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Productivity, Price Volatility, and Dynamic Choices

in French Agriculture

Abstract

The EU has adopted many reforms of the Common Agricultural Policy (CAP) in
the past decades. Price support has decreased, and decoupled payments have been
introduced. As a result, European agricultural prices have become more volatile,
in line with world prices.

This dissertation measures the evolution of the productivity of French agricul-
ture in a dynamic stochastic farm decision model in the new economic context
with increased price volatility. On this basis, it studies the dynamic link between
price risk, farmer decisions, and productivity in the structural estimation frame-
work. The literature review in Chapter 2 describes productivity as a residual and
emphasizes the measurement issues from the unobserved capital data series and
the endogeneity problem in primal estimation. Chapter 3 compares the numerical
methods to solve and estimate nonlinear dynamic stochastic general equilibrium
(DSGE) or DSGE-like models, in which capital and productivity are latent state
variables. Chapter 4 estimates productivity in a dynamic stochastic decision model
based on the generalized maximum entropy (GME) approach. We show that the
productivity growth in French agriculture has slowed down and become much more
volatile following the increase in price volatility. Overall, price risk has an impact
on productivity in the way that when exposed to high risks, farmers change their
production, consumption, investment and financial borrowing decisions, which in
turn affects the realized productivity negatively. Chapter 5 simulates the market
impacts of the CAP instruments in a dynamic GTAP-AGR CGE model with risks.
We show that risk and risk attitude matter when assessing the impacts of the CAP
reforms.

Keywords: agricultural productivity; price volatility; dynamic decisions under
risk; agricultural policy; structural estimation





Productivité de l’Agriculture Française et Volatilité

des Prix

Mots clés: productivité de l’agriculture ; volatilité des prix ; choix dynamique ;
politique agricole ; estimation structurelle

Résumé

À la suite des réformes successives de la Politique Agricole Commune (PAC), les
soutiens publics européens par des prix nominaux constants ont diminué au profit
de soutiens directs aux revenus agricoles. Cela a exposé les agriculteurs français à
une grande volatilité des prix, reconnectés avec les prix mondiaux.

Cette thèse mesure l’évolution de la productivité de l’agriculture française dans
un modèle dynamique stochastique en intégrant la récente augmentation de la
volatilité des prix. Nous étudions le lien dynamique entre le risque de prix, les
décisions des agriculteurs et la productivité dans le cadre de l’estimation struc-
turelle. La revue de la littérature présentée dans le chapitre 2 décrit la productivité
comme un résidu et souligne les problèmes de mesure des données du capital et
le problème de l’endogénéité dans l’estimation primale. Le chapitre 3 compare les
méthodes numériques permettant de résoudre et d’estimer les modèles d’équilibre
général dynamique stochastique (DSGE) ou de type DSGE, dans lesquels le cap-
ital et la productivité sont des variables d’état latentes. Le chapitre 4 estime la
productivité dans un modèle dynamique stochastique en utilisant l’approche de
maximum d’entropie généralisée (MEG). Nous trouvons que la croissance de la
productivité de l’agriculture française a diminué après la réforme de la PAC, à
cause de l’augmentation de la volatilité des prix. En effet, le risque de prix impacte
la productivité négativement à travers les choix de production, de consommation,
d’investissement et d’emprunt des agriculteurs. Le chapitre 5 simule les impacts
de marché des instruments de la PAC dans le modèle d’équilibre général calcu-
lable GTAP-AGR où est introduit la dynamique et le risque. Nous montrons
l’importance du risque et de l’attitude vis-à-vis du risque pour l’évaluation des
réformes de la PAC.
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Chapter 1

General Introduction

1.1 Motivation

The French agriculture is confronted with several economic, environmental, and
social challenges. Among the economic challenges are the increasing competition
from the foreign countries, which is partly a result of the trade reforms under
the Common Agricultural Policy (CAP) and in bilateral agreements. Competition
also rises from other European countries, especially in northern Europe. Moreover,
French farmers face an increasing price volatility in agricultural outputs and inputs.
This is partly due to the CAP reforms which reduce price supports and introduce
direct payments that impose fewer market interventions. The environmental chal-
lenges include the more constrained natural resources, and also the pressure from
regulation, which aims at generating fewer negative impacts on the environment
while increasing its positive externalities.

Like for other productive sectors, a key element for the French agriculture to
meet these challenges is its ability to improve productivity. This is because pro-
ductivity growth is the principal driver of output growth, and it is an important
factor for the competitiveness of the economy (Ball et al. 2015, Andersen et al.
2018). Persistent productivity growth has been realized in all industries, including
in agriculture, thanks to the major innovations in information technology and au-
tomation. However, according to the total factor productivity (TFP) index of the
European Commission (2016), in line with the EU-15 member states, agricultural
productivity growth in France has been slowing down over the past decades.

Productivity and its dynamics are not only reflections of technology growth,
but also the choices regarding technology adoption, resource allocation, incentive,
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8 General Introduction

and structural adjustments. From the perspective of policymakers, these choices,
along with innovations, are related to policies that influence market conditions
and investments in research and education. Because productivity is not directly
observable, the economists’ task is to understand productivity, identify the sources
of productivity growth, and develop unbiased productivity measures.

This dissertation aims, first, at measuring the evolution of productivity in
French agriculture using a dynamic structural model, accounting for the increasing
price volatility in the new economic and regulatory context. Second, we study the
dynamic link between price volatility, farmer decisions, and productivity in the
structural estimation framework. These two objectives are realized by developing
dynamic structural models in which economic incentives and prices influence the
economic agents’ decisions, and considering structural change in price volatility.
We estimate productivity and the behavioral parameters in the dynamic structural
model. We build on estimation methods that are well developed for estimating
state-space models and dynamic stochastic general equilibrium (DSGE) models.
The estimation contributes to alleviate the measurement issues related to the un-
observed capital input, and the endogeneity issue with estimating a production
function.

The third objective is to assess market impacts of the policy instruments in the
context of volatile prices. This is made based on developing a dynamic stochas-
tic version of a computable general equilibrium (CGE) model. The econometric
evidence of the effect of price risks on agricultural production, and especially on
productivity, provides the empirical basis for the policy analysis.

In the following, we motivate the research objectives.

Policy Reforms and the New Price Volatility Pattern

To ensure a stable income for farmers, a stable supply of affordable food for con-
sumers and to enhance the competitiveness of EU agriculture, the CAP in the
EU has been successively reformed over the past decades. Figure 1.1 illustrates
the evolution of CAP expenditures since 1990: it gradually reduces the price in-
struments (export subsidies and other market support) and coupled payments and
introduces direct payments. The major reform in 2003 introduces the “Single Farm
Payment" policy to decouple the subsidies from production, and the direct pay-
ments are mostly linked to land use. The new CAP 2014-2020 increases the focus
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Figure 1.1: The path of CAP expenditures by calendar year (in current prices)
(Source: European Commission 2013)

on environmental and risk-related issues, and seeks to target support to the farmers
who are active in production. Land subsidies shift gradually to new direct pay-
ments which are designed for active farms, with encouragement for young farmers
and small farms, and with increasing conditions for environmental criteria and risk-
management measures. Moreover, an increasing amount of the budget is spent on
rural development, aiming to foster knowledge transfer and technology innovations
in order to improve productivity.

At the national level, there is an increasing political will aiming at changing
the practices in agriculture to reduce certain negative externalities, such as those
from the use of the pesticides for crops and antibiotics for livestock.

The succession of CAP reforms, especially the major reform in 2003, have re-
sulted in greater exposure of European agriculture, including the French agricul-
ture, to the highly volatile world prices. The level and volatility of the world prices
increased significantly after 2000. The agricultural prices in France, which for a
long time had been stable and had a declining trend in cereal products, started
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(a) Producer price indices in France: agriculture (Source: FAO-
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(b) Producer price indices in France: cereal (Source: FAOSTAT)

Figure 1.2: Producer annual price indices in France (Source: FAOSTAT)

to increase and fluctuate much more after 2003 (Figure 1.2).1 Taking the average
cereal price of 2004− 2006 as a baseline, the cereal price has increased by 52% in
2008, then dropped by 24% in 2009, and increased sharply again by 61% in 2010.
A similar pattern exists for aggregate agricultural prices.

The rising price volatility introduces higher risks for farmers. They may change
their decisions to deal with the increasing risks, and these decisions may in turn
impact productivity. For example, due to high risks, farms may refrain from long-
term investment, which results in a negative effect on productivity. There have
been some studies which point to a negative impact of greater price volatility on
investment and productivity (Pietola and Myers 2000, Odening et al. 2013).

This new market context leads to the first two research questions of the disser-

1The policy reforms are certainly not the only factor that causes the price fluctuations. How-
ever, the sources of price volatility and the formation of agricultural prices are not the focus of
this dissertation. They are discussed in detail in Gouel (2011).



Motivation 11

tation:
1. How does productivity evolve with the new structural changes?
2. What are the dynamic links between productivity, farm decisions, and price
risks?

These two questions correspond to the first two research objectives. In order
to answer them, we need to develop unbiased productivity measures that allow to
account for the policy reforms and increasing price risks. Moreover, we need to
develop a structural model which allows us to study the link between price risks,
farmer decisions, and productivity.

Measuring Productivity

Productivity measures are sensitive to data and methods. This point is discussed
in more detail in the literature review in Chapter 2. Above all, obtaining an un-
biased measure of productivity evolution is generally difficult. First, inputs and
outputs are measured with error. This is especially true for quasi-fixed factors,
including family labor and capital in agriculture. Andersen et al. (2011) point
out the difficulties of accurately measuring the capital service flow and associated
returns in U.S. agriculture. Second, measuring productivity is basically equiva-
lent to estimating the production function, which has been a classical problem in
agricultural economics and industrial organization. Different methods, parametric
and non-parametric, have been developed to measure productivity, each method
has its pros and cons (Van Biesebroeck 2007). All methods need to deal with the
endogeneity problems, data measurement problems, and different market assump-
tions. Besides, comparing productivity evolution or differences also depends on the
consistency of the adopted method. To circumvent these two difficulties, the ideal
suggested in the economic literature is to obtain better data. Novel approaches
have also been proposed for better productivity estimates (De Loecker et al. 2016,
Plastina and Lence 2018)

We propose a new approach to measure agricultural productivity, in which
productivity is modeled and estimated jointly with the behavioral parameters. This
approach is based on estimation methods relying on the maximum entropy principle
and the particle filter. The generalized maximum entropy (GME) method has been
used to estimate state-space models. The filtering methods are well developed to
estimate DSGE models in the modern macroeconomic literature. Both methods are
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applied to recover the hidden states in state-space model estimation. In our case,
productivity and capital are the hidden states. These estimation techniques allow
us to estimate productivity in a dynamic stochastic framework, in which we are
able to integrate price volatility and risk-management instruments. We consider
the quasi-fixed input capital as a latent state variable by recognizing that we do
not have an exact measure of it.

Policy Assessment

Our third objective is to assess the market impact of the CAP policy instruments
in a context where prices are volatile. The corresponding research question is:

3. How do risk and risk attitude matter for the CAP policy assessments?

In recent economic models for agricultural policy analysis, for example, the
computable general equilibrium (CGE) models, the static behaviors of the agents
are modeled through profit maximization and cost minimization frameworks, but
the dynamic and risk dimensions are largely ignored. Despite the power of the large-
scale CGE models for the comprehensive modeling of the entire market system, it
is impossible to analyze the farmers’ dynamic responses to the increasingly risky
environment in such static models. Alternatively, based on the microeconomic
principles, the DSGE models are widely used to understand economic growth and
business cycles. This opens the possibility to integrate dynamic and risk dimensions
into agricultural models. Indeed, in this dissertation, productivity and its link to
price volatility are modeled and estimated based on the concept of DSGE modeling,
while policy assessment is performed within the CGE framework.



Approach 13

1.2 Approach

We develop dynamic structural models to accomplish the three research objec-
tives of measuring productivity with structural change, studying the dynamic link
among price volatility, farmer decisions and productivity, and the policy assessment
with risks. These models reflect that both productivity and price evolution are dy-
namic processes, and risky events are generally situated in the future. Compared to
reduced-form models, the structural models are developed based on agents’ behav-
ioral principles. They allow us to integrate the agents’ decisions, price volatility,
and productivity in one framework, and are better suited to assess policy reforms.

1.2.1 Dynamic Modeling

Two kinds of dynamic models are constructed in this dissertation. The first is a
DSGE-like farm decision model, in which a forward-looking farmer makes produc-
tion, consumption, capital investment, and financial borrowing decisions to max-
imize the discounted utility of consumption. This model falls into the family of
dynamic programming models. Compared to the DSGE models, this model focuses
on the producers’ side, so that prices are exogenous. Besides, it is at a less aggre-
gate level. Second, we develop a recursive dynamic CGE model with a succession
of short-term equilibria. This model extends the recent CGE models by integrating
the risk and intertemporal dimensions.

The model dynamics pass through the channel of capital accumulation and the
price/productivity evolution. In agriculture, the sources of risk include the price
and productivity in the future periods. They affect current investment decisions in
the way that the agent makes expectations about the future returns. In addition, a
particularity in agriculture is that risks also play a role within one period, between
the growing season and the harvesting season. This risk is modeled in the recursive
dynamic CGE model.

Structural change Above all, dynamic structural models describe the agents’
behavior through economic principles. While the agents’ interactions constitute
the market, we expect the structural models to rationalize the market outcomes.
Important traits of structural models are the mathematical consistency of the model
structure and the stability of the fundamental “deep" parameters. Policy changes
affect the market conditions, but the agents’ optimal behavioral principles stay
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independent from the policy changes. So, the structural models pass the Lucas
critique (Lucas 1976) and can be useful for policy analysis. For this reason, the farm
decisions model is eligible to analyze the new market context with the CAP reforms.
Structural change is imposed in the parameters describing price and productivity
evolution, but not the deep parameters which determine the agents’ decision rules.

1.2.2 Structural Estimation

Given that the structural model describes the market, the estimation goal is to find
optimal parameter sets whose model output can best explain the historical data.
The estimation allows to depict the production techniques, farmer preferences,
and also the latent capital accumulation and the productivity evolution process.
Estimating these models is technically difficult because a numerical solution process
is needed to obtain an explicit state-space model, then the structural parameters
and the latent states in the state-space model are to be estimated with observed
data.

Bayesian techniques are applied to the estimation both for the parameter es-
timation and the hidden-state estimation. Regarding the parameters, we possess
prior information on the deep parameters since they have corresponding economic
meaning. The parameter posteriors are estimated given the priors and data infor-
mation. Finding the optimal state corresponds to finding the posterior conditioned
probability of the hidden state variable at the current time, given all past observed
data. These two steps can be done simultaneously or sequentially.

Statistical learning From a methodological point of view, the estimation strat-
egy discussed in this dissertation belongs to a broader subject, namely statistical
learning. Put plainly, it is to fit a parameterized model to the data.

Statistical learning has been popularized by the machine learning community
in recent years due to the revival of convolution-based deep neural network (LeCun
et al. 1998, Krizhevsky et al. 2012). The deep neural network, also known as deep
learning, has achieved incomparable performance in tasks such as classification,
and face/voice recognition. Although it may seem promising, the usefulness of
deep learning techniques for economic problems is still an open question. The
success of deep learning is largely associated with the depth-related feature learning
procedure, in which the features are automatically extracted from data. This is the
reason why the deep learning works well on rich data sets such as image or sound.
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The feature extraction procedure roughly corresponds to our economic modeling
procedure. A priori, it is unclear how the auto-generated feature can compete with
our sophisticated economic model given that the economic data is sparse in general,
and that the human behaviors are harder to learn compared to physical features.

1.3 Thesis Outline

The dissertation is structured in four chapters.

Chapter 2 Productivity and Price Volatility: A Literature Review This
chapter surveys the literature on productivity and price risks. Total factor pro-
ductivity (TFP) is usually considered as an exogenous process and is related only
to innovations. We argue in this review that, as a residual in the production
function, productivity captures not only the technology change, but also other un-
measured factors, such as the rate of adopting technology, efficiency, labor efforts,
and other misspecification in the data. As a result, prices and price risks influence
productivity through the channels of long-term research and development (R&D)
related investment decisions and efficiency-related decisions. Linked to this point,
the recovery of productivity dynamics depends heavily on data accuracy and the
estimation method. Consequently, we review the measurement problems of inputs
and output, and compare the pros and cons of different estimation methods. In
particular, we emphasize the measurement issues from the unobserved capital data
series and the simultaneity problem from the primal estimation. The estimation
methods we propose in Chapter 3 will deal with these two problems.

Chapter 3 Estimating Nonlinear Dynamic Stochastic Decision Models:
A Generalized Maximum Entropy Approach This chapter studies the nu-
merical optimization methods to solve and estimate dynamic stochastic decision
models, and proposes a new method for the estimation. We estimate an optimal
growth model which can also be interpreted as a farm decision model. In addition
to the likelihood-based method with the filters, we propose a generalized maximum
entropy (GME) approach to estimate the model. Based on Monte-Carlo experi-
ments with simulated data, we perform estimations with the particle filter and with
the GME method. We show that the GME approach yields a precise estimation
of the unknown structural parameters and the structural shocks. In particular,
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the preference parameter which captures the risk preference and the intertempo-
ral preference is also relatively precisely estimated. Compared to the more widely
used filtering methods, the GME approach provides a similar accuracy level but
has a much higher computational efficiency for nonlinear models. Moreover, the
proposed approach shows favorable properties for small sample size data.

The motivations of investigating different methods are several. Indeed, with
Dynare (Adjemian et al. 2011) as an excellent tool for DSGE solution and esti-
mation, why spend time studying the methods and developing new algorithms?
Our first motivation comes from the fact that agricultural data series are volatile,
price risk is a second-order term, and that we are interested in high-order risk
attitudes.2 For these reasons, linear solution and estimation are not sufficient.
For second-order estimation, the particle filter is implemented in Dynare, but the
performance of the particle filter (sampling-based) is not as stable as the Kalman
filter (analytical), and it is time consuming. The GME method has been used to
estimate state-space models, it is straight-forward to program in GAMS, it has
no requirement on the linearity of the state space, and it is efficient regarding the
computing time. However, to our knowledge, the GME approach has not been used
to estimate DSGE models. As a result, this chapter performs experiments to dis-
cover the validity of this new method. The second motivation is with regard to the
solution. Perturbation methods are not accurate with the existence of large shocks
(Aruoba et al. 2006) and are only accurate around the steady states. We prefer
to use projection methods to solve the model. Indeed, policy functions obtained
from projection methods are more usually used for agricultural policy analysis.
However, projection as solution is not implemented in Dynare. We suppose it is
because it is not necessary for linear estimation and the computation burden is too
heavy for second order estimation. As a result, we implement the GME approach
with Chebyshev projection method in this chapter. The third motivation is more
general. The solution methods, the Bayesian estimation with the filters, and the
GME method are statistical learning methods still in-developing. Studying these
methods makes a contribution to computational economics.

2Although high-order risk attitudes are not discussed in this dissertation.
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Chapter 4 Productivity and Price Volatility in French Agriculture: A
Dynamic Stochastic Structural Estimation Based on the GME approach de-
veloped in the last chapter, this chapter estimates productivity and the dynamic
link between output-price fluctuation and productivity in a two-period dynamic
stochastic farm decision model based on French data. We contribute to the capital
measurement issues by treating capital and total factor productivity (TFP) as la-
tent variables. To account for the change in price volatility, we allow for structural
changes in the drift term and the standard deviation of the shocks in the output
price and productivity evolution processes before and after 2003. We estimate the
model based on annual survey data of the crop producers in the Centre region
from the Farm Accountancy Data Network (FADN), covering the period 1988-
2015. To fit the estimation to the less aggregate and very volatile agricultural data
series, we approximate, first, the policy function using a third-order Chebyshev
polynomial method. Second, we estimate the structural parameters using a GME
approach. Our estimation shows that the productivity growth in French agricul-
ture has slowed down and become much more volatile following the increase in price
volatility. Overall, price risk has an impact on productivity in the way that when
exposed to high risks, farmers change their production, consumption, investment
and financial borrowing decisions, which in turn affects the realized productivity
negatively.

Chapter 5 Assessing the Common Agricultural Policy (CAP) Reforms:
Does Farmer Risk Attitude Matter? This chapter simulates the impacts of
public policy instruments. We integrate the risk and dynamic dimension into a
static CGE model, more specifically, the GTAP-AGR model, in which productiv-
ity and price risks are linked. This is realized by modifying the supply side of the
GTAP-AGR model by adding farmer risk attitudes. In the growing season, farm-
ers make optimal decisions in this modified supply model based on expectations of
prices and price volatility. In the harvest season, we introduce stochastic produc-
tivity shocks in the CGE model, and the final equilibrium price jointly determined
by the supply and demand side in the CGE model is not necessarily in accordance
with the price expectations. The farmer receives a capital return based on the true
market price. The model dynamics pass on through the expectations the farmers
newly form from the succession of short-term market equilibria. We show that in
addition to the price expectations, the expectations of price volatility become one
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of the key factors for farmer decisions through its influence on the risk premium.
Under the endogenous modeling of the CAP instruments, risk aversion matters by
leading to much larger production and price effects. The impacts of policy instru-
ments are even larger if the wealth effect is taken into consideration. Risk aversion
also matters by dampening the dynamics induced by endogenous price risks.



Chapter 2

Agricultural Productivity and Price
Volatility: A Literature Review

2.1 Introduction

It was not until the 1950 that the economists introduced the idea of productivity
as a “residual". Schultz (1953, 1956) is the first to mention that in agricultural
production, and in the rest of the economy, the additional conventional inputs
account little for the increase in output. As such, Schultz views the technology
change as a particular input which contributes to the output as an other type of
inputs. In the same vein, Solow (1957) uses the term “residual" to describe the
portion of output growth that cannot be explained by input growth. This residual
is called total factor productivity (TFP).

As a “residual", productivity is closely linked to the core subjects of agricultural
economics: product supply, factor demand, income distribution, the relationship
between output and input prices, return to scale, and capital accumulation. In eco-
nomic models, it is always considered as an exogenous process. Indeed, if considered
as pure technological change, productivity is only related to the development of sci-
ence and technologies that increase outputs and save inputs. However, as discussed
in Schultz (1953) and the subsequent work of Jorgenson and Griliches (1967), the
rate at which the producers adopt technological changes, and the quality of in-
puts, are also of great importance to productivity growth. These factors introduce
the pertinence of the individuals’ decisions and public policies on productivity.
Moreover, the analysis of productivity depends on the measurement of inputs and
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outputs, the omitted factors which would constitute a part of the residual if not
being controlled, the magnitudes of parameters, the econometric methods, and the
market structure assumptions. As a result, to study productivity and its relation-
ship with price volatility, “the measurement problems are pertinent even if on the
surface it seems the subject matter is not technical"(Mundlak 2001).

This review aims at providing an understanding of productivity, its measure-
ment, and their drivers. We investigate the role of price and price volatility on
productivity. The price formation process and the sources of price volatility are
not the focus of this review, they are discussed in detail in Gouel (2011). The
structure of the chapter is as follows. In the first section, we present the facts on
productivity growth and productivity differences, so as to understand the impor-
tance of agricultural productivity. As a supplement, we review the recent research
issues in productivity in different economic fields. In the second section, we revisit
the important measurement issues in estimating the production function and pro-
ductivity. In the third section, we discuss the determinants of productivity. We
discuss productivity and price volatility in the fourth section, and this is linked to
the previous three sections. In part, this chapter builds on the previous reviews
from Mundlak (2001), Bartelsman and Doms (2000), and Syverson (2011).

2.1.1 Some Evidence on Productivity Growth and Produc-

tivity Differences

In a simple manner, productivity measures how much output is obtained from a
given set of inputs. Productivity is important because, with higher productivity,
firms are able to enhance their profitability, households may enjoy more products,
and the well-being of the economy increases with the same resources (Shumway
et al. 2016). There has been productivity growth in most industries and through-
out most of the world over decades. This productivity growth is mainly achieved
through the development of technologies that increase output and save inputs.

Productivity growth is the principal contributor to economic growth. This is
the same in agriculture. Ball et al. (1997) find that over the period 1948 − 1994,
despite the decline in labor input and modest growth in capital input, the US
agricultural output growth realized nearly a 2% annual growth rate. This confirms
that productivity growth is the main factor responsible for economic growth in
agriculture. Jorgenson et al. (2005) find that agricultural productivity growth
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contributes nearly 80% output growth in the US agriculture over the period 1977−
2000. More recently, Ball et al. (2015) revisit agricultural productivity using USDA
Economic Research Service (ERS)’s production accounts. Consistent with previous
literature, they find that productivity growth constitutes 91% of economic growth
in agriculture over 1948 − 2013, and the quality change in labor, capital, and
intermediate inputs contributes of 0.12% to economic growth.

However, there are growing concerns that agricultural productivity growth has
been slowing down during the last decades. In the EU, based on the TFP index
computed by European Commission (2016), productivity keeps on growing, but
the growth rate is slower in recent years. Figure 2.1 and 2.2 show the productivity
evolution path for the EU-15 and EU-28. The average TFP annual growth rate
for EU15 is 1.38% for the period 1995− 2005, and is 0.6% for 2005− 2015. With
a higher growth rate for the EU-N13 at 1.6% for 2005 − 2015, the EU-28 average
growth is 0.8% for this period. However, the positive growth rate in the EU-15 and
EU-13 are realized by the positive growth in labor productivity, which is related
to the decreasing number of labor involved in agriculture. Capital productivity
grows negatively. Regarding France, agricultural productivity grows in line with
the EU-15 average (Figure 2.3).

For the US and the rest of the world, Alston et al. (2009) document a global
slow-down in grain yield, land productivity, and labor productivity growth after
1990, and the global productivity growth rates are even substantially lower if China
is left out. Ball et al. (2013) revisit the slowdown hypothesis adopting economet-
ric techniques that allow for structural breaks. They show that the productivity
growth rate has been slowing down persistently after 1974 and after 1985. Based
on the results of different data and methods, Andersen et al. (2018) confirm a slow-
down in agricultural productivity in all the results from different data and methods.
On the contrary, Fuglie (2010) presents a comprehensive global and regional picture
of agricultural total factor productivity (TFP) growth over 1961− 2007. He finds
no evidence of the agricultural productivity slowing down. The accelerating TFP
growth, and decelerating input growth have offset each other and keep the real
output of agriculture growing at slightly more than 2% per year since the 1970s.
The different results are due to different measurement methods and focuses.

Agricultural productivity gaps across countries have long been observed by
economists. They play a key role in understanding international income differ-
ences. It is a fact that poor countries have much lower agricultural productivity
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Figure 2.1: Evolution of total and partial factor productivity in the EU-15 (3-year
moving average) (Source: European Commission 2016)

Figure 2.2: TFP-index grows faster in the EU-N13 compared to EU-15 (2005=100)
(Source: European Commission 2016)
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Figure 2.3: TFP growth path for the EU-15 Member States which grow in line
with EU-15 (Source: European Commission 2016)

than rich countries. A number of macroeconomic studies investigate the produc-
tivity problem in poor countries quantitatively. For example, Adamopoulos and
Restuccia (2014) relate aggregate agricultural productivity to farm size and the
misallocation of resources from high-productive large farms to low-productive small
farms. Similarly, from the perspective of firm-level productivity heterogeneity, Bar-
telsman et al. (2013) develop a theoretical model in which firm-level productivity
heterogeneity negatively impacts aggregate productivity due to misallocation of
resources across firms. Tombe (2015) relates the productivity differences to inter-
national trade: trade costs are large for agricultural products in poor countries,
which amplifies the productivity difference. Moreover, there is a large puzzling gap
between agricultural productivity and non-agricultural productivity in developing
countries, even after improving the data measurement (Gollin et al. 2014). Most
literature explains it from the labor allocation aspect, as in poor countries a much
higher percentage of labor is engaged in the agricultural sector only to satisfy the
basic food requirement (Schultz 1953).

The above evidence reveals the economists’ concerns about agricultural produc-
tivity growth and agricultural productivity gaps. Indeed, sustained agricultural
growth is crucial with more and more constrained natural resources. In this sense,
developing a better measurement of productivity and understanding the sources of
productivity to sustain agricultural growth becomes particularly important.
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2.1.2 Recent Research Issues in Productivity

Productivity is of interest to economists in different fields. Recent research devotes
effort to revisit productivity by dealing with the omitted price problem (outputs
and inputs are measured in currency instead of physical units), the simultaneity
problem between productivity and input choices, firm-level heterogeneity, and in-
dustrial dynamics. The central research questions are always how to obtain less
biased productivity measures, and what factor impacts productivity through which
mechanism.

Agricultural economists face universal issues like heterogeneous farms and dy-
namic decisions. Particular measurement problems exists in agriculture due to the
simultaneous presence of hired and family labor, heterogeneous land and specific
capital (machines and buildings). Lots of efforts have been given on improving
data and providing accurate agricultural productivity measures (e.g. Shumway
et al. 2016). In view of production economics, econometricians in this field have
much contributed to the search for possibilities to identify the production function
(see, e.g., Griliches and Mairesse 1995).

The Industrial Organization (IO) literature has provided pioneering works in
modeling firm-level industrial dynamics and estimating productivity. Ericson and
Pakes (1995) are the first to provide a theoretical model of industry dynamics
with firm entry, exit, and investment decisions. This model has been widely used
afterwards for empirical research on industry productivity. Recent IO literature
also focuses on product differentiation, market power, and estimating productivity
from both the supply and the demand side (see, e.g. De Loecker 2011).

Economic growth is a major topic in macroeconomics. Models such as the real
business cycle model in which the economic fluctuations are driven by produc-
tivity shocks are studied with more varied assumptions and enriched by micro-
components. As suggested by Colander et al. (2008), more varied behavioral as-
sumptions than rational expectations, as well as interaction among heterogeneous
agents rather than aggregate decisions are taken into consideration. Furthermore,
thanks to the development of numerical computation techniques, modern macro
models can be studied in a dynamic stochastic framework, which allows for a
more empirically based analysis, also of policy implications (see, e.g. Fernández-
Villaverde and Rubio-Ramírez 2005, Caldara et al. 2012b, Van Binsbergen et al.
2012).
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2.2 Measuring Productivity

We need to first define total factor productivity (TFP), and distinguish it from
partial factor productivity. Consider in a production function,

Yt = AtF (Lt, Tt, Kt, Xt) (2.1)

where Yt is output, Lt is labor, Tt is land, Kt is capital, Xt is intermediate inputs,
and t is the time subscript. The residual of the production function, At, is the total
factor productivity (TFP). Partial factor productivity, which is usually the ratio of
output over one single input, is also used as a productivity indicator in some parts
of the literature. However, partial factor productivity can be easily impacted by the
usage intensity of other inputs - one firm may have higher labor productivity than
the other firm only because it uses capital more intensively. Consequently, TFP
is the more commonly used productivity measure. As the problem is presented,
estimating productivity amounts to estimating the production function. The iden-
tification and estimation of the production function and the data measurement
issues are discussed in a broad literature including but not limited to Griliches and
Jorgenson (1966), Griliches (1994), Griliches and Mairesse (1995), Mundlak and
Hoch (1965), Mundlak (1996, 2001), and Van Biesebroeck (2007, 2008).

2.2.1 Data Issues: Measuring Inputs and Outputs

In order to measure productivity, the first step is to obtain data on outputs and
inputs. In agriculture, this concerns mostly land, labor, capital, such as machinery
and buildings, and other variable inputs, including seeds and the use of fertilizers
and chemicals. It is obvious that the accurate measure of the inputs and outputs
affects directly the productivity measures. However, instead of presenting the facts,
the data are rather quantitative proxies of the facts. Moreover, particular inputs,
like land quality, and efforts made by the family labors, are difficult to measure.
These unmeasured inputs will eventually enter into the residual and become part
of productivity.

Capital stock and capital flow

We start with the most problematic input, capital. Measuring capital is diffi-
cult because instead of being a decision taken at each point of time which can be
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accurately retrieved, the capital service is a flow. Indeed, capital accumulation
is a dynamic process, the investment goods purchased in one period contribute
to the capital stock in the future periods. However, what amount of investment
contributes to the capital stock in which future period is unobservable, and not nec-
essarily recorded accurately in the account. Consequently, if we want to compute
the capital stock from investment, it relies heavily on assumptions about deprecia-
tion, obsolescence, replacement, and it is sensitive to these assumptions. Moreover,
there are different types of capital,and how to aggregate them into one is another
question (usually index numbers are used). Besides, Griliches and Jorgenson (1966)
point out that the consumer of capital services is often also the supplier, this entire
transaction occurs in the internal account and is not observable. This is particu-
larly true for agricultural capital. As a result, information is usually obtained from
indirect inference, and assumptions on ex-post usages of capital must be made.

Approximating the capital goods from the past investment flows is called the
perpetual inventory method. This is a most commonly used method for capital
inputs. A simple example of such a capital series approximation is:

Kt = It + (1− δ)It−1 + (1− δ)2It−2 + ...+ (1− δ)LIt−L (2.2)

where Kt denotes the capital stock in period t, It denotes the investment in period
t, δ denotes the depreciation rate, and L is the economic life time of an asset.
Further assumptions on capital adjustment costs can be added, too.

Andersen et al. (2011) show that the perpetual inventory method depends heav-
ily on assumptions of depreciation, economic life time, and the interest rate. They
compare the state-level capital measures from two major agricultural productivity
databases in the U.S., the U.S. Department of Agriculture - Economic Research
Service (USDA-ERS) and the International Science and Technology Practice and
Policy (InSTePP) in University of Minnesota. Despite adopting similar methods
and data sources, the approximated capital series can, however, be different. An-
dersen et al. find that these differences largely come from the different assumptions
on the interest rate, which in turn affect the investment price. The importance of
the interest rate assumption leads us to another universal problem: which price
should be used to convert the value of capital into the physical unit of capital?
Alston (2018) highlights again that how to measure the price and quantity of the
capital is still a problem to be resolved.
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Another capital measurement method is the physical inventory method. It
measures capital directly from the data of the current capital stock. The limitation
of this method is that the data on capital goods is usually unavailable, or it is only
in book values. If the data is in book values, we need to choose a price deflator to
deflate the book value into physical units. Again, the book value of investment is
also the problem of the perpetual inventory method. Moreover, the book value of
capital may be optimized to fulfill fiscal purposes.

Last, even if we can observe, or have accurately measured the capital stock,
how much of the stock is used as the flow of the capital in a given period remains a
question - the capital in-place is not the capital in-use. Griliches (1960) points out
that it is hard to know at which rate the entrepreneur converts the capital stock
into capital service for each year because it is rather an internal rate. A common
approach is to assume a ratio. A consequence of such wrong capital measurement
is the spurious cyclical movement in productivity. More recently, Andersen et al.
(2012) also find that the assumption that the capital service flows are a constant
proportional to the capital stocks gives rise to cyclical errors in the capital measure,
and leads to biased pro-cyclical patterns of productivity growth.

Labor

Regarding labor, whether to use numbers of employees or working hours is a ques-
tion. In agriculture, part of labor is usually self-employed, and thus puts some
difficulty in measuring the working hours and the wages. Mostly obtained from
surveys, the agricultural working hours can be more subjective compared to the
industry working hours, which may lead to certain measurement errors. Besides,
as agricultural labor quality can be different regarding education level, age, sex,
family labor, and hired labor, it is important to classify labor according to these
categories.

While it will relate to another strand of literature, the learning process of labor
also plays an important role in augmenting production, but it is difficult to quantify
these processes. Nevertheless, learning-by-doing is an area with a growing literature
aimed at explaining the productivity drivers.
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Land

Land is a particular input for agricultural production. Acreage is a common mea-
surement unit for land, which usually has much smaller measurement errors com-
pared to other inputs. The main caveat for land measurement is the land quality.
It is common that land quality is different across regions and for different crops,
it is thus important to adjust land measurement according to heterogeneous land
quality. Besides, how to account for land quality change across years is another
question. For productivity measures where prices are needed, the formulation of a
land price is quite different from other goods, and there are more complex regula-
tions regarding land.

Goods (output & intermediate inputs)

Agricultural intermediate inputs comprise animal feed, seed, livestock, chemicals,
fuels, and other purchased inputs. The issue of using revenue instead of physical
unit as output raises for intermediate inputs and output, or in all, for goods that
should be measured in physical quantities.

Output sales or revenues deflated by an industrial level price index are often
used as output measures, because physical quantities are unavailable or cannot be
aggregated. This output measurement is acceptable if the market is under perfect
competition, so that the homogeneous product price equals marginal cost. It is even
desirable if price fully reflects quality. However, perfect competition is an assump-
tion. If the firm-level price variation is a result of market power, the sales-based
output measure would be biased. The corresponding productivity measure could
not reflect fully the firm efficiency but would also include the price mark up effects.
To elicit such measurement problems, Klette and Griliches (1996) show that the
omitted price variable bias rises when the prices are correlated with other variables,
using deflated sales as output measure leads to a downward bias in productivity
estimates. De Loecker (2011) extends Klette and Griliches’s work to multiple prod-
ucts and factor price variation, and shows again that the omitted prices result in
productivity estimation bias. Based on physical output and price data, which is
extremely rare as a data set, Foster et al. (2008) show that revenue productivity is
positively correlated with price while physical productivity is the inverse, and the
productivity-survival is actually profit-survival. In the agricultural sector, farms
usually possess much less market power than industrial firms. Agricultural prices
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tend to be homogeneous across farms, so that this problem may be less severe for
agriculture. The problem may still exist for special products, like milk. Besides,
although the above caveats are causing concerns in recent studies, in most of the
empirical productivity literature, deflated sales or revenues are still commonly used
as an output measure.

2.2.2 Econometric Estimation: Endogeneity Problem

The basic criticism for direct econometric estimation of the production function
is the endogeneity problem caused by simultaneity (first pointed out by Marschak
and Andrews 1944). That is, the producers choose their inputs by partly know-
ing their productivity level, while their productivity level is unobserved by the
econometrician. Consequently, the input choices are correlated with the residual
productivity and cannot be treated as independent variables, and the ordinary least
squares (OLS) method will lead to a biased estimation. Take the Cobb-Douglas
production function as an example,

yt = αkkt + αllt + αmmt + αxxt + µt (2.3)

where yt, kt, lt,mt, xt are the logs of output, capital, labor, land and intermediate
inputs at time t, βk, αl, αm, αm are the estimates of elasticity of the respective
inputs, and µt is the residual and represents the estimate of productivity.

If every input used for production is included in the estimation and they are all
well measured, the residual TFP represents solely technology and other “purely"
unexpected exogenous shocks, such as weather shocks. However, except the con-
ventional inputs, capital, labor, land and intermediate inputs, which already have
certain measurement issues, there are still a lot of left-out “unconventional" in-
puts, such as the quality of inputs, the efficiency of using the inputs and adopting
the technology, the subjective effort made by the producers. These left-out inputs
constitute also part of the residual productivity.

Anatomy of the residual To demonstrate the above view more clearly, we
present the anatomy of the residual following Griliches and Mairesse (1995). The
residual µt in Eq. (2.3) can be written as:

µt = ωt + et + εt (2.4)
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where ωt is the component known by the producer but not observed by the econo-
metrician, et is the component not known by both, and εt is the measurement
error.

More specifically, ωt is the component known by the producer at the point of
decision making. It can be decomposed again as

ωt = at + zt (2.5)

where at represents the technology level, and zt represents other left-out factors or
the misspecifications in describing the production process, which may include the
efficiency of adopting the technology, unmeasured land quality, unmeasured labor
quality (skill, education, learning), management efficiency, the producers’ effort,
and even the misspecified part of the capital service flow. In addition, due to the
character of at and zt, the two time series also have potential serial correlation
issues.

et is the component not known by the producer at the point of decision mak-
ing, but there is a possibility that it realizes in the future and will influence the
producer’s future decisions. For a forward-looking producer, et also affects the
current decisions through the channel that the distribution of et has an impact on
the producer’s expectations. This would include the unpredictable weather shocks,
the environmental shocks, the unanticipated regulation changes, and the changes
in producer effort in response to unanticipated market conditions. et, on the other
hand, is serially uncorrelated.

Over all, ωt and et affect the input choices for the current period and for the
future, which results in the endogeneity problem. Several approaches are proposed
to solve this issue.

2.2.3 How to Deal with the Endogeneity Problem?

Dual approach

A usual way to deal with the endogeneity problem is to use price as an instrumen-
tal variable. This is actually the dual approach in which profit maximization and
cost minimization assumptions are adopted. Besides, a widely used non-parametric
measure of productivity, the index numbers, is based on the idea of the dual ap-
proach.
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Index Numbers Index numbers assume perfect competition in output and input
markets and optimization behavior of firms. Based on the profit maximization
and cost minimization framework, the output elasticity of the inputs are their
respective cost share. If assuming constant return to scale, the value shares add up
to one. As a result, the inputs’ elasticities can be calibrated by imposing theoretical
assumptions and the estimation can be skipped.

The index number then provides an aggregation for outputs and inputs. The
TFP index is usually constructed as the ratio between an output index and an
input index, where the input index is the weighted aggregation of the factor inputs
quantities, with inputs’ elasticity as weights, and the output index is the weighted
aggregation of the outputs if there are multiple outputs. The most used indexes are
the Laspeyres index, the Paasche index, and the Fisher index (geometric average
of Laspeyres index and Paasche index). Other than those, the Malmquist index
and the Tornqvist index (geometric average of two Malmquist indexes), the divisia
index, and the Hicks-Moorsteen TFP indexes are also widely used. In the U.S., the
USDA-ERS has long been improving the inputs and outputs data, and providing
state-level, national, and international productivity growth using the index num-
bers. Ball et al. (1997) describe the calculating procedure in detail. In Europe, the
European Commission also provides national-level productivity briefs using index
numbers, based on Economic Accounts for Agriculture (EAA) from Eurostat.

The main advantage of the index numbers is that it is a straightforward com-
putation, it handles multiple outputs and many inputs, and it is flexible enough to
deal with heterogeneous production technology. Moreover, it proves to be robust
unless the data is subject to much measurement error (Van Biesebroeck 2007).
However, although it avoids the endogeneity issue from the production function
estimation, it requires strong assumptions on firm behaviors and market structure,
which turns out to be the main disadvantage. Another important potential bias is
that the index approach assumes away factor adjustment costs. With the presence
of adjustment costs, the linkage between first-order conditions and observed factor
shares need not hold (Syverson 2011).

To improve the static nonparametric productivity measures to dynamic ones
and to consider the adjustment costs, Luh and Stefanou (1991) develop a dynamic
model with intertemporal production and investment decisions. Since the collected
data are not necessarily in static or long-run equilibrium, the dynamic produc-
tivity growth measure is adjusted from the deviation from long-run equilibrium.
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Applied to the U.S. data, the dynamic productivity index exceeds the conven-
tional Tornqvist-Theil index over the period 1950 − 70. More recently, Silva and
Stefanou (2003) have developed a theoretical nonparametric dynamic framework
in which costs are minimized intertemporally and adjustment cost is considered.
Based on this model, Silva and Stefanou (2007) develop a nonparametric dynamic
measurement of agricultural technical, allocative and economic efficiency. A pos-
sible future research direction proposed by them is to develop stochastic dynamic
non-parametric measures on productivity.

The Olley and Pakes (OP) approach

Olley and Pakes (1996) estimate a dynamic structural model with heterogeneous
firms producing a homogeneous good. They develop a two-stage estimation tech-
nique to overcome the simultaneity problem. The idea is to run a two-stage regres-
sion, using an investment equation as a proxy for productivity. Based on this idea,
Levinsohn and Petrin (2003) use intermediate inputs as a proxy for productivity
to overcome the simultaneity problem.

The strongest assumption of the OP approach is that the unobserved productiv-
ity is a strictly monotone function of an observed character of the firm. It involves a
two-stage regression, first, under the condition that investment is strictly increasing
under the unobserved productivity ait for every state variable kit, iit = iit(ait, kit).
So we could write ait as an inverted function of investment,

ait = hit(iit, kit) (2.6)

The first-stage regression is thus

yit = βllit + φit(iit, kit) + εit (2.7)

where φit(iit, kit) = β0 + βkkit + hit(iit, kit). This first-stage regression allows us to
identify the labor elasticity βl.

The second-stage regression is

yit+1 − βllit+1 = βkkt+1 + ψ(φ̂it − βkkit) + εit+1 (2.8)

The functions φit and ψit are approximated by polynomials. Since capital kit+1 is
a state variable and decided by the last period investment iit, kit+1 is independent
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of the error term εit+1, so there is no endogeneity problem. The second stage
regression allows us to identify the capital input elasticity βk.

The estimated productivity Ait is thus,

Ait = yit − β̂llit − β̂kkit (2.9)

Efficiency approaches

Stochastic Frontier The stochastic frontier method falls into the family of para-
metric estimation. The method was first proposed by Aigner et al. (1977) and
Meeusen and van Den Broeck (1977). The general idea of this method is that the
unobserved productivity difference is a negative error term representing the ineffi-
ciency of firm i at time t. This error term is assumed to follow a certain distribution.
Productivity is a random draw from the negative of the distribution, in this way
the unobserved productivity is not correlated with input choices. The parameters
are usually estimated with maximum likelihood from Monte Carlo simulation.

Data Envelopment Analysis (DEA) Data envelopment analysis (DEA) is a
non-parametric method used for efficiency measures. It was first proposed by Farrell
(1957). It does not require a detailed functional form and behavioral assumptions,
and it is applied to each firm which allows for firm-level technology variations.
In the DEA method, efficiency is defined as the ratio of a linear combination of
outputs divided by a linear combination of inputs. First, weights on inputs and
outputs are chosen to maximize efficiency. Second, the efficiency parameter θi is
interpreted as the productivity differences between firm i and the most efficient
firm.

2.2.4 Why is the Measuring Problem Important?

Van Biesebroeck (2007) compares the performance of the estimation methodologies
in the presence of firm-level heterogeneity. He simulates samples by introducing
heterogeneity in three ways: factor price heterogeneity, measurement error, and
differences in production technology. The results show that an approach with the
index numbers produces robust estimates unless the data is subject to much mea-
surement error. DEA is the preferred estimator if technology varies across firms.
Stochastic frontier is accurate when the productivity differences are constant over
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time, output is measured accurately and the firms share the same technology. OP
approach allows exploring the firms’ knowledge about the stochastic productivity
shocks. It is accurate in the absence of fixed effects, and it also performs well in
the presence of measurement error.

The problems we discuss above are to some extent technical. The measurement
issue is important because when the unmeasured factors enter the residual, they
become pertinent with regard to the productivity determinants. A straightforward
example is to consider technology as a special production factor not measured in
the input data, then the determinants related to technology will have an impact on
the residual productivity. This point is demonstrated more clearly in the next sec-
tion in Table 2.1. Another issue is with regard to the misspecifications in the data,
which in the end will be reflected in the residual. The example is that using the
capital service data as a constant proportion of the capital stock measure possibly
leads to a pro-cyclical pattern of productivity growth; the revenue-based produc-
tivity measure is positively related to price while the physical based productivity
measure is the inverse. As a result, it is important to take these misspecifica-
tions into consideration when performing the empirical analysis. Last, regarding
the estimation, as each estimation technology has its pros and cons (Van Biese-
broeck 2007), choosing a preferred unbiased estimation method given the research
objective and the character of data set is important for the empirical analysis.

2.3 Determinants of Productivity

Empirical research on the determinants of productivity can be classified into two
types. The first type is to measure productivity empirically with the methods
described in the last section, and then to apply reduced-form econometric methods
to examine the relationship between the measured productivity and the potential
drivers. The second type is to measure productivity and investigate its drivers
simultaneously in a structural model.

2.3.1 Decomposition of Productivity

In section 2.2, we discuss the decomposition of the residual in equations (2.3) -
(2.5). The component ωt, which is known by the producer but unobserved by the
econometrician, can be decomposed further to technology and all the other left-out
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Table 2.1: Decomposition of TFP (Econometric & Theory) and the Corresponding
Potential Drivers

TFP
(residual)

Unobserved by econometrican,
known by producer (ωt)

Unobserved by
econometrican,
unknown by
producer (currently)

Measure-
ment
errors

Anatomy
of residual at zt et εt

Decompo-
sition

technological
change

efficiency
(management, effort,
...);land, labor,
capital quality;
misspecification
in inputs (capital);

weather shocks;
environmental shocks;
unanticipated market
conditions

-

Potential
determinants

R&D;
productivity
spillover

firm structure;
market structure;
learning by doing;

exogenous -

Related to
price & risks?

Yes
(e.g. long-term
investment)

Yes
(e.g. efficiency
related decisions)

Yes, if assumed
expectations affect
current decisions

No

Note: at, zt, et, εt as used in equations (2.4) - (2.5)

factors which are not specified for the production process. The econometric error
decomposition shares the same idea with a subsequent literature where TFP is
decomposed into technical change measures and efficiency measures (Farrell 1957,
O’Donnell 2010, 2012). O’Donnell (2012) decomposes TFP change into technical
change, input- and output-oriented measures of technical, scale and mix efficiency
change. He shows that before 1990 technical change was the main driver of TFP
growth in U.S. agriculture, and after 1990 output-oriented scale efficiency change
became the most important driver. Plastina and Lence (2018) decompose TFP
change into technical change, technical and allocative efficiency change, a markup
effect, and an input price effect. They show that at the state level for U.S. agricul-
ture, technical change is the major driver for TFP growth in the long run, although
the technical progress has been slowing down compared to the 1970s. Examining
the TFP components and their contributions to TFP growth lead us to the further
questions: what are the internal determinants for these components that result in
the final TFP growth? If policy suggestions or management decisions are to be
made, what would be the concrete content and policy focus? In Table 2.1 we list
the connection of these questions.
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2.3.2 Determinants of Productivity

Research and Development (R&D)

The most widely mentioned determinant of agricultural productivity growth is
R&D. A series of studies of Griliches (1963, 1994) has emphasized the important
role of R&D investment in improving productivity. This view is echoed in a sub-
sequent literature (Pardey et al. 2010, 2013), showing that the development in
technology contributes to a large part of agricultural productivity growth, and
thus that the investment in public R&D is an indicator for productivity growth.
Wang et al. (2013) find that public R&D and private R&D are complementary,
and the accumulation of the R&D stock contributes to long-run agricultural pro-
ductivity growth. Alston et al. (2011) find high benefit-cost ratios with regard to
investment in agricultural research, which indicates an underinvestment in R&D.
Besides, the R&D lags are much longer than the previous studies indicated. Alston
(2018) shows again the high social return to agricultural R&D and the government
fails to provide sufficient provision for R&D.

Sabasi and Shumway (2014) examine the factors driving the productivity growth
in more detail. They show that, in addition to public R&D investment and its
spillovers, health care access, education are the main factors influencing technical
change, which in turn is the dominant component of productivity growth. Private
R&D has mixed effects on technical change. Technical efficiency changes little over
the data period, it is primarily driven by the farm size and the ratio of family to
total labor. Scale and mixed efficiency also change little over the data period, it is
mostly affected by agro-climate conditions, weather, and farm size.

Firm structure

Firm structure is another important determinant for agricultural productivity.
Much research relates to farm efficiency, which in turn contributes to productivity,
with farm structure characteristics such as size, specialization, and organization.
Regarding farm size, the simplest characteristic for farm structure as an example,
Sabasi and Shumway (2014) show that technical efficiency is primarily driven by
the farm size and the ratio of family to total labor. Adamopoulos and Restuccia
(2014) develop a heterogeneous farm model to show that farm size is an important
factor for the low productivity problem in poor countries. The reason is that poor
countries tend to have small farms with low productivity, which leads to a problem
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of resource misallocation. In this vein, public policies such as land policies (which
influence farm size) have an impact on productivity.

Learning by doing

Arrow (1962) is the first to suggest learning as a potential driver for productivity
growth. Learning-by-doing needs to be analyzed in a dynamic context. Luh and
Stefanou (1993) treat the acquisition of knowledge as a firm-specific capital in the
dynamic adjustment-cost model, they show that learning-by-doing is an important
unmeasured source of agricultural productivity growth. Moreover, there are other
important internal drivers such as market structure, management, and innovations.

Market structure

Regarding external drivers, a large literature finds that competition enhances pro-
ductivity (e.g., Holmes and Schmitz 2010). First, competition may increase the
minimum productivity threshold for survivors. It forces less efficient or less pro-
ductive firms to exit the market, and increases the productivity entry level for new
firms. Second, competition increases efficiency, and thus productivity within firms.
It forces the existing firms to take action to increase their productivity, for example,
by adopting new technologies, optimizing organizational structure, and enhancing
managerial power.

Productivity spillovers

Productivity spillovers are another important external driver for productivity growth.
For example, Ball et al. (2010) show that Spain had the second lowest in agricul-
tural productivity in Europe in 1973 while it is the second highest in 2002. One of
the reasons is the knowledge transfers. Lower-productivity producers are likely to
imitate the productivity leaders, and it is less expensive than innovation.

2.3.3 The Role of Public Policy

Public policy affects on productivity through various channels mentioned above.
Much trade literature investigates the impacts and the channel of trade reform on
productivity. Theoretical and empirical evidence shows that firm-level productivity
increases with firm exporting (De Loecker 2007, Aw et al. 2011). On the one hand,
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most research relates trade liberalization to international competition from the
output price aspect. In particular, trade reform induces a reduction in domestic
output prices, and increases international competition, which in turn increases firm
efficiency and productivity. On the other hand, a growing literature investigates
trade reform from the input side. For example, Amiti and Konings (2007) find that
trade liberalization leads to a decrease in domestic input prices, and lower input
price raises productivity significantly, and the decrease of input price has a higher
impact on productivity than the decrease of output price.

Domestic policy also has an impact on productivity. As is mentioned above,
land policy may impact productivity through farm size (Adamopoulos and Restuc-
cia 2014). Regarding output subsidies, Rizov et al. (2013) propose a model follow-
ing the OP approach, in which they model the unobserved productivity and the
effects of subsidies into a structural semi-parametric estimation procedure. They
find that there is a positive correlation between subsidies and productivity after the
CAP reform in 2003 which decouples the subsidies from production. This result
suggests that the decoupled payments are less distortive and enhance productivity.
Similarly, Kazukauskas et al. (2014) test the impacts of the decoupling policy on
farm productivity following the LP approach (Levinsohn and Petrin 2003). The
difference is that they use the farmers’ choices of intermediate inputs to control
the unobserved farm productivity. Based on Irish, Danish and Dutch farm-level
data, they find evidence that the decoupling policy has significant positive effects
on farm productivity and behavioral changes related to farm specialization.

2.4 Price and Productivity

Regarding the literature exploring the link between price and productivity, the
price-induced innovation theory (Hicks 1963) states that changes in relative prices
of factors are expected to induce innovations to economize the use of relatively more
expensive inputs. Liu and Shumway (2009) test the induced innovation hypothesis
for US agriculture using three testing techniques but reject the hypothesis in most
cases. The intuition is that the marginal cost of developing a new technology for the
relatively expensive inputs is higher than the cost of using relatively cheap inputs.
More recently, Cowan et al. (2015) test this theory from the supply side and the
hypothesis is supported for several pairs of inputs. Nevertheless, the empirical
findings are generally against the policies based on the theories that price signals
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alone induce technical change.

Compared to the price-induced innovation theory which indicates that relatively
expensive inputs induce innovation, more studies find that input price reduction
generates the productivity gain. Amiti and Konings (2007) find that trade liber-
alization which reduces input tariffs raises productivity significantly in Indonesia,
and the decrease of input prices has a higher impact on productivity than the de-
crease of output prices. This productivity effect could arise from the channel of
higher-quality foreign inputs which are not accessible before the trade liberaliza-
tion, variety, and learning, but these channels have not been examined in the paper
due to the lack of data. De Loecker et al. (2016) use detailed price and quantity
data to estimate a quantity-based production function. Their structural estimation
results capture the effect that trade liberalization reduces input and output prices,
and increases productivity. The possible channel is that firms can take advantage
of previously unavailable inputs to improve productivity. Another important find-
ing is that the price reduction is much smaller than the marginal cost reduction
through trade reform, which indicates that the firms increase the markups to offset
the decline in marginal cost. Gaigné and Le Mener (2013) develop a theoretical
general equilibrium model based on the empirical fact that agricultural prices fell
between 1900 and 2006, and there is a trend of higher concentration in the food
industry and an increase in productivity. They show that low input prices lead to a
high exit rate of low-productivity firms and high industry concentration, resulting
in higher productivity in the agrifood industry.

However, there is scant literature on the relationship between productivity and
price volatility, or productivity under risk. Reduced-form econometric studies find
mixed results regarding price volatility and productivity, but with a larger tendency
of findings for a negative relationship. Ramey and Ramey (1995) find empirical
evidence of the negative relationship between the volatility of economic fluctua-
tions and economic growth. One of the possible explanations is that volatility
discourages the demand for investment, and this effect exceeds the encouragement
of precautionary saving, the sum of the effects in the end decelerates the economic
growth (Aghion et al. 2010). Further negative impacts of price volatility on pro-
ductivity are supported by Cavalcanti et al. (2015) and Kazukauskas et al. (2010).
On the contrary, Frick and Sauer (2017) and Lien et al. (2017) find a positive rela-
tionship focusing, respectively, on the German and Norwegian dairy sectors. The
positive effect is realized from the fact the inefficient firms are forced to exit the
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market because of high price risks.

While the empirical findings are evident, how do theory and structural models
explain the linkage between price volatility and productivity? In the first place,
the endogenous productivity theory provides some interpretation. Aghion et al.
(2010) develop a theoretical growth model in which the exogenous liquidity shocks
generate endogenous productivity movements through the interaction with financial
markets. They decompose productivity into an endogenous and an exogenous
component. The endogenous one depends on the accumulation of knowledge, long-
term investment, and liquidity risk. The risk-neutral entrepreneurs maximize the
expected wealth with respect to short-run investment (capital investment), long-
term investment (R&D investment) and risk-free investment (bonds). They find
that in the incomplete financial market, the tighten credit constraint indicates a
higher risk for long-term investment when facing liquidity shocks, thus amplifying
the TFP volatility and lowering the economic growth.

Based on the propagation role of the financial market, Aghion et al. (2009) find
empirical evidence that exchange rate volatility has a negative impact on produc-
tivity growth, especially in countries with a low level of financial development. To
support the empirical findings, they develop a two-period monetary growth model
of overlapping generations with entrepreneurs and workers. At the beginning of the
first period, the entrepreneurs decide the optimal labor given sticky wages. At the
end of the first period, the entrepreneurs decide whether to innovate in the second
period or not, in order to survive from a liquidity shock. The entrepreneurs’ ability
to cover the liquidity cost and to innovate is constrained by the credit market, and
the productivity process depends on last period’s productivity and the decision to
innovate or not. They show that exchange rate appreciation decreases the firms’
current earnings, and in turn reduces their ability of borrowing when facing a liq-
uidity risk. The depreciation does the opposite. However, in a more constrained
financial market, the negative effect of appreciation exceeds the positive effect of
depreciation. In the end, exchange-rate volatility leads to negative productivity
growth.

In the above two papers, the transmission channel is mostly through the con-
strained financial market, through which liquidity risks impact the decision of long-
term investment or innovation. In a similar vein, Liu et al. (2013) investigate
the dynamic link between land price and macroeconomic fluctuation in a DSGE
model where firms’ borrowing ability is constrained by the land value. The model
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shows that through the amplifying effect of credit constraint, the housing demand
shock drives both the fluctuations in land price and the fluctuations in the decision
variables including investment and production. The mechanism thus explains the
co-movement of land price and macroeconomic fluctuation. Besides, based on a
regime-switching model, they show that the housing demand shock accounts less
for the fluctuations in the low-volatility regime, and more in the high-volatility
regime.

Further structural estimations include, for example, Dhawan et al. (2010), who
find empirical evidence that before 1982 energy price shocks have significant and
negative spillover effects on productivity. Constructing a DSGE model in which
firms use capital, labor, and energy for production, they show that the high pro-
ductivity volatility before 1980 is due to the spillover effects from energy price
fluctuation. Schmitt-Grohé and Uribe (2011) find empirically that the TFP and
the relative price of investment series share a common stochastic trend. In a real
business cycle (RBC) model, they show that the common stochastic trend in TFP
and investment-specific productivities as the drivers for short-term economic fluc-
tuations.

Based on the above intuitions, productivity and risk can be modeled struc-
turally based on the following steps. First, we assume that the productivity process
is endogenous to the determinants such as investment (R&D investment), labor ef-
fort, and learning spillovers. Second, we introduce exogenous shocks (for example,
liquidity shock, demand shock) that lead to price fluctuations and impacts the
decisions, which in turn affect productivity.

The measurement of data and productivity will play an important role when
fitting the model to data. As demonstrated in the previous sections, productivity
is a residual which captures the factors that are not included in the conventional
inputs. When unconventional inputs such as input quality, learning by doing,
and other unobserved components are not included in the inputs or the structural
model, the residual will capture them. In the end, price and risk affect productivity
through these unmeasured factors. Last, the omitted price bias should be paid
special attention to when eliciting the price effects on productivity. If prices are
already included in the productivity measures, the econometric estimation between
price and productivity is then biased.
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2.5 Conclusion

The first message from this literature review is that productivity is a residual.
Econometrically, this residual can be decomposed into three parts. First, the com-
ponents known by the producers and not observed by the econometrician, which
are technology level and other left-out factors in describing the production process,
including unmeasured inputs’ quality, efficiency, and learning processes. Second,
the components not known by the producers at the decision-making stage, includ-
ing weather shocks, unexpected environmental shocks, and unanticipated market
shocks. Third, measurement errors. The productivity decomposition theory is in
line with the econometric error decomposition. Correspondingly, the drivers of
productivity are R&D (which contributes to technology), firm structural and man-
agement efforts (which is related to efficiency), learning by doing (which relates to
labor quality), and other external drivers such as productivity spillovers.

Price and price risks affect the productivity components, and in the end af-
fect productivity. Regarding technology, for example, the price-induced innovation
theory indicates that input price signals induce innovations. Price volatility dis-
courages long-term R&D investment and affects negatively productivity. In terms
of efficiency, the transmission channels include price signals with entry and exit of
firms of different efficiency which impact productivity. Producers take advantage of
previously unavailable expensive inputs to improve productivity. Producers change
their effort made for producing, and coordinate the learning process or management
in response to a risky environment. Last, regarding the productivity components
not observed by the econometrician and the producers, the unanticipated market
shocks in the future impact the current decision when producers form the expec-
tations according to different market conditions.

The second message from this review is the importance of measurement issues.
As the problem is essentially the estimation of the production function, three points
are to be emphasized. The first point concerns the unbiased measurement of pro-
ductivity in relation to the endogeneity problem. We have reviewed the primal
and the dual approaches in dealing with this problem. Second, the capital series
is particularly difficult to measure because it is not directly observable and is ob-
tained mostly based on parameter assumptions. The capital measurement problem
would lead to bias on pro-cyclical pattern of productivity growth. As a result, more
effort should be made to improve the measurement of capital. Third, special atten-
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tion should be paid to measuring output in values instead of physical units. The
omitted price bias concerns to the growing literature on investigating the firm-level
productivity in view of heterogenous firms, market power, and market structure.
In particular, we will contribute to the first two problems (unbiased productivity
estimation and capital measurement) by using a dynamic structural approach in
the following chapters.
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Chapter 3

Estimating Nonlinear Dynamic
Stochastic Decision Models: A
Generalized Maximum Entropy
Approach1

3.1 Introduction

Dynamic stochastic decision models allow the economist to study intertemporal
decision choices under risk. They are widely used in macroeconomics, known as
dynamic stochastic general equilibrium (DSGE) models, for optimal policy analy-
sis under various structural shocks. There have been many advances in the recent
literature in solving and estimating dynamic stochastic decision models. These ad-
vances have important implications for agricultural economics because these models
can be used to model farmers’ dynamic decisions such as investment and consump-
tion decisions under risks. Estimating the model parameters allows us to depict
the production techniques, the farmers’ preferences, and other dynamic features
for agricultural production, which are essential for agricultural policy analysis.

Estimating dynamic programming models conventionally requires first to solve
the model numerically, and second, to estimate the model. Solving the model with
perturbation methods (Judd and Guu 1993; Schmitt-Grohé and Uribe 2004) has

1This chapter, co-written with Alexandre Gohin, was presented as a selected paper at 2018
CEF (Computing in Economics and Finance) Annual Meeting in Milan, and 2018 ICAE (Inter-
national Conference for Agricultural Economists) Congress in Vancouver.
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the highest computational efficiency. The disadvantage of this method is that it is
only accurate around the steady state. Projection methods (Judd 1992) provide a
highly accurate solution over the whole range of state values (Aruoba et al. 2006),
but the computation burden is heavy. Especially with the increase of the number
of state variables and the approximation order, projection methods suffer from the
curse of dimensionality issue. Recent developments in dealing with such issues
includes applying Smolyak’s algorithm and developing the library of sparse grid
(e.g. Stoyanov 2015).

After solving the model and obtaining a state-space representation, we can use
the filters to estimate the latent state variables and obtain the likelihood func-
tion (An and Schorfheide 2007; Fernández-Villaverde and Rubio-Ramírez 2007). If
the solution space is linear, the Kalman filter yields the optimal estimation. The
Kalman filter is commonly used to estimate large DSGE models where the shocks
are smooth and the solution space is considered close to linear.

However, with the increasing interest in high-order risk preferences, non-standard
utility functions such as recursive utility (Epstein and Zin 1989), time-varying
volatility (Caldara et al. 2012a), and the potentially large shocks in less aggregate
models such as agricultural models, linear models are not sufficient to meet the re-
search goals. For nonlinear estimation, the available methods include the extended
Kalman filter (first-order optimality), the unscented Kalman filter (second-order
optimality), and the sequential Monte-Carlo filter (also called the particle filter).
Nonlinear estimation with the nonlinear filters, especially the particle filter, is,
however, numerically more complicated and very time-consuming. Because it is a
sampling-based method, we need to apply a further algorithm (e.g. Bayesian tech-
nique with Metropolis-Hasting algorithm, expectation maximization algorithm) to
maximize the numerical likelihood, and we need to perform the solution and es-
timation steps sequentially in each loop. As a result, when estimating nonlinear
DSGE models with filtering techniques, projection methods are seldomly used.

From the perspective of variance minimization, Ruge-Murcia (2007, 2012) pro-
poses the simulated method of moments (SMM) to estimate the nonlinear DSGE
models. It is also a sampling-based method which requires first to solve the model,
and second, to generate the simulated data and evaluate the moment conditions.

With all the progress in estimating dynamic stochastic decision models, the
maximum entropy method is still little mentioned. Entropy methods originate
from information theory and have been developed by Jaynes (1957) to recover
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the probability distribution on the basis of partial information. Simply put, the
central idea is that the probability distribution which best represents the known
information, is the one with the maximized entropy. Golan et al. (1996) propose a
generalized maximum entropy (GME) approach to estimate nonlinear state-space
models. They recover the unknown structural parameters and the latent state
variables in an explicit nonlinear state-space model (a dynamic stochastic deci-
sion model after nonlinear solution). Paris and Howitt (1998), Lence and Miller
(1998), and Lansink (1999) use the GME approach to estimate various ill-posed
production problems. Bishop (2006) discusses the use of cross-entropy in machine
learning. Judge and Mittelhammer (2011) refer to the entropy criteria as an em-
pirical exponential likelihood, and the maximum entropy method is referred to as
the maximum empirical exponential likelihood (MEEL) method. Barde (2015), in
an article named “back to the future", uses the maximum entropy approach as a
signal restoration method to predict the equilibrium state of certain economic sys-
tems. The GME approach has several advantages in estimating dynamic stochastic
decision models compared to the conventional methods. First, it evaluates directly
the equilibrium conditions. As a result, the estimation is nonlinear by nature, and
the nonlinear solution is only used to approximate the next period expectations
in the Euler equation. Second, the GME approach recovers the unknown state
and the unknown parameters simultaneously in one step, while the filtering-based
approaches recover the unknown state first and then evaluate the likelihood func-
tion for each testing parameter to obtain the final parameter estimation. These
two main advantages lead to a much higher computational efficiency of the GME
approach. The third advantage is that the consistency of the GME estimate does
not depend on the validity of assumptions on the distribution of the error terms.

In this chapter, we use the GME approach to estimate a nonlinear dynamic
stochastic model, and compare it with the filtering-based approach. The test model
is a neoclassical growth model, which is a standard DSGE model but can similarly
be used to represent a farm decision model under risks. Based on the Monte-Carlo
experiments with simulated data, we show that the GME approach provides opti-
mal estimation between accuracy and efficiency. The contributions of the chapter
are, first, to provide an alternative to estimate the nonlinear dynamic stochas-
tic decision models apart from the conventional methods with the filters. To our
knowledge, this is the first attempt to use the GME approach to estimate a DSGE
model. Different from Golan et al. (1996), the model needs to be solved to obtain
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the state-space equations. Second, the chapter tests the GME estimator for large
shocks and highly nonlinear models (5th-order projection), which describes better
agricultural markets where the shocks are less smooth. Third, we show that the
GME estimator possesses favorable properties for small sample size data, which is
useful for economic fields with limited data.

The structure of the chapter is organized as follows. Section 2 contains a sketch
of the model. Section 3 describes in detail the Bayesian estimation with the particle
filter and the GME estimation. Section 4 presents the Monte-Carlo experiment and
the estimation results. Section 5 concludes.

3.2 The Model

3.2.1 Economy Model Representation

We start from a neoclassical growth model. This is a core model for macroeconomic
dynamics, but can also represent a farm decision model for investment, consump-
tion and production decisions. This setting allows us to compare our results with
a large number of papers in macroeconomics.

Consider a farm household who uses capitalKt to produce one good Yt. The pro-
duction income is used for personal consumption Ct and investment It on storable
capital. The agent’s goal is to maximize the discounted expected utility stream of
consumption,

max
Ct,It

E0

∞∑
t=0

βtu(Ct). (3.1)

The utility function takes the power utility form: u(Ct) = C1−γ
t /(1 − γ), where

γ determines the utility curvature and captures a mixture of risk preference and
intertemporal preference. The agent’s budget constraint is

Yt = Ct + It (3.2)

The agent has a Cobb-Douglas production process,

Yt = AtK
α
t (3.3)
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where α is the output elasticity of capital. The total factor productivity (TFP) At
follows a stochastic process,

ln(At+1) = ρA ln(At) + σAε̃At+1 (3.4)

where ρA is the productivity persistence, σA is the standard deviation of the pro-
ductivity shock, and εAt is the stochastic productivity shock. ε̃At is i.i.d and
ε̃At ∼ N(0, 1).

Physical capital is owned by the agent, and is quasi-fixed in each period once
installed. Its level depends on the last period capital stock Kt−1 and investment
It−1. The law of motion for capital is,

Kt+1 = (1− δ)Kt + It (3.5)

where δ is the depreciation rate.

In each period, the agent chooses strategy {Ct, It}t=∞t=0 such as to maximize
the expected lifetime utility subject to the intertemporal budget constraint (3.2),
production constraint (3.3), and the capital evolution function (3.5). The Euler
condition of the dynamics is given as,

C−γt = βEt
[
C−γt+1

(
1− δ + αAt+1K

α−1
t+1

)]
(3.6)

It shows that consumption today is decided by the expected consumption and
expected productivity in the future. Investment is implicitly determined by the
Euler condition with the help of the budget constraint.

3.2.2 State-Space Representation

Since the model does not have an analytical solution, we need to solve it numeri-
cally. We use a high-order (5th-order) Chebyshev polynomials method to solve the
model (Judd 1992). The nonlinear projection method provides a more accurate
solution under the existence of large shocks (Aruoba et al. 2006). As our model
is small, the high-order solution for this model is not severely influenced by the
curse of dimensionality issue and provides accurate simulated data. We obtain
the approximation of the optimal policy function through interpolation using the
Chebyshev polynomial basis. The Mth-degree approximation of Ct(At, Kt) is a
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complete polynomial:

Ct(Kt, At) =

MK∑
mK=0

MA∑
mA=0

bmK ,mAψmK (φ(Kt))ψmA(φ(At)) (3.7)

where ψd.(.) are Chebyshev polynomials, φ(.) are linear mappings of the Kt, At col-
location points to [−1, 1], and bdK ,dA are the Chebyshev coefficients to be estimated.
The solution is performed in GAMS with our own projection code.2

The solution of the dynamic model gives us a state-space representation as
follows. With Zt = [Yt, It, Ct]

T the vector of decision variables, St = [Kt, At]
T the

vector of state variables, and θ = [β, γ, α, δ, ρA, σA]T the structural parameter set,
the state-space model is presented as,

Zt = f(St,Vt;θ) (3.8)

St = g(St−1,Wt;θ) (3.9)

where f and g are nonlinear functions depending the vector of structural parameters
θ. Equation (3.8) is the observation equation which links the observable decision
variables Zt and the unobservable state variables St. Vt are the exogenous shocks
such as measurement errors. Equation (3.9) is the state equation which describes
the intertemporal evolution of state variables St. Wt are the exogenous shocks, such
as innovations. The object is to optimally estimate the hidden (unobservable) state
St from data sequence Zt, the functional form, and the structural parameter set.
Meanwhile, the structural parameters can also be estimated from the observable
data Zt.

3.3 Estimation Methods

Before presenting the GME method, we briefly overview the Bayesian method
combined with the particle filter, because we view it as a baseline method for
comparison. The maximum entropy approach is also viewed as a derivation from
the Bayesian method in Skilling (1989). As a result, it is worthwhile to begin with
the Bayesian method.

2The detailed solution process is described in Appendix A.



Estimation Methods 51

Bayesian Method with the Particle Filter

Bayesian estimation Bayesian estimation is nothing but finding the posterior
conditional density function of the parameters. Given a model with a parameter set
θ, and observations until period T z1:T , we are interested in the posterior density
p(θ|z1:T ).

In Bayesian estimation, first, we have a prior p(θ) that contains the a priori
knowledge of the parameters. Second, we have a likelihood function p(z1:T |θ)

that describes the probability that the model fits the observation data given the
parameter values. According to Bayes’ theorem, the posterior density is,

p(θ|z1:T ) =
p(z1:T |θ)p(θ)

p(z1:T )
(3.10)

where p(z1:T ) is model evidence that amounts to the marginal density of observa-
tions. This term is required if we want to compute the exact posterior density in
Bayesian estimation.

However, the model evidence p(z1:T ) is difficult to manipulate and is indepen-
dent of θ. In case we only search for the point estimation, the above formulation
can be simplified. Indeed, we obtain the maximum a posteriori estimation by
maximizing the product of the likelihood function and the prior:

p(θ|z1:T ) ∝ p(z1:T |θ)p(θ) (3.11)

The maximum a posteriori estimator is reduced to the maximum likelihood (ML)
estimator if we do not consider the prior. The challenge is that the analytical
solution only exists if the prior and the likelihood are Gaussian, and if the model
is linear. When dealing with a non-Gaussian distribution (usually associated with
nonlinear models), we will have to simulate the posterior density using a sampling-
based Monte-Carlo method.

The particle filter The objective of Bayesian estimation is to find the posterior
distribution of the structural parameters given the prior information, or in the
case of ML estimation to find the optimum maximizing the likelihood function.
For the state-space models with latent variables, the difficulty lies in computing
the likelihood function. If the model is linear, the Kalman filter can be used to
compute an analytical likelihood function. If the model is nonlinear, we need to
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use the sampling method, e.g., the particle filter, to approximate the likelihood
function.

Fernández-Villaverde and Rubio-Ramírez (2005) propose to estimate parame-
ters that maximize the likelihood function of the observations. The decomposed
form of the likelihood function p(z1:T |θ) according to Markov property of time
series data and Bayes rule is:

p(z1:T |θ) = p(z1|θ)
K∏
t=2

p(zt|z1:t−1,θ). (3.12)

with
p(z1|θ) =

∫
p(z1|s1,θ)ds1 (3.13)

and
p(zt|z1:t−1,θ) =

∫
p(zt|st,θ)p(st|z1:t−1,θ)dst (3.14)

and
p(st|z1:t−1,θ) =

∫
p(st|st−1,θ)p(st−1|z1:t−1,θ)dst−1 (3.15)

Using the particle filter, we can approximate p(st|z1:t−1,θ) through an ensemble of
samples and according to the law of large numbers,

p(st|z1:t−1,θ) =
1

N

N∑
n=1

δ(st − snt|t−1) (3.16)

Introducing the above approximation into equation (3.14), we have3

p(zt|z1:t−1,θ) =

∫
p(zt|st,θ)dst

1

N

N∑
n=1

δ(st − snt|t−1)

=
1

N

N∑
n=1

p(zt|snt|t−1,θ) (3.17)

The same approximation applied to p(z1|θ). Eventually we obtain the likelihood
function as follows,

p(z1:T |θ) =
1

N

N∑
n=1

p
(
z1|sn0|0; θ

) T∏
t=2

1

N

N∑
n=1

p
(
zt|snt|t−1; θ

)
(3.18)

3A detailed deduction of equation (3.17) is described in Appendix B.
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The algorithm of the particle filter to approximate the likelihood function is
(Fernández-Villaverde and Rubio-Ramírez 2005, 2007):

1. Set t = 1, initialize the model probability density p (st|zt−1; θ) = p(s0;θ);

sample N particles
{

sn0|0

}N
n=1

from p(s0; θ).

2. Sample N particles
{

snt|t−1

}N
n=1

from
{

snt−1|t−1

}N
n=1

by running the transition

equation (3.9) and by using the exogenous shocks {wn
t }

N
n=1 (draw the shocks

from the corresponding distribution function).

3. Assign the relative weights {qnt }
N
n=1 for each particle

(
snt|t−1

)
with the follow-

ing weighting function:

qnt =
p
(
zt|snt|t−1;θ

)
∑N

n=1 p
(
zt|snt|t−1;θ

)
If the particle with which the probability of the simulated output equals the
observations is high, the weight assigned to the particle is high. Otherwise
the weight assigned to the particle is low.

The density p
(
zt|snt|t−1; θ

)
is obtained from the measurement equation and

the distribution of the exogenous shocks or the measurement errors Vt. More
specifically, the above density is the likelihood of measurement errors cor-
responding to the particle. The distribution of the measurement error ηnt
is:

ηnt = znt,obs − znt|t−1 ∼ i.i.d.N(0, σn2)

ηnt is the exogenous shock in the measurement equation or the measurement
errors.

4. Resampling. We use the Sequential Importance Resampling (SIR) method.
With this method, the particles with very low weights are abandoned, while
multiple copies of particles with higher weights are kept. The number of the
copies is computed based on their respective weights. The higher the weight
of the particle

(
snt|t−1

)
, the more copies are generated, such that the total

number of particles becomes N again (Van Leeuwen 2009). Call the particles
from the resampling process

(
snt|t

)
. Then go back to step 2 until t = T .
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The re-sampling process ensures that the particles
(
snt|t

)
converge to the true

states given the evolution of time.

By substituting the probability density
{
p
(
zt|snt|t−1;θ

)}N
n=1

which we have
computed in step 3 for each period into equation (3.18), we have a numerical
estimation of the likelihood p(z1:T |θ). Once we have the likelihood function, we
can use the Newton-like method to maximize the likelihood and to point-estimate
the parameter set. If we adopt the Bayesian method, we can compute the posterior
density p(θ|z1:T ) by the Monte-Carlo Markov Chain (MCMC).

Maximum Entropy

The generalized maximum entropy (GME) approach we use here is described in
Golan et al. (1996). In particular, their approach is used to estimate a dynamic
model with unobserved data, such as land quality, unobserved shocks, and tech-
nical change. The dynamic model of Golan et al. (1996) matches explicitly the
state-space representation so that they do not need to solve the model. The ad-
vantages of the GME approach in estimating DSGE or DSGE-like models have
been discussed in the Introduction. In short, this approach evaluates the equilib-
rium conditions directly, and it recovers the unknown parameters and the unknown
states simultaneously. The prior distribution of the parameters is not required to
be continuous, instead, it is in form of discrete points. Moreover, the consistency
of the GME estimate does not depend on the validity of assumptions on the dis-
tribution of the error terms. The disadvantages of the method are that, first, the
statistical inference of this method is not well developed, and second that results
can be sensitive to the choices of the prior information of the parameters and the
error terms.

In a general form, Jaynes (1957) proposes to find the probability distribution
that satisfies the constraints and maximizes the Shannon’s entropy criterion (Shan-
non 1948),

H(p) = −
∑
n

pnln(pn) (3.19)

where p = (p1, ..., pN)′ is a discrete probability distribution for discrete prior infor-
mation.

For our empirical estimation, we need to recover the probability distribution
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of the structural parameter set θ, and the time-varying error terms, including εAt
which represent the productivity shocks, and εct which represent the measurement
errors. With the recovered structural parameters and structural shocks, we are
able to recover the evolution process of the latent productivity and capital.

To construct the GME framework, first, we reparameterize the structural pa-
rameters θh(h = 1, 2, . . . , H) and the errors εjt(j = 1, 2, . . . , J ; t = 1, 2, . . . , T ).
Here h is the index for the parameters, j is the index for the errors, and t is the time
index. Given the prior information, suppose that the value of each parameter θh lies
in the interval [vθh1, v

θ
hG]. We define a set of discrete points (support values) vθh =

[vθh1, v
θ
h2, . . . , v

θ
hG]′, with associated probability weights wθh = [wθh1, w

θ
h2, ..., w

θ
hG]′.

The unknown θ , which is a vector of length H is,

Θ = Vθwθ =


vθ1
′

0 . . . 0

0 vθ2
′
. . . 0

...
... . . . ...

0 0 . . . vθH
′




wθ
1

wθ
2
...

wθ
H

 (3.20)

where Vθ is an H ×HG matrix and wθ is an HG vector. For each parameter θh,

vθh
′
wθ

h =
∑
g

vθhgw
θ
hg = θh for h = 1, 2, . . . , H (3.21)

Similarly, suppose the error terms εjt lie in the interval [vεjt1, v
ε
jtL]. Note here that

we have one more dimension, time t. We define a set of discrete points vεjt =

[vεjt1, v
ε
jt2, . . . , v

ε
jtL]′, with associated probability weights wεjt = [wεjt1, w

ε
jt2, ..., w

ε
jtL]′.

The unknown shocks εt at time t, which is a vector of length J, is,

εt = Vε
tw

ε
t =


vεt1
′ 0 . . . 0

0 vεt2
′ . . . 0

...
... . . . ...

0 0 . . . vεtL
′




wε
t1

wε
t2
...

wε
tL

 (3.22)

where Vε
t is J × JL matrix and wε is JL vector. For each shock at time t εjt,

vεjt
′wε

jt =
∑
l

vεjtlw
ε
jtl = εjt for j = 1, 2, . . . , J ; t = 1, 2, . . . , T (3.23)

Given the reparameterization, our objective is to find the optimal probabil-
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ity distribution (wθ,wε) of the corresponding support values which maximize the
entropy objective. The empirical program is,

max
wθ,wε

−
∑
h

∑
g

wθhgln(wθhg)−
∑
j

∑
t

∑
l

wεjtlln(wεjtl) (3.24)

subject to the equilibrium conditions of the dynamic decision program and the
adding-up constraints,

C−γt = βEt
[
C−γt+1

(
1− δ + αAt+1K

α−1
t+1

)]
(3.25)

Kt+1 = (1− δ)Kt + Yt − Ct (3.26)

Yt = AtK
α
t (3.27)

ln(At+1) = ρA ln(At) + σAε̃At+1 , ε̃At ∼ N(0, 1) (3.28)∑
g

wθhg = 1 for h = 1, 2, . . . , H (3.29)∑
l

wεjtl = 1 for j = 1, 2, ..., J ; t = 1, 2, ..., T − 1 (3.30)

wθhg > 0, wεjtl > 0 for ∀h, j, t, g, l (3.31)

where wθhg and wεjtl are the probability weights of the supporting values which
we have specified in the reparameterization part, and equations (3.25) - (3.28)
correspond to the equilibrium conditions in equations (3.2) - (3.5).

To bring the above program, especially the Euler equation (3.25), to the data,
one important assumption are rational expectations. At time t, the agent observes
two time series, consumption Cobs

t and production Y obs
t . The agent cannot precisely

predict the point value of the next period productivity shocks εAt+1 , but he or she
knows the distribution of the shocks. We model the anticipated shocks εeAt+1

by
Gaussian Quadrature according to the distribution of the real shocks. The real
shocks and the distribution are to be retrieved in the GME estimation.

This process involves modeling the error terms as random variables with Gaus-
sian Quadrature nodes and the corresponding Gaussian Quadrature weights. For
shocks that follow a normal distribution with zero mean and standard deviation of
1, we use a 5-point Gaussian Quadrature grid with the nodes and weights specified
in Table 3.1 to describe the anticipated shocks.4

4The Gaussian Quadrature grid is generated in Matlab with the CompEcon Toolbox developed
by Miranda and Fackler (2004).
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Table 3.1: Gauss-Hermite approximation

e εe we

1 -2.8570 0.0113
2 -1.3556 0.2221
3 0 0.5333
4 1.3556 0.2221
5 2.8570 0.0113

e denotes the index of the points, εe denotes the value of each point, and we is the
associated weight.

Consequently, the anticipated next-period state At+1 is decided by the antici-
pated shock εeAt+1

, and the anticipated consumption Ce
t+1 is decided by the antici-

pated state from the policy function (3.34) with the Chebyshev polynomials. This
setting adds four more constraints (3.32) - (3.35) to the GME program,

ln(Aet+1) = ρA ln(At) + σAε
e
At+1

(3.32)

The Chebyshev coefficients are jointly estimated in the GME program by in-
terpolating the basis functions of the state variables Kt and At into the observed
consumption data series,

Cobs
t =

MK∑
mK=0

MA∑
mA=0

bmK ,mAψmK (φ(Kt))ψmA(φ(At)) + εeulert (3.33)

Ce
t+1 =

MK∑
mK=0

MA∑
mA=0

bmK ,mAψmK (φ(Kt+1))ψmA(φ(Aet+1)) (3.34)

where εeulert is a mixture of measurement errors and approximation errors of the
consumption data series. Measurement error series εct is to avoid the singularity
problem because we need to have the same number of shocks as the number of ob-
servable data series (Fernández-Villaverde and Rubio-Ramírez 2005, Ruge-Murcia
2007). Here we use two observation data series for the estimation, and there is
only one structural shock. Consequently, we add one shock which represents the
measurement errors. The empirical Euler condition is rewritten as,

(Cobs
t )−γ =

∑
e

weβ
[
(Ce

t+1)
−γ (1− δ + αAet+1(Kt+1)

α−1)] (3.35)
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Finally, the entropy objective (3.24) is maximized subject to the constraints
(3.26), (3.27), and (3.29) - (3.35). The time-constant parameters dimension H =

6 + 25 = 31 (with 6 being the number of the structural parameters, and 25 = 52

the number of Chebyshev coefficients), and the time-varying shocks dimension
J = 2. By forming the Lagrangian, the first-order conditions provide the basis
for the solution wθhg and wεjtl. By the reparameterization definition, the estimated
parameters and shocks are ∑

g

ŵθhgv
θ
hg = θ̂h (3.36)∑

l

ŵεjtlv
ε
dtj = ε̂jt (3.37)

Given the recovered shocks in (3.37), the estimates of the TFP evolution process
are determined by (3.28).

3.4 Sampling Experiments

3.4.1 Experiment Design

In a general case, the GME estimator cannot be expressed in a closed form, and its
finite sample properties cannot be derived from direct evaluation. In order to test
the performance of the GME approach and compare it with the more widely used
filtering methods, we perform the Monte-Carlo sampling experiments on simulated
data. Given the parameter calibration in Table 3.2, we use a 5th-order Chebyshev
polynomial approximation to generate production and consumption data series.
The data are generated in GAMS (version 2017) using our own projection code.

The first parameter calibration is a benchmark-setting from the previous lit-

Table 3.2: Calibrated Parameters

Parameters Description Case 1 (macro) Case 2 (agr)
β discount factor 0.95 0.95
γ preference parameter 2 0.75
α output elasticity of capital 0.36 0.36
δ depreciation rate 0.025 0.05
ρA productivity persistence 0.85 0.70
σA standard deviation of productivity shocks 0.04 0.10
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erature (e.g., Fernández-Villaverde and Rubio-Ramírez 2005, Ruge-Murcia 2012).
This setting is realistic for macro-data series and allows us to compare our results
with the previous literature. The inverse elasticity-of-intertemporal-substitution
parameter, or, equivalently, the preference parameter γ, which is a mixture of risk
preference and time preference, is set to 2. The output elasticity of capital α is
0.36 and the depreciation rate δ is 0.025. Regarding the TFP evolution process,
the standard deviation of the TFP shocks is low (0.04), but higher than 0.007 in
Fernández-Villaverde and Rubio-Ramírez (2005).

For the second parameter calibration, we introduce calibrations for agricultural
models. The depreciation rate is higher (0.05) considering the intensive use of
agricultural capital, the level of risk aversion is lower (0.75) considering that the
farmers have long been protected from policies, productivity persistence is lower
(0.70), and productivity shocks are higher (σA = 0.10). In this way, we introduce
a certain level of nonlinearity to the economy.

The objective parameter set for the estimation is Θ = (γ, α, β, δ, ρA, σA)T. It
is worth mentioning that different from the simulated method of moments (SMM)
sampling experiments in Ruge-Murcia (2012), where two parameters (α, δ) are fixed
and the other four parameters (β, γ, ρA, σA) are to be estimated, we do not fix any
parameter and we estimate the entire parameter set.

We consider a small sample with 50 observations to reflect limited availability
of agricultural data. Our sample size is small compared to a sample size of 100

in Fernández-Villaverde and Rubio-Ramírez (2005), and a sample size of 200 in
Ruge-Murcia (2012). We also test for sample sizes of 30 and 100.

For the GME estimation, the support values given for the parameters and the
error terms are very important. On the one hand, the support values allow the
economist to give prior information on the parameters. On the other hand, this
introduces a possibility of manipulation, and the estimation can be sensitive to
the support values. In our experiments, we choose loose priors to avoid manipula-
tion. Table 3.3 lists the detailed support values. The discount factor β is generally
known to be larger than 0.9, we set the prior between 0.9 and 0.99. The util-
ity curvature γ has a reference value in the previous literature between 0.1 and
3. We set the prior accordingly. The output elasticity of capital is set between
0 and 1. The depreciation rate in agricultural is generally smaller than 10 per-
cent, and we set a prior between 0.01 and 0.15. The persistence of a stationary
TFP process should be smaller than 1, so our prior for the TFP persistence is
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Table 3.3: GME estimation: prior information for the parameters

Support values
Parameters Low Centre High

β 0.9 0.95 0.999
γ 0.01 1 3
α 0 0.5 1
δ 0.01 0.10 0.15
ρA 0.01 0.5 0.99
σA 0.001 0.1 0.15
εAt -1 0 1
εeulert -0.001 0 0.001

set between 0.01 and 0.99. To allow a large variation in volatility, the standard
deviation of productivity is set between 0.001 and 0.15. The intervals of the shocks
are set between -1 and 1. Furthermore, in the previous literature the optimiza-
tion routine has always started from the true values (e.g. Ruge-Murcia 2007).
Indeed, good starting values can largely facilitate the optimization and make the
estimates more accurate. However, for real data, it is not realistic to initialize
from the true values. As a result, in order to test the real-world feasibility of the
method, we start the optimization routine near the center of the support values
((β0, γ0, α0, δ0, ρA0, σA0)

′ = (0.9, 0.9, 0.5, 0.05, 0.5, 0.1)′), and these values are not
necessarily the true values.

The GME estimation is replicated 100 times for Case 1 and Case 2 to test the
accuracy and robustness of the estimator. The empirical properties of the estimator
are measured using the root mean square error (RMSE) criteria. In particular, for
the estimated parameter θ̂, RMSE is the root of the sum of the variance and

the squared bias: RMSE =

√
(θ − ¯̂

θ) + V ar(θ̂). The estimation is performed in
GAMS2017 for Nonlinear Program (NLP) with the Conopt solver.

For the Bayesian estimation with the particle filter, we adopt a similar prior
specification and starting values as in the GME setting. The detailed prior informa-
tion is reported together with the results in Table 3.5. We use 60, 000 particles to
get 50, 000 draws from the posterior distribution. Since one replication takes more
than 10 hours, we are not able to do the replication for 100 times. The estimation
has been performed in Dynare in Matlab R2016a.
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3.4.2 Results

Table 3.4 presents the GME estimation results. For the first case with small shocks,
which represents the macro calibration, the GME estimator yields precise estimates
of the entire parameter set. The estimation bias is small, with the lowest being
0.42% and the highest being 7.45%. In particular, the accurate estimation of
the depreciation rate, the persistence and the standard deviation of the shocks
indicates the latent capital evolution process, and the latent TFP evolution process
are retrieved.

The second case is more realistic for the agricultural models, but the nonlinear-
ity brought in by the large shocks may impose more difficulty for the estimation.
Again, the GME estimation recovers all parameters with precision. The bias is
small and most of the RMSE is explained by the standard deviation of the estima-
tions. For both cases, according to the experiments, β and α are sharply identified
regardless of the setting of parameter bounds and error bounds. The parameters
describing the characteristics of the state variables (δ, ρA, σA) have on average
slightly larger bias and RMSE and are theoretically more difficult to retrieve, but
they are also relatively accurately recovered. Above all, the preference parameter
γ is the most difficult one to be estimated in the experiments. Correspondingly,
Table 3.4 shows that the bias and RMSE of γ are relatively larger than for other
parameters. This is because the risk preference and the consumption smoothing
preference are not easy to capture in the data - the objective function is relatively
flat with the change in preference values. However, we are still able to estimate γ
accurately when we allow the Euler errors to be at a low level (within the range
[−0.001, 0.001] as support values). This is in accordance with Attanasio and Low
(2004) who state that when bringing the Euler equation to the data, the presence
of measurement error can have large effects on the consistency of estimates of the
relative risk aversion parameter.

As a comparison, we present the results from the Bayesian estimation with the
particle filter. As expected, and as in the previous literature (Fernández-Villaverde
and Rubio-Ramírez 2005), the Bayesian estimation delivers a relatively accurate
estimation for the parameters. The estimation outcomes of the two methods are
alike. Similarly, the preference parameter γ is the most difficult one to precisely
retrieve. The Bayesian estimation tends to over-estimate γ a little more than the
GME estimation. Besides, the GME estimation slightly outperforms the Bayesian
estimation in terms of the unobserved TFP shocks - the bias is lower for ρA and
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Table 3.4: GME estimation: Monte Carlo experiment results

Parameters Mean S.D. Bias RMSE
Θ True Case 1 (macro): Small shocks
β 0.95 0.9460 0.0154 -0.0040 (0.42%) 0.0159
γ 2 2.1490 0.5477 0.1490 (7.45%) 0.5676
α 0.36 0.3665 0.0223 0.0065 (1.81%) 0.0233
δ 0.025 0.0261 0.0050 0.0011 (4.28%) 0.0051
ρA 0.85 0.8346 0.1151 -0.0154 (1.81%) 0.1162
σA 0.04 0.0404 0.0074 -0.0004 (1.08%) 0.0074

Case 2 (agr): Large shocks
β 0.95 0.9490 0.0096 -0.0010 (0.11%) 0.0100
γ 0.75 0.7876 0.4997 0.0376 (5.02%) 0.5011
α 0.36 0.3512 0.0227 -0.0088 (2.45%) 0.0244
δ 0.05 0.0499 0.0047 -0.0001 (0.26%) 0.0047
ρA 0.70 0.7046 0.1161 0.0046 (0.66%) 0.1162
σA 0.10 0.0979 0.0113 -0.0021 (2.11%) 0.0115

Note: Estimation based on 100 replications of 50 period random samples generated from
a 5th-order Chebyshev approximation. Each replication takes on average 59.27 seconds

in GAMS2017.

Table 3.5: Bayesian estimation with the particle filter results

Parameters Prior distribution Posterior distribution
Mean 90% HPD interval

Θ True Case 1 (macro): Small shocks
β 0.95 uni(0.8,1) 0.9495 0.9444 0.9544
γ 2 uni(0,10) 2.7757 2.7348 2.8142
α 0.36 uni(0,1) 0.3665 0.3568 0.3769
δ 0.025 uni(0,0.1) 0.0250 0.0231 0.0269
ρA 0.85 uni(0,1) 0.8127 0.7929 0.8346
σA 0.04 invg(0.1,inf) 0.0224 0.0199 0.0250

Case 2 (agr): Large shocks
β 0.95 uni(0.8,1) 0.9556 0.9505 0.9615
γ 0.75 uni(0,10) 0.7961 0.7550 0.8404
α 0.36 uni(0,1) 0.3440 0.3313 0.3548
δ 0.05 uni(0,0.1) 0.0487 0.0448 0.0520
ρA 0.70 uni(0,1) 0.6737 0.6435 0.7040
σA 0.10 invg(0.1,inf) 0.0499 0.0445 0.0544

Note: Estimation based on 50 period random samples generated from a 5th-order
Chebyshev approximation. The computing time for Case 1 is 16h13m03s, and for Case 2

is 15h34m18s in Matlab2016a.
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Table 3.6: Comparing Monte Carlo experiment results with different sample size

T=30 T=50 T=100
Parameters Mean S.D. RMSE Mean S.D. RMSE Mean S.D. RMSE
Θ True
β 0.95 0.949 0.008 0.008 0.949 0.010 0.010 0.947 0.010 0.011
γ 0.75 0.894 0.601 0.618 0.788 0.040 0.500 0.730 0.283 0.284
α 0.36 0.355 0.016 0.017 0.351 0.023 0.024 0.358 0.019 0.019
δ 0.050 0.053 0.010 0.011 0.050 0.005 0.005 0.050 0.003 0.003
ρA 0.70 0.677 0.083 0.087 0.705 0.116 0.116 0.692 0.117 0.118
σA 0.10 0.097 0.013 0.013 0.098 0.011 0.012 0.100 0.008 0.008

Note: Estimation based on 100 replications of 30, 50, 100 period random samples
generated from a 5th order Chebyshev approximation.

σA under the GME estimation. Overall, both estimation methods provide rela-
tively good estimates of the parameters. However, in terms of the computation
burden, the GME estimation is much faster than the Bayesian estimation: around
60 seconds compared to more than 10 hours for one replication. We suppose the
Bayesian methods with the filters is preferred in macroeconomics because they have
been proven robust also with large macroeconomic models with numbers of smooth
shocks and many sectors, for which we have not tested for the GME approach.
Above all, our experiments show that the GME approach provides more efficient,
yet solid estimates for small and highly nonlinear dynamic stochastic models.

Sensitivity to the support values and the initial values It has been men-
tioned in other literature that one drawback of the GME approach is that it is
sensitive to the support values (Lansink 1999, Lansink and Carpentier 2001). For
our estimation, this is not a serious problem because we choose large bounds for
support values, as long as the economic meanings of the parameters are satisfied
(see Table 3.3). Our results show that the estimations are not manipulated by the
support values. This is in accordance with Lence and Miller (1998) who show that
the GME estimates are not specially sensitive to the choice of parameter bounds.
Regarding the initial values (the starting values), not only the GME estimation,
but all the optimization problems depend more or less on them. Good initial val-
ues, sometimes the true ones, yield good estimates, while bad initial values, results
in very different results. The Monte-Carlo experiments show that the GME es-
timation retrieves the parameters when the initial values are away from the true
ones. We also test different initial values to ensure that the parameter estimates
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always return the true values.

Small-sample properties Table 3.6 illustrates the small-sample property of the
GME estimation. The estimation of the large sample size (T = 100) outperforms
the estimation on the small-sample size (T = 30), especially for the preference
parameter γ. The estimation bias and RMSE of γ decrease steadily with the
increase of sample size. Most parameters (β, α, δ, ρA, σa) can be retrieved under
a smaller sample size of 30. Furthermore, with the increase in sample size, the
accuracy level of δ and σA have largely improved, while the other parameters (β,
α, ρA) have mixed results regarding the improvement. This may be due to the fact
a sample size of 100 is still not large enough.

Figure 3.1: Comparing the recovered state with the true state from the GME
estimation (TFP)
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Recovering the unknown state We pick up randomly 4 estimations of the un-
known state, total factor productivity (TFP), and capital from the 100 experiments
to see whether the unknown state can be recovered from the GME estimation. The
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Figure 3.2: Comparing the recovered state with the true state from the GME
estimation (Capital)
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state variables are unobserved in real data, but in the experiment, we simulate the
random shocks, so that we can access the true values of the shocks and the state.
Figure 3.1 depicts the estimated TFP evolution and compares it to the true TFP
evolution. We can see that in good cases (Figure 3.1a, 3.1c), the estimated TFP
matches exactly the evolution of true TFP. In less good (but still satisfactory)
cases (Figure 3.1b, 3.1d), the estimated TFP moves at the same direction with the
true TFP, and the evolution of the TFP process is approximately recovered by the
GME estimation. Figure 3.2 depicts the estimated capital and compares it to the
true capital. The capital data series are also well retrieved.

3.5 Conclusion

In this chapter, we propose a GME method that can be used to estimate nonlinear
dynamic stochastic decision models. For these models, the state variables such
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as productivity are unobserved, and a solution procedure is needed to obtain an
explicit state-space representation. To our knowledge, this method has not been
used to estimate DSGE or DSGE-like models before, but the filtering methods
are more widely applied in this field. Based on the Monte-Carlo experiments,
we show that the GME method recovers estimates of all the unknown structural
parameters and the stochastic shocks. In particular, the preference parameter
which captures the risk preference and the intertemporal preference is also relatively
precisely estimated. Compared to the Bayesian estimation with the particle filter,
we show that the GME approach provides a similar level of estimation accuracy,
but much higher computational efficiency for nonlinear models. This is because
the GME method does not sequentially solve and estimate the model for each
testing parameter, but solves and estimates the model simultaneously given the
discrete support values as the prior information. Moreover, the GME estimator
shows favorable properties for small sample size data. This is useful for agricultural
economics research since the agricultural data series are usually on an annual basis
and are not sufficiently long.

Estimating dynamic stochastic decision models has numerous empirical applica-
tions for agricultural economics. It allows the economist to structurally model the
farmers’ dynamic decisions, in particular, investment and consumption decisions
under risks, and depict the real values of the structural parameters from estimation
instead of calibration. This has important implication for agricultural policy analy-
sis in response to unknown shocks. Moreover, Griliches and Mairesse (1995) discuss
the problems in estimating production functions, including the data measurement
problem for the capital data series and the endogeneity problem to estimate the
TFP as a residual. The proposed GME approach may provide a feasible solution to
these problems, because it can deal with the missing data (latent state variables),
and estimation of the structural equations is free from the endogeneity problem.
Beyond the growth model, further work could involve fitting this classical model
to agricultural decision models by adding more agricultural production factors and
estimating the structural parameters and stochastic shocks using real agricultural
data. From a methodological perspective, further work is to be done to compare the
filtering-based approach and the entropy approach in view of Bayesian methods.
Moreover, how to deal with a growing economy with trending data also remains a
question.
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3.6 Appendix

Appendix A: Description of the solution method

We approximate the optimal consumption policy function Ct(At, Kt) by using the
standard projection method with Chebyshev collocation (Judd 1992, Aruoba et al.
2006). After the consumption rule is approximated, production and investment
can be recovered from the equilibrium conditions.

The Chebyshev polynomials are defined recursively,

ψ0(x) = 1

ψ1(x) = x

ψn+1(x) = 2xψn(x)− ψn−1(x)

where ψ is bounded between [−1, 1].
Next, we choose n collocation points for capital within the bounds [Kmin, Kmax],

with Kmin and Kmax being the lower and upper bounds of capital. The point
kh ∈ [Kmin, Kmax], mapped to [−1, 1] is,

φ(Kh) =
2(Kh −Kmin)

Kmax −Kmin

− 1

Accordingly,

Kh =
Kmax +Kmin

2
+
Kmax −Kmin

2
φ(Kh)

The hth collocation point within [−1, 1] is given by,

φ(Kh) = cos

(
2h− 1

2n
π

)
where n is the total number of points. Similar collocation points are set for At.
Finally, the Mth-degree approximation of C(A,K) is the Kronecker product of the
two one-dimensional basis:

Ct(Kt, At) =

MK∑
mK=0

MA∑
mA=0

bmK ,mAψmK (φ(Kt))ψmA(φ(At)) (3.38)

where ψm.(.) are Chebyshev polynomials, φ(.) are linear mapping of the grid points
of K,A to [−1, 1], and bmK ,mA,mp are coefficients to be estimated.
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To find these coefficients, the Euler condition equation(3.5) is used as an esti-
mating equation. Trial points

{Ai, Ki}(MA)(Mk)
i=0

are generated from the nodes of the MA,Mk degree polynomials, by taking all
possible combinations of the collocation points. Each trial point can be individually
applied to the Euler condition to minimize the Euler residual, for a total number
of MAMk equations. This identified system can be solved for the coefficients by a
nonlinear root-finding algorithm. The estimation is performed in GAMS2017 for
Mixed Complementarity Problem (MCP) with the Conopt solver.
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Appendix B: Deduction of (3.17)

In (3.17):

p(zt|z1:t−1,θ) =

∫
p(zt|st,θ)

1

N

N∑
n=1

δ(st − snt|t−1)dst

where δ(z) is the Dirac function which is zero for any z except when z = 0, δ(z) is
infinite. In the following we use its characteristics∫

δ(z)dz = 1∫
f(z)δ(z)dz = f(z)

∫
δ(z)dz = f(0)

so that,

p(zt|z1:t−1,θ) =
1

N

∫ N∑
n=1

p(zt|st + snt|t−1,θ)δ(st)dst

=
1

N

N∑
n=1

∫
p(zt|st + snt|t−1,θ)δ(st)dst

=
1

N

N∑
n=1

p(zt|st + snt|t−1,θ)

∫
δ(st)dst

=
1

N

N∑
n=1

p(zt|st + snt|t−1,θ)(s′t=0)

=
1

N

N∑
n=1

p(zt|snt|t−1,θ) (3.39)
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Chapter 4

Productivity and Price Volatility in
French Agriculture: A Dynamic
Stochastic Structural Estimation1

4.1 Introduction

The European Union has adopted many reforms of the Common Agricultural Policy
(CAP) in the past 25 years. Price support has decreased and decoupled payments
have been introduced. As a consequence, European agricultural prices have become
more volatile, in line with the volatility of world prices. This new context generates
many debates on the optimal EU farm policy. A critical question concerns the
real impacts of the rising agricultural price volatility on farm decisions. Farmers
may have modified their production (such as investment) and financial (such as
borrowing) decisions while facing incomplete contingent markets for subsequent
production periods. This may have contributed to the observed decline of the farm
partial productivity growth (European Commission 2016).

There is currently mixed empirical evidence on the linkage between price volatil-
ity and productivity (either partial or total factor productivity (TFP)). In the
macroeconomic literature, Ramey and Ramey (1995) find a negative relationship
between economic fluctuations and productivity growth. More recently, Liu et al.
(2013) model quantitatively the co-movement between land-price fluctuations and
macroeconomic fluctuations. Cavalcanti et al. (2015) show that commodity price

1This chapter, co-written with Alexandre Gohin, was presented as a selected paper at 2018
AAEA (Agricultural and Applied Economics Association) Annual Meeting in Washington D.C.
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volatility impacts negatively productivity growth, but this effect is counterbalanced
by the positive effect of increased price levels.

In the agricultural economics literature, Hu and Antle (1993) indirectly analyze
this linkage by assessing the impact of farm policy price supports on TFP. They find
that price support has a negative impact on TFP only when this support is high.
More recently, Kazukauskas et al. (2010) find a negative effect of price volatility
on productivity in Irish dairy farms. On the other hand, Frick and Sauer (2017)
and Lien et al. (2017) find a positive relationship while focusing, respectively, on
the German and Norwegian dairy sectors.

The mixed results on the linkage between price volatility and TFP invite us
to explore the underlying structural mechanisms. The macroeconomic literature
stresses the important role of the credit market. For instance, Aghion et al.
(2009) show that the exchange-rate volatility has a negative impact on produc-
tivity growth, especially in countries with highly constrained financial markets.
Aghion et al. (2010) develop a growth model in which the exogenous risks generate
productivity movement through the interaction with financial markets. They show
that higher economic volatility induced by tighter credit constraints leads to a lower
productivity growth rate. Regarding the sources of linkage that are explored in the
agricultural economics literature, Frick and Sauer (2017) capture the heterogeneity
of farmers, and find that the interplay of deregulation and price volatility has a
positive aggregate effect by forcing inefficient farmers to exit. Furthermore, the
mixed results may also come from the different economic framework (primal vs.
dual, static vs. dynamic), the different econometric strategies (endogeneity solved
with instrumental variables or fully structural estimation), or datasets (periods,
type of farming).

This paper contributes to the literature in three main aspects. First, to assess
the link between TFP and price risk, the first essential step is to estimate the
production function and its residual, total factor productivity (TFP). The accuracy
of the input data, especially the capital data series, impacts directly on the accuracy
of the estimated TFP. We avoid the capital measurement problem by treating the
capital data series as a latent variable. We use the observed decision data series
to estimate the latent capital data series. The depreciation rate, instead of being
assumed or calibrated, is a structural parameter to be estimated simultaneously.
In this way we have improved the accuracy of the capital data series.

Indeed, from the data perspective, Griliches (1960) points out that the agricul-
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tural input and output data are measured with errors, for example, due to quality
change in the inputs and the heterogeneity among the products. Griliches and
Jorgenson (1966) emphasize that the major difficulty in measuring the capital time
series arises from the fact that capital is not directly observable. The capital ac-
cumulation is a dynamic process, the investment goods purchased in one period
contribute to the capital stock in the future periods. However, what amount of
investment contributes to the capital stock in which future period is unobservable.
Consequently, the capital input measure relies heavily on assumptions. Economists
have devoted efforts to improve the productivity data series ever since. Ball et al.
(1997), Ball et al. (2015) and Shumway et al. (2016) review the U.S. Department of
Agricultural (USDA) agricultural productivity account. They describe in detail the
labor, land, and intermediate inputs data selection and calculation process, as well
as the measurement improvements over time. Nevertheless, the capital data series
is always obtained indirectly using the investment flow by making assumptions on
depreciation, replacement, and obsolescence of the assets, while not knowing if the
assumed rates are the true ones. Andersen et al. (2011) compare the measurement
of the annual capital services flows from two major databases in the U.S., and show
that capital measurements are extremely sensitive to the assumptions such as de-
preciation rate and interest rate. Moreover, they show that the TFP measurement
is, correspondingly, very sensitive to these assumptions. Butzer et al. (2010) show
that different measures on capital yield different Cobb-Douglas elasticities. Above
all, all of this literature highlights the capital measurement problem, indicating
that the available capital data, which are approximated by calibrated assumptions,
can be inaccurate to retrieve a reliable TFP measure. As explained earlier, this
problem is properly treated here.

Second, from an estimation perspective, we eliminate the important endogene-
ity problem by applying a fully structural estimation approach. The basic criticism
of estimating TFP as a residual of the production function is the endogeneity prob-
lem caused by simultaneity (Griliches and Mairesse 1995). That is, the producers
choose the inputs knowing their level of productivity, while productivity is not
observed by the econometrician. We do not suffer from this problem because we
construct a full structural model in which all farm decisions, including production,
consumption, investment, and financial borrowing decisions, are considered. These
choices are decided by state variables such as price, productivity, interest and cur-
rent capital, while the state variables are only decided by last-period states and



74 Chapter 4

exogenous shocks. Our model form is a state-space model, and no endogeneity
issue arises from the modeling process. Another well-known approach to solve the
endogeneity problem is the approach by Olley and Pakes (1996). They correct for
the simultaneity issue by proxying productivity as an inverted function of invest-
ment, and estimating TFP in a two-step approach. Levinsohn and Petrin (2003)
extend this approach by using intermediate inputs to proxy for productivity. How-
ever, they do not treat the capital measurement problem in this approach. Other
productivity measurement methods, including the nonparametric indexes, such as,
the Fisher index and the Tornqvist index, are the most straightforward measure-
ment for TFP. These Indexes are widely used to compute the USDA agricultural
productivity account (e.x., Ball et al. 1997, 2013). It is convenient to use them
to gain a general view on TFP, but they are limited by this static focus and the
calibrated elasticities (Van Biesebroeck 2007).

Third, we model quantitatively the dynamic link between TFP and price volatil-
ity, with potential risks arising from output price, productivity, and the interest
rate. To account for the change in price volatility before and after the CAP re-
form, we allow for structural changes in the drift term and standard deviation of
the shocks in the output price and productivity evolution process. Our model is
similar to the dynamic stochastic general equilibrium (DSGE) models in macroe-
conomics. The estimation technique for linearized DSGE models is well developed
in macroeconomics (e.g., Smets and Wouters 2007). To apply a similar estimation
technique in the agricultural sector, we need to first deal with the less aggregate
and more volatile agricultural data series. In particular, agricultural producers
may experience significant production risks from the weather shocks or pesticide
use. The increasing agricultural price fluctuations also result in larger price risks
for the producers. To take the larger shocks into consideration, linear estimation
is not sufficient for the application in the agricultural sector, rather nonlinear esti-
mation techniques are required. Moreover, the time series data in the agricultural
are usually not sufficiently long, especially for the investment data. This requires
to conduct the estimation using small samples.

We use the generalized maximum entropy method (GME) proposed by Golan
et al. (1996) to estimate simultaneously the structural parameters and the latent
state variables in a dynamic farm decision model. This method is preferred because
it is applicable to highly nonlinear systems. It evaluates the equilibrium conditions
directly, and we only use the approximated policy functions to obtain next period
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expectations. As result, the computational burden is much smaller compared to
the Bayesian estimation with the particle filters. Golan et al. (1996) show that
the unknown parameters and the unknown states in the dynamic estimation prob-
lems can be recovered by the maximum entropy method. Performing Monte-Carlo
experiments, Chapter 3 shows that the GME approach recovers accurately all the
structural parameters in a neoclassical growth model with large shocks.

The structure of the chapter is as follows. Section 4.2 contains a sketch of the
model. Section 4.3 describes the data. Section 4.4 presents the estimation method.
Section 4.5 discusses the estimation results. Section 4.6 concludes.

4.2 The Model

Consider the following model in which a farmer uses capital Kt and variable inputs
Xt to produce one good Yt. Land owned by the farmer and family labor are con-
sidered as fixed. The farm income comes from the production sales, the subsidies
SUBt and the new debt Dt+1, and is used for personal consumption Ct, buying
variable inputs Xt, making investment It on capital Kt, and paying back the ma-
tured debt Dt with interest. The farmer’s goal is to maximize the expected utility
stream of consumption,

max
It,Ct,Xt,Dt+1

E0

∞∑
t=0

βtu(Ct). (4.1)

where β is the discount factor. The utility function takes the power utility form:
u(Ct) = C1−γ

t /(1 − γ), where γ is the inverse of the elasticity of intertemporal
substitution. We call γ the preference parameter, as it captures a mixture of risk
preference and time preference under the power utility function. The farmer’s
budget constraint is

ptYt + SUBt +Dt+1 = It +Xt + Ct + (1 + rt)Dt (4.2)

where pt is the potentially risky real price for output and rt is the borrowing rate.
The consumption good is used as the numeraire. Capital and variable inputs have
the same price as the consumption good. Importantly, our underlying assump-
tion is that the capital investment decision It, the financial borrowing decisions
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of acquiring new debt Dt+1,2 and the action of paying back current debt Dt with
interest, are made at the end of the production year when the production income
has been achieved. These two dynamic decisions are impacted by future produc-
tivity, price, and interest-rate risks. The decision on variable inputs is made at an
earlier stage of the year. We assume that the farmer adjusts the variable inputs
with the production and price risks during the crop growing season, so that the
short-term risks within one year are of no concern for this decision. Finally, the
budget constraint is balanced for the production (fiscal equivalent) year.

The production function follows a Cobb-Douglas production process,

Yt = AtK
αk
t Xαx

t (4.3)

where αk and αx are the output elasticity of capital and variable inputs.
Physical capital is owned by the farmer, and is quasi-fixed in each period once

installed. Its level depends on the last period’s capital stock Kt and investment It,
so that the law of motion for capital is

Kt+1 = (1− δ)Kt + It (4.4)

where δ is the depreciation rate.
In each period, the farmer chooses the strategy {It, Xt, Ct, Dt+1}t=∞t=0 to maxi-

mize the expected lifetime utility subject to the intertemporal budget constraint
(4.2), production function (4.3), and the capital evolution function (4.4). The
first-order conditions are given as,

ptαxAtK
αk
t Xαx−1

t = 1 (4.5)

C−γt = βEt
[
C−γt+1

(
1− δ + αkpt+1At+1K

αk−1
t+1 Xαx

t+1

)]
(4.6)

C−γt = βEt[C
−γ
t+1(1 + rt+1)] (4.7)

Equation (4.5) is the variable input demand function which shows that the marginal
product of variable input equals the marginal cost. Equation (4.6) is the Euler
condition for capital investment. It shows that the shadow price of capital equals
the present value of marginal product and the resale value of depreciated capital,
whereas the shadow price of capital equals marginal utility of consumption. Equa-

2The debt subscript t+1 also ensures that the time subscripts of the two flow variables, capital
and debt, are in accordance.
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tion (4.7) is the debt Euler equation, and is also a standard asset-pricing equation.

Price and interest-rate evolution We assume that the output price is exoge-
nous at the farm level, and that the logarithm of output price pt follows a random
walk with drift processes. Furthermore, to capture the volatility change in price
before and after the CAP reform, we estimate the price evolution by allowing for
a structural change in the drift term and the volatility,

ln(pt+1) = µp(τt) + ln(pt) + σp(τt)εpt+1 (4.8)

where µp is the drift parameter, and σp is the standard deviation of output price
volatility. µp(τt) and σp(τt) vary with the regime τt. τ1 represents the regime of
low price volatility, and τ2 represents the regime of high volatility. εpt is the price
shock, it is identically and independently distributed (i.i.d) and follows a Gaussian
distribution εpt ∼ N(0, 1). This specification allows a stochastic trend in the price
evolution process, and is used to match the decreasing trend in agricultural prices
(at least a decreasing trend before 2000).

Similarly, we assume that the interest rate is exogenous at the farm level, and it
follows a stationary AR(1) process. There is no structural break in the interest-rate
evolution process,

rt+1 = ρrrt + σrεrt+1 εrt ∼ N(0, 1) (4.9)

where ρr is the persistence parameter and σr is the standard deviation of the interest
rate shock. Although the market interest rate in France has been decreasing during
the past three decades, it is rare to include a trend in the interest rate for the long
term.

TFP evolution We assume that the total factor productivity follows a random
walk with drift process, and that the price shocks have a cross correlation with the
productivity process,

ln(At+1) = µa + ln(At) + ρapσpεpt+1 + σaεat+1 (4.10)

where µa is the drift term, εat+1 is the productivity shock which is i.i.d. and normally
distributed, εat ∼ N(0, 1), σa denotes the standard deviation of productivity shock,
εpt+1 is the price shock specified in the stochastic price process (4.8), and ρap is the
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cross correlation term which denotes the impact of price shock on the TFP process.
It is not known, however, if such a cross correlation exists or not in reality. In
the estimation part, we will test the models by allowing ρap = 0 and ρap 6= 0.
Furthermore, similar to price, we allow for a structural change in the drift term
and the volatility for the TFP evolution process,

ln(At+1) = µa(τt) + ln(At) + ρapσpεpt+1 + σa(τt)εat+1 (4.11)

where τ1 is the regime of low price volatility, and τ2 is the regime of high price
volatility.

We introduce a stochastic trend into the productivity evolution and model it
as a random walk with drift process. This is to account for productivity growth
and to capture the trend in the real data. There are several ways to fit the nonsta-
tionary data into the theoretical model. The most used approach is to remove the
trend from the data by the filters (the Hodrick-Prescott filter, the first difference
filter), and then estimate the model with the transformed data. This approach, in
particular, the Hodrick-Prescott filter, is criticized because it applies the univariate
technique to data series with different characters, and it comes with the cost that
we lose relevant information in the data series. Using a growth rate filter for the
estimation is also widely adopted in research. In our model, since the variables are
in levels, using growth rate directly as the level variables modifies the economic im-
plications. Canova (2014) shows that the parameter estimates depend on the filter
chosen, and the choice of the filters is arbitrary. Moreover, as the objective of the
chapter is to estimate productivity and evaluate the growth pattern, detrending the
data would lead to a stationary productivity process. Alternatively, we choose to
introduce the trend directly into the model. Modeling TFP as a random walk with
drift process is also adopted in An and Schorfheide (2007) and Fernández-Villaverde
and Rubio-Ramírez (2007). However, for the estimation, Fernández-Villaverde and
Rubio-Ramírez (2007) first rescaled the model to a stationary one with the trend-
ing TFP, such that the transformed model can be solved around the steady state.
Afterwards, they add the trend back into the solved model. We suggest that the
projection method provides a global solution that is valid on the whole defined
state space, and a steady state is not required for the solution. As a result, we do
not rescale the model but solve the model directly with the Chebyshev projection
method. However, we need to ensure that the state variables are within the defined
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bounds such that the solution is valid in the “box". This leads to limitations for
the model predictions if TFP and price grow out of the “box".

State-space representation The model described above can be solved and pre-
sented as a state-space model with Zt the vector of decision variables, St the vector
of state variables, and θ the structural parameter set:

Zt = [Yt, It, Ct, Xt, Dt+1]
T ,

St = [Kt, At, pt, rt, Dt]
T ,

θ = [β, γ, αx, αk, δ, µp, µa, ρr, σp, σa, σr, ρap]
T .

In a general form, the model can be presented as

Zt = f(St,Vt;θ) (4.12)

St = g(St−1,Wt;θ) (4.13)

where f and g are nonlinear functions with the vector of structural parameters θ.
Equation (4.12) is the observation equation in which the observable decisions vari-
ables Zt are derived from the unobservable state variables St. Vt are the exogenous
shocks such as measurement errors. Equation (4.13) is the state equation which
describes the intertemporal evolution of the state variables St. Wt are exogenous
shocks such as innovations. St is not directly observable, but we could infer these
unobservable states from the observable data Zt, given the functional form and
the structural parameter set. Meanwhile, the structural parameters can also be
estimated from the observable data Zt.

4.3 Data

We use the Farm Accountancy Data Network (FADN) Type of Farming (TF) data
for farms specialized in COP (cereals, oilseed and protein crops) production, cov-
ering the period 1988 to 2015. The data is publicly available at Agreste website.3

We focus on three regions in France: Centre, Picardie, and Pays de la Loire. The
main agricultural activity in the three regions is crop production. Studying three

3The Agreste website is the official website of Ministry of Agriculture of France.
(http://agreste.agriculture.gouv.fr/).
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regions allows us to compare whether the policy effect on productivity is homoge-
neous across the regions. The data are the average annual survey data for individual
farms, containing also the information on the financial statements (balance sheet,
cash flow statement, and income statement). For each region, we construct seven
data series: output volume per farm (Yt), investment per farm (It), consumption
per farm (Ct), variable inputs per farm (Xt), debt per farm (Dt), output price (pt),
interest rate (rt), and the subsidies per farm (SUBt).

The price of soft wheat is used as output price (pt), as the price movement
and price level are highly similar among the crop products (soft wheat, barley,
and maize).4 The wheat price is computed by dividing the gross production of
soft wheat (in e) by the volume of soft wheat (in kilogram), while the volume of
soft wheat is yield multiplied by the area of soft wheat production. The Output
volume series (Yt) is the difference between total crop production and the inventory
variation, divided by output price. The inventory variation is a factor we did not
include in the model, but it exists in the farm account data. It represents the
variation of the crop inventory that the farmer holding reserves. The value of
inventory variation is in general 1% − 5% of the total production value. The
consumption series (Ct) used is private withdrawals per farm holding. According
to the FADN variable definition, the private withdrawals is the farm holding’s
capacity of self-financing less the realized self-financing. The holding’s capacity
of self-financing, by definition, is the sum of profit before tax (available in data),
depreciation charge (available in data), and exceptional expenses and income. The
self-financing series is available in the data. The variable costs are used as variable
inputs (Xt). They are the sum of intermediate consumption, expenses for hired
labor, rent payments, and insurance expenses. Subsidies (SUBt) are total subsidies
net of tax.

Regarding the financial data series, according to the budget constraint in the
data,

ptYt + SUBt − rtDt −Xt − Ct = It + ∆Stockt+1 −∆Dt+1 (4.14)

where ∆Dt+1 = Dt+1 − Dt is the change in debt. The debt series (Dt) is calcu-
lated using the sum of mid-term and short-term debt. ∆Stockt+1 is the inventory
variation. The investment series (It) is obtained using total investment data. The
left-hand side of Eq.(4.14), according to the FADN variable definition, equals the

4See Figure (4.9) in Appendix C. The oilseeds price does not move in line with the crop price,
but its weight is low compared to the crop products.
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self-financing data series. We check the series we have computed to make sure
Eq.(4.14) holds. Last, the interest-rate series (rt) is computed as the financial
charge divided by initial debt.

Consider that the sample size is decreasing in the survey because the total
farm number is decreasing. In the meantime, the farm size is growing over time. It
indicates that the sample contains more large farms in recent years. As a result, the
average of the sample cannot represent a farm with a constant size. To control for
such size effect, we rescale the data by the total farm number. Finally, we deflate
the investment, consumption, variable inputs, debt, subsidies, and output price
series with the national consumption index. The real interest series is obtained by
deducting the inflation rate from the borrowing rate.

Figures 4.1 and 4.2 describe the evolution of output price and interest rate,
and Figures 4.3 - 4.5 describe the evolution of the decision variables, including
production, consumption, investment and debt. The price dynamics are similar
across regions: the price decreases steadily during the period 1988−2002. Following
low-level fluctuations in 2002− 2005, the real output price becomes highly volatile
after 2005. The movement of the interest rate in the three regions is generally
in line with the market long-term interest rate in France. The borrowing rates
offered to the farm holding are higher than the long-term interest rate in the years
1990−2000, but the gap becomes smaller after 2005. The borrowing rate in Centre
is lower than in the other two regions before 2006. In the years 1993 − 1998, the
borrowing rate in Pays de la Loire is much higher and more volatile than in the
other two regions. Regarding the decision variables, we do not observe explicit
trends except for the production series in Picardie and Pays de la Loire.
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Figure 4.1: Evolution of real output price in Centre, Picardie and Pays de la Loire
(100e/tonne, CPI 2005=1)
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Figure 4.2: Evolution of real interest rate in Centre, Picardie and Pays de la Loire
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Figure 4.3: Evolution of production (k tonne), consumption (100 ke), investment
(100 ke) and debt (100 ke) in Centre
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Figure 4.4: Evolution of production (k tonne), consumption (100 ke), investment
(100 ke) and debt (100 ke) in Picardie
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Figure 4.5: Evolution of production (k tonne), consumption (100 ke), investment
(100 ke) and debt (100 ke) in Pays de la Loire
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4.4 Estimation Methods

We use the generalized entropy (GME) approach for the estimation. We first
reparameterize the parameters and the shocks. For the structural parameters θh,
we define a set of discrete support values for the parameters vθh = [vθh1, v

θ
h2, ..., v

θ
hG]′,

with associated probability weights wθ = [wθh1, w
θ
h2, ...w

θ
hG]. The parameter value

is given by θh =
∑

g v
θ
hgw

θ
hg. Here, h is the index for the parameters with h =

1, 2, ..., H, and g is the index for the discrete support values for the parameters with
g = 1, 2, ..., G. Similarly, for the shocks εjt, we define a set of discrete points vεj =

[vεjt1, v
ε
jt2, . . . , v

ε
jtL]′, with associated probability weights wεjt = [wεjt1, w

ε
jt2, ..., w

ε
jtL]′.

The value of each point of the shocks is given by εjt =
∑

l v
ε
jtlw

ε
jtl. Here, j is the

index for the shocks with j = 1, 2, ..., J , t is the time index, and l is the index for
the discrete support values for the shocks with l = 1, 2, ..., L.

Given the reparameterization definition, our objective is to find the optimal
probability distribution (wθ,wε) of the corresponding support values, which max-
imizes the entropy objective. The empirical program is

max
wθ,wε

−
∑
h

∑
g

wθhgln(wθhg)−
∑
j

∑
t

∑
l

wεjtlln(wεjtl) (4.15)

where wθ,wε are, respectively, the probability distribution of the time-constant pa-
rameters and time-varying the shocks. The entropy objective is maximized subject
to the equilibrium conditions of the dynamic decision program and the adding up
constraints,

C−γt = βEt
[
C−γt+1

(
1− δ + αkAt+1pt+1K

αk−1
t+1 Xαx

t+1

)]
(4.16)

C−γt = βEt[C
−γ
t+1(1 + rt+1)] (4.17)

ptαxAtK
αk
t Xαx−1

t = 1 (4.18)

Kt+1 = (1− δ)Kt + ptYt + SUBt +Dt+1 −Xt − Ct − (1 + rt)Dt (4.19)

Yt = AtK
αk
t Xαx

t (4.20)

ln(pt+1) = µp + ln(pt) + σpε̃pt+1 , ε̃pt ∼ N(0, 1) (4.21)

rt+1 = ρrt + σr ε̃rt+1 , ε̃rt ∼ N(0, 1) (4.22)

ln(At+1) = µA + ln(At) + σAε̃At+1 , ε̃At ∼ N(0, 1) (4.23)∑
g

wθhg = 1 for h = 1, 2, . . . , H (4.24)
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l

wεjtl = 1 for j = 1, J ; t = 1, 2, ...T − 1 (4.25)

wθhg > 0, wεjtl > 0 for ∀h, j, t, g, l (4.26)

The expectation operator

To bring the above program, especially the Euler equations (4.16) and (4.17) to the
data, one important assumption is rational expectations. The central idea of the
rational-expectations hypothesis is that the expectations are in accordance with
the model prediction. The farmer cannot precisely predict the point values of the
next period’s shocks, but he or she knows the distribution of the shocks. In reality,
while the CAP reform in 2003 induces high price fluctuations, the French farmers
are able to form the expectations on price volatility based on the historical world
price fluctuations.

To evaluate the conditional expectation operator, regarding the state variables,
we observe price and interest rate, and we do not observe capital and TFP. First,
we estimate the exogenous price and interest rate evolution processes (4.21) and
(4.22) outside of the structural model, based on the observed price and interest
rate data. Meanwhile, the latent TFP evolution (4.23) is to be retrieved in the
GME program of the structural model. Second, we evaluate the TFP shocks, price
shocks, and interest-rate shocks via Gaussian Quadrature.

This involves modeling the error terms as a random variable with Gaussian
Quadrature nodes and the corresponding weights. For shocks that follow a normal
distribution with zero mean and standard deviation 1, ε ∼ N(0, 1), we use a 3-
point Gaussian Quadrature grid with the nodes and weights specified in Table 4.1
to describe the anticipated shocks.

Accordingly, the nodes for the anticipated next period price, interest and TFP

Table 4.1: Gauss-Hermite approximation

e εe we

1 -1.7321 0.1667
2 0 0.6667
3 1.7321 0.1667

e denotes the index of the points, εe denotes the value of each point, and we is the
associated weight.
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are,

ln(pipt+1) = µp + ln(pobst ) + σpε
ip (4.27)

rirt+1 = ρrr
obs
t + σrε

ir (4.28)

ln(Aia,ipt+1 ) = µA + ln(At) + ρapσpε
ip + σAε

ia (4.29)

where ip, ir, ia denote the nodes index for price, interest-rate and TFP shocks,
which correspond to e in Table 4.1.

Regarding the decision variables, at time t, we observe five decision variables,
consumption Cobs

t , production Y obs
t , investment It, variable inputs Xobs

t , and debt
Dobs
t . The agent cannot precisely predict the point value of next-period consump-

tion. However, under rational expectations, the nodes of the anticipated consump-
tion can be decided by the nodes of anticipated state from the policy functions. The
policy functions are approximated based on the current period t policy variables
and states by Chebyshev polynomials. Mathematically, the M th-degree approxi-
mation of the policy function is

Cobs
t =

MK∑
mK=0

Md∑
mD=0

MA∑
mA=0

Mp∑
mp=0

Mr∑
mr=0

bmK ,mD,mA,mp,mr

ψmK (φ(Kt))ψmD(φ(Dt))ψmA(φ(At))ψmp(φ(pobst ))ψmr(φ(robst )) + εcst

(4.30)

Cia,ip,ir
t+1 =

MK∑
mK=0

Md∑
mD=0

MA∑
mA=0

Mp∑
mp=0

Mr∑
mr=0

bmK ,mD,mA,mp,mr

ψmK (φ(Kt+1))ψmD(φ(Dt+1))ψmA(φ(Aiat+1))ψmp(φ(pipt+1))ψmr(φ(rirt+1)) + εcnet

(4.31)

X ia,ip
t+1 =(αxp

ip
t+1A

ia
t+1K

αk
t+1)

1
1−αx (4.32)

In equation (4.30), The Chebyshev coefficients bmK ,mA,mp,mr are jointly estimated
in the GME program by interpolating the basis functions of the state variables Kt,
At, pt Dt and rt into the observed consumption data series. m is the degree of
approximation, ψd.(.) are Chebyshev polynomials, φ(.) are linear mapping of state
variables to [−1, 1]. εcst is the approximation error of the policy function from
consumption data series, and εcnet is the error of expectations.

In equation (4.31), the next period consumption is obtained using the antici-
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pated next-period states, and the estimated Chebyshev policy function in (4.30).
Equation (4.32) shows the next-period variable inputs are obtained using the an-
ticipated next-period price and TFP.

Based on equations (4.27) - (4.32) and Gaussian Quadrature points in Table
4.1, the empirical Euler conditions are rewritten as

(Cobs
t )−γ =

∑
ia

∑
ip

∑
ir

wiawipwirβ
[
(Cia,ip,ir

t+1 )−γ
(
1− δ + αpipt+1A

ia
t+1(Kt+1)

αk−1(X ia,ip
t+1 )αx

)]
(4.33)

(Cobs
t )−γ =

∑
ia

∑
ip

∑
ir

wiawipwirβ
[
(Cia,ip,ir

t+1 )−γ(1 + rirt+1)
]

(4.34)

Finally, the entropy objective (4.15) is maximized subjective to the constraints
(4.16) - (4.34). The time-constant parameters dimension H = 12 + 243 = 255

(with 7 the number of the structural parameters, and 243 = 35 the number of
Chebyshev coefficients), and the time-varying shocks dimension J = 4. By forming
the Lagrangian, the first-order conditions provide the basis for the solution wθhg and
wεjtl. By the reparameterization definition, the estimated parameter and shocks are∑

g

ŵθhgv
θ
hg = θ̂h (4.35)∑

l

ŵεjtlv
ε
jtl = ε̂jt (4.36)

where vθhg, vεjtl are, respectively, the discrete support values for the parameters and
the shocks. Given the recovered shocks in equation (4.36), the estimates of the
TFP evolution process are determined by equation (4.23).

4.5 Results

Table 4.2 shows the priors (support values) for the parameters and the shocks. We
choose relatively loose priors to make sure that the results are not manipulated by
the prior information. The probability of each support point is initially assigned
equal. The output elasticity of the inputs is set between 0 and 1, because by the
economic meaning, the elasticity of one input is smaller than 1. The depreciation
rate is set between 0 and 0.2. The depreciation rate in agriculture can be as high as
0.1, considering the intensive use of the capital. The value 0.2 makes sure that the
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Table 4.2: Prior information for the parameters

Support values
Parameters Description Low Center High
β discount factor 0.9 0.95 0.99
γ preference 0 3 7
αk output elasticity of capital 0 0.3 0.7
αx output elasticity of variable inputs 0 0.5 1
δ depreciation rate 0 0.1 0.2
µp drift term in price evolution -0.2 0 0.2
µa drift term in TFP evolution -0.2 0 0.2
ρr persistence in interest rate evolution 0 0.5 1
ρap correlation between price shock and TFP -1 0 1
σp standard deviation of price shocks 0 0.1 0.3
σa standard deviation of TFP shocks 0 0.1 0.3
σr standard deviation of interest rate shocks 0 0.1 0.3
bdK ,dA,dp,dr Chebyshev coefficients -1 0 1
εpt price shocks -1 0 1
εat TFP shocks -1 0 1
εrt interest rate shocks -1 0 1
εxt(mea) measurement errors -1 0 1
εyt(mea) measurement errors -1 0 1
εcst Chebyshev approximation errors −10−3 0 10−3

εcnet expectation errors −10−3 0 10−3

εxnet expectation errors -1 0 1

estimation will not hit the bounds. The drift terms for the price and TFP evolution
are set between -0.2 and 0.2, so that we do not fix the direction of the trend in
price and TFP evolution. The support values for all the shocks and factor inputs
measurement errors are set between -1 and 1. Importantly, the policy approxima-
tion errors are set at very low levels, which indicates that the approximated policy
function is very close to the true one. Consequently, it indicates a small Chebyshev
approximation error such that the preference parameter can be identified.5

5Based on the Monte-Carlo experiment on simulated data in Chapter 2, the preference pa-
rameter is accurately estimated only when the policy approximation error is small.
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Table 4.3: GME estimation of price and interest rate evolution

Center Picardie Pays de la Loire
µp(τ1) -0.064 -0.061 -0.065
σp(τ1) 0.085 0.086 0.070
µp(τ2) 0.018 0.021 0.017
σp(τ2) 0.260 0.209 0.212
Entropy 6080.74 6104.94 6106.20

ρr 0.980 0.972 0.990
σr 0.011 0.015 0.021

Entropy 30511.988 30277.463 29804.113

Estimation of price and interest rate with structural change

Before estimating the structural model, we estimate the exogenous price and interest-
rate evolution processes (4.8) and (4.9), according to which the farmer forms ex-
pectations on the future output price and borrowing rate.

Based on the real price evolution in Figure 4.1, we observe a possible structural
change during the period 2002 − 2005. This is the period when the price starts
to fluctuate. Afterwards, the price volatility becomes much higher. To detect the
actual year of structural change, we test the model with structural change in 2002

and 2003. The Shapiro-Wilk normality test on the residuals shows that a structural
change in 2002 best describes the exogenous price. Consequently, we split the whole
period into two, with the low price volatility regime τ1 = [1988 − 2002], and the
high price volatility regime τ2 = [2003−2015]. The Chow test on the first difference
real price data confirms that there is a structural change in 2002. Similar to price,
we estimate the exogenous interest-rate evolution outside the structural model.
The Chow test rejects the structural change in 2002 for the interest rate data.
Therefore, we do not include a structural change in the interest rate.

Table 4.3 shows the GME estimates of the price and interest-rate evolution for
the regions Centre, Picardie, and Pays de la Loire. The price evolution for the
three regions is similar: for the period 1988 − 2002, the price has a decreasing
trend (−6.4%,−6.1%,−6.5%) with a low-level volatility at 8.5%, 8.6%, and 7.0%.
For the period 2003−2015, the price volatility rises to as high as 26.0%, 20.9%, and
21.2%, following with a small increasing trend (1.8%, 2.1%, 1.7%). For the whole
period, the interest rate offering for the farms, in general, has a high persistence
level of 0.980, 0.972, and 0.990. The evolution processes of the interest rate in the
three regions are smooth with low volatility.
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Estimation of the structural model

Table 4.4 shows the estimation results of two test models. For both models, the
output price follows the estimated random walk with drift process with structural
change in 2002 (Table 4.3). As specified, TFP follows a random walk with drift
process with a structural change before and after 2002,

ln(At) = µa(τt) + ln(At−1) + ρapσpεpt + σa(τt)εat (4.37)

where τt = 1988− 2002 is the regime of low price volatility, and τt = 2003− 2015

is the regime of high price volatility. For Model 1, there is no correlation between
price shocks and TFP (ρap = 0). For Model 2, the cross-correlation is not zero
(ρap 6= 0).

The entropy values show that Model 2 better describes the data and it is the
selected model. The significance of ρap also confirms the existence of the cross-
correlation between TFP and price shock.

Regarding the structural parameters, all the estimated values are changed from
the prior, which indicates that all the parameters are identified from the data. The
test using the entropy ratio statistic (Judge and Mittelhammer 2011) finds the
depreciation rate, the trend in TFP for the period 2003 − 2015 for Picardie and
Pays de la Loire to be significantly different from zero. In addition, imposing a zero
discount factor, zero input elasticity, zero preference, zero volatility, zero trend for
the period 1988−2002, and zero correlation with price shocks lead to infeasibilities.
The infeasibility indicates that the data are not compatible with the null hypothesis,
so that we can reject the null hypothesis that these structural parameters are zero
(Arndt 1999). Since the constraints for the optimization are nonlinear, it is also
possible that a feasible solution exits under the null hypothesis but the routine
cannot find it. However, if we consider that these structural parameters have
economic meaning, they cannot be zero under the chosen economic framework. As
a result, infeasibility is taken as a rejection of the null hypothesis.

The estimated structural parameters share some similarity across the three re-
gions, but also exhibit differences. The discount factor is overall around 0.94, this
is in line with the average interest rate of 5− 6% across the regions. The variable-
input elasticity is rather constant across the regions, at about 77%. This factor
contributes the most to the crop production because we have included interme-
diate inputs, rented land, and hired labor into the variable inputs. On the other
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Table 4.4: GME estimation of the structural model

Centre Picardie Pays de la Loire
Model 1: ρzp = 0

β 0.944 0.942 0.938
γ 2.574 2.816 2.069
αk 0.431 0.463 0.494
αx 0.770 0.791 0.773
δ 0.115 0.115 0.078

µa(τ1) 0.058 0.075 0.027
σa(τ1) 0.044 0.076 0.083
µa(τ2) -0.026 -0.033 0.007
σa(τ2) 0.078 0.071 0.074
Entropy 1241.675 1237.892 1254.842

Model 2: ρzp 6= 0 (Selected model)
β 0.947** 0.946** 0.946**
γ 3.310** 2.596** 2.901**
αk 0.313** 0.303** 0.338**
αx 0.770** 0.791** 0.773**
δ 0.096* 0.092• 0.097*

µa(τ1) 0.047* 0.056* 0.044*
σa(τ1) 0.036* 0.062** 0.043**
µa(τ2) 0.002 -0.012 0.007
σa(τ2) 0.051** 0.088** 0.046**
ρzp -0.805* -0.884* -0.833*

Entropy 1256.242 1257.814 1263.059

Note: ** denote rejection of the null hypothesis because of infeasibility.• and * denote
rejection of the null hypothesis at the 90% and 95% confidence level respectively. The

critical values for the individual test at 90% confidence level is 2.71, and at 95%
confidence level is 3.84.

hand, capital contributes to 30−34% to the production across the regions. Overall,
agricultural production in the three regions shows increasing return to scale. The
estimated depreciation rate is around 9.0− 9.7%, which is higher than the macroe-
conomic depreciation rate (2 − 3%). The high depreciation rate is reasonable for
agricultural capital if we consider the intense use of machines and equipment for
agricultural production. Last, when we allow for Chebyshev approximation er-
rors at a low level (the range [−0.001, 0.001] as the support values), we obtain
the estimation of the preference parameters. The average level of risk-aversion are
respectively 3.31, 2.60 and 2.90 for Centre, Picardie, and Pays de la Loire. This
indicates that instead of being risk neutral, the farmers in these regions exhibit a
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medium-level risk aversion.

The structural shock parameters which describe the TFP evolution are jointly
estimated with the structural parameters, and are also shown in Table 4.4. To
better illustrate the estimated TFP evolution process, we plot in Figures 4.6 -
4.8 the estimated TFP series, along with real output price and yield (land pro-
ductivity). Regarding the first-order relationship between price and TFP, we find
a significant negative correlation between price shocks and TFP. The values are
−0.805,−0.884,−0.833 respectively for the three regions. From a general equilib-
rium point of view, a negative price shock is partly a result of an increase in supply,
which corresponds to a positive productivity shock as from weather conditions. In
addition, this negative correlation can be a transmission channel for price volatility
and TFP.

Regarding the second-order relationship, price volatility, and TFP, the increas-
ing price volatility has a negative impact on TFP growth. In the regime of low
price volatility (year 1988 − 2002), TFP grows steadily with an increasing trend
(0.047, 0.056, 0.044) and small fluctuations (0.036, 0.062, 0.043). In the regime with
high price volatility (year 2003 − 2015), the TFP growth has slowed down and
the growth pattern becomes much more difficult to predict. Indeed, the increasing
trend becomes not significant in the three regions. The pure TFP shock volatility
level has increased to 0.051 for Centre, 0.088 for Picardie, and remains stable at
0.046 for Pays de la Loire. It indicates that instead of coming from the pure TFP
shock such as weather conditions, the increasing TFP fluctuation is mostly a result
of increased price fluctuation. The estimated parameters are shown more intu-
itively in Figures 4.6 - 4.8. The plotted estimated TFP series imply that, during
the period 2002−2005, TFP still grows with a little larger fluctuation compared to
the previous period. It is after 2005 that TFP drops sharply and then follows with
a big rebound during the period 2007−2009. After 2009, agricultural productivity
falls again. It rebounds and keeps on growing after 2013. Overall, the estimation
results imply that TFP grows slower (or stops growing) and fluctuates more in the
regime of high price volatility.

Comparing the estimated TFP with yield in Figures 4.6 - 4.8, we see that TFP
is different from single factor productivity. On the one hand, there is no growing
trend in land productivity, while TFP keeps on growing in the first period. On the
other hand, the fluctuations in yield are also reflected in TFP. This indicates that
instead of the intensity use of land, the source of TFP growth comes more from
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Figure 4.6: Centre: comparing the estimated TFP with price and yield
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Figure 4.7: Picardie: comparing the estimated TFP with price and yield
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Figure 4.8: Pays de la Loire: comparing the estimated TFP with price and yield
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the intensity use of capital, the knowledge of labor, and the technological change.

As the residual of a production function, TFP has always been considered as
exogenous and is mostly influenced by the technological change, and in agriculture,
influenced by exogenous shocks such as weather conditions, rainfall and other en-
vironmental shocks. Our estimation results show that the price risk is also a factor
that influences the TFP growth, whereas the increasing price risks decelerate TFP
growth.

The negative impact of price risks on productivity passes through various chan-
nels. In general, following our model assumptions, the producers make expectations
on future prices and know the distribution of the price risks. Consequently, in the
regime where price volatility is high, the producers know that they are exposed to
high risks, and they change their decisions to deal with the risks, which in turn
affects the realized productivity.

A most important transmission channel in our model is the financial borrowing
decision. We do not model explicitly the credit constraints in the model, but the
rate at which the farmers can borrow from the bank is closely linked to price risks.
As a result, the farmers’ capacity of borrowing is implicitly constrained by the
interest rate. Indeed, on the one hand, thanks to the CAP reforms, the farmers
receive direct payments with certainty regardless of the price and productivity
risks, which contributes positively to their borrowing capacities. On the other
hand, the increasing price risks bring large uncertainty to the production incomes,
which affects negatively the farmers’ borrowing capacities. In all, the negative
impacts surpass the positives ones, because despite the decreasing trend in the
market interest rate, the borrowing rate offered to the farmers stopped decreasing
with the increased price volatility. Furthermore, except for the influences from the
borrowing rate, a risk-averse agent tends to consume less and save more, in our
case, borrow less, when facing higher risks. Consequently, the farmers have less
money to engage in productivity-enhancing activities. In particular, investing in
new machines and purchasing high-quality but more expensive inputs.

Except for insurance which is not modeled in this chapter, there are many
ways in which the farmers deal with the increasing risks. One way is production
diversification. The farm managers turn to low-productivity activities with lower
risks, or they diversify the crop varieties to diversify the risks. In each manner, it
comes with a cost and results in lower productivity.

Labor contributes to TFP in terms of learning and labor management efficiency.
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The production effort made by the labor is yet a behavior which is ambiguous
to analyze. Considered as part of the labor quality, the effort made by labor is
captured in the TFP residual. We can infer from the result that the farmers put
less effort in production which negatively affects labor efficiency. This is because
when the farmers expect large uncertainty in the production outcome, they have
less incentive to produce with effort because the production revenue is influenced
more by the large exogenous price risks than the production quantity. However, we
do not draw a definite conclusion with regard to the labor effort channel because
it is too ambiguous to measure.

Besides, we do not consider heterogeneous farms in our model, even though the
market structure is known to be an important channel for aggregate productivity
growth (Syverson 2011). Indeed, with the increase in market risks, low-productivity
farms exit the market and high-productivity farms survive, which in turn positively
affects the aggregate agricultural productivity. In our analysis, this effect is not
captured because we have scaled the data from farm size to retain the homogeneous
farm assumption.

The slowed-down productivity growth results also partly because there has been
no major technology innovation in agricultural production in the last two decades.
Technology growth is related to the long-term R&D investment. While the impacts
we assess here are more short-term, we do not discuss much the impacts of increas-
ing price risk on R&D investment at farm level. However, it is worth mentioning
that, while introducing higher price fluctuations, the CAP reforms have also led to
increase the budget for R&D investment for technology innovations. The long-term
impact from the increasing R&D investment should show gradually in productivity
assessments.

Another positive influence the CAP reforms bring to productivity concerns the
environmental aspect, but it is also a long-term impact. Because the new CAP
ties the direct payments to many environmental constraints, in the short-term, it
negatively affects productivity as the farms turn to lower-productivity production
activities which avoid the environmental constraints, or the TFP of the recent
production activities reduces because of the constrains. However, in the long-
term, TFP will benefit from higher quality inputs and other positive environmental
externalities.

Last, we argue that the model solution with nonstationary state variables is
valid if the state variables fall into the defined bounds, and thus the estimation is
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valid within the bound. Further work remains to be done to find a robust estimation
with nonstationary state variables with the GME approach which is globally valid.

4.6 Conclusion

Measuring agricultural productivity from the observed data series has always been
a challenge for economists. Traditional productivity measurements approximate
the unobservable capital data series from the investment data and by assuming
the depreciation rate, interest rate, which can be very critical (Andersen et al.
2012). Moreover, direct econometric TFP estimation suffers from the endogeneity
problem caused by simultaneity. This chapter tries to solve these two problems,
and estimates the dynamic link between price risk and productivity in a dynamic
stochastic farm decision model. We investigate how the increasing price volatility
in France after the CAP reform impact on total factor productivity (TFP) in
agriculture.

Based on the FADN survey data for the regions Centre, Picardie, and Pays de
la Loire in France from 1988 to 2015, we estimate simultaneously the structural
parameters and the TFP series using the generalized maximum entropy (GME)
approach. To assess the impact of the increasing price volatility, we impose a
structural change in the drift term and volatility in the price and TFP evolution
process. Our estimation results confirm that there are two regimes for output price:
one regime, 1988 − 2002, where the price volatility is low, and the other regime,
2003−2015, where the price volatility is much higher. We show that the estimated
TFP grows steadily with small fluctuations in the first regime before the CAP
reform. The growth pattern becomes much more volatile following the increase
in price volatility, and the upward trend in TFP growth becomes insignificant.
In addition, we find a negative correlation between the price shocks and TFP
evolution. Regarding the structural parameter estimation, we find a relatively
higher level depreciation rate in agriculture compared to that in macroeconomics.
Our estimation also shows evidence on the existence of a medium level risk aversion
for the farmers in these three regions. Overall, price risk does have an impact on
productivity in the way that when farmers are exposed to high risks, they modify
their decisions and production incentives which in term impact negatively on the
realized productivity.

For further extensions, this chapter does not model, however, through which
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channel productivity is linked with output price fluctuations. For example, Liu
et al. (2013) study the link between land price and macroeconomic fluctuations in a
DSGE model. They introduce land as a collateral asset in the credit constraint, and
the credit constraint and housing demand shock jointly amplify the macroeconomic
fluctuations. We have also introduced financial debt into the model, but credit
constraints are only modeled implicitly through the interest rate. It will certainly
be interesting to enrich the model by introducing structural equations for credit
constraints. Further applications of the GME approach method on more flexible
production function forms, such as the quadratic function, more flexible utility
function form, such as recursive utility, can be also explored.
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4.7 Appendix

Appendix A: The entropy ratio test

We construct the entropy statistics following Judge and Mittelhammer (2011) and
Arndt (1999). The test is similar to the likelihood ratio test. Denote L(Θ̂) the
objective value of the GME problem, and L(Θ̂c) is objective value for the GME
problem when a constraint hypothesis is added to the constraint set (e.g., the
capital elasticity is 0). The test statistics is

λ = 2n
(
L(Θ̂)− L(Θ̂c)

)
(4.38)

which follows the usual central Chi-square distribution. n denotes the degree of
freedom which is the number of constraints imposed.

Appendix B: Derivation of the equilibrium conditions

Direct FOCs

We consider the problem from the interior choices Xt, Kt+1, Ct, and Dt+1. We can
eliminate Ct through direct substitution,

Ct = ptYt + SUBt +Dt − (Kt+1 − (1− δ)Kt)− wxtXt − (1 + rt)Dt (4.39)

leaving us with the first-order conditions:

E0

[
βtu′ (Ct)

∂Ct
∂Xt

]
= 0

E0

[
βtu′ (Ct)

∂Ct
∂Kt+1

+ βt+1u′ (Ct+1)
∂Ct+1

∂Kt+1

]
= 0

E0

[
βtu′ (Ct)

∂Ct
∂Dt+1

+ βt+1u′ (Ct+1)
∂Ct+1

∂Dt+1

]
= 0 (4.40)

Taking Ct derivatives and cleaning up discount factors, this system of equations
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reduces to:

E0

[
u′(Ct)

(
ptαx

Yt
Xt

− wxt
)]

= 0

E0

[
u′(Ct)(−1) + βu′ (Ct+1)

(
pt+1αk

Yt+1

Kt+1

+ (1− δ)
)]

= 0

E0 [u′ (Ct) + βu′ (Ct+1) (−(1 + rt+1))] = 0 (4.41)

From the perspective of period t, the system of equations reduces to:

αxpt
Yt
Xt

= wxt

C−γt = βEt

[
C−γt+1

(
1− δ + αkpt+1

Yt+1

Kt+1

)]
C−γt = βEt[C

−γ
t+1(1 + rt+1)] (4.42)

Using Lagrangian multiplier or value-function maximization yield to the same
equilibrium conditions.

Value-function approach

The equilibrium conditions can also be derived from value-function iterations. The
Bellman equation of the dynamic programming problem writes as,

V (At, Kt, Dt) = max
Ct,Xt,Lt,Nt,Dt+1,Kt+1

{u(Ct) + βEtV (At+1, Kt+1, Dt+1)} (4.43)

s.t.

Ct = ptYt + SUBt +Dt+1 − (Kt+1 − (1− δ)Kt)− wxtXt − (1 + rt)Dt

Assume the value function V(.) is differentiable. The first-order condition with
respect to Kt+1 and Dt+1 is,

(−1)u′(Ct) + βEt
∂V (At+1, Kt+1, Dt+1)

∂Kt+1

= 0 (4.44)

u′(Ct) + βEt
∂V (At+1, Kt+1, Dt+1)

∂Dt+1

= 0 (4.45)

Suppose that the sequence of future capital stocks and future debts have been
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chosen optimally (the value function is maximized). Take the derivatives of V(.)
with respect to Kt and Dt:

∂V (At, Kt, Dt)

∂Kt

= u′(Ct)(ptαk
Yt
Kt

+ 1− δ) + βEt
∂V (At+1, Kt+1, Dt+1)

∂Kt+1

dK∗t+1

dKt

∂V (At, Kt, Dt)

∂Dt

= u′(Ct)(−(1 + rt)) + βEt
∂V (At+1, Kt+1, Dt+1)

∂Dt+1

dD∗t+1

dDt

(4.46)

According to the Envelope theorem, asKt+1 andDt+1 are at the optimal values such
that the value function is maximized, it indicates that ∂V (At+1, Kt+1, Dt+1)/∂Kt+1 =

0, ∂V (At+1, Kt+1, Dt+1)/∂Dt+1 = 0. The derivatives of the value function are,

∂V (At, Kt, Dt)

∂Kt

= u′(Ct)(ptαk
Yt
Kt

+ 1− δ) (4.47)

∂V (At, Kt, Dt)

∂Dt

= u′(Ct)(−(1 + rt)) (4.48)

This is the derivative of the value function with respect of its augments. Ad-
vance the period to t+ 1,

∂V (At+1, Kt+1, Dt+1)

∂Kt+1

= u′(Ct+1)(ptαk
Yt+1

Kt+1

+ 1− δ) (4.49)

∂V (At+1, Kt+1, Dt+1)

∂Dt+1

= u′(Ct+1)(−(1 + rt+1)) (4.50)

Substitute (4.49) and (4.50) into first order condition (4.44) and(4.45):

u′(Ct) = βEtu
′(Ct+1)(ptαk

Yt+1

Kt+1

+ 1− δ) (4.51)

u′(Ct) = βEtu
′(Ct+1)(1 + rt+1)] (4.52)
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Appendix C: Comparing the prices of wheat, barley and maize
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Figure 4.9: Comparing the prices of wheat, barley and maize in France (e/tonne).
Source: FAOSTATS
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Chapter 5

Assessing the Market Impacts of the
Common Agricultural Policy: Does
Farmer Risk Attitude Matter?1

5.1 Introduction

The Common Agricultural Policy (CAP) of the European Union (EU) is a complex
public policy pursuing different objectives with many instruments. This policy has
a long history and has been reformed several times in the last two decades. These
reforms gradually reduce the initial market price support system and introduce
payments intended to deal directly with potential market failures (public goods
and bads, missing contingent markets, and unfair competition) and to directly
support farm income. The CAP instruments are now classified in two pillars. The
first pillar includes mostly market-price instruments and direct payments, whereas
the second pillar includes mostly agri-environmental, rural development and risk-
management instruments.

Many ex-ante assessments of the economic and physical impacts of these reforms
(or proposals) have been performed at the farm and/or market levels. This paper
focuses on the modeling frameworks that have been recently developed to assess
the market impacts of the CAP. We can distinguish between Computable General
Equilibrium (CGE) frameworks, Partial Equilibrium (PE) frameworks, and some
studies combining both frameworks. Recent assessments using GE frameworks

1This chapter, co-written with Alexandre Gohin, was presented as a selected paper at the 2017
EAAE (European Association of Agricultural Economists) Congress in Parma.
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include Boulanger and Philippidis (2015), who analyze scenarios of reductions of
all CAP payments, Urban et al. (2014), who explore a complete removal of first-
pillar payments, Boysen et al. (2016), who simulate a complete removal of first-
pillar instruments, and Espinosa et al. (2014), who concentrate on second-pillar
rural development instruments. Recent assessments using PE frameworks include
Mittenzwei et al. (2014), who remove WTO green box payments, Deppermann
et al. (2014), who analyze separately price instruments and direct payments, and
Renwick et al. (2013), who remove all first-pillar instruments. CAP assessments
performed with both CGE and PE models include Pelikan et al. (2014), who focus
on the greening conditions attached to first-pillar direct payments, and Schroeder
et al. (2014), who focus on the second-pillar instruments. Generally, these studies
conclude that the market impacts of the price instruments are, in absolute terms,
more important than those induced by the direct payments of the first pillar, when
the latter are linked to the land factor. On the other hand, there is less confidence
in the relative impacts of the more recent second-pillar instruments.

All of the aforementioned studies recognize the challenges to model accurately
the way CAP instruments really operate. These market CGE/PE models are well
designed to capture the working of the price instruments. However, they rely on
more disputed assumptions for the other CAP instruments. In particular, the
important direct payments of the first pillar are often modeled through so called
coupling factors. These factors intend to measure the impacts of payments which
occur through economic mechanisms that are not explicitly considered in these
market models. Mostly cited is the wealth effect provided by direct payments
to risk-averse farmers (Hennessy 1998). In fact, these models are generally static
and non-stochastic, preventing the explicit modeling of such economic mechanisms.
This leads for instance Moro and Sckokai (2013) to call for the revision of these
market models routinely run for policy analysis because the impact of direct pay-
ments is analyzed by means of arbitrary coupling factors. In the same vein, Heckelei
(2014) argues that these models are weak on the dynamic and stochastic dimensions
and that they need to be improved to remain policy relevant.

To our knowledge, there have been limited efforts to improve the PE/CGE mod-
els devoted to analyze agricultural policy issues in these two dimensions. Regarding
the stochastic dimension, while there are numerous studies assessing impacts under
different market conditions (for instance on the CAP, Nolte et al. 2012), there are
few studies that take into account the attitude of economic agents towards risks.
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Burfisher et al. (2000) assess with a static CGE model the impacts of direct pay-
ments in the Canada, US and Mexico. They specify exogenous risk premiums that
act like a production tax. They find a very limited impact of their policy scenarios.
Gohin and Tréguer (2010) assess with a stochastic static PE model the market im-
pacts of the U.S. biofuel programs. They assume first that farmers are risk-neutral,
second that they are risk-averse. In that second case, the risk premium is endoge-
nous to market conditions. These authors find that the market impacts of the U.S.
biofuel programs at the stochastic steady state are similar across the two versions,
unless the downside risk aversion of farmers and the price skewness induced by
the U.S. farm policy are taken into account. Regarding the dynamic dimension,
Féménia and Gohin (2011) develop a dynamic version of the static GTAP-AGR
CGE model (Keeney and Hertel 2005) to assess the market impacts of agricultural
trade liberalization. These authors find for this policy scenario that the available
static results are quite robust to most expectation assumptions that are required in
a dynamic framework. When the price expectations are rational, then the dynamic
results converge to the static ones. On the other hand, when the price expec-
tations greatly depart from rationality due to informational constraints, they are
much different, with possible chaotic dynamic results. In the same vein, Boussard
et al. (2006) compare two dynamic CGE models and also find major impacts of
the expectation assumptions in a trade liberalization scenario. These two studies
focus on the so-called endogenous risks arising from informational issues but ignore
the exogenous production risks (not directly linked to human actions such as yield
risks from stochastic climate events).

The objectives of this chapter are, first, to integrate the risk and dynamic
dimension into a static CGE model. This is realized by modifying the supply side
of the GTAP-AGR model by adding risk attitude. In the planting season, farmers
make optimal decisions in this modified supply model based on expectations of price
and price volatility. In the harvest season, we introduce stochastic productivity
shocks in the CGE model, and the final equilibrium price jointly determined by
the supply and demand side in the CGE model is not necessarily in accordance
with the price expectations. The farmer receives a capital return based on the true
market price. The model dynamics pass on through the expectations the farmers
newly form from the succession of short-term market equilibria.

Second, we investigate to what extent the introduction of risks and farmer
risk attitude matter when assessing the market impact of CAP. We show that in
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addition to the price expectations, expectations of price volatility become one of the
key factors for farmer decisions through its influence on the risk premium. Under
the endogenous modeling of the CAP instruments, risk aversion matters by leading
to much larger production and price effects. The impacts of policy instruments are
even larger if the wealth effect is taken into consideration.

The structure of the chapter is as follows. Section 2 explains how we develop
a dynamic stochastic version of the GTP-AGR model. We start from a standard
static GTAP-AGR model, and explain the supply side we will modify. Next, we
present the development of a dynamic version without risks, in which the dynamics
passes through expectation schemes. Last, we present a modified PE model with
risk attitudes, and demonstrate the development of a dynamic stochastic version
with exogenous production risks. Section 3 performs policy simulations in different
versions of the model. Section 4 concludes.

5.2 Modeling Frameworks

The different CAP reforms adopted in the last two decades have progressively
changed the nature of policy instruments, with less emphasis on agricultural market
price instruments and more emphasis on instruments targeting agricultural produc-
tion factors and/or technologies (such as land payments and organic production).
In order to assess the market impacts of this shift, the modeling frameworks offering
an explicit representations of these factors and technologies become a priori more
and more relevant. We indeed observe that the CGE framework, which naturally
encompasses these features, is more and more prevalent for the assessment of the
CAP. In fact, many global CGE models have been developed in recent years to
perform policy assessments (such as the GTAP, GTAP-AGR, GTAPEM, LEITAP-
MAGNET, MIRAGE-AGRI). None of them explicitly introduces the stochastic di-
mension, and are they generally based on the predominant global GTAP database.
With respect to the CAP assessment, these different models mostly differ in their
elasticity calibration (with more or less complex production, utility and factor mo-
bility specifications) and their CAP instrument representation (in particular with
the shares of direct payments linked to different primary factors of production).

We start from the publicly available static GTAPinGAMS model developed by
Rutherford (2006) that we modify to introduce the GTAP-AGR elasticities. The
CAP instrument representation is directly given by the latest GTAP database, in
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particular the allocation of direct payments to the different primary factor returns.
We briefly document the production part of this static CGEmodel before explaining
our subsequent modifications to introduce the dynamic and stochastic dimensions.

5.2.1 The Static GTAP-AGR CGE Model

The GTAP-AGR model is a static CGE model derived from the GTAP model,
designed to better capture certain structural features of world agricultural mar-
kets and policies (essentially through better calibration of elasticities). The GTAP
model is a relatively standard multi-region CGE model where consumers are as-
sumed to maximize their utility, and factor owners their revenue. This model
employs the simplistic assumptions of perfect competition in all commodity and
factor markets, that flexible prices ensure market equilibrium, and that investment
are saving driven. Commodities are differentiated by origin, allowing the modeling
of bilateral international trade flows. This GTAP framework is implemented using
data organized in Social Accounting Matrices (SAM) per region capturing economic
flows during a given year and exogenous substitution/price/income elasticities.

On the farm supply side, the modeled agent is not one farmer who may own
different primary factors (capital and land in addition to his own human capital
and labor force) and decide production variables. Rather, the approach is activity-
based with a distinction made between the different primary factor owners. More
precisely, it is assumed that there is a representative land owner in each region who
allocates each year his land asset over different farm and non-farm activities. This
allocation depends on the land return provided by each activity and is technically
implemented by (nested) Constant Elasticity of Transformation (CET) mobility
functions which capture in a synthetic way the heterogeneity of the land asset.
In the same vein, there is a representative labor supplier (for both skilled and
unskilled) in each region who allocates each year his labor force and human capital
to different activities in response to their labor returns. This is the same logic for the
representative physical capital owner, who can be a domestic or foreign household.
The primary factor returns generated by the different activities are constrained
by the market and policy environment, and the technological relationships that
link outputs to inputs and primary factors of production. These technologies are
usually mono-product, exhibit constant returns to scale and are specified through
nested Constant Elasticity of Substitution (CES) technologies defined over variable
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inputs (chemicals for instance) and primary factors of production.

This agricultural supply modeling based on activity is not specific to the CGE
approach, it is also implemented in some PE models (for instance the CAPRI model
developed at the University of Bonn). It exhibits desirable features, such as the
use of activity-based input-output matrices that are compiled by national statistical
institutions and incorporated in the SAM. It also exhibits some weaknesses, such
as the requirements to measure all commodity uses and primary factor returns by
all activities. This can be problematic when activities are highly detailed (such as
the distinction between wheat and coarse grains in the cereal sector). Indeed, this
has long been recognized when trying to assess the market impacts of CAP direct
payments (Jensen and Frandsen 2004).

More than these measurement issues, our main point here is that this static
activity-based supply modeling does not allow the explicit modeling of farmers’
attitude towards risk. Farmers, and other producers as well, are not explicitly
identified. They are indeed aggregated with other households and eventually only
the aggregated attitude toward risks can be contemplated. Moreover, this static
approach assumes that the regional households (more precisely primary factor own-
ers) know the true market prices of commodities and the true primary factor returns
when they decide their factor allocation. The lag between production decisions and
commodity selling on market is not recognized, preventing the real modeling of the
dynamic and stochastic dimensions. In order to integrate the later analysis of farm-
ers’ attitude towards risk on CAP assessments, we thus need to model farmers even
in the static approach. The simplest way to do this is to assume that the physical
capital initially allocated to each activity is specific to that activity and is owned
by a representative producer who maximizes his primary factor return. This re-
turn will contribute to the income of the regional representative household. Indeed,
this assumption is also adopted by recursive dynamic models (such as Linkage or
Mirage) and static CGE models as well, when they want to compute short term
effects (Keeney and Hertel 2009 for instance).

The interpretation of the static CGE model is then the following. There is a
representative producer in each activity who is the owner of the physical capital
installed in that activity. This producer (farmer for an agricultural activity) maxi-
mizes his profit by choosing the optimal level of production, input use and factor use
(possibly hiring labor and renting land) subject to his CES-based production tech-
nology. This profit will be added to the income of the regional household. Hence,
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it is assumed that farmers have the same structure of preferences over consumption
goods as other economic agents.

Mathematically, the following producer program is implemented for all farm
activities in all regions:

Max π(Kir) = PyirYir −WTirTir −WSirSLir −WUirULir −
∑
j

WXjirXjir

s.t. Y = f(Xjir, Tir, SLir, ULir, Kir) (5.1)

where the indexes i and r stand for the activity i in region r, π(Kir) is the profit,
Yir is the output level, Pyir is the output price, Tir is the land use, WTir is the
land rental price, SLir is the skilled labor input and WSir the respective price,
ULir is the unskilled labor input and WUir the respective price, and Xjir is the
intermediate use of commodity j for activity i withWXjir the corresponding prices.
All prices are net of subsidies.

In order to clarify the latter implementation with the version with risk aversion
and its more intricate calibration/resolution below, it is useful to detail the produc-
tion technology and the calibration of specified parameters. It takes the following
nested CES form:

Yir = αyir

(
δyirQ

−ρyir
vair + (1− δyir)Q

−ρyir
nvair

)−1/ρyir
where Qvair is the quantity of the value added bundle and Qnvair is the quantity
of the non value added bundle. These two aggregates are also defined by CES
functions:

Qvair = αqir(δTirT
−ρqvair
ir + δslirSL

−ρqvair
ir + δulirUL

−ρqvair
ir + δkirK

−ρqvair
ir )−1/ρqvair

Qnvair = αqnvair (
∑
j

δxjirX
−ρqnvair
jir )−1/ρqnvair

with δtir + δslir + δulir + δkir = 1,
∑

j δxjir = 1

The constant return to scale assumption greatly facilitates the resolution of this
program and its implementation. This assumption ensures that the profit is given
by the product between the capital stock and the unitary capital return, the latter
being independent of the former:

π(Kir) = WKirKir
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It is thus possible to solve this program and calibrate the numerous CES pa-
rameters as if the capital stock were endogenous and the unitary capital return
were exogenous. When the optimal Hicksian demand functions are introduced in
the full CGE model, the capital stock is turned exogenous and the unitary capital
return becomes endogenous and activity-specific. The optimal Hicksian levels of
variable inputs and primary factor uses are given by the following cost minimization
program:

Min C(Yir, Kir) = WTirTir +WSirSLir +WUirULir +
∑
j

WXjirXjir

s.t. Yir = f(Xjir, Tir, SLir, ULir, Kir) (5.2)

The Hicksian demands are:

Xjir = Qnvairα
σqnvair−1
qnvair

(
δxjirPnvair
WXjir

)σqnvair
SLir = Qvairα

σqvair−1
qvair

(
δslirPvair
WSir

)σqvair
ULir = Qvairα

σqvair−1
qvair

(
δulirPvair
WUir

)σqvair
Tir = Qvairα

σqvair−1
qvair

(
δtirPvair
WTir

)σqvair
Kir = Qvairα

σqvair−1
qvair

(
δkirPvair
WKir

)σqvair
with

Qvair = Yirα
σyir−1
yir

(
δyirPyir
Pvair

)σyir
Qnvair = Yirα

σyir−1
yir

(
(1− δyir)Pyir

Pnvair

)σyir
PnvairQnvair =

∑
j

WXjirXjir

PvairQvair = WTirTir +WSirSLir +WUirULir +WKirKir (5.3)

The optimal output level is implicitly determined by the introduction of the
zero profit condition in the full CGE model. The concrete implementation of
these functions requires knowledge of substitution elasticities. The values of δ, the
CES parameters, are then determined using initial economic flows registered in the



Modeling Frameworks 111

SAMs. For instance, we have:

δtir =
WTirTir

1/σqvair

WTirTir
1/σqvair +WSirSLir

1/σqvair +WUirULir
1/σqvair +WKirKir

1/σqvair

(5.4)
We also clarify for later versions the program of the representative land owner

in each region. It is given by:

Max R(Tr) =
∑
i

WTirTir

s.t. Tr = CET (Tir) (5.5)

We obtain the optimal land supply function in terms of market returns

Tir = T Sir(Tr,WTir)

The equilibrium between this land supply function and the previously land demand
function determined by the farmer is obtained by the endogenous land rental price.
It should be recognized here that the land market regulations are not explicitly
represented (eventually very implicitly by the choice of the CET transformation
elasticity).

5.2.2 The Development of a Dynamic Version

In most productive activities, inputs and/or primary factors of production are
engaged before the production is realized. This is particularly true in farming where
arable crop producers for instance first decide their land use and seed application,
then apply variable inputs over the plant growing period such as fertilizers and
pesticides, and finally harvest the crop and market it (possibly directly selling on
the market or storing before selling). This time lag between production decisions
and production marketing implies that the farmers must base their decisions on
expected prices, which can be different from true ones. By nature, this issue is
neglected in static analyse while dynamic analyses generally conclude that the
price expectations are critical.

There have been many debates about the precise nature of farmers’ price ex-
pectations and more generally on expectations by economic agents (Manski 2004).
This is a difficult empirical task, possibly more complicated in agriculture than
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in other productive sectors due to the existence of pervasive agricultural policies.
The endogenous modeling of price expectations is in fact highly challenging. For
instance, future markets provide some information about the market expectations
at a given point of time about future prices, both their mean level and their volatil-
ity (option prices). These contingent markets exist for some commodities in some
regions. Svaleryd and Vlachos (2002) find that there is a positive interdependence
between the development of financial markets and trade liberalization. This finding
is especially relevant in the EU agricultural context, where some futures markets
have emerged following the CAP reforms and the decrease of market price support
system. This suggests that the micro-structure of markets needs to be endogenous
to the contemplated policy scenarios. To our knowledge, this idea has never been
introduced in dynamic models used for ex-ante simulations. One possible reason
is the predominant use of the rational expectations assumption which poses that
economic agents, in the aggregate, do not suffer from informational issues. This
assumption is highly convenient as it avoids identifying the information gathered
and processed by each economic agent. Just and Rausser (2002) develop a theo-
retical analysis showing that the relevance of the rational expectations assumption
depends on the costs of information collection and process relative to their benefits.
If the costs are high relative to the benefits, simple expectation schemes such as
myopic, naïve one can be optimal.

Hence, the modeling of dynamic behavior is a tricky issue involving unobserv-
able expectations and information used by economic agents. In this chapter, we
adopt backward price expectation schemes. That is, we assume that farmers form
their price expectations using past observations, with different weights attached to
recent versus old observations. Two main arguments support our assumption. The
first argument is computational. The alternative rational expectations assumption
implies a forward looking behavior where economic agents, including farmers, are
assumed to solve the full CGE model for all future years. Even when we ignore the
volatility dimension, the resolution of a highly detailed forward-looking CGE model
with endogenous regime (active versus non active market price support regime) is
a computational challenge. To our knowledge, available software to solve dynamic
stochastic general equilibrium (DSGE) models (such as the Dynare) are more and
more powerful allowing richer specifications and many state variables. However,
they presently remain highly sensitive to discontinuities in the models. The sec-
ond argument is that we want to assess the market impacts of the CAP not only
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at the stochastic steady states, but also during the transition period between two
stochastic steady states. It is generally more accepted that the rational expecta-
tions assumption fits better in the long run than the short run. In other words,
there may exist some learning periods where economic agents progressively update
their beliefs/expectations before reaching a new stochastic steady state induced by
the policy scenario.

In addition to the expectations assumptions, for the implementation of the
dynamic version, we also need to decide the number of periods we consider during
a given year (such as the planting period, the application periods of fertilizers
and pesticides, the harvesting period) and the predetermined versus endogenous
variables in each period. We again adopt the simplest assumptions by dividing a
year in two periods. In the first period that can be labeled the production period in
which farmers equipped with their physical capital decide their production, input
and primary factor levels given their commodity price expectations and also the
labor price expectations (labor is used all along the production campaign, such as
during harvesting). On the other hand, the land use is negotiated at the beginning
of the production campaign with the land owner. This economic agent needs
to form land return expectations for other potential activities when deciding to
allocate some land to one farming activity. Hence, in the first period of a given
year, we determine the output level, input use, primary factor use (land and labor)
by the farmers, parts of the land allocation by the land owner and the equilibrium
land return for these dynamic activities. In the second period of the given year,
that can be labeled the marketing period, these variables become predetermined
in the static CGE model, market price will be determined, residual capital return
as well. They may differ from expected values by farmers.

Mathematically, the program solved by the producer in the first period of each
year (indexed by t) is:

Max E(π(Kirt)) = E(Pyirt)Yirt −WTirtTirt − E(WSirt)SLirt

− E(WUirt)ULirt −
∑
j

E(WXjirt)Xjirt

s.t. Yirt = f(Xjirt, Tirt, SLirt, ULirt, Kirt) (5.6)

This program is very similar to the program (1) defined before. The only dif-
ference comes from the formulation of expected prices/returns in place of realized
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prices/returns. The resulting Hicksian demand functions are thus of the same na-
ture. The program of the representative land owner is also changed in the same
spirit, with expected land returns rather than realized ones for the dynamic ac-
tivities. Formally, the representative land ower solves a first program in the first
period of each year. This program is:

Max
∑
i

E(WTirt)Tirt

s.t. Trt = CET (Tirt)

s.t. E(WTirt) = WTirt (5.7)

We thus define a PE model in the first period, made of the optimal decisions of
farmers and land allocation by land owners. This PE model determines in particular
the land returns for the dynamic farm activities and their optimal supplies, variable
input and primary factor uses. In order to solve this model, we must assume the
exact price expectations made by farmers (and landowners). The economic flows
reported in the SAM do not indicate whether the realized capital return is exactly
the anticipated one by farmers. We simplify again the analysis by assuming that
the initial situation reported in the SAM is a steady state and that economic agents
did not make price expectation errors in that year.

The results of this first-period PE model are fed into the full CGE model,
where the relevant variables are now turned to exogenous ones and corresponding
equations are removed. In this modified CGE model, the representative land owner
still allocate the remaining land to the different activities.

It remains to determine the dynamics over the years. The exogenous variables
in the first-period PE model are the capital stocks and the net price expectations.
We need to determine the dynamics of these exogenous variables. We again make
simplified assumptions by assuming that the capital stock in each farm activity is
always the same. This implies that the sectoral investment in the full CGE model
solved in the preceding year is assumed to equal the exogenous depreciation. We
recognize that this assumption restricts our analysis by potentially excluding some
risk management strategies pursued by farmers. In particular, they may delay
or advance their investments following unexpected price realizations. As far as
we know, available econometric studies assessing the farmers’ risk aversion mostly
ignore these possibilities. So our latter development of the volatility version with



Modeling Frameworks 115

E(Pyirt), E(σpyirt),
E(WSirt), E(WUirt), E(WXjirt)

PE

Yirt, SLirt, ULirt, Xjirt

WTirt, Tirt

GTAP-AGR CGE

Pyirt, σpyirt,
WSirt,WUirt,WXj,irt

Expectation scheme:
E(Pyirt), E(σpyirt),

E(WSirt), E(WUirt), E(WXj,irt)

Loop to
t + 1

T
im

e
P
la
n
ti
n
g
se
as
on

H
ar
ve
st
in
g
se
as
on

1

Figure 5.1: The dynamic version
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risk aversion is consistent with this assumption. The only inter-year dynamics
occur in our analysis by the revision of the net price expectations. As mentioned
earlier, we assume that the price expectations made by farmers for future periods
take into account past observations, including the last computed one. In case of
the product price, this means that:

E(Pyir,t+1
) = (1− φp)E(Pyirt) + φpPyirt , 0 < φp < 1 (5.8)

In a sensitivity analysis, we can vary the φp parameter, allowing the implementation
of static, myopic and adaptive price expectations.

Figure 5.1 shows the flow of the dynamic version. To sum up, this dynamic
version represents the minimal departure from the previous static CGE framework.
It is made of two models, one PE focused on the dynamic activities and one full
CGE. The dynamics are recursive, we obtain a succession of temporary equilibria.
The dynamics over years is accomplished with only one type of variables, the
expected prices/factor returns.

5.2.3 The Development of a Stochastic Version

The agricultural activity is confronted with many sources of risks, the most ob-
vious one being the yield risk linked to climate events for crop activities. These
production risks may lead to price risks, depending on the functioning of agricul-
tural markets. Some European farmers have long been protected from these price
risks with the market-price instruments of the CAP. While the presence of produc-
tion/price risks is not disputed, the exact attitude of farmers towards these risks is
more debated. Many efforts have been pursued in recent years with different meth-
ods to reveal their risk attitude (e.g. Roe 2015). This is challenging for instance
because one must also identify their expectations. It is still rather accepted that
farmers in general, and EU farmers in particular, can be risk-averse. This means
that they prefer to produce a safe crop rather than a risky crop giving the same
expected return. Our development of a stochastic version intends to capture these
features.

We again do that in a simplified manner starting from the above dynamic ver-
sion. For instance, we maintain the specification of production technologies with
nested CES functions, and thus do not explicitly recognize the potential roles of
some variable inputs to manage risks (fertilizers are generally considered as risk-
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increasing and pesticides risk-decreasing). Capturing these roles requires a new
specification of the production technology, such as the “Just and Pope" one. In-
stead, we will follow previous examples (e.g. Van Meijl and Van Tongeren 2002) by
assuming multiplicative production risks in non-EU regions. Formally, we assume
that the total factor productivity parameters are stochastic and thus take differ-
ent values (explained later). At the second period of each year, we solve the full
CGE model with these different values, leading to different world and EU prices
for agricultural commodities.

Modified PE Model with Risk Attitude

Turning to the first period (planting season) of a production year, we assume
that EU farmers face only price risks, and they only adjust their production level
and input uses to manage the price risks. They maximize the expected utility of
their profit and that their utility function exhibits constant absolute risk aversion
(CARA). Formally, the farmer’s decision problem is:

Max EU(π(Kirt)) = EU(PyirtYirt −WTirtTirt −WSirtSLirt

−WUirtULirt −
∑
j

WXjirtXjirt)

s.t. Yirt = f(Xjirt, Tirt, SLirt, ULirt, Kirt) (5.9)

This expected utility program can be rewritten as a mean-variance program if
we furthermore assume that the stochastic output price follows a normal law (a
log normal assumption can be contemplated in an extension, while still specifying
a mean-variance approach, Chavas 2004):

Max EU(π(Kirt)) = E(PyirtYirt −WTirtTirt −WSirtSLirt

−WUirtULirt −
∑
j

WXjirtXjirt −
1

2
ρσ2

pyirt
Y 2
irt)

s.t. Yirt = f(Xjirt, Tirt, SLirt, ULirt, Kirt) (5.10)

The farm objective function now includes the risk premium, which represents
the amount of money that farmers are ready to forget in order to avoid risk. This
risk premium is given by the product of the absolute risk aversion parameter (ρ),
the expected variance of output prices, and the square of the production level. As
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expected, the higher the level of risk aversion and the higher the price volatility,
the higher is the amount of money the farmer is ready to give up in order to avoid
the price risk.

This new farm program involves the expected variance of output price. That
is, we now need to define the average output prices expected by farmers as well as
their variance. An exceptional price last year may lead farmers to revise their price
expectations and to consider that they will be more volatile in the future years.
Or they may simply disregard it and consider that the volatility of output price is
constant.

The resolution of the farm program can be decomposed in two steps. In the first
step, the production costs are minimized, leading to the optimal Hicksian demand
and the optimal cost function. This is similar to the static case. In the second step,
the expected utility (the weighted mean-variance) is then maximized by choosing
the optimal production level. The corresponding program is:

Max EU(π(Kirt)) = E(PyirtYirt − C(Yirt, Kirt)−
1

2
ρσ2

pyirt
Y 2
irt) (5.11)

The first-order condition implicitly determines the optimal output level:

CM(Yirt, Kirt) = E(Pyirt)− ρE(σpyirt )
2Yirt (5.12)

where CM denotes marginal cost. This equation states that the marginal cost at
the optimal output level is equal to the expected price minus the marginal risk
premium. Even if we maintain the constant return to scale assumption, the profit
computed as the difference between receipt and variable expenditures does not
equate the return to capital services. It also includes the risk premium. It should
be acknowledged that the risk premium is not paid to a third party and does not
appear in the SAMs because we do not consider contingent markets. We thus need
to assume this value and will consider different initial values based on a literature
review. More precisely, we will assume different risk premiums in percentage of the
market receipt:

βir =
0.5ρE(σpyirt )

2Yirt

E(Pyirt)Yirt
(5.13)

In other words, we will assume in the calibration part the value of the prod-
uct of the risk-aversion parameter and the expected price variances by farmers
and thus the initial marginal cost level. In order to solve and calibrate the cost
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minimization program, it is no longer possible to use the previous trick, that is
the exogenous unitary capital return. The profit is no longer a simple expression
of the capital stock multiplied by an unitary and exogenous capital return. The
resolution/calibration of this cost minimization program leads to a system of first-
order conditions that is nonlinear in the parameters and the variables. It is no
longer possible to get closed-form solutions for the optimal input/factor demands.
It is equally impossible to get closed-form expressions to calibrate the technological
parameters. Accordingly, we will need to solve a system of first-order conditions
to calibrate the technological parameters and can not simply compute them as in
equation. (5.4) before. This system is:

Min EC(Yirt, Kirt) = WTirtTirt + E(WSirt)SLirt + E(WUirt)ULirt +
∑
j

E(WXjirt)Xjirt

s.t. Yirt = f(Xjirt, Tirt, SLirt, ULirt, Kirt) (5.14)

The Lagrangian of this system is,

L(Tirt, SLirt, ULirt, Xjirt, λ) = WTirtTirt + E(WSirt)SLirt + E(WUirt)ULirt

+
∑
j

E(WXjirt)Xjirt + λ(Yirt − f(Xjirt, Tirt, SLirt, ULirt, Kirt)) (5.15)

The first-order conditions of the Lagrangian are given as:

WTirt − λ
∂Yirt
∂Tirt

= 0 (5.16)

E(WSirt)− λ
∂Yirt
∂SLirt

= 0 (5.17)

E(WUirt)− λ
∂Yirt
∂ULirt

= 0 (5.18)

E(WXjirt)− λ
∂Yirt
∂Xjirt

= 0 (5.19)

Yirt − f(Xjirt, Tirt, SLirt, ULirt, Kirt) = 0 (5.20)

The Lagrange multiplier λ is the marginal cost when the minimization program
is optimized. Taking into account condition (5.12), λ equals the expected price
minus the marginal risk premium at the optimal output level:

λ =
∂C

∂Y
= E(Pyirt)− ρσ2

pyirt
Yirt (5.21)
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By substituting (5.21) into the first-order condition set (5.16) - (5.19), the explicit
first-order conditions are finally presented as

WTirt − (E(Pyirt)− ρσ2
pyirt

Yirt) · A · δtirtT
−ρqvairt−1
irt = 0 (5.22)

E(WSirt)− (E(Pyirt)− ρσ2
pyirt

Yirt) · A · δslirtSL
−ρqvairt−1
irt = 0 (5.23)

E(WUirt)− (E(Pyirt)− ρσ2
pyirt

Yirt) · A · δulirtUL
−ρqvairt−1
irt = 0 (5.24)

E(WXjirt)− (E(Pyirt)− ρσ2
pyirt

Yirt) ·B · δxjirtX
−ρqnvairt−1
jirt = 0 (5.25)

Yirt − f(Xjirt, Tirt, SLirt, ULirt, Kirt) = 0 (5.26)

where

A = αyirtδyirt(
Yirt
αyirt

)1+ρyirtQ
−ρyirt−1
vairt · αqvairt(

Qvairt

αqvairt
)1+ρqvairt (5.27)

B = αyirtδyirt(
Yirt
αyirt

)1+ρyirtQ
−ρyirt−1
nvairt · αqnvairt(

Qnvairt

αqnvairt
)1+ρqnvairt (5.28)

The Hicksian demand and optimal output levels are obtained from the above
equilibrium conditions based on expected factor returns, expected output price/output
price volatility, and the risk-aversion coefficient of the producer. Different from the
analytical Hicksian demands and the analytical elasticity calibration in the static
GTAP-AGR model (see equations (5.3) and (5.4)), Hicksian demand, output sup-
ply, and elasticity calibrations are obtained by solving the first-order condition set
(5.22) - (5.28) in GAMS. In addition, the land owner’s program is the same as in
the dynamic version in equation (5.7). Jointly with equations (5.22) - (5.28), land
return WTirt and land use are determined in the PE model.

Stochastic Version and its Dynamics

Figure 5.2 describes the flow of the stochastic version. To introduce exogenous
risks in the CGE model, we assume in each year there are productivity shocks εirt
outside the EU that follow a Gaussian distribution with mean zero and a standard
deviation of σyirt . The productivity shocks lead to world-price fluctuations in the
full CGE model. They are implemented in the GTAP-AGR model through the
production parameter αyirt ,

αyirt = αyirt0e
εirt , with εirt ∼ N(0, σyirt) (5.29)
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Figure 5.2: The stochastic version
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where αyirt0 is the production parameter calibrated at the initial point for product
i and region r.

In the second period (harvesting season) of a production year, the market
equilibrium is reached in the GTAP-AGR model by taking account the product
supply/factor demand from the modified PE and the productivity shocks. Fac-
tor return, output price, and output price volatility are obtained correspondingly.
However, because of the productivity shocks in the non-EU regions, the equilibrium
price in EU is not necessarily equal to the price expectation (pirt 6= E(pirt)), and
this is the origin of price risks for EU farmers.2

Turning to the planting season of next year, the farmers form expectations on
factor return (except land), output price and output price volatility based on the
realized ones in this year. These expectations are fed into the modified PE, and the
PE/CGE loops pass on. Adaptive expectations are formed based on the realized
price and price volatility. Similarly for factor returns.

E(Pyir,t+1
) = (1− φp)E(Pyirt) + φpPyirt , 0 < φp < 1 (5.30)

E(σyir,t+1
) = (1− φσ)E(σyirt) + φσσyirt , 0 < φσ < 1 (5.31)

The dynamics passes to next year though the expectations, and passes over the
years with the loops of inter-year short-term equilibira.

To sum up this stochastic version, it again represents the minimum departure
from the previous dynamic PE/CGE framework. We only introduce risk aversion
for EU farmers who only adjust their production level and input uses to manage
their price risks. These price risks originate from productivity shocks in non EU
regions. We now simulate a succession of stochastic temporary equilibria. The
dynamics over years is accomplished with two types of variables, the expected
prices/factor returns and the expected volatility of output prices.

2Productivity risk is not modeled in the EU region because it is more complex to simultane-
ously consider two risks. Above all, productivity risk and price risk play a similar role in affecting
the EU farm income. As a first extension, we consider only one risk.
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5.3 Simulations

5.3.1 Empirical Assumption

We implement the different versions of GTAP-AGR model described above us-
ing the latest GTAP database, version 9 GTAP, of which the data is calibrated
from 2011 economic flows. We aggregate the data to 26 commodities including
17 agricultural products, 5 regions including EU28, China, US, Argentina-Brazil-
Uruguay(ABU) and Rest of the World (RoW). In both the dynamic and stochastic
versions, we have the opportunity to choose the number of dynamic activities. We
start by focusing on one crop (wheat), and later extend to other activities. In these
two versions, the expectation schemes need to be determined.

The price expectations of the producers are formed based on past observed
prices and past price expectations by the historical weighting parameter α, simi-
larly, the volatility expectations are based on past volatilities and past volatility
expectations. We start with the naïve expectation scheme by assuming α = 1,
that is, the price expectations of the producers are equal to the observed prices
of last year, and the volatility expectations equal the average price volatility of
last year. In the sensitivity analysis, the weighting parameter α is extended to
other values. It should be noted that in the stochastic version, it is not possible
to obtain one certain price because the prices are stochastic. We simulate different
prices via Gaussian Quadrature approximation, given the distribution of the pro-
ductivity shocks. Accordingly, the standard deviation of the price is obtained from
the distribution of the stochastic output price.

When implementing the stochastic version, we also need to make assumptions
on the risk premium and the productivity shocks. For the calibration of the risk
premium, we fix the baseline risk premium at 2% of the production value (β = 2%),
which implies an absolute risk aversion coefficient of 1.25 with regard to the baseline
price volatility. Our choice of β is in accordance with Femenia et al. (2010) who

Table 5.1: Percentage impacts of a 1% decrease of the expected price and of the
expected volatility on EU wheat production.

Risk neutrality Risk aversion
Expected price −1.30 −1.42

Expected volatility (σ) 0 0.11
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use a risk premium at 2.1% of the market receipt.
We assume that the total factor productivity shocks follow a stochastic Gaussian

process with mean zero and a standard deviation of 0.1. The shocks apply in US,
China, ABU and RoW every year.

To test the relevance of our calibration assumptions, we simulate with the first-
period PE model the effects of a 1% expected price decrease and a 1% price volatility
decrease on EU wheat production. We use the standard deviation of prices (σ) as
the indicator for volatility. As is reported in Table 5.1, risk aversion leads to a
higher price elasticity (1.4) compared to that without risk aversion (1.3). The
intuition is that when we account for the farmers’ risk attitude, the return on fixed
capital is lower while the risk premium is price sensitive (as it depends on the
output volume).

As expected, the wheat supply is not sensitive to price volatility in the risk-
neutral case, and is sensitive to price volatility when the producer is risk-averse.
The estimated supply elasticity with respect to price volatility is −0.1. This is
because when the producer exhibits constant absolute risk aversion (CARA), a
decrease in price volatility results in a lower risk premium, and thus a lower share
of profit corresponding to the risk premium compared to that corresponding to the
return on fixed capital. To put it in another way, risk-averse producers allocate a
lower proportion of the profit to avoid the risk when the price volatility decreases,
in this way they produce more.

5.3.2 Policy Scenarios

We are now ready to analyze the market impacts of the CAP using our different
versions of GTAP-AGR model. First, we explain the modeling of CAP instruments
shown in Table 5.2. In most CGE applications, the price instruments which act
through ad valorem export subsidies and import tariffs are usually assumed to

Table 5.2: Policy scenarios

Exogenous policy representation
Price instrument Exogenous export subsidies and import tariffs
Direct payments Ad-valorem land payment

Endogenous policy representation
Price instrument Export subsidies and import tariffs in protecting domestic price
Direct payments Per hectare land payment
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be exogenous. In reality, the levels of these price instruments can be adapted to
protect the domestic price from dropping below a price floor (the so-called inter-
vention price) when the world price is low. Accordingly, we will consider below two
alternative modeling of the price instruments: either an exogenous representation
where the unitary levels are fixed, either an endogenous representation where they
adjust to ensure minimum intervention/entry prices.

The modeling of direct payments is also challenging with the decoupling of farm
payments introduced in 2003. These direct payments are perceived by farmers
provided that they have a corresponding land use. Accordingly, they are often
modeled as an ad valorem subsidy to the land factor, while remaining coupled
subsidies are linked to the production. Below we adopt the allocation of subsidies
provided in the GTAP9 database and again consider two modeling approaches.
The standard exogenous one assumes that the unitary land payment is ad valorem
(and thus change with the land return) while the endogenous one assumes that the
unitary land payment are fixed per hectare. These two alternative models of CAP
instruments are indeed worth differentiating with our stochastic framework.

We successively simulate two radical policy scenarios: first, the EU removes the
price instruments on wheat, and second, the EU removes the direct payments on
wheat. In both scenarios, the policy instruments in other regions and on other farm
products stay at their initial level. Importantly, the impacts are assessed compared
to a baseline. It should be understood that the baseline may change depending
on the representation of the CAP and our modeling framework. More specifically,
in both the static version and the dynamic version, we assume that the economy
is initially at the steady state, and the initial point is used as the baseline. In
the stochastic version, the introduction of productivity shocks requires us to first
compute a stochastic steady state for the baseline.

5.3.3 Simulation Results

5.3.3.1 Results from the Static GTAP-AGR Model

We concentrate our analysis on price and production in EU and RoW. Table 5.3
shows the impacts of the policy scenarios in the static GTAP-AGR model. We find
that the EU wheat production declines by 2.0% in response to the removal of price
instruments. This is because removing the trade barriers puts a downward pressure
on domestic EU wheat prices, which induces a 1.7% reduction in EU wheat price.
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On the contrary, the wheat production and price in rest of the world increase by
0.5% and 0.3% respectively since they benefit from smaller supply coming from
Europe.

We also find that removing the direct payments induces a 1.3% decline in EU
wheat production. As the direct payments are linked to the factor land, more
acreage is thus allocated to other activities with higher land returns and less acreage
is used for wheat production. Accordingly, the EU wheat production declines and
the EU wheat price increases. Again, the rest of the world faces less competition
from Europe, as witnessed by the expanding of wheat production by 0.3% and the
increase of wheat price by 0.2% in RoW. All these results are quite standard and
constitute our benchmark results before dealing with the dynamic and stochastic
dimensions.

5.3.3.2 Results from the Dynamic Version

Figure 5.3a and 5.3b depict the evolution of EU wheat production and price after
implementing the two policy scenarios in 2011. After 20 and 30 years’ evolution
respectively, the EU wheat production and price converge to a steady state, and
the converged market impacts in the dynamic model are almost the same with the
impacts in the static model (Table 5.3). We find that even when the expectation
scheme is naïve, this radical scenario applied to wheat does not lead in the long
run to diverging series. This is partly explained by the fact that the price elasticity
of total demand of EU is quite large in absolute terms, at least according to the
GTAP-AGR choice of elasticities. In other words, this does not lead to a cobweb
diverging dynamic system.

Table 5.3: Simulated impacts of the removal of price instruments and direct pay-
ment on EU wheat with the static and the dynamic versions (in percent with
respect to the initial baseline)

European Union Rest of the world
Removal of price instruments Production Price Production Price
Static model -1.98 -1.69 0.54 0.32
Dynamic model (steady state) -1.98 -1.69 0.54 0.32
Removal of direct payments Production Price Production Price
Static model -1.29 0.90 0.30 0.19
Dynamic model (steady state) -1.31 0.91 0.31 0.19
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Figure 5.3: Simulated evolution of the EU wheat production and price under the
naïve expectation assumption with the dynamic version (in percent compared to
the initial baseline)

5.3.3.3 Results from the Stochastic Version with Exogenous Represen-
tation of the CAP

We now use our stochastic version with the exogenous policy representation. Before
assessing the policy impacts, it is important to explain the new stochastic baseline.
We perform first-stage simulations by including only the productivity shocks. We
reach the new stochastic steady state after 50 years in the stochastic model without
risk aversion and after 70 years in the stochastic model with risk aversion, as it
takes longer time for the expected volatility (σ) converge to the steady state with
risk aversion. The first part of table 5.4 presents the new baseline values with
respect to the calibration of risk preferences’ parameters.

The productivity shocks outside Europe leads to a price volatility of 0.17 in the
RoW and of 0.15 in the EU at the stochastic steady state. The level of world volatil-
ity is consistent with the measured volatility while the EU one is not (European
Commission 2010). As will be shown below, this is due to policy representation
where there is a perfect price transmission (modulo the Armington product dif-
ferentiation assumption). Compared to the initial point used in the static and
dynamic versions, the EU wheat production increases slightly under both risk neu-
trality and risk aversion. Overall, the productivity shocks in other regions bring
positive effects on the EU and RoW production. These positive effects are due to
the nonlinearity in the model, in particular, the convexity of the demand function.

Having obtained the new baseline, we implement the policy shocks at the 51st

year for the risk-neutrality case and at the 71st year for the risk-aversion case.
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Table 5.4: Simulated impacts of the removal of CAP instruments with the stochas-
tic version and the exogenous policy representation (production and price in percent
with respect to the baseline)

European Union Rest of the world
Production Price Volatility(σ) β Production Price Volatility(σ)

New baseline with productivity shocks
Risk neutral 1.08 0.93 0.15 - 1.45 1.64 0.17
Risk aversion 1.14 0.89 0.15 2% 1.44 1.63 0.17

Impacts of the policy shocks
Removal of price instruments
Risk neutral -1.88 -1.62 0.15 - 0.52 0.31 0.17
Risk aversion -2.03 -1.52 0.16 2.03% 0.56 0.34 0.17
Removal of direct payments
Risk neutral -1.30 0.90 0.16 - 0.30 0.20 0.17
Risk aversion -1.37 0.95 0.16 2.04% 0.31 0.21 0.17

Table 5.4 presents the converged values, and Figure 5.4 and Figure 5.5 show the
evolution of European production and price for both policy scenarios.

With the removal of price instruments, the economy converges to a new stochas-
tic steady state in around 25 years. We observe similar evolution paths and modest
differences between the impacts with or without risk aversion. The price volatility
in Europe increases slightly to 0.16 with risk aversion, while it remains the same
at 0.15 for the risk neutral case. As a result, the risk premium of the EU farmers
increases by a very small amount.

Although the price volatility does not change much from the baseline, we find
that the risk-averse wheat producers in Europe reduce their production slightly
more (by 2.0%) compared to risk-neutral producers (by 1.9%). As discussed before
in Table 5.1, the risk-averse producers have higher price elasticities than risk-neutral
farmers. The trade liberalization puts a downward pressure on the EU domestic
price, the risk-averse farmers produce less than the risk-neutral farmers. With
regard to the impacts on price, we find that at the converged steady state, the EU
wheat price decreases by 1.5% with risk aversion and by 1.6% without risk aversion.

With the removal of direct payments, the economy reaches the steady state after
30 years. Again, there is no obvious difference between the evolution paths with
and without risk aversion (Figure 5.5a and Figure 5.5b). The results in Table 5.4
show first that this policy shock has a limited impact on the price volatility, which
increases slightly from 0.15 to 0.16 in EU for both risk attitudes. The reason for
this small impact is that the price volatility is mainly induced by the productivity
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shocks in other regions, on which the European policy reform has very limited
influence. Second, we find as expected that the risk-averse producers in Europe
reduce their wheat supply a little more (by 1.4%) compared to the risk-neutral
producers in Europe (by 1.3%). Accordingly, the wheat price in Europe increases
more under risk aversion (by 1.0%) than under risk neutrality (by 0.9%). The
intuitions behind these results are the same as mentioned before with the static
version.

In sum, under the exogenous policy representation, the market impacts of price
instruments are larger than those induced by direct payments. The results obtained
from the stochastic models do not deviate much from the static and dynamic re-
sults in Table 5.3. This indicates that adding the risk attitude and the stochastic
productivity has not brought a significant impact. Although there are differences
between the market impacts with or without risk aversion, the differences are quite
modest. Our finding is consistent with previous findings that the impacts of con-
sidering the economic agents’ risk aversion are limited. In this particular case, we
conclude that risk aversion does not matter much for the assessment of market
impacts of CAP reforms.
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Figure 5.4: Simulated evolution of the EU wheat production and price following
the removal of price instruments, with the stochastic version and the exogenous
policy representation (in percent compared to the baseline)

5.3.3.4 Results from the Stochastic Version with Endogenous Repre-
sentation of the CAP

Although the exogenous policy assumption is widely adopted, agricultural produc-
ers in Europe have been protected from price risks, thanks to the policy which
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Figure 5.5: Simulated evolution of the EU wheat production and price following the
removal of direct payments, with the stochastic version and the exogenous policy
representation (in percent compared to the baseline)

prevents the domestic price from fluctuating severely with the world price. Un-
der this consideration, we now turn to the stochastic version with an endogenous
representation of policy.

As usual, we first simulate the new baseline brought by the productivity shocks
(Table 5.5). Different from the previous stochastic baseline, the economy converges
to the new stochastic steady state much faster (around 6 years) both with and
without risk aversion. On the one hand, the price volatility in the EU is much
lower, which is at the value of 0.09, compared to a volatility of 0.15 with exogenous
policy, and it remains at 0.17 in the RoW for both policy representations. This
is much more consistent with historical volatilities on both EU and world market
prices (European Commission 2010). On the other hand, the average EU wheat
price raises as much as 4.4% under risk neutrality and 4.3% under risk aversion.
Accordingly, the EU wheat production raises by 5.0% and by 5.5% respectively. The
low price volatility and the high price increase are due to the endogenous policy
representation: when the positive productivity shocks induce an expansion of wheat
production outside Europe and a decline in wheat world price, the endogenous
import tariffs and export subsidies in Europe increase to protect the EU price from
dropping below a price floor. It erases the negative fluctuation below the price floor
and leads to a price stabilization effect. As a result, the EU wheat price is less
volatile and converges faster to a higher steady state price. With regards to the
rest of the world, the EU price stabilization policy has limited effect on the world
price volatility, since the EU market is not large enough to significantly influence
the world price fluctuation (according to the GTAP database). Nevertheless, the
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Table 5.5: Simulated impacts of the removal of CAP instruments with the stochas-
tic version and the endogenous policy representation (production and price in per-
cent with respect to the baseline)

European Union Rest of the world

Production Price Volatility(σ) β Production Price Volatility(σ)

New baseline with productivity shocks
Risk neutral 5.04 4.40 0.09 - -0.09 0.78 0.17
Risk aversion 5.47 4.33 0.09 2% -0.21 0.70 0.17

Impacts of the policy shocks
Removal of price instruments
Risk neutral -5.57 -4.89 0.15 - 2.07 1.17 0.17
Risk aversion -12.83 -0.59 0.16 7.11% 3.88 2.42 0.18
Removal of direct payments
Risk neutral -1.83 0.29 0.09 - 0.52 0.33 0.17
Risk aversion -2.79 0.45 0.09 2.39% 0.79 0.51 0.17

increase in EU wheat production leads to a decrease in RoW wheat production and
a different baseline for the RoW.

Next, we perform the policy shocks in 2021 (10 years after the initial year). The
second part of Table 5.5 presents the converged results, Figure 5.6 and Figure 5.7
show the evolution of production and price in both policy scenarios.

After the removal of price instruments, the economy moves to the stochastic
steady state in 20 years in the risk neutrality case and in 15 years in the risk
aversion case. The difference between the impacts with and without risk aversion
is no longer negligible: the risk-averse wheat producers in Europe reduce their
production much more (by 12.8%) than the risk-neutral ones (by 5.6%), and the
EU wheat price decreases much less (by 0.6%) in the risk-averse case than that of
the risk-neutral case (by 4.9% ). To explain this important difference, we know
first that the removal of price instruments puts a downward pressure on the EU
wheat price. Since the risk-averse EU farmers have higher price elasticities than the
risk-neutral ones, they reduce their production more when they expect the wheat
price to decrease. We’ve discussed this mechanism in the exogenous policy part,
this effect exists but is not big enough if the farmers’ risk premium stays around
the baseline of 2%. Then additionally, removing price instruments eliminates the
endogenous policy and its price stabilization effects. As a result, the price volatility
in Europe rises to a considerable large level (0.16) compared to the baseline (0.09).
Under the assumption of CARA, the risk premium parameter β depends on the
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price volatility, and it increases from 2% to 7%. With this great increase in risk
premium, the price elasticities of the risk averse producers rise to a much higher
level than that at the baseline. With the combined effects of the decrease in
expected price and the increase in expected volatility, the risk averse EU farmers
reduce their production much more sharply than the risk-neutral farmers.

We also find that risk aversion leads to different impacts after the removal
of direct payments. Under the endogenous policy, it takes only around 5 years
to converge to the steady state for both cases. Figures 5.7a and 5.7b show the
evolution paths with and without risk aversion: the discrepancy lies especially
between the second year and the third year after the policy shock. In the risk
aversion case, the production continues to fall despite the increase in the output
price expectations, while in the risk-neutral case, production rebounds a little with
the increase in output price expectations. We also find in Table 5.5 that the
final converged wheat production in Europe declines more (by 2.8%) in the risk
aversion case compared to the risk neutrality case (by 1.8%), and the EU wheat
price increases more (by 0.5%) with risk aversion than without risk aversion (by
0.3%). This is because under the endogenous policy representation, removing direct
payments leads to an increase in price volatility in Europe from 0.086 to 0.094, so
that the risk premium of the risk averse producers rises from 2% to 2.4%. As
a result, the risk-averse producer becomes more sensitive to the increase in land
price expectations, and they reduce their supply more following the removal of land
subsidies.

Moreover, risk aversion has a smoothing effect following the removal of price
instruments. The production and price converge to the steady state faster under
risk aversion (15 years) than under risk neutrality (20 years). This effect could
also be seen in Figures 5.6a and 5.6b, where the dynamics is smoother in the risk-
averse case. This is because the removal of endogenous price instruments induces
volatility change. While the change in volatility has no effect on the supply in the
risk neutrality case, it affects the slope of the supply curve in the risk aversion case
and leads to a converging effect. This effect is even more obvious in the coarse
grain case.

In sum, under the endogenous representation of the CAP instruments, the re-
sults from the stochastic version are no longer similar to the static and dynamic
results. This indicates the importance of adding the stochastic dimension in the
modeling frameworks. First, including risk aversion leads to much larger market
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impacts following the removal of CAP instruments: the risk-averse farmers reduce
their production much more than the risk-neutral ones. Second, risk aversion brings
a converging effect for the dynamics with the removal of price instruments. In this
case, risk aversion matters for farmers’ decisions and it has a large influence on
farm production and market prices.
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Figure 5.6: Simulated evolution of the EU wheat production and price following
the removal of price instruments, with the stochastic version and the endogenous
policy representation (in percent compared to the baseline)
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Figure 5.7: Simulated evolution of the EU wheat production and price following the
removal of direct payments, with the stochastic version and the exogenous policy
representation (in percent compared to the baseline)

5.3.4 Sensitivity Analysis

5.3.4.1 Wealth Effect: Sensitivity to the Risk Aversion Parameter

One assumption of our previous simulations is that the producers exhibit con-
stant absolute risk aversion (CARA). A large literature assesses the impact of farm
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payments on production through the so-called wealth effects. They assume that
farmers exhibit decreasing absolute risk aversion (DARA). To approximate this
effect in our stochastic version where farmers’ wealth has not been explicated, we
increase the EU farmers’ absolute risk aversion parameter ρ by 50% from the ini-
tial estimate, so that the risk premium represents 3% of the receipts. At the same
time, we simulate the policy scenarios in the stochastic model. Table 5.6 reports
the simulation results at the stochastic steady state for both the exogenous and
the endogenous policy representations.

Although risk aversion does not matter under exogenous policy with CARA,
including the wealth effect reveals a relatively larger production effect. Wheat pro-
duction decreases by 3.7% following the removal of price instruments and decreases
by 2.9% following the removal of direct payments. The level of production decrease
is much higher than that under CARA due to the wealth effect.

As risk aversion already matters under endogenous policy with CARA, it plays
an even more important role if the wealth effect is considered. The sensitivity
results show that EU farmers reduce their production by 17.7% with the removal
of price instruments and by 6.4% with the removal of direct payments. This pro-
duction cut effect is much more intense than that in the CARA case due to our
approximation of the wealth effect.

Table 5.6: Wealth effect: simulated impacts of the removal CAP instruments under
decreasing absolute risk aversion (production and price in percent with respect to
the baseline)

European Union Rest of the World

Production Price Volatility(σ) β Production Price Volatility(σ)

Stochastic version with exogenous policy
Removal of price -3.69 -0.56 0.16 3.11% 0.94 0.60 0.17Instruments
Removal of direct -2.91 -2.03 0.16 3.12% 0.66 0.45 0.17Payments

Stochastic version with endogenous policy
Removal of price -17.70 2.75 0.17 11.45% 5.11 3.29 0.18Instruments
Removal of direct -6.37 1.44 0.10 4.29% 1.81 1.17 0.17payments
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5.3.4.2 The Case of Coarse Grains

In the previous section, we focus our analysis on wheat, now we turn to coarse
grains. We repeat all the simulations by replacing the assumptions on wheat to
the assumptions on coarse grains, for example, we assume now that the EU coarse
grains farmers are risk averse, while other parameters and policy scenarios remain
the same.

Figures 5.8 to 5.10 present the simulation results. We start with the exogenous
policy representation. Again, we first need to obtain the new stochastic steady state
after introducing the productivity shocks. However, Figure 5.8 suggests that the
evolution of production and price diverges and there is no stochastic steady state
for this dynamics with or without risk aversion. This divergence is not surprising,
because, first, without the endogenous policy which stabilizes the price, the shocks
cause more severe market fluctuations especially under naïve expectations. More
importantly, compared to wheat, the Armington elasticity for coarse grains used
in the GTAP database is lower, hence the price elasticity of total demand is lower
in absolute terms. Consequently, the dynamic system is more likely to diverge due
to a steeper demand curve of coarse grains.

Under the endogenous policy representation, the economy reaches the stochastic
steady state with the productivity shocks after 10 years. On the one hand, Figure
5.9 shows that with the removal of price instruments, the dynamics diverges quickly
at the 4th year under risk neutrality. As explained above, this divergence is caused
by the relatively lower Armington elasticity for coarse grains. However, the system
is more and more likely to converge with the increase of risk premium, and it reaches
convergence when the initial calibrated risk premium raises to 3%. This confirms
the converging effect of risk aversion with the removal of price instruments. The
intuition is explained in the wheat case.

On the other hand, with the removal of direct payments and in the case without
risk aversion, the EU corn production and price converges to the new stochastic
steady state after 15 years. The EU corn production decreases by 1.6% and the
EU corn price increases by 0.7%. In the case of risk aversion, the dynamics could
not reach the convergence, but loops around a certain production and price level
(Figures 5.10b and 5.10c). This is because risk aversion increases the elasticity of
supply on coarse grains, while the presence of endogenous price instruments keeps
the volatility relatively stable. When the elasticity of supply increases to a similar
value as the elasticity of demand, the dynamics could not converge but ends in a
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loop.
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Figure 5.8: Simulated evolution of the EU coarse grains production and price
with productivity shocks, with the stochastic version and the exogenous policy
representation (in percent compared to the initial baseline)

5.3.4.3 Sensitivity to the Historical Weighting Parameter

In our previous simulations, we assumed that the historical weighting parameter
α equals 1. It indicates that the agents react immediately to the market price
change. It is well known that the expectation schemes have a significant impact on
market dynamics. More precisely, the system is more likely to diverge when α gets
close to one. This is an important reason why we encountered divergence in the
coarse grains case. In the case of wheat, the dynamics converges despite of naïve
expectations because the Armington elasticity for wheat is relatively higher, so
that the total demand curve is relatively flatter. In order to attain convergence for
every situation and to verify the role of different expectation schemes, we decrease
α from one (completely naïve) to 0.1 (nearly myopic) on both price and volatility
expectations in our stochastic model with risk aversion.

Figures 5.11 and 5.12 show the simulated evolution paths of production and
price regarding different α after removing the CAP instruments under endogenous
policy in the case of wheat. First, the dynamics is much smoother with the lower α.
This is because when the agents react slowly to the price news, the fluctuations in
the dynamics become less intense. It solves the divergence problem we encounter in
the coarse grains case: if we use a historical weighting parameter of 1/5, we obtain
converged corn production and price with productivity shocks and policy shocks.
Second, although the smooth levels are different, the converged dynamic systems
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Figure 5.9: Simulated evolution of the EU coarse grains production and price
following the removal of price instruments, with the stochastic version and the
endogenous policy representation (in percent compared to the baseline)
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Figure 5.11: Simulated evolution of the EU wheat production and price following
the removal of price instruments, with the stochastic version and the endogenous
policy representation, sensitivity to the expectation schemes (in percent compared
to the baseline)

get to the same stochastic steady state regarding different values of α. Except that
the lower the α, the more periods are needed to reach the stochastic steady state.
For example, in the stochastic model with risk aversion, endogenous policy and
simulating the removal of price instruments, it takes 8 years to reach the steady
state when α is 1, 15 years when α is 1/5, and more than 20 years when α is 1/10.
This is reasonable because the slower the agents react to market price news, the
slower the dynamics reaches the final equilibrium.

This sensitivity analysis implies thus that α influences the smooth level of the
dynamics, the length of period needed to reach the stochastic steady state. As long
as the system converges, it converges to the same stochastic steady state whatever
values of α.

5.4 Conclusion

The Common Agricultural Policy (CAP) has been reformed several times with
shifts from initial market price support to decoupled payments. Many models have
been developed to assess the market impacts of these reforms, but without explic-
itly introducing the stochastic dimension. In this paper, based on the standard
static GTAP-AGR model and a dynamic version of GTAP-AGR model, we pro-
pose a stochastic PE/CGE modeling framework in which we introduce exogenous
productivity shocks and farmers’ attitude towards risks. We investigate to what
extent the farmers’ risk attitude matters in assessing the market impacts of CAP
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Figure 5.12: Simulated evolution of the EU wheat production and price following
the removal of direct payments, with the stochastic version and the endogenous
policy representation, sensitivity to the expectation schemes (in percent compared
to the baseline)

instruments.

We show that risk attitude matters mostly when we allow an endogenous repre-
sentation of CAP instruments. In particular, risk aversion does alter the farmers’
production decisions in the way that risk-averse farmers have higher price elas-
ticities of supply. With the introduction of risk aversion, price volatility becomes
important to the producers’ decisions through its influence on the risk premium.
As the CAP reforms under the endogenous policy increase considerably the market
fluctuations, the farmers’ risk premium increases with the price volatility and leads
to larger market impacts. Moreover, if the farmers exhibit decreasing absolute
risk aversion, the additional wealth effects will bring even larger market impacts.
With regard to the evolution of dynamics, risk aversion also leads to a converging
effect after the removal of the endogenous price instruments. On the other hand,
if we adopt the exogenous policy representation, we find that including farmers’
risk attitude brings limited difference in assessing market impacts of the CAP in-
struments. This is because with exogenous policy, the CAP reforms bring limited
influences on price volatility, consequently, the risk premium which remains at the
initial level is not large enough to make a difference. In sum, our findings imply
that risk aversion matters in assessing the CAP instruments particularly when the
policy aims at stabilizing prices.

As usual, our modeling framework is subject to some limiting assumptions.
For example, we assume that capital is fixed, so that the investment equals the
capital depreciation for each period. In fact, risks and risk aversion exist not
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only in production decisions, but also in inter temporal saving and investment
decisions. It is thus worthwhile to extend the recent model to a stochastic model
with investment, while risk aversion is implemented in production, investment and
saving decisions. More generally, our modeling framework may be fruitfully used
to assess different risk management solutions.
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5.5 Appendix

An Alternative solution of the supply model with risk pre-

mium

The risk-averse farmer’s program is,3

Max

[
pyy − (p1x1 + p2x2 + p3x3 + pnvaqnva)−

1

2
ρσ2

pyy
2

]
(5.32)

where y is the farm’s output, py is the output price, x1, x2, x3 represent the land
input, unskilled labor input and skilled labor input, and p1, p2, p3 are their prices,
respectively. Note that the capital input is not included in the cost because we
consider it fixed. qnva is the quantity of non value added input, more specifically,
it is the sum of the intermediate inputs nested by a CES function. pnva is the
price of non value added input. 1

2
ρσ2

pyy
2 is the Arrow-Pratt approximation of the

risk premium, where ρ is the farmer’s absolute risk aversion coefficient, σpy is the
volatility of output price.

The farmer has a production function,

y = αy
(
δyq
−ρy
va + (1− δy)q−ρynva

)−1/ρy (5.33)

where qva is the quantity of value added, and it is constituted by Land, unskilled
labor, skilled labor and fixed capital (x4) through a CES function,

qva = (αq(δ1x
−ρq
1 + δ2x

−ρq
2 + δ3x

−ρq
3 + δ4x

−ρq
4 ), δ1 + δ2 + δ3 + δ4 = 1 (5.34)

Combining equations (5.33) and (5.34) together, we have the output in a nested
CES form,

y = αy

(
δy(αq(δ1x

−ρq
1 + δ2x

−ρq
2 + δ3x

−ρq
3 + δ4x

−ρq
4 )−1/ρq)−ρy + (1− δy)q−ρynva

)−1/ρy
(5.35)

This maximization program could be analyzed in two steps, the first step con-
sisting of minimizing the cost given a production quantity, and the second step
consisting of maximizing the objective function given the optimal minimum cost.

3We use simplified notations here for clarity. Time index t is dropped because the analysis is
within one period.
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For the first step,

Min(x.,qnva)(p1x1 + p2x2 + p3x3 + pnvaqnva)

subject to equation (5.35)
This system is very straight-forward to be solved by Lagrange multipliers, and

it gives us the optimal qnva and factor inputs under the expression of x1,

x∗i = x1
(δi/pi)

(δ1/p1)

1
1+ρq

, i = 2, 3 (5.36)

q∗nva =

(
p1(1− δy)
pnvaδy

αρqq δ
−1
1 x

1+ρq
1 qρy−ρqva

) 1
ρy+1

(5.37)

The second step is to maximize the profit,

Max

[
pyy − (p1x1 + p2x2 + p3x3 + pnvaqnva)−

1

2
ρσ2y2

]
Taking the first order derivative with respect to y, we have,

py − ρσ2y∗ =

(
p1 + p2

∂x2
∂x1

+ p3
∂x3
∂x1

+ pnva
∂qnva
∂x1

)
∂x1
∂y

(5.38)

The partial derivatives of x2, x3, qnva, qva and y with repect to x1 are:

∂xi
∂x1

=

(
δi/pi
δ1/p1

) 1
1+ρq

, i = 2, 3

∂qnva
∂x1

=
1

ρy + 1
·q−ρynva ·

(1− δy)p1
δypnva

·αρqq ·δ−11 ·
[
qρy−ρqva (1 + ρq)x

ρq
1 + x

1+ρq
1 (ρy − ρq)qρy−ρq−1va · ∂qva

∂x1

]
∂qva
∂x1

= αq

(
qva
αq

)1+ρq

·
(
δ1 + δ2(

δ2/p2
δ1/p1

)
− ρq

1+ρq + δ3(
δ3/p3
δ1/p1

)
− ρq

1+ρq

)
· x−ρq−11

∂y

∂x1
= αy · (

y

αy
)1+ρy ·

[
δy · q−ρy−1va · ∂qva

∂x1
+ (1− δy) · q−ρy−1nva · ∂qnva

∂x1

]
Equations (5.34), (5.35), (5.36), (5.37) and (5.38) together constitute an equilib-
rium system from which we could obtain the optimal output, the land input, un-
skilled labor input, skilled labor input and intermediate inputs, as well as naturally,
the quantity of value added and the quantity of non value added.
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Chapter 6

General Conclusion

6.1 General Conclusion

While physicists model the natural world based on physical laws, economists model
the economic agents’ behavior based on economic principles and assumptions. As
the interaction of the agents’ activities constitutes the market, we expect that the
economic model can describe the “economy" to some extent. The economic agents’
behaviors, however, are more sophisticated to model compared to the physical
elements, and the principles and assumptions based on which the models are built
keep on being challenged and improved. After all, there is no perfect model, but
we hope some of models are useful for the research questions of interest.

This dissertation is developed in the context that the EU has adopted a succes-
sion of policy reforms which remove price supports and introduce direct payments.
Accordingly, EU agricultural prices have become much more volatile, in line with
the world prices. French farmers face increasing risks from the market fluctuations:
how would they modify their decision choices, which may in turn influence produc-
tivity, remains in question. In this context, we model the dynamic behaviors of the
agricultural producers under risks based on partial equilibrium and general equi-
librium frameworks. The research objectives are, first, to estimate the evolution of
productivity and the deep parameters in the dynamic farm decision model. Sec-
ond, we study the quantitative link of price risk, farmers’ dynamic decisions under
risk, and productivity in this structural estimation framework. Third, we assess
the market impact of the policy instruments in a context where prices are risky.

145
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Our first contribution is with regard to the measurement problems in estimating
the production function. The accuracy of the input data, especially the problematic
measurement of capital, has severe impacts on the TFP estimation in agriculture.
We treat the capital data series as a latent state variable and infer it from the
observed decision variables. The depreciation rate, instead of being assumed or
calibrated, is a structural parameter to be simultaneously estimated with capital.
In this way, we have improved the accuracy of the capital data series. Besides, we
avoid the standard endogeneity problem in the production function estimation by
applying a fully structural estimation approach.

Our second contribution is methodological. We borrow the solution and esti-
mation technique from the DSGE estimation in macroeconomics and explore the
nonlinear estimation given that the agricultural producers experience large produc-
tion and price risks. Except for larger shocks, nonlinear estimation is useful for all
economic fields since more economic properties can be captured in the nonlinear
terms. The generalized maximum entropy (GME) approach that we proposed is
a forgotten but powerful approach. Different from the filtering approach, it inte-
grates the unknown parameters and the states in one entropy objective, and the
prior distribution is discrete instead of being continuous. We are not the first to use
the GME approach to estimate a state-space model. However, to our knowledge,
we are the first to integrate the solution process into the estimation before a state-
space representation is available. We show that the GME approach can accurately
estimate a growth model with high computational efficiency. This is meaningful
not only for the farm decision models, but also for the estimation of DSGE models
and more generally the state-space models.

Our third contribution is from the modeling perspective. We integrate the dy-
namic and risk dimensions for agricultural models. On the one hand, inspired by
the DSGE models, we develop a farm decision model in which a representative
farmer makes production, consumption, investment and financial borrowing deci-
sions with implicit credit constraints. In this way, output-price fluctuations and
productivity are studied in one structural framework. An important feature of the
model is the consistency of the model structure and the deep parameters. This fea-
ture allows us to study the policy reforms, because the agents’ optimal behaviors
stay independent from the policy changes. Besides, while the DSGE models are
macro models with micro foundations, the farm decision model can be considered
to apply at the firm level. We do not give a general equilibrium closure to the farm
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decision model because the agriculture sector alone is too small to set equilibrium
prices. On the other hand, based on the CGE literature, we develop a dynamic
stochastic GTAP-AGR CGE model. It is an attempt to introduce risk and risk at-
titude into a general equilibrium model which is widely used for agriculture policy
analysis.

Regarding the research questions posed at the beginning of the dissertation:
how does productivity evolve with the new structural changes? What are the
dynamic links between productivity, farm decisions, and price risks? The empir-
ical estimation shows that agricultural productivity in the French regions grows
steadily before the CAP reform when the prices fluctuate less. The growth pattern
has slowed down and becomes much more volatile following the increase in price
volatility. Overall, price risk does have an impact on productivity in the way that
when farmers are exposed to high risks, they alter their decisions and production
incentives, which in turn affect negatively on the realized productivity.

The policy simulation in the dynamic stochastic GTAP-AGR CGE model, in
which we assume that the exogenous productivity shocks influence the endogenous
EU prices, shows that accounting for risk and risk attitude is important in assess-
ing the CAP instruments. In addition to the price expectations, price volatility
expectations are also a factor affecting risk-averse farmers’ decisions, and in the
end affect the market outcome.

Sustaining and stimulating the EU agricultural productivity growth is a key ob-
jective of the CAP agenda 2014-2020. Previous literature (Alston 2018) shows that
agricultural R&D generates a high economic return and contributes to TFP growth
from the aspect of technology change. Consequently, the fact that productivity is
endogenous to R&D is valued by the policymakers, and the amount of R&D budget
has increased largely in the 2003 CAP reform. However, the CAP reforms since
2003 have led to much higher market risk for French agriculture. Different risk
management tools, public and private, are also constructed in the new CAP, but
the baseline is that these instruments manage risks but do not interfere market
prices (except market safety net for excessive price risks). We argue that the cur-
rent CAP policy assessment tools have not caught up with the increasing market
fluctuations. First, risk and risk attitudes are still largely missing in the available
policy assessment tools. As is shown in this dissertation, risk and preference are
important factors for farm decisions in both dynamic stochastic decision models
and the dynamic CGE model. As a result, we emphasize here the importance of
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accounting dynamic and risk dimensions for policy analysis in the new market con-
dition with increasing risks. Second, the aspect that productivity is endogenous
to price and price risk is mostly ignored in the policy-making process. It should
be recognized by the policymakers that the farmers’ decisions in response to the
increasing risks negatively impact productivity. Above all, market conditions need
to be considered for policy goals with regard to productivity enhancement.

6.2 Perspectives

We conclude with some perspectives for future research based on our current work:

Estimation without consumption This proposition is to simplify the research
question. We focus on estimating capital and the production techniques (elas-
ticities), and leave out the preference parameter. Indeed, the agent’s optimized
behavior is based on the consumption-based utility function. In order to recover
preferences, we need to have accurate consumption data. However, consumption
data are difficult to collect. First, if the consumption data are the true consump-
tion, while insurance is not included in the model, the true consumption by the
farmers tends to be smoother than that given by the model. For example, in years
with negative productivity shocks, the representative farmer receives a lower farm
income, but he or she may maintain the consumption level with insurance or other
external help. Second, if the consumption used for estimation purpose is not the
true consumption, then the estimated revealed preference is not the true prefer-
ence. On the contrary, if we assume linear utility function, which indicates risk
neutrality, consumption will be canceled out in the Euler equation. Consequently,
we no longer need the consumption observations to estimate the structural param-
eters (except for preferences). The preferences captured in the data enter into the
Euler errors, which will greatly simplify the estimation. We will perform sampling
experiments to see if we can obtain accurate estimation on capital and elasticities
without using the consumption data. In other words, the research question is: does
the accuracy of the preference parameter matter for the recovery of other structural
parameters?
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A growing economy Our estimation in Chapter 4 is performed keeping the
state variables within the bounds, such that to deal with the TFP trend. How
to develop a robust GME approach to estimate the nonstationary model, which
describes a growing economy, remains under investigation. At the current stage
of our investigation, first, we reformulate the GME model so that the function
approximations are based on stationary variables. Second, we simulate data from a
nonstationary model, and perform Monte-Carlo experiments to test the estimation
results.

Structural change in capital evolution? One important feature for the struc-
tural models is that the deep parameters in the model stay unchanged with the
policy changes. However, for example, the behavioral economics literature studies a
different assumption that the preference parameter can change over time. We pro-
pose a further study by assuming that the capital evolution pattern, for example,
the depreciation rate, may change with structural changes in market conditions.
The intuition is that the farmers are more reluctant to invest in capital with higher
market risks. Instead, they use more intensively the available capital, which may
lead to a higher capital depreciation rate. This proposition, still, will contribute to
the debate over the accurate measurement of the capital formation process.

Integrating risk-management tools In the current modeling, the representa-
tive farmer only coordinates the intertemporal decisions to manage the risks. The
French farmers are increasingly adopting risk-management tools. Public and pri-
vate instruments, like insurance, futures, options, or product diversifications, are
more and more used. While both production risk and price risk are included in
the dynamic stochastic decision model, a natural extension is to include some risk
management tools into the model. This extension can be used to evaluate the
effectiveness of the risk-management tools, the optimized implementation of the
tools (futures or options), and farmers’ intertemporal decisions with insurance.

Assessing other TFP drivers By enriching the farm decision model, we can
assess the effect of other TFP drivers on TFP in one structural estimation frame-
work. These drivers can include R&D investments, climate change, environmental
constraints, and farm structural factors. This can be accomplished by adding the
factor explicitly into the TFP evolution function, while in our current modeling
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framework, these factors are captured in the exogenous productivity shocks.

Expectation Maximization In addition to the ML approach proposed by Fernández-
Villaverde and Rubio-Ramírez (2005) and implemented in Dynare, Expectation-
Maximization (EM) also provides a viable approach to estimate the model param-
eters. A notable difference of EM compared to the ML approach is that in EM we
consider the hidden state from the very beginning of the formulation by considering
the likelihood function as the marginal full joint distribution over the hidden state.
EM consists of two dependent coordinate ascent procedures. In the expectation
step (E-step), we evaluate the posterior conditional distribution p(s0:T |z1:T ,θl),
where l denotes the EM iteration. Here we need the smoothed state conditioned
on the whole data span and the prior parameter θl, whereas in the ML approach,
we only need to compute the filtered state. In the maximization step (M-step), we
search for θl+1 maximizing the function Q that is related to the lower bound of the
likelihood function, θl+1 = arg maxθl+1

Q(θl+1,θl).
A great advantage of EM is that in the M-step, only the full joint distribution

is a function of θl+1. This has profound implications. Indeed, in most cases, the
gradient of the full joint distribution with regard to the parameters is much easier
to manipulate than the likelihood function in the ML approach. Even for complex
models where the closed-forms for the parameters do not exist, we can still find the
parameters through sampling-based iterative searching strategy as shown by Yang
and Mémin (2018).
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Résumé Substantiel en Français

Motivation

L’agriculture française fait face à plusieurs défis économiques, environnementaux
et sociaux, Les défis d’ordre économique sont liés à une concurrence accrue des
productions agricoles des pays tiers, en partie suite aux réformes de la Politique
Agricole Commune (PAC) et aux accords bilatéraux. La concurrence vient aussi
des autres pays européens, tout particulièrement des pays du Nord de l’Europe.
Les agriculteurs français font également face à une volatilité accrue des prix des
produits et intrants agricoles. Ceci est en partie dû aux réformes de la PAC qui
réduisent les soutiens de prix et introduisent des paiements directs qui imposent
moins d’interventions de marché. D’un point de vue environnemental, l’agriculture
française fait face à des ressources naturelles plus limitées, ainsi qu’à des con-
traintes réglementaires, visant à ce qu’elle génère de moindres impacts négatifs sur
les ressources naturelles tout en augmentant ses externalités positives.

Comme tous les autres secteurs productifs, la capacité de l’agriculture française
à relever ses différents défis va en partie dépendre de sa capacité à améliorer sa pro-
ductivité traditionnellement définie comme le rapport entre les productions et les
utilisations d’intrants. En effet, l’augmentation de la productivité est le principal
moteur de la croissance, et constitue un facteur important pour la compétitivité de
l’économie (Ball et al. 2015, Andersen et al. 2018). Une croissance continue de la
productivité a été observée dans toutes les industries, dont l’agriculture, grâce aux
innovations majeures dans les technologies de l’information et l’automatisation.
Toutefois, selon l’indice de la Productivité Totale des Facteurs (PTF) calculée par
European Commission (2016), conformément aux États membres de l’UE-15, la
croissance de la productivité de l’agriculture française s’est ralentie au cours des
dernières décennies.

La productivité et sa dynamique ne sont pas seulement les reflets de la crois-
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sance technologique, mais aussi les choix en matière d’adoption de technologies,
d’allocation de ressources, d’incitations, et d’ajustements structurels. Du point de
vue des décideurs, ces choix, ainsi que les innovations, sont liés aux politiques qui
influent sur les conditions du marché et aux investissements dans la recherche et
l’éducation. Comme la productivité n’est pas directement observable, une tâche
des économistes est de comprendre la productivité, d’identifier les sources de sa
croissance et de la mesurer sans biais.

Cette thèse vise, d’une part, à mesurer l’évolution récente de la productivité de
l’agriculture française dans un modèle dynamique structurel, en considérant les an-
nées récentes marquées par une volatilité plus importante des prix des produits et
intrants agricoles. Cela devrait nous permettre de mieux identifier le rôle respectif
des facteurs exogènes comme le climat, endogènes comme les facteurs économiques,
et règlementaires comme les mesures politiques. Deuxièmement, nous étudions le
lien dynamique entre la volatilité des prix, les décisions des agriculteurs et la pro-
ductivité dans le cadre d’estimation structurelle. Ces deux objectifs sont atteints
en développant des modèles dynamiques structurels dans lesquels les incitations
économiques et les prix ont explicitement un rôle potentiel sur les décisions des
agents économiques, tout en prenant en compte les modifications structurelles de
la volatilité des prix. Nous estimons la productivité et les paramètres comporte-
mentaux dans le modèle dynamique structurel. Les méthodes d’estimation sont
bien développées pour estimer les modèles espaces-états et les modèles d’équilibre
général stochastique dynamique (DSGE). L’estimation contribue aux problèmes de
mesure liés au capital non observé et au problème d’endogénéité lié à l’estimation
d’une fonction de production.

Le troisième objectif consiste à évaluer les effets sur le marché des instruments
de politique dans le contexte de prix instables. Ceci est fait grâce au développement
d’une version dynamique stochastique d’un modèle d’équilibre général calculable
(EGC). Les preuves économétriques de l’effet des risques de prix sur la production
agricole, et en particulier sur la productivité, constituent la base empirique de
l’analyse des politiques.

Dans ce qui suit, nous motivons les objectifs de recherche.
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Figure 6.1: Les dépenses de la PAC par année civile (en prix courants) (Source:
European Commission 2013)

Réformes Politiques et Nouveau Contexte de Volatilité des Prix

Afin de garantir un revenu stable aux agriculteurs, une offre stable d’aliments abor-
dables pour les consommateurs et de renforcer la compétitivité de l’agriculture de
l’UE, de nombreux réformes de la PAC ont eu lieu au cours des dernières décennies.
La figure 6.1 montre l’évolution des dépenses de la PAC depuis 1990. Globalement
les soutiens publics européens par des prix nominaux constants ont diminué au
profit de soutiens directs aux revenus agricoles de plus en plus conditionnés par
des critères environnementaux, et plus récemment par quelques mesures de gestion
des risques et des crises. La réforme majeure de 2003 a découplé les subventions
de la production, et les paiements directs sont principalement liés à l’utilisation
des terres. La nouvelle PAC 2014-2020 met davantage l’accent sur les questions
d’environnement et de risque et est mieux ciblée en limitant l’aide aux agriculteurs
actifs dans la production. Les subventions foncières passent progressivement à de
nouveaux paiements directs destinés aux exploitations en activité, encourageant
les jeunes agriculteurs et les petites exploitations, et assortie de conditions crois-
santes pour des critères environnementaux et des mesures de gestion des risques.
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(a) Indices des prix à la production français: agriculture (Source:
FAOSTAT)
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(b) Indices des prix à la production français: céréales (Source:
FAOSTAT)

Figure 6.2: Indices de prix annuels des producteurs (Source: FAOSTAT)

De plus, une part croissante du budget est consacrée au développement rural et
à la Recherche/Développement (R & D), dans le but de favoriser le transfert de
connaissances et les innovations technologiques afin d’améliorer la productivité.

Au niveau national, une volonté politique de plus en plus affirmée vise le change-
ment de pratiques agricoles avec une réduction de certaines externalités néga-
tives, comme par exemple, une réduction des usages de produits phytosanitaires et
d’antibiotiques.

La succession des réformes de la PAC, en particulier la réforme majeure de
2003, a entraîné une exposition plus grande des agricultures européennes, et donc
française, à la volatilité potentielle des prix agricoles mondiaux. Le niveau et
la volatilité des prix mondiaux ont sensiblement augmenté après 2000. Les prix
agricoles en France ont longtemps été stables et la tendance à la baisse des produits
céréaliers a commencé à augmenter et à fluctuer beaucoup plus après 2003 (la Figure
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6.2).
Ce nouveau contexte économique et règlementaire dans lequel opère l’agriculture

française n’a pas été pleinement intégré dans les précédentes analyses sur l’évolution
de sa productivité. Or certains travaux (Pietola and Myers 2000, Odening et al.
2013) ont pu déjà mesurer, dans d’autres contextes, qu’une plus grande volatilité
des prix avait un impact négatif sur les investissements et/ou les productivités. Ef-
fectivement, les mesures de productivité ont assez fortement changé ces dernières
années à la suite des réformes successives de la PAC et des différentes réformes des
politiques nationales touchant l’agriculture.

Ce nouveau contexte de marché conduit aux deux premières questions de la
thèse de recherche: quelle est la trajectoire d’évolution de la productivité avec les
changements structurels du marché? Comment la volatilité croissante des prix et
les nouveaux risques liés aux prix ont-ils un impact sur les décisions agricoles et la
productivité? Les deux questions correspondent aux deux premiers objectifs de la
recherche. Pour y répondre, nous devons développer des mesures de productivité
non biaisées permettant de prendre en compte les réformes politiques et les risques
de variation des prix. De plus, nous devons développer un modèle structurel nous
permettant d’étudier le lien entre les risques de prix, les décisions des agriculteurs
et la productivité.

Mesurer la Productivité

Les différences de résultats susmentionnés sur la productivité de l’agriculture française
peuvent en partie s’expliquer par les données et les méthodes utilisées. En fait, dif-
férentes méthodes ont été développées depuis de nombreuses années pour mesurer
la productivité relative d’une firme/secteur/région et/ou de son évolution dans le
temps. Comme l’explique Van Biesebroeck (2007), ces différentes méthodes ont été
élaborées à cause de deux difficultés principales rencontrées dans toutes les appli-
cations. D’une part, les fonctions de production des firmes, et donc les arbitrages
opérés par les producteurs, ne sont pas directement observables à partir de don-
nées traditionnellement disponibles. D’autre part, les productions, marchandes et
encore plus non marchandes, et les intrants sont mesurés avec erreur. C’est tout
spécialement le cas pour les facteurs quasi-fixes qui comprennent le travail famil-
ial et le capital en agriculture. Andersen et al. (2011) soulignent dans le cas de
l’agriculture américaine les difficultés à mesurer les flux de services des différents
capitaux et les rentabilités associées qui sont nécessaires dans toutes les méth-
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odes de mesure de la productivité. Pour contourner ces deux difficultés, l’idéal
qui est constamment suggéré dans la littérature économique consiste à obtenir de
meilleures données. De nouvelles approches ont également été proposées pour de
meilleures estimations de la productivité (De Loecker et al. 2016, Plastina and
Lence 2018).

Nous proposons une nouvelle approche pour mesurer la productivité agricole,
dans laquelle la productivité est modélisée et estimée conjointement avec les paramètres
comportementaux. Cette approche repose sur les méthodes d’estimation basées sur
le principe d’entropie maximale et au filtre à particules. Les méthodes de filtres
sont bien développées pour estimer les modèles DSGE dans la littérature macroé-
conomique moderne. Les deux méthodes sont appliquées pour récupérer les états
cachés dans l’estimation du modèle espaces-états. Dans notre cas, la productivité
et le capital sont les états cachés. Ces techniques d’estimation nous permettent
de mesurer la productivité et ses déterminants dans des cadres stochastiques et
dynamiques, et donc prendre en compte la volatilité des prix et les instruments de
gestion des risques, tout en reconnaissant que nous n’avons pas de mesure exacte
de ces facteurs quasi fixes.

Évaluation de la Politique

Notre troisième objectif est d’évaluer l’impact des instruments de politique sur
les marchés dans un contexte de volatilité des prix. Dans les modèles économiques
récents d’analyse de la politique agricole, comme les modèles d’équilibre général cal-
culable (EGC), les comportements statiques des agents sont modélisés à l’aide de
cadres de maximisation des bénéfices et de minimisation des coûts. Néanmoins, les
dimensions de dynamique et de risque sont largement ignorées. Malgré la puissance
des modèles EGC à grande échelle pour la modélisation complète de l’ensemble du
marché, il est impossible d’analyser les réponses dynamiques des agriculteurs à
l’environnement de plus en plus risqué dans de tels modèles statiques. Alternative-
ment, basés sur les principes microéconomiques, les modèles DSGE sont largement
utilisés pour comprendre la croissance économique et les cycles. Cela ouvre des
possibilités d’intégration de dimensions dynamiques et de risque pour les modèles
agricoles. En effet, dans cette thèse, la productivité et son lien avec la volatilité
des prix sont modélisés et estimés sur la base du concept de modélisation DSGE,
tandis que l’évaluation des politiques est effectuée dans le cadre EGC.
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Approche

Nous développons des modèles structurels dynamiques pour atteindre les objectifs
de recherche. En effet, la productivité et l’évolution des prix sont des processus
dynamiques et les événements à risque se situent dans le futur. Comparés aux
modèles sous forme réduite, les modèles structurels sont développés sur la base des
principes comportementaux des agents. Ils nous permettent d’intégrer les décisions
des agents, la volatilité des prix et la productivité dans un seul et même cadre, et
sont mieux adaptés pour évaluer les réformes politiques.

Modélisation Dynamique

Deux types de modèles dynamiques sont construits dans la thèse. Premièrement, un
modèle de décision agricole similaire à un modèle DSGE, dans lequel un agriculteur
tourné vers l’avenir prend des décisions en matière de production, de consomma-
tion, d’investissement en capital et d’emprunt financier, afin de maximiser l’utilité
actualisée de la consommation. Ce modèle fait partie de la famille des modèles de
programmation dynamique. Comparé aux modèles DSGE, ce modèle est axé sur
les producteurs, de sorte que les prix sont exogènes. En outre, c’est à un niveau
moins agrégé. Deuxièmement, nous développons un modèle EGC dynamique récur-
sif avec une succession d’équilibres à court terme. Ce modèle étend les modèles
EGC récents en intégrant les dimensions de risque et dynamique.

La dynamique du modèle passe par le canal de l’accumulation de capital et
des évolutions prix et productivité. En agriculture, les sources de risque incluent
le prix et la productivité dans les périodes futures. Ils ont une incidence sur les
décisions d’investissement actuelles dans la façon dont l’agent fait des prévisions
sur les rendements futurs. En outre, une des particularités de l’agriculture est que
les risques jouent également un rôle dans une période donnée, entre la saison de
croissance et la saison de récolte. Ce risque est modélisé dans le modèle EGC
dynamique récursif.

Changement Structurel Par-dessus tout, les modèles structurels dynamiques
décrivent le comportement des agents à travers des principes économiques. Bien
que les interactions des agents constituent le marché, nous nous attendons à ce que
les modèles structurels décrivent dans une certaine mesure les résultats du marché.
Un trait important des modèles structurels est la cohérence mathématique de la
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structure du modèle et des paramètres « profonds » ou « fondamentaux ». Les
changements de politique affectent les conditions du marché, mais les comporte-
ments optimaux des agents restent indépendants des changements de politique.
Ainsi, les modèles structurels sont robustes à la critique de Lucas (Lucas 1976) et
peuvent être utiles pour l’analyse des politiques. Pour cette raison, le modèle de
décision agricole est éligible pour analyser le nouveau contexte de marché avec les
réformes de la PAC. Les changements structurels sont imposés dans les paramètres
décrivant l’évolution des prix et de la productivité, mais pas les paramètres pro-
fonds qui déterminent les règles de décision des agents.

Estimation Structurelle

Étant donné que le modèle structurel décrit le marché, l’objectif de l’estimation
économétrique est de trouver l’ensemble des paramètres optimaux avec les résultats
du modèle correspondant et qui peuvent le mieux expliquer les données historiques.
L’estimation permet de décrire les techniques de production, les préférences des
agriculteurs, ainsi que l’accumulation de capital latent et le processus d’évolution
de la productivité. L’estimation de ces modèles est techniquement difficile, car un
processus de résolution numérique est nécessaire pour obtenir un modèle d’espace
d’état explicite. Les paramètres structurels et les états latents du modèle espaces-
états doivent donc être estimés à l’aide des données observées.

Les techniques bayésiennes sont appliquées à l’estimation à la fois des paramètres
et de l’état caché. En ce qui concerne les paramètres, nous possédons des informa-
tions préalables sur les paramètres profonds car ils ont une signification économique
correspondante. Les paramètres postérieurs sont estimés en fonction des a-priori
et des informations. La recherche de l’état optimal correspond à la recherche de la
probabilité conditionnée postérieure de la variable d’état cachée à l’heure actuelle,
compte tenu de toutes les données observées dans le passé. Ces deux étapes peuvent
être effectuées simultanément ou séquentiellement.

Apprentissage Statistique D’un point de vue méthodologique, la stratégie
d’estimation abordée dans cette thèse appartient à un sujet plus vaste, à savoir
l’apprentissage statistique. En clair, il s’agit d’ajuster un modèle paramètré aux
données.

L’apprentissage statistique a été popularisé par la communauté de l’apprentissage
automatique au cours des dernières années en raison de la renaissance du réseau
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de neurones profonds (LeCun et al. 1998, Krizhevsky et al. 2012). L’apprentissage
profond a réalisé des performances incomparables dans des tâches telles que la clas-
sification, et la reconnaissance faciale/vocale. Bien que cela puisse semble promet-
teur, l’utilité des techniques de l’apprentissage profond à résoudre les problèmes
économiques reste une question ouverte. Le succès de l’apprentissage profond est
largement associé à la procédure d’apprentissage des fonctions des descriptions liées
à la profondeur du réseau, dans laquelle les fonctions des descriptions sont automa-
tiquement extraites des données. C’est la raison pourquoi l’apprentissage profond
fonctionne bien sur des riches ensembles de données tels que l’image ou le son. La
procédure d’extraction de caractéristiques correspond à notre procédure de mod-
élisation économique. A priori, il est difficile de savoir comment les fonctions des
descriptions peut concurrencer notre modèle économique sophistiqué, étant donné
que les données économiques sont clairsemées en général et que les comportements
humains sont plus difficiles à apprendre, comparés aux caractéristiques physiques.
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Plan de la thèse

Cette thèse se divise en quatre chapitres.

Chapitre 2 Productivité et Volatilité des Prix: une Revue de Littéra-
ture Ce chapitre examine la littérature sur la productivité et les risques de prix.
La productivité totale des facteurs (PTF) est généralement considérée comme un
processus exogène et concerne uniquement les innovations. Dans cette revue, nous
soutenons que, en tant que résidu de la fonction de production, la productivité
saisit non seulement le changement technologique, mais également d’autres fac-
teurs non mesurés tels que le taux d’adoption de la technologie, l’efficacité, les
efforts de main-d’œuvre et les autres spécifications manquantes dans les données.
En conséquence, les prix et les risques de prix influent sur la productivité par le
biais des canaux de décisions d’investissement à long terme liées à la R & D et de
décisions liées à l’efficacité. Associé à cela, la reprise de la dynamique de la produc-
tivité dépend fortement de la précision des données et de la méthode d’estimation.
En conséquence, nous passons en revue les problèmes de mesure des entrées et
des sorties et comparons les avantages et les inconvénients de différentes méth-
odes d’estimation. Nous soulignons en particulier les problèmes de mesure liés aux
séries de données sur le capital non observées et le problème de simultanéité issu
de l’estimation primale. La méthode d’estimation que nous proposons traitera ces
deux problèmes.

Chapitre 3 Estimation des Modèles de Décision Dynamiques Stochas-
tiques non linéaires: une Approche d’Entropie Maximale Généralisée
Ce chapitre étudie les méthodes d’optimisation numérique permettant de résoudre
et d’estimer des modèles de décision stochastiques dynamiques. Le modèle de base
de cette thèse est un modèle de décision de ferme de type DSGE, dans lequel la
productivité et le capital sont des variables latentes, et où un processus de résolu-
tion est nécessaire pour obtenir le modèle espaces- états. En plus de la méthode
basée sur la vraisemblance avec les filtres, nous proposons une approche de maxi-
mum d’entropie généralisée (MEG) pour estimer le modèle. À notre connaissance,
cette méthode n’a pas encore été utilisée pour estimer ces modèles. Sur la base
d’expériences de Monte-Carlo avec des données simulées, nous effectuons des es-
timations avec le filtre à particules et avec la méthode MEG. Nous montrons que
l’approche MEG fournit une estimation précise des paramètres structurels inconnus
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et des chocs structurels. En particulier, le paramètre de préférence qui rend compte
de la préférence de risque et de la préférence inter temporelle est également estimé
avec une précision relative. Comparée aux méthodes de filtrage les plus largement
utilisées, l’approche MEG fournit un niveau de précision similaire mais offre une
efficacité de calcul beaucoup plus élevée pour les modèles non linéaires. De plus,
l’approche proposée montre des propriétés favorables pour les données de petite
taille.

Les motivations d’étudier des méthodes différentes sont plusieurs. En effet,
Dynare (Adjemian et al. 2011) constitue un excellent outil de solution et d’estimation
de DSGE. Alors pourquoi perdre du temps à la recherche de nouveaux méthodes
et à développer de nouveaux algorithmes? Notre première motivation provient du
fait que les séries de données agricoles sont volatiles, que les risque de prix est
un terme de second ordre et que on s’intéresse aux propension au risque d’ordre
élevé. Pour ces raisons, la solution et l’estimation linéaire ne sont plus suffisantes.
Pour une estimation de second ordre, le filtre particulaire est déjà implémenté dans
Dynare, mais ses performances (basées sur l’échantillonnage) ne sont pas aussi sta-
bles que le filtre de Kalman (analytique) et prennent beaucoup de temps de calcul.
La méthode de MEG a été utilisée pour estimer les modèles espaces-états, elle est
simple à implémenter dans GAMS, elle n’exige aucune linéarité, et elle est efficace
en ce qui concerne le temps de calcul. Cependant, à notre connaissance, l’approche
MEG n’a pas été utilisée pour estimer les modèles de DSGE. En conséquence, dans
ce chapitre, on effectue des expériences pour découvrir la validité de cette nouvelle
méthode. La seconde motivation concerne la solution de DSGE. Les méthodes
de perturbation ne sont pas précises avec l’existence de chocs importants (Aruoba
et al. 2006) et ne sont précises qu’autour de l’état stationnaire. On préfère utiliser
des méthodes de projection à résoudre le modèle. En effet, les fonctions de poli-
tique obtenues à partir de méthodes de projection sont plus couramment utilisées
pour l’analyse des politiques agricoles. Cependant, la projection en tant que so-
lution n’est pas implémentée dans Dynare. On suppose que c’est parce que cela
n’est pas nécessaire pour un problème d’estimation linéaire et que la tâche de cal-
cul est trop lourde pour une estimation de second ordre. En conséquence, on mit
en oeuvre l’approche de MEG avec la méthode de projection de Chebyshev dans
ce chapitre. La troisième motivation est plus générale. Les méthodes de solution,
l’estimation bayésienne avec les filtres et la méthode de MEG sont des méthodes
d’apprentissage statistique en cours de développement. L’étude de ces méthodes
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contribue à l’économie de calcul numérique.

Chapitre 4 : Productivité de l’Agriculture française et Volatilité des
Prix : une Estimation Dynamique Stochastique Structurelle Ce chapitre
estime le lien entre la fluctuation des prix des produits et la productivité dans
un modèle de décision agricole stochastique dynamique à deux périodes fondé
sur des données françaises. Pour tenir compte de la variation de la volatilité des
prix, nous intégrons les modifications structurelles du terme de dérive et d’écart
type des chocs dans les processus d’évolution du prix à la production et de la
productivité avant et après 2003. Nous estimons le modèle sur la base des don-
nées d’enquêtes annuelles des producteurs de cultures de la région Centre issues
du réseau d’information comptable agricole (FADN) couvrant la période 1988-
2015. Pour adapter l’estimation aux séries de données agricoles moins globales
et très volatiles, nous approximons d’abord la fonction de politique en utilisant une
méthode polynomiale de Chebyshev du troisième ordre. Deuxièmement, nous esti-
mons les paramètres structurels en utilisant une approche de maximum d’entropie
généralisée. Notre estimation montre que la PTF augmente régulièrement avant
2003, que le taux de croissance a ralenti et que la structure de la croissance devient
beaucoup plus volatile à la suite de la hausse de la volatilité des prix après 2003.
Selon le modèle à deux périodes, les chocs de productivité purs sont stables avant
et après 2003. Les fluctuations croissantes de la PTF sont principalement dues à
la hausse des chocs en terme de prix.

Chapitre 5 : Évaluation de la Réforme de la Politique Agricole Commune
(PAC): l’Attitude des Agriculteurs en Matière de Risque est-elle Im-
portante? Ce chapitre simule les impacts des instruments de politique publique.
Nous intégrons la dimension risque et dynamique dans un modèle EGC statique,
plus précisément le modèle GTAP-AGR, dans lequel les risques de productivité
et de prix sont liés. Ceci est réalisé en modifiant le côté « offre » du modèle
GTAP-AGR en ajoutant des attitudes de risque des agriculteurs. Pendant la sai-
son de croissance, les agriculteurs prennent les décisions optimales dans ce modèle
d’approvisionnement modifié en fonction des attentes en matière de prix et de
volatilité des prix. Pendant la saison des récoltes, nous introduisons des chocs de
productivité stochastiques dans le modèle EGC. De plus, le prix d’équilibre final,
déterminé conjointement par l’offre et la demande dans le modèle EGC, n’est pas
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nécessairement conforme aux attentes de prix. L’agriculteur reçoit un rendement
du capital basé sur le prix réel du marché. La dynamique du modèle transmet les
attentes que les agriculteurs ont récemment formées de la succession des équilibres
de marché à court terme. Nous montrons qu’outre les anticipations de prix, les
anticipations de volatilité des prix deviennent l’un des facteurs clés de la décision
des agriculteurs par le biais de leur influence sur la prime de risque. Nous mon-
trons que, dans le cadre de la modélisation endogène des instruments de la PAC,
l’aversion pour le risque est importante car elle entraîne des effets de production et
de prix beaucoup plus importants. Les effets des instruments politiques sont encore
plus importants si l’effet de richesse est pris en compte. L’aversion au risque est
également importante en atténuant la dynamique induite par les risques de prix
endogènes.
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Conclusion Générale

Alors que les physiciens modélisent le monde naturel à l’aide de lois physiques,
les économistes modèlent le comportement des agents économiques en fonction de
principes et d’hypothèses économiques. Etant donné que l’interaction des activités
des agents constitue le marché, nous nous attendons à ce que le modèle économique
puisse décrire dans une certaine mesure "l’économie". Les comportements des
agents économiques sont toutefois plus sophistiqués à modéliser que les éléments
physiques, et les comportements des agents économiques sont plus sophistiqués. Les
principes et les hypothèses sur lesquels sont fondés les modèles continuent à être
remis en question et améliorés. Après tout, il n’existe pas de modèle parfait, mais
nous espérons que certains modèles seront utiles pour les questions de recherche
qui les intéressent.

Cette thèse est développée dans le contexte où l’UE a adopté une succession
de réformes de la PAC qui suppriment les soutiens de prix et introduisent des
paiements directs. En conséquence, les prix agricoles de l’UE sont devenus beau-
coup plus volatils, parallèlement aux prix mondiaux. Les agriculteurs français sont
confrontés à des risques croissants liés aux fluctuations du marché: la manière dont
ils modifieraient leurs décisions, qui pourraient à leur tour influencer la productiv-
ité, reste en question. Dans ce contexte, nous modélisons les comportements dy-
namiques des producteurs agricoles sous des risques basés sur des cadres d’équilibre
partiel et d’équilibre général. Les objectifs de la recherche sont, premièrement,
d’estimer l’évolution de la productivité et les paramètres profonds dans le modèle
de décision de ferme dynamique. Deuxièmement, nous étudions le lien quantitatif
du risque de prix, les décisions dynamiques des agriculteurs en matière de risque
et la productivité dans ce cadre d’estimation structurelle. Troisièmement, nous
évaluons l’impact des instruments de politique sur le marché dans un contexte où
les prix sont risqués.

Notre première contribution concerne les problèmes de mesure liés à l’estimation
de la fonction de production. La précision des données, en particulier la mesure
problématique du capital, a de graves répercussions sur l’estimation de la PTF en
agriculture. Nous traitons la série de données de capital comme une variable d’état
latente et l’inférons des variables de décision observées. Le taux d’amortissement,
au lieu d’être supposé ou calibré, est un paramètre structurel à évaluer simultané-
ment avec le capital. De cette manière, nous avons amélioré la précision des séries de
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données sur les immobilisations. En outre, nous évitons le problème d’endogénéité
standard dans l’estimation de la fonction de production en appliquant une approche
d’estimation entièrement structurelle.

Notre deuxième contribution est méthodologique. Nous empruntons la solution
et la technique d’estimation à l’estimation DSGE en macroéconomie et explorons
l’estimation non linéaire étant donné que les producteurs agricoles sont exposés
à des risques de production et de prix importants. À l’exception des chocs plus
importants, l’estimation non linéaire est utile pour tous les domaines économiques,
car il est possible de capturer davantage de propriétés économiques en termes non
linéaires. L’approche de maximum d’entropie généralisée (MEG) que nous avons
proposée est une approche oubliée mais puissante. Différente de l’approche de
filtrage, elle intègre les paramètres inconnus et les états dans un objectif d’entropie,
et la distribution antérieure est discrète au lieu d’être continue. Nous ne sommes
pas les premiers à utiliser l’approche MEG pour estimer un modèle espaces-états.
Cependant, à notre connaissance, nous sommes les premiers à intégrer le processus
de résolution dans l’estimation avant qu’une représentation d’espace-état ne soit
disponible. Nous montrons que l’approche MEG peut estimer avec précision un
modèle de croissance avec une efficacité de calcul élevée..

Notre troisième contribution est celle de la modélisation. Nous intégrons les
dimensions dynamique et risque des modèles agricoles. D’une part, inspirés des
modèles DSGE, nous développons un modèle de décision agricole dans lequel un
agriculteur représentatif prend des décisions en matière de production, de con-
sommation, d’investissement et d’emprunt financier avec des contraintes de crédit
implicites. De cette manière, les fluctuations du prix de la production et la produc-
tivité sont étudiées dans un cadre structurel. Une caractéristique importante du
modèle est la cohérence de la structure du modèle et des paramètres profonds. Cette
fonctionnalité nous permet d’étudier les réformes de la politique, car les comporte-
ments optimaux des agents restent indépendants des changements de politique. En
outre, alors que les modèles DSGE sont des modèles macro avec des fondements
micro, le modèle de décision agricole peut être considéré comme s’appliquant au
niveau de l’entreprise. Nous ne donnons pas de fermeture d’équilibre général au
modèle de décision agricole car le secteur agricole seul est trop petit pour fixer des
prix d’équilibre. D’autre part, sur la base de la littérature CGE, nous développons
un modèle GTAP-AGR CGE dynamique stochastique. Il s’agit d’une tentative
d’introduire le risque et l’attitude de risque dans un modèle d’équilibre général qui
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est largement utilisé pour l’analyse des politiques agricoles.

Concernant les questions de recherche posées au début de la thèse: comment
la productivité évolue-t-elle avec les nouveaux changements structurels? Quels
sont les liens dynamiques entre productivité, décisions agricoles et risques de prix?
L’estimation empirique montre que la productivité agricole dans les régions françaises
augmente régulièrement avant la réforme de la PAC lorsque les prix fluctuent moins.
La croissance a ralenti et devient beaucoup plus volatile à la suite de la hausse de
la volatilité des prix. Globalement, le risque de prix a un impact sur la productivité
car, lorsque les agriculteurs sont exposés à des risques élevés, ils modifient leurs dé-
cisions et leurs incitations à la production, ce qui, à son tour, affecte négativement
la productivité réalisée.

La simulation politique du modèle stochastique dynamique GTAP-AGR CGE,
dans laquelle nous supposons que les chocs de productivité exogènes influent sur
les prix endogènes de l’UE, montre que la prise en compte du risque et l’attitude
de risque sont importantes pour l’évaluation des instruments de la PAC. Outre
les anticipations de prix, les anticipations de volatilité des prix sont également un
facteur influant sur les décisions des agriculteurs peu enclins à prendre des risques
et, en définitive, sur les résultats du marché.

Soutenir et stimuler la croissance de la productivité agricole de l’UE est un
objectif clé de l’agenda de la PAC pour 2014-2020. La littérature précédente (Al-
ston 2018) montre que la R & D agricole génère un rendement économique élevé et
contribue à la croissance de la PTF du point de vue du changement technologique.
Par conséquent, le fait que le montant de son budget de R & D a augmenté con-
sidérablement avec la réforme de la PAC de 2003 est efficace. Cependant, les
réformes de la PAC depuis 2003 ont entraîné un risque de marché beaucoup plus
élevé pour l’agriculture française. Différents outils de gestion des risques, publics
et privés, sont également construits dans la nouvelle PAC, mais le principe de base
est que ces instruments gèrent les risques mais n’interfèrent pas avec les prix du
marché (sauf le filet de sécurité du marché pour les risques de prix excessifs). Nous
soutenons que les outils actuels d’évaluation de la politique de la PAC n’ont pas
été à la hauteur des fluctuations croissantes du marché. Premièrement, les outils
d’évaluation des politiques disponibles font encore largement défaut. Comme le
montre cette thèse, le risque et la préférence sont des facteurs importants pour
les décisions agricoles dans les modèles de décision stochastiques dynamiques et
le modèle CGE dynamique. Par conséquent, nous soulignons ici l’importance de
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la dynamique comptable et des dimensions du risque pour l’analyse des politiques
dans la nouvelle situation de marché à risques croissants. Deuxièmement, le pro-
cessus d’élaboration des politiques ne tient généralement pas compte du fait que
la productivité est endogène au prix. Les décideurs devraient reconnaître que les
décisions des agriculteurs en réponse aux risques croissants ont un impact négatif
sur la productivité. Il faut tenir compte des conditions du marché pour atteindre
les objectifs stratégiques en matière d’amélioration de la productivité.
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