M. L. Abarca, F. Accensi, J. Cano, and F. J. Cabañes, Taxonomy and significance of black aspergilli, Antonie van Leeuwenhoek, vol.86, issue.1, pp.33-49, 2004.

S. S. Adav, L. T. Chao, and S. K. Sze, Quantitative Secretomic Analysis ofTrichoderma reeseiStrains Reveals Enzymatic Composition for Lignocellulosic Biomass Degradation, Molecular & Cellular Proteomics, vol.11, issue.7, p.M111.012419, 2012.

E. Adler, Lignin chemistry?past, present and future, Wood Science and Technology, vol.11, issue.3, pp.169-218, 1977.

M. Agostoni, J. A. Hangasky, and M. A. Marletta, Physiological and Molecular Understanding of Bacterial Polysaccharide Monooxygenases, Microbiology and Molecular Biology Reviews, vol.81, issue.3, 2017.

V. Arantes, J. Jellison, and B. Goodell, Peculiarities of brown-rot fungi and biochemical Fenton reaction with regard to their potential as a model for bioprocessing biomass, Applied Microbiology and Biotechnology, vol.94, issue.2, pp.323-338, 2012.

V. Arantes and J. N. Saddler, Cellulose accessibility limits the effectiveness of minimum cellulase loading on the efficient hydrolysis of pretreated lignocellulosic substrates, Biotechnology for Biofuels, vol.4, issue.1, p.3, 2011.

Y. Arfi, D. Chevret, B. Henrissat, J. Berrin, A. Levasseur et al., Characterization of salt-adapted secreted lignocellulolytic enzymes from the mangrove fungus Pestalotiopsis sp., Nature Communications, vol.4, issue.1, p.1810, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01000933

N. Aro, T. Pakula, and M. Penttilä, Transcriptional regulation of plant cell wall degradation by filamentous fungi, FEMS Microbiology Reviews, vol.29, issue.4, pp.719-739, 2005.

C. Ayrinhac, A. Margeot, N. L. Ferreira, F. B. Chaabane, F. Monot et al., Improved Saccharification of Wheat Straw for Biofuel Production Using an Engineered Secretome of Trichoderma reesei, Organic Process Research & Development, vol.15, issue.1, pp.275-278, 2011.

S. F. Badino, S. J. Christensen, J. Kari, M. S. Windahl, S. Hvidt et al., Exo-exo synergy between Cel6A and Cel7A fromHypocrea jecorina: Role of carbohydrate binding module and the endo-lytic character of the enzymes, Biotechnology and Bioengineering, vol.114, issue.8, pp.1639-1647, 2017.

R. A. Batista-garcía, T. Sutton, S. A. Jackson, O. E. Tovar-herrera, E. Balcázar-lópez et al., Characterization of lignocellulolytic activities from fungi isolated from the deep-sea sponge Stelletta normani, PLOS ONE, vol.12, issue.3, p.e0173750, 2017.

W. T. Beeson, V. V. Vu, E. A. Span, C. M. Phillips, and M. A. Marletta, Cellulose Degradation by Polysaccharide Monooxygenases, Annual Review of Biochemistry, vol.84, issue.1, pp.923-946, 2015.

C. Bennati-granier, S. Garajova, C. Champion, S. Grisel, M. Haon et al., Substrate specificity and regioselectivity of fungal AA9 lytic polysaccharide monooxygenases secreted by Podospora anserina, Biotechnology for Biofuels, vol.8, issue.1, p.90, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01202474

I. Benoit, H. Culleton, M. Zhou, M. Difalco, G. Aguilar-osorio et al., Closely related fungi employ diverse enzymatic strategies to degrade plant biomass, Biotechnology for Biofuels, vol.8, issue.1, p.107, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01199391

A. Berlin, V. Maximenko, N. Gilkes, and J. Saddler, Optimization of enzyme complexes for lignocellulose hydrolysis, Biotechnology and Bioengineering, vol.97, issue.2, pp.287-296, 2007.

J. Berrin, D. Navarro, M. Couturier, C. Olivé, S. Grisel et al., Exploring the Natural Fungal Biodiversity of Tropical and Temperate Forests toward Improvement of Biomass Conversion, Applied and Environmental Microbiology, vol.78, issue.18, pp.6483-6490, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01268116

J. Berrin, D. Navarro, N. Lopes-ferreira, A. Margeot, P. M. Coutinho et al., Préparation multienzymatique contenant le génome d'une souche d'Aspergillus japonicus, 2013.

J. Berrin, D. Navarro, N. Lopes-ferreira, A. Margeot, P. Coutinho et al., Multi-enzymatic preparation containing the secretome of an Aspergillus japonicus strain, 2015.

J. Berrin, M. Rosso, and M. Abou-hachem, Fungal secretomics to probe the biological functions of lytic polysaccharide monooxygenases, Carbohydrate Research, vol.448, pp.155-160, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01595055

R. H. Bischof, J. Ramoni, and B. Seiboth, Cellulases and beyond: the first 70 years of the enzyme producer Trichoderma reesei, Microbial Cell Factories, vol.15, issue.1, p.106, 2016.

B. Bissaro, Z. Forsberg, Y. Ni, F. Hollmann, G. Vaaje-kolstad et al., Fueling biomass-degrading oxidative enzymes by light-driven water oxidation, Green Chemistry, vol.18, issue.19, pp.5357-5366, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02638253

B. Bissaro, Å. K. Røhr, G. Müller, P. Chylenski, M. Skaugen et al., Oxidative cleavage of polysaccharides by monocopper enzymes depends on H2O2, Nature Chemical Biology, vol.13, issue.10, pp.1123-1128, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01886447

B. Bissaro, A. Várnai, Å. K. Røhr, and V. G. Eijsink, Oxidoreductases and Reactive Oxygen Species in Conversion of Lignocellulosic Biomass, Microbiology and Molecular Biology Reviews, vol.82, issue.4, 2018.

H. Bjølgerud, Molecular evolution of the substrate specificity of bacterial lytic polysaccharide monooxygenases (LPMOs

R. A. Blanchette, A review of microbial deterioration found in archaeological wood from different environments, International Biodeterioration & Biodegradation, vol.46, issue.3, pp.189-204, 2000.

G. P. Borin, C. C. Sanchez, E. S. De-santana, G. K. Zanini, R. A. Dos-santos et al., Comparative transcriptome analysis reveals different strategies for degradation of steam-exploded sugarcane bagasse by Aspergillus niger and Trichoderma reesei, BMC Genomics, vol.18, issue.1, p.501, 2017.

H. Bouws, A. Wattenberg, and H. Zorn, Fungal secretomes?nature?s toolbox for white biotechnology, Applied Microbiology and Biotechnology, vol.80, issue.3, p.381, 2008.

K. K. Brar, D. Agrawal, B. S. Chadha, and H. Lee, Evaluating novel fungal secretomes for efficient saccharification and fermentation of composite sugars derived from hydrolysate and molasses into ethanol, Bioresource Technology, vol.273, pp.114-121, 2019.

K. Brown, P. Harris, E. Zaretsky, E. Re, E. Vlasenko et al., Polypeptide from a cellulolytic fungus having cellulolytic enhancing activity, 2008.

N. A. Brown, L. N. Ries, and G. H. Goldman, How nutritional status signalling coordinates metabolism and lignocellulolytic enzyme secretion, Fungal Genetics and Biology, vol.72, pp.48-63, 2014.

R. M. Brown, Cellulose structure and biosynthesis: What is in store for the 21st century?, Journal of Polymer Science Part A: Polymer Chemistry, vol.42, issue.3, pp.487-495, 2003.

H. Brumer, W. J. Spencer, B. Svensson, B. Henrissat, G. J. Davies et al., Ten years of CAZypedia: a living encyclopedia of carbohydrate-active enzymes, Glycobiology, vol.28, issue.1, pp.3-8, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01886461

M. I. Butler, J. Gray, T. J. Goodwin, and R. T. Poulter, The distribution and evolutionary history of the PRP8 intein, BMC Evolutionary Biology, vol.6, issue.1, p.42, 2006.

K. H. Caffall and D. Mohnen, The structure, function, and biosynthesis of plant cell wall pectic polysaccharides, Carbohydrate Research, vol.344, issue.14, pp.1879-1900, 2009.

D. Cannella, C. C. Hsieh, C. Felby, and H. Jørgensen, Production and effect of aldonic acids during enzymatic hydrolysis of lignocellulose at high dry matter content, Biotechnology for Biofuels, vol.5, issue.1, p.26, 2012.

D. Cannella, K. B. Möllers, N. Frigaard, P. E. Jensen, M. J. Bjerrum et al., Light-driven oxidation of polysaccharides by photosynthetic pigments and a metalloenzyme, Nature Communications, vol.7, issue.1, p.11134, 2016.

B. L. Cantarel, P. M. Coutinho, C. Rancurel, T. Bernard, V. Lombard et al., The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics, Nucleic Acids Research, vol.37, issue.Database, pp.D233-D238, 2009.

A. Chalak, A. Villares, C. Moreau, M. Haon, S. Grisel et al., Influence of the carbohydrate-binding module on the activity of a fungal AA9 lytic polysaccharide monooxygenase on cellulosic substrates, Biotechnology for Biofuels, vol.12, issue.1, pp.1-10, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02405808

F. Cherubini, The biorefinery concept: Using biomass instead of oil for producing energy and chemicals, Energy Conversion and Management, vol.51, issue.7, pp.1412-1421, 2010.

L. Ciano, G. J. Davies, W. B. Tolman, and P. H. Walton, Bracing copper for the catalytic oxidation of C?H bonds, Nature Catalysis, vol.1, issue.8, pp.571-577, 2018.

T. L. Corrêa, A. T. Júnior, L. D. Wolf, M. S. Buckeridge, L. V. Dos-santos et al., An actinobacteria lytic polysaccharide monooxygenase acts on both cellulose and xylan to boost biomass saccharification, Biotechnology for Biofuels, vol.12, issue.1, p.219, 2019.

M. Couturier, C. Bennati-granier, M. B. Urio, L. P. Ramos, and J. Berrin, Fungal Enzymatic Degradation of Cellulose, Green Fuels Technology, pp.133-146, 2016.

M. Couturier and J. Berrin, The Saccharification Step: The Main Enzymatic Components, Lignocellulose Conversion, pp.93-110, 2013.

M. Couturier, M. Haon, P. M. Coutinho, B. Henrissat, L. Lesage-meessen et al., Podospora anserinaHemicellulases Potentiate theTrichoderma reeseiSecretome for Saccharification of Lignocellulosic Biomass, Applied and Environmental Microbiology, vol.77, issue.1, pp.237-246, 2010.

M. Couturier, S. Ladevèze, G. Sulzenbacher, L. Ciano, M. Fanuel et al., Lytic xylan oxidases from wood-decay fungi unlock biomass degradation, Nature Chemical Biology, vol.14, issue.3, pp.306-310, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02188478

M. Couturier, D. Navarro, C. Olivé, D. Chevret, M. Haon et al., Post-genomic analyses of fungal lignocellulosic biomass degradation reveal the unexpected potential of the plant pathogen Ustilago maydis, BMC Genomics, vol.13, issue.1, p.57, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01001052

G. E. Crooks, G. Hon, J. Chandonia, and S. E. Brenner, WebLogo: A Sequence Logo Generator, Genome Research, vol.14, issue.6, pp.1188-1190, 2004.

L. I. Crouch, A. Labourel, P. H. Walton, G. J. Davies, and H. J. Gilbert, The Contribution of Non-catalytic Carbohydrate Binding Modules to the Activity of Lytic Polysaccharide Monooxygenases, Journal of Biological Chemistry, vol.291, issue.14, pp.7439-7449, 2016.

H. Culleton, V. Mckie, and R. P. De-vries, Physiological and molecular aspects of degradation of plant polysaccharides by fungi: What have we learned fromAspergillus?, Biotechnology Journal, vol.8, issue.8, pp.884-894, 2013.

M. Dashtban, H. Schraft, and W. Qin, Fungal Bioconversion of Lignocellulosic Residues; Opportunities & Perspectives, International Journal of Biological Sciences, vol.5, pp.578-595, 2009.

G. Davies and B. Henrissat, Structures and mechanisms of glycosyl hydrolases, Structure, vol.3, issue.9, pp.853-859, 1995.
URL : https://hal.archives-ouvertes.fr/hal-00310748

L. B. Davin, A. M. Patten, M. Jourdes, and N. G. Lewis, Lignins: A Twenty-First Century Challenge, Biomass Recalcitrance, pp.213-305

G. De-bhowmick, A. K. Sarmah, and R. Sen, Lignocellulosic biorefinery as a model for sustainable development of biofuels and value added products, Bioresource Technology, vol.247, pp.1144-1154, 2018.

R. P. De-vries, R. Riley, A. Wiebenga, G. Aguilar-osorio, S. Amillis et al., Comparative genomics reveals high biological diversity and specific adaptations in the industrially and medically important fungal genus Aspergillus, Genome Biology, vol.18, issue.1, p.28, 2017.

R. P. De-vries and J. Visser, Aspergillus Enzymes Involved in Degradation of Plant Cell Wall Polysaccharides, Microbiology and Molecular Biology Reviews, vol.65, issue.4, pp.497-522, 2001.

C. Derntl, D. P. Kiesenhofer, R. L. Mach, and A. R. Mach-aigner, Novel Strategies for Genomic Manipulation of Trichoderma reesei with the Purpose of Strain Engineering, Applied and Environmental Microbiology, vol.81, issue.18, pp.6314-6323, 2015.

N. D. Cologna, D. P. Gómez-mendoza, F. F. Zanoelo, G. C. Giannesi, N. C. Guimarães et al., Exploring Trichoderma and Aspergillus secretomes: Proteomics approaches for the identification of enzymes of biotechnological interest, Enzyme and Microbial Technology, vol.109, pp.1-10, 2018.

C. Divne, J. Stahlberg, T. Reinikainen, L. Ruohonen, G. Pettersson et al., The three-dimensional crystal structure of the catalytic core of cellobiohydrolase I from Trichoderma reesei, Science, vol.265, issue.5171, pp.524-528, 1994.

L. Dos-santos-castro, W. R. Pedersoli, A. C. Antoniêto, A. S. Steindorff, R. Silva-rocha et al., Comparative metabolism of cellulose, sophorose and glucose in Trichoderma reesei using high-throughput genomic and proteomic analyses, Biotechnology for Biofuels, vol.7, issue.1, p.41, 2014.

W. Dotson, J. Greenier, and H. Ding, Enzymes:polypeptides having branching enzyme activity and nucleic acids encoding same Shinohara, Enzyme and Microbial Technology, vol.34, issue.2, pp.208-210, 2004.

J. Du, Y. Cao, G. Liu, J. Zhao, X. Li et al., Identifying and overcoming the effect of mass transfer limitation on decreased yield in enzymatic hydrolysis of lignocellulose at high solid concentrations, Bioresource Technology, vol.229, pp.88-95, 2017.

H. Durand, M. Clanet, and G. Tiraby, Genetic improvement of Trichoderma reesei for large scale cellulase production, Enzyme and Microbial Technology, vol.10, issue.6, pp.341-346, 1988.

R. C. Edgar, MUSCLE: multiple sequence alignment with high accuracy and high throughput, Nucleic Acids Research, vol.32, issue.5, pp.1792-1797, 2004.

M. Eibinger, T. Ganner, P. Bubner, S. Ro?ker, D. Kracher et al., Cellulose Surface Degradation by a Lytic Polysaccharide Monooxygenase and Its Effect on Cellulase Hydrolytic Efficiency, Journal of Biological Chemistry, vol.289, issue.52, pp.35929-35938, 2014.

M. Eibinger, J. Sattelkow, T. Ganner, H. Plank, and B. Nidetzky, Single-molecule study of oxidative enzymatic deconstruction of cellulose, Nature Communications, vol.8, issue.1, p.894, 2017.

V. G. Eijsink, D. Petrovic, Z. Forsberg, S. Mekasha, Å. K. Røhr et al., On the functional characterization of lytic polysaccharide monooxygenases (LPMOs), Biotechnology for Biofuels, vol.12, issue.1, p.58, 2019.

K. Eriksson, B. Pettersson, and U. Westermark, Oxidation: An important enzyme reaction in fungal degradation of cellulose, FEBS Letters, vol.49, issue.2, pp.282-285, 1974.

D. E. Eveleigh and B. S. Montenecourt, Increasing Yields of Extracellular Enzymes, Advances in Applied Microbiology, vol.25, pp.57-74, 1979.

M. Fanuel, S. Garajova, D. Ropartz, N. Mcgregor, H. Brumer et al., The Podospora anserina lytic polysaccharide monooxygenase PaLPMO9H catalyzes oxidative cleavage of diverse plant cell wall matrix glycans, Biotechnology for Biofuels, vol.10, issue.1, p.63, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01499750

C. Filiatrault-chastel, D. Navarro, M. Haon, S. Grisel, I. Herpoël-gimbert et al., AA16, a new lytic polysaccharide monooxygenase family identified in fungal secretomes, Biotechnology for Biofuels, vol.12, issue.1, p.55, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02117950

D. Floudas, M. Binder, R. Riley, K. Barry, R. A. Blanchette et al., The Paleozoic Origin of Enzymatic Lignin Decomposition Reconstructed from 31 Fungal Genomes, Science, vol.336, issue.6089, pp.1715-1719, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01268324

Z. Forsberg, B. Bissaro, J. Gullesen, B. Dalhus, G. Vaaje-kolstad et al., Structural determinants of bacterial lytic polysaccharide monooxygenase functionality, Journal of Biological Chemistry, vol.293, issue.4, pp.1397-1412, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01886474

Z. Forsberg, A. K. Mackenzie, M. Sorlie, A. K. Rohr, R. Helland et al., Structural and functional characterization of a conserved pair of bacterial cellulose-oxidizing lytic polysaccharide monooxygenases, Proceedings of the National Academy of Sciences, vol.111, issue.23, pp.8446-8451, 2014.

Z. Forsberg, Å. K. Røhr, S. Mekasha, K. K. Andersson, V. G. Eijsink et al., Comparative Study of Two Chitin-Active and Two Cellulose-Active AA10-Type Lytic Polysaccharide Monooxygenases, Biochemistry, vol.53, issue.10, pp.1647-1656, 2014.

Z. Forsberg, G. Vaaje-kolstad, B. Westereng, A. C. Bunaes, Y. Stenstrøm et al., Cleavage of cellulose by a CBM33 protein, Protein Science, vol.20, issue.9, pp.1479-1483, 2011.

K. E. Frandsen and L. Lo-leggio, Lytic polysaccharide monooxygenases: a crystallographer's view on a new class of biomass-degrading enzymes, IUCrJ, vol.3, issue.6, pp.448-467, 2016.

K. E. Frandsen, T. J. Simmons, P. Dupree, J. N. Poulsen, G. R. Hemsworth et al., The molecular basis of polysaccharide cleavage by lytic polysaccharide monooxygenases, Nature Chemical Biology, vol.12, issue.4, pp.298-303, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01439064

M. Frommhagen, M. J. Koetsier, A. H. Westphal, J. Visser, S. W. Hinz et al., Lytic polysaccharide monooxygenases from Myceliophthora thermophila C1 differ in substrate preference and reducing agent specificity, Biotechnology for Biofuels, vol.9, issue.1, p.186, 2016.

M. Frommhagen, S. Sforza, A. H. Westphal, J. Visser, S. W. Hinz et al., Discovery of the combined oxidative cleavage of plant xylan and cellulose by a new fungal polysaccharide monooxygenase, Biotechnology for Biofuels, vol.8, issue.1, p.101, 2015.

M. Frommhagen, A. H. Westphal, W. J. Van-berkel, and M. A. Kabel, Distinct Substrate Specificities and Electron-Donating Systems of Fungal Lytic Polysaccharide Monooxygenases, Frontiers in Microbiology, vol.9, 2018.

S. C. Fry, W. S. York, P. Albersheim, A. Darvill, T. Hayashi et al., An unambiguous nomenclature for xyloglucan-derived oligosaccharides, Physiologia Plantarum, vol.89, issue.1, pp.1-3, 1993.

S. Garajova, Y. Mathieu, M. R. Beccia, C. Bennati-granier, F. Biaso et al., Single-domain flavoenzymes trigger lytic polysaccharide monooxygenases for oxidative degradation of cellulose, Scientific Reports, vol.6, issue.1, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01413367

A. García, M. González-alriols, and J. Labidi, Evaluation of different lignocellulosic raw materials as potential alternative feedstocks in biorefinery processes, Industrial Crops and Products, vol.53, pp.102-110, 2014.

O. Gascuel, BIONJ: an improved version of the NJ algorithm based on a simple model of sequence data, Molecular Biology and Evolution, vol.14, issue.7, pp.685-695, 1997.
URL : https://hal.archives-ouvertes.fr/lirmm-00730410

H. J. Gilbert, J. P. Knox, and A. B. Boraston, Advances in understanding the molecular basis of plant cell wall polysaccharide recognition by carbohydrate-binding modules, Current Opinion in Structural Biology, vol.23, issue.5, pp.669-677, 2013.

L. M. Gottschalk, R. A. Oliveira, and E. P. Bon, Cellulases, xylanases, ?-glucosidase and ferulic acid esterase produced by Trichoderma and Aspergillus act synergistically in the hydrolysis of sugarcane bagasse, Biochemical Engineering Journal, vol.51, issue.1-2, pp.72-78, 2010.

A. Gupta and J. P. Verma, Sustainable bio-ethanol production from agro-residues: A review, Renewable and Sustainable Energy Reviews, vol.41, pp.550-567, 2015.

V. K. Gupta, A. S. Steindorff, R. G. De-paula, R. Silva-rocha, A. R. Mach-aigner et al., The Post-genomic Era of Trichoderma reesei : What's Next?, Trends in Biotechnology, vol.34, issue.12, pp.970-982, 2016.

Y. Habibi, L. A. Lucia, and O. J. Rojas, Cellulose Nanocrystals: Chemistry, Self-Assembly, and Applications, Chemical Reviews, vol.110, issue.6, pp.3479-3500, 2010.

M. Häkkinen, M. Arvas, M. Oja, N. Aro, M. Penttilä et al., Re-annotation of the CAZy genes of Trichoderma reesei and transcription in the presence of lignocellulosic substrates, Microbial Cell Factories, vol.11, issue.1, p.134, 2012.

S. E. Hamby and J. D. Hirst, In-vitro studies on wood degradation in soil by soft-rot fungi: Aspergillus niger and Penicillium chrysogenum, International Biodeterioration & Biodegradation, vol.9, pp.98-102, 2008.

M. Haon, S. Grisel, D. Navarro, A. Gruet, J. Berrin et al., Recombinant protein production facility for fungal biomass-degrading enzymes using the yeast Pichia pastoris, Frontiers in Microbiology, vol.6, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01237579

J. Harholt, A. Suttangkakul, and H. Vibe-scheller, Biosynthesis of Pectin, Plant Physiology, vol.153, issue.2, pp.384-395, 2010.

P. V. Harris, D. Welner, K. C. Mcfarland, E. Re, J. Navarro-poulsen et al., Stimulation of Lignocellulosic Biomass Hydrolysis by Proteins of Glycoside Hydrolase Family 61: Structure and Function of a Large, Enigmatic Family, Biochemistry, vol.49, issue.15, pp.3305-3316, 2010.

T. Hasunuma, F. Okazaki, N. Okai, K. Y. Hara, J. Ishii et al., A review of enzymes and microbes for lignocellulosic biorefinery and the possibility of their application to consolidated bioprocessing technology, Bioresource Technology, vol.135, pp.513-522, 2013.

J. He, A. Wu, D. Chen, B. Yu, X. Mao et al., Cost-effective lignocellulolytic enzyme production by Trichoderma reesei on a cane molasses medium, Biotechnology for Biofuels, vol.7, issue.1, p.43, 2014.

P. Heinzelman, R. Komor, A. Kanaan, P. Romero, X. Yu et al., Efficient screening of fungal cellobiohydrolase class I enzymes for thermostabilizing sequence blocks by SCHEMA structure-guided recombination, Protein Engineering, Design and Selection, vol.23, issue.11, pp.871-880, 2010.

P. Heinzelman, C. D. Snow, M. A. Smith, X. Yu, A. Kannan et al., SCHEMA Recombination of a Fungal Cellulase Uncovers a Single Mutation That Contributes Markedly to Stability, Journal of Biological Chemistry, vol.284, issue.39, pp.26229-26233, 2009.

P. Heinzelman, C. D. Snow, I. Wu, C. Nguyen, A. Villalobos et al., A family of thermostable fungal cellulases created by structure-guided recombination, Proceedings of the National Academy of Sciences, vol.106, issue.14, pp.5610-5615, 2009.

G. R. Hemsworth, L. Ciano, G. J. Davies, and P. H. Walton, Production and spectroscopic characterization of lytic polysaccharide monooxygenases, Enzymes of Energy Technology, vol.613, pp.63-90, 2018.

G. R. Hemsworth, B. Henrissat, G. J. Davies, and P. H. Walton, Discovery and characterization of a new family of lytic polysaccharide monooxygenases, Nature Chemical Biology, vol.10, issue.2, pp.122-126, 2013.

G. R. Hemsworth, E. M. Johnston, G. J. Davies, and P. H. Walton, Lytic Polysaccharide Monooxygenases in Biomass Conversion, Trends in Biotechnology, vol.33, issue.12, pp.747-761, 2015.

S. Henikoff and J. G. Henikoff, Amino acid substitution matrices from protein blocks., Proceedings of the National Academy of Sciences, vol.89, issue.22, pp.10915-10919, 1992.

B. Henrissat, A classification of glycosyl hydrolases based on amino acid sequence similarities, Biochemical Journal, vol.280, issue.2, pp.309-316, 1991.
URL : https://hal.archives-ouvertes.fr/hal-00310263

I. Herpoël-gimbert, A. Margeot, A. Dolla, G. Jan, D. Mollé et al., Comparative secretome analyses of two Trichoderma reesei RUT-C30 and CL847 hypersecretory strains, Biotechnology for Biofuels, vol.1, issue.1, p.18, 2008.

D. S. Hibbett, M. Binder, J. F. Bischoff, M. Blackwell, P. F. Cannon et al., A higher-level phylogenetic classification of the Fungi, Mycological Research, vol.111, issue.5, pp.509-547, 2007.

M. E. Himmel, Q. Xu, Y. Luo, S. Ding, R. Lamed et al., Microbial enzyme systems for biomass conversion: emerging paradigms, Biofuels, vol.1, issue.2, pp.323-341, 2010.

D. P. Ho, H. H. Ngo, and W. Guo, A mini review on renewable sources for biofuel, Bioresource Technology, vol.169, pp.742-749, 2014.

S. J. Horn, G. Vaaje-kolstad, B. Westereng, and V. G. Eijsink, Novel enzymes for the degradation of cellulose, Biotechnology for Biofuels, vol.5, issue.1, p.45, 2012.

J. Hu, V. Arantes, A. Pribowo, and J. N. Saddler, The synergistic action of accessory enzymes enhances the hydrolytic potential of a ?cellulase mixture? but is highly substrate specific, Biotechnology for Biofuels, vol.6, issue.1, p.112, 2013.

D. H. Huson and C. Scornavacca, Dendroscope 3: An Interactive Tool for Rooted Phylogenetic Trees and Networks, Systematic Biology, vol.61, issue.6, pp.1061-1067, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02154987

K. Igarashi, T. Uchihashi, A. Koivula, M. Wada, S. Kimura et al., Traffic Jams Reduce Hydrolytic Efficiency of Cellulase on Cellulose Surface, Science, vol.333, issue.6047, pp.1279-1282, 2011.

K. Iiyama, T. Lam, and B. A. Stone, Covalent Cross-Links in the Cell Wall, Plant Physiology, vol.104, issue.2, pp.315-320, 1994.

M. Ilmén, C. Thrane, and M. Penttilä, The glucose repressor genecre1 ofTrichoderma: Isolation and expression of a full-length and a truncated mutant form, Molecular and General Genetics MGG, vol.251, issue.4, pp.451-460, 1996.

T. Isaksen, B. Westereng, F. L. Aachmann, J. W. Agger, D. Kracher et al., A C4-oxidizing Lytic Polysaccharide Monooxygenase Cleaving Both Cellulose and Cello-oligosaccharides, Journal of Biological Chemistry, vol.289, issue.5, pp.2632-2642, 2013.

Y. Ishihama, Y. Oda, T. Tabata, T. Sato, T. Nagasu et al., Exponentially Modified Protein Abundance Index (emPAI) for Estimation of Absolute Protein Amount in Proteomics by the Number of Sequenced Peptides per Protein, Molecular & Cellular Proteomics, vol.4, issue.9, pp.1265-1272, 2005.

K. S. Johansen, Discovery and industrial applications of lytic polysaccharide mono-oxygenases, Biochemical Society Transactions, vol.44, issue.1, pp.143-149, 2016.

H. Jørgensen, J. B. Kristensen, and C. Felby, Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities, Biofuels, Bioproducts and Biorefining, vol.1, issue.2, pp.119-134, 2007.

H. Jørgensen, J. Vibe-pedersen, J. Larsen, and C. Felby, Liquefaction of lignocellulose at high-solids concentrations, Biotechnology and Bioengineering, vol.96, issue.5, pp.862-870, 2007.

H. Jun, H. Guangye, and C. Daiwen, Insights into enzyme secretion by filamentous fungi: Comparative proteome analysis of Trichoderma reesei grown on different carbon sources, Journal of Proteomics, vol.89, pp.191-201, 2013.

M. A. Kadowaki, A. Várnai, J. Jameson, A. E. T.-leite, A. J. Costa-filho et al., Functional characterization of a lytic polysaccharide monooxygenase from the thermophilic fungus Myceliophthora thermophila, PLOS ONE, vol.13, issue.8, p.e0202148, 2018.

J. Kämper, R. Kahmann, M. Bölker, L. Ma, T. Brefort et al., Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis, Nature, vol.444, issue.7115, pp.97-101, 2006.

S. Karkehabadi, H. Hansson, S. Kim, K. Piens, C. Mitchinson et al., The structure of a glycoside hydrolase family 61 member, Cel61B from the Hypocrea jecorina., Journal of Molecular Biology, vol.383, pp.144-154, 2008.

A. Karnaouri, M. N. Muraleedharan, M. Dimarogona, E. Topakas, U. Rova et al., Recombinant expression of thermostable processive MtEG5 endoglucanase and its synergism with MtLPMO from Myceliophthora thermophila during the hydrolysis of lignocellulosic substrates, Biotechnology for Biofuels, vol.10, issue.1, p.126, 2017.

C. Katsimpouras, G. Dedes, N. S. Thomaidis, and E. Topakas, A novel fungal GH30 xylanase with xylobiohydrolase auxiliary activity, Biotechnology for Biofuels, vol.12, issue.1, p.120, 2019.

L. A. Kelley, S. Mezulis, C. M. Yates, M. N. Wass, and M. J. Sternberg, The Phyre2 web portal for protein modeling, prediction and analysis, Nature Protocols, vol.10, issue.6, pp.845-858, 2015.

K. Kim, S. G. Rhee, and E. R. Stadtman, Rethinking Dithiothreitol-Based Particulate Matter Oxidative Potential: Measuring Dithiothreitol Consumption versus Reactive Oxygen Species Generation, The Journal of biological chemistry, vol.260, pp.15394-15397

S. Kim, J. Stahlberg, M. Sandgren, R. S. Paton, and G. T. Beckham, Quantum mechanical calculations suggest that lytic polysaccharide monooxygenases use a copper-oxyl, oxygen-rebound mechanism, Proceedings of the National Academy of Sciences, vol.111, issue.1, pp.149-154, 2013.

R. Kittl, D. Kracher, D. Burgstaller, D. Haltrich, and R. Ludwig, Production of four Neurospora crassa lytic polysaccharide monooxygenases in Pichia pastoris monitored by a fluorimetric assay, Biotechnology for Biofuels, vol.5, issue.1, p.79, 2012.

D. Klein-marcuschamer, P. Oleskowicz-popiel, B. A. Simmons, and H. W. Blanch, The challenge of enzyme cost in the production of lignocellulosic biofuels, Biotechnology and Bioengineering, vol.109, issue.4, pp.1083-1087, 2011.

R. S. Komor, P. A. Romero, C. B. Xie, and F. H. Arnold, Highly thermostable fungal cellobiohydrolase I (Cel7A) engineered using predictive methods, Protein Engineering, Design and Selection, vol.25, issue.12, pp.827-833, 2012.

D. Kracher, D. Oros, W. Yao, M. Preims, I. Rezic et al., Fungal secretomes enhance sugar beet pulp hydrolysis, Biotechnology Journal, vol.9, issue.4, pp.483-492, 2014.

D. Kracher, S. Scheiblbrandner, A. K. Felice, E. Breslmayr, M. Preims et al., Extracellular electron transfer systems fuel cellulose oxidative degradation, Science, vol.352, issue.6289, pp.1098-1101, 2016.

J. B. Kristensen, C. Felby, and H. Jørgensen, Yield-determining factors in high-solids enzymatic hydrolysis of lignocellulose, Biotechnology for Biofuels, vol.2, issue.1, p.11, 2009.

C. P. Kubicek, Systems biological approaches towards understanding cellulase production by Trichoderma reesei, Journal of Biotechnology, vol.163, issue.2, pp.133-142, 2013.

C. P. Kubicek, M. Mikus, A. Schuster, M. Schmoll, and B. Seiboth, Metabolic engineering strategies for the improvement of cellulase production by Hypocrea jecorina, Biotechnology for Biofuels, vol.2, issue.1, p.19, 2009.

J. A. Langston, T. Shaghasi, E. Abbate, F. Xu, E. Vlasenko et al., Oxidoreductive Cellulose Depolymerization by the Enzymes Cellobiose Dehydrogenase and Glycoside Hydrolase 61, Applied and Environmental Microbiology, vol.77, issue.19, pp.7007-7015, 2011.

S. E. Lantz, F. Goedegebuur, R. Hommes, T. Kaper, B. R. Kelemen et al., Hypocrea jecorina CEL6A protein engineering, Biotechnology for Biofuels, vol.3, issue.1, p.20, 2010.

N. Lavoine, I. Desloges, A. Dufresne, and J. Bras, Microfibrillated cellulose ? Its barrier properties and applications in cellulosic materials: A review, Carbohydrate Polymers, vol.90, issue.2, pp.735-764, 2012.

L. Crom, S. Schackwitz, W. Pennacchio, L. Magnuson, J. K. Culley et al., Tracking the roots of cellulase hyperproduction by the fungus Trichoderma reesei using massively parallel DNA sequencing, Proceedings of the National Academy of Sciences of the United States of America, vol.106, pp.16151-16156, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02879345

L. Lehmann, N. P. Rønnest, C. I. Jørgensen, L. Olsson, S. M. Stocks et al., Linking hydrolysis performance toTrichoderma reeseicellulolytic enzyme profile, Biotechnology and Bioengineering, vol.113, issue.5, pp.1001-1010, 2015.

N. Lenfant, M. Hainaut, N. Terrapon, E. Drula, V. Lombard et al., A bioinformatics analysis of 3400 lytic polysaccharide oxidases from family AA9, Carbohydrate Research, vol.448, pp.166-174, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01595066

A. Levasseur, E. Drula, V. Lombard, P. M. Coutinho, and B. Henrissat, Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes, Biotechnology for Biofuels, vol.6, issue.1, p.41, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01268121

R. Liu, L. Chen, Y. Jiang, Z. Zhou, and G. Zou, Efficient genome editing in filamentous fungus Trichoderma reesei using the CRISPR/Cas9 system, Cell Discovery, vol.1, issue.1, 2015.

L. Lo-leggio, T. J. Simmons, J. N. Poulsen, K. E. Frandsen, G. R. Hemsworth et al., Structure and boosting activity of a starch-degrading lytic polysaccharide monooxygenase, Nature Communications, vol.6, issue.1, p.5961, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01439010

V. Lombard, H. Golaconda-ramulu, E. Drula, P. M. Coutinho, and B. Henrissat, The carbohydrate-active enzymes database (CAZy) in 2013, Nucleic Acids Research, vol.42, issue.D1, pp.D490-D495, 2013.

J. S. Loose, M. Ø. Arntzen, B. Bissaro, R. Ludwig, V. G. Eijsink et al., Multipoint Precision Binding of Substrate Protects Lytic Polysaccharide Monooxygenases from Self-Destructive Off-Pathway Processes, Biochemistry, vol.57, issue.28, pp.4114-4124, 2018.

L. R. Lynd, P. J. Weimer, W. H. Van-zyl, and I. S. Pretorius, Microbial Cellulose Utilization: Fundamentals and Biotechnology, Microbiology and Molecular Biology Reviews, vol.66, issue.3, pp.506-577, 2002.

A. Margeot, B. Hahn-hagerdal, M. Edlund, R. Slade, and F. Monot, New improvements for lignocellulosic ethanol, Current Opinion in Biotechnology, vol.20, issue.3, pp.372-380, 2009.

F. Martin, A. Kohler, C. Murat, C. Veneault-fourrey, and D. S. Hibbett, Unearthing the roots of ectomycorrhizal symbioses, Nature Reviews Microbiology, vol.14, issue.12, pp.760-773, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01579569

D. Martinez, R. M. Berka, B. Henrissat, M. Saloheimo, M. Arvas et al., Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina), Nature Biotechnology, vol.26, issue.5, pp.553-560, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02669177

D. Mattanovich, A. Graf, J. Stadlmann, M. Dragosits, A. Redl et al., Genome, secretome and glucose transport highlight unique features of the protein production host Pichia pastoris, Microbial Cell Factories, vol.8, issue.1, p.29, 2009.

H. E. Mcmahon, A. Mangé, N. Nishida, C. Créminon, D. Casanova et al., Cleavage of the Amino Terminus of the Prion Protein by Reactive Oxygen Species, Journal of Biological Chemistry, vol.276, issue.3, pp.2286-2291, 2000.

V. Menon and M. Rao, Trends in bioconversion of lignocellulose: Biofuels, platform chemicals & biorefinery concept, Progress in Energy and Combustion Science, vol.38, issue.4, pp.522-550, 2012.

T. Metsalu and J. Vilo, ClustVis: a web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap, Nucleic Acids Research, vol.43, issue.W1, pp.W566-W570, 2015.

I. Morgenstern, J. Powlowski, and A. Tsang, Fungal cellulose degradation by oxidative enzymes: from dysfunctional GH61 family to powerful lytic polysaccharide monooxygenase family, Briefings in Functional Genomics, vol.13, issue.6, pp.471-481, 2014.

C. Mukarakate, A. Mittal, P. N. Ciesielski, S. Budhi, L. Thompson et al., Influence of Crystal Allomorph and Crystallinity on the Products and Behavior of Cellulose during Fast Pyrolysis, ACS Sustainable Chemistry & Engineering, vol.4, issue.9, pp.4662-4674, 2016.

G. Müller, P. Chylenski, B. Bissaro, V. G. Eijsink, and S. J. Horn, The impact of hydrogen peroxide supply on LPMO activity and overall saccharification efficiency of a commercial cellulase cocktail, Biotechnology for Biofuels, vol.11, issue.1, p.209, 2018.

G. Müller, A. Várnai, K. S. Johansen, V. G. Eijsink, and S. J. Horn, Harnessing the potential of LPMO-containing cellulase cocktails poses new demands on processing conditions, Biotechnology for Biofuels, vol.8, issue.1, p.187, 2015.

Y. Nakamichi, T. Fouquet, S. Ito, M. Watanabe, A. Matsushika et al., Structural and functional characterization of a bifunctional GH30-7 xylanase B from the filamentous fungusTalaromyces cellulolyticus, Journal of Biological Chemistry, vol.294, issue.11, pp.4065-4078, 2019.

D. Navarro, M. Couturier, G. Da-silva, J. Berrin, X. Rouau et al., Automated assay for screening the enzymatic release of reducing sugars from micronized biomass, Microbial Cell Factories, vol.9, issue.1, p.58, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00939699

D. Navarro, M. Rosso, M. Haon, C. Olivé, E. Bonnin et al., Fast solubilization of recalcitrant cellulosic biomass by the basidiomycete fungus Laetisaria arvalisinvolves successive secretion of oxidative and hydrolytic enzymes, Biotechnology for Biofuels, vol.7, issue.1, p.143, 2014.

L. Nekiunaite, M. Ø. Arntzen, B. Svensson, G. Vaaje-kolstad, and M. Abou-hachem, Lytic polysaccharide monooxygenases and other oxidative enzymes are abundantly secreted by Aspergillus nidulans grown on different starches, Biotechnology for Biofuels, vol.9, issue.1, p.187, 2016.

. Nrel, NREL 2012 Achievement of Ethanol Cost Targets: Biochemical Ethanol Fermentation via Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover, 2014.

S. N. Olsen, K. Borch, N. Cruys-bagger, and P. Westh, The Role of Product Inhibition as a Yield-Determining Factor in Enzymatic High-Solid Hydrolysis of Pretreated Corn Stover, Applied Biochemistry and Biotechnology, vol.174, issue.1, pp.146-155, 2014.

A. C. O'sullivan, Cellulose: the structure slowly unravels, Cellulose, vol.4, issue.3, pp.173-207, 1997.

C. M. Payne, B. C. Knott, H. B. Mayes, H. Hansson, M. E. Himmel et al., Fungal Cellulases, Chemical Reviews, vol.115, issue.3, pp.1308-1448, 2015.

A. Peciulyte, M. Pisano, R. P. De-vries, and L. Olsson, Hydrolytic potential of five fungal supernatants to enhance a commercial enzyme cocktail, Biotechnology Letters, vol.39, issue.9, pp.1403-1411, 2017.

J. Peisach and W. E. Blumberg, Structural implications derived from the analysis of electron paramagnetic resonance spectra of natural and artificial copper proteins, Archives of Biochemistry and Biophysics, vol.165, issue.2, pp.691-708, 1974.

R. Peterson and H. Nevalainen, Trichoderma reesei RUT-C30 ? thirty years of strain improvement, Microbiology, vol.158, issue.1, pp.58-68, 2012.

D. M. Petrovi?, B. Bissaro, P. Chylenski, M. Skaugen, M. Sørlie et al., Methylation of the N-terminal histidine protects a lytic polysaccharide monooxygenase from auto-oxidative inactivation, Protein Science, vol.27, issue.9, pp.1636-1650, 2018.

C. M. Phillips, W. T. Beeson, J. H. Cate, and M. A. Marletta, Cellobiose Dehydrogenase and a Copper-Dependent Polysaccharide Monooxygenase Potentiate Cellulose Degradation by Neurospora crassa, ACS Chemical Biology, vol.6, issue.12, pp.1399-1406, 2011.

D. Poggi-parodi, F. Bidard, A. Pirayre, T. Portnoy, C. Blugeon et al., Kinetic transcriptome analysis reveals an essentially intact induction system in a cellulase hyper-producer Trichoderma reesei strain, Biotechnology for Biofuels, vol.7, issue.1, p.173, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01112360

L. Poidevin, J. Berrin, C. Bennati-granier, A. Levasseur, I. Herpoël-gimbert et al., Comparative analyses of Podospora anserina secretomes reveal a large array of lignocellulose-active enzymes, Applied Microbiology and Biotechnology, vol.98, issue.17, pp.7457-7469, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01070025

T. Portnoy, A. Margeot, R. Linke, L. Atanasova, E. Fekete et al., The CRE1 carbon catabolite repressor of the fungus Trichoderma reesei: a master regulator of carbon assimilation, BMC Genomics, vol.12, issue.1, p.269, 2011.
URL : https://hal.archives-ouvertes.fr/inserm-00663944

T. Portnoy, A. Margeot, V. Seidl-seiboth, S. Le-crom, F. Ben-chaabane et al., Differential Regulation of the Cellulase Transcription Factors XYR1, ACE2, and ACE1 in Trichoderma reesei Strains Producing High and Low Levels of Cellulase, Eukaryotic Cell, vol.10, issue.2, pp.262-271, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02879336

Q. Qing and C. E. Wyman, Supplementation with xylanase and ?-xylosidase to reduce xylo-oligomer and xylan inhibition of enzymatic hydrolysis of cellulose and pretreated corn stover, Biotechnology for Biofuels, vol.4, issue.1, p.18, 2011.

R. J. Quinlan, M. D. Sweeney, L. Lo-leggio, H. Otten, J. N. Poulsen et al., Insights into the oxidative degradation of cellulose by a copper metalloenzyme that exploits biomass components, Proceedings of the National Academy of Sciences, vol.108, issue.37, pp.15079-15084, 2011.

R. E. Quiroz-castañeda and J. L. Folch-mallol, Hydrolysis of Biomass Mediated by Cellulases for the Production of Sugars, Sustainable degradation of lignocellulosic biomass: Techniques, applications and commercialization, 2014.

Z. Rahman, Y. Shida, T. Furukawa, Y. Suzuki, H. Okada et al., Application ofTrichoderma reeseiCellulase and Xylanase Promoters through Homologous Recombination for Enhanced Production of Extracellular ?-Glucosidase I, Bioscience, Biotechnology, and Biochemistry, vol.73, issue.5, pp.1083-1089, 2009.

J. Ralph, K. Lundquist, G. Brunow, F. Lu, H. Kim et al., Lignins: Natural polymers from oxidative coupling of 4-hydroxyphenyl- propanoids, Phytochemistry Reviews, vol.3, issue.1-2, pp.29-60, 2004.

A. Rassinger, A. Gacek-matthews, J. Strauss, R. L. Mach, and A. R. Mach-aigner, Truncation of the transcriptional repressor protein Cre1 in Trichoderma reesei Rut-C30 turns it into an activator, Fungal Biology and Biotechnology, vol.5, issue.1, p.15, 2018.

H. Ravalason, S. Grisel, D. Chevret, A. Favel, J. Berrin et al., Fusarium verticillioides secretome as a source of auxiliary enzymes to enhance saccharification of wheat straw, Bioresource Technology, vol.114, pp.589-596, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01001109

R. Riley, A. A. Salamov, D. W. Brown, L. G. Nagy, D. Floudas et al., Extensive sampling of basidiomycete genomes demonstrates inadequacy of the white-rot/brown-rot paradigm for wood decay fungi, Proceedings of the National Academy of Sciences, vol.111, issue.27, pp.9923-9928, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01578657

K. Rojas-jiménez and M. Hernández, Isolation of Fungi and Bacteria Associated with the Guts of Tropical Wood-Feeding Coleoptera and Determination of Their Lignocellulolytic Activities, International Journal of Microbiology, vol.2015, pp.1-11, 2015.

L. Rosgaard, S. Pedersen, J. R. Cherry, P. Harris, and A. S. Meyer, Efficiency of New Fungal Cellulase Systems in Boosting Enzymatic Degradation of Barley Straw Lignocellulose, Biotechnology Progress, vol.22, issue.2, pp.493-498, 2006.

J. Rytioja, K. Hildén, J. Yuzon, A. Hatakka, R. P. De-vries et al., Plant-Polysaccharide-Degrading Enzymes from Basidiomycetes, Microbiology and Molecular Biology Reviews, vol.78, issue.4, pp.614-649, 2014.

F. Sabbadin, G. R. Hemsworth, L. Ciano, B. Henrissat, P. Dupree et al., An ancient family of lytic polysaccharide monooxygenases with roles in arthropod development and biomass digestion, Nature Communications, vol.9, issue.1, p.756, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02094604

M. Saloheimo, M. Paloheimo, S. Hakola, J. Pere, B. Swanson et al., Swollenin, a Trichoderma reesei protein with sequence similarity to the plant expansins, exhibits disruption activity on cellulosic materials, European Journal of Biochemistry, vol.269, issue.17, pp.4202-4211, 2002.

H. V. Scheller and P. Ulvskov, Hemicelluloses, Annual Review of Plant Biology, vol.61, issue.1, pp.263-289, 2010.

V. Seidl and B. Seiboth, Trichoderma reesei: genetic approaches to improving strain efficiency, Biofuels, vol.1, issue.2, pp.343-354, 2010.

M. J. Selig, T. V. Vuong, M. Gudmundsson, Z. Forsberg, B. Westereng et al., Modified cellobiohydrolase?cellulose interactions following treatment with lytic polysaccharide monooxygenase CelS2 (ScLPMO10C) observed by QCM-D, Cellulose, vol.22, issue.4, pp.2263-2270, 2015.

S. Shoemaker, V. Schweickart, M. Ladner, D. Gelfand, S. Kwok et al., Molecular Cloning of Exo?Cellobiohydrolase I Derived from Trichoderma Reesei Strain L27, Nature Biotechnology, vol.1, issue.8, pp.691-696, 1983.

P. Shrestha, A. B. Ibáñez, S. Bauer, S. I. Glassman, T. M. Szaro et al., Fungi isolated from Miscanthus and sugarcane: biomass conversion, fungal enzymes, and hydrolysis of plant cell wall polymers, Biotechnology for Biofuels, vol.8, issue.1, p.38, 2015.

P. Silar, Protistes Eucaryotes: Origine, évolution et biologie des microbes eucaryotes, 2016.

D. L. Sills and J. M. Gossett, Assessment of commercial hemicellulases for saccharification of alkaline pretreated perennial biomass, Bioresource Technology, vol.102, issue.2, pp.1389-1398, 2011.

R. Silva-rocha, L. D. Castro, A. C. Antoniêto, M. Guazzaroni, G. F. Persinoti et al., Deciphering the Cis-Regulatory Elements for XYR1 and CRE1 Regulators in Trichoderma reesei, PLoS ONE, vol.9, issue.6, p.e99366, 2014.

T. J. Simmons, K. E. Frandsen, L. Ciano, T. Tryfona, N. Lenfant et al., Structural and electronic determinants of lytic polysaccharide monooxygenase reactivity on polysaccharide substrates, Nature Communications, vol.8, issue.1, pp.93-105, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01802947

B. Song, B. Li, X. Wang, W. Shen, S. Park et al., Real-time imaging reveals that lytic polysaccharide monooxygenase promotes cellulase activity by increasing cellulose accessibility, Biotechnology for Biofuels, vol.11, issue.1, p.41, 2018.

S. Sreedharan, P. Prakasan, S. Sasidharan, and B. Sailas, An Overview on Fungal Cellulases with an Industrial Perspective, Journal of Nutrition & Food Sciences, vol.6, pp.1-13, 2016.

E. R. Stadtman, Oxidation of Free Amino Acids and Amino Acid Residues in Proteins by Radiolysis and by Metal-Catalyzed Reactions, Annual Review of Biochemistry, vol.62, issue.1, pp.797-821, 1993.

J. Ståhlberg, G. Johansson, and G. Pettersson, Trichoderma reesei has no true exo-cellulase: all intact and truncated cellulases produce new reducing end groups on cellulose, Biochimica et Biophysica Acta (BBA) - General Subjects, vol.1157, issue.1, pp.107-113, 1993.

M. B. Sticklen, Plant genetic engineering for biofuel production: towards affordable cellulosic ethanol, Nature Reviews Genetics, vol.9, issue.6, pp.433-443, 2008.

S. Stoll and A. Schweiger, EasySpin, a comprehensive software package for spectral simulation and analysis in EPR, Journal of Magnetic Resonance, vol.178, issue.1, pp.42-55, 2006.

Y. Sun and J. Cheng, Hydrolysis of lignocellulosic materials for ethanol production: a review, Bioresource Technology, vol.83, issue.1, pp.1-11, 2002.

K. ?wi?tek, M. Lewandowska, M. ?wi?tek, W. Bednarski, and B. Brzozowski, The improvement of enzymatic hydrolysis efficiency of rape straw and Miscanthus giganteus polysaccharides, Bioresource Technology, vol.151, pp.323-331, 2014.

M. G. Tabka, I. Herpoël-gimbert, F. Monod, M. Asther, and J. C. Sigoillot, Enzymatic saccharification of wheat straw for bioethanol production by a combined cellulase xylanase and feruloyl esterase treatment, Enzyme and Microbial Technology, vol.39, issue.4, pp.897-902, 2006.
URL : https://hal.archives-ouvertes.fr/hal-02669207

F. Talebnia, D. Karakashev, and I. Angelidaki, Production of bioethanol from wheat straw: An overview on pretreatment, hydrolysis and fermentation, Bioresource Technology, vol.101, issue.13, pp.4744-4753, 2010.

T. Tandrup, K. E. Frandsen, K. S. Johansen, J. Berrin, and L. Lo-leggio, Recent insights into lytic polysaccharide monooxygenases (LPMOs), Biochemical Society Transactions, vol.46, issue.6, pp.1431-1447, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01984302

N. Tangthirasunun, D. Navarro, S. Garajova, D. Chevret, L. C. Tong et al., Inactivation of Cellobiose Dehydrogenases Modifies the Cellulose Degradation Mechanism of Podospora anserina, Applied and Environmental Microbiology, vol.83, issue.2, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01595461

C. Tengborg, M. Galbe, and G. Zacchi, Influence of Enzyme Loading and Physical Parameters on the Enzymatic Hydrolysis of Steam-Pretreated Softwood, Biotechnology Progress, vol.17, issue.1, pp.110-117, 2001.

A. Thareja, A. K. Puniya, G. Goel, R. Nagpal, J. P. Sehgal et al., In vitrodegradation of wheat straw by anaerobic fungi from small ruminants, Archives of Animal Nutrition, vol.60, issue.5, pp.412-417, 2006.

K. Uchida and S. Kawakishi, Ascorbate-mediated specific oxidation of the imidazole ring in a histidine derivative, Bioorganic Chemistry, vol.17, issue.3, pp.330-343, 1989.

S. Urresti, A. Cartmell, F. Liu, P. H. Walton, and G. J. Davies, Structural studies of the unusual metal-ion site of the GH124 endoglucanase from Ruminiclostridium thermocellum, Acta Crystallographica Section F Structural Biology Communications, vol.74, issue.8, pp.496-505, 2018.

G. Vaaje-kolstad, L. A. Bøhle, S. Gåseidnes, B. Dalhus, M. Bjørås et al., Characterization of the Chitinolytic Machinery of Enterococcus faecalis V583 and High-Resolution Structure of Its Oxidative CBM33 Enzyme, Journal of Molecular Biology, vol.416, issue.2, pp.239-254, 2012.

G. Vaaje-kolstad, Z. Forsberg, J. S. Loose, B. Bissaro, and V. G. Eijsink, Structural diversity of lytic polysaccharide monooxygenases, Current Opinion in Structural Biology, vol.44, pp.67-76, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02628781

G. Vaaje-kolstad, S. J. Horn, D. M. Van-aalten, B. Synstad, and V. G. Eijsink, The Non-catalytic Chitin-binding Protein CBP21 fromSerratia marcescensIs Essential for Chitin Degradation, Journal of Biological Chemistry, vol.280, issue.31, pp.28492-28497, 2005.

G. Vaaje-kolstad, B. Westereng, S. J. Horn, Z. Liu, H. Zhai et al., An Oxidative Enzyme Boosting the Enzymatic Conversion of Recalcitrant Polysaccharides, Science, vol.330, issue.6001, pp.219-222, 2010.

J. Van-den-brink, G. P. Maitan-alfenas, G. Zou, C. Wang, Z. Zhou et al., Synergistic effect ofAspergillus nigerandTrichoderma reeseienzyme sets on the saccharification of wheat straw and sugarcane bagasse, Biotechnology Journal, vol.9, issue.10, pp.1329-1338, 2014.

J. Van-den-brink and R. P. De-vries, Fungal enzyme sets for plant polysaccharide degradation, Applied Microbiology and Biotechnology, vol.91, issue.6, pp.1477-1492, 2011.

J. S. Dyk and B. I. Pletschke, A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes-Factors affecting enzymes, conversion and synergy, Biotechnology Advances, vol.30, pp.1458-1480, 2012.

A. Villares, C. Moreau, C. Bennati-granier, S. Garajova, L. Foucat et al., Lytic polysaccharide monooxygenases disrupt the cellulose fibers structure, Scientific Reports, vol.7, issue.1, p.40262, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01595678

J. Villegas and E. Gnansounou, Techno-economic and environmental evaluation of lignocellulosic biochemical refineries: Need for a modular platform for integrated assessment (MPIA), Journal of Scientific and Industrial Research, vol.67, 2008.

M. Vitikainen, M. Arvas, T. Pakula, M. Oja, M. Penttilä et al., Array comparative genomic hybridization analysis of Trichoderma reesei strains with enhanced cellulase production properties, BMC Genomics, vol.11, issue.1, p.441, 2010.

E. Vlasenko, M. Schülein, J. Cherry, and F. Xu, Substrate specificity of family 5, 6, 7, 9, 12, and 45 endoglucanases, Bioresource Technology, vol.101, issue.7, pp.2405-2411, 2010.

G. P. Voshol, E. Vijgenboom, and P. J. Punt, The discovery of novel LPMO families with a new Hidden Markov model, BMC Research Notes, vol.10, issue.1, p.105, 2017.

V. V. Vu, W. T. Beeson, C. M. Phillips, J. H. Cate, and M. A. Marletta, Determinants of Regioselective Hydroxylation in the Fungal Polysaccharide Monooxygenases, Journal of the American Chemical Society, vol.136, issue.2, pp.562-565, 2013.

V. V. Vu, W. T. Beeson, E. A. Span, E. R. Farquhar, and M. A. Marletta, A family of starch-active polysaccharide monooxygenases, Proceedings of the National Academy of Sciences, vol.111, issue.38, pp.13822-13827, 2014.

V. V. Vu, J. A. Hangasky, T. C. Detomasi, S. J. Henry, S. T. Ngo et al., Substrate selectivity in starch polysaccharide monooxygenases, Journal of Biological Chemistry, vol.294, issue.32, pp.12157-12166, 2019.

V. V. Vu and M. A. Marletta, Starch-degrading polysaccharide monooxygenases, Cellular and Molecular Life Sciences, vol.73, issue.14, pp.2809-2819, 2016.

T. V. Vuong, B. Liu, M. Sandgren, and E. R. Master, Microplate-Based Detection of Lytic Polysaccharide Monooxygenase Activity by Fluorescence-Labeling of Insoluble Oxidized Products, Biomacromolecules, vol.18, issue.2, pp.610-616, 2017.

D. Wang, J. Li, G. Salazar-alvarez, L. S. Mckee, V. Srivastava et al., Production of functionalised chitins assisted by fungal lytic polysaccharide monooxygenase, Green Chemistry, vol.20, issue.9, pp.2091-2100, 2018.

D. Wang, J. Li, A. C. Wong, F. L. Aachmann, and Y. S. Hsieh, A colorimetric assay to rapidly determine the activities of lytic polysaccharide monooxygenases, Biotechnology for Biofuels, vol.11, issue.1, p.215, 2018.

T. Wang, X. Liu, Q. Yu, X. Zhang, Y. Qu et al., Directed evolution for engineering pH profile of endoglucanase III from Trichoderma reesei, Biomolecular Engineering, vol.22, issue.1-3, pp.89-94, 2005.

B. Westereng, J. W. Agger, S. J. Horn, G. Vaaje-kolstad, F. L. Aachmann et al., Efficient separation of oxidized cello-oligosaccharides generated by cellulose degrading lytic polysaccharide monooxygenases, Journal of Chromatography A, vol.1271, issue.1, pp.144-152, 2013.

B. Westereng, M. Ø. Arntzen, F. L. Aachmann, A. Várnai, V. G. Eijsink et al., Simultaneous analysis of C1 and C4 oxidized oligosaccharides, the products of lytic polysaccharide monooxygenases acting on cellulose, Journal of Chromatography A, vol.1445, pp.46-54, 2016.

B. Westereng, D. Cannella, J. Wittrup-agger, H. Jørgensen, M. Larsen-andersen et al., Enzymatic cellulose oxidation is linked to lignin by long-range electron transfer, Scientific Reports, vol.5, issue.1, p.18561, 2015.

M. Witzler, A. Alzagameem, M. Bergs, B. E. Khaldi-hansen, S. E. Klein et al., Lignin-Derived Biomaterials for Drug Release and Tissue Engineering, Molecules, vol.23, issue.8, p.1885, 2018.

T. M. Wood, Preparation of crystalline, amorphous, and dyed cellulase substrates, Methods in Enzymology, vol.160, pp.19-25, 1988.

J. Yang and Y. Zhang, I-TASSER server: new development for protein structure and function predictions, Nucleic Acids Research, vol.43, issue.W1, pp.W174-W181, 2015.

F. Zhang, G. E. Anasontzis, A. Labourel, C. Champion, M. Haon et al., The ectomycorrhizal basidiomycete Laccaria bicolor releases a secreted ?-1,4 endoglucanase that plays a key role in symbiosis development, New Phytologist, vol.220, issue.4, pp.1309-1321, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02187791

P. Y. Zhang, .. Himmel, M. E. Mielenz, and J. R. , Outlook for cellulase improvement: Screening and selection strategies, Biotechnology Advances, vol.24, pp.452-481, 2006.

H. Zhou, T. Li, Z. Yu, J. Ju, H. Zhang et al., A lytic polysaccharide monooxygenase from Myceliophthora thermophila and its synergism with cellobiohydrolases in cellulose hydrolysis, International Journal of Biological Macromolecules, vol.139, pp.570-576, 2019.