUSG-00000071192) and was introduced into the expression vector 107 pcDNATM3.1/V5-His® TOPO (Invitrogen) where *Gasp-2* cDNA is under the CMV promoter/enhancer. A
purified Sal1-NsiI fragment was microinjected into the male pronucleus of one-cell fertilized FVB/N embryos. Two independent homozygous lines overexpressing *Gasp-2*, named Tg(Gasp-2.2) and Tg(Gasp-2.9), were obtained from two different founders and were characterized.

111

112 Copy number genotyping

113 Copy number genotyping was done using SYBR Green-based Real-Time PCR from Tg(Gasp-2) genomic DNA (QuantStudio 3 system, ThermoFisher Scientific). To determine the average inserted Gasp-2 114 transgene copy number, we used Ccr5 as endogenous reference gene to normalize the amount of 115 116 chromosomal DNA (number of transgene copy number by cell = $2 \Delta Ct X2 - 2$). PCR assays were carried 117 out as previously described in Monestier et al. (2012) using the following primers: Gasp-2-Fwd (5' 118 ATGCGCCCTGACCAAATGTA 3') and Gasp-2-Rev (5'-CTGTCCTGAGTAGTTGCCCG-3') primers targeting Gasp-2 exon 2 ; Ccr5-Fwd (5'-GCACAAAGAGACTTGAGGCA-3') and Ccr5-Rev (5'-119 GTCATCTCTAGGCCACAGCA-3') primers targeting Ccr5 exon 2. Data were analyzed by the 120

- 121 QuantStudio[™] Design & Analysis software (19).
- 122

123 RNA extraction, retrotranscription and gene expression analysis

Total RNA from tissues, cells or embryos were isolated using RNeasy midi kit (Qiagen). Synthesis of 124 cDNA was performed with the High Capacity cDNA Archive kit (Applied Biosystems) to convert 2 µg of 125 total RNA into single-stranded cDNA. TagmanTM copy number assays were done with Gene Expression 126 127 Master Mix (Applied BiosystemsTM, ThermoFisher Scientific, Waltham, MA, USA), according to the manufacturer's' instructions. Twenty nanograms of cDNA were run in triplicate on OuantStudio 3 real-128 time PCR system (Applied Biosystem[™]) with Taqman primers and probe sets: 18S (Hs99999901 s1), 129 (Mm99999915 g1), β2m (Mm00437762 m1), Gasp-1 (Mm00725281 m1), 130 Gapdh Gasp-2 (Mm01308311 m1), myostatin (Mm03024050 m1), Mrf-4 (Mm00435126 m1) 131 and Myog 132 (Mm00446194 m1). Relative mRNA expression values were calculated by the $\Delta\Delta$ Ct method with normalization of each sample to the average change in cycle threshold value of the controls. 133

134 TLDA (Taqman low-density array, Applied Biosystems) assays were performed based on the same above 135 conditions, except that 200 ng cDNA were used per TLDA card. TLDA cards present 43 selected genes 136 involved in TGF- β signaling pathway as previously described (21).

137

138 Enzyme-linked immunosorbent assay (ELISA) of GASP-2

GASP-2 concentration from mouse plasma was determined in a sandwich ELISA according to the manufacturer's' instructions (GASP-2/WFIKKN DuoSet ELISA, R&D Systems). All measurements were performed in triplicate and data for the standard curve were fitted to a logistic plot with the MARS Data

142 Analysis Software (BMG Labtech) to determine the levels of GASP-2.

143

144 **Protein extraction and immunoblotting**

Total cell protein extracts were prepared from frozen tissues or cell pellets, solubilized for 2h at 4°C in a 145 RIPA lysis buffer (50 mM Tris, pH 8, 150 mM NaCl, 0.1% SDS, 1% NP-40, 0.5% sodium deoxycholate, 146 and protease inhibitors). Protein lysates were centrifuged at 12,000 g for 20 min at 4 °C, and protein 147 supernatant concentration was determined at A595nm using the Bradford assay (Bio-Rad). Equal amounts 148 of proteins (50 µg) were resolved by SDS-PAGE using 10% polyacrylamide gels and then, transferred 149 onto AmershamTM Protra® premium 0.2 µm nitrocellulose (GE Healthcare, Buckinghamshire, UK). 150 Membranes were blocked using 5% non-fat dry milk (w/v) in TBST 0.1% buffer (50 mM Tris-HCl, 150 151 152 mM NaCl, pH 7.4, 0.1% Tween-20) for 1 h at room temperature. Specific primary antibodies were diluted 153 in 2.5% non-fat dry milk and incubated overnight at 4°C: anti-phospho-Smad2/3 (polyclonal Rabbit 154 1:500, AB3226, R&D Systems), anti-V5 (monoclonal mouse 1:1000, MA5-15253, Invitrogen) and antimouse GAPDH antibody (Goat polyclonal 1:2000, AF5718, R&D Systems). After three washes with 155 TBST, membranes were incubated with secondary antibodies (anti-goat, anti-rabbit or anti-mouse HRP-156 conjugated IgG, Dako, Glostrup, Denmark) diluted at 1:1000 in TBST, 2.5% (w/v) non-fat dry milk for 157 158 1h at room temperature. After three washes in TBST, reactive proteins were visualized with ECLTM Prime 159 Western blotting system (GE Healthcare, Uppsala, Sweden). For detection and relative quantification of 160 band intensities, we used Amersham Imager 600 device (GE Healthcare).

161

162 Immunofluorescence staining

163 Skeletal muscles having a glycolytic, oxidative or mix metabolism (tibialis anterior, gastrocnemius, *flexor digitorum longus* and *soleus*) were frozen in liquid nitrogen-cooled isopentane, stored at -80°C and 164 sectioned (10 µm thick). Cryosections were thawed at room temperature and air-dried. A permeabilization 165 step was required only for Pax7 staining with cold methanol at -20°C and a treatment for antigen retrieval 166 in 10 mM citrate buffer, pH 6 at 90°C for 2 × 5 min. Then, cryosections were blocked for 1h at room 167 168 temperature in blocking buffer (5% BSA in phosphate buffered saline (PBS)) or (10% goat serum, 1% bovine serum albumin (BSA) and 0.1% Triton X-100 in PBS) for Pax7 staining. Incubation with primary 169 antibodies diluted in BSA 1%/PBS took place overnight at 4°C for Pax7 staining and 1h at 37°C for other 170 staining. Primary antibodies used for these analyses were anti-laminin (Rabbit IgG, 1/500, L9393, Sigma-171 Aldrich), anti-Pax7 (Mouse IgG1, 1/100, MAB1675, R&D System) and different anti-myosin: BA-D5 for 172 Type I (Mouse IgG2b, 1/3, Agro-bio), SC-71 for Type IIa (Mouse IgG1, 1/3, Agro-bio), BF-F3 for type 173 IIb (Mouse IgM, 1/3, Agro-bio) and 6H1 for Type IIx (Mouse IgM, 1/100, DSHB). After washes, slides 174 175 were incubated for 30 min at 37°C with DAPI (1/1000) and secondary antibodies conjugated to a fluorescent dye diluted in BSA 1%/PBS: Alexa-Fluor®-350 Goat Anti-Mouse IgG2b, Alexa-Fluor®-546 176 Goat Anti-Mouse IgG1, Alexa-Fluor®-488 Goat Anti-Mouse IgM or Alexa-Fluor®-633 Goat Anti-177 178 Rabbit IgG (Invitrogen). After washes, the slides are mounted with a coverslip with Mowiol® solution 179 and colorless varnish. Scan of the entire muscle area were acquired with an automated Nikon inverted

epifluorescence microscope with NIS Element Software. Myofiber area and number were calculated
semi-automatically from laminin-stained cryosections using ImageJ software. Total and Pax7⁺ myonuclei
were automatically counted using ImageJ software. Fiber-typing was performed as previously described
(23). Briefly, the fiber type characterization was realized by semi-automatic image analysis Visilog
software (FEI), using the double laminin / myosin labelling.

185

186 Isolation of satellite cell-derived myoblasts and cell culture

187 Primary myoblasts were obtained from 5 weeks-old male wildtype or Tg(Gasp-2.9) mice. Briefly, murine 188 myoblasts were isolated from hindlimb muscles after enzymatic digestion by pronase (Sigma-Aldrich, P-189 5147) diluted in Ham's-F10 medium (Gibco) and 1% penicillin/streptomycin, 1h at 37°C. The solution 190 was centrifuged for 5 min at 800 rpm to remove undigested fragments. The supernatant was filtered on 45µm cell strainers. The cells are washed three times in Ham's F-10 medium and centrifuged at 1500 rpm 191 for 20min at room temperature. Mouse satellite cells are isolated by depletion of non-target cells using the 192 193 Satellite Cell Isolation Kit (Miltenyi Biotec). Cells were plated on Matrigel®-coated Petri dishes (BD 194 Biosciences) in Growth Medium (GM) : Ham's F10 supplemented with 20% horse serum and 1% 195 penicillin/streptomycin supplemented with 5 ng/ml basic fibroblast growth factor (bFGF, Invitrogen). Cells were maintained at 37°C in a water-saturated atmosphere containing 5% CO₂ in air. To induce 196 differentiation, primary myoblasts at 80% confluence were placed in Differentiation Medium (DM) 197 198 consisting of Ham's F10 with 10% horse serum and 1% penicillin/streptomycin.

199

200 Proliferation assay and Fusion index measurement

201 Primary myoblast proliferation was assessed as described in Olivier et al. (1989) (24). Cells were seeded at 2,500 cells per well in GM in 96-well microtiter plates and fixed at regular 24 h periods before 202 203 methylene blue staining and measured at A590nm using an ELISA plate reader (FLUOstar Omega; 204 BMGLabtech, Ortenberg, Germany). Fusion index measurement was performed by immunofluorescence 205 as previously described (25). Cells were fixed in 4% paraformaldehyde for 10 min and permeabilized with 0.1%Triton X-100-PBS for 30 min at 4°C. The wells were washed 3 times in PBS 1X and saturated 206 for 1h at room temperature using PBS with 20% goat serum. Then, the cells were stained with the 207 primary antibody 1:500 in PBS-BSA 4% (Anti-MyHC Class II antibody, Abcam) overnight in a humid 208 atmosphere at 4°C. Cells were washed 3 times for 5 min with 0.01% Tween 20-PBS and incubated with 209 the Alexa-Fluor conjugated secondary antibody (1:1000) and DAPI (1:1000) in PBS-BSA 4% for 15 min 210 at 37°C in a humid atmosphere. Images were acquired with a Leica DMI6000B inverted epifluorescence 211 212 microscope using the MetaMorph software (Molecular Devices, Sunnyvale, USA). Fusion index was 213 calculated by dividing the number of myonuclei contained in MyHC-expressing myotubes by the total number of myonuclei (ImageJ software). 214

215

216 Metabolic analyses

For intraperitoneal glucose tolerance test (IPGTT), 16h-fasted mice were injected with 20% D-glucose (2 mg.g⁻¹ body weight). Glucose levels were measured using a glucose meter (OneTouch Ultra®) from tail blood at 0, 15, 30, 60 and 120 min after glucose injection.

220

221 Skeletal muscle enzymatic activities

222 Lactate dehydrogenase (LDH) and isocitrate dehydrogenase (ICDH) were measured from a 5% (w / v) muscle (quadriceps or gastrocnemius) homogenate in pH 8.0 buffer (250 mM sucrose, 2 mM EDTA, 10 223 224 mM Tris). The frozen muscle was crushed in the buffer on ice with an ultra-turax. After centrifugation at 6000 rpm for 15 min at 4 ° C, the supernatants were removed and stored on ice until the enzymatic 225 226 activities were measured using the Konelab 30 controller (Thermo Scientific). The measurement of the LDH and ICDH activities at A_{340nm} was based on the NADH disappearance or production respectively. 227 The reactions were done in LDH buffer (Triethanolamine 50 mM / EDTA 5 mM /Pyruvate de sodium 2 228 mM / NADH 0,234 mM / pH 7,5) or ICDH buffer (Na2HPO4 36,1 mM / MgCl2 0,5 mM / Triton 0,05% 229 230 / NADP 0,334 mM / Isocitrate 1,29 mM / pH 7,3)

231

232 Statistical analyses

Unless otherwise stated, results are expressed as mean \pm SEM. Two-way ANOVA was performed to examine the effect of genotype (wildtype vs Tg(Gasp)) and the effect of age (3 weeks-old, 3 months-old, 16 months-old) on each parameter. Statistical significance was set at p< 0.05. A minimum of three replicates were performed for each experimental condition.

237

238 **RESULTS**

239 Generation of *Gasp-2* transgenic mouse lines

240 We constructed a transgene expressing mouse Gasp-2 cDNA under the control of a CMV promoter to create mice overexpressing ubiquitously Gasp-2. Two independent Tg(Gasp-2) lines were successfully 241 established and named Tg(Gasp-2.2) and Tg(Gasp-2.9). Transgene copy number was estimated by semi 242 quantitative real time PCR using Ccr5 gene as an endogenous reference to normalize the amount of 243 chromosomal DNA. The homozygous Tg(Gasp-2.2) mice harboured ~ 6 copies of the transgene while the 244 Tg(Gasp-2.9) mice had ~ 4 copies (Fig. 1A). The copy number was stable within all subsequent 245 generations. The two Tg(Gasp-2) lines displayed a strong expression of Gasp-2 (100 to 10000 fold 246 247 compared to wild-type) in various tissues (Fig. 1B) and muscles (Fig. 1C). The transgene-driven GASP-2 protein expression was further analyzed by western blotting with an anti-V5 antibody (Fig. 1D), 248 confirming the GASP-2 overexpression in both lines. As GASP-2 is a secreted protein, we measured its 249 amount in serum and showed a 3 fold overexpression of GASP-2 in Tg(Gasp 2.2) mice and 4 fold in 250 251 Tg(Gasp 2.9) mice (Fig. 1E).

252

253 Overexpression of *Gasp-2* leads to a hypermuscular phenotype due to hypertrophy without 254 hyperplasia.

Mice overexpressing Gasp-2 have a higher overall weight compared to wild-type mice from weaning to 255 90 days (Fig. 2A). Compared to 3 month-old WT mice, the Tg(Gasp-2.2) and Tg(Gasp-2.9) animals 256 exhibit a total body weight increase of 11.5% and 13% respectively. Furthermore, the overexpression of 257 Gasp-1, the paralog of Gasp-2, or the knock-out of myostatin, the targeted gene by Gasp-2, lead to an 258 overall weight increase of 15% and 28% in mice respectively (Fig. 2B). This gain is associated with an 259 260 increase in skeletal muscle mass of Tg(Gasp-2) lines (gastrocnemius, tibialis anterior, pectoralis and 261 quadriceps) (Fig. 2C). To confirm whether this muscle phenotype is due to hypertrophy and/or 262 hyperplasia, histological analyses were carried out on three muscles (tibialis anterior, soleus and Gastrocnemius) (Fig. 2D-F). Muscle cross-sections of $T_g(Gasp-2.2)$ and $T_g(Gasp-2.9)$ mice 263 immunostained with an anti-laminin antibody show an increase of myofiber cross-sectional area (CSA) 264 265 compared to the WT mice, independently of the muscle type (Fig. 2D,E). However, no significant 266 difference in muscle fibers number was observed between wild-type or Tg(Gasp-2) mice (Fig. 2F). This phenotype is found preserved at 6 months (data not shown). These results show that the overexpression of 267 Gasp-2 leads to a myofiber hypertrophy without hyperplasia, as we have previously observed in 268 *Tg(Gasp-1)* mice. 269

270

271 *Tg(Gasp-2)* mice display a switch from slow- to fast-twitch myofibers.

It has been shown that Mstn^{-/-} mice present a switch from slow- to fast-twitch myofibers. We checked 272 whether the Gasp-2 overexpression leads to a change in the myofiber type proportion in two different 273 muscle. We measured the overall activity of isocitrate dehydrogenase ICDH and lactacte dehydrogenase 274 275 LDH from extracts of gastrocnemius and quadriceps of 3-month-old animals (Fig. 3A,B). Like Mstn-/-276 mice, Tg(Gasp-2.2) and Tg(Gasp-2.9) mice show a decrease in ICDH activity compared to wild-type 277 (Fig. 3A). In opposite, Tg(Gasp-1) mice do not present this ICDH decrease but exhibit a decrease in LDH activity (Fig. 3A,B). Quantification of the different type of myofibers tends to show a decrease in the 278 percentage of type I myofibers and a significant increase of type IIA myofibers in soleus of both 279 Tg(Gasp-2) lines (Fig. 3C,D). A similar result was observed in Mstn^{-/-} mice but not in Tg(Gasp-1) mice 280 which showed a significant increase in type I fibers and decrease in type IIA myofibers (Fig. 3D). We 281 observed the same switch from slow- to fast-twitch in the *tibialis anterior* muscle (data not shown). 282

283

Overexpression of *Gasp-2* leads to an increase of myonuclei accretion during the first 3 postnatal weeks.

286 Muscular hypertrophy could be associated to the addition of new nuclei from activated satellite cells 287 within the myofiber and/or to the increased rate of protein synthesis. We therefore analyzed the muscle phenotype of 3-week-old mice, just after the myonuclear accretion phase. The Tg(Gasp-2.2) and Tg(Gasp-2.9) mice already show an increase of muscle mass due to a myofiber hypertrophy without hyperplasia (**Fig. 4A-C**). The number of myonuclei per myofiber was increased in *tibialis anterior* in Tg(Gasp-2) lines, demonstrating a higher myonuclear accretion (**Fig. 4D**). The pool of Pax7⁺ positive satellite cells are not affected after this myonuclear accretion phase in overexpressing *Gasp-2* skeletal muscles (**Fig. 4E**).

294

295 Overexpression of *Gasp-2* in *Tg(Gasp-2)* primary myoblasts enhances cell proliferation and 296 differentiation

- 297 To investigate the molecular mechanisms regulating muscle mass in both Tg(Gasp-2) lines which present 298 the same phenotype, myoblasts derived from Tg(Gasp-2.9) satellite cells were isolated. We showed that 299 Tg(Gasp-2.9) myoblasts overexpressed Gasp-2 (a 100 fold change) at 48h of proliferation without affecting the *Gasp-1* and *Mstn* expression (Fig. 5A). This result is quite surprising since we previously 300 301 demonstrated that the Tg(Gasp-1) myoblasts showed an up-regulation of myostatin. Tg(Gasp-2.9) cells 302 were assessed for rate of proliferation and showed a faster proliferation (Fig. 5B), associated with a 303 decrease of pSMAD2/3 (Fig. 5C). These results revealed that Gasp-2 overexpression inhibited Mstn pathway, which normally activated SMAD2/3 phosphorylation to inhibit proliferation. Using myosin 304 immunostaining, we observed after 72h of differentiation that Tg(Gasp-2.9) myoblasts form larger 305 myotubes compared to wildtype (Fig. 5D). Fusion index of Tg(Gasp-2.9) myotubes is increased, leading 306 307 to a higher differentiation rate (Fig. 5E). In addition, the expression of the two myogenic factors of the terminal differentiation, Mrf-4 and mvogenin, normally inhibited by myostatin, are more expressed in 308 *Tg*(*Gasp-2.9*) cells throughout the time course of differentiation (Fig. 5*F*-*H*). 309
- To obtain more insight into molecular characterization, we performed a gene expression array analysis 310 311 during proliferation of 43 genes involved in muscle development. Among the 43 genes, 10 genes were 312 up-regulated and 5 were down-regulated (Table 1). Gasp-2 expression was increased more than 247-fold 313 in the Tg(Gasp-2) myoblasts compared to the WT, confirming that Gasp-2 overexpression was significant in Tg(Gasp-2) satellite cell-derived primary myoblasts. We also found that Myf6, MyoG and Inhba 314 (Inhibin beta A chain) were up-regulated in Tg(Gasp-2) cells. In contrast, the Ltbp3 (Latent transforming 315 growth factor beta binding protein 3) gene, another TGF- β inhibitor was down-regulated in *Tg(Gasp-2)* 316 317 myoblasts (Table 1).
- 318

319 Deregulated expression of TGF- β and their inhibitors during primary and secondary myogenesis in 320 Tg(Gasp-2) mice is responsible for the absence of myofiber hyperplasia

Understanding the absence of hyperplasia in *Gasp-2* overexpressing mice requires to investigate gene expression levels during primary (at E9.5 embryonic stage) and secondary myogenesis (at E14.5 fetal

- stage). We found a 20-fold overexpression of *Gasp-2* at both stages (Table 2 and Fig. 6A). Interestingly
 - 9

unlike the Tg(Gasp-1) mice, the Tg(Gasp-2) animals do not present variation in myostatin expression but exhibit at these stages a 2-3-fold upregulation of Gdf11, a gene closely related to myostatin known to regulate anterior/posterior axial patterning (**Table 2 and Fig. 6B**). Moreover, Tg(Gasp-2) mice show a 2 to 14 fold down-regulation of several myostatin inhibitors such as *Gasp-1*, *Fst*, *Dcn and Ltbp4* at embryonic stages (**Table 2** and **Fig. 6C**). Our findings highlighted a gene expression regulatory network of TGF-β members and their inhibitors in muscle, responsible for the absence of hyperplasia by counteracting the effect of *Gasp-2* overexpression.

331

332 Overexpressing *Gasp-2* mice do not present an adipose and insulin resistance phenotype

We have previously shown that the $T_g(Gasp-1)$ mice gained weight with age due to an increase in fat 333 334 mass, hyperglycemia and insulin resistance and found that all these symptoms are dependent of an upregulation of myostatin (20). At 3 months, the Tg(Gasp-2.2) and Tg(Gasp-2.9) mice do not present 335 changes in adipose tissue mass (subcutaneous, epididymis and brown) compared to controls (Fig. 7A). 336 337 Unlike $T_g(Gasp-1)$ animals, the 16-month-old $T_g(Gasp-2)$ mice show no increase in their fat mass (Fig. 7B). In IPGTT, there was no difference in glucose clearance between old mutant and wildtype mice (Fig. 338 7C). Molecular analyses revealed no up-regulation of myostatin in young and aged $T_g(Gasp-2)$ muscles 339 (Fig. 7D). 340

341

342 **DISCUSSION**

In this paper, we studied the cellular and molecular mechanisms underlying the muscle phenotype 343 in a mouse model overexpressing GASP-2, a myostatin inhibitor, to investigate a potential new 344 therapeutic approach for muscle atrophy. Although its paralog, GASP-1, was a good candidate because it 345 led to a hypermuscular phenotype when overexpressed, age-related metabolic defects are also observed in 346 347 Tg(Gasp-1) mice (20). To date, only the phenotypic study of Gasp-2 deficient mice associates in vivo 348 GASP-2 with a context of muscle (26). These knock-out mice develop muscle atrophy and have defects in myofiber regeneration. Here, we generated and characterized two independent lines overexpressing Gasp-349 2, Tg(Gasp-2.2) and Tg(Gasp-2.9), to better understand the functions of GASP-2 and evaluate its 350 therapeutic potential. We showed that these mice present an increase of skeletal muscle mass due to 351 myofiber hypertrophy at 3 months, still observed at 6 months. This increase is similar to that seen for the 352 Tg(Gasp-1) mice and is less than the observed muscle increase of the myostatin-null mice. We 353 demonstrated that this hypertrophy was accompanied by an increase of myonuclear accretion during the 354 first 3 postnatal weeks. In accordance with these results, we showed that overexpressing Gasp-2 primary 355 myoblasts proliferated faster and myonuclei average per myotube was increased during differentiation. 356 Thus, overexpression of *Gasp-2* could result in accelerated regeneration during muscle injury. 357

358 Unlike $Mstn^{-/-}$ mice, no muscle hyperplasia was observed in Tg(Gasp-2). We previously observed 359 this absence of hyperplasia in the Tg(Gasp-1) line and have shown an up-regulation of myostatin at the

embryonic stages, which counterbalances the effect of Gasp-1 overexpression during the early phases of 360 361 myogenesis (21). Interestingly, we did not find a myostatin up-regulation in the Tg(Gasp-2) embryos but 362 an up-regulation of Gdf-11, a gene closely related to myostatin known to regulate anterior/posterior axial patterning (27). Recent studies showed that GDF-11 could inhibit skeletal muscle development similar to 363 myostatin (28–30). Differentially up-regulation of *Mstn* or *Gdf-11* in *Gasp-1 or -2* overexpressing models 364 could be explained by a different affinity between GASP proteins with myostatin or GDF-11. Indeed, 365 Kondás et al. (2008) and Walker et al. (2015) showed that in vitro, GASP-1 is approximately 100 times 366 more affine for myostatin than GASP-2 and GASP-2 would have a better affinity for GDF-11 (15,31). 367 368 Our studies revealed for the first time that GASP-2 has less affinity than GASP-1 for myostatin in vivo, 369 not leading to the up-regulation of myostatin found in Tg(Gasp-1) mice. In addition, Tg(Gasp-2) mice 370 present a down-regulation of several myostatin inhibitors such as Gasp-1, Follistatin, decorin and Ltbp3 at embryonic stage. A similar result was observed in Tg(Gasp-1) mice, with a down-regulation of Gasp-2, 371 Follistatin and Ltbp1 expression. Our findings highlighted a gene expression regulatory network of TGF-372 β members and their inhibitors in muscle, responsible for the absence of hyperplasia by counteracting the 373 374 effect of Gasp-2 overexpression.

Unlike the Tg(Gasp-1) mice, GASP-2 overexpression didn't lead to metabolic defects with age. In addition, the Tg(Gasp-2) mice display, like the $Mstn^{-/-}$ mice, a switch from slow- to fast-twitch myofibers whereas Tg(Gasp-1) mice exhibit a switch from fast- to slow-twitch myofibers. Altogether, the difference of the phenotypes observed between the Tg(Gasp-1) and Tg(Gasp-2) lines could be explained at the molecular level by the induction or not of myostatin up-regulation as shown in **Fig. 8**. Our results suggested that the GASP-2 protein might be a better candidate to target myostatin-signaling pathway without affecting the metabolism.

382

383 ACKNOWLEDGEMENTS

We are indebted to Dr. J.L. Villote and Dr. B. Passet (UMR 1313 GABI, Jouy-en-Josas) for their help in generating the transgenic mice. We also thank K. Pasquier from the plateform BISCEm (animal facility) for her technical help with animals. This project was co-financed by the European Union, the Limousin Regional Council and the French National Institute for Agricultural Research. AP were supported by a PhD fellowship from INRA/Region Limousin and the Foundation for Medical Research.

389

390 AUTHOR CONTRIBUTIONS

A. Parenté, L.Magnol and V.Blanquet designed research; A.Parenté, L.Magnol and V.Blanquet analyzed
data; A.Parenté, A.Boukredine, N.Duprat, F.Baraige and L.Magnol performed research; A.Parenté and
V.Blanquet wrote the paper.

394

395

396 REFERENCES

- Pirruccello-Straub M, Jackson J, Wawersik S, Webster MT, Salta L, Long K, et al. Blocking
 extracellular activation of myostatin as a strategy for treating muscle wasting. Sci Rep. 2018
 02;8(1):2292.
- Berchtold MW, Brinkmeier H, Müntener M. Calcium ion in skeletal muscle: its crucial role for muscle function, plasticity, and disease. Physiol Rev. 2000 Jul;80(3):1215–65.
- 402 3. Chargé SBP, Rudnicki MA. Cellular and molecular regulation of muscle regeneration. Physiol Rev.
 403 2004 Jan;84(1):209–38.
- 404 4. Ontell M, Kozeka K. The organogenesis of murine striated muscle: a cytoarchitectural study. Am J
 405 Anat. 1984 Oct;171(2):133–48.
- 406 5. White RB, Biérinx A-S, Gnocchi VF, Zammit PS. Dynamics of muscle fibre growth during 407 postnatal mouse development. BMC Dev Biol. 2010 Feb 22;10:21.
- 408
 6. Schiaffino S, Dyar KA, Ciciliot S, Blaauw B, Sandri M. Mechanisms regulating skeletal muscle
 409 growth and atrophy. FEBS J. 2013 Sep;280(17):4294–314.
- 410 7. Sandri M. Signaling in muscle atrophy and hypertrophy. Physiology (Bethesda). 2008 Jun;23:160–
 411 70.
- 412 8. Lee S-J. Extracellular Regulation of Myostatin: A Molecular Rheostat for Muscle Mass. Immunol
 413 Endocr Metab Agents Med Chem. 2010;10:183–94.
- 414 9. McPherron AC, Lee SJ. Double muscling in cattle due to mutations in the myostatin gene. Proc Natl
 415 Acad Sci USA. 1997 Nov 11;94(23):12457–61.
- 416 10. Dong J, Dong Y, Dong Y, Chen F, Mitch WE, Zhang L. Inhibition of myostatin in mice improves
 417 insulin sensitivity via irisin-mediated cross talk between muscle and adipose tissues. Int J Obes
 418 (Lond). 2016 Mar;40(3):434–42.
- 419 11. McPherron AC, Lee S-J. Suppression of body fat accumulation in myostatin-deficient mice. J Clin
 420 Invest. 2002 Mar 1;109(5):595–601.
- 421 12. Hoogaars WMH, Jaspers RT. Past, Present, and Future Perspective of Targeting Myostatin and
 422 Related Signaling Pathways to Counteract Muscle Atrophy. Adv Exp Med Biol. 2018;1088:153–
 423 206.
- Al-Zaidy SA, Sahenk Z, Rodino-Klapac LR, Kaspar B, Mendell JR. Follistatin Gene Therapy
 Improves Ambulation in Becker Muscular Dystrophy. J Neuromuscul Dis. 2015 Sep 2;2(3):185–92.
- 426 14. Mendell JR, Sahenk Z, Al-Zaidy S, Rodino-Klapac LR, Lowes LP, Alfano LN, et al. Follistatin
 427 Gene Therapy for Sporadic Inclusion Body Myositis Improves Functional Outcomes. Mol Ther.
 428 2017 05;25(4):870–9.
- 429 15. Kondás K, Szláma G, Trexler M, Patthy L. Both WFIKKN1 and WFIKKN2 have high affinity for
 430 growth and differentiation factors 8 and 11. J Biol Chem. 2008 Aug 29;283(35):23677–84.
- 431 16. Szláma G, Kondás K, Trexler M, Patthy L. WFIKKN1 and WFIKKN2 bind growth factors TGFβ1,
 432 BMP2 and BMP4 but do not inhibit their signalling activity. FEBS J. 2010 Dec;277(24):5040–50.

- 433 17. Brun C, Monestier O, Legardinier S, Maftah A, Blanquet V. Murine GASP-1 N-glycosylation is not
 434 essential for its activity on C2C12 myogenic cells but alters its secretion. Cell Physiol Biochem.
 435 2012;30(3):791–804.
- 436 18. Pèrié L, Parenté A, Brun C, Magnol L, Pélissier P, Blanquet V. Enhancement of C2C12 myoblast
 437 proliferation and differentiation by GASP-2, a myostatin inhibitor. Biochem Biophys Rep. 2016 Mar
 438 3;6:39–46.
- 439 19. Monestier O, Brun C, Heu K, Passet B, Malhouroux M, Magnol L, et al. Ubiquitous Gasp1
 440 overexpression in mice leads mainly to a hypermuscular phenotype. BMC Genomics. 2012 Oct
 441 10;13:541.
- 442 20. Périè L, Parenté A, Baraige F, Magnol L, Blanquet V. Alterations in Adiposity and Glucose
 443 Homeostasis in Adult Gasp-1 Overexpressing Mice. CPB. 2017;44(5):1896–911.
- Brun C, Périé L, Baraige F, Vernus B, Bonnieu A, Blanquet V. Absence of hyperplasia in Gasp-1
 overexpressing mice is dependent on myostatin up-regulation. Cell Physiol Biochem.
 2014;34(4):1241–59.
- 447 22. Grobet L, Pirottin D, Farnir F, Poncelet D, Royo LJ, Brouwers B, et al. Modulating skeletal muscle
 448 mass by postnatal, muscle-specific inactivation of the myostatin gene. Genesis. 2003
 449 Apr;35(4):227–38.
- 450 23. Meunier B, Picard B, Astruc T, Labas R. Development of image analysis tool for the classification
 451 of muscle fibre type using immunohistochemical staining. Histochem Cell Biol. 2010
 452 Sep;134(3):307–17.
- 453 24. Oliver MH, Harrison NK, Bishop JE, Cole PJ, Laurent GJ. A rapid and convenient assay for
 454 counting cells cultured in microwell plates: application for assessment of growth factors. J Cell Sci.
 455 1989 Mar;92 (Pt 3):513–8.
- 456 25. Parenté A, Pèrié L, Magnol L, Bouhouche K, Blanquet V. A siRNA Mediated Screen During C2C12
 457 Myogenesis. Methods Mol Biol. 2019;1889:229–43.
- 458 26. Lee Y-S, Lee S-J. Regulation of GDF-11 and myostatin activity by GASP-1 and GASP-2. Proc Natl
 459 Acad Sci USA. 2013 Sep 24;110(39):E3713-3722.
- 460 27. McPherron AC, Lawler AM, Lee SJ. Regulation of anterior/posterior patterning of the axial skeleton
 461 by growth/differentiation factor 11. Nat Genet. 1999 Jul;22(3):260–4.
- 462 28. Egerman MA, Cadena SM, Gilbert JA, Meyer A, Nelson HN, Swalley SE, et al. GDF11 Increases
 463 with Age and Inhibits Skeletal Muscle Regeneration. Cell Metab. 2015 Jul 7;22(1):164–74.
- 464 29. Hammers DW, Merscham-Banda M, Hsiao JY, Engst S, Hartman JJ, Sweeney HL.
 465 Supraphysiological levels of GDF11 induce striated muscle atrophy. EMBO Mol Med.
 466 2017;9(4):531-44.
- 30. Zhang Y, Wei Y, Liu D, Liu F, Li X, Pan L, et al. Role of growth differentiation factor 11 in development, physiology and disease. Oncotarget. 2017 Aug 14;8(46):81604–16.
- 469 31. Walker RG, Angerman EB, Kattamuri C, Lee Y-S, Lee S-J, Thompson TB. Alternative binding
 470 modes identified for growth and differentiation factor-associated serum protein (GASP) family
 471 antagonism of myostatin. J Biol Chem. 2015 Mar 20;290(12):7506–16.
- 472

473 FIG. LEGENDS

Fig. 1. Generation of Gasp-2 transgenic mouse lines. A) Real-time PCR based transgene copy number 474 determination of wilt-type (WT) (n>5), Tg(Gasp-2.2) (n>5) and Tg(Gasp-2.9) mice (n>5). B) Relative 475 476 mRNA expression levels of Gasp-2 were measured by quantitative PCR in brain, lung, spleen, kidney, testis, adipose tissues and C) heart, Pectoralis, guadriceps and Gastrocnemius from WT (white), 477 478 Tg(Gasp-2.2) (light grey) and Tg(Gasp-2.9) (dark grey) (n=10). D) Western blot analysis of transgene-479 driven GASP-2 protein expression with an anti-V5 antibody. Total proteins were extracted from quadriceps and Gastrocnemius from WT and Tg(Gasp-2) mice. GAPDH was used as a loading control 480 signal of three distinct experiments. E) Concentrations of serum GASP-2 were determined in sandwich 481 482 ELISA from wild-type and Tg(Gasp-2) lines (n=4). Data are shown as means \pm SEM; Two-way ANOVA was performed (wilt-type vs genotypes) (***: p value < 0.001). 483

484 Fig. 2. Characterization of skeletal muscles from Tg(Gasp-2) mice. A) Total body weight of wild-type (WT) (black, n = 10), Tg(Gasp-2.2) (light grey, n=10) and Tg(Gasp-2.9) (dark grey, n=10) were 485 486 measured from 30 to 90 days old. B) Total body weight of 3-month-old mice (n=15 mice/genotype). C) 487 Muscles of 3-month-old mice were and weighed. D) Representative cryosections of *Tibialis anterior* from 3-month-old wild-type (WT) and Tg(Gasp-2) mice. Laminin (red) staining showed basal lamina of 488 myofibers. E) Mean myofiber cross-sectional areas and F) mean myofiber numbers of *Gastrocnemius*, 489 Flexor Digitorum Longus (FDL) and Tibialis anterior muscle from 3-month-old WT and Tg(Gasp-2) 490 491 mice (n=10 mice/genotype). Data are shown as means \pm SEM; Two-way ANOVA was performed (wilttype vs genotypes) (*: p value < 0.05; **: p value < 0.005; ***: p value < 0.001). 492

493 Fig. 3. Skeletal muscle fiber type distribution from *Tg*(*Gasp-2*) mice.

A) Isocitrate dehydrogenase (ICDH) and B) Lactate dehydrogenase (LDH) were measured from 494 Gastrocnemius or quadriceps muscle from 3-month-old wild-type (WT), Tg(Gasp-2.2), Tg(Gasp-2.9), 495 Tg(Gasp-1) and $Mstn^{-/-}$ mice (n=10 mice/genotype). The measurement of the LDH and ICDH activities at 496 A_{340nm} was based on the NADH disappearance or production respectively. C) Representative cryosections 497 498 of Soleus from 3-month-old wild-type immuno-stained with an antibody cocktail. D) Percentage of fibers type distribution in the Soleus, realized by semi-automatic image analysis Visilog software, using the 499 double laminin/myosin labelling (n>5 mice/genotype). Data are shown as means ± SEM; Two-way 500 ANOVA was performed (wilt-type vs genotypes) (*: p value < 0.05; **: p value < 0.005; ***: p value < 501 502 0.001).

Fig. 4. Characterization of skeletal muscles after myonuclear accretion phase. A) Representative cryosections of *Tibialis Anterior (TA)* muscle from 3-week-old wilt-type (WT) and Tg(Gasp-2.9) mice immunostained for laminin (red), Pax7 (green) and DAPI (blue). B) Mean myofiber cross-sectional areas and C) mean myofiber numbers of *TA* muscle from 3-week-old WT and *Tg(Gasp-2)* mice (n>5 mice/genotype). D) Quantification of the number of myonuclei per fiber in *TA* from 3-week-old WT and Tg(Gasp-2) mice and (F) percentage of satellite cells (Pax7⁺) per cross-sectional area (n>5 mice/genotype). Data are shown as means \pm SEM; Two-way ANOVA was performed (wilt-type *vs* genotypes) (*: p value < 0.05; **: p value < 0.005).

511 Fig. 5. Overexpression of Gasp-2 in Tg(Gasp-2) primary myoblasts. A) Relative mRNA expression 512 levels of Gasp-2, Gasp-1 and myostatin (Mstn) were measured by quantitative PCR of wilt-type (WT) and Tg(Gasp-2.9) myoblasts grown under proliferating conditions for 48h. B) WT and Tg(Gasp-2.9)513 primary myoblasts were plated at 2,500 cells per well and grown in growth medium for a period of 72h. 514 Proliferation was measured by Methylene Blue assay (n = 5 independent experiments). C) Immunoblot 515 analysis of pSMAD2/3 expression of WT and Tg(Gasp-2.9) myoblasts grown under proliferating 516 517 conditions for 48h. Nitrocellulose membranes were also probed with anti-GAPDH antibody to show equal loading of samples. D) WT and Tg(Gasp-2.9) myotubes were immunostained for MyHC protein at 518 72 h after induction of differentiation. E) Fusion indexes during 72h of WT and Tg(Gasp-2.9) myoblasts 519 differentiation were determined from DAPI/Myosin staining (n = 3 independent experiments). F) Relative 520 mRNA expression levels of Gasp-2, G) Mrf-4 and H) Myogenin were measured by quantitative PCR from 521 522 0h to 72h of differentiation in WT and Tg(Gasp-2) primary myotubes (n= 3 independent experiments). 523 Data are shown as means ± SEM; Two-way ANOVA was performed (wilt-type vs genotypes) (**: p 524 value < 0.005; ***: p value < 0.001).

Fig. 6. Relative expression levels of deregulated genes in Tg(Gasp-2) embryos. Relative mRNA expression levels of A) Gasp-2, B) Gasp-1 and C) myostatin were measured by qRT-PCR at embryonic stages E9.5 (primary myogenesis) and E14.5 (secondary myogenesis) from wild-type (WT) and Tg(Gasp2.9) embryos. Data are shown as means ± SEM; Two-way ANOVA was performed (wilt-type vs genotypes) (**: p value < 0.005; ***: p value < 0.001).

Fig. 7. Adipose phenotype in Tg(Gasp-2) mice. Adipose tissue mass from A) 3-month-old and B) 16month-old wilt-type and Tg(Gasp-2) mice. C) Intraperitoneal glucose tolerance test from overnight-fasted mice, injected with glucose (2 mg.g⁻¹ body weight). Blood glucose levels were monitored at 0, 15, 30, 60 and 120 min after glucose injection of 16-month-old mice. D) Relative mRNA expression levels of *myostatin* (Mstn) were measured by quantitative PCR of wilt-type (WT) and Tg(Gasp-2.9). Data are shown as means \pm SEM; Two-way ANOVA was performed (wilt-type vs genotypes).

536 Fig. 8. A model highlighting the functional duality of GASP-1 and GASP-2 for myostatin inhibition.

537 Molecular and/or phenotypic analyses after *myostatin* knockout (*Mstn^{-/-}* mice), *Gasp-1* overexpression

- 538 (Tg(Gasp-1)) and Gasp-2 overexpression (Tg(Gasp-2)) in adult stage 3 months- (middle part), in
- 639 embryonic stage (upper part) and aged stage -14 months (lower part). In comparison to wild-type, Mstn⁻

540	^{/-} mice exhibit an increase in muscle mass due to both hyperplasia and hypertrophy of myofibers, and a
541	decrease in fat mass with age. Phenotypic analysis revealed at 3 months that both Gasp-1 and Gasp-2
542	overexpression in adult mice leads to an increase in muscle mass only due to myofiber hypertrophy
543	without hyperplasia. Tg(Gasp-2) mice, like Mstn ^{-/-} mice, display a switch from slow- to fast-twitch
544	myofibers, while $Tg(Gasp-1)$ mice exhibit an opposite switch. Interestingly, at 14 months of age, only the
545	Tg(Gasp-1) mice develop most of the symptoms associated with a metabolic syndrome, resulting in an
546	upregulation of Mstn. Molecular studies show, at embryonic stage (stage of hyperplasia formation), that i)
547	overexpression of Gasp-1 leads to up-regulation of Mstn and down-regulation of Gasp-2 and follistatin
548	(FST, a myostatin inhibitor) whereas ii) overexpression of Gasp-2 results in up-regulation of GDF-11 (a
549	MSTN-homologous protein) and a down-regulation of Gasp -1 and Fst.
550	
551	
552	
553	
554	
555	
556	
557	
558	
559	
560	
561	
562	
563	
564	
565	

Table 1. Relative expression levels of deregulated genes in Tg(Gasp-2) myoblasts. List of up-567 regulated or down-regulated genes by more than 1.5-fold in Tg(Gasp-2) primary myoblasts compared 568 with wild-type primary myoblasts during proliferation. Two-way ANOVA was performed (wilt-type vs 569 genotypes).

	Gene ID	Gene symbol	Description	Fold changes	p-value
	215001	Gasp-2	Growth and differentiation factor associated serum protein-2	247,80803	0,001415179
	16323	Inhba	Inhibin Beta-A	2,8103814	0,003641903
	16322	Inha	Inhibin alpha	2,7427943	0,002089911
p	21809	Tgfb3	Transforming growth factor B 1	2,4756303	0,031646986
gulate	21808	Tgfb2	Transforming growth factor B 1	2,3254573	0,041057013
Up-re	17878	Myf6	Myogenic factor 6	2,0113683	0,013431926
	17928	Myog	Myogenin	2,0085096	0,009185523
	18121	Nog	Noggin	1,9798008	0,013562912
	12111	Bng	Biglycan	1,8596276	0,005494118
	12667	Chrd	Chordin	1,7938882	0,057299614
	14560	Gdf10	Growth and differentiation factor 10	-1,76999966	0,8495688
lated	18505	Pax3	Paired box protein 3	- 1,963033334	0,13443623
I-regu	17927	Myod1	Myod1	- 2,057934223	0,22759067
Down	16998	Ltbp3	Latent TGF-b binding protein 3	- 2,212453013	0,21048675
	18119	Nodal	Nodal	- 3,589150772	0,6477563

- - -

579 Table 2. Relative expression levels of deregulated genes in Tg(Gasp-2) mice. Fold change of genes

580 involved in the TGF- β signaling pathway in Tg(Gasp-2) mice are compared with wild-type mice at

581 embryonic stages E9.5 and E14.5. Two-way ANOVA was performed (wilt-type vs genotypes). n.s : non-

582 significant.

				Stages			
				Embryonic stage - E9,5		Fœtal stage - E14,5	
	Gene ID	Gene symbol	Description	Fold changes	p-value	Fold changes	p-value
	215001	Gasp-2	Growth and differentiation factor associated serum protein-2	22,16	0,02470083	19,99	0,007171103
ated	14561	GDF-11	Growth differentiation factor 11	2,88	0,008735021	2,22	0,014177078
o-regul	18505	Pax3	Paired box protein 3	3,07	0,050237026	3,76	0,03679276
Ŋ	18509	Pax7	Paired box protein 7	2,63	0,028150965	3,06	0,025354657
	12159	Bmp4	Bone morphogenetic protein 4	2,82	0,026284665	2,3785467	0,03927566
	215001	Gasp-1	Growth and differentiation factor associated serum protein-1	-14,12429379	0,037264574	-2,012882448	0,03808343
	14313	Fst	Follistatin	-2,261069098	0,0422535	-2,11554202	0,045403072
pç	13179	Dcn	Decorin	-12,04449235	0,004826187	-6,107956419	0,002738726
·egulat6	108075	Ltbp4	Latent TGF-b binding protein 4	-3,288397059	0,052235495	-1,780094274	n.s
Down-1	12111	Bgn	Biglycan	-5,221779961	0,03230193	-2,950463227	0,018875781
	16324	Inhbb	Inhibin beta-b	-5,754759762	0,018044034	-2,039059947	n.s
	16326	Inhbc	Inhibin beta-c	-8,592636918	0,008486974	-4,466279589	n.s
	12156	Bmp3	Bone morphogenetic protein 3	-6,468319948	0,036112994	-2,484591989	0,006402097

Laminin

В

С

Dans cette troisième partie, nous avons étudié les mécanismes cellulaires et moléculaires sous-jacents le phénotype musculaire des souris Tg(Gasp-2), afin d'appréhender une nouvelle approche thérapeutique pour lutter contre l'atrophie musculaire.

A ce jour, seule l'étude des souris déficientes pour *Gasp-2* associe *in vivo* GASP-2 avec un phénotype musculaire. Ces souris knock-out développent une atrophie musculaire et présentent des défauts dans la régénération des myofibres (Lee and Lee, 2013). Dans notre étude, nous avons généré et caractérisé 2 lignées murines indépendantes surexprimant ubiquitairement *Gasp-2* afin de mieux comprendre le(s) rôle(s) de GASP-2 et d'évaluer son potentiel intérêt thérapeutique.

Pour générer ces souris transgéniques, l'ADNc de *Gasp-2* purifié a été micro-injecté dans le pronucleus mâle d'embryons murins FVB/N fécondés au stade une cellule. L'étape de microinjection a été réalisée en collaboration avec l'équipe du DR. JL. Vilotte (UMR GABI, Jouy en Josas). Nous avons choisi de travailler avec ce fond génétique car cette lignée se caractérise par de bonnes performances de reproduction et une survie importante des ovocytes après injection. De plus, les souris $Mstn^{-/-}$ et Tg(Gasp-1), présentes au laboratoire, sont également sous ce même fond génétique. Les embryons manipulés ont été réimplantés dans plusieurs mères porteuses de même fond génétique. Deux lignées homozygotes indépendantes surexprimant *Gasp-2*, nommées Tg(Gasp-2.2) et Tg(Gasp-2.9), ont été obtenues à partir de 2 fondateurs différents et ont donc été caractérisées. L'analyse de 2 lignées transgéniques indépendantes permet de pallier l'effet de position des transgènes. Par comparaison avec les souris sauvages, ces lignées transgéniques présentent une surexpression de *Gasp-2* 100 fois supérieure dans les différents organes testés.

Les souris Tg(Gasp-2) présentent à 3 mois une augmentation de leur poids global par rapport aux souris sauvages. Cette augmentation du poids est comparable à celle retrouvée chez les souris Tg(Gasp-1) mais reste cependant inférieure à celle des souris $Mstn^{-/-}$ de même âge et de même fond génétique FVB. Les souris Tg(Gasp-2) présentent également une augmentation de la masse musculaire squelettique. Cette augmentation peut être la conséquence d'une hypertrophie et/ou d'une hyperplasie des myofibres. Pour répondre à cette interrogation, nous avons réalisé des analyses morphométriques musculaires en mettant en oeuvre un protocole basé sur i) des coupes transversales de muscles murins cryoconservés, ii) des marquages par immunofluorescence et iii) l'analyse quantitative. L'analyse par immunofluorescence est une méthode sensible qui permet d'évaluer simultanément le nombre, la taille et le type de fibres musculaires à l'aide d'un cocktail adapté d'anticorps primaires et secondaires, suivie d'une acquisition automatique sur des coupes transversales entières et d'une quantification semi-automatique de la fluorescence avec le logiciel *Visilog Software*. Pour ce faire, les muscles squelettiques sont découpés en coupes transversales, immunomarqués à l'aide d'anticorps anti-laminine (contours des myofibres) et de différents anticorps anti chaînes lourdes de myosine (types myofibres). Les coupes transversales entières sont scannées automatiquement pour obtenir des images de haute résolution de l'ensemble du muscle. Ceci permet de s'affranchir de clichés pris aléatoirement sur les coupes et d'obtenir ainsi des résultats morphométriques exhaustifs.

Les souris Tg(Gasp-2) présentent une hypertrophie des myofibres à l'âge de 3 mois dans les différentes muscles étudiés (gastrocnemius, tibialis anterior et FDL). Afin de déterminer si l'hypertrophie se maintient, cette étude a été réalisée chez des souris âgées de 6 mois, pour lesquelles la persistance de ce phénotype hypertrophique a pu être observée. Cette augmentation de l'aire des fibres est similaire à celle observée chez les souris Tq(Gasp-1) mais reste inférieure à celle observée chez les souris $Mstn^{-/-}$. Nous avons également montré que cette hypertrophie s'accompagne d'une augmentation de l'accrétion myonucléaire au cours des 3 premières semaines postnatales. La présence d'une hypertrophie dès 3 semaines chez les souris Tg(Gasp-2) sous-entend que les cellules satellites surexprimant Gasp-2 sont plus « actives » que les cellules satellites sauvages. Pour vérifier cette hypothèse, nous avons alors mis en place une culture primaire de myoblastes dérivés des cellules satellites de souris Tg(Gasp-2) versus sauvage. Conformément au phénotype des souris Tg(Gasp-2), les myoblastes primaires surexprimant Gasp-2 prolifèrent et fusionnent plus rapidement que les myoblastes primaires sauvages. Grâce aux analyses moléculaires, nous avons mis en évidence une inhibition de la voie SMAD2/3. Ainsi, la surexpression de Gasp-2 pourrait entraîner une accélération de la régénération musculaire lors d'une lésion. Les processus de régénération musculaire, à la suite de lésions induites par injection de cardiotoxine dans le tibialis anterior des souris *Tg*(*Gasp-2*) *versus* sauvage, sont en cours d'analyse.

Contrairement aux souris $Mstn^{-/-}$, aucune hyperplasie musculaire n'a été observée chez les souris Tg(Gasp-2). Le laboratoire a précédemment observé cette absence d'hyperplasie dans la ligne Tg(Gasp-1) et montré une « *up-régulation* » de la myostatine au stade embryonnaire qui contrebalance l'effet de la surexpression de *Gasp-1* pendant les premières phases de la myogenèse (Brun *et al.*, 2014). Nous avons donc réalisé des études moléculaires aux stades embryonnaire et fœtal afin d'étudier la dérégulation génique due à la surexpression de *Gasp-2*. De manière intéressante, les embryons Tg(Gasp-2) ne présentent pas d' «*up-régulation* » de la myostatine mais une « *up-régulation* » de GDF-11 connue à l'origine pour réguler la configuration axiale antérieur/postérieur (McPherron *et al.*, 1999). Des études récentes ont montré que GDF-11 pouvait également inhiber le

développement musculaire comme la myostatine (Egerman *et al.*, 2015; Hammers *et al.*, 2017) (Pour rappel, **Figure 25**). L' « *up-regulation* » différentielle de *Mstn* ou *Gdf-11* dans les modèles de surexpression *Gasp-1* ou *Gasp-2* respectivement, pourrait s'expliquer par une affinité différente des protéines GASPs pour la myostatine et GDF-11. En effet, Kondás *et al.* (2008) et Walker *et al.* (2015) ont montré qu'*in vitro*, GASP-1 a 100 fois plus d'affinité pour la myostatine que GASP-2. *A contrario*, GASP-2 aurait une meilleure affinité pour GDF-11 (Kondás *et al.*, 2008; Walker *et al.*, 2015). Nos études révèlent ainsi, pour la première fois, que GASP-2 a moins d'affinité pour la myostatine que GASP-1 *in vivo*. Sa surexpression n'entraînent pas le mécanisme de *«up-regulation»* de la myostatine observé chez les souris *Tg(Gasp-1)*.

De manière intéressante, les embryons Tg(Gasp-2) présentent également une diminution de l'expression de plusieurs inhibiteurs de la myostatine au stade embryonnaire tels que *Gasp-1*, *Follistatin*, *décorine* et *Ltbp3*. Un résultat similaire a été observé chez les souris Tg(Gasp-1), avec une régulation négative de l'expression de *Gasp-2*, *Follistatine* et *Ltbp1*. Nos résultats mettent ainsi en évidence un réseau de régulation de l'expression génique des membres de la famille TGF- β et de leurs inhibiteurs dans le muscle. Ce phénomène serait responsable de l'absence d'hyperplasie en neutralisant l'effet de la surexpression de *Gasp-2*.

Contrairement aux souris Tg(Gasp-1), la surexpression de Gasp-2 n'engendre pas de défauts métaboliques liés à l'âge. Les souris Tg(Gasp-2) âgées de 16 mois ne montrent aucune augmentation de leur masse grasse par rapport aux souris sauvages. De plus, des tests de tolérance au glucose montrent qu'il n'y a pas de différence dans l'utilisation du glucose entre les souris Tg(Gasp-2) et les souris sauvages âgées. Enfin, les souris Tg(Gasp-2) présentent, comme les souris $Mstn^{-/-}$, un « switch » des myofibres lentes au profit des myofibres rapides alors que les souris Tg(Gasp-1) présentent un « switch » inverse.

Dans l'ensemble, la différence de phénotypes observée entre les lignées Tg(Gasp-1) et Tg(Gasp-2) pourrait s'expliquer moléculairement *via* l'induction ou non du mécanisme d'« *up-régulation* » de la myostatine. Nos résultats suggèrent que la protéine GASP-2, bien que moins affine que GASP-1, pourrait être un meilleur candidat pour cibler la voie de signalisation de la myostatine, sans conduire à sa « *up-régulation* » et ainsi sans affecter le métabolisme glucidique.

CHAPITRE III: EFFET DE LA SUREXPRESSION DES PROTEINES GASPS SUR LE SQUELETTE ET LE TISSU OSSEUX

Comme l'ont déjà montré des études préalables, en plus de la myostatine, les protéines GASPs sont capables d'inhiber *in vitro* la protéine GDF-11. Si la myostatine est associée essentiellement au développement musculaire, GDF-11 participe, quant à elle, principalement à la mise en place de l'axe squelettique et au développement osseux. GDF-11 entraîne également une diminution de la masse osseuse en inhibant la différentiation ostéoblastique.

Dans cette partie, nous avons étudié le phénotype squelettique des souris *Tg(Gasp-1)* et *Tg(Gasp-2)*. Pour ce faire, nous avons réalisé et analysé des préparations de squelettes entiers des différentes lignées murines par coloration au rouge alizarine (os) et bleu alcian (cartilage). D'autre part, ces squelettes ont été scannés par microtomographie à rayon X (micro-CT) en collaboration avec le « Centre d'Imagerie du Petit Animal (CIPA) » du CRNS d'Orléans, afin d'étudier la structure osseuse des souris transgéniques.

La lignée murine Tg(Gasp-2) présente une augmentation de la densité osseuse globale et montre également la présence d'une huitième paire de côtes rattachée au sternum avec une pénétrance incomplète. Ce phénotype n'est pas retrouvé dans les souris surexprimant *Gasp-1*. L'ensemble de ces résultats confirme le rôle de régulateur positif de GASP-2 dans l'ostéogénèse par inhibition de la protéine GDF-11.

De plus, la lignée ostéoblastique MC3T3-E1 surexprimant *Gasp-2* présente une augmentation de la prolifération alors que les lignées ostéoblastiques sous-exprimant *Gasp-2* présentent une diminution de la prolifération et de la différenciation. La mise au point d'une culture primaire d'ostéoblastes à partir de *calvaria* de souris montre que les ostéoblastes primaires *Tg(Gasp-2)* prolifèrent et se différentient plus rapidement que les cellules sauvages. A l'échelle moléculaire, la surexpression du gène *Gasp-2* conduit à une surexpression des marqueurs de l'ostéogénèse et de la calcification. Ces résultats préliminaires seront valorisés dans une publication en cours de préparation : « *GASP-2 overexpression increases bone mass and osteoblastogenesis » (Parenté et al., en préparation)*.

1 GASP-2 OVEREXPRESSION INCREASES BONE MASS AND OSTEOBLASTOGENESIS IN MOUSE

- 2 Alexis Parenté¹, Fabienne Baraige¹, Laetitia Magnol¹ and Véronique Blanquet^{1*\$}
- ¹ Univ. Limoges, INRA, PEIRENE EA7500, USC1061 GAMAA, F-87060 Limoges, France
- 4 ^{\$} Correspondence to: V. Blanquet Email address: veronique.blanquet@unilim.fr Faculté des Sciences et Techniques, 123,
- 5 av. A. Thomas, F- 87060 Limoges Cedex, France. Tel: +33 555 457 664.

6 DISCLOSURE SUMMARY

7 The authors have nothing to disclose.

8 ABSTRACT

9 Osteoporosis is an age-related disease that affects millions of people. Growth differentiation factor 10 11 (GDF-11), a secreted member of the transforming growth factor beta (TGF- β) superfamily, inhibits osteoblastogenesis and stimulates osteoclastogenesis. Here, we studied the Gasp-2 and Gasp-1 11 12 overexpression effects in mouse, two natural GDF-11 inhibitors. The transgenic Tg(Gasp-2) mice exhibit an increase in their overall bone density and present the presence of an eighth additional rib 13 attached to the sternum with incomplete penetrance. This phenotype is not found in mice 14 15 overexpressing Gasp-1. All these results confirm the positive regulatory role of GASP-2 in 16 osteogenesis by inhibiting the GDF-11 protein. In addition, MC3T3-E1 osteoblasts overexpressing 17 Gasp-2 and primary osteoblasts Tg(Gasp-2) proliferate and differentiate more rapidly than wild-type cells. Overexpression of GASP-2 induces the expression of osteogenesis and calcification markers. 18 19 Our data demonstrate that GASP-2 is a previously unrecognized regulator of bone remodeling and 20 suggest that GASP-2 is a potential target for treatment of osteoporosis.

21 KEYWORDS

22 Bone, GDF-11, GASP-1, GASP-2, osteoblast, skeleton

23 INTRODUCTION

Over the last decade several studies have reported that osteoporosis in older adults is a skeletal 24 25 disorder caused by bone loss and deterioration of the skeleton which compromised bone strength 26 and an increased risk of fragility fractures (Canalis et al., 2007). Osteoporosis affects an estimated 75 27 million people in Europe, USA and Japan (Gosch et al., 2019). Therefore, it is important to identify the 28 factors that affect the development of osteoporosis. Osteogenesis is the process of deposition of 29 new bone material by osteoblasts during bone remodeling. On the other hand, osteoclasts absorb 30 bone tissue. Although the exact mechanism of bone development is not clear, members of the TGF- β 31 superfamily play a vital role in this process (Oka et al., 2007).

32 GDF-11 is a secreted member of the transforming growth factor beta (TGF- β) superfamily 33 (McPherron *et al.*, 1999). This factor is expressed in the primitive regions of the caudal buds of the 34 mouse embryo and regulates antero-posterior regionalization (McPherron et al., 1999). GDF-11 35 regulates the expression of the Hox genes involved in the establishment of the antero-posterior axis of the mesoderm during embryogenesis (McPherron et al., 1999). In the embryonic stage, Gdf-11^{-/-} 36 37 mice have large skeletal defects with an anteriorization of the axial skeleton and are not viable in adulthood. The heterozygous *Gdf-11^{+/-}* mice have axial skeletal transformations, but have no specific 38 defects in craniofacial development (Lee and Lee, 2015). Compared to wild-type mice (with 13 39 thoracic vertebrae), Gdf-11^{-/-} mice exhibit 4 to 5 additional pairs of ribs for a total of 17 to 18 thoracic 40 segments (McPherron et al., 1999). Mutant mice for ActRIIA/ActRIIB, the GDF-11 receptors, present 41 42 the same skeletal phenotype (Oh et al., 2002; Andersson et al., 2006). Futhermore, GDF-11 inhibits 43 bone formation, osteoblastic differentiation of mesenchymal stem cells in bone marrow by 44 SMAD2/3-RUNX2 signaling pathway and accelerates age-related bone loss in mice. (Liu et al., 2016). 45 In this paper they observed that GDF-11 injections in young or elderly mice cause osteoblast 46 inhibition and osteoclast activation (bone resorption) responsible for a decrease in bone volume (Liu 47 et al., 2016).

48 GDF-11 inhibitors are therefore the subject of scientific studies. In 2010, it was shown that 49 overexpression of the GDF-11 propeptide, which is able to interact with the active form of GDF-11 and inhibit its action, causes in vivo the formation of an additional pair of rib, symmetrically or 50 asymmetrically (Lee and McPherron, 2001; Thies et al., 2001, Li et al., 2010). One year later, the 51 52 same team observed that these transgenic mice, aged 10 weeks, showed an increase in their bone 53 mineral content and bone mineral density (Li et al., 2011). These mice also present a dramatically 54 increased relative volume of trabecular bone located in the bone marrow cavity. The bone formation 55 is improved in transgenic mice due to the increase of osteoblastic activity (Li et al., 2011). Similarly, the treatment with an antibody anti-GDF-11 improves trabecular bone volume, increased trabecular 56 57 number and thickness, and reduces trabecular separation (Liu et al., 2016). In addition, antibody anti-58 GDF-11 treatment prevents estrogen deficiency induced bone loss and improves age-related 59 osteoporosis, which implies that GDF-11 inhibition could be a potential therapeutic approach to prevent osteoporotic bone loss (Liu et al., 2016). 60

In addition to their interaction with myostatin, GASP-1 and GASP-2 proteins may also interact and inhibit GDF-11 *in vitro* (Kondás *et al.*, 2008, 2011). Myostatin and GDF-11 have a high degree of homology since they share more than 90% amino acid identity in their active domain. While myostatin is mainly involved in muscle development, GDF-11 is involved in skeletal formation (McPherron *et al.*, 2009). *In vitro* interaction tests using the surface plasmon resonance method have shown that GASP proteins are also able to interact with the active dimers of GDF-11 through their follistatin domain, as well as with propeptide through their Netrin domain (*Hill et al., 2003; Kondás et* al., 2008, 2011). In 2013, Lee's team described the phenotypic characterization of knockout mice for *Gasp-1* or *Gasp-2*. This study validates the involvement of GASP proteins in muscle development,
since *Gasp-1^{-/-}* or *Gasp-2^{-/-}* mice show a reduction in muscle mass (Lee and Lee, 2013). Interestingly,
this team shows for the first time a bone phenotype in knockout mice for *Gasp-2*. Indeed, the *Gasp-2^{-/-} ^{/-}* mice have formation defects in the axial skeleton with incomplete penetrance but not found in *Gasp1^{-/-}* mice. The most common anomaly is the absence of the 13th thoracic rib (Lee and Lee, 2013).

74 Here, we studied the skeletal phenotype of the mice overexpressing Gasp-1 or Gasp-2, 75 Tg(Gasp-1) and Tg(Gasp-2) mice. We have previously shown that Tg(Gasp-1) and Tg(Gasp-2) mice 76 exhibit an increase in muscle mass via inhibition of myostatin (Monestier et al., 2012; Brun et al., 77 2014; Pèrié et al., 2016; Périè et al., 2017). Here, we performed and analyzed skeletal preparations 78 by staining the various murine lines with alizarin red (bone) and alcian blue (cartilage). In addition, 79 skeletal scans were performed by X-ray microtomography (micro-CT) to study the bone structure of 80 transgenic mice. The transgenic Tg(Gasp-2) mice show an increase in their overall bone density and 81 the presence of an additional eighth rib attached to the sternum with incomplete penetration. This 82 phenotype is not found in mice overexpressing Gasp-1. All these results confirm the positive 83 regulatory role of GASP-2 in osteogenesis by inhibiting the GDF-11 protein. In addition, the 84 overexpressing osteoblastic line MC3T3-E1 Gasp-2 shows an increase in proliferation while the under-expressing osteoblastic lines Gasp-2 show a decrease in proliferation and differentiation. The 85 86 establishment of a primary osteoblast culture from mouse calvaria shows that primary osteoblasts 87 Tg(Gasp-2) proliferate and differentiate more rapidly than wild-type primary cells. Taken together, 88 these results demonstrate that GASP-2 overexpression leads to an increase of osteogenesis and 89 calcification markers levels and promote osteoblastogenesis and bone formation.

90 MATERIALS AND METHODS

91 Animals. Gasp-1 overexpressing mice (Tg(Gasp-1)) and Gasp-2 overexpressing mice (Tg(Gasp-2)) 92 have been described previously (Monestier et al., 2012; Parenté et al., 2019). Transgenic and WT 93 mice used in that experiment were on a FVB/N background. All mice were bred and housed in the 94 animal facility of Limoges University under controlled conditions (20°C, 12h light/12h dark cycle) with 95 free access to standard mouse chow and tap water. Experimental procedures were carried out in 96 accordance with European legislation on animal experimentation (Directive 2010/63/UE) and 97 approved by the ethical committee n°033 (APAFIS #1903-2015091612088147 v2). Phenotypic and 98 molecular analyses were performed on 3-month-old mice, independently of animal sex.

99 MicroCT analysis. MicroCT analysis was performed according to recent guidelines using a Skyscan
 100 1176 microCT imaging system (Skyscan, Kontich, Belgium) with a spatial resolution of 12 mm (X-ray

source 50 kV/455 kA; exposure time 0.265 s; magnification _15; 1mm filter applied). Volumetric reconstructions and analyses were performed using SKYSCAN-1272 (Bruker). Bone volume (mm³) was determined by counting the total number of pixels composing an entire skeleton. The morphological analysis of the skeletons was carried out using the 3D software CT-Vox (Bruker), allowing the 3D remobilization of the skeletons. The number of ribs and the number of ribs attached to the sternum were analyzed. A global analysis of the skeletons was also carried out.

107 Alcian Blue–Alizarin Red Staining of Mouse Skeleton. Thoracic cages of wild-type, Tg(Gasp-1) and 108 Tg(Gasp-2) mice were stained with Alizarine Red/Alcian Blue, allowing the staining of bones and 109 cartilage respectively, each step of this staining protocol was performed under agitation and at room 110 temperature. The skeletons were first fixed in 95% ethanol for 48 hours and then transferred into a 111 Alcian Blue solution (0.03% Alcian Blue (Sigma), 80% ethanol, 20% acetic acid) for 2 days to color the 112 cartilage. The skeletons were then placed in 95% ethanol for 6 h and transferred to a 2% KOH 113 solution for 24 h, allowing the transparency of non-skeletal tissues. The bones were stained with 114 Alizarin Red for 24 hours (0.03% Alizarin Red (Sigma), 1% KOH). The skeletons were then discolored 115 in a discoloration solution (1% KOH, 20% glycerol) for 4/5 days. The skeletons were then balanced in 116 a 1:1 glycerol/95% ethanol solution. Finally, the skeletons were stored in increasing concentrations of glycerol (50%, 80%, 100%) for their preservation. 117

Bone histology. The bones were fixed for 3 days in 4% PFA. Decalcification was carried out in 14%
EDTA for 10 days. Then, tissues were embedded in paraffin and sectioned with microtome (Leica) in 5
μm thickness. The sections were stained with hematoxylin and eosin.

121 Cell culture. MC3T3-E1 and primary osteoblasts were cultured in minimum essential medium a 122 (alpha-MEM) supplemented with 10% fetal bovine serum, 100 units/ml penicillin and 100 mg/ml 123 streptomycin (all from Gibco). Primary osteoblasts were isolated from the calvariae of 3-day-old 124 wildtype or Tg(Gasp-2) mice as previously described (Jonason and O'Keefe, 2014). Briefly, calvariae 125 were dissected aseptically, and sequentially digested with 1mg/ml collagenase solution containing 126 collagenase types I and II in 1:3 ratio (Worthington, Newark, NJ). Osteoblast enriched fractions 127 (fraction 3 to 6) were collected and cultured for around 7 days until confluence. Osteoblast 128 differentiation was induced by treating cells with medium containing 50 mM ascorbic acid, 10mM b-129 glycerophosphate and 10nM dexamethasone (all from Sigma).

MC3T3-E1 cells transfections. MC3T3-E1 cells were transferred with Lipofectamine[™]3000
 (Thermofisher), according to the manufacturer's instructions with several plasmids: pcDNA3.1 empty
 or pcDNA3.1-*Gasp-2* (for *Gasp-2* gain-of-function experiment) and pLKO.1-puro empty, pLKO.1-puro shRNA1 and pLKO.1-puro-shRNA2 (for *Gasp-2* knockdown experiment). Briefly, 6-well culture plates

were plated at 20,000 cells/cm². Cells were transfected with 1 µg of each vector and incubated for 24
 hours. After one day of culture, 800 µg/mL neomycin (Thermofisher) (for pcDNA3.1 plasmids) or 2
 µg/mL puromycin (Thermofisher) (for pLKO.1-puro plasmids) were added at in the culture medium.
 The culture media are then renewed every 2 days until a confluence of 70-80% was reached.

Proliferation assays. The proliferation of MC3T3-E1 and primary calvarial osteoblasts was 138 139 determined using the Click-iT[™] EdU Alexa kit Fluor[™] 488 (ThermoFisher). Briefly, this kit is based on 140 the use of the EdU, a thymidine-like molecule, that is incorporated into the DNA being synthesized 141 during 4 hours. The EdU will therefore be revealed by a fluorescence microscope. The nuclei of the 142 cells were marked with Hoechst 33342 in order to count the total nuclei. A Leica microscope was 143 used to read the fluorescence. For the MTS assay, each experiment corresponded to the analysis of 144 96 wells with 2,000 cells per well at t = 0 h. The CellTiter 96 Aqueous One Solution Cell Proliferation 145 Assay (Promega, Madison, WI) was used during a period of 72 h to determine cell proliferation. 20 µL 146 of MTS solution were added to the cells for 1 h. Absorbance at 490 nm of the formazan product from 147 bioreduced MTS was read using an ELISA plate reader (FLUOstar Omega).

Mineralization assay. MC3T3-E1 and primary calvarial osteoblasts were grown in osteogenic differentiation medium. At day 7, 14 and 21, cells were fixed with 3.7% formaldehyde and stained with 1% Alizarin red S (pH 4.2, Sigma-Aldrich) for 30 min. Mineralized bone nodules stained with alizarin red were destained with 10% cetylpyridinium chloride in 10mM sodium phosphate (pH 7.0), and the calcium concentration was determined by absorbance measurements at 562 nm using a standard calcium curve in the same solution.

154 RNA extraction, reverse transcription and gene expression analysis. Total RNA from cells were isolated using RNeasy midi kit (Qiagen). RNA isolation from bone was performed using Trizol (Life 155 156 Technologies, Carlsbad, CA, USA) as described previously (Kelly et al., 2014). The quality of RNAs has 157 been validated using the Agilent RNA Nano kit (Agilent Technologies) and the Agilent 2100 158 Bioanalyzer reader. Reverse transcription was performed from 2 µg of total RNA using the High 159 Capacity cDNA Archive kit (Applied Biosystems). Taqman™ copy number assays were done with Gene 160 Expression Master Mix (Applied Biosystems™, ThermoFisher Scientific, Waltham, MA, USA), according to the manufacturer's' instructions. 20 ng of cDNA were run in triplicate on QuantStudio 3 161 realtime PCR system (Applied Biosystem[™]) with Tagman primers and probe sets: 18S 162 163 (Hs99999901_s1), Gapdh (Mm99999915_g1), β2m (Mm00437762_m1), Gasp-2 (Mm01308311_m1), Gdf-11 (Mm01159974_m1). For the SYBR Green reaction, 8.75 µL of mix (ThermoFisher), 0.7 µL of 164 165 each primer (Eurofins Genomics) (Table 1), 2.35µL of water and 5µL of cDNA diluted to the 10th are required for a well. Relative mRNA expression values were calculated by the $\Delta\Delta$ Ct method with 166
167 normalization of each sample to the average change in cycle threshold value of the controls.

168 **RESULTS**

169 *Gasp-2* overexpression leads to an increase in bone volume in mice.

Since the GASP-2 protein is able to inhibit *in vitro* GDF-11, a factor that negatively regulates bone development, we were interested in studying the skeleton of Tg(Gasp-2) mice, overexpressing Gasp-2 (Figure 1A). MicroCT scanners analyses revealed an overall increase in bone volume in Tg(Gasp-2)mice compared to wild-type mice (Figure 1B). Indeed, we observed a 12% bone volume increase in males Tg(Gasp-2) (1354 mm³) and a 7% increase in females Tg(Gasp-2) (1331 mm³) compared to wild-type male (1269 mm³) and female (1190 mm³) mice. These results suggest that *in vivo* Gap-2 can increase bone volume.

177 Tg(Gasp-2) mice exhibit skeletal defects.

Given that the increase in total bone volume of Tg(Gasp-2) mice may be due to a general increase in 178 179 bone volume or to the appearance of supernumerary skeletal defects, we decided to carry out a 180 morphological analysis of the skeletons by using the 3D software CT-Vox. This experiment showed 181 the presence of a defect in the number of ribs attached to the sternum in Tq(Gasp-2) mice (Figure 1C 182 -2A). Indeed, 57,6% of Tg(Gasp-2) mice have an 8th pair of ribs attached to the sternum, instead of 183 the 7 normally found in wild-type mice. This additional 8th pair of ribs can be linked symmetrically 184 (where both ribs are attached to the sternum) (15%) or asymmetrically (where only one of the two 185 ribs is attached) (42,5%). However, the total number of ribs remains unchanged in Tg(Gasp-2) mice 186 since it is still 13 as in wild-type mice (Figure 2B). In addition, the same analysis was performed on 187 Tq(Gasp-1) mice, overexpressing Gasp-1. Interestingly, Tq(Gasp1) mice do not have this skeletal 188 defect since 100% of mice have 7 pairs of ribs attached to the sternum like wild-type mice (Figure 189 2B). This data indicates that only Gasp-2 and not Gasp-1 appeared to be involved in bone 190 development.

191 Phenotypic and molecular analyses of femurs in Tg(Gasp-2) mice

Expression of *Col-Ia* (type Ia collagen), *ALP* (alkaline phosphatase), *Oc* (osteocalcin) and *Gdf-11* was analyzed from mouse femur *Tg(Gasp-2)* and wild-type to verify the effect of *Gasp-2* overexpression. *Gasp-2* is well overexpressed by 100-fold in transgenic mice. However, no variation in the expression of other genes is observed in the bone tissue of *Tg(Gasp-2)* mice compared to wild-type mice (**Figure 3A**). In parallel with the molecular analysis, histological sections of the femurs were made to look for possible differences in bone structure. The slides were stained with Hematoxylin Eosin and Safran, allowing the nuclei, cytoplasm and collagen to be marked. No structural differences were observed between wild-type and Tg(Gasp-2) femurs (Figure 3B). The femur study does not allow us to conclude on the effect of Gasp-2 overexpression in bone tissue. To analyze the effect of GASP-2 in bone development at the molecular level, cell cultures have therefore been established and a primary osteoblast culture derived from calvaria of FVB and Tg(Gasp-2) mice was set up to analyze the pro-osteoblastic effect of Gasp-2.

204 Gasp-2 overexpression leads to increased proliferation of MC3T3-E1 cells

205 In order to study the pro-osteoblastic effect of the GASP-2 and its role in a mouse cell model, MC3T3-206 E1 osteoblastic cell lines overexpressing Gasp-2 were performed. Cells transfected with plasmid 207 pcDNA3.1+(Gasp-2) (SurGasp-2) show a significant overexpression of Gasp-2 of about 30-fold 208 compared to cells transfected with empty plasmid pcDNA3.1 (Figure 4A). In order to observe the 209 impact of Gasp-2 overexpression on the proliferation of MC3T3-E1 osteoblasts, MTS proliferation 210 tests were performed. MC3T3-E1 cells overexpressing Gasp-2 show a significant increase in proliferation at 24 h, 48 h and 72 h of culture compared to cells transfected with the control plasmid 211 212 (Figure 4B).

213 Gasp-2 down-expression leads to a decrease in MC3T3-E1 cell proliferation.

To test whether GASP-2 is sufficient to induce osteoblastic MC3T3-E1 proliferation, we performed a loss-of-function experiment by transfecting cells with plasmids pLKO.1-puro-shRNA1 and pLKO.1puro-shRNA2. Knock-down of *Gasp-2*, show significant under-expression of *Gasp-2* by about 3- and 5fold respectively compared to the cells transfected with empty plasmid pLKO.1-puro (**Figure 4C**). MC3T3-E1 cells down-expressing *Gasp-2* show a significant decrease in proliferation at 24 h, 48 h and 72 h of culture compared to cells transfected with the control plasmid (**Figure 4D**).

220 Gasp-2 overexpression enhances primary calvarial osteoblasts proliferation and differentiation

221 In parallel, a primary osteoblast culture was set up to analyze the potential "pro-osteoblastic" effect 222 of Gasp-2 in a mouse cell model. These osteoblasts are derived from calvaria of wild-type or Tg(Gasp-223 2) newborns. As before we performed a MTS test to evaluate the proliferation of primary Tg(Gasp-2)224 osteoblasts versus primary wilt-type osteoblasts. Proliferation of Gasp-2 overexpressing cells is 225 significantly increased at 24 h, 48 h and 72 h compared to WT cells (Figure 5A). In parallel, we 226 performed an EdU incorporation test to evaluate the cell proliferation. Gasp-2 overexpressing cells 227 have a proliferation rate of 19% compared to 8% for wild-type osteoblasts (Figure 5B – 5C). These results show that osteoblasts derived from Tg(Gasp-2) mouse calvaria proliferate more rapidly than 228 229 wild-type osteoblasts. After determining the level of overexpression of Gasp-2 in the cell line from 230 Tg(Gasp-2) versus wild-type mice, a quantification of genes expressed in bone tissue was performed

on the proliferating cells. We observed a 12-fold overexpression of *Gasp-2*, which validates our
overexpression model. A significant increase in *Runx2*, *Osterix* and *Collagen Type Ia* is observed, 1.5,
2.7 and 2.5-fold respectively (Figure 5D), in osteoblasts overexpressing *Gasp-2*.

Osteoblasts in differentiation produce hydroxyapatite crystals composed of calcium that alizarin red can fixed to produce a dark red precipitate. Alizarin red staining therefore makes it possible to evaluate osteoblast differentiation. This experiment was performed on kinetics with 7, 14 and 21 days of differentiation. An increase in red coloration is observed at 21 days (**Figure 6A**). In addition, after quantification, a significant difference is observed at 21 days of differentiation between osteoblasts from wild mice versus Tg(Gasp-2) (**Figure 6B**). All these results confirmed that the overexpression of *Gasp-2* could play a role in osteoblast differentiation.

In the same way as for proliferating cells, a quantification of the expression of certain genes found involved in osteoblast differentiation has been carried out. *Gasp-2* is confirmed to be overexpressed by 5-fold in osteoblasts from Tg (*Gasp-2*) mice. There is a significant increase in the expression of alkaline phosphatase (1.5-fold), osteocalcin (1.8-fold), collagen type Ia (2.3-fold) and osteopontin (2fold) in cells overexpressing *Gasp-2* in differentiation (**Figure 6C**).

246 **DISCUSSION**

247 The GDF-11 protein is now described as a negative regulator of bone development (Liu et al., 2016). In order to improve the osteoblastogenesis by inhibiting GDF-11 activity, its propeptide or 248 anti-GDF-11 antibodies, were the subject of several studies (Li et al., 2010, 2011; Liu et al., 2016). The 249 250 two GASPs proteins, capable of inhibiting GDF-11 in vitro (Kondás et al., 2008), could be presented as 251 interesting proteins to promote bone development. We studied the skeletal phenotype of mice 252 overexpressing Gasp-1 (Tg(Gasp-1) mice) or Gasp-2 (Tg(Gasp-2) mice). We analyzed skeletal scans 253 performed by X-ray microtomography (micro-CT) and skeletal preparations by alizarin red (bone) and 254 alcian blue (cartilage) staining. Analysis of skeletal scans showed that Gasp-2 overexpression leads to 255 an increase in bone volume in Tg(Gasp-2) mice compared to wild-type mice, regardless of the sex of 256 the animals. This result suggests, in vivo, that GASP-2 is able to inhibit GDF-11 in this tissue. This is 257 consistent with the increase in bone volume found in mice treated with an anti-GDF-11 antibody or 258 the decrease in trabecular bone volume observed in mice treated daily with GDF-11 injections (Liu et 259 al., 2016). The increase in total bone volume observed in the Tg(Gasp-2) mice could be due to the 260 general increase in bone volume. It would be interesting to develop a study to measure bone size and thickness in a wild versus overexpression context using more efficient software. 261

This bone density increase observed in Tg(Gasp-2) mice could be associated with the appearance of supernumerary skeletal defects, such as those observed in $Gdf-11^{-/-}$ mice with a total number of ribs greater than normal (McPherron *et al.*, 1999). Analysis of the scans with the 3D visualization software CT-Vox (Bruker) revealed skeletal defects in Tg(Gasp-2) mice with the presence of an eighth pair of ribs attached to the sternum in nearly half of the mice, compared to 7 pairs normally found in wild-type mice. This eighth pair of ribs can be attached to the sternum symmetrically or asymmetrically, and has incomplete penetrance. This skeletal anomaly could be explained by a change in the expression pattern of *Hox* genes in Tg(Gasp-2) mice as well as in $Gdf-11^{-/-}$ mice (McPherron *et al.*, 1999).

Previous studies already demonstrated that GDF-11 promotes the development of osteoporosis in human and mice (Shen et al, 2018; Liu et al, 2016). In 2015, David J. Glass *et al.*, revealed that GDF-11 levels were increasing in sera of aged rats and humans (Egerman et al, 2015). Increased serum GDF-11 concentration was also found associated with a high prevalence of osteoporosis in elderly native Chinese women (Jin et al, 2016). In this paper, bone volume analyses were performed on young 3month-old transgenic mice; it could be interesting to perform the same analyses on elderly mice to determine if *Gasp-2* overexpression preserves age-related osteoporosis by blocking GDF-11 activity.

As GDF-11 is also known to impair bone generation (Liu et al, 2016), thus it would be interesting to
study the effect of GASP-2 on bone regeneration.

Surprisingly, no difference was observed between femurs from *Tg(Gasp-2)* lines on histological sections of femurs marked with Hematoxylin, Eosin and Saffron. One hypothesis could be that femurs had different orientations in the paraffin blocks making any observation difficult. In the future we will measure the weight and height of the femurs to complete this analysis and we will focus our studies on bone internal structure and on its thickness with more sophisticated software.

285 Interestingly, Tg(Gasp-1) mice do no present this skeletal defect. This result converges 286 towards the affirmation of differences in affinity of GASP proteins; as the affinity of GASP-1 is higher 287 for myostatin while GASP-2 have a higher affinity for GDF-11 (Szlama et al, 2013, Walker et al, 2015). Indeed, although these two proteins are structurally similar, GASP-2 inhibits GDF-11 in vitro much 288 289 more effectively than GASP-1 (Kondás et al., 2008). In addition, GASP proteins use two different 290 binding modes to inhibit myostatin. Indeed, the GASP-1 protein binds preferentially to myostatin as 291 an asymmetric complex with a 1:1 stoichiometry, while the GASP-2 protein binds to myostatin as a 292 symmetric protein with a 2:1 stoichiometry (Walker et al., 2015). Therefore, GASP-2 seems to be the 293 most interesting protein to study in a skeletal context.

294

295 In a second part of this study, we studied the pro-osteoblastic effect of the GASP-2 protein 296 and its role in a mouse cell model, the osteoblastic line MC3T3-E1. Indeed, the balance between 297 formation (by osteoblasts) and resorption (by osteoclasts) can be disrupted and lead to osteoporosis. 298 Most current treatments for pathological bone loss activate osteoblasts or inhibit osteoclasts. We 299 have chosen to study the effect of the GASP-2 protein on the proliferation and differentiation of 300 osteoblastic cell. Since bone is a very heterogeneous tissue in vivo and therefore difficult to study, 301 building a cellular model is a real asset in understanding the regulations involving GASP-2 in 302 osteogenesis. Overexpression of Gasp-2 (about 30 times) leads to an increase in MC3T3-E1 cell 303 proliferation. This result is consistent with the fact that GDF-11 inhibits the proliferation of these cells 304 (Liu et al., 2016). To confirm that Gasp-2 pro-osteoblastic effect is due to its inhibition of GDF11, it 305 would be interesting to verify the phosphorylation status of the SMAD2/3, effectors of the GDF-11 306 signalling pathway and verify the expression of several target of this pathway such as p21. Protein 307 p21 is a cell cycle inhibitor and would normally be found decreasing in *Gasp-2* cells.

The down-expression of *Gasp-2* leads to the opposite phenotype of the overexpression effect, i.e. a decrease in proliferation confirming our previous *in vivo* and *in vitro* results.

310 We chose to study the effect of the GASP-2 protein on the proliferation and differentiation of a primary osteoblast culture. This primary culture was developed from wild-type versus Tg(Gasp-2) 311 312 3-day mouse calvaria. Calvaria is considered to be uncalcified bone tissue at this stage. The study of 313 the primary culture revealed that the overexpression of Gasp-2 leads to an increase in osteoblast 314 proliferation. Indeed, the MTS and EdU tests allow us to conclude that proliferation is increased 315 when cells overexpressed Gasp-2. Some osteoblast markers are also increased in cells from Tg(Gasp-316 2) mice, confirming that overexpression of Gasp-2 does lead to an increase in osteoblast 317 proliferation. This is consistent with the fact that GDF-11 inhibits the proliferation of these cells. In 318 order to validate this increase, it would have been interesting to look at the SMAD2/3 phospho-319 status and at the proteins involved in the cycle, such p21 or CDK2. CDK2 positively regulates the cycle 320 and could have been found increased in Gasp-2 overexpressing cells. We were also able to confirm in 321 primary cells by Q-PCR analyses and by Alizarin Red staining that Gasp-2 overexpression induces 322 osteoblast differentiation.

Altogether, our results reveal that GASP-2 is a novel regulator of bone development through its interaction with GDF-11. The transgenic *Tg(Gasp-2)* mice show an increase in bone volume and also show the presence of an eighth rib attached to the sternum with incomplete penetration. *In vitro* analyses also revealed that GASP-2 promotes osteoblast proliferation and differentiation and may provide novel insights into the molecular mechanisms controlling GDF-11 acitivity in

10

328 osteoblatogenesis. Future functional studies involving SMAD2/3 signaling pathway and *in vivo* 329 analysis in aged mice may permit to assess more definitively the role of GASP-2 in bone 330 development and its potential role against osteoporosis.

331 **REFERENCES**

Andersson, O., Reissmann, E., and Ibáñez, C.F. (2006). Growth differentiation factor 11 signals
 through the transforming growth factor-β receptor ALK5 to regionalize the anterior–posterior axis.
 EMBO Rep *7*, 831–837.

- Brun, C., Périé, L., Baraige, F., Vernus, B., Bonnieu, A., and Blanquet, V. (2014). Absence of
 hyperplasia in Gasp-1 overexpressing mice is dependent on myostatin up-regulation. Cell. Physiol.
 Biochem. *34*, 1241–1259.
- Canalis, E., Giustina, A., and Bilezikian, J.P. (2007). Mechanisms of anabolic therapies for
 osteoporosis. N. Engl. J. Med. 357, 905–916.
- Gosch, M., Kammerlander, C., and Neuerburg, C. (2019). [Osteoporosis-epidemiology and quality of
 care]. Z Gerontol Geriatr.
- Hill, J.J., Qiu, Y., Hewick, R.M., and Wolfman, N.M. (2003). Regulation of myostatin in vivo by growth
 and differentiation factor-associated serum protein-1: a novel protein with protease inhibitor and
 follistatin domains. Mol. Endocrinol. *17*, 1144–1154.
- Kelly, N.H., Schimenti, J.C., Ross, F.P., and van der Meulen, M.C.H. (2014). A method for isolating high
 quality RNA from mouse cortical and cancellous bone. Bone *68*, 1–5.
- Kondás, K., Szláma, G., Trexler, M., and Patthy, L. (2008). Both WFIKKN1 and WFIKKN2 have high affinity for growth and differentiation factors 8 and 11. J. Biol. Chem. *283*, 23677–23684.
- Kondás, K., Szláma, G., Nagy, A., Trexler, M., and Patthy, L. (2011). Biological functions of the WAP
 domain-containing multidomain proteins WFIKKN1 and WFIKKN2. Biochem. Soc. Trans. *39*, 1416–
 1420.
- Lee, S.J., and McPherron, A.C. (2001). Regulation of myostatin activity and muscle growth. Proc. Natl.
 Acad. Sci. U.S.A. *98*, 9306–9311.
- Lee, Y.-S., and Lee, S.-J. (2013). Regulation of GDF-11 and myostatin activity by GASP-1 and GASP-2.
 Proc. Natl. Acad. Sci. U.S.A. *110*, E3713-3722.
- Lee, Y.-S., and Lee, S.-J. (2015). Roles of GASP-1 and GDF-11 in Dental and Craniofacial Development.
 J Oral Med Pain 40, 110–114.

- Li, Z., Kawasumi, M., Zhao, B., Moisyadi, S., and Yang, J. (2010). Transgenic over-expression of growth differentiation factor 11 propeptide in skeleton results in transformation of the seventh cervical vertebra into a thoracic vertebra. Mol. Reprod. Dev. *77*, 990–997.
- Li, Z., Zeng, F., Mitchell, A., Kim, Y.S., Wu, Z., and Yang, J. (2011). Transgenic overexpression of bone
 morphogenetic protein 11 propeptide in skeleton enhances bone formation. Biochem Biophys Res
 Commun *416*, 289–292.
- Liu, W., Zhou, L., Zhou, C., Zhang, S., Jing, J., Xie, L., Sun, N., Duan, X., Jing, W., Liang, X., *et al.* (2016).
 GDF11 decreases bone mass by stimulating osteoclastogenesis and inhibiting osteoblast
 differentiation. Nature Communications *7*, 12794.
- 367 McPherron, A.C., Lawler, A.M., and Lee, S.J. (1999). Regulation of anterior/posterior patterning of the
 368 axial skeleton by growth/differentiation factor 11. Nat. Genet. 22, 260–264.
- 369 McPherron, A.C., Huynh, T.V., and Lee, S.-J. (2009). Redundancy of myostatin and
 370 growth/differentiation factor 11 function. BMC Dev. Biol. 9, 24.
- Monestier, O., Brun, C., Heu, K., Passet, B., Malhouroux, M., Magnol, L., Vilotte, J.-L., and Blanquet, V.
 (2012). Ubiquitous Gasp1 overexpression in mice leads mainly to a hypermuscular phenotype. BMC
 Genomics *13*, 541.
- Oh, S.P., Yeo, C.-Y., Lee, Y., Schrewe, H., Whitman, M., and Li, E. (2002). Activin type IIA and IIB
 receptors mediate Gdf11 signaling in axial vertebral patterning. Genes Dev 16, 2749–2754.
- Oka, K., Oka, S., Sasaki, T., Ito, Y., Bringas, P., Nonaka, K., and Chai, Y. (2007). The role of TGF-beta
 signaling in regulating chondrogenesis and osteogenesis during mandibular development. Dev. Biol. *303*, 391–404.
- Pèrié, L., Parenté, A., Brun, C., Magnol, L., Pélissier, P., and Blanquet, V. (2016). Enhancement of
 C2C12 myoblast proliferation and differentiation by GASP-2, a myostatin inhibitor. Biochem Biophys
 Rep *6*, 39–46.
- Périè, L., Parenté, A., Baraige, F., Magnol, L., and Blanquet, V. (2017). Alterations in Adiposity and
 Glucose Homeostasis in Adult Gasp-1 Overexpressing Mice. Cell. Physiol. Biochem. 44, 1896–1911.
- Thies, R.S., Chen, T., Davies, M.V., Tomkinson, K.N., Pearson, A.A., Shakey, Q.A., and Wolfman, N.M.
 (2001). GDF-8 propertide binds to GDF-8 and antagonizes biological activity by inhibiting GDF-8
 receptor binding. Growth Factors *18*, 251–259.

Walker, R.G., Angerman, E.B., Kattamuri, C., Lee, Y.-S., Lee, S.-J., and Thompson, T.B. (2015).
Alternative binding modes identified for growth and differentiation factor-associated serum protein
(GASP) family antagonism of myostatin. J. Biol. Chem. 290, 7506–7516.

390 LEGENDS

391 Figure 1: Gasp-2 overexpression leads to an increase in bone volume in mice. A. Skeletal scans were 392 performed by X-ray microtomography (micro-CT) to study the bone structure of transgenic mice. B. 393 Bone volume (mm³) was determined by counting the total number of pixels composing an entire skeleton of wild-type (n= 10 males and 10 females) (n=15), Tq(Gasp-2.2) (n= 10 males and 10 394 395 females) and Tg(Gasp-2.9) mice(n= 10 males and 10 females). **C.** The transgenic Tg(Gasp-2) mice 396 present the presence of an eighth rib attached to the sternum with incomplete penetrance. Data are 397 shown as means ± SEM; Two-way ANOVA was performed (wilt-type vs genotypes) (*: p value < 0.05; **: p value < 0.005; ***: p value < 0.001). 398

Figure 2: Tg(Gasp-2) mice exhibit skeletal defects. A. Thoracic cages of wild-type (WT) (n=30),
 Tg(Gasp-1) (n=20) and Tg(Gasp-2) (n=35) mice were stained with Alizarine Red/Blue Alcian, allowing
 the staining of bones and cartilage respectively. B. Distribution of animals (percentage) according to
 the number of ribs attached to the sternum.

Figure 3: Phenotypic and molecular analyses of femurs in Tg(Gasp-2) mice. A. Relative mRNA expression levels of Gasp-2, Col-Ia, ALP, Oc and Gdf-11 were measured by quantitative PCR of wilttype (WT) (n=5) and Tg(Gasp-2.9) (n=5) femur. B. Hematoxylin and eosin stained sections of the distal femur of (a,b) wild-type and (c;d) Tg(Gasp-2) mice. Data are shown as means ± SEM; Two-way ANOVA was performed (wilt-type vs genotypes) (***: p value < 0.001).

408 Figure 4: Gasp-2 overexpression or down-expression in MC3T3-E1 ostaoblasts. A. qPCR analysis of 409 Gasp-2 expression in MC3T3-E1 transfected with pcDNA3.1-Gasp-2 (SurGasp-2) or pcDNA3.1-empty 410 (pControl). B. Proliferation analysis of MC3T3-E1 cells cultured for 72h, transfected with pcDNA3.1-411 Gasp-2 (SurGasp-2) or pcDNA3.1-empty (pControl). C. qPCR analysis of Gasp-2 expression in MC3T3-412 E1 transfected with pLKO.1-puro-shRNA1 and pLKO.1-puro-shRNA2 or pLKO.1-puro-empty (pControl). D. Proliferation analysis of MC3T3-E1 cells cultured for 72h, transfected with pLKO.1-413 414 puro-shRNA1 and pLKO.1-puro-shRNA2 or pLKO.1-puro-empty (pControl). Data are shown as means 415 ± SEM; Two-way ANOVA was performed (wilt-type vs genotypes) (*: p value < 0.05; **: p value < 0.005; ***: p value < 0.001). 416

Figure 5: *Gasp-2* overexpression enhances primary calvarial osteoblasts proliferation. A.
Proliferation analysis of wild-type (WT) or *Tg(Gasp-2)* primary calvarial osteoblasts cultured for 96h.

B-C. The proliferation of primary calvarial osteoblasts was determined using the Click-iT[™] EdU Alexa kit Fluor™ 488 (ThermoFisher) . Briefly, this kit is based on the use of the EdU, a thymidine-like molecule that is incorporated into the DNA being synthesized during 4 hours. The EdU will therefore be revealed by a fluorescence microscope. The nuclei of the cells are marked with Hoechst 33342 in order to count the total nuclei. D. Relative mRNA expression levels of Gasp-2, Runx2, Osx and Col-Ia were measured by quantitative PCR of wilt-type (WT) and Tg(Gasp-2.9) (n=5) primary calvarial osteoblasts at 24h of proliferation. Data are shown as means ± SEM; Two-way ANOVA was performed (wilt-type vs genotypes) (*: p value < 0.05; **: p value < 0.005; ***: p value < 0.001).

Figure 6: *Gasp-2* overexpression enhances primary calvarial osteoblasts differentiation. A. The
alizarin red staining was measured after 21 days of primary calvarial osteoblast culture, to determine
the level of mineralization. B. Quantitative evaluation of calcium deposits using Alizarin red staining.
C. Relative mRNA expression levels of *Gasp-2, Gdf-11*, Runx2, *Osx, ALP, Oc, Col-Ia* and *Opn* were
measured by quantitative PCR of wilt-type (WT) and *Tg(Gasp-2.9)* (n=5) primary calvarial osteoblasts
at 7 days of differentitation. Data are shown as means ± SEM; Two-way ANOVA was performed (wilttype vs genotypes) (*: p value < 0.05; **: p value < 0.005; ***: p value < 0.001).

448 Table 1 : Primers used in SYBRGreen technology.

GENE	PRIMER
RUNX2_Fw	CCGTGGCCTTCAAGGTTGT
RUNX2_Rev	TTCATAACAGCGGAGGCATTT
OSX_Fw	CCCTTCTCAAGCACCAATGG
OSX_Rev	AAGGGTGGGTAGTCATTTGCATA
ALP_Fw	TGACCTTCTCCTCCATCC
ALP_Rev	CTTCCTGGGAGTCTCATCCT
OC_Fw	CTTGAAGACCGCCTACAAAC
OC_Rev	GCTGCTGTGACATCCATAC
OPG_Fw	GTGGAATAGATGTCACCCTGTGT
OPG_Rev	TTTGGTCCCAGGCAAACTGT
OPN_Fw	TGCACCCAGATCCTATAGCC
OPN_Rev	CTCCATCGTCATCATCG
COL-I1a_Fw	GCTCCTCTTAGGGGCCACT
COL-I1a_Rev	CCACGTCTCACCATTGGGG
GAPDH_Fw	TGCACCACCAACTGCTTAG
GAPDH_Rev	GGATGCAGGGATGATGTTC

Α.

Figure 1

Β.

Tg(Gasp-2)

Figure 2

8 sternum-related ribs

Figure 3

Time (hours)

La protéine GDF-11 est aujourd'hui décrite comme étant un régulateur négatif du développement osseux. Ainsi les inhibiteurs de GDF-11, tels que son propeptide ou des anticorps anti-GDF-11 font actuellement l'objet de plusieurs études. Les protéines GASPs, en inhibant GDF-11 *in vitro* (Kondás *et al.*, 2008), pourraient se présenter comme des protéines intéressantes pour favoriser le développement osseux. C'est dans ce contexte que se sont inscrits les objectifs de cette partie de mes travaux donnant des résultats préliminaires mais encourageants.

Dans un premier temps, nous avons étudié le phénotype squelettique des souris Tg(Gasp-1) et Tg(Gasp-2). Pour ce faire, nous avons réalisé et analysé des préparations squelettiques par coloration au rouge alizarine (os) et bleu alcian (cartilage) des différentes lignées murines. D'autre part, des scans de squelette réalisés par microtomographie à rayon X (micro-CT) ont été réalisés en collaboration avec le « Centre d'Imagerie du Petit Animal (CIPA) » du CRNS d'Orléans.

Les souris transgéniques Tg(Gasp-2) présentent une augmentation de leur densité globale osseuse par rapport aux souris sauvages, indépendamment du sexe. Ce résultat suggère, *in vivo*, un rôle inhibiteur de GASP-2 sur GDF-11. Ce résultat est en accord avec l'augmentation du volume osseux retrouvé lors de traitements avec un anticorps anti-GDF-11 ou avec la diminution du volume de l'os trabéculaire observée chez les souris traitées quotidiennement avec des injections de GDF-11 (Liu *et al.*, 2016b). Les analyses du volume osseux ont été réalisées sur des souris jeunes de 3 mois, il serait cependant intéressant d'effectuer ces mêmes analyses sur des souris âgées afin de déterminer si la surexpression de *Gasp-2* préserve de l'ostéoporose liée à l'âge.

Les analyses des scans micro-CT et des colorations des cages thoraciques des souris révèlent l'apparition d'un défaut squelettique chez les souris Tg(Gasp-2) avec la présence d'une huitième paire de côtes rattachée au sternum dans près de la moitié des souris (7 paires étant normalement retrouvées chez les souris sauvages). Cette huitième paire de côtes peut être rattachée au sternum de manière symétrique ou asymétrique, et présente une pénétrance incomplète. Cette anomalie squelettique pourrait s'expliquer par une modification du patron d'expression des gènes *Hox* chez les souris Tg(Gasp-2) comme chez les souris $Gdf-11^{-/-}$ (McPherron *et al.*, 1999) (pour rappel, **Figure 22**). En effet, il a déjà été montré que GDF-11 régule l'expression de ces gènes *Hox* au stade embryonnaire et permet de spécifier l'identité positionnelle le long de l'axe antéro-postérieur. L'inhibition de GDF-11 par GASP-2 au stade embryonnaire dans les souris Tg(Gasp-2) serait donc à l'origine de ces anomalies.

Aucune différence n'est observée entre les fémurs issus des lignées *Tg(Gasp-2)* et sauvage sur les coupes histologiques des fémurs marqués en Hématoxyline, Eosine et

Safran. La difficulté d'orientation des fumeurs dans les blocs de paraffine ainsi que le manque de décalcification avant coupes peuvent expliquer les difficultés rencontrées. Il serait intéressant d'analyser la structure interne de l'os et son épaisseur par des logiciels plus perfectionnés à l'image de l'équipe de Liu (2016).

De manière intéressante, aucune souris Tg(Gasp-1) ne présente de défaut squelettique. Ce résultat conforte le constat selon lequel les protéines GASPs présentent des différences d'affinité: GASP-1 aurait plus d'affinité pour la myostatine et GASP-2 aurait plus d'affinité pour GDF-11. La protéine GASP-2 semble donc être la plus intéressant à étudier dans un contexte squelettique.

C'est pourquoi dans une deuxième partie, nous avons étudié l'effet proostéoblastique de la protéine GASP-2 et son rôle dans différents modèles cellulaires d'ostéoblastes. En effet, l'équilibre entre formation (par les ostéoblastes) et résorption (par les ostéoclastes) peut être rompu et conduire à l'ostéoporose. La plupart des traitements actuels contre la perte osseuse pathologique activent les ostéoblastes ou inhibent les ostéoclastes. Nous avons fait le choix d'étudier l'effet de la protéine GASP-2 sur la prolifération et la différenciation d'une lignée ostéoblastiques.

La lignée ostéoblastique MC3T3-E1 surexprimant *Gasp-2* présente une augmentation de la prolifération alors que les lignées ostéoblastiques sous-exprimant *Gasp-2* présentent une diminution de la prolifération et de la différenciation. Ces résultats sont en adéquation avec le fait que GDF-11 inhibe normalement la prolifération/différenciation des ostéoblastes. Il serait intéressant de vérifier l'état de phosphorylation des SMAD2-3, effecteurs de la voie de signalisation de GDF-1. Il serait aussi intéressant de vérifier l'expression des acteurs de la prolifération tels que p21 ou des cyclines du cycle cellulaire.

En parallèle, nous avons mis en place une culture primaire d'ostéoblastes dérivée de calvaria de souris nouveau-nés Tg(Gasp-2) versus sauvage. La calvaria est considérée comme étant un tissu osseux non calcifié à ce stade. L'étude de la culture primaire a permis de mettre en évidence que la surexpression de *Gasp-2* entraîne une augmentation de la prolifération des ostéoblastes. Certains marqueurs pro-ostéoblastiques sont aussi augmentés dans les cellules issues de souris Tg(Gasp-2). L'étude de la phase de différenciation a été également mise en place via coloration au rouge alizarine qui se fixe aux dépôts calciques des ostéoblastes en différenciation. Les ostéoblastes primaires Tg(Gasp-2) présentent une augmentation de la différenciation à 21 jours. Moléculairement, la surexpression de GASP-2 entraîne une surexpression des marqueurs de l'ostéogénèse et de la calcification, tels qu'*Osx* (Ostérix), *Alp* (Alkaline Phosphatase) ou *Ocn* (Ostéoclacine).

L'ensemble de ces premiers résultats confirment le rôle de régulateur positif de GASP-2 dans l'ostéogénèse par son interaction avec la protéine GDF-11. Pour identifier

l'effet de GASP-2 sur la régénération osseuse, une comparaison de la régénération pourrait être réalisée après par perforation osseuse entre les souris Tg(Gasp-2) et les souris sauvages. En effet, il a été montré que l'injection de GDF-11 altère la régénération osseuse chez la souris (Liu *et al.*, 2016b).

CHAPITRE IV: ETUDE *IN VITRO* DE LA RELATION STRUCTURE/FONCTION DES PROTEINES GASP-1 ET GASP-2 DANS LE CONTEXTE ANTIPROTEASIQUE

A ce jour, la majorité des études portant sur les protéines GASPs concerne leur(s) rôle(s) au cours du développement musculaire par inhibition de la myostatine, et non leur rôle potentiel d'inhibiteur de protéases. Seul le second domaine Kunitz isolé de la protéine GASP-2 humaine a été décrit comme étant capable d'inhiber la trypsine (Nagy *et al.*, 2003; Liepinsh *et al.*, 2006). Cependant, aucun paramètre cinétique n'a été mesuré pour le second domaine Kunitz de GASP-1. De même, à ce jour aucune activité inhibitrice n'a été publiée pour aucune des 2 protéines entières.

Dans cette dernière partie, nous avons cherché à déterminer si les 2 protéines GASPs entières sont capables d'inhiber la trypsine. Au préalable, j'ai choisi d'apporter, dans un **Encart**, quelques indications supplémentaires concernant la détermination *in vitro* des différents paramètres cinétiques des activités anti-trypsine.

Notre étude montre pour la première fois que les protéines recombinantes GASP-1 et GASP-2 sont capables d'inhiber la trypsine *in vitro*, selon 2 mécanismes distincts. En effet, la protéine GASP-2, produite dans la bactérie *E. coli*, est capable d'inhiber la trypsine selon un mécanisme compétitif. De manière surprenante, bien que ces 2 protéines soient étroitement liées structurellement, notre travail révèle que GASP-1 inhibe la trypsine selon un mécanisme non compétitif. De plus, les modifications post-traductionnelles telles que la N- et la O-glycosylation, absentes dans les protéines GASPs recombinantes produites dans la bactérie *E. coli*, ne sont pas nécessaires pour leur activité anti-protéasique contre la trypsine. La production de 2 protéines chimériques, GASP-1_{Ku2-2} et GASP-2_{Ku2-1}, dans lesquelles seul le second domaine de Kunitz ($_{Ku2}$) a été inter-changé, montre que la différence de spécificité d'inhibition n'est attribuée qu'au second domaine Kunitz.

Une collaboration avec l'équipe de P.Trouillas (UMR Inserm-CHU 1248, Limoges) nous a permis de réaliser des simulations dynamiques qui étayent ces données biologiques, en rationalisant la façon dont le second domaine Kunitz est impliqué dans la spécificité antitrypsique. Une nouvelle fois, nos travaux révèlent une dualité fonctionnelle entre GASP-1 et GASP-2. Ces résultats sont en cours de valorisation dans une publication en « révision mineur » dans *Febs Journal* : *« GASP-1 and GASP-2, two closely structural related proteins with a functional duality in anti-trypsin inhibition specificity: a mechanistic point of view » (Parenté et al., en révision).*

ENCART : DETERMINATION DES PARAMETRES CINETIQUES DES ACTIVITES ANTI-TRYPSINE

Afin de vérifier si les protéines recombinantes GASP-1 et GASP-2 produites chez *E. coli* présentent la propriété inhibitrice déjà décrite pour le second domaine Kunitz de la protéine GASP-2 humaine, des tests d'activité *in vitro* ont été réalisés en utilisant de la trypsine commerciale. La trypsine est une endoprotéase qui hydrolyse, en position C-terminale, une liaison peptidique dans laquelle un résidu basique lysine (K) ou arginine (R) engage sa fonction acide.

Mécanisme d'inhibition réversible compétitif

Selon les études publiées par Nagy *et al.*, 2003, le second domaine kunitz de la protéine GASP-2 humaine inhibe la trypsine selon un mécanisme réversible de type compétitif. La fixation de l'inhibiteur (I) empêche la fixation du substrat (S) sur le site actif de l'enzyme et réciproquement. Une inhibition compétitive peut être exprimée selon le mécanisme réactionnel suivant :

$$E + S \xrightarrow{k_{1}} ES \xrightarrow{k_{cat}} E + P$$

$$K_{i} = I$$

$$EI$$

D'après ce mécanisme réactionnel, les fixations à l'enzyme de (S) et de (I) sont donc mutuellement exclusives. Il existe plusieurs modèles d'inhibition compétitive représentés sur la figure suivante :

MODELES CLASSIQUE ET ALTERNATIFS D'UNE INHIBITION REVERSIBLE COMPETITIVE (d'après Segel I. (1975)) Dans la majorité des cas, (S) et (I) entrent en compétion pour la fixation sur le site actif de l'enzyme (1). Cela nécessite que (S) et (I) présentent une analogie structurale. Il existe cependant d'autres mécanismes d'inhibition compétitive dans lesquels les sites de fixation de (S) et (I) sont distincts : la fixation de (I) entraîne un encombrement stérique empêchant la fixation de (S) sur le site actif de l'enzyme (2) ; le substrat et l'inhibiteur ont un groupe en commun qui se fixe sur un troisième site de fixation de l'enzyme (3) ; les sites de fixation de (I) et (S) se recouvrent (4) ; la fixation de (I) induit un changement conformationnel de l'enzyme qui déforme ou masque le site catalytique. (S) perd alors son affinité pour le site et inversement (5). Beaucoup d'enzymes multimériques allostériques peuvent être inhibées suivant ce dernier modèle.

En présence d'un d'inhibiteur compétitif, l'affinité apparente de l'enzyme diminue. K_m est augmentée et V_{max} n'est pas modifiée. Une inhibition réversible compétitive peut être représentée par le graphique en doubles inverses de Lineweaver- Burk.

REPRESENTATION GRAPHIQUE DE LINEWEAVER-BURK D'UNE INHIBITION REVERSIBLE COMPETITIVE

Le point d'intersection des droites sur l'axe des ordonnées correspond à la valeur $1/V_{max}$. La vitesse maximale n'est pas modifiée. Pour des concentrations croissantes en inhibiteur, l'intersection sur l'axe des abscisses correspond à la valeur de $-1/K_m^{app}$ qui augmente, donc K_M^{app} augmente. La représentation K_{max}^{app} en fonction de [I] permet alors de déterminer la constante d'inhibition *K*i qui correspond à la valeur absolue du point d'intersection de la droite avec l'axe des abscisses.

L'inhibition compétitive peut-être "levée" en utilisant une concentration saturante en substrat. En effet, puisque la fixation du substrat et celle de l'inhibiteur sont mutuellement exclusives, l'addition d'une très forte concentration de substrat déplace l'équilibre $E + S \Leftrightarrow ES$ en faveur de ES ; l'équilibre $EI \Leftrightarrow E + I$ est donc déplacé en faveur de E.

Mécanisme d'inhibition réversible non compétitif

Les inhibiteurs non compétitifs ne présentent pas d'homologie structurale avec le substrat. Un inhibiteur non compétitif classique n'a aucune influence sur la fixation du substrat (et réciproquement); les sites de fixation du substrat et de l'inhibiteur sont en effet distincts. En conséquence, l'inhibiteur peut se fixer sur l'enzyme libre E ou sur le complexe ES. De la même manière, le substrat peut se fixer sur l'enzyme libre E ou sur le complexe EI. Le mécanisme réactionnel d'une inhibition non compétitive peut être exprimé selon le modèle :

Classiquement, lors d'une inhibition non compétitive, la fixation de l'inhibiteur ne modifie pas la manière dont se fixe le substrat mais elle empêche les ajustements conformationnels du site actif qui devraient avoir lieu pour qu'il y ait catalyse. Ainsi, le complexe ternaire ESI est inactif.

REPRESENTATION SCHEMATIQUE D'UNE INHIBITION NON COMPETITIVE

En présence d'un inhibiteur non compétitif, une partie des molécules d'enzyme se trouve sous la forme EI et ESI, conjointement au complexe ES; il y a donc moins de molécules d'enzyme actives et V_{max} diminue. En revanche, les sites de fixation de (I) et (S) étant distincts, la saturation par le substrat des molécules d'enzyme libre E n'est pas modifiée: K_m n'est donc pas modifiée.

Une inhibition réversible non compétitive peut être représentée par le graphique en doubles inverses de Lineweaver- Burk .

REPRESENTATION GRAPHIQUE DE LINEWEAVER-BURK D'UNE INHIBITION REVERSIBLE NON COMPETITIVE

Pour des concentrations croissantes en inhibiteur, l'intersection des droites sur l'axe des ordonnées donne une valeur de $1/V_{max}^{app}$ qui augmente, donc V_{max}^{app} diminue. Le point d'intersection de toutes les droites sur l'axe des abscisses correspond à $-1/K_{M}$. K_{M} n'est pas modifiée. La représentation $1/V_{max}^{app}$ en fonction de [I] permet de déterminer la constante d'inhibition Ki qui correspond à la valeur absolue du point d'intersection de la droite avec l'axe des abscisses. Cette inhibition ne peut pas être levée en présence de fortes concentrations de substrat.

En pratique, au cours de ce travail, pour chaque protéine recombinante purifiée, les différents tests d'inhibition ont été réalisés selon le protocole suivant. Des concentrations constantes de Trypsine (5 nM) sont pré-incubées avec des concentrations croissantes de protéine recombinante (0 - 9,4 μ M) dans un tampon (Tris-HCl 100 mM pH 8,3, 100 mM CaCl₂) pendant 15 minutes à 25°C. Différentes concentrations (12,5 - 200 μ M) de substrat fluorescent (Z-Phe-Arg7-amido-4-methylcoumarin hydrochloride) sont ajoutées. Après excitation du substrat ($\lambda_{excitation}$ = 355 nm), la fluorescence émise par le produit fluorescent ($\lambda_{emission}$ = 460 nm) correspondant à l'activité résiduelle de la trypsine est mesurée par spectrofluorométrie toutes les 20 secondes pendant 12 minutes.

GASP-1 and GASP-2, two closely structural related proteins with a functional duality in anti-trypsin inhibition specificity: a mechanistic point of view.

Journal:	The FEBS Journal
Manuscript ID	FJ-18-1082.R1
Manuscript Type:	Regular Paper
Date Submitted by the Author:	18-Apr-2019
Complete List of Authors:	Parente, Alexis; EA7500-USC INRA1061, Génomique Animale, Amelioration, Adaptation Di Meo, Florent; IPPRITT - UMR INSERM 1248 Lapeyronie, Eric; EA3842, faculté de Medecine Al Mansi, Montasir; EA7500-USC INRA1061, Génomique Animale, Amelioration, Adaptation Delourme, Didier; EA7500-USC INRA1061, Génomique Animale, Amelioration, Adaptation Pélissier, Patrick; EA7500-USC INRA1061, Génomique Animale, Amelioration, Adaptation Brémaud, Laure; EA7500-USC INRA1061, Génomique Animale, Amelioration, Adaptation Brémaud, Laure; EA7500-USC INRA1061, Génomique Animale, Amelioration, Adaptation Trouillas, Patrick; IPPRITT - UMR INSERM 1248 Blanquet, Veronique; EA7500-USC INRA1061, Génomique Animale, Amelioration, Adaptation
Key Words:	
Note: The following files were submitted by the author for peer review, but marked to be sent in Off- Line.	
Movie S3 Movie S2 Movie S1	

- 1 GASP-1 and GASP-2, two closely structural related proteins with a functional duality in anti-trypsin
- 2 inhibition specificity: a mechanistic point of view.
- 3 Alexis Parenté^{1*}, Florent Di Meo^{2*}, Eric Lapeyronie¹, Montasir Al Mansi¹, Didier Delourme¹, Patrick
- 4 Pélissier¹, Laure Brémaud¹, Patrick Trouillas^{2, 3, §}, Véronique Blanquet^{1§}
- 5 ¹ Univ. Limoges, INRA, PEIRENE EA7500, USC1061 GAMAA, F-87060 Limoges, France
- 6 ² Univ. Limoges, INSERM, UMR 1248 IPPRITT, F-87000 Limoges, France.
- 7 ³ RCPTM, Palacký University, 771 46 Olomouc, Czech Republic
- 8 * A.P and F.D.M are considered co-first authors and contributed equally to this work
- 9 § V.B and P.T are considered co-last authors and contributed equally to this work
- 10
- 11 Correspondence to: V. Blanquet Email address: veronique.blanquet@unilim.fr Faculté des Sciences
- 12 et Techniques, 123, av. A. Thomas, F- 87060 Limoges Cedex, France. Tel: +33 555 457 664.
- 13 Disclosure Summary: The authors have nothing to disclose.

14 KEYWORDS

- 15 GASP; WFIKKN; antiprotease; inhibition mechanism; Kunitz domain; molecular dynamics
- 16 ABSTRACT

17 While GASP-1 and GASP-2 proteins are known to regulate myogenesis by inhibiting myostatin, their 18 structural organization suggests a putative role as multivalent protease inhibitors controlling different 19 protease activities. In this study, we show the non-competitive and competitive anti-trypsin activities 20 of the full-length GASP-1 and GASP-2 proteins, respectively, by using a bacterial system production 21 and in vitro enzymatic experiments. The role of the second Kunitz domain in this functional duality is 22 described by assessing the anti-trypsin activity of GASP-1/2 chimeric proteins. Molecular dynamics 23 simulations support the experimental data to rationalize differences in binding modes between trypsin 24 and the GASP-1 and GASP-2 second Kunitz domains. A new inhibition mechanism was evidenced for 25 the second Kunitz domain of GASP-2, in which the conventional cationic residue of trypsin inhibitors 26 was substituted by the strongly-interacting glutamine residue.

- 27
- 28

29 INTRODUCTION

30 The Growth and differentiation factor Associated Serum Proteins (GASP-1 and GASP-2) are two closely 31 related multi-domain glyco-proteins, discovered in the early 2000s and initially named WFIKKN proteins with respect to their structural composition made of a Whey acidic protein domain (W), a 32 Follistatin/Kazal (FK) domain, an Immunoglobulin-related (I) domain, two tandem Kunitz (K) modules 33 34 and a Netrin (N) module (1,2). With the exception of the immunoglobulin and follistatin domains, all 35 others are associated with protease inhibitors. This suggests that these proteins could act as 36 multivalent inhibitors of proteases (1). At the fetal stage, GASP-1 is mainly expressed in the skeletal 37 muscle, brain, kidney and thymus. GASP-2 is highly expressed in the lung and to a lower extent in the 38 skeletal muscle and liver. At the adult stage, GASP-1 is mainly expressed in the ovaries, testes and 39 pancreas whereas GASP-2 is mainly expressed in the pancreas, liver, thymus and lung (1–3). Despite 40 globally distinct expression patterns, their common high level of expression in the pancreas, which 41 secretes a variety of proteases, as trypsin, reinforces the putative antiprotease function of the GASP 42 proteins.

Follistatin-type proteins as GASPs are factors that function by binding and/or inhibiting members of 43 the TGF- β (Transforming Growth Factor β) superfamily including the activin, TGF- β s, BMPs (Bone 44 45 Morphogenetic Proteins) and GDFs (Growth Differentiation Factor) subfamilies (4–6). If GASP proteins play a role of chaperone for some TGF-βs members, they have both chaperone and inhibitor functions 46 47 for GDF-8 (myostatin) and GDF-11 (7–9). By co-immunoprecipitation from murine serum, a direct 48 interaction between GASP-1 and myostatin has been shown, which results in inactivation of myostatin 49 signaling pathway (3). GASP-2 was also shown to exhibit high affinity to myostatin, acting as an 50 inhibitor in vitro (8). This myostatin inhibition has also been demonstrated in vivo using different transgenic models of GASPs invalidation or overexpression. As myostatin is a powerful negative 51 52 regulator of muscle growth, GASP-1 or GASP-2 murine knockout leads to muscle atrophy (10), while 53 reversely, GASP-1 overexpression leads to an increase in muscle mass (11-13). Furthermore, overexpression of GASP-1 or GASP-2 promotes proliferation and differentiation of myoblastic cells by
inhibiting the myostatin pathway (14,15).

56 To date, most studies on these two GASP genes concern their function during myogenesis and not their 57 potential role as protease inhibitor. Although present in the resource for peptidases and their 58 inhibitors (MEROPS database), GASP proteins are classified as putative protease inhibitors (16). GASPs 59 are among the rare heterotopic compound inhibitors together with the Eppin proteins (17). Under 60 physiological conditions, a balance exists between proteases and their inhibitors regulating many 61 mechanisms such as digestion, homeostasis inflammatory response, reproduction or coagulation (18). 62 Proteases are divided into four major families: serine proteases, cysteine proteases, aspartyl proteases 63 and metalloproteases. This classification considers the amino acid composition of their catalytic site 64 (serine, aspartate or cysteine) or the use of metal ions which lead to different mechanisms of action (19). The protease inhibitors are grouped into several families according to their sequence homology 65 66 with "inhibitory units" defined as an amino acid sequence containing a single reactive site carrying the 67 inhibitory activity (20). Several domains present in GASP proteins are frequently involved in the 68 inhibition of proteases. Many studies have shown that the WAP (Whey Acidic Protein), Kazal or Kunitz domains are involved in the inhibition of serine proteases. In addition, the WAP domain can act on 69 70 cysteine proteases (21). The Netrin domain is associated with the inhibition of metalloproteases, as 71 found in the TIMPs (Tissue Inhibitor of MetalloProteinases) inhibiting MMPs (Matrix 72 MetalloProteinases) or sFRPs (secreted Frizzled-Related Proteins), involved in regulation of the Wnt 73 pathway (Wingless/Integrated) (22–24).

This knowledge has suggested that GASP-1 and GASP-2 are multivalent protease inhibitors. To date, only the second Kunitz domain of human, GASP-2, has been described as capable of inhibiting trypsin, the most extensively studied serine protease. No effect on the proteasic activities of the elastase, chymotrypsin, tissue-type plasminogen activator, urikinase-type plasminogen activator, has been showed (25,26). No kinetics of enzyme inhibition has been reported neither for GASP-2 nor for GASP-

79 1.

3

80 We investigated the anti-trypsin activity of the full-length GASP-1 and GASP-2 proteins and we 81 determined the role of the second Kunitz (Ku₂) domain in this activity. Using a bacterial expression 82 system, several native and chimeric murine GASPs (mGASP) proteins were produced to perform the in 83 vitro enzymatic activities. We showed for the first time that the full-length mGASP-1 protein has a noncompetitive anti-trypsin activity whereas the mGASP-2 protein presents a competitive anti-trypsin 84 85 activity. The production of two chimeric proteins, mGASP-1/Ku₂₋₂ and mGASP-2/Ku₂₋₁, in which only 86 the second Kunitz (Ku₂) domain has been interchanged, showed that the difference in inhibition specificity is only attributed to the second Kunitz domain. Molecular models and molecular dynamic 87 88 simulations supported this biological data, rationalizing how the second Kunitz domains of GASP-1 and 89 GASP-2 were implicated in the anti-trypsin inhibition specificity, based on the description of the highly 90 dynamic modes of binding.

91 MATERIALS AND METHODS

92 Construction of expression vectors for different murine recombinant GASPs.

Wildtype recombinant mGASP-1 and mGASP-2: expression plasmids encoding full-length mature wild type mGASP-1 and mGASP-2 excluding the signal peptide were constructed in pGEX-4T1 plasmid vector
 (Sigma-Aldrich, Saint Louis, MO) as previously described (15).

96 Chimeric mGASP-1/Ku₂₋₂ and GASP-2/Ku₂₋₁: two other recombinant vectors encoding two chimeric 97 GASP proteins, mGASP-1/Ku₂₋₂ and mGASP-2/Ku₂₋₁, in which the second Kunitz (Ku₂) domain was 98 interchanged. mGASP-1/Ku₂₋₂ corresponds to the mGASP-1 protein with the mGASP-2 second Kunitz 99 domain and the reciprocal protein mGASP-2/Ku₂₋₁ includes the second Kunitz domain of mGASP-1. Briefly, for each construction, we amplified two independent PCR fragments using the Q5[®] High-100 101 Fidelity DNA polymerase (New England Biolabs): one corresponding to the plasmid vector pGEX-4T1 102 with the sequence encoding the GASP protein without its second Kunitz domain and the other 103 corresponding to the second Kunitz domain of the reciprocal GASP protein. Primers and PCR conditions 104 are given in **Table 1**. We designed each set of primers with an overlap region using the primer analysis software (New England Biolabs). After purification using the QIAquick Gel Extraction kit (Qiagen,
Hilden, Germany), the amplified fragment concentration was measured with the NanoDrop[®] ND-1000
spectrophotometer (Thermo Scientific, Wilmington, DE). For each construct, successful assembly of
the two PCR fragments was performed using the NEBuilder HiFi DNA Assembly Master Mix (New
England Biolabs, Inc., Ipswich, MA) according to the manufacturer's instructions.

110 Expression and purification of recombinant *m*GASP proteins.

111 The expression vectors encoding the murine recombinant proteins, mGASP-1 and 2, mGASP-1/Ku₂₋₂ 112 and GASP-2/Ku₂₋₁ were transformed in the E. coli BL21(DE3) strain competent cells (New England Biolabs, Beverly, MA) in LB medium supplemented with 100 µg.mL⁻¹ ampicillin and 0.2% glucose. After 113 114 induction by adding 0.025 mM Isopropyl β -D-1-thiogalactopyranoside for 16 h at 20°C, bacterial 115 growth was stopped 15 min at 4°C before centrifugation at 6000xg during 15 min at 4°C. Pellet was 116 resuspended in lysis buffer (20 mM Tris-HCl, pH 7.5, 250 mM NaCl, 1 mM EDTA, 0.05% Triton X-100, 117 10 µg.mL⁻¹ lysozyme), then sonicated (Digital Sonifier 250, Branson) with an amplitude of 10% during 10 cycles of 10 x 10 s of pulse with an interval of 1 min on ice. Cellular debris, DNA and inclusion bodies 118 119 are spun at 17,000g for 20 min. The soluble recombinant proteins contained in the supernatant are 120 subsequently purified by chromatography. Recombinant proteins contained a GST tag at the N-121 terminus which allows affinity purification with the ÄKTAprime system (GE Healthcare Bio-Science, 122 Uppsala, Sweden). Briefly, supernatant was loaded into a GST-Trap HP 1ml column (GE Healthcare) 123 equilibrated in 20 mM Sodium Phosphate pH 7.3, 0.15 M NaCl. Elution was performed at a 1 mL.min⁻¹ 124 rate with 50 mM Tris-HCl pH 8.0, 10 mM reduced glutathion. Cleavage of the GST tag was performed with 10 units.mg⁻¹ of recombinant thrombin (Sigma-Aldrich) by incubation for 16 h at 4°C. Then, 125 126 samples were concentrated by centrifugation at 4000xg, 4°C on an Amicon Ultra 30K filter (Millipore). 127 A control lysate was produced in BL21 (DE3) bacteria transformed with a native pGEX-4T1 plasmid 128 (producing only GST), then column-purified and treated with thrombin. This control fraction has no 129 trypsin inhibitory activity (data not shown). The recombinant protein concentration was determined

by the Bradford method (27) before thrombin addition. Eluted fractions were analyzed by SDS/PAGEwith Coomassie blue staining and by Western blot.

132 SDS/PAGE and Western blot analyses.

133 SDS/PAGE was performed as described previously (28) under reducing conditions on 10% acrylamide separating gels. Proteins were analyzed in reducing loading buffer (2% SDS, 20% glycerol, 100 mM Tris-134 135 HCl pH 6.8, 0.1% bromophenol blue, 5% β -mercaptoethanol). Molecular masses were estimated using 136 the Precision Plus Protein Standards calibration kit (Biorad, Hercules, CA). Proteins were revealed with 137 0.25% Coomassie Brillant R-250 solution. For Western blot analyses, separated proteins were then transferred onto a PVDF Western blotting membrane (Roche Diagnostics, Mannheim, Germany) and 138 139 electroblotted for 1h30 at 200 mA. After 1h of saturation in TBS (Tris-Buffered Saline) with 0.1% Tween 140 0.2% and 5% non-fat dry milk, the membrane was first incubated overnight at 4°C under agitation with 141 primary antibody diluted in 2% non-fat dry milk. After 4 washes of 15 min each in TBS-Tween 0.1% (v/v), membrane was incubated for 1 h at room temperature with a second antibody conjugated to 142 143 horseradish peroxidase. After 4 more washes in TBS-Tween 20% (v/v), the immunoblot was processed 144 by chemiluminescence detection (Chemiluminescence Blotting Substrate (POD), Roche Molecular 145 Biochemicals, Mannheim, Germany). The membranes were analyzed using ImageQuant TL software (GE Healthcare). Commercial antibodies used are listed in Table 2. 146

147 Anti-trypsin activity assays.

148 Titration of bovine pancreatic trypsin (Sigma Aldrich) was carried out using 4-nitrophenyl p-149 guanidinobenzoate (Sigma Aldrich) (29). The activity was determined by using the fluorescent 150 substrate Z-Phe-Arg-NHMec (Sigma Aldrich). The kinetic parameters and the value of the equilibrium 151 constant were determined by incubating trypsin (10 nM final concentration) and inhibitor (0 - 10 μ M 152 final concentration) in 100 mM Tris / HCl buffer, pH 8.3, containing 100 mM CaCl₂ for 15 min at 25 °C, 153 after which substrate (6.25 - 200 μ M final concentration) was added. The Michaelis-Menten constant 154 (K_m) and the apparent K_m were determined by the Lineweaver-Burk method using the reciprocal values
155 of substrate concentration (1/[S]) and initial velocity $(1/V_0)$ to obtain straight-line graphs through linear 156 regressions, based on the kinetic equation: $1/V_0 = 1/V_{max} + K_m/V_{max} \times 1/[S]$, where V_{max} is the maximum 157 reaction velocity. For a competitive inhibitor, the dissociation constant (K_i) of the trypsin-inhibitor 158 complex was determined from the replot of the the apparent K_m values vs. the inhibitor concentration 159 [I], in agreement with the following linear relationship: $K_{mapp} = K_m + K_m/K_i \times [I]$. For a non-competitive 160 inhibitor, the dissociation constant (K_i) of the trypsin-inhibitor complex was determined from the 161 replot of the inverse of the apparent V_{max} values vs. the inhibitor concentration [I], in agreement with the following linear relationship: $1/V_{maxapp} = 1/V_{max} + 1/(V_{max} \times K_i) \times [I]$. 162

163 **Proliferation assay.**

C2C12 mouse myoblast cells (30) were obtained from American Type Culture Collection (ATCC-CRL-164 1772). Myoblasts were maintained at 37°C in Growth Medium consisting in Dulbecco's modified 165 166 Eagle's medium (DMEM) (Invitrogen-Life Technologies, Saint Aubin, France) supplemented with 10% heat-inactivated Fetal Bovine Serum (FBS) (Invitrogen-Life Technologies), 100 units.mL⁻¹ penicillin and 167 168 100 µg.mL⁻¹ streptomycin (Invitrogen-Life Technologies). To induce C2C12 differentiation, cells at 70% confluence were shifted to DMEM supplemented with 2% horse serum (Invitrogen-Life Technologies). 169 170 Test of proliferation was assessed as previously described (31). For proliferation assays, cells were grown with or without 1 µg.mL⁻¹ of each recombinant GASP protein. Three independent experiments 171 172 were carried out. Each experiment corresponds to the analysis of 96 wells with 2,000 cells per well at t = 0 h. The CellTiter 96[®] Aqueous One Solution Cell Proliferation Assay (Promega, Madison, WI) was 173 used during a period of 72 h to determine cell proliferation. 20 µL of MTS solution were added to the 174 175 cells during 3 h. Absorbance at 490 nm of the formazan product from bioreduced MTS was read using 176 an ELISA plate reader.

177 **C2C12 differentiation kinetic.**

178 Myoblast cells were grown to 70% confluence and were differentiated into myotubes after shifting 179 growth medium in differentiation medium supplemented or not by $1 \mu g.mL^{-1}$ of GASP-1/K₂₋₂ or GASP- 180 $2/K_{2-1}$ for 96 h. For each kinetic point analyzed, cells were fixed during 15 min in 4% paraformaldehyde, 181 washed three times in PBS 1X and permeabilized with HEPES/Triton X-100 buffer (20 mM HEPES, 300 182 mM sucrose, 50 mM NaCl₂, 3 mM MgCl₂ and 0.5% Triton X-100 pH7.4). Then, cells were blocked for 1 183 h at room temperature in blocking buffer (10% goat serum, 1% bovine serum albumin (BSA) and 0.1% Triton X-100 in PBS). After a quick wash in PBS 1X containing 0,2% BSA, cells were incubated overnight 184 185 at 4°C with the primary antibody anti-MyHC in PBS 1X containing 1% BSA. After 2 washes in BSA 0.2%, 186 Tween-20 0.1%, PBS 1X, cells were incubated for 15 min at 37°C with the secondary antibody diluted in BSA 1%, PBS 1X. The staining was completed with 3 washes in BSA 0.2%, PBS 1X, Tween-20 0.1% 187 following by an incubation for 5 min at room temperature in DAPI (1mg.mL⁻¹ diluted in PBS 1X) and 3 188 189 washes in PBS 1X. Images were acquired and analyzed with the automated Leica DMI6000B inverted 190 epifluorescence microscope using the MetaMorph software (Molecular Devices, Sunnyvale, USA). The 191 fusion index of C2C12 cells was calculated as the ratio of the number of nuclei in myotube to the total number of nuclei as previously described (32). 192

193 Construction of the three-dimensional molecular models of the Kunitz domains.

194 The murine GASP1 and GASP2 secondary Kunitz domains (mKu₂₋₁ and mKu₂₋₂, respectively) were 195 obtained from the "Ensembl" database (ENSMUSG00000044177 and ENSMUSG00000071192). Both mKu₂₋₁ and mKu₂₋₂ domains exhibit high sequence identity with the GASP2 human Kunitz domain hKu₂ 196 197 (88.2 and 64.7% identity, respectively, see Fig 5A), for which the 3D structure was resolved in solution by NMR (PDB ID: 2DDJ) (26). The two domains were constructed by protein threading (an advanced 198 199 homology modeling technique) using the I-Tasser webserver in which 2DDJ was used as a template (33–35). The protonation states of ⁶⁹His and ³⁶His were set as a *ɛ*-protonated state according to their 200 201 neighboring chemical environment, *i.e.*, maximizing hydrogen bonding. The protonation states of 202 titrable aminoacids (i.e., aspartates, glutamates, arginines, lysines and threonines) were defined by 203 PROPKA v3.0 (36,37). Expected disulfide bonds were manually constructed between facing cysteines, namely ¹⁰Cys-⁶⁰Cys, ¹⁹Cys-⁴³Cys and ³⁵Cys-⁵⁶Cys in both *m*Ku₂₋₁ and *m*Ku₂₋₂. 204

A (*N*,*P*,*T*) 200 ns molecular dynamics (MD) simulation was carried out for both *m*Ku₂^{GASP1} and *m*Ku₂^{GASP2} protein domains, solvated in a box of explicit water molecules (see below for details). This MD simulation corrected the structural errors associated with the protein threading construction, *i.e.*, correction of the secondary and tertiary structures. To check if the relaxation was sufficient, root mean square deviation (RMSD) analysis was achieved to check convergence. Five structures were extracted from the last 50 ns to assess the binding to bovine trypsin (*b*Trypsin), which have constituted a set of five replicas in this study.

212 As expected from the high sequence identity (Fig 5A), mKu₂₋₁ and mKu₂₋₂ exhibited similar topology 213 than the reference structure BPTI and hKu₂ all along the MD simulations. The structures are made of 214 two main domains, namely the scaffold domain and the canonical loop (Fig 5B) (38-43). The latter domain (canonical loop) is also known as the binding loop to trypsin. It is made of the P₅₋₁ and P_{1'-3'} 215 216 residues (**Fig 5A**), in which trypsin activity (hydrolysis) targets the $P_1 - P_1$ peptide bond (40). Despite high 217 sequence identity, several differences exist between mKu₂₋₁, mKu₂₋₂, hKu₂ and BPTI, which are reported 218 in Fig 5. The major difference concerns the P_1 residue which is a glutamine in mKu_{2-2} whereas it is cationic in the other three (either lysine in BPTI and mKu_2^{GASP1} or arginine in hKu_2). In conventional 219 trypsin inhibitors, the region defined by these residues is called Lys/Arg-Xaa, since P₁ is often a lysine 220 221 or an arginine residue while $P_{1'}$ stands for either alanine or glycine residue. It is worth noting that the 222 cationic P_1 was described as a key residue in the endopeptidase activity of tryspin (40,42).

223 Description of the mode of binding to trypsin.

The binding between the Kunitz domains and *b*Trypsin was assessed from existing 3D structures, namely PDB ID: 5MNF and PDB ID: 2RA3. The former is a bovine cationic *b*Trypsin structure, which was recently elucidated by X-ray with a 0.99 Å resolution (44). The latter is the structure of human cationic trypsin (*h*Trypsin) complexed with bovine pancreatic trypsin inhibitor (BPTI), which was elucidated by X-ray at a resolution of 1.46 Å (45). Considering the high structural similarity between the Kunitz domains and BPTI as well as between *h*Trypsin and *b*Trypsin (74,11 % identity, see **Fig 5A-B**), the three 230 complex 3D-models were constructed, namely between bTrypsin and the three BPTI, mKu₂₋₁ and mKu₂-231 2 inhibitors. The model-complex with BPTI is studied here as a reference to validate the theoretical 232 methodology. It indeed allowed confirming non-covalent interactions (mainly H-bonding) between 233 BPTI and specific domains of trypsin, which have been extensively investigated over the past decades (39,40,42,46), namely (Fig 5C-D): zones A, B and C (¹⁹⁴Asp-¹⁹⁷Gln, ²¹⁵Ser-²¹⁷Gly and ²²⁵Lys-²²⁹Tyr, 234 respectively) of the S₁ domain; the catalytic triad domain (⁶³His, ²⁰⁰Ser and ¹⁰⁷Asp); and the oxyanion 235 hole (¹⁹⁸Gly and ¹⁹⁵Ser); but also the $S_{1'}-S_{3'}$ domain (Movies S1-S3). The model-complex between 236 237 bTrypsin and BPTI thus served to construct five replicas of the complexes of binding with mKu_{2-1} and *m*Ku₂₋₂. All complexes were solvated in boxes of water molecules (see below for details). They were 238 239 minimized and equilibrated prior to (*N*,*P*,*T*) 200 ns MD simulations.

240 MD simulations methodology

241 Prior to MD simulations, all systems were solvated in water and they were neutralized using NaCl ([NaCl] = 0.154 M). The TIP3P explicit water model (47) and the corresponding ion parameters were 242 243 used (48,49). The Amber protein FF14SB forcefield was used to describe the proteins (50). Each system 244 was relaxed by minimization first of the water and ion system, then of the modes involving heavy 245 atoms only, and finally of the whole system. Thermalization from 0 to 320 K was then achieved during 246 a 250 ps (N, V, T) MD simulation, using a 0.5 fs integration time step. Pressure and density were then 247 equilibrated during a 1 ns (N,P,T) MD simulations at 298.15 K, with a 1 fs integration time step 248 maintaining pressure at 1 atm. Finally, a 300 ns (N,P,T) MD simulations (298.15 K, 1 atm) was carried 249 out with a 2 fs integration time step. The temperature was maintained using Langevin Dynamics with 250 a damping coefficient of 1.0 ps⁻¹. Constant pressure was maintained using the Berendsen barostat (51), 251 in which pressure relaxation time was set to 1 ps. Non-covalent interactions were explicitly calculated 252 using a cutoff distance of 10 Å for both short Coulomb and van der Waals interactions. Long-range interactions were treated using the particle-mesh Ewald method with a 1 Å grid size (52–55). Bonds 253 254 involving H-atoms were constrained using the SHAKE algorithm. The structural flexibility of the

canonical loops of mKu₂₋₁ and mKu₂₋₂ was analyzed by the atomic root-mean-square fluctuation (RMSF) of backbone atoms (namely C_α, N, O and C) and by the Ramachandran (ϕ , ψ -angle) plots (**Fig 6A-B**). Simulations were performed using the GPU-version of AMBER PMEMD code (Amber16) (56). Analyses were performed using the CPPTRAJ software (57). The VMD 1.9.3 software (58–61) was used to visualize trajectories and to render pictures.

260 **RESULTS AND DISCUSSION**

261 Previous data have shown that the second Kunitz-type protease inhibitor domain of the human protein GASP-2 (*h*Ku₂^{GASP2}) was found to inhibit trypsin following a competitive inhibitory mechanism with a Ki 262 value of 9.6 nM (25). However, no experimental data have been reported concerning the antiprotease 263 activity of the full-length GASP-2 and/or GASP-1. Although GASP proteins have N- and O-264 265 glycosylations, previous studies have shown that these oligosaccharidic chains are not essential for the 266 inhibition of the myostatin (14,15). Here, we have investigated the inhibition mechanism of the two murine proteins produced in E. coli as GST-fusion proteins. This bacterial expression system allows 267 268 providing high protein yields, as required for anti-protease assays.

269 Production and purification of wild-type *m*GASP-1 and *m*GASP-2 proteins

270 Full-length mature mGASP-1 and mGASP-2, excluding the signal peptide were cloned in pGEX-4T-1 vector and expressed in E. coli BL21 as GST-tagged fusion proteins (Fig 1A). We optimized the 271 272 production of the amount of soluble proteins by decreasing the induction temperature and the IPTG 273 concentration, limiting inclusion bodies formation. In addition, the GST tag placed in *N-ter* promotes 274 greater solubility of recombinant proteins (62). After production, the total bacterial proteins and the 275 recombinant proteins purified on a GST-Trap HP column were visualized on a reducing 10% SDS/PAGE. 276 For the wild-type *m*GASP-1, a major band was detected with an apparent molecular weight of about 277 90 kDa, which is consistent with the expected molecular weight (86.3 kDa) of GST-GASP-1 fusion 278 protein (Fig 1B, lane 2). Similar results were obtained for the wild-type mGASP-2 protein, with a band 279 of approximately 90 kDa (expected molecular weight 86.5 kDa) (data not shown). To optimize 280 subsequent activity tests on the recombinant GASP proteins, removal of the GST tag was necessary. 281 After a thrombin digestion of 16h at 4°C, collected proteins were analyzed on reducing 10% SDS/PAGE. 282 As seen in Fig 1B, lane 3, after the cleavage of the GST-GASP-1 fusion protein, a band of approximately 283 60 kDa (theoretical molecular mass of 60.63 kDa) was released. The 27 kDa protein was assigned to 284 the GST. mGASP-1 identification was confirmed by western blot analysis (Fig 1C, lanes 1 and 2). For 285 mGASP-2, similar results were obtained after thrombin treatment releasing a band of approximately 286 60 kDa corresponding to mGASP-2 and confirmed by Western blotting (Fig 1B, lane 4; Fig 1C, lanes 3 287 and 4). Our samples are probably a mixture of native and partially folded compounds, leading certainly 288 to an overestimation of the amount of the active protein. This does not impact our study since we have 289 not performed a quantitative comparison between different recombinant proteins but focused on the 290 mechanism of inhibition. In addition, after having tested that the GST / thrombin mixture did not have 291 antitrypsin activity, we chose not to eliminate them to avoid an excessive decrease in the amount of 292 protein.

293 Functional characterization of the wild-type mGASP-1 and mGASP-2 proteins

294 It has been shown that the second kunitz domain of the human GASP-2 is a competitive trypsin 295 inhibitor (25). Therefore, we tested if the full-length mGASP-2 has the same properties. Kinetic 296 parameters (K_m and V_{max}) were determined by fitting a linear function between the inverse of the 297 reaction rate and the inverse of the substrate concentration, at different inhibitor concentrations. It 298 appeared that V_{max} was constant and K_m increased with increasing amounts of mGASP-2, 299 demonstrating that mGASP-2 is a competitive inhibitor of trypsin. Furthermore, the GASP-2/trypsin 300 dissociation constant (K_i of 50 nM) indicated an affinity between GASP-2 and trypsin (Fig 2B), as 301 reported for the isolated second domain Kunitz of the human GASP-2 (K_i of 9.6 nM). For mGASP-1, K_m 302 was constant and V_{max} decreased with increasing amounts of inhibitor (Fig 2A), revealing that mGASP-303 1 is a non-competitive inhibitor of trypsin. This different inhibition mechanisms for both GASP-1 and 304 GASP-2 were unexpected since the two proteins are structurally very close.

Construction, expression and purification of the two recombinant chimeric proteins *m*GASP-1/Ku₂₋₂ and *m*GASP-2/Ku₂₋₁

307 To determine whether this difference of mechanism is only due to the second Ku domain which has 308 been demonstrated to be capable of inhibiting trypsin, we constructed and produced two chimeric 309 proteins in which only this Ku₂ domain has been interchanged (Fig 1A). Full-length mature mGASP-310 $1/Ku_{2-2}$ and mGASP-2/Ku₂₋₁, excluding the signal peptide, were constructed using the NEBuilder HiFi 311 DNA Assembly Master Mix. For each chimeric GASP, this method allows the assembly of a large 312 fragment corresponding to GASP without the second Kunitz domain and a little fragment encoding the 313 second Kunitz domain of the other GASP. For the two chimeric proteins, only the second Kunitz domain 314 was interchanged. No other amino acid of the native mGASP-1 and mGASP-2 was modified. The set of 315 primers and PCR conditions are given in Table 1. mGASP-1/Ku₂₋₂ and mGASP-2/Ku₂₋₁ were produced in 316 E. coli, purified on a GST-Trap HP column and cleaved by thrombin using the same experimental 317 conditions as for mGASP-1 and mGASP-2. As seen in Fig 1B, thrombin cleavage released a band of 318 approximately 60 kDa corresponding to both mGASP-1/Ku₂₋₂ and mGASP-2/Ku₂₋₁ and confirmed by western blotting (data not shown). 319

320 Effect of the two chimeric *m*GASP-1/Ku₂₋₂ and *m*GASP-2/Ku₂₋₁ proteins on proliferation and 321 differentiation of C2C12 myoblast cells

322 As previously described, GASP-1 and GASP-2 have been shown to bind myostatin and are considered 323 as inhibitors of TGF β signaling pathway (7). These two proteins might act as regulators of myogenic 324 proliferation and differentiation. It was demonstrated that *m*GASP-1 produced in eukaryotic system 325 and devoid of N-linked glycosylation (14) or mGASP-2 produced in prokaryotic system (15), enhanced 326 C2C12 proliferation and differentiation by preventing myostatin signaling. Considering this function, 327 we supposed that chimeric mGASP-1/Ku₂₋₂ and mGASP-2/Ku₂₋₁ would conserve their function to 328 activate myogenesis. To test this hypothesis, C2C12 myoblast cells were first treated with 1 μ g.mL⁻¹ of 329 mGASP-1/Ku₂₋₂ or mGASP-2/Ku₂₋₁ for 72 h. The treatment to mGASP-1/Ku₂₋₂ or mGASP-2/Ku₂₋₁

significantly improved the myoblast proliferation rate in the same way as *m*GASP-1 or *m*GASP-2 treatment (**Fig 3A**). As we could suppose, the exchange of the second Kunitz domain does not alter their antagonistic role of myostatin. In a second step, we analyzed the effect of *m*GASP-1/Ku₂₋₂ or *m*GASP-2/Ku₂₋₁ during C2C12 myoblast differentiation. As for proliferation, we treated C2C12 myoblast cells at 70% confluence with 1 µg.mL⁻¹ of recombinant protein and we followed the cell fusion for 96 hours (**Fig 3B** and **3C**). We showed that the two chimeric proteins enhanced C2C12 differentiation by increasing the fusion index at 96 hours.

Implication of the second Kunitz domain in the differential anti-trypsin activity of GASP-1 and GASP-2

339 The impact of interchanging the second Kunitz domain between the two proteins was studied on the 340 inhibition of the proteolytic action of trypsin. For each purified chimeric protein, kinetic parameters 341 were determined using the same conditions as described for both recombinant GASP-1 and GASP-2. mGASP-1/Ku₂₋₂ was a competitive inhibitor of trypsin, exhibiting a constant V_{max} value and K_m values 342 343 decreasing vs. increasing inhibitor concentration (Fig 4A). Following the same approach, the chimeric 344 mGASP-2/Ku₂₋₁ behaved as a non-competitive inhibitor of trypsin, exhibiting a constant K_m value and 345 V_{max} values decreasing vs. increase of mGASP-2/Ku₂₋₁ concentration (Fig 4B). As for GASP-1 and GASP-346 2, we measured inhibitor/trypsin dissociation K_i values of 220 nM and 290 nM for mGASP-1/Ku₂₋₂ and 347 mGASP-2/Ku₂₋₁, respectively. K_i values are of the same order of magnitude as those obtained for the 348 two recombinant mGASP proteins or several antiproteases containing a Ku domain (63,64). Kinetic 349 analyzes showed that the mGASP-1/Ku₂₋₂ chimeric protein exhibits a competitive-type inhibition 350 mechanism similar to that described for GASP-2. Conversely, mGASP-2/Ku₂₋₁ is a noncompetitive 351 inhibitor of trypsin comparable to GASP-1 protein. Our data showed that the anti-trypsin activity of 352 GASP proteins is attributed to the second Kunitz domain. The amino acid composition and / or 353 conformation of this domain is likely responsible for the specificity of this inhibition.

354 Mode of binding between trypsin and the second Kunitz domain

Several studies have thoroughly described the interactions between trypsin and their inhibitors, which have highlighted the key role of P₁ and P_{2'} (39,40,42,46). These two residues differ in both mKu₂₋₁ and mKu₂₋₂ from BPTI, which is a Lys/Arg-Xaa inhibitor. This is expected to affect their mode of binding with respect to this type of inhibitors. P₁ is a glutamine in mKu₂₋₂ and P_{2'} is aromatic in both mKu₂₋₁ and mKu₂. (namely tyrosine and tryptophan, respectively), which are no longer cationic thus lowering the electrostatic character of H-bond with trypsin residues if any.

361 While BPTI is strongly anchored to trypsin along the MD simulation time (Movies S1-S3), preventing 362 rocking motion, both mKu₂₋₁ and mKu₂₋₁ significantly fluctuate more when complexed with trypsin (Fig 363 **6A-B**). This greater fluctuation of the mKu₂₋₁ and mKu₂₋₂ domains is well depicted by the higher variation of RMSD along time than what is seen for BPTI (data not shown). The following sequence in terms of 364 flexibility is: mKu₂₋₁ > mKu₂₋₂ > BPTI. Similar conclusion is drawn from root-mean square fluctuation 365 366 (RMSF) of the mKu_{2-1} backbone compare to that of both BPTI and mKu_{2-2} (Fig 6B). Such greater 367 fluctuation of mKu_{2-1} , and to a lesser extent of mKu_{2-2} , compare to BPTI is attributed to conformational 368 fluctuation of the side chains, especially in the β -sheet and α -helix domains. This is likely correlated to 369 a weaker binding to trypsin. Such a result has already been reported in the binding between bTrypsin and APPI, showing greater RMSD variation than with BPTI (42). 370

371 This clearly suggests that non-covalent interactions between trypsin and mKu_{2-1} are weaker than 372 between trypsin and both mKu₂₋₂ and BPTI. This is rationalized by less H-bonds between trypsin and 373 mKu₂₋₁ than between trypsin and mKu₂₋₂ or BPTI, *i.e.*, 1.9, 4.5, and 4.1 respectively as average H-bond 374 counting between both partners. In mKu₂₋₁, only P₁ contributes to the binding to trypsin (1.2 H-bond,) through its NH_3^+ group, forming H-bonds that swap from zone A to zone B of the S₁ domain (45%, 33%, 375 11% with the backbone C=O group of ¹⁹⁵Ser and ¹⁹⁴Asp and backbone NH group of ²¹⁷Gly, respectively) 376 and to the catalytic triad domain (with the CO group of ²⁰⁰Ser) of trypsin (see Fig 6C). This weak binding 377 378 confirms that the competitive inhibition of trypsin by mKu_{2-1} is unlikely. In place, non-competitive

inhibition is expected, for which structural rationalization would require a comprehensive explorationof all other possible (allosteric) binding sites.

381 In mKu₂₋₂, P₁ is also involved in the binding to trypsin (see Fig 6D and Table 3). This binding was 382 unexpected, as in this case, the usual cationic P_1 is substituted by an polar glutamine, suggesting a 383 different mode of binding as compare to BPTI or APPI. Here, glutamine mimics the mode of binding of BPTI by strongly interacting with the same trypsin residues (namely ¹⁹⁵Ser, ²¹⁵Ser and ¹⁹⁸Gly) as well as 384 385 ¹⁹⁶Cys (Fig 6D and Table 3) by its two amide groups (two H-atom donors and two H-atom 386 acceptors)(40). Additionally, mKu_{2-2} creates a strong H-bond network between trypsin and P_{1'} and, to a lesser extent, with residues P_2 , $P_{2'}$, $P_{3'}$ (Fig 6D and Table 3). $P_{1'}$ strongly binds to the catalytic ²⁰⁰Ser 387 388 (through its OH group, 90%), while $P_{2'}$ (tryptophan) and $P_{3'}$ (glutamate) are two possible sites for binding to ⁶⁶Lys of trypsin. In *m*Ku₂₋₂ the local conformational organization suggests a new mechanism 389 of trypsin inhibition (see Fig 5E-F), in which the reactive OH group of ²⁰⁰Ser (40) is scavenged by the H-390 391 bond with P_{1'}. The very specific interaction between P_{1'} and ¹⁹⁵Ser is thus expected to be responsible 392 for the inhibition of trypsin activity by mKu₂₋₂. This organization puts this group at 3.60 \pm 0.69 and 4.30 \pm 0.46 Å from the C=O group of ²⁰⁰Ser and glutamine, respectively. Furthermore, the high inter-atomic 393 distance between the OH-group of ²⁰⁰Ser and the N-atoms of ⁶³His may also lead to decrease the 394 395 reactivity at the active site. These findings rationalize the experimentally observed competitive 396 inhibition of trypsin by the mKu_{2-2} domain.

397 CONCLUSION

Considering that both proteins present a similar multi-domain structural organization and a significant degree of identity, the described functional duality could reflect a cellular mechanism regulating the activity of certain serine proteases. Proteases are one of the most abundant classes of enzymes in living organisms and are involved in a wide range of biological processes. Despite the ability to develop potent inhibitors, many clinical lead compounds have failed due either to a lack of specificity or to a limited knowledge of the biological roles of the protease inhibitors. Understanding the mode of action

- 404 of protease inhibitors like the GASP proteins, and identifying their cellular target(s), constitute today
- 405 an exciting challenge from both a fundamental and an applicative point of view.

406 **REFERENCES**

- Trexler M, Bányai L, Patthy L. A human protein containing multiple types of protease-inhibitory
 modules. Proc Natl Acad Sci USA. 2001 Mar 27;98(7):3705–9.
- Trexler M, Bányai L, Patthy L. Distinct expression pattern of two related human proteins
 containing multiple types of protease-inhibitory modules. Biol Chem. 2002 Jan;383(1):223–8.
- 411 3. Hill JJ, Qiu Y, Hewick RM, Wolfman NM. Regulation of myostatin in vivo by growth and
 412 differentiation factor-associated serum protein-1: a novel protein with protease inhibitor and
 413 follistatin domains. Mol Endocrinol. 2003 Jun;17(6):1144–54.
- 414 4. Nakamura T, Takio K, Eto Y, Shibai H, Titani K, Sugino H. Activin-binding protein from rat ovary is 415 follistatin. Science. 1990 Feb 16;247(4944):836–8.
- Keutmann HT, Schneyer AL, Sidis Y. The Role of Follistatin Domains in Follistatin Biological
 Action. Mol Endocrinol. 2004 Jan 1;18(1):228–40.
- Thompson TB, Lerch TF, Cook RW, Woodruff TK, Jardetzky TS. The Structure of the
 Follistatin:Activin Complex Reveals Antagonism of Both Type I and Type II Receptor Binding.
 Developmental Cell. 2005 Oct 1;9(4):535–43.
- 421 7. Szláma G, Kondás K, Trexler M, Patthy L. WFIKKN1 and WFIKKN2 bind growth factors TGFβ1,
 422 BMP2 and BMP4 but do not inhibit their signalling activity. FEBS J. 2010 Dec;277(24):5040–50.
- Kondás K, Szláma G, Trexler M, Patthy L. Both WFIKKN1 and WFIKKN2 have high affinity for
 growth and differentiation factors 8 and 11. J Biol Chem. 2008 Aug 29;283(35):23677–84.
- 425 9. Monestier O, Blanquet V. WFIKKN1 and WFIKKN2: "Companion" proteins regulating TGFB
 426 activity. Cytokine Growth Factor Rev. 2016;32:75–84.
- 427 10. Lee Y-S, Lee S-J. Regulation of GDF-11 and myostatin activity by GASP-1 and GASP-2. Proc Natl
 428 Acad Sci USA. 2013 Sep 24;110(39):E3713-3722.
- 429 11. Monestier O, Brun C, Heu K, Passet B, Malhouroux M, Magnol L, et al. Ubiquitous Gasp1
 430 overexpression in mice leads mainly to a hypermuscular phenotype. BMC Genomics. 2012 Oct
 431 10;13:541.
- Brun C, Périé L, Baraige F, Vernus B, Bonnieu A, Blanquet V. Absence of hyperplasia in Gasp-1
 overexpressing mice is dependent on myostatin up-regulation. Cell Physiol Biochem.
 2014;34(4):1241–59.
- 435 13. Périè L, Parenté A, Baraige F, Magnol L, Blanquet V. Alterations in Adiposity and Glucose
 436 Homeostasis in Adult Gasp-1 Overexpressing Mice. CPB. 2017;44(5):1896–911.
- 437 14. Brun C, Monestier O, Legardinier S, Maftah A, Blanquet V. Murine GASP-1 N-glycosylation is not
 438 essential for its activity on C2C12 myogenic cells but alters its secretion. Cell Physiol Biochem.
 439 2012;30(3):791–804.

- Pèrié L, Parenté A, Brun C, Magnol L, Pélissier P, Blanquet V. Enhancement of C2C12 myoblast
 proliferation and differentiation by GASP-2, a myostatin inhibitor. Biochem Biophys Rep. 2016
 Mar 3;6:39–46.
- Rawlings ND, Barrett AJ, Bateman A. MEROPS: the database of proteolytic enzymes, their
 substrates and inhibitors. Nucleic Acids Res. 2012 Jan;40(Database issue):D343-350.
- Richardson RT, Sivashanmugam P, Hall SH, Hamil KG, Moore PA, Ruben SM, et al. Cloning and
 sequencing of human Eppin: a novel family of protease inhibitors expressed in the epididymis
 and testis. Gene. 2001 May 30;270(1–2):93–102.
- 448 18. van Eijk M, van Noorden CJF, de Groot C. Proteinases and their inhibitors in the immune
 449 system. Int Rev Cytol. 2003;222:197–236.
- 450 19. Rawlings ND, Barrett AJ. Evolutionary families of peptidases. Biochem J. 1993 Feb 15;290(Pt
 451 1):205–18.
- 452 20. Rawlings ND, Tolle DP, Barrett AJ. Evolutionary families of peptidase inhibitors. Biochem J. 2004
 453 Mar 15;378(Pt 3):705–16.
- 454 21. Chhikara N, Saraswat M, Tomar AK, Dey S, Singh S, Yadav S. Human Epididymis Protein-4 (HE-4):
 455 A Novel Cross-Class Protease Inhibitor. PLOS ONE. 2012 Nov 5;7(11):e47672.
- 456 22. Bányai L, Patthy L. The NTR module: domains of netrins, secreted frizzled related proteins, and
 457 type I procollagen C-proteinase enhancer protein are homologous with tissue inhibitors of
 458 metalloproteases. Protein Sci. 1999 Aug;8(8):1636–42.
- 459 23. Iyer RP, Patterson NL, Fields GB, Lindsey ML. The history of matrix metalloproteinases:
 460 milestones, myths, and misperceptions. Am J Physiol Heart Circ Physiol. 2012 Oct
 461 15;303(8):H919-930.
- 462 24. von Maltzahn J, Chang NC, Bentzinger CF, Rudnicki MA. Wnt signaling in myogenesis. Trends
 463 Cell Biol. 2012 Nov;22(11):602–9.
- AG4 25. Nagy A, Trexler M, Patthy L. Expression, purification and characterization of the second Kunitztype protease inhibitor domain of the human WFIKKN protein. Eur J Biochem. 2003
 May;270(9):2101–7.
- Liepinsh E, Nagy A, Trexler M, Patthy L, Otting G. Second Kunitz-type protease inhibitor domain
 of the human WFIKKN1 protein. J Biomol NMR. 2006 May;35(1):73–8.
- 469 27. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of
 470 protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–54.
- 471 28. Laemmli UK. Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage
 472 T4. Nature. 1970 Aug;227(5259):680–5.
- 29. Chase T, Shaw E. p-Nitrophenyl-p'-guanidinobenzoate HCl: a new active site titrant for trypsin.
 Biochem Biophys Res Commun. 1967 Nov 30;29(4):508–14.
- 475 30. Yaffe D, Saxel O. Serial passaging and differentiation of myogenic cells isolated from dystrophic
 476 mouse muscle. Nature. 1977 Dec 22;270(5639):725–7.

- 477 31. Oliver MH, Harrison NK, Bishop JE, Cole PJ, Laurent GJ. A rapid and convenient assay for
 478 counting cells cultured in microwell plates: application for assessment of growth factors. J Cell
 479 Sci. 1989 Mar;92 (Pt 3):513–8.
- 480 32. Parenté A, Pèrié L, Magnol L, Bouhouche K, Blanquet V. A siRNA Mediated Screen During C2C12
 481 Myogenesis. Methods Mol Biol. 2019;1889:229–43.
- 482 33. Zhang Y. I-TASSER server for protein 3D structure prediction. BMC Bioinformatics. 2008 Jan
 483 23;9(1):40.
- 484 34. Roy A, Kucukural A, Zhang Y. I-TASSER: a unified platform for automated protein structure and
 485 function prediction. Nature Protocols. 2010 Apr;5(4):725–38.
- 486 35. Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y. The I-TASSER Suite: protein structure and
 487 function prediction. Nat Methods. 2015 Jan;12(1):7–8.
- 488 36. Søndergaard CR, Olsson MHM, Rostkowski M, Jensen JH. Improved Treatment of Ligands and
 489 Coupling Effects in Empirical Calculation and Rationalization of pKa Values. J Chem Theory
 490 Comput. 2011 Jul 12;7(7):2284–95.
- 491 37. Olsson MHM, Søndergaard CR, Rostkowski M, Jensen JH. PROPKA3: Consistent Treatment of
 492 Internal and Surface Residues in Empirical pKa Predictions. J Chem Theory Comput. 2011 Feb
 493 8;7(2):525–37.
- Shaw DE, Maragakis P, Lindorff-Larsen K, Piana S, Dror RO, Eastwood MP, et al. Atomic-level
 characterization of the structural dynamics of proteins. Science. 2010 Oct 15;330(6002):341–6.
- Pendlebury D, Wang R, Henin RD, Hockla A, Soares AS, Madden BJ, et al. Sequence and
 conformational specificity in substrate recognition: several human Kunitz protease inhibitor
 domains are specific substrates of mesotrypsin. J Biol Chem. 2014 Nov 21;289(47):32783–97.
- 499 40. Hedstrom L. Serine protease mechanism and specificity. Chem Rev. 2002 Dec;102(12):4501–24.
- Naftaly S, Cohen I, Shahar A, Hockla A, Radisky ES, Papo N. Mapping protein selectivity
 landscapes using multi-target selective screening and next-generation sequencing of
 combinatorial libraries. Nature Communications. 2018 Sep 26;9(1):3935.
- Kayode O, Wang R, Pendlebury DF, Cohen I, Henin RD, Hockla A, et al. An Acrobatic Substrate
 Metamorphosis Reveals a Requirement for Substrate Conformational Dynamics in Trypsin
 Proteolysis. J Biol Chem. 2016 Dec 16;291(51):26304–19.
- 43. Xu Y, Carr PD, Guss JM, Ollis DL. The crystal structure of bikunin from the inter-alpha-inhibitor
 507 complex: a serine protease inhibitor with two Kunitz domains. J Mol Biol. 1998 Mar;276(5):955–
 508 66.
- 509 44. Schiebel J, Gaspari R, Wulsdorf T, Ngo K, Sohn C, Schrader TE, et al. Intriguing role of water in
 510 protein-ligand binding studied by neutron crystallography on trypsin complexes. Nat Commun.
 511 2018 Sep 3;9(1):3559.
- 512 45. Salameh MA, Soares AS, Hockla A, Radisky ES. Structural basis for accelerated cleavage of
 513 bovine pancreatic trypsin inhibitor (BPTI) by human mesotrypsin. J Biol Chem. 2008 Feb
 514 15;283(7):4115–23.

- 515 46. Salameh MA, Soares AS, Navaneetham D, Sinha D, Walsh PN, Radisky ES. Determinants of
 516 Affinity and Proteolytic Stability in Interactions of Kunitz Family Protease Inhibitors with
 517 Mesotrypsin. J Biol Chem. 2010 Nov 19;285(47):36884–96.
- 47. Price DJ, Brooks CL. A modified TIP3P water potential for simulation with Ewald summation. J
 519 Chem Phys. 2004 Nov 22;121(20):10096–103.
- 48. Joung IS, Cheatham TE. Molecular dynamics simulations of the dynamic and energetic
 properties of alkali and halide ions using water-model-specific ion parameters. J Phys Chem B.
 2009 Oct 8;113(40):13279–90.
- 49. Joung IS, Cheatham TE. Determination of alkali and halide monovalent ion parameters for use
 in explicitly solvated biomolecular simulations. J Phys Chem B. 2008 Jul 31;112(30):9020–41.
- 50. Maier JA, Martinez C, Kasavajhala K, Wickstrom L, Hauser KE, Simmerling C. ff14SB: Improving
 the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB. J Chem Theory
 Comput. 2015 Aug 11;11(8):3696–713.
- 528 51. Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR. Molecular dynamics with 529 coupling to an external bath. The Journal of Chemical Physics. 1984 Oct 15;81(8):3684–90.
- 530 52. Darden T, York D, Pedersen L. Particle mesh Ewald: An N·log(N) method for Ewald sums in large 531 systems. The Journal of Chemical Physics. 1993 Jun 15;98(12):10089–92.
- 53. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG. A smooth particle mesh
 533 Ewald method. The Journal of Chemical Physics. 1995 Nov 15;103(19):8577–93.
- 534 54. Crowley M, Darden T, Cheatham T, Deerfield D. Adventures in Improving the Scaling and
 535 Accuracy of a Parallel Molecular Dynamics Program. The Journal of Supercomputing. 1997 Nov
 536 1;11(3):255–78.
- 537 55. Pratt LR, 1950-, Hummer G. Simulation and theory of electrostatic interactions in solution. In
 538 AIP; 1999 [cited 2018 Oct 12]. Available from: http://agris.fao.org/agris539 search/search.do?recordID=US201300040464
- 540 56. Case DA, Cerutti DS, Cheatham III TE, Darden TA, Duke RE, Giese TJ, et al. AMBER17. 2017. San 541 Francisco: University of California. 2018;
- 57. Roe DR, Cheatham TE. PTRAJ and CPPTRAJ: Software for Processing and Analysis of Molecular
 543 Dynamics Trajectory Data. J Chem Theory Comput. 2013 Jul 9;9(7):3084–95.
- 54. 58. Humphrey W, Dalke A, Schulten K. VMD: Visual molecular dynamics. Journal of Molecular
 545 Graphics. 1996 Feb 1;14(1):33–8.
- 546 59. Roberts E, Eargle J, Wright D, Luthey-Schulten Z. MultiSeq: unifying sequence and structure
 547 data for evolutionary analysis. BMC Bioinformatics. 2006 Aug 16;7(1):382.
- 548 60. Eargle J, Wright D, Luthey-Schulten Z. Multiple Alignment of protein structures and sequences
 549 for VMD. Bioinformatics. 2006 Feb 15;22(4):504–6.
- 550 61. Stone J. An efficient library for parallel ray tracing and animation. Masters Theses [Internet].
 551 1998 Jan 1; Available from: http://scholarsmine.mst.edu/masters_theses/1747

- 552 62. Harper S, Speicher DW. Purification of proteins fused to glutathione S-tranferase. Methods Mol Biol. 2011;681:259-80. 553
- 554 Oddepally R, Sriram G, Guruprasad L. Purification and characterization of a stable Kunitz trypsin 63. inhibitor from Trigonella foenum-graecum (fenugreek) seeds. Phytochemistry. 2013 Dec;96:26-555 556 36.
- 557 Mohanraj SS, Gujjarlapudi M, Lokya V, Mallikarjuna N, Dutta-Gupta A, Padmasree K. 64. Purification and characterization of Bowman-Birk and Kunitz isoinhibitors from the seeds of 558 559 Rhynchosia sublobata (Schumach.) Meikle, a wild relative of pigeonpea. Phytochemistry. 2019 560 Mar;159:159-71.

561 FUNDING DISCLOSURE

562 This project was co-financed by the European Union, the Limousin Regional Council and the French 563 National Institute for Agricultural Research. A.P. were supported by a PhD fellowship from INRA/Region Limousin and M.A.M. by the French Ministry of Foreign Affairs. F.D.M and P.T. thank CALI 564 565 (CAlcul en LImousin) for the theoretical study. P.T. thanks the Czech Science Foundation (P208/12/G016) and the Ministry of Education, Youth and Sports of the Czech Republic (project 566 40 567 LO1305).

568 LEGENDS

Fig 1. Production of recombinant wild-type and chimeric GASP proteins. (A) Domain architecture of 569 570 GST-fusion GASP proteins. The different proteins are expressed with GST (black box) in N-terminal 571 position, a WAP domain (W), a follistatin/Kazal domain (F/K), an Igc2 domain, two BPTI/kunitz domains 572 $(Ku_1 \text{ and } Ku_2)$ and a netrin domain (NTR). The domains of GASP-1 and GASP-2 are represented by gray or white boxes respectively. In the two chimeric GASP proteins (GASP-1/K₂₋₂ and GASP-2/K₂₋₁), the 573 574 second Kunitz domain has been interchanged. The boxes representing domains are drawn to scale. 575 The numbers above the boxes correspond to the amino-acids. (B) Electrophoretic analyses of recombinant wild type and chimeric GASP proteins. For each construction, the bacterial cytosolic 576 extract was purified on a GST-Trap HP column. Proteins were analyzed before and after thrombin 577 578 cleavage on 10% SDS/PAGE and revealed by Coomassie blue staining. Lane 1: Total protein extract (0.1 579 UDO) of E. coli BL21 expressing the GST-GASP-1 after IPTG induction. Lane 2: Purified fraction of GST- 580 GASP-1 before thrombin cleavage. Lanes 3 to 6: Purified fractions after thrombin treatment 581 corresponding to GASP-1, GASP-2, GASP-1/Ku₂₋₂ and GASP-2/Ku₂₋₁ respectively. Lane MW: Pre-stained 582 protein marker. (**C**) – Immunodetection of mGASP proteins before and after thrombin cleavage. Lane 583 1: non cleaved fraction of GST-GASP-1. Lane 2: cleaved fraction of GST-GASP-1. Lane 3: non cleaved 584 fraction of GST-GASP-2. Lane 4: cleaved fraction of GST-GASP-2

- Fig 2. Lineweaver-Burk plots of the trypsin activity. Trypsin activity was recorded using 10 nM of trypsin and different concentrations of (A) mGASP-1 protease inhibitor (0 to 400 nM), (B) mGASP-2 protease inhibitor (0 to 400 nM). Hydrolysis of fluorescent substrate (Z-Phe-Arg-NHMec) (6.25 to 200 µM) was monitored during 15 min at 25°C in 100 mM Tris-HCl, 100 mM CaCl₂, pH 8.3 buffer. The GASP/trypsin dissociation constant (K_i) was calculated by replotting the inverse of the apparent V_{max} values for mGASP-1 or the replot of the apparent K_m for mGASP-2 *vs*. the inhibitor concentrations [I] (inset).Each test was performed 3 times independently.
- 592 Fig 3. Effects of chimeric GASP-1/K₂₋₂ and GASP-2/K₂₋₁ on proliferation and differentiation of C2C12 myoblast cells. (A) Proliferation analysis of C2C12 cells cultured for 72 h in the absence (PBS) or 593 presence of 1 µg.ml⁻¹ of GASP-1/Ku₂₋₂, GASP-2/Ku₂₋₁, GASP-1 or GASP-2 proteins produced in E. coli as 594 595 measured by formazan assay. Each point corresponds to the mean \pm S.D. of three independent 596 experiments. Statistical significance was determined using a *t*-test analysis. ***: *p*<0.005. (B) Quantification of fusion index C2C12 myotubes treated with PBS, 1 µg.ml⁻¹ GASP-1/K₂₋₂ or 1 µg.ml⁻¹ 597 GASP-2/K₂₋₁ proteins and cultured for 96 h of differentiation. Each point corresponds to the mean \pm 598 599 S.D. of three independent experiments. Statistical significance was determined using a *t*-test analysis. **: <u>p</u><0.01; ***: <u>p</u><0.005. (**C**) C2C12 myotubes treated by PBS (a), 1 μg.ml⁻¹ GASP-1/K₂₋₂ (b) or 1 μg.ml⁻ 600 601 ¹ GASP-2/K₂₋₁ (C) proteins were immunostained for MyHC protein and DAPI at 72 h after induction of 602 differentiation.

Fig 4. Lineweaver-Burk plots of the activity of trypsin (10 nM) recorded at different concentrations of: (A) The recombinant GASP-1/K₂₋₂ protease inhibitor (0 to 10 μM). (B) The recombinant GASP-2/K2-

1 protease inhibitor (0 to 3.2 μ M). Hydrolysis of fluorescent substrate (Z-Phe-Arg-NHMec) (12 to 200 μ M) was monitored during 15 min at 25°C in 100 mM Tris-HCl, 100 mM CaCl2, pH 8.3 buffer. The GASP/trypsin dissociation constant (Ki) was calculated by replotting the apparent Km values for the recombinant GASP-1/K2-2 and the inverse of the apparent Vmax values for the recombinant GASP-2/K2-1 vs. the inhibitor concentrations [I] (inset). Each test was performed 3 times independently.

Fig 5. Sequence and structural patterns of trypsin inhibitors and bovine trypsin. (A) Sequence alignment of BPTI, mKu₂₋₁, mKu₂₋₂, hKu₂ and (B) related 3D structures. (C) Sequence and (D) 3D structure of bovine trypsin highlighting sites of interest (catalytic triad and oxyanion hole being colored in red and blue, respectively; S₁-sites being depicted in green, yellow and pink, respectively for defined S₁ site A, B and C. The color code of these sites is kept along manuscript. (C) Globally admitted mechanism of serine protease hydrolysis (Adapted from (40)) and (D) proposed inhibition mechanism of mKu₂₋₂.

Fig 6. Atomic-scale binding modes of *m*Ku₂₋₁ and mKu₂₋₂ trypsin complexes obtained from 300ns 617 618 (N,P,T) MD simulations : (A) Superimposition of 10 representative snaphots along MD simulations of 619 [bTrypsin-BPTI] (left), of the 5 replicas of [bTrypsin-mKu₂₋₁] (center) and of [bTrypsin-mKu₂₋₂] (right). (B) 620 Per-residue RMSF of mKu₂^{GASP1} (left) and mKu₂^{GASP2} (right) replicas including those of [*b*Trypsin-BPTI] 621 and [hTrypsin-BPTI] as reference. For sake of readability, [bTrypsin-BPTI] and [hTrypsin-BPTI] are 622 colored in black and grey, respectively, while replicas are depicted in red, blue, green, cyan and purple. 623 Key residues of (C) mKu_{2-1} and (D) mKu_{2-2} binding with bTrypsin. mKu_2 and trypsin residues are represented in ball and sticks and licorice, respectively. 624

625

626

627

Table 1: Primer sequences and amplification conditions used for PCR assembly 629

630 Overlapping nucleotides between the large amplified fragment and the short amplified fragment are

631 indicated in lowercase characters.

Primers	PCR conditions	Fragment lenght
pGEX-4T1:: <i>Gasp-1</i> (amplification of GASP-1 without K ₂₋₁) 5'GGTGGCCAATGGCCCACT3' 5'CCCTTCCCGAGGGGCAAC3' pGEX-4T1:: <i>Gasp-2</i> (amplification of K ₂₋₂) 5'TGAGTGGGCCATTGGCCACCtgtgcactgcctgcagtt3' 5'TGGTTGCCCCTCGGGAAGGGgcaagcatcctcacagctc3'	98°C, 30 s 98°C, 30 s / 72°C, 4 min (35 cycles) 72°C, 2 min 98°C, 30 s 98°C, 10 s / 67°C, 30 s / 72°C,	6422 bp 193 bp
	30 s (35 cycles) 72°C, 2 min	
pGEX-4T1:: <i>Gasp-2</i> (amplification of GASP-2 without K ₂₋₂) 5'GACATCCCCGGGGCCACG3' 5'CCTGTACCACGCACACCACC3'	98°C, 30 s 98°C, 30 s / 72°C, 4 min (35 cycles) 72°C, 2 min	6377 bp
5'TTCGTGGCCCCGGGGATGTCtgcagcctgcctgccctg3' 5'CAGGGTGGTGCGTGGGTACAGGacacgactcctcacaagcctcac3'	98°C, 30 s 98°C, 10 s / 72°C, 1 min (35 cycles) 72°C, 2 min	196 bp

Table 2: Primary and secondary antibodies 632

Table 2: Primary and secondary antibodies								
	Origin	References	Dilution	Coupled to				
Primary Antibodies								
Anti GASP-1	Polyclonal goat	AF2070, R&D Systems Inc.	1 :1000					
Anti GASP-2	Polyclonal goat	AF2136, R&D Systems Inc.	1 :1000					
Anti SMAD2/3	Polyclonal goat	AF3797, R&D Systems Inc.	1 :1200					
Anti phospho-SMAD3	Polyclonal rabbit	AB3226, R&D Systems Inc.	1 :1200					
Anti myosin skeletal	Monoclonal mouse	M4276, Sigma- Aldrich	1 :400					
<i>Secondary Antibodies</i> Anti goat IgG	Polyclonal swine	P0449, DAKO	1 :1000	Horseradish peroxydase				
Anti rabbit IgG	Polyclonal swine	P0399, DAKO	1 :1000	Horseradish peroxydase				
Anti mouse IgG (H+L)	Polyclonal goat	R37120, Invitrogen	1 :1000	Alexa Fluor [®] 488				

System			Moiety	Trypsin residue	Domain	d (Å)	heta (deg)	f
[<i>b</i> Trypsin-BPTI]	P ₁	Lys	NH ₃ +	¹⁹⁵ Ser (C=O)	S ₁ -site A	2.82	150.2	0.61
			NH	²¹⁵ Ser (C=O)	S ₁ -site B	2.91	146.3	0.15
			C=0	¹⁹⁸ Gly (NH)	Oxyanion hole	2.81	152.0	0.71
				²⁰⁰ Ser (NH)	Catalytic triad	2.91	157.0	0.35
	P _{2'}	Arg	NH	⁴⁷ Phe (C=O)	S _{2'} -site	2.87	156.6	0.65
			Guanidinium	⁴¹ His (C=O)	S _{2'} -site	2.86	155.2	0.39
	P ₂	Cys	C=0	¹⁹⁷ Gln (CONH ₂)	S ₁ -site A	2.84	160.2	0.82
	P ₃	Pro	C=0	²¹⁷ Gly (NH)	S ₁ -site B	2.87	154.1	0.64
[hTrypsin-BPTI]	P ₁	Lys	NH₃⁺	¹⁹⁰ Ser (C=O)	S ₁ -site A	2.81	157.8	0.72
			NH	²¹⁴ Ser (C=O)	S ₁ -site B	2.92	155.6	0.13
			C=0	¹⁹³ Gly (NH)	Oxyanion hole	2.79	149.2	0.60
				¹⁹⁵ Ala ^a (NH)	Catalytic triad	2.91	156.7	0.44
	P _{2'}	Arg	Guanidinium	⁴⁰ His (C=O)	S _{2'} -site	2.86	153.6	0.53
			NH	⁴¹ Phe (C=O)	S _{2'} -site	2.90	156.8	0.36
	P ₂	Cys	C=0	¹⁹² Gln (CONH ₂)	S ₁ -site A	2.84	159.1	0.81
	P_3	Pro	C=0	²¹⁶ Gly (NH)	S ₁ -site B	2.87	151.9	0.55
[<i>b</i> Trypsin- <i>m</i> Ku ₂ ^{GASP1}]	P ₁	Lys	NH3+	¹⁹⁴ Asp (COO ⁻)	S ₁ -site A	2.82	153.6	0.33
				²¹⁷ Gly (NH)	S ₁ -site B	2.84	156.2	0.11
				¹⁹⁵ Ser (C=O)	S ₁ -site A	2.84	153.5	0.45
			СО	²⁰⁰ Ser (OH)	Catalytic triad	2.77	158.7	0.42
[<i>b</i> Trypsin- <i>m</i> Ku² ^{GASP2}]	P_1	Gln	C=O/amide CO	¹⁹⁸ Gly (NH)	Oxyanion hole	2.83	152.8	0.68
			CONH ₂	¹⁹⁶ Cys (C=O)	S ₁ -site A	2.86	162.4	0.38
			C=O/CONH ₂	²¹⁵ Ser (C=O)	S1-site B	2.89	158.8	0.19
				¹⁹⁵ Ser (OH)	S ₁ -site A	2.89	157.1	0.13
	$P_{1'}$	Gly	C=0	²⁰⁰ Ser (OH)	Catalytic triad	2.69	161.4	0.90
			C=0	¹⁹⁷ Gln (CONH ₂)	S ₁ -site A	2.83	151.3	0.48
	P ₂	Cys	C=0	¹⁹⁷ Gln (CONH ₂)	S ₁ -site A	2.83	158.6	0.46
	P _{2'}	Trp	C=0	⁶⁶ Lys (NH ₃ +)		2.82	158.5	0.20
	P _{3'}	Glu	C00 ⁻	⁶⁶ Lys (NH ₃ +)		2.78	155.7	0.33

633 Table 3: Description of H-bond networks between inhibitors and *b*Trypsin

^a In [hTrypsin-BPTI] X-ray structure (PDB ID: 2RA3), catalytic ¹⁹⁵Ser were mutated into alanine. It is worth mentioning that binding mode is not expected to be significantly modified given the globally accepted catalytic mechanism.

Α

В

Dans le cadre de l'étude des relations Structure/Fonction des protéines GASP-1 et GASP-2, nous avons cherché à mettre en évidence les propriétés anti-protéasiques de chacune de ces 2 protéines. Cette étude a nécessité leur production et leur purification préalables sous forme de protéines recombinantes. Au vu des résultats précédemment obtenus indiquant que les glycosylations ne sont pas nécessaires à leur activité anti-myostatine, nous avons fait le pari mesuré de produire les protéines GASPs dans un système d'expression procaryote. En plus de sa facilité et de son faible coût d'utilisation, ce système présente l'avantage de permettre la production de grandes quantités de la protéine d'intérêt nécessaires aux études d'activité antiprotéasique. Le système procaryote BL21/pGEX4T-1 a donc permis de produire chacune des protéines recombinantes sous la forme d'une protéine de fusion avec une étiquette GST en position N-terminale permettant une purification partielle mais suffisante par chromatographie d'affinité.

Dans cette étude, l'optimisation des différents paramètres, présentés dans la partie II des résultats (abaissement de la température de 37 à 20°C et diminution de la concentration d'IPTG de 1 à 0,025 mM), nous a permis d'obtenir, à partir de 1 litre de culture et après purification partielle par chromatographie d'affinité, de 300 à 500 µg selon la protéine produite, des quantités compatibles pour la poursuite de nos travaux.

L'organisation structurale des protéines GASPs révèle la présence de plusieurs domaines WAP, Kazal et Kunitz. S'il existe dans la littérature beaucoup d'études qui relatent l'implication de ces différents domaines dans l'inhibition de protéases, en revanche, à ce jour, très peu se sont intéressées aux propriétés anti-protéasiques des protéines GASPs. Seul le second domaine Kunitz isolé de la protéine GASP-2 humaine et produit chez la bactérie *E. coli* a été montré comme étant capable d'inhiber *in vitro* la trypsine (Nagy *et al.*, 2003; Liepinsh *et al.*, 2006). Aucun paramètre cinétique n'a été cependant publié pour les protéines entières ou les autres domaines. Nos résultats montrent que les protéines GASP-1 et GASP-2 recombinantes produites et purifiées sont capables d'inhiber la trypsine *in vitro*. Si l'activité anti-trypsine des protéines GASPs n'a pas non plus véritablement de réalité biologique dans le muscle squelettique, cette enzyme représente cependant l'archétype des protéases à sérine les plus fréquemment utilisées dans les différentes approches de recherche expérimentale *in vitro* pour étudier l'activité des inhibiteurs de protéases à sérine. Plusieurs substrats fluorescents commerciaux sont en effet disponibles. De la même manière, les protocoles pour la titration et l'utilisation de l'enzyme sont parfaitement établis.

A l'instar du second domaine Kunitz de la protéine GASP-2 humaine, la protéine GASP-2 entière inhibe la trypsine suivant un mécanisme de type compétitif. Dans ce cas, la protéine GASP-2 pourrait : i) entrer en compétition avec le substrat pour la fixation sur le site

catalytique de l'enzyme. Cela impliquerait alors une certaine analogie structurale de la protéine GASP-2 avec le substrat, ii) plus certainement, la fixation de GASP-2 sur un site distinct de l'enzyme provoquerait un encombrement stérique empêchant la fixation du substrat sur le site catalytique de la trypsine. Nous avons ainsi pu montrer, qu'en présence de concentrations croissantes de GASP-2, le K_m^{app} augmente signifiant ainsi que l'affinité apparente de l'enzyme pour le substrat diminue et V_{max} reste inchangé.

De manière surprenante, GASP-1 est un inhibiteur non-compétitif de la trypsine. Sa fixation n'a pas d'influence sur celle du substrat. Elle empêche seulement la réaction enzymatique de se produire. Nous avons ainsi pu observer qu'en présence de concentrations croissantes de GASP-1, la trypsine est moins active (V_{max} diminue) mais l'affinité de la trypsine pour le substrat reste la même (Km n'est pas modifié). Ces résultats peuvent sembler surprenants si l'on considère à la fois l'organisation structurale multidomaines similaire et un degré d'identité significatif (57 % d'acides aminés identigues) entre les protéines GASP-1 et GASP-2. Il existe cependant, dans la littérature, plusieurs autres exemples qui décrivent des observations similaires. Des études, réalisées chez les plantes, ont montré que certaines protéines qui possèdent chacune un domaine Kunitz peuvent inhiber la trypsine selon un mécanisme d'action différent. Ainsi, les protéines PdKI2 (Pithecellobium dumosum Kunitz Inhibitor 2) et CaTI (Cassia absus linn Trypsin Inhibitor) inhibent la trypsine suivant un mécanisme compétitif (Patel et al., 2014). En revanche, les protéines EvTI (Erythrina velutina Trypsin Inhibitor) et TTI (Tamarindus Trypsin Inhibitor) sont des inhibiteurs non-compétitifs de la protéase (Araújo et al., 2005; Machado et al., 2013). Cette dualité fonctionnelle pourrait refléter un mécanisme mis en place dans la cellule permettant de réguler l'activité de certaines protéases à sérine et qui dépendrait de la concentration en substrat. Ainsi, dans le cas d'un inhibiteur de type compétitif, l'inhibition peut être levée lorsque la concentration en substrat augmente. A l'inverse, cette augmentation n'a aucun effet sur un inhibiteur de type non-compétitif.

Afin de déterminer si cette dualité fonctionnelle est due à l'organisation structurale (composition en acides aminés, structure tridimensionnelle) du second domaine Kunitz, dans la suite de notre étude, nous avons réalisé la construction, la production et la purification de 2 protéines GASPs recombinantes chimériques dans lesquelles seul ce domaine a été interchangé. Les analyses cinétiques ont montré que la protéine chimérique GASP-1_{K2-2} présente un mécanisme d'inhibition de type compétitif analogue à celui décrit pour GASP-2. A l'inverse, GASP-2_{K2-1} est un inhibiteur non compétitif de la trypsine comparable à la protéine GASP-1. Ces résultats indiquent que le second domaine Kunitz présent dans les protéines GASPs est responsable de la spécificité d'inhibition observée *in vitro* par la mesure des différents paramètres cinétiques.

Une collaboration avec l'équipe de P.Trouillas (IPPRITT – UMR Inserm de l'Université de Limoges), nous a permis de réaliser des simulations dynamiques qui étayent ces données biologiques, en rationalisant la façon dont le second domaine Kunitz est impliqué dans la spécificité antitrypsique des protéines GASPs. Cette modélisation pourrait être complétée par une étude de la structure du second domaine Kunitz ou des protéines entières par analyse cristallographique à haute résolution qui offrirait des informations structurales à l'échelle atomique sur les régions interagissant avec la protéase.

DISCUSSION GÉNÉRALE & PERSPECTIVES

DISCUSSION GENERALE & PERSPECTIVES

Mes travaux de thèse sont au cœur des activités de recherche de l'équipe USC1061 GAMAA « Génomique AniMale, Amélioration, Adaptation » dirigée par le Pr. Véronique Blanquet au sein du laboratoire PEIRENE EA7500. Ces dernières années, l'équipe a focalisé ses travaux sur l'étude de la régulation de la voie de signalisation de la myostatine dans le muscle chez la souris mais également chez le bovin. La myostatine étant un régulateur négatif puissant du développement musculaire, ces études pourraient permettre, à moyen et long termes, d'identifier de nouvelles pistes thérapeutiques pertinentes pour traiter certaines pathologies musculaires. Cependant, au cours de ces même dernières années, les différents essais cliniques visant à inhiber la voie de signalisation de la myostatine ont conduit à des résultats controversés. En effet, l'efficacité de ces traitements semble être dépendante du degré d'atteinte musculaire et du type d'«inhibiteur» utilisé. L'ensemble de ces études cliniques suggère cependant que le ciblage simultané de plusieurs ligands membres de la famille TGF-β peut améliorer efficacement la masse et la fonction musculaire. Il est donc nécessaire de poursuivre les études sur les inhibiteurs de la myostatine et plus largement sur les inhibiteurs des TGF-βs. Cela nécessite alors de comprendre plus en détail les mécanismes d'action de ces molécules pour tester leur efficacité tout en limitant les effets secondaires.

Ainsi, mes travaux de thèse ont porté sur 2 des inhibiteurs naturels de la myostatine, les protéines GASP-1 et GASP-2. Tout au long de ma thèse, je me suis attaché à comprendre et analyser les conséquences fonctionnelles de l'inhibition de la myostatine par les 2 protéines GASPs, au cours du développement musculaire mais aussi plus largement dans différents autres tissus. Ces analyses ont été réalisées à la fois *in vitro* et *in vivo* à l'aide de modèles murins. En effet, pour comprendre les mécanismes sous-jacents des pathologies humaines et développer de nouveaux traitements, le modèle souris peut être pertinent et un outil incontournable. Dans de nombreux cas, la souris est utilisée comme organisme modèle afin de comprendre le(s) mécanisme(s) moléculaire(s) de la maladie, identifier des marqueurs pour un diagnostic précoce de la maladie et tenter de découvrir de nouvelles drogues thérapeutiques. En effet, nombreuses sont les mutations identifiées chez la souris qui conduisent à des phénotypes similaires et à des symptômes cliniques retrouvés dans les maladies humaines. De même, des stratégies de mutagenèse chez la souris peuvent constituer une bonne alternative aux programmes basés sur des approches quantitatives chez les animaux de rente pour identifier des régions d'intérêt modifiant des caractères agronomiques.

Avant mon arrivée, mon équipe d'accueil avait généré une lignée de souris transgénique Tg(Gasp-1) surexprimant ubiquitairement le gène Gasp-1. Cette lignée présente, à l'âge adulte, une augmentation globale du poids des muscles squelettiques due à une hypertrophie des myofibres sans hyperplasie (Monestier et al., 2012b; Brun et al., 2014). De façon inattendue, la surexpression de Gasp-1 s'accompagne d'une augmentation de la quantité de transcrits/protéines de la myostatine dans les souris Tg(Gasp-1) aux stades embryonnaires. Cette « up-régulation » de la myostatine, par rétrocontrôle, pourrait expliquer l'absence d'hyperplasie observée dans les souris Tg(Gasp-1). En effet, l'augmentation de l'expression de la myostatine durant les phases embryonnaire et fœtale des souris Tg(Gasp-1) (lieu de la mise en place du nombre de myofibres) contrebalancerait la surexpression de Gasp-1 et pourrait expliquer l'absence d'hyperplasie (Brun et al., 2014). Suite à ces différents premiers résultats, je me suis attaché à répondre à différentes interrogations : Quel est le phénotype adipeux et métabolique des souris Tg(Gasp-1)? A l'instar de GASP-1, sa protéine parologue GASP-2 régule-t-elle la voie de la myostatine au cours de la myogenèse in vitro? Quel est l'impact musculaire et métabolique de la surexpression de Gasp-2 chez la souris ? La surexpression des protéines GASPs peut-elle induire un phénotype osseux? Enfin, les protéines GASPs ont-elles un rôle antiprotéasique? Les différentes données acquises nous permettent de répondre à ces interrogations et nous ont permis de mettre en évidence une dualité fonctionnelle in vivo entre les 2 protéines GASPs, et ceci dans différents contextes montrant ainsi leur polyvalence d'action.

Au cours de ce travail, j'ai entrepris d'une part la caractérisation phénotypique des souris mutantes jeunes et âgées par différentes analyses métaboliques et d'autre part des études moléculaires afin de mieux appréhender les mécanismes sous-jacent aux phénotypes observés et d'évaluer si GASP-1 serait un bon candidat lors d'essais thérapeutiques. De façon inattendue, nos résultats montrent que le poids des souris Tg(Gasp-1) augmente avec l'âge. Cette augmentation de la masse graisseuse est associée à une accumulation de graisse ectopique. De plus, elles développent une hypertrophie adipocytaire, une hyperglycémie, une hyperinsulinémie et une stéatose hépatique. Nous montrons ainsi que tous ces symptômes sont liés à une insulino-résistance développée par les souris Tg(Gasp-1) âgées. Les souris Tg(Gasp-1) présentent donc les symptômes métaboliques observés lors de la surexpression de *Mstn*. Des analyses moléculaires
indiquent que les souris Tg(Gasp-1) présentent effectivement une « up-régulation » de la myostatine tout au long de leur vie, directement responsable du syndrome métabolique développé. Notre modèle murin présente alors les mêmes symptômes que ceux retrouvés dans les souris *ob/ob* ou d'autres modèles murins d'obésité et du diabète de type II.

Au vu de ces résultats, nous nous sommes alors intéressé au paralogue de GASP-1, la protéine GASP-2. Nous avons montré, qu'à l'image de GASP-1, la surexpression in vitro de Gasp-2 favorise la prolifération et la différenciation des myoblastes C2C12 en inhibant la voie de signalisation de la myostatine. Nous avons alors réalisé des analyses phénotypiques, cellulaires et moléculaires de différentes lignées de souris transgéniques Tg(Gasp-2), surexprimant de manière ubiquitaire le gène Gasp-2. La caractérisation de ces lignées nous a permis de mettre en évidence, à l'âge adulte, une augmentation globale du poids des muscles squelettiques due à une hypertrophie des fibres musculaires sans hyperplasie. Ce phénotype est semblable à celui précédemment observé chez les souris surexprimant Gasp-1. De manière intéressante, les souris Tq(Gasp-2) ne présentent pas d'« up-régulation » de la myostatine et ne développent pas les défauts métaboliques retrouvés chez les souris Tg(Gasp-1). De plus, contrairement aux souris Tg(Gasp-1), les souris Tg(Gasp-2) présentent un « switch » des myofibres de contraction lente à rapide retrouvé dans les souris Mstn^{-/-}. L'ensemble de ces résultats a permis de mettre en évidence une dualité fonctionnelle entre GASP-1 et GASP-2 dans le contexte musculaire et de proposer la protéine GASP-2 comme un meilleur candidat en vue d'une étude thérapeutique ultérieure.

Une des premières perceptives à ce travail et réalisable à court terme, serait d'évaluer la force musculaire des différents modèles murins surexprimant *Gasp-1* ou *Gasp-2*. En effet, l'augmentation de la masse musculaire ne s'accompagne pas systématiquement d'une augmentation de la force musculaire. Si le knock-out conditionnel de la myostatine chez les souris adultes conduit à une hypertrophie des fibres musculaires et à une augmentation de la force musculaire (Grobet *et al.*, 2003) dans un autre essai, son inhibition par un anticorps entraîne un gain de masse musculaire sans gain fonctionnelle (Woodhouse *et al.*, 2016). Différentes techniques permettant de mesurer la force musculaire murine pourraient être mises en place dans le laboratoire. Par exemple, le test d'agrippement permet l'étude des fonctions neuromusculaires par la détermination du pic de force maximale développé par les souris lorsque l'opérateur essaie de l'éloigner d'une barre ou d'une grille spécialement conçue à cet effet. Le test d'agrippement a été largement utilisé dans la littérature scientifique. Cet instrument de mesure de force est également fréquemment employé en conjonction avec le test ROTAROD de coordination motrice.

Nous avons fait le choix d'établir des lignées transgéniques surexprimant ubiquitairement *Gasp-1* ou *Gasp-2* tout au long de la vie des souris. Ceci permet d'appréhender entièrement l'impact de la surexpression des protéines GASPs, dans différents organes et à différents stades de développement. Une surexpression conditionnelle des protéines GASPs, dans le muscle et au stade adulte, pourrait être pertinente afin d'observer leur(s) effet(s) postnatale(s). De même, une surexpression « somatique » et « non germinale », à l'image de la surexpression de *Gasp-1* via AAV dans la patte de souris (Haidet *et al.*, 2008), pourrait être conduite pour *Gasp-2*.

Lors du développement d'un agent biopharmaceutique à action systémique, un des défis majeurs est de s'affranchir de son taux de clairance rapide. Dans une étude récente, la molécule « FS-EEE-hFc » dérivée de la follistatine a été élaborée pour avoir une action à longue durée. Les auteurs montrent que le traitement de souris par cette protéine recombinante entraîne une amélioration de la fonction musculaire plus importante que lors de l'utilisation d'un anticorps anti-myostatine (Iskenderian *et al.*, 2018). De la même manière, des traitements de souris par la protéine recombinante GASP-2 pourraient être envisagés. De plus, au cours de notre étude nous avons montré que l'absence de modifications post-traductionnelles ne semble pas affecter la fonction de GASP-2 vis-à-vis de la myostatine, ce qui permet d'envisager une production de la protéine recombinante en système procaryote afin de s'affranchir de l'immunogénicité apportée par la glycosylation.

Au cours de notre étude, les protéines GASPs ont été surexprimées uniquement dans des souris sauvages. Afin d'appréhender leur(s) effet(s) dans un contexte pathologique, plusieurs modèles animaux dystrophiques pourraient être utilisés. Parmi ces modèles, la souris *mdx*, qui mime la myopathie de Duchenne, est le plus couramment utilisée (Bulfield *et al.*, 1984; Sicinski *et al.*, 1989). Depuis la génération de la souris *mdx* originale, qui ne présente qu'un phénotype léger, de nombreux modèles de souris ont été créés. Bon nombre de ces modèles s'appuient sur les effets additifs de l'élimination des gènes structurels ou myogéniques non présents dans la maladie humaine afin d'accroître la gravité du phénotype. Il serait intéressant d'étudier l'impact de la surexpression de *Gasp-2* dans un tel modèle murin dystrophique, en évaluant la récupération musculaire engendrée, le taux de fibrose associé ainsi que la régénération des muscles. Actuellement, nous étudions l'impact de la surexpression de *Gasp-2* sur la régénération musculaire de souris sauvages à la suite de lésions musculaires induites par injection de cardiotoxine.

Une perspective à plus long terme pourrait être l'utilisation de la protéine GASP-2 dans une démarche d'essai clinique. L'ensemble des études cliniques publiées suggère que le ciblage simultané de plusieurs ligands appartenant à la famille TGF- β peut améliorer efficacement la masse et la fonction musculaire. Hormis leur interaction avec la myostatine, les protéines GASP-1 et GASP-2 peuvent également interagir avec GDF-11, un autre membre de la famille TGF- β (Kondás *et al.*, 2008; Walker *et al.*, 2015). De nouvelles études ont démontré que GDF-11 est un facteur catabolique et anti-myogénique comme la myostatine, capable d'inhiber la myogenèse et la régénération musculaire (Egerman *et al.*, 2015; Hammers *et al.*, 2017; Zimmers *et al.*, 2017). Si GASP-1 et GASP-2 peuvent inhiber la myostatine et GDF-11, elles ne sont cependant pas capables d'inhiber l'activine (Hill *et al.*, 2003; Kondás *et al.*, 2008). C'est ce qui les différencie fondamentalement d'un autre inhibiteur de la myostatine, la follistatine. Les protéines GASPs, et plus particulièrement la protéine GASP-2, se positionnent alors de manière intéressante pour envisager des études cliniques.

Des thérapies combinées pourraient être également envisagées. En effet, des études montrent qu'il est intéressant de combiner des traitements interférant avec la voie de signalisation de la myostatine et des traitements restaurant la « dystrophine » dans le cas de la myopathie de Duchenne (Dumonceaux *et al.*, 2010). Cela met en évidence la nécessité d'une combinaison de différentes stratégies thérapeutiques qui ciblent différentes voies musculaires. Une telle stratégie de thérapie génique apportant les gènes de micro-dystrophine (une version raccourcie du gène de la dystrophine) et de la follistatine a été utilisée et entraîne une augmentation de la force de souris mdx âgées (Rodino-Klapac *et al.*, 2013). Il pourrait être alors intéressant d'effectuer une double thérapie génique dans le traitement de la myopathie de Duchenne en apportant les gènes de *Gasp-2* et de la micro-dystrophine *via* un vecteur-médicament.

Parmi d'autres approches, la combinaison de la thérapie génique et de la thérapie cellulaire, *via* une greffe de myoblastes, pourrait également être effectuée. En effet, l'équipe de Tremblay a montré que la combinaison de l'inhibition de la myostatine et de la transplantation de myoblastes murins permet d'améliorer les résultats de greffe, accompagnée d'une hypertrophie musculaire avec une augmentation des fonctions musculaires (Benabdallah *et al.*, 2008, 2009).

Plus fondamentalement, nos résultats mettent en lumière un réseau de régulation de l'expression des membres de la famille TGF- β et de leurs inhibiteurs dans le muscle. En effet, la surexpression de *Gasp-1* entraîne une « up-régulation » de la myostatine et une

sous-expression de *Gasp-2* et *Fst* au stade embryonnaire. La surexpression de *Gasp-2* induit, quant à elle, une « up-régulation » de *Gdf-11* et une sous-expression de *Gasp-1* et *Fst* au stade embryonnaire. Une étude plus globale sur « l'interactome » des protéines impliquées dans la signalisation des TGF- β s pourrait être envisagée dans les 2 modèles surexprimant les protéines GASPs. Il serait alors intéressant de coordonner ces analyses avec celles d'autres modèles surexprimant la Follistatine ou d'autres inhibiteurs de la myostatine. Au sein du laboratoire, des analyses Affymétrix sur des cellules primaires *Tg*(*Gasp-1*) et *Tg*(*Gasp-2*) sont actuellement en cours et devraient apporter une vue plus élargie de l'effet de ces surexpressions sur le développement musculaire.

Nos travaux ont également permis de mettre en évidence une dualité fonctionnelle des protéines GASPs vis à vis de GDF-11 dans le développement squelettique. Comme l'ont déjà montré des études préalables, en plus de la myostatine, les protéines GASPs sont capables d'inhiber *in vitro* la protéine GDF-11. Si la myostatine est associée essentiellement au développement musculaire, GDF-11 participe, quant à elle, principalement à la mise en place de l'axe squelettique et au développement osseux. GDF-11 entraîne également une diminution de la masse osseuse en inhibant la différentiation ostéoblastique. Nous avons étudié le phénotype squelettique des souris Tg(Gasp-1) et Tg(Gasp-2). La lignée murine Tg(Gasp-2) présente une augmentation de la densité osseuse globale et montre également la présence d'une huitième paire de côtes rattachée au sternum avec une pénétrance incomplète. Ce phénotype n'est pas retrouvé dans les souris surexprimant *Gasp-1*. L'ensemble de ces résultats confirme le rôle de régulateur positif de GASP-2 dans l'ostéogénèse par inhibition de la protéine GDF-11.

L'équilibre entre formation (par les ostéoblastes) et résorption (par les ostéoclastes) peut être rompu et conduire à l'ostéoporose. L'ostéoporose est un problème de santé publique majeur qui touche plus de 200 millions de personnes dans le monde (Gosch *et al.*, 2019). Selon différentes études épidémiologiques, les experts estiment que l'ostéoporose touche 30 % des femmes de 50 ans et 50 % des femmes de plus de 60 ans (Zaheer and LeBoff, 2000). L'ostéoporose se caractérise par une diminution de la masse et de la qualité osseuse, aboutissant à une fragilisation du tissu osseux et à une augmentation du risque de fracture. La capacité de remplacement de la matrice osseuse par les ostéoblastes diminue avec l'âge, ce qui induit un déficit de dépôt de matrice et un amincissement des travées osseuses. Ainsi la recherche d'acteurs permettant la régulation de l'ostéogenèse est au cœur de nombreuses recherches. La plupart des traitements actuels contre la perte osseuse pathologique active les ostéoblastes ou inhibe les ostéoclastes. Nous avons fait le choix d'étudier l'effet de la protéine GASP-2 sur la

prolifération et la différenciation d'une lignée ostéoblastique. Si nous avons montré que GASP-2 a un effet pro-ostéoblastique, il serait alors également intéressant d'étudier l'effet de GASP-2 sur une lignée ostéoclastiques. Des analyses similaires sur des souris âgées pourraient être envisagées afin de déterminer si la surexpression de *Gasp-2* préserve de l'ostéoporose lié à l'âge. De plus, pour identifier l'effet de GASP-2 sur la régénération osseuse, une comparaison de la régénération entre les souris Tg(Gasp-2) et les souris sauvages pourrait être réalisée après perforation osseuse.

De manière intéressante, au cours de la dernière décennie, plusieurs axes d'études s'intéressèrent au traitement de la « sarco-ostéoporose ». En effet, la sarcopénie et l'ostéoporose se développent souvent en parallèle chez les patients âgées (Brotto and Bonewald, 2015; Wang *et al.*, 2015b). Cela implique que les nouvelles approches thérapeutiques doivent pourvoir avoir un « double-effet » et cibler à la fois les os et les muscles. Les approches thérapeutiques de la sarcopénie et de l'ostéoporose, basées sur le concept de « cross-talk » musculo-squelettique, font l'objet de recherches extrêmement actives, dont beaucoup sont actuellement axées sur la voie de signalisation des TGF-βs (Li *et al.*, 2019). La protéine GASP-2, ayant un effet pro-musculaire et pro-ostéoblastique, sa surexpression pourrait représenter une approche prometteuse pour prévenir la sarco-ostéoporose liée au vieillissement.

Si des premières études mettaient en évidence une affinité *in vitro* relativement équivalente de GASP-1 et de GASP-2 pour la myostatine et GDF-11, de nouveaux résultats tendent à montrer une certaine dualité entre ces 2 protéines (Walker *et al.*, 2015). En effet, GASP-1 aurait plus d'affinité *in vitro* pour la myostatine alors que GASP-2 aurait plus d'affinité *in vitro* pour GDF-11 (Kondás *et al.*, 2008, 2011b; Walker *et al.*, 2015). Nos résultats obtenus *in vivo* confirment ces observations. Il existe une réelle dualité fonctionnelle entre les protéines GASPs vis à vis de la myostatine et de GDF-11. La surexpression de GASP-1 entraîne une « up-regulation » de la myostatine au stade embryonnaire alors que la surexpression de GASP-2 provoque une « up-regulation » de GDF-11. De même, seules les souris Tg(Gasp-2) présentent un phénotype osseux par inhibition de GDF-11.

Cette dualité fonctionnelle entre GASP-1 et GASP-2 est de nouveau observée concernant leur rôle antiprotéasique. Dans la littérature, il a été montré que le second domaine Kunitz isolé de la protéine GASP-2 humaine est capable d'inhiber la trypsine (Nagy *et al.*, 2003; Liepinsh *et al.*, 2006). Nous avons cherché à déterminer si les 2 protéines

GASPs entières sont également capables d'inhiber la trypsine. Même si l'utilisation de la trypsine comme modèle de protéase à sérine n'a pas véritablement de réalité physiologique dans le muscle, nos résultats ont cependant permis de montrer, pour la première fois, que les protéines recombinantes GASP-1 et GASP-2 sont capables d'inhiber cette protéase *in vitro*, selon 2 mécanismes distincts. En effet, la protéine GASP-2, produite dans la bactérie *E. coli*, est capable d'inhiber la trypsine selon un mécanisme compétitif. De manière surprenante, bien que ces 2 protéines soient étroitement liées structurellement, notre travail révèle que GASP-1 inhibe la trypsine selon un mécanisme non compétitif.

Notre étude peut être une base expérimentale pour permettre l'identification des protéases cibles des protéines GASPs. Par exemple, la maturation de la myostatine fait intervenir différentes protéases telles que la furine et les BMP-1/tolloid. A court terme, il serait intéressant de déterminer si les protéines GASPs recombinantes, produites selon notre protocole, sont capables d'inhiber ces différentes protéases.

Nos résultats ont également permis de montrer que l'activité anti-trypsine est essentiellement due au second domaine Kunitz des 2 protéines. Or, les protéines GASPs sont des inhibiteurs multi-domaines hétérotypiques. Dans le cadre d'une étude élargie des relations Structure/Fonction, il semble important de déterminer le rôle des autres domaines inhibiteurs de protéases (le premier domaine Kunitz, le domaine WAP et le domaine Nétrine). Pour cela, l'expression de chacun d'entre eux pourrait être envisagée comme cela a été réalisé pour le second domaine Kunitz de GASP-2 (Nagy *et al.*, 2003).

Les protéases à sérine sont présentes dans de nombreux processus physiologiques. L'activité des protéases est strictement régulée et une dérégulation de l'activité protéolytique peut engendrer, entre autre, la dégradation de la matrice extracellulaire qui joue un rôle majeur dans la progression de certains cancers (DeClerck *et al.*, 2004). Il serait alors intéressant de tester l'action des protéines GASPs sur certaines cellules cancéreuses qui présentent une surexpression de protéase(s). Par exemple, la protéase transmembranaire sérine 4 (TMPRSS4) est une protéase transmembranaire surexprimée dans divers types de cancers humains et qui joue un rôle important dans la progression du cancer (Li *et al.*, 2017).

Pour résumer, l'ensemble de nos résultats montre que les 2 protéines GASPs présentent une dualité fonctionnelle dans les différentes activités testées. Pour tenter de comprendre ces différences mécanistiques, une étude de la structure des protéines GASPs entières par analyse cristallographique à haute résolution pourrait être envisagée afin d'obtenir des informations structurales à l'échelle atomique. Il ne serait pas surprenant d'observer alors des différences structurales notables entre ces 2 protéines. Cette étude

nécessiterait cependant d'améliorer le degré de pureté des protéines recombinantes produites. Il pourrait être envisagé, par exemple, de coupler la purification par chromatographie d'affinité utilisée au cours de nos études avec une chromatographie échangeuse d'ions.

Enfin, nous ne pouvons pas exclure d'autres fonctions et d'autres partenaires encore inconnus des protéines GASPs. Outre le muscle, les protéines GASPs sont aussi exprimées dans les ovaires et les testicules (Trexler *et al.*, 2001, 2002). De plus, une étude suggère l'implication de la protéine GASP-2 dans le système reproducteur chez le singe (Harris *et al.*, 2014). Des substitutions dans le gène *Gasp-2* seraient associées à des grossesses gémellaires chez ces animaux. Au cours de nos études, nous avons observé des problèmes de reproduction des animaux transgéniques. Des coupes d'appareils reproducteurs de souris surexprimant *Gasp-1* ou *Gasp-2* sont actuellement en cours d'analyse au sein du laboratoire.

Afin de rechercher de nouveaux partenaires protéiques des protéines GASPs, différentes stratégies pourraient être envisagées à l'instar de la co-immunoprécipitation et de l'histidine pull down. La mise en place d'un système double hybride chez la levure pourrait également être réalisée afin de cribler une banque d'ADNc embryonnaire et d'identifier des protéines interagissant avec les protéines GASPs. Le système Biacore pourrait également être envisagé. Cet appareil permet de mesurer les interactions protéine/protéine ou protéine/ligand et les constantes d'affinité. Cette technologie repose sur la surface plasmon resonance.

Le muscle qui constitue plus de la moitié de la masse corporelle de la plupart des mammifères, est un élément majeur de l'homéostasie métabolique en lien étroit avec les autres tissus/organes. Le tissu musculaire montre aussi une plasticité élevée contribuant ainsi à l'adaptation aux changements. L'état actuel de la recherche n'explique néanmoins pas toutes les interactions possibles entre les éléments affectant la fonction musculaire et les processus adaptatifs du muscle squelettique classiquement décrits.

Ainsi, en parallèle de l'étude de ces 2 gènes candidats *Gasp-1* et *Gasp-2*, j'ai participé au développement d'un crible fonctionnel élaboré par mon équipe d'accueil et basé sur la technologie d'ARN interférence. Ce crible a permis d'identifier de nouveaux gènes potentiellement impliqués dans le développement musculaire. L'approche adoptée pour

identifier des gènes dont le knockdown par ARNi qui affecte la prolifération et/ou la différenciation des cellules C2C12 a consisté à transfecter ces cellules par des siRNA ciblant d'une façon spécifique 100 gènes murins. Cette liste de gènes a été établie suite à un travail bibliographique sur les critères suivants : ces gènes ont des fonctions inconnues chez la souris, leur expression varie au cours de la différenciation des cellules C2C12 et leurs orthologues chez la drosophile sont nécessaires à la myogenèse. Une analyse phénotypique après différenciation des cellules C2C12 transfectées a été developpée et repose sur l'analyse d'images de reconstruction (100 à 150 images individuelles) qui couvrent la totalité de la zone scannée après immunomarquage des cellules C2C12 différenciées nous renseigne non seulement sur le déroulement de la différenciation mais aussi sur la taille et la forme des myotubes ; celle du DAPI nous permet de dénombrer les noyaux aussi bien dans les cellules prolifératives mononucléees que dans les cellules differenciées multinucléees.

Le résultat du crible montre que parmi les 100 gènes inactivés, 21 entraînent un phénotype soit en modifiant uniquement la différenciation (14 gènes) soit la prolifération et la différenciation (7 gènes) (Alwan *et al.*, 2017).

La démarche expérimentale a été détaillée dans un chapitre d'ouvrage publié dans la revue *Methods in Molecular Biology*: *« A siRNA Mediated Screen During C2C12 Myogenesis »* (Parenté *et al.*, 2019).

Pour certains de ces gènes ainsi identifiés, des analyses fonctionnelles *in vitro* et *in vitro*, similaires à celles que j'ai utilisé au cours de ma thèse, sont actuellement en cours au laboratoire.

Chapter 13

A siRNA Mediated Screen During C2C12 Myogenesis

Alexis Parenté, Luce Pèrié, Laetitia Magnol, Khaled Bouhouche, and Véronique Blanquet

Abstract

Myogenesis is a multistep process taking place during pre- and postnatal stages for muscle formation, growth, and regeneration. It is a highly regulated process involving many molecular factors which act during myoblast proliferation and differentiation. To provide new insights into the molecular mechanisms and interactions behind the regulation of these different steps, RNA interference is an efficient methodology to implement. We developed a high-throughput siRNA screen in C2C12 murine myoblast cells for identification of genes relevant to signaling pathways controlling muscle growth. The proposed protocol is based on (1) the analyses of a maximum number of cells/myotubes to detect and quantify both clear and subtle phenotypes during proliferation/fusion cells and (2) the use of two cellular fluorescent markers, DAPI and myosin, decorating nuclei and myotubes respectively. Four phenotypic criteria were quantitatively assessed: cellular density, myotubes quantity, fusion index, and size and morphology of myotubes.

Key words siRNA, Functional screen, Myogenesis, C2C12, Quantitative-imaging analysis, Proliferation, Differentiation, Immunostaining

1 Introduction

Skeletal muscle is a highly complex, heterogeneous, and plastic tissue, which plays an important role in body movement, posture, and breathing but also in energy and protein balance. The muscle-generating process is defined as « myogenesis » which is a multistep process involving myoblast determination, cycle activation, proliferation, alignment, fusion in multinucleated myotubes, and the formation of mature myofibers [1]. This process takes place during embryonic/fetal and postnatal stages for muscle formation, growth, and regeneration. The intrinsic molecular signals regulating these different waves have been well described in the literature. Myogenesis is controlled by a core network of transcription factors, including Pax3, Pax7, and a set of muscle regulatory factors (MRFs) consisting of Myf5, MyoD, MRF4, and myogenin [2–5].

The prenatal myogenesis can be divided into two phases: an early embryonic phase (E10.5-E12.5 in mouse) and a later fetal phase (E14.5-17.5 in mouse) [6, 7]. The first phase results in the production of the primary myofibers, which derive from dermomyotomal progenitors expressing in specific manner Pax3 [8]. During the second phase, a subset of the Pax3⁺ myogenic progenitors begins to express Pax7 and downregulates Pax3. These Pax7⁺ myogenic precursors fuse between themselves or with the primary fibers to give the secondary fibers [9]. Skeletal muscle is therefore composed of a heterogeneous population of muscle fibers, conferring remarkable myoplasticity for adaptive change [10, 11]. In postnatal stage, a subset of Pax7⁺ progenitors forms the pool of adult muscle stem cells-the satellite cells-essential for muscle regeneration [12]. Furthermore, to control the postnatal muscle mass, a dynamic balance between protein synthesis and degradation is orchestrated by extracellular myokines such as IGF-1 or myostatin and its inhibitors [13–15].

The current state of the research does not explain all the possible interactions between the elements affecting muscular function and the adaptive processes of skeletal muscle classically described. Thus, techniques to identify new partners involved in myogenesis are of great interest. Cell culture systems are indispensable tools for studying regulation of many fundamental biological processes or for clinical in-vitro studies. The field of functional genomics has been re-energized by the discovery of the RNA interference (RNAi) pathway [16].

RNAi is an endogenous cellular process conserved in most eukaryotes [17]. It is discovered for the first time in Caenorhabditis elegans in which the introduction of double strand RNA (dsRNA) induces the silencing of endogenous gene [18]. RNAi is accomplished through transcriptional or post-transcriptional gene silencing [19] by chromatin remodeling, RNA destruction, or mRNA translation repression [20]. One form of the post-transcriptional gene silencing is induced by introduction of small interfering RNA (siRNA), which recognizes target sequences by base-pairing interactions inducing target mRNA degradation [21]. In this pathway, silencing is triggered by the introduction of dsRNA into cells, which is processed by the RNase III family enzyme Dicer to produce 21- to 23-nucleotide-long siRNA [22]. One of the two siRNA strands is then loaded into the RNA-induced-silencing complex (RISC), which uses this strand to recognize complementary mRNA targets by base-paring interaction [23]. The Argonaute protein within RISC will catalyze the cleavage of mRNA target leading to its destruction in the processing bodies [24–26].

siRNA-mediated gene-silencing is currently used in a highthroughput manner that can systematically knock down every single gene within a genome in both cell culture and living organisms [27, 28]. Large-scale siRNA screens in mammalian primary cultures [29] or cell lines [30] such as C2C12 myoblasts [31, 32] give opportunity to identify genes that are directly or indirectly responsible for a phenotype or involved in a mechanism of interest. Murine C2C12 myoblasts are used for many years to decipher the molecular mechanisms regulating the different steps of in-vivo myogenesis: myoblasts proliferation, fusion, and multi-nucleated myotubes formation [33]. Here we describe a newly designed protocol based on C2C12 myoblasts, RNAi technology, and quantitative image analysis to develop a siRNA-mediated functional screen, aiming identification of novel actors involved in myogenesis [34]. Improvements were based on the analysis of a maximum number of cells and myotubes to detect and quantify both clear and subtle phenotypes during proliferation/fusion of C2C12 cells. In our protocol, we choose to silence the candidate genes by transient transfection of siRNA duplexes rather than stable transfection with small hairpin RNA (shRNA) in order to prevent technical difficulties related to time selection and position effect. For each candidate gene, two distinct siRNA were used and cells were transfected twice during the whole differentiation stage to ensure the continued efficiency of siRNA silencing. Phenotypic analyses were assessed on four criteria: cellular density, myotube quantity, fusion index, and size and morphology of myotubes.

2 Materials

 Solution 2. Negative control siRNA: 3'alexafluor647, Qiage AATTCTCCGAACGTGTCACGT (see Note 3). 3. AllStars Mm Cell Death Control siRNA, Qiagen (see Note 4 4. Dulbecco's Modified Eagle Medium (DMEM). 5. Final siRNA concentration: 5 nM of siRNA in DMEM. 2.2 C2C12 Seeding 1. C2C12 cell line. 2. Standard cell culture growth medium (GM): DMEM, 10% fet bovine serum and antibiotics (50 units.mL⁻¹ penicillin at 50 µg.mL⁻¹ streptomycin). 3. Sterile Phosphate buffered saline solution (PBS). 4. Trypsin solution: 0.25% in PBS-0.5 mM EDTA. 5. 10 cm dish for growing. 6. 12-well plates for transfection (see Note 5). 7. 1.8 cm²-coverslips placed at the bottom of the 12-well plate 8. Brightfield microscope. 9. Cell culture incubator (37 °C, 5% CO₂). 10. Laminar flow hood. 	2.1 siRNA Stock	1. 10 µM siRNA, Qiagen (see Notes 1 and 2).
 AllStars Mm Cell Death Control siRNA, Qiagen (see Note 4 Dulbecco's Modified Eagle Medium (DMEM). Final siRNA concentration: 5 nM of siRNA in DMEM. C2C12 seeding C2C12 cell line. Standard cell culture growth medium (GM): DMEM, 10% fet bovine serum and antibiotics (50 units.mL⁻¹ penicillin at 50 µg.mL⁻¹ streptomycin). Sterile Phosphate buffered saline solution (PBS). Trypsin solution: 0.25% in PBS-0.5 mM EDTA. 10 cm dish for growing. 12-well plates for transfection (see Note 5). Snghtfield microscope. Cell culture incubator (37 °C, 5% CO₂). Laminar flow hood. 	Solution	2. Negative control siRNA: 3'alexafluor647, Qiagen, AATTCTCCGAACGTGTCACGT (<i>see</i> Note 3).
 4. Dulbecco's Modified Eagle Medium (DMEM). 5. Final siRNA concentration: 5 nM of siRNA in DMEM. 2.2 C2C12 Seeding C2C12 cell line. Standard cell culture growth medium (GM): DMEM, 10% fet bovine serum and antibiotics (50 units.mL⁻¹ penicillin at 50 µg.mL⁻¹ streptomycin). Sterile Phosphate buffered saline solution (PBS). Trypsin solution: 0.25% in PBS-0.5 mM EDTA. 10 cm dish for growing. 12-well plates for transfection (<i>see</i> Note 5). 18 cm²-coverslips placed at the bottom of the 12-well plate Brightfield microscope. Cell culture incubator (37 °C, 5% CO₂). 		3. AllStars Mm Cell Death Control siRNA, Qiagen (see Note 4).
 5. Final siRNA concentration: 5 nM of siRNA in DMEM. 2.2 C2C12 Seeding and Culture 1. C2C12 cell line. 2. Standard cell culture growth medium (GM): DMEM, 10% fet bovine serum and antibiotics (50 units.mL⁻¹ penicillin at 50 μg.mL⁻¹ streptomycin). 3. Sterile Phosphate buffered saline solution (PBS). 4. Trypsin solution: 0.25% in PBS-0.5 mM EDTA. 5. 10 cm dish for growing. 6. 12-well plates for transfection (<i>see</i> Note 5). 7. 1.8 cm²-coverslips placed at the bottom of the 12-well plate 8. Brightfield microscope. 9. Cell culture incubator (37 °C, 5% CO₂). 10. Laminar flow hood. 		4. Dulbecco's Modified Eagle Medium (DMEM).
 2.2 C2C12 Seeding and Culture 1. C2C12 cell line. 2. Standard cell culture growth medium (GM): DMEM, 10% fet bovine serum and antibiotics (50 units.mL⁻¹ penicillin at 50 μg.mL⁻¹ streptomycin). 3. Sterile Phosphate buffered saline solution (PBS). 4. Trypsin solution: 0.25% in PBS-0.5 mM EDTA. 5. 10 cm dish for growing. 6. 12-well plates for transfection (<i>see</i> Note 5). 7. 1.8 cm²-coverslips placed at the bottom of the 12-well plate 8. Brightfield microscope. 9. Cell culture incubator (37 °C, 5% CO₂). 10. Laminar flow hood. 		5. Final siRNA concentration: 5 nM of siRNA in DMEM.
 and Culture 2. Standard cell culture growth medium (GM): DMEM, 10% fet bovine serum and antibiotics (50 units.mL⁻¹ penicillin at 50 μg.mL⁻¹ streptomycin). 3. Sterile Phosphate buffered saline solution (PBS). 4. Trypsin solution: 0.25% in PBS-0.5 mM EDTA. 5. 10 cm dish for growing. 6. 12-well plates for transfection (<i>see</i> Note 5). 7. 1.8 cm²-coverslips placed at the bottom of the 12-well plate 8. Brightfield microscope. 9. Cell culture incubator (37 °C, 5% CO₂). 10. Laminar flow hood. 	2.2 C2C12 Seeding	1. C2C12 cell line.
 Sterile Phosphate buffered saline solution (PBS). Trypsin solution: 0.25% in PBS-0.5 mM EDTA. 10 cm dish for growing. 12-well plates for transfection (<i>see</i> Note 5). 1.8 cm²-coverslips placed at the bottom of the 12-well plate Brightfield microscope. Cell culture incubator (37 °C, 5% CO₂). Laminar flow hood. 	and Culture	2. Standard cell culture growth medium (GM): DMEM, 10% fetal bovine serum and antibiotics (50 units.mL ^{-1} penicillin and 50 µg.mL ^{-1} streptomycin).
 4. Trypsin solution: 0.25% in PBS-0.5 mM EDTA. 5. 10 cm dish for growing. 6. 12-well plates for transfection (<i>see</i> Note 5). 7. 1.8 cm²-coverslips placed at the bottom of the 12-well plate 8. Brightfield microscope. 9. Cell culture incubator (37 °C, 5% CO₂). 10. Laminar flow hood. 		3. Sterile Phosphate buffered saline solution (PBS).
 5. 10 cm dish for growing. 6. 12-well plates for transfection (<i>see</i> Note 5). 7. 1.8 cm²-coverslips placed at the bottom of the 12-well plate 8. Brightfield microscope. 9. Cell culture incubator (37 °C, 5% CO₂). 10. Laminar flow hood. 		4. Trypsin solution: 0.25% in PBS-0.5 mM EDTA.
 6. 12-well plates for transfection (<i>see</i> Note 5). 7. 1.8 cm²-coverslips placed at the bottom of the 12-well plate 8. Brightfield microscope. 9. Cell culture incubator (37 °C, 5% CO₂). 10. Laminar flow hood. 		5. 10 cm dish for growing.
 7. 1.8 cm²-coverslips placed at the bottom of the 12-well plate 8. Brightfield microscope. 9. Cell culture incubator (37 °C, 5% CO₂). 10. Laminar flow hood. 		6. 12-well plates for transfection (see Note 5).
 8. Brightfield microscope. 9. Cell culture incubator (37 °C, 5% CO₂). 10. Laminar flow hood. 		7. 1.8 cm^2 -coverslips placed at the bottom of the 12-well plates.
 9. Cell culture incubator (37 °C, 5% CO₂). 10. Laminar flow hood. 		8. Brightfield microscope.
10. Laminar flow hood.		9. Cell culture incubator (37 °C, 5% CO ₂).
		10. Laminar flow hood.

2.3 C2C12	1. C2C12 cells in culture, 80% confluent.
Differentiation and Culture	2. Differentiation culture medium (DM): DMEM, 2% horse serum and antibiotics (50 units.mL ^{-1} penicillin and 50 µg. mL ^{-1} streptomycin).
	3. Sterile phosphate buffered saline solution.
	4. 12-well plates.
	5. 1.8 cm^2 coverslips placed at the bottom of the 12-well plates.
	6. Brightfield microscope.
	7. Cell culture incubator (37 °C, 5% CO ₂).
	8. Laminar flow hood.
2.4 C2C12 Transfection	1. C2C12 cells seeded at 2.10 ⁴ cells/cm ² in 12-well plate for real time quantitative PCR (RT-qPCR) and immunostaining experiment.
	2. 5 nM siRNA and siRNA control.
	3. DMEM.
	4. HiPerfect [®] transfection reagent, Qiagen.
	5. Sterile phosphate buffered saline solution.
	6. Standard culture growth medium (GM): DMEM, 10% fetal bovine serum, and antibiotics (50 units.mL ^{-1} penicillin and 50 µg.mL ^{-1} streptomycin).
	7. Differentiation culture medium (DM): DMEM, 2% Horse serum and antibiotics (50 units.mL ^{-1} penicillin and 50 µg. mL ^{-1} streptomycin).
	8. 12-well plates.
	9. 1.8 cm^2 coverslips placed at the bottom of the 12-well plates.
	10. Brightfield microscope.
	11. Cell culture incubator (37 °C, 5% CO ₂).
	12. Laminar flow hood.
2.5 Immunostaining	1. Sterile phosphate buffered saline solution.
	2. Paraformaldehyde 4% in PBS.
	 Permeabilization solution: 20 mM HEPES, 300 mM sucrose, 50 mM NaCl, 3 Mm MgCl₂, 0.5% Triton X-100, pH 7.4.
	4. Blocking buffer: PBS, 10% goat serum, 1% bovine serum albumin (BSA), 0.1% Triton X-100.
	5. Washing solution 1: PBS, 0.2% BSA.
	6. Primary antibody: monoclonal anti-myosin skeletal fast, clone My-32, mouse antibody (anti-MyHC, Sigma Aldrich) 1:400 diluted in PBS-1% BSA solution.
	7. Washing solution 2: PBS, 0.2% BSA, 0.1% Tween 20.

	8. Secondary antibody: Alexa Fluor [®] 488 Goat anti-mouse IgG (Thermofisher) diluted 1:1000 in PBS-1% BSA solution.
	9. Stock solution 1 mg.m L^{-1} DAPI diluted at 1:1000 in PBS.
	10. Mounting medium: 9.6% Mowiol 4–88, 12% glycerol, 0.1 M Tris–HCl, pH 8.5.
	11. Transparent quick drying nail polish.
	12. Automated Leica DMI6000B inverted epifluorescence micro- scope monitored by MetaMorph software (Molecular Devices, Sunnyvale, USA).
2.6 Nuclei Countina	1. Image J v1.49 software.
and Fusion Index	 Superposed large images with DAPI and Alexa Fluor[®] 488 staining.
	3. Fusion index: nucleus number in myotubes/total nucleus number X100.
2.7 Mvotube	1. Image J v1.49 software.
Measurements	2. Large images with Alexa Fluor [®] 488 staining.
	3. Myotube Length: distance between the two distal extremities of the myotube.
	4. Myotube Width: distance between the two proximal extremi- ties of the myotube.
2.8 RNA Extraction	1. C2C12 cells in 12-well plates.
and cDNA Synthesis	2. Sterile phosphate buffered saline solution.
	3. Trypsin solution: 0.25% in PBS-0.5 mM EDTA.
	4. RNeasy midi kit.
	5. 2 μg of extracted RNA.
	6. High capacity cDNA reverse transcription mix (10 μ L per tube): 2 μ L 10× RT Buffer, 0.8 μ L 25× dNTPs, 2 μ L 10× random primers, 1 μ L 50 unit. μ L ⁻¹ multiscribe reverse transcriptase, 4.2 μ L nuclease free water.
	7. Nanodrop spectrophotometer.
2.9 Real Time	1. 50 ng of cDNA/condition.
Quantitative PCR	2. Taqman Gene expression master mix (20 μ L per tube): 10 μ L 2× Taqman mix, 1 μ L 20× Taqman probe.
	3. Taqman probes specific to each tested gene.
	4. Taqman reference gene probes: GAPDH and β -2 M.
	5. Quantstudio [®] Design and Analysis Software version 1.1 and SDS 2.3.
	6. ABI PRISM© 7900 System.
	7. 96-well plates.

3	Methods	
3.1 See	C2C12 Cells ding	1. Pre-warm GM medium, DM medium, trypsin solution, and PBS at room temperature (RT).
and D	Differentiation	 Use 70% confluence C2C12 cells for subculturing. Wash cells twice with 5 mL PBS and add trypsin solution (3 mL per 10 cm dish) for detachment. Incubate for 3–5 min at 37 °C.
		3. Check for complete detachment under the microscope.
		4. Recover cells in 3 mL GM and centrifuge them at $800 \times g$ for 5 min.
		5. Discard the supernatant, resuspend cell pellet in 1 mL of GM, and count cell number using a Malassez slide.
		6. For the RT-qPCR experiment, seed cells at 2.10^4 cells/cm ² in a 12-well plate with 1 mL GM and incubate for 24 h at 37 °C in a 5% CO ₂ in air atmosphere.
		7. For the Immunostaining experiment, seed cells at 2.10^4 cells/cm ² on a 1.8 cm ² coverslip placed at the bottom of the well of a 12-well plate in 1 mL of GM and incubate for 24 h at 37 °C in a 5% CO ₂ in air atmosphere.
		8. Next day, shift cells (70% confluence) to DM medium and cultivate them for 48 h for RT-qPCR analysis or 144 h for immunostaining experiment (<i>see</i> Note 6).
		9. Change DM every 48 h (see Fig. 1a).
3.2 Trar Cell	siRNA nsfection of C2C12 s	Transfections conditions proposed here have been adapted for 12-well plate cells and C2C12 cells. The amount of siRNA and HiPerfect [®] reagent required for successful transfection varies depending on the cell type and passage number. It is better to start any new transfection by testing the recommended concentrations of siRNA and HiPerfect [®] Reagent to determine an optimum amount.
		1. Transfect cells twice at 0 h and 48 h of differentiation (<i>see</i> Note 7 and Fig. 1a).
		2. Each candidate gene will be silenced separately with two siRNA. For each gene, negative control siRNA and untransfected cells are used as controls (<i>see</i> Fig. 1b). Inactivated cells and controls must be performed in three technical replicates.
		3. Pre-warm complete DM and DMEM medium at RT. Keep HiPerfect [®] transfection reagent at 4 °C until needed.
		4. For each well plate, remove cell culture supernatant and replace it by the new pre-warmed one in a laminar flow hood.

5. Dilute 37.5 ng of siRNA in 100 μ L DMEM (final concentration 5 nM) containing 3 μ L of HiPerfect transfection reagent.

Fig. 1 siRNA-mediated screen experimental approach and reconstruction of the 1 cm² large image. (**A**) C2C12 cells are seeded at 2.10^4 cells/cm² in 12-well plate. After 24 h, the proliferation medium is replaced by the differentiation medium (T = 0 h). To ensure the continued efficiency of siRNA silencing during the whole differentiation stage, we transfected cells twice with the same siRNA, at 0 h and 48 h of differentiation. (**B**) To eliminate false positives, commercial negative control siRNA and two distinct siRNA are used for each candidate gene. (**C**) C2C12 cells are seeded on a 1.8 cm² coverslip placed at the bottom of the well. Per coverslip, automated 100–150 fluorescent images were taken using $100 \times$ magnification objective with the aim of reconstructing a 1 cm² large image of the whole scanned zone

- 6. Incubate the mix for 10 min at RT. Add the 100 μ L transfection complex in a drop-wise manner onto cells in each well. Swirl plates gently to ensure uniform distribution and incubate at 37 °C in a 5% CO₂ in air atmosphere.
- 7. Repeat this transfection at 48 h of differentiation (see Note 8).

3.3 *Immunostaining* To phenotypically screen the candidate genes, myosin can be immunostained and used as a differentiation marker of myotubes.

- 1. Wash cells three times in PBS $1 \times$.
- 2. Fix cells during 15 min in 4% PFA solution.
- 3. Wash again three times with PBS 1× and permeabilize with HEPES/Triton Buffer.

	4. Block cells 1 h at RT with blocking buffer and wash them quickly with washing solution 1 (PBS, 0.2% BSA).
	5. Incubate cells overnight at 4 °C with primary antibody anti- MyHC diluted (1:400) in PBS, 1% BSA.
	6. Wash cells two times with washing solution 2 (PBS, 0.2% BSA, and 0.1% Tween 20), incubate cells for 15 min at 37 °C with secondary antibody conjugated with a fluorescent dye (Alexa Fluor [®] 488 anti-mouse IgG) diluted (1:1000) in PBS, 1% BSA.
	7. Wash cells three times with washing solution 2 and incubate cells for 5 min with 1 mg.mL ^{-1} DAPI in PBS.
	8. Place coverslips back to front on slides with mounting solution, seal with polish nail, and store at 4 $^{\circ}$ C in the dark.
3.4 Image Acquisition	1. Acquire and analyze image with an automated Leica DMI6000B inverted epifluorescence microscope using the MetaMorph software.
	 Use Alexa Fluor[®] 488 and DAPI acquisition parameters as follows: wavelength spectrum 499–519 nm (Alexa Fluor[®] 488) and 345–455 nm (DAPI), exposure time 1000 ms (Alexa Fluor[®] 488) and 50 ms (DAPI) and light intensity 150.
	 Per coverslip, scan a 1 cm² zone by taking automated-adjacent 100–150 fluorescent images (DAPI and Alexa Fluor[®] 488) in 100× magnification.
	4. Reconstruct a large image from the 150 images using Meta- morph software (<i>see</i> Note 9 and Fig. 1c).
	5. Save individual images and reconstruct images in .tif format.
	6. Quantify fluorescent area of each marker (DAPI and Alexa Fluor [®] 488) on the corresponding large image, this quantification consists of the percentage of fluorescent area compared to the whole scanned zone.
	7. Eliminate the background fluorescence with statistic correc- tion. The percentage of DAPI and Alexa Fluor [®] 488 fluorescent areas correspond to the percentage of the fluorescent surface occupied by nuclei or myotubes compared to the total coverslip scanned zone (<i>see</i> Note 10 and Fig. 2).
3.5 Image Analyses	Myosin reconstructed images will be used to evaluate the size and morphology of myotubes by measuring the length and the width of many myotubes. Myosin and DAPI reconstructed images will be superposed in order to calculate the fusion index. Percentages of fluorescent area (DAPI and myosin), myotube size and morphol- ogy and fusion index will be defined as phenotypic criteria to classify candidate genes.

DAPI: Cellular density MyHC: Myotube quantity MyHC: Myotube size/morphology DAPI/MyHC: Fusion index

Fig. 2 Schematic representation of the criteria used for the analysis. Phenotypic study was based on two cellular fluorescent markers, DAPI and myosin, decorating nuclei and myotubes respectively. Fluorescence quantification allowed us to define and analyze four phenotypic criteria: cellular density, myotube quantity, fusion index, myotube size, and morphology. The first one occurs during the proliferation stage while the others take place during the differentiation stage

- 1. Cellular density and myotube quantity: eliminate the background fluorescence with statistic correction. The percentage of Alexa Fluor[®] 488 fluorescent area represents the surface coverslip occupied by myosin, which reflects the differentiated myotubes. The percentage of DAPI fluorescent area represents the surface coverslip occupied by nuclei (*see* Fig. 2).
- 2. Myotube size and morphology: measure the length and the width of 30 myotubes from 15 randomly chosen fields of the Alexa Fluor[®] 488 reconstructed images with the ImageJ Software.
- 3. Index fusion analysis: measure the total number of nuclei and the number of nuclei inside myotubes on a section of the overlaid reconstructed images using ImageJ Software. Fusion index of C2C12 cells is calculated as the ratio of the number of nuclei in myotubes to the total number of nuclei (*see* Fig. 2). Realize this analysis through the following steps:
 - (a) On DAPI image: automatic adjustment of brightness and contrast/Threshold setting with Li method (Minimum Cross Entropy thresholding method)/Realization of binary mask/Glued nuclei separation by watershed/ Nuclei enumeration of all image area.
 - (b) On Alexa Fluor[®] 488 image: automatic adjustment of brightness /contrast and Threshold setting as DAPI image/Median filter construction (pixel size =3) /Realization of a new binary mask on Alexa Fluor[®] 488 and DAPI images /Combination of the two masks/Nuclei counting in myotubes.

Fig. 3 Example of siRNA-silencing analysis of two candidate genes. (**A**) Fluorescence microscopy images after DAPI staining of nuclei (left) and immunostaining with an anti-myosin antibody (middle) of control cells (siRNA control) and Gene 1 or Gene 2 knockdown cells; merged fluorescence images (right). (**B**) After fluorescence quantification, the phenotypic criteria described in Fig. 2 were assessed for Gene 1 or Gene 2 knockdown cells

3.6 Classification of Observed Phenotypes

For each gene, quantitative data obtained from silencing with the two siRNA will be systematically compared to those obtained from associated controls. Genes for which quantitative data are similar between the two siRNA and significantly different from controls will be retained.

- 1. Determine the phenotype of inactivated C2C12 cells for each candidate gene (*see* Fig. 3).
- 2. Classify the inactivated genes according to the phenotypes observed following the extinction by the two siRNA.
- 3. Eliminate all genes with no phenotype after silencing with the two siRNA (*see* Note 11).
- 4. Separate genes in two groups: a group with genes showing the same phenotype with the two independent siRNA and a group with genes displaying different phenotypes between the two siRNA.
- 5. The first group will be retained and subdivided into two sets of genes according to the nature of the observed phenotype: increase or decrease of the analyzed phenotypic criteria.

3.7 Cell LysissiRNA knockdown of selected genes must be confirmed by
RT-qPCR.

- 1. Pre-warm GM medium, trypsin solution, and PBS at RT.
- 2. Remove cell culture supernatant of 12-well plate at 48 h of differentiation. Wash twice with 1 mL of PBS and add 500 μ L of trypsin solution for detachment. Incubate for 3–5 min at 37 °C.
- 3. Check for complete detachment under the microscope.
- 4. Resuspend cell pellet in 1 mL GM and centrifuge cells at $800 \times g$ for 5 min.
- 5. Discard the supernatant and resuspend cell pellet with 350 μ L RLT lysis buffer from the RNeasy Midi Kit. Mix well and centrifuge for 3 min at 13,000 × g, RT.
- 6. Transfer the lysate in a new eppendorf tube and add 1 volume of ethanol 70%. Mix well by pipetting and transfer up to 700 μ L of sample to an RNeasy spin column placed in 2 mL collection tube. Centrifuge for 15 s at 13,000 × g, RT. Discard the flow-through.
- 7. Add 350 μ L buffer RW1, and then centrifuge for 15 s at 13,000 × g, RT. Discard the flow-through.
- 8. To avoid DNA contamination, add 10 μ L of DNAse solution stock of the kit to 70 μ L RDD. Add DNAse incubation mix (80 μ L) directly to Rneasy spin column and place on benchtop for 15 min. Add 350 μ L buffer RW1, then centrifuge 15 s at 13,000 × g, RT. Discard the flow-through.
- 9. Add 500 μ L buffer RPE to RNeasy spin column and centrifuge for 15 s at 13,000 × g, RT. Discard the flow-through. Add again 500 μ L buffer RPE to RNeasy spin column and centrifuge for 2 min at 13,000 × g, RT. Discard the flow-through.
- 10. Place the RNeasy spin column into a new collection tube and centrifuge for 1 min at $13,000 \times g$, RT to dry the membrane.
- 11. Place the RNeasy spin column into an Eppendorf tube. Add 30 μ L RNase-free water and centrifuge for 1 min at 13,000 × g, RT to elute the RNA.
- 12. Dose RNA by nanodrop spectrophotometer.
- 1. Using the High Capacity cDNA reverse transcriptase kit, add 2 μ g of RNA in 10 μ L of nuclease free water.
- 2. Prepare 10 µL of reverse transcription mix.
- 3. Add RNA samples to the reverse transcription mix for a final volume of 20 $\mu L.$
- 4. Place the tubes in a thermocycler and cycle through the following steps: $25 \degree C$ for $10 \min$, $37 \degree C$ for $120 \min$, $85 \degree C$ for $5 \min$ and hold at $4 \degree C$.

3.8 Reverse Transcription

- **3.9 RT-qPCR** Relative amounts of transcripts will be determined using specific Taqman probes for each tested gene and the two reference genes.
 - 1. Perform RT-qPCR in triplicate using 50 ng of cDNA and Taqman Gene expression master mix.
 - 2. In each 96-well plate, add 50 ng of cDNA to 20 μL Taqman Gene expression master mix.
 - 3. Perform RT-qPCR reaction according to the following program 40 cycles of 95 °C for 15 s and 60 °C for 1 min.
 - 4. Calculate the relative mRNA expression values by the $\Delta\Delta$ Ct method with normalization of each sample to the average change in cycle threshold (Ct) value of the controls using the Quantstudio[®] Design and Analysis Software version 1.1 and SDS 2.3.
 - 5. For all analyses, perform three independent experiments.

4 Notes

- All siRNA used in our study are mouse-specific siRNA designed and produced by Qiagen. We decided to silence the candidate genes by transient transfection of siRNA duplexes rather than by generating stables expressing short hairpin RNAs (shRNAs) to prevent technical difficulties related to time selection and position effect associated with the establishment of hundreds of shRNA stable clones.
- 2. To eliminate false positives, two distinct siRNA targeting either the coding region or the 3'UTR will be used for each candidate gene.
- 3. Commercial negative Control siRNA so-called "non-targeting" siRNAs is used: you must be sure that such a non-targeting siRNA transfection does not perturb your system.
- In order to test the efficiency of transfection, C2C12 cells are transfected with an AllStars Mm Cell Death Control siRNA (10 μM Qiagen[®]) targeting the mRNA of essential genes for C2C12 cell survival.
- C2C12 cells are seeded in 12-well plates for molecular studies (RT-qPCR experiment) and 12-well plates with 1.8 cm² coverslips placed at the bottom of the well for phenotypic studies (immunostaining experiment).
- 6. RT-qPCR is performed on inactivated cells grown only 144 h in differentiation medium; however, for immunostaining experiments, inactivated cells are cultured in differentiation medium for 144 h.

- 7. To ensure the continued efficiency of siRNA silencing during the whole differentiation stage, we transfected cells twice with the same siRNA, at 0 h and 48 h of differentiation.
- 8. The second transfection is only performed for the inactivated cells used for phenotypic analyses.
- 9. We used an automated-scan microscope capable of very fast image acquisition and the reconstruction of 1 cm² large images. This protocol allowed us to perform fluorescence quantification and to track easily four types of phenotypes mediated by the silencing of candidate genes.
- 10. Phenotypic analysis in our protocol was based on two cellular fluorescent markers (DAPI and myosin) decorating nuclei and myotubes respectively. Quantification of the decorated surface allowed us to define and analyze four phenotypic criteria (cellular density, myotube quantity, fusion index, myotube size, and morphology). The first one occurs during the proliferation stage while the others take place during the differentiation stage.
- 11. Many silenced genes may show no phenotype with the two siRNA or phenotypes only with one siRNA. Three hypotheses could explain this absence of phenotype: (1) the incomplete target gene suppression due to non- or partially functional siRNA, (2) the functional redundancy that can occur between candidate genes and their paralogues belonging to the same multigenic family, (3) no contribution of these genes in C2C12 myogenesis.

References

- Buckingham M, Rigby PWJ (2014) Gene regulatory networks and transcriptional mechanisms that control myogenesis. Dev Cell 28:225–238. https://doi.org/10.1016/j. devcel.2013.12.020
- Berkes CA, Tapscott SJ (2005) MyoD and the transcriptional control of myogenesis. Semin Cell Dev Biol 16:585–595. https://doi.org/ 10.1016/j.semcdb.2005.07.006
- Pownall ME, Gustafsson MK, Emerson CP (2002) Myogenic regulatory factors and the specification of muscle progenitors in vertebrate embryos. Annu Rev Cell Dev Biol 18:747–783. https://doi.org/10.1146/ annurev.cellbio.18.012502.105758
- 4. Rudnicki MA, Schnegelsberg PN, Stead RH et al (1993) MyoD or Myf-5 is required for the formation of skeletal muscle. Cell 75:1351–1359

- Tapscott SJ (2005) The circuitry of a master switch: Myod and the regulation of skeletal muscle gene transcription. Development 132:2685–2695. https://doi.org/10.1242/ dev.01874
- Biressi S, Tagliafico E, Lamorte G et al (2007) Intrinsic phenotypic diversity of embryonic and fetal myoblasts is revealed by genome-wide gene expression analysis on purified cells. Dev Biol 304:633–651. https://doi.org/10.1016/ j.ydbio.2007.01.016
- 7. Stockdale FE (1992) Myogenic cell lineages. Dev Biol 154:284–298
- 8. Horst D, Ustanina S, Sergi C et al (2006) Comparative expression analysis of Pax3 and Pax7 during mouse myogenesis. Int J Dev Biol 50:47–54. https://doi.org/10.1387/ ijdb.052111dh

- 9. Fougerousse F, Edom-Vovard F, Merkulova T et al (2001) The muscle-specific enolase is an early marker of human myogenesis. J Muscle Res Cell Motil 22:535–544
- Berchtold MW, Brinkmeier H, Müntener M (2000) Calcium ion in skeletal muscle: its crucial role for muscle function, plasticity, and disease. Physiol Rev 80:1215–1265. https:// doi.org/10.1152/physrev.2000.80.3.1215
- Chargé SBP, Rudnicki MA (2004) Cellular and molecular regulation of muscle regeneration. Physiol Rev 84:209–238. https://doi.org/10. 1152/physrev.00019.2003
- Relaix F, Rocancourt D, Mansouri A, Buckingham M (2005) A Pax3/Pax7-dependent population of skeletal muscle progenitor cells. Nature 435:948–953. https://doi.org/10. 1038/nature03594
- Thomas M, Langley B, Berry C et al (2000) Myostatin, a negative regulator of muscle growth, functions by inhibiting myoblast proliferation. J Biol Chem 275:40235–40243. https://doi.org/10.1074/jbc.M004356200
- 14. Pèrié L, Parenté A, Brun C et al (2016) Enhancement of C2C12 myoblast proliferation and differentiation by GASP-2, a myostatin inhibitor. Biochem Biophys Rep 6:39–46. https://doi.org/10.1016/j.bbrep.2016.03. 001
- 15. Périè L, Parenté A, Baraige F et al (2017) Alterations in adiposity and glucose homeostasis in adult Gasp-1 overexpressing mice. CPB 44:1896–1911. https://doi.org/10.1159/ 000485878
- Agrawal N, Dasaradhi PVN, Mohmmed A et al (2003) RNA interference: biology, mechanism, and applications. Microbiol Mol Biol Rev 67:657–685
- Cerutti H, Casas-Mollano JA (2006) On the origin and functions of RNA-mediated silencing: from protists to man. Curr Genet 50:81–99. https://doi.org/10.1007/s00294-006-0078-x
- 18. Fire A, Xu S, Montgomery MK et al (1998) Potent and specific genetic interference by double-stranded RNA in *Caenorbabditis elegans*. Nature 391:806–811. https://doi.org/ 10.1038/35888
- Heo I, Kim VN (2009) Regulating the regulators: posttranslational modifications of RNA silencing factors. Cell 139:28–31. https://doi. org/10.1016/j.cell.2009.09.013
- Castel SE, Martienssen RA (2013) RNA interference in the nucleus: roles for small RNAs in transcription, epigenetics and beyond. Nat Rev

Genet 14:100–112. https://doi.org/10. 1038/nrg3355

- Elbashir SM, Lendeckel W, Tuschl T (2001) RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev 15:188–200
- Bernstein E, Caudy AA, Hammond SM, Hannon GJ (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409:363–366. https://doi.org/10. 1038/35053110
- 23. Hammond SM, Bernstein E, Beach D, Hannon GJ (2000) An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404:293–296. https://doi.org/10.1038/35005107
- 24. Meister G, Landthaler M, Patkaniowska A et al (2004) Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell 15:185–197. https://doi.org/10. 1016/j.molcel.2004.07.007
- 25. Hutvagner G, Simard MJ (2008) Argonaute proteins: key players in RNA silencing. Nat Rev Mol Cell Biol 9:22–32. https://doi.org/ 10.1038/nrm2321
- 26. Kim VN, Han J, Siomi MC (2009) Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 10:126–139. https://doi.org/10.1038/ nrm2632
- 27. Mohr SE, Smith JA, Shamu CE et al (2014) RNAi screening comes of age: improved techniques and complementary approaches. Nat Rev Mol Cell Biol 15:591–600. https://doi. org/10.1038/nrm3860
- 28. Crotty MM, Henderson J, Ward PR et al (2015) Analysis of social networks supporting the self-management of type 2 diabetes for people with mental illness. BMC Health Serv Res 15:257. https://doi.org/10.1186/ s12913-015-0897-x
- 29. Khanjyan MV, Yang J, Kayali R et al (2013) A high-content, high-throughput siRNA screen identifies cyclin D2 as a potent regulator of muscle progenitor cell fusion and a target to enhance muscle regeneration. Hum Mol Genet 22:3283–3295. https://doi.org/10.1093/ hmg/ddt184
- 30. Echeverri CJ, Beachy PA, Baum B et al (2006) Minimizing the risk of reporting false positives in large-scale RNAi screens. Nat Methods 3:777–779. https://doi.org/10.1038/ nmeth1006-777
- 31. Rajan S, Chu Pham Dang H, Djambazian H et al (2012) Analysis of early C2C12 myogenesis identifies stably and differentially expressed transcriptional regulators whose knock-down

inhibits myoblast differentiation. Physiol Genomics 44:183–197. https://doi.org/10. 1152/physiolgenomics.00093.2011

- 32. Ge Y, Waldemer RJ, Nalluri R et al (2013) RNAi screen reveals potentially novel roles of cytokines in myoblast differentiation. PLoS One 8. https://doi.org/10.1371/journal. pone.0068068
- 33. Burattini S, Ferri P, Battistelli M et al (2004) C2C12 murine myoblasts as a model of skeletal muscle development: morpho-functional characterization. Eur J Histochem 48:223–233
- 34. Alwan R, Bruel A-L, Da Silva A et al (2017) An siRNA-based screen in C2C12 myoblasts identifies novel genes involved in myogenic differentiation. Exp Cell Res 359:145–153. https:// doi.org/10.1016/j.yexcr.2017.07.037

RÉFÉRENCES

REFERENCES

Allen, D.L., Cleary, A.S., Speaker, K.J., Lindsay, S.F., Uyenishi, J., Reed, J.M., Madden, M.C., and Mehan, R.S. (2008). Myostatin, activin receptor IIb, and follistatin-like-3 gene expression are altered in adipose tissue and skeletal muscle of obese mice. *Am. J. Physiol. Endocrinol. Metab.* 294, E918-927.

Al-Zaidy, S.A., Sahenk, Z., Rodino-Klapac, L.R., Kaspar, B., and Mendell, J.R. (2015). Follistatin Gene Therapy Improves Ambulation in Becker Muscular Dystrophy. *Journal of Neuromuscular Diseases* 2, 185–192.

Amato, A.A., Sivakumar, K., Goyal, N., David, W.S., Salajegheh, M., Praestgaard, J., Lach-Trifilieff, E., Trendelenburg, A.-U., Laurent, D., Glass, D.J., *et al.* (2014). Treatment of sporadic inclusion body myositis with bimagrumab. *Neurology* 83, 2239–2246.

Amor, M., Itariu, B.K., Moreno-Viedma, V., Keindl, M., Jürets, A., Prager, G., Langer, F., Grablowitz, V., Zeyda, M., and Stulnig, T.M. (2018). Serum Myostatin is Upregulated in Obesity and Correlates with Insulin Resistance in Humans. *Exp. Clin. Endocrinol. Diabetes.*

Amthor, H., Otto, A., Macharia, R., McKinnell, I., and Patel, K. (2006). Myostatin imposes reversible guiescence on embryonic muscle precursors. *Dev. Dyn.* 235, 672–680.

Amthor, H., Macharia, R., Navarrete, R., Schuelke, M., Brown, S.C., Otto, A., Voit, T., Muntoni, F., Vrbóva, G., Partridge, T., et al. (2007). Lack of myostatin results in excessive muscle growth but impaired force generation. *Proc. Natl. Acad. Sci. U.S.A.* 104, 1835–1840.

Amthor, H., Otto, A., Vulin, A., Rochat, A., Dumonceaux, J., Garcia, L., Mouisel, E., Hourdé, C., Macharia, R., Friedrichs, M., *et al.* (2009). Muscle hypertrophy driven by myostatin blockade does not require stem/precursor-cell activity. *Proc. Natl. Acad. Sci. U.S.A.* 106, 7479–7484.

Anderson, S.B., Goldberg, A.L., and Whitman, M. (2008). Identification of a novel pool of extracellular promyostatin in skeletal muscle. *J. Biol. Chem.* 283, 7027–7035.

Andersson, O., Reissmann, E., and Ibáñez, C.F. (2006). Growth differentiation factor 11 signals through the transforming growth factor- β receptor ALK5 to regionalize the anterior–posterior axis. *EMBO Rep* 7, 831–837.

Aoki, M.S., Soares, A.G., Miyabara, E.H., Baptista, I.L., and Moriscot, A.S. (2009). Expression of genes related to myostatin signaling during rat skeletal muscle longitudinal growth. *Muscle Nerve* 40, 992–999.

Araújo, C.L., Bezerra, I.W.L., Oliveira, A.S., Moura, F.T., Macedo, L.L.P., Gomes, C.E.M., Barbosa, A.E.A.D., Macedo, F.P., Souza, T.M.S., Franco, O.L., *et al.* (2005). In Vivo Bioinsecticidal Activity toward Ceratitis capitata (Fruit Fly) and Callosobruchus maculatus (Cowpea Weevil) and in Vitro Bioinsecticidal Activity toward Different Orders of Insect Pests of a Trypsin Inhibitor Purified from Tamarind Tree (Tamarindus indica) Seeds. *J. Agric. Food Chem.* 53, 4381–4387.

Araújo, T.G., Oliveira, A.G., Carvalho, B.M., Guadagnini, D., Protzek, A.O.P., Carvalheira, J.B.C., Boschero, A.C., and Saad, M.J.A. (2012). Hepatocyte Growth Factor Plays a Key Role in Insulin Resistance-Associated Compensatory Mechanisms. *Endocrinology 153*, 5760–5769.

Artaza, J.N., Singh, R., Ferrini, M.G., Braga, M., Tsao, J., and Gonzalez-Cadavid, N.F. (2008). Myostatin promotes a fibrotic phenotypic switch in multipotent C3H 10T1/2 cells without affecting their differentiation into myofibroblasts. *J. Endocrinol.* 196, 235–249.

Ascenzi, P., Bocedi, A., Bolognesi, M., Spallarossa, A., Coletta, M., De Cristofaro, R., and Menegatti, E. (2003). The bovine basic pancreatic trypsin inhibitor (Kunitz inhibitor): a milestone protein. *Curr. Protein Pept. Sci. 4*, 231–251.

Attie, K.M., Borgstein, N.G., Yang, Y., Condon, C.H., Wilson, D.M., Pearsall, A.E., Kumar, R., Willins, D.A., Seehra, J.S., and Sherman, M.L. (2013). A single ascending-dose study of muscle regulator ACE-031 in healthy volunteers. *Muscle Nerve* 47, 416–423.
Ballak, S.B., Degens, H., de Haan, A., and Jaspers, R.T. (2014). Aging related changes in determinants of muscle force generating capacity: a comparison of muscle aging in men and male rodents. *Ageing Res. Rev.* 14, 43–55.

Bányai, L., and Patthy, L. (1999). The NTR module: domains of netrins, secreted frizzled related proteins, and type I procollagen C-proteinase enhancer protein are homologous with tissue inhibitors of metalloproteases. *Protein Sci. 8*, 1636–1642.

Barreto, R., Waning, D.L., Gao, H., Liu, Y., Zimmers, T.A., and Bonetto, A. (2016). Chemotherapy-related cachexia is associated with mitochondrial depletion and the activation of ERK1/2 and p38 MAPKs. *Oncotarget* 7, 43442–43460.

Barrett, A.J., and Rawlings, N.D. (1995). Families and clans of serine peptidases. *Arch. Biochem. Biophys.* 318, 247–250.

Bartoli, M., Poupiot, J., Vulin, A., Fougerousse, F., Arandel, L., Daniele, N., Roudaut, C., Noulet, F., Garcia, L., Danos, O., *et al.* (2007). AAV-mediated delivery of a mutated myostatin propeptide ameliorates calpain 3 but not alpha-sarcoglycan deficiency. *Gene Ther.* 14, 733–740.

Béchir, N., Pecchi, E., Vilmen, C., Le Fur, Y., Amthor, H., Bernard, M., Bendahan, D., and Giannesini, B. (2016). ActRIIB blockade increases force-generating capacity and preserves energy supply in exercising mdx mouse muscle in vivo. *FASEB J. 30*, 3551–3562.

Becker, C., Lord, S.R., Studenski, S.A., Warden, S.J., Fielding, R.A., Recknor, C.P., Hochberg, M.C., Ferrari, S.L., Blain, H., Binder, E.F., *et al.* (2015). Myostatin antibody (LY2495655) in older weak fallers: a proof-of-concept, randomised, phase 2 trial. *Lancet Diabetes Endocrinol* 3, 948–957.

Benabdallah, B.F., Bouchentouf, M., Rousseau, J., Bigey, P., Michaud, A., Chapdelaine, P., Scherman, D., and Tremblay, J.P. (2008). Inhibiting myostatin with follistatin improves the success of myoblast transplantation in dystrophic mice. *Cell Transplant* 17, 337–350.

Benabdallah, B.F., Bouchentouf, M., Rousseau, J., and Tremblay, J.P. (2009). Overexpression of follistatin in human myoblasts increases their proliferation and differentiation, and improves the graft success in SCID mice. *Cell Transplant* 18, 709–718.

Benny Klimek, M.E., Aydogdu, T., Link, M.J., Pons, M., Koniaris, L.G., and Zimmers, T.A. (2010). Acute inhibition of myostatin-family proteins preserves skeletal muscle in mouse models of cancer cachexia. *Biochem. Biophys. Res. Commun.* 391, 1548–1554.

Bergen, H.R., Farr, J.N., Vanderboom, P.M., Atkinson, E.J., White, T.A., Singh, R.J., Khosla, S., and LeBrasseur, N.K. (2015). Myostatin as a mediator of sarcopenia versus homeostatic regulator of muscle mass: insights using a new mass spectrometry-based assay. *Skelet Muscle 5*, 21.

Bhattacharya, I., Manukyan, Z., Chan, P., Heatherington, A., and Harnisch, L. (2018b). Application of Quantitative Pharmacology Approaches in Bridging Pharmacokinetics and Pharmacodynamics of Domagrozumab From Adult Healthy Subjects to Pediatric Patients With Duchenne Muscular Disease. *The Journal of Clinical Pharmacology* 58, 314–326.

Bhattacharya, I., Pawlak, S., Marraffino, S., Christensen, J., Sherlock, S.P., Alvey, C., Morris, C., Arkin, S., and Binks, M. (2018a). Safety, Tolerability, Pharmacokinetics, and Pharmacodynamics of Domagrozumab (PF-06252616), an Antimyostatin Monoclonal Antibody, in Healthy Subjects. *Clinical Pharmacology in Drug Development* 7, 484–497.

Bodine, S.C., Stitt, T.N., Gonzalez, M., Kline, W.O., Stover, G.L., Bauerlein, R., Zlotchenko, E., Scrimgeour, A., Lawrence, J.C., Glass, D.J., *et al.* (2001). Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. *Nat. Cell Biol.* 3, 1014–1019.

Bogdanovich, S., Krag, T.O.B., Barton, E.R., Morris, L.D., Whittemore, L.-A., Ahima, R.S., and Khurana, T.S. (2002). Functional improvement of dystrophic muscle by myostatin blockade. *Nature* 420, 418–421.

Bogdanovich, S., Perkins, K.J., Krag, T.O.B., Whittemore, L.-A., and Khurana, T.S. (2005). Myostatin propeptide-mediated amelioration of dystrophic pathophysiology. *FASEB J.* 19, 543–549.

Bogdanovich, S., McNally, E.M., and Khurana, T.S. (2008). Myostatin blockade improves function but not histopathology in a murine model of limb-girdle muscular dystrophy 2C. *Muscle Nerve* 37, 308–316.

Bouyer, C., Forestier, L., Renand, G., and Oulmouden, A. (2014). Deep Intronic Mutation and Pseudo Exon Activation as a Novel Muscular Hypertrophy Modifier in Cattle. PLOS ONE *9*, e97399.

Bouzakri, K., Plomgaard, P., Berney, T., Donath, M.Y., Pedersen, B.K., and Halban, P.A. (2011). Bimodal effect on pancreatic β -cells of secretory products from normal or insulin-resistant human skeletal muscle. *Diabetes 60*, 1111–1121.

Bower, M.A., McGivney, B.A., Campana, M.G., Gu, J., Andersson, L.S., Barrett, E., Davis, C.R., Mikko, S., Stock, F., Voronkova, V., *et al.* (2012). The genetic origin and history of speed in the Thoroughbred racehorse. *Nat Commun* 3, 643.

Brotto, M., and Bonewald, L. (2015). Bone and muscle: Interactions beyond mechanical. Bone 80, 109–114.

Brun, C., Monestier, O., Legardinier, S., Maftah, A., and Blanquet, V. (2012). Murine GASP-1 N-glycosylation is not essential for its activity on C2C12 myogenic cells but alters its secretion. *Cell. Physiol. Biochem.* 30, 791–804.

Brun, C., Périé, L., Baraige, F., Vernus, B., Bonnieu, A., and Blanquet, V. (2014). Absence of hyperplasia in Gasp-1 overexpressing mice is dependent on myostatin up-regulation. *Cell. Physiol. Biochem.* 34, 1241–1259.

Buckingham, M., and Montarras, D. (2008). Skeletal muscle stem cells. Curr. Opin. Genet. Dev. 18, 330–336.

Buckingham, M., and Relaix, F. (2007). The role of Pax genes in the development of tissues and organs: Pax3 and Pax7 regulate muscle progenitor cell functions. *Annu. Rev. Cell Dev. Biol.* 23, 645–673.

Buckingham, M., Bajard, L., Chang, T., Daubas, P., Hadchouel, J., Meilhac, S., Montarras, D., Rocancourt, D., and Relaix, F. (2003). The formation of skeletal muscle: from somite to limb. *J. Anat. 202*, 59–68.

Bulfield, G., Siller, W.G., Wight, P.A., and Moore, K.J. (1984). X chromosome-linked muscular dystrophy (mdx) in the mouse. *Proc. Natl. Acad. Sci. U.S.A.* 81, 1189–1192.

Burch, P.M., Pogoryelova, O., Palandra, J., Goldstein, R., Bennett, D., Fitz, L., Guglieri, M., Bettolo, C.M., Straub, V., Evangelista, T., *et al.* (2017). Reduced serum myostatin concentrations associated with genetic muscle disease progression. *J. Neurol.* 264, 541–553.

Campbell, C., McMillan, H.J., Mah, J.K., Tarnopolsky, M., Selby, K., McClure, T., Wilson, D.M., Sherman, M.L., Escolar, D., and Attie, K.M. (2017). Myostatin inhibitor ACE-031 treatment of ambulatory boys with Duchenne muscular dystrophy: Results of a randomized, placebo-controlled clinical trial. *Muscle & Nerve* 55, 458–464.

Camporez, J.-P.G., Petersen, M.C., Abudukadier, A., Moreira, G.V., Jurczak, M.J., Friedman, G., Haqq, C.M., Petersen, K.F., and Shulman, G.I. (2016). Anti-myostatin antibody increases muscle mass and strength and improves insulin sensitivity in old mice. *Proc. Natl. Acad. Sci. U.S.A.* 113, 2212–2217.

Carlson, C.J., Booth, F.W., and Gordon, S.E. (1999). Skeletal muscle myostatin mRNA expression is fiber-type specific and increases during hindlimb unloading. *Am. J. Physiol.* 277, R601-606.

Chhikara, N., Saraswat, M., Tomar, A.K., Dey, S., Singh, S., and Yadav, S. (2012). Human Epididymis Protein-4 (HE-4): A Novel Cross-Class Protease Inhibitor. *PLOS ONE* 7, e47672.

Cleasby, M.E., Jarmin, S., Eilers, W., Elashry, M., Andersen, D.K., Dickson, G., and Foster, K. (2014). Local overexpression of the myostatin propeptide increases glucose transporter expression and enhances skeletal muscle glucose disposal. *Am. J. Physiol. Endocrinol. Metab.* 306, E814-823.

Clop, A., Marcq, F., Takeda, H., Pirottin, D., Tordoir, X., Bibé, B., Bouix, J., Caiment, F., Elsen, J.-M., Eychenne, F., *et al.* (2006). A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. *Nat. Genet.* 38, 813–818.

Cohen, T.V., Kollias, H.D., Liu, N., Ward, C.W., and Wagner, K.R. (2015). Genetic disruption of Smad7 impairs skeletal muscle growth and regeneration. *J. Physiol.* (Lond.) *593*, 2479–2497.

DeClerck, Y.A., Mercurio, A.M., Stack, M.S., Chapman, H.A., Zutter, M.M., Muschel, R.J., Raz, A., Matrisian, L.M., Sloane, B.F., Noel, A., et al. (2004). Proteases, extracellular matrix, and cancer: a workshop of the path B study section. *Am. J. Pathol.* 164, 1131–1139.

Desgeorges, M.M., Devillard, X., Toutain, J., Castells, J., Divoux, D., Arnould, D.F., Haqq, C., Bernaudin, M., Durieux, A.-C., Touzani, O., *et al.* (2017). Pharmacological inhibition of myostatin improves skeletal muscle mass and function in a mouse model of stroke. *Sci Rep 7*, 14000.

Dieli-Conwright, C.M., Spektor, T.M., Rice, J.C., Sattler, F.R., and Schroeder, E.T. (2012). Hormone therapy and maximal eccentric exercise alters myostatin-related gene expression in postmenopausal women. *J Strength Cond Res* 26, 1374–1382.

Dumonceaux, J., Marie, S., Beley, C., Trollet, C., Vignaud, A., Ferry, A., Butler-Browne, G., and Garcia, L. (2010). Combination of myostatin pathway interference and dystrophin rescue enhances tetanic and specific force in dystrophic mdx mice. *Mol. Ther.* 18, 881–887.

Durieux, A.-C., Amirouche, A., Banzet, S., Koulmann, N., Bonnefoy, R., Pasdeloup, M., Mouret, C., Bigard, X., Peinnequin, A., and Freyssenet, D. (2007). Ectopic expression of myostatin induces atrophy of adult skeletal muscle by decreasing muscle gene expression. *Endocrinology 148*, 3140–3147.

Egerman, M.A., Cadena, S.M., Gilbert, J.A., Meyer, A., Nelson, H.N., Swalley, S.E., Mallozzi, C., Jacobi, C., Jennings, L.L., Clay, I., *et al.* (2015). GDF11 Increases with Age and Inhibits Skeletal Muscle Regeneration. *Cell Metab.* 22, 164–174.

El Mouelhi, M. (2016). Drug Development and Challenges for Neuromuscular Clinical Trials. *Journal of Molecular Neuroscience* 58, 374–378.

Elkasrawy, M.N., and Hamrick, M.W. (2010). Myostatin (GDF-8) as a key factor linking muscle mass and bone structure. *J Musculoskelet Neuronal Interact 10*, 56–63.

Feng, Z., Ling, K.K.Y., Zhao, X., Zhou, C., Karp, G., Welch, E.M., Naryshkin, N., Ratni, H., Chen, K.S., Metzger, F., *et al.* (2016). Pharmacologically induced mouse model of adult spinal muscular atrophy to evaluate effectiveness of therapeutics after disease onset. *Hum. Mol. Genet. 25*, 964–975.

Forbes, D., Jackman, M., Bishop, A., Thomas, M., Kambadur, R., and Sharma, M. (2006). Myostatin autoregulates its expression by feedback loop through Smad7 dependent mechanism. J. Cell. Physiol. 206, 264–272.

Frontera, W.R., and Ochala, J. (2015). Skeletal muscle: a brief review of structure and function. *Calcif. Tissue Int.* 96, 183–195.

Gabillard, J.-C., Biga, P.R., Rescan, P.-Y., and Seiliez, I. (2013). Revisiting the paradigm of myostatin in vertebrates: Insights from fishes. General and Comparative *Endocrinology* 194, 45–54.

Gamer, L.W., Wolfman, N.M., Celeste, A.J., Hattersley, G., Hewick, R., and Rosen, V. (1999). A novel BMP expressed in developing mouse limb, spinal cord, and tail bud is a potent mesoderm inducer in Xenopus embryos. *Dev. Biol.* 208, 222–232.

Gamer, L.W., Cox, K.A., Small, C., and Rosen, V. (2001). Gdf11 is a negative regulator of chondrogenesis and myogenesis in the developing chick limb. Dev. Biol. 229, 407–420.

Ge, G., Hopkins, D.R., Ho, W.-B., and Greenspan, D.S. (2005). GDF11 forms a bone morphogenetic protein 1activated latent complex that can modulate nerve growth factor-induced differentiation of PC12 cells. *Mol. Cell. Biol.* 25, 5846–5858.

Gerlach, L.M., Hutson, M.R., Germiller, J.A., Nguyen-Luu, D., Victor, J.C., and Barald, K.F. (2000). Addition of the BMP4 antagonist, noggin, disrupts avian inner ear development. Development *127*, 45–54.

Gerngross, T.U. (2004). Advances in the production of human therapeutic proteins in yeasts and filamentous fungi. *Nat. Biotechnol.* 22, 1409–1414.

Glasser, C.E., Gartner, M.R., Wilson, D., Miller, B., Sherman, M.L., and Attie, K.M. (2018). Locally acting ACE-083 increases muscle volume in healthy volunteers. *Muscle Nerve* 57, 921–926.

Gonzalez-Cadavid, N.F., Taylor, W.E., Yarasheski, K., Sinha-Hikim, I., Ma, K., Ezzat, S., Shen, R., Lalani, R., Asa, S., Mamita, M., *et al.* (1998). Organization of the human myostatin gene and expression in healthy men and HIV-infected men with muscle wasting. *Proc. Natl. Acad. Sci. U.S.A. 95*, 14938–14943.

Gosch, M., Kammerlander, C., and Neuerburg, C. (2019). [Osteoporosis-epidemiology and quality of care]. Z Gerontol Geriatr.

Grobet, L., Martin, L.J., Poncelet, D., Pirottin, D., Brouwers, B., Riquet, J., Schoeberlein, A., Dunner, S., Ménissier, F., Massabanda, J., *et al.* (1997). A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle. *Nat. Genet.* 17, 71–74.

Grobet, L., Pirottin, D., Farnir, F., Poncelet, D., Royo, L.J., Brouwers, B., Christians, E., Desmecht, D., Coignoul, F., Kahn, R., *et al.* (2003). Modulating skeletal muscle mass by postnatal, muscle-specific inactivation of the myostatin gene. *Genesis 35*, 227–238.

Guardiola, O., Lafuste, P., Brunelli, S., Iaconis, S., Touvier, T., Mourikis, P., De Bock, K., Lonardo, E., Andolfi, G., Bouché, A., *et al.* (2012). Cripto regulates skeletal muscle regeneration and modulates satellite cell determination by antagonizing myostatin. *Proc Natl Acad Sci U S A 109*, E3231–E3240.

Guerci, A., Lahoute, C., Hébrard, S., Collard, L., Graindorge, D., Favier, M., Cagnard, N., Batonnet-Pichon, S., Précigout, G., Garcia, L., *et al.* (2012). Srf-Dependent Paracrine Signals Produced by Myofibers Control Satellite Cell-Mediated Skeletal Muscle Hypertrophy. *Cell Metabolism 15*, 25–37.

Haidet, A.M., Rizo, L., Handy, C., Umapathi, P., Eagle, A., Shilling, C., Boue, D., Martin, P.T., Sahenk, Z., Mendell, J.R., *et al.* (2008). Long-term enhancement of skeletal muscle mass and strength by single gene administration of myostatin inhibitors. *Proc. Natl. Acad. Sci. U.S.A.* 105, 4318–4322.

Hammers, D.W., Merscham-Banda, M., Hsiao, J.Y., Engst, S., Hartman, J.J., and Sweeney, H.L. (2017). Supraphysiological levels of GDF11 induce striated muscle atrophy. *EMBO Mol Med* 9, 531–544.

Hamrick, M.W., Shi, X., Zhang, W., Pennington, C., Thakore, H., Haque, M., Kang, B., Isales, C.M., Fulzele, S., and Wenger, K.H. (2007). Loss of myostatin (GDF8) function increases osteogenic differentiation of bone marrow-derived mesenchymal stem cells but the osteogenic effect is ablated with unloading. *Bone 40*, 1544–1553.

Harris, R.A., Tardif, S.D., Vinar, T., Wildman, D.E., Rutherford, J.N., Rogers, J., Worley, K.C., and Aagaard, K.M. (2014). Evolutionary genetics and implications of small size and twinning in callitrichine primates. *PNAS 111*, 1467–1472.

Hatakeyama, S., Summermatter, S., Jourdain, M., Melly, S., Minetti, G.C., and Lach-Trifilieff, E. (2016). ActRII blockade protects mice from cancer cachexia and prolongs survival in the presence of anti-cancer treatments. *Skelet Muscle* 6, 26.

Hellwig, S., Drossard, J., Twyman, R.M., and Fischer, R. (2004). Plant cell cultures for the production of recombinant proteins. *Nat. Biotechnol.* 22, 1415–1422.

Hennebry, A., Berry, C., Siriett, V., O'Callaghan, P., Chau, L., Watson, T., Sharma, M., and Kambadur, R. (2009). Myostatin regulates fiber-type composition of skeletal muscle by regulating MEF2 and MyoD gene expression. *Am. J. Physiol., Cell Physiol.* 296, C525-534.

Hill, J.J., Davies, M.V., Pearson, A.A., Wang, J.H., Hewick, R.M., Wolfman, N.M., and Qiu, Y. (2002). The myostatin propeptide and the follistatin-related gene are inhibitory binding proteins of myostatin in normal serum. *J. Biol. Chem.* 277, 40735–40741.

Hill, J.J., Qiu, Y., Hewick, R.M., and Wolfman, N.M. (2003). Regulation of myostatin in vivo by growth and differentiation factor-associated serum protein-1: a novel protein with protease inhibitor and follistatin domains. *Mol. Endocrinol. 17*, 1144–1154.

Hitachi, K., and Tsuchida, K. (2014). Role of microRNAs in skeletal muscle hypertrophy. Front. Physiol. 4.

Hittel, D.S., Berggren, J.R., Shearer, J., Boyle, K., and Houmard, J.A. (2009). Increased secretion and expression of myostatin in skeletal muscle from extremely obese women. *Di*abetes *58*, 30–38.

Hittel, D.S., Axelson, M., Sarna, N., Shearer, J., Huffman, K.M., and Kraus, W.E. (2010). Myostatin decreases with aerobic exercise and associates with insulin resistance. *Med Sci Sports Exerc* 42, 2023–2029.

Holzbaur, E.L.F., Howland, D.S., Weber, N., Wallace, K., She, Y., Kwak, S., Tchistiakova, L.A., Murphy, E., Hinson, J., Karim, R., *et al.* (2006). Myostatin inhibition slows muscle atrophy in rodent models of amyotrophic lateral sclerosis. *Neurobiol. Dis.* 23, 697–707.

Huang, Z., Chen, D., Zhang, K., Yu, B., Chen, X., and Meng, J. (2007). Regulation of myostatin signaling by c-Jun N-terminal kinase in C2C12 cells. *Cell. Signal.* 19, 2286–2295.

Huxley, H.E., and Kress, M. (1985). Crossbridge behaviour during muscle contraction. J. Muscle Res. Cell. Motil. 6, 153–161.

Iskenderian, A., Liu, N., Deng, Q., Huang, Y., Shen, C., Palmieri, K., Crooker, R., Lundberg, D., Kastrapeli, N., Pescatore, B., et al. (2018). Myostatin and activin blockade by engineered follistatin results in hypertrophy and improves dystrophic pathology in mdx mouse more than myostatin blockade alone. *Skeletal Muscle* 8, 34.

Iwasaki, S., Miyake, M., Watanabe, H., Kitagawa, E., Watanabe, K., Ohwada, S., Kitazawa, H., Rose, M.T., and Aso, H. (2013). Expression of myostatin in neural cells of the olfactory system. *Mol. Neurobiol.* 47, 1–8.

Iyer, R.P., Patterson, N.L., Fields, G.B., and Lindsey, M.L. (2012). The history of matrix metalloproteinases: milestones, myths, and misperceptions. *Am. J. Physiol. Heart Circ. Physiol.* 303, H919-930.

Ji, S., Losinski, R.L., Cornelius, S.G., Frank, G.R., Willis, G.M., Gerrard, D.E., Depreux, F.F., and Spurlock, M.E. (1998). Myostatin expression in porcine tissues: tissue specificity and developmental and postnatal regulation. *Am. J. Physiol.* 275, R1265-1273.

Jin, Q., Qiao, C., Li, J., Li, J., and Xiao, X. (2018). Neonatal Systemic AAV-Mediated Gene Delivery of GDF11 Inhibits Skeletal Muscle Growth. *Mol. Ther.* 26, 1109–1117.

Kambadur, R., Sharma, M., Smith, T.P., and Bass, J.J. (1997). Mutations in myostatin (GDF8) in doublemuscled Belgian Blue and Piedmontese cattle. *Genome Res.* 7, 910–916.

Khalil, A.M., Dotimas, H., Kahn, J., Lamerdin, J.E., Hayes, D.B., Gupta, P., and Franti, M. (2016). Differential Binding Activity of TGF-β Family Proteins to Select TGF-β Receptors. *J. Pharmacol. Exp. Ther.* 358, 423–430.

Kingsley, D.M. (1994). The TGF-beta superfamily: new members, new receptors, and new genetic tests of function in different organisms. *Genes Dev. 8*, 133–146.

Kollias, H.D., Perry, R.L.S., Miyake, T., Aziz, A., and McDermott, J.C. (2006). Smad7 promotes and enhances skeletal muscle differentiation. *Mol. Cell. Biol.* 26, 6248–6260.

Kondás, K., Szláma, G., Trexler, M., and Patthy, L. (2008). Both WFIKKN1 and WFIKKN2 have high affinity for growth and differentiation factors 8 and 11. *J. Biol. Chem.* 283, 23677–23684.

Kondás, K., Szláma, G., Nagy, A., Trexler, M., and Patthy, L. (2011a). Biological functions of the WAP domaincontaining multidomain proteins WFIKKN1 and WFIKKN2. *Biochem. Soc. Trans.* 39, 1416–1420.

Kondás, K., Szláma, G., Nagy, A., Trexler, M., and Patthy, L. (2011b). Biological functions of the WAP domaincontaining multidomain proteins WFIKKN1 and WFIKKN2. *Biochem. Soc. Trans.* 39, 1416–1420.

Kornegay, J.N., Bogan, D.J., Bogan, J.R., Dow, J.L., Wang, J., Fan, Z., Liu, N., Warsing, L.C., Grange, R.W., Ahn, M., *et al.* (2016). Dystrophin-deficient dogs with reduced myostatin have unequal muscle growth and greater joint contractures. *Skelet Muscle* 6, 14.

Koster, J.C., Remedi, M.S., Qiu, H., Nichols, C.G., and Hruz, P.W. (2003). HIV protease inhibitors acutely impair glucose-stimulated insulin release. *Diabetes* 52, 1695–1700.

Kuang, S., Kuroda, K., Le Grand, F., and Rudnicki, M.A. (2007). Asymmetric Self-Renewal and Commitment of Satellite Stem Cells in Muscle. *Cell 129*, 999–1010.

Lach-Trifilieff, E., Minetti, G.C., Sheppard, K., Ibebunjo, C., Feige, J.N., Hartmann, S., Brachat, S., Rivet, H., Koelbing, C., Morvan, F., *et al.* (2014). An antibody blocking activin type II receptors induces strong skeletal muscle hypertrophy and protects from atrophy. *Mol. Cell. Biol. 34*, 606–618.

Lalani, R., Bhasin, S., Byhower, F., Tarnuzzer, R., Grant, M., Shen, R., Asa, S., Ezzat, S., and Gonzalez-Cadavid, N.F. (2000). Myostatin and insulin-like growth factor-I and -II expression in the muscle of rats exposed to the microgravity environment of the NeuroLab space shuttle flight. *J. Endocrinol. 167*, 417–428.

Lamar, K.-M., Bogdanovich, S., Gardner, B.B., Gao, Q.Q., Miller, T., Earley, J.U., Hadhazy, M., Vo, A.H., Wren, L., Molkentin, J.D., *et al.* (2016). Overexpression of Latent TGFβ Binding Protein 4 in Muscle Ameliorates Muscular Dystrophy through Myostatin and TGFβ. *PLoS Genet. 12*, e1006019.

Langley, B., Thomas, M., Bishop, A., Sharma, M., Gilmour, S., and Kambadur, R. (2002). Myostatin inhibits myoblast differentiation by down-regulating MyoD expression. *J.* Biol. Chem. 277, 49831–49840.

Larsson, L., Degens, H., Li, M., Salviati, L., Lee, Y. il, Thompson, W., Kirkland, J.L., and Sandri, M. (2018). Sarcopenia: Aging-Related Loss of Muscle Mass and Function. *Physiological Reviews* 99, 427–511.

Latres, E., Pangilinan, J., Miloscio, L., Bauerlein, R., Na, E., Potocky, T.B., Huang, Y., Eckersdorff, M., Rafique, A., Mastaitis, J., *et al.* (2015). Myostatin blockade with a fully human monoclonal antibody induces muscle hypertrophy and reverses muscle atrophy in young and aged mice. *Skelet Muscle 5*, 34.

Laurentino, G.C., Ugrinowitsch, C., Roschel, H., Aoki, M.S., Soares, A.G., Neves, M., Aihara, A.Y., Fernandes, A. da R.C., and Tricoli, V. (2012). Strength training with blood flow restriction diminishes myostatin gene expression. *Med Sci Sports Exerc* 44, 406–412.

Lee, S.-J. (2007). Quadrupling muscle mass in mice by targeting TGF-beta signaling pathways. *PLoS ONE 2*, e789.

Lee, S.-J. (2008). Genetic analysis of the role of proteolysis in the activation of latent myostatin. *PLoS ONE* 3, e1628.

Lee, S.J., and McPherron, A.C. (2001). Regulation of myostatin activity and muscle growth. *Proc. Natl. Acad. Sci. U.S.A.* 98, 9306–9311.

Lee, Y.-S., and Lee, S.-J. (2013). Regulation of GDF-11 and myostatin activity by GASP-1 and GASP-2. *Proc. Natl. Acad. Sci. U.S.A. 110*, E3713-3722.

Lee, Y.-S., and Lee, S.-J. (2015). Roles of GASP-1 and GDF-11 in Dental and Craniofacial Development. *J Oral Med Pain 40*, 110–114.

Lee, Y.-S., Lehar, A., Sebald, S., Liu, M., Swaggart, K.A., Talbot, C.C., Pytel, P., Barton, E.R., McNally, E.M., and Lee, S.-J. (2015). Muscle hypertrophy induced by myostatin inhibition accelerates degeneration in dysferlinopathy. *Hum. Mol. Genet.* 24, 5711–5719.

Lee, Y.-S., Huynh, T.V., and Lee, S.-J. (2016). Paracrine and endocrine modes of myostatin action. *J. Appl. Physiol.* 120, 592–598.

Li, G., Zhang, L., Wang, D., AlQudsy, L., Jiang, J.X., Xu, H., and Shang, P. (2019). Muscle-bone crosstalk and potential therapies for sarco-osteoporosis. *J. Cell. Biochem.*

Li, J., Deng, J., Zhang, J., Cheng, D., and Wang, H. (2012). [Regulation of myostatin promoter activity by myocyte enhancer factor 2]. Sheng Wu Gong Cheng Xue Bao *28*, 918–926.

Li, X.-C., Wang, X.-W., Wang, Z.-H., Zhao, X.-F., and Wang, J.-X. (2009). A three-domain Kazal-type serine proteinase inhibitor exhibiting domain inhibitory and bacteriostatic activities from freshwater crayfish Procambarus clarkii. *Dev. Comp. Immunol.* 33, 1229–1238.

Li, X.-M., Liu, W.-L., Chen, X., Wang, Y.-W., Shi, D.-B., Zhang, H., Ma, R.-R., Liu, H.-T., Guo, X.-Y., Hou, F., *et al.* (2017). Overexpression of TMPRSS4 promotes tumor proliferation and aggressiveness in breast cancer. Int *J Mol Med 39*, 927–935.

Li, Y., Li, J., Zhu, J., Sun, B., Branca, M., Tang, Y., Foster, W., Xiao, X., and Huard, J. (2007). Decorin gene transfer promotes muscle cell differentiation and muscle regeneration. *Mol. Ther.* 15, 1616–1622.

Li, Z., Kawasumi, M., Zhao, B., Moisyadi, S., and Yang, J. (2010). Transgenic over-expression of growth differentiation factor 11 propeptide in skeleton results in transformation of the seventh cervical vertebra into a thoracic vertebra. *Mol. Reprod. Dev.* 77, 990–997.

Li, Z., Zeng, F., Mitchell, A., Kim, Y.S., Wu, Z., and Yang, J. (2011). Transgenic overexpression of bone morphogenetic protein 11 propeptide in skeleton enhances bone formation. *Biochem Biophys Res Commun 416*, 289–292.

Liepinsh, E., Nagy, A., Trexler, M., Patthy, L., and Otting, G. (2006). Second Kunitz-type protease inhibitor domain of the human WFIKKN1 protein. *J. Biomol.* NMR *35*, 73–78.

Liu, D., Black, B.L., and Derynck, R. (2001). TGF-beta inhibits muscle differentiation through functional repression of myogenic transcription factors by Smad3. *Genes Dev.* 15, 2950–2966.

Liu, M., Hammers, D.W., Barton, E.R., and Sweeney, H.L. (2016a). Activin Receptor Type IIB Inhibition Improves Muscle Phenotype and Function in a Mouse Model of Spinal Muscular Atrophy. *PLoS ONE 11*, e0166803.

Liu, W., Zhou, L., Zhou, C., Zhang, S., Jing, J., Xie, L., Sun, N., Duan, X., Jing, W., Liang, X., *et al.* (2016b). GDF11 decreases bone mass by stimulating osteoclastogenesis and inhibiting osteoblast differentiation. *Nat Commun* 7, 12794.

Liu, X., Bauman, W.A., and Cardozo, C.P. (2018). Myostatin inhibits glucose uptake via suppression of insulindependent and -independent signaling pathways in myoblasts. *Physiol Rep 6*.

Lokireddy, S., Mouly, V., Butler-Browne, G., Gluckman, P.D., Sharma, M., Kambadur, R., and McFarlane, C. (2011). Myostatin promotes the wasting of human myoblast cultures through promoting ubiquitin-proteasome pathway-mediated loss of sarcomeric proteins. *Am. J. Physiol., Cell Physiol.* 301, C1316-1324.

Long, K.K., O'Shea, K.M., Khairallah, R.J., Howell, K., Paushkin, S., Chen, K.S., Cote, S.M., Webster, M.T., Stains, J.P., Treece, E., et al. (2019). Specific inhibition of myostatin activation is beneficial in mouse models of SMA therapy. *Hum Mol Genet* 28, 1076–1089.

López-Otín, C., and Bond, J.S. (2008). Proteases: Multifunctional Enzymes in Life and Disease. *J Biol Chem* 283, 30433–30437.

Ma, K., Mallidis, C., Artaza, J., Taylor, W., Gonzalez-Cadavid, N., and Bhasin, S. (2001). Characterization of 5'-regulatory region of human myostatin gene: regulation by dexamethasone in vitro. *Am. J. Physiol. Endocrinol. Metab.* 281, E1128-1136.

MacDonald, E.M., Andres-Mateos, E., Mejias, R., Simmers, J.L., Mi, R., Park, J.-S., Ying, S., Hoke, A., Lee, S.-J., and Cohn, R.D. (2014). Denervation atrophy is independent from Akt and mTOR activation and is not rescued by myostatin inhibition. *Dis Model Mech* 7, 471–481.

Machado, R.J.A., Monteiro, N.K.V., Migliolo, L., Silva, O.N., Pinto, M.F.S., Oliveira, A.S., Franco, O.L., Kiyota, S., Bemquerer, M.P., Uchoa, A.F., *et al.* (2013). Characterization and Pharmacological Properties of a Novel Multifunctional Kunitz Inhibitor from Erythrina velutina Seeds. *PLoS One 8*.

von Maltzahn, J., Chang, N.C., Bentzinger, C.F., and Rudnicki, M.A. (2012). Wnt signaling in myogenesis. Trends *Cell Biol.* 22, 602–609.

Manceau, M., Gros, J., Savage, K., Thomé, V., McPherron, A., Paterson, B., and Marcelle, C. (2008). Myostatin promotes the terminal differentiation of embryonic muscle progenitors. *Genes Dev* 22, 668–681.

Manning, B.D., and Cantley, L.C. (2007). AKT/PKB signaling: navigating downstream. Cell 129, 1261–1274.

Mariot, V., Joubert, R., Hourdé, C., Féasson, L., Hanna, M., Muntoni, F., Maisonobe, T., Servais, L., Bogni, C., Le Panse, R., *et al.* (2017). Downregulation of myostatin pathway in neuromuscular diseases may explain challenges of anti-myostatin therapeutic approaches. *Nat Commun* 8, 1859.

Matsakas, A., Foster, K., Otto, A., Macharia, R., Elashry, M.I., Feist, S., Graham, I., Foster, H., Yaworsky, P., Walsh, F., *et al.* (2009). Molecular, cellular and physiological investigation of myostatin propeptide-mediated muscle growth in adult mice. *Neuromuscul. Disord. 19*, 489–499.

Matzuk, M.M., Lu, N., Vogel, H., Sellheyer, K., Roop, D.R., and Bradley, A. (1995). Multiple defects and perinatal death in mice deficient in follistatin. *Nature* 374, 360–363.

Mauro, A. (1961). Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol 9, 493–495.

Mavalli, M.D., DiGirolamo, D.J., Fan, Y., Riddle, R.C., Campbell, K.S., van Groen, T., Frank, S.J., Sperling, M.A., Esser, K.A., Bamman, M.M., *et al.* (2010). Distinct growth hormone receptor signaling modes regulate skeletal muscle development and insulin sensitivity in mice. *J. Clin. Invest.* 120, 4007–4020.

McCroskery, S., Thomas, M., Maxwell, L., Sharma, M., and Kambadur, R. (2003). Myostatin negatively regulates satellite cell activation and self-renewal. *J. Cell Biol. 162*, 1135–1147.

McCroskery, S., Thomas, M., Platt, L., Hennebry, A., Nishimura, T., McLeay, L., Sharma, M., and Kambadur, R. (2005). Improved muscle healing through enhanced regeneration and reduced fibrosis in myostatin-null mice. *J. Cell. Sci.* 118, 3531–3541.

McFarlane, C., Plummer, E., Thomas, M., Hennebry, A., Ashby, M., Ling, N., Smith, H., Sharma, M., and Kambadur, R. (2006). Myostatin induces cachexia by activating the ubiquitin proteolytic system through an NF-kappaB-independent, FoxO1-dependent mechanism. *J. Cell. Physiol.* 209, 501–514.

McFarlane, C., Hennebry, A., Thomas, M., Plummer, E., Ling, N., Sharma, M., and Kambadur, R. (2008). Myostatin signals through Pax7 to regulate satellite cell self-renewal. *Exp. Cell Res.* 314, 317–329.

McKay, B.R., Ogborn, D.I., Bellamy, L.M., Tarnopolsky, M.A., and Parise, G. (2012). Myostatin is associated with age-related human muscle stem cell dysfunction. *FASEB J.* 26, 2509–2521.

McPherron, A.C., and Lee, S.J. (1997). Double muscling in cattle due to mutations in the myostatin gene. *Proc. Natl. Acad. Sci. U.S.A.* 94, 12457–12461.

McPherron, A.C., and Lee, S.-J. (2002). Suppression of body fat accumulation in myostatin-deficient mice. *J Clin Invest 109*, 595–601.

McPherron, A.C., Lawler, A.M., and Lee, S.J. (1997). Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. *Nature* 387, 83–90.

McPherron, A.C., Lawler, A.M., and Lee, S.J. (1999). Regulation of anterior/posterior patterning of the axial skeleton by growth/differentiation factor 11. *Nat. Genet.* 22, 260–264.

McPherron, A.C., Huynh, T.V., and Lee, S.-J. (2009). Redundancy of myostatin and growth/differentiation factor 11 function. *BMC Dev. Biol.* 9, 24.

Meissburger, B., Stachorski, L., Röder, E., Rudofsky, G., and Wolfrum, C. (2011). Tissue inhibitor of matrix metalloproteinase 1 (TIMP1) controls adipogenesis in obesity in mice and in humans. *Diabetologia* 54, 1468–1479.

Mendell, J.R., Sahenk, Z., Malik, V., Gomez, A.M., Flanigan, K.M., Lowes, L.P., Alfano, L.N., Berry, K., Meadows, E., Lewis, S., *et al.* (2015). A phase 1/2a follistatin gene therapy trial for becker muscular dystrophy. *Mol. Ther.* 23, 192–201.

Mendell, J.R., Sahenk, Z., Al-Zaidy, S., Rodino-Klapac, L.R., Lowes, L.P., Alfano, L.N., Berry, K., Miller, N., Yalvac, M., Dvorchik, I., *et al.* (2017). Follistatin Gene Therapy for Sporadic Inclusion Body Myositis Improves Functional Outcomes. *Mol. Ther.* 25, 870–879.

Mendias, C.L., Bakhurin, K.I., Gumucio, J.P., Shallal-Ayzin, M.V., Davis, C.S., and Faulkner, J.A. (2015). Haploinsufficiency of myostatin protects against aging-related declines in muscle function and enhances the longevity of mice. *Aging Cell 14*, 704–706.

Miura, T., Kishioka, Y., Wakamatsu, J., Hattori, A., Hennebry, A., Berry, C.J., Sharma, M., Kambadur, R., and Nishimura, T. (2006). Decorin binds myostatin and modulates its activity to muscle cells. Biochem. *Biophys. Res. Commun.* 340, 675–680.

Monestier, O., Brun, C., Cocquempot, O., Petit, D., and Blanquet, V. (2012a). GASP/WFIKKN proteins: evolutionary aspects of their functions. *PLoS ONE* 7, e43710.

Monestier, O., Brun, C., Heu, K., Passet, B., Malhouroux, M., Magnol, L., Vilotte, J.-L., and Blanquet, V. (2012b). Ubiquitous Gasp1 overexpression in mice leads mainly to a hypermuscular phenotype. *BMC Genomics 13*, 541.

Morine, K.J., Bish, L.T., Selsby, J.T., Gazzara, J.A., Pendrak, K., Sleeper, M.M., Barton, E.R., Lee, S.-J., and Sweeney, H.L. (2010). Activin IIB receptor blockade attenuates dystrophic pathology in a mouse model of Duchenne muscular dystrophy. *Muscle Nerve* 42, 722–730.

Morissette, M.R., Cook, S.A., Buranasombati, C., Rosenberg, M.A., and Rosenzweig, A. (2009a). Myostatin inhibits IGF-I-induced myotube hypertrophy through Akt. Am. J. Physiol., *Cell Physiol.* 297, C1124-1132.

Morissette, M.R., Stricker, J.C., Rosenberg, M.A., Buranasombati, C., Levitan, E.B., Mittleman, M.A., and Rosenzweig, A. (2009b). Effects of myostatin deletion in aging mice. *Aging Cell* 8, 573–583.

Morrison, B.M., Lachey, J.L., Warsing, L.C., Ting, B.L., Pullen, A.E., Underwood, K.W., Kumar, R., Sako, D., Grinberg, A., Wong, V., *et al.* (2009). A soluble activin type IIB receptor improves function in a mouse model of amyotrophic lateral sclerosis. *Exp. Neurol.* 217, 258–268.

Morvan, F., Rondeau, J.-M., Zou, C., Minetti, G., Scheufler, C., Scharenberg, M., Jacobi, C., Brebbia, P., Ritter, V., Toussaint, G., *et al.* (2017). Blockade of activin type II receptors with a dual anti-ActRIIA/IIB antibody is critical to promote maximal skeletal muscle hypertrophy. *Proc. Natl. Acad. Sci. U.S.A.* 114, 12448–12453.

Mosher, D.S., Quignon, P., Bustamante, C.D., Sutter, N.B., Mellersh, C.S., Parker, H.G., and Ostrander, E.A. (2007). A mutation in the myostatin gene increases muscle mass and enhances racing performance in heterozygote dogs. *PLoS Genet.* 3, e79.

Murphy, K.T., Ryall, J.G., Snell, S.M., Nair, L., Koopman, R., Krasney, P.A., Ibebunjo, C., Holden, K.S., Loria, P.M., Salatto, C.T., *et al.* (2010). Antibody-directed myostatin inhibition improves diaphragm pathology in young but not adult dystrophic mdx mice. *Am. J. Pathol.* 176, 2425–2434.

Murphy, K.T., Cobani, V., Ryall, J.G., Ibebunjo, C., and Lynch, G.S. (2011). Acute antibody-directed myostatin inhibition attenuates disuse muscle atrophy and weakness in mice. *Journal of Applied Physiology 110*, 1065–1072.

Musarò, A., McCullagh, K., Paul, A., Houghton, L., Dobrowolny, G., Molinaro, M., Barton, E.R., Sweeney, H.L., and Rosenthal, N. (2001). Localized Igf-1 transgene expression sustains hypertrophy and regeneration in senescent skeletal muscle. *Nat. Genet.* 27, 195–200.

Nagy, A., Trexler, M., and Patthy, L. (2003). Expression, purification and characterization of the second Kunitz-type protease inhibitor domain of the human WFIKKN protein. *Eur. J. Biochem.* 270, 2101–2107.

Nakashima, M., Toyono, T., Akamine, A., and Joyner, A. (1999). Expression of growth/differentiation factor 11, a new member of the BMP/TGFbeta superfamily during mouse embryogenesis. *Mech. Dev.* 80, 185–189.

Nakatani, M., Takehara, Y., Sugino, H., Matsumoto, M., Hashimoto, O., Hasegawa, Y., Murakami, T., Uezumi, A., Takeda, S., Noji, S., *et al.* (2008). Transgenic expression of a myostatin inhibitor derived from follistatin increases skeletal muscle mass and ameliorates dystrophic pathology in mdx mice. *FASEB J.* 22, 477–487.

Nicholas, G., Thomas, M., Langley, B., Somers, W., Patel, K., Kemp, C.F., Sharma, M., and Kambadur, R. (2002). Titin-cap associates with, and regulates secretion of, Myostatin. *J. Cell. Physiol.* 193, 120–131.

Nishida, A.T., Kobuke, K., Kojima, K., Ito, J., Honjo, T., and Tashiro, K. (2004). OC29 is preferentially expressed in the presumptive sensory organ region of the otocyst. *Dev. Dyn.* 231, 766–774.

O'Connell, K.E., Guo, W., Serra, C., Beck, M., Wachtman, L., Hoggatt, A., Xia, D., Pearson, C., Knight, H., O'Connell, M., *et al.* (2015). The effects of an ActRIIb receptor Fc fusion protein ligand trap in juvenile simian immunodeficiency virus-infected rhesus macaques. *FASEB J.* 29, 1165–1175.

Oh, S.P., Yeo, C.-Y., Lee, Y., Schrewe, H., Whitman, M., and Li, E. (2002). Activin type IIA and IIB receptors mediate Gdf11 signaling in axial vertebral patterning. *Genes Dev 16*, 2749–2754.

Ohsawa, Y., Hagiwara, H., Nakatani, M., Yasue, A., Moriyama, K., Murakami, T., Tsuchida, K., Noji, S., and Sunada, Y. (2006). Muscular atrophy of caveolin-3-deficient mice is rescued by myostatin inhibition. *J. Clin. Invest.* 116, 2924–2934.

Oka, K., Oka, S., Sasaki, T., Ito, Y., Bringas, P., Nonaka, K., and Chai, Y. (2007). The role of TGF-beta signaling in regulating chondrogenesis and osteogenesis during mandibular development. *Dev. Biol.* 303, 391–404.

Okamoto, Y., Folco, E.J., Minami, M., Wara, A.K., Feinberg, M.W., Sukhova, G.K., Colvin, R.A., Kihara, S., Funahashi, T., Luster, A.D., *et al.* (2008). Adiponectin inhibits the production of CXC receptor 3 chemokine ligands in macrophages and reduces T-lymphocyte recruitment in atherogenesis. Circ. *Res. 102*, 218–225.

Parenté, A., Pèrié, L., Magnol, L., Bouhouche, K., and Blanquet, V. (2019). A siRNA Mediated Screen During C2C12 Myogenesis. *Methods Mol. Biol.* 1889, 229–243.

Patel, K. (1998). Follistatin. Int. J. Biochem. Cell Biol. 30, 1087–1093.

Patel, G.K., Gupta, A.K., Gupta, A., Mishra, M., Singh, P.K., Saxena, A.K., and Sharma, A.K. (2014). Purification and physicochemical characterization of a trypsin inhibitor from Cassia absus Linn. *Protein Pept. Lett. 21*, 108–114.

Patston, P.A., Gettins, P., Beechem, J., and Schapira, M. (1991). Mechanism of serpin action: evidence that C1 inhibitor functions as a suicide substrate. *Biochemistry 30*, 8876–8882.

Pearsall, R., Widrick, J., Cotton, E., Sako, D., Liu, J., Davies, M., Heveron, K., Maguire, M., Castonguay, R., Krishnan, L., *et al.* (2015). ACE-083 increases muscle hypertrophy and strength in C57BL/6 mice. *Neuromuscular Disorders* 25, S218.

Pèrié, L., Parenté, A., Brun, C., Magnol, L., Pélissier, P., and Blanquet, V. (2016). Enhancement of C2C12 myoblast proliferation and differentiation by GASP-2, a myostatin inhibitor. *Biochem Biophys Rep* 6, 39–46.

Périè, L., Parenté, A., Baraige, F., Magnol, L., and Blanquet, V. (2017). Alterations in Adiposity and Glucose Homeostasis in Adult Gasp-1 Overexpressing Mice. *CPB* 44, 1896–1911.

Petersen, J.L., Mickelson, J.R., Rendahl, A.K., Valberg, S.J., Andersson, L.S., Axelsson, J., Bailey, E., Bannasch, D., Binns, M.M., Borges, A.S., *et al.* (2013). Genome-wide analysis reveals selection for important traits in domestic horse breeds. *PLoS Genet.* 9, e1003211.

Philip, B., Lu, Z., and Gao, Y. (2005). Regulation of GDF-8 signaling by the p38 MAPK. *Cell. Signal.* 17, 365–375.

Pirruccello-Straub, M., Jackson, J., Wawersik, S., Webster, M.T., Salta, L., Long, K., McConaughy, W., Capili, A., Boston, C., Carven, G.J., *et al.* (2018). Blocking extracellular activation of myostatin as a strategy for treating muscle wasting. *Sci Rep* 8, 2292.

Pistilli, E.E., Bogdanovich, S., Goncalves, M.D., Ahima, R.S., Lachey, J., Seehra, J., and Khurana, T. (2011). Targeting the activin type IIB receptor to improve muscle mass and function in the mdx mouse model of Duchenne muscular dystrophy. *Am. J. Pathol. 178*, 1287–1297.

Poggioli, T., Vujic, A., Yang, P., Macias-Trevino, C., Uygur, A., Loffredo, F.S., Pancoast, J.R., Cho, M., Goldstein, J., Tandias, R.M., *et al.* (2016). Circulating Growth Differentiation Factor 11/8 Levels Decline With *Age. Circ. Res.* 118, 29–37.

Potempa, J., Korzus, E., and Travis, J. (1994). The serpin superfamily of proteinase inhibitors: structure, function, and regulation. *J. Biol. Chem.* 269, 15957–15960.

Qiao, C., Li, J., Jiang, J., Zhu, X., Wang, B., Li, J., and Xiao, X. (2008). Myostatin propeptide gene delivery by adeno-associated virus serotype 8 vectors enhances muscle growth and ameliorates dystrophic phenotypes in mdx mice. *Hum. Gene Ther.* 19, 241–254.

Randrianarison-Huetz, V., Papaefthymiou, A., Herledan, G., Noviello, C., Faradova, U., Collard, L., Pincini, A., Schol, E., Decaux, J.F., Maire, P., *et al.* (2018). Srf controls satellite cell fusion through the maintenance of actin architecture. *J. Cell Biol.* 217, 685–700.

Ratkevicius, A., Joyson, A., Selmer, I., Dhanani, T., Grierson, C., Tommasi, A.M., DeVries, A., Rauchhaus, P., Crowther, D., Alesci, S., *et al.* (2011). Serum concentrations of myostatin and myostatin-interacting proteins do not differ between young and sarcopenic elderly men. *J. Gerontol. A Biol. Sci. Med. Sci.* 66, 620–626.

Rawlings, N.D., Tolle, D.P., and Barrett, A.J. (2004). Evolutionary families of peptidase inhibitors. *Biochem. J.* 378, 705–716.

Rawlings, N.D., Barrett, A.J., and Bateman, A. (2012). MEROPS: the database of proteolytic enzymes, their substrates and inhibitors. *Nucleic Acids Res.* 40, D343-350.

Reardon, K.A., Davis, J., Kapsa, R.M., Choong, P., and Byrne, E. (2001). Myostatin, insulin-like growth factor-1, and leukemia inhibitory factor mRNAs are upregulated in chronic human disuse muscle atrophy. *Muscle Nerve 24*, 893–899.

Rebbapragada, A., Benchabane, H., Wrana, J.L., Celeste, A.J., and Attisano, L. (2003). Myostatin signals through a transforming growth factor beta-like signaling pathway to block adipogenesis. *Mol. Cell. Biol.* 23, 7230–7242.

Reisz-Porszasz, S., Bhasin, S., Artaza, J.N., Shen, R., Sinha-Hikim, I., Hogue, A., Fielder, T.J., and Gonzalez-Cadavid, N.F. (2003). Lower skeletal muscle mass in male transgenic mice with muscle-specific overexpression of myostatin. *Am. J. Physiol. Endocrinol. Metab.* 285, E876-888.

Relaix, F., Rocancourt, D., Mansouri, A., and Buckingham, M. (2005). A Pax3/Pax7-dependent population of skeletal muscle progenitor cells. *Nature* 435, 948–953.

Relizani, K., Mouisel, E., Giannesini, B., Hourdé, C., Patel, K., Morales Gonzalez, S., Jülich, K., Vignaud, A., Piétri-Rouxel, F., Fortin, D., *et al.* (2014). Blockade of ActRIIB signaling triggers muscle fatigability and metabolic myopathy. *Mol. Ther.* 22, 1423–1433.

Retamales, A., Zuloaga, R., Valenzuela, C.A., Gallardo-Escarate, C., Molina, A., and Valdés, J.A. (2015). Insulin-like growth factor-1 suppresses the Myostatin signaling pathway during myogenic differentiation. *Biochem. Biophys. Res. Commun.* 464, 596–602.

Richardson, R.T., Sivashanmugam, P., Hall, S.H., Hamil, K.G., Moore, P.A., Ruben, S.M., French, F.S., and O'Rand, M. (2001). Cloning and sequencing of human Eppin: a novel family of protease inhibitors expressed in the epididymis and testis. *Gene* 270, 93–102.

Rindt, H., Buckley, D.M., Vale, S.M., Krogman, M., Rose, F.F., Garcia, M.L., and Lorson, C.L. (2012). Transgenic inactivation of murine myostatin does not decrease the severity of disease in a model of Spinal Muscular Atrophy. *Neuromuscul. Disord.* 22, 277–285.

Ríos, R., Carneiro, I., Arce, V.M., and Devesa, J. (2001). Myostatin regulates cell survival during C2C12 myogenesis. *Biochem. Biophys. Res. Commun. 280*, 561–566.

Ríos, R., Carneiro, I., Arce, V.M., and Devesa, J. (2002). Myostatin is an inhibitor of myogenic differentiation. *Am. J. Physiol., Cell Physiol.* 282, C993-999.

Rodino-Klapac, L.R., Haidet, A.M., Kota, J., Handy, C., Kaspar, B.K., and Mendell, J.R. (2009). Inhibition of myostatin with emphasis on follistatin as a therapy for muscle disease. *Muscle Nerve* 39, 283–296.

Rodino-Klapac, L.R., Janssen, P.M.L., Shontz, K.M., Canan, B., Montgomery, C.L., Griffin, D., Heller, K., Schmelzer, L., Handy, C., Clark, K.R., *et al.* (2013). Micro-dystrophin and follistatin co-delivery restores muscle function in aged DMD model. *Hum. Mol. Genet.* 22, 4929–4937.

Rooks, D., Praestgaard, J., Hariry, S., Laurent, D., Petricoul, O., Perry, R.G., Lach-Trifilieff, E., and Roubenoff, R. (2017a). Treatment of Sarcopenia with Bimagrumab: Results from a Phase II, Randomized, Controlled, Proof-of-Concept Study. *J Am Geriatr Soc* 65, 1988–1995.

Rooks, D.S., Laurent, D., Praestgaard, J., Rasmussen, S., Bartlett, M., and Tankó, L.B. (2017b). Effect of bimagrumab on thigh muscle volume and composition in men with casting-induced atrophy. *J Cachexia Sarcopenia Muscle* 8, 727–734.

Rosenblatt, **J.D.**, **and Parry**, **D.J.** (1992). Gamma irradiation prevents compensatory hypertrophy of overloaded mouse extensor digitorum longus muscle. *J. Appl. Physiol.* 73, 2538–2543.

Rosenblatt, J.D., Yong, D., and Parry, D.J. (1994). Satellite cell activity is required for hypertrophy of overloaded adult rat muscle. *Muscle Nerve* 17, 608–613.

Rudnicki, M.A., and Jaenisch, R. (1995). The MyoD family of transcription factors and skeletal myogenesis. *Bioessays 17*, 203–209.

Rudnicki, M.A., Schnegelsberg, P.N., Stead, R.H., Braun, T., Arnold, H.H., and Jaenisch, R. (1993). MyoD or Myf-5 is required for the formation of skeletal muscle. *Cell* 75, 1351–1359.

Sabourin, L.A., and Rudnicki, M.A. (2000). The molecular regulation of myogenesis. Clin. Genet. 57, 16-25.

Salerno, M.S., Thomas, M., Forbes, D., Watson, T., Kambadur, R., and Sharma, M. (2004). Molecular analysis of fiber type-specific expression of murine myostatin promoter. *Am. J. Physiol., Cell Physiol.* 287, C1031-1040.

Saltiel, A.R., and Kahn, C.R. (2001). Insulin signalling and the regulation of glucose and lipid metabolism. *Nature 414*, 799–806.

Sambasivan, R., and Tajbakhsh, S. (2007). Skeletal muscle stem cell birth and properties. Semin. *Cell Dev. Biol.* 18, 870–882.

Sanger, J.W., Wang, J., Fan, Y., White, J., and Sanger, J.M. (2010). Assembly and dynamics of myofibrils. *J. Biomed. Biotechnol. 2010*, 858606.

Saremi, A., Gharakhanloo, R., Sharghi, S., Gharaati, M.R., Larijani, B., and Omidfar, K. (2010). Effects of oral creatine and resistance training on serum myostatin and GASP-1. *Mol. Cell. Endocrinol.* 317, 25–30.

Schiaffino, S., and Mammucari, C. (2011). Regulation of skeletal muscle growth by the IGF1-Akt/PKB pathway: insights from genetic models. *Skelet Muscle 1*, 4.

Schiaffino, S., and Reggiani, C. (2011). Fiber types in mammalian skeletal muscles. *Physiol. Rev.* 91, 1447–1531.

Schneyer, A., Tortoriello, D., Sidis, Y., Keutmann, H., Matsuzaki, T., and Holmes, W. (2001). Follistatinrelated protein (FSRP): a new member of the follistatin gene family. *Mol Cell Endocrinol 180*, 33–38.

Schuelke, M., Wagner, K.R., Stolz, L.E., Hübner, C., Riebel, T., Kömen, W., Braun, T., Tobin, J.F., and Lee, S.-J. (2004). Myostatin mutation associated with gross muscle hypertrophy in a child. *N. Engl. J. Med.* 350, 2682–2688.

Seale, P., Sabourin, L.A., Girgis-Gabardo, A., Mansouri, A., Gruss, P., and Rudnicki, M.A. (2000). Pax7 is required for the specification of myogenic satellite cells. *Cell* 102, 777–786.

Sengle, G., Ono, R.N., Sasaki, T., and Sakai, L.Y. (2011). Prodomains of transforming growth factor beta (TGFbeta) superfamily members specify different functions: extracellular matrix interactions and growth factor bioavailability. *J. Biol. Chem.* 286, 5087–5099.

Sepulveda, P.V., Lamon, S., Hagg, A., Thomson, R.E., Winbanks, C.E., Qian, H., Bruce, C.R., Russell, A.P., and Gregorevic, P. (2015). Evaluation of follistatin as a therapeutic in models of skeletal muscle atrophy associated with denervation and tenotomy. *Sci Rep 5*, 17535.

Sharma, M., Kambadur, R., Matthews, K.G., Somers, W.G., Devlin, G.P., Conaglen, J.V., Fowke, P.J., and Bass, J.J. (1999). Myostatin, a transforming growth factor-beta superfamily member, is expressed in heart muscle and is upregulated in cardiomyocytes after infarct. *J. Cell. Physiol.* 180, 1–9.

Sicinski, P., Geng, Y., Ryder-Cook, A.S., Barnard, E.A., Darlison, M.G., and Barnard, P.J. (1989). The molecular basis of muscular dystrophy in the mdx mouse: a point mutation. *Science 244*, 1578–1580.

Singh, P., Rong, H., Gordi, T., Bosley, J., and Bhattacharya, I. (2016). Translational Pharmacokinetic/Pharmacodynamic Analysis of MYO-029 Antibody for Muscular Dystrophy. *Clin Transl Sci* 9, 302–310.

Sinha, M., Jang, Y.C., Oh, J., Khong, D., Wu, E.Y., Manohar, R., Miller, C., Regalado, S.G., Loffredo, F.S., Pancoast, J.R., *et al.* (2014). Restoring systemic GDF11 levels reverses age-related dysfunction in mouse skeletal muscle. *Science* 344, 649–652.

Siriett, V., Platt, L., Salerno, M.S., Ling, N., Kambadur, R., and Sharma, M. (2006). Prolonged absence of myostatin reduces sarcopenia. *J. Cell. Physiol.* 209, 866–873.

Smith, R.C., Cramer, M.S., Mitchell, P.J., Capen, A., Huber, L., Wang, R., Myers, L., Jones, B.E., Eastwood, B.J., Ballard, D., *et al.* (2015). Myostatin Neutralization Results in Preservation of Muscle Mass and Strength in Preclinical Models of Tumor-Induced Muscle Wasting. Mol. *Cancer Ther. 14*, 1661–1670.

Souza, T.A., Chen, X., Guo, Y., Sava, P., Zhang, J., Hill, J.J., Yaworsky, P.J., and Qiu, Y. (2008). Proteomic identification and functional validation of activins and bone morphogenetic protein 11 as candidate novel muscle mass regulators. *Mol. Endocrinol.* 22, 2689–2702.

Spiller, M.P., Kambadur, R., Jeanplong, F., Thomas, M., Martyn, J.K., Bass, J.J., and Sharma, M. (2002). The myostatin gene is a downstream target gene of basic helix-loop-helix transcription factor MyoD. *Mol. Cell. Biol.* 22, 7066–7082.

St Andre, M., Johnson, M., Bansal, P.N., Wellen, J., Robertson, A., Opsahl, A., Burch, P.M., Bialek, P., Morris, C., and Owens, J. (2017). A mouse anti-myostatin antibody increases muscle mass and improves muscle strength and contractility in the mdx mouse model of Duchenne muscular dystrophy and its humanized equivalent, domagrozumab (PF-06252616), increases muscle volume in cynomolgus monkeys. *Skelet Muscle* 7, 25.

Sumner, C.J., Wee, C.D., Warsing, L.C., Choe, D.W., Ng, A.S., Lutz, C., and Wagner, K.R. (2009). Inhibition of myostatin does not ameliorate disease features of severe spinal muscular atrophy mice. Hum. Mol. Genet. *18*, 3145–3152.

Szláma, G., Kondás, K., Trexler, M., and Patthy, L. (2010). WFIKKN1 and WFIKKN2 bind growth factors TGFβ1, BMP2 and BMP4 but do not inhibit their signalling activity. *FEBS J.* 277, 5040–5050.

Szláma, G., Trexler, M., and Patthy, L. (2013). Latent myostatin has significant activity and this activity is controlled more efficiently by WFIKKN1 than by WFIKKN2. *FEBS J. 280*, 3822–3839.

Szláma, G., Vásárhelyi, V., Trexler, M., and Patthy, L. (2016). Influence of WFIKKN1 on BMP1-mediated activation of latent myostatin. *FEBS J.* 283, 4515–4527.

Tajbakhsh, S. (2009). Skeletal muscle stem cells in developmental versus regenerative myogenesis. J. Intern. Med. 266, 372–389.

Takahashi, H., Sato, K., Yamaguchi, T., Miyake, M., Watanabe, H., Nagasawa, Y., Kitagawa, E., Terada, S., Urakawa, M., Rose, M.T., *et al.* (2014). Myostatin alters glucose transporter-4 (GLUT4) expression in bovine skeletal muscles and myoblasts isolated from double-muscled (DM) and normal-muscled (NM) Japanese shorthorn cattle. *Domest. Anim. Endocrinol.* 48, 62–68.

Tando, T., Hirayama, A., Furukawa, M., Sato, Y., Kobayashi, T., Funayama, A., Kanaji, A., Hao, W., Watanabe, R., Morita, M., *et al.* (2016). Smad2/3 Proteins Are Required for Immobilization-induced Skeletal Muscle Atrophy. *J. Biol. Chem.* 291, 12184–12194.

Tanigaki, K., Vongpatanasin, W., Barrera, J.A., Atochin, D.N., Huang, P.L., Bonvini, E., Shaul, P.W., and Mineo, C. (2013). C-reactive protein causes insulin resistance in mice through Fcγ receptor IIB-mediated inhibition of skeletal muscle glucose delivery. *Diabetes* 62, 721–731.

Taylor, W.E., Bhasin, S., Artaza, J., Byhower, F., Azam, M., Willard, D.H., Kull, F.C., and Gonzalez-Cadavid, N. (2001). Myostatin inhibits cell proliferation and protein synthesis in C2C12 muscle cells. *Am. J. Physiol. Endocrinol. Metab.* 280, E221-228.

Thies, R.S., Chen, T., Davies, M.V., Tomkinson, K.N., Pearson, A.A., Shakey, Q.A., and Wolfman, N.M. (2001). GDF-8 propeptide binds to GDF-8 and antagonizes biological activity by inhibiting GDF-8 receptor binding. *Growth Factors 18*, 251–259.

Thirone, A.C.P., Huang, C., and Klip, A. (2006). Tissue-specific roles of IRS proteins in insulin signaling and glucose transport. *Trends Endocrinol. Metab.* 17, 72–78.

Thomas, M., Langley, B., Berry, C., Sharma, M., Kirk, S., Bass, J., and Kambadur, R. (2000). Myostatin, a negative regulator of muscle growth, functions by inhibiting myoblast proliferation. *J. Biol. Chem.* 275, 40235–40243.

Tieland, M., Trouwborst, I., and Clark, B.C. (2018). Skeletal muscle performance and ageing. J Cachexia Sarcopenia Muscle 9, 3–19.

Travis, J., and Salvesen, G.S. (1983). Human plasma proteinase inhibitors. Annu. Rev. Biochem. 52, 655–709.

Trendelenburg, A.U., Meyer, A., Rohner, D., Boyle, J., Hatakeyama, S., and Glass, D.J. (2009). Myostatin reduces Akt/TORC1/p70S6K signaling, inhibiting myoblast differentiation and myotube size. *Am. J. Physiol., Cell Physiol.* 296, C1258-1270.

Trexler, M., Bányai, L., and Patthy, L. (2001). A human protein containing multiple types of protease-inhibitory modules. *Proc. Natl. Acad. Sci. U.S.A.* 98, 3705–3709.

Trexler, M., Bányai, L., and Patthy, L. (2002). Distinct expression pattern of two related human proteins containing multiple types of protease-inhibitory modules. *Biol. Chem.* 383, 223–228.

Tsai, S.-W., Tung, Y.-T., Chen, H.-L., Yang, S.-H., Liu, C.-Y., Lu, M., Pai, H.-J., Lin, C.-C., and Chen, C.-M. (2016). Myostatin propeptide gene delivery by gene gun ameliorates muscle atrophy in a rat model of botulinum toxin-induced nerve denervation. *Life Sci. 146*, 15–23.

Tsuchida, K., Arai, K.Y., Kuramoto, Y., Yamakawa, N., Hasegawa, Y., and Sugino, H. (2000). Identification and characterization of a novel follistatin-like protein as a binding protein for the TGF-beta family. *J. Biol. Chem. 275*, 40788–40796.

Wagner, K., Wong, B., Byrne, B., Sweeney, H., Jacobsen, L., Tirucherai, G., Rabbia, M., Dukart, J., Kletz, H., Krishnan, M., *et al.* (2018). DMD CLINICAL THERAPIES I: P.123A randomized, placebo-controlled, doubleblind, phase 1b/2 study of the novel anti-myostatin adnectin RG6206 (BMS-986089) in ambulatory boys with Duchenne muscular dystrophy. *Neuromuscular Disorders* 28, S66.

Wagner, K.R., McPherron, A.C., Winik, N., and Lee, S.-J. (2002). Loss of myostatin attenuates severity of muscular dystrophy in mdx mice. *Ann. Neurol.* 52, 832–836.

Wagner, K.R., Liu, X., Chang, X., and Allen, R.E. (2005). Muscle regeneration in the prolonged absence of myostatin. *Proc.* Natl. Acad. Sci. U.S.A. *102*, 2519–2524.

Wagner, K.R., Fleckenstein, J.L., Amato, A.A., Barohn, R.J., Bushby, K., Escolar, D.M., Flanigan, K.M., Pestronk, A., Tawil, R., Wolfe, G.I., *et al.* (2008). A phase I/Iltrial of MYO-029 in adult subjects with muscular dystrophy. *Ann. Neurol.* 63, 561–571.

Walker, R.G., Angerman, E.B., Kattamuri, C., Lee, Y.-S., Lee, S.-J., and Thompson, T.B. (2015). Alternative binding modes identified for growth and differentiation factor-associated serum protein (GASP) family antagonism of myostatin. *J. Biol. Chem.* 290, 7506–7516.

Walker, R.G., McCoy, J.C., Czepnik, M., Mills, M.J., Hagg, A., Walton, K.L., Cotton, T., Hyvönen, M., Lee, R.T., Gregorevic, P., et al. (2017). Molecular characterization of latent GDF8 reveals mechanisms of activation. *BioRxiv* 155614.

Walli, R., Herfort, O., Michl, G.M., Demant, T., Jäger, H., Dieterle, C., Bogner, J.R., Landgraf, R., and Goebel, F.D. (1998). Treatment with protease inhibitors associated with peripheral insulin resistance and impaired oral glucose tolerance in HIV-1-infected patients. *AIDS 12*, F167-173.

Wang, Q., and McPherron, A.C. (2012). Myostatin inhibition induces muscle fibre hypertrophy prior to satellite cell activation. *J. Physiol. (Lond.)* 590, 2151–2165.

Wang, H., Zhang, Q., and Zhu, D. (2003). hSGT interacts with the N-terminal region of myostatin. *Biochem Biophys Res Commun 311*, 877–883.

Wang, J., Zhou, H., Fang, Q., Luo, Y., and Hickford, J.G.H. (2014). Variation in the ovine WFIKKN2 gene. *Gene 543*, 53–57.

Wang, J., Zhou, H., Fang, Q., Liu, X., Luo, Y., and Hickford, J.G.H. (2015a). Effect of variation in ovine WFIKKN2 on growth traits appears to be gender-dependent. *Sci Rep 5*.

Wang, Y.-J., Wang, Y., Zhan, J.-K., Tang, Z.-Y., He, J.-Y., Tan, P., Deng, H.-Q., Huang, W., and Liu, Y.-S. (2015b). Sarco-Osteoporosis: Prevalence and Association with Frailty in Chinese Community-Dwelling Older Adults. *Int J Endocrinol 2015*.

Wehling, M., Cai, B., and Tidball, J.G. (2000). Modulation of myostatin expression during modified muscle use. *FASEB J.* 14, 103–110.

Welle, S., Burgess, K., and Mehta, S. (2009). Stimulation of skeletal muscle myofibrillar protein synthesis, p70 S6 kinase phosphorylation, and ribosomal protein S6 phosphorylation by inhibition of myostatin in mature mice. *Am. J. Physiol. Endocrinol. Metab.* 296, E567-572.

Westerblad, H., Bruton, J.D., and Katz, A. (2010). Skeletal muscle: energy metabolism, fiber types, fatigue and adaptability. *Exp. Cell Res.* 316, 3093–3099.

White, R.B., Biérinx, A.-S., Gnocchi, V.F., and Zammit, P.S. (2010). Dynamics of muscle fibre growth during postnatal mouse development. *BMC Dev. Biol.* 10, 21.

Whittemore, L.-A., Song, K., Li, X., Aghajanian, J., Davies, M., Girgenrath, S., Hill, J.J., Jalenak, M., Kelley, P., Knight, A., *et al.* (2003). Inhibition of myostatin in adult mice increases skeletal muscle mass and strength. *Biochem. Biophys. Res. Commun.* 300, 965–971.

Winbanks, C.E., Murphy, K.T., Bernardo, B.C., Qian, H., Liu, Y., Sepulveda, P.V., Beyer, C., Hagg, A., Thomson, R.E., Chen, J.L., *et al.* (2016). Smad7 gene delivery prevents muscle wasting associated with cancer cachexia in mice. *Science Translational Medicine 8*, 348ra98-348ra98.

Wolfman, N.M., McPherron, A.C., Pappano, W.N., Davies, M.V., Song, K., Tomkinson, K.N., Wright, J.F., Zhao, L., Sebald, S.M., Greenspan, D.S., *et al.* (2003). Activation of latent myostatin by the BMP-1/tolloid family of metalloproteinases. *Proc. Natl. Acad. Sci. U.S.A.* 100, 15842–15846.

Woodhouse, L., Gandhi, R., Warden, S.J., Poiraudeau, S., Myers, S.L., Benson, C.T., Hu, L., Ahmad, Q.I., Linnemeier, P., Gomez, E.V., *et al.* (2016). A Phase 2 Randomized Study Investigating the Efficacy and Safety of Myostatin Antibody LY2495655 versus Placebo in Patients Undergoing Elective Total Hip Arthroplasty. *J Frailty Aging 5*, 62–70.

Wurm, F.M. (2004). Production of recombinant protein therapeutics in cultivated mammalian cells. *Nat. Biotechnol.* 22, 1393–1398.

Xu, Z., Ichikawa, N., Kosaki, K., Yamada, Y., Sasaki, T., Sakai, L.Y., Kurosawa, H., Hattori, N., and Arikawa-Hirasawa, E. (2010). Perlecan deficiency causes muscle hypertrophy, a decrease in myostatin expression, and changes in muscle fiber composition. *Matrix Biol. 29*, 461–470.

Yang, W., Chen, Y., Zhang, Y., Wang, X., Yang, N., and Zhu, D. (2006). Extracellular signal-regulated kinase 1/2 mitogen-activated protein kinase pathway is involved in myostatin-regulated differentiation repression. *Cancer Res.* 66, 1320–1326.

Yasaka, N., Suzuki, K., Kishioka, Y., Wakamatsu, J., and Nishimura, T. (2013). Laminin binds to myostatin and attenuates its signaling. *Anim. Sci.* J. *84*, 663–668.

Yin, H., Price, F., and Rudnicki, M.A. (2013). Satellite cells and the muscle stem cell niche. *Physiol. Rev.* 93, 23–67.

Zaheer, S., and LeBoff, M.S. (2000). Osteoporosis: Prevention and Treatment. In Endotext, K.R. Feingold, B. Anawalt, A. Boyce, G. Chrousos, K. Dungan, A. Grossman, J.M. Hershman, G. Kaltsas, C. Koch, P. Kopp, *et al.*, eds. (South Dartmouth (MA): MDText.com, Inc.), p.

Zhang, C., Tan, C.K., McFarlane, C., Sharma, M., Tan, N.S., and Kambadur, R. (2012). Myostatin-null mice exhibit delayed skin wound healing through the blockade of transforming growth factor- β signaling by decorin. *Am. J. Physiol., Cell Physiol.* 302, C1213-1225.

Zhang, L., Rajan, V., Lin, E., Hu, Z., Han, H.Q., Zhou, X., Song, Y., Min, H., Wang, X., Du, J., *et al.* (2011). Pharmacological inhibition of myostatin suppresses systemic inflammation and muscle atrophy in mice with chronic kidney disease. *FASEB J.* 25, 1653–1663.

Zhao, B., Wall, R.J., and Yang, J. (2005). Transgenic expression of myostatin propeptide prevents diet-induced obesity and insulin resistance. *Biochemical and Biophysical Research Communications* 337, 248–255.

Zhu, J., Li, Y., Shen, W., Qiao, C., Ambrosio, F., Lavasani, M., Nozaki, M., Branca, M.F., and Huard, J. (2007). Relationships between transforming growth factor-beta1, myostatin, and decorin: implications for skeletal muscle fibrosis. *J. Biol. Chem.* 282, 25852–25863.

Zhu, X., Topouzis, S., Liang, L.-F., and Stotish, R.L. (2004). Myostatin signaling through Smad2, Smad3 and Smad4 is regulated by the inhibitory Smad7 by a negative feedback mechanism. *Cytokine 26*, 262–272.

Zhu, Y., D'Arienzo, C., Lou, Z., Kozhich, A., Madireddi, M., Chimalakonda, A., Tymiak, A., and Olah, T.V. (2016). LC-MS/MS multiplexed assay for the quantitation of a therapeutic protein BMS-986089 and the target protein Myostatin. *Bioanalysis* 8, 193–204.

Zimmers, T.A., Jiang, Y., Wang, M., Liang, T.W., Rupert, J.E., Au, E.D., Marino, F.E., Couch, M.E., and Koniaris, L.G. (2017). Exogenous GDF11 induces cardiac and skeletal muscle dysfunction and wasting. *Basic Res. Cardiol. 112*, 48.

RESUME

GASP-1 et GASP-2 sont deux protéines très proches structuralement caractérisées par plusieurs modules inhibiteurs de protéases et identifiés comme des inhibiteurs de plusieurs membres de la famille TGF-ß tel que la myostatine ou GDF-11, respectivement régulateurs négatifs de la myogenèse et de l'ostéogénèse. Malgré l'organisation structurale commune des protéines GASPs, leurs profils d'expression différents laissent supposer des rôles physiologiques distincts. C'est pourquoi, nous avons généré des modèles souris Tg(Gasp-1) et Tg(Gasp-2) surexprimant Gasp-1 ou Gasp-2 afin de mieux appréhender les fonctions de ces protéines. Des analyses fonctionnelles, réalisées in vitro et in vivo dans les contextes musculaire, squelettique et anti-protéasique, nous ont permis de mettre en lumière une dualité fonctionnelle entre GASP-1 et GASP-2 dans ces différents contextes. Les deux lignées Tg(Gasp-1) et Tg(Gasp-2) présentent une augmentation de la masse musculaire due à une hypertrophie sans hyperplasie des myofibres. Cependant, les souris Tg(Gasp-1) présentent une dérégulation globale de l'homéostasie du glucose et des défauts métaboliques en vieillissant, phénotype non retrouvé chez les souris Tq(Gasp-2). Ces résultats nous a permis de proposer la protéine GASP-2 comme étant un meilleur candidat thérapeutique dans le cas de maladies musculaires. Dans le contexte squelettique, seule la surexpression de Gasp-2 entraine un phénotype osseux. L'ensemble de nos résultats permet de mettre en évidence un réseau de régulation de l'expression génique des membres de la famille TGF-ß et de leurs inhibiteurs dans le muscle.

Mots clés: GASP, Myostatine, muscle, hypertrophie, squelette, antiprotéase, souris

ABSTRACT

GASP-1 and GASP-2 are two closely related proteins structurally characterized by several protease inhibitor modules and identified as inhibitors of several members of the TGF-ß family such as myostatin or GDF-11, negative regulators of myogenesis and osteogenesis, respectively. Despite the common structural organization of GASPs proteins, their different expression profiles suggest distinct physiological roles. We generated Tq(Gasp-1) and Tq(Gasp-2) mouse models overexpressing Gasp-1 or Gasp-2 in order to better understand the functions of these proteins. Functional analyses, carried out in vitro and in vivo in muscular, skeletal and anti-proteasic context, allowed us to highlight a functional duality between GASP-1 and GASP-2 in the different contexts. Both lines Tg (Gasp-1) and $T_{g}(Gasp-2)$ exhibit an increase in muscle mass due to myofiber hypertrophy without hyperplasia. However, Tq(Gasp-1) mice have an overall deregulation of glucose homeostasis and metabolic defects with age, a phenotype not found in Tg(Gasp-2) mice. These results allowed us to propose the GASP-2 protein as a better therapeutic candidate for muscle diseases. In the skeletal context, only the Gasp-2 overexpression leads to a bone phenotype. Altogether, our findings highlighted a gene expression regulatory network of TGF-ß members and their inhibitors in muscle.

Keywords: GASP, Myostatin, muscle, hypertrophy, skeleton, antiprotease, mouse

RESUME

GASP-1 et GASP-2 sont deux protéines très proches structuralement caractérisées par plusieurs modules inhibiteurs de protéases et identifiés comme des inhibiteurs de plusieurs membres de la famille TGF-ß tel que la myostatine ou GDF-11, respectivement régulateurs négatifs de la myogenèse et de l'ostéogénèse. Malgré l'organisation structurale commune des protéines GASPs, leurs profils d'expression différents laissent supposer des rôles physiologiques distincts. C'est pourquoi, nous avons généré des modèles souris Tg(Gasp-1) et Tg(Gasp-2) surexprimant Gasp-1 ou Gasp-2 afin de mieux appréhender les fonctions de ces protéines. Des analyses fonctionnelles, réalisées in vitro et in vivo dans les contextes musculaire, squelettique et anti-protéasique, nous ont permis de mettre en lumière une dualité fonctionnelle entre GASP-1 et GASP-2 dans ces différents contextes. Les deux lignées Tg(Gasp-1) et Tg(Gasp-2) présentent une augmentation de la masse musculaire due à une hypertrophie sans hyperplasie des myofibres. Cependant, les souris Tg(Gasp-1) présentent une dérégulation globale de l'homéostasie du glucose et des défauts métaboliques en vieillissant, phénotype non retrouvé chez les souris Tq(Gasp-2). Ces résultats nous a permis de proposer la protéine GASP-2 comme étant un meilleur candidat thérapeutique dans le cas de maladies musculaires. Dans le contexte squelettique, seule la surexpression de Gasp-2 entraine un phénotype osseux. L'ensemble de nos résultats permet de mettre en évidence un réseau de régulation de l'expression génique des membres de la famille TGF-ß et de leurs inhibiteurs dans le muscle.

Mots clés: GASP, Myostatine, muscle, hypertrophie, squelette, antiprotéase, souris

ABSTRACT

GASP-1 and GASP-2 are two closely related proteins structurally characterized by several protease inhibitor modules and identified as inhibitors of several members of the TGF-ß family such as myostatin or GDF-11, negative regulators of myogenesis and osteogenesis, respectively. Despite the common structural organization of GASPs proteins, their different expression profiles suggest distinct physiological roles. We generated Tq(Gasp-1) and Tq(Gasp-2) mouse models overexpressing Gasp-1 or Gasp-2 in order to better understand the functions of these proteins. Functional analyses, carried out in vitro and in vivo in muscular, skeletal and anti-proteasic context, allowed us to highlight a functional duality between GASP-1 and GASP-2 in the different contexts. Both lines Tg (Gasp-1) and Tg(Gasp-2) exhibit an increase in muscle mass due to myofiber hypertrophy without hyperplasia. However, Tq(Gasp-1) mice have an overall deregulation of glucose homeostasis and metabolic defects with age, a phenotype not found in Tg(Gasp-2) mice. These results allowed us to propose the GASP-2 protein as a better therapeutic candidate for muscle diseases. In the skeletal context, only the Gasp-2 overexpression leads to a bone phenotype. Altogether, our findings highlighted a gene expression regulatory network of TGF-ß members and their inhibitors in muscle.

Keywords: GASP, Myostatin, muscle, hypertrophy, skeleton, antiprotease, mouse