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RÉSUMÉ

Le manuscrit se divise en deux parties. La première est constituée des chapitres I
à IV et propose une présentation unifiée de nombreux résultats connus ainsi que de
quelques éléments nouveaux.

On présente dans le Chapitre I le problème d’online linear optimization, puis on
construit les stratégies de descente miroir avec paramètres variables pour la minimi-
sation du regret, et on établit dans le Théorème I.3.1 une borne générale sur le re-
gret garantie par ces stratégies. Ce résultat est fondamental car la quasi-totalité des
résultats des quatre premiers chapitres en seront des corollaires. On traite ensuite l’ex-
tension aux pertes convexes, puis l’obtention d’algorithmes d’optimisation convexe à
partir des stratégies minimisant le regret.

Le Chapitre II se concentre sur le cas où le joueur dispose d’un ensemble fini dans
lequel il peut choisir ses actions de façon aléatoire. Les stratégies du Chapitre I sont
aisément transposées dans ce cadre, et on obtient également des garanties presque-
sûres d’une part, et avec grande probabilité d’autre part. Sont ensuite passées en re-
vue quelques stratégies connues : l’ExponentialWeights Algorithm, le Smooth Fictitious
Play, le Vanishingly Smooth Fictitious Play, qui apparaissent toutes comme des cas par-
ticuliers des stratégies construites au Chapitre I. En fin de chapitre, on mentionne le
problème de bandit à plusieurs bras, où le joueur n’observe que le paiement de l’action
qu’il a jouée, et on étudie l’algorithme EXP3 qui est une adaptation de l’Exponential
Weights Algorithm dans ce cadre.

Le Chapitre III est consacré à la classe de stratégies appelée Follow the Perturbed
Leader, qui est définie à l’aide de perturbations aléatoires. Un récent survey [ALT16]
mentionne le fait que ces stratégies, bien que définies de façon différente,
appartiennent à la famille de descente miroir du Chapitre I. On donne une
démonstration détaillée de ce résultat.

Le Chapitre IV a pour but la construction de stratégies de descente miroir pour
l’approchabilité de Blackwell. On étend une approche proposée par [ABH11] qui per-
met de transformer une stratégie minimisant le regret en une stratégie d’approchabi-
lité. Notre approche est plus générale car elle permet d’obtenir des bornes sur une très
large classe de quantités mesurant l’éloignement à l’ensemble cible, et non pas seule-
ment sur la distance euclidienne à l’ensemble cible. Le caractère unificateur de cette
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démarche est ensuite illustrée par la construction de stratégies optimales pour le pro-
blème d’online combinatorial optimization et la minimisation du regret interne/swap.
Par ailleurs, on démontre que la stratégie de Backwell peut être vue comme un cas
particulier de descente miroir.

La seconde partie est constituée des quatre articles suivants, qui ont été rédigés
pendant la thèse.

LeChapitreV est tiré de l’article [KP16b] et étudie le problèmede laminimisation
du regret dans le cas où le joueur possède un ensemble fini d’actions, et avec l’hypo-
thèse supplémentaire que les vecteurs de paiement possèdent au plus s composantes
non-nulles. On établit, en information complète, que la borne optimale sur le regret
est de l’ordre de √T log s (oùT est le nombre d’étapes) lorsque les paiements sont des

gains (c’est-à-dire lorsqu’ils sont positifs), et de l’ordre de √Ts logdd (où d est le nombre
d’actions) lorsqu’il s’agit de pertes (i.e. négatifs). On met ainsi en évidence une diffé-
rence fondamentale entre les gains et les pertes. Dans le cadre bandit, on établit que la
borne optimale pour les pertes est de l’ordre de

√
Ts à un facteur logarithmique près.

Le Chapitre VI est issu de l’article [KP16a] et porte sur l’approchabilité de Bla-
ckwell avec observations partielles, c’est-à-dire que le joueur observe seulement des si-
gnaux aléatoires. On construit des stratégies garantissant des vitesses de convergence
de l’ordre de O(T−1/2) dans le cas de signaux dont les lois ne dépendent pas de l’ac-
tion du joueur, et de l’ordre de O(T−1/3) dans le cas général. Cela établit qu’il s’agit
là des vitesses optimales car il est connu qu’on ne peut les améliorer sans hypothèse
supplémentaire sur l’ensemble cible ou la structure des signaux.

Le Chapitre VII est tiré de l’article [KM14] et définit les stratégies de descente
miroir en temps continu. On établit pour ces derniers une propriété de non-regret.
On effectue ensuite une comparaison entre le temps continu et le temps discret. Cela
offre une interprétation des deux termes qui constituent la borne sur le regret en temps
discret : l’un vient de la propriété en temps continu, l’autre de la comparaison entre le
temps continu et le temps discret.

Enfin, leChapitreVIII est indépendant et est issude l’article [Kwo14].Ony établit
une borne universelle sur les variations des fonctions convexes bornées. On obtient
en corollaire que toute fonction convexe bornée est lipschitzienne par rapport à la
métrique de Hilbert.

[KP16b] Joon Kwon and Vianney Perchet. Gains and losses are fundamentally dif-
ferent in regret minimization : the sparse case. arXiv :1511.08405, 2016 (à pa-
raître dans Journal of Machine Learning Research)

[KP16a] Joon Kwon and Vianney Perchet. Blackwell approachability with partial
monitoring : Optimal convergence rates. 2016 (en préparation)
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[KM14] Joon Kwon and Panayotis Mertikopoulos. A continuous-time approach to
online optimization. arXiv :1401.6956, 2014 (en préparation)

[Kwo14] Joon Kwon. A universal bound on the variations of bounded convex func-
tions. arXiv :1401.2104, 2014 (à paraître dans Journal of Convex Analysis)





ABSTRACT

The manuscript is divided in two parts. The first consists in Chapters I to IV and
offers a unified presentation of numerous known results as well as some new elements.

We present in Chapter I the online linear optimization problem, then construct
Mirror Descent strategies with varying parameters for regret minimization, and es-
tablish in Theorem I.3.1 a general bound on the regret guaranteed by the strategies.
This result is fundamental, as most of the results from the first four chapters will be
obtained as corollaries. We then deal with the extension to convex losses, and with
the derivation of convex optimization algorithms from regret minimizing strategies.

Chapter II focuses on the case where the Decision Maker has a finite set from
which he can pick his actions at random. The strategies from Chapter I are easily
transposed to this framework and we also obtain high-probability and almost-sure
guarantees. We then review a few known strategies: Exponential Weights Algorithm,
Smooth Fictitious Play, and Vanishingly Smooth Fictitious Play, which all appear as spe-
cial cases of the strategies constructed in Chapter I. At the end of the chapter, we
mention the multi-armed bandit problem, where the Decision Maker only observes
the payoff of the action he has played. We study the EXP3 strategy, which is an adap-
tation of the Exponential Weights Algorithm to this setting.

Chapter III is dedicated to the family of strategies called Follow the Perturbed
Leader, which is defined using random perturbations. A recent survey [ALT16]
mentions the fact that those strategies, although defined differently, actually belong
to the family of Mirror Descent strategies from Chapter I. We give a detailed proof
of this result.

Chapter IV aims at constructing Mirror Descent strategies for Blackwell’s
approachability. We extend an approach proposed by [ABH11] that turns a regret
minimizing strategy into an approachability strategy. Our construction is more
general, as it provides bounds for a very large class of distance-like quantities which
measure the “distance” to the target set and not only on the Euclidean distance to
the target set. The unifying character of this approach is then illustrated by the
construction of optimal strategies for online combinatorial optimization and
internal/swap regret minimization. Besides, we prove that Blackwell’s strategy can be
seen as a special case of Mirror Descent.

11
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The second part of the manuscript contains the following four papers.
Chapter V is from [KP16b] and studies the regret minimization problem in the

case where the Decision Maker has a finite set of actions, with the additional assump-
tion that payoff vectors have at most s nonzero components. We establish, in the full
information setting, that theminimax regret is of order√T log s (whereT is the num-

ber of steps) when payoffs are gains (i.e nonnegative), and of order √Ts logdd (where d
is the number of actions) when the payoffs are losses (i.e. nonpositive). This demon-
strates a fundamental difference between gains and losses. In the bandit setting, we
prove that the minimax regret for losses is of order

√
Ts up to a logarithmic factor.

Chapter VI is extracted from [KP16a] and deals with Blackwell’s approachability
with partial monitoring, meaning that theDecisionMaker only observes random sig-
nals. We construct strategies which guarantee convergence rates of order O(T−1/2)
in the case where the signal does not depend on the action of the Decision Maker,
and of orderO(T−1/3) in the case of general signals. This establishes the optimal rates
in those two cases, as the above rates are known to be unimprovable without further
assumption on the target set or the signalling structure.

Chapter VII comes from [KM14] and defines Mirror Descent strategies in con-
tinuous time. We prove that they satisfy a regret minimization property. We then
conduct a comparison between continuous and discrete time. This offers an inter-
pretation of the terms found in the regret bounds in discrete time: one is from the
continuous time property, and the other comes from the comparison between con-
tinuous and discrete time.

Finally, Chapter VIII is independent and is from [Kwo14]. We establish a uni-
versal bound on the variations of bounded convex function. As a byproduct, we ob-
tain that every bounded convex function is Lipschitz continuous with respect to the
Hilbert metric.

[KP16b] Joon Kwon and Vianney Perchet. Gains and losses are fundamentally dif-
ferent in regret minimization: the sparse case. arXiv:1511.08405, 2016 (to ap-
pear in Journal of Machine Learning Research)

[KP16a] Joon Kwon and Vianney Perchet. Blackwell approachability with partial
monitoring: Optimal convergence rates. 2016 (in preparation)

[KM14] Joon Kwon and Panayotis Mertikopoulos. A continuous-time approach to
online optimization. arXiv:1401.6956, 2014 (in preparation)

[Kwo14] Joon Kwon. A universal bound on the variations of bounded convex func-
tions. arXiv:1401.2104, 2014 (to appear in Journal of Convex Analysis)
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INTRODUCTION

Online learning

Online learning deals with making decisions sequentially with the goal of obtain-
ing good overall results. Such problems have originated and have been studied in
many different fields such as economics, computer science, statistics and information
theory. In recent years, the increase of computing power allowed the use of online
learning algorithms in countless applications: advertisement placement, web rank-
ing, spam filtering, energy consumption forecast, to name a few. This has naturally
boosted the development of the involved mathematical theories.

Online learning can be modeled as a setting where a Decision Maker faces Nature
repeatedly, and in which information about his performance and the changing state
of Nature is revealed throughout the play. The Decision Maker is to use the infor-
mation he has obtained in order to make better decisions in the future. Therefore,
an important characteristic of an online learning problem is the type of feedback the
DecisionMaker has, in other words, the amount of information available to him. For
instance, in the full information setting, theDecisionMaker is aware of everything that
has happened in the past; in the partialmonitoring setting, he only observes, after each
stage, a random signal whose law depends on his decision and the state ofNature; and
in the bandit setting, he only observes the payoff he has obtained.

Concerning the behavior ofNature, we can distinguish twomain types of assump-
tions. Instochastic settings, the successivestates ofNature are drawn according to some
fixed probability law, whereas in the adversarial setting, no such assumption is made
and Nature is even allowed to choose its states strategically, in response to the previ-
ous choices of theDecisionMaker. In the latter setting, theDecisionMaker is aiming
at obtaining worst-case guarantees. This thesis studies adversarial online problems.

To measure the performance of the Decision Maker, a quantity to minimize or a
criterion to satisfy has to be specified. We present below two of those: regret min-
imization and approachability. Both are very general frameworks which have been
successfully applied to a variety of problems.

17



18 introduction

Regret minimization

We present the adversarial regret minimization problem which has been used as a
unifying framework for the study ofmany online learning problems: pattern recogni-
tion, portfolio management, routing, ranking, principal component analysis, matrix
learning, classification, regression, etc. Important surveys on the topic are [CBL06,
RT09, Haz12, BCB12, SS11].

We first consider the problem where the Decision Maker has a finite set of actions
ℐ = {1,… ,d}. At each stage t ⩾ 1, the Decision Maker chooses an action it ∈ ℐ,
possibly at random, then observes a payoff vector ut ∈ [−1, 1]d, and finally gets a scalar
payoff equal to uitt . We assume Nature to be adversarial, and the Decision Maker is
therefore aiming at obtaining some guarantee against any possible sequence of payoff
vectors (ut)t⩾1 in [−1, 1]d. Hannan [Han57] introduced the notion of regret, defined
as

RT = max
i∈ℐ

T
􏾜
t=1

uit −
T
􏾜
t=1

uitt ,

which compares the cumulative payoff ∑Tt=1 u
it
t obtained by the Decision Maker to

the cumulative payoffmaxi∈ℐ ∑Tt=1 u
i
t he could have obtained by playing the best fixed

action in hindsight. Hannan [Han57] established the existence of strategies for the
Decision Maker which guarantee that the average regret 1TRT is asymptotically non-
positive. This problem is also called prediction with expert advice because it models the
following situation. Imagine ℐ = {1,… ,d} as a set of experts. At each stage t ⩾ 1,
the Decision Maker has to make a decision and each expert give a piece of advice as
to which decision to make. The Decision Maker must then choose the expert it to
follow. Then, the vector ut ∈ Rd is observed, where uit is the payoff obtained by ex-
pert i. The payoff obtained by the Decision Maker is therefore uitt . The regret then
corresponds to the difference between the cumulative payoff of the Decision Maker
and the cumulative payoff obtained by the best expert. The Decision Maker having a
strategy which makes sure that the average regret goes to zero means that he is able to
perform, asymptotically and in average, as well as any expert.

The theory of regretminimization has since been refined and developed in a num-
ber ofways—see e.g. [FV97,HMC00, FL99, Leh03]. An important directionwas the
study of the best possible guarantee on the expected regret, in other words the study
of the following quantity:

inf supE [RT] ,

where the infimum is taken over all possible strategies of the Decision Maker, the
supremum over all sequences (ut)t⩾1 of payoff vectors in [−1, 1]d, and the expectation
with respect to the randomization introduced by the Decision Maker in choosing
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its actions it. This quantity has been established [CB97, ACBG02] to be of order
√T logd, whereT is the number of stages and d the number of actions.

An interesting variant is the online convex optimization problem [Gor99, KW95,
KW97, KW01, Zin03]: the Decision Maker chooses actions zt in a convex compact
set 𝒵 ⊂ Rd, andNature chooses loss functions ℓt ∶ 𝒵 → R. The regret is then defined
by

RT =
T
􏾜
t=1

ℓt(zt) − min
z∈𝒵

T
􏾜
t=1

ℓt(z).

The special case where the loss functions are linear is called online linear optimization
and is often written with the help of payoff vectors (ut)t⩾1:

RT = max
z∈𝒵

T
􏾜
t=1

⟨ut|z⟩ −
T
􏾜
t=1

⟨ut|zt⟩ . (∗)

This will be the base model upon which Part I of the manuscript will be built.
Until now, we have assumed that the Decision Maker observes all previous payoff

vectors (or loss functions), in other words, that he has a full information feedback. The
problems in which the Decision Maker only observes the payoff (or the loss) that he
obtains are called bandit problems. The case where the set of actions is ℐ = {1,… ,d}
is called the adversarial multi-armed bandit problem, for which theminimax regret is
known to be of order

√
Td [AB09, ACBFS02]. The bandits settings for online con-

vex/linear optimization has also attracted much attention [AK04, FKM05, DH06,
BDH+08] and we refer to [BCB12] for a recent survey.

Approachability

Blackwell [Bla54, Bla56] considered a model of repeated games between a Deci-
sion Maker and Nature with vector-valued payoffs. He studied the sets to which the
Decision Maker can make sure his average payoff converges. Such sets are said to be
approachable by the Decision Maker. Specifically, let ℐ and 𝒥 be finite action sets for
the Decision Maker and Nature respectively,

Δ(ℐ) = {x = (xi)i∈ℐ ∈ Rℐ
+ ∣ 􏾜

i∈ℐ
xi = 1}

the set of probability distributions on ℐ, and g ∶ ℐ × 𝒥 → Rd a vector-valued payoff
function. For a given (closed) target set 𝒞 ⊂ Rd, the question is whether there exists
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• y0

• y

𝒞

Figure 1. The hyperplane ⟨y − y0| ⋅ − y0⟩ = 0 separates y and the set of all pos-
sible expected vector payoffs when the Decision Maker plays at random according to
probability distribution x(y) (represented in dark gray).

a strategy for the Decision Maker which guarantees that

1
T

T
􏾜
t=1

g(it, jt) −−−−→
T→+∞

𝒞,

where it and jt denote the actions chosen at time t by theDecisionMaker andNature,
respectively.

Blackwell provided the following sufficient condition for a closed set 𝒞 ⊂ Rd to
be approachable: for all y ∈ Rd, there exists an Euclidean projection y0 of y onto 𝒞,
and a probability distribution x(y) ∈ Δ(ℐ) such that for all actions j ∈ 𝒥 of Nature,

⟨Ei∼x(y) [g(i, j)] − y0∣y − y0⟩ ⩽ 0.
The above inequality is represented in Figure 1. 𝒞 is then said to be a B-set. When
this is the case, the Blackwell strategy is defined as

xt+1 = x(1t
t
􏾜
s=1

g(is, js)) then draw it+1 ∼ xt+1,

whichmeans that action it+1 ∈ ℐ is drawnaccording toprobability distributionxt+1 ∈
Δ(ℐ). This strategy guarantees the convergence of the average payoff 1

T ∑
T
t=1 g(it, jt)

to the set 𝒞. Later, [Spi02] proved that a closed set is approachable if and only if it
contains a B-set. In the case of a convex set 𝒞, Blackwell proved that it is approachable
if and only if it is a B-set, which is then also equivalent to the following dual condition:

∀y ∈ Δ(𝒥), ∃ x ∈ Δ(ℐ), E i∼x
j∼y

[g(i, j)] ∈ 𝒞.
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This theory turned out to be a powerful tool for constructing strategies for on-
line learning, statistics and game theory. Let us mention a few applications. Many
variants of the regret minimization problem can be reformulated as an approacha-
bility problem, and conversely, regret minimization strategy can be turned into ap-
proachability strategy. Blackwell [Bla54] was already aware of this fundamental link
between regret and approachability, which has since been much developed—see e.g.
[HMC01, Per10, MPS11, ABH11, BMS14, Per15]. The statistical problem of cali-
bration has also proved to be related to approachability [Fos99,MS10, Per10, RST11,
ABH11, Per15]. We refer to [Per14] for a comprehensive survey on the relations be-
tween regret, calibration and approachability. Finally, Blackwell’s theory has been
applied to the construction of optimal strategies in zero-sum repeated games with in-
complete information [Koh75, AM85].

Various techniques have been developed for constructing and analyzing approach-
abilitystrategies. As shownabove, Blackwell’s initial approachwas basedonEuclidean
projections. A potential-based approach was proposed to provide a wider and more
flexible family of strategies [HMC01, CBL03, Per15]. In a somewhat related spirit,
and building upon an approachwith convex cones introduced in [ABH11], we define
in Chapter IV a family of Mirror Descent strategies for approachability.

The approachability problem has also been studied in the partial monitoring set-
ting [Per11a, MPS11, PQ14, MPS14]. In Chapter VI we construct strategies which
achieve optimal convergence rates.

On the origins of Mirror Descent

In this section, we quickly present the succession of ideas which have led to the
Mirror Descent algorithms for convex optimization and regret minimization. We
do not aim at being comprehensive nor completely rigorous. We refer to [CBL06,
Section 11.6], [Haz12], and to [Bub15] for a recent survey.

We first consider the unconstrained problem of optimizing a convex function f ∶
Rd → R which we assume to be differentiable:

min
x∈Rd

f(x).

We shall focus on the construction of algorithms based on first-order oracles—in
other words, algorithms which have access to the gradient ∇f(x) at any point x.

Gradient Descent

The initial idea is to adapt the continuous-time gradient flow

ẋ = −∇f(x).
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−γt∇f(xt+1)

• xt

•xt+1

−γt∇f(xt)
•
xt

•xt+1

Figure 2. The Proximal algorithm on the left and Gradient Descent on the right

There are two basic discretizations. The first is the proximal algorithm, which starts
at some initial point x1 and iterates as

xt+1 = xt − γt∇f(xt+1), (1)

where γt is a step-size. The algorithm is said to be implicit because one has to find a
point xt+1 satisfying the above equality in which xt+1 implicitly appears in ∇f(xt+1).
One can see that the above relation can be rewritten

xt+1 = argmax
x∈Rd

{f(x) + 1
2γt

‖x − xt‖22} . (2)

Indeed, the functionx ⟼ f(x)+ 1
2γt

‖x − xt‖22 having at pointxt+1 a gradient equal to
zero is equivalent to Equation (1). The above expression (2) guarantees the existence
of xt+1 and provides the following interpretation: point xt+1 corresponds to a trade-
off between minimizing f and being close to the previous iterate xt. The algorithm
can also be written in a variational form: xt+1 is characterized by

⟨γt∇f(xt+1) + xt+1 − xt|x − xt+1⟩ ⩾ 0, ∀x ∈ Rd. (3)

The second discretization is the Euler scheme, also called the gradient descent algo-
rithm:

xt+1 = xt − γt∇f(xt), (4)

which is said to be explicit because the point xt+1 follows from a direct computation
involving xt and ∇f(xt), which are known to the algorithm. It can be rewritten

xt+1 = argmin
x∈Rd

{⟨∇f(xt)|x⟩ + 1
2γt

‖x − xt‖22} , (5)
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which can be seen as a modification of the proximal algorithm (2) where f(x) has
been replaced by its linearization at xt. Its variational form is

⟨γt∇f(xt) + xt+1 − xt|x − xt+1⟩ ⩾ 0, ∀x ∈ Rd. (6)

Projected Gradient Descent

We now turn to the constrained problem

min
x∈X

f(x),

where X is a convex compact subset of Rd. The gradient descent algorithm (4) can
be adapted for this problem by performing a Euclidean projection ontoX after each
gradient descentstep, in order tohave all iteratesxt in the setX. This gives the projected
gradient descent algorithm [Gol64, LP66]:

xt+1 = proj
X

{xt − γt∇f(xt)} , (7)

which can rewritten as

xt+1 = argmin
x∈X

{⟨∇f(xt)|x⟩ + 1
2γt

‖x − xt‖22} , (8)

and has variational characterization:

⟨γt∇f(xt) + xt+1 − xt|x − xt+1⟩ ⩾ 0, ∀x ∈ X, xt+1 ∈ X. (9)

Typically, when the gradients of f are assumed to be bounded byM > 0 with re-
spect to ‖ ⋅ ‖2 (in other words, if f isM-Lipschitz continuous with respect to ‖ ⋅ ‖2),
the above algorithm with constant step-size γt = ‖X‖2 /M

√
T provides a M/

√
T-

optimal solution afterTsteps. When the gradients are bounded by some other norm,
the above still applies but the dimension d of the space appears in the bound. For in-
stance, if the gradients are bounded byMwith respect to ‖ ⋅ ‖∞, due to the comparison
between the norms, the above algorithm provides after T steps aM√d/T-optimal
solution. Then, the following question arises: if the gradients are bounded by some
other norm than ‖ ⋅ ‖2, is it possible to modify the algorithm in order to get a guaran-
tee that has a better dependency in the dimension? This motivates the introduction
of Mirror Descent algorithms.
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−γt∇f(xt)
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Figure 3. Projected Subgradient algorithm

GreedyMirror Descent

Let F ∶ Rd → R be a differentiable convex function such that ∇F ∶ Rd → Rd

is a bijection. Denote F∗ its Legendre–Fenchel transform. Then, one can see that
(∇F)−1 = ∇F∗. We introduce the Bregman divergence associated with F:

DF(x′, x) = F(x′) − F(x) − ⟨∇F(x)|x′ − x⟩ , x, x′ ∈ Rd,

which is a quadratic quantity that can be interpreted as a generalized distance. It pro-
vides a new geometry which will replace the Euclidean structure used for the Pro-
jected Gradient Descent (7). The case of the Euclidean distance can be recovered by
considering F(x) = 1

2 ‖x‖22 which gives DF(x′, x) = 1
2 ‖x′ − x‖22. The Greedy Mirror

Descent algorithm [NY83, BT03] is defined by replacing in the Projected Gradient
Descent algorithm (8) the Euclidean distance 12 ‖x − xt‖22 by the Bregman divergence
DF(x, xt):

xt+1 = argmin
x∈X

{⟨∇f(xt)|x⟩ + 1γt
DF(x, xt)} . (10)

This algorithmcan also bewrittenwith thehelp of a gradient descent and aprojection:

xt+1 = argmin
x∈X

DF (x,∇F∗ (∇F(xt) − γt∇f(xt))) . (11)

The above expression of xt+1 can be decomposed and interpreted as follows. Since
we have forgotten about the Euclidean structure, point xt belongs to the primal space
whereas gradient ∇f(xt) lives in the dual space. Therefore, we cannot directly per-
form the gradient descent xt − γt∇f(xt) as in (7). Instead, we first use the map ∇F
to get from xt in the primal space to ∇F(xt) in the dual space, and perform the gradi-
ent descent there: ∇F(xt) − γt∇f(xt). We then use the inverse map ∇F∗ = (∇F)−1
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•
•xt+1

primal space dual space

X

Figure 4. Greedy Mirror Descent

to come back to the primal space: ∇F∗(∇F(xt) − γt∇f(xt)). Since this point may
not belong to the setX, we perform a projection with respect to the Bregman diver-
genceDF, and we get the expression of xt+1 from (11). Let us mention the variational
expression of the algorithm, which is much more handy for analysis

⟨γt∇f(xt) + ∇F(xt+1) − ∇F(xt)|x − xt+1⟩ ⩾ 0, ∀x ∈ X, xt+1 ∈ X. (12)

As initially wished, the Greedy Mirror Descent algorithm can adapt to different
assumptions about the gradients of the objective functionf. Iff is assumed to beM-
Lipschitz continuous with respect to a norm ‖ ⋅ ‖, the choice of a function F which is
K-strongly convex with respect to ‖ ⋅ ‖ guarantees that the associated algorithm with
constant step-size γt =

√
LK/M

√
T gives a M√L/KT-optimal solution after T

steps, where L = maxx,x′∈X {F(x) − F(x′)}.
There also exists a proximal version of Greedy Mirror Descent algorithm. It is

called theBregmanProximalMinimization algorithmandwas introduced by [CZ92].
It is obtained by replacing in the proximal algorithm (2) the Euclidean distance by a
Bregman divergence:

xt+1 = argmin
x∈X

{f(x) + 1γt
DF(x, xt)} .

LazyMirror Descent

Wenow introduce a variant of theGreedyMirrorDescent algorithm (10) bymod-
ifying it as follows. To compute xt+1, instead of considering ∇F(xt), we perform the
gradient descent starting from a point yt (which will be defined in a moment) of the
dual space: yt − γt∇f(xt). We then map the latter point back to the primal space via
∇F∗ and then perform the projection ontoXwith respect toDF. This gives the Lazy
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Figure 5. Lazy Mirror Descent

Mirror Descent algorithm, also called Dual Averaging [Nes09] which starts at some
point x1 ∈ X and iterates

xt+1 = argmin
x∈X

DF (x,∇F∗(yt − γt∇f(xt))) . (13)

Besides, we perform the update yt+1 = yt −γt∇f(xt). If the algorithm is started with
y1 = 0, we have yt = −∑t−1

s=1 γs∇f(xs) for all t ⩾ 1. Then, one can easily check that
(13) has the following simpler expression:

xt+1 = argmin
x∈X

{⟨
t
􏾜
s=1
γs∇f(xs)∣x⟩ + F(x)} , (14)

as well as a variational characterization:

⟨γt∇f(xt) + ∇F(xt+1) − yt|x − xt+1⟩ , ∀x ∈ X, xt+1 ∈ X.

For the simple problem convex optimization that we are dealing with, this lazy algo-
rithmprovides similar guarantees as the greedy version (10)—compare [Nes09,Theo-
rem 4.3] and [BT03, Theorem 4.1]. However, it has a computational advantage over
the latter: the iteration in Equation (11) which gives xt+1 from xt involves the suc-
cessive computation of maps ∇F and ∇F∗, whereas iterating (13) only involves the
computation of ∇F∗ and the Bregman projection.

OnlineMirror Descent

Interestingly, the above convex optimization algorithms can be used for the on-
line convex optimization problem presented above. The first approach of this kind
was proposed by [Zin03], who adapted algorithm (7) to the framework where the
DecisionMaker faces a sequence (ft)t⩾1 of loss functions, instead of a functionf that
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is constant over time. The Greedy Online Gradient Descent algorithm is obtained by
simply replacing ∇f(xt) in (7) by ∇ft(xt):

xt+1 = proj
X

{xt − γt∇ft(xt)} ,

which can alternatively be written

xt+1 = argmin
x∈X

{⟨∇ft(xt)|x⟩ + 1
2γt

‖x − xt‖22} .

By introducing a functionF satisfying the same assumptions as in the previous section,
we extend the above to a family ofGreedyOnlineMirrorDescent algorithms [Bub11,
BCB12]:

xt+1 = argmin
x∈X

{⟨∇ft(xt)|x⟩ + 1γt
DF(x, xt)} . (15)

Similarly, we can also define a lazy version [SS07, SS11, KSST12, OCCB15]:

xt+1 = argmin
x∈X

{⟨
t
􏾜
s=1
γs∇fs(xs)∣x⟩ + F(x)} . (16)

More generally, we can define the above algorithms by replacing the gradients
∇ft(xt) by arbitrary vectors ut ∈ Rd which need not be the gradients of some func-
tions ft. For instance, the Lazy Online Mirror Descent algorithm can be written:

xt+1 = argmax
x∈X

{⟨
t
􏾜
s=1

us∣x⟩ − F(x)} ,

where F acts a regularizer. This motivates, for this algorithm, the alternative name:
Follow the Regularized Leader [AHR08, RT09, AHR12]. This algorithm provides a
guarantee on:

max
x∈X

T
􏾜
t=1

⟨ut|x⟩ −
T
􏾜
t=1

⟨ut|xt⟩ ,

which is the same quantity as in Equation (∗), i.e. the regret in the online linear op-
timization problem with payoff vectors (ut)t⩾1. An important property is that payoff
vector ut is allowed to depend on xt, as it is the case in (16) where ut = −γt∇f(xt).
This Lazy Online Mirror Descent family of algorithms will be our subject of study in
Chapters I to IV. Throughout Part I of the manuscript, unless mentioned otherwise,
Mirror Descent will designate the Lazy Online Mirror Descent algorithms.

•
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CHAPTER I

MIRRORDESCENTFORREGRET
MINIMIZATION

We present the regret minimization problem called online linear optimization.
Some convexity tools are introduced, with a special focus on strong convexity. We
then construct the family of Mirror Descent strategies with time-varying parameters
and derive general regret guarantees in Theorem I.3.1. This result is central as most
results in Part I will be obtained as corollaries. In Section I.4, we present the
generalization to convex losses (instead of linear payoffs), and in Section I.5, we turn
the aforementioned regret minimizing strategies into convex optimization
algorithms.

I.1. Core model

The model we present here is called online linear optimization. It is a repeated play
between a Decision Maker and Nature. Let 𝒱 be a finite-dimensional vector space,
𝒱∗ its dual space, and denote ⟨ ⋅ | ⋅ ⟩ the dual pairing. 𝒱∗ will be called the payoff
space 1. Let 𝒵 be a nonempty convex compact subset of 𝒱, which will be the set of
actions of the Decision Maker. At each time instance t ⩾ 1, the Decision Maker

• chooses an action zt ∈ 𝒵;
• observes a payoff vector ut ∈ 𝒱∗ chosen by Nature;
• gets a payoff equal to ⟨ut|zt⟩.

Formally, a strategy for the Decision Maker is a sequence of maps σ = (σt)t⩾1
where σt ∶ (𝒵 × 𝒱∗)t−1 → 𝒵. In a slight abuse of notation, σ1 will be regarded as an
element of 𝒵. For a givenstrategy σ and a given sequence (ut)t⩾1 of payoff vectors, the
sequence of play (zt)t⩾1 is defined by

zt = σt(z1, u1,… , zt−1, ut−1), t ⩾ 1.
1. The dimension being finite, it would be good enough to work in Rd. However, we believe that

the theoretical distinction between the primal and dual spaces helps with the understanding of Mirror
Descent strategies.

31
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Concerning Nature, we assume it to be omniscient. Indeed, our main result, Theo-
rem I.3.1, will provide guarantees that hold against any sequence of payoff vectors.
Therefore, its choice of payoff vector ut may depend on everything that has happened
before he has to reveal it. In particular, payoff vector ut may depend on action zt.

The quantity of interest is the regret (up to timeT ⩾ 1), defined by

Reg
T

{σ, (ut)t⩾1} = max
z∈𝒵

T
􏾜
t=1

⟨ut|z⟩ −
T
􏾜
t=1

⟨ut|zt⟩ , T ⩾ 1.

In most situations, we simply write Reg
T

since the strategy and the payoffs vectors
will be clear from the context. In the case where Nature’s choice of payoff vectors
(ut)t⩾1 does not dependon the actions of theDecisionmaker (Nature is then said to be
oblivious), the regret can be interpreted as follows. It compares the cumulative payoff
∑Tt=1 ⟨ut|zt⟩ obtained by the Decision Maker to the best cumulative payoff∑Tt=1 ⟨ut|z⟩
that he could have obtained by playing a fixed action z ∈ 𝒵 at each stage. It therefore
measures how much the Decision Maker regrets not having played the constant strat-
egy that turned out to be the best. When Nature is not assumed to be oblivious (it
is then said to be adversarial), in other words, when Nature can react to the actions
(zt)t⩾1 chosen by the Decision Maker, the regret is still well-defined and every result
below will stand. The only difference is that the above interpretation of the regret is
not valid.

The first goal is to construct strategies for the Decision Maker which guarantee
that the average regret 1TRT is asymptotically nonpositive when the payoff vectors
are assumed to be bounded. In Section I.3 we construct the Mirror Descent strate-
gies and derive in Theorem I.3.1 general upper bounds on the regret which yield such
guarantees.

One of the simplest strategies one can think of is called Follow the Leader or Ficti-
tious Play. It consists in playing the action which would have given the highest cumu-
lative payoff over the previous stages, had it been played at each stage:

zt ∈ argmax
z∈𝒵

⟨
t−1
􏾜
s=1

us∣z⟩ . (I.1)

Unfortunately, this strategy does not guarantee the average regret to be
asymptotically nonpositive, even in the following simple setting where the
payoff vectors are bounded. Consider the framework where 𝒱 = 𝒱∗ = R2,
𝒵 = Δ2 = {(z1, z2) ∈ R2+ ∣ z1 + z2 = 1} and where the payoff vectors all belong to
[0, 1]2. Suppose that Nature chooses payoff vectors

u1 = (
1
2
0) , u2 = (01) , u3 = ( 10) , u4 = (01) , u5 = ( 10) , …
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Then, one can easily see that using the abovestrategy (I.1) gives for t ⩾ 2, zt = (1, 0) if
t is even, and zt = (0, 1) if t is odd. As a result, the payoff ⟨ut|zt⟩ is zero as soon as t ⩾ 2.
TheDecisionMaker is choosing at eachstage, the actionwhich gives the worst payoff.
As far as the regret is concerned, since maxz∈𝒵 ∑Tt=1 ⟨ut|z⟩ is of order T/2, the regret
grows linearly in T. Therefore, the average regret is not asymptotically nonpositive.
This phenomenon is called overfitting: following too closely previous data may result
in bad predictions. To overcome this problem, we can try modifying strategy (I.1) as

zt = argmax
z∈𝒵

{⟨
t−1
􏾜
s=1

us∣z⟩ − h(z)} ,

where we introduced a function h in order to regularize the strategy. This is the key
idea behind theMirror Descent strategies (which are also called Followthe Regularized
Leader) that we will define and study in Section I.3.

I.2. Regularizers

We here introduce a few tools from convex analysis needed for the construction
and the analysis of the Mirror Descent strategies. These are classic (see e.g. [SS07,
SS11, Bub11]) and the proofs are given for the sake of completeness. Again, 𝒱 and
𝒱∗ are finite-dimensional vectorsspaces and 𝒵 is a nonempty convex compact subset
of 𝒱. We define regularizers, present the notion of strong convexity with respect to
an arbitrary norm, and give three examples of regularizers along with their properties.

I.2.1. Definition and properties

We recall that the domain dom h of a function h ∶ 𝒱 → R ∪ {+∞} is the set of
points where it has finite values.

Definition I.2.1. A convex function h ∶ 𝒱 → R ∪ {+∞} is a regularizer on 𝒵 if
it is strictly convex, lower semicontinuous, and has 𝒵 as domain. We then denote
δh = max𝒵 h− min𝒵 h the difference between its maximal and minimal values on 𝒵.

Proposition I.2.2. Let h be a regularizer on 𝒵. Its Legendre–Fenchel transform h∗ ∶
𝒱∗ → R ∪ {+∞}, defined by

h∗(w) = sup
z∈𝒱

{⟨w|z⟩ − h(z)} , w ∈ 𝒱∗,

satisfies the following properties.
(i) dom h∗ = 𝒱∗;
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(ii) h∗ is differentiable on 𝒱∗;
(iii) For all w ∈ 𝒱∗, ∇h∗(w) = argmaxz∈𝒵 {⟨w|z⟩ − h(z)}. In particular, ∇h∗ takes

values in 𝒵.
Proof. (i) Let w ∈ 𝒱∗. The function z ⟼ ⟨w|z⟩ − h(z) equals −∞ outside of 𝒵,
and is upper semicontinuous on 𝒵 which is compact. It thus has a maximum and
h∗(w) < +∞.

(ii, iii) Moreover, this maximum is attained at a unique point because h is strictly
convex. Besides, for z ∈ 𝒱 and w ∈ 𝒱∗

z ∈ ∂h∗(w) ⟺ w ∈ ∂h(z) ⟺ z ∈ argmax
z′∈𝒵

{⟨w|z′⟩ − h(z′)} ,

in other words, ∂h∗(w) = argmaxz′∈𝒵 {⟨w|z′⟩ − h(z′)}. This argmax is a singleton as
we noticed. It means that h∗ is differentiable.

Remark I.2.3. The above proposition demonstrates that h∗ is a smooth approxima-
tion of maxz∈𝒵 ⟨ ⋅ |z⟩ and that ∇h∗ is an approximation of argmaxz∈𝒵 ⟨ ⋅ |z⟩. They
will be used in Section I.3 in the construction and the analysis of the Mirror Descent
strategies.

As soon as h is a regularizer, the Bregman divergence of h∗ is well defined:

Dh∗(w′,w) = h∗(w′) − h∗(w) − ⟨∇h∗(w)|w′ − w⟩ , w,w′ ∈ 𝒱∗.
This quantity will appear in the fundamental regret bound of Theorem I.3.1. As we
will see below in Proposition I.2.8, by adding a strong convexity assumption on the
regularizer h, the Bregman divergence can be bounded from above by a much more
explicit quantity.

I.2.2. Strong convexity

Definition I.2.4. Let h ∶ 𝒱 → R ∪ {+∞} be a function, ‖ ⋅ ‖ a norm on 𝒱, and
K > 0. h isK-strongly convex with respect to ‖ ⋅ ‖ if for all z, z′ ∈ 𝒱 and λ ∈ [0, 1],

h(λz + (1− λ)z′) ⩽ λh(z) + (1− λ)h(z′) − Kλ(1− λ)2 ‖z′ − z‖2 . (I.2)

Proposition I.2.5. Let h ∶ 𝒱 → R ∪ {+∞} be a function, ‖ ⋅ ‖ a norm on 𝒱, and
K > 0. The following conditions are equivalent.
(i) h isK-strongly convex with respect to ‖ ⋅ ‖;
(ii) For all points z, z′ ∈ 𝒱 and all subgradients w ∈ ∂h(z),

h(z′) ⩾ h(z) + ⟨w|z′ − z⟩ + K2 ‖z′ − z‖2 ; (I.3)
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(iii) For all points z, z′ ∈ 𝒱 and all subgradients w ∈ ∂h(z) and w′ ∈ ∂h(z′),

⟨w′ − w|z′ − z⟩ ⩾ K ‖z′ − z‖2 . (I.4)

Proof. (i) ⟹ (ii). We assume that h is K-strongly convex with respect to ‖ ⋅ ‖. In
particular, h is convex. Let z, z′ ∈ 𝒱, w ∈ ∂h(z), λ ∈ (0, 1), and denote z′′ =
λz + (1− λ)z′. Using the convexity of h, we have

⟨w|z′ − z⟩ = ⟨w|z′′ − z⟩
1− λ ⩽ h(z′′) − h(z)

1− λ
⩽ 1
1− λ (λh(z) + (1− λ)h(z′) − Kλ(1− λ)2 ‖z′ − z‖2 − h(z))

= h(z′) − h(z) − Kλ2 ‖z′ − z‖2 ,

and (I.3) follows from taking λ→ 1.
(ii) ⟹ (i). Let z, z′ ∈ 𝒱, λ ∈ [0, 1], denote z′′ = λz + (1 − λ)z′. If λ ∈ {0, 1},

inequality (I.2) is trivial. We now assume λ ∈ (0, 1). If z or z′ does not belong to the
domain of h, inequality (I.2) is also trivial. We now assume z, z′ ∈ dom h. Then, z′′

belongs to ]z, z′[ which is a subset of the relative interior of dom h. Therefore, ∂h(z′′)
is nonempty (see e.g. [Roc70, Theorem 23.4]). Let w ∈ ∂h(z′′). We have

⟨w|z − z′′⟩ ⩽ h(z) − h(z′′) − K2 ‖z − z′′‖2

⟨w|z′ − z′′⟩ ⩽ h(z′) − h(z′′) − K2 ‖z′ − z′′‖2 .

By multiplying the above inequalities by λ and 1 − λ respectively, and summing, we
get

0 ⩽ λh(z) + (1− λ)h(z′) − h(z′′) − K2 (λ ‖z − z′′‖2 + (1− λ) ‖z′ − z′′‖2) .

Using the definition of z′′, we have z− z′′ = (1−λ)(z′ − z) and z′ − z′′ = λ(z′ − z).
The last term of the above right-hand side is therefore equal to

K
2 (λ(1− λ)2 ‖z′ − z‖2 + (1− λ)λ2 ‖z′ − z‖2) = Kλ(1− λ)2 ‖z′ − z‖2 ,

and (I.2) is proved.
(ii) ⟹ (iii). Let z, z′ ∈ 𝒱, w ∈ ∂h(z) and w′ ∈ ∂h(z′). We have

h(z′) ⩾ h(z) + ⟨w|z′ − z⟩ + K2 ‖z′ − z‖2 (I.5)

h(z) ⩾ h(z′) + ⟨w′|z − z′⟩ + K2 ‖z′ − z‖2 . (I.6)
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Summing both inequalities and simplifying gives (I.4).
(iii) ⟹ (ii). Let z, z′ ∈ 𝒱. If ∂h(z) is empty, condition (ii) is automatically

satisfied. We now assume ∂h(z) ≠ ∅. In particular, z ∈ dom h. Let w ∈ ∂h(z). If
h(z′) = +∞, inequality (I.3) is satisfied. We now assume z′ ∈ dom h. Therefore,
we have that ]z, z′[ is a subset of the relative interior of dom h. As a consequence, for
all points z′′ ∈]z, z′[, we have ∂h(z′′) ≠ ∅ (see e.g. [Roc70, Theorem 23.4]). For all
λ ∈ [0, 1], we define zλ = z + λ(z′ − z). Using the convexity of h, we can now write,
for all n ⩾ 1,

h(z′) − h(z) =
n
􏾜
k=1

h(zk/n) − h(z(k−1)/n) ⩾
n
􏾜
k=1

⟨w(k−1)/n∣zk/n − z(k−1)/n⟩ ,

where w0 = w and wk/n ∈ ∂h(zk/n) for k ⩾ 1. Since zk/n − z(k−1)/n = 1
n(z′ − z) for

k ⩾ 1, subtracting ⟨w|z′ − z⟩ we get

h(z′) − h(z) − ⟨w|z′ − z⟩ ⩾ 1n
n
􏾜
k=1

⟨w(k−1)/n − w∣z′ − z⟩ .

Note that the first term of the above sum is zero because w = w0. Besides, for k ⩾ 2,
we have z′ − z = n

k−1(z(k−1)/n − z). Therefore, and this is where we use (iii),

h(z′) − h(z) − ⟨w|z′ − z⟩ ⩾
n
􏾜
k=2

1
k − 1 ⟨w(k−1)/n − w∣z(k−1)/n − z⟩

⩾ K
n
􏾜
k=2

1
k − 1 ∥z(k−1)/n − z∥2

=
K ‖z′ − z‖2

n2
n
􏾜
k=2

(k − 1)

−−−−→n→+∞
K
2 ‖z′ − z‖2 ,

and (ii) is proved.

Similarly to usual convexity, there exists a strong convexity criterion involving the
Hessian for twice differentiable functions.

Proposition I.2.6. Let ‖ ⋅ ‖ be a norm on 𝒱,K > 0, and F ∶ 𝒱 → R a twice differen-
tiable function such that

⟨∇2F(z)u∣u⟩ ⩾ K ‖u‖2 , z ∈ 𝒱, u ∈ 𝒱.

Then, F isK-strongly convex with respect to ‖ ⋅ ‖.
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Proof. Let z, z′ ∈ 𝒱. Let us prove the condition (ii) from Proposition I.2.5. We
define

ϕ(λ) = F(z + λ(z′ − z)), λ ∈ [0, 1].
By differentiating twice, we get for all λ ∈ [0, 1]:

ϕ′′(λ) = ⟨∇2F(z + λ(z′ − z))(z′ − z)∣z′ − z⟩ ⩾ K ‖z′ − z‖2 .

There exists λ0 ∈ [0, 1] such that ϕ(1) = ϕ(0) + ϕ′(0) + ϕ′′(λ0)/2. This gives

F(z′) = ϕ(1) = ϕ(0) + ϕ′(0) + ϕ
′′(λ0)
2 ⩾ F(z) + ⟨∇F(z)|z′ − z⟩ + K2 ‖z′ − z‖2 ,

and (I.3) is proved.

Lemma I.2.7. Let ‖ ⋅ ‖ a norm on 𝒱, K > 0 and h, F ∶ 𝒱 → R ∪ {+∞} two convex
functions such that for all z ∈ 𝒱,

h(z) = F(z) or h(z) = +∞.

Then, if F isK-strongly convex with respect to ‖ ⋅ ‖, so is h.

Proof. Note that for all z ∈ 𝒱, F(z) ⩽ h(z). Let us prove that h satisfies the condition
from Definition I.2.4. Let z, z′ ∈ 𝒱, λ ∈ [0, 1] and denote z′′ = λz + (1− λ)z′. Let
us first assume that h(z′′) = +∞. By convexity of h, either h(z) or h(z′) is equal to
+∞, and the right-hand side of (I.2) is equal to +∞. Inequality (I.2) therefore holds.
If h(z′′) is finite,

h(z′′) = F(z′′) ⩽ λF(z) + (1− λ)F(z′) − Kλ(1− λ)2 ‖z′ − z‖2

⩽ λh(z) + (1− λ)h(z′) − Kλ(1− λ)2 ‖z′ − z‖2 ,

and (I.2) is proved.

For a given norm ‖ ⋅ ‖ on 𝒱, the dual norm ‖ ⋅ ‖∗ on 𝒱∗ is defined by

‖w‖∗ = sup
‖z‖⩽1

|⟨w|z⟩| .

Proposition I.2.8. Let K > 0 and h ∶ 𝒱 → R ∪ {+∞} be a regularizer which we
assume to beK-strongly convex function with respect to a norm ‖ ⋅ ‖ on 𝒱. Then,

Dh∗(w′,w) ⩽ 1
2K ‖w′ − w‖2∗ , w,w′ ∈ 𝒱∗.
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Proof. Let w,w′ ∈ 𝒱∗ and denote z = ∇h∗(w) and z′ = ∇h∗(w′). Moreover, for
λ ∈ [0, 1], we introduce wλ = w + λ(w′ − w) and zλ = ∇h∗(wλ). Therefore, we
have w ∈ ∂h(z) and wλ ∈ ∂h(zλ). h being strongly convex, condition (I.4) gives
⟨wλ − w|zλ − z⟩ ⩾ K ‖zλ − z‖2. Using the definition of ‖ ⋅ ‖∗ and dividing by ‖zλ − z‖
gives

‖zλ − z‖ ⩽ 1K ‖wλ − w‖∗ .

Now consider ϕ(λ) = h∗(wλ) defined for λ ∈ [0, 1]. We have

ϕ′(λ) − ϕ′(0) = ⟨w′ − w|∇h∗(wλ) − ∇h∗(w)⟩ = ⟨w′ − w|zλ − z⟩

⩽ ‖w′ − w‖∗ ‖zλ − z‖ ⩽ 1K ‖wλ − w‖∗ ‖w′ − w‖∗

= λK ‖w′ − w‖2∗ .

By integrating, we get

ϕ(λ) − ϕ(0) ⩽ ϕ′(0)λ+ λ
2

2K ‖w′ − w‖2∗ ,

which for λ = 1 boils down to

h∗(w′) − h∗(w) ⩽ ⟨w′ − w|∇h∗(w)⟩ + 1
2K ‖w′ − w‖2∗ .

In other words,Dh∗(w′,w) ⩽ 1
2K ‖w′ − w‖2∗.

I.2.3. The Entropic regularizer

Denote Δd the unit simplex of Rd:

Δd =
⎧{
⎨{⎩
z ∈ Rd

+ ∣
d
􏾜
i=1

zi = 1
⎫}
⎬}⎭
,

where Rd
+ is the set of vectors in Rd with nonnegative components. We define the

entropic regularizer hent ∶ Rd → R ∪ {+∞} as

hent(z) = {∑d
i=1 z

i log zi if z ∈ Δd
+∞ otherwise,

�

where zi log zi = 0 when zi = 0.
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Proposition I.2.9. (i) hent is a regularizer onΔd;

(ii) h∗
ent(w) = log⎛⎜

⎝

d
􏾜
i=1

expwi⎞⎟
⎠

, for all w ∈ Rd;

(iii) ∇h∗
ent(w) = ⎛⎜

⎝
expwi

∑d
j=1 expwj

⎞⎟
⎠1⩽j⩽d

, for all w ∈ Rd;

(iv) δhent = logd;
(v) hent is 1-strongly convex with respect to ‖ ⋅ ‖1.

Proof. (i) is immediate, and (ii) and (iii) are classic (see e.g. [BV04, Example 2.25]).
(iv) hent being convex, its maximumonΔd is attained at one of the extreme points.

At each extreme point, the value of hent is zero. Therefore, maxΔd hent = 0. As for the
minimum, hent being convex and symmetric with respect to the components zi, its
minimum is attained at the centroid (1/d,… , 1/d) of the simplex Δd, where its value
is − logd. Therefore, minΔd hent = − logd and δhent = logd.

(v) Consider F ∶ Rd → R ∪ {+∞} defined by

F(z) = {∑d
i=1(zi log zi − zi) + 1 if z ∈ Rd

+
+∞ otherwise.

�

Let us prove that F is 1-strongly convex with respect to ‖ ⋅ ‖1. By definition, the do-
main of F isRd

+. It is differentiable on the interior of the domain (R∗
+)d and ∇F(z) =

(log zi)1⩽i⩽d for z ∈ (R∗
+)d. Therefore, the norm of ∇F(z) goes to +∞ when z con-

verges to a boundary point ofRd
+. [Roc70, Theorem 26.1] then assures that the subd-

ifferential ∂F(z) is empty as soon as z ∉ (R∗
+)d. Therefore, condition (iii) fromPropo-

sition I.2.5, which we aim at proving, can be written

⟨∇F(z′) − ∇F(z)|z′ − z⟩ ⩾ ‖z′ − z‖21 , z, z′ ∈ (R∗
+)d. (I.7)

Let z, z′ ∈ (R∗
+)d.

⟨∇F(z′) − ∇F(z)|z′ − z⟩ =
d
􏾜
i=1

log (z′)i
zi ((z′)i − zi).

A simple study of function shows that (s − 1) log s − 2(s − 1)2/(s + 1) ⩾ 0 for s ⩾ 0.
Applied with s = (z′)i/zi, this gives

d
􏾜
i=1

log (z′)i
zi ((z′)i − zi) ⩾ ‖z′ − z‖21 ,
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and (I.7) is proved. F is therefore 1-strongly convex with respect to ‖ ⋅ ‖1 and so is hent
thanks to Lemma I.2.7.

I.2.4. The Euclidean regularizer

Let 𝒵 be a nonempty convex compact subset ofRd. We define the Euclidean reg-
ularizer on 𝒵 as

h2(z) = {
1
2 ‖z‖22 if z ∈ 𝒵
+∞ otherwise.

�

Proposition I.2.10. (i) h2 is a regularizer on 𝒵;
(ii) ∇h∗

2(w) = proj𝒵(w) for all w ∈ Rd where proj𝒵 is the Euclidean projection onto
𝒵;

(iii) h2 is 1-strongly convex with respect to ‖ ⋅ ‖2.

Proof. (i) is immediate.
(ii) For all w ∈ Rd, using property (iii) from Proposition I.2.2,

∇h∗(w) = argmax
z∈𝒵

{⟨w|z⟩ − 12 ‖z‖22} = argmin
z∈𝒵

{ 12 ‖z‖22 − ⟨w|z⟩ + 12 ‖w‖22}

= argmin
z∈𝒵

‖w − z‖22 = proj
𝒵

(w).

(iii) We consider F ∶ Rd → R defined by F(z) = 1
2 ‖z‖22 for all z ∈ Rd. Its Hessian

at all points z ∈ 𝒱 is the identity matrix and for all vectors u ∈ Rd, we have

⟨∇2F(z)u∣u⟩ = ‖u‖22 .

Thanks to Proposition I.2.6, F is 1-strongly convex with respect to ‖ ⋅ ‖2 . Using
Lemma I.2.7, we deduce that h2 is also 1-strongly convex with respect to ‖ ⋅ ‖2.

I.2.5. The ℓp regularizer

For p ∈ (1, 2), we define for any nonempty convex compact subset 𝒵 of Rd:

hp(z) = {
1
2 ‖z‖2p if z ∈ 𝒵
+∞ otherwise.

�

Proposition I.2.11. (i) hp is a regularizer on 𝒵;
(ii) hp is (p − 1)-strongly convex with respect to ‖ ⋅ ‖p.
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Proof. (i) Since p ⩾ 1, ‖ ⋅ ‖p is a norm and is therefore convex. hp then clearly is a
regularizer on 𝒵.

(ii)We consider the functionF(z) = 1
2 ‖z‖2p definedonRd which is (p−1)-strongly

convex with respect to ‖ ⋅ ‖p (see e.g. [Bub11, Lemma 3.21]). Then, so is hp thanks to
Lemma I.2.7.

I.3. Mirror Descent strategies

We now construct the family of Mirror Descent strategies with time-varying pa-
rameters and derive in Theorem I.3.1 general regret bounds. A discussion on the ori-
gins of Mirror Descent is provided in the introduction of the manuscript. We con-
sider the notation introduced in Section I.1. Let h be a regularizer on the action set 𝒵
and (ηt)t⩾1 a positive and nonincreasing sequence of parameters. TheMirror Descent
strategy associated with h and (ηt)t⩾1 is defined byU0 = 0 and for t ⩾ 1 by

play action zt = ∇h∗(ηt−1Ut−1),
update Ut = Ut−1 + ut,

which implies Ut = ∑t
s=1 us. Since ∇h∗ takes values in 𝒵 by Proposition I.2.2, zt is

indeed an action. Besides, zt only depends onpayoffvectors up to time t−1. Therefore,
the above is a valid strategy. Using property (iii) from Proposition I.2.2, it can also be
written

zt = argmax
z∈𝒵

{⟨
t−1
􏾜
s=1

us∣z⟩ − h(z)
ηt−1

} .

This expression clearly demonstrates that the strategy is a regularized version of Fol-
low the Leader (I.1) which would give argmaxz∈𝒵 ⟨∑t−1

s=1 us∣z⟩ instead. Moreover, we
see that the higher is parameter ηt−1, the closer zt is to argmaxz∈𝒵 ⟨∑t−1

s=1 us∣z⟩. This
intuition is in particular useful in Section II.7 where we compare the regret bounds
given by different choices of parameters (ηt)t⩾1.

We now state the general regret bound guaranteed by this strategy. Similar state-
mentswith constant parameters have appeared in e.g. [RT09, Proposition 11], [SS11,
Lemma 2.20] and [BCB12, Theorem 5.4].

Theorem I.3.1. LetT ⩾ 1 an integer andM,K > 0.
(i) Against any sequence (ut)t⩾1 of payoff vectors, the above strategy guarantees

Reg
T

⩽ δhηT
+
T
􏾜
t=1

1
ηt−1
Dh∗(ηt−1Ut, ηt−1Ut−1),
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where we set η0 = η1.
(ii) Moreover, if h isK-strongly convex with respect to a norm ‖ ⋅ ‖, then

Reg
T

⩽ δhηT
+ 1
2K

T
􏾜
t=1
ηt−1 ‖ut‖2∗ .

(iii) Moreover, if ‖ut‖∗ ⩽ M ( for all t ⩾ 1), the choice ηt = √δhK/M2t ( for t ⩾ 1)
guarantees

Reg
T

⩽ 2M√Tδh
K .

Proof. (i) Let z ∈ 𝒵. Using Fenchel’s inequality, we write

⟨UT|z⟩ = ⟨ηTUT|z⟩
ηT

⩽ h∗(ηTUT)
ηT

+ h(z)
ηT

⩽ h∗(0)
η0

+
T
􏾜
t=1

(h∗(ηtUt)
ηt

− h∗(ηt−1Ut−1)
ηt−1

) + max𝒵 h
ηT

.
(I.8)

Let us bound h∗(ηtUt)/ηt from above. For all z ∈ 𝒵 we have

⟨ηtUt|z⟩ − h(z)
ηt

= ⟨ηt−1Ut|z⟩ − h(z)
ηt−1

− h(z) ( 1ηt
− 1
ηt−1

) .

The maximum over z ∈ 𝒵 of the above left-hand side gives h∗(ηtUt)/ηt. As for the
right-hand side, let us take the maximum over z ∈ 𝒵 for each of the two terms sepa-
rately. This gives

h∗(ηtUt)
ηt

⩽ max
z∈𝒵

{⟨ηt−1Ut|z⟩ − h(z)
ηt−1

} + max
z∈𝒵

{−h(z) ( 1ηt
− 1
ηt−1

)}

= h∗(ηt−1Ut)
ηt−1

+ (min
𝒵

h) ( 1
ηt−1

− 1ηt
) ,

where we used the fact that the sequence (ηt)t⩾0 is nonincreasing. Injecting this in-
equality in (I.8), we get

⟨UT|z⟩ ⩽ h∗(0)
η0

+
T
􏾜
t=1

h∗(ηt−1Ut) − h∗(ηt−1Ut−1)
ηt−1

+ (min
𝒵

h)
T
􏾜
t=1

( 1
ηt−1

− 1ηt
) + max𝒵 h

ηT
.

We can make the Bregman divergence appear in the first sum above by subtracting

⟨ηt−1Ut − ηt−1Ut−1|∇h∗(ηt−1Ut−1)⟩
ηt−1

= ⟨ut|zt⟩ .



mirror descent strategies 43

Therefore,

⟨UT|z⟩ ⩽ h∗(0)
η0

+
T
􏾜
t=1

Dh∗(ηt−1Ut, ηt−1Ut−1)
ηt−1

+
T
􏾜
t=1

⟨ut|zt⟩−
min𝒵 h
ηT

+min𝒵 h
η0

+max𝒵 h
ηT

.

Since h∗(0) = −min𝒵 h, we get

Reg
T

= max
z∈𝒵

⟨UT|z⟩ −
T
􏾜
t=1

⟨ut|zt⟩

⩽ max𝒵 h − min𝒵 h
ηT

+
T
􏾜
t=1

Dh∗(ηt−1Ut, ηt−1Ut−1)
ηt−1

.

(ii) The strong convexity of the regularizer h and Proposition I.2.8 let us bound
the above Bregman divergences as follows:

Dh∗(ηt−1Ut, ηt−1Ut−1) ⩽ 1
2K ‖ηt−1Ut − ηt−1Ut−1‖2∗ = η

2
t−1
2K ‖ut‖2∗ , t ⩾ 1,

which proves the result.
(iii) Set η = √δhK/M2 so that ηt = η t−1/2 for t ⩾ 1. The regret bound then

becomes
δh

√
T
η + M

2

2K

T
􏾜
t=1
ηt−1.

We bound the above sum as follows. Since η0 = η1 = η,
T
􏾜
t=1
ηt−1 = η⎛⎜

⎝
2+

T−1
􏾜
t=2

1√
t
⎞⎟
⎠

⩽ η(􏾙
1

0

1√s ds + 􏾙
T−1

1

1√s ds)

= η􏾙
T−1

0

1√s ds = 2η
√
T− 1 ⩽ 2η

√
T.

Injecting the expression of η and simplifying gives

Reg
T

⩽ 2M√Tδh
K .

An alternative proof of this result based on a continuous-time approach is given in
Chapter VII and offers the following interpretation. The first term δh/ηT in the above
bound (i) is the regret guarantee of the continuous-time mirror descent algorithm,
whereas the Bregman divergences Dh∗(ηt−1Ut, ηt−1Ut−1) come from the discrepancy
between the continuous-time and the discrete-time strategies.
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I.4. Convex losses

Weconsider here amore general regretminimizationproblem, called online convex
optimization, inwhichNature chooses at time t ⩾ 1 a convex loss function ℓt ∶ 𝒱 → R
instead of payoff vectors. The play is as follows. At time instance t ⩾ 1, the Decision
Maker

• chooses a point zt ∈ 𝒵;
• observes a (negative) subgradient ut ∈ −∂ℓt(zt);
• incurs a loss equal to ℓt(zt).

The feedback offered to the Decision Maker is therefore (an element of ) the subdif-
ferential ∂ℓt(zt). The regret to minimize is defined by

T
􏾜
t=1

ℓt(zt) − min
z∈𝒵

T
􏾜
t=1

ℓt(z).

The regret minimization with payoff vectors defined in Section I.1 can be seen as a
special case where the loss functions are linear. As demonstrated by [KW97, CB97],
the setting with convex losses can be reduced to a regret minimization problem with
linear payoffs as follows. Using a convexity inequality, we can write

T
􏾜
t=1

ℓt(zt) − min
z∈𝒵

T
􏾜
t=1

ℓt(z) = max
z∈𝒵

T
􏾜
t=1

(ℓt(zt) − ℓt(z))

⩽ max
z∈𝒵

T
􏾜
t=1

⟨−ut|zt − z⟩

= max
z∈𝒵

T
􏾜
t=1

⟨ut|z⟩ −
T
􏾜
t=1

⟨ut|zt⟩ .

This lastquantity is obviously the regret as defined in Section I.1where (ut)t⩾1 are seen
as payoff vectors. We then naturally define the Mirror Descent strategies as follows.
Let h be a regularizer on 𝒵, (ηt)t⩾1 a positive and nonincreasing sequence. SetU0 = 0
and for t ⩾ 1,

zt = ∇h∗(ηt−1Ut−1)
Ut ∈ Ut−1 − ∂ℓt(zt).

Note that payoff vector ut belongs by definition to −∂ℓt(zt). It therefore depends on
zt, which is indeed allowed—see Section I.1.
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Theorem I.4.1. LetT ⩾ 1 an integer andK,M > 0.
(i) Assume that h is K-strongly convex with respect to a norm ‖ ⋅ ‖. Then, against any

sequence of loss functions (ℓt)t⩾1, the above Mirror Descent strategy guarantees

T
􏾜
t=1

ℓt(zt) − min
z∈𝒵

T
􏾜
t=1

ℓt(zt) ⩽ δhηT
+ 1
2K

T
􏾜
t=1
ηt−1 ‖∂ℓt(zt)‖2∗ ,

where η0 = η1.
(ii) Moreover, if the loss functions areM-Lipschitz continuous with respect to ‖ ⋅ ‖, the

choice of parameters ηt = √δhK/M2t ( for t ⩾ 1) guarantees

T
􏾜
t=1

ℓt(zt) − min
z∈𝒵

T
􏾜
t=1

ℓt(z) ⩽ 2M√Tδh
K .

Proof. The bounds follow from Theorem I.3.1 and the above discussion.

One important special case where 𝒱 is an Euclidean space and where the Eu-
clidean regularizer h2 from Section I.2.3 is chosen. As stated in Proposition I.2.10,
the map ∇h∗

2 is simply the Euclidean projection onto 𝒵:

zt = proj
𝒵

(ηt−1Ut−1)

Ut ∈ Ut−1 − ∂ℓt(zt).

I.5. Convex optimization

Ordinary convex optimization problems can be seen as a regret minimization
problem where the loss function remains constant over time. In what follows, we
outline how regret minimizing strategies can be used for this purpose and discuss the
performance gap incurred by using variable step-sizes instead of a variable
parameters.

Letf ∶ 𝒱 → R be a convex function tominimize on a nonempty convex compact
set 𝒵 ⊂ 𝒱, h a regularizer on 𝒵, (ηt)t⩾1, a positive and nonincreasing sequence (ηt)t⩾1
and (γt)t⩾1 a positive sequence. We consider the following general algorithm. Set
U0 = 0 and for t ⩾ 1,

zt = ∇h∗(ηt−1Ut−1),
Ut ∈ Ut−1 − γt∂f(zt),

which corresponds to the Mirror Descent algorithm from Section I.3 associated with
payoff vectors ut ∈ −γt∂f(zt). We call (ηt)t⩾1 the parameters, which in the definition
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of thestrategymultiply thewhole sumUt−1 = ∑t−1
s=1 us, and (γt)t⩾1 thestep-sizes, whose

purpose is to give different weights to the successive subdifferentials ∂f(zt).
We now state the general guarantees offered by the above algorithm, which are

similar to those obtained in [BT03, Theorem 4.1] for the greedy version of Mirror
Descent (see the introduction of the manuscript for a discussion on the difference
between greedy and lazy Mirror Descent).

Theorem I.5.1. LetT ⩾ 1 an integer andK,M > 0.
(i) Suppose that the function f is M-Lipschitz continuous with respect to a norm

‖ ⋅ ‖, and that h is a K-strongly regularizer with respect to ‖ ⋅ ‖. Denote
z′
T ∈ argmin

1⩽t⩽T f(zt). Then,

f(z′
T) − min

𝒵
f ⩽ ⎛⎜

⎝

T
􏾜
t=1
γt⎞⎟

⎠

−1
⎛⎜
⎝
δh
ηT

+ M
2

2K

T
􏾜
t=1
ηt−1γ2t⎞⎟

⎠
.

(ii) The choice of constant parameters ηt = 1 gives

f(z′
T) − min

𝒵
f ⩽ ⎛⎜

⎝

T
􏾜
t=1
γt⎞⎟

⎠

−1
⎛⎜
⎝
δh + M

2

2K

T
􏾜
t=1
γ2t⎞⎟

⎠
,

(iii) and the choice of constant step-sizes γt = 1 and variable parameters
ηt = √δhK/M2t gives

f(z′
T) − min

𝒵
f ⩽ 2M√ δh

TK .

Proof. We make the regret appear as follows:

f(z′
T) − min

z∈𝒵
f(z) ⩽ ⎛⎜

⎝

T
􏾜
t=1
γt⎞⎟

⎠

−1
⎛⎜
⎝

T
􏾜
t=1
γtf(zt) − min

z∈𝒵

T
􏾜
t=1
γtf(z)⎞⎟

⎠

= ⎛⎜
⎝

T
􏾜
t=1
γt⎞⎟

⎠

−1
⎛⎜
⎝

max
z∈𝒵

T
􏾜
t=1
γt (f(zt) − f(z))⎞⎟

⎠

⩽ ⎛⎜
⎝

T
􏾜
t=1
γt⎞⎟

⎠

−1
⎛⎜
⎝

max
z∈𝒵

T
􏾜
t=1

⟨ut|zt − z⟩⎞⎟
⎠
,
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where we used in the last line the fact that ut ∈ −γt∂f(zt). Besides, f being
M-Lipschitz continuous with respect to ‖ ⋅ ‖ is equivalent to its subgradients being
bounded from above byM with respect to ‖ ⋅ ‖∗. Therefore, injecting ‖ut‖∗ ⩽ γtM
into Theorem I.3.1 gives the result.

One can see that the best convergence rate that we get in (ii) with a constant pa-
rameter and step-sizes of the form γt = t−α is of orderO(T−1/2 logT) (for α = 1/2)
(and there is no straightforward choice of γt leading to a better convergence rate).
On the other hand, by taking in (iii) a constant step-size and varying the algorithm’s
parameter ηt = O(t−1/2), we do achieve anO(T−1/2) rate of convergence.

•





CHAPTER II

EXPERTS SETTING

We dedicate this chapter to a variant of the model from Section I.1 where the De-
cision Maker has a finite set of actions from which he is allowed to choose at random.
TheMirrorDescent strategies introduced in Section I.3 and the corresponding regret
bounds are easily adapted to this framework. Randomization being introduced by
the Decision Maker, we also derive high probability and almost-sure regret guaran-
tees. We then examine a few important special cases: the Exponential Weights Algo-
rithm, the case ofsparse payoffvectors, the SmoothFictitiousPlay and theVanishingly
Smooth Fictitious Play.

II.1. Model

Let ℐ = {1,… ,d} be the set of pure actions of theDecisionMaker. DenoteΔd the
unit simplex of Rd which can be seen as the set of probability distributions over ℐ:

Δd =
⎧{
⎨{⎩
z ∈ Rd

+ ∣
d
􏾜
i=1

zi = 1
⎫}
⎬}⎭

.

An element of Δd is called a mixed action. The play goes as follows. At each time
instance t ⩾ 1, the Decision Maker

• chooses a mixed action zt ∈ Δd;
• draws pure action it ∈ ℐ according to probability distribution zt;
• observes payoff vector ut ∈ Rd;

• receives payoff uitt .
Unlike the core model of Section I.1, the choice by Nature of payoff vector ut must
not depend on pure action it (but can still depend on mixed action zt). Let (ℱt)t⩾1
the filtration where ℱt is generated by

(z1, u1, i1,… , zt−1, ut−1, it−1, zt, ut).

49
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We then have E [uitt ∣ ℱt] = Ei∼zt [uit] = ⟨ut|zt⟩. A strategy for the Decision Maker is
a sequence of measurable maps σ = (σt)t⩾1 where σt ∶ (Δd × ℐ × 𝒰)t−1 → Δd. For a
given strategy σ and a sequence of payoff vectors (ut)t⩾1, we have:

zt = σt(z1, i1, u1,… , zt−1, it−1, ut−1), t ⩾ 1.

The realized regret up to timeT ⩾ 1 is the random variable defined as

R̃eg
T

= max
i∈ℐ

T
􏾜
t=1

uit −
T
􏾜
t=1

uitt .

We call regret the following quantity, where the payoff uitt has been replaced by its
conditional expectation ⟨ut|zt⟩ = E [uitt ∣ ℱt]. It corresponds to the regret from Sec-
tion I.1:

Reg
T

= max
i∈ℐ

T
􏾜
t=1

uit −
T
􏾜
t=1

⟨ut|zt⟩ = max
z∈Δd

T
􏾜
t=1

⟨ut|z⟩ −
T
􏾜
t=1

⟨ut|zt⟩ .

The Mirror Descent strategies adapted from Section II.1 will provide upper bounds
on the regret. With the help of concentration inequalities, those will in turn provide
high probability and almost-sure guarantees on the realized regret.

We call this setting the experts setting because it models the problem of prediction
with experts advice which can be described as follows. Let ℐ = {1,… ,d} be a set
of experts. At each stage t ⩾ 1, the Decision Maker is to make a decision and each
expert gives an advice as to which decision to make. The Decision Maker must then
choose the expert it to follow. Then, the vector ut ∈ Rd is observed, where uit is the
payoff obtained by expert i. The payoff obtained by the Decision Maker is therefore
uitt . The regret then corresponds to thedifference between the cumulative payoffof the
Decision Maker and the cumulative payoff obtained by the best expert in hindsight.

An important direction of research is the study of the best possible guarantee on
the regret, in other words, the study of the minimax regret

min
σ

max
(ut)t⩾1

RT,

where the minimum is taken over the strategies of the Decision Maker, and the max-
imum over the possible sequences of payoff vectors. Without any assumption on the
payoff vectors, it is easy to see that this quantity is equal to +∞. It becomes finite
and therefore relevant when, typically, the payoff vectors are assumed to belong to
a bounded set 𝒰 ⊂ Rd. However, we are usually unable to compute the value of
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the minimax regret exactly, and we simply establish its asymptotic dependencies in
the parameters of the problem. For instance, the most common assumption in this
framework is that payoff vectors belong to 𝒰 = [−1, 1]d. In this case, the minimax
regret is known to be of order √T logd, which gives the dependency in the number
of stages T and in the number of actions d. This result has been proved in two steps.
First, the Exponential Weights Algorithm was shown to guarantee a regret bound of
√T logd (up to a multiplicative constant) [CB97], which gives an upper bound on
the minimax regret (this result will be presented in detail in Section II.3). Second,
using a probabilistic argument, it has been established [CBFH+97] that theminimax
regret is higher than √T logd (up to a multiplicative constant) when T and d are
large. Stronger assumptions involving sparsity will be considered in Section II.4 and
will lead to lower minimax regrets, achieved by well-chosen strategies.

II.2. Mirror Descent strategies

Weadapt theMirrorDescentstrategies fromSection I.3 to this framework by sim-
ply seeing the simplexΔd as the convex compact set of actions. Thestrategy associated
with a regularizer h on Δd and a positive and nonincreasing sequence of parameters
(ηt)t⩾1 is therefore defined as follows. SetU0 = 0 and for t ⩾ 1,

choose zt = ∇h∗(ηt−1Ut−1),
draw it ∼ zt,

update Ut = Ut−1 + ut.

The results of Theorem I.3.1 hold. We are now aiming at deriving high probability
and almost-sure results on the realized regret. The Hoeffding–Azuma inequality will
make sure that the regret and the realized regret are close.

Lemma II.2.1. Let (zt)t⩾1 and (it)t⩾1 be sequences of mixed and pure actions respectively
played by the Decision Maker against payoff vectors (ut)t⩾1. LetM > 0 and assume that
‖ut‖∞ ⩽M ( for all t ⩾ 1).
(i) Let δ ∈ (0, 1). With probability higher than 1− δ, we have

R̃eg
T

⩽ Reg
T

+M√8T log(1/δ).

(ii) Almost-surely,

lim sup
T→+∞

1
T (R̃eg

T
− Reg

T
) ⩽ 0.
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Proof. (i) Let (ℱt)t⩾1 be thefiltration introduced inSection II.1 andXt = ⟨ut|zt⟩−uitt .
Then, (Xt)t⩾1 is sequence of martingale differences with respect to (ℱt)t⩾1. Indeed,
E [⟨ut|zt⟩ − uitt ∣ ℱt] = ⟨ut|zt⟩ − ⟨ut|zt⟩ = 0. Besides, |Xt| ⩽ 2M. Proposition A.0.1
applied with ε =M√8 log(1/δ)/T then gives

P⎡⎢
⎣
1
T

T
􏾜
t=1
Xt > ε⎤⎥

⎦
⩽ δ.

In other words, with probability higher than 1− δ, we have

T
􏾜
t=1

⟨ut|zt⟩ ⩽
T
􏾜
t=1

uitt +M√8T log(1/δ).

Adding maxi∈ℐ ∑Tt=1 u
i
t to both sides and reorganizing the terms gives the result.

(ii) The second part of the statement follows from a standard Borel–Cantelli ar-
gument.

We nowstate the high-probability and almost-sure guarantees offered by theMir-
ror Descent strategies in the case of a strongly convex regularizer and bounded payoff
vectors.

Theorem II.2.2. Let T ⩾ 1 an integer,K,M > 0 and δ ∈ (0, 1). With notation from
Section II.2, assume that h isK-strongly convex with respect to ‖ ⋅ ‖1.
(i) Against any sequence of payoff vectors (ut)t⩾1 such that ‖ut‖∞ ⩽ M ( for all t ⩾ 1),

the strategy defined in Section II.2 guarantees with probability higher than 1− δ

R̃eg
T

⩽ δhηT
+ M

2

2K

T
􏾜
t=1
ηt−1 +M√8T log(1/δ).

(ii) In particular, the choice of parameters ηt = √δhK/M2t ( for t ⩾ 1) gives with
probability higher that 1− δ,

R̃eg
T

⩽M
√
T(2√δhK + √8 log(1/δ)) ,

and almost-surely,
lim sup
T→+∞

1
TR̃eg

T
⩽ 0.
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Proof. Simply combine Theorem I.3.1, Lemma II.2.1, and the fact that ‖ ⋅ ‖∞ is the
dual norm of ‖ ⋅ ‖1.

The average realized regret being asymptotically nonpositive, as stated in the very
last part of the above theorem, is the original definition of a strategy being consistent,
as proposed by Hannan [Han57].

II.3. ExponentialWeights Algorithm

The most important instance of Mirror Descent strategies in the experts setting is
the Exponential Weights Algorithm, introduced by [LW94, Vov90] and further stud-
ied by [KW95, CB97, ACBG02, Sor09] among others. As proved below in Theo-
rem II.3.1, it achieves a minimax regret guarantee of order √T logd. The algorithm
corresponds to the choice the entropic regularizer:

hent(z) = {∑d
i=1 z

i log zi if z ∈ Δd
+∞ otherwise.

�

Proposition I.2.9 then gives the following explicit expression of the algorithm:

zit = exp (ηt−1Ui
t−1)

∑d
j=1 exp (ηt−1Uj

t−1)
, i ∈ ℐ.

The following regret bound achieved by the Exponential Weights Algorithm with
time-varying parameters ηt = √logd/t was first established in [ACBG02].

Theorem II.3.1. LetT ⩾ 1 an integer. Against any sequence of payoff vectors in [−1, 1]d,
the Exponential Weights Algorithm with parameters ηt = √logd/t ( for t ⩾ 1) guaran-
tees

Reg
T

⩽ 2√T logd.
Let δ ∈ (0, 1). With probability higher that 1− δ, we have

R̃eg
T

⩽
√
T(2√logd + √8 log(1/δ)) .

Almost-surely,
lim sup
T→+∞

1
TR̃eg

T
⩽ 0.

Proof. FromProposition I.2.9, we know δhent = logd and that hent is 1-strongly convex
with respect to ‖ ⋅ ‖1; and since ut ∈ [−1, 1]d implies ‖ut‖∞ ⩽ 1, the results follow from
Theorem II.2.2 applied withM = 1 andK = 1.
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We now turn to more precise regret bounds which hold in the case of payoff vec-
tors whose components are bounded from above. For simplicity, we state the follow-
ing results in the case of losses, i.e. payoff vectors with nonpositive coefficients. They
are obtained by a finer analysis of the Bregman divergence associated with h∗

ent.

Theorem II.3.2. (i) Against payoff vectors (ut)t⩾1 inRd
−, the ExponentialWeights Al-

gorithm with parameters (ηt)t⩾1 guarantees

Reg
T

⩽ logd
ηT

+
T
􏾜
t=1
ηt−1

d
􏾜
i=1

(uit)2zit,

where we set η0 = η1.
(ii) Against payoff vectors (ut)t⩾1 in [−1, 0]d, the Exponential Weights Algorithm with

constant parameter η ∈ (0, 1) guarantees

Reg
T

⩽ 1
1− η

⎛⎜
⎝

logd
η − ηmax

i∈ℐ

T
􏾜
t=1

uit⎞⎟
⎠

.

Proof. (i) Theorem I.3.1 together with the fact that δhent = logd gives

Reg
T

⩽ logd
ηT

+
T
􏾜
t=1

1
ηt−1
Dh∗

ent
(ηt−1Ut, ηt−1Ut−1).

We aim at bounding from above the Bregman divergence in the above sum. Proposi-
tion I.2.9 gives the following expression for h∗

ent:

h∗
ent(y) = log⎛⎜

⎝

d
􏾜
i=1

eyi⎞⎟
⎠
, y ∈ Rd.

For t ⩾ 1, we can then express the Bregman divergence as

Dh∗
ent

(ηt−1Ut, ηt−1Ut−1) = h∗
ent(ηt−1Ut) − h∗

ent(ηt−1Ut−1)
− ⟨∇h∗

ent(ηt−1Ut−1)|ηt−1Ut − ηt−1Ut−1⟩

= log⎛⎜
⎝

d
􏾜
i=1

eηt−1U
i
t⎞⎟
⎠

− log⎛⎜
⎝

d
􏾜
i=1

eηt−1U
i
t−1⎞⎟

⎠
− ηt−1 ⟨zt|ut⟩

= log⎛⎜
⎝

d
􏾜
i=1

eηt−1u
i
teηt−1U

i
t−1

∑d
j=1 e

ηt−1U
j
t−1

⎞⎟
⎠

− ηt−1 ⟨zt|ut⟩

= log⎛⎜
⎝

d
􏾜
i=1

ziteηt−1u
i
t⎞⎟
⎠

− ηt−1 ⟨zt|ut⟩ .
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Since uit ∈ [−1, 0] by hypothesis, it is true that

eηt−1u
i
t ⩽ 1+ ηt−1uit + η2t−1(uit)2.

Substituting in the previous expression,

Dh∗
ent

(ηt−1Ut, ηt−1Ut−1) ⩽ log⎛⎜
⎝

d
􏾜
i=1

zit (1+ ηt−1uit + η2t−1(uit)2)⎞⎟
⎠

− ηt−1 ⟨zt|ut⟩

= log⎛⎜
⎝
1+ ηt−1 ⟨ut|zt⟩ + η2t−1

d
􏾜
i=1

zit(uit)2⎞⎟
⎠

− ηt−1 ⟨ut|zt⟩

⩽ ηt−1 ⟨ut|zt⟩ + η2t−1
d
􏾜
i=1

zit(uit)2 − ηt−1 ⟨zt|ut⟩

= η2t−1
d
􏾜
i=1

zit(uit)2,

which gives the result.
(ii)The second bound is a corollary of the first one. We restrict to the Exponential

Weights Algorithm with a constant parameter η ∈ (0, 1). Since uit ∈ [−1, 0], we have
(uit)2 ⩽ −uit. This gives

max
i∈ℐ

T
􏾜
t=1

uit −
T
􏾜
t=1

⟨zt|ut⟩ ⩽ logd
η − η

T
􏾜
t=1

d
􏾜
i=1

zituit.

Since∑d
i=1 z

i
tuit simply is ⟨zt|ut⟩, we can reorganize the above quantities to get

(1− η) ⎛⎜
⎝

max
i∈ℐ

T
􏾜
t=1

uit −
T
􏾜
t=1

⟨zt|ut⟩⎞⎟
⎠

⩽ logd
η − ηmax

i∈ℐ

T
􏾜
t=1

uit,

and the result follows by dividing by 1− η > 0.
Regret bounds similar to (i) have appeared in e.g. [ACBFS02], [CBLS05] and

[SS11, Theorem 2.2] in the case of constant parameters. As for (ii), a bound of the
same kind was already proposed in [LW94] and is called improvement for small losses.

II.4. Sparse payoff vectors

We here add a sparsity assumption on the payoff vectors: we assume that they has
atmost s nonzero components (for a given integer 1 ⩽ s ⩽ d). We aim at constructing
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strategies which take advantage of this restriction to guarantee regret bounds that are
tighter than the bound of order √T logd guaranteed in Theorem II.3.1 by the Ex-
ponential Weights Algorithm. A thorough investigation of this subject will be con-
ducted inChapterV.Wedistinguish two cases: sparse gains andsparse losses. Denote

𝒰+,s,d = {u ∈ [0, 1]d ∣ u has at most s nonzero components} ,
𝒰−,s,d = {u ∈ [−1, 0]d ∣ u has at most s nonzero components} .

Let p ∈ (0, 1) and consider the following regularizer on Δd:

hp(z) = {
1
2 ‖z‖2p if z ∈ Δd
+∞ otherwise.

�

The associated Mirror Descent strategy guarantees a regret bound of order √T log s
in the case of sparse gains.

Theorem II.4.1. Let T ⩾ 1 and s ⩾ 3. Against payoff vectors in 𝒰+,s,d, the Mirror
Descent strategyassociatedwith regularizer hp withp = 1+(2 log s−1)−1 and parameters
ηt = (4et log s)−1/2 ( for t ⩾ 1) guarantees

Reg
T

⩽ 2√eT log s.

Proof. According to Proposition I.2.11, regularizer hp is (p− 1)-strongly convex with
respect to ‖ ⋅ ‖p. Let q > 0 such that 1/p + 1/q = 1. We use the assumption on the
payoff vectors to bound their ℓq norms as follows. Let u ∈ 𝒰+,s,d. u has at most s
nonzero components. Thus,

‖u‖q = ⎛⎜
⎝

d
􏾜
i=1

∣ui∣q⎞⎟
⎠

1/q

⩽ ( 􏾜
s terms

∣ui∣q)
1/q

⩽ s1/q.

Theorem I.3.1 then gives

Reg
T

⩽ δhηT
+ s2/q
2(p − 1)

T
􏾜
t=1
ηt−1.

We know that δhp ⩽ 1/2. Then, note that p − 1 = (2 log s − 1)−1 and that

1
q = 1− 1p = p − 1

p = (2 log s − 1)−1

1+ (2 log s − 1)−1 = 1
2 log s .
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Therefore the bound on the regret becomes

Reg
T

⩽ 1
2ηT

+ e2 log s/(2 log s)(2 log s − 1)
2

T
􏾜
t=1
ηt−1 ⩽ 1

2ηT
+ e log s

T
􏾜
t=1
ηt−1,

and the choice ηt = (4et log s)−1/2 for t ⩾ 1 gives

Reg
T

⩽ 2√eT log s.

We now turn to the case of sparse losses. The above result still holds, but we are
able to guarantee a much better regret bound, of order √Ts logdd , by using a different
strategy.

Theorem II.4.2. Let T ⩾ 1. Against payoff vectors in 𝒰−,s,d, the Exponential Weights
Algorithm with constant parameter η = √d logd/sT guarantees forT > 4d logd/s,

Reg
T

⩽ 4√T s logdd .

Proof. Let T > 4d logd/s. Since ut belongs to [−1, 0]d and have at most s nonzero
components, we have

sT ⩾ −
T
􏾜
t=1

d
􏾜
i=1

uit = −
d
􏾜
i=1

T
􏾜
t=1

uit ⩾ −d ⋅ max
i∈ℐ

T
􏾜
t=1

uit.

Therefore, the above maximum is bounded from below by −sT/d. Injecting this in-
equality in the regret bound (ii) from Theorem II.3.2, we get

Reg
T

⩽ 1
1− η ( logd

η + η sTd ) .

We then choose η = √d logd/sT. The assumption on T assures that η ∈ (0, 1/2).
The bound therefore becomes

Reg
T

⩽ 4√T s logdd .

We will prove in Chapter V that the bounds from Theorems II.4.1 and II.4.2 are
both minimax optimal. This demonstrates that gains and losses are fundamentally
different in the case of sparse payoff vectors.
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II.5. Smooth Fictitious Play

The Smooth Fictitious Play was introduced by [FL95, FL98, FL99] and further
examined using the theory of stochastic approximations by [BHS06]. It corresponds
to a Mirror Descent strategy with an arbitrary regularizer h on Δd and a sequence of
parameters ηt = η/t for some η > 0. η is called the parameter of the SmoothFictitious
Play strategy. It therefore writes

choose zt = ∇h∗ ( ηt − 1Ut−1) ,
draw it ∼ zt,

update Ut = Ut−1 + ut.

The qualitative analysis of [BHS06] does not require the regularizer h to be strongly
convex. We here domake this assumption in order to obtain an explicit regret bound.

Theorem II.5.1. Let T ⩾ 1 an integer andK > 0. Assume that h isK-strongly convex
with respect to ‖ ⋅ ‖1. Against any sequence of payoff vectors in [−1, 1]d, the SmoothFictitious
Play with parameter η > 0 guarantees

Reg
T

⩽ δhTη + η logT2K + ηK .

Let δ ∈ (0, 1). With probability higher than 1− δ, we have

R̃eg
T

⩽ δhTη + η logT2K + ηK + √8T log(1/δ).

Almost-surely,
lim sup
T→+∞

1
TR̃eg

T
⩽ δhη .

Proof. Theorem I.3.1 gives

Reg
T

⩽ δhηT
+ 1
2K

T
􏾜
t=1
ηt−1 ‖ut‖2∞ ,

where η0 = η1. Injecting ηt = η/t and ‖ut‖∞ ⩽ 1 for t ⩾ 1, we obtain

Reg
T

⩽ δhη + η
2K

⎛⎜
⎝
1+

T−1
􏾜
t=1

1
t
⎞⎟
⎠

.
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We then bound the sum from above:
T−1
􏾜
t=1

1
t ⩽ 1+ 􏾙

T−1

1

ds
s = 1+ log(T− 1) ⩽ 1+ logT,

and the bound on the regret is proved. The rest of the statement follows from
Lemma II.2.1.

II.6. Vanishingly Smooth Fictitious Play

A variant of the Smooth Fictitious Play, called the Vanishingly Smooth Fictitious
Play was introduced andstudied by [BF13]. It corresponds to aMirrorDescent Strat-
egy with a strongly convex regularizer h on Δd and a sequence of parameters (ηt)t⩾1
which satisfies

tηt −−−−→
t→+∞

+∞ and ηt = O(t−α) for some α > 0. (II.1)

Those conditionswillmake sure, in the following theorem, that the average realized re-
gret is asymptotically and almost-surely nonpositive. Note that the analysis in [BF13]
relied on differential inclusions and stochastic approximations and did not provide
explicit regret bounds.
Theorem II.6.1. Let T ⩾ 1 an integer andK > 0. Assume that h isK-strongly convex
with respect to ‖ ⋅ ‖1. Against any sequence of payoff vectors in [−1, 1]d, the Vanishingly
Smooth Fictitious Play with parameters (ηt)t⩾1 satisfying conditions (II.1) guarantees

Reg
T

⩽ δhηT
+ 1
2K

T
􏾜
t=1
ηt−1,

where η0 = η1. Let δ ∈ (0, 1). With probability higher than 1− δ, we have

R̃eg
T

⩽ δhηT
+ 1
2K

T
􏾜
t=1
ηt−1 + √8T log(1/δ).

Almost-surely,
lim sup
T→+∞

1
TR̃eg

T
⩽ 0.

Proof. The first bound is a paraphrase of Theorem I.3.1. The high probability bound
follows from Lemma II.2.1. Then, conditions (II.1) give δh/TηT → 0 as T → +∞
and

1
2KT

T
􏾜
t=1
ηt−1 = O(T

−α+1

T ) = O(T−α) −−−−→
T→+∞

0,
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and the last result follows.

II.7. On the choice of parameters

Wediscuss howdifferent decreasing rates of the parameters (ηt)t⩾1 affect the regret
bound offered by the corresponding strategies, and more specifically, whether the no-
regret property, which we define as

lim sup
T→+∞

1
TRT ⩽ 0,

is guaranteed. We restrict our attention to the experts setting and assume that regu-
larizers are strongly convex and that payoff vectors are bounded. This will allow us to
use Sections II.5 and II.6 as illustrations. However, the ideas presented below extend
to the online linear optimization framework of Section I.1.

We have seen at the end of Section I.1 that the Follow the Leader strategy

zt = argmax
z∈Δd

⟨
t−1
􏾜
s=1

us∣z⟩ (II.2)

fails to guarantee no-regret. This motivated the introduction of Mirror Descent
strategies

zt = argmax
z∈Δd

{⟨ηt−1
t−1
􏾜
s=1

us∣z⟩ − h(z)} (II.3)

which can be seen as a regularized version of Follow the Leader, where parameter ηt−1
controls the level of regularization: the higher is ηt−1, the closer (II.3) is to (II.2). In
the case of a constant parameter ηt = η, Theorem I.3.1 gives

1
T Reg

T
⩽ δhηT + ηM

2

2K and therefore lim sup
T→+∞

1
TRT ⩽ ηM

2

2K .

No-regret is not guaranteed, but parameter η (and therefore the above bound
ηM2/2K) can still be chosen arbitrarily small. A similar situation occurs in the case
where ηt = η/t, which corresponds to the Smooth Fictitious Play. As stated in
Theorem II.5.1, the average regret is asymptotically bounded by ηt/η. Through the
choice of h and/or η, the above bound can be made arbitrarily small, but not zero.
Let us now turn to the case where ηt decreases faster than η but slower than η/t: this
corresponds to the Vanishingly Smooth Fictitious Play. Then, as seen in
Theorem II.6.1, no-regret is guaranteed.
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The above can be interpreted as follows. In the case ηt = η, no-regret is not guar-
anteed because the parameters do not decrease quickly enough and the algorithm is
not regularized enough. If ηt = η/t, no-regret is not guaranteed because the parame-
ters decrease too quickly and the algorithm is too regularized. Finally, if the decreasing
rate of the parameters are between those two edge-cases, it is just right for strategy to
guarantee no-regret.

II.8. Multi-armed bandit problem

The multi-armed bandit problem was originally studied in a stochastic
setting [Rob52, LR85]. The nonstochastic model we consider below was introduced
by [ACBFS02] and is a regret minimization problem in the experts setting with the
restriction that the Decision Maker only observes the payoff of the action that he has
chosen. See [BCB12] for a recent survey.

We briefly describe the model and present the EXP3 strategy. Its analysis is based
on a regret bound that we established in Section II.3 for the Exponential Weights Al-
gorithm. We assume that the payoff vectors (ut)t⩾1 are chosen before the play begins 1.
At each time instance t ⩾ 1, the Decision Maker

• chooses a mixed action zt ∈ Δd;
• draws it ∼ zt;
• receives and observes payoff uitt .

Let (ℱt)t⩾1 be a filtration where ℱt is generated by

(z1, i1, u
i1
1 ,… , zt−1, it−1, u

it−1
t−1, zt).

It will be convenient to assume that the payoff vectors (ut)t⩾1 are normalized in
[−1, 0]d. We are aiming at bounding the expectation of the realized regret:

E⎡⎢
⎣
max
i∈ℐ

T
􏾜
t=1

uit −
T
􏾜
t=1

uitt ⎤⎥
⎦

.

The key idea is to use a strategy from the full information setting (i.e. where the Deci-
sion Maker observes the whole payoff vector ut), by replacing the unobserved payoff

1. If Nature is allowed to choose the payoffs vectors as a function of the previous ac-
tions of the Decision Maker, the analysis below must be carried out with the pseudo-regret
maxi∈ℐ E [∑T

t=1 u
i
t − ∑T

t=1 u
it
t ] instead of the expected realized regret. See [BCB12] (Section 3) for

a detailed discussion on this issue.
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vector ut by an unbiased estimator ̂ut which is constructed as follows. Assume zit > 0
for all t ⩾ 1. The Decision Maker can then compute

̂uit =
1{it=i}

zit
uit, i ∈ ℐ.

̂ut is an estimator of ut in the sense that E [ ̂ut | ℱt] = ut. The following result links the
expectation of the realized regret (which we aim atminimizing) with the expectation
of the regret (as defined in Section II.1) with respect to ( ̂ut)t⩾1 seen as payoff vectors.

Lemma II.8.1.

E⎡⎢
⎣
max
i∈ℐ

T
􏾜
t=1

uit −
T
􏾜
t=1

uitt ⎤⎥
⎦

⩽ E⎡⎢
⎣
max
i∈ℐ

T
􏾜
t=1

̂uit −
T
􏾜
t=1

⟨ ̂ut|zt⟩⎤⎥
⎦

.

Proof. Using the fact that Emax ⩾ max E,

E⎡⎢
⎣
max
i∈ℐ

T
􏾜
t=1

̂uit −
T
􏾜
t=1

⟨ ̂ut|zt⟩⎤⎥
⎦

⩾ max
i∈ℐ

E⎡⎢
⎣

T
􏾜
t=1

̂uit⎤⎥
⎦

− E⎡⎢
⎣

T
􏾜
t=1

⟨ ̂ut|zt⟩⎤⎥
⎦

= max
i∈ℐ

E⎡⎢
⎣

T
􏾜
t=1

E [ ̂uit ∣ ℱt]⎤⎥
⎦

− E⎡⎢
⎣

T
􏾜
t=1

E [⟨ ̂ut|zt⟩ | ℱt]⎤⎥
⎦

= max
i∈ℐ

E⎡⎢
⎣

T
􏾜
t=1

uit⎤⎥
⎦

− E⎡⎢
⎣

T
􏾜
t=1

⟨ut|zt⟩⎤⎥
⎦

= max
i∈ℐ

E⎡⎢
⎣

T
􏾜
t=1

uit⎤⎥
⎦

− E⎡⎢
⎣

T
􏾜
t=1

E [uitt ∣ ℱt]⎤⎥
⎦

= E⎡⎢
⎣
max
i∈ℐ

T
􏾜
t=1

uit −
T
􏾜
t=1

uitt ⎤⎥
⎦
,

where for the last equality, we used the fact that uit is deterministic to swap the maxi-
mum and the expectation.

The EXP3 strategy was introduced and first analyzed in [ACBFS02]. It consists
in using the Exponential Weights Algorithm against estimators ( ̂ut)t⩾1. Set U0 = 0



multi-armed bandit problem 63

and for t ⩾ 1,

zit = exp (ηt−1Ui
t−1)

∑d
j=1 exp(ηt−1Uj

t−1)
, i ∈ ℐ

̂uit =
1{it=i}

zit
uit, i ∈ ℐ

Ut = Ut−1 + ̂ut.

Note that the estimator is well defined since zit is always positive.

Theorem II.8.2. Let T ⩾ 1. Against any sequence of payoff vectors (ut)t⩾1 in [−1, 0]d,
the EXP3 strategy with parameters ηt = √logd/2dt ( for t ⩾ 1) guarantees

E⎡⎢
⎣
max
i∈ℐ

T
􏾜
t=1

uit −
T
􏾜
t=1

uitt ⎤⎥
⎦

⩽ 2√2Td logd.

Proof. Since estimators ( ̂ut)t⩾1 are in Rd
−, we can apply Theorem II.3.2 and take the

expectation, which gives

E⎡⎢
⎣
max
i∈ℐ

T
􏾜
t=1

̂uit −
T
􏾜
t=1

⟨ ̂uit∣zt⟩⎤⎥
⎦

⩽ logd
ηT

+
T
􏾜
t=1
ηt−1E⎡⎢

⎣

d
􏾜
i=1

( ̂uit)2zit⎤⎥
⎦

.

We deal with the expectation of the right-hand side as follows.

E⎡⎢
⎣

d
􏾜
i=1

( ̂uit)2zit⎤⎥
⎦

= E⎡⎢
⎣

d
􏾜
i=1

E [( ̂uit)2zit ∣ ℱt]⎤⎥
⎦

= E⎡⎢
⎣

d
􏾜
i=1

E⎡⎢
⎣

1{it=i}(uit)2

zit
∣ ℱt⎤⎥

⎦
⎤⎥
⎦

= E⎡⎢
⎣

d
􏾜
i=1

E [1{it=i} ∣ ℱt]
(uit)2
zit

⎤⎥
⎦

= E⎡⎢
⎣

d
􏾜
i=1

(uit)2⎤⎥
⎦

⩽ d.

Together with Lemma II.8.1, we get:

E⎡⎢
⎣
max
i∈ℐ

T
􏾜
t=1

uit −
T
􏾜
t=1

uitt ⎤⎥
⎦

⩽ logd
ηT

+ d
T
􏾜
t=1
ηt−1.

Then the choice ηt = √logd/2dt gives the result.

Note that bound (i) from Theorem II.3.2 was needed in this analysis. This bound
holds for payoffvectors inRd

−, ormore generally, for payoffvectorswhose components
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are bounded from above. This is why we needed to normalize payoff vectors (ut)t⩾1
as losses (in e.g. [−1, 0]d), otherwise, the components 1{it=i}u

i
t/zit of the estimators

might have been positive and arbitrarily large since zit can be arbitrarily small.
Theorem II.8.2 establishes an upper bound of order √Td logd. Besides, a lower

bound of order
√
Td was given in [ACBFS02]. The (slight) gap between those two

bounds was closed by [AB09], which introduced the Implicitly Normalized Forecaster
strategy which provides an upper bound of order

√
Td. This algorithm can be seen

as part of a larger family of algorithms for bandit problems based on Greedy Online
MirrorDescent—see [BCB12] Section 5 for a detailed presentation and applications.
A well-chosen algorithm from this family is used in Chapter V to obtain an upper
bound of order

√
Ts in the case of s-sparse losses (i.e. payoff vectors in 𝒰−,s,d) and

bandit feedback.

•



CHAPTER III

FOLLOWTHEPERTURBEDLEADER

In this chapter, we present the Follow the Perturbed Leader strategies (FTPL) and
prove in Theorem III.3.1 that they actually belong to the family of Mirror Descent
strategies from Section I.3 as soon as the law of the perturbation is absolutely contin-
uous with respect to the Lebesgue measure.

III.1. Presentation

Like the Mirror Descent strategies, FTPL strategies were constructed as a modifi-
cation of the FTL strategy mentioned in Section I.1. But instead of using a determin-
istic function h to regularize the map argmaxz∈𝒵 ⟨ ⋅ |z⟩, they involve a random pertur-
bation. Specifically, let ξ be an integrable random variable in Rd. Then, we define the
FTPL strategy associated with ξ and parameters (ηt)t⩾1 as

zt = E[argmax
z∈𝒵

⟨ηt−1
t−1
􏾜
s=1

us + ξ∣z⟩] ,

where (ut)t⩾1 are the payoff vectors in Rd and 𝒵 the set of actions of the Decision
Maker.

From a computational perspective, the FTPL strategy has an advantage over the
Mirror Descent strategy. The latter involves the computation of ∇h∗ at a given point,
i.e. solving a convex program on 𝒵, whereas the former may be computed in a Monte
Carlo fashion by drawing samples of the random variable ξ, solving a linear programs
over 𝒵, and then considering the average. This advantage is even more interesting
in the experts setting from Section II.1 where the Decision Maker draws pure action
it ∈ ℐ according to probability distribution zt ∈ Δ(ℐ). Then,

it = argmax
z∈Δd

⟨ηt−1
t−1
􏾜
s=1

us + ξ∣z⟩

65



66 follow the perturbed leader

almost-surely belongs to one of the vertices of the simplex Δd, i.e. to ℐ, and its law is
precisely zt. Therefore, the explicit computation of zt is unnecessary and only a single
draw of the random perturbation ξ is needed.

III.2. Historical background

A strategy of this type was already proposed in Hannan’s seminal paper [Han57].
FTPL was later rediscovered in [KV05] in which a random perturbation of density
y ⟼ (η/2)de−η∥y∥

1 dy was used to achieve a minimax optimal regret bound of or-
der O(√T logd) in the experts setting—see also [HP04]. An even simpler pertur-
bation with independent components drawn according to the uniform distribution
over [0, 1] has been shown to guarantee aO(

√
Td) regret bound in the experts setting

(see e.g. Corollary 4.4 in [CBL06]). More recently, [ALST14] used a standard Gaus-
sian perturbation ξ ∼ 𝒩(0, I) to achieveminimax optimal regret bounds both in the
experts setting and the ℓ2–ℓ2 setting (where both the actions of the Decision Maker
and the payoff vectors belong to the Euclidean unit ball). [CH15] applied those tech-
niques to online combinatorial optimization.

Applications of similar strategies to various settings include: [DLN13] where a
Bernoulli coin flip is added to each component of each payoff vector, [NB13] which
deals with the semi-bandit online combinatorial optimization problem,
and [VEKW14] where the minimax optimal guarantee is achieved in the experts
setting by setting each component of each payoff vector to zero or one with some
probability.

FTPL and Mirror Descent strategies share many common properties and close
links between those two families were long suspected. For instance, it is known that
the Exponential Weights Algorithm studied in Section II.3 coincides with the FTPL
strategy with a perturbation which follows the Gumbel distribution. [HS02] proved
in the case 𝒵 = Δd that FTPL strategies are Mirror Descent strategies. [ALST14]
proposed a unifying framework which encompasses both FTPL and lazy Mirror De-
scent, and established in the one-dimensional case a bijection between the two fami-
lies.

III.3. Reduction toMirror Descent

The following theorem proves that a FTPL strategy is a Mirror Descent strategy
as soon as the distribution of the random perturbation is absolutely continuous with
respect to the Lebesgue measure. This result is quickly mentioned in the recent sur-
vey [ALT16]. We here give a detailed proof. One can see that a Mirror Descent strat-
egy associatedwith a regularizer h and a FTPLstrategy associatedwith a perturbation
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ξ coincide as soon as

∇h∗(w) = E [argmax
z∈𝒵

⟨w + ξ∣z⟩] , for all w ∈ Rd.

Theorem III.3.1. Let ξ be in integrable random variable in Rd whose distribution is
absolutely continuous with respect to the Lebesgue measure. Let 𝒵 be a nonempty convex
compact subset of Rd. Then, there exists a regularizer h on 𝒵 such that

∇h∗(w) = E [argmax
z∈𝒵

⟨w + ξ∣z⟩] , w ∈ Rd.

Moreover,
δh ⩽ E [max

z∈𝒵
⟨ξ∣z⟩] − max

z∈𝒵
⟨E [ξ]∣z⟩ .

Proof. ConsiderΦ ∶ Rd → R defined by

Φ(w) = E [max
z∈𝒵

⟨w + ξ∣z⟩] , w ∈ Rd.

The map w ⟼ maxz∈𝒵 ⟨w + y|z⟩ being convex for all y ∈ Rd, [Ber73, Lemma 2.1]
assures that Φ is convex. Besides, the distribution of ξ being absolutely continuous
with respect to the Lebesgue measure, [Ber73, Proposition 2.4] guarantees that Φ is
differentiable on Rd. We now define h ∶= Φ∗ to be the Legendre–Fenchel transform
ofΦ. Φ being convex, lower semicontinuous and proper,Moreau’s theorem givesΦ =
Φ∗∗ = h∗. Therefore, this function will be called h∗ from now on.

Let us prove that h is a regularizer on 𝒵. h being a Legendre–Fenchel transform
by definition, it is convex and lower semicontinuous. It is also strictly convex since h∗

is differentiable. Let us prove that the domain of h is 𝒵. Using the definition of h, we
can write:

h(z) = sup
w∈Rd

{⟨w|z⟩ − E [max
z′∈𝒵

⟨w + ξ∣z′⟩]}

= sup
w∈Rd

{E [⟨w|z⟩ − max
z′∈𝒵

⟨w + ξ∣z′⟩]} .

If z ∈ 𝒵,

h(z) ⩽ sup
w∈Rd

E [⟨w|z⟩ − ⟨w + ξ∣z⟩] = − ⟨E [ξ]∣z⟩ < +∞.

We now assume z ∉ 𝒵 and write

h(z) = sup
w∈Rd

E [min
z′∈𝒵

{⟨w|z − z′⟩ − ⟨ξ∣z′⟩}] .



68 follow the perturbed leader

The second scalar product above is bounded as ⟨ξ∣z′⟩ ⩽ ∥ξ∥
1
‖𝒵‖∞. Therefore,

h(z) ⩾ sup
w∈Rd

min
z′∈𝒵

⟨w|z − z′⟩ − ‖𝒵‖∞ ⋅ E [∥ξ∥
1
] .

The quantity ⟨w|z − z′⟩ is affine in w and in z′, Rd is convex, and 𝒵 is convex and
compact. We can therefore apply Sion’s minimax theorem to get:

h(z) ⩾ min
z′∈𝒵

sup
w∈Rd

⟨w|z − z′⟩ − ‖𝒵‖∞ ⋅ E [∥ξ∥
1
] .

Let λ > 0. We now choose particular vector w = λ(z − z′) instead of taking the
supremum over w ∈ Rd. This gives

h(z) ⩾ min
z′∈𝒵

⟨λ(z − z′)|z − z′⟩ − ‖𝒵‖∞ ⋅ E [∥ξ∥
1
]

= λ ⋅ min
z′∈𝒵

‖z − z′‖22 − ‖𝒵‖∞ ⋅ E [∥ξ∥
1
] .

Theset𝒵being compactand zbeing outside of𝒵, the distance from z to𝒵 is positive.
The above inequality being true for all λ > 0, and because E [∥ξ∥

1
] < +∞, we have

h(z) = +∞. The domain of h is indeed 𝒵 and h is a regularizer on 𝒵.
Finally, let us prove the equality from the statement of the theorem. Let us fix

y ∈ Rd and consider the convex function ϕy(w) = maxz∈𝒵 ⟨w + y|z⟩ defined for
w ∈ Rd. Then, for all w ∈ Rd, we have the following inclusion:

argmax
z∈𝒵

⟨w + y|z⟩ ⊂ ∂ϕy(w).

Indeed, for z∗ ∈ argmaxz∈𝒵 ⟨w + y|z⟩ and for all w′ ∈ Rd, we have

ϕy(w′) − ϕy(w) = max
z∈𝒵

⟨w′ + y|z⟩ − max
z∈𝒵

⟨w + y|z⟩
⩾ ⟨w′ + y|z∗⟩ − ⟨w + y|z∗⟩
= ⟨w′ − w|z∗⟩ ,

in otherwords, z∗ ∈ ∂ϕy(w) and the inclusion is proved. We then replacey by random
variable ξ and take the expectation on both sides to get

E [argmax
z∈𝒵

⟨w + ξ∣z⟩] ⊂ E [∂ϕξ(w)] = ∂h∗(w),

where the last equality comes from [Ber73, Proposition 2.2]. But we know that h∗ is
differentiable. In other words, ∂h∗(w) is a singleton for all w ∈ Rd and we have

∇h∗(w) = E [argmax
z∈𝒵

⟨w + ξ∣z⟩] , w ∈ Rd.
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We now turn to δh = max𝒵 h − min𝒵 h. First, we have

min
𝒵

h = −h∗(0) = −E [max
z∈𝒵

⟨ξ∣z⟩] .

Second, we have seen above that h(z) ⩽ − ⟨E [ξ]∣z⟩ for y ∈ 𝒵. Taking the maximum
over z ∈ 𝒵 gives

max
𝒵

h ⩽ −min
z∈𝒵

⟨E [ξ]∣z⟩ ,

and the result follows.

III.4. Discussion

Theorem III.3.1 provides an alternative method for defining a Mirror Descent
strategy, which makes the explicit choice of a regularizer h unnecessary. However,
some properties of h must still be known in order to turn the general regret bound
from Theorem I.3.1 into an explicit one. The first term δh/ηT (from the general
bound) can be immediately taken care of, since Theorem III.3.1 provides an upper
bound on δh. The second term, which involves the Bregman divergences, is more
challenging. The probabilistic expression h∗(w) = E [maxz∈𝒵 ⟨w + ξ∣z⟩] does not
seem to provide any handy expression for the Bregman divergence associated with
h∗. One way of dealing with those is to establish strong convexity for regularizer h.
In the case of a standard Gaussian perturbation ξ ∼ 𝒩(0, I), [AHR12] used a
characterization of the strongly convexity of h which involves the Hessian of h∗. An
interesting direction of research would be the study of the strong convexity of
regularizer h as a function of the properties of the distribution of perturbation ξ.

•





CHAPTER IV

MIRRORDESCENTFOR
APPROACHABILITY

We do not aim in this chapter at giving an overview of the theory of approach-
ability. We rather focus on a framework in which Mirror Descent strategies can be
defined naturally. We then illustrate the unifying character of this approach by apply-
ing it to the construction of optimal strategies for online combinatorial optimization
and internal/swap regret minimization.

The first notice of the link between regret minimization and approachability goes
back to [Bla54,Han57]. More recently, [HMC01] constructed a wide class of poten-
tial-based approachability strategies and derived regret minimizing strategies using a
reduction (of the regret minimization problem to an approachability problem) based
on the negative orthant. Conversely, [Per15] adapted the Exponential Weights Al-
gorithm to approachability. In a similar spirit, [ABH11] proposed a generic scheme
based on convex cones for converting regret minimizing strategies into approachabil-
ity strategies (see also [Shi15]).

We aim at providing a unified approach. We build upon the idea proposed by
[ABH11] and further develop it: instead of restricting our attention to strategies
which minimize the Euclidean distance of the average payoff to the target set, we
allow for a much wider choice of distance-like quantities to be minimized (see the
choice of generators in Section IV.2 below). This flexibility will allow the construc-
tion of tailored strategies for online combinatorial optimization and internal/swap
regret minimization. The tools and ideas introduced in this chapter will also be used
inChapter VI for the construction of strategies with optimal convergence rates in the
problem of approachability with partial monitoring.

IV.1. Model

Let 𝒱 be a finite-dimensional vector space and 𝒱∗ its dual. The latter will be the
payoff space. Let 𝒳 be the action set for the Decision Maker about which we assume
no particular structure. Let 𝒢 be a set of payoff functions g ∶ 𝒳 → 𝒱∗. The play goes
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as follows. At time t ⩾ 1, the Decision Maker
• chooses action xt ∈ 𝒳;
• observes vector payoff ut ∶= gt(xt) ∈ 𝒱∗,

where (gt)t⩾1 is a sequence of payoff functions in 𝒢 chosen by Nature. Formally, a
strategy σ for the Decision Maker is a sequence of maps σ = (σt)t⩾1 where σt ∶ (𝒳 ×
𝒱∗)t−1 → 𝒳 so that for a given strategy σ and a given sequence of payoff functions
(gt)t⩾1 we have

xt = σt(x1, u1,… , xt−1, ut−1).
Analogously to Section I.1, gt may depend on anything that has happened before,
including xt, and we may assume that Nature is aware of the strategy used by the De-
cision Maker.

The problem involves a target set 𝒞 ⊂ 𝒱∗ which we assume to be a closed convex
cone 1. Definitions and properties about closed convex cones are gathered in the next
section. The goal is to construct strategies which guarantee that the average payoff
̄uT ∶= 1

T ∑
T
t=1 ut is close to the target 𝒞 in a sense that will be made precise.

IV.2. Closed convex cones and support functions

IV.2.1. Closed convex cones

Throughout the paragraph, 𝒲 will be a finite-dimensional vector space and 𝒲∗

its dual.

Definition IV.2.1. A nonempty subset 𝒞 of 𝒲 is a closed convex cone if it is closed
and if for all w,w′ ∈ 𝒞 and λ ∈ R+, we have w + w′ ∈ 𝒞 and λw ∈ 𝒞.

The following proposition gathers a few immediate properties.

Proposition IV.2.2. (i) A closed convex cone is convex.
(ii) An intersection of closed convex cones is a closed convex cone.
(iii) A Cartesian product of closed convex cones is a closed convex cone.
(iv) A half-space of the form {w ∈ 𝒲 | ⟨z|w⟩ ⩽ 0} ( for some z ∈ 𝒲∗) is a closed convex

cone.

Definition IV.2.3. Let 𝒜 be a subset of 𝒲. The polar cone of 𝒜 is a subset of the
dual space 𝒲∗ defined by

𝒜∘ = {z ∈ 𝒲∗ | ∀w ∈ 𝒜, ⟨w|z⟩ ⩽ 0} .
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•0

𝒜∘

𝒜∘∘

𝒜

Figure IV.1. The polar cone of a set 𝒜 and the bipolar

The following proposition is an immediate consequence of the bipolar theorem—
see e.g. Theorem 3.3.14 in [BL10].

Proposition IV.2.4. Let 𝒜 be a subset of 𝒲.
(i) 𝒜∘∘ is the smallest closed convex cone containing 𝒜.
(ii) If 𝒜 is closed and convex, then 𝒜∘∘ = R+𝒜.
(iii) If 𝒜 is a closed convex cone, then 𝒜∘∘ = 𝒜.

The following statement is a simpler version of Moreau’s decomposition theo-
rem [Mor62].

Proposition IV.2.5. Assumethat 𝒲 is an Euclidean space. We identify 𝒲 and its dual
space 𝒲∗. Let 𝒞 be a closed convex cone in 𝒲, and w ∈ 𝒲. Then, w − proj𝒞 w =
proj𝒞∘ w, where proj denotes the Euclidean projection. In particular,w−proj𝒞 w belongs
to 𝒞∘.

Proposition IV.2.6. Let φ ∶ 𝒲 → 𝒲̃ be a linear application between two finite-
dimensional vector spaces 𝒲 and 𝒲̃, φ∗ its transpose, 𝒞 and 𝒞̃ closed convex cones in
𝒲 and 𝒲̃ respectively.
(i) φ(𝒞) is a closed convex cone.
(ii) φ−1(𝒞̃) = φ∗(𝒞̃∘)∘. In particular, φ−1(𝒞̃) is a closed convex cone.

1. For the case where target set is a closed convex set but not a cone, we refer to [ABH11] where a
conversion scheme into an auxiliary problem where the target is a cone is presented.
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w − proj𝒞 w

•0

•w

•
proj𝒞 w

• proj𝒞∘ w

𝒞

𝒞∘

Figure IV.2. Illustration of Proposition IV.2.5

𝒞 ∩ ℬ

𝒞

•0
Figure IV.3. 𝒞 ∩ ℬ is a generator of 𝒞

Proof. Property (i) is obvious. We prove property (ii) as follows. For w ∈ 𝒲,

w ∈ φ−1(𝒞̃) ⟺ φ(w) ∈ 𝒞̃ ⟺ φ(w) ∈ 𝒞̃∘∘

⟺ ∀ ̃z ∈ 𝒞̃∘, ⟨ ̃z|φ(w)⟩ ⩽ 0
⟺ ∀z ∈ 𝒞̃∘, ⟨φ∗( ̃z)|w⟩ ⩽ 0
⟺ w ∈ φ∗(𝒞̃∘)∘.

Therefore, φ−1(𝒞̃) is a closed convex cone because it is a polar cone.

Definition IV.2.7. Let 𝒞 be a closed convex cone. A set 𝒵 is a generator of 𝒞 if it is
convex, compact and if R+𝒵 = 𝒞.

Note that there always exists a generator: as illustrated inFigure IV.3, the setℬ∩𝒞
is one, where ℬ is the closed unit ball of some norm ‖ ⋅ ‖. It is indeed nonempty,
convex as the intersection of two convex sets, and for any point z ∈ 𝒞, z/ ‖z‖ belongs
to ℬ ∩ 𝒞, so that R+(ℬ ∩ 𝒞) = 𝒞.
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Proposition IV.2.8. (i) If𝒲 = 𝒲∗ = Rd, the negative orthantRd
− isa closed convex

cone and (Rd
−)∘ = Rd

+. Moreover,Δd is a generator ofRd
+.

(ii) If 𝒵 is a nonempty convex compact subset of 𝒲, then 𝒵 is a generator of 𝒵∘∘ =
R+𝒵.

IV.2.2. Support Functions

Definition IV.2.9. For a nonempty subset 𝒵 ⊂ 𝒱, the application I∗𝒵 ∶ 𝒱∗ →
R ∪ {+∞} defined by

I∗𝒵(w) = sup
z∈𝒵

⟨w|z⟩ , w ∈ 𝒱∗,

is called the support function of 𝒵.

The support function can be written as the Legendre–Fenchel transform of the
indicator function of 𝒵. It is therefore convex. Moreover, in the case where 𝒵 is a
generator of the polar cone 𝒞∘ of some closed convex cone 𝒞 ⊂ 𝒱∗, the properties of
I∗𝒵 make it suitable for measuring how far a point of 𝒱∗ is from 𝒞. Indeed, it is easy
to check that I∗𝒵 is then real-valued, continuous, and that for all points w ∈ 𝒱∗,

I∗𝒵(w) ⩽ 0 ⟺ w ∈ 𝒞.
The following proposition shows that, in particular, the distance to a closed convex
cone 𝒞 with respect to an arbitraty norm can be written as a support function.

Proposition IV.2.10. Let 𝒞 be a closed convex cone in 𝒱∗, ‖ ⋅ ‖ a norm on 𝒱 and ‖ ⋅ ‖∗
its dual norm on 𝒱∗. Then,

inf
w′∈𝒞

‖w′ − w‖∗ = I∗ℬ∩𝒞∘(w), w ∈ 𝒱∗,

where ℬ is the closed unit ball for ‖ ⋅ ‖.
Proof. Let w ∈ 𝒱∗. Using the definition of the dual norm and Sion’s minimax theo-
rem:

inf
w′∈𝒞

‖w′ − w‖∗ = inf
w′∈𝒞

sup
z∈ℬ

⟨w − w′|z⟩ = sup
z∈ℬ

inf
w′∈𝒞

{⟨w|z⟩ − ⟨w′|z⟩} .

Suppose z does not belong to 𝒞∘. Then, there exists w′
0 ∈ 𝒞 such that ⟨w′

0|z⟩ > 0.
𝒞 being stable by multiplication by R+, the quantity ⟨w′|z⟩ (with w′ ∈ 𝒞) can be
made arbitrarily large, and thus the above infimum is equal to −∞. Therefore, we can
restrict the above supremum to ℬ ∩ 𝒞∘. We thus have

inf
w′∈𝒞

‖w′ − w‖∗ = sup
z∈ℬ∩𝒞∘

{⟨w|z⟩ − sup
w′∈𝒞

⟨w′|z⟩} .
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The above embedded supremum is zero because for z ∈ ℬ ∩ 𝒞∘ and w′ ∈ 𝒞 we
obviously have ⟨w′|z⟩ ⩽ 0, and 0 is attained with w′ = 0. Finally,

inf
w′∈𝒞

‖w′ − w‖∗ = sup
z∈ℬ∩𝒞∘

⟨w|z⟩ = I∗ℬ∩𝒞∘(w).

IV.3. Mirror Descent strategies

Wenow construct theMirror Descent strategies for the model introduced in Sec-
tion IV.1 and derive guarantees using regret bounds from Theorem I.3.1. We will
propose an intuitive description of these strategies in Section IV.4. Remember that
𝒢 is the set of payoff functions. Let us state the all important Blackwell’s condition
which will be key in the construction and the analysis of the strategies.

Definition IV.3.1. A closed convex cone 𝒞 of the payoff space 𝒱∗ is a 𝒢-B-set if

∀z ∈ 𝒞∘, ∃x(z) ∈ 𝒳, ∀g ∈ 𝒢, ⟨g(x(z))|z⟩ ⩽ 0.

Such an application x ∶ 𝒞∘ → 𝒳 is called a (𝒢,𝒞)-oracle.

Let 𝒞 be a 𝒢-B-set and x ∶ 𝒞∘ → 𝒳 a (𝒢,𝒞)-oracle. Let 𝒵 ⊂ 𝒱 be a genera-
tor of 𝒞∘, h a regularizer on 𝒵, and (ηt)t⩾1 a positive and nonincreasing sequence of
parameters. The associated strategy is then defined byU0 = 0 and for t ⩾ 1,

compute zt = ∇h∗(ηt−1Ut−1)
play xt = x (zt)

observe ut = gt(xt)
update Ut = Ut−1 + ut.

Contrary to Section I.3, the set of actions of the Decision Maker is 𝒳 and not 𝒵.
The following theorem provides upper bounds on I∗𝒵( ̄uT) (where ̄uT = 1

T ∑
T
t=1 ut

is the average payoff ) andnot only theEuclideandistance from ̄uT to𝒞, which is aspe-
cial case—see Proposition IV.2.10. Therefore, the choice of generator 𝒵 determines
the quantity that is minimized by the strategy. We present in Sections IV.7 and IV.8
examples of problems where a judicious choice of generator 𝒵 allows I∗𝒵( ̄uT) to be
actually equal to the quantity the Decision Maker aims at minimizing and therefore
provides tailored strategies.

Theorem IV.3.2. LetT ⩾ 1 an integer andM,K > 0.
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(i) Against any sequence (gt)t⩾1 of payoff functions in 𝒢, the above strategy guarantees

I∗𝒵 ( ̄uT) ⩽ δh
TηT

+ 1T
T
􏾜
t=1

1
ηt−1
Dh∗ (ηt−1Ut, ηt−1Ut−1) ,

where η0 = η1.
(ii) Moreover, if h isK-strongly convex with respect to a norm ‖ ⋅ ‖, then

I∗𝒵 ( ̄uT) ⩽ δh
TηT

+ 1
2KT

T
􏾜
t=1
ηt−1 ‖gt(xt)‖2∗ .

(iii) Moreover, if ‖g(x)‖∗ ⩽M ( for all g ∈ 𝒢 and x ∈ 𝒳), the choice ηt = √δhK/M2t
( for t ⩾ 1) guarantees

I∗𝒵 ( ̄uT) ⩽ 2M√ δh
KT .

Proof. The strategy can be interpreted as regret minimization Mirror Descent strat-
egy from Section I.3 where 𝒵 would be the action set, zt the actions of the Decision
Maker, and ut = gt(xt) the payoff vectors. The corresponding regret is

Reg
T

= max
z∈𝒵

T
􏾜
t=1

⟨ut|z⟩ −
T
􏾜
t=1

⟨ut|zt⟩ .

The first term above can be written

max
z∈𝒵

T
􏾜
t=1

⟨ut|z⟩ = T ⋅ max
z∈𝒵

⟨ 1T
T
􏾜
t=1

ut∣z⟩ = T ⋅ I∗𝒵 ( ̄uT) ,

whereas the second sum is nonpositive because each term is. Indeed, by definition of
the strategy, and because x is a (𝒢,𝒞)-oracle.

⟨ut|zt⟩ = ⟨gt(xt)|zt⟩ = ⟨gt(x(zt))|zt⟩ ⩽ 0.

Therefore I∗𝒵( ̄uT) ⩽ 1
T Reg

T
and the regret bounds from Theorem I.3.1 give the re-

sults.
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IV.4. Smooth potential interpretation

We now propose an intuitive description of the strategies defined in Section IV.3
based on the idea that h∗ serves as a potential, and provide an interpretation of the
bound from Theorem IV.3.2. Similar ideas were used by [HMC01] for the construc-
tion of their so-called potential-based approachability strategies (see also [Per15]).
Our approach provides more precise bounds thanks to the use of convex duality, vari-
able parameters, and the large choice of generators 𝒵.

For simplicity, we restrict this discussion to Mirror Descent strategies with a con-
stant parameter ηt = η > 0. The Decision Maker aims at minimizing I∗𝒵( ̄ut). Instead
of working directly with this quantity, we consider h∗ which is a smooth approxima-
tion of argmaxz∈𝒵 ⟨ ⋅ |z⟩, as seen in Section I.3. We write

I∗𝒵( ̄ut) = 1tηI
∗
𝒵(ηUt) = 1tη argmax

z∈𝒵
⟨ηUt|z⟩ ≈ 1tηh

∗(ηUt).

We now ask the following question. Can the Decision Maker make sure that h∗(ηUt)
does not increase toomuchover time (at leastwhenparameter η is small)? Let uswrite
the following first-order Taylor approximation, which makes sense when η is small:

h∗(ηUt+1) − h∗(ηUt) ≈ η ⟨∇h∗(ηUt)|ut+1⟩ .

The question then becomes: knowing vector ηUt, can the Decision Maker play an
action xt+1 ∈ 𝒳 such that for all payoff functions gt+1 chosen by Nature,

⟨∇h∗(ηUt)|gt+1(xt+1)⟩ ⩽ 0 ?

One can easily check that this condition is equivalent to 𝒞 being a 𝒢-B-set. When
this is the case, and when the Decision Maker plays accordingly, we obtain after T
stages:

I∗𝒵( ̄uT) ≈ 1tηh
∗(ηUt) ≈ 1tη

T
􏾜
t=1

(h∗(ηUt) − h∗(ηUt−1)) ≲ 0.

As amatter of fact, the first two approximations (”≈”) result in the first term δh/ηT of
the bound from Theorem IV.3.2, whereas the first-order Taylor approximation (”≲”)
gives the second term involving the Bregman divergences.

IV.5. Blackwell’s strategy

We recall the definition of Blackwell’s strategy [Bla56] and show that it belongs
to the family of Mirror Descent strategies defined in Section IV.3. We consider 𝒱 =
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𝒱∗ = Rd equipped with its Euclidean structure. Let 𝒞 ⊂ Rd be a closed convex cone
which we assume to be a 𝒢-B-set and x ∶ 𝒞∘ → 𝒳 a (𝒢,𝒞)-oracle. It follows from
Definition IV.3.1 that it is always possible to choose an oracle x which satisfies

z = λz′ for some λ > 0 ⟹ x(z) = x(z′), z, z′ ∈ 𝒞∘. (IV.1)

We assume in this section that oracle x satisfies this property.
The Blackwell strategy is defined by:

xt = x( ̄ut−1 − proj
𝒞

̄ut−1) , t ⩾ 1,

where proj𝒞 is the Euclidean projection onto 𝒞. It can be rewritten, using Proposi-
tion IV.2.5, as

xt = x(proj
𝒞∘

̄ut−1) , t ⩾ 1.

Theorem IV.5.1. Let 𝒵 = 𝒞∘ ∩ ℬ where ℬ denotes the Euclidean ball, and h2 the
Euclidean regularizer on 𝒵. The Blackwell strategy and the Mirror Descent strategy asso-
ciated with h2 and any sequence of positive and nonincreasing parameters (ηt)t⩾1 coincide.
In other words,

x( ̄ut−1 − proj
𝒞

̄ut−1) = x (∇h∗
2(ηt−1Ut−1)) , t ⩾ 1.

Proof. Recall that the Euclidean projection projℰ w of a point w on a closed convex
set ℰ is the only point in ℰ satisfying

∀w′ ∈ ℰ, ⟨w − proj
ℰ

w∣w′ − proj
ℰ

w⟩ ⩽ 0. (IV.2)

This characterization will be needed later.
Remember from Proposition I.2.10 that ∇h∗

2 = proj𝒞∘∩ℬ. Since oracle x satisfies
property (IV.1), it is enough to prove that for all u ∈ Rd and μ > 0,

proj
𝒞∘

u ∈ R∗
+ proj

𝒞∘∩ℬ
(μu).

Besides, 𝒞∘ being a closed convex cone, proj𝒞∘(μu) = μ proj𝒞∘ u. It is therefore equiv-
alent to prove that for all w ∈ Rd,

proj
𝒞∘

w ∈ R∗
+ proj

𝒞∘∩ℬ
w. (IV.3)
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• proj𝒞∘ w = proj𝒞∘∩ℬ w

•w

𝒞∘ ∩ ℬ
𝒞∘

𝒞

• 0

Figure IV.4. In the case where ∥proj𝒞∘ w∥
2

⩽ 1, we have proj𝒞∘ w = proj𝒞∘∩ℬ w

• w1 = proj𝒞∘ w

•w•w0 = proj𝒞∘∩ℬ w
𝒞∘ ∩ ℬ

𝒞∘

𝒞

• 0

Figure IV.5. In the case where ∥proj𝒞∘ w∥
2

> 1, we have w0 = proj𝒞∘∩ℬ w
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Let w ∈ Rd. If ∥proj𝒞∘ w∥
2

⩽ 1, then obviously proj𝒞∘ w = proj𝒞∘∩ℬ w as shown in

Figure IV.4 and (IV.3) is true. We now assume that ∥proj𝒞∘ w∥
2

> 1. We define

w0 ∶=
proj𝒞∘ w

∥proj𝒞∘ w∥
2

.

Using characterization (IV.2), we aim at proving that w0 = proj𝒞∘∩ℬ w (see Fig-
ure IV.5), which would prove (IV.3). First, w0 belongs to 𝒞∘ ∩ ℬ by definition. Let
w′ ∈ 𝒞∘ ∩ ℬ. For short, denote w1 = proj𝒞∘ w.

⟨w − w0|w′ − w0⟩ = ⟨w − w1 + w1 − w0|w′ − w0⟩
= ⟨w − w1|w′ − w0⟩ + ⟨w1 − w0|w′ − w0⟩

= 1
‖w1‖

⟨w − w1∣‖w1‖ w′ − w1⟩ + ⟨w1 − w0|w′ − w0⟩ .

The first scalar product above is nonpositive by characterization of w1 = proj𝒞∘ w,
because ‖w1‖ w′ ∈ 𝒞∘. Let us prove that the second scalar product is also nonpositive.
For all w′′ ∈ 𝒞∘ ∩ ℬ, we have

‖w1 − w′′‖ ⩾ |‖w1‖ − ‖w′′‖| ⩾ ‖w1‖ − 1 = ‖w1 − w0‖ ,

which means that w0 = proj𝒞∘∩ℬ w1. Thus, ⟨w1 − w0|w′ − w0⟩ ⩽ 0. Therefore,
⟨w − w0|w′ − w0⟩ ⩽ 0 and (IV.3) is proved.

We can now recover via Theorem IV.3.2 the classic guarantee for the Blackwell
strategy in the casewhere the vector payoffs are boundedwith respect to theEuclidean
norm.

Theorem IV.5.2. Let T ⩾ 1 an integer andM > 0. Assume that ‖g(x)‖
2

⩽ M ( for
all g ∈ 𝒢 and x ∈ 𝒳). Then, against any sequence of payoff functions (gt)t⩾1 in 𝒢, the
Blackwell strategy guarantees

d2 ( ̄uT, 𝒞) ⩽ 2M√
T
,

where d2 denotes the Euclidean distance.

Proof. With notation from Theorem IV.5.1, we have δh2 = 1, and h2 is 1-strongly
convex with respect to ‖ ⋅ ‖2 by Proposition I.2.10. According to Theorem IV.5.1, the
Blackwell strategy corresponds to the Mirror Descent strategy associated with h2 and
any sequence of parameters (ηt)t⩾1. We can therefore apply (iii) from Theorem IV.3.2
together with Proposition IV.2.10 and the result follows.
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IV.6. Finite action set

We now consider a variant of the model of Section IV.1, in which the Decision
Maker has a finite set actions ℐ = {1,… ,d} from which he is allowed to choose at
random. Let Δd be the set of mixed actions, and 𝒢 a set of payoff functions g ∶ ℐ →
𝒱∗. We linearly extend each payoff function g ∈ 𝒢 from ℐ to Δd:

g(x) ∶= Ei∼x [g(i)] =
d
􏾜
i=1

xig(i), x ∈ Δd.

The play goes as follows. At time t ⩾ 1, the Decision Maker
• chooses mixed action xt ∈ Δd;
• draws pure action it ∼ xt;
• observes vector payoff ut = gt(it),

where (gt)t⩾1 is a sequence of payoff vectors chosen by Nature. Denote (ℱt)t⩾1 the
filtration where ℱt is generated by

(z1,g1, it,… , zt−1,gt−1, it−1, zt,gt).
A strategy for the Decision Maker is a sequence of maps σ = (σt)t⩾1 where σt ∶ (Δd ×
ℐ × 𝒱∗)t−1 → Δd so that

xt = σt(x1, i1, u1,… , xt−1, it−1, ut−1).
Concerning Nature, we assume that its choice of payoff function gt does not depend
on it, so that E [gt(it) | ℱt] = Ei∼xt [gt(i)] = gt(xt).
Definition IV.6.1. A closed convex cone 𝒞 of the payoff space 𝒱∗ is a 𝒢-B-set if

∀z ∈ 𝒞∘, ∃x(z) ∈ Δd, ∀g ∈ 𝒢, ⟨g(x(z))|z⟩ ⩽ 0.
Such an application x ∶ 𝒞∘ → Δd is called a (𝒢,𝒞)-oracle.

We can now define Mirror Descent strategies similarly as in Section IV.6. Let 𝒞
be a closed convex cone of the payoff space 𝒱∗ which is assumed to be a 𝒢-B-set,
x ∶ 𝒞∘ → Δd a (𝒢,𝒞)-oracle, 𝒵 a generator of 𝒞∘, h a regularizer on 𝒵, and (ηt)t⩾1 a
positive and nonincreasing sequence. Then, setU0 = 0 and for t ⩾ 1,

compute zt = ∇h∗(ηt−1Ut−1)
compute xt = x(zt)

draw it ∼ xt
observe ut = gt(it)
update Ut = Ut−1 + ut.
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Theorem IV.6.2. LetT ⩾ 1 an integer andK,M > 0.
(i) Against any sequence (gt)t⩾1 of payoff functions in 𝒢, the above strategy guarantees

E [I∗𝒵 ( ̄uT)] ⩽ δh
TηT

+ 1T
d
􏾜
i=1

1
ηt−1

E [Dh∗(ηt−1Ut, ηt−1Ut−1)] ,

where η0 = η1.
(ii) Moreover, if h isK-strongly convex with respect to a norm ‖ ⋅ ‖,

E [I∗𝒵 ( ̄uT)] ⩽ δh
TηT

+ 1
2KT

T
􏾜
t=1
ηt−1E [‖ut‖2∗] .

(iii) Moreover, if ‖g(i)‖∗ ⩽ M ( for all g ∈ 𝒢 and i ∈ ℐ), the choice of parameters
ηt = √δhK/M2t ( for t ⩾ 1) give

E [I∗𝒵 ( ̄uT)] ⩽ 2M√ δh
KT .

Let δ ∈ (0, 1). We have with probability higher than 1− δ,

I∗𝒵 ( ̄uT) ⩽ M√
T

(2√δhK + ‖𝒵‖ √2 log(1/δ)) .

Almost-surely,
lim sup
T→+∞

I∗𝒵 ( ̄uT) ⩽ 0.

Proof. Like in the proof of Theorem IV.3.2, Theorem I.3.1 gives:

I∗𝒵( ̄uT) ⩽ 1T
⎛⎜
⎝

T
􏾜
t=1

⟨ut|zt⟩ + δhηT
+
T
􏾜
t=1

1
ηt−1
Dh∗(ηt−1Ut, ηt−1Ut−1)⎞⎟

⎠
. (IV.4)

Consider Xt = ⟨ut|zt⟩. Then, (Xt)t⩾1 is a sequence of super-martingale differences
with respect to filtration (ℱt)t⩾0:

E [⟨ut|zt⟩ | ℱt] = E [⟨gt(it)|zt⟩ | ℱt] = ⟨E [gt(it) | ℱt]|zt⟩ = ⟨gt(xt)|zt⟩ ⩽ 0,

because x is a (𝒢,𝒞)-oracle. Therefore,

E⎡⎢
⎣

T
􏾜
t=1

⟨ut|zt⟩⎤⎥
⎦

= E⎡⎢
⎣

T
􏾜
t=1

E [⟨ut|zt⟩ | ℱt]⎤⎥
⎦

⩽ 0.
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Injecting this in Equation (IV.4) gives the bound (i):

E [I∗𝒵( ̄uT)] ⩽ δhηT
+
T
􏾜
t=1

1
ηt−1

E [Dh∗(ηt−1Ut, ηt−1Ut−1)] .

We then deduce the bounds in expectation stated in (ii) and (iii) similarly as in Theo-
rem I.3.1. We now turn to the high probability bound. Let δ ∈ (0, 1). FromEquation
(IV.4), we deduce that under the assumptions (iii), we have

I∗𝒵( ̄uT) ⩽ 2M√ δh
KT + 1T

T
􏾜
t=1
Xt.

Since we have |Xt| = |⟨gt(it)|zt⟩| ⩽ ‖gt(it)‖∗ ‖zt‖ ⩽ M ‖𝒵‖ for all t ⩾ 1, Proposi-
tion A.0.1 assures that with probability higher than 1− δ,

1
T

T
􏾜
t=1
Xt ⩽M ‖𝒵‖ √2 log(1/δ)

T

and thus

I∗𝒵( ̄uT) ⩽ M√
T

(2√δhK + ‖𝒵‖ √2 log(1/δ)) .

The almost-sure result follows from a standard Borel–Cantelli argument.

IV.7. Online combinatorial optimization

We consider the online combinatorial optimization problem with full informa-
tion feedback. It is a regret minimization problem in which the actions and the pay-
offs have a particular structure. Numerous papers were written on the topic, includ-
ing [GW98, KW01, GLS01, TW03, KV05, WK08, HW09, HKW10]. A minimax
optimal strategy was given in [KWK10]. We give below an alternative construction
of such a strategy.

Let d,m ⩾ 1 be integers. Let ℐ = {1,… ,d} be a finite set. The set of pure actions
of the Decision Maker is a set Pwhich contains subsets of ℐ of cardinalitym. Δ(P) is
the set of mixed actions over P. The play goes as follows. At time t ⩾ 1, the Decision
Maker

• chooses mixed action xt ∈ Δ(P);
• draws pure action pt ∼ xt;
• observes payoff vector vt ∈ Rd;
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• gets payoff∑i∈pt
vit.

As usual, we assume that the choice by Nature of payoff vector vt ∈ Rd does not
depend on pure action pt. The quantity to minimize is the following regret:

max
p∈P

T
􏾜
t=1

􏾜
i∈p

vit −
T
􏾜
t=1

􏾜
i∈pt

vit.

This problem can be seen as a basic regret minimization problem in the experts
setting as in Section II.1 with pure action set P, and payoff vectors (∑i∈p v

i)p∈P
which belong to [−m,m]P as soon as we assume v ∈ [−1, 1]d. The Exponential
Weights Algorithm would then guarantee (Theorem II.3.1) a regret bound of order
m√T log |P|. However, our goal is to take advantage of the structure of the problem
and to construct a strategy which guarantees a significantly tighter regret bound, of
order m√T log(d/m), which is known to be minimax optimal [KWK10]. To do so,
we reduce this problem to a well-chosen approachability problem.

Let A be the d × |P| matrix defined by A = (1{i∈p})i∈ℐ
p∈P

, and for each p ∈ P, let
ep = (1{i∈p})i∈ℐ ∈ Rd. The set of payoff functions we choose is the following:

𝒢 = {gv ∶ p ∈ P⟼ v −
⟨v∣ep⟩
m 𝟏 ∈ Rd}

v∈Rd

,

where 𝟏 = (1,… , 1) ∈ Rd. gv is therefore the payoff function which corresponds to
payoff vector v. For all v ∈ Rd, the linear extension of gv is given by

gv(x) = v − ⟨v|Ax⟩
m 𝟏, x ∈ Δ(P).

We now choose the generator: let 𝒵 = A(Δ(P)) be the image of the simplex Δ(P)
viaA seen as a linear map from RP to Rd. Its properties are gathered in the following
proposition. In particular, property (v) demonstrates that this choice of 𝒵 makes
I∗𝒵( ̄uT) equal to the above defined regret.

Proposition IV.7.1. (i) 𝒵 is the convex hull of the points ep (p ∈ P).
(ii) 𝒵 ⊂ mΔd.
(iii) ‖𝒵‖1 = m.
(iv) 𝒵 is a generator of 𝒵∘∘ = A(Δ(P))∘∘.
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(v) Let (pt)t⩾1 be a sequence of pure actions played against payoff vectors (vt)t⩾1 and
denote ut = gvt(pt) for all t ⩾ 1. Then,

I∗𝒵 ( ̄uT) = 1T
⎛⎜
⎝

max
p∈P

T
􏾜
t=1

􏾜
i∈p

vit −
T
􏾜
t=1

􏾜
i∈pt

vit⎞⎟
⎠

.

Proof. By definition, 𝒵 is the image of simplex Δ(P) via linear mapA. It is therefore
the convex hull of the image by A of the extreme points of Δ(P). And for p0 ∈ P,
A(1{p=p0})p∈P = ep. Hence (i). Each point ep clearly belongs tomΔd, and (ii) is true
by convexity of mΔd. For each element z ∈ mΔd, we have ‖z‖1 = m, which implies
(iii). 𝒵 is a nonempty convex compact set thanks to (i); Proposition IV.2.8 gives (iv).
As for the relation (v), we denoteA∗ the transpose ofA and write

max
p∈P

T
􏾜
t=1

􏾜
i∈p

vit −
T
􏾜
t=1

􏾜
i∈pt

vit = max
p∈P

T
􏾜
t=1

((A∗vt)p − (A∗vt)pt)

= max
x∈Δ(P)

T
􏾜
t=1

(⟨A∗vt|x⟩ − ⟨A∗vt∣(1{p=pt}
)
p∈P

⟩)

= max
x∈Δ(P)

T
􏾜
t=1

(⟨vt|Ax⟩ − ⟨vt∣A(1{p=pt}
)
p∈P

⟩)

= max
z∈A(Δ(P))

T
􏾜
t=1

(⟨vt|z⟩ − ⟨vt∣ept⟩)

= max
z∈𝒵

T
􏾜
t=1

⟨vt −
⟨vt∣ept⟩

m 𝟏∣z⟩

= max
z∈𝒵

T
􏾜
t=1

⟨gvt(pt)∣z⟩

= T ⋅ I∗𝒵( ̄uT),

where in the fifth line, we used the fact that for all z ∈ 𝒵, ⟨𝟏|z⟩ = m, which is a
consequence of (ii).

Proposition IV.7.2. A(Δ(P))∘ is a 𝒢-B-set.

Proof. Since 𝒵 is a generator of A(Δ(P))∘∘, one can check that the condition that
defines a B-set only needs to be verified for z ∈ 𝒵. Let z ∈ 𝒵. By definition of 𝒵,
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there exists x ∈ Δ(P) such that z = Ax. Then for g ∈ 𝒢, there exists v ∈ Rd such that
g = gv and

⟨gv(x)|z⟩ = ⟨v − ⟨v|Ax⟩
m 𝟏∣Ax⟩ = ⟨v|Ax⟩ − ⟨v|Ax⟩ = 0,

which proves the result.

As a consequence of Proposition IV.7.1, a point z ∈ 𝒵 only has nonnegative com-
ponents. We can therefore define

h(z) =
⎧{
⎨{⎩

d
􏾜
i=1

zi
m log z

i

m for z ∈ 𝒵

+∞ otherwise.
�

Proposition IV.7.3. (i) h is a regularizer on 𝒵;
(ii) δh ⩽ log(d/m);
(iii) h is 1/m2-strongly convex with respect to ‖ ⋅ ‖1.

Proof. For z ∈ 𝒵 ⊂ mΔd, we can write h(z) = hent(z/m) < +∞. The 1-strong con-
vexity of hent with respect to ‖ ⋅ ‖1 implies the 1/m2-strong convexity of h with respect
to ‖ ⋅ ‖1 and (iii) is proved. In particular, h is strictly convex. Besides, the domain of h is
𝒵 by definition and (i) is proved. As for (ii), h being convex, its maximum is attained
at one of the extreme points ep (p ∈ P) of 𝒵:

max
z∈𝒵

h(z) = max
p∈P

h(ep) = max
p∈P

􏾜
i∈p

1
m log 1m = − logm.

As for the minimum,

min
z∈𝒵

h(z) ⩾ min
z∈mΔd

d
􏾜
i=1

zi
m log z

i

m = min
z∈Δd

d
􏾜
i=1

zi log zi = − logd.

Therefore, δh ⩽ − logm + logd = log(d/m).

We can now consider the Mirror Descent strategy associated with regularizer h,
a (𝒢,𝒞)-oracle x, and a positive nonincreasing sequence of parameters (ηt)t⩾1. Set
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U0 = 0 and for t ⩾ 1,
compute zt = ∇h∗(ηt−1Ut−1)
choose xt = x(zt)
draw pt ∼ xt

observe ut = gvt(pt) = vt −
⟨vt∣Aept⟩

m 𝟏

update Ut = Ut−1 + ut.
Theorem IV.7.4. Against any sequence of payoff vectors (vt)t⩾1 in [−1, 1]d, the above
strategy with parameter ηt = √δh/4m2t ( for t ⩾ 1) guarantees

E⎡⎢
⎣
max
p∈P

T
􏾜
t=1

􏾜
i∈p

vit −
T
􏾜
t=1

􏾜
i∈pt

vit⎤⎥
⎦

⩽ 4m√T log(d/m).

For δ ∈ (0, 1), we have with probability higher than 1− δ,

max
p∈P

T
􏾜
t=1

􏾜
i∈p

vit −
T
􏾜
t=1

􏾜
i∈pt

vit ⩽ 2m
√
T(2√log(d/m) + √2 log(1/δ)) .

Almost-surely,

lim sup
T→+∞

1
T

⎛⎜
⎝

max
p∈P

T
􏾜
t=1

􏾜
i∈p

vit −
T
􏾜
t=1

􏾜
i∈pt

vit⎞⎟
⎠

⩽ 0.

Proof. For all v ∈ [−1, 1]d and p ∈ P,

‖gv(p)‖∞ = ∥v −
⟨v∣Aep⟩

m 𝟏∥
∞

⩽ ‖v‖∞ +
‖𝟏‖∞
m 􏾜

i∈p
∣vi∣ ⩽ 2.

The result then follows from Theorem IV.6.2 applied withM = 2, K = 1/m2, the
properties of the regularizer h given by Proposition IV.7.3, and the relation (v) from
Proposition IV.7.1.

Let us discuss the computational aspect of the above strategy compared to the Ex-
ponential Weights Algorithm played against payoff vectors (∑i∈p v

i)p∈P. The Expo-
nential Weights Algorithm has the advantage of having an explicit expression which
can easily computed:

xpt =
exp(−ηt−1∑t−1

s=1∑i∈p v
i
s)

∑p′∈P exp(−ηt−1∑t−1
s=1∑i∈p′ vis)

, p ∈ P.
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However, the drawback is that the above expression has to be computed for each of
the |P| components (|P| being possibly much larger than d due to its combinatorial
nature). In addition to that, the sum of the payoff vectors (∑i∈p v

i
t)p∈P has to be kept

track of, which may be an issue regarding memory. The strategy constructed above
has the advantage of working with vector payoffs ut which have d components only.
However, the difficulty lies in the computation of ∇h∗ which consists of a convex
program on the set 𝒵 which has |P| vertices. Overall, it is unclear which strategy is
computationally more efficient.

IV.8. Internal and swap regret

The notion of internal regret was introduced by [FV97]. It is an alternative quan-
tity to minimize in the experts setting from Section II.1. [FV97] first established the
existence of strategies which guarantees that the average internal regret is asymptoti-
cally nonpositive (see also [FL95, FL99, HMC00, HMC01, SL05]). [BM05] intro-
duced the swap regret, which generalizes both the internal and the basic regret. The
optimal bound on the swap regret is known since [BM05, SL05]. Later, [Per15] pro-
posed an approachability-based optimal strategy. We present below the construction
of a similar strategy using the tools introduced in the previous sections. The internal
regret is mentioned at the end of the section as a special case.

The swap regret is a variant of the regret minimization problem in the experts set-
ting (Section II.1). The set of pure actions of the Decision Maker is ℐ = {1,… ,d}.
The play goes as follows. At time t ⩾ 1, the Decision Maker

• chooses mixed action xt ∈ Δd;
• draws pure action it ∼ xt;
• observes payoff vector vt ∈ Rd.

LetΦ be a nonempty subset of ℐℐ. The quantity to minimize is theΦ-regret defined
by:

max
φ∈Φ

T
􏾜
t=1

vφ(it)t −
T
􏾜
t=1

vitt ,

and can be interpreted as follows. For a given map φ ∈ Φ,∑Tt=1 v
φ(it)
t is the cumulative

payoff that theDecisionMaker would have obtained if he had played pure action φ(i)
each time he has actually played i (for all i ∈ ℐ). The Φ-regret therefore compares
the actual cumulative payoff of the Decision Maker with the best such quantity (for
φ ∈ Φ) in hindsight. The goal is to construct a strategy which guarantees on the Φ-
regret a bound of order √T log |Φ|. To do so, we reduce this problem to awell-chosen
approachability problem.
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Let the payoff space be 𝒱∗ = RΦ and the target be RΦ−. We choose the following
set of payoff functions:

𝒢 = {gv ∶ i ∈ ℐ ⟼ (vφ(i) − vi)
φ∈Φ ∈ RΦ}

v∈Rd
,

wheregv (for v ∈ Rd) is the payoff function associatedwith payoff vector v. The linear
extension of each payoff function is

gv(x) = (􏾜
i∈ℐ

xi(vφ(i) − vi))
φ∈Φ

, x ∈ Δd, v ∈ Rd.

Proposition IV.8.1. RΦ− is a 𝒢-B-set.

Proof. Let z = (zφ)φ∈Φ ∈ (RΦ−)∘ = RΦ+. Let us prove that there exists x ∈ Δ(ℐ) such
that for all payoff function g ∈ 𝒢, ⟨g(x)|z⟩ ⩽ 0. First, the property is trivially true if
z = 0. We assume from now on that z ≠ 0.

Denote
̃zij = 􏾜

φ∈Φ
φ(i)=j

zφ, i, j ∈ ℐ

and let us first prove that there exists x ∈ Δ(ℐ) such that:

􏾜
i∈ℐ

xi ̃zij = xj 􏾜
i∈ℐ

̃zji, j ∈ ℐ. (IV.5)

Notice that for all i ∈ ℐ we have

􏾜
j∈ℐ

̃zij = 􏾜
j∈ℐ

􏾜
φ∈Φ
φ(i)=j

zφ = 􏾜
φ∈Φ

zφ = ‖z‖1 .

zbeingnonzero, the abovequantity is alsononzero and thed×dmatrix ( ̃zij/ ‖z‖1)i,j∈ℐ
is stochastic and therefore has an invariant measure x ∈ Δ(ℐ):

􏾜
i∈ℐ

xi ̃zij
‖z‖1

= xj, j ∈ ℐ.

Multiplying on both sides by ‖z‖1, we get Equation (IV.5):

􏾜
i∈ℐ

xi ̃zij = xj ‖z‖1 = xj 􏾜
i∈ℐ

􏾜
φ∈Φ
φ(j)=i

zφ = xj 􏾜
i∈ℐ

̃zji, j ∈ 𝒥.
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Let g ∈ 𝒢. By definition of 𝒢, there exists a payoff vector v ∈ Rd such that

g(x) = (􏾜
i∈ℐ

xi(vφ(i) − vi))
φ∈Φ

, x ∈ Δd.

We now compute ⟨g(x)|z⟩:

⟨g(x)|z⟩ = 􏾜
φ∈Φ

zφ(􏾜
i∈ℐ

xi(vφ(i) − vi)) = 􏾜
i,j∈ℐ

xi(vj − vi) 􏾜
φ∈Φ
φ(i)=j

zφ

= 􏾜
i,j∈ℐ

xi(vj − vi) ̃zij = 􏾜
j∈ℐ

vj 􏾜
i∈ℐ

xi ̃zij − 􏾜
i,j∈ℐ

xivi ̃zij

= 􏾜
j∈ℐ

vjxj 􏾜
i∈ℐ

̃zji − 􏾜
i,j∈ℐ

xivi ̃zij = 0,

where we used Equation (IV.5) for the fifth equality. In particular, ⟨g(x)|z⟩ ⩽ 0 and
RΦ− is indeed a 𝒢-B-set.

As for the generator, we choose 𝒵 = Δ(Φ) which is a generator of (RΦ−)∘ thanks
to Proposition IV.2.8. Then the support function of Δ(Φ) evaluated at the average
payoff is equal to the (average)Φ-regret:

I∗Δ(Φ)( ̄uT) = 1TI
∗
Δ(Φ)

⎛⎜
⎝

T
􏾜
t=1

gvt(it)⎞⎟⎠
= 1T max

z∈Δ(Φ)
⟨
T
􏾜
t=1

(vφ(it)t − vitt )
φ∈Φ

∣z⟩

= 1T max
φ∈Φ

T
􏾜
t=1

(vφ(it)t − vitt ) = 1T
⎛⎜
⎝

max
φ∈Φ

T
􏾜
t=1

vφ(it)t −
T
􏾜
t=1

vitt ⎞⎟
⎠

.

On the simplex Δ(Φ), we choose the entropic regularizer presented in Section I.2.3:

hent(z) =
⎧{
⎨{⎩

􏾜
φ∈Φ

zφ log zφ if z ∈ Δ(Φ)

+∞ otherwise.
�

Then, the strategy associated with regularizer hent, a (𝒢,RΦ−)-oracle x and a se-
quence of positive and nonincreasing parameters (ηt)t⩾1 is the following. SetU0 = 0



92 mirror descent for approachability

and for t ⩾ 1,

compute zφt =
exp (ηt−1Uφt−1)

∑
φ′∈Φ exp(ηt−1Uφ

′

t−1)
, φ ∈ Φ

choose xt = x(zt)
draw it ∼ xt

observe ut = gvt(it) = (vφ(it)t − vitt )
φ∈Φ

update Ut = Ut−1 + ut.
This strategy is computationally efficient. Indeed, the expression of zt is explicit and
straightforward. Then, the computation of mixed action xt = x(zt) via oracle x con-
sists, as shown in the proof of Proposition IV.8.1, in finding an invariant measure of
a d × d stochastic matrix, which can be done efficiently.

Theorem IV.8.2. Against payoff vectors (vt)t⩾1 in [−1, 1]d, the above strategy with pa-
rameters ηt = √log |Φ| /4t ( for t ⩾ 1) guarantees

E⎡⎢
⎣
max
φ∈Φ

T
􏾜
t=1

vφ(it)t −
T
􏾜
t=1

vitt ⎤⎥
⎦

⩽ 4√T log |Φ|.

Let δ ∈ (0, 1). With probability higher than 1− δ, we have

1
T

⎛⎜
⎝

max
φ∈Φ

T
􏾜
t=1

vφ(it)t −
T
􏾜
t=1

vitt ⎞⎟
⎠

⩽ 1√
T

(4√log |Φ| + 2√2 log(1/δ)) .

Almost-surely,

lim sup
T→+∞

1
T

⎛⎜
⎝

max
φ∈Φ

T
􏾜
t=1

vφ(it)t −
T
􏾜
t=1

vitt ⎞⎟
⎠

⩽ 0.

Proof. For every payoff vector v ∈ [−1, 1]d and pure action i ∈ ℐ, we have

‖gv(i)‖∞ = ∥(vφ(i) − vi)φ∈Φ∥
∞

⩽ 2.

The result then follows from Theorem IV.6.2 applied withM = 2, K = 1 and the
properties of regularizer hent given by Proposition I.2.9.

An important special case is whenΦ is the set of all transpositions of ℐ, in other
words, the set of maps φ ∶ ℐ → ℐ such that there exists i ≠ j in ℐ such that

φ(i) = j, φ(j) = i, and φ(k) = k for all k ∉ {i, j}.
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TheΦ-regret is then called the internal regret and can be written

max
i,j∈ℐ

T
􏾜
t=1

1{it=i}(vjt − vit).

Since |Φ| = d(d − 1) in this case, Theorem IV.8.2 assures that the corresponding
strategy guarantees a bound on the internal regret of order √T logd.

•
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CHAPTER V

SPARSEREGRETMINIMIZATION

This chapter is extracted from the paper Gains and losses are fundamentally differ-
ent in regret minimization: The sparse case, in collaboration with Vianney Perchet, to
appear in Journal of Machine Learning Research.

Abstract

We demonstrate that, in the classical non-stochastic regret minimization prob-
lem with d decisions, gains and losses to be respectively maximized or minimized are
fundamentally different. Indeed, by considering the additional sparsity assumption
(at each stage, at most s decisions incur a nonzero outcome), we derive optimal re-
gret bounds of different orders. Specifically, with gains, we obtain an optimal regret
guarantee after T stages of order √T log s, so the classical dependency in the dimen-
sion is replaced by thesparsity size. With losses, we providematching upper and lower
bounds of order √Ts log(d)/d, which is decreasing in d. Eventually, we also study the
bandit setting, and obtain an upper bound of order √Ts log(d/s) when outcomes are
losses. This bound is proven to be optimal up to the logarithmic factor √log(d/s).

V.1. Introduction

We consider the classical problem of regret minimization [Han57] that has been
well developed during the last decade [CBL06, RT09, Bub11, SS11,Haz12, BCB12].
We recall that in this sequential decision problem, a decision maker (or agent, player,
algorithm, strategy, policy, depending on the context) chooses at eachstage a decision
in a finite set (that we write as [d] ∶= {1,… ,d}) and obtains as an outcome a real
number in [0, 1]. We specifically chose the word outcome, as opposed to gain or loss,
as our results show that there exists a fundamental discrepancy between these two
concepts.
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The criterion used to evaluate the policy of the decision maker is the regret, i.e.
the difference between the cumulative performance of the beststationary policy (that
always picks a given action i ∈ [d]) and the cumulative performance of the policy of
the decision maker.

We focus here on the non-stochastic framework, where no assumption (apart from
boundedness) is made on the sequence of possible outcomes. In particular, they are
not i.i.d. and we can even assume, as usual, that they depend on the past choices of
the decision maker. This broad setup, sometimes referred to as individual sequences
(since a policy must be good against any sequence of possible outcomes) incorporates
prediction with expert advice [CBL06], data with time-evolving laws, etc. Perhaps
the most fundamental results in this setup are the upper bound of order √T logd
achieved by the Exponential Weight Algorithm [LW94, Vov90, CB97, ACBG02]
and the asymptotic lower bound of the same order [CBFH+97]. This general bound
is the same whether outcomes are gains in [0, 1] (in which case, the objective is to
maximize the cumulative sum of gains) or losses in [0, 1] (where the decision maker
aims at minimizing the cumulative sum). Indeed, a loss ℓ can easily be turned into
gain g by defining g ∶= 1− ℓ, the regret being invariant under this transformation.

This idea does not apply anymore with structural assumption. For instance, con-
sider the frameworkwhere the outcomes are limited to s-sparse vectors, i.e. vectors that
have at most s nonzero coordinates. The coordinates which are nonzero may change
arbitrarily over time. In this framework, the aforementioned transformation does not
preserve thesparsity assumption. Indeed, if (ℓ1,… , ℓd) is a s-sparse loss vector, the cor-
responding gain vector (1− ℓ1,… , 1− ℓd) may even have full support. Consequently,
results for loss vectors do not apply directly tosparse gains, and vice versa. It turns out
that both setups are fundamentally different.

Thesparsity assumption is actually quite natural in learning and have also received
some attention in online learning [Ger13, CM12, AYPS12, DKC13]. In the case of
gains, it reflects the fact that the problem has some hidden structure and that many
options are irrelevant. For instance, in the canonical click-through-rate example, a
website displays an ad and gets rewarded if the user clicks on it; we can safely assume
that there are only a small number of ads on which a user would click.

The sparse scenario can also be seen through the scope of prediction with experts.
Given a finite set of expert, we call the winner of a stage the expert with the highest
revenue (or the smallest loss); ties are broken arbitrarily. And the objective would be
to win as many stages as possible. The s-sparse setting would represent the case where
s experts are designated as winners (or, non-loser) at each stage.

In the case of losses, the sparsity assumption is motivated by situations where rare
failures might happen at each stage, and the decision maker wants to avoid them. For
instance, in network routing problems, it could be assumed that only a small num-
ber of paths would lose packets as a result of a single, rare, server failure. Or a learner
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could have access to a finite number of classification algorithms that perform ideally
most of the time; unfortunately, some of themmakes mistakes on some examples and
the learner would like to prevent that. The general setup is therefore a number of
algorithms/experts/actions that mostly perform well (i.e. find the correct path, clas-
sify correctly, optimize correctly some target function, etc.); however, at each time
instance, there are rare mistakes/accidents and the objective would be to find the ac-
tion/algorithm that has the smallest number (or probability in the stochastic case) of
failures.

V.1.1. Summary of results

We investigate regret minimization scenarios both when outcomes are gains on
the one hand, and losses on the other hand. We recall that our objectives are to prove
that they are fundamentally different by exhibiting rates of convergence of different
order.

When outcomes are gains, we construct an algorithm based on theOnlineMirror
Descent family [SS07, SS11, Bub11]. By choosing a regularizer based on the ℓp norm,
and then tuning the parameter p as a function of s, we get in Theorem V.2.2 a regret
bound of order √T log s, which has the interesting property of being independent of
the number of decisions d. This bound is trivially optimal, up to the constant.

If outcomes are losses instead of gains, although the previous analysis remains
valid, amuch better bound can be obtained. We build upon a regret bound for the Ex-
ponential Weight Algorithm [LW94, FS97] and we manage to get in Theorem V.3.1
a regret bound of order √Ts logd

d , which is decreasing in d, for a given s. A nontrivial
matching lower bound is established in Theorem V.3.3.

Both of these algorithms need to be tuned as a function of s. In Theorem V.4.1
andTheoremV.4.2, we construct algorithmswhich essentially achieve the same regret
boundswithout prior knowledge of s, by adapting over time to thesparsity level of past
outcome vectors, using an adapted version of the doubling trick.

Finally, we investigate the bandit setting, where the only feedback available to the
decision maker is the outcome of his decisions (and, not the outcome of all possible
decisions). In the case of losses we obtain in Theorem V.5.1 an upper bound of order
√Ts log(d/s), using the Greedy Online Mirror Descent family of algorithms [AB09,
ABL13, Bub11]. This bound is proven to be optimal up to a logarithmic factor, as
Theorem V.5.3 establishes a lower bound of order

√
Ts.

The rates of convergence achieved by our algorithms are summarized inFigureV.1.
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Full information Bandit

Gains Losses Gains Losses

Upper bound
√T log s √Ts logdd

√
Td √Ts log d

s

Lower bound
√
Ts

√
Ts

Figure V.1. Summary of upper and lower bounds.

V.1.2. General model and notation

We recall the classical non-stochastic regret minimization problem. At each time
instance t ⩾ 1, the decision maker chooses a decision dt in the finite set
[d] = {1,… ,d}, possibly at random, according to xt ∈ Δd, where

Δd =
⎧{
⎨{⎩
x = (x(1),… , x(d)) ∈ Rd

+ ∣
d
􏾜
i=1

x(i) = 1
⎫}
⎬}⎭

is the the set of probability distributions over [d]. Nature then reveals an outcome
vector ωt ∈ [0, 1]d and the decision maker receives ω(dt)

t ∈ [0, 1]. As outcomes are
bounded, we can easily replace ω(dt)

t by its expectation that we denote by ⟨ωt, xt⟩. In-
deed, Hoeffding–Azuma concentration inequality will imply that all the results we
will state in expectation hold with high probability.

Given a time horizonT ⩾ 1, the objective of the decisionmaker is tominimize his
regret, whose definition depends on whether outcomes are gains or losses. In the case
of gains (resp. losses), the notation ωt is then changed to gt (resp. ℓt) and the regret
is:

RT = max
i∈[d]

T
􏾜
t=1

g(i)
t −

T
􏾜
t=1

⟨gt, xt⟩ ⎛⎜
⎝

resp.RT =
T
􏾜
t=1

⟨ℓt,xt⟩ − min
i∈[d]

T
􏾜
t=1

ℓ(i)
t ⎞⎟

⎠
.

In both cases, the well-known Exponential Weight Algorithm guarantees a bound on
the regret of order √T logd. Moreover, this bound cannot be improved in general as
it matches a lower bound.

We shall consider an additional structural assumption on the outcomes, namely
that ωt is s-sparse in the sense that ‖ωt‖0 ⩽ s, i.e. the number of nonzero components
of ωt is less than s, where s is a fixed known parameter. The set of components which
are nonzero is not fixed nor known, and may change arbitrarily over time.
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We aim at proving that it is then possible to drastically improve the previously
mentioned guarantee of order √T logd and that losses and gains are two fundamen-
tally different settings with minimax regrets of different orders.

V.2. When outcomes are gains to be maximized

V.2.1. OnlineMirror Descent algorithms

We quickly present the general Online Mirror Descent algorithm [SS11, Bub11,
BCB12, KM14] and state the regret bound it incurs; it will be used as a key element
in Theorem V.2.2.

A convex function h ∶ Rd → R ∪ {+∞} is called a regularizer on Δd if h is strictly
convex and continuous on its domain Δd, and h(x) = +∞ outside Δd. Denote δh =
maxΔd h − minΔd h and h∗ ∶ Rd → Rd the Legendre–Fenchel transform of h:

h∗(y) = sup
x∈Rd

{⟨y, x⟩ − h(x)} , y ∈ Rd,

which is differentiable since h is strictly convex. For all y ∈ Rd, it holds that ∇h∗(y) ∈
Δd.

Let η ∈ R be a parameter to be tuned. The Online Mirror Descent Algorithm
associated with the regularizer h and parameter η is defined by:

xt = ∇h∗ (η
t−1
􏾜
k=1
ωk) , t ⩾ 1,

where ωt ∈ [0, 1]d denote the vector of outcomes and xt the probability distribution
chosen at stage t. The specific choice h(x) = ∑d

i=1 x
(i) log x(i) for x = (x(1),… , x(d)) ∈

Δd (and h(x) = +∞ otherwise) gives the celebrated Exponential Weight Algorithm,
which can be written explicitly, component by component:

x(i)
t =

exp (η∑t−1
k=1 ω

(i)
k )

∑d
j=1 exp(η∑t−1

k=1 ω
(j)
k )
, t ⩾ 1, i ∈ [d].

Thefollowing general regret guarantee forstrongly convex regularizers is expressed
in terms of the dual norm ‖ ⋅ ‖∗ of ‖ ⋅ ‖.

Theorem V.2.1 ([SS11] Th. 2.21; [BCB12] Th. 5.6; [KM14] Th. 5.1). Let K > 0
and assume h to beK-strongly convex with respect to a norm ‖ ⋅ ‖. Then, for any sequence
of outcome vectors (ωt)t⩾1 inRd, the OnlineMirror Descent strategy associated with h and
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η (with η > 0 in cases of gains and η < 0 in cases of losses) guarantees, for T ⩾ 1, the
following regret bound:

RT ⩽ δh|η| + |η|
2K

T
􏾜
t=1

‖ωt‖2∗ .

V.2.2. Upper bound on the regret

We first assume s ⩾ 2. Let p ∈ (1, 2] and define the following regularizer:

hp(x) = {
1
2 ‖x‖2p if x ∈ Δd
+∞ otherwise.

�

One can easily check that hp is indeed a regularizer on Δd and that δhp ⩽ 1/2. More-
over, it is (p − 1)-strongly convex with respect to ‖ ⋅ ‖p (see [Bub11, Lemma 5.7]
or [KSST12, Lemma 9]).

We can now state our first result, the general upper bound on regret when out-
comes are s-sparse gains.

Theorem V.2.2. Let η > 0 and s ⩾ 3. Against all sequences of s-sparse gain vectors
gt, i.e. gt ∈ [0, 1]d and ‖gt‖0 ⩽ s, the Online Mirror Descent algorithm associated with
regularizer hp and parameter η guarantees:

RT ⩽ 1
2η + ηTs2/q

2(p − 1) ,

where 1/p + 1/q = 1. In particular, the choices η = √(p − 1)/Ts2/q and p = 1 +
(2 log s − 1)−1 give:

RT ⩽ √2eT log s.

Proof. hp being (p − 1)-strongly convex with respect to ‖ ⋅ ‖p, and ‖ ⋅ ‖q being the dual
norm of ‖ ⋅ ‖p, Theorem V.2.1 gives:

RT ⩽
δhp
η + η

2(p − 1)
T
􏾜
t=1

‖gt‖2q .

For each t ⩾ 1, the norm of gt can be bounded as follows:

‖gt‖2q = ⎛⎜
⎝

d
􏾜
i=1

∣g(i)
t ∣q⎞⎟

⎠

2/q

⩽ ( 􏾜
s terms

∣g(i)
t ∣q)

2/q

⩽ s2/q,
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which yields

RT ⩽ 1
2η + ηTs2/q

2(p − 1).

We can now balance both terms by choosing η = √(p − 1)/(Ts2/q) and get:

RT ⩽ √Ts
2/q

p − 1 .

Finally, since s ⩾ 3, we have 2 log s > 1 and we set p = 1 + (2 log s − 1)−1 ∈ (1, 2],
which gives:

1
q = 1− 1p = p − 1

p = (2 log s − 1)−1

1+ (2 log s − 1)−1 = 1
2 log s ,

and thus:

RT ⩽ √Ts
2/q

p − 1 = √2T log s e2 log s/q = √2eT log s.

We emphasize the fact that we obtain, up to a multiplicative constant, the exact
same rate as when the decision maker only has a set of s decisions.

TheoremV.2.2 was restricted to s ⩾ 3 to simplify the analysis. In the cases s = 1, 2,
we can easily derive a bound of respectively

√
T and

√
2T using the same regularizer

with p = 2.

V.2.3. Matching lower bound

For s ∈ [d] andT ⩾ 1, we denote vg,s,dT the minimax regret of theT-stage decision
problem with outcome vectors restricted to s-sparse gains:

vg,s,dT = min
strat.

max
(gt)t
RT

where the minimum is taken over all possible policies of the decision maker, and the
maximum over all sequences of s-sparse gains vectors.

To establish a lower bound in the present setting, we can assume that only the sfirst
coordinates of gt may be positive (for all t ⩾ 1) and that the decision maker is aware
of that. Therefore he has no interest in assigning positive probabilities to any decision
but the first s ones. Indeed, for any mixed action xt, the decision maker can construct
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alternative mixed action x′
t = (x(1)

t ,… , x(s)
t + ⋯ + x(d)

t , 0,… , 0) which obviously give
a higher payoff:

⟨gt, xt⟩ ⩽ ⟨gt, x′
t⟩

and therefore a lower regret:

max
i∈[d]

T
􏾜
t=1

g(i)
t −

T
􏾜
t=1

⟨gt, x′
t⟩ ⩽ max

i∈[d]

T
􏾜
t=1

g(i)
t −

T
􏾜
t=1

⟨gt, xt⟩ .

Therefore, we can restrict the strategies of the decision maker to those which assign
positive probability to the s first components only. That setup, which is simpler for
the decision maker than the original one, is obviously equivalent to the basic regret
minimization problem with only s decisions. Therefore, the classical lower
bound [CBFH+97, Theorem 3.2.3] holds and we obtain the following.

TheoremV.2.3.

lim inf
s→+∞
d⩾s

lim inf
T→+∞

vg,s,dT
√T log s

⩾
√
2
2 .

The same lower bound, up to the multiplicative constant actually holds non
asymptotically, see [CBL06, Theorem 3.6].

An immediate consequence of Theorem V.2.3 is that the regret bound derived in
Theorem V.2.2 is asymptotically minimax optimal, up to a multiplicative constant.

V.3. When outcomes are losses to be minimized

V.3.1. Upper bound on the regret

We now consider the case of losses, and the regularizer shall no longer depend on
s (as with gains), as we will always use the Exponential Weight Algorithm. Instead, it
is the parameter η that will be tuned as a function of s.

Theorem V.3.1. Let s ⩾ 1. For any sequence of s-sparse loss vectors (ℓt)t⩾1, i.e. ℓt ∈
[0, 1]d and ‖ℓt‖0 ⩽ s, the Exponential Weight Algorithm with parameter −η where η ∶=
log (1+ √2d logd/sT) > 0 guarantees, forT ⩾ 1:

RT ⩽ √2sT logd
d + logd.

We build upon the following regret bound for losses which is written in terms of
the performance of the best action.
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TheoremV.3.2 ([LW94]; [CBL06]Th2.4). Let η > 0. For any sequence of loss vectors
(ℓt)t⩾1 in [0, 1]d, the ExponentialWeight Algorithmwithparameter −η guarantees, for all
T ⩾ 1:

RT ⩽ logd
1− e−η + ( η

1− e−η − 1)L∗
T ,

where L∗
T = min

i∈[d]

T
􏾜
t=1

ℓ(i)
t is the loss of the best stationary decision.

Proof of Theorem V.3.1. Let T ⩾ 1 and L∗
T = mini∈[d] ∑

T
t=1 ℓ

(i)
t be the loss of the best

stationary policy. First note that since the loss vectors ℓt are s-sparse, we have s ⩾
∑d

i=1 ℓ
(i)
t . By summing over 1 ⩽ t ⩽ T:

sT ≥
T
􏾜
t=1

d
􏾜
i=1

ℓ(i)
t =

d
􏾜
i=1

⎛⎜
⎝

T
􏾜
t=1

ℓ(i)
t ⎞⎟

⎠
≥ d⎛⎜

⎝
min
i∈[d]

T
􏾜
t=1

ℓ(i)
t ⎞⎟

⎠
= dL∗

T,

and therefore, we have L∗
T ⩽ Ts/d.

Then, by using the inequality η ⩽ (eη − e−η)/2, the bound from Theorem V.3.2
becomes:

RT ⩽ logd
1− e−η + ( eη − e−η

2(1− e−η) − 1)L∗
T .

The factor of L∗
T in the second term can be transformed as follows:

eη − e−η

2(1− e−η) − 1 = (1+ e−η)(eη − e−η)
2(1− e−2η) − 1 = (1+ e−η)eη

2 − 1 = eη − 1
2 ,

and therefore the bound on the regret becomes:

RT ⩽ logd
1− e−η + eη − 1

2 L
∗
T ⩽ logd
1− e−η + (eη − 1)Ts

2d ,

where we have been able to use the upper-bound on L∗
T since eη−1

2 ⩾ 0. Along with
the choice η = log(1+ √2d logd/Ts) and standard computations, this yields:

RT ⩽ √2Ts logd
d + logd .

Interestingly, the bound from Theorem V.3.1 shows that √2sT logd/d, the dom-
inating term of the regret bound, is decreasing when the number of decisions d in-
creases. This is due to the sparsity assumptions (as the regret increases with s, the
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maximal number of decision with positive losses). Indeed, when s is fixed and d in-
creases, more and more decisions are optimal at each stage, a proportion 1− s/d to be
precise. As a consequence, it becomes easier to find an optimal decisions when d in-
creases. However, this intuitionwill turn out not to be valid in the bandit framework.

On the other hand, if the proportion s/d of positive losses remains constant then
the regret bound achieved is of the same order as in the usual case.

V.3.2. Matching lower bound

When outcomes are losses, the argument from Section V.2.3 does not allow to
derive a lower bound. Indeed, if we assume that only the first s coordinates of the loss
vectors ℓt can be positive, and that the decision maker knows it, then he just has to
take at each stage the decision dt = d which incurs a loss of 0. As a consequence, he
trivially has a regretRT = 0. Choosing at random, but once and for all, a fixed subset
of s coordinates does not provide any interesting lower bound either. Instead, the key
idea of the following result is to choose at random and at each stage the s coordinates
associated with positive losses. And we therefore use the following classical proba-
bilistic argument. Assume that we have found a probability distribution on (ℓt)t such
that the expected regret can be bounded from below by a quantity which does not de-
pend on the strategy of the decision maker. This would imply that for any algorithm,
there exists a sequence of (ℓt)t such that the regret is greater than the same quantity.

In the following statement, vℓ,s,d
T stands for the minimax regret in the case where

outcomes are losses.
TheoremV.3.3. For all s ⩾ 1,

lim inf
d→+∞

lim inf
T→+∞

vℓ,s,d
T

√T s
d logd

⩾
√
2
2 .

The main consequences of this theorem are that the algorithm described in The-
orem V.3.1 is asymptotically minimax optimal (up to a multiplicative constant) and
that gains and losses are fundamentally different from the point of view of regretmin-
imization.

Proof. We define the sequence of i.i.d. loss vectors ℓt (t ⩾ 1) as follows. First, we draw
a set It ⊂ [d] of cardinality s uniformly among the (ds) possibilities. Then, if i ∈ It set
ℓ(i)
t = 1with probability 1/2 and ℓ(i)

t = 0with probability 1/2, independently for each
component. If i ∉ It, we set ℓ(i)

t = 0.
As a consequence, we always have that ℓt is s-sparse. Moreover, for each t ⩾ 1 and

each coordinate i ∈ [d], ℓ(i)
t satisfies:

P [ℓ(i)
t = 1] = s

2d and P [ℓ(i)
t = 0] = 1− s

2d ,



when outcomes are losses to be minimized 107

thus E [ℓ(i)
t ] = s/2d. Therefore we obtain that for any algorithm (xt)t⩾1, E [⟨ℓt, xt⟩] =

s/2d. This yields that

E [RT√
T

] = E⎡⎢
⎣
1√
T

⎛⎜
⎝

T
􏾜
t=1

⟨ℓt,xt⟩ − min
i∈[d]

T
􏾜
t=1

ℓ(i)
t ⎞⎟

⎠
⎤⎥
⎦

= E⎡⎢
⎣
max
i∈[d]

1√
T

T
􏾜
t=1

( s
2d − ℓ(i)

t )⎤⎥
⎦

= E⎡⎢
⎣
max
i∈[d]

1√
T

T
􏾜
t=1
X(i)

t ⎤⎥
⎦
,

where t ⩾ 1, we have defined the random vectorXt byX
(i)
t = s/2d−ℓ(i)

t for all i ∈ [d].
For t ⩾ 1, theXt are i.i.d. zero-mean random vectors with values in [−1, 1]d. We can
therefore apply the comparison Lemma V.3.5 to get:

lim inf
T→+∞

E [RT√
T

] = lim inf
T→+∞

E⎡⎢
⎣
max
i∈[d]

1√
T

T
􏾜
t=1
X(i)

t ⎤⎥
⎦

⩾ E [max
i∈[d]
Z(i)] ,

where Z ∼ 𝒩(0,Σ) with Σ = (cov(X(i)
1 ,X

(j)
1 ))i,j.

We now make appeal to Slepian’s lemma, recalled in Proposition V.3.4 below.
Therefore, we introduce the Gaussian vectorW ∼ 𝒩(0, Σ̃) where

Σ̃ = diag (VarX(1)
1 ,… ,VarX(1)

1 ) .
As a consequence, the first two hypotheses of Proposition V.3.4 follow from the def-
initions of Z andW. Let i ≠ j, then

E [Z(i)Z(j)] = cov(Z(i), Z(j)) = cov(ℓ(i)
1 , ℓ

(j)
1 ) = E [ℓ(i)

1 ℓ(j)
1 ] − E [ℓ(i)

1 ]E [ℓ(j)
1 ] .

By definition of ℓ1, ℓ(i)
1 ℓ(j)
1 = 1 if and only if ℓ(i)

1 = ℓ(j)
1 = 1 and ℓ(i)

1 ℓ(j)
1 = 0 otherwise.

Therefore, using the random subset I1 that appears in the definition of ℓ1:

E [Z(i)Z(j)] = P [ℓ(i)
1 = ℓ(j)

1 = 1] − ( s
2d)

2

= P [ℓ(i)
1 = ℓ(j)

1 = 1 ∣ {i, j} ⊂ I1]P [{i, j} ⊂ I1] − ( s
2d)

2

= 14 ⋅ (d−2
s−2)
(ds)

− ( s
2d)

2

= 14 ( s(s − 1)
d(d − 1) − s2

d2) ⩽ 0,
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and since E [W(i)W(i)] = 0, the third hypothesis of Slepian’s lemma is also satisfied.
It yields that, for all θ ∈ R:

P [max
i∈[d]
Z(i) ⩽ θ] = P [Z(1) ⩽ θ,… , Z(d) ⩽ θ]

⩽ P [W(1) ⩽ θ,… ,W(d) ⩽ θ] = P [max
i∈[d]
W(i) ⩽ θ] .

This inequality between two cumulative distribution functions implies, the reverse
inequality on expectations:

E [max
i∈[d]
Z(i)] ⩾ E [max

i∈[d]
W(i)] .

The components of the Gaussian vector W being independent, and of variance
Var ℓ(1)

1 , we have

E [max
i∈[d]
W(i)] = κd√Var ℓ(1)

1 = κd√
s
2d (1− s

2d) ⩾ κd√
s
4d ,

where κd is the expectation of the maximum of dGaussian variables. Combining ev-
erything gives:

lim inf
T→+∞

vℓ,s,d
T√
T

⩾ lim inf
T→+∞

E [RT√
T

] ⩾ E [max
i∈[d]
Z(i)] ⩾ E [max

i∈[d]
W(i)] ⩾ κd√

s
4d .

And for large d, since κd is equivalent to √2 logd, see e.g., [Gal78]

lim inf
d→+∞

lim inf
T→+∞

vℓ,s,d
T

√T s
d logd

⩾
√
2
2 .

Proposition V.3.4 (Slepian’s lemma [Sle62]). Let Z = (Z(1),… , Z(d)) andW =
(W(1),… ,W(d)) be Gaussian random vectors in Rd satisfying:
(i) E [Z] = E [W] = 0;
(ii) E [(Z(i))2] = E [(W(i))2] for i ∈ [d];
(iii) E [Z(i)Z(j)] ⩽ E [W(i)W(j)] for i ≠ j ∈ [d].
Then, for all real numbers θ1,… , θd, we have:

P [Z(1) ⩽ θ1,… , Z(d) ⩽ θd] ⩽ P [W(1) ⩽ θ1,… ,W(d) ⩽ θd] .
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The following lemma is an extension of e.g. [CBL06, Lemma A.11] to random
vectors with correlated components.

LemmaV.3.5 (Comparison lemma). For t ⩾ 1, let (Xt)t⩾1 be i.i.d. zero-mean random
vectors in [−1, 1]d,Σ be the covariance matrix ofXt and Z ∼ 𝒩(0,Σ). Then,

lim inf
T→+∞

E⎡⎢
⎣
max
i∈[d]

1√
T

T
􏾜
t=1
X(i)

t ⎤⎥
⎦

⩾ E [max
i∈[d]
Z(i)] .

Proof. Denote

YT = max
i∈[d]

1√
T

T
􏾜
t=1
X(i)

t .

LetA ⩽ 0 and consider the function ϕA ∶ R → R defined by ϕA(x) = max(x,A).

E [YT] = E [YT ⋅ 1{YT⩾A}] + E [YT ⋅ 1{YT<A}]

= E [ϕA(YT) ⋅ 1{YT⩾A}] + E [YT ⋅ 1{YT<A}]

= E [ϕA(YT)] − E [ϕA(YT) ⋅ 1{YT<A}] + E [YT ⋅ 1{YT<A}]

= E [ϕA(YT)] − E [(A−YT) ⋅ 1{A−YT>0}] .

Let us estimate the second term. Denote ZT = (A − YT) ⋅ 1A−YT>0. We clearly
have, for all u > 0, P [ZT > u] = P [A−YT > u]. AndZT being nonnegative, we can
write:

0 ⩽ E [(A−YT) ⋅ 1{A−YT}>0] = E [ZT]

= 􏾙
+∞

0
P [ZT > u] du

= 􏾙
+∞

0
P [A−YT > u] du

= 􏾙
+∞

−A
P [YT < −u] du

= 􏾙
+∞

−A
P⎡⎢

⎣
max
i∈[d]

1√
T

T
􏾜
t=1
X(i)

t < u⎤⎥
⎦

du

⩽ 􏾙
+∞

−A
P⎡⎢

⎣

T
􏾜
t=1
X(1)

t < u
√
T⎤⎥

⎦
du.
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For u > 0, using Hoeffding’s inequality together with the assumptions E [X(1)
t ] = 0

andX(1)
t ∈ [−1, 1], we can bound the last integrand:

P⎡⎢
⎣

T
􏾜
t=1
X(1)

t < u
√
T⎤⎥

⎦
⩽ e−u2/2,

Which gives:

0 ⩽ E [(A−YT) ⋅ 1{A−YT}>0] ⩽ 􏾙
+∞

−A
e−u2/2 du ⩽ e−A2/2

−A .

Therefore:

E [YT] ⩾ E [ϕA(YT)] + e−A2/2

A .
We now take the liminf on both sides as t → +∞. The left-hand side is the quantity
that appears in the statement. We now focus on the second term of the right-hand
side. The central limit theorem gives the following convergence in distribution:

1√
T

T
􏾜
t=1
Xt

ℒ−−−−→
T→+∞

X.

The application (x(1),… , x(d)) ⟼ maxi∈[d] x(i) being continuous, we can apply the
continuous mapping theorem:

YT = max
i∈[d]

1√
T

T
􏾜
t=1
X(i)

t
ℒ−−−−→

n→+∞
max
i∈[d]
X(i).

This convergence in distribution allows the use of the portmanteau lemma: ϕA being
lower semi-continuous and bounded from below, we have:

lim inf
t→+∞

E [ϕA(YT)] ⩾ E [ϕA (max
i∈[d]
X(i))] ,

and thus:

lim inf
t→+∞

E [YT] ⩾ E [ϕA (max
i∈[d]
X(i))] + e−A2/2

A .

We would now like to take the limit asA→ −∞. By definition of ϕA, forA ⩽ 0, we
have the following domination:

∣ϕA (max
i∈[d]
X(i))∣ ⩽ ∣max

i∈[d]
X(i)∣ ⩽ max

i∈[d]
∣X(i)∣ ⩽

d
􏾜
i=1

∣X(i)∣ ,
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where eachX(i) is L1 since it is a normal random variable. We can therefore apply the
dominated convergence theorem asA→ −∞:

E [ϕA (max
i∈[d]
X(i))] −−−−→

A→−∞
E [max

i∈[d]
X(i)] ,

and eventually, we get the stated result:

lim inf
t→+∞

E [YT] ⩾ E [max
i∈[d]
X(i)] .

V.4. When thesparsity level s is unknown

We no longer assume in this section that the decision maker have the knowledge
of the sparsity level s. We modify our algorithms to be adaptive over the sparsity level
of the observed gain/loss vectors. The algorithms are proved to essentially achieve the
same regret bounds as in the case where s is known. The constructions follow the same
ideas behind the classical doubling trick.

Specifically, letT ⩾ 1 be the number of rounds and s∗ the highest sparsity level of
the gain/loss vectors chosen by Nature up to time T. In the following, we construct
algorithms which achieve regret bounds of order √T log s∗ and √T s∗ logd

d for gains
and losses respectively, without prior knowledge of s∗.

Boths algorithms need the foreknowledge of the time-horizon T for the tuning
of the parameters. The use of time-varying parameters as in Theorem I.3.1 should
provide any-time guarantees.

V.4.1. For losses

Let (ℓt)t⩾1 be the sequence of loss vectors in [0, 1]d chosen by Nature, and T ⩾ 1
the number of rounds. We denote s∗ = max1⩽t⩽T ‖ℓt‖0 the higher sparsity level of the
loss vectors up to timeT. The goal is to construct an algorithmwhich achieves a regret
bound of order √Ts∗ logd

d without any prior knowledge about the sparsity level of the
loss vectors.

The time instances {1,… , T} will be divided into several time intervals. On each
of those, the previous loss vectors will be left aside, and a new instance of the Expo-
nential Weight Algorithm with a specific parameter will be run. LetM = ⌈log

2
s∗⌉

and τ(0) = 0. Then, for 1 ⩽ m <M we define

τ(m) = min{1 ⩽ t ⩽ T ∣ ‖ℓt‖0 > 2m} and τ(M) = T.
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In other words, τ(m) is the first time instance at which the sparsity level of the loss
vector exceeds 2m. (τ(m))1⩽m⩽M is thus a nondecreasing sequence. We can thendefine
the time intervals I(m) as follows. For 1 ⩽ m ⩽M, let

I(m) = {{τ(m − 1) + 1,… , τ(m)} if τ(m − 1) < τ(m)
∅ if τ(m − 1) = τ(m).

� .

The sets (I(m))1⩽m⩽M clearly form a partition of {1,… , T} (some of the intervals may
be empty). For 1 ⩽ t ⩽ T, we define mt = min {m ⩾ 1 | τ(m) ⩾ t} which implies
t ∈ I(mt). In other words,mt is the index of the only interval t belongs to.

LetC > 0 be a constant to be chosen later and for 1 ⩽ m ⩽M, let

η(m) = log(1+C√d logd
2mT )

be the parameter of the Exponential Weight Algorithm to be used on interval I(m).
In this section, h will be entropic regularizer on the simplex h(x) = ∑d

i=1 x
(i) log x(i),

so that y ⟼ ∇h∗(y) is the logit map used in the Exponential Weight Algorithm. We
can then define the played actions to be:

xt = ∇h∗
⎛⎜⎜⎜⎜⎜
⎝

−η(mt) 􏾜
t′<t

t′∈I(mt)

ℓt′
⎞⎟⎟⎟⎟⎟
⎠

, t = 1,… , T.

TheoremV.4.1. The above algorithm withC = 23/4(
√
2+ 1)1/2 guarantees

RT ⩽ 4√Ts
∗ logd
d + ⌈log s∗⌉ logd

2 + 5s∗√ logd
dT .

Proof. Let 1 ⩽ m ⩽M. On time interval I(m), the Exponential Weight Algorithm is
runwith parameter η(m) against loss vectors in [0, 1]d. Therefore, the following regret
bound derived in the proof of Theorem V.3.1 applies:

R(m) ∶= 􏾜
t∈I(m)

⟨ℓt, xt⟩ − min
i∈[d]

􏾜
t∈I(m)

ℓ(i)
t

⩽ logd
1− e−η(m) + eη(m) − 1

2 min
i∈[d]

􏾜
t∈I(m)

ℓ(i)
t

= 1C
√2mT logd

d + logd
C + C2

√d logd
2mT ⋅ min

i∈[d]
􏾜

t∈I(m)
ℓ(i)
t .
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Algorithm1:For losses in full informationwithout prior knowledge aboutspar-
sity
input:T ⩾ 1, d ⩾ 1 integers, andC > 0.
η← log(1+C√d logd/2T);
m ← 1;
for i ← 1 to d do

w(i) ← 1/d;
end
for t ← 1 toT do

draw and play decision i with probability w(i)/∑d
j=1 w

(j);
observe loss vector ℓt;
if ‖ℓt‖0 ⩽ 2m then

for i ← 1 to d do
w(i) ← w(i)e−ηℓ(i)

t ;
end

else
m ← ⌈log

2
‖ℓt‖0⌉;

η← log(1+C√d logd/2mT);
for i ← 1 to d do

w(i) ← 1/d;
end

end
end
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We now bound the “best loss” quantity from above, using the fact that ℓt is 2m-sparse
for t ∈ I(m) � {τ(m)} and that ℓτ(m) is s∗-sparse:

d
􏾜
i=1

􏾜
t∈I(m)

ℓ(i)
t = 􏾜

t∈I(m)

d
􏾜
i=1

ℓ(i)
t = 􏾜

t<τ(m)
t∈I(m)

d
􏾜
i=1

ℓ(i)
t +

d
􏾜
i=1

ℓ(i)
τ(m)

⩽ (τ(m) − τ(m − 1))2m + s∗,
which implies:

min
i∈[d]

􏾜
t∈I(m)

ℓ(i)
t ⩽ (τ(m) − τ(m − 1))2m + s∗

d .

Therefore, the regret on interval I(m), which we will denoteR(m), is bounded by:

R(m) ∶= 􏾜
t∈I(m)

⟨ℓt, xt⟩ − min
i∈[d]

􏾜
t∈I(m)

ℓ(i)
t

⩽ 1C
√2mT logd

d + logd
C + C2

√2m logd
dT (τ(m) − τ(m − 1)) + C2

√ logd
2mdT s

∗

⩽ 1C
√2mT logd

d + logd
C + C2

√2s∗ logd
dT (τ(m) − τ(m − 1)) + C2

√ logd
2mdT s

∗,

where we used 2m ⩽ 2M = 2⌈log
2
s∗⌉ ⩽ 2log2 s

∗+1 = 2s∗ for the third term of the last
line.

We now turn the whole regret RT from 1 to T. Since (I(m))1⩽m⩽M is a partition
of {1,… , T}, we obtain

RT =
T
􏾜
t=1

⟨ℓt, xt⟩ − min
i∈[d]

T
􏾜
t=1

ℓ(i)
t ⩽

M
􏾜
m=1

􏾜
t∈I(m)

⟨ℓt, xt⟩ −
M
􏾜
m=1

min
i∈[d]

􏾜
t∈I(m)

ℓ(i)
t =

M
􏾜
m=1
R(m)

⩽ 1C
√T logd

d
M
􏾜
m=1

√
2m +C√ s∗T logd

2d + M logd
C + C2

√ logd
dT s∗

M
􏾜
m=1
2−m/2.

The sum in the first term above can be bounded as follows
M
􏾜
m=1

√
2m ⩽

M
􏾜
m=1

√
2
m =

√
2

√
2M − 1√
2− 1

⩽
√
2

√2log2 s
∗+1

√
2− 1

= 2
√
s∗√
2− 1

= 2(
√
2+ 1)

√
s∗,

whereas the sum in the last term can be bounded by
√
2 + 1. Eventually, the choice

C = 23/4(
√
2+ 1)1/2 give:

RT ⩽ 25/4(
√
2+ 1)1/2√Ts

∗ logd
d + ⌈log s∗⌉ logd

23/4(
√
2+ 1)1/2

+ 21/4(
√
2+ 1)3/2s∗√ logd

dT ,
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and the statement follows from numerical computation of the constant factors.

V.4.2. For gains

The construction is similar to the case of losses, but the time intervals are slightly
different. Let (gt)t⩾1 be the sequence of gain vectors in [0, 1]d chosen by Nature. We
assume s∗ ⩾ 2 and setM = ⌈log

2
log
2
s∗⌉ and τ(0) = 0. For 1 ⩽ m ⩽M we define

τ(m) = min{1 ⩽ t ⩽ T ∣ ‖gt‖0 > 22m} and τ(M) = T.

We now define the time intervals I(m). For 1 ⩽ m ⩽M,

I(m) = {{τ(m − 1) + 1,… , τ(m)} if τ(m − 1) < τ(m)
∅ if τ(m − 1) = τ(m).

�

Therefore, for 1 ⩽ m ⩽ M and t < τ(m), we have ‖gt‖0 ⩽ 22m . For 1 ⩽ t ⩽ T, we
denotemt = min {m ⩾ 1 | τ(m) ⩾ t}. LetC > 0 be a constant to be chosen later and
for 1 ⩽ m ⩽M, let

p(m) = 1+ 1
log 2 ⋅ 2m+1 − 1,

q(m) = (1− 1
p(m))

−1
,

η(m) = C√ p(m) − 1
T22m+1/q(m) .

As in SectionV.2.2, for p ∈ (1, 2], we denote hp the regularizer on the simplex defined
by:

hp(x) = {
1
2 ‖x‖2p if x ∈ Δd
+∞ otherwise.

�

The algorithm is then defined by:

xt = ∇h∗
p(mt)

⎛⎜⎜⎜⎜⎜
⎝

η(mt) 􏾜
t′<t

t′∈I(mt)

gt′
⎞⎟⎟⎟⎟⎟
⎠

, t = 1,… , T.
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Algorithm2: For gains in full informationwithout prior knowledge aboutspar-
sity.
input:T ⩾ 1, d ⩾ 1 integers, andC > 0.
p ← 1+ (4 log 2− 1)−1;
q ← (1− 1/p)−1;
η← C√(p − 1)/24/qT;
m ← 1;
y ← (0,… , 0) ∈ Rd;
for t ← 1 toT do

draw and play decision i ∼ ∇h∗
p(η ⋅ y);

observe gain vector gt;
if ‖gt‖0 ⩽ 22m then

y ← y + gt;
else

m ← ⌈log
2
log
2

‖gt‖0⌉;
p ← 1+ (log 2 ⋅ 2m+1 − 1)−1;
q ← (1− 1/p)−1;

η← C√(p − 1)/22m+1/qT;
y ← (0,… , 0);

end
end
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TheoremV.4.2. The above algorithm withC = (e
√
2(

√
2+ 1))1/2 guarantees

RT ⩽ 7√T log s∗ + 4s
∗

√
T

.

Proof. Let 1 ⩽ m ⩽ M. On time interval I(m), the algorithm boils down to an On-
line Mirror Descent algorithm with regularizer hp(m) and parameter η(m). Therefore,
using Theorem V.2.1, the regret on this interval is bounded as follows.

R(m) ∶= max
i∈[d]

􏾜
t∈I(m)

g(i)
t − 􏾜

t∈I(m)
⟨gt, xt⟩

⩽ 1
2η(m) + η(m)

2(p(m) − 1) 􏾜
t∈I(m)

‖gt‖2q(m)

= 1
2η(m) + η(m)

2(p(m) − 1)
⎛⎜⎜⎜⎜
⎝

􏾜
t∈I(m)
t<τ(m)

‖gt‖2q(m) + ∥gτ(m)∥
2

q(m)

⎞⎟⎟⎟⎟
⎠

.

gt being 22
m
-sparse for t < τ(m) and gτ(m) being s∗-sparse, the q(m)-norms can there-

fore bounded from above as follows:

‖gt‖2q(m) ⩽ 22m+1/q(m) and ∥gτ(m)∥
2

q(m)
⩽ (s∗)2/q(m).

The bound onR(m) then becomes

R(m) ⩽ 1
2η(m) + η(m)(τ(m) − τ(m − 1))22m+1/q(m)

2(p(m) − 1) + η(m)(s∗)2/q(m)

2(p(m) − 1)

= 1
2C

√Te(log 2 ⋅ 2m+1 − 1) + C2
√e(log 2 ⋅ 2m+1 − 1)

T (τ(m) − τ(m − 1))

+ C2 (s∗)1/(log 2⋅2m)√e(log 2 ⋅ 2m+1 − 1)
T

⩽ 1
2C

√Te log 2 ⋅ 2m+1 +C√e log s∗
T (τ(m) − τ(m − 1))

+ C2 s
∗√e log 2 ⋅ 2m+1

T ,
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where for the second term of the last expression we used:

log 2 ⋅ 2m+1 − 1 ⩽ log 2 ⋅ 2M+1 = log 2 ⋅ exp (log 2 (⌈log
2
log
2
s∗⌉ + 1))

⩽ log 2 ⋅ exp (log 2 (log
2
log
2
s∗ + 2))

= log 2 ⋅ e2 log 2 exp (log 2 ⋅ log
2
log
2
s∗)

= 4 log 2 ⋅ exp (log log
2
s∗)

= 4 log 2 ⋅ log
2
s∗

= 4 log s∗.
Then, the whole regretRT is bounded by the sum of the regrets on each interval:

RT ⩽
M
􏾜
m=1
R(m) ⩽ 1

2C
√Te log 2

M
􏾜
m=1

√
2m+1 +C√e log s∗

T

M
􏾜
m=1

(τ(m) − τ(m − 1))

+ Cs
∗

2
√e log 2
T

M
􏾜
m=1
2−(m+1)/2.

The second sum is equal to T and the third sum is bounded from above by (
√
2 +

1)/
√
2. Let us bound the first sum from above:

√log 2
M
􏾜
m=1

√
2m+1 = 2√log 22

M/2 − 1√
2− 1

⩽ 2(
√
2+ 1)√log 2 ⋅ exp( log 2

2 (log
2
log
2
s∗ + 1))

= 2(
√
2+ 1)√log 2 ⋅ √2elog log

2
s∗

= 2
√
2(

√
2+ 1)√log 2 log

2
s∗

= 2
√
2(

√
2+ 1)√log s∗.

Therefore,

RT ⩽
√
2(

√
2+ 1)
C

√Te log s∗ +C√Te log s∗ + C(
√
2+ 1)s∗
2

√e log 2
2T .

ChoosingC = (e
√
2(

√
2+ 1))1/2 balances the first two term and gives:

RT ⩽ 2(e
√
2(

√
2+ 1))1/2√T log s∗ + 2−5/4e√log 2(

√
2+ 1)3/2 s∗√

T

⩽ 7√T log s∗ + 4s
∗

√
T

.
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V.5. The bandit setting

Wenow turn to the bandit framework (see for instance [BCB12] for a recent sur-
vey). Recall that the minimax regret [AB09] in the basic bandit framework (without
sparsity) is of order

√
Td. In the case of losses, we manage to take advantage of the

sparsity assumption and obtain inTheoremV.5.1 an upper bound of order √Ts log d
s ,

and a lower bound of order
√
Ts in Theorem V.5.3. This establishes the order of the

minimax regret up to a logarithmic factor. In the case of gains, the argument fromSec-
tion V.2.3 can be adapted to get a lower bound of order

√
sT; but the upper bound

techniques from losses do not seem to work; this difficulty is discussed below in re-
mark V.5.2.

For simplicity, we shall assume that the sequence of outcome vectors (ωt)t⩾1 is cho-
sen before stage 1 by the environment, which is called oblivious in that case. We refer
to [BCB12, Section 3] for a detailed discussion on the difference between oblivious
and non-oblivious opponent, and between regret and pseudo-regret.

As before, at stage t, the decision maker chooses xt ∈ Δd and draws decision
dt ∈ [d] according to xt. The main difference with the previous framework is that
the decisionmaker only observes his own outcome ωdtt before choosing the next deci-
sion dt+1.

V.5.1. Upper bounds on the regret with sparse losses

We shall focus in this section on s-sparse losses. The algorithm we consider be-
longs to the family of Greedy Online Mirror Descent. We follow [BCB12, Section
5] and refer to it for the detailed and rigorous construction. LetFq(x) be theLegendre
function associated with the potential ψ(x) = (−x)−q (q > 1), i.e.

Fq(x) = − q
q − 1

d
􏾜
i=1

(xi)1−1/q.

The algorithm, which depends on a parameter η > 0 to be fixed later, is defined as
follows. Set x1 = ( 1d ,… , 1d) ∈ Δd. For all t ⩾ 1, we define the estimator ̂ℓt of ℓt as
usual:

̂ℓ(i)
t = 1{dt=i}

ℓ(i)
t

x(i)
t
, i ∈ [d],
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which is then used to compute

zt+1 = ∇F∗
q(∇Fq(xt) − η ̂ℓt) and xt+1 = argmin

x∈Δd
DFq(x, zt+1),

whereDFq ∶ 𝒟̄ × 𝒟 → R is the Bregman divergence associated with Fq:

DFq(x
′, x) = Fq(x′) − Fq(x) − ⟨∇Fq(x), x′ − x⟩ .

TheoremV.5.1. Let η > 0 and q > 1. For any sequence of s-sparse loss vectors, the above
strategy with parameter η guarantees, forT ≥ 1:

RT ⩽ q( d1/q
η(q − 1) + ηTs

1−1/q

2 ) .

In particular, if d/s ⩾ e2, the choices

η = √ 2d1/q
(q − 1)Ts1−1/q and q = log(d/s)

the following regret bound:

RT ⩽ 2√e√Ts log ds .

Proof. [BCB12, Theorem 5.10] gives:

RT ⩽
maxx∈Δd F(x) − F(x1)

η + η2
T
􏾜
t=1

d
􏾜
i=1

E[ ( ̂ℓ(i)
t )2

(ψ−1)′(x(i)
t )

] ,

with (ψ−1)′(x) = (qx1+1/q)−1. Let us bound the first term.

1
η max

x∈Δd
Fq(x) − Fq(x1) ⩽ 1η

q
q − 1 (0+ d (1/d)1−1/q) = qd1/q

η(q − 1) .
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We turn to the second term. Let 1 ⩽ t ⩽ T.

d
􏾜
i=1

E[ ( ̂ℓ(i)
t )2

(ψ−1)′(x(i)
t )

] = q
d
􏾜
i=1

E [( ̂ℓ(i)
t )2(x(i)

t )1+1/q]

= q
d
􏾜
i=1

E[E[1{dt=i}
(ℓ(i)

t )2
(xit)2

(xit)1+1/q∣xt]]

= q
d
􏾜
i=1

E [(ℓ(i)
t )2(x(i)

k )1/q]

= qE[ 􏾜
s terms

(ℓ(i)
t )2(x(i)

t )1/q]

⩽ qs(1/s)1/q = qs1−1/q,

where we used the assumption that ℓt has at most s nonzero components, and the fact

that xt ∈ Δd. The first regret bound is thus proven. By choosing η = √ 2s1−1/q

(q−1)Td1/q , we

balance both terms and get:

RT ⩽ 2q√Td
1/qs1−1/q
2(q − 1) = √2q√Ts(d

s )
1/q

( q
q − 1) .

If d/s ⩾ e2 and q = log(d/s), then q/(q − 1) ⩽ 2 and finally:

RT ⩽ 2√e√Ts log ds .

Remark V.5.2. The previous analysis cannot be carried in the case of gains because
the bound from [BCB12, Theorem 5.10] that we use above only holds for nonnega-
tive losses (and its proof strongly relies on this assumption). We are unaware of tech-
niques which could provide a similar bound in the case of nonnegative gains.

V.5.2. Matching lower bound

The following theorem establishes that the bound from Theorem V.5.1 is optimal
up to a logarithmic factor. We denote ̂vℓ,s,d

T the minimax regret in the bandit setting
with losses.
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TheoremV.5.3. For all d ⩾ 2, s ∈ [d] andT ⩾ d2/4s, the following lower bound holds:

̂vℓ,s,d
T ⩾ 1

32
√
Ts.

The intuition behind the proof is the following. Let us consider the case where
s = 1 and assume that ℓt is a unit vector eit = (1{j = it})j where P(it = i) ≃ (1+ ε)/d
for all i ∈ [d], except one fixed coordinate i∗ where P(it = i∗) ≃ 1/d − ε.

Since 1/d goes to 0 as d increases, the Kullback–Leibler divergence between two
Bernoulli of parameters (1 + ε)/d and 1/d − ε is of order dε2. As a consequence,
it would require approximately 1/dε2 samples to distinguish between the two. The
standard argument that one of the coordinates has not been chosen more than T/d
times, yields that one should take 1/dε2 ≃ T/d so that the regret is of order Tε. This
provides a lower bound of order

√
T. Similar arguments with s > 1 give a lower bound

of order
√
sT.

We emphasize that one cannot simply assume that the s components with posi-
tive losses are chosen at the beginning once for all, and apply standard lower bound
techniques. Indeed, with this additional information, the decision maker just has to
choose, at each stage, a decision associated with a zero loss. His regret would then be
uniformly bounded (or even possibly equal to zero).

V.5.3. Proof ofTheorem V.5.3

Let d ⩾ 1, 1 ⩽ s ⩽ d,T ⩾ 1, and ε ∈ (0, s/2d). Denote𝔓s([d]) the set of subsets of
[d] of cardinality s, δij the Kronecker symbol, and B(1,p) the Bernoulli distribution
of parameter p ∈ [0, 1]. If P,Q are two probability distributions on the same set,
D (P ||Q) will denote the relative entropy of P andQ.
Random s-sparse loss vectors ℓt and ℓ′

t . For t ⩾ 1, define the random s-sparse
loss vectors (ℓt)t⩾1 as follows. Draw Z uniformly from [d]. We will denote Pi [ ⋅ ] =
P [ ⋅ |Z = i] and Ei [ ⋅ ] = E [ ⋅ |Z = i]. KnowingZ = i, the random vectors ℓt are i.i.d
and defined as follows. Draw It uniformly from 𝔓s([d]). If j ∈ It, define ℓ(j)

t such
that:

Pi [ℓ(j)
t = 1] = 1− Pi [ℓ(j)

t = 0] = 12 − εds δij.

If j ∉ It, set ℓ(j)
t = 0. Therefore, one can check that for each component j ∈ [d] and

all t ⩾ 1,
Ei [ℓ(j)

t ] = s
2d − εδij.

For t ⩾ 1, define the i.i.d. random s-sparse loss vectors (ℓ′
t)t⩾1 as follows. Draw I′t

uniformly from𝔓s([d]). Then if j ∈ I′t , set (ℓ′
t)(j) such that:

P [(ℓ′
t)(j) = 1] = P [(ℓ′

t)(j) = 0] = 1/2.
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And if j ∉ I′t , set (ℓ′
t)(j) = 0. Therefore, one can check that for each component

j ∈ [d] and all t ⩾ 1,
Ei [(ℓ′

t)(j)] = s
2d .

By construction, ℓt and ℓ′
t are indeed random s-sparse loss vectors.

A deterministic strategy σ for the player. We assume given a deterministic strat-
egy σ = (σt)t⩾1 for the player:

σt ∶ ([d] × [0, 1])t−1 ⟶ [d].

Therefore,
dt = σt(d1, ω

(d1)
1 ,… ,dt−1, ω

(dt−1)
t−1 ),

where dt denotes the decision chosen by the strategy at stage t and ωt the outcome
vector of stage t. But since dt is determined by previous decisions and outcomes, we
can consider that σt only depends on the received outcomes:

σt ∶ [0, 1]t−1 ⟶ [d],

dt = σt(ω
(d1)
1 ,… , ω

(dt−1)
t−1 ).

We define dt and d′
t to be the (random) decisions played by deterministic strategy

σ against the random loss vectors (ℓt)t⩾1 and (ℓ′
t)t⩾1 respectively:

dt = σt(ℓ(d1)
1 ,… , ℓ

(dt−1)
t−1 ),

d′
t = σt((ℓ′

1)(d′
1),… , (ℓ′

t−1)(d′
t−1)).

For t ⩾ 1 and i ∈ [d], defineA(i)
t to be the set of sequences of outcomes in {0, 1}

of the first t − 1 stages for which strategy σ plays decision i at stage t:

A(i)
t = {(u1,… , ut−1) ∈ {0, 1}t−1 ∣σt(u1,… , ut−1) = i} ,

and B(i)
t the complement:

B(i)
t = {0, 1}t−1 �A(i)

t .
Note that for a given t ⩾ 1, (A(i)

t )i∈[d] is a partition of {0, 1}t−1 (with possibly some
empty sets).

For i ∈ [d], define τi(T) (resp. τ′i (T)) to be the number of times decision i is played
by strategy σ against loss vectors (ℓt)t⩾1 (resp. against (ℓ′

t)t⩾1) between stages 1 andT:

τi(T) =
T
􏾜
t=1

1{dt=i} and τ′i (T) =
T
􏾜
t=1

1{d′
t=i}.
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The probability distributionsQ andQi (i ∈ [d]) on binary sequences. We con-
sider binary sequences ⃗u = (u1,… , uT) ∈ {0, 1}T. We defineQ andQi (i ∈ [d]) to be
probability distributions on {0, 1}T as follows:

Qi [ ⃗u] = Pi [ℓ(d1)
1 = u1,… , ℓ(dT)

T = uT] ,

Q [ ⃗u] = P [(ℓ′
1)(d′

1) = u1,… , (ℓ′
T)(d′

T) = uT] .

Fix (u1,… , ut−1) ∈ {0, 1}t. The applications

ut ⟼ Q [ut | u1,… , ut−1] and ut ⟼ Qi [ut | u1,… , ut−1] ,

are probability distributions on {0, 1}, whichwe now aim at identifying. The first one
is Bernoulli of parameter s/2d. Indeed,

Q [1 | u1,… , ut−1] = P [(ℓ′
t)(d′

t) = 1 ∣ (ℓ′
1)(d′

1) = u1,… , (ℓ′
t−1)(d′

t−1) = ut−1]
= P [(ℓ′

t)(d′
t) = 1]

= P [d′
t ∈ I′t]P [(ℓ′

t)(dt) = 1 ∣d′
t ∈ I′t]

= s
d × 12

= s
2d ,

where we used the independence of the random vectors (ℓ′
t)t⩾1 for the second in-

equality. We now turn to the second distribution, which depends on (u1,… , ut−1).
If (u1,… , ut−1) ∈ A(i)

t , it is a Bernoulli of parameter s/2d − ε:

Qi [1 | u1,… , ut−1] = Pi [ℓ(dt)
t = 1 ∣ ℓ(d1)

1 = u1,… , ℓ
(dt−1)
t−1 = ut−1]

= Pi [ℓ(i)
t = 1 ∣ ℓ(d1)

1 = u1,… , ℓ
(dt−1)
t−1 = ut−1]

= Pi [ℓ(i)
t = 1]

= Pi [i ∈ It]Pi [ℓ(i)
t = 1 ∣ i ∈ It]

= s
d × ( 12 − εds )

= s
2d − ε.

where for the third inequality, we used the assumption that the random vectors (ℓt)t⩾1
are independent under Pi, i.e. knowing Z = i. On the other hand, if (u1,… , ut−1) ∈
B(i)
t , we can prove similarly that the distribution is a Bernoulli of parameter s/2d.
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Computation the relative entropy of Qi and Q. We apply iteratively the
chain rule to the relative entropy of Q[ ⃗u] and Qi[ ⃗u]. Using the short-hand
Di[ ⋅ ] ∶= D (Q[ ⋅ ] ||Qi[ ⋅ ]),

D (Q [ ⃗u] ||Qi [ ⃗u]) = Di[ ⃗u]
= Di [u1] + Di [u2,… , uT | u1]
= Di [u1] + Di [u2 | u1] + Di [u3,… , uT | u1, u2]

=
T
􏾜
t=1

Di [ut | u1,… , ut−1] .

Wenowuse thedefinitionof the conditional relative entropy, andmake thepreviously
discussed Bernoulli distributions appear. For 1 ⩽ t ⩽ T,

Di [ut | u1,… , ut−1] = 􏾜
u1,…,ut−1

Q [u1,… , ut−1]

× 􏾜
ut

Q [ut | u1,… , ut−1] log
Q [ut | u1,… , ut−1]
Qi [ut | u1,… , ut−1]

= 1
2t−1

􏾜
u1,…,ut−1

􏾜
ut

Q [ut | u1,… , ut−1] log
Q [ut | u1,… , ut−1]
Qi [ut | u1,… , ut−1]

= 1
2t−1

􏾜
(u1,…,ut−1)∈A

(i)
t

D (B(1, s
2d) ∣∣B(1, s

2d − ε))

+ 1
2t−1

􏾜
(u1,…,ut−1)∈B

(i)
t

D (B(1, s
2d) ∣∣B(1, s

2d))

= 1
2t−1

􏾜
(u1,…,ut−1)∈A

(i)
t

B( s
2d , ε) ,

where we used the short-hand B ( s
2d , ε) ∶= D (B (1, s

2d) ∣∣B (1, s
2d − ε)). Eventually:

D (Q[ ⃗u] ||Qi[ ⃗u]) = B( m
2d , ε)

T
􏾜
t=1

∣A(i)
t ∣
2t−1

.

Upper bound on 1d ∑
d
i=1 Ei [τi(T)] using Pinsker’s inequality. In this step, we will

make use of Pinsker’s inequality to make the relative entropy appear.
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Proposition V.5.4 (Pinsker’s inequality). Let X be a finite set, and P,Q probability
distributions onX. Then,

1
2
􏾜
x∈X

|P(x) −Q(x)| ⩽ √ 1
2D (P ||Q).

Immediate consequence:

􏾜
x∈X

P(x)>Q(x)

(P(x) −Q(x)) ⩽ √ 1
2D (P ||Q).

Let i ∈ [d]. If (u1,… , uT) ∈ {0, 1}T is given, since the decisions dt and d′
t are

determined by the previous losses ℓ(dt)
t and (ℓ′

t)(d′
t) respectively, we have in particular:

Ei [τi(T) ∣ ℓ(d1)
1 = u1,… , ℓ(dT)

T = uT] = E [τ′i (T) ∣ (ℓ′
1)(d′

1) = u1,… , (ℓ′
T)(d′

T) = uT] .

Therefore,

Ei [τi(T)] − E [τ′i (T)] = 􏾜
⃗u
Qi[ ⃗u] ⋅ Ei [τi(T) ∣ ∀t, ℓ(dt)

t = ut]

− 􏾜
⃗u
Q[ ⃗u] ⋅ E [τ′i (T) ∣ ∀t, (ℓ′

t)d
′
t = ut]

= 􏾜
⃗u
(Qi[ ⃗u] − Q[ ⃗u])Ei [τi(T) ∣ ∀t, ℓ(dt)

t = ut]

⩽ 􏾜
⃗u

Qi[ ⃗u]>Q[ ⃗u]

(Qi[ ⃗u] − Q[ ⃗u])Ei [τi(T) ∣ ∀t, ℓ(dt)
t = ut]

⩽ T 􏾜
⃗u

Qi[ ⃗u]>Q[ ⃗u]

(Qi[ ⃗u] − Q[ ⃗u])

⩽ T√ 1
2D (Q[ ⃗u] ||Qi[ ⃗u])

= T√B(s/2d, ε)
2

√√√
⎷

T
􏾜
t=1

∣A(i)
t ∣
2t−1
,
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where we used Pinsker’s inequality in the fifth line. Moreover, we have:

1
d

d
􏾜
i=1

E [τ′i (T)] = 1dE
⎡⎢
⎣

T
􏾜
t=1

d
􏾜
i=1

1{d′
t=i}

⎤⎥
⎦

= 1dE
⎡⎢
⎣

T
􏾜
t=1
1⎤⎥
⎦

= Td .

Combining this with the previous inequality gives:

1
d

d
􏾜
i=1

Ei [τi(T)] ⩽ 1d
d
􏾜
i=1

E [τ′i (T)] +T√B(s/2d, ε)
2

1
d

d
􏾜
i=1

√√√
⎷

T
􏾜
t=1

∣A(i)
t ∣
2t−1

⩽ Td +T√B(s/2d, ε)
2

√√√
⎷

1
d
T
􏾜
t=1

d
􏾜
i=1

∣A(i)
t ∣
2t−1

= Td +T√B(s/2d, ε)
2

√√√
⎷

1
d
T
􏾜
t=1

∣{0, 1}t−1∣
2t−1

= Td +T√B(s/2d, ε)
2

√T
d

= Td +T3/2√B(s/2d, ε)
2d .

wherewe used Jensen for the second inequality, and for the third line, we remembered
that (A(i)

t )i∈[d] is a partition of {0, 1}t−1.
An upper bound on B(s/2d, ε) for small enough ε. We first write B(s/2d, ε) ex-
plicitely.

B( s
2d , ε) = D (B(1, s/2d) ||B(1, s/2d − ε))

= s
2d log s/2d

s/2d − ε + (1− s
2d) log 1− s/2d

1− s/2d + ε

= − s
2d log(1− 2dεs ) + ( s

2d − 1) log(1+ ε
1− m/2d) .

We now bound the two logarithms from above using respectively the two following
easy inequalities:

− log(1− x) ⩽ x + x2, for x ∈ [0, 1/2]
− log(1+ x) ⩽ −x + x2, for x ⩾ 0.
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This gives:

B( s
2d , ε) ⩽ s

2d (2dεs + 4d
2ε2
s2 ) + (1− s

2d) (− ε
1− s/2d + ε2

(1− s/2d)2)

= 4d2ε2
s(2d − s) ,

which holds for 2dε/s ⩽ 1/2, in other words, for ε ⩽ s/4d.
Lowerboundon the expectationof the regret ofσ against ℓt. Wecannowbound
from below the expected regret incurred when playing σ against loss vectors (ℓt)t⩾1.
For ε ⩽ s/4d,

RT = E⎡⎢
⎣

T
􏾜
t=1

ℓ(dt)
t − min

j∈[d]

T
􏾜
t=1

ℓ(j)
t ⎤⎥

⎦

= 1d
d
􏾜
i=1

Ei ⎡⎢
⎣

T
􏾜
t=1

ℓ(dt)
t − min

j∈[d]

T
􏾜
t=1

ℓ(j)
t ⎤⎥

⎦

⩾ 1d
d
􏾜
i=1

⎛⎜
⎝
Ei ⎡⎢

⎣

T
􏾜
t=1

ℓ(dt)
t ⎤⎥

⎦
− min

j∈[d]

T
􏾜
t=1

Ei [ℓ(j)
t ]⎞⎟

⎠

= 1d
d
􏾜
i=1

⎛⎜
⎝
Ei ⎡⎢

⎣

T
􏾜
t=1

Ei [ℓ(dt)
t ∣dt]⎤⎥

⎦
−Tmin

j∈[d]
( s
2d − εδij)⎞⎟

⎠

= 1d
d
􏾜
i=1

⎛⎜
⎝
Ei ⎡⎢

⎣

T
􏾜
t=1

( s
2d − εδidt)⎤⎥

⎦
−T( s

2d − ε)⎞⎟
⎠

= 1d
d
􏾜
i=1
ε (T− Ei [τi(T)])

= ε(T− 1d 􏾜
i
Ei [τi(T)]) .

We now use the upper bound derived in Section V.5.3.

RT ⩾ ε(T− Td −T3/2√B(s/2d, ε)
2d )

⩾ ε(T− Td −T3/2ε√ 2d
s(2d − s))

⩾ ε(T− Td − 2T3/2ε 1√s .) ,
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where in the penultimate, we used the upper bound onB(s/2d, ε) that we established
above, and in the last line, the fact that s ⩽ d. LetC > 0 and we choose ε = C√s/T.
Then, for ε ⩽ s/4d,

RT ⩾ εT(1− 1d − 2ε√Ts )

= C
√
sT(1− 1d) − 2

√
sTC2

⩾
√
sT(C2 − 2C2) ,

where in the last line, we used the assumption d ⩾ 2. The choiceC = 1/8 give:

RT ⩾ 1
32

√
sT,

which holds for ε = C√s/T ⩽ s/4d i.e. forT ⩾ d2/4s.
The above inequality does not depend on σ. As it is a classic that a randomized

strategy is equivalent to some random choice of deterministic strategies, this lower
bound holds for any strategy of the player. In other words, forT ⩾ d2/4s,

̂vℓ,s,d
T ⩾ 1

32
√
sT.

V.5.4. Discussion

If the outcomes are not losses but gains, then there is an important discrepancy
between the upper and lower bounds we obtain. Indeed, obtaining small losses regret
bound as in the firstdisplayed equation of the proof ofTheoremV.5.1 is still open. An
idea for circumventing this issuewould be to enforce exploration by perturbing xt into
(1− γ)xt + γ𝒰 where 𝒰 is the uniform distribution over [d], but usual computations
show that the only obtainable upper bounds are of order of

√
dT. The aforementioned

techniques used to bound the regret from below with losses would also work with
gains, which would give a lower bound of order

√
sT. Therefore, finding the optimal

dependency in the dimension and/or thesparsity level is still an open question in that
specific case.

•





CHAPTER VI

APPROACHABILITYWITHPARTIAL
MONITORING

This chapter is extracted from the paperBlackwell approachabilitywithpartialmon-
itoring: Optimal convergence rates, in collaboration with Vianney Perchet, in prepara-
tion.

Abstract

We study the approachability problem with partial monitoring and polytope target
sets. When the target set is approachable, we construct, for the first time, approaching
strategies with convergence rate of orderO(T−1/2) in the case of outcome-dependent
signals and of order O(T−1/3) in the case of general signals. Those rates are known
to be unimprovable without further assumption on the target set or the signalling
structure. It therefore establishes the optimal convergence rates for those two cases.
Moreover, the proposed strategies are computationally efficient.

VI.1. Introduction

We study the following approachability problem with partial monitoring. The
Decision Maker and Nature both have a finite set of pure actions. At each stage, the
Decision Maker and Nature choose an action in their respective action sets, possibly
at random. This determines a vector-valued payoffwhich is not observed by theDeci-
sion Maker. The latter only observes a random signal whose law depends on the pure
actions of the Decision Maker and Nature. The Decision Maker is aiming at having
the average payoff to converge to a given target set.

VI.1.1. Previous work

In the full information setting, both the regret minimization and approachabil-
ity problems have a worst-case convergence of rate of orderO(T−1/2). The rate deals
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respectively with the average regret in regret minimization, and the distance of the
average payoff to the target set in approachability.

In regretminimizationwithpartialmonitoring, dependingon the signallingstruc-
ture, theDecisionMakermay ormay not be able to guarantee an asymptotically non-
positive average regret. This has given rise to two main directions of research.

The first one, initiated by [PS01] identifies the signalling structures which allow
the average regret to be minimized and aims at constructing strategies in those
cases: [PS01] constructed a strategy which guarantees a convergence rate of order
O(T−1/4) and [CBLS06] proposed an improved strategy with aO(T−1/3) guarantee
as well as a general lower bound of the same order. Later, [BPS10, BFP+14] gave a
classification of signalling structures according to convergence rates: they established
that the optimal convergence rate is either O(T−1/2), O(T−1/3) or O(1)—this last
rate corresponds to the case where the average regret cannot be minimized.

The second line of research was proposed by [Rus99] who introduced a weaker
variant of the regret, which involves the best performance that the Decision Maker
could have achieved in hindsight (had he known the sequence of signal laws, but not
the sequence of actions of Nature), for a given signalling structure. [Rus99] however
did not provide an explicit strategy nor convergence rates. [MS03] constructed ap-
proachability-based algorithms in the special case where the law of the signal only de-
pends on Nature’s action (the so-called outcome-dependent case). [LMS08] proposed
strategies with convergence rates of order O(T−1/4√logT) in the case of outcome-
dependent signals and of order O(T−1/5√logT) in the case of general signals. The
optimal rate of order O(T−1/3) in the case of general signals (for both internal and
external regret) was achieved by [Per11b] using calibration-based algorithms.

More recently, the problem of approachability with partial monitoring has been
introduced by [Per11a]. The regret minimization problem from [Rus99] and the
internal regret from [LS07, Per11b] turn out to be special cases of this very general
framework. However, the convergence rate of the strategy provided in [Per11a]
had the drawback of deteriorating quickly with the dimension of the payoff space.
A strategy with dimension-free rate of order O(T−1/5) was given in [MPS14]—see
also [MPS13]. However, the optimal rate of convergence was conjectured to be of
orderO(T−1/3), like for regret minimzation.

VI.1.2. Main contributions

We construct, for the first time, approachability strategies for polytope target sets
with convergence rates of order O(T−1/3) in the case of general signals and of or-
derO(T−1/2) in the case of outcome-dependent signals. Those rates are known to be
unimprovablewithout further assumptionon the target set or the signallingstructure:
in the case of general signals, a lower boundof orderO(T−1/3)was given in [CBLS06],
and the O(T−1/2) rate is already optimal in the full information setting. It therefore
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establishes the optimal convergence rates for those two cases. Moreover, the proposed
strategies are computationally efficient.

VI.1.3. Outline

In Section VI.2, we present themodel of two-player game with vector payoffs and
with partial monitoring. In Section VI.3, we recall the dual characterizations of ap-
proachability, both in partial monitoring and in full information. In Section VI.4,
we first construct an auxiliary full information game which we then use to define the
strategy for the initial game. The efficiency of thestrategy is discussed. In SectionVI.5
westate andproveTheoremVI.5.1which is ourmain result. It establishes anO(T−1/3)
rate of convergence for the strategy. In Section VI.6, we deal with the special case of
outcome-dependent signals forwhichwe propose amodifiedstrategywhich is proved
in Theorem VI.6.2 to have anO(T−1/2) rate of convergence.

VI.1.4. Notation

Exponents will be used to denote the components of a vector: for instance x =
(xi)i∈ℐ ∈ Rℐ. Bold letters will denote maps and calligraphic letters will denote sets.
⟨ ⋅ | ⋅ ⟩ will denote the scalar product.

VI.2. The game

VI.2.1. Ingredients

We consider a repeated two-player game with vector-valued payoffs and partial
monitoring between the Decision Maker and Nature. The Decision Maker (resp. Na-
ture) has a finite set of pure actions ℐ (resp. 𝒥). Denote by

Δ(ℐ) ∶= {x = (xi)i∈ℐ ∈ Rℐ
+ ∣ 􏾜

i∈ℐ
xi = 1}

the simplex which represents the set of probability distributions over ℐ. Δ(𝒥) is de-
fined similarly. Let g ∶ ℐ × 𝒥 → Rd be the vector-valued payoff function which we
bilinearly extend to g ∶ Δ(ℐ) × Δ(𝒥) → Rd:

g(x, y) ∶= E i∼x
j∼y

[g(i, j)] = 􏾜
i∈ℐ
j∈𝒥

xiyjg(i, j)

where x = (xi)i∈ℐ ∈ Δ(I) and y = (yj)j∈𝒥 ∈ Δ(𝒥).
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Denote by ‖g‖
2

∶= max i∈ℐ
j∈𝒥

‖g(i, j)‖
2
its Euclidean norm. Let 𝒮 be a finite set of sig-

nals and s ∶ ℐ × 𝒥 → Δ(𝒮) the signal distribution function, which we also bilinearly
extend toΔ(ℐ) ×Δ(𝒥). All the above elements are assumed to be known to the De-
cision Maker. The special case where the law of the signal s(i, j) does not depend on
i is called the outcome-dependent signals case, and will be treated in Section VI.6.

VI.2.2. The play

The game is played as follows. At time t ⩾ 1,
• the Decision Maker and Nature simultaneously choose pure actions it ∈ ℐ

and jt ∈ 𝒥, possibly at random according to mixed actions xt ∈ Δ(ℐ) and
yt ∈ Δ(𝒥);

• theDecisionMaker gets (but does not observe) vector payoffgt ∶= g(it, jt) ∈
Rd;

• the Decision Maker observes signal st ∈ 𝒮 which is drawn according to
s(it, jt) ∈ Δ(𝒮).

Formally, a strategy for the Decision Maker is a sequence of measurable maps σ =
(σt)t⩾1 where σt ∶ (Δ(ℐ) × ℐ × 𝒮)t−1 → Δ(ℐ) indicates the mixed action xt at time
t as a function of the information available to the Decision Maker. In other words:

xt = σt(x1, i1, s1,… , xt−1, it−1, st−1).
Similarly, a strategy for Nature is a sequence (τt)t⩾1 where τt ∶ (Δ(ℐ) × ℐ × 𝒮 ×
Δ(𝒥) × 𝒥)t−1 → Δ(𝒥), so that

yt = τt(x1, i1, s1, y1, j1,… , xt−1, it−1, st−1, yt−1, jt−1).
ForT ⩾ 1, denote ḡT ∶= 1

T ∑
T
t=1 gt the average vector payoff up to timeT.

VI.2.3. Flags

The flag function f ∶ Δ(𝒥) → Δ(𝒮)ℐ is defined by
f(y) = (s(i, y))i∈ℐ , y ∈ Δ(𝒥).

For t ⩾ 1, denote ft ∶= f(yt) the flag associated with yt. Denote ℱ = f(Δ(𝒥)) the
set of all possible flags, which is a polytopial subset of R𝒮×ℐ. The notion of flags is
fundamental in games with partial monitoring. Although the Decision Maker does
not directly observe it, he can, as will be shown, estimate it. As a matter of fact, it is
the maximal information available to him. For x ∈ Δ(ℐ) and f ∈ ℱ, letm(x,f) ∶=
g(x, f−1(f)) be the set of all payoffs that are compatible with mixed action x and flag
f. The set-valued mapm ∶ Δ(ℐ) × ℱ ⇉ Rd will be essential in the statement of the
characterization of approachable sets (Proposition VI.3.2) and in the construction of
the strategies.
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VI.3. Approachability

We recall the definition of approachability and the characterizations of approach-
able convex sets both in the partial monitoring and full information cases.

Definition VI.3.1. A closed convex set 𝒞 ⊂ Rd is approachable if there exists a strat-
egy of the Decision Maker which guarantees

E [d2 (ḡT, 𝒞)] −−−−→
T→+∞

0,

uniformly in the strategy τ ofNature, whered2( ⋅ , 𝒞) denotes the Euclidean distance
to 𝒞, and where the expectation corresponds to the randomization introduced by the
strategies and the signals.

PropositionVI.3.2 (Characterization of approachable convex sets in games with par-
tial monitoring [Per11a]). A closed convex set 𝒞 ⊂ Rd is approachable if and only if

∀f ∈ ℱ, ∃ x ∈ Δ(ℐ), m(x,f) ⊂ 𝒞.

The construction of our strategies in Section VI.4 will involve an auxiliary full in-
formation game. We quickly review the characterizations of approachability in full
information games with convex compact action sets and bilinear payoff functions.
Let 𝒳 and 𝒴 be convex compact action sets and g ∶ 𝒳 × 𝒴 → Rd a bilinear payoff
function. The special case of target sets which are closed convex cones will be of par-
ticular importance in the subsequent sections. A few facts about closed convex cones
are gathered in Section IV.2.

Proposition VI.3.3 (Characterization of approachability in full information games).
A closed convex set 𝒞 ⊂ Rd is approachable if and only if one of the following properties
hold.
(i) ∀g ∈ Rd, ∃ x ∈ 𝒳, ∀y ∈ 𝒴, ⟨g(x, y) − P𝒞(g)|g − P𝒞(g)⟩ ⩽ 0, where P𝒞

denotes the Euclidean projection on 𝒞;
(ii) ∀y ∈ 𝒴, ∃x ∈ 𝒳, g(x,y) ∈ 𝒞.

Moreover, if 𝒞 is a closed convex cone, the above is also equivalent to
(iii) ∀z ∈ 𝒞∘, ∃x ∈ 𝒳, ∀y ∈ 𝒴, ⟨g(x, y)|z⟩ ⩽ 0.

Proof. The first two characterizations are classic [Bla56]. Let us assume that 𝒞 is a
closed convex cone. Let us prove that (ii) and (iii) are equivalent. 𝒞 being a closed
convex cone, g(x,y) ∈ 𝒞 is equivalent to maxz∈𝒞∘ ⟨g(x, y)|z⟩ ⩽ 0. Then, (ii) can be
rewritten

max
y∈𝒴

min
x∈𝒳

max
z∈𝒞∘

⟨g(x, y)|z⟩ ⩽ 0.
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𝒳 being compact and the quantity ⟨g(x, y)|z⟩ being linear in x, y and z, we can apply
Sion’s minimax theorem twice to get

max
z∈𝒞∘

min
x∈𝒳

max
y∈𝒴

⟨g(x, y)|z⟩ ⩽ 0,

which is exactly (iii).

VI.4. Construction of the strategy

We study the case where the target set is the negative orthant Rd
− and we assume

it to be approachable. Since a polytope can be represented as an orthant in a higher
dimension space, the extension to polytope target sets can be easily carried out as in
e.g. [MPS14, Section 5.4.2]. Most of the proofs are postponed to Section VI.8.

VI.4.1. Bi-piecewise affinity

We aim in this section at constructing a vector-valued map r ∶ Δ(ℐ) × ℱ → Rd

which can be seen as a simplified version of the set-valued mapm ∶ Δ(ℐ) × ℱ ⇉ Rd.
Its properties will be gathered at the end of the section in Proposition VI.4.4.

Definition VI.4.1. Let 𝒰 be a convex set and 𝒱 a vector space. Let a ∶ 𝒰 ⇉ 𝒱 be
a set-valued function. a is affine if for all u, u′ ∈ 𝒰 and λ ∈ [0, 1],

a(λu + (1− λ)u′) = λa(u) + (1− λ)a(u′).

The map f being affine on ℱ by definition, [RZ96, Proposition 2.4] guarantees
the existence of a polytopial decomposition of ℱ such that f−1 is affine on each of
those polytopes. The decomposition can then be refined so that each point of ℱ can
be written as a unique convex combination of the vertices of the polytope to which it
belongs. This is formalized by the following lemma.

Lemma VI.4.2. There exists a finite family (ℱk)k∈𝒦 of polytopes (denote ℬk the set of
vertices of ℱk and ℬ = ⋃k∈𝒦 ℬk) such that
(i) ℱ = ⋃k∈𝒦 ℱk;
(ii) for each k ∈ 𝒦, f−1 is affine on ℱk;
(iii) for all f ∈ ℱ, there exists a unique μ = (μb)b∈ℬ ∈ Δ(ℬ) such that

(a) f = ∑b∈ℬ μ
b ⋅ b;

(b) for k ∈ 𝒦, f ∈ ℱk ⟹ suppμ ⊂ ℬk.
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From now on, we assume given such a decomposition.
We are going to construct the map r = (rn)1⩽n⩽d component by component, and

firstonΔ(ℐ)×ℬ before extending it toΔ(ℐ)×ℱ. Denote (gn)1⩽n⩽d the components
of g. For x ∈ Δ(ℐ) and b ∈ ℬ, we set rn(x, b) as being the maximum real number of
the set gn(x, f−1(b)):

rn(x, b) ∶= maxgn(x, f−1(b)). (VI.1)

We then extend r to Δ(ℐ) × ℱ as follows. Using property (iii) from Lemma VI.4.2,
a given flag f ∈ ℱ can be uniquely written

f = 􏾜
b∈ℬ
μb ⋅ b,

with supp μ contained in one of the polytopes ℱk. We then use the above coefficients
(μb)b∈ℬ to define

rn(x,f) ∶= 􏾜
b∈ℬ
μb ⋅ rn(x, b). (VI.2)

This construction will lead to piecewise affinity of r(x,f) in f – see
Proposition VI.4.4 below. We now turn to the piecewise affinity in x.

Lemma VI.4.3. There exists a finite family of polytopes (𝒳ℓ)ℓ∈ℒ such that
(i) Δ(ℐ) = ⋃ℓ∈ℒ 𝒳ℓ;
(ii) For each ℓ ∈ ℒ and f ∈ ℱ, r( ⋅ ,f) is affine on 𝒳ℓ.

Let 𝒜 be the set of the vertices of the polytopes 𝒳ℓ given the above lemma. The
following proposition summarizes some properties of r.

Proposition VI.4.4. (i) For all x ∈ Δ(ℐ), y ∈ Δ(𝒥) and 1 ⩽ n ⩽ d, we have
gn(x, y) ⩽ rn(x, f(y));

(ii) For all f ∈ ℱ, there exists x ∈ Δ(ℐ) such that r(x,f) ∈ Rd
−;

(iii) For all x ∈ Δ(ℐ), r(x, ⋅ ) is affine on each ℱk (k ∈ 𝒦);
(iv) For all f ∈ ℱ, r( ⋅ ,f) is affine on each 𝒳ℓ (ℓ ∈ ℒ).

VI.4.2. From bi-piecewise affinity to linearity

In SectionVI.4.1, we constructed amap r ∶ Δ(ℐ)×ℱ → Rd which is bi-piecewise
affine. In this section, we aim at constructing a linear map R ∶ (R𝒮×ℐ)𝒦×𝒜 → Rd

which encodes the map r in the following sense. From all pairs (x,f) ∈ Δ(ℐ) × ℱ,
there is a simple construction of a vector g̃ ∈ (R𝒮×ℐ)𝒦×𝒜 such thatR(g̃) = r(x,f).
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Lemma VI.4.5. For every k ∈ 𝒦, there exists a map r[k] ∶ Δ(ℐ) × R𝒮×ℐ → Rd such
that
(i) for all x ∈ Δ(ℐ), the map r[k](x, ⋅ ) ∶ R𝒮×ℐ → Rd is linear;
(ii) for all x ∈ Δ(ℐ) and f ∈ ℱk, r[k](x,f) = r(x,f).

Define Lr as the maximal operator norm of the linear maps r[k](a, ⋅ ):

Lr ∶= max
k∈𝒦
a∈𝒜

max
f∈R𝒮×ℐ

f≠0

∥r[k](a,f)∥
2

‖f‖
2

.

LemmaVI.4.6. Lr is a common Lipschitz constant to r(a, ⋅ ) and r[k](a, ⋅ ) (k ∈ 𝒦 and
a ∈ 𝒜). In other words, for all k ∈ 𝒦 and a ∈ 𝒜, we have
(i) for all f,f′ ∈ R𝒮×ℐ, ∥r[k](a,f) − r[k](a,f′)∥

2
⩽ Lr ‖f − f′‖

2
;

(ii) for all f,f′ ∈ ℱ, ‖r(a,f) − r(a,f′)‖
2

⩽ Lr ‖f − f′‖
2
.

For each k ∈ 𝒦, define the linear mapRk ∶ (R𝒮×ℐ)𝒜 → Rd as follows

Rk ((g̃ka)a∈𝒜) ∶= 􏾜
a∈𝒜
r[k](a, g̃ka), for all (g̃ka)a∈𝒜 ∈ (R𝒮×ℐ)𝒜.

Then, define the linear mapR ∶ (R𝒮×ℐ)𝒦×𝒜 → Rd by setting

R(g̃) ∶= 􏾜
k∈𝒦
Rk ((g̃ka)

a∈𝒜
)

= 􏾜
k∈𝒦

􏾜
a∈𝒜
r[k](a, g̃ka), for all g̃ = (g̃ka)k∈𝒦

a∈𝒜
∈ (R𝒮×ℐ)𝒦×𝒜.

The following proposition shows thatR does indeed encode r.

Proposition VI.4.7. Let x ∈ Δ(ℐ), f ∈ ℱ, ℓ ∈ ℒ such that x ∈ 𝒳ℓ, and k0 ∈ 𝒦
such that f ∈ ℱk0 . Moreover, let

x = 􏾜
a∈𝒜
λa ⋅ a where {(λa)a∈𝒜 ∈ Δ(𝒜)

supp(λa)a∈𝒜 ⊂ 𝒳ℓ.
�

be an expression of xas a convex combination of the vertices of 𝒳ℓ. Then,

R((1{k0=k}λ
a ⋅ f)

k∈𝒦
a∈𝒜

) = r(x,f).
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Proof. Using the definition ofR,

R((1{k0=k}λ
a ⋅ f)

k∈𝒦
a∈𝒜

) = 􏾜
k∈𝒦

􏾜
a∈𝒜
r[k](a,1{k0=k}λ

a ⋅ f) = 􏾜
a∈𝒜
λa ⋅ r[k0](a,f)

= 􏾜
a∈𝒜
λa ⋅ r(a,f) = r(x,f),

where the second equality holds because by linearity of r[k](a, ⋅ ) (property (i) in
Lemma VI.4.5), the fourth because r[k0](x, ⋅ ) and r(x, ⋅ ) coincide on ℱk0 (property
(ii) in Lemma VI.4.5), and the last by affinity of r( ⋅ ,f) on 𝒳ℓ (property (iv) in
Proposition VI.4.4).

VI.4.3. The auxiliary full information game

We now construct an auxiliary approachability game. The important point will
be that the target set is approachable. This fact will be used in the construction and
the analysis of the strategy for the initial game.

The payoff space for this auxiliary game is (R𝒮×ℐ)𝒦×𝒜. An element
g̃ ∈ (R𝒮×ℐ)𝒦×𝒜 will often be written as

g̃ = (g̃ka)k∈𝒦
a∈𝒜
, where g̃ka ∈ R𝒮×ℐ.

Then, if ̃z = ( ̃zka)k∈𝒦
a∈𝒜

also belongs to (R𝒮×ℐ)𝒦×𝒜, the scalar product ⟨g̃| ̃z⟩ can ob-

viously be written as the sum of the scalar products ⟨g̃ka∣ ̃zka⟩, and a similar expression
holds for the square Euclidean norm:

⟨g̃| ̃z⟩ = 􏾜
k∈𝒦
a∈𝒜

⟨g̃ka∣ ̃zka⟩ and ‖g̃‖2
2

= 􏾜
k∈𝒦
a∈𝒜

∥g̃ka∥2
2

.

The auxiliary game is defined as follows. Let 𝒦 × 𝒜 be the set of pure actions
for the Decision Maker and ℱ the convex action set for Nature. The payoff function
g̃ takes values in (R𝒮×ℐ)𝒦×𝒜 and is defined as follows. For (k, a) ∈ 𝒦 × 𝒜 and
f ∈ ℱ,

g̃((k, a),f) ∶= (1{k=k′}1{a=a′} ⋅ f)k′∈𝒦
a′∈𝒜

∈ (R𝒮×ℐ)𝒦×𝒜.

This payoff function is be bilinearly extended toΔ(𝒦×𝒜)×R𝒮×ℐ. For each k ∈ 𝒦,
let ℱk

c ∶= R+ℱk = (ℱk)∘∘ be the smallest closed convex cone containing the convex
compact set ℱk (see Section IV.2 for definitions and properties about closed convex
cones), and consider the following subset of (R𝒮×ℐ)𝒜:

𝒞̃k ∶= R−1
k (Rd

−) ∩ (ℱk
c )𝒜 ⊂ (R𝒮×ℐ)𝒜.
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We then define the target set 𝒞̃ as the Cartesian product of the sets 𝒞̃k:

𝒞̃ ∶= 􏾟
k∈𝒦

𝒞̃k ⊂ (R𝒮×ℐ)𝒜×𝒦.

Lemma VI.4.8. (i) The sets 𝒞̃k and 𝒞̃ are closed convex cones.

(ii) 𝒞̃ ⊂ R−1(Rd
−) ∩ ⎛⎜

⎝
􏾟
k∈𝒦

(ℱk
c )𝒜⎞⎟

⎠
.

PropositionVI.4.9. The set 𝒞̃ is approachable inthe auxiliary game. In other words, for
all ̃z ∈ 𝒞̃∘, there exists x̃ ∶= x̃( ̃z) ∈ Δ(𝒦 × 𝒜) such that

∀f ∈ ℱ, ⟨g̃(x̃,f)| ̃z⟩ ⩽ 0.

Proof. This full information game has convex compact action sets and a bilinear pay-
off function. Thanks to Proposition VI.3.3, the statement of the proposition is then
equivalent to Blackwell condition:

∀f ∈ ℱ, ∃ x̃ ∈ Δ(𝒦 × 𝒜), g̃(x̃,f) ∈ 𝒞̃,

which we now aim at proving. Let f ∈ ℱ and k0 ∈ 𝒦 such that f ∈ ℱk0 . Accord-
ing to property (ii) in Proposition VI.4.4, there exists x ∈ Δ(ℐ) such that such that
r(x,f) ∈ Rd

−. By Lemma VI.4.3, there exists ℓ ∈ ℒ such that x ∈ 𝒳ℓ and we can
write x as a convex combination of the vertices of 𝒳ℓ:

x = 􏾜
a∈𝒜
λa ⋅ a where {(λa)a∈𝒜 ∈ Δ(𝒜)

supp(λa)a∈𝒜 ⊂ 𝒳ℓ.
�

Now consider the mixed action

x̃ ∶= (1{k=k0}λ
a)

k∈𝒦
a∈𝒜

∈ Δ(𝒦 × 𝒜)

and let us prove that g̃(x̃,f) ∈ 𝒞̃. We have by definition of g̃:

g̃(x̃,f) = (1{k=k0}λ
a ⋅ f)

k∈𝒦
a∈𝒜
,

and since 𝒞̃ = ∏k∈𝒦 𝒞̃k, we only have to check that (λaf)a∈𝒜 belongs to 𝒞̃k0 =
R−1

k0
(Rd

−) ∩ (ℱk0c )𝒜. First, because f ∈ ℱk0 , λaf belongs to the closed convex cone
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ℱk0c = R+ℱk0 and we have indeed (λaf)a∈𝒜 ∈ (ℱk0c )𝒜. Then, let us prove that
Rk0 ((λaf)a∈𝒜) ∈ Rd

−. Using Proposition VI.4.7,

Rk0((λ
af)a∈𝒜) = R((1{k=k0}λ

a ⋅ f)
k∈𝒦
a∈𝒜

) = r(x,f) ∈ Rd
−.

Therefore, we have proved that (λaf)a∈𝒜 belongs to 𝒞̃k0 = R−1
k0

(Rd
−) ∩ (ℱk0c )𝒜, and

thus, that g̃(x̃,f) ∈ 𝒞̃, which concludes the proof.

VI.4.4. The strategy for the initial game

Let 𝒵̃ ∶= 𝒞̃∘ ∩ ℬ2 where ℬ2 denotes the closed unit Euclidean ball on
(R𝒮×ℐ)𝒦×𝒜. The strategy is defined as follows. Let η > 0 and 0 < γ ⩽ 1 be
parameters. For t ⩾ 1,

• compute ̃zt ∶= P𝒵̃ (η∑t−1
s=1 g̃s), where P𝒵̃ denotes the Euclidean projection

onto 𝒵̃;
• compute x̃t ∶= x̃ ( ̃zt) ∈ Δ(𝒦 × 𝒜), where x̃ is defined in Proposition VI.4.9;
• draw (kt, at) ∼ x̃t and then it ∼ (1− γ)at + γu, where u ∶= ( 1|ℐ| ,… , 1|ℐ|) is the

uniform distribution over ℐ;
• observe signal st ∼ s(it, jt) and compute estimator

f̂t = (
1{it=i}

P [it = i | 𝒢t]
δst)

i∈ℐ

∈ R𝒮×ℐ,

where δst is the Dirac mass associated with st ∈ 𝒮 and seen as an element of
R𝒮;

• set g̃t = g̃((kt, at), f̂t).
Let (𝒢t)t⩾1 be the filtration where for each t ⩾ 1,

𝒢t is generated by (k1, a1, i1, s1,… , kt−1, at−1, it−1, st−1, kt, at).

The definition of the strategy implies that

P [it = i | 𝒢t] = (1− γ)ait + γ
|ℐ| , i ∈ ℐ.

The following lemma gathers the properties of estimator f̂t.

Lemma VI.4.10. For all t ⩾ 1,
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(i) E [f̂t ∣ 𝒢t] = E [ft | 𝒢t];

(ii) E [∥f̂t∥
2

2
∣ 𝒢t] ⩽ |ℐ|2

γ ;

(iii) ∥f̂t∥
2

2
⩽ |ℐ|2
γ2 .

VI.5. Main result

We now state our main result which establishes that the strategy defined in Sec-
tion VI.4.4 guarantees that the average payoff ḡT (of the initial game) converges in
expectation to the negative orthant Rd

− at rateO(T−1/3).
Theorem VI.5.1. Let T ⩾ 1 be an integer. Against any strategy of Nature, the strategy
defined in Section VI.4.4 run with

η = √
γ
T |ℐ|2

and γ = min
⎧{
⎨{⎩

(11 Lr |ℐ| |𝒦| |𝒜|
4 ‖g‖

2
)
2/3

T−1/3, 1
⎫}
⎬}⎭

guarantees

E [d2 (ḡT, Rd
−)] ⩽

12 ‖g‖1/3
2

(Lr |ℐ| |𝒦| |𝒜|)2/3
T1/3

+
2
√
π ‖g‖

2
T1/2

+
6 ‖g‖2/3

2
(Lr |ℐ| |𝒦| |𝒜|)1/3
T2/3

,

where d2( ⋅ , Rd
−) denotes the Euclidean distance to the negative orthantRd

−.

Remark VI.5.2. Since Lr scales linearly with ‖g‖
2
, so does the dominant term of the

above bound, as expected.

Let us introduce some notation. Let ̄g̃
T
be the average for t = 1,… , T of auxiliary

payoffs g̃t. In the analysis we will partition the set of stages {1,… , T} with respect to
the realized values of kt ∈ 𝒦 and at ∈ 𝒜. For k ∈ 𝒦 and a ∈ 𝒜, letNT(k, a) be the
set of stages t ∈ {1,… , T} where kt = k and at = a, and λT(k, a) the corresponding
proportion of stages:

NT(k, a) ∶= {1 ⩽ t ⩽ T | kt = k, at = a}

λT(k, a) ∶= |NT(k, a)|
T .
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Then, for any sequence (ut)1⩽t⩽T, we denote ̄uT(k, a) its average over t ∈ NT(k, a):

̄uT(k, a) ∶=
⎧{
⎨{⎩

1
|NT(k, a)| 􏾜

t∈NT(k,a)
ut ifNT(k, a) ≠ ∅

0 otherwise.
�

The proof is divided into the subsections below which are mostly independent. Here
is a overview of the main steps:

ḡT is close to 1
T

T
􏾜
t=1

g(at, yt) (Lemma VI.5.11)

is equal to 􏾜
k∈𝒦
a∈𝒜

λT(k, a) ⋅ g(a, ȳT(k, a)) (Lemma VI.5.10)

is closer to Rd
− than 􏾜

k∈𝒦
a∈𝒜

λT(k, a) ⋅ r(a, f̄T(k, a)) (Lemma VI.5.9)

is close to 􏾜
k∈𝒦
a∈𝒜

λT(k, a) ⋅ r[k](a, ̄f̂
T

(k, a)) (Lemma VI.5.8)

is equal to R( ̄g̃
T

) (Lemma VI.5.5)

is close to Rd
− (Lemmas VI.5.4 and VI.5.3).

VI.5.1. Average auxiliary payoff ̄g̃
T
is close to auxiliary target set 𝒞̃

Lemma VI.5.3.

E [d2 ( ̄g̃
T
, 𝒞̃)] ⩽ 1

2ηT + η |ℐ|2
2γ .

Proof. For t ⩾ 1, we can write

̃zt = P𝒵̃ (η
t−1
􏾜
s=1

g̃s) = argmin
̃z∈𝒵̃

∥ ̃z − η
t−1
􏾜
s=1

g̃s∥
2

2

= argmax
̃z∈𝒵̃

{⟨η
t−1
􏾜
s=1

g̃s∣ ̃z⟩ − 12 ‖ ̃z‖22} .

Then, Theorem I.3.1 together with the fact that ∥𝒵̃∥
2

= ∥𝒞̃∘ ∩ ℬ2∥2 ⩽ 1 gives

max
̃z∈𝒵̃

T
􏾜
t=1

⟨g̃t| ̃z⟩ −
T
􏾜
t=1

⟨g̃t| ̃zt⟩ ⩽ 1
2η + η2

T
􏾜
t=1

‖g̃t‖22 .
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By taking the expectation and dividing byT, we get

E [max
̃z∈𝒵̃

⟨ ̄g̃
T

∣ ̃z⟩] ⩽ 1
2ηT + E⎡⎢

⎣
1
T

T
􏾜
t=1

⟨g̃t| ̃zt⟩⎤⎥
⎦

+ η
2TE

⎡⎢
⎣

T
􏾜
t=1

‖g̃t‖22⎤⎥⎦
.

We first analyze the first sum of the right-hand side. Let us prove that each scalar
product ⟨g̃t| ̃zt⟩ is nonpositive in expectation. For all 1 ⩽ t ⩽ T, we replace g̃t by its
definition:

E [⟨g̃t| ̃zt⟩] = E [⟨g̃((kt, at), f̂t)∣ ̃zt⟩] .
We then consider the conditional expectation with respect to 𝒢t. The application
g̃((kt, at), ⋅ ) being linear, and the variables kt, at and ̃zt beingmeasurable with respect
to 𝒢t, we can make E [f̂t ∣ 𝒢t] appear as follows:

E [⟨g̃t| ̃zt⟩] = E [E [⟨g̃((kt, at), f̂t)∣ ̃zt⟩ ∣ 𝒢t]] = E [⟨g̃((kt, at),E [f̂t ∣ 𝒢t])∣ ̃zt⟩]
= E [⟨g̃((kt, at),E [ft | 𝒢t])| ̃zt⟩] = E [⟨g̃((kt, at),ft)| ̃zt⟩] ,

where we used Lemma VI.4.10 to replace the conditional expectation of f̂t by the
conditional expectation of ft. Now consider the sigma-algebra ℋt generated by

(k1, a1, i1, s1,… , kt−1, at−1, it−1, st−1).
By definition of the strategy, the law of random variable (kt, at) knowing ℋt is x̃t. We
now resume the above computation by introducing the conditional expectation with
respect to ℋt and ft:

E [⟨g̃t| ̃zt⟩] = E [⟨g̃((kt, at),ft)| ̃zt⟩] = E [E [⟨g̃((kt, at),ft)| ̃zt⟩ | ℋt,ft]]
= E [⟨g̃ (E [(kt, at) | ℋt,ft] ,ft)| ̃zt⟩] = E [⟨g̃ (E [(kt, at) | ℋt] ,ft)| ̃zt⟩]
= E [⟨g̃(x̃t,ft)| ̃zt⟩] .

By definition of the strategy, x̃t = x̃( ̃zt). In other words (see Proposition VI.4.9), for
allf ∈ ℱ, the scalar product ⟨g̃(x̃t,f)| ̃zt⟩ is nonpositive. This is in particular true for
f = ft. Therefore, E [⟨g̃t| ̃zt⟩] ⩽ 0.

We now turn to the second sum that involves the squared norms ‖g̃t‖22. For 1 ⩽
t ⩽ T, using the definition of g̃,

‖g̃t‖22 = ∥g̃((kt, at), f̂t)∥
2

2
= ∥(1{k=kt}

1{a=at}
f̂t)k∈𝒦

a∈𝒜
∥
2

2

= 􏾜
k∈𝒦
a∈𝒜

∥1{k=kt}
1{a=at}

f̂t∥
2

2
= ∥f̂t∥

2

2
.
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Using (ii) from Lemma VI.5.3, we have

E [‖g̃t‖22] = E [∥f̂t∥
2

2
] = E [E [∥f̂t∥

2

2
∣ 𝒢t]] ⩽ |ℐ|2

γ .

Putting everything together, we obtain in expectation the following bound on the
distance from ̄g̃

T
to 𝒞̃:

E [d2 ( ̄g̃
T
, 𝒞̃)] = E [max

̃z∈𝒵̃
⟨ ̄g̃
T

∣ ̃z⟩] ⩽ 1
2ηT + η |ℐ|2

2γ ,

where the above equality comes from the expression of the Euclidean distance to 𝒞̃
given by Proposition IV.2.10.

VI.5.2. From ̄g̃
T
in the auxiliary space toR( ̄g̃

T
) in the initial space

Lemma VI.5.4.

d2 (R( ̄g̃
T

), Rd
−) ⩽ (Lr√|𝒦| |𝒜|) ⋅ d2 ( ̄g̃

T
, 𝒞̃) .

Proof. It follows from property (ii) in Lemma VI.4.8 that 𝒞̃ ⊂ R−1(Rd
−). Therefore,

we can write

d2(R( ̄g̃
T

), Rd
−) = min

g′∈Rd
−

∥R( ̄g̃
T

) − g′∥
2

⩽ min
g̃∈R−1(Rd

−)
∥R( ̄g̃

T
) −R(g̃)∥

2

⩽ min
g̃∈𝒞̃

∥R( ̄g̃
T

) −R(g̃)∥
2

⩽ ‖R‖ ⋅ min
g̃∈𝒞̃

∥ ̄g̃
T

− g̃∥
2

= ‖R‖ ⋅ d2 ( ̄g̃
T
, 𝒞̃) ,

where ‖R‖ is the operator norm of R. To conclude the proof, let us prove that the
latter is bounded from above byLr√|𝒦| |𝒜|. Let g̃ ∈ (R𝒮×ℐ)𝒦×𝒜. By definition of
R, and using the Lipschitz constant Lr from Lemma VI.4.6 which is common to the
linear applications r[k](a, ⋅ ), we have

‖R(g̃)‖
2

=
∥
∥
∥
∥
􏾜
k∈𝒦
a∈𝒜

r[k](a, g̃ka)
∥
∥
∥
∥2

⩽ 􏾜
k∈𝒦
a∈𝒜

∥r[k](a, g̃ka)∥
2

⩽ 􏾜
k∈𝒦
a∈𝒜

Lr ∥g̃ka∥2

⩽ Lr
√√√
⎷

|𝒦| |𝒜| 􏾜
k∈𝒦
a∈𝒜

∥g̃ka∥2
2

= Lr√|𝒦| |𝒜| ⋅ ‖g̃‖
2
,

which concludes the proof.



146 approachability with partial monitoring

VI.5.3. Decomposition ofR( ̄g̃
T

)

Wehave the following expression of the image byR of the average auxiliary payoff
̄g̃
T
.

Lemma VI.5.5.

R( ̄g̃
T

) = R⎛⎜
⎝
1
T

T
􏾜
t=1

g̃t⎞⎟
⎠

= 􏾜
k∈𝒦
a∈𝒜

λT(k, a) ⋅ r[k](a, ̄f̂
T

(k, a)).

Proof. Using the definitions of R, g̃t, g̃, and the linearity of R and r[k](a, ⋅ ), we can
write

R⎛⎜
⎝
1
T

T
􏾜
t=1

g̃t⎞⎟
⎠

= 1T
T
􏾜
t=1
R(g̃t) = 1T

T
􏾜
t=1

􏾜
k∈𝒦
a∈𝒜

r[k](a, g̃kat )

= 1T
T
􏾜
t=1

􏾜
k∈𝒦
a∈𝒜

r[k] (a,1{k=kt}
1{a=at}

f̂t)

= 􏾜
k∈𝒦
a∈𝒜

λT(k, a) ⋅ r[k](a, ̄f̂
T

(k, a)).

VI.5.4. Average estimator ̄f̂
T

(k, a) is close to average flag f̄T(k, a)
Lemma VI.5.6.

E
⎡⎢⎢
⎣
􏾜
k∈𝒦
a∈𝒜

λT(k, a) ∥ ̄f̂
T

(k, a) − f̄T(k, a)∥
2

⎤⎥⎥
⎦

⩽ |ℐ| |𝒦| |𝒜| ( 8
√Tγ

+ 8
3Tγ) .

Proof. Let k ∈ 𝒦 and a ∈ 𝒜. Consider the random process (Xt(k, a))t⩾1 defined by

Xt(k, a) ∶= 1{kt=k, at=a} (f̂t − ft) ,

and to which we are aiming at applying Corollary A.0.5. (Xt(k, a))t⩾1 is a martingale
difference sequence with respect to filtration (𝒢t)t⩾1. Indeed, since 1{kt=k, at=a} is
measurable with respect to 𝒢t,

E [1{kt=k, at=a} (f̂t − ft) ∣ 𝒢t] = 1{kt=k, at=a}E [f̂t − ft ∣ 𝒢t] = 0.
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where the last equality follows from (i) in LemmaVI.4.10. Moreover, using (iii) from
Lemma VI.4.10, we bound eachXt(k, a) as follows.

‖Xt(k, a)‖2 ⩽ ∥f̂t − ft∥
2

⩽ ∥f̂t∥
2

+ ‖ft‖2 ⩽ |ℐ|
γ + ∥(s(i, yt))i∈ℐ∥

2

= |ℐ|
γ + √􏾜

i∈ℐ
‖s(i, yt)‖22 ⩽ |ℐ|

γ + √|ℐ| ⩽ 2 |ℐ|
γ ,

where we used the fact that γ ⩾ 1 for the last inequality. As far as the conditional
variances are concerned, we have

E [‖Xt(k, a)‖22 ∣ 𝒢t] = E [1{kt=k, at=a} ∥f̂t − ft∥
2

2
∣ 𝒢t] ⩽ E [∥f̂t − ft∥

2

2
∣ 𝒢t]

⩽ E [∥f̂t∥
2

2
∣ 𝒢t] + E [‖ft‖22 ∣ 𝒢t] ⩽ |ℐ|2

γ + |ℐ| ⩽ 2 |ℐ|2
γ .

where the first term of the second line has been bounded using property (ii) from
Lemma VI.4.10, whereas the second term is bounded by |ℐ| since

‖ft‖22 = ∥(s(i, yt))i∈ℐ∥2
2

= 􏾜
i∈ℐ

‖s(i, yt)‖22 ⩽ |ℐ| .

Therefore we have
1
T

T
􏾜
t=1

E [‖Xt(k, a)‖22 ∣ 𝒢t] ⩽ 2 |ℐ|2
γ .

We can now apply Corollary A.0.5 withM = 2 |ℐ| /γ andV = 2 |ℐ|2 /γ to get:

E⎡
⎢
⎣

∥ 1T
T
􏾜
t=1
Xt(k, a)∥

2

⎤
⎥
⎦

⩽ 8 |ℐ|
√Tγ

+ 8 |ℐ|
3Tγ .

Besides, it follows from the definition ofXt(k, a) that

1
T

T
􏾜
t=1
Xt(k, a) = λT(k, a) ( ̄f̂

T
(k, a) − f̄T(k, a)) .

Finally, by summing over k and a, we obtain:

E
⎡⎢⎢
⎣
􏾜
k∈𝒦
a∈𝒜

λT(k, a) ∥( ̄f̂
T

(k, a) − f̄T(k, a))∥
2

⎤⎥⎥
⎦

⩽ |ℐ| |𝒦| |𝒜| ( 8
√Tγ

+ 8
3Tγ) .
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VI.5.5. Average estimator ̄f̂
T

(k, a) is close to ℱk
c

Lemma VI.5.7.

E
⎡⎢⎢
⎣
􏾜
k∈𝒦
a∈𝒜

d2 ( ̄g̃ka
T
, ℱk

c)
⎤⎥⎥
⎦

⩽ √|𝒦| |𝒜| ( 1
2ηT + η |ℐ|2

2γ )

Proof. Consider the set 𝒵̃0 defined by

𝒵̃0 ∶= 􏾟
k∈𝒦

((ℱk
c )∘ ∩ ℬ2)

𝒜 ,

and let us assume for the moment that the following inclusion holds:

𝒵̃0 ⊂ √|𝒦| |𝒜| ⋅ 𝒵̃. (VI.3)

For each k ∈ 𝒦 and a ∈ 𝒜, ℱk
c being a closed convex cone, Proposition IV.2.10 gives

the following expression of the distance of ̄g̃ka
T

to ℱk
c :

d2 ( ̄g̃ka
T
, ℱk

c) = max
̃zka∈(ℱkc )∘∩ℬ2

⟨ ̄g̃ka
T

∣ ̃zka⟩ .

By summing over k and a, we have:

􏾜
k∈𝒦
a∈𝒜

d2 ( ̄g̃ka
T
, ℱk

c) = 􏾜
k∈𝒦
a∈𝒜

max
̃zka∈(ℱkc )∘∩ℬ2

⟨ ̄g̃ka
T

∣ ̃zka⟩ = max
̃z∈𝒵̃0

􏾜
k∈𝒦
a∈𝒜

⟨ ̄g̃
T

∣ ̃z⟩

⩽ √|𝒦| |𝒜| ⋅ max
̃z∈𝒵̃

⟨ ̄g̃
T

∣ ̃z⟩ = √|𝒦| |𝒜| ⋅ d2 ( ̄g̃
T
, 𝒞̃) ,

where for the inequality we used inclusion (VI.3), and for the last equality Propo-
sition IV.2.10 together with the fact that 𝒵̃ = 𝒞̃∘ ∩ ℬ2 by definition. Taking the
expectation and substituting distance d2( ̄g̃

T
, 𝒞̃) by the bound from Lemma VI.5.3

yields the result.
Let us now prove inclusion (VI.3). Let ̃z = ( ̃zka)k∈𝒦

a∈𝒜
∈ 𝒵̃0. First, let us prove that

̃z ∈ 𝒞̃∘. Let g̃ ∈ 𝒞̃. We can write

⟨g̃| ̃z⟩ = 􏾜
k∈𝒦
a∈𝒜

⟨ ̃zka∣g̃ka⟩ .
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But for each k ∈ 𝒦 and a ∈ 𝒜, by definition of 𝒵̃0, we have ̃zka ∈ (ℱk
c )∘, and since

𝒞̃ ⊂ ∏k∈𝒦(ℱk
c )𝒜 by definition, we also have g̃ka ∈ ℱk

c . Therefore, ⟨g̃ka∣ ̃zka⟩ ⩽ 0
and consequently, ⟨g̃| ̃z⟩ ⩽ 0. This proves 𝒵̃0 ⊂ 𝒞̃∘.

Let ̃z ∈ 𝒵̃0. By definition of 𝒵̃0, we have ∥ ̃zka∥
2

⩽ 1 for all k ∈ 𝒦 and a ∈ 𝒜.
Thus

‖ ̃z‖2 =
√√√
⎷

􏾜
k∈𝒦
a∈𝒜

∥ ̃zka∥2
2

⩽ √|𝒦| |𝒜|,

and therefore 𝒵̃0 ⊂ √|𝒦| |𝒜| ⋅ ℬ2. Finally, we have

𝒵̃0 ⊂ 𝒞̃∘ ∩ √|𝒦| |𝒜| ⋅ ℬ2 = √|𝒦| |𝒜| ⋅ 𝒵̃.

VI.5.6. r[k](a, ̄f̂
T

(k, a)) is close to r(a, f̄T(k, a))
Lemma VI.5.8.

E
⎡⎢⎢
⎣
􏾜
k∈𝒦
a∈𝒜

λT(k, a) ∥r(a, f̄T(k, a)) − r[k](a, ̄f̂
T

(k, a))∥
2

⎤⎥⎥
⎦

⩽ Lr |ℐ| |𝒦| |𝒜| ( 8
√Tγ

+ 8
3Tγ)

+ Lr√|𝒦| |𝒜| ( 1ηT + η |ℐ|2
γ ) .

Proof. Let (k, a) ∈ 𝒦 × 𝒜 and denote f ∶= f̄T(k, a) and f̂ ∶= ̄f̂
T

(k, a) to alleviate
notation. Denote P[k] the Euclidean projection onto ℱk

c . Then of course P[k](f̂) be-
longs to ℱk

c , and since r(a, ⋅ ) and r[k](a, ⋅ ) coincide on ℱk
c by Lemma VI.4.5, we can

write

r(a,f) − r[k](a, f̂) = r(a,f) − r(a, f̂) + r(a, f̂) − r(a,P[k](f̂))
+ r[k](a,P[k](f̂)) − r[k](a, f̂).

Thus, by taking the norm and using the triangle inequality and the Lipschitz constant
Lr which is common to r(a, ⋅ ) and r[k](a, ⋅ ) to get

∥r(a,f) − r[k](a, f̂)∥
2

⩽ Lr (∥f − f̂∥
2

+ 2 ⋅ d2 (f̂, ℱk
c)) .

We now multiply by λT(k, a). The last term in the above right-hand side is trans-
formed as

2λT(k, a) ⋅ d2 (f̂, ℱk
c) = 2 ⋅ d2 (λT(k, a)f̂, ℱk

c) = 2 ⋅ d2 ( ̄g̃ka
T
, ℱk

c) ,



150 approachability with partial monitoring

where used the fact that ℱk
c is a convex cone to push the factor λT(k, a) into the dis-

tance. Therefore,

λT(k, a) ∥r(a,f) − r[k](a, f̂)∥
2

⩽ Lr ⋅ λT(k, a) ∥f − f̂∥
2

+ 2Lr ⋅ d2 ( ̄g̃ka
T
, ℱk

c) .

Finally, we get the result by taking the expectation, summing over k and a, and
plugging Lemmas VI.5.6 and VI.5.7.

VI.5.7. g is closer toRd
− than r

Lemma VI.5.9.

d2
⎛⎜⎜⎜
⎝

􏾜
k∈𝒦
a∈𝒜

λT(k, a) ⋅ g(a, ȳT(k, a)), Rd
−

⎞⎟⎟⎟
⎠

⩽ d2
⎛⎜⎜⎜
⎝

􏾜
k∈𝒦
a∈𝒜

λT(k, a) ⋅ r(a, f̄T(k, a)), Rd
−

⎞⎟⎟⎟
⎠

.

Proof. Let k ∈ 𝒦 and a ∈ 𝒜. First note that f(ȳT(k, a)) = f̄T(k, a). Indeed, using
the affinity of f,

f(ȳT(k, a)) = f⎛⎜
⎝

1
|NT(k, a)| 􏾜

t∈NT(k,a)
yt⎞⎟

⎠
= 1

|NT(k, a)| 􏾜
t∈NT(k,a)

f(yt)

= 1
|NT(k, a)| 􏾜

t∈NT(k,a)
ft = f̄T(k, a).

For each component n ∈ {1,… ,d}, we have gn(a, ȳT(k, a)) ⩽ rn(a, f̄T(k, a)) by
property (i) in Proposition VI.4.4. Finally, using the explicit expression of the Eu-
clidean distance to Rd

−, we have

d2
⎛⎜⎜⎜
⎝

􏾜
k∈𝒦
a∈𝒜

λT(k, a) ⋅ g(a, ȳT(k, a)), Rd
−

⎞⎟⎟⎟
⎠

=

√√√√√√
⎷

d
􏾜
n=1

⎛⎜⎜⎜
⎝

􏾜
k∈𝒦
a∈𝒜

λT(k, a) ⋅ gn(a, ȳT(k, a))⎞⎟⎟⎟
⎠

2

+

⩽

√√√√√√
⎷

d
􏾜
n=1

⎛⎜⎜⎜
⎝

􏾜
k∈𝒦
a∈𝒜

λT(k, a) ⋅ rn(a, f̄T(k, a))⎞⎟⎟⎟
⎠

2

+

= d2
⎛⎜⎜⎜
⎝

􏾜
k∈𝒦
a∈𝒜

λT(k, a) ⋅ r(a, f̄T(k, a)), Rd
−

⎞⎟⎟⎟
⎠

.
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VI.5.8. Decomposition of g(at, yt) with respect to the realized auxiliary action
(kt, at)
Lemma VI.5.10.

1
T

T
􏾜
t=1
g(at, yt) = 􏾜

k∈𝒦
a∈𝒜

λT(k, a) ⋅ g(a, ȳT(k, a))

Proof. Using the definitions ofNT(k, a) and λT(k, a), and the linearity of g(a, ⋅ ), we
have

1
T

T
􏾜
t=1
g(at, yt) = 1T 􏾜

k∈𝒦
a∈𝒜

􏾜
t∈NT(k,a)

g(a, yt)

= 􏾜
k∈𝒦
a∈𝒜

|NT(k, a)|
T

⋅ 1
|NT(k, a)| 􏾜

t∈NT(k,a)
g(a, yt)

= 􏾜
k∈𝒦
a∈𝒜

λT(k, a) ⋅ g(a, ȳT(k, a)).

VI.5.9. From g(it, jt) to g(at, yt)
Lemma VI.5.11.

E⎡
⎢
⎣

∥ 1T
T
􏾜
t=1
g(it, jt) − 1T

T
􏾜
t=1
g(at, yt)∥

2

⎤
⎥
⎦

⩽
2
√
π ‖g‖

2√
T

+ 2γ ‖g‖
2

.

Proof. Consider the process (Xt)t⩾1 defined by

Xt = g(it, jt) − (1− γ)g(at, yt) − γg(u, yt),

and the filtration (𝒢′
t)t⩾1 where 𝒢′

t is generated by

(k1, a1, y1, i1, s1,… , kt−1, at−1, yt−1, it−1, st−1, kt, at, yt).

(Xt)t⩾1 is martingale difference sequence with respect to filtration (𝒢′
t)t⩾1. Indeed,

knowing 𝒢′
t , the law of it is (1 − γ)at + γu by definition of the strategy, and thus the

law of (it, jt) is ((1− γ)at + γu) ⊗ yt. We can then write, by bilinearity of g:

E [g(it, jt) | 𝒢′
t] = (1− γ)g(at, yt) + γg(u, yt).
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Moreover, ‖Xt‖2 is always bounded by 2 ‖g‖
2
:

‖Xt‖2 = ‖(1− γ) (g(it, jt) − g(at, yt)) + γ (g(it, jt) − g(u, yt))‖2
⩽ (1− γ) ‖g(it, jt) − g(at, yt)‖2 + γ ‖g(it, jt) − g(u, yt)‖2
⩽ 2 ‖g‖

2
.

We can thus apply Corollary A.0.3 withM = 2 ‖g‖
2
to get

E⎡
⎢
⎣

∥ 1T
T
􏾜
t=1
Xt∥

2

⎤
⎥
⎦

⩽
2
√
π ‖g‖

2√
T

.

Therefore,

∥ 1T
T
􏾜
t=1
g(it, jt) − 1T

T
􏾜
t=1
g(at, yt)∥

2

= ∥ 1T
T
􏾜
t=1

(Xt + γ(g(u, yt) − g(at, yt)))∥
2

⩽ ∥ 1T
T
􏾜
t=1
Xt∥

2

+ ∥ γT
T
􏾜
t=1

(g(u, yt) − g(at, yt))∥
2

⩽ ∥ 1T
T
􏾜
t=1
Xt∥

2

+ 2γ ‖g‖
2
,

And taking the expectation:

E⎡
⎢
⎣

∥ 1T
T
􏾜
t=1
g(it, jt) − 1T

T
􏾜
t=1
g(at, yt)∥

2

⎤
⎥
⎦

⩽
2
√
π ‖g‖

2√
T

+ 2γ ‖g‖
2

.

VI.5.10. Final bound

We now combine the above lemmas in the order specified at the beginning of the
section to get:

E [d2 (ḡT, Rd
−)] ⩽

2
√
π ‖g‖

2√
T

+ 2γ ‖g‖
2

+ Lr |ℐ| |𝒦| |𝒜| ( 8
√Tγ

+ 8
3Tγ)

+ 3Lr2 √|𝒦| |𝒜| ( 1ηT + η |ℐ|2
γ ) .

Injecting the values of η and γ yields the result.
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VI.6. Outcome-dependent signals

This section studies the special case where the law s(i, j) of the signal does not
depend on the pure action i of the Decision Maker. In other words, we assume that

s( ⋅ , j) is constant, for all j ∈ 𝒥.

We aim at constructing a strategy which achieves a O(T−1/2) convergence rate.
Again, we assume that the target set is the negative orthantRd

− and that it is approach-
able. We will heavily rely on elements from the previous sections. To take advantage
of the above assumption, the strategy from SectionVI.4 will bemodified in twoways.
First, the estimator will be simpler since exploration is unnecessary, and second, the
mixed action of the Decision Maker will not be perturbed with the uniform distribu-
tion. Unless stated otherwise, all previous notation and assumptions stand.

The modified strategy is defined as follows. Let η > 0 be a parameter. For 1 ⩽ t ⩽
T;

• compute ̃zt = P𝒵̃ (η
t−1
􏾜
s=1

g̃s) and x̃t ∶= x̃( ̃zt) ∈ Δ(𝒦 × 𝒜).

• draw (kt, at) ∼ x̃t and then it ∼ at;
• observe signal st ∈ 𝒮 and compute estimator

f̂t = (δst)i∈ℐ
∈ R𝒮×ℐ;

• set g̃t = g̃((kt, at), f̂t).
The definition of the strategy implies that the law of it knowing 𝒢t is at. Let us state
the properties of the new estimator.

Lemma VI.6.1. For t ⩾ 1,
(i) E [f̂t ∣ 𝒢t] = E [ft | 𝒢t];

(ii) ∥f̂t∥
2

2
= |ℐ|.

Theorem VI.6.2. Let T ⩾ 1. Against any strategy of Nature, the above strategy with
parameter η = (T |ℐ|)−1/2 guarantees

E [d2 (ḡT, Rd
−)] ⩽

2
√
π (‖g‖

2
+ 2Lr√|ℐ| |𝒦| |𝒜|)
T1/2

.
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One can check that statements from Lemmas VI.5.4, VI.5.5, VI.5.9 and VI.5.10
still hold. We state and prove below new versions of the remaining lemmas, which
were affected by the modifications of the estimator and the law of it. The analysis can
be summarized as follows.

ḡT is close to 1
T

T
􏾜
t=1

g(at, yt) (Lemma VI.6.7)

is equal to 􏾜
k∈𝒦
a∈𝒜

λT(k, a) ⋅ g(a, ȳT(k, a)) (Lemma VI.5.10)

is closer to Rd
− than 􏾜

k∈𝒦
a∈𝒜

λT(k, a) ⋅ r(a, f̄T(k, a)) (Lemma VI.5.9)

is close to 􏾜
k∈𝒦
a∈𝒜

λT(k, a) ⋅ r[k](a, ̄f̂
T

(k, a)) (Lemma VI.6.6)

is equal to R( ̄g̃
T

) (Lemma VI.5.5)

is close to Rd
− (Lemmas VI.5.4 and VI.6.3).

VI.6.1. Average auxiliary payoff ̄g̃
T
is close to auxiliary target set 𝒞̃

Lemma VI.6.3.

E [d2 ( ̄g̃
T
, 𝒞̃)] ⩽ 1

2ηT + η |ℐ|
2 .

Proof. We follow the proof of Lemma VI.5.4. The regret bound given by
TheoremI.3.1 still holds:

max
̃z∈𝒵̃

T
􏾜
t=1

⟨g̃t| ̃z⟩ −
T
􏾜
t=1

⟨g̃t| ̃zt⟩ ⩽ 1
2η + η2

T
􏾜
t=1

‖g̃t‖22 .

In Lemma VI.5.4, the second sum was nonpositive in expectation thanks to the fact
that E [f̂t ∣ 𝒢t] = E [ft | 𝒢t]. The same reasoning can be applied in the present case
since the property of the estimator is guaranteed by Lemma VI.6.1. Therefore, we
have

E [d2 ( ̄g̃
T
, C̃)] ⩽ 1

2ηT + η
2TE

⎡⎢
⎣

T
􏾜
t=1

‖g̃t‖22⎤⎥⎦
.
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Then, for 1 ⩽ t ⩽ T, we have

‖g̃t‖22 = ∥g̃((kt, at), f̂t)∥
2

2
= ∥(1{kt=k, at=a}f̂t)k∈𝒦

a∈𝒜
∥
2

2

= ∥f̂t∥
2

2
= |ℐ| ,

where we used property (ii) from Lemma VI.6.1 for the last equality. The result fol-
lows.

VI.6.2. Average estimator ̄f̂
T

(k, a) is close to average flag f̄T(k, a)
Lemma VI.6.4.

E
⎡⎢⎢
⎣
􏾜
k∈𝒦
a∈𝒜

λT(k, a) ∥ ̄f̂
T

(k, a) − f̄T(k, a)∥
2

⎤⎥⎥
⎦

⩽ 2 |𝒦| |𝒜| √π |ℐ|
T .

Proof. Let k ∈ 𝒦 and a ∈ 𝒜. As in Lemma VI.5.6, we consider

Xt(k, a) ∶= 1{kt=k, at=a} (f̂t − ft) ,

which is a sequence of martingale differences with respect to filtration (𝒢t)t⩾1 thanks
to property (i) from Lemma VI.6.1. But this time, we use Corollary A.0.3 instead of
Corollary A.0.5. EachXt is bounded as follows

‖Xt(k, a)‖2 ⩽ ∥f̂t∥
2

+ ‖ft‖2 = √|ℐ| + √􏾜
i∈ℐ

‖s(i, yt)‖22 ⩽ 2√|ℐ|,

where we used property (ii) from Lemma VI.6.1. Corollary A.0.3 then gives

E [λT(k, a) ∥ ̄f̂
T

(k, a) − f̄T(k, a)∥
2
] = E⎡

⎢
⎣

∥ 1T
T
􏾜
t=1
Xt(k, a)∥

2

⎤
⎥
⎦

⩽ 2√π |ℐ|
T .

The result follows by summing over k ∈ 𝒦 and a ∈ 𝒜.

VI.6.3. Average estimator ̄f̂
T

(k, a) is close to ℱk
c

Lemma VI.6.5.

E
⎡⎢⎢
⎣
􏾜
k∈𝒦
a∈𝒜

d2 ( ̄g̃ka
T
, ℱk

c)
⎤⎥⎥
⎦

⩽ √|𝒦| |𝒜| ( 1
2ηT + η |ℐ|

2 ) .
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Proof. The following inequality from the proof of Lemma VI.5.7 still holds

􏾜
k∈𝒦
a∈𝒜

d2 ( ̄g̃ka
T
, ℱk

c) ⩽ √|𝒦| |𝒜| ⋅ d2 ( ̄g̃
T
, 𝒞̃) .

Then, taking the expectation and injecting the new bound on E [d2 ( ̄g̃
T
, 𝒞̃)] given

by Lemma VI.6.3 yields the result.

VI.6.4. r[k](a, ̄f̂
T

(k, a)) is close to r(a, f̄T(k, a))
Lemma VI.6.6. For all k ∈ 𝒦 and a ∈ 𝒜,

E
⎡⎢⎢
⎣
􏾜
k∈𝒦
a∈𝒜

λT(k, a) ∥r(a, f̄T(k, a)) − r[k](a, ̄f̂
T

(k, a))∥
2

⎤⎥⎥
⎦

⩽ 2Lr |𝒦| |𝒜| √π |ℐ|
T

+ Lr√|𝒦| |𝒜| ( 1ηT + η |ℐ|) .

Proof. Let k ∈ 𝒦 and a ∈ 𝒜. Using notation f = f̄T(k, a) and f̂ = ̄f̂
T

(k, a), the
following inequality from the proof of Lemma VI.5.8 still holds

λT(k, a) ∥r(a,f) − r[k](a, f̂)∥
2

⩽ Lr ⋅ λT(k, a) ∥f − f̂∥
2

+ 2Lr ⋅ d2 ( ̄g̃ka
T
, ℱk

c) .

The result follows from taking the expectation, summing over k ∈ 𝒦 and 𝒜, and
injecting the bounds from Lemmas VI.6.4 and VI.6.5.

VI.6.5. From g(it, jt) to g(at, yt)
Lemma VI.6.7.

E⎡
⎢
⎣

∥ 1T
T
􏾜
t=1
g(it, jt) − 1T

T
􏾜
t=1
g(at, yt)∥

2

⎤
⎥
⎦

⩽
2
√
π ‖g‖

2√
T

.

Proof. The process (g(it, jt) − g(at, yt))t⩾1 is a martingale difference sequence with
respect to filtration (𝒢′

t)t⩾1 introduced in the proof of LemmaVI.5.11. It is moreover
bounded by 2 ‖g‖

2
. Therefore, Corollary A.0.3 gives:

E⎡
⎢
⎣

∥ 1T
T
􏾜
t=1
g(it, jt) − 1T

T
􏾜
t=1
g(at, yt)∥

2

⎤
⎥
⎦

⩽
2
√
π ‖g‖

2√
T

.
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VI.6.6. Final bound

Similarly to the proof of Theorem VI.5.1, the combination of the above lemmas
gives:

E [d2 (ḡT, Rd
−)] ⩽

2
√
π ‖g‖

2√
T

+ 2
√
πLr |𝒦| |𝒜| √|ℐ|√

T

+ 3Lr√|𝒦| |𝒜|
2 ( 1ηT + η |ℐ|) .

Injecting the value of η yields the result.

VI.7. Discussion

VI.7.1. Computational efficiency

We discuss the computational efficiency of the strategies studied in Sections VI.5
and VI.6. The following arguments hold for both.

The first step of the strategy is the computation of ̃zt which consists of an Eu-
clidean projection onto 𝒵̃ ∶= 𝒞̃∘ ∩ ℬ2, which is efficient. Indeed, 𝒞̃∘ being a closed
convex cone, the Euclidean projection onto 𝒵̃ can be immediately deduced from the
Euclidean projection onto 𝒞̃∘. The latter projection can be efficiently computed since
𝒞̃∘ is a polytope (as it can be easily checked). The second step is the computation of
x̃t ∶= x̃( ̃zt) which, according to the definition of x̃ in Proposition VI.4.9, can be com-
puted by solving the following minimax problem:

min
x̃∈Δ(𝒦×𝒜)

max
f∈ℱ

⟨g̃(x̃,f)| ̃zt⟩ .

The sets Δ(𝒦 × 𝒜) and ℱ being polytopes, this can be solved efficiently using e.g.
linear programming. Then, the computations of estimator f̂t and auxiliary payoff g̃t
are easy.

Therefore, the whole strategy can be efficiently computed. Moreover, the per-step
complexity is constant.

VI.7.2. Uniform guarantee over time

To achieve the guarantee given in Theorem VI.5.1 the time-horizon T must be
known in advance in order to tune the parameters η and γ accordingly. Let us quickly
explain how to obtain a strategy with a convergence guarantee of the same order that
holds uniformly over time, without resorting to a doubling trick.
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We first deal with parameter η. As explained in Section IV.5, it is always possible
to choose an oracle x such that condition (IV.1) is satisfied. Let us assume that this
is the case. As shown in the proof of Lemma VI.5.3, ̃zt = P𝒵̃(η∑t−1

s=1 g̃s) can also be
written

zt = argmax
̃z∈𝒵̃

{⟨η
t−1
􏾜
s=1

g̃s∣ ̃z⟩ − 12 ‖ ̃z‖22} ,

which corresponds, according to Theorem IV.5.1, to Blackwell’s strategy associated
with target set 𝒞̃ (which is closed convex cone), oracle x̃, and vector payoffs g̃t. The
same theorem assures that ̃zt does not depend on the value of parameter η. Thus, the
strategy canbe runwith anyfixed value ofη, and thebound fromLemmaVI.5.3would
still hold for any value of η > 0. Therefore, the parameter η need not be tuned as a
function of the time-horizonT, because it does not have be chosen at all.

We now turn to exploration parameter γ. We modify the strategy by making it
time-dependent:

γt = min{γ0t−1/3, 1} ,

where γ0 > 0 is to be chosen later. Lemmas VI.5.4, VI.5.5, VI.5.9 and VI.5.10 are
unaffected by this modification. Lemma VI.4.10 can be immediately adapted by re-
placing in the bounds γ by γt. Using the fact that γt is nonincreasing, thestatements of
LemmasVI.5.3, VI.5.6, VI.5.7 andVI.5.8 can be adapted by replacing γ by γT. Finally,
in Lemma VI.5.11, γ, which appears in the numerator, is replaced by

1
T

T
􏾜
t=1
γt ⩽ 1T

T
􏾜
t=1
γ0t−1/3 ⩽ 3γ02 T

−1/3 = 3γT2 , forT large enough.

Overall, combining the modified lemmas as in Section VI.5.10, we obtain a bound
in which each term already has the expected dependency in T. Therefore, γ0 can be
tuned independently of T to eventually obtain a bound identical to Theorem VI.5.1
up to multiplicative constants.

VI.7.3. High probability guarantee and almost-sure convergence

Theorem VI.5.1 only provides a convergence guarantee in expectation. We
quickly describe how the analysis can be adapted to obtain, for the same strategy, a
high probability guarantee as well as almost-sure convergence.

We do not modify Lemmas VI.5.4, VI.5.5, VI.5.9 and VI.5.10 as they do not in-
volve expectations.

The proof of Lemma VI.5.3 is modified as follows in order to obtain a high
probability guarantee on d2( ̄g̃

T
, 𝒞̃). We can easily see that (⟨g̃t| ̃zt⟩)t⩾1 is a bounded

sequence of super-martingale differences with respect to filtration (ℋt)t⩾1 and that
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(‖g̃t‖22 − (|ℐ| /γ)2)t⩾1 is a bounded sequence of super-martingale differences with
respect to (𝒢t)t⩾1. Applying the Hoeffding–Azuma inequality (Proposition A.0.1)
then gives the high probability version of the lemma.

Themodificationof LemmasVI.5.6 andVI.5.11 isstraightforward. We simply ap-
ply the high probability version of the involved concentration inequalities instead of
the bounds in expectation: Proposition A.0.4 instead of Corollary A.0.5 and Propo-
sition A.0.2 instead of Corollary A.0.3, respectively.

The high probability versions of Lemmas VI.5.7 and VI.5.8 immediately follow
from those of Lemma VI.5.3, and Lemmas VI.5.6 and VI.5.7, respectively.

Then, the almost-sure convergence follow from a standard Borel-Cantelli argu-
ment.

VI.7.4. Using other regret minimizing strategies

As explained in the proof of LemmaVI.5.3, the strategy defined in Section VI.4.4
is based on a regret minimizing strategy, specifically, the Mirror Descent strategy as-
sociated with the Euclidean regularizer on 𝒵̃ and constant parameter η. As detailed
in the proof, this strategy guarantees the following regret bound:

max
̃z∈𝒵

T
􏾜
t=1

⟨g̃t| ̃z⟩ −
T
􏾜
t=1

⟨g̃t| ̃zt⟩ ⩽ 1
2η + η2

T
􏾜
t=1

‖g̃t‖22 .

We can easily see that any regret minimizing strategy which guarantees a regret
bound of the form

max
̃z∈𝒵

T
􏾜
t=1

⟨g̃t| ̃z⟩ −
T
􏾜
t=1

⟨g̃t| ̃zt⟩ ⩽ Aη + Bη
T
􏾜
t=1

‖g̃t‖22

could be used to construct an alternative approachability strategy for the initial game,
with the same rate of convergence. In particular, any Mirror Descent strategy from
Section I.3 associated with some strongly convex regularizer on 𝒵̃ would be appro-
priate.

An interesting question is whether the choice of another regularizer would help
improve the dependency in |ℐ|, |𝒦| and |𝒜| of the bound from Theorem VI.5.1.
Note however that a general regularizer would not a priori retain the computational
efficiency of the Euclidean regularizer (see Section VI.7.1).

VI.7.5. Comparison with [MPS14]

The strategy proposed in [MPS14] is computationally efficient and has a
dimension-independent convergence rate ofO(T−1/5). We here highlight a few ideas
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which were already present in [MPS14], and those we have introduced in the
present work to achieve an optimal convergence rate ofO(T−1/3).

[MPS14] already used the single-valued map r which is a simpler version of the
set-valued mapm, which retains the key property characterizing the approachability
of the target set (see Proposition VI.3.2 and property (ii) in Proposition VI.4.4). Be-
sides, the decomposition of ℱ andΔ(ℐ) into polytopes was considered to obtain the
piecewise-affinity of r. This fundamental property was then used in the averaging of
the flag estimators. The proposed strategy is constructed by dividing time into blocks
of the same length: the Decision Maker plays a constant mixed action on each time
block, which is used to average the flag estimators; and the Decision Maker changes
his mixed action from one block to the other in order to achieve the convergence to
the target set.

The strategy constructed in Section VI.4.4 manages to average the estimators and
to approach the target at the same time, resulting in an improved (and optimal) con-
vergence rate ofO(T−1/3). We enumerate some of themain ideas used to achieve this.
First, we introduce the linear map R which allows to easily relate the auxiliary game
and the initial game. In particular, it gives a simple comparison between a) the dis-
tance of the average payoff to the target set in the initial game and b) the distance of
the average auxiliary payoff to the auxiliary target set (Lemma VI.5.4). Moreover, it
combines well with the use of convex cones. Those are used, in particular, to consider
the distance d2( ̄g̃ka

T
, ℱk

c ) instead of d2(
̄f̂
T

(k, a), ℱk): this avoids the difficulty of
having a different estimator normalization for each couple (k, a), by simply consider-
ing working with sums. Finally, the auxiliary target set 𝒞̃ is defined by

𝒞̃ = 􏾟
k∈𝒦

𝒞̃k where 𝒞̃k = R−1
k (Rd

−) ∩ (ℱk
c )𝒜.

The setR−1
k (Rd

−) corresponds to approaching the negative orthant in the initial game,
whereas the set (ℱk

c )𝒜 corresponds tomaking the sure the average estimator ̄f̂
T

(k, a)
is close to ℱk. Considering the intersection therefore allows to manage both at the
same time.

VI.8. Proofs of technical lemmas

VI.8.1. Proof of Lemma VI.4.3

Let 1 ⩽ n ⩽ d and b ∈ ℬ. Let us first prove that rn( ⋅ , b) is piecewise affine.
The map f being affine and defined on Δ(𝒥), the set f−1(b) is a polytope. Denote
yb,1,… , yb,q its vertices. Let x ∈ Δ(ℐ). By linearity of g(x, ⋅ ), rn(x, b) can then be
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written
rn(x, b) = maxgn(x, f−1(b)) = max

1⩽p⩽q
gn(x, yb,p).

rn( ⋅ , b) now appears as the maximum of a finite family (gn( ⋅ , yb,p))1⩽p⩽q of linear
functions. It is therefore piecewise affine and so is r( ⋅ , b). Therefore, for each b ∈ ℬ
there exists a decomposition ofΔ(ℐ) into polytopes on each of which r( ⋅ , b) is affine.
ℬ being finite, we can consider the decomposition (𝒳ℓ)ℓ∈ℒ which refines all of them.
r( ⋅ , b) is therefore affine on each polytope 𝒳ℓ for all b ∈ ℬ. Let us now prove that
r( ⋅ ,f) is affine on each polytope 𝒳ℓ for all f ∈ ℱ.

Let f ∈ ℱ, ℓ ∈ ℒ, x1,x2 ∈ 𝒳ℓ and λ ∈ [0, 1]. Using property (iii) from
Lemma VI.4.2, we consider the unique decomposition f = ∑b∈ℬ μ

b ⋅ b and k ∈ 𝒦
such that suppμ ⊂ ℱk. Using the definition of r and the affinity of r( ⋅ , b) on 𝒳ℓ, we
have

r(λx1 + (1− λ)x2,f) = 􏾜
b∈ℬ
μb ⋅ r(λx1 + (1− λ)x2, b)

= 􏾜
b∈ℬ
μb (λr(x1, b) + (1− λ)r(x2, b))

= λ􏾜
b∈ℬ
μb ⋅ r(x1, b) + (1− λ) 􏾜

b∈ℬ
μb ⋅ r(x2, b)

= λr(x1,f) + (1− λ)r(x2,f),

where the last equality stands because of the uniqueness of the decomposition of f
lets us recognize the definitions of r(x1, b) and r(x2, b) from Equation (VI.2).

VI.8.2. Proof of Proposition VI.4.4

(i) Let x ∈ Δ(ℐ) and y ∈ Δ(𝒥). Denote f = f(y). We use property (iii) from
LemmaVI.4.2 to get the unique decompositionf = ∑b∈ℬ μ

b ⋅b and k ∈ 𝒦 such that
suppμ ⊂ ℱk. f−1 being affine on ℱk by property (ii) in Lemma VI.4.2, we have

g(x, y) ∈ g(x, f−1(f)) = g⎛⎜
⎝
x, f−1⎛⎜

⎝
􏾜

b∈supp μ
μb ⋅ b⎞⎟

⎠
⎞⎟
⎠

= g⎛⎜
⎝
x,􏾜

b∈ℬ
μb ⋅ f−1(b)⎞⎟

⎠

= 􏾜
b∈supp μ

μb ⋅ g(x, f−1(b)).
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Then for each 1 ⩽ n ⩽ d,

gn(x, y) ⩽ max 􏾜
b∈supp μ

μb ⋅ g(x, f−1(b)) = 􏾜
b∈ℬ
μb ⋅ maxgn(x, f−1(b))

= 􏾜
b∈ℬ
μb ⋅ rn(x, b) = rn(x,f),

where for the second equality, we recognized the definition of rn(x, b) fromEquation
(VI.1) on page 137, and the the last equality, the definition of rn(x,f) fromEquation
(VI.2).

(ii) Let f ∈ ℱ. Thanks to the characterization of approachability from Proposi-
tion VI.3.2, there exists x ∈ Δ(ℐ) such thatm(x,f) ∈ Rd

−. Let f = ∑b∈ℬ μ
b ⋅ b be

the unique decomposition of f given by Lemma VI.4.2. With the same arguments as
above, we have for each 1 ⩽ n ⩽ d,

rn(x,f) = 􏾜
b∈ℬ
μb ⋅ rn(x, b) = 􏾜

b∈ℬ
μb ⋅ maxgn(x, f−1(b))

= max 􏾜
b∈ℬ
μb ⋅ gn(x, f−1(b)) = maxgn ⎛⎜

⎝
x, f−1⎛⎜

⎝
􏾜
b∈ℬ
μb ⋅ b⎞⎟

⎠
⎞⎟
⎠

= maxgn(x, f−1(f)) = maxmn(x,f) ⩽ 0.

Therefore, r(x,f) ∈ Rd
−.

(iii) Let x ∈ Δ(ℐ), k ∈ 𝒦, f1,f2 ∈ ℱk and λ ∈ [0, 1]. We use property (iii) from
Lemma VI.4.2 to write f1 = ∑b∈ℬ μ

b
1 ⋅ b and f2 = ∑b∈ℬ μ

b
2 ⋅ bwith suppμ1 ⊂ ℱk and

suppμ2 ⊂ ℱk. The unique decomposition of λf1+(1−λ)f2 given by LemmaVI.4.2
is then

λf1 + (1− λ)f2 = 􏾜
b∈ℬ

(λμb1 + (1− λ)μb2) ⋅ b.

Therefore, using the definition of r and the affinity of r(x, ⋅ ) on ℱk,

r(x, λf1 + (1− λ)f2) = r⎛⎜
⎝
x,􏾜

b∈ℬ
(λμb1 + (1− λ)μb2) ⋅ b⎞⎟

⎠
= 􏾜

b∈ℬ
(λμb1 + (1− λ)μb2) ⋅ r(x, b)

= λ􏾜
b∈ℬ
μb1 ⋅ r(x, b) + (1− λ) 􏾜

b∈ℬ
μb2 ⋅ r(x, b)

= λr(x,f1) + (1− λ) ⋅ r(x,f2).
(iv) is already proved in Lemma VI.4.3.
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VI.8.3. Proof of Lemma VI.4.5

Let k ∈ 𝒦 and x ∈ Δ(ℐ). Let us consider span(ℱk) ⊂ R𝒮×ℐ, the linear span of
ℱk. There exists a basis (f1,… ,fq) of span(ℱk) such that fp belongs to ℱk for each
1 ⩽ p ⩽ q. We now define r[k](x, ⋅ ) on span(ℱk) by setting

r[k](x,fp) ∶= r(x,fp), for each element fp of the basis,

and extending linearly. r[k](x, ⋅ ) can then be further extended to the whole space
R𝒮×ℐ by setting its value to zero on some complementary subspace of span(ℱk).

Let us now prove that r[k](x, ⋅ ) coincides with r(x, ⋅ ) on ℱk. Let f ∈ ℱk. In
particular, f belongs to span(ℱk) and can be uniquely written

f =
q
􏾜
p=1
λpfp, where λ1,… , λq ∈ R.

The application r[k](x, ⋅ ) being linear by definition, we have

r[k](x,f) =
q
􏾜
p=1
λpr(x,fp).

We now aim at proving that the above sum is equal to r(x,f). This cannot be done
by directly applying the affinity of r(x, ⋅ ) (property (iii) in Lemma VI.4.4) because
some of the above coefficients λp may be negative. To overcome this, we first separate
the terms according to the signs of the coefficients λp. We denoteΛ+ (resp. Λ−) the
sum of all positive (resp. negative) coefficients λp and write

r[k](x,f) = 􏾜
λp>0
λpr(x,fp) + 􏾜

λp<0
λpr(x,fp)

= Λ+ 􏾜
λp>0

(
λp
Λ+ ) r(x,fp) +Λ− 􏾜

λp<0
(
λp
Λ− ) r(x,fp).

Since each of the above sum is now a convex combination, we can apply the affinity
of r(x, ⋅ ):

r[k](x,f) = Λ+ ⋅ r⎛⎜⎜
⎝
x, 􏾜
λp>0

(
λp
Λ+ )fp

⎞⎟⎟
⎠

+Λ−r⎛⎜⎜
⎝
x, 􏾜
λp<0

(
λp
Λ− )fp

⎞⎟⎟
⎠

.
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Let us prove that

r(x,f) −Λ−r⎛⎜⎜
⎝
x, 􏾜
λp<0

(
λp
Λ− )fp

⎞⎟⎟
⎠

= Λ+ ⋅ r⎛⎜⎜
⎝
x, 􏾜
λp>0

(
λp
Λ+ )fp

⎞⎟⎟
⎠

. (VI.4)

This will prove that r[k](x,f) = r(x,f).

r(x,f) −Λ−r⎛⎜⎜
⎝
x, 􏾜
λp<0

(
λp
Λ− )fp

⎞⎟⎟
⎠

= (1−Λ−) ( 1
1−Λ− r(x,f)�

�+ −Λ−

1−Λ− r
⎛⎜⎜
⎝
x, 􏾜
λp<0

(
λp
Λ− )fp

⎞⎟⎟
⎠

⎞⎟⎟
⎠

= (1−Λ−) ⋅ r⎛⎜⎜
⎝
x, 1
1−Λ−f + 􏾜

λp<0
(−

λp
1−Λ− )fp

⎞⎟⎟
⎠

= (1−Λ−) ⋅ r⎛⎜⎜
⎝
x, 1
1−Λ−

⎛⎜⎜
⎝
f − 􏾜

λp<0
λpfp

⎞⎟⎟
⎠

⎞⎟⎟
⎠

= (1−Λ−) ⋅ r⎛⎜⎜
⎝
x, 􏾜
λp>0

(
λp
1−Λ− )fp

⎞⎟⎟
⎠

.

For relation (VI.4) to be true, it is now enough to prove that Λ+ + Λ− = 1. Since
ℱk ⊂ ℱ ⊂ Δ(𝒮)ℐ, for any f0 = (fis

0)s∈𝒮
i∈ℐ

∈ ℱk, we have

􏾜
s∈𝒮
i∈ℐ

fis
0 = 􏾜

i∈ℐ
􏾜
s∈𝒮

fis
0 = 􏾜

i∈ℐ
1 = |ℐ| .

By applying the above to f and the fp, we get

|ℐ| = 􏾜
s∈𝒮
i∈ℐ

fis = 􏾜
s∈𝒮
i∈ℐ

⎛⎜⎜
⎝

􏾜
λp>0
λpfis

p + 􏾜
λp<0
λpfis

p
⎞⎟⎟
⎠

= 􏾜
λp>0
λp 􏾜

s∈𝒮
i∈ℐ

fis
p + 􏾜

λp<0
λp 􏾜

s∈𝒮
i∈ℐ

fis
p

= Λ+ |ℐ| +Λ− |ℐ| ,
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•f = f0 •f′ = fq•
f1

•f2 •
fq−1…

ℱk1

ℱk2 ℱkq−1

and we indeed getΛ+ +Λ− = 1 by dividing by |ℐ|, which concludes the proof.

VI.8.4. Proof of Lemma VI.4.6

Property (i) follows from thedefinitionofLr and the linearity of themap r[k](a, ⋅ ).
(ii) Let k ∈ 𝒦, a ∈ 𝒜 and f,f′ ∈ ℱ. (ℱk)k∈𝒦 being a finite decomposition of

ℱ into convex polytopes, there exists a finite sequence (k1, k2,… , kq) in 𝒦 such that
the kp’s are all different and a sequence (f0 = f,f1,f2,… ,fq = f′) in the affine
segment [f,f′] such that [fp−1,fp] ⊂ ℱkp for each 1 ⩽ p ⩽ q. Therefore, using the
fact that r[k

′](a, ⋅ ) and r(a, ⋅ ) coincide on ℱk′ for all k′ ∈ 𝒦, we can write

‖r(a,f) − r(a,f′)‖
2

= ∥
q
􏾜
p=1

(r(a,fp−1) − r(a,fp))∥
2

= ∥
q
􏾜
p=1
r[kp](a,fp−1) − r[kp](a,fp)∥

2

⩽
q
􏾜
p=1

∥r[kp](a,fp−1) − r[kp](a,fp)∥
2

⩽ Lr
q
􏾜
p=1

∥fp−1 − fp∥
2

= Lr ‖f − f′‖
2
,

where the last equality holds because the points f0,… ,fq are aligned and ordered.

VI.8.5. Proof of Lemma VI.4.8

(i) Let k ∈ 𝒦. R−1
k (Rd

−) is a closed convex cone as the inverse image via a linear
application of the closed convex coneRd

− (Proposition IV.2.6). ℱk
c is a closed convex
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cone by definition, and (ℱk
c )𝒜 is thus a closed convex cone as a Cartesian product of

closed convex cones. Therefore, 𝒞̃k = R−1
k (Rd

−) ∩ (ℱk
c )𝒜 is also a closed convex cone

as the intersection of two closed convex cones. Then, 𝒞̃ is also a closed convex cone
as a Cartesian product of closed convex cones.

(ii) Let g̃ = (g̃ka)k∈𝒦
a∈𝒜

∈ 𝒞̃. By definition of 𝒞̃, for each k ∈ 𝒦, (g̃ka)a∈𝒜 belongs

to 𝒞̃k and thus to (ℱk
c )𝒜. Therefore, g̃ ∈ ∏k∈𝒦(ℱk

c )𝒜. Moreover,

R(g̃) = 􏾜
k∈𝒦
Rk ((g̃ka)a∈𝒜)

belongs to Rd
−. Indeed, each term of the above sum belongs to Rd

− because for all
k ∈ 𝒦, (g̃ka)a∈𝒜 ∈ 𝒞̃k ⊂ R−1

k (Rd
−).

VI.8.6. Proof of Lemma VI.4.10

(i) Let i ∈ ℐ. Using the conditional expectation with respect to event {it = i}, we
have

E [f̂i
t ∣ 𝒢t] = E[

1{it=i}
P [it = i | 𝒢t]

δst ∣ 𝒢t]

= P [it = i | 𝒢t] × E[
δst

P [it = i | 𝒢t]
∣ 𝒢t, {it = i}]

= E [δst ∣ 𝒢t, {it = i}]
= E [E [δst ∣ yt,𝒢t, {it = i}] ∣ 𝒢t, {it = i}]
= E [s(i, yt) | 𝒢t, {it = i}]
= E [s(i,yt) | 𝒢t]
= E [fi

t ∣ 𝒢t] ,

hence the result.
(ii) We write

E [∥f̂t∥
2

2
∣ 𝒢t] = E⎡⎢

⎣
􏾜
i∈ℐ

∥
1{it=i}

P [it = i | 𝒢t]
δst∥
2

2

∣ 𝒢t
⎤⎥
⎦

= P [it = i | 𝒢t] × E⎡⎢
⎣
􏾜
i∈ℐ

∥
δst

P [it = i | 𝒢t]
∥
2

2

∣ 𝒢t, {it = i}⎤⎥
⎦
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= 􏾜
i∈ℐ

1
P [it = i | 𝒢t]

E [∥δst∥
2

2
∣ 𝒢t, {it = i}]

= 􏾜
i∈ℐ

1
P [it = i | 𝒢t]

⩽ |ℐ|2
γ ,

where the last inequality stands because P [it = i | 𝒢t] ⩾ γ/ |ℐ| by definition of the
strategy.

(iii) We have

∥f̂t∥
2

2
= 􏾜

i∈ℐ
∥

1{it=i}
P [it = i | 𝒢t]

δst∥
2

2

= 􏾜
i∈ℐ

1{it=i}

∥δst∥
2

2

P [it = i | 𝒢t]2

⩽ |ℐ|2
γ2

􏾜
i∈ℐ

1{it=i} = |ℐ|2
γ2 .

VI.8.7. Proof of Lemma VI.6.1

(i) For i ∈ ℐ, we write

E [f̂i
t ∣ 𝒢t] = E [E [δst ∣ 𝒢t, yt] ∣ 𝒢t] = E [s(i,yt) | 𝒢t] = E [fi

t ∣ 𝒢t] .

(ii) The Euclidean norm of a Dirac being equal to 1,

∥f̂t∥
2

2
= ∥(δst)i∈ℐ∥2

2
= 􏾜

i∈ℐ
∥δst∥

2

2
= |ℐ| .

•





CHAPTER VII

CONTINUOUS-TIMEMIRRORDESCENT

This chapter is extracted from the paper A continuous-time approach to online opti-
mization, in collaboration with Panayotis Mertikopoulos, in preparation.

Abstract

We consider a family of learning strategies for online optimization problems that
evolve in continuous time and we show that they lead to no regret. From a more
traditional, discrete-time viewpoint, this continuous-time approach allows us to
derive the no-regret properties of a large class of discrete-time algorithms including
as special cases the exponential weight algorithm, online mirror descent, smooth
fictitious play and vanishingly smooth fictitious play. In so doing, we obtain a
unified view of many classical regret bounds, and we show that they can be
decomposed into a term stemming from continuous-time considerations and a term
which measures the disparity between discrete and continuous time. As a result, we
obtain a general class of infinite horizon learning strategies that guarantee an
O(n−1/2) regret bound without having to resort to a doubling trick.

VII.1. Introduction

Online optimization focuses on decision-making in sequentially changing envi-
ronments (the weather, the stock market, etc.). More precisely, at each stage of a re-
peated decision process, the agent/decision-maker obtains a payoff (or incurs a loss)
based on the environment andhis decision, andhis long-termobjective is tomaximize
his cumulative payoff via the use of past observations.

The worst-case scenario for the agent – and one which has attracted considerable
interest in the literature – is when he has no Bayesian-like prior belief on the environ-
ment. In this context, the cumulative payoff difference between an oracle-like device
(a decision rule which prescribes an action based on knowledge of the future) and a

169
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learning strategy (a rule which only relies on past observations) can become arbitrar-
ily large, even in very simple problems. As a result, in the absence of absolute payoff
guarantees, the most widely used online optimization criterion is that of regret mini-
mization, a notionwhichwas first introduced by [Han57] and has since given rise to a
vigorous literature at the interface of optimization, statistics and theoretical computer
science – see e.g. [CBL06], [SS11] for a survey. Specifically, the cumulative regret of a
strategy compares the payoff obtained by an agent that follows it to the payoff that he
would have obtained by constantly choosing one action; accordingly, one of themain
goals in online optimization is to devise strategies that lead to (vanishingly) small av-
erage regret against any fixed action, and irrespective of how the agent’s environment
evolves over time.

In this paper, we take a continuous-time approach to online optimization and we
consider a class of strategies that lead to no regret in continuous time. From a more
traditional, discrete-time viewpoint, the importance of this approach lies in that it
provides a unifying view of the regret properties of a broad class of well-known
online optimization algorithms. In particular, the discrete-time version of our family
of strategies is an extension of the general class of online mirror descent (OMD)
algorithms (themselves equivalent to “Following the Regularized Leader” (FtRL) in
the case of linear payoffs; see e.g. [SS11], [Bub11], [Haz12]) with a time-varying
parameter. As such, our analysis contains as special cases a) the exponential
weight (EW) algorithm ([LW94], [Vov90]) and its decreasing parameter variant
([ACBG02]); b) smooth fictitious play (SFP) ([FL99], [BHS06]) and vanishingly
smooth fictitious play (VSFP) ([BF13]); and c) the method of online gradient
descent (OGD) introduced by [Zin03] (the Euclidean predecessor of OMD).

With regards to the OMD/FtRL family of algorithms, the vanishing regret
bounds that we derive by using a time-varying parameter are not particularly new:
bounds of the same order can be obtained by taking existing guarantees for
learning with a finite horizon and then using the so-called “doubling trick”
([CBFH+97], [Vov98]). 1 That said, the introduction of a time-varying parameter
has several advantages: a) it allows us to integrate SFP and VSFP into the fold and to
derive explicit bounds for their regret; b) it provides a unified any-time analysis
without needing to reboot the algorithm every so often (to the best of our
knowledge, such an analysis only exists for the EW algorithm with a time-varying
parameter ([Bub11], [ACBG02])); and c) in the case of ordinary convex
optimization problems with an open-ended termination criterion (as opposed to a
fixed number of steps), a variable parameter leads to more efficient value
convergence bounds than a variable step-size.

1. In a nutshell, the doubling trick amounts to breaking up the learning timeline in blocks of expo-
nentially increasing horizon, and then resetting the algorithm at thestart of each blockwith an optimal
parameter for the block’s (finite) horizon.
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Building on an idea that was introduced by [WJ97] in the framework of con-
vex optimization and by [Sor09] in the study of the exponential weight algorithm,
the key ingredient of our analysis is the descent from continuous to discrete time.
More precisely, given an online optimization problem in discrete time, we construct
a continuous-time interpolation where our continuous-time dynamics lead to no re-
gret; then, by comparing the agent’s payoffs in discrete and continuous time, we are
able to deduce a bound for the agent’s regret in the original discrete-time framework.

One of the main contributions of this approach is that it leads to a unified
derivation of several existing regret bounds with disparate proofs; secondly, it allows
us to decompose many classical bounds into two components, a term coming from
continuous-time considerations and a comparison term which measures the
disparity between discrete and continuous time (see also [PM13] for an alternative
interpretation of such a decomposition). Each of these terms can be made arbitrarily
small by itself, but their sum is coupled in a nontrivial way that induces a trade-off
between continuous- and discrete-time considerations: in a sense, faster decay rates
in continuous time lead to greater discrepancies in the discrete/continuous
comparison – and hence, to slower regret decay bounds in discrete time.

Finally, we also give a brief account of how the derived regret bounds are related
to classical convergence results for certain convex optimization and stochastic con-
vex optimization algorithms—including the projected subgradient (PSG) method,
mirror descent (MD), and their stochastic variants ([NY83], [NJLS09]), and we il-
lustrate a (somewhat surprising) performance gap incurred by using an optimization
algorithm with a decreasing parameter instead of a decreasing step-size.

VII.1.1. Paper outline

In Section VII.2, we present some basics of online optimization to fix notation
and terminology; then, in SectionVII.3, we define regularizer functions, choicemaps
and the class of variable-parameter OMD/FtRL strategies that we will focus on. The
core of our paper consists of Sections VII.4 and VII.5: we first show that the corre-
sponding class of continuous-time strategies leads to no regret in Section VII.4; this
analysis is then translated to discrete time in Section VII.5 where we derive the no-
regret properties of the class of algorithms under consideration. Finally, in Section
VII.6, we establish several links with existing online learning and convex optimiza-
tion algorithms, and we show how their properties can be derived as corollaries of our
results.

VII.1.2. Notation and preliminaries

Let d be a positive integer and letV = Rd be equipped with an arbitrary norm ‖⋅‖.
The dual ofV will be denoted byV∗ and the induced dual norm onV∗ will be given
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by the familiar expression:
‖y‖∗ = sup

‖x‖≤1
|⟨y|x⟩| , (VII.1)

where ⟨y|x⟩ denotes the canonical pairing between y ∈ V∗ and x ∈ V. For a
nonempty subsetU ⊂ V will use the notation ‖U‖ = supx∈U ‖x‖.

In the rest of our paper, 𝒞 will denote a nonempty compact convex subset of V;
moreover, given a convex function f ∶ V → R ∪ {+∞}, its effective domain will be
the convex set domf = {x ∈ V ∶ f(x) < ∞}. For convenience, if f ∶ 𝒞 → R is
convex, wewill treatf as a convex function onV by settingf(x) = +∞ for x ∈ V �𝒞;
conversely, iff ∶ V→ R∪{+∞}has domain domf = 𝒞, wewill also treatf as a real-
valued function on 𝒞 (in all cases, the ambientspaceVwill be clear from the context).
Wewill then say that v ∈ V∗ is a subgradient offat x ∈ 𝒞 iff(x′)−f(x) ≥ ⟨v|x′ − x⟩
for all x′ ∈ 𝒞; likewise, the set ∂f(x) = {v ∈ V∗ ∶ v is a subgradient of f at x} will
be called the subdifferential of f at x and f will be called subdifferentiable if ∂f(x) is
nonempty for all x ∈ domf.

If it exists, the minimum (resp. maximum) of a function f ∶ V→ R ∪ {+∞} will
be denoted by fmin (resp. fmax). Moreover, if 𝒜 = {a1,… , ad} is a finite set, the
set Δ(𝒜) of probability measures on 𝒜 will be identified with the standard (d − 1)-
dimensional simplexΔd = {x ∈ Rd

+ ∶ ∑d
i=1 xi = 1} ofRd; also, the elements of 𝒜 will

be identified with the corresponding vertices ofΔ(𝒜), i.e. the canonical basis vectors
{ei}di=1 of Rd. Finally, for x, y ∈ R, we will let ⌊x⌋ = max{k ∈ Z ∶ k ≤ x} and ⌈x⌉ =
min{k ∈ Z ∶ k ≥ x}, and we will write x ∨ y = max{x, y} and x ∧ y = min{x, y}.

VII.2. Themodel

Theheart of the online optimizationmodel that we consider is as follows: at every
discrete time instance n ≥ 1, an agent (decision-maker) chooses an action from a
nonempty convex action set 𝒞 ⊂ V and gains a payoff (or incurs a loss) determined
by some time-dependent function. Information about this function is only revealed
to the agent after he picks his action, and the agent’s objective is tomaximize his long-
term payoff in an adaptive manner.

VII.2.1. The core model

Let 𝒞 ⊂ V denote the agent’s action space. Then, at each stage n ≥ 1, the process
of play is as follows:

1. The agent chooses an action xn ∈ 𝒞.
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2. Nature chooses and reveals the payoff vector un ∈ V∗ of the n-th stage and the agent
receives a payoff of ⟨un|xn⟩. 2

3. The agent uses some decision rule to pick a new action xn+1 ∈ 𝒞 and the process is
repeated ad infinitum.
More precisely, define a strategy to be a sequence of maps σn ∶ (V∗)n−1 → 𝒞, n ≥ 1,

such thatσn+1 determines the player’s action atstage n+1 in terms of the payoff vectors
u1,… , un ∈ V∗ that have been revealed up to stage n (in a slight abuse of notation,
σ1 will be regarded as an element of 𝒞). Then, given a sequence of payoff vectors
u = (un)n≥1 inV∗, the sequence of actions generated by σ will be

xn+1 ≡ σn+1(u1,… , un), (VII.2)

and the agent’s cumulative regret with respect to x ∈ 𝒞 is defined as:

Regσ,un (x) =
n
􏾜
k=1

⟨uk|x⟩ −
n
􏾜
k=1

⟨uk|xk⟩

=
n
􏾜
k=1

⟨uk|x⟩ −
n
􏾜
k=1

⟨uk|σk(u1,… , uk−1)⟩ .
(VII.3)

In what follows, we focus on strategies that lead to no (or, at worst, small) regret:

Definition VII.2.1. A strategy σ leads to ε-regret (ε ≥ 0) if, for every sequence of
payoff vectors (un)n≥1 inV∗ such that ‖un‖∗ ≤ 1:

lim sup
n→∞

1
n max

x∈𝒞
Regσ,un (x) ≤ ε. (VII.4)

In particular, if (VII.4) holds with ε = 0, we will say that σ leads to no regret.

RemarkVII.2.2. Thedefinition of an ε-regretstrategy depends on the dual norm ‖⋅‖∗
ofV∗ (and hence, on the original norm ‖ ⋅ ‖ onV); on the other hand, the definition
of “no regret” is independent of the norm.

Remark VII.2.3. In our framework, we can easily see that a strategy leading to ε-
regret against “any sequence” is equivalent to leading to ε-regret against “any strategy
of nature”. However, this may not be true in the randomized setting we present in the
following paragraph.

Despite its simplicity, this online linear optimization model may be used to ana-
lyze more general online optimization models. In what follows, we summarize some
examples of this kind.

2. Nature may be adversarial, i.e. un may be chosen as a function of x1,… , xn.
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VII.2.2. The case of the simplex andmixed actions

Consider a discrete decision process where, at each stage n ≥ 1, the agent chooses
an action an from a finite set of pure actions 𝒜 = {1,… ,d}. To do so, the agent draws
an according to some probability distribution xn ∈ Δ(𝒜); then, once an is drawn,
the payoff vector un ∈ [−1, 1]d which prescribes the payoff un,a of each action a ∈ 𝒜
is revealed and the agent receives the payoff un,an that corresponds to his choice of
action. Moreover, we assume thatNature’s choice of payoff vector un does not depend
on pure action an.

In this setting, a strategy is still defined as in the core model of Section VII.2.1
with the agent’s action set replaced by the set of mixed actions Δ(𝒜). 3 The agent’s
realized regret with respect to a pure action a ∈ 𝒜 will then be

n
􏾜
k=1

(uk,a − uk,ak), (VII.5)

andwewill say that a strategy σ leads to ε-realized-regret (resp. to no realized regret for
ε = 0) if

lim sup
n→∞

1
n max

a∈𝒜

n
􏾜
k=1

(uk,a − uk,ak) ≤ ε (a.s.), (VII.6)

for every strategy of Nature choosing payoff vectors (un)n⩾1 in Rd such that ‖un‖∞ ≤
1. 4 Besides, consider the filtration (ℱn)n⩾1 where ℱn is generated by

(x1, u1, i1,… , xn−1, un−1, in−1, xn, un).

Then, then conditional expectation E [un,an ∣ ℱn] is equal to ⟨un|xn⟩. Using a classical
argument based onHœffding’s inequality and the Borel–Cantelli lemma, the realized
regret canbe shown tobe closewithhighprobability to the regret as defined inSection
VII.2.1 (see Lemma II.2.1). Therefore, the minimization of (VII.5) is then reduced
to the core model of Section VII.2.1:

Proposition VII.2.4 ([CBL06], Corollary 4.3). If a strategy σ leads to ε-regret with
respect to the uniform norm onV∗, it also leads to ε-realized-regret.

VII.2.3. Online convex optimization

We briefly discuss here a more general online convex optimization model where
losses are determined by a sequence of convex functions. Formally, the only change

3. In a more general setting, the choice at each stage might depend not only on the past payoff
vectors, but also on the agent’s realized actions a1,… , an.

4. This condition is also called external ε-consistency ([FL99], [BHS06]).
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from Section VII.2.1 is that at each stage n ≥ 1, the agent incurs a loss ℓn(xn) deter-
minedby a subdifferentiable convex loss function ℓn ∶ 𝒞 → R. In this nonlinear setting,
the information revealed to the agent after playing includes a (negative) subgradient
un ∈ −∂ℓn(xn) ⊂ V∗ of ℓn at xn, so the incurred cumulative regret with respect to a
fixed action x ∈ 𝒞 is:

n
􏾜
k=1

ℓk(xk) −
n
􏾜
k=1

ℓk(x). (VII.7)

By convexity, ℓk(x′) − ℓk(x) ≤ ⟨v|x′ − x⟩ for all v ∈ ∂ℓk(x′) and for all x ∈ 𝒞; in this
way, (VII.7) readily yields:

n
􏾜
k=1

ℓk(xk) −
n
􏾜
k=1

ℓk(x) ⩽ −
n
􏾜
k=1

⟨uk|xk − x⟩ =
n
􏾜
k=1

⟨uk|x⟩ −
n
􏾜
k=1

⟨uk|xk⟩ (VII.8)

where uk ∈ −∂ℓk(xk). This last expression can obviously be interpreted as the regret
incurred by an agent facing a sequence of payoff vectors un ∈ V∗ (cf. the core model
of Section VII.2.1), so a strategy which guarantees a bound on the right-hand side of
(VII.8) will guarantee the same for (VII.7). Consequently, when the loss functions ℓn
are uniformly Lipschitz continuous, results for the core model can be directly trans-
lated into this one.

VII.3. Regularizer functions, choice maps and learning strategies

VII.3.1. Regularizer functions and choice maps

We begin with the concept of a regularizer function:

DefinitionVII.3.1. Aconvex function h ∶ V→ R∪{+∞} will be called a regularizer
function on 𝒞 if dom h = 𝒞 and h|𝒞 is strictly convex and continuous.

Remark VII.3.2. This definition is intimately related to the notion of a Legendre-
type function (see e.g. [Roc70, Section26]); however, aswas recently notedby [SS07]
(and in contrast to the analysis of e.g. [BF13], [Bub11] and [BHS06]), we will not
require any differentiability or steepness assumptions.

A key tool in our analysis will be the convex conjugate h∗ ∶ V∗ → R ∪ {+∞} of h
defined as

h∗(y) = sup
x∈V

{⟨y|x⟩ − h(x)}. (VII.9)

Since h is equal to+∞ onV � {𝒞} and h|𝒞 is continuous andstrictly convex, the supre-
mum in (VII.9) will be attained at a unique point in 𝒞. This unique maximizer then
defines our choice map as follows:
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Definition VII.3.3. The choice map associated to a regularizer function h on 𝒞 will
be the mapQh ∶ V∗ → 𝒞 defined as

Qh(y) = argmax
x∈𝒞

{⟨y|x⟩ − h(x)}, y ∈ V∗. (VII.10)

Example VII.3.4 (Entropy and logit choice). In the case of the simplex (𝒞 = Δd), 5
a classical example of a choice map is generated by the entropy function

h(x) = {∑d
i=1 xi log xi if x ∈ Δd,

+∞ otherwise.
� (VII.11)

A standard calculation then yields the so-called logit choice map:

Qh(y) = 1
∑d

j=1 e
yj

(ey1,… , eyd) . (VII.12)

Thismap is used todefine the exponentialweight algorithm(cf. SectionVII.6), and its
importance stems from the well known fact that it leads to the optimal regret bound
for 𝒞 = Δd ([CBL06, Theorems 2.2 and 3.7]).

Example VII.3.5 (Euclidean projection). Another important example arises by tak-
ing the squared Euclidean distance as a regularizer function; more precisely, we define
the Euclidean regularizer on 𝒞 as

h(x) = {
1
2 ‖x‖22 if x ∈ 𝒞,
+∞ otherwise.

� (VII.13)

The associated choice mapQh ∶ RN → 𝒞 corresponds to taking the orthogonal pro-
jection with respect to 𝒞:

Qh(y) = argmax
x∈𝒞

{� ⟨y|x⟩ − 1
2‖x‖22}�

= argmin
x∈𝒞

{� 1
2‖x‖22 − ⟨y|x⟩ + 1

2‖y‖22}� = argmin
x∈𝒞

‖y − x‖22. (VII.14)

Example VII.3.6 (Bregman projections). The Euclidean example above is a special
case of a class of projection mappings known as Bregman projections ([Bre67]).

LetF ∶ V⟶ R∪{+∞}be a proper convex function, differentiable on its domain.
Let us denote 𝒟 = domF and for x,x′ ∈ 𝒟, the Bregman divergenceDF ∶ 𝒟 × 𝒟 ⟶
R is defined as

DF(x, x′) = F(x) − F(x′) − ⟨∇F(x′)|x − x′⟩ . (VII.15)

5. In this setting, choice maps are more commonly known as smooth best reply maps
([FL98], [HS02], [BHS06], [BF13]).
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Hence, given a compact set 𝒞 ⊂ 𝒟, the associated Bregman projection of a point x0 ∈
𝒟 onto 𝒞 is given by

pr𝒞
F

(x0) = argmin
x∈𝒞

DF(x, x0). (VII.16)

Now assume that F∗ is also differentiable on its domain which we will denote 𝒟∗. It is
easy to check that for y ∈ 𝒟∗, ∇F∗(y) ∈ 𝒟 and ∇F(∇F∗(y)) = y. Then, the process
of mapping y ∈ 𝒟∗ to ∇F∗(y) and then projecting to 𝒞 can be written as a choice
map in the sense of (VII.10):

pr𝒞
F

∇F∗(y) = argmin
x∈𝒞

{F(x) − F(∇F∗(y)) − ⟨∇F(∇F∗(y))|x − ∇F∗(y)⟩}

= argmin
x∈𝒞

{F(x) − ⟨y|x⟩} = argmax
x∈Rd

{⟨y|x⟩ − h(x)} =Qh(y),

(VII.17)

where h|𝒞 = F|𝒞 and h(x) = +∞ for x ∈ Rd � {𝒞}.

VII.3.2. Strategies generated by regularizer functions

The class of strategies that we will consider in the rest of this paper is a variable-
parameter extension of the so-called online mirror descent (OMD) method – it-
self equivalent to the family of algorithms known as Follow the Regularized Leader
(FtRL) in the case of linear payoffs (see e.g. [SS11] and [Haz12]).

In a nutshell, this class of strategies may be described as follows: the agent aggre-
gates his payoffs over time into a score vector y ∈ V∗ and then uses a choice map to
turn these scores into actions and continue playing. Formally, if h is a regularizer func-
tion on the agent’s actionspace 𝒞 and (ηn)n⩾1 is a positive nonincreasing sequence,the
strategy σ ≡ (σh,ηnn )

n≥1
generated by h with parameter ηn is defined as

σn+1(u1,… , un) =Qh (ηn
n
􏾜
k=1

uk) , (VII.18)

with σ1 = Qh(0). The corresponding sequence of play xn+1 = σn+1(u1,… , un) will
then be given by the recursion:

Un = Un−1 + un,
xn+1 =Qh(ηnUn).

In addition to the standard variants ofOMD/FtRL, a list of examples of strategies
and algorithms that can be expressed in this general form is given in Table VII.1. A
more detailed analysis (including the regret properties of each algorithm) will also be
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provided in Section VII.6; we only mention here that the variability of ηn will be key
for the no-regret properties of σ: when ηn is constant, the strategy (VII.18) does not
guarantee a sublinear regret bound (see e.g. [SS11] and [Bub11]).

VII.3.3. Regularity of the choice map and the role of strong convexity

In this section, we derive some regularity properties of the choicemapQh that will
be needed in the analysis of the subsequent sections. We begin by showing thatQh is
continuous and equal to the gradient of h∗:

Proposition VII.3.7. Let h be a regularizer function on 𝒞. Then h∗ is continuously dif-
ferentiable on 𝒞 and ∇h∗(y) =Qh(y) for all y ∈ V∗.

Proof. For y ∈ V∗, we have

x ∈ ∂h∗(y) ⟺ y ∈ ∂h(x) ⟺ x ∈ argmaxx′∈𝒞 {⟨y|x′⟩ − h(x′)} , (VII.19)

i.e. ∂h∗(y) = argmaxx′∈𝒞{⟨y|x′⟩ − h(x′)}. However, since the latter set only con-
sists of Qh(y), h∗ will be differentiable with ∇h∗(y) = Qh(y) for all y ∈ V∗. The
continuity of ∇h∗ then follows from [Roc70, Corollary 25.5.1].

In the discrete-time analysis of Section VII.5, (VII.18) will be shown to guarantee
a regret bound of a simple form whenQh is Lipschitz continuous. This last require-
ment is equivalent to h being strongly convex:

DefinitionVII.3.8. Letf ∶ Rd → R∪ {+∞} be a convex function, let ‖ ⋅ ‖ be a norm
on Rd, and letK > 0.
(1) f isK-strongly convex w.r.t. ‖ ⋅ ‖ if, for all w1,w2 ∈ Rd and for all λ ∈ [0, 1]:

f(λw1+(1−λ)w2) ≤ λf(w1)+(1−λ)f(w2)− 12Kλ(1−λ) ‖w2−w1‖2. (VII.20)

(2) f isK-strongly smooth w.r.t. ‖ ⋅ ‖ if it is differentiable and, for all w1,w2 ∈ Rd:

f(w2) ≤ f(w1) + ⟨∇f(w1)|w2 − w1⟩ + 1
2K ‖w2 − w1‖2. (VII.21)

Strong convexity of a function was shown in [KSST12] to be equivalent to strong
smoothness of its conjugate. In turn, this equivalence yields the following characteri-
zation of Lipschitz continuity:

Proposition VII.3.9. Let f ∶ V → R ∪ {+∞} be proper and lower semi-continuous.
Then, forK > 0, the following are equivalent:
(i) f isK-strongly convex with respect to ‖ ⋅ ‖.
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(ii) f∗ is differentiable and ∇f∗ is 1/K-Lipschitz.
(iii) f∗ is 1/K-strongly smooth with respect to ‖ ⋅ ‖∗.

Hence, given that regularizer functions are proper and lower semi-continuous by
definition, Proposition VII.3.9 leads to the following characterization:
Corollary VII.3.10. Let h be a regularizer function𝒞 andK > 0. Theassociated choice
mapQh isK-Lipschitz continuous if and only if h isK-strongly convex with respect to ‖ ⋅ ‖.

This characterization of the Lipschitz continuity of ∇f∗ (whichwill be of particu-
lar interest tous) is a classical result in the case of theEuclideannorm– see e.g. [RW98,
Proposition 12.60]. On the other hand, the implication (ii) ⟹ (iii) appears to be
new in the case of an arbitrary norm (though the proof technique is fairly standard).

Proof of Proposition VII.3.9. We will show that (i) ⟹ (ii) ⟹ (iii) ⟹ (i).
(i) ⟹ (ii). See e.g. [BT03, Proposition 3.1], [Nes09, Lemma 1] or [SS07,
Lemma 15].
(ii) ⟹ (iii). Fix y1, y2 ∈ V∗, let z = y2 − y1, and set ϕ(t) = f∗(y1 + tz),
t ∈ [0, 1]. IdentifyingV withV∗∗ and ‖ ⋅ ‖∗∗ with ‖ ⋅ ‖, we have:

ϕ′(t) − ϕ′(0) = ⟨∇f∗(y1 + tz) − ∇f∗(y1)|z⟩
≤ ‖z‖∗‖∇f∗(y1 + tz) − ∇f∗(y1)‖ ≤ t

K‖z‖2∗, (VII.22)

where the first inequality follows from the definition of the dual norm and the second
from the assumed Lipschitz continuity of f∗. By integrating, we then get:

ϕ(t) − ϕ(0) ≤ ϕ′(0)t + 1
2Kt

2‖z‖2∗, (VII.23)

and hence, for t = 1:
f∗(y2) − f∗(y1) ≤ ⟨∇f∗(y1)|y2 − y1⟩ + 1

2K‖y2 − y1‖2∗, (VII.24)

which shows that f∗ is 1/K-strongly smooth.
(iii) ⟹ (i). Since f is proper and lower semi-continuous, it will also be closed.
Our assertion then follows from e.g. [KSST12, Theorem 3].

We close this section by stating the strong convexity properties of the regularizer
functions of ExamplesVII.3.4 andVII.3.5 (which thus imply theLipschitz continuity
of the corresponding choice maps):
Proposition VII.3.11. With notation as in Examples VII.3.4 and VII.3.5, we have:
(i) The entropy h ∶ Δd → R of (VII.11) is 1-strongly convex w.r.t. ‖ ⋅ ‖1.
(ii) The Euclidean regularizer h ∶ 𝒞 → R of (VII.13) is 1-strongly convex w.r.t. ‖ ⋅ ‖2.

Proof. The strong convexity of the Euclidean regularizer is trivial; for the strong con-
vexity of the entropy with respect to ‖ ⋅ ‖1, see e.g. [BT03, Proposition 5.1].
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VII.4. The continuous-time analysis

Motivated by a technique introduced by [Sor09] in the context of the exponential
weight (EW) algorithm, we present in this section a continuous-time version of the
class of strategies of Section VII.2 and we derive a bound for the induced regret in
continuous time. This will then enable us to bound the actual discrete-time regret by
comparing the continuous- and discrete-time variants of this and the previous section
respectively.

In continuous time, instead of a sequence of payoff vectors (un)n≥1 inV∗, the agent
will be facing a measurable and locally integrable stream of payoff vectors (ut)t∈R+

in
V∗. Hence, extending (VII.18) to continuous time, we will consider the process:

xct =Qh (ηt􏾙
t

0
us ds) , (VII.25)

where (ηt)t∈R+
is a positive, nonincreasing and piecewise continuous parameter, while

xct ∈ 𝒞 denotes the agent’s action at time t given the history of payoff vectors us,
0 ≤ s < t. 6

Our main result in this section is the following regret bound for (VII.25):

Theorem VII.4.1. If h is a regularizer function on 𝒞 and (ηt)t∈R+
is a positive, non-

increasing and piecewise continuous parameter, then, for every locally integrable payoff
stream (ut)t∈R+

inV∗, we have:

max
x∈𝒞

􏾙
t

0
⟨us|x⟩ ds − 􏾙

t

0
⟨us|xcs⟩ ds ≤ hmax − hmin

ηt
. (VII.26)

Proof. Assume first that ηt is of class C1 and let yt = ηt∫
t
0
us ds. Then, for all x ∈ 𝒞

and for all t ≥ 0, Fenchel’s inequality gives:

􏾙
t

0
⟨us|x⟩ ds = ⟨yt|x⟩

ηt
≤ h∗(yt) + h(x)

ηt
≤ h∗(yt)
ηt

+ hmax
ηt

. (VII.27)

On the other hand, with xct =Qh(yt), we will also have by definition:

h∗(yt)
ηt

= ⟨yt|xct⟩ − h(xct)
ηt

= 􏾙
t

0
⟨us|xct⟩ ds − h(xct)

ηt
. (VII.28)

Consider the function ϕ ∶ (x, t) ↦ ∫t
0

⟨us|x⟩ ds − h(x)/ηt. For fixed t ≥ 0, one can
check that xct maximizes ϕ(x, t), so we can apply the envelope theorem (see

6. In the rest of the paper, we will consistently use n and k for discrete indices and s, t,… for con-
tinuous ones.
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e.g. [MCWG95, Theorem M.L.1]) to differentiate ϕ(xct, t) with respect to t:

d
dt

h∗(yt)
ηt

= ∂ϕ
∂t (xct, t) = ⟨ut|xct⟩ + ̇ηt

η2t
h(xct) ≤ ⟨ut|xct⟩ + hmin

̇ηt
η2t
, (VII.29)

where we used the fact that, by assumption, ̇η ⩽ 0. Integrating (VII.29) then yields

h∗(yt)
ηt

≤ h∗(y0)
η0

+ 􏾙
t

0
⟨us|xcs⟩ ds+ hmin 􏾙

t

0

̇ηs
η2s

ds = 􏾙
t

0
⟨us|xcs⟩ ds− hmin

ηt
, (VII.30)

where we have used the fact that h∗(y0) = h∗(0) = −hmin in the second step. Hence,
by combining this last equation with (VII.27), we finally obtain:

􏾙
t

0
⟨us|x⟩ ds ≤ 􏾙

t

0
⟨us|xcs⟩ ds − hmin

ηt
+ hmax
ηt
, (VII.31)

and our claim follows by taking the maximum of the left-hand side over x ∈ 𝒞.
If ηt is not smooth, let ηmt , m = 1, 2… , be a sequence of positive and nonin-

creasing parameters of class C1 that converges pointwise to ηt. Then, if we let ymt =
ηmt ∫t

0
us ds and xmt = Qh(ymt ), we will also have xms → xcs pointwise for all s ∈ [0, t]

by the continuity of Qh. By the dominated convergence theorem, this implies that
∫t
0

⟨us|xms ⟩ ds → ∫t
0

⟨us|xcs⟩ ds and our assertion follows by the bound (VII.31) for
smoothly varying parameters.

Remark VII.4.2. We should note here that the quantity δh = hmax −hmin in (VII.26)
can be taken arbitrarily small so there is no “optimal” regret bound in continuous time.
That said, we shall see in the following section that smaller values of δh result in greater
disparities between continuous and discrete time, thus leading to a trade-off for the
regret in discrete time.

VII.5. Regret minimization in discrete time

In this section, our aim will be to provide a bound for the regret incurred by the
discrete-time strategy (VII.18). To that end, our approach will be as follows: first,
given a positive nonincreasing parameter (ηn)n≥1 and a sequence of payoff vectors
(un)n≥1, we construct their continuous-time counterparts by setting

ut = u⌈t⌉ (VII.32a)

and
ηt = η⌊t⌋∨1 (VII.32b)
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for all t ∈ R+ (i.e. ηt = η⌊t⌋ if t ≥ 1 and ηt = η1 otherwise). Then, given a regu-
larizer h ∶ 𝒞 → R, we will compare the cumulative payoffs of the processes (xn)n≥1
and (xct)t∈R+

that are generated by (VII.18) and (VII.25) in discrete and continuous
time respectively. In this way, the derived regret bound will consist of two terms: one
coming from the continuous-time bound (VII.26), and a term coming from the dis-
crete/continuous comparison. Formally:

Theorem VII.5.1. Let h be a K-strongly convex regularizer on 𝒞 and let (ηn)n≥1 be a
positive nonincreasing parameter. Then, for every sequence of payoff vectors (un)n≥1 inV∗,
the sequence of play

xn+1 =Qh (ηn
n
􏾜
k=1

uk) (VII.33)

generated by the strategy σ = (σh,ηnn )n≥1 of (VII.18) guarantees the bound

max
x∈𝒞

Regσ,un (x) ≤ hmax − hmin
ηn

+ 1
2K

n
􏾜
k=1
ηk−1‖uk‖2∗, (VII.34)

where we have set η0 = η1. In particular, if ‖un‖∗ ≤M for someM > 0, then:

max
x∈𝒞

Regσ,un (x) ≤ hmax − hmin
ηn

+ M
2

2K

n
􏾜
k=1
ηk−1. (VII.35)

Proof. Define the continuous-time interpolations of un and ηn as in (VII.32) and let
yt = ηt∫

t
0
us ds; Then, for the continuous-time process xct = Qh (yt) generated by

(VII.25), we will have:

xn =Qh (ηn−1
n−1
􏾜
k=1

uk) = xcn−1, (VII.36)

and hence, for k ≥ 1 and t ∈ (k − 1, k), the payoffs corresponding to xct and xk will
differ by at most

| ⟨ut|xct⟩ − ⟨uk|xk⟩ | = | ⟨uk∣xct − xck−1⟩ |

≤ ‖uk‖∗‖Qh(yt) −Qh(yk−1)‖ ≤ 1K‖uk‖∗ ‖yt − yk−1‖∗, (VII.37)

where the last inequality follows from the 1/K-Lipschitz continuity of Qh (Corol-
lary VII.3.10). On the other hand, the definition of yt gives

‖yt − yk−1‖∗ = ∥ηk−1􏾙
t

k−1
us ds∥

∗
≤ ηk−1‖uk‖∗(t − k + 1), (VII.38)
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which leads to the estimate:

∣􏾙
n

0
⟨ut|xct⟩ −

n
􏾜
k=1

⟨uk|xk⟩∣ ≤
n
􏾜
k=1

􏾙
k

k−1
| ⟨ut|xct⟩ − ⟨uk|xk⟩ | dt

≤ 1K
n
􏾜
k=1
ηk−1‖uk‖2∗ 􏾙

k

k−1
(t − k + 1) dt

= 1
2K

n
􏾜
k=1
ηk−1‖uk‖2∗. (VII.39)

In view of this discrete/continuous comparison, we thus obtain:

max
x∈𝒞

n
􏾜
k=1

⟨uk|x⟩ = max
x∈𝒞

􏾙
t

0
⟨ut|x⟩ dt

≤ 􏾙
n

0
⟨ut|xct⟩ dt + hmax − hmin

ηn

≤
n
􏾜
k=1

⟨uk|xk⟩ + 1
2K

n
􏾜
k=1
ηk−1‖uk‖2∗ + hmax − hmin

ηn
, (VII.40)

where the first inequality follows from Theorem VII.4.1 and the last one from
(VII.39); the bounds (VII.34) and (VII.35) are then immediate.

To get the optimal dependence of the bound (VII.35) in n, both terms should scale
as

√n (otherwise, one would be slower than the other). In this case, we get a bound
for the average regret which vanishes asO(n−1/2):
Corollary VII.5.2. Let (un)n≥1 be a sequence of payoff vectors inV∗. Then, withnotation
as in Theorem VII.5.1, the sequence of play

xn+1 =Qh (√K(hmax − hmin)
M2n

n
􏾜
k=1

uk) (VII.41)

guarantees the regret bound:

max
x∈𝒞

Regσ,un (x) ≤ 2M√hmax − hmin
K ( 14 + √

n) . (VII.42)

Proof. Set δh = hmax − hmin and ηn = η/√n with η =M−1√Kδh. Then:

n
􏾜
k=1
ηk−1 = η+ η

n−1
􏾜
k=1

1√
k

≤ η+ η􏾙
n−1

0

1√
t
dt ≤ η (1+ 2√n) , (VII.43)
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so the bound (VII.35) becomes:

δh
ηn

+ M
2

2K

n
􏾜
k=1
ηk−1 ≤ δhη

√
n + M

2η
2K (1+ 2√n) = 2M√δh

K ( 14 + √
n) .

Remark VII.5.3. We should stress here that regret guarantees of the same order as
(VII.42) can be obtained for the OMD/FtRL family of algorithms by optimizing the
choice of parameter over a finite learning horizon and then restarting the algorithm
every so often, using the doubling trick ([CBFH+97], [Vov98]) to guarantee a sub-
linear regret bound in the long run. The doubling trick may thus be seen as a special
case of a nonincreasing parameter; for the general case, the bounds (VII.34)/(VII.35)
describe in a precise way the impact of the variability of ηn on the method’s regret
guarantees (see also Section VII.6 for a more detailed discussion).

Remark VII.5.4. The dependence of η on δh,K andM in (VII.42) has been chosen
precisely so as to minimize the expression (δh/η+M2η/K) over all η > 0.

RemarkVII.5.5 (On the dependence onK and the choice of optimal h). Thedepen-
dence of the bound (VII.42) onK is clearly artificial: (VII.42) remains invariant if h
is rescaled by a positive constant, so it suffices to consider regularizer functions that
are 1-strongly convex over 𝒞. This then leads to the following question: given a norm
‖⋅‖ onV and a compact convex subset 𝒞 ⊂ V, which 1-strongly convex functionminimizes
hmax − hmin? With the exception of the Euclidean norm, this question does not seem
to admit a trivial answer (cf. Section VII.7.1 for a more detailed discussion).

By expressing the cumulative payoff gap between discrete- and continuous-time
exactly,TheoremVII.5.1 can be extended further to regularizer functions that are not
strongly convex over𝒞. Theonly thing that changes in this case is that the comparison
term of the bound (VII.35) is replaced by a term involving the Bregman divergence
associated with the convex conjugate h∗ of h.

The following result is a variable-parameter extension ofTheorem5.6 in [BCB12].

Theorem VII.5.6. Let h be a regularizer function on 𝒞. Then, with notation as in The-
orem VII.5.1, the strategy σ = (σh,ηnn )n≥1 of (VII.18) guarantees the regret bound:

max
x∈𝒞

Regσ,un (x) ≤ hmax − hmin
ηn

+
n
􏾜
k=1

1
ηk−1
Dh∗(y−

k , y+
k−1), (VII.44)

where we have set y+
n = ηn∑n

k=1 uk, y
−
n = ηn−1∑

n
k=1 uk and η0 = η1.
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Proof. With notation as in the proof ofTheoremVII.5.1, the variables y±
n in the state-

ment of the theorem may be expressed more concisely as:

y±
n = lim

t→n±
yt = lim

t→n±
ηt􏾙

t

0
us ds, (VII.45)

andhence, withηt right-continuous, we getxn =Qh(yn−1) =Qh(y+
n−1). Accordingly,

if xct = Qh(yt) denotes the continuous-time process generated by (VII.25), then, for
all k ≥ 1 and for all t ∈ (k − 1, k), we will have:

⟨ut|xct⟩ − ⟨uk|xk⟩ = ⟨ut|Qh(yt)⟩ − ⟨uk∣Qh(y+
k−1)⟩ = ⟨uk|∇h∗(yt)⟩ − ⟨uk∣∇h∗(y+

k−1)⟩ .
(VII.46)

In this way, noting that ⟨ut|∇h∗(yt)⟩ is simply the derivative of h∗(yt)/ηk−1 for t ∈
(k − 1, k), we obtain the following comparison over (k − 1, k):

􏾙
k

k−1
⟨ut|xct⟩ dt − ⟨uk|xk⟩ = 􏾙

k

k−1

1
ηk−1

d
dt (h∗(yt)) dt − 1

ηk−1
⟨ηk−1uk∣∇h∗(y+

k−1)⟩

= 1
ηk−1

(h∗(y−
k ) − h∗(y+

k−1) − ⟨y−
k − y+

k−1∣∇h∗(y+
k−1)⟩)

= 1
ηk−1
Dh∗ (y−

k , y+
k−1) . (VII.47)

In view of the above, the claim follows by summing this bound over k = 1,… , n and
plugging the resulting expression in the first inequality of (VII.40) – which holds
independently of any assumptions on h.

VII.6. Links with existing results

In this section, we discuss how certain existing results in online optimization and
(stochastic) convex programming can be obtained as corollaries of the general analysis
of the previous sections.

VII.6.1. Links with known online optimization algorithms

The Exponential Weight Algorithm. The exponential weight (EW) algorithm
was introduced independently by [LW94] and [Vov90] as a learning strategy in dis-
crete time. Motivated by the approach of [Sor09]who used a continuous-time variant
to retrieve the algorithm’s classical regret bounds, we show here how the same bounds
can be obtained directly from Theorem VII.5.1.

The framework of the EW algorithm is that of randomized action selection as in
Section VII.2.2. Specifically, let 𝒜 = {1,… ,d} be a finite set of pure actions, and let
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the agent’s action set be the unit simplex 𝒞 = Δd of Rd – the latter being endowed
with the ℓ1 norm ‖ ⋅ ‖1. In this context, the EW algorithm is defined as:

Un = Un−1 + un,

xi,n+1 = eηUi,n

∑d
j=1 e

ηUj,n

(EW)

where η > 0 is a (fixed) parameter and (un)n≥1 is a sequence of payoff vectors in [−1, 1]d
(so that ‖un‖∞ ≤ 1 in the induced dual norm).

ExampleVII.3.4 in SectionVII.3.1 shows that (EW) corresponds to (VII.18)with
ηn = η and h(x) = ∑d

i=1 xi log xi. Since hmax − hmin = logd and h is 1-strongly convex
with respect to ‖ ⋅ ‖1 (cf. Proposition VII.3.11), Theorem VII.5.1 readily yields the
bound

max
a∈𝒜

Regn(a) ≤ logd
η + nη

2 . (VII.48)

Additionally, if the time horizon n is known in advance, the optimal parameter choice
η = √2 logd/n leads to

max
α∈𝒜

Regn(a) ≤ √2n logd, (VII.49)

which, as far as the dependence on d and n is concerned, is the best possible bound a
strategy can guarantee in this framework – see e.g. [CBL06, Theorem 3.7].

RemarkVII.6.1. By taking un ∈ [0, 1]d (as is often the case in the literature) and then
shifting to [−1/2, 1/2]d, Theorem VII.5.1 can be applied withM = 1/2. This yields
a factor of 1/8 in the second term of (VII.48) and leads to the bound obtained by
[CB97] and [CBL06].

The Exponential Weight Algorithm with ηn = 1/√n. [ACBG02] considered
the following variant of (EW)

Un = Un−1 + un,

xi,n+1 = eηUi,n/√n

∑d
j=1 e

ηUj,n/√n . (EW′)

In our context, a direct application of Corollary VII.5.2 withM = K = 1 then gives

max
a∈𝒜

Regn(a) ≤ 2√n logd + 12√logd, (VII.50)

a bound which, unlike (VII.49), has the advantage of holding uniformly in time.
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Smooth Fictitious Play. The smooth fictitious play (SFP) process was introduced
by [FL95] (see also [FL98] and [FL99]), and its regret properties were examined fur-
ther by [BHS06] using the theory of stochastic approximation – but without provid-
ing any quantitative bounds for the regret.

Just like the EW algorithm, SFP falls within the randomized actions framework
of Section VII.2.2. In particular, SFP corresponds to the sequence of play generated
by (VII.18) for an arbitrary regularizer onΔd and with parameter η/n for some η > 0
; specifically:

xn+1 =Qh (ηn
n
􏾜
k=1

uk) . (SFP)

With regards to the regret induced by (SFP), [BHS06, Theorem 6.6] show that for
every ε > 0, there exists some η∗ ≡ η∗(ε) such that the strategy (SFP) with parameter
η ≥ η∗ leads to ε-realized-regret. On the other hand, combining Proposition VII.2.4
with Theorem VII.5.1 yields the following more precise statement:

PropositionVII.6.2. Let h be aK-strongly convex regularizer onthe unit simplexΔd ⊂
Rd endowed withthe ℓ1 norm. Then, for every sequence of payoff vectors (un)n≥1 in [−1, 1]d,
the strategy (SFP) with parameter η > 0 guarantees

max
a∈𝒜

Regn(a) ≤ hmax − hmin
η n + η log n2K + ηK . (VII.51)

In particular, (SFP) with parameter η leads to (hmax − hmin)/η (realized) regret.

Proof. Simply combine the logarithmic growth estimate ∑n
k=1 k

−1 < 1 + log n for the
harmonic series and Theorem VII.5.1 with ηn = η/n; the claim for the realized regret
then follows from Proposition VII.2.4.

Remark VII.6.3. It should be noted here that the qualitative analysis of [BHS06]
does not require h to be strongly convex; that said, if h is strongly convex, Proposition
VII.6.2 gives a quantitative bound on the regret.

Vanishingly Smooth Fictitious Play. The variant of SFP known as vanishingly
smooth fictitious play (VSFP) was introduced by [BF13], and its regret properties
were established using sophisticated tools from the theory of differential inclusions
and stochastic approximation – but, again, without providing explicit regret bounds.

Using the same notation as before, VSFP corresponds to the sequence of play

xn+1 =Qh (ηn
n
􏾜
k=1

uk) , (VSFP)

where h is a strongly convex regularizer on Δd and the sequence ηn satisfies:
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(A1) limn→∞ nηn = +∞.

(A2) ηn = O(n−α) for some α > 0.
Under these assumptions, the main result of [BF13] is that (VSFP) leads to no re-
alized regret; in our framework, this follows directly from Proposition VII.2.4 and
Theorem VII.5.1 (which also gives a quantitative regret guarantee):

PropositionVII.6.4. Withnotationas inPropositionVII.6.2,thestrategy (VSFP)with
ηn satisfying assumptions (A1) and (A2) guarantees the regret bound

max
a∈𝒜

1
n Regn(a) ≤ hmax − hmin

nηn
+ 1
2nK

n
􏾜
k=1
ηk−1, (VII.52)

and thus leads to no regret. In particular, if ηn = ηn−α for some α ∈ (0, 1), then:

max
a∈𝒜

1
n Regn(a) ≤ hmax − hmin

ηn1−α + ηn−α

2(1− α)K + η
2Kn . (VII.53)

Proof. The bound (VII.52) is an immediate corollary of Theorem VII.5.1; the no-
regret property then follows from Assumptions (A1) and (A2). Finally, if ηn = ηn−α,
we get

n
􏾜
k=1
ηk−1 = 1+

n−1
􏾜
k=1

k−α ≤ 1+ 􏾙
n−1

0
t−α dt = 1+ n1−α

1− α, (VII.54)

and (VII.53) follows by substituting the above in (VII.52).

Remark VII.6.5. If we take h(x) = ∑d
i=1 xi log xi and α = 1/2, (VSFP) boils down to

(EW′); the bound (VII.50) then also follows from (VII.53).

Online Gradient Descent. The online gradient descent (OGD) algorithm was
introduced by [Zin03] in the context of online convex optimization thatwe described
in Section VII.2.3 – see also [Bub11, Section 4.1]. Here, we focus on a so-called lazy
variant ([SS11, p. 144]) defined by means of the recursion

Un ∈ Un−1 − η ∂ℓn(xn),
xn+1 = argmin

x∈𝒞
‖x −Un‖2, (OGD-L)

where ℓn ∶ 𝒞 → R is a sequence ofM-Lipschitz loss functions, η > 0 is a constant
parameter, and the algorithm is initialized withU0 = 0.
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In view of Example VII.3.5, (OGD-L) corresponds to the strategy σ = (σh,ηn )n⩾1
generated by the Euclidean regularizer h on 𝒞 –defined itself as in (VII.13). Theorem
VII.5.1 thus yields the regret bound:

max
x∈𝒞
1
n Regn(x) ≤ δ

2
𝒞
2nη + ηM

2

2 (VII.55)

with δ2𝒞 = maxx∈𝒞 ‖x‖22 − minx∈𝒞 ‖x‖22. Accordingly, if the time horizon n is known
in advance, the optimal choice for η is η = δ𝒞/(M√n), leading to a cumulative regret
guarantee ofMδ𝒞

√n, which is essentially the bound derived by [SS11, Corollary. 2.7]
(see also [Bub11, Theorem 3.1] for the greedy variant). 7

OnlineMirrorDescent. Thefamily of (lazy) onlinemirror descent (OMD) algo-
rithmsstudied by Shalev-Shwartz [SS07, SS11] is themost general family of strategies
that we discuss in this section (see also [Bub11] for a greedy version). In particular,
the OMD class of strategies contains EW and OGD as special cases, and it is also
equivalent to the family of Follow the Regularized Leader (FtRL) algorithms in the
case of linear payoffs ([SS11], [Haz12]).

Following [SS11] (and with notation as in Section VII.2.3), let ℓn ∶ 𝒞 → R be a
sequence of convex functions which areM-Lipschitz with respect to some norm ‖ ⋅ ‖
onRd. Then, given a regularizer function h on 𝒞, the lazy OMD algorithm is defined
by means of the recursion:

Un ∈ Un−1 − η ∂ℓn(xn),
xn+1 =Qh(Un),

(OMD-L)

where η > 0 is a fixed parameter and the algorithm is initialized withU0 = 0. As a re-
sult, if h is takenK-strongly convex with respect to ‖ ⋅ ‖,TheoremVII.5.1 immediately
yields the known regret bound for OMD:

max
x∈𝒞

Regn(x) ≤ hmax − hmin
η + ηM

2n
2K . (VII.56)

VII.6.2. Links with convex optimization

Ordinary convex programs can be seen as online optimization problemswhere the
loss function remains constant over time and the agent seeks to attain its minimum
value. In what follows, we outline how regret-minimizing strategies can be used for
this purpose and we describe the performance gap incurred by using a method with a
variable step-size instead of a variable parameter.

7. For the difference between lazy and greedy variants, see Section VII.7.2.
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Let f ∶ 𝒞 → R be a convex real-valued function on 𝒞 and let (γn)n≥1 be a posi-
tive sequence (which we will later interpret as a sequence of step-sizes); also, given a
sequence (xn)n≥1 in 𝒞, let

xmin
n ∈ argmin

1≤k≤n
f(xk), xγn =

∑n
k=1 γkxk
∑n

k=1 γk
. (VII.57)

If we use the notation x′
n ∈ {xmin

n , x
γ
n} to refer interchangeably to either xmin

n or xγn,
Jensen’s inequality readily gives:

f(x′
n) ≤

∑n
k=1 γkf(xk)
∑n

k=1 γk
. (VII.58)

Now consider the algorithm:

Un ∈ Un−1 − γn∂f(xn),
xn+1 =Qh(ηnUn),

(VII.59)

where γn is a sequence of step sizes and ηn is a sequence of parameters. In the case of a
constant parameter ηn = 1, (VII.59) then becomes

Un ∈ Un−1 − γn∂f(xn),
xn+1 =Qh(Un).

(MD-L)

which is a lazy variant of themirror descent (MD) algorithm ([NY83]). In particular,
if h is the Euclidean regularizer on 𝒞, the algorithm boils down to a lazy version of the
standard projected subgradient (PSG) method:

Un ∈ Un−1 − γn∂f(xn),
xn+1 = argmin

x∈𝒞
‖x −Un‖2. (PSG-L)

The following corollary shows that these lazy versions guarantee the same value
convergence bounds as the corresponding greedy variants — see e.g. [BT03, Theo-
rem 4.1].

Corollary VII.6.6 (Constant parameter, variable step size). Letf ∶ 𝒞 → R be anM-
Lipschitz convex function and let (xn)n≥1 bethe sequence of play generated by (MD-L) for
someK-strongly convex regularizer h on 𝒞. Then, the adjusted iterates x′

n ∈ {xmin
n , x

γ
n} of

xn satisfy:

f(x′
n) ≤ fmin + hmax − hmin + 1

2M
2K−1∑n

k=1 γ
2
k

∑n
k=1 γk

. (VII.60)
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Proof. With σ = (σh,ηnn )n⩾1, uk ∈ −γk∂f(xk) and x′
n ∈ {xmin

n , x
γ
n}, we have:

Regσ,un (x) =
n
􏾜
k=1

⟨uk|x − xk⟩ ≥ −
n
􏾜
k=1
γk (f(x) − f(xk)) ≥

n
􏾜
k=1
γk ⋅ (f(x′

n) − f(x)) ,

(VII.61)

where the last step follows from (VII.58). By taking x ∈ argminf, we then obtain:

f(x′
n) − fmin ≤

Regσ,un (x)
∑n

k=1 γk
. (VII.62)

The result then follows by applying Theorem VII.5.1 and using the fact that ‖uk‖∗ ≤
‖γk∂f(xk)‖∗ ≤ γkM (recall that f isM-Lipschitz continuous).

One can see that the best convergence rate that we get with constant η and step-
sizes of the form γn ∝ n−α isO(log n/√n) for α = 1/2 (and there is no straighforward
choice of γn leading to a better convergence rate). On the other hand, by taking a
constant step-size γn = 1 and varying the algorithm’s parameter ηn ∝ n−1/2, we do
achieve anO(n−1/2) rate of convergence.

Corollary VII.6.7 (Constant step size, variable parameter). With notation as in
Corollary VII.6.6, let (xn)n≥1 be the sequence of play generated by (VII.59) with

ηn = 1
M

√K(hmax − hmin)
n , (VII.63)

and constant γn = 1. Then, the adjusted iterates x′
n ∈ {xmin

n , x
γ
n} of xn guarantee

f(x′
n) ≤ fmin + 2M√hmax − hmin

K ( 1√n + 1
4n) . (VII.64)

Proof. Similar to the proof of Corollary VII.6.6.

VII.6.3. Noisy observations and links with stochastic convex optimization

Assume that at every stage n = 1, 2,… of the decision process, the agent does not
observe the actual payoff vector un ∈ V∗, but the realization of a random vector ̃un
satisfying E [� ̃un|ℱn]� = un, where ℱn is generated by

(x̃1, u1, ̃u1, i1,… , x̃n−1, un−1, ̃un−1, in−1, x̃n, un).
In this case, a learningstrategyσ can be usedwith the observed vectors ̃un, thus leading
to a (random) sequence of play x̃n+1 = σn+1( ̃u1,… , ̃un) – see e.g. [SS11, Section 4.1]
for a model of this kind.



192 continuous-time mirror descent

In this framework, the agent’s (maximal) cumulative regret, which is the quantity
of interest, is given by

max
x∈𝒞

n
􏾜
k=1

⟨uk|x⟩ −
n
􏾜
k=1

⟨uk|x̃k⟩ . (VII.65)

On the other hand,

max
x∈𝒞

n
􏾜
k=1

⟨ ̃uk|x⟩ −
n
􏾜
k=1

⟨ ̃uk|x̃k⟩ . (VII.66)

can be interpreted as the agent’s cumulative regret against the observed payoff se-
quence ( ̃un)n≥1. The above two quantites can be related (in average) as follows. We
assume that ‖ ̃uk‖∗ ⩽M (a.s.). As for the first term involving the maximum,

max
x∈𝒞

1
n

n
􏾜
k=1

⟨uk|x⟩ = max
x∈𝒞

1
n ⟨

n
􏾜
k=1

̃uk +
n
􏾜
k=1

(uk − ̃uk)∣x⟩

⩽ max
x∈𝒞

1
n

n
􏾜
k=1

⟨ ̃uk|x⟩ + ∥ 1n
n
􏾜
k=1

(uk − ̃uk)∥
∗

‖𝒞‖ ,

where the last term is small with high probability: indeed, since E [ ̃uk − uk | ℱk] = 0,
a classical argument based on bounded martingale differences can be used. We deal
with the second sum similarly by noting that E [⟨ ̃uk|x̃k⟩ | ℱk] = ⟨E [ ̃uk | ℱk]|x̃k⟩ =
⟨uk|x̃k⟩ and that:

1
n

n
􏾜
k=1

⟨uk|x̃k⟩ = 1n
n
􏾜
k=1

⟨ ̃uk|x̃k⟩ + 1n
n
􏾜
k=1

⟨uk − ̃uk|x̃k⟩ .

The guarantees of Theorem VII.5.1 therefore translates to the present framwork
with high probability.

The above can be adapted to the framework of stochastic convex optimization as
follows: let f ∶ 𝒞 → R be a Lipschitz convex function on 𝒞, let (γn)n≥1 be a positive
sequence of step sizes, and consider the strategy σ generated by (VII.18) with η = 1
and h aK-strongly convex regularizer on 𝒞. Then, the sequence of play

x̃n+1 = σn+1(−γ1g̃1,… ,−γng̃n) =Qh (−
n
􏾜
k=1
γkg̃k) (VII.67)

where g̃n is a random vector with E [�g̃n|g̃n−1,… , g̃1]� = gn ∈ ∂f(x̃n) may be
written recursively as:

Ũn ∈ Ũn−1 − γn∂f(x̃n),
x̃n+1 =Qh(Ũn).

(MDSA-L)
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This algorithm may be seen as a lazy version of the so-called mirror descent
stochastic approximation (MDSA) process of [NJLS09]; in particular, using the
Euclidean regularizer leads to the lazy stochastic projected subgradient (SPSG)
method:

Ũn ∈ Ũn−1 − γn∂f(x̃n),
x̃n+1 = argmin

x∈𝒞
‖x − Ũn‖2.

(SPSG-L)

Setting un = −γngn, ̃un = −γng̃n and taking x̃′
n ∈ {x̃min

n , x̃
γ
n} as before, we can adapt

Corollary VII.6.6 to we get, for all x ∈ 𝒞,

E [f(x̃′
n) − f(x)] ⩽ E[ 1

∑n
k=1 γk

n
􏾜
k=1
γk(f(x̃k) − f(x))] (VII.68)

⩽ E[ 1
∑n

k=1 γk

n
􏾜
k=1

⟨uk|x − x̃k⟩] (VII.69)

= E[ 1
∑n

k=1 γk

n
􏾜
k=1

E [⟨ ̃uk|x − x̃k⟩ | ℱk]] (VII.70)

= E[ 1
∑n

k=1 γk

n
􏾜
k=1

⟨ ̃uk|x − x̃k⟩] (VII.71)

≤ hmax − hmin + 1
2M
2K−1∑n

k=1 γ
2
k

∑n
k=1 γk

, (VII.72)

which is essentially the same value guarantee as that of greedy MDSA ([NJLS09,
Eq. 2.41]).

VII.7. Discussion

VII.7.1. On the optimal choice of h
As mentioned in the discussion after Corollary VII.5.2, the following open ques-

tion arises: given a norm ‖ ⋅ ‖ onV and a compact, convex subset 𝒞 ⊆ V, which 1-strongly
convex regularizer on h ∶ 𝒞 → R has minimal depth δh = hmax − hmin?

As the following proposition shows, in the case of the Euclidean norm onV, this
minimal depth is half the radius squared of the smallest enclosing sphere of 𝒞:

Proposition VII.7.1. Let h ∶ 𝒞 → R be a 1-strongly convex regularizer function on 𝒞
with respect to the ℓ2 norm ‖ ⋅ ‖2 onV. Then:

hmax − hmin ≥ 12 min
x′∈𝒞

max
x∈𝒞

‖x′ − x‖22, (VII.73)



194 continuous-time mirror descent

algorithm 𝒞 h(x) ηn input norm

EW Δd ∑i xi log xi constant un ℓ1

EW′ Δd ∑i xi log xi η/√n un ℓ1

SFP Δd any η/n un ℓ1

VSFP Δd any ηn−α (0 < α < 1) un ℓ1

OGD-L any 1
2 ‖x‖22 constant −∇fn(xn) ℓ2

OMD-L any any constant −∇fn(xn) any

PSG-L any 1
2 ‖x‖22 1 −γn∇f(xn) ℓ2

MD-L any any 1 −γn∇f(xn) any

MDSA-L any any 1 −γn(∇f(xn) + ξn) any

SPSG-L any 1
2 ‖x‖22 1 −γn(∇f(xn) + ξn) ℓ2

Table VII.1. Summary of the algorithms discussed in Section VII.6. The suffix “L” indicates a
“lazy” variant; the input column stands for the stream of payoff vectors which is used as input for
the algorithm and the norm column specifies the norm of the ambient space; finally, ξn represents a
zero-mean stochastic process with values in Rd.

and equality is attained by taking

h(x) = {
1
2‖x − x0‖22 if x ∈ 𝒞,
+∞ otherwise,

� (VII.74)

where x0 ∈ argminx′∈𝒞 maxx∈𝒞 ‖x′ − x‖22 is the center of the smallest enclosing sphere of
𝒞.
Proof. Letting x1 ∈ argminx∈𝒞 h(x) and x2 ∈ argmaxx∈𝒞 ‖x − x1‖22, we readily get:

hmax − hmin ≥ h(x2) − h(x1)

≥ 12‖x2 − x1‖22 = 12 max
x∈𝒞

‖x − x1‖22 ≥ 12 min
x′∈𝒞

max
x∈𝒞

‖x − x′‖22, (VII.75)

where the second inequality follows from the strong convexity of h and the fact that
∂h(x1) ∋ 0. That (VII.74) attains the bound (VII.73) is then a trivial consequence of
its definition, as is its geometric characterization.
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𝒞

•
x1

•
a1 = y1

−∇f(x1)

•
x2

•
•y2

a2

−∇f(x2)

•

−∇f(x2)

xgreedy
3

•
xlazy
3

Figure VII.1. Graphical illustration of the greedy (dashed) and lazy (solid)
branches of the projected subgradient (PSG) method.

Despite the simplicity of the bound (VII.73), this analysis does not work for an
arbitrary norm because 12 ‖x − x0‖2 might fail to be 1-strongly convex with respect to
‖ ⋅ ‖ – for instance, ‖x − x0‖21 is not even strictly convex.

VII.7.2. Greedy versus lazy

To illustrate the difference between lazy and greedy variants, we first focus on the
PSG method run with constant step γ = 1 for a smooth function f ∶ 𝒞 → R. The
two variants may then be expressed by means of the recursions:

an = xn − ∇f(xn)
xn+1 = argmin

x∈𝒞
‖x − an‖2 (VII.76a)

for the greedy version and:

yn = yn−1 − ∇f(xn)
xn+1 = argmin

x∈𝒞
‖x − yn‖2 (VII.76b)

for the lazy one.
As can be seen in Fig. VII.1, the greedy variant is based on the classical idea of

gradient descent, i.e. adding −∇f(xn) to xn and projecting back to 𝒞 if needed. On
the other hand, in the lazy variant, the gradient term −∇f(xn) is not added to xn, but
to the “unprojected” iterate yn; we only project to 𝒞 in order to obtain the algorithm’s
next iterate. Owing to this modification, the lazy variant is thus driven by the sum
yn = ∑n

k=1∇f(xn).
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V

V∗

xn

∇F(xn) zn = ∇F(xn) − ∇f(xn)

an = ∇F∗(zn) xn+1 = pr𝒞
F

(an)

…

(a) Greedy Mirror Descent

V

V∗ yn

xn+1 =Qh(yn)

yn+1 = yn − ∇f(xn+1)

xn+2 =Qh(yn+1)

…

(b) Lazy Mirror Descent

Figure VII.2. Greedy and Lazy Mirror Descent with γn = 1.

In the case of mirror descent with an arbitrary regularizer function h, the lazy ver-
sion has an implementation advantage over its greedy counterpart. Specifically, given
a proper convex function F such that F = h on 𝒞 (cf. Example VII.3.6), greedymirror
descent is defined as:

an = ∇F∗ (∇F(xn) − ∇f(xn)) ,
xn+1 = pr𝒞

F
(an),

(VII.77a)

where the Bregman projection pr𝒞
F

(an) is given by (VII.16); on the other hand, lazy
MD is defined as

yn = yn−1 − ∇f(xn),
xn+1 =Qh(yn).

(VII.77b)

The computation steps for each variant are represented in Figure VII.2. The first step
in the greedy version which consists in computing ∇F has no equivalent in the lazy
version, which is thus computationally more lightweight.

•



CHAPTER VIII

AUNIVERSALBOUNDONTHE
VARIATIONSOFBOUNDEDCONVEX

FUNCTIONS

This chapter is extracted from the paper A universal bound on the variations of
bounded convex functions, to appear in Journal of Convex Analysis.

Abstract

Given a convex set C in a real vector space E and two points x, y ∈ C, we investigate
which are the possible values for the variation f(y) − f(x), where f ∶ C⟶ [m,M]
is a bounded convex function. We then rewrite the bounds in terms of the Funk weak
metric, which will imply that a bounded convex function is Lipschitz-continuous
with respect to the Thompson and Hilbert metrics. The bounds are also proved to
be optimal. We also exhibit the maximal subdifferential of a bounded convex func-
tion at a given point x ∈ C.

VIII.1. The variations of bounded convex functions

LetC be a convex set of a real vectorspaceE. Given two points x, y ∈ C, we define
the following auxiliary quantity:

τC(x, y) = sup {t ⩾ 1 | x + t(y − x) ∈ C} .

Clearly, τC takes values in [1,+∞]. Intuitively, it measures how far away x is from the
boundary in the direction of y, taking the “distance” xy as unit. Clearly, τC(x,y) =
+∞ if and only if x + R+(y − x) ⊂ C. Our first result is the following.
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•x •y
∂C

1

τC(x, y)

C

Figure VIII.1. An intuitive representation of what τC(x, y) measures.

Theorem VIII.1.1. Let m ⩽ M be two real numbers. Let C be a convex set of a real
vectorspaceE andf ∶ C⟶ [m,M] a convex function. For every couple of points (x, y) ∈
C2, f satisfies:

− M− m
τC(y, x) ⩽ f(y) − f(x) ⩽ M− m

τC(x, y).

0

1

•• yx

τC(x, y)−1

1

τC(x, y)

Figure VIII.2. Illustration of the bound in the case m = 0 andM = 1. The thick
horizontal line represents the cross section ofC.

Proof. It is enough to prove the result for functions with values in [0, 1], since we can
consider (M− m)−1(f − m). Let x, y be two points in C. Let t be such that 1 ⩽ t <
τC(x, y). By definition of τC, and becauseC is convex, we have x+ t(y− x) ∈ C. We
can write y as a convex combination of x + t(y − x) and x with coefficients 1/t and
(t − 1)/t respectively:

y = x + t(y − x) + (t − 1)x
t .
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By convexity of f, we get:

f(y) − f(x) ⩽ f(x + t(y − x)) + (t − 1)f(x)
t − f(x)

⩽ f(x + t(y − x)) − f(x)
t ⩽ 1t ,

where the last inequality comes from the fact that f has values in [0, 1]. By taking the
limit as t → τC(x, y), we get:

f(y) − f(x) ⩽ 1
τC(x, y) .

The lower bound is obtained by exchanging the roles of x and y.

VIII.2. The Funk,Thompson andHilbert metrics

In this section, we rewrite the result from Theorem VIII.1.1 as a Lipschitz-like
property in the framework of convex sets in normedspaces. But 1/τC is far frombeing
a distance. We thus consider the Funk, Thompson and Hilbert metrics (which were
introduced in [Fun29], [Tho63] and [Hil95] respectively) and establish the link with
τC.

We restrict our framework to the case where C is an open convex subset of a
normed space (E, ‖ ⋅ ‖). Let x, y ∈ C. If τC(x,y) < +∞, we can define b(x, y) to be
the following point:

b(x, y) = x + τC(x, y)(y − x).
Note that since C is open, when b(x, y) exists, it is necessarily different from y. This
will be necessary to state the following definitions.

DefinitionVIII.2.1. LetC be an open convex subset of a normedspace (E, ‖ ⋅ ‖). We
define

(i) the Funk weak metric:

FC(x, y) =
⎧{
⎨{⎩

log ‖x − b(x, y)‖
‖y − b(x, y)‖ if τC(x,y) < +∞

0 otherwise
� ;

(ii) the Thompson pseudometric:

TC(x, y) = max (FC(x, y), FC(y, x)) ;
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(iii) the Hilbert pseudometric:

HC(x, y) = 12 (FC(x, y) + FC(y, x)) .

Remark VIII.2.2. Even if we will abusively call them metrics, they fail to satisfy the
separation axiom in general. The Thompson and the Hilbert metrics are thus pseudo-
metrics. Moreover, the Funk metric not being symmetric, it actually is a weak metric.
The Thompson and the Hilbert metrics are respectively the max-symmetrization and
meanvalue-symmetrisation of the Funk metric. For a detailed presentation of these
notions, see e.g. [PT07].

We now establish the link between τC(x, y) and FC(x, y).

Proposition VIII.2.3. LetC be an open convex subset of a normed space (E, ‖ ⋅ ‖). For
every points x, y ∈ C, the following equality holds:

FC(x, y) = − log(1− 1
τC(x, y)) .

Proof. Let x, y ∈ C. If τC(x,y) = +∞, the right-hand side of the above equality is
zero, as expected. If τC(x,y) < +∞, τC(x, y) can be expressed with the norm. Since
by definition b(x, y) = x + τC(x, y)(y − x), we have

τC(x, y) = ‖x − b(x, y)‖
‖x − y‖ and τC(x, y) − 1 = ‖y − b(x, y)‖

‖x − y‖ .

And thus:
‖x − b(x, y)‖
‖y − b(x, y)‖ = (1− 1

τC(x, y))
−1

.

Therefore,
FC(x, y) = − log(1− 1

τC(x, y)) .

By combining Theorem VIII.1.1 and the above proposition, we get the following
corollary.

Corollary VIII.2.4. Let C an open convex subset of a normed space (E, ‖ ⋅ ‖) and f ∶
C⟶ [m,M] be a convex function. Then, for all x, y ∈ C, the following bounds hold.
(i) −(M− m) (1− e−FC(y,x)) ⩽ f(y) − f(x) ⩽ (M− m) (1− e−FC(x,y)) .
(ii) |f(y) − f(x)| ⩽ (M− m) (1− e−TC(x,y)) .
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(iii) |f(y) − f(x)| ⩽ (M− m) (1− e−2HC(x,y)) .

Remark VIII.2.5. From (ii), by using the inequality e−s ⩾ 1− s, we get:

|f(x) − f(y)| ⩽ (M− m) (1− e−TC(x,y))
⩽ (M− m)TC(x, y),

and similarly for (iii). Every convex function f ∶ C ⟶ [m,M] is thus (M − m)-
Lipschitz (resp. 2(M−m)-Lipschitz) with respect to theThompsonmetric (resp. the
Hilbert metric).

VIII.3. Optimality of the bounds

Weshow in this section that the bounds obtained inTheoremVIII.1.1 are optimal
in the following sense. For a given convex set, and for a given couple a points, there
is a function which attains the upper bound (resp. the lower bound). In other words,
for x, y ∈ C:

⎧{{{
⎨{{{⎩

max
f∶C⟶[m,M]
f convex

(f(y) − f(x)) = M− m
τC(x, y)

min
f∶C⟶[m,M]
f convex

(f(y) − f(x)) = − M− m
τC(y, x).

�

In the proof of the following theorem, it will be very convenient to extend the
notion of convexity to functions defined on C and taking values in R ∪ {−∞} (and
not R ∪ {+∞}). Obviously, the result according to which the upper envelope of two
convex functions is also a convex function remains true.

Theorem VIII.3.1. Let m ⩽ M be two real numbers. Let C be a convex set of a real
vector space E. For every couple of points (x, y) ∈ C2, there exists a convex function f ∶
C⟶ [m,M] (resp. g ∶ C⟶ [m,M]) such that the upper bound (resp. lower bound) of
Theorem VIII.1.1 is attained; in other words:

f(y) − f(x) = M− m
τC(x, y) (resp. g(y) − g(x) = − M− m

τC(y, x)) .

Proof. Let x and y be two points in C, and let us construct a convex function f ∶
C⟶ [0, 1] satisfying the equality. If τC(x,y) = +∞, the bound is zero, and f = 0 is
adequate. Fromnowon, we assume that τC(x,y) < +∞. The idea of the construction
is the following. Let us first consider the line through x and y. We want f to increase
from0 atx to 1 at theboundary in thedirectionofy, in an affineway; and tobe equal to
zero in the other direction. Then, wewill have to extendf to allC in a convexway. Let
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⃗u = τC(x, y)(y − x). For every z ∈ C, let us define σ(z) = sup {t ⩾ 0 | z + t ⃗u ∈ C}.
σ clearly takes values in [0,+∞]. Consider the following function.

ϕ ∶ C ⟶ [−∞, 1]

z ⟼ 1− σ(z)
.

Let us prove that ϕ is convex. Let z1 and z2 be two points in C and z3 = λz1 + (1 −

•x •y
∂C

⃗u

τC(x, y) ⃗u

•z

σ(z) ⃗u

C

− 16 0
1
6

1
3

1
2

2
3

5
6 1

Figure VIII.3. The construction of ϕ. The dotted curves are the level lines, whose
corresponding values are specified above.

λ)z2 (with λ ∈ (0, 1)) a convex combination. By definition of σ, if we take two real
numbers s1 and s2 such that 0 ⩽ s1 ⩽ σ(z1) and 0 ⩽ s2 ⩽ σ(z2), we have:

{z1 + s1 ⃗u ∈ C
z2 + s2 ⃗u ∈ C.

�

And thus, the convex combination of these two points with coefficients λ and 1 − λ
also belongs toC:

λ(z1 + s1 ⃗u) + (1− λ)(z2 + s2 ⃗u) ∈ C.
This point can be rewritten with z3:

z3 + (λs1 + (1− λ)s2) ⃗u ∈ C.
By definition of σ(z3), we have λs1 + (1 − λ)s2 ⩽ σ(z3). This inequality is true for
every s1 ⩽ σ(z1) and s2 ⩽ z(s2). Consequently:

λσ(z1) + (1− λ)σ(z2) ⩽ σ(z3).
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We can now prove the convexity inequality.

ϕ(z3) = 1− σ(z3) ⩽ 1− (λσ(z1) + (1− λ)σ(z2))
= λ(1− σ(z1)) + (1− λ)(1− σ(z2))
= λϕ(z1) + (1− λ)ϕ(z2).

We now choose f = max(ϕ, 0). Since ϕ ⩽ 1, f takes values in [0, 1]. Let us prove
that f satisfies the desired equality. Let us compute f(x) and f(y).

σ(x) = sup {t ⩾ 0 | x + t ⃗u ∈ C}

= sup {t ⩾ 0 | x + tτC(x, y)(y − x) ∈ C}

= 1
τC(x, y) sup {t′ ⩾ 0 |x + t′(y − x) ∈ C}

= 1
τC(x, y)τC(x, y)

= 1.
Thus ϕ(x) = 1− σ(x) = 0 and f(x) = max(0, 0) = 0. Similarly, we can prove:

σ(y) = τC(x, y) − 1
τC(x, y) ,

and thus, ϕ(y) = 1−σ(y) = τC(x, y)−1 andf(y) = max(τC(x, y)−1, 0) = τC(x, y)−1.
We finally get:

f(y) − f(x) = 1
τC(x, y) .

The construction of g is analogous.

VIII.4. Themaximal subdifferential

In the case of a nonempty convex subset C ⊂ Rn, and a given point x0 ∈ C,
we wonder what is the maximal subdifferential at x0 (in the sense of inclusion) for
a function f ∶ C ⟶ [m,M]. We will prove that there is a maximal one, and will
express it in terms of the subdifferential of a translation of the Minkowski gauge. For
each x0 ∈ C, we define gC,x0 ∶ C⟶ [0, 1] by

gC,x0(x) = inf {λ > 0 | x − x0 ∈ λ(C− x0)} .

This function is obviously well-defined, and can be seen as a Minkowski gauge
centered in x0 and restricted to C. It is well-known fact that the Minkowski gauge is
a convex function. So is this one.
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TheoremVIII.4.1. LetC be a nonempty convex subset ofRn and x ∈ C. We have

max
f∶C⟶[m,M]

fconvex

∂f(x) = (M− m)∂gC,x(x),

where the maximum is understood in the sense of inclusion.

Proof. Let us first relate gC,x0 to τ. Let x0, x ∈ C. We have

gC,x0(x) = inf {λ > 0 | x − x0 ∈ λ(C− x0)}

= sup{t > 0 | x − x0 ∈ 1t(C− x0)}
−1

= sup {t > 0 | x0 + t(x − x0) ∈ C}−1

= 1
τ(x0, x).

Let us prove the result in the case m = 0 and M = 1, from which the general
case follows immediately. Let f ∶ C⟶ [0, 1] be a convex function and x0 ∈ C. Let
us show that ∂f(x0) ⊂ ∂gC,x0(x0). This is true if ∂f(x0) is empty. Otherwise, let
ζ ∈ ∂f(x0). For every x ∈ C, we have

⟨ζ∣x − x0⟩ ⩽ f(x) − f(x0) ⩽ 1
τ(x0, x)

= gC,x0(x) = gC,x0(x) − gC,x0(x0),

where we usedTheoremVIII.1.1 for the second inequality. If x ∉ C, the equality also
holds, since gC,x0(x) = +∞. We thus have ∂f(x0) ⊂ ∂gC,x0(x0). We conclude by
saying that gC,x0 is a convex function onC with values in [0, 1].

•



APPENDIX A

CONCENTRATION INEQUALITIES

Proposition A.0.1 (Hoeffding–Azuma for super-martingale
differences [Hoe63, Azu67]). Let (Xt)t⩾1 be a super-martingale difference sequence
with respect to a filtration (𝒢t)t⩾0:

E [Xt | 𝒢t−1] ⩽ 0, t ⩾ 0.
LetM > 0 and we assume that |Xt| ⩽M almost-surely for all t ⩾ 1. Then, for all ε > 0
andT ⩾ 1,

P⎡⎢
⎣
1
T

T
􏾜
t=1
Xt > ε⎤⎥

⎦
⩽ exp(− ε

2T
2M2) .

Proposition A.0.2 (Corollary 3.5 in [KS91]). Let (Ut)t⩾1 be a sequence of martingale
differences in Rd, bounded almost-surely byM > 0:

∀t ⩾ 1, ‖Ut‖2 ⩽M, a.s.
Then, for every ε > 0 andT ⩾ 1,

P⎡
⎢
⎣

∥ 1T
T
􏾜
t=1
Ut∥
2

⩾ ε⎤⎥
⎦

⩽ 2 exp(− Tε
2

4M2) .

Corollary A.0.3. Under the assumptions of Proposition A.0.2, we have:

E⎡
⎢
⎣

∥ 1T
T
􏾜
t=1
Ut∥
2

⎤
⎥
⎦

⩽M√ π
T .

Proof. The result follows from Proposition A.0.2 by integrating the tail of the distri-
bution:

E [∥ŪT∥
2
] = 􏾙

+∞

0
P [∥ŪT∥

2
⩾ ε] dε ⩽ 􏾙

+∞

0
2e−Tε2/4M2

dε

= 2􏾙
+∞

0
e−ε2(T/4M2) dε =M√ π

T .
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The following Bernstein-like inequality is proved in [Pin94]—see also [TY14,
Corollary A.2].

Proposition A.0.4. Let (Xt)t⩾1 be a martingale difference sequence in a Hilbert space
with respect to a filtration (𝒢t)t⩾0. Suppose that ‖Xt‖ ⩽M almost-surely, and

1
T

T
􏾜
t=1

E [‖Xt‖2 ∣ 𝒢t−1] ⩽ V.

Then,

P⎡⎢
⎣

max
1⩽t⩽T

∥
t
􏾜
t′=1
Xt′∥ ⩾ ε⎤⎥

⎦
⩽ 2 exp(− ε2

2TV+ 2Mε/3) .

Corollary A.0.5. Under the assumptions of Proposition A.0.4,

E⎡⎢
⎣

∥ 1T
T
􏾜
t=1
Xt∥⎤⎥

⎦
⩽ 4

√
2√VT + 4M3T .

Proof. LetA ⩾ 0 to be chosen later.

E [∥X̄T∥] = 􏾙
+∞

0
P [∥X̄T∥ ⩾ ε] dε

⩽ 2􏾙
+∞

0
exp(− ε2T2

2VT+ 2MεT/3) dε

= 2􏾙
+∞

0
exp(− ε2T

2V+ 2Mε/3) dε

⩽ 2(A+ 􏾙
+∞

A
exp(− ε2T

2ε(V/A+M/3)) dε)

= 2(A+ 􏾙
+∞

A
exp(− εT

2(V/A+M/3)) dε)

= 2(A+ [− 2T (VA + M3 ) exp(− εT
2(V/A+M/3))]

+∞

A
)

⩽ 2A+ 4T (VA + M3 ) .

ChoosingA = √2V/T gives:

E [∥X̄T∥] ⩽ 4
√
2√VT + 4M3T .
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