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RESUME

Le manuscrit se divise en deux parties. La premicre est constituée des chapitres I
4 IV et propose une présentation unifiée de nombreux résultats connus ainsi que de
quelques éléments nouveaux.

On présente dans le Chapitre I le probleme donline linear optimization, puis on
construit les stratégies de descente miroir avec parameétres variables pour la minimi-
sation du regret, et on ¢établit dans le Théoréme 1.3.1 une borne générale sur le re-
gret garantie par ces stratégies. Ce résultat est fondamental car la quasi-totalité des
résultats des quatre premiers chapitres en seront des corollaires. On traite ensuite l'ex-
tension aux pertes convexes, puis lobtention d’algorithmes d'optimisation convexe a
partir des stratégies minimisant le regret.

Le Chapitre II se concentre sur le cas ou le joueur dispose d’'un ensemble fini dans
lequel il peut choisir ses actions de fagon aléatoire. Les stratégies du Chapitre I sont
aisément transposées dans ce cadre, et on obtient également des garanties presque-
stires d’'une part, et avec grande probabilité d’autre part. Sont ensuite passées en re-
vue quelques stratégies connues : I'Exponential Weights Algorithm, le Smooth Fictitious
Play, le Vanishingly Smooth Fiftitious Play, qui apparaissent toutes comme des cas par-
ticuliers des stratégies construites au Chapitre I. En fin de chapitre, on mentionne le
probleme de bandit 4 plusieurs bras, ot le joueur n'observe que le paiement de I'action
qu’il a jouée, et on étudie lalgorithme EXP3 qui est une adaptation de 'Exponential
Weights Algorithm dans ce cadre.

Le Chapitre I1I est consacré 4 la classe de stratégies appelée Follow the Perturbed
Leader, qui est définie A l'aide de perturbations aléatoires. Un récent survey [ALT16]
mentionne le fait que ces stratégies, bien que définies de facon différente,
appartiennent a la famille de descente miroir du Chapitre I. On donne une
démonstration détaillée de ce résultat.

Le Chapitre IV a pour but la construction de stratégies de descente miroir pour
Vapprochabilité de Blackwell. On étend une approche proposée par [ABH11] qui per-
met de transformer une stratégie minimisant le regret en une stratégie d’approchabi-
lité. Notre approche est plus générale car elle permet d'obtenir des bornes sur une tres
large classe de quantités mesurant I'¢loignement a I'ensemble cible, et non pas seule-
ment sur la digtance euclidienne a 'ensemble cible. Le caraétére unificateur de cette



démarche et ensuite illustrée par la construction de stratégies optimales pour le pro-
bleme donline combinatorial optimization et la minimisation du regrez interne/swap.
Par ailleurs, on démontre que la stratégie de Backwell peut étre vue comme un cas
particulier de descente miroir.

La seconde partie est constituée des quatre articles suivants, qui ont été rédigés
pendant la these.

Le Chapitre V est tiré de larticle [KP16b] et étudie le probleme de la minimisation
du regret dans le cas ot le joueur possede un ensemble fini d’actions, et avec Ihypo-
these supplémentaire que les vecteurs de paiement possedent au plus s composantes
non-nulles. On ¢établit, en information compléte, que la borne optimale sur le regret

est de lordre de /T logs (ot T est le nombre d¢tapes) lorsque les paiements sont des

gains (cest-a-dire lorsqu’ils sont positifs), et de lordre de 1/ Ts 105 4 (ot1d est le nombre
d’a&ions) lorsqu’il s'agit de pertes (i.e. négatifs). On met ainsi en évidence une diffé-
rence fondamentale entre les gains et les pertes. Dans le cadre bandit, on établit que la
borne optimale pour les pertes est de lordre de VTs 4 un faceur logarithmique pres.

Le Chapitre VI est issu de larticle [KP16a] et porte sur lapprochabilité de Bla-
ckwell avec observations partielles, cest-a-dire que le joueur observe seulement des si-
gnaux aléatoires. On construit des stratégies garantissant des vitesses de convergence
de l'ordre de O(T~2) dans le cas de signaux dont les lois ne dépendent pas de l'ac-
tion du joueur, et de l'ordre de O(T~?) dans le cas général. Cela établit qu'il s'agit
la des vitesses optimales car il est connu quon ne peut les améliorer sans hypothese
supplémentaire sur l'ensemble cible ou la §tructure des signaux.

Le Chapitre VII et tiré de larticle [KM14] et définit les stratégies de descente
miroir en temps continu. On établit pour ces derniers une propriété de non-regret.
On effetue ensuite une comparaison entre le temps continu et le temps discret. Cela
offre une interprétation des deux termes qui constituent la borne sur le regret en temps
discret : I'un vient de la propriété en temps continu, l'autre de la comparaison entre le
temps continu et le temps discret.

Enfin, le Chapitre VIII estindépendant et est issu de l'article [Kwo14]. Ony établit
une borne universelle sur les variations des fon&ions convexes bornées. On obtient
en corollaire que toute fon&ion convexe bornée et lipschitzienne par rapport a la
métrique de Hilbert.

[KP16b] Joon Kwon and Vianney Perchet. Gains and losses are fundamentally dif-
ferent in regret minimization : the sparse case. arXiv :1511.08405, 2016 (d pa-
raitre dans Journal of Machine Learning Research)

[KP16a] Joon Kwon and Vianney Perchet. Blackwell approachability with partial
monitoring : Optimal convergence rates. 2016 (e préparation)



[KM14] Joon Kwon and Panayotis Mertikopoulos. A continuous-time approach to
online optimization. arXiv :1401.6956, 2014 (en préparation)

[Kwo14] Joon Kwon. A universal bound on the variations of bounded convex func-
tions. arXiv :1401.2104, 2014 (4 paraitre dans Journal of Convex Analysis)






ABSTRACT

The manuscript is divided in two parts. The first consists in Chapters I to IV and
offers a unified presentation of numerous known results as well as some new elements.

We present in Chapter I the online linear optimization problem, then construct
Mirror Descent strategies with varying parameters for regret minimization, and es-
tablish in Theorem 1.3.1 a general bound on the regret guaranteed by the strategies.
This result is fundamental, as most of the results from the first four chapters will be
obtained as corollaries. We then deal with the extension to convex losses, and with
the derivation of convex optimization algorithms from regret minimizing strategies.

Chapter II focuses on the case where the Decision Maker has a finite set from
which he can pick his actions at random. The strategies from Chapter I are easily
transposed to this framework and we also obtain high-probability and almost-sure
guarantees. We then review a few known strategies: Exponential Weights Algorithm,
Smooth Fictitious Play, and Vanishingly Smooth Fictitious Play, which all appear as pe-
cial cases of the étrategies constructed in Chapter I. At the end of the chapter, we
mention the multi-armed bandit problem, where the Decision Maker only observes
the payoft of the action he has played. We study the EXP3 strategy, which is an adap-
tation of the Exponential Weights Algorithm to this setting.

Chapter III is dedicated to the family of strategies called Follow the Perturbed
Leader, which is defined using random perturbations. A recent survey [ALT16]
mentions the fact that those strategies, although defined differently, actually belong
to the family of Mirror Descent strategies from Chapter 1. We give a detailed proof
of this result.

Chapter IV aims at constructing Mirror Descent strategies for Blackwell’s
approachability. We extend an approach proposed by [ABH11] that turns a regret
minimizing strategy into an approachability strategy. Our construction is more
general, as it provides bounds for a very large class of distance-like quantities which
measure the “distance” to the target set and not only on the Euclidean distance to
the target set. The unifying character of this approach is then illustrated by the
constru&tion of optimal strategies for online combinatorial optimization and
internal/swap regret minimization. Besides, we prove that Blackwell’s strategy can be
seen as a $pecial case of Mirror Descent.

11
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The second part of the manuscript contains the following four papers.

Chapter V is from [KP16b] and studies the regret minimization problem in the
case where the Decision Maker has a finite set of actions, with the additional assump-
tion that payoff ve&tors have at most s nonzero components. We establish, in the full
information setting, that the minimax regret is of order /T log s (where T is the num-

ber of §teps) when payoffs are gains (i.c nonnegative), and of order 1/ T’ lof;d (where d

is the number of actions) when the payoffs are losses (i.e. nonpositive). This demon-
strates a fundamental difference between gains and losses. In the bandit setting, we

prove that the minimax regret for losses is of order VTs up to a logarithmic factor.

Chapter VI is extracted from [KP16a] and deals with Blackwell’s approachability
with partial monitoring, meaning that the Decision Maker only observes random sig-
nals. We construt strategies which guarantee convergence rates of order O(T~/?)
in the case where the signal does not depend on the action of the Decision Maker,
and of order O(T~Y/3) in the case of general signals. This establishes the optimal rates
in those two cases, as the above rates are known to be unimprovable without further
assumption on the target set or the signalling structure.

Chapter VII comes from [KM14] and defines Mirror Descent strategies in con-
tinuous time. We prove that they satisfy a regret minimization property. We then
conduct a comparison between continuous and discrete time. This offers an inter-
pretation of the terms found in the regret bounds in discrete time: one is from the
continuous time property, and the other comes from the comparison between con-
tinuous and discrete time.

Finally, Chapter VIII is independent and is from [Kwol4]. We establish a uni-
versal bound on the variations of bounded convex fun&ion. As a byproduct, we ob-
tain that every bounded convex fun&ion is Lipschitz continuous with respect to the
Hilbert metric.

[KP16b] Joon Kwon and Vianney Perchet. Gains and losses are fundamentally dif-
Y y
ferent in regret minimization: the $parse case. arXiv:1511.08405, 2016 (to ap-
pear in Journal of Machine Learning Research)

[KP16a] Joon Kwon and Vianney Perchet. Blackwell approachability with partial
monitoring: Optimal convergence rates. 2016 (i preparation)

[KM14] Joon Kwon and Panayotis Mertikopoulos. A continuous-time approach to
online optimization. arXiv:1401.6956, 2014 (in preparation)

[Kwo14] Joon Kwon. A universal bound on the variations of bounded convex func-
tions. arXiv:1401.2104, 2014 (to appear in Journal of Convex Analysis)
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INTRODUCTION

Online learning

Online learning deals with making decisions sequentially with the goal of obtain-
ing good overall results. Such problems have originated and have been studied in
many different fields such as economics, computer science, statistics and information
theory. In recent years, the increase of computing power allowed the use of online
learning algorithms in countless applications: advertisement placement, web rank-
ing, pam filtering, energy consumption forecast, to name a few. This has naturally
boosted the development of the involved mathematical theories.

Online learning can be modeled as a setting where a Decision Maker faces Nature
repeatedly, and in which information about his performance and the changing state
of Nature is revealed throughout the play. The Decision Maker is to use the infor-
mation he has obtained in order to make better decisions in the future. Therefore,
an important characteristic of an online learning problem is the type of feedback the
Decision Maker has, in other words, the amount of information available to him. For
instance, in the full information setting, the Decision Maker is aware of everything that
has happened in the past; in the partial monitoring setting, he only observes, after each
stage, a random signal whose law depends on his decision and the state of Nature; and
in the bandit setting, he only observes the payoff he has obtained.

Concerning the behavior of Nature, we can distinguish two main types of assump-
tions. In sZochastic settings, the successive states of Nature are drawn according to some
fixed probability law, whereas in the adversarial setting, no such assumption is made
and Nature is even allowed to choose its states strategically, in response to the previ-
ous choices of the Decision Maker. In the latter setting, the Decision Maker is aiming
at obtaining worst-case guarantees. This thesis studies adversarial online problems.

To measure the performance of the Decision Maker, a quantity to minimize or a
criterion to satisfy has to be specified. We present below two of those: regret min-
imization and approachability. Both are very general frameworks which have been
successfully applied to a variety of problems.

17



18 INTRODUCTION

Regret minimization

We present the adversarial regret minimization problem which has been used as a
unifying framework for the study of many online learning problems: pattern recogni-
tion, portfolio management, routing, ranking, principal component analysis, matrix
learning, classification, regression, €tc. Important surveys on the topic are [CBLO6,
RT09, Haz12, BCB12, SS11].

We first consider the problem where the Decision Maker has a finite set of acZions
g ={1,...,d}. Ateach staget > 1, the Decision Maker chooses an action i, € 7,

possibly at random, then observes a payoff vector u, € [—1,1]%, and finally gets a scalar
payoff equal to u;’. We assume Nature to be adversarial, and the Decision Maker is
therefore aiming at obtaining some guarantee against any possible sequence of payoff
ve&ors (u,),5; in [1, 1]4. Hannan [Han57] introduced the notion of regret, defined
as

T T

H 13

Rt = max E u, — E u',
€73 =1

which compares the cumulative payoft Z;rzl ui’ obtained by the Decision Maker to

the cumulative payoff max;,, Zthl u: he could have obtained by playing the best fixed
action in hindsight. Hannan [Han57] established the existence of strategies for the
Decision Maker which guarantee that the average regret R is asymptotically non-
positive. This problem is also called prediction with expert advice because it models the
following situation. Imagine 7 = {1, ..., d} as a set of experts. At each staget > 1,
the Decision Maker has to make a decision and each expert give a piece of advice as
to which decision to make. The Decision Maker must then choose the expert i, to
follow. Then, the vecor u, € R% is observed, where #: is the payoff obtained by ex-

pert i. The payoff obtained by the Decision Maker is therefore #,. The regret then
corresponds to the difference between the cumulative payoff of the Decision Maker
and the cumulative payoff obtained by the best expert. The Decision Maker having a
strategy which makes sure that the average regret goes to zero means that he is able to
perform, asymptotically and in average, as well as any expert.

The theory of regret minimization has since been refined and developed in a num-
ber of ways—see e.g. [FV97, HMCO00, FL99, Lch03]. Animportant dire¢tion was the
study of the best possible guarantee on the expected regret, in other words the study
of the following quantity:

infsupE [Ry],

where the infimum is taken over all possible strategies of the Decision Maker, the
supremum over all sequences (#,),-, of payoff ve&ors in [1, 1]¢, and the expectation
with respect to the randomization introduced by the Decision Maker in choosing
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its a&tions 7,. This quantity has been established [CB97, ACBGO02] to be of order
\/ T logd, where T is the number of stages and d the number of actions.

An interesting variant is the online convex optimization problem [Gor99, KW95,
KW97, KW01, Zin03]: the Decision Maker chooses actions z, in a convex compact

set Z C R?, and Nature chooses loss fun&ions ¢, : & — R. The regret is then defined
by

T T
Rr = Z 0(z,) — migg Z 0 (z)
=1 R

The special case where the loss functions are linear is called online linear optimization
and is often written with the help of payoft vectors (,),-:

—~

T
Ry = maxz (u,|z) — Z (u,|z,) . (%)

€L 5 =1

This will be the base model upon which Part I of the manuscript will be buil.

Until now, we have assumed that the Decision Maker observes all previous payoft
ve&ors (or loss fun&ions), in other words, that he has a full information feedback. The
problems in which the Decision Maker only observes the payoff (or the loss) that he
obtains are called bandir problems. The case where the set of actionsis 7 = {1, ..., d}
is called the adversarial multi-armed bandit problem, for which the minimax regret is
known to be of order v'Td [AB09, ACBFS02]. The bandits settings for online con-
vex/linear optimization has also attra¢ted much attention [AK04, FKMO05, DHO6,
BDH"08] and we refer to [BCB12] for a recent survey.

Approachability

Blackwell [Bla54, Bla56] considered a model of repeated games between a Deci-
sion Maker and Nature with ve¢tor-valued payoffs. He studied the sets to which the
Decision Maker can make sure his average payoff converges. Such sets are said to be
approachable by the Decision Maker. Specifically, let 7 and ¥ be finite action sets for
the Decision Maker and Nature respectively,

2 xt = 1}
i€y

the set of probability distributions on 7, and g : 7 x ¥ — R? a ve&tor-valued payoff
funcion. For a given (closed) target set € C RY, the question is whether there exists

A7) = {x = (')icg €RY
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Figure 1. — The hyperplane (y — y,| - — o) = 0 separates y and the set of all pos-
sible expected vector payoffs when the Decision Maker plays at random according to
probability ditribution x(y) (represented in dark gray).

a strategy for the Decision Maker which guarantees that

1 T
f 2g<it’ ]r) — &,
=1

T—+co

where 7, and j, denote the a&tions chosen at time # by the Decision Maker and Nature,
respectively.

Blackwell provided the following sufficient condition for a closed set € C R% to
be approachable: for all y € R?, there exists an Fuclidean proje&ion y, of y onto €,
and a probability distribution x(y) € A(7) such that for all actions j € ¥ of Nature,

(Esxy 1200 )] = 20y = 20) <O.

The above inequality is represented in Figure 1. € is then said to be a B-set. When
this is the case, the Blackwell strategy is defined as

1¢ . ;
Yo = x (z 3. g m) then draw .y ~ x,.1
s=1

which means thataction, ,; € 7 is drawn according to probability distribution x, ,; €
A(7). This $trategy guarantees the convergence of the average payoff 1 E; (i, jy,)
to the set €. Later, [Spi02] proved that a closed set is approachable if and only if it
contains a B-set. In the case of a convex set €, Blackwell proved that it is approachable
ifand onlyifitisa B-set, which is then also equivalent to the following dual condition:

Vye A(F), 3x e A(T), Eiw (g, j)] € €.
J~y
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This theory turned out to be a powerful tool for constructing strategies for on-
line learning, statistics and game theory. Let us mention a few applications. Many
variants of the regret minimization problem can be reformulated as an approacha-
bility problem, and conversely, regret minimization strategy can be turned into ap-
proachability strategy. Blackwell [Bla54] was already aware of this fundamental link
between regret and approachability, which has since been much developed—see e.g.
[HMCO1, Per10, MPS11, ABH11, BMS14, Per15]. The statistical problem of cali-
bration has also proved to be related to approachability [Fos99, MS10, Per10,RST11,
ABH11, Per15]. We refer to [Per14] for a comprehensive survey on the relations be-
tween regret, calibration and approachability. Finally, Blackwell’s theory has been
applied to the construction of optimal strategies in zero-sum repeated games with in-
complete information [Koh75, AM85].

Various techniques have been developed for constructing and analyzing approach-
ability trategies. Asshown above, Blackwell’s initial approach was based on Euclidean
projections. A potential-based approach was proposed to provide a wider and more
flexible family of strategies [HMCO01, CBLO03, Per15]. In a somewhat related spirit,
and building upon an approach with convex cones introduced in [ABH11], we define
in Chapter IV a family of Mirror Descent strategies for approachability.

The approachability problem has also been studied in the partial monitoring set-
ting [Per11a, MPS11, PQ14, MPS14]. In Chapter VI we construct strategies which
achieve optimal convergence rates.

On the origins of Mirror Descent

In this se¢tion, we quickly present the succession of ideas which have led to the
Mirror Descent algorithms for convex optimization and regret minimization. We
do not aim at being comprehensive nor completely rigorous. We refer to [CBLO06,
Se&ion 11.6], [Haz12], and to [Bub15] for a recent survey.

We first consider the unconstrained problem of optimizing a convex funcion f :
R4 — R which we assume to be differentiable:

min f(x).
x€R

We shall focus on the construction of algorithms based on first-order oracles—in
other words, algorithms which have access to the gradient V f(x) at any point x.
Gradient Descent

The initial idea is to adapt the continuous-time gradient flow

x=—V[f(x).



22 INTRODUCTION
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Figure 2. — The Proximal algorithm on the left and Gradient Descent on the right

There are two basic discretizations. The first is the proximal algorithm, which starts
at some initial point x; and iterates as

Xppp = Xp — thf<xt+1)’ (1)

where v, is a $Zep-size. The algorithm is said to be implicit because one has to find a
point x,; satisfying the above equality in which x, | implicitly appears in V f(x,).
One can see that the above relation can be rewritten

1
sy = argmax{ f(x) + 3 2. @)
t

xeR?

Indeed, the fun&tion x F— f(x)+ % [l — xt||§ havingat point x, ,; a gradient equal to

zero is equivalent to Equation (1). The above expression (2) guarantees the existence
of x,,; and provides the following interpretation: point x,,; corresponds to a trade-
off between minimizing f and being close to the previous iterate x,. The algorithm
can also be written in a variational form: x,,; is characterized by

<thf<xt+1> + X — x| x — xt+l> >0, VxeR (3)

The second discretization is the Euler scheme, also called the gradient descent algo-
rithm:

X1 =% — 7, Vf(x,), (4)

which is said to be explicit because the point x,; follows from a dire&t computation
involving x, and V f (x,), which are known to the algorithm. It can be rewritten

411 = argmin {<Vf<xt>|x> ; % Jx xtn;}, (5)

xeR?
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which can be seen as a modification of the proximal algorithm (2) where f(x) has
been replaced by its linearization at x,. Its variational form is

V.V F(x,) + %01 — X)X —x,.4) >0, VxeRY (6)

Projected Gradient Descent

We now turn to the constrained problem

min f(x),

xeX

where X is a convex compac subset of R?. The gradient descent algorithm (4) can
be adapted for this problem by performing a Euclidean proje&tion onto X after each
gradient descent step, in order to have all iterates x, in the set X. This gives the projected
gradient descent algorithm [Gol64, LP66]:

Xp41 = P;Oj {x, — thf(xt>} > (7>
which can rewritten as
. 1 2
s = argmin (7 (s)15) + 3= w2 (8
xeX 3

and has variational chara&erization:
v Vflx) +xn—xlx—x,) 20, VxeX, x,€X (9)

Typically, when the gradients of f are assumed to be bounded by M > 0 with re-
spectto |-, (in other words, if f is M-Lipschitz continuous with respect to | - I,)s

the above algorithm with constant step-size y, = |X],/ MVT provides a M/V/T-

optimal solution after T steps. When the gradients are bounded by some other norm,
the above till applies but the dimension d of the space appears in the bound. For in-
stance, if the gradients are bounded by M with respect to | - ||, due to the comparison
between the norms, the above algorithm provides after T teps a M/d /T-optimal
solution. Then, the following question arises: if the gradients are bounded by some
other norm than | - ||, is it possible to modify the algorithm in order to get a guaran-
tee that has a better dependency in the dimension? This motivates the introduction
of Mirror Descent algorithms.
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Figure 3. — Projected Subgradient algorithm

Greedy Mirror Descent

Let F : R — R be a differentiable convex fun&ion such that VF : R4 — R4
is a bijection. Denote F* its Legendre—Fenchel transform. Then, one can see that
(VF)™! = VF*. We introduce the Bregman divergence associated with F:

Dp(x’, x) = F(x') — F(x) — (VE(x)|x’ — x), x,x" € R?,

which is a quadratic quantity that can be interpreted as a generalized distance. It pro-
vides a new geometry which will replace the Euclidean stru&ture used for the Pro-

je¢ted Gradient Descent (7). The case of the Euclidean distance can be recovered by
considering F(x) = 1 ||x]|§ which gives Dp(x’, x) = 1 ||x" — xH; The Greedy Mirror
Descent algorithm [NY83, BT03] is defined by replacing in the Projected Gradient
Descent algorithm (8) the Euclidean distance § [|x — xtﬂi by the Bregman divergence

Dg(x, x,):

: 1
oy = argmin { (V(s)}x) + 7 Drsx) | (10)
xeX Yt
This algorithm can also be written with the help of a gradient descent and a projection:
%, = argmin Dg (x, VF* (VF(x,) — 7,V f(x,))) . (11)
xeX

The above expression of x,,; can be decomposed and interpreted as follows. Since
we have forgotten about the Euclidean structure, point x, belongs to the primal $pace
whereas gradient V f(x,) lives in the dual space. Therefore, we cannot directly per-
form the gradient descent x, — v,V f(x,) as in (7). Instead, we first use the map VF
to get from x, in the primal $pace to VF(x,) in the dual $pace, and perform the gradi-
ent descent there: VF(x,) — v,V f(x,). We then use the inverse map VF* = (VF)~!
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primal space dual space

VEFE

VF(x,)

VF(xt> - thf(xt)
Figure 4, — Greedy Mirror Descent

to come back to the primal space: VF*(VF(x,) — v,V f(x,)). Since this point may
not belong to the set X, we perform a projection with respet to the Bregman diver-
gence D, and we get the expression of x,; from (11). Let us mention the variational
expression of the algorithm, which is much more handy for analysis

1,V f(x,)+ VFE(x,.) — VE(x,)|[x —x,,1) >0, VvVxeX, x,,€X. (12)

As initially wished, the Greedy Mirror Descent algorithm can adapt to different
assumptions about the gradients of the objective function f. If f is assumed to be M-
Lipschitz continuous with respe& to a norm | - |, the choice of a fun&ion F which is
K-strongly convex with respect to | - || guarantees that the associated algorithm with

constant step-size y, = VLK/MVT gives a M/L/KT-optimal solution after T
steps, where L = max, .y {F(x) — F(x")}.

There also exists a proximal version of Greedy Mirror Descent algorithm. It is
called the Bregman Proximal Minimization algorithm and was introduced by [CZ92].
It is obtained by replacing in the proximal algorithm (2) the Euclidean distance by a
Bregman divergence:

X,,] = argmin {f(x) + lDF(x, xt)} :

xeX Ve

Lazy Mirror Descent

We now introduce a variant of the Greedy Mirror Descent algorithm (10) by mod-
ifying it as follows. To compute x,,;, instead of considering VF(x,), we perform the
gradient descent starting from a point y, (which will be defined in a moment) of the
dual space: y, — 7,V f(x,). We then map the latter point back to the primal $pace via
VF* and then perform the projection onto X with respect to Dy. This gives the Lazy
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primal space

Figure 5. — Lazy Mirror Descent

Mirror Descent algorithm, also called Dual Averaging [Nes09] which starts at some
point x; € X and iterates

Xi41 = arggin Dg (x, VF*(y, — thf(xt))) . (13)
xX€

Besides, we perform the update y,,; = y, — v,V f(x,). If the algorithm is started with
y; = 0, we have y, = — Ei;i 1.V f(x,) for all > 1. Then, one can easily check that

(13) has the following simpler expression:
x> + F(x)} , (14)

V.V f(x) + VE(x ) = ylx — x40, VxeX, x,€X

t
X, = argmin { <E Y,V f(x,)
s=1

xeX

as well as a variational chara&erization:

For the simple problem convex optimization that we are dealing with, this lazy algo-
rithm provides similar guarantees as the greedy version (10) —compare [Nes09, Theo-
rem 4.3] and [BT03, Theorem 4.1]. However, it has a computational advantage over
the latter: the iteration in Equation (11) which gives x,,; from x, involves the suc-
cessive computation of maps VF and VF*, whereas iterating (13) only involves the
computation of VF* and the Bregman projection.

Online Mirror Descent

Interestingly, the above convex optimization algorithms can be used for the on-
line convex optimization problem presented above. The first approach of this kind
was proposed by [Zin03], who adapted algorithm (7) to the framework where the
Decision Maker faces a sequence ( f,),-; of loss functions, instead of a function f that
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is constant over time. The Greedy Online Gradient Descent algorithm is obtained by

simply replacing V f(x,) in (7) by V f,(x,):
Xeyl = P;Oj {x, =7,V filx)},

which can alternatively be written

. 1
sy = argmin { (V1)) + 5 s — w2 .
xeX Tt

By introducing a function F satistying the same assumptions as in the previous section,

we extend the above to a family of Greedy Online Mirror Descent algorithms [Bub11,
BCBI12]:

X,,] = argmin {(Vft(xt)]x) + ,}/lDF@C’ xt)} . (15)

xeX t

Similarly, we can also define a lazy version [SS07, S§11, KSST12, OCCB15]:

% = argmin { <2 YV £ () > " F<x>} . (16)

xeX
More generally, we can define the above algorithms by replacing the gradients
V f,(x,) by arbitrary ve&ors u, € R? which need not be the gradients of some func-
tions f,. For instance, the Lazy Online Mirror Descent algorithm can be written:

t
X,,] = argmax E ulx ) —F(x) p,
xeX s=1

where F a&s a regularizer. This motivates, for this algorithm, the alternative name:
Follow the Regularized Leader [AHRO8, RT09, AHR12]. This algorithm provides a

guarantee on:

T T

max Y (,]x) — 3 (%)

xeX 15 =1
which is the same quantity as in Equation (x), i.c. the regret in the online linear op-
timization problem with payoff vecfors (u,),~;. An important property is that payoft
ve&or u, is allowed to depend on x,, as it is the case in (16) where u, = —v,V f(x,).
This Lazy Online Mirror Descent family of algorithms will be our subject of study in
Chapters I to IV. Throughout Part I of the manuscript, unless mentioned otherwise,
Mirror Descent will designate the Lazy Online Mirror Descent algorithms.

s
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CHAPTERI

MIRRORDESCENT FORREGRET
MINIMIZATION

We present the regret minimization problem called online linear optimization.
Some convexity tools are introduced, with a $pecial focus on §trong convexity. We
then construct the family of Mirror Descent strategies with time-varying parameters
and derive general regret guarantees in Theorem 1.3.1. This result is central as most
results in Part I will be obtained as corollaries. In Section 1.4, we present the
generalization to convex losses (instead of linear payoffs), and in Se&ion 1.5, we turn
the aforementioned regret minimizing strategies into convex optimization
algorithms.

I.1. Core model

The model we present here is called online linear optimization. It is a repeated play
between a Decision Maker and Nature. Let 7” be a finite-dimensional vector space,
7* its dual $pace, and denote (- |-) the dual pairing. 7"* will be called the payoff
$pace®. Let & be a nonempty convex compac subset of 77, which will be the set of
actions of the Decision Maker. At each time instance ¢ > 1, the Decision Maker

e chooses an a&ion z, € Z;
e observes a payoff ve&tor u, € 7°* chosen by Nature;
e gets a payoff equal to (1,|z,).

Formally, a strategy for the Decision Maker is a sequence of maps 0 = (0,),5;
where o, : (Z x ¥*)"1 — Z. In aslight abuse of notation, o; will be regarded as an
clement of %. For a given strategy o and a given sequence (1, ), of payoft vectors, the

sequence of play (z,),; is defined by

2, = 0,(2, Uy, s 2y Uy_y), E 21

1. The dimension being finite, it would be good enough to work in R?. However, we believe that
the theoretical digtin&ion between the primal and dual §paces helps with the understanding of Mirror
Descent strategies.

31
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Concerning Nature, we assume it to be omniscient. Indeed, our main result, Theo-

rem [.3.1, will provide guarantees that hold against any sequence of payoff vectors.

Therefore, its choice of payoff vector #, may depend on everything that has happened

before he has to reveal it. In particular, payoff ve¢tor #, may depend on attion z,.
The quantity of interest is the regrez (up to time T > 1), defined by

T T
chr {O" (”t)t)l} = rzrgzxg <”t‘z> - E <ut‘zt> , T>1L

t=1

In most situations, we simply write RegT since the strategy and the payoffs vectors

will be clear from the context. In the case where Nature’s choice of payoff veors
(#,),1 does not depend on the a&tions of the Decision maker (Nature is then said to be
oblivious), the regret can be interpreted as follows. It compares the cumulative payoff

E;le (u,|z,) obtained by the Decision Maker to the best cumulative payoft Zthl (u,)z)
that he could have obtained by playing a fixed action z € % at each stage. It therefore
measures how much the Decision Maker regrezs not having played the constant strat-
egy that turned out to be the best. When Nature is not assumed to be oblivious (it
is then said to be adversarial), in other words, when Nature can rea& to the a&ions
(2,);>1 chosen by the Decision Maker, the regret is still well-defined and every result
below will stand. The only difference is that the above interpretation of the regret is
not valid.

The first goal is to construct strategies for the Decision Maker which guarantee
that the average regret £R is asymptotically nonpositive when the payoff ve&ors
are assumed to be bounded. In Se&ion 1.3 we constru& the Mirror Descent $trate-
gies and derive in Theorem [.3.1 general upper bounds on the regret which yield such
guarantees.

One of the simplest strategies one can think of is called Follow the Leader or Ficti-
tious Play. It consists in playing the action which would have given the highest cumu-
lative payoff over the previous stages, had it been played at each stage:

> . (L1)

Unfortunately, this strategy does not guarantee the average regret to be
asymptotically nonpositive, even in the following simple setting where the
payoff ve&ors are bounded. Consider the framework where 7 = ¥+ = R?
Z = A, = {(21,2,) € R% |z, + 2, = 1} and where the payoff vetors all belong to
[0, 1]2. Suppose that Nature chooses payoff ve&ors

e S e}

z€% s=1

t—1
zZ, € argmax <E Uy
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Then, one can easily see that using the above strategy (I.1) gives forz > 2,z, = (1, 0) if
tiseven,andz, = (0, 1) iftisodd. Asaresult, the payoff (#,|z,) iszero as soonast > 2.
The Decision Maker is choosing at each stage, the action which gives the worst payoff.

As far as the regret is concerned, since max, Ethl (u,|z) is of order T /2, the regret
grows linearly in T. Therefore, the average regret is not asymptotically nonpositive.
This phenomenon is called overfitting: following too closely previous data may result
in bad predi&ions. To overcome this problem, we can try modifying strategy (I.1) as

t—1
z, = argr;ax { <E u, z> — h(z)} ,
z€ s=1

where we introduced a fun&ion b in order to regularize the strategy. This is the key
idea behind the Mirror Descent strategies (which are also called Follow the Regularized
Leader) that we will define and $tudy in Seéion 1.3.

1.2. Regularizers

We here introduce a few tools from convex analysis needed for the constru&tion
and the analysis of the Mirror Descent strategies. These are classic (see e.g. [SSO07,
SS11, Bub11]) and the proofs are given for the sake of completeness. Again, 7" and
9* are finite-dimensional ve&ors §paces and & is a nonempty convex compact subset
of 7". We define regularizers, present the notion of strong convexity with respect to
an arbitrary norm, and give three examples of regularizers along with their properties.

I.2.1. Definition and properties

We recall that the domain dom b of a fun&ion h : ¥ — R U {+oco} is the set of
points where it has finite values.

Definition 1.2.1. A convex fun&ion b : ¥ — R U {+oo} is a regularizer on % if
it is stri¢tly convex, lower semicontinuous, and has & as domain. We then denote
9), = maxgy h— ming b the difference between its maximal and minimal values on %.

Proposition 1.2.2. Let b be a regularizer on %. Its Legendre—Fenchel transform b* :
7+ — R U {+o0}, defined by

h*(w) = sup {(w|z) —h(z)}, weT*,

eV

satisfies the following properties.
(i) dombh* = 7*;
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(i) b* is differentiable on V*;
(iii) Forallw € 7*, Vh*(w) = argmax___ {(w|z) — h(z)}. In particular, Vb* takes
values in Z.
Proof. (i) Let w € 7°*. The fun&ion z + (w|z) — h(z) equals —co outside of &,

and is upper semicontinuous on % which is compact. It thus has a maximum and
h*(w) < 4oo.

convex. Besides, forz € 7" andw € 7+
z€ b (w) <= wedb(z) << zecargmax{(w|z’)—h(z")},
2 cx
in other words, 0b* (w) = arg max , _ {(w|z') — h(z")}. This argmax is a singleton as
we noticed. It means that b* is differentiable. ]

Remark 1.2.3. The above proposition demonstrates that b* is a smooth approxima-
tion of max, , (-|z) and that VA* is an approximation of arg max___(-[z). They

will be used in Section 1.3 in the constru&ion and the analysis of the Mirror Descent
$trategies.

As soon as b is a regularizer, the Bregman divergence of h* is well defined:
Dy (w',w) = b*(w') — b*(w) — (Vh*(w)|w —w), w,w € V*.

This quantity will appear in the fundamental regret bound of Theorem 1.3.1. As we
will see below in Proposition 1.2.8, by adding a §trong convexity assumption on the
regularizer b, the Bregman divergence can be bounded from above by a much more
explicit quantity.

1.2.2. Strong convexity

Definition 1.2.4. Leth : ¥ — R U {+oo} be a fun&ion, |- | a norm on 7, and
K > 0. b is K-strongly convex with respect to | - || if for all z, 2" € 7" and A € [0, 1],

KA1 - )
2

Proposition 1.2.5. Lezr b : " — R U {+oo} be a function, |- | a norm on V", and
K > 0. The following conditions are equivalent.

(i) b is K-strongly convex with respect to | - ||;
(i) For all points z,2" € V" and all subgradients w € dh(z),

bz + (1—N)z") < Mh(z) + 1 —N)b(z') — Iz’ — z|”. (12)

h(z') > h(z) + (w2’ —z) + % Iz’ — z|*; (L3)
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(i1i) For all points z,z" € V" and all subgradients w € 0h(z) andw’ € dh(z'),
W —wlz’ —z) > K|z — 2. (1.4)

Proof. (i) => (ii). We assume that b is K-strongly convex with respe to |- ||. In
particular, b is convex. Let z,2" € 7", w € dh(z), A € (0,1), and denote 2" =
Az + (1—1)z’. Using the convexity of h, we have

(wlz” —2) _ h(z") —h(z)

e’ —2) = 1—1 ST
< o3 (W00 + a= by - B g o - bio) )
= (&)~ h(e) — S5~ 2l

and (L.3) follows from taking A — L.

(ii) = (i). Letz,2" € ",°A € [0,1], denote 2”7 = Az + (1—X)z’. If X € {0,1},
inequality (I.2) is trivial. We now assume A € (0, 1). If z or 2’ does not belong to the
domain of b, inequality (I.2) is also trivial. We now assume z, z" € dom h. Then, z”
belongs to |z, z’[ which is a subset of the relative interior of dom h. Therefore, 0h(z”)
is nonempty (see e.g. [Roc70, Theorem 23.4]). Letw € 0h(z”). We have

K

(wlz — 2") <h(z) — h(z") = o |z = 2"
K
(wlz' = 2") < h(z) = hiz") = 5 | = "I

By multiplying the above inequalities by A and 1 — A respectively, and summing, we
get
0 < Mo(z) + (1= Wh(z') — h(z") — % (Mz—2"I?+A=N)z" —2"|%) .

Using the definition of 2”7, we have 2 —2” = (1—4)(z' —2) and 2’ — 2" = A(2’ —2).
The last term of the above right-hand side is therefore equal to

= = ol 4 =g —af?) = S

and (L.2) is proved.
(i) = (iii). Let z,2" € 7", w € 0h(z) and w’ € dh(z’). We have

b(z') > b(z) + (wlz —2) + % 2 — | (L5)

h(z) > h(z') + W'z —2') + % Iz’ — z|*. (16)
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Summing both inequalities and simplifying gives (1.4).

(iii) = (ii). Letz,2" € ¥". If 0h(z) is empty, condition (ii) is automatically
satisfied. We now assume 8h(z) # 0. In particular, z € domh. Letw € 0h(z). If
h(z') = +oo, inequality (1.3) is satisfied. We now assume 2z’ € dom h. Therefore,
we have that |z, 2/[ is a subset of the relative interior of dom h. As a consequence, for
all points z” €]z, z’[, we have dh(z”) # 0 (see e.g. [Roc70, Theorem 23.4]). For all
A € [0,1], we define 2y = z + A(2" — 2). Using the convexity of b, we can now write,
foralln > 1,

n n

h(Z/) - h(Z) = Zh(zk/n> Z(k— l/n E < (k—1)/n

k=1 k=1

Zk/n — Z(k—1) /n> >

where wy = wand wy, € 9h(z,) for k > 1. Since 2}, — 21/, = +(z' — z) for
k > 1, subtracting (w|z" — z) we get

h(z')—h(z) — (w|z' —z) > 1 zn: <w(k_1>/n — w’z’ — z> :

a

—_

Note that the first term of the above sum is zero because w = w,,. Besides, for £ > 2
we have 2" — 2 = %5(2(4_1);, — 2). Therefore, and this is where we use (iii),

o1
h(z') — h(z) — (w[z’ —z) Z r—1 < (k-1)/ ‘z(k—l)/n - Z>
k=2
501 2
>K Z k—1 Hz(k—l)/n N ZH
k=2

K|z —z|* &

- 2 Z(k —1)
k=2
/7 2
o S P,
and (ii) is proved. ]

Similarly to usual convexity, there exists a strong convexity criterion involving the
Hessian for twice differentiable functions.

Proposition 1.2.6. Let |- | be a norm on ¥, K > 0, and F : V" — R a twice differen-
tiable function such that

(VZE(z)u|u) > K lu|>, z€eV,uec?.

Then, F is K-strongly convex with respect to | - |.



REGULARIZERS 37

Proof. Let z,2" € 9. Let us prove the condition (ii) from Proposition 1.2.5. We
define
d(A) =F(z+A(z' —2)), r€]0,1].

By differentiating twice, we get forall A € [0, 1]:
¢”(A) = (V*E(z + Mz — 2))(z' —2)|z’ —2) > K|z’ — z|)*.

There exists A € [0, 1] such that $(1) = $(0) + ¢’(0) + ¢”(Ay)/2. This gives

F&') = (1) = $(0) + ¢/(0) + 20 > Fle) 4 (VR —2) + 5 |2/ — I,

and (1.3) is proved. ]

Lemma.2.7. Let |- | anormon ¥, K > 0and b, F : ¥ — R U {+o0} fwo convex
Sfunctions such that for all z € V',

Then, if F is K-strongly convex with respect to || - |, so is h.

Proof- Note thatforallz € 7, F(z) < b(z). Let us prove that b satisfies the condition
from Definition [.2.4. Let 2,2 € 7°,°A € [0,1] and denote 2”7 = Az + (1 — A)z’. Let
us first assume that h(z”) = +oo. By convexity of b, either h(z) or h(z’) is equal to
+o0, and the right-hand side of (1.2) is equal to +oc. Inequality (1.2) therefore holds.
If h(z") is finite,

1—
D) = F(&") < XF(z) + (1 - DEE) — 20 M g
1—
< M(z)+ 1 —="N)h(z") — M Iz —z|*,
and (L.2) is proved. []
For a given norm | - | on 7", the dual norm | - || on 7" is defined by

[wll, = sup [(w]z)].
Jal<1

Proposition 1.2.8. Le# K > 0and b : ¥ — R U {+oo} be a regularizer which we
assume to be K-Strongly convex function with respect to a norm || - | on V. Then,

1
Dy (w',w) < K [w’ —w||i, w,w' € V.
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Proof’ Let w,w’ € 7"* and denote z = Vh*(w) and 2 = Vh*(w’). Moreover, for
A € [0,1], we introduce wy = w + AMw’ — w) and 2y = Vh*(w,). Therefore, we
have w € 8h(z) and wy, € 8h(zy). b being strongly convex, condition (1.4) gives
(w;, — wl|z, — z) > K||z3, — 2. Usingthe definition of | - |, and dividing by |2y, — |
gives

1
23, — 2] < g fwn =l .

Now consider $(A) = h*(wy ) defined for A € [0, 1]. We have
¢'(1) = ¢'(0) = (' — w|Vh"(w;) — Vb*(w)) = (' —wlz) — 2)

1
S’ —wl g — 2] < g fwn —wll o’ —wl,

A
= gl =l
*

K
By integrating, we get
2

80— 9(0) < (0D + o’ —wl?,

which for A = 1boils down to

1
b (w') = b (w) < (W' —w|Vh"(w)) + 5= |’ — wl?.

In other words, D (w’, w) < 5k |0’ — wlli. =

1.2.3. The Entropic regularizer

Denote A, the unit simplex of R%:

Ad:{ZGRi

d .
Zz‘ zl},
i=1

where Rﬁ is the set of veors in R with nonnegative components. We define the
entropic regularizer b, : R4 — R U {+oo} as

d i i
b (z) = {Eizlz logzt ifze Ay

+o0 otherwise,

where 2’ logz’ = 0 when z' = 0.
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Proposition1.2.9. (i) b, is a regularizer on Ay;
d
(i) bty (w) = log (E exp w’),for allw € RY%;
i=1

(iii) Vhi, (w) = (%) ,for allw € RY;
Zj:l exp w/ '
1<j<d

(iv) 9, = log d;
() hen is 1-STrongly convex with respect to | - ||

Proof. (i) is immediate, and (ii) and (iii) are classic (see e.g. [BV04, Example 2.25]).
(iv) by, being convex, its maximum on A, is attained at one of the extreme points.

At each extreme point, the value of b, is zero. Therefore, max, b, = 0. As for the
minimum, b, being convex and symmetric with respet to the components 2/, its
minimum is attained at the centroid (1/4, ...,1/d) of the simplex A, where its value

is —logd. Therefore, miny b, = —logdand 3, =logd.
(v) Consider F : R4 — R U {+co} defined by

d (i i i . d
F(z):{zizl(zlogz Z)+1 ifzeRE

+oo otherwise.

Let us prove that F is 1-strongly convex with respec to | - |, By definition, the do-
main of Fis R%. It is differentiable on the interior of the domain (R* )* and VF(z) =
(logz"),<;<y for z € (R )% Therefore, the norm of VF(z) goes to +co when z con-
verges to a boundary point of R%. [Roc70, Theorem 26.1] then assures that the subd-

ifferential 0F(z) is empty as soon as z ¢ (R* )?. Therefore, condition (iii) from Propo-
sition [.2.5, which we aim at proving, can be written

(VE(z') = VE(z)|z' —2) > &' — =]

[ %7€ (R%)4. (L7)

Letz, 2’ € (R%)%

(VF(z') — VF(z)|z' —z) = Y, log

A simple study of funéion shows that (s — 1) logs — 2(s — 1)*/(s +1) > 0 fors > 0.
Applied with s = (2’)" /2, this gives

z

d ’\i
Yiog WL (@ —2) > | — 2t
i=1
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and (L7) is proved. F is therefore 1-§trongly convex with respect to | - || and so is by,
thanks to Lemma [.2.7. []
I.2.4. The Euclidean regularizer

Let & be a nonempty convex compact subset of R%. We define the Euclidean reg-

ularizer on & as ,
1 .
o - {18 e

+o0 otherwise.

Proposition 1.2.10. (i) b, is a regularizer on Z;

(i) Zb;(w) = proj,, (w) for allw € R where proj, is the Euclidean projection onto
(iii) b, is 1-Strongly convex with respect to || - | -
Proof. (i) is immediate.

(ii) For all w € R%, using property (iii) from Proposition 1.2.2,

: 1 1 1o
V(1) = argmas { (wlz) — [ | = argmin { 3 I<I} — (wle) + 3 Il |

. 2 .
= argmin |w — z|; = proj(w).
2€% &

(iii) We consider F : RY — R defined by F(z) = 1 HzH; for all z € R%. Its Hessian
at all points z € 7" is the identity matrix and for all veGtors u € R, we have

(V2E(z)ulu) = |ul; .

Thanks to Proposition 1.2.6, F is 1-strongly convex with respect to |- |, . Using
Lemma [.2.7, we deduce that b, is also 1-strongly convex with respect to | - || [

1.2.5. The ¢? regularizer
For p € (1,2), we define for any nonempty convex compact subset Z of R%:
1 2.
sz ifze
o {zn 2
+oo  otherwise.

Proposition 1.2.11. (i) b, is a regularizer on Z;
(ii) b, is (p — 1)-Strongly convex with respect to || - ||p
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Proof. (i) Since p > 1, |- || is a norm and is therefore convex. b, then clearly is a

regularizer on Z.
(ii) We consider the fun&tion F(z) = 5 ||z|| defined on R which is ( p—1)-strongly

convex with respect to | - ”p (see e.g. [Bubll, Lemma 3.21]). Then, so is b, thanks to
Lemma [.2.7. O

I.3. Mirror Descent strategies

We now construct the family of Mirror Descent strategies with time-varying pa-
rameters and derive in Theorem [.3.1 general regret bounds. A discussion on the ori-
gins of Mirror Descent is provided in the introduction of the manuscript. We con-
sider the notation introduced in Se¢tion I.1. Let b be a regularizer on the action set &
and (7,),5 a positive and nonincreasing sequence of parameters. The Mirror Descent
strategy associated with b and (v,),, is defined by Uy = 0 and for # > 1by

play a&tion z, = Vbh*(n,_;U,,),
update U, =U, | +u,

which implies U, = ¥'_ u.. Since Vh* takes values in & by Proposition 1.2.2, z, is
indeed an action. Besides, z, only depends on payoff vectors up to time ¢—1. Therefore,
the above is a valid §trategy. Using property (iii) from Proposition 1.2.2, it can also be

written
zt:argmax{<zu >—h()}
2€Z Ne—1

This expression clearly demonstrates that the strategy is a regularized version of Fol-
low the Leader (I.1) which would give arg max___ <Et_1 u

s=]1"7$

see that the higher is parameter , the closer z, is to arg max <
g p Ne—1 Zy g v )y

z> instead. Moreover, we

-1y, > This

s=1 Us
intuition is in particular useful in Se&tion I1.7 where we compare the regret bounds
given by different choices of parameters (v),),;.

We now state the general regret bound guaranteed by this strategy. Similar state-
ments with constant parameters have appeared in e.g. [RT09, Proposition 11], [SS11,
Lemma 2.20] and [BCB12, Theorem 5.4].

Theorem 1.3.1. Lez T > 1an integer and M, K > 0.
(i) Against any sequence (u,),, of payoff vectors, the above strategy guarantees

S T
RCgT b + EﬂDb (V]t lUt’ Ne— IUt 1)
t=1 "It
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where we set 1, = .
(i) Moreover, if b is K-strongly convex with respect to a norm | - |, then

R <8b L 2
Br <o TR EWH o ]I -

(iii) Moreover, if |u,| < M (forallt > 1), the choice n, = /6, K/M?t (fort > 1)
guarantees

,
<
Proof. (i) Let z € Z. Using Fenchel’s inequality, we write

< PrUr) n h(z)

X

RegT <2M

<UT’Z> _ <Y]TUT|Z>

Nt Nt Nt (L8)
BV (h*tht) )y mexsh |
No t=1 N Ne—1 Nt

Let us bound b*(n,U,) /%, from above. For all z € Z we have

<y]tUt|z> B I’J(Z) _ <7]t—1Ut’z> _ h<z) _ l — !
M a M1 b(z) (m m_l) '

The maximum over z € % of the above left-hand side gives b*(n,U,)/»,. As for the
right-hand side, let us take the maximum over z € % for each of the two terms sepa-
rately. This gives

e oo (-5 )}

_ b*(n,.1U,) 4 (min h) ( 1 _ l)
Ne—1 % Ne—1 Nt

where we used the fact that the sequence (1,), is nonincreasing. Injecting this in-
equality in (I.8), we get

Ne—1 Nt

(Urla) < h*(0) n i h*(ylt—lUt) — b (Y]t—lUt—l> + (min b) i < 1 1 > n ma;(gz, I’J
T

Mo t=1 Ne—1 % =1

We can make the Bregman divergence appear in the first sum above by subtrating

MU, — V]tflUtfl|Vh*(ntflUt71>>
Ne—1

= (u,|z,) .
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Therefore

(Ul < b ( ET: U U, +§T: e ming h+min% h+max% h.
=1 Ne-1 =1 nr "o nr

Since h*(0) = — ming h, we get

T
Reg = max (Ur|z) — Z (u,|z,)

t=1

maxgq, h— min% h + i Dh* (Ylt—lUt’ Y]t—lUt—l>

N

T =1 Ne—1

(ii) The strong convexity of the regularizer b and Proposition 1.2.8 let us bound
the above Bregman divergenccs as follows:

D (Y]t lUt’ Ne— lUt 1) ZK ”m lU m—1Ut—1H m 1” t” 4 > 1’

which proves the result.

(iii) Set n = /8,K/M2 so that 5, = 0t V2 for t > 1. The regret bound then

becomes
819\/_ M2

N Zntl

We bound the above sum as follows. Since g =1, = 3,

i (e ) oL 75

T—1
—Y]f —ds 2V]\/T—1<2nﬁ.

Injecting the expression of and simplifying gives

Rc:gT < 2M T?Sh

[

An alternative proof of this result based on a continuous-time approach is given in
Chapter VII and offers the following interpretation. The first term 6;, /v in the above
bound (i) is the regret guarantee of the continuous-time mirror descent algorithm,
whereas the Bregman divergences Dy (1,_,U,, n,_;U,_;) come from the discrepancy
between the continuous-time and the discrete-time strategies.
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I.4. Convexlosses

We consider here a more general regret minimization problem, called on/ine convex
optimization, in which Nature chooses at time # > 1aconvexloss fun&ion?, : 7 — R
instead of payoff veGors. The play is as follows. At time instance ¢ > 1, the Decision
Maker

e chooses a point z, € Z;
e obsecrves a (negative) subgradient u, € —d¢,(z,);

e incurs aloss equal to ¢,(z,).

The feedback offered to the Decision Maker is therefore (an element of ) the subdif-
ferential 0¢,(z,). The regret to minimize is defined by

T T

2 ¢,(z,) — min 2 0,(2).

t=1 2€% t=1

The regret minimization with payoft ve¢tors defined in Section I.1 can be seen as a
special case where the loss functions are linear. As demonstrated by [KW97, CB97],
the setting with convex losses can be reduced to a regret minimization problem with
linear payoffs as follows. Using a convexity inequality, we can write

T T

This last quantity is obviously the regret as defined in Se¢tion I.1 where (1,), are seen
as payoff ve&tors. We then naturally define the Mirror Descent strategies as follows.
Let b be aregularizer on &, (,),-; a positive and nonincreasing sequence. Set Uy = 0
and fort > 1,

%y = Vh* (y]t—lUt—l)
U, e U, — 06(z,).

Note that payoft vector u, belongs by definition to —d¢,(z,). It therefore depends on
z,, which is indeed allowed—see Seéion I.1.
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Theorem 1.4.1. Lez T > 1an integer and K, M > 0.

(1) Assume that b is K-Strongly convex with reipect to a norm | - ||. Then, against any
sequence of loss functions (€,),y, the above Mirvor Descent strategy guarantees

S
Nt

2
%

T T 1 T
— mi < _
X 6(z) —min 3 6(=) < 2 3 D1 [06(z)

t=1
where vy = n;.
(i) Moreover, if the loss functions are M-Lipschitz continuous with respect to || - ||, the

choice of parameters v, = /0, K/M?t (fort > 1) guarantees

T . T Tgh
2 0(z,) — rzrélggtz::l ¢(z) <2M N

=1
Proof. The bounds follow from Theorem 1.3.1 and the above discussion. ]

One important $pecial case where 7° is an Euclidean space and where the Eu-
clidean regularizer b, from Section 1.2.3 is chosen. As stated in Proposition 1.2.10,
the map Vhj3 is simply the Euclidean projection onto Z:

Zy = P;Oj(ylt—lUt—l)
U, e U, — 06(z,).

I.5. Convex optimization

Ordinary convex optimization problems can be seen as a regret minimization
problem where the loss fun&ion remains constant over time. In what follows, we
outline how regret minimizing strategies can be used for this purpose and discuss the
performance gap incurred by using variable step-sizes instead of a variable
parameters.

Let f : 7" — R be a convex fun&ion to minimize on a nonempty convex compact
set & C 7", haregularizer on &, (v),),>1, a positive and nonincreasing sequence (1,),~;
and (v,),>) a positive sequence. We consider the following general algorithm. Set
Uy =0andforr>1,

Zy = Vh*("]tflUtA)’
Ut € Ut—l - Ytaf(zt>’

which corresponds to the Mirror Descent algorithm from Section 1.3 associated with
payoff veGtors u, € —y,0 f(z,). We call (1), the parameters, which in the definition
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t—1

of the strategy multiply the whole sum U, | = ¥'" u, and (y,),, the sep-sizes, whose

purpose is to give different weights to the successive subdifferentials d f(z,).

We now state the general guarantees offered by the above algorithm, which are
similar to those obtained in [BT03, Theorem 4.1] for the greedy version of Mirror
Descent (see the introdu&ion of the manuscript for a discussion on the difference
between greedy and lazy Mirror Descent).

Theorem 1.5.1. Lez T > 1an integer and K, M > .

(i) Suppose that the function [ is M-Lipschitz continuous with respect to a norm
||, and that b is a K-Strongly regularizer with respect to |-|.  Denote

2} € argmin _ . f(z,). Then,

f(z’)minf<<§]y)l <ﬂ+£2§: }/2>
T v S “ ¢ K tZIVIt—l r ] -

"t

(i) The choice of constant parameters v, = 1 gives

-1

) ‘ T M2 X 5
s < (En) (e 5cE)

(i) and the choice of constant Step-sizes v, = 1 and variable parameters

N = v/ 0,K/M?t gives

/ . Sh
f(&h) — rrgnf <2M K"
Proof. We make the regret appear as follows:

-1

T T T
f(z"/f> - Igé{gf(Z) ZJI 0 Zl 7tf<zt) - Igélgg Z:I th(z)>

N

T
= ZIYt Izng}%XZYt (f(=,) _f<z>>>

N

T T
;Yt I‘Zré%Z)X2<ut|zt—z>> )



CONVEX OPTIMIZATION 47

where we used in the last line the fact that 4, € —v,3f(z,). Besides, f being

M-Lipschitz continuous with respect to | - || is equivalent to its subgradients being
bounded from above by M with respect to || - || . Therefore, injecting [u,| < y,M
into Theorem 1.3.1 gives the result. []

One can see that the best convergence rate that we get in (ii) with a constant pa-
rameter and step-sizes of the form y, = =% is of order O(TV2logT) (for a = 1/2)
(and there is no straightforward choice of 7, leading to a better convergence rate).
On the other hand, by taking in (iii) a constant step-size and varying the algorithm’s
parameter 1), = O(t71/2), we do achieve an O(T~2) rate of convergence.

A






CHAPTERII
EXPERTS SETTING

We dedicate this chapter to a variant of the model from Section I.1 where the De-
cision Maker has a finite set of a&ions from which he is allowed to choose at random.
The Mirror Descent strategies introduced in Section 1.3 and the corresponding regret
bounds are casily adapted to this framework. Randomization being introduced by
the Decision Maker, we also derive high probability and almost-sure regret guaran-
tees. We then examine a few important special cases: the Exponential Weights Algo-
rithm, the case of sparse payoff vetors, the Smooth Fictitious Play and the Vanishingly
Smooth Fictitious Play.

II.1. Model

Let 7 = {1, ..., d} be the set of pure actions of the Decision Maker. Denote A the
unit simplex of R? which can be seen as the set of probability distributions over 7:

d .
Zzl :l}.
i=1

An element of A, is called a mixed action. The play goes as follows. At each time
instance ¢ > 1, the Decision Maker

Ad:{ZERi

e chooses a mixed a&tion z, € Ay;
e draws pure action i, € 7 according to probability distribution z,;
e observes payoff ve&or u, € R%;
e receives payoff ui’.
Unlike the core model of Section 1.1, the choice by Nature of payoff ve¢tor #, must

not depend on pure action i, (but can still depend on mixed acion z,). Let (%,),5;
the filtration where %, is generated by

(21> U1 B oo s Zp 1> Uy 15 B 1> Zps Uy).-

49
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We then have E [u?

a sequence of measurable maps ¢ = (0,),5; where o, : (A; x 7 x %) — A,. Fora
given strategy o and a sequence of payoff ve¢tors (,),~,, we have:

9}] =E,_, [#] = (u,]z,). A strategy for the Decision Maker is

ZNZr

Zt - Gt<z1’ ll) ul) eey z[_l’ it—l’ ut—l)’ t > 1

The realized regret up to time T > 1is the random variable defined as
~ T T
RegT = rnax2‘uff — Eu?
€7 3 t=1
We call regrer the following quantity, where the payoff uy has been replaced by its

conditional expe&ation (u,|z,) = E [u;’ ‘ F t] . It corresponds to the regret from Sec-

tion [.1:

—

T T

T
Regr = Il.réaéx Zl u; - Z (u,lz,) = n;gx E <ut|z> - E <u’t|zt> .

t=1 e | =1

The Mirror Descent strategies adapted from Section II.1 will provide upper bounds
on the regret. With the help of concentration inequalities, those will in turn provide
high probability and almost-sure guarantees on the realized regret.

We call this setting the experts setting because it models the problem of predi¢tion
with experts advice which can be described as follows. Let 7 = {1, ..., d} be a set
of experts. At each stage t > 1, the Decision Maker is to make a decision and each
expert gives an advice as to which decision to make. The Decision Maker must then
choose the expert i, to follow. Then, the vector #, € R? is observed, where #: is the
payoff obtained by expert i. The payoff obtained by the Decision Maker is therefore

u; . The regret then corresponds to the difference between the cumulative payoff of the
Decision Maker and the cumulative payoff obtained by the best expert in hindsight.

An important dire&tion of research is the study of the best possible guarantee on
the regret, in other words, the study of the minimax regret

min max R,
o (uz)t>l

where the minimum is taken over the strategies of the Decision Maker, and the max-
imum over the possible sequences of payoft vectors. Without any assumption on the
payoff ve&ors, it is easy to see that this quantity is equal to +oo. It becomes finite
and therefore relevant when, typically, the payoff vectors are assumed to belong to
a bounded set % C R?. However, we are usually unable to compute the value of



MIRROR DESCENT STRATEGIES 51

the minimax regret exactly, and we simply establish its asymptotic dependencies in
the parameters of the problem. For instance, the most common assumption in this
framework is that payoff ve&ors belong to % = [—1,1]%. In this case, the minimax
regret is known to be of order /T logd, which gives the dependency in the number
of stages T and in the number of actions d. This result has been proved in two steps.
Firgt, the Exponential Weights Algorithm was shown to guarantee a regret bound of
\/Tlogd (up to a multiplicative constant) [CB97], which gives an upper bound on
the minimax regret (this result will be presented in detail in Section I1.3). Second,
using a probabilistic argument, it has been established [CBFH*97] that the minimax
regret is higher than /T logd (up to a multiplicative constant) when T and d are
large. Stronger assumptions involving $parsity will be considered in Section I1.4 and
will lead to lower minimax regrets, achieved by well-chosen strategies.

I1.2. Mirror Descent strategies

We adapt the Mirror Descent strategies from Section 1.3 to this framework by sim-
ply seeing the simplex A, as the convex compact set of actions. The strategy associated
with a regularizer h on A, and a positive and nonincreasing sequence of parameters
(1,);>1 is therefore defined as follows. Set Uy = 0 and for ¢ > 1,

choose z, = Vb*(n,,U,_,),
draw i, ~ z,,

update U, =U,_ ;| +u,.

The results of Theorem 1.3.1 hold. We are now aiming at deriving high probability
and almogt-sure results on the realized regret. The Hoeflding—Azuma inequality will
make sure that the regret and the realized regret are close.

LemmalIl.2.1. Let (z,),-) and (i,),, be sequences of mixed and pure actions respectively
played by the Decision Maker against payoff vectors (u,),~1. Let M > 0 and assume that
|| < M (forallt >1).

(i) Letd € (0,1). With probability higher than'1 — 8, we have

lf{\ggr < Reg +M,/8T log(1/9).

(ii) Almost-surely,

. 1  —
th_l)iL;p T (chT — chr> < 0.
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Proof’ (i) Let (7 ), be the filtration introduced in Se&ionIL.1 and X, = (1,|z,)— Ul
Then, (X )t>1 is sequence of martingale differences with respect to (¥,),5;. Indeed,

E [(ut|zt) —u Sﬁ*t] = (u,|z,) — (u,|z,) = 0. Besides, |X,| < 2M. Proposition A.0.1
applied with e = M/8log(1/9)/T then gives

lT
Pl=> X, >¢e| <3
thl

In other words, with probability higher than 1 — 3, we have

T T
D () < Eu’%—M\/STlog(l/B)

=1 t=1

Adding max; Ethl u: to both sides and reorganizing the terms gives the result.
(ii) The second part of the statement follows from a standard Borel-Cantelli ar-
gument. ]

We now state the high-probability and almost-sure guarantees offered by the Mir-
ror Descent strategies in the case of a strongly convex regularizer and bounded payoff
ve&tors.

Theorem I1.2.2. Let T > lan integer, K, M > 0and 6 € (0,1). With notation from
Section 1.2, assume that b is K-Strongly convex with respect to | - ||

(i) Against any sequence of payoff vectors (u,) .~y such that |u,| < M (forallt > 1),
the Strategy defined in Section 11.2 guarantees with probability higher than1— 6

__ 2
Reg. < i + & Em 1+ M, /8T log(1/3).

(i) In particular, the choice of parameters v, = /0,K/M?t (for t > 1) gives with
probability higher thar1 — 3,

R\ngT <MVT (2\/%%— \/810g(1/3)> ,

and almost-surely,

lim sup T chT

T—+o0
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Proof. Simply combine Theorem [.3.1, Lemma I1.2.1, and the fact that |- |  is the
dual norm of | - || . ]

The average realized regret being asymptotically nonpositive, as stated in the very
last part of the above theorem, is the original definition of a §trategy being consistent,
as proposed by Hannan [Han57].

I1.3. Exponential Weights Algorithm

The most important instance of Mirror Descent strategies in the experts setting is
the Exponential Weights Algorithm, introduced by [LW94, Vov90] and further $tud-
ied by [KW95, CB97, ACBGO02, Sor09] among others. As proved below in Theo-

rem I1.3.1, it achieves a minimax regret guarantee of order /T logd. The algorithm

corresponds to the choice the entropic regularizer:

d i i
b (2) = {Ei_lz logz' ifze Ay

+oo otherwise.
Proposition 1.2.9 then gives the following explicit expression of the algorithm:

. U
Z; — CXP (Y]l'*l t—l) l c g

2?21 cXp (”IHUZ—l) ,

The following regret bound achieved by the Exponential Weights Algorithm with
time-varying parameters 1, = +/logd /¢ was first established in [ACBGO02].

Theorem IL.3.1. Let T > Lan integer. Against any sequence of payoff vectors in [—1,1]%,
the Exponential Weights Algorithm with parameters v, = +/logd/t (fort > 1) guaran-

tees
chT <24/ Tlogd.

Let 3 € (0,1). With probability higher that 1 — 8, we have

I/{\c;/gT <VT (2\/Iogd + \/8 log(1/8)> :

Almost-surely,
1 —
TRegT < 0.

lim sup
T—+oco

Proof. From Proposition 1.2.9, we know 8, = logd and that b, is1-strongly convex

cnt
with respect to || - | ; and since u, € [, 1]4 implies lu,| _ <1, the resules follow from
Theorem I1.2.2 applied with M = land K = 1. [
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We now turn to more precise regret bounds which hold in the case of payoft vec-
tors whose components are bounded from above. For simplicity, we state the follow-
ing results in the case of losses, i.c. payoff ve¢tors with nonpositive coefhicients. They
are obtained by a finer analysis of the Bregman divergence associated with b,

Theorem I1.3.2. (i) Agains? payoffvectors (u,),=, in R%, the Exponential Weights Al-
gorithm with parameters (1)~ guarantees

locd & d
Og = e )%

t=1 i=1

RegT

where we set vy = ;.
(ii) Against payoff vectors (u,),=y in [—1, 014, the Exponential Weights Algorithm with
constant parameter v € (0, 1) guarantees

logd

1
Regrém( N —'V]l’ll’éééxzut).

t=1

Proof. (i) Theorem 1.3.1 together with the fact that 3, = logd gives

loed &
g P

tltl

Regr 71: 1Ut’7h lUt 1)

We aim at bounding from above the Bregman divergence in the above sum. Proposi-

tion 1.2.9 gives the following expression for b, :

d .
Pine(y) = log (Z ef) , JE R4,

i-1
For ¢ > 1, we can then express the Bregman divergence as

thntMt—lUt’ Y]t—lUt—l) = hcnt(”t—lUI) - hcnt(”t lUt 1)
<Vtht<y]tflUt71> MtflUt - YltflUt71>

d d .
tog (S ) g (Zeh ] b

i=1 i=1

d

e"lrfluiey]: 1Ui 1
_log [ YT )
8 ;Ejl o Ul Ne—1 \Z¢ | Uy

d )
= log E z;d%ﬂ;) — Ne—1 <Zt|”t> .
i=1
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Since 4! € [—1, 0] by hypothesis, it is true that

eY]r—lut < 1 + V]tflui + Y]t2—1<uzl;)2'

Substituting in the previous expression,

d
Dhintm'v‘*lUt’ nU; ) < log (Z 2 (147, qut + 71?—1(“2)%) — N1 (2 |%,)
im1

i=1

d
= log (1 + N1 <ut‘zt> + Y];tzfl Z Z;(u;)z) — Ni—1 <ut|zt>

d
< Ny (2,) + Y]%—l E Zi(”gz — Nyt (2, |1,)

i=1
d . .
=17 22 (),
i=1
which gives the result.
(ii) The second bound is a corollary of the first one. We restri& to the Exponential

Weights Algorithm with a constant parameter 1 € (0,1). Since 4 € [—1, 0], we have
(4})* < —ul. This gives

logd T d
Og I

t=1i=1

T T
rzréagx;;ut Z (z,]n,) <

Since Zflzl ziul simply is (z,|u,), we can reorganize the above quantities to get

! I ; I o logd
(=) (max Dy — 2, (abe) | < = —nrggxgup
and the result follows by dividing by 1 —n > 0. ]

Regret bounds similar to (i) have appeared in e.g. [ACBFS02], [CBLS05] and
[SS11, Theorem 2.2] in the case of congtant parameters. As for (ii), a bound of the
same kind was already proposed in [LW94] and is called improvement for small losses.

I1.4. Sparse payoff vectors

We here add a éparsity assumption on the payoff veGtors: we assume that they has
at most s nonzero components (for agivenintegerl <s < d). We aim at cons’tru&ing
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strategies which take advantage of this restrition to guarantee regret bounds that are

tighter than the bound of order /T logd guaranteed in Theorem I1.3.1 by the Ex-
ponential Weights Algorithm. A thorough investigation of this subject will be con-
ducted in Chapter V. We distinguish two cases: $parse gains and sparse losses. Denote

w4 = {u €0, 14 | # has at mot s nonzero components},

%54 = {u € [-1, 0]% | u has at most s nonzero components} .

Let p € (0,1) and consider the following regularizer on A ;:

Lz]> ifzeA
hp(z):{szHp ifz € Ay

+oo otherwise.

The associated Mirror Descent strategy guarantees a regret bound of order /T logs

in the case of $parse gains.

Theorem IL.4.1. Let T > lands > 3. Against payoff vectors in W54 the Mirror
Descent Strategy associated with regularizer b, with p = 14-(2 logs—1)"! and parameters

N, = (4etlogs)™V2 (fort > 1) guarantees

Regr < 24/eTlogs.

Proof. According to Proposition 1.2.11, regularizer b, is (p —1)-strongly convex with
respet to | - HP Letq > O such that1/p + 1/q = 1. We use the assumption on the

payoft ve¢ors to bound their ¢7 norms as follows. Let u € 54, 1y has at most s
nonzero components. Thus,

J 1/q 1/q
Jul, = (Z\ui\q) < ( y W) < s
1 i=1 s terms

Theorem 1.3.1 then gives

)

2/q T
h )
7 _|_ - 1.
2p ) 2

Regr S Uy

We know that Bhp < 1/2. Then, note that p —1 = (2logs —1)~! and that

1 1 p-—1 (2logs—1)! 1
q J J 1+ (2logs—1)71  2logs
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Therefore the bound on the regret becomes

1 Zlog:/(Zlogs (2 logs - 1 1
< \ ~ )
RegT S ZV]T 2 Zylt 1 27] +€logsznt 1

and the choice v, = (4et logs)™/2 for t > 1gives

chT < 24/eTlogs.

We now turn to the case of $parse losses. The above result still holds, but we are

able to guarantee a much better regret bound, of order 4/ Ts%, by using a different
$trategy.

Theorem 11.4.2. Let T > 1. Against payoff vectors in W4 the Exponential Weights
Algorithm with constant parameter y = /dlogd /sT guarantees for T > 4dlogd/s,

[]

slogd
T T

Proof. Let T > 4dlogd/s. Since u, belongs to [—1, 0] and have at most s nonzero
components, we have

RegT<4

T d d T
;Eu EE” > —d- rg;xZut

1i=1 i=1 t=1 t=l1

Therefore, the above maximum is bounded from below by —sT'/d. Injecting this in-
equality in the regret bound (ii) from Theorem I1.3.2, we get

1 (logd T
< iy ()

We then choose y = /dlogd/sT. The assumption on T assures thatn € (0,1/2).

The bound therefore becomes

chT < 4 TSI(:{gd.

[

We will prove in Chapter V that the bounds from Theorems I1.4.1 and I1.4.2 are
both minimax optimal. This demonstrates that gains and losses are fundamentally
different in the case of $parse payoff veGtors.
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IL.5. Smooth Fictitious Play

The Smooth Fictitious Play was introduced by [FL95, FL98, FL99] and further
examined using the theory of stochastic approximations by [BHS06]. It corresponds
to a Mirror Descent strategy with an arbitrary regularizer » on A and a sequence of
parameters 1, = v/t forsomen > 0. is called the parameter of the Smooth Fi&titious
Play strategy. It therefore writes

choose z,=Vh* (%UrA) ,

draw i, ~ z,,

update U, =U,_ ;| +u,.

The qualitative analysis of [BHS06] does not require the regularizer b to be strongly
convex. We here do make this assumption in order to obtain an explicit regret bound.

Theorem I1.5.1. Lez T > 1an integer and K > 0. Assume that b is K-strongly convex
with respect 1o | - || Against any sequence of payoffvectorsin [—1,1] 4 the Smooth Fictitious
Play with parameter v > 0 guarantees

5, T mlogT
2K K

chT <

Let § € (0,1). With probability higher than 1 — 0, we have

— 5, T mlogT /
RCgT< T—I-T—FK—F 8T10g<1/8)

Almost-surely,
_ 1— 3,
lim sup TRegr < W

T—+co

Proof” Theorem 1.3.1 gives

Reg < O Ly 2
6r < Tk ZJIVIH (A

where vy = ;. Inje&ting v, = n/tand |lu,| < 1forz> 1, we obtain

R <%+l 1_|_T§_:11
CgT\Y] 2K t:lt '
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We then bound the sum from above:

T-1] T-1 s
EZ<1+ — =1+log(T —1) <1+logT,
=1 1 $

and the bound on the regret is proved. The rest of the statement follows from
LemmalIl.2.1. ]

I1.6. Vanishingly Smooth Fictitious Play

A variant of the Smooth Fi&itious Play, called the Vanishingly Smooth Fi&titious
Play was introduced and studied by [BF13]. It corresponds to a Mirror Descent Strat-
egy with a strongly convex regularizer b on A, and a sequence of parameters (v),),5
which satisfies

m, — +oo and n, = O(t*) for some o > 0. (IL.1)

t—+o0

Those conditions will make sure, in the following theorem, that the average realized re-
gret is asymptotically and almost-surely nonpositive. Note that the analysis in [BF13]
relied on differential inclusions and stochastic approximations and did not provide
explicit regret bounds.

Theorem I1.6.1. Let T > 1an integer and K > 0. Assume that b is K-Strongly convex
with respect to | -||. Against any sequence of payoff vectors in [, 14, the Vanishingly
Smooth Fictitious Play with parameters (v,),~, satisfying conditions (11.1) guarantees

Reg < % + 1 ET]
egT XX Y]T 2K ~ Y]t_la

where g = . Let 8 € (0, 1). With probability higher than 1 — o, we have

—~ 93, 1
Reg < V]—i + ﬁgm_l + 1/8T log(1/9).

Almost-surely,
1 o~
lim sup =Reg . < 0.
T—>+oop T gr
Proof The first bound is a paraphrase of Theorem 1.3.1. The high probability bound
follows from Lemma I1.2.1. Then, conditions (IL.1) give §,/Tnt — O as T — +oo
and

1 T To+! T
2K1_,t§:17]t_120< T )ZO( >—>0,
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and the lagt result follows. []

I.7. On the choice of parameters

We discuss how different decreasing rates of the parameters (,), affect the regret
bound offered by the corresponding strategies, and more $pecifically, whether the 7o-
regret property, which we define as

1
hm sup TRT < O,

T—+o

is guaranteed. We restrict our attention to the experts setting and assume that regu-
larizers are strongly convex and that payoff vectors are bounded. This will allow us to
use Setions I1.5 and I1.6 as illustrations. However, the ideas presented below extend
to the online linear optimization framework of Se&ion I.1.

We have seen at the end of Section 1.1 that the Follow the Leader strategy

z> (IL.2)

fails to guarantee no-regret. This motivated the introduction of Mirror Descent

Strategies
t—1
z, = argmax < ( 1, D 1|z ) — h(2) (IL3)
z€A, s=1

which can be seen as a regularized version of Follow the Leader, where parametern,_,
controls the level of regularization: the higher is #,_;, the closer (IL.3) is to (IL.2). In
the case of a constant parameter ¥, = 1, Theorem 1.3.1 gives

t—1
z, = argmax <2 u,

z€A, s=1

1 5, nM? _ 1 nM?>
il <=2+ — — < ——.
T Reg . T + 5% and therefore hTri iliop TRT K

No-regret is not guaranteed, but parameter u (and therefore the above bound
nM?/2K) can still be chosen arbitrarily small. A similar situation occurs in the case
where n, = 7/t, which corresponds to the Smooth Fi&itious Play. As stated in
Theorem IL.5.1, the average regret is asymptotically bounded by 7,/%. Through the
choice of b and/or v, the above bound can be made arbitrarily small, but not zero.
Let us now turn to the case where 1, decreases faster than v but slower than #/#: this
corresponds to the Vanishingly Smooth Fictitious Play.  Then, as seen in
Theorem I1.6.1, no-regret is guaranteed.
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The above can be interpreted as follows. In the case 1, = 7, no-regret is not guar-
anteed because the parameters do not decrease quickly enough and the algorithm is
not regularized enough. If v, = n/t, no-regret is not guaranteed because the parame-
ters decrease too quickly and the algorithm is 200 regularized. Finally, if the decreasing
rate of the parameters are between those two edge-cases, it is just right for strategy to
guarantee no-regret.

I1.8. Multi-armed bandit problem

The multi-armed bandit problem was originally studied in a stochastic
setting [Rob52, LR85]. The nonstochastic model we consider below was introduced
by [ACBFS02] and is a regret minimization problem in the experts setting with the
restrition that the Decision Maker only observes the payoff of the action that he has
chosen. See [BCB12] for a recent survey.

We briefly describe the model and present the EXP3 strategy. Its analysis is based
on a regret bound that we established in Section 11.3 for the Exponential Weights Al-
gorithm. We assume that the payoff vectors (1,),-, are chosen before the play begins .
At each time instance ¢ > 1, the Decision Maker

e chooses a mixed a&tion z, € Ay;
e drawsi, ~ z,;

: i
e receives and observes payoff ;.

Let (%,),>; be a filtration where &, is generated by

g . i
(205 B> Uy e s 2y 15 By )15 Zy)-

It will be convenient to assume that the payoff ve¢tors (u,),-; are normalized in
[—1, 0]4. We are aiming at bounding the expectation of the realized regret:

T T ;
E | max ui—zu; .
€7 3 t=1

The key idea is to use a §trategy from the full information setting (i.e. where the Deci-
sion Maker observes the whole payoff ve&tor u,), by replacing the unobserved payoft

1. If Nature is allowed to choose the payoffs vectors as a function of the previous ac-
tions of the Decision Maker, the analysis below must be carried out with the pseudo-regret

E|2F 4 2;1;1 ui’ instead of the expe&ted realized regret. See [BCBI12] (Se&ion 3) for

=1"%
a detailed discussion on this issue.

maX;eq
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ve&or u, by an unbiased estimator #, which is congtructed as follows. Assume z! > 0
forall # > 1. The Decision Maker can then compute

~i ]l{’}:i} i
U, = ————u,, 1€J7.
Zl
t
i, is an estimator of u, in the sense that E [, | #,| = u,. The following result links the

expe&ation of the realized regret (which we aim at minimizing) with the expeation
of the regret (as defined in Section I1.1) with respe& to (i,),-, seen as payoff ve&tors.

Lemma IL.8.1.

t=1 =1 t=1 t=1

T N T ~
[%%qut E”t] S [%%XEZ":_EWAZ»] -

Proof’ Using the fa& that E max > maxE,

T [T T
E masz); Z (|z,) | > maxE | il | —E | Y] (i,lz,)
ey =1 —l1 Sy = —l1
o
[T ] [T
= rlréagXE E u | —E 2 <ut|zt>:|
=us =
[T ] [T .
= max E 214 —E EE[u;’ ?t]
S = | =1

€T i

T .
=E [maxZut Eu;’] ,
=1

where for the last equality, we used the fa& that #: is deterministic to swap the maxi-
mum and the expectation. []

The EXP3 strategy was introduced and first analyzed in [ACBFS02]. It consists
in using the Exponential Weights Algorithm against estimators (#,),.;. Set Uy = 0
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and fort > 1,

. U
Z; — CXP (nt—l t—1> , =N

24, exp(n UL y)

Iy _y
i = {;i’}u;, icy
t

U,=U,, +14,

Note that the estimator is well defined since 22 is always positive.

Theorem 11.8.2. Let T > 1. Agains? any sequence of payoff vectors (u,) =, in [—1, 0)4,
the EXP3 Strategy with parameters v, = +/logd/2dt (for t > 1) guarantees

[Ilré%xgut Zut] < 24/2Tdlogd.

Proof. Since estimators (ii,),-; are in R?, we can apply Theorem I1.3.2 and take the
expectation, which gives

TA‘ T N logd T d
E[%X;ui—zwml < + 2B {E ]

t=1 i=1

d [ d o 4 [l :l}(u;')z
E | Y@z =E | Y E @)% F,]| =E | )E [ : - %]
i=1 | i=1 i=1 t
[ 4 (ui)z d
=E| ) E|1 F,|——| =E u)*| <d
1_21 [ {zt:z} t:| Z; ] [;( t) :I
Together with Lemma I1.8.1, we get
T T T
{mey- Bt < B agn
€73 P nT
Then the choice n, = \/logd/2dt gives the result. []

Note that bound (i) from Theorem I1.3.2 was needed in this analysis. This bound
holds for payoff ve&tors in R?, or more generally, for payoft vectors whose components
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are bounded from above. This is why we needed to normalize payoft vectors (u,),,
as losses (in e.g. [—1, 0]4), otherwise, the components 1 (i :i}uﬁ /2! of the estimators

might have been positive and arbitrarily large since z} can be arbitrarily small.

Theorem I1.8.2 establishes an upper bound of order \/Td logd. Besides, a lower

bound of order v/ Td was given in [ACBFS02]. The (slight) gap between those two
bounds was closed by [AB09], which introduced the Implicitly Normalized Forecaster
strategy which provides an upper bound of order v/Td. This algorithm can be seen
as part of a larger family of algorithms for bandit problems based on Greedy Online
Mirror Descent—see [BCB12] Section 5 for a detailed presentation and applications.
A well-chosen algorithm from this family is used in Chapter V to obtain an upper
bound of order v/Ts in the case of s-sparse losses (i.c. payoff ve&ors in 2—%4) and
bandit feedback.



CHAPTERIII
FOLLOW THE PERTURBED LEADER

In this chapter, we present the Follow the Perturbed Leader strategies (FTPL) and
prove in Theorem II1.3.1 that they actually belong to the family of Mirror Descent
strategies from Section 1.3 as soon as the law of the perturbation is absolutely contin-
uous with respet to the Lebesgue measure.

III.1. Presentation

Like the Mirror Descent strategies, FTPL strategies were constructed as a modifi-
cation of the FTL strategy mentioned in Section I.1. But instead of using a determin-
istic function b to regularize the map arg max___(-|z), they involve a random pertur-

bation. Specifically, let § be an integrable random variable in R%. Then, we define the
FTPL strategy associated with £ and parameters (1,),; as

)
where (#,),-; are the payoff vectors in R and & the set of a&ions of the Decision
Maker.

From a computational perspective, the FTPL strategy has an advantage over the
Mirror Descent strategy. The latter involves the computation of VA* at a given point,
i.e. solving a convex program on %, whereas the former may be computed in a Monte
Carlo fashion by drawing samples of the random variable £, solving a linear programs
over %, and then considering the average. This advantage is even more interesting

in the experts setting from Section I1.1 where the Decision Maker draws pure a&tion
i, € 7 according to probability distribution z, € A(7). Then,

)

z, =E

b

2€%

t—1
arg max <v]t1 E u, + E
s=1

t—1
i, = argmax <m_1 Mu +§

z€A, s=1

65
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almost-surely belongs to one of the vertices of the simplex A, i.e. to 7, and its law is
precisely z,. Therefore, the explicit computation of z, is unnecessary and only a single
draw of the random perturbation & is needed.

III.2. Historical background

A $trategy of this type was already proposed in Hannan’s seminal paper [Han57].
FTPL was later rediscovered in [KVO05] in which a random perturbation of density

¥y — (n/ Z)defnny ! dy was used to achieve a minimax optimal regret bound of or-

der O(y/Tlogd) in the experts setting—see also [HP04]. An even simpler pertur-

bation with independent components drawn according to the uniform distribution

over [0, 1] has been shown to guarantee a O(v/Td) regret bound in the experts setting
(see e.g. Corollary 4.4 in [CBLO06]). More recently, [ALST14] used a standard Gaus-
sian perturbation § ~ #°(0, I) to achieve minimax optimal regret bounds both in the
experts setting and the ¢,-¢, setting (where both the a&ions of the Decision Maker
and the payoff ve&ors belong to the Euclidean unit ball). [CH15] applied those tech-
niques to online combinatorial optimization.

Applications of similar strategies to various settings include: [DLN13] where a
Bernoulli coin flip is added to each component of each payoff ve&or, [NB13] which
deals with the semi-bandit online combinatorial optimization problem,
and [VEKW14] where the minimax optimal guarantee is achieved in the experts
setting by setting each component of each payoff vector to zero or one with some
probability.

FTPL and Mirror Descent strategies share many common properties and close
links between those two families were long suspected. For instance, it is known that
the Exponential Weights Algorithm studied in Se¢tion I1.3 coincides with the FTPL
strategy with a perturbation which follows the Gumbel distribution. [HS02] proved
in the case Z = A, that FTPL étrategies are Mirror Descent strategies. [ALST14]
proposed a unifying framework which encompasses both FTPL and lazy Mirror De-
scent, and established in the one-dimensional case a bije¢tion between the two fami-
lies.

I11.3. Reducion to Mirror Descent

The following theorem proves that a FTPL strategy is a Mirror Descent strategy
as soon as the distribution of the random perturbation is absolutely continuous with
respect to the Lebesgue measure. This result is quickly mentioned in the recent sur-
vey [ALT16]. We here give a detailed proof. One can see that a Mirror Descent strat-
egy associated with a regularizer h and a FTPL strategy associated with a perturbation
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¢ coincide as soon as

Vh*(w) =E {argmax (w+ E‘z)] , forallw e R%.
z2€%

Theorem IIL3.1. Let § be in integrable random variable in R* whose distribution is

absolutely continnous with respect to the Lebesgue measure. Let & be a nonempty convex

compact subset of R%. Then, there exists a regularizer h on & such that

Vh*(w) =E [argmax (w+ E‘z>] , weRY
z2€%

Moreover,

8 <E [max (¢]z) | — max(E [g]]s).

2€EZL 2€Z

Proof. Consider @ : R* — R defined by
— d
®(w)—E[rzréagé(<w+£‘z>], w € R~

The map w — max, g, (w + y|z) being convex for all y € R%, [Ber73, Lemma 2.1]
assures that @ is convex. Besides, the distribution of § being absolutely continuous
with respect to the Lebesgue measure, [Ber73, Proposition 2.4] guarantees that @ is
differentiable on R4. We now define b := ®* to be the Legendre—Fenchel transtorm
of ®. @ being convex, lower semicontinuous and proper, Moreau’s theorem gives @ =
O** = h*. Therefore, this fun&ion will be called »* from now on.

Let us prove that b is a regularizer on %. b being a Legendre—Fenchel transform
by definition, it is convex and lower semicontinuous. It is also tri¢tly convex since b*
is differentiable. Let us prove that the domain of b is %. Using the definition of b, we
can write:

h(z) = sup {(w]z) —E [max (w+ ’é‘z’)} }

/
wERd 2 €L

— sup {2 [ (wle) ~ max (w+ 5| }.

weR?

Ifz € Z,
bie) < sup E [fwle) — (w1 E2)] = — (B [g]g} < +oo.

weR?

We now assume z ¢ & and write

h(z) = sup E [rpig {{w|z —2") — <§]z’>}] :

wERd VRS
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The second scalar produc above is bounded as (§[z") < ||£H1 |%]| .. Therefore,

b(z) > sup min (wlz —2') — |2 -E [ ]

weRd 2 €

The quantity (w|z — z’) is affine in w and in 2/, R? is convex, and & is convex and
compact. We can therefore apply Sion’s minimax theorem to get:

h(z) > min sup (w|z —z') — |Z|_ - E [HEHJ :

/
2 €L weR?

Let X > 0. We now choose particular vector w = A(z — z’) instead of taking the
supremum over w € R4, This gives
be) > min (Mz — )z~ %) ~ |2, - [JE]]

. 7112
= ?1612 |z — =z H2 — || -E [Hgm :

The set & being compa& and z being outside of Z, the distance from z to & is positive.
The above inequality being true for all X > 0, and because E [”SHJ < 400, we have

h(z) = +oc. The domain of b is indeed & and b is a regularizer on Z.
Finally, let us prove the equality from the statement of the theorem. Let us fix
y € R% and consider the convex function ¢,(w) = max,cg (w+ y|z) defined for

w € R4, Then, for all w € R%, we have the following inclusion:

argmax (w + y[z) C 3¢, (w).
2€%

Indeed, for z, € argmax___ (w + y|z) and for all w’ € R¥, we have
¢,(w) — ¢,(w) = max (w’ + y[z) — max (w + y|2)
> <w/ + _)’|Z*> - <w + _)/|Z*>
= (W —wlz,),

in other words, z, € 8¢, (w) and the inclusion is proved. We then replace y by random
variable & and take the expe@ation on both sides to get

E {argr;ax (w+ Z|z>} C E [0dg (w)] = 0b*(w),

where the lagt equality comes from [Ber73, Proposition 2.2]. But we know that b* is
differentiable. In other words, dh* (w) is a singleton for all w € R? and we have

Vh*(w) =E {argmax (w+ Z|z>} , weERY
z€%
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We now turn to 0, = max, h — ming h. First, we have

mgzignb =—h*(0)=—-E [rzlg.éx <E‘z>] .
Second, we have seen above that h(z) < — (E [¢] ‘z) for y € . Taking the maximum
over z € & gives
maxh < —min (E [¢][z),

and the result follows. ]

I11.4. Discussion

Theorem IIL.3.1 provides an alternative method for defining a Mirror Descent
strategy, which makes the explicit choice of a regularizer b unnecessary. However,
some properties of h must still be known in order to turn the general regret bound
from Theorem 1.3.1 into an explicit one. The first term §,/ny (from the general
bound) can be immediately taken care of, since Theorem IIL.3.1 provides an upper
bound on §;. The second term, which involves the Bregman divergences, is more
challenging. The probabilistic expression b*(w) = E [max,., (w + §|z)] does not
seem to provide any handy expression for the Bregman divergence associated with
h*. One way of dealing with those is to establish §trong convexity for regularizer h.
In the case of a $tandard Gaussian perturbation § ~ #7(0,1), [AHRI12] used a
characerization of the strongly convexity of b which involves the Hessian of b*. An
interesting direction of research would be the study of the strong convexity of
regularizer b as a fun&ion of the properties of the distribution of perturbation &.

A






CHAPTERIV

MIRRORDESCENT FOR
APPROACHABILITY

We do not aim in this chapter at giving an overview of the theory of approach-
ability. We rather focus on a framework in which Mirror Descent strategies can be
defined naturally. We then illustrate the unifying character of this approach by apply-
ing it to the construction of optimal strategies for online combinatorial optimization
and internal/swap regret minimization.

The first notice of the link between regret minimization and approachability goes
back to [Bla54, Han57]. More recently, [HMCO01] constructed a wide class of poten-
tial-based approachability strategies and derived regret minimizing strategies using a
reduc&ion (of the regret minimization problem to an approachability problem) based
on the negative orthant. Conversely, [Per15] adapted the Exponential Weights Al-
gorithm to approachability. In a similar spirit, [ABH11] proposed a generic scheme
based on convex cones for converting regret minimizing strategies into approachabil-
ity strategies (see also [Shil5]).

We aim at providing a unified approach. We build upon the idea proposed by
[ABH11] and further develop it: instead of restri¢ting our attention to $trategies
which minimize the Euclidean distance of the average payoff to the target set, we
allow for a much wider choice of distance-like quantities to be minimized (see the
choice of generators in Se&ion IV.2 below). This flexibility will allow the contruc-
tion of tailored strategies for online combinatorial optimization and internal/swap
regret minimization. The tools and ideas introduced in this chapter will also be used
in Chapter VI for the constrution of strategies with optimal convergence rates in the
problem of approachability with partial monitoring.

IV.1. Model

Let 7° be a finite-dimensional ve¢tor space and 7°* its dual. The latter will be the
payoff Space. Let & be the action ser for the Decision Maker about which we assume
no particular structure. Let & be a set of payoft functions ¢ : & — 7°*. The play goes

71
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as follows. At time ¢ > 1, the Decision Maker
e chooses a&tion x, € &;
e observes vector payoff u, := g,(x,) € V%,

where (g,),- is a sequence of payoft functions in & chosen by Nature. Formally, a
strategy o for the Decision Maker is a sequence of maps ¢ = (,),5, where o, : (% x
7)1 — % so that for a given $trategy o and a given sequence of payoff fun&ions
(g;)>1 we have

X, = 0 (X0 Uy o5 Xy sy g).-

Analogously to Section 1.1, g, may depend on anything that has happened before,
including x,, and we may assume that Nature is aware of the strategy used by the De-
cision Maker.

The problem involves a farger set € C 9"* which we assume to be a closed convex
cone !. Definitions and properties about closed convex cones are gathered in the next
se¢tion. The goal is to construct strategies which guarantee that the average payoff

iy = 1 Z;rzl u, is close to the target € in a sense that will be made precise.

IV.2. Closed convex cones and support functions

IV.2.1. Closed convex cones

Throughout the paragraph, %" will be a finite-dimensional ve¢tor space and %*
its dual.

Definition IV.2.1. A nonempty subset € of ¥ is a closed convex cone if it is closed
andifforallw,w” € ¥ and X € R, ,wehavew +w’ € € and \w € €.

The following proposition gathers a few immediate properties.

Proposition IV.2.2. (i) A closed convex cone is convex.
(i) An intersection of closed convex cones is a closed convex cone.

(iii) A Cartesian product of closed convex cones is a closed convex cone.

(iv) A half-Space of the form {w € W' | (z|w) < 0} (forsomez € W*) is a closed convex

cone.

Definition IV.2.3. Let A4 be a subset of %". The polar cone of A is a subset of the
dual space 7°* defined by

A ={z € W*|Vw € A, (w|z) <0}.
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Figure IV.1. — The polar cone of a set /% and the bipolar

The following proposition is an immediate consequence of the bipolar theorem—
see e.g. Theorem 3.3.14 in [BL10].

Proposition IV.2.4. Let A be a subset of W'
(i) A is the smallest closed convex cone containing .
(i) If A is closed and convex, then A =R, .

(i1i) If A is a closed convex cone, then A4 = A.

The following statement is a simpler version of Moreau’s decomposition theo-
rem [Mor62].

Proposition IV.2.5. Assume that W’ is an Euclidean Space. We identify W' and its dual
$pace W*. Let € be a closed convex cone in W, andw € W. Then, w — proj% w =

proj o W where proj denotes the Euclidean projection. In particular, w — projg w belongs
to €°.

Proposition IV.2.6. Ler ¢ : W' — W be a linear application between two finite-

dimensional vector Spaces W and W, &* its transpose, € and @ closed convex cones in
W and W respectively.

(i) &(%) is a closed convex cone.

(i) & N€) = &*(€°)°. In particular, & (%) is a closed convex cone.

1. For the case where target set is a closed convex set but not a cone, we refer to [ABH11] where a
conversion scheme into an auxiliary problem where the target is a cone is presented.
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 proj,. w

w — proj_ w

proj w

Figure IV.2. — Illustration of Proposition IV.2.5

G N 5B

K
Figure IV.3. — € N % is a generator of %

Proof. Property (i) is obvious. We prove property (ii) as follows. Forw € %,

wed () <= dwe€ < odw) eeE”
= Vie®, (Zw)) <0
= Vze®, (& (%)|w)<0

Therefore, (%) is a closed convex cone because it is a polar cone. ]

Definition IV.2.7. Let € be a closed convex cone. A set & is a generator of € if it is
convex, compat and if R, & = %.

Note that there always exists a generator: as illustrated in Figure IV.3, the set 8N%
is one, where % is the closed unit ball of some norm |- |. It is indeed nonempty,
convex as the intersection of two convex sets, and for any point z € %, z/ ||z belongs
to BNE,sothat R, (BNE)=F.
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Proposition IV.2.8. (i) If W = W* = RY, the negative orthant R is a closed convex
cone and (R%)° = R4, Moreover, A is a generator of RY.

(i) If & is a nonempty convex compact subset of W', then % is a generator of Z°° =
R, 2.

IV.2.2. Support Functions

Definition IV.2.9. For a nonempty subset & C 7, the application I}, : 7* —
R U {+o0} defined by

I3 (w) = sup (wlz), we P>,
€%

is called the support function of Z.

The support function can be written as the Legendre—Fenchel transform of the
indicator fun&ion of &. It is therefore convex. Moreover, in the case where & is a
generator of the polar cone €° of some closed convex cone € C 7°*, the properties of
I%, make it suitable for measuring how far a point of 7** is from €. Indeed, it is easy
to check that I} is then real-valued, continuous, and that for all pointsw € 77,

It(w) <0 <<= weé.

The following proposition shows that, in particular, the distance to a closed convex
cone € with respe to an arbitraty norm can be written as a support fun&ion.

Proposition IV.2.10. Let € be a closed convex conein V'™, |- | a normon V" and | - |,
its dual norm on V'*. Then,

inf [ —w], = Tyne(w), wev,

where B is the closed unit ball for | - |.

Proof. Letw € 9°*. Using the definition of the dual norm and Sion’s minimax theo-
rem:

inf |lw" —w| = inf sup (w —w'|z) = sup inf {(w|z) — (w'[z)}.

w e o WEE 4em zcpw €€
Suppose z does not belong to €°. Then, there exists w;, € € such that (wj|z) > 0.
% being stable by multiplication by R, the quantity (w’|z) (with w’ € €) can be
made arbitrarily large, and thus the above infimum is equal to —oo. Therefore, we can
restrict the above supremum to B N €°. We thus have

inf |w" —w| = sup {<w|z> — sup <w’]z)}.
w'e€ *

ZEBNE® e
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The above embedded supremum is zero because for z € B N €° and w’ € € we
obviously have (w’|z) < 0, and 0 is attained with w” = 0. Finally,

inf | —wl, = sup (w]z) = Ly ().
w'e® Y zemn

IV.3. Mirror Descent strategies

We now construct the Mirror Descent strategies for the model introduced in Sec-
tion IV.1 and derive guarantees using regret bounds from Theorem 1.3.1. We will
propose an intuitive description of these strategies in Section IV.4. Remember that
¢ is the set of payoff functions. Let us state the all important Blackwell’s condition
which will be key in the construction and the analysis of the strategies.

Definition IV.3.1. A closed convex cone € of the payoft pace 7"* is a -B-ser if
Vz € €°, dx(z) € ¥, Vg e 9, (g(x(z))]z) <O0.
Such an application x : €° — % is called a (¢, €)-oracle.

Let # bea ¥-B-setand x : €° — % a (¥, €)-oracle. Let & C 7" be a genera-
tor of €°, b a regularizer on &, and (v,),> a positive and nonincreasing sequence of
parameters. The associated strategy is then defined by Uy = 0 and forr > 1,

compute z, = Vh*(n,_;U, )
play x, =x(z,)
observe u, = g,(x,)
update U, =U,_ | +u,.

Contrary to Se&ion 1.3, the set of actions of the Decision Maker is % and not Z.

The following theorem provides upper bounds on I (1) (where sy = 1 Z;rzl u,
is the average payoft ) and not only the Euclidean distance from u# to €, which is a spe-
cial case—see Proposition IV.2.10. Therefore, the choice of generator Z determines
the quantity that is minimized by the strategy. We present in Se&tions IV.7 and IV.8
examples of problems where a judicious choice of generator % allows I% (1) to be
actually equal to the quantity the Decision Maker aims at minimizing and therefore
provides tailored strategies.

Theorem IV.3.2. Let T > 1an integer and M, K > 0.
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(i) Against any sequence (g,),~, of payoff functions in G, the above Strategy guarantees

I3 (ur) < %

1 & 1
= +=),—D, 14U, U,
TV]T T;:z:lylt—l h(ntl £ Ne—1 tl)

where vy = n;.

(i1) Moreover, if b is K-strongly convex with respect to a norm | - |, then
L (1) < 2+ i D ()l
Ut Ty ZKT N1 [ g (x,)

(i1i) Moreover, if |g(x)| < M (forall g € G andx € I ), the choicen, = /5, K/M?t
(for t > 1) guarantees

_ )

It (#r) < 2M K—’:F

Proof 'The strategy can be interpreted as regret minimization Mirror Descent strat-
egy from Section 1.3 where Z would be the action set, z, the actions of the Decision
Maker, and u, = g,(x,) the payoft ve¢tors. The corresponding regret is

T

T
Regl- = Izrgglgl (u,z) — 2 (u,z,) -

=1

utz> =T 1% (ur),

whereas the second sum is nonpositive because each term is. Indeed, by definition of
the strategy, and because x isa (¢, €)-oracle.

The first term above can be written

(u,)z,) = <gt(xt)|zt> = <gt(x<zt))|zt> <0.

Therefore I3, (1) < 1 Reg - and the regret bounds from Theorem 1.3.1 give the re-
sults. O
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IV.4. Smooth potential interpretation

We now propose an intuitive description of the strategies defined in Section IV.3
based on the idea that b* serves as a potential, and provide an interpretation of the
bound from Theorem IV.3.2. Similar ideas were used by [HMCO01] for the congtruc-
tion of their so-called potential-based approachability strategies (see also [Perl5]).
Our approach provides more precise bounds thanks to the use of convex duality, vari-
able parameters, and the large choice of generators Z.

For simplicity, we restrict this discussion to Mirror Descent strategies with a con-
stant parameter v, = 1 > 0. The Decision Maker aims at minimizing I} (#,). Instead
of working directly with this quantity, we consider b* which is a smooth approxima-
tion of arg max__ (- |z),as seen in Section I.3. We write

o1 1 1
La(i) = 2 1a(nUy) = Zargmax (nU[z) ~ Eh”‘(nUJ-

2€%

We now ask the following question. Can the Decision Maker make sure that h*(nU,)
does not increase too much over time (atleast when parameter v is small)? Let us write
the following first-order Taylor approximation, which makes sense when 7 is small:

h*(MU,4) — b (qU,) = n(VE*(qU,)|u, ) -

The question then becomes: knowing vector nU,, can the Decision Maker play an
action x, ; € % such that for all payoff functions g, chosen by Nature,

<Vh*(7]Ut)|gt+l(xt+l>> <0 2

One can easily check that this condition is equivalent to € being a ¥-B-set. When
this is the case, and when the Decision Maker plays accordingly, we obtain after T
stages:

T
I (ur) ~ —b* (mU,) E (h*(qU,) = b*(nU,1)) < 0.

As a matter of fa&t, the first two approximations (*~”) result in the first term 8, /1T of
the bound from Theorem IV.3.2, whereas the first-order Taylor approximation (7<)
gives the second term involving the Bregman divergences.

IV.5. Blackwell’s strategy

We recall the definition of Blackwell’s strategy [Bla56] and show that it belongs
to the family of Mirror Descent strategies defined in Se¢tion IV.3. We consider 7" =
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y* = R4 equipped with its Euclidean stru¢ture. Let € C R% be a closed convex cone
which we assume to be a ¥-B-set and x : €° — & a (¢, €)-oracle. It follows from
Definition IV.3.1 that it is always possible to choose an oracle x which satisfies

z =2 forsomeA >0 = «x(z)=x(z), 2,2 € %" (IV.1)

We assume in this seGtion that oracle x satisfies this property.

The Blackwell strategy is defined by:
X, =X (ﬁtl — proj ﬁt1> , t>1,
%
where proj{g is the Euclidean projection onto €. It can be rewritten, using Proposi-
tion [V.2.5, as
X, =X (proj ﬁt1> , t>1
%D
Theorem IV.5.1. Let & = €° N B where B denotes the Euclidean ball, and b, the
Euclidean regularizer on %. The Blackwell strategy and the Mirror Descent strategy asso-

ciated with by and any sequence of positive and nonincreasing parameters (v,),, coincide.
In other words,

WV

x (“tl _Pg’j “rl) =x(Vh3(n,4U, 1)), t>1

Proof. Recall that the Euclidean projection projEg w of a point w on a closed convex
set & is the only point in & satisfying

Vw' € €, <w — proj w‘w’ — proj w> <0. (IvV.2)
%

€

This chara&erization will be needed later.
Remember from Proposition 1.2.10 that Vb3 = proj_ . Since oracle x satisfies

property (IV.1), it is enough to prove that forall # € R and . > 0,

proju € R* proj(uu).
2 #n®

Besides, €° beinga closed convex cone, proj, (u#) = p proj, . u. Itis therefore equiv-

alent to prove that for allw € R4,

projw € R* proj w. (IV.3)
%O

€°NB
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roj = proj
P Joo W = PIOJ,, W

8 o

Figure IV.4. — In the case where ||proj%0° w“2 < 1, we have proj%)o w= proj%pom% w

(W) = proj w

Figure IV.5. — In the case where Hproj(go w”z > 1, we havew, = proj_, __w
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Letw € R4, If”proj%o w”z < 1, then obviously proj_, w = proj_,__w as shown in

Figure IV.4 and (IV.3) is true. We now assume that Hproj%o sz > 1. We define

proj(go w
wy = .
[proi.. ],
Using chara&erization (IV.2), we aim at proving that w, = proj,.., w (see Fig-

ure IV.5), which would prove (IV.3). First, w, belongs to €° N % by definition. Let
w’ € €° N 3B. For short, denote w; = proj_, w.

(w —wolw" —wy) = (w—w; +w; — wolw” —wy)
= (w—wi|w’ —wy) + (w; — wo|w” — wp)
1
= <w - wl‘le” w' — w1> + (w) — wolw” —wy) .
o |

The first scalar product above is nonpositive by chara&erization of w; = proj{go w,
because |w;| w” € €°. Let us prove that the second scalar produ& is also nonpositive.
Forallw” € #° N B, we have

lwy = w”l| = [l = " [[| = fJewy]| = 1= llwy — wyll,
which means that wy, = proj_ __w;. Thus, (w; —wg|w’ —wy) < 0. Therefore,
(w —wylw —wy) < 0and (IV.3) is proved. O

We can now recover via Theorem IV.3.2 the classic guarantee for the Blackwell
strategy in the case where the vetor payoffs are bounded with respect to the Euclidean
norm.

Theorem IV.5.2. Let T > 1an integer and M > 0. Assume that |g(x)|, < M (for

all g € G and x € %). Then, against any sequence of payoff functions (g,),>, in G, the

Blackwell strategy guarantees
2M
d Ij{' ) (g < 2
2( T > \/T

where d, denotes the Euclidean distance.

Proof. With notation from Theorem IV.5.1, we have 9, = 1, and b, is I-strongly
convex with respect to | - |, by Proposition 1.2.10. According to Theorem IV.5.1, the
Blackwell strategy corresponds to the Mirror Descent strategy associated with b, and
any sequence of parameters (v, ),-;. We can therefore apply (iii) from Theorem IV.3.2
together with Proposition IV.2.10 and the result follows. O
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IV.6. Finite a&ion set

We now consider a variant of the model of Se&ion IV.1, in which the Decision
Maker has a finite set a&tions 7 = {1, ..., d} from which he is allowed to choose at
random. Let A be the set of mixed actions, and ¢ a set of payoff fun¢tions g : 7 —
7*. Wk linearly extend each payoff funtion ¢ € ¢ from 7 to A:

d
g(x) =B, [g()] = X x'gi), x €A,
i=1
The play goes as follows. At time ¢ > 1, the Decision Maker
e chooses mixed a&tion x, € A;
e draws pure a&tion i, ~ x,;
e observes vector payoft u, = g,(i,),

where (g,),> is a sequence of payoft vectors chosen by Nature. Denote (%), the
filtration where ¥, is generated by

(21 Q1> b -5 By 1> Go 1o 1 > &1):
A strategy for the Decision Maker is a sequence of maps ¢ = (g,),-; where g, : (A x
I x ¥*)=1 — A so that

X, = 0, (X0, 85 Uy oo s Xy By Uy q)-
Concerning Nature, we assume that its choice of payoff func&tion g, does not depend
oni,sothatE[g,(i,) | F,] = Eis [8:(0)] = gi(x,).
Definition IV.6.1. A closed convex cone € of the payoft pace 7"* is a ¢ -B-sez if

Vz € €°, dx(z) € Ay, Vg e 9,  (g(x(z))]z) <O0.

Such an application x : €° — A is called a (¢, €)-oracle.

We can now define Mirror Descent strategies similarly as in Se¢tion IV.6. Let €
be a closed convex cone of the payoft space 7°* which is assumed to be a ¥-B-set,
x:€° — Aja(¥, €)-oracle, & a generator of €°, b a regularizer on &, and (1), a
positive and nonincreasing sequence. Then, set Uy = 0 and for¢ > 1,

compute z, = Vh*(n,.,U,))
compute x, = x(z,)
draw i, ~ x,
observe u, = g,(i,)
update U, =U,_| +u,.
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Theorem IV.6.2. Let T > 1an integer and K, M > 0.
(i) Against any sequence (g,),- of payoff functions in G, the above strategy guarantees
5, 1& 1

E|L; (up)] < =— + =
[%( T)] TV]T T;':Elnt—l

E[D (V]t—lUt’ V]t—lUt—1>] >

where vy = n;.
(i) Moreover, if b is K-Strongly convex with respelt to a norm | - |,

5, 1

T
% /= 2

(iii) Moreover, if |g(i)| < M (forall g € G andi € F), the choice of parameters
N, = V0,K/M?2t (fort > 1) give

3

KT’

Letd € (0,1). We have with probability higher than 1 — o,

M 5
Iz (i) < O (z\/% +1z| 210g<1/8>> .

limsupI% (wr) < 0.
T—+oo

Proof Like in the proof of Theorem IV.3.2, Theorem 1.3.1 gives:

E Iz (u1)] < 2M

Almost-surely,

_ 1 (& S & 1
I3 (ur) < T (Z (u,z,) + - + Z — Dy (11U, VlrlUtl)> . (IV.4)

=1 Ll SR P

Consider X, = (,|z,). Then, (X,),- is a sequence of super-martingale differences
with respect to filtration (%,),-:

E [ lz) | 7] = E[(g:(i)|z,) | F1] = (Eg, (i) | Fillz,) = (gi(x)]=,) <O,

because x is a (¥, €)-oracle. Therefore,

T T
E [2 <ut|Zt>] =E le [<u’t|zt> | grt]:l < 0.

=1 t=1
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Inje&ing this in Equation (IV.4) gives the bound (i):

_ S, & 1
E [Il‘z; (u1)] < 7]_”}1}“ + E E [Dy, (VIHUt, Vlt—1Ut—1)] .

=1 N1

We then deduce the bounds in expeation stated in (ii) and (iii) similarly as in Theo-
rem [.3.1. We now turn to the high probability bound. Let 3 € (0, 1). From Equation
(IV.4), we deduce that under the assumptions (iii), we have

I () < 2M KT TEX

Since we have |X,| = [(g,(i))|z:)| < llg; (i), =] < M[%]| forallz > 1, Proposi-
tion A.0.1 assures that with probability higher than1— 3,

1 & 2log(1/3)
=X, <M|&[\| —F
T ;:j{ g T
and thus
_ M b}
I (wr) < JT (2\/g+ 1% || 210g(1/8)> :
The almost-sure result follows from a standard Borel-Cantelli argument. []

IV.7. Online combinatorial optimization

We consider the online combinatorial optimization problem with full informa-
tion feedback. It is a regret minimization problem in which the actions and the pay-
offs have a particular struture. Numerous papers were written on the topic, includ-
ing [GW98, KW01, GLS01, TW03, KV05, WK08, HW09, HKW10]. A minimax
optimal trategy was given in [KWK10]. We give below an alternative constru&ion
of such a strategy.

Letd, m > 1beintegers. Let 7 = {1, ..., d} be a finite set. The set of pure actions
of the Decision Maker is a set P which contains subsets of 7 of cardinality m. A(P) is

the set of mixed actions over P. The play goes as follows. At time ¢ > 1, the Decision
Maker

e chooses mixed a&ion x, € A(P);
e draws pure a&tion p, ~ x,;

e observes payoff ve&or v, € R%;
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e gets payoff 1. vl

i€p,

As usual, we assume that the choice by Nature of payoff vector v, € R? does not
depend on pure action p,. The quantity to minimize is the following regret:

max Y Sl 3 Y4

PeP Diep t=licp,

This problem can be seen as a basic regret minimization problem in the experts
setting as in Section I1.1 with pure action set P, and payoff vectors (¥, - V') ep
which belong to [—m, m]" as soon as we assume v € [—1,1]%. The Exponential
Weights Algorithm would then guarantee (Theorem I1.3.1) a regret bound of order
m+/ T log|P|. However, our goal is to take advantage of the structure of the problem
and to construct a strategy which guarantees a significantly tighter regret bound, of
order m+/T log(d /m), which is known to be minimax optimal [KWK10]. To do so,

we reduce this problem to a well-chosen approachability problem.

Let A be the d x |P| matrix defined by A = <ﬂ{iep}>i€%’ and for each p € P, let
pe
e, = (Ljep))icy € R%. The set of payoft functions we choose is the following:
(lep)

?:{gvszPHv_—leRd} 5
veR?

m

where 1 = (1, ...,1) € R% g, is therefore the payoff funcion which corresponds to
payoff vector v. For all v € R%, the linear extension of g, is given by

(v|Ax)

m

2,(x) =v— 1, xeA(P).

We now choose the generator: let Z = A(A(P)) be the image of the simplex A(P)
via A seen as a linear map from R? to R%. Its properties are gathered in the following
proposition. In particular, property (v) demonstrates that this choice of Z makes
I%, (#7) equal to the above defined regret.

Proposition IV.7.1. (i) % is the convex hull of the pointse,, (p € P).
(i) |21, = m
(iv) % is a generator of & = A(A(P))™.
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(v) Let (p,),>1 be a sequence of pure actions played against payoff vectors (v,),~, and
denoteu, = g, (p,) for all t > 1. Then,

I3 (ug) = —(maXEth iEvé)

PEP (T icp i-1icp,

Proof. By definition, & is the image of simplex A(P) via linear map A. It is therefore
the convex hull of the image by A of the extreme points of A(P). And for p, € P,
A(]l{p L, })pep = ¢,. Hence (i). Each point e, clearly belongs to mA ;, and (ii) is true

by convexity of mAd For each element z € mAd, we have |z[| = m, which implies

(iii). & is a nonempty convex compact set thanks to (i); Proposmon IV.2.8 gives (iv).
As for the relation (v), we denote A* the transpose of A and write

B (A*v,)? — (A*v
EPDEEODEREE
T
= xrenAilX Z ( (A*v,[x) — <A Ut (H{P—Pr}>peP>>
= xrenAaX E ( vt|Ax < A (E{P—P;}>I,€P>>

= max §<Ut|z <t|€Pr>>

z€A(A
‘ >1 z>

g (o )

=1 m
T
= max % (¢, (p)]z)
=T Iz (ur),

where in the fifth line, we used the fa& that for all z € &, (1|z) = m, which is a
consequence of (ii). ]

Proposition IV.7.2. A(A(P))° isa G-B-ser.

Proof Since % is a generator of A(A(P))*, one can check that the condition that
defines a B-set only needs to be verified for z € %. Let z € Z. By definition of &,
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there exists x € A(P) such that z = Ax. Then for g € &, there exists v € R¥ such that
g = g, and

1

(g,(x)|z) = <v _ M;‘;x)

Ax> = (v|Ax) — (v|Ax) =0,

which proves the result. ]

As a consequence of PropositionIV.7.1,apointz € & only has nonnegative com-
ponents. We can therefore define

d 2

bz) = ;Elog— forz e &
40 otherwise.

PropositionIV.7.3. (i) hisa regularizer on Z;

(i) 9, < log(d/m);
(iii) b is1/m>-Strongly convex with respect to | - | -

Proof. Forz € & C mA,, we can write h(z) = b, (z/m) < +oo. The 1-strong con-
vexity of b, with respect to | - ||, implies the 1/ m?-§trong convexity of b with respect

to |- |, and (iii) is proved. In particular, b is strictly convex. Besides, the domain of b is

ent

Z by definition and (i) is proved. As for (ii), b being convex, its maximum is attained
at one of the extreme pointse,, (p € P) of Z:

max h(z) = r;?eagc h(e,) 1})16215(% — log— = —logm.
As for the minimum,
. z
min h(z) > zg}nlgd lz; -~ log— nenAr: 12} z'logz’ = —logd.
Therefore, 3, < —logm + logd = log(d/m). []

We can now consider the Mirror Descent strategy associated with regularizer b,
a (¢, €)-oracle x, and a positive nonincreasing sequence of parameters (1,),5;. Set
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U, =0and forz > 1,
compute z, = Vh*(n,.;U, )
choose x, = x(z,)
draw p, ~ x,

(ofey)

observe u, =g, (p,) =v, — -

update U, =U, | +u,.

Theorem 1V.7.4. Against any sequence of payoff vectors (v,),sy in [—1, 1% the above
Strategy with parameter v, = \/9,,/4m?t (for t > 1) guarantees

T T
TR P> ] < s Tlogd/m)

t=1icp t=licp,

E

Ford € (0,1), we have with probability higher than1 — 3,

masz: vl — ET] D vi< 2mV'T (2\/log(6l/m) + \/210g(1/3)) :

PP (T iep t=1i€p,

Almost-surely,

T T
limsup% (maxZZviz ) vi) <0.

T—+oco PeP I Dicp t=li€p,

Proof. Forallv € [1,1] and p € P,

(he), e 5 <o

v_ ——
mich

< el +

[ee]

lg.(P), =

The result then follows from Theorem IV.6.2 applied with M = 2, K = 1/m?, the
properties of the regularizer b given by Proposition IV.7.3, and the relation (v) from
Proposition IV.7.1. [

Let us discuss the computational aspect of the above strategy compared to the Ex-
ponential Weights Algorithm played against payoft vectors (X, - v') yep- The Expo-
nential Weights Algorithm has the advantage of having an explicit expression which
can easily computed:

-1 .
EXp | N Ei: Zi v
xf = ( ' ! 4 ) p S P

Syepexp (M1 B Biey )
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However, the drawback is that the above expression has to be computed for each of
the |P| components (|P| being possibly much larger than d due to its combinatorial
nature). In addition to that, the sum of the payoff vectors (¥, - ) pep has to be kept
track of, which may be an issue regarding memory. The strategy constructed above
has the advantage of working with vector payofts #, which have d components only.
However, the difficulty lies in the computation of Vh* which consists of a convex
program on the set & which has |P| vertices. Overall, it is unclear which strategy is

computationally more efficient.

IV.8. Internal and swap regret

The notion of internal regret was introduced by [FV97]. It is an alternative quan-
tity to minimize in the experts setting from Section IL.1. [FV97] first established the
existence of strategies which guarantees that the average internal regret is asymptoti-
cally nonpositive (see also [FL95, FL99, HMC00, HMCO01, SL05]). [BMOS5] intro-
duced the swap regret, which generalizes both the internal and the basic regret. The
optimal bound on the swap regret is known since [BMOS5, SL0O5]. Later, [Per15] pro-
posed an approachability-based optimal strategy. We present below the construction
of a similar trategy using the tools introduced in the previous se&tions. The internal
regret is mentioned at the end of the setion as a special case.

The swap regret is a variant of the regret minimization problem in the experts set-
ting (Section IL.1). The sct of pure actions of the Decision Maker is 7 = {1, ..., d}.
The play goes as follows. At time ¢ > 1, the Decision Maker

e chooses mixed a&tion x, € A;
e draws pure a&tion i, ~ x,;
e observes payoff ve&tor v, € R%.

Let O be a nonempty subset of 77. The quantity to minimize is the ®O-regret defined
by:

and can be interpreted as follows. For a given map ¢ € @, Ethl vf(i’) is the cumulative

payoft that the Decision Maker would have obtained if he had played pure action ¢ (i)
cach time he has acually played i (for all i € 7). The ®-regret therefore compares
the a&ual cumulative payoff of the Decision Maker with the best such quantity (for
¢ € O) in hindsight. The goal is to constru& a strategy which guarantees on the ®-

regret abound of order /T log |®]. To do so, we reduce this problem to a well-chosen
approachability problem.
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Let the payoft $pace be 7+ = R® and the target be R®. We choose the following
set of payoff functions:

?:{gv:iegH(v¢(i)—vi)¢e®ERq)} )

veR?

where g, (forv € R?) is the payoff function associated with payoff vector v. The linear
extension of each payoft function is

Z2,(x) = (2 xf (v — v‘)) , x€A, vERY

= 40
Proposition IV.8.1. R? is 4 G-B-set.

Proof. Letz = (z¢)¢e¢ € (R?)° = R?. Let us prove that there exists x € A(¥) such
that for all payoft fun&tion g € ¢, (g(x)|z) < 0. First, the property is trivially true if
z = 0. We assume from now on that z # 0.

Denote

gi= > 2%, i,jed
oc®
$(i)=j
and let us fir§t prove that there exists x € A(7) such that:
M 'z =x1 Y7, jedT. (IV.5)
iy iy
Notice that for all i € 7 we have

j€T J€T 4D 6D
$(i)=j

z being nonzero, the above quantity is also nonzero and the d x d matrix (2% / 2] ); jes
is $tochastic and therefore has an invariant measure x € A(9):

=N
Multiplying on both sides by |z|| , we get Equation (IV.5):
DT =xl |z =%l Y, D = 7, jeF

i€y €7 ¢ed =
$(j)=i
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Let ¢ € 4. By definition of ¢, there exists a payoff ve&tor v € R% such that

ey

2(x) = (2 xf (v?0) — vi)> , x €A,
oed

We now compute (g(x)|z):

oed ey i, jeg

(g(x)|z) = Z z? (Z ! (v30) —vi)) = Z x'(v) — o) z(:D 2%
=
$(i)=j

)=]j

= Z x'(v) — )3 = E vl Z X'zl — E X'zl

i, jey j€7 i€y i, jey
= Vo Vi 3 iz =0,
j€y i€ i, jey

where we used Equation (IV.5) for the fifth equality. In particular, (g(x)|z) < 0 and
R? is indeed a ¥-B-set. [

As for the generator, we choose & = A(®) which is a generator of (R®)° thanks
to Proposition I1V.2.8. Then the support function of A(®) evaluated at the average
payoff is equal to the (average) O-regret:

On the simplex A(®), we choose the entropic regularizer presented in Section 1.2.3:

), z%logz? ifz € A(D)
hcnt(z) = ¢€@

40 otherwise.

Then, the strategy associated with regularizer b, a (¥, R®)-oracle x and a se-
quence of positive and nonincreasing parameters (7, ), is the following. Set Uy = 0
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and forz > 1,

) cxp (nt—lUj)—1>

compute z; = AR $cd
que(p exp <Y]t—lUt—l)
choose x, = x(z,)
draw i, ~ x,
b o AN ( q)(it) it>
observe u, =g, (i,) = (v, " —v,
! $e®

update U, =U,_; +u,.

This strategy is computationally efhcient. Indeed, the expression of z, is explicit and
straightforward. Then, the computation of mixed action x, = x(z,) via oracle x con-
sists, as shown in the proof of Proposition IV.8.1, in finding an invariant measure of
ad x d stochastic matrix, which can be done efhiciently.

Theorem IV.8.2. Agains? payoff vectors (v,),~, in [—1,1)%, the above Shrategy with pa-
rameters v, = +/log|®| /4t (fort > 1) guarantees

T T
(i) i
E |max Y, v, " — Y, v/ | <44/ Tlog|D]|.
[¢€®tz:]1 t tz::l t] g|D|

Let 3 € (0,1). With probability higher than 1 — o, we have
1 S TRIEE > TLA WU S N el ey
T (gleag(gvt —tz::lvt < Nox (4 log | D] +2 210g(1/8)> :

Almost-surely,

T—+4o0 t=1

lim sup 1 max i pPl) i v ] <0
T \ ¢c0 4 e
Proof. For every payoff ve&or v € [—1,1]? and pure a&tion i € 7, we have

el = [0 —v)sea]_ <2

The result then follows from Theorem IV.6.2 applied with M = 2, K = 1 and the
properties of regularizer b, given by Proposition .2.9. []

An important special case is when @ is the set of all transpositions of 7, in other
words, the set of maps ¢ : 7 — 7 such that there exists i # jin 7 such that

o) =7, &(j)=i, and (k) =kforallk ¢ {i, j}.
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The @-regret is then called the internal regret and can be written
T o
max Y, ﬂ{it:i} (v] —v1).

i, j€7 5

Since |®| = d(d — 1) in this case, Theorem IV.8.2 assures that the corresponding
strategy guarantees a bound on the internal regret of order /T logd.

LSS






SECOND PART






CHAPTERV
SPARSE REGRET MINIMIZATION

This chapter is extracted from the paper Gains and losses are fundamentally differ-
ent in regret minimization: The Sparse case, in collaboration with Vianney Perchet, to
appear in Journal of Machine Learning Research.

Abstra&

We demonstrate that, in the classical non-stochastic regret minimization prob-
lem with d decisions, gains and losses to be respectively maximized or minimized are
fundamentally different. Indeed, by considering the additional $parsity assumption
(at each stage, at most s decisions incur a nonzero outcome), we derive optimal re-
gret bounds of different orders. Specifically, with gains, we obtain an optimal regret
guarantee after T stages of order /T logs, so the classical dependency in the dimen-
sion is replaced by the sparsity size. With losses, we provide matching upper and lower
bounds of order y/Tslog(d)/d, which is decreasing in d. Eventually, we also study the

bandit setting, and obtain an upper bound of order 1/ Tslog(d/s) when outcomes are
losses. This bound is proven to be optimal up to the logarithmic factor \/log(d/s).

V.1. Introducion

We consider the classical problem of regret minimization [Han57] that has been
well developed during the last decade [CBL06, RT09, Bub11, SS11, Haz12, BCB12].
We recall that in this sequential decision problem, a decision maker (or agent, player,
algorithm, étrategy, policy, depending on the context) chooses at each stage a decision
in a finite set (that we write as [d] := {l,...,d}) and obtains as an outcome a real
number in [0, 1]. We specifically chose the word onzcome, as opposed to gain or loss,
as our results show that there exists a fundamental discrepancy between these two
concepts.

97
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The criterion used to evaluate the policy of the decision maker is the regrez, i.c.
the difference between the cumulative performance of the best stationary policy (that
always picks a given a&tion i € [d]) and the cumulative performance of the policy of
the decision maker.

We focus here on the non-sfochastic framework, where no assumption (apart from
boundedness) is made on the sequence of possible outcomes. In particular, they are
not i.i.d. and we can even assume, as usual, that they depend on the past choices of
the decision maker. This broad setup, sometimes referred to as individual sequences
(since a policy must be good against azy sequence of possible outcomes) incorporates
prediction with expert advice [CBL06], data with time-evolving laws, etc. Perhaps
the most fundamental results in this setup are the upper bound of order /T logd
achieved by the Exponential Weight Algorithm [LW94, Vov90, CB97, ACBGO02]
and the asymptotic lower bound of the same order [CBFH97]. This general bound
is the same whether outcomes are gains in [0, 1] (in which case, the obje&ive is to
maximize the cumulative sum of gains) or losses in [0, 1] (where the decision maker
aims at minimizing the cumulative sum). Indeed, a loss ¢ can easily be turned into
gain g by defining ¢ := 1 — ¢, the regret being invariant under this transformation.

This idea does not apply anymore with structural assumption. For instance, con-
sider the framework where the outcomes are limited to s-Sparse vecfors, i.e. ve&ors that
have at most s nonzero coordinates. The coordinates which are nonzero may change
arbitrarily over time. In this framework, the aforementioned transformation does not
preserve the sparsity assumption. Indeed, if (€, ..., €;) is a s-$parse loss vector, the cor-
responding gain ve&tor (1 — €y, ..., 1 — €,) may even have full support. Consequently,
results for loss vectors do not apply directly to sparse gains, and vice versa. It turns out
that both setups are fundamentally different.

The sparsity assumption is actually quite natural in learning and have also received
some attention in online learning [Ger13, CM12, AYPS12, DKC13]. In the case of
gains, it reflects the fact that the problem has some hidden structure and that many
options are irrelevant. For ingtance, in the canonical click-through-rate example, a
website displays an ad and gets rewarded if the user clicks on it; we can safely assume
that there are only a small number of ads on which a user would click.

The $parse scenario can also be seen through the scope of prediction with experts.
Given a finite set of expert, we call the winner of a stage the expert with the highest
revenue (or the smallest loss); ties are broken arbitrarily. And the objective would be
to win as many stages as possible. The s-$parse setting would represent the case where
s experts are designated as winners (or, non-loser) at each stage.

In the case of losses, the $parsity assumption is motivated by situations where rare
failures might happen at each stage, and the decision maker wants to avoid them. For
instance, in network routing problems, it could be assumed that only a small num-
ber of paths would lose packets as a result of a single, rare, server failure. Or a learner
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could have access to a finite number of classification algorithms that perform ideally
most of the time; unfortunately, some of them makes mistakes on some examples and
the learner would like to prevent that. The general setup is therefore a number of
algorithms/experts/actions that mostly perform well (i.e. find the corre& path, clas-
sify correly, optimize correctly some target fun&ion, etc.); however, at each time
instance, there are rare mistakes/accidents and the objective would be to find the ac-
tion/algorithm that has the smallest number (or probability in the stochastic case) of
failures.

V.1.1. Summary of results

We investigate regret minimization scenarios both when outcomes are gains on
the one hand, and losses on the other hand. We recall that our objecives are to prove
that they are fundamentally different by exhibiting rates of convergence of different
order.

When outcomes are gains, we construct an algorithm based on the Online Mirror
Descent family [SS07, SS11, Bub11]. By choosinga regularizer based on the €2 norm,
and then tuning the parameter p as a function of s, we get in Theorem V.2.2 a regret
bound of order /T logs, which has the interesting property of being independent of

the number of decisions d. This bound is trivially optimal, up to the constant.

If outcomes are losses instead of gains, although the previous analysis remains
valid, a much better bound can be obtained. We build upon a regret bound for the Ex-
ponential Weight Algorithm [LW94, FS97] and we manage to get in Theorem V.3.1

Tslogd 1.1 - o : .
a regret bound of order \/ =%, which is decreasing in d, for a given s. A nontrivial

matching lower bound is established in Theorem V.3.3.

Both of these algorithms need to be tuned as a function of s. In Theorem V.4.1
and Theorem V.4.2, we construct algorithms which essentially achieve the same regret
bounds without prior knowledge of s, by adapting over time to the parsity level of past
outcome vectors, using an adapted version of the doubling trick.

Finally, we investigate the bandit setting, where the only feedback available to the
decision maker is the outcome of his decisions (and, not the outcome of all possible
decisions). In the case of losses we obtain in Theorem V.5.1 an upper bound of order
/ Tslog(d/s), using the Greedy Online Mirror Descent family of algorithms [AB09,
ABL13, Bubl1]. This bound is proven to be optimal up to a logarithmic factor, as

Theorem V.5.3 establishes a lower bound of order v/Ts.

The rates of convergence achieved by our algorithms are summarized in Figure V.1.
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Full information Bandit
Gains Losses | Gains Losses
Upper bound VTd | \/Tslog %
/ Tlogs T51°§d
Lower bound VTs VTs
Figure V.1. — Summary of upper and lower bounds.

V.1.2. General model and notation

We recall the classical non-stochastic regret minimization problem. At each time
ingtance t+ > 1, the decision maker chooses a decision d, in the finite set
[d] = {1, ..., d}, possibly at random, according to x, € A, where

d
Ay = {x = (x, ... ,x(d)) e Ri Ex(i) — 1}
i—1

is the the set of probability distributions over [d]. Nature then reveals an outcome

ve&or w, € [0,1]¢ and the decision maker receives wgdf) € [0,1]. As outcomes are

bounded, we can easily replace wt by its expectation that we denote by (w,, x,). In-
deed, Hoeffding—Azuma concentration inequality will imply that all the results we
will state in expectation hold with high probability.

Given a time horizon T > 1, the objective of the decision maker is to minimize his
regret, whose definition depends on whether outcomes are gains or losses. In the case
of gains (resp. losses), the notation w, is then changed to g, (resp. ¢,) and the regret
is:

T

T T
Rt = Z Z s Xy) (reﬂm Rt = E ¢,, x,) — min Z Q )
t=1 t=1

16[d] =1 le[d =1

In both cases, the well-known Exponential Weight Algorithm guarantees a bound on
the regret of order /T logd. Moreover, this bound cannot be improved in general as

it matches a lower bound.

We shall consider an additional stru¢tural assumption on the outcomes, namely
that w, is s-sparse in the sense that |w,||; < s, i.e. the number of nonzero components
of w, is less than s, where s is a fixed known parameter. The set of components which
are nonzero is not fixed nor known, and may change arbitrarily over time.
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We aim at proving that it is then possible to drastically improve the previously

mentioned guarantee of order /T logd and that losses and gains are two fundamen-

tally different settings with minimax regrets of different orders.

V.2. When outcomes are gains to be maximized

V.2.1. Online Mirror Descent algorithms

We quickly present the general Online Mirror Descent algorithm [SS11, Bub11,
BCB12, KM14] and state the regret bound it incurs; it will be used as a key element
in Theorem V.2.2.

A convex fun&ion b : R4 — R U {40} is called a regularizer on A if b is strictly
convex and continuous on its domain A j, and h(x) = +oc outside A ;. Denote 5, =
max, b —miny hand b" : R? — R? the Legendre—Fenchel transform of b:

b*(y) = sup {(y,x) = h(x)}, yeR,

xeR?

which is differentiable since b is §trictly convex. Forall y € R4, it holds that Vh*(y) €
Ay

Let € R be a parameter to be tuned. The Online Mirror Descent Algorithm
associated with the regularizer b and parameter v is defined by:

t—1
k=1

where », € [0, 1]? denote the vector of outcomes and x, the probability distribution
chosen at stage ¢. The specific choice h(x) = Zfl_ I logx for x = (xW, ..., x¥) €

A, (and h(x) = +oo otherwise) gives the celebrated Exponential Weight Algorithm,
which can be written explicitly, component by component:

o e (13 wi‘”)
X, = 7
Z _,eXp (Y] Ek lcok )

, t=1ield].

The following general regret guarantee for strongly convex regularizers is expressed
in terms of the dual norm | - | of |- |.

Theorem V.2.1 ([SS11] Th. 2.21; [BCB12] Th. 5.6; [KM14] Th. 5.1). LerK > 0
and assume b to be K-strongly convex with respect to a norm || - |. Then, for any sequence
of outcome vectors (w,) 1 in RY, the Online Mirror Descent Strategy associated with b and
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N (with v > 0 in cases of gains and n < 0 in cases of losses) guarantees, for T > 1, the
Jfollowing regret bound.:

Ly (T

V.2.2. Upper bound on the regret
We first assume s > 2. Let p € (1, 2] and define the following regularizer:

x> ifxeA
hp(x>:{2|!x!\p ifx €Ay

+oo otherwise.

One can easily check that b, is indeed a regularizer on A and that Bhp < 1/2. More-
over, it is (p — 1)-strongly convex with respect to | - Hp (see [Bubl1, Lemma 5.7]

or [KSST12, Lemma 9]).
We can now state our first result, the general upper bound on regret when out-
comes are s-sparse gains.

Theorem V.2.2. Lern > 0 and s > 3. Against all sequences 0f s-Sparse gain vectors
gy ie g, € (0,14 and | g,y < s the Online Mirror Descent algorithm associated with
regularizer b, and parameter v guarantees:

where 1/p + 1/q = L In particular, the choicesy = \/(p —1)/Ts*/ 1 and p = 1+

(2logs — 1)~ give:
Rt < y/2¢Tlogs.

Proof. b, being (p — 1)-strongly convex with respect to | - ”P’ and | - ||q being the dual

norm of | - Hp, Theorem V.2.1 gives:

Sh T
R g_f’_i_L 2‘

"

For each ¢ > 1, the norm of g, can be bounded as follows:

2/q 2/q
q )14
) < ( Y g ) < 2,
s terms

d_ .
lg:l; = (Z I
i=1
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which yields

1 nTs?/1
+ .

2q  2(p-—1)

We can now balance both terms by choosing v = \/ (p—1)/(Ts*1) and get:

Ts2/q

<
Rr<y/o0

Finally, since s > 3, we have 2logs > land weset p = 1 + (2logs — 1)~ € (1, 2],
which gives:

1, 1 _p-1_ (2logs—1)~t 1
q J J 1+ (2logs—1)"1  2logs’
and thus:
TSZ/q 2 logs
Rr < P = \/ZTlogse 8s/q4 = \/ZeTlogs.

[

We emphasize the fact that we obtain, up to a multiplicative constant, the exa&t
same rate as when the decision maker only has a set of s decisions.

Theorem V.2.2 was restricted to s > 3 to simplify the analysis. In the casess =1, 2,
we can easily derive a bound of respectively VT and V2T using the same regularizer
with p = 2.

V.2.3. Matching lower bound

Fors € [d]and T > 1, we denote v_gr’ *4 the minimax regret of the T-stage decision
problem with outcome vectors restricted to s-§parse gains:

osd .
vy = minmax Ry

$trat. ( gt) :

where the minimum is taken over all possible policies of the decision maker, and the
maximum over all sequences of s-§parse gains vectors.

To establish alower bound in the present setting, we can assume that only the s first
coordinates of g, may be positive (for all # > 1) and that the decision maker is aware
of that. Therefore he has no interest in assigning positive probabilities to any decision
but the first s ones. Indeed, for any mixed action x,, the decision maker can constru&t
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alternative mixed action x/ = (x\”, .., x{) + -+ 2,0, ..., 0) which obviously give

a higher payoft:
<gt’ xt> < <gt’ x;>

and therefore a lower regret:

T

T
max E g, (g,, x/) < max Z
ield] ;5 =1 ield] ;5

T

(gs> %,)
t=1

Therefore, we can restrict the strategies of the decision maker to those which assign
positive probability to the s first components only. That setup, which is simpler for
the decision maker than the original one, is obviously equivalent to the basic regret
minimization problem with only s decisions. Therefore, the classical lower

bound [CBFH 97, Theorem 3.2.3] holds and we obtain the following.

Theorem V.2.3. ,
2,5,
lim inflim inf i S > g
i Totee \/Tlogs

The same lower bound, up to the multiplicative constant actually holds non
asymptotically, see [CBL06, Theorem 3.6].

An immediate consequence of Theorem V.2.3 is that the regret bound derived in
Theorem V.2.2 is asymptotically minimax optimal, up to a multiplicative constant.

V.3. When outcomes are losses to be minimized

V.3.1. Upper bound on the regret

We now consider the case of losses, and the regularizer shall no longer depend on
s (as with gains), as we will always use the Exponential Weight Algorithm. Instead, it
is the parameter ) that will be tuned as a function of s.

Theorem V.3.1. Lets > 1. For any sequence of s-Sparse loss vectors (0,),5, i.e. €, €
10,14 and ||0, |y < s, the Exponential Weight Algorithm with parameter — where v :=

log (1 + /2dlog d/sT) > 0 guarantees, for' T > 1:

Ry < \/%%—logd.

We build upon the following regret bound for losses which is written in terms of
the performance of the best action.
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Theorem V.3.2 ([LW94]; [CBL06] Th 2.4). Letw > 0. For any sequence of loss vecfors
(6,),51 7 [0, 1], the Exponential Weight Algorithm with parameter — guarantees, for all

T>1: lood
og n_ «
RTgl—e_”l_*—(l—e_”l 1>LT’

T .
where L. = m[lj‘]l E 0\") is the loss of the best stationary decision.
€lal 121

Proof of Theorem V.3.1. Let T > 1and L} = min,gy Ethl 0! be the loss of the best
stationary policy. First note that since the loss ve&ors ¢, are s-sparse, we have s >

Zle eﬁ"). By summingover1 < < T:

and therefore, we have L. < Ts/d.
Then, by using the inequality n < (¢ — ¢)/2, the bound from Theorem V.3.2

becomes: oo d ) \
og eh—e i
l1—em (2(1 —eM) 1) Lt .

The factor of L% in the second term can be transformed as follows:

Ry <

gYI—efyl _1_ (1+677|>(eyl—efyl) _1_ (1_|—e*y]>€y| eyl—l

2(1—e) 2(1—e2) 2 27

and therefore the bound on the regret becomes:

logd ¢ _IL* B logd N (e" —1)Ts

< N b
Resi—o =t 3 s = 2d

where we have been able to use the upper-bound on L. since Lz_l > 0. Along with
the choice p = log(1 + \/2d logd/Ts) and standard computations, this yields:

Rt < \/%—Flogd )
O

Interestingly, the bound from Theorem V.3.1 shows that /25T logd/d, the dom-
inating term of the regret bound, is decreasing when the number of decisions d in-
creases. This is due to the $parsity assumptions (as the regret increases with s, the
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maximal number of decision with positive losses). Indeed, when s is fixed and d in-
creases, more and more decisions are optimal at each stage, a proportion 1 —s/d to be
precise. As a consequence, it becomes easier to find an optimal decisions when 4 in-
creases. However, this intuition will turn out not to be valid in the bandit framework.

On the other hand, if the proportion s/d of positive losses remains constant then
the regret bound achieved is of the same order as in the usual case.

V.3.2. Matching lower bound

When outcomes are losses, the argument from Section V.2.3 does not allow to
derive a lower bound. Indeed, if we assume that only the first s coordinates of the loss
vectors €, can be positive, and that the decision maker knows it, then he just has to
take at each stage the decision d, = d which incurs a loss of 0. As a consequence, he
trivially has a regret Rt = 0. Choosing at random, but once and for all, a fixed subset
of s coordinates does not provide any interesting lower bound either. Instead, the key
idea of the following result is to choose at random and at each stage the s coordinates
associated with positive losses. And we therefore use the following classical proba-
bilistic argument. Assume that we have found a probability distribution on (¢,), such
that the expected regret can be bounded from below by a quantity which does not de-
pend on the strategy of the decision maker. This would imply that for any algorithm,
there exists a sequence of (¢,), such that the regret is greater than the same quantity.

In the following statement, vgr’”i stands for the minimax regret in the case where
outcomes are losses.

Theorem V.3.3. Foralls > 1,

0,s,d
liminfliminf — L >

d—+oo T—4o0 /Tcil logd -

The main consequences of this theorem are that the algorithm described in The-
orem V.3.1 is asymptotically minimax optimal (up to a multiplicative constant) and
that gains and losses are fundamentally different from the point of view of regret min-
imization.

o5

Proof: We define the sequence of i.i.d. loss ve&ors ¢, (# > 1) as follows. First, we draw
aset I, C [d] of cardinality s uniformly among the (‘Si) possibilities. Then, if i € I, set
') = 1 with probability 1/2 and 0\) = 0 with probability 1/2, independently for each
component. If i ¢ I,, we set 0l = 0.

As a consequence, we always have that ¢, is s-§parse. Moreover, for each # > 1and

cach coordinate i € [d], &\") satisfies:

P [ =1] :2571 and P[e) =0] =1-

)

ﬂ 5
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thus E [Ql@] = 5/2d. Therefore we obtain that for any algorithm (x,),~1, E [(¢,, x,)] =
s/2d. This yields that

E{R—\/H:E (i 0, x,) rlreuﬂtfie )]

= -zem \/_2( ﬂ

= my 5

where ¢ > 1, we have defined the random ve&or X, by X = /2d—0\" foralli € [d].
For ¢ > 1, the X, are i.i.d. zero-mean random Veé’cors with values in [ 1,1]4. We can
therefore apply thc comparison Lemma V.3.5 to get:

iminfE | XL | limi L @]
l%rﬂi?fE {\/Tl = l%rgirgofE [max E ] [Illel&)](z ,

where Z ~ #°(0, %) with 2 = (cov(X} ), X{j>))i’j.
We now make appeal to Slepian’s lemma, recalled in Proposition V.3.4 below.
Therefore, we introduce the Gaussian ve&or W ~ 4°(0, ) where

S = diag (Var Xil), ..., Var X}I)) )

As a consequence, the first two hypotheses of Proposition V.3.4 follow from the def-
initions of Z and W. Let i # j, then

E [20Z0)] = cov(2D,29) = cov(¢f’, ) = E [ ¢} ] —E [¢'] E [¢] .

By definition of ¢;, Qf") le = lifand only if (21’) = QED =1land in)Qij) = 0 otherwise.
Therefore, using the random subset Il that appears in the definition of ¢;:

B(220] =P = =1] - (5)’

:mw=w=mMnmwmﬁcM%ﬁY

(4) s
C (z2)

NN -
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and since E [W W ] = 0, the third hypothesis of Slepian’s lemma is also satisfied.
It yields that, for all 6 € R:

P [mﬁl)](Z(i) <6 =P [z <6,... 24 <]
ic

<P[WU<B,.., W <8 =P [mzxw» < e} .
i€[d]

This inequality between two cumulative distribution fun&ions implies, the reverse
inequality on expetations:

E [maxZ ] [maxW()]
i€[d] i€[d]

The components of the Gaussian ve&tor W being independent, and of variance

Var Q%l), we have

[maxW ]—xd\/VarQ ’/Zd 2d /wc,“/

where x is the expectation of the maximum of d Gaussian variables. Combining ev-
erything gives:

v@,s,d

R s
.. T .. T
ind > vnf [ 2] > & 2] > B [ 3w

And for large d, since x; is equivalent to /2 logd, see e.g., [Gal78]

vQ s,d \/z
liminfliminf —L > Y= |
d—+co T—+co /TZ logd 2
]

Proposition V.3.4 (Slepian’s lemma [Sle62]). Ler Z = (ZW,...,Z9) and W =
(WW, ., WD) be Gaussian random vectors in R? satisfying:
() BE[Z] =E[W]=0;
(i) E ()] = E [(WOR] fori € [d
i) B [2920] <E[WOWD) fori £ j € [d].
Then, for all real numbers 9, ... , 8,5, we have:

P20 <0, 2@ <8, <P[WD LB, ..., WD <]
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The following lemma is an extension of e.g. [CBL06, Lemma A.11] to random
vectors with correlated components.

Lemma V.3.5 (Comparison lemma). Fort > 1, let (X,),, be ii.d. zero-mean random
vectors in [—1, 1%, X be the covariance matrix of X, and Z ~ (0, Z). Then,

1 & ; .
liminfE |max — XY | > E [max Z(’)] .
[iew VT ; ! ] -

T—+c i€[d)

Proof. Denote

T
Yr —maX—E El

Let A < 0 and consider the fun&ion ¢, : R — R defined by ¢, (x) = max(x, A).

BT =B Yoty g +B[Yr 1y
= E9a(Yr) Iy )] #E [Yr oLy yy)
—Ea(Yr)] —E [6a(Yr) - Try | +E [Yr-Tpy )
—ELa(YDl—E[(A=Yr) 1,y ]

Let us estimate the second term. Denote Zp = (A — Y1) - Ly _y_.o. We clearly

have, forallu > 0,P[Z1 > u] = P[A — Y > u]. And Z being nonnegative, we can
write:

E[A o)Ay y 1) =EZ1]

:f+ooPZT>u du

(=)

-+ o0

0
—+ o0
= P[Yt < —u] du
—A
too [ T
- [ P B

IPEX <u\/_]
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For u > 0, using Hoeflding’s inequality together with the assumptions E [XED} =0
and XEI) € [—1,1], we can bound the last integrand:

Which gives:

Therefore:

E[Yr] 2 E[¢a(Yr)] + A

We now take the liminf on both sides as # — +oco. The left-hand side is the quantity
that appears in the statement. We now focus on the second term of the right-hand
side. The central limit theorem gives the following convergence in distribution:

The application (xD, ..., x(”l)) > maXe x() being continuous, we can apply the
continuous mapping theorem:

£ .
Y= = max )~ maxX®
T E n—r—+o0 ieﬁl)}(

This convergence in distribution allows the use of the portmanteau lemma: ¢, being
lower semi-continuous and bounded from below, we have:

liminfE [, (Yr)] = [cpA <maXX(i)>] ,

ptoo i€ld)

and thus:

0 —A7/2
iminfs Ve > B 40 (mX) |+ S

We would now like to take the limit as A — —oo. By definition of ¢, for A < 0, we
have the following domination:

max X
i€ld)

NM&

]X

max|X ‘
16

’¢A (max X(i>> ’ <

ic[d)
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where each X is L! since it is a normal random variable. We can therefore apply the
dominated convergence theorem as A — —oo:

E [q)A <max X(")ﬂ ——E [max X(i)] ,
i€ld) A——o0 i€ld)

and eventually, we get the stated result:

liminfE[Y] > E [max X@] :

t—+oco i€[d]

V.4. When the sparsity level s is unknown

We no longer assume in this section that the decision maker have the knowledge
of the sparsity level s. We modify our algorithms to be adaptive over the sparsity level
of the observed gain/loss ve¢tors. The algorithms are proved to essentially achieve the
same regret bounds as in the case where s is known. The constructions follow the same
ideas behind the classical doubling trick.

Specifically, let T > 1 be the number of rounds and s* the highest sparsity level of
the gain/loss vectors chosen by Nature up to time T. In the following, we construct

algorithms which achieve regret bounds of order /T logs* and \/TS* Izgd for gains

and losses respectively, without prior knowledge of s*.

Boths algorithms need the foreknowledge of the time-horizon T for the tuning
of the parameters. The use of time-varying parameters as in Theorem 1.3.1 should
provide any-time guarantees.

V.4.1. For losses

Let (¢,),-; be the sequence of loss ve&ors in [0, 14 chosen by Nature, and T > 1
the number of rounds. We denote s* = max;, 1 [|¢,], the higher sparsity level of the
loss vectors up to time T. The goal is to construct an algorithm which achieves a regret

bound of order 1/ == ilogd without any prior knowledge about the sparsity level of the

loss veétors.
The time instances {1, ..., T} will be divided into several time intervals. On each
of those, the previous loss ve¢tors will be left aside, and a new instance of the Expo-

nential Weight Algorithm with a pecific parameter will be run. Let M = flog2 s
and 7(0) = 0. Then, for1 < m < M we define

t(m) =min{1< s < T||e],>2"} and t(M)=T.
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In other words, 7(m) is the first time instance at which the parsity level of the loss
vector exceeds 2”. (T(m)),<,,< is thus a nondecreasing sequence. We can then define
the time intervals I(m) as follows. For1 < m < M, let

{tm -1 +1,...,t(m)} iftim—1) <1(m)
0 ift(m—1) = t(m).

The sets (I(m)),,,<\ clearly form a partition of {1, ..., T} (some of the intervals may
be empty). Forl < ¢ < T, we define m, = min {m > 1| t(m) > ¢} which implies
t € I(m,). In other words, m, is the index of the only interval # belongs to.

Let C > 0 be a constant to be chosen later and for1 < m < M, let

dlogd
n(m) = log (1 +C ST )

be the parameter of the Exponential Weight Algorithm to be used on interval I(m )

In this section, b will be entropic regularizer on the simplex h(x) = Z x' log x'?,
so that y > Vh*(y) is the logit map used in the Exponential Weight Algonthm \We
can then define the played actions to be:

=Vb* | —n(m,) >, ¢ |, t=1..,T.
<t
' €l(m,)

Theorem V.4.1. The above algorithm with C = 23/*(\/2 + V)V? guarantees

| Ts*logd  [logs*]logd ., [logd
Rt <4 7t 5 +5s T

Proof” Let1 < m < M. On time interval I(m), the Exponential Weight Algorithm is
run with parameter () againgt loss vectors in [0, 1]4. Therefore, the following regret

bound derived in the proof of Theorem V.3.1 applies:
R(m):= Y (¢, x)—min Y ¢

tel(m) ic(d] tel(m)

logd enm — 1 (0)
Ql
ST—etm T 2 ‘Eﬁ]‘t; ’

ZmTlogd Iogd C /dlogd
\/ 2V 2T frel[ﬂ?

tel(m
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Algorithm 1: Forlosses in full information without prior knowledge about spar-
sity

input: T > 1,d > lintegers, and C > 0.
n < log(1+ Cy/dlogd/2T);
m <+ 1;
fori < l1toddo
‘ w®) l/d;
end
fort <+ 1toT do

draw and play decision i with probability w®)/ E?:l wl;
observe loss ve&or ¢,;
if €}, < 2 then
fori < 1toddo
\ wli) et
end
else
m  [log, &[]

n < log(1+ Cy/dlogd/2"T);
fori < 1toddo

‘ w «1/d;
end

end
end
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We now bound the “best loss” quantity from above, using the fact that ¢, is 2”-¢parse
fort € I(m) {t(m)} and that €, is s*-sparse:

SR w- 3 Tw- 3 ReRe,

i=1tel(m) tel(m) t<t(m) i=1 i=1
tel(m)

N

(t(m) —t(m —1))2" + 5%,
which implies:
(t(m) —1t(m —1))2" + s*'

min Z eﬁ") p]

ield] , )

N

Therefore, the regret on interval I(m), which we will denote R (), is bounded by:

Rm):= Y (¢, x)—min ¥ €

t€l(m) i€ld] +&10m)

1 [27Tlogd logd C [2mlogd C /logd |
SV T ¢ T2V G =)t 2y

1 [27Tlogd logd C [2s*logd C /logd |
scV—a ‘t¢ taVuar <T<m)_T(m_l)>+§V 2dT’

where we used 277 < 2M = 2 llog, 5l < 298,541 _ 2+ for the third term of the lagt

line.
We now turn the whole regret Rt from 1to T. Since (I(m)),,,<) is a partition

of {1, ..., T}, we obtain

T M M
Rr =Y (¢, x,) m1n 2 0¥ <)) (@nx) 2 min Y] ¢ o) = Y R(m)
=1 i€ld] ;5 m=11€1(m) m=1 €l 1 T0m) m=1

Tlogd s*Tlogd Mlogd C log M e
<C 2\/_ Cy/> Tt 22

The sum in the firs$t term above can be bounded as follows

M M - ZM 1 /210g s*+H1 =
YV <Y V2 N A il S, A S L
m=1 m=1 2—-1 \/z_l \/2_1

whereas the sum in the last term can be bounded by v/2 + 1. Eventually, the choice
C = 2/4(V2 + 1)V2 give:

['s*logd [logs*]logd logd
5/4 1/2 8 8 8 1/4 3/2 g+ 8
Ry < 25/4(V2 + 1)V24/ y +23/4(f+1)1/2+2 (V2 +1) \/d

2(V2 +1)V/s,
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and the statement follows from numerical computation of the constant fa&ors.

[

V.4.2. For gains

The construction is similar to the case of losses, but the time intervals are slightly
different. Let (g,),~, be the sequence of gain vectors in [0, 14 chosen by Nature. We
assume s* > 2 and set M = [log2 log2 s*Tand 7(0) = 0. For1 < m < M we define

T(m) = min {1 <t < T‘ ”gt”o > 22m} and t(M)=T.
We now define the time intervals I(m). For1 < m < M,

I(m) = {tm—1) +1,...,t(m)} ift(m—1) < (m)
0 1f’r(m — 1) = T(m)

Therefore, for1 < m < M and ¢ < t(m), we have ||gt|\0 < 22" Forl <t < T, we

denote m, = min {m > 1|t(m) > r}. Let C > 0 be a constant to be chosen later and
forl <m <M, let

1
Pom) =14 B 1
1 —1
= 1— _— s
10m) ( p<m>>
_ p(m) —1
Y](m) - C T22m+l/q(m> .

Asin Section V.2.2, for p € (1, 2], we denote b, the regularizer on the simplex defined

by:
Lix)> ifxeA
hp(x):{znxup ifx € A,

+o0 otherwise.

The algorithm is then defined by:

xt:Vh}‘;(mt) nm,) >, g |. t=L..,T.

/
t <t

' €l(m,)
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Algorithm 2: For gains in full information without prior knowledge about spar-
sity.

input: T > 1,d > lintegers, and C > 0.
p 1+ (4log2 —1)7

g+ (1-1/p)h
N« Cy/(p—1)/294T;
m <+ 1;

Y 0,...,0) € R4,
fort < 1to T do
draw and play decision i ~ Vb (7 - y);
observe gain vetor g,;
if [ g, <2*" then
oy ytes
else
m < [log log | g,l,1;
p 1+ (log2- 27" —1)7
g+ 1-1/p)7
n e Cyf(p— /22" T;
y <+ (0,...,0);

end
end
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Theorem V.4.2. The above algorithm with C = (ev/2(V/2 + 1))V2 guarantees

Rt <74/Tlogs* + \4/%

Proof Let1 < m < M. On time interval I(m), the algorithm boils down to an On-
line Mirror Descent algorithm with regularizer b, and parameter n(m). Therefore,

using Theorem V.2.1, the regret on this interval is bounded as follows.

R(m):==max ¥ &’ — Y (g%

i€ld] ,T(m) tel(m)

7(m) 2
< Znom) + 200w 1), 28 10

t€l(m)

1 n(m) 2 2

~ 20(m)  2(p(m) A

t<t(m)

g, being 22" -sparse for t < t(m) and Z+(m) being s*-sparse, the g(m)-norms can there-
fore bounded from above as follows:

2 m+1 m 2 . "
lg:l,,, <2 /1 and gf(m)Hq(mé(s )2/a0m),
The bound on R (m) then becomes
L nm)(x(m) —x(m —1))2*"" n(m) (%) /40
R(m) < + +
" 2Zn(m) 2(p(m) — 2(p(m) —1)

1)
= 5\ Tellog2 271 1) +§\/ ellog?2. 2m+1_1)(f<m>—f<m—1>>

C( ) log2 2" \/e(logZ 2m+l 1)

+
,/Telogz omtl 4 C lgs ) —(m—1))
/elogZ 2’”+1
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where for the second term of the lagt expression we used:
log2 -2 —1< log2 - 2M* = Jog2 - exp (logZ (Hog2 log, s*] + 1))
< log2 - exp (logZ <logZ log2 s+ 2))
2log2 exp (logZ -log, log, s*)

= 4log2 - exp (loglog2 s*)
= 4log2 - log2 s*

=log2-e

= 4logs*.

Then, the whole regret R is bounded by the sum of the regrets on each interval:

ER ZC,/TelongVzmHJrc elogs 2 ) —(m —1))

m=l1

elog 22 (mi1))

The second sum is equal to T and the third sum is bounded from above by (v/2 +
1)/+/2. Let us bound the first sum from above:

\/1 2M\/2 +1—2./] z—ZM/Z_l
o5 m2—1 IV, P

2(V2 + 1)\/@ exp (l (log2 log 5"+ 1))
= 2(vV2 +1)/log2 - /28"
=2V2(V2 4 1), /log2log, s*

=2V2(V2 4 1) /logs*.
Therefore,

V2(V2+1) . - C(V2+1)s* [elog2
RTQT\/Telogs + Cy/Telogs* + 5 T

Choosing C = (ev/2(v/2 + 1))V/? balances the first two term and gives:
< 2(eV2(V2 +1)Y2,/Tlogs* +275/%¢, /log2(v2 + 1) 3/2 <

r T

4s*
VT
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V.5. The bandit setting

We now turn to the bandit framework (see for instance [BCB12] for a recent sur-
vey). Recall that the minimax regret [AB09] in the basic bandit framework (without

sparsity) is of order V' Td. In the case of losses, we manage to take advantage of the
sparsity assumption and obtain in Theorem V.5.1 an upper bound of order 1/ T's log %,
and a lower bound of order v/ Ts in Theorem V.5.3. This etablishes the order of the

minimax regret up to alogarithmic factor. In the case of gains, the argument from Sec-
tion V.2.3 can be adapted to get a lower bound of order V/sT; but the upper bound
techniques from losses do not seem to work; this difhculty is discussed below in re-
mark V.5.2.

For simplicity, we shall assume that the sequence of outcome vectors (w,),1 is cho-
sen before stage 1 by the environment, which is called 0b/ivious in that case. We refer
to [BCB12, Se&ion 3] for a detailed discussion on the difference between oblivious
and non-oblivious opponent, and between regret and pseudo-regret.

As before, at stage ¢, the decision maker chooses x, € A, and draws decision
d, € [d] according to x,. The main difference with the previous framework is that
the decision maker only observes his own outcome wfl‘ before choosing the next deci-
siond, ;.

V.5.1. Upper bounds on the regret with sparse losses

We shall focus in this se¢tion on s-sparse losses. The algorithm we consider be-
longs to the family of Greedy Online Mirror Descent. We follow [BCB12, Se&ion
5]and refer to it for the detailed and rigorous construction. Let F, (x) be the Legendre

fun&ion associated with the potential Y(x) = (—x) ™ (q > 1), i.e.

q d =1/
F,(x)=——21— q,
o q— IZT

The algorithm, which depends on a parameter 1 > 0 to be fixed later, is defined as

follows. Set x; = (4,...,4) € A, Forallt > 1, we define the estimator ¢, of ¢, as
usual:

@§i> = l{dt:i}xt_i’ i€ [d],
t
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which is then used to compute

2l = VFZ(VFq(xt) - V]@r) and  x,,; = argmin DFq (%, 2,41)5

x€h,

where Dy : 2 x & — R is the Bregman divergence associated with F,:
Dy (x',x) = Fy(x') = F(x) - (VE,(x),x" —x).

Theorem V.5.1. Lezt v > 0and q > 1. For any sequence of s-Sparse loss vectors, the above
Strategy with parameter v guarantees, for T > 1:

( A4 'y]Tsl_l/q )
q + )
n(q—1) 2

In particular, if d /s > 2, the choices

R

N

244

n= m dﬂd q= lOg(d/S)

the following regret bound.:

R <2ve Tslog%.

Proof [BCB12, Theorem 5.10] gives:

max,. F(x) - E(x)

Ro < URSR o 2
TS - + > ZT Zf [_(\y—l)’(xfi>)] ,

1
| maxEy () —F, () <
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We turn to the second term. Let1 < ¢t < T.

d (@(i))
ZE [f—] _qZE[ 1+1/‘1]
-1 1) (x|

d (i)y2
—14E [E{ {41} (<Ql>> o

d

=qE { ) <e£l’>>2<x£i>>l/q]

< q5(1/5>1/q = qsl_l/q’

where we used the assumption that ¢, has at most s nonzero components, and the fact

that x, € A . The first regret bound is thus proven. By choosingn = | %, we

balance both terms and get:
le/qsl l/q (d)1/4< q >
R+ <2 = +/2q1/Ts — .
TSN q—1

Ifd/s > e* and q = log(d/s), then q/(q — 1) < 2 and finally:

T <2ve Tslog?
O

Remark V.5.2. The previous analysis cannot be carried in the case of gains because
the bound from [BCB12, Theorem 5.10] that we use above only holds for nonnega-
tive losses (and its proof strongly relies on this assumption). We are unaware of tech-
niques which could provide a similar bound in the case of nonnegative gains.

V.5.2. Matching lower bound

The following theorem establishes that the bound from Theorem V.5.1 is optimal

up to a logarithmic factor. We denote vf}s 4 the minimax regret in the bandit setting

with losses.
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Theorem V.5.3. Foralld > 2,s € [d)andT > d* /4s, the following lower bound holds:

0.5 1
Ugli d = 3—2\/ﬁ

The intuition behind the proof is the following. Let us consider the case where
s =1and assume that ¢, isa unit vector¢; = (1{j = i,}); where P(i, = i) ~ (1+¢)/d
forall i € [d], except one fixed coordinate i* where P(i, = i*) ~1/d —«.

Since 1/d goes to 0 as d increases, the Kullback-Leibler divergence between two
Bernoulli of parameters (1 + ¢)/d and 1/d — ¢ is of order de*. As a consequence,
it would require approximately 1/de* samples to distinguish between the two. The
standard argument that one of the coordinates has not been chosen more than T /d

times, yields that one should take 1/de* ~ T/d so that the regret is of order Te. This
provides a lower bound of order V'T. Similar arguments with s > 1give alower bound
of order V/sT.

We emphasize that one cannot simply assume that the s components with posi-
tive losses are chosen at the beginning once for all, and apply standard lower bound
techniques. Indeed, with this additional information, the decision maker just has to
choose, at each stage, a decision associated with a zero loss. His regret would then be
uniformly bounded (or even possibly equal to zero).

V.5.3. Proof of Theorem V.5.3

Letd >1,1<s<d, T >1,ande € (0,s/2d). Denote B,([d]) the set of subsets of
[d] of cardinality s, 9;; the Kronecker symbol, and B(1, p) the Bernoulli distribution
of parameter p € [0,1]. If P, Q are two probability ditributions on the same set,
D (P | Q) will denote the relative entropy of P and Q.

Random s-sparse loss vectors €, and ¢;. — For ¢ > 1, define the random s-éparse
loss vectors (¢,),-; as follows. Draw Z uniformly from [d]. We will denote P;[-] =
P[-|Z=iandE,[-] =E[- |Z = i]. KnowingZ = i, the random vectors ¢, are i.i.d
and defined as follows. Draw I, uniformly from %,([d]). If j € I,, define 0/ such
that: | o

3

P, [6) =1 =1-B[¢) = 0] =5 - =3,

If j ¢ I, set /) = 0. Therefore, one can check that for each component j € [d] and
allt > 1, .
E, [QEJ)] LI

For t > 1, define the i.i.d. random s-sparse loss vectors (¢;),; as follows. Draw I

uniformly from ,([d]). Then if j € I}, set (¢;)/) such that:
P[(6)9 =1] =B [(e) = 0] =172.
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And if j ¢ 1/, set (¢/)/) = 0. Therefore, one can check that for each component
jeld andallt >1,

o)) = =
By construction, ¢, and ¢/ are indeed random s-sparse loss vetors.
A deterministic trategy o for the player. — We assume given a deterministic strat-
egy o = (0,),; for the player:
o, ([d] x [0, 1)) — [d].
Therefore, ) ¥
d, = o,(dp o™, . d, 0,

where d, denotes the decision chosen by the strategy at stage ¢ and w, the outcome
vector of stage ¢. But since d, is determined by previous decisions and outcomes, we
can consider that o, only depends on the received outcomes:

o, [0, 1] — [d],

(dy) (dt ")
d,=a, (0", ...,0, ")

We define d, and d] to be the (random) decisions played by deterministic §trategy
o against the random loss ve&ors (€,),-; and (€/) - respectively:

d, = 0,00 idl), ,Qfdtl ‘)),
di = o, ()4, .., (¢_) ).

Fort > land i € [d], define A" to be the set of sequences of outcomes in {0, 1}
of the ﬁrét t — 1 stages for which strategy o plays decision i at stage #:

A =Ly ) € 0,17 oy, sy ) = i
and B the complement:
BEZ) — {O, l}t—l A§l>

Note that for a given r > 1, (A£i>>ie[d] is a partition of {0,1}" " (with possibly some
empty sets).

Fori € [d], define 7,(T) (resp. 7/ (T)) to be the number of times decision i is played
by strategy o against loss ve&tors (¢,),; (resp. against (¢/),-;) between stages1and T:

T T
T) = Z:l ﬂ{dt:i} and T:(T) = ; ﬂ{d;:i}'
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The probability distributions Q and Q; (i € [d]) on binary sequences. — We con-
sider binary sequences i = (uj, ..., wy) € {0,1}". We define Q and Q, (i € [d]) to be
probability digtributions on {0,1}" as follows:
Q] =P [(€) %) =, .., (€)% =ur].
Fix (uy, ..., u, ;) € {0,1}". The applications
u, +— Qlu,|ug, ..ou, 4] and  u, +— Q;[u, |uyy s u, 4],

are probability distributions on {0, 1}, which we now aim at identifying. The first one
is Bernoulli of parameter s/2d. Indeed,

QU sy ooty ] = P[(€) 4 = 1| () ) =y, ..., (€)_) ) = u, ]
P [(Q;)(di) — 1]
=Pd; e [JP[(¢))) =1|d; € ]

where we used the independence of the random vecors (¢7),., for the second in-
equality. We now turn to the second distribution, which depends on (u, ..., u,_).

If (4, ..., u, ;) € AL, it is a Bernoulli of parameter s/2d — e:
d d
Qo] =B, [0 = 1|6 =, 0%

i dl dl*l N
—P, [ef) =1 = u, .., %" —ut_l}

where for the third inequality, we used the assumption that the random vectors (¢,),5,
are independent under P}, i.e. knowing Z = i. On the other hand, if (%, ..., %, ;) €

B, we can prove similarly that the distribution is a Bernoulli of parameter s/24.
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Computation the relative entropy of Q; and Q. — We apply iteratively the
chain rule to the relative entropy of Q[u] and Q,[#]. Using the short-hand

D,[-]=D(@Q[-]]Q[-])

=D
=D, [wy] +D; [uy, ..., ur | ]
(1] + D [y [ og] + D, [, .., ey | 14y, 147

We now use the definition of the conditional relative entropy, and make the previously
discussed Bernoulli distributions appear. For1 < ¢ < T,

D; [u, |uy, .oy uy ] = E Qluys oo 1)

[“t luys .. s ut—l]
[”t | Ups oees ut—l]

X Z@ [, | gy oo s 1y l]log(@

E EQ[ut|u19~~«,Mt I]IOgQ [ut|u1""’ut71]

peenlhy Uy [”t|u1"'-’”t—l]

15 oG

(4)
t—1 t

W TUICENIYOES)

u

where we used the short-hand B (55,¢) := D (B (1, 55) | B (1, 55 — €)). Eventually:

—~~
()
=

A
[\)

&..
\_/
Lp-
B
|

Upper bound on J Eflzl E; [t;(T)] using Pinsker’s inequality. — In this step, we will
make use of Pinsker’s inequality to make the relative entropy appear.
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Proposition V.5.4 (Pinsker’s inequality). Ler X be a finite set, and P, Q probability
distributions on X. Then,

1 1
zg;‘(u)(x) — QW) </3D(P|Q).

Immedz'a/te consequernce:

1
g}]{ (P(x) = Q(x)) < /5D (P Q).

P(x)>Q(x)

Leti € [d]. If (uy, ..., up) € {0,1}7 is given, since the decisions d, and d are
determined by the previous losses ¢\*) and (¢)() respectively, we have in particular:

d d , o o
E, [Ti(T) [0 =y, ) = uT] = E [t/(T) | () = my, . (€)1 40) = ] .

1

Therefore,
E, [r(T)] — E[5/(T)] = R Q[ - E, [r,(T)| ve, % = u,]
— YQli - E [F(T)| Ve, ()" = ]

= 3 (Qfi) - Q) E; [+(T)| ¥r, 6 = u]

[

< Y (@l QE)E [n(T)|vr ¢ = u]




THE BANDIT SETTING 127

where we used Pinsker’s inequality in the fifth line. Moreover, we have:

d 14, B(s/2d,e) 14y | & |AY
S < e ny SR 6 S
= = 1 =
(i)
T B(s/2d,¢) |18 & A
sgtT 2\ d E ; 201
1
T B(s/2d,e) | 1.&[{0, 117
=atT 2 \d Z; 21
T B(s/2d,¢) [T
o B
T .. [B(/2d,¢)
i+t 2d

where we used Jensen for the second inequality, and for the third line, we remembered

that (Aﬁ"))iem is a partition of {0,1}"

An upper bound on B(s/2d, ¢) for small enough e. — We first write B(s/2d, ¢) ex-
plicitely.

B (;—d g) — D (B(1,s/2d) | B(L, s/2d — ¢))
s/2d 1—s/2d
s/2d — ¢ <l_ﬁ>log1—s/2d+s

2de s £
- 2d1°g< s>+<zd )1°g<1+ —m/Zd)'

We now bound the two logarithms from above using respectively the two following
easy inequalities:

log

forx € [0,1/2]
+x2, forx>0.

x
. !
l\)
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This gives:
Bﬂi¢)<4i<&E+é£f>+(L—i)<— S )
2d 2d \ s 52 2d 1—s/2d  (1—s/2d)?
_ 4d%?
s(2d —s)’
which holds for 2de/s < 1/2, in other words, for ¢ < s/4d.
Lower bound on the expeation of the regret of o against ¢,. — We can now bound

from below the expected regret incurred when playing o against loss vectors (€,),-;.

Fore < s/4d,

T
Ry =E ZQE”I’ —mmEQ
t=1 jeldl 151
L& ) S o0
- ), E ¢ — min 0
d;::l E Je[dhzl

]E[d] t=1

%f} E, f}eidf}—mmEE[ ])
:éﬁ E, E]E,- [ dt]] — T min (ﬁ—%))

j€ld]

We now use the upper bound derived in Section V.5.3.

T 32 B(s/2d,¢)
Ry>e (T— 1 T

T 2d
8(T d e s(2d — )

> (T — I - 2T3/22L.> ,

d Vs
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where in the penultimate, we used the upper bound on B(s/2d, ¢) that we established
above, and in the lagt line, the fac that s < d. Let C > 0 and we choose e = C/s/T.

Then, for e < s/4d,
1 I'T
RT>ET(1—E—22 ?>

= CVsT <1— %) — 2VSTC?

>\/ﬁ(§—2(:2>,

where in the last line, we used the assumption d > 2. The choice C =1/8 give:
1
> —
RT = 32 V ST,

which holds fore = C+/s/T < s/4d i.e. for T > d*/4s.

The above inequality does not depend on o. As it is a classic that a randomized
strategy is equivalent to some random choice of deterministic strategies, this lower
bound holds for any strategy of the player. In other words, for T > d? /4s,

1
~0,5.d /
UT > 3—2 ST.

V.5.4. Discussion

If the outcomes are not losses but gains, then there is an important discrepancy
between the upper and lower bounds we obtain. Indeed, obtaining small losses regret
bound as in the first displayed equation of the proof of Theorem V.5.1 is still open. An
idea for circumventing this issue would be to enforce exploration by perturbing x, into
(1—7)x, + 72 where % is the uniform distribution over [d], but usual computations
show that the only obtainable upper bounds are of order of v/dT. The aforementioned
techniques used to bound the regret from below with losses would also work with
gains, which would give a lower bound of order V/sT. Therefore, finding the optimal
dependency in the dimension and/or the $parsity level is still an open question in that
specific case.






CHAPTER VI

APPROACHABILITY WITH PARTIAL
MONITORING

This chapter is extracted from the paper Blackwell approachability with partial mon-
itoring: Optimal convergence rates, in collaboration with Vianney Perchet, in prepara-
tion.

Abstra&

We study the approachability problem with partial monitoring and polytope target
sets. When the target set is approachable, we congtru&, for the first time, approaching
strategies with convergence rate of order O(T~/2) in the case of outcome-dependent
signals and of order O(T~'/3) in the case of general signals. Those rates are known
to be unimprovable without further assumption on the target set or the signalling
struture. It therefore establishes the optimal convergence rates for those two cases.
Moreover, the proposed strategies are computationally efficient.

VI.1. Introdu&ion

We study the following approachability problem with partial monitoring. The
Decision Maker and Nature both have a finite set of pure actions. At each stage, the
Decision Maker and Nature choose an action in their respe&ive action sets, possibly
at random. This determines a ve&tor-valued payoff which is not observed by the Deci-
sion Maker. The latter only observes a random signal whose law depends on the pure
actions of the Decision Maker and Nature. The Decision Maker is aiming at having
the average payoff to converge to a given target set.

VI.1.1. Previous work

In the full information setting, both the regret minimization and approachabil-
ity problems have a worst-case convergence of rate of order O(T—Y/2). The rate deals
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132 APPROACHABILITY WITH PARTIAL MONITORING

respectively with the average regret in regret minimization, and the distance of the
average payoft to the target set in approachability.

In regret minimization with partial monitoring, depending on the signalling struc-
ture, the Decision Maker may or may not be able to guarantee an asymptotically non-
positive average regret. This has given rise to two main dire&ions of research.

The first one, initiated by [PSO01] identifies the signalling structures which allow
the average regret to be minimized and aims at constructing strategies in those
cases: [PSO1] constructed a strategy which guarantees a convergence rate of order
O(T~4) and [CBLS06] proposed an improved strategy with a O(T~Y/3) guarantee
as well as a general lower bound of the same order. Later, [BPS10, BFP"14] gave a
classification of signalling structures according to convergence rates: they established
that the optimal convergence rate is either O(T7/2), O(TY/3) or O(1)—this last
rate corresponds to the case where the average regret cannot be minimized.

The second line of research was proposed by [Rus99] who introduced a weaker
variant of the regret, which involves the best performance that the Decision Maker
could have achieved in hindsight (had he known the sequence of signal laws, but not
the sequence of actions of Nature), for a given signalling structure. [Rus99] however
did not provide an explicit strategy nor convergence rates. [MS03] constructed ap-
proachability-based algorithms in the special case where the law of the signal only de-
pends on Nature’s a&ion (the so-called outcome-dependent case). [LMS08] proposed
Strategies with convergence rates of order O(T~/4,/logT) in the case of outcome-
dependent signals and of order O(T%/5,/logT) in the case of general signals. The
optimal rate of order O(T~'/3) in the case of general signals (for both internal and
external regret) was achieved by [Per11b] using calibration-based algorithms.

More recently, the problem of approachability with partial monitoring has been
introduced by [Perlla]. The regret minimization problem from [Rus99] and the
internal regret from [LS07, Per11b] turn out to be special cases of this very general
framework. However, the convergence rate of the strategy provided in [Perlla]
had the drawback of deteriorating quickly with the dimension of the payoft space.
A étrategy with dimension-free rate of order O(T /%) was given in [MPS14]—see
also [MPS13]. However, the optimal rate of convergence was conjectured to be of
order O(T~1/3), like for regret minimzation.

VI.1.2. Main contributions

We constru, for the first time, approachability strategies for polytope target sets
with convergence rates of order O(TY/3) in the case of general signals and of or-
der O(T~Y2) in the case of outcome-dependent signals. Those rates are known to be
unimprovable without further assumption on the target set or the signalling structure:
in the case of general signals, a lower bound of order O(T~/?) was given in [CBLS06],
and the O(T~Y/2) rate is already optimal in the full information setting. It therefore
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establishes the optimal convergence rates for those two cases. Moreover, the proposed
strategies are computationally efficient.

VI.1.3. Outline

In Se¢tion V1.2, we present the model of two-player game with vector payoffs and
with partial monitoring, In Se&tion V1.3, we recall the dual charaterizations of ap-
proachability, both in partial monitoring and in full information. In Section V1.4,
we fir$t construct an auxiliary full information game which we then use to define the
strategy for the initial game. The efficiency of the strategy is discussed. In Section VI.5
we state and prove Theorem VIL.5.1 which is our main result. It establishes an O(T~3)
rate of convergence for the strategy. In Section V1.6, we deal with the special case of
outcome-dependent signals for which we propose a modified strategy which is proved
in Theorem V1.6.2 to have an O(T~Y/2) rate of convergence.

VI.1.4. Notation

Exponents will be used to denote the components of a vector: for instance x =
(x');ey € R7. Bold letters will denote maps and calligraphic letters will denote sets.
(-]-) will denote the scalar product.

VI1.2. The game

VI1.2.1. Ingredients

We consider a repeated two-player game with vector-valued payoffs and partial
monitoring between the Decision Maker and Nature. The Decision Maker (resp. Na-
ture) has a finite set of pure actions 7 (resp. Z). Denote by

2 xt = 1}
=

the simplex which represents the set of probability distributions over 7. A(%) is de-
fined similarly. Let g : 7 x ¥ — R be the vector-valued payoff function which we
bilinearly extend to g : A(7) x A(F) — R%:

A7) = { = (),cy €RY

g(x, y) == Eix [8(i, /)] = X} x'y/g(i, j)
Nl ie?
S

where  x = (x);cy € A(I) and  y = ()7),cq € A(F).
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Denote by [g|l, = maxieg |g(i, j)l, its Euclidean norm. Let 5 be a finite st of sig-
je

nalsand s : 7 x F — A(#) the signal distribution function, which we also bilinearly
extend to A(7) x A(Z). All the above elements are assumed to be known to the De-
cision Maker. The $pecial case where the law of the signal s(i, j) does not depend on
i is called the outcome-dependent signals case, and will be treated in Se&tion VI.6.

VI1.2.2. The play

The game is played as follows. At time ¢ > 1,
e the Decision Maker and Nature simultaneously choose pure actions i, € 7
and j, € Z, possibly at random according to mixed actions x, € A(Y) and
e € A(Z);
e the Decision Maker gets (but does not observe) ve&or payoft g, := g(i,, j,) €
R%;
e the Decision Maker observes signal s, € % which is drawn according to
s(iys ji) € A(F).
Formally, a strategy for the Decision Maker is a sequence of measurable maps ¢ =
(0,);51 where o, : (A(F) x 7 x #)"1 — A(7) indicates the mixed a&ion x, at time
t as a fun&ion of the information available to the Decision Maker. In other words:

Xy = (K] 15 Sps o> X 15 By 15 541

Similarly, a strategy for Nature is a sequence (t,),5; where 7, : (A(7) x 7 x £ X

A(F) x F)1 = A(F), so that
Ve = T, (%0 i 515 15 Ji oo X1 b1 S Ve ]'H)-

For T > 1, denote g1 := 1 Z;rzl g, the average ve¢tor payoff up to time T.

VI1.2.3. Flags
The flag fun&ion f : A(F) — A(#)7 is defined by
£5) = (5G.7),_,» 7€ AD).

Fort > 1, denote f, := f(y,) the flag associated with y,. Denote ¥ = f(A(%)) the
set of all possible flags, which is a polytopial subset of R”*7. The notion of flags is
fundamental in games with partial monitoring. Although the Decision Maker does
not directly observe it, he can, as will be shown, estimate it. As a matter of fad, it is
the maximal information available to him. For x € A(7) and f € ¥, let m(x, f) :=
g(x, £71(f)) be the set of all payoffs that are compatible with mixed a&ion x and flag
f. The set-valued map m : A(7) x F = R* will be essential in the statement of the
chara&erization of approachable sets (Proposition V1.3.2) and in the congtru&ion of
the strategies.
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VI1.3. Approachability

We recall the definition of approachability and the chara&erizations of approach-
able convex sets both in the partial monitoring and full information cases.

Definition VI.3.1. A closed convex set € C R is approachable if there exists a strat-
egy of the Decision Maker which guarantees

Eldy (gr €))7 0.
uniformly in the strategy T of Nature, where d, (-, €) denotes the Euclidean distance
to €, and where the expectation corresponds to the randomization introduced by the
strategies and the signals.

Proposition VI.3.2 (Chara&erization of approachable convex sets in games with par-
tial monitoring [Perl1a)). A closed convex set € C RY is approachable if and only if

VieF, Ixe A7), m(x, f)C?.

The construction of our strategies in Se¢tion V1.4 will involve an auxiliary full in-
formation game. We quickly review the characterizations of approachability in full
information games with convex compa& action sets and bilinear payoff functions.
Let % and % be convex compaét a&tion sets and g : % x % — R? a bilinear payoff
function. The $pecial case of target sets which are closed convex cones will be of par-

ticular importance in the subsequent sections. A few fa&ts about closed convex cones
are gathered in Section IV.2.

Proposition VI.3.3 (Chara&erization of approachability in full information games).

A closed convex set € C RY is approachable if and only if one of the following properties
hold.

() Vg eRY, Ax € B, Vy € %, (g(x, y) — Pe(g)lg — Py(g)) < O, where Py
denotes the Euclidean projection on €;
(i) Vye Y, Ixe ¥, g(x,y) €.
Moreover, if € is a closed convex cone, the above is also equivalent to
(iii) Vz € €°, Ix € X, Vye Y, (g(x, y)|z) <O.

Proof. The first two chara&erizations are classic [Bla56]. Let us assume that € is a
closed convex cone. Let us prove that (ii) and (iii) are equivalent. € being a closed
convex cone, g(x, y) € € is equivalent to max 4. (g(x, y)|z) < 0. Then, (ii) can be
rewritten

i , <0.
max min max (8(x, y)|z) <
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% being compact and the quantity (g(x, y)|z) beinglinear in x, y and 2z, we can apply
Sion’s minimax theorem twice to get

i ) < 03
max min max (8(x, y)lz) <

which is exa&ly (iii). []

VI.4. Construction of the strategy

We $tudy the case where the target set is the negative orthant R% and we assume
it to be approachable. Since a polytope can be represented as an orthant in a higher
dimension $pace, the extension to polytope target sets can be easily carried out as in
e.g. [MPS14, Se&ion 5.4.2]. Most of the proofs are postponed to Se&tion VIL.8.

V1.4.1. Bi-piecewise afhnity

We aim in this section at constructing a ve&tor-valued map r : A(7) x ¥ — R4
which can be seen as a simplified version of the set-valued map m : A(7) x ¥ = R4
Its properties will be gathered at the end of the section in Proposition VI1.4.4.

Definition VI.4.1. Let % be a convex set and 7" a ve&tor $pace. Leta : % =X 7 be
a set-valued function. a is affine if forall u, u’ € 2% and A € [0, 1],

adu+ (1—Mu') =ra(u) + (1—Na(4).

The map f being affine on ¥ by definition, [RZ96, Proposition 2.4] guarantees
the existence of a polytopial decomposition of & such that f~! is affine on each of
those polytopes. The decomposition can then be refined so that each point of # can
be written as a unique convex combination of the vertices of the polytope to which it
belongs. This is formalized by the following lemma.

Lemma V1.4.2. There exists a finite family (F*) o of polytopes (denote B* the set of
vertices of F* and B = Uvese Bk) such that

() F =Upeoe 7
(ii) for each k € I, £\ is affine on F*;
(iii) forall f € F, there exists a unique p. = (u°),cq € A(B) such that
@) f=3,pu b
(b) forke %, f € F¥ = suppu C B~
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From now on, we assume given such a decomposition.

We are going to construct the map r = (r”);,,, component by component, and
firston A(7) x B before extendingit to A(7) x . Denote (g"),,,<,4 the components
ofg. Forx € A(7) and b € B, we set 1”*(x, b) as being the maximum real number of
the set g"(x, £71(b)):

1" (x, b) := max g"(x, £ 1(b)). (VL1)

We then extend r to A(7) x F as follows. Using property (iii) from Lemma V1.4.2,
agiven flag f € ¥ can be uniquely written

f=Xub

beB

with supp p contained in one of the polytopes # k. We then use the above coefficients
(#%) e to define

r(x, f) =Y, ub-r(x,b). (VL2)

beB

This construction will lead to piecewise affinity of r(x, f) in f - see
Proposition V1.4.4 below. We now turn to the piecewise affinity in x.

Lemma V1.4.3. There exists a finite family of polytopes (%) o such that
() A@) = U, %%
(i) ForeachC e Band f € F,x(-, ) is affine on T*.

Let /4 be the set of the vertices of the polytopes % given the above lemma. The
following proposition summarizes some properties of r.

Proposition V1.4.4. (i) Forallx € A(9), y € A(F) and1 < n < d, we have
g"(x, y) < r'(x, £());
(ii) Forall f € F, there exists x € A(F) such that r(x, ) € RY;
(iii) Forall x € A(F), x(x, -) is affine on each F* (k € F);
(iv) Forall f € F,x(-, f)is affine on each %" (¢ € B).

V1.4.2. From bi-piecewise affinity to linearity

In Section V1.4.1, we construéted amapr : A(7) x F — R% which is bi-piecewise
affine. In this section, we aim at constructing a linear map R : (R¥*7)%x4 _ R4
which encodes the map r in the following sense. From all pairs (x, /) € A(7) x &,
there is a simple constru&ion of a ve&or g € (R”*7)%*# such that R(Z) = r(x, f).
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Lemma VL.4.5. Forevery k € I, there exists a map t® - A(7) x R"*7 — RY such
that

(i) forall x € A7), themap v (x, -) : R"*7 — RY is linear;
(ii) forall x € A(F) and f € F*, ¥(x, f) = r(x, f).
Define L, as the maximal operator norm of the linear maps r¥(4, -):
¥ (a, f)
L, := max max M
ke rex™? | fl,

£+

Lemma V1.4.6. L, is a common Lipschitz constant tox(a, - ) and t®(a, -) (k € F and
a € A). In other words, for all k € F ;mda € A, we have

(i) forall f, f* € R*¥, el (a, ) — ¥ (a, £)], <L f = £
(i) forall f, f" € F, |x(a, f) — r(a,f , < Lr If =7

For each k € %%, define the linear map R, : (R¥*7)* — R4 as follows

Rk( de aeﬂa = 2 r d. g fOI‘ au (gka)aeﬂa € (fo97>ﬂg.
acf

Then, define the linear map R : (R¥*7)%*# —; R? by setting

2= N R((@),,)

ke
_ 2 E r[k}<d’ gka), for allg — (glm)ke% c (fo.W)%xﬂa_
ke F ac A acAt

The following proposition shows that R does indeed encode r.

Proposition VI.4.7. Letx € A(F), f € F, € € L such thatx € %, and ky € F
such that f € & Fko, Moreover, let

(A)acs € A(S)
— N a wh >
¥ ag;% © e {Supp<7\'ﬂ>ﬂ6/6 - '%Q'

be an expression of x as a convex combination of the vertices of %*. Then,

R ((ﬂ{ko—k}w F)y) =)
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Proof Using the definition of R,

R ((ﬂ{kok}w'ﬁke%) = 2 X cta Ly g f) = 3k cbla f)

keFH ac A acA

= N % xla f) = xlx ),

acf

where the second equality holds because by linearity of r¥(4, -) (property (i) in
Lemma V1.4.5), the fourth because rl%o!(x, -) and r(x, - ) coincide on F*o (property
(ii) in Lemma VI.4.5), and the lagt by affinity of r(-, f) on %* (property (iv) in
Proposition VI1.4.4). ]

VI1.4.3. The auxiliary full information game

We now construct an auxiliary approachability game. The important point will
be that the target set is approachable. This fact will be used in the construction and
the analysis of the strategy for the initial game.

The payoff épace for this auxiliary game is (
Z € (R7*7)7*4 will often be written as

g = (gkﬂ)ke% ,  where gkﬂ e RY*¥Y
ac A

R7*7)%*4 An element

fog)%xﬂa

Then, if 2 = (2") 4 also belongs to ( , the scalar produc (Z|Z) can ob-
acHA

viously be written as the sum of the scalar products (g**|z**), and a similar expression
holds for the square Euclidean norm:

~ i bl ~ ~ b2
(gl2) = X (") and gl = X [2%,-

ke % ke

ac A ac A
The auxiliary game is defined as follows. Let # x A be the set of pure actions
for the Decision Maker and # the convex a&tion set for Nature. The payoff fun&tion
g takes values in (R”*7)7>*# and is defined as follows. For (k,a) € % x A and

feF,
g((ka), )= (ot Liama'y - fwe € RTT)THA
a €A
This payoff fun&ion is be bilinearly extended to A(% x A) x R”*7. Foreach k € %,
let % := R, F* = (F*)>° be the smallest closed convex cone containing the convex
compact set F* (see Se&ion IV.2 for definitions and properties about closed convex
cones), and consider the following subset of (R *7)*:

&k =R\RY) N (FHH  C (RI)4,
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We then define the target set & as the Cartesian produét of the sets @k

@ — H &k (fog)a%x%_
ke I

Lemma VI.4.8. (i) Thesets €* and € are closed convex cones.

(ii)) € c RY(RY)N (H(grf)fé).

ke F

Proposition V1.4.9. The ser @ is approachable in the auxiliary game. In other words, for
all z € €°, there exists % := X(Z) € AT X A) such that

vies, (&% flz) <0

Proof. This full information game has convex compact a&tion sets and a bilinear pay-
off fun&ion. Thanks to Proposition V1.3.3, the statement of the proposition is then
equivalent to Blackwell condition:

Ve F,3Xc A(F x A), g% f)c€,

which we now aim at proving, Let f € F and k, € % such that f € F*. Accord-
ing to property (ii) in Proposition V1.4.4, there exists x € A(7) such that such that
r(x, f) € RL. By Lemma V1.4.3, there exists ¢ € % such that x € % and we can
write x as a convex combination of the vertices of %%

(¥)c.0 € A(A)
= ), A\ h .

Now consider the mixed a&ion

#m (U )y €A
ac A
and let us prove that §(%, f) € €. We have by definition of g:
85 S) = (L2 f) e
acHA

and since € = I, €*, we only have to check that O\"f)aeﬂg belongs to &0 =
RIRY) N (F f")“‘%. First, because f € F*0, A% f belongs to the closed convex cone
0
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Fh = R, 7% and we have indeed (\*f),, € (97?0)%. Then, let us prove that
Ry (AW f)acn) € R%. Using Proposition V1.4.7,

Rko((ldf)aeﬂo) =R ((1{/6:/60})‘“ : f)ke%) =r1(x, f) € R%.

Therefore, we have proved that (A*f) . , belongs to €% = R,;OI(R‘i )N (F f‘))ﬂﬂ, and
thus, that g(%, ) € €, which concludes the proof. []

VI1.4.4. The strategy for the initial game

Let & := %° N B, where B, denotes the closed unit Euclidean ball on
(R7*7)%#x%_ The strategy is defined as follows. Lety > 0and 0 < y < 1be
parameters. For ¢ > 1,

e compute z, := Pjs (7] Ez;} gs), where P5 denotes the Euclidean projection
onto Z;
e compute X, := X (%,) € A(F x A), where X is defined in Proposition VI.4.9;

e draw (k,, a,) ~ X, and theni, ~ (1—v)a, + yu, where u := (ﬁ, e ﬁ) is the

uniform distribution over 7;

e observe signal s, ~ s(i,, j,) and compute estimator

J“p _ ﬂ{l}:i} S c R¥*Y
O\ PE=ilg] ) ’
i€y
where 8, is the Dirac mass associated with s, € % and seen as an element of
t
R7;

o set g, = §((kya), o).
Let (¥,),5, be the filtration where for each ¢ > 1,

¢, isgenerated by (kj, ap, i, s, s ka1 18 15 ks ay).

The definition of the strategy implies that

P[it:i|f€t]:(l—y)a§+%, i€g.

The following lemma gathers the properties of estimator ]A”t.

Lemma V1.4.10. Forallt > 1,
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@) E|f,
(i) E [

%,| =Elf,|%.)

) Z
ft ‘?t]<|g| 5
2 v

~ 12 ‘9’2
< —.
ft 5 Yz

(i) |

VI.5. Main result

We now state our main result which establishes that the strategy defined in Sec-
tion VI.4.4 guarantees that the average payoff g (of the initial game) converges in
expectation to the negative orthant R% at rate O(T~3).

Theorem VL.5.1. Let T > 1 be an integer. Against any strategy of Nature, the Strategy
defined in Section V1.4.4 run with

2/3
e T and ymmind (ULUFLAN T s
T|9| 4lgl,

gﬂﬂ?"ﬂﬂfﬂ’&f

12 (g3 (L, |7] %] 4> 2vx|gl,
T3 + T2
6lgls” (L, ||| 7] |4])">
T2/3 ’

E[d, (gr, RY)] <

where dy( -, RL) denotes the Euclidean distance to the negative orthant R%.

Remark V1.5.2. Since L, scales linearly with |g|., so does the dominant term of the
above bound, as expected.

Let us introduce some notation. Let gT be the average forr =1, ..., T of auxiliary
payoffs g,. In the analysis we will partition the set of stages {1, ..., T} with respect to
the realized values of k, € % and a, € A. For k € % and a € A, let N (k, a) be the
set of stages ¢ € {1,..., T} where k, = kand a4, = a, and Ay (k, a) the corresponding
proportion of stages:

Ny(k,a) :={1<t<T|k, =k, a,=a}

‘)\.T(k, d) = m



MAIN RESULT 143

Then, for any sequence (,);<,<1> we denote ur(k, a) its average over ¢t € N(k, a):
1

P u, if ,a
Nathal o, kO £

ur(k,a) = teN(k.a)

0 otherwise.

The proof is divided into the subse&tions below which are mostly independent. Here
is a overview of the main steps:

T
gr iscloseto ! E g2(a;,y,) (LemmaVIL5.11)
TH

isequalto Y Ar(k, a) - g(a, yr(k,a)) (Lemma VL5.10)

ke
ac A

is closer to RY than Y, dp(k, a) - 1(a, fr(k,a)) (Lemma VL5.9)

ke
ac A

iscloseto Y] Ar(k,a)-r¥(a ]_F k,a)) (Lemma VL5.8)

ke
ac A

is equal to R@T) (Lemma VI.5.5)
iscloseto R? (Lemmas V1.5.4 and VI.5.3).

VIL.5.1. Average auxiliary payoff QT is close to auxiliary target set %
Lemma VI.5.3.
- g L a7
E [dz (gT, ‘60)] C=—0=+—.

2T 2y
Proof. Fort > 1, we can write
2
t—1 t—1
_PEL <n2g5> = argmin z—nEgS
s=1 ZeZ s=1 5

= L.
= arg max { <7] Mg z> —3 ||z||§} .
7% s=1

Then, Theorem 1.3.1 together with the fact that Hé%H = H% N %’ZHZ < 1gives

—

T

1 Y]T 2
max 3} (&%) — 33 (@l%) < 5+ 3 D1l

=1 t=1

Nl
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By taking the expectation and dividing by T, we get

Mmq&myzl Tz ]+442mﬂ

€&
We first analyze the first sum of the right-hand side. Let us prove that each scalar
product (g,|z,) is nonpositive in expectation. For all1 < # < T, we replace g, by its

definition: X
E[(Z,[5)] = E [(&((ko a,). F)[)] -

We then consider the conditional expectation with respe& to ¢,. The application
g((k,, a,), - ) beinglinear, and the variables k,, 4, and Z, being measurable with respect
zt> g H =E [<g <(kt’ a,), E [ft

to ¥,, we can make E [}t
%] )z.))
=E [< (kys a,), ft | %] [<g(<kt’ a,), ft)‘%t”

E[(z/2)] = E[E | (&((k.a). f)
where we used Lemma VI1.4.10 to replace the conditional expecation of ]A”t by the
conditional expe&ation of f,. Now consider the sigma-algebra 94, generated by

?t] appear as follows:

(kl’ ay, iy Sps - ktfl’ a1 4y, 5t71)~

By definition of the strategy, the law of random variable (k,, 4,) knowing 94, is X,. We
now resume the above computation by introducing the conditional expectation with

respet to 96, and f:

E[(g2,)] = E[(g((k;, a,), f,)|Z:)] = E[E[(g ((kw dt) J)1z) | 9., 1]
=E[g E[(k;,a,) ]9, fi], f)IZ) (& (E (k> a,)| 98], f,)Iz:)]
=E[(g(x., f))Iz,)]
By definition of the strategy, X, = X(Z,). In other words (see Proposition V1.4.9), for
all f € , the scalar product (g(%,, f)|z,) is nonpositive. This is in particular true for

f = [, Therefore, E [(g,|Z,)] < 0

We now turn to the second sum that involves the squared norms ||§t||§ For1 <
t < T, using the definition of g,

2

g((kt’ a,), ]Apt)

~ 12
2.1

] (IR
~ 112 ~ 112
- ké%‘“]l{k_kt}ﬂ{a_dt}ft 2 - ft 2

ac A

2
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Using (ii) from Lemma V1.5.3, we have

sl == 7] == s ] =)] < 5

Putting everythmg together, we obtain in expectation the following bound on the

distance from 7 gt @:
_ 1 g
E[dz (gT, "6)] E[n&x@T’ >] <211_T+%’

where the above equality comes from the expression of the Euclidean distance to ©
given by Proposition IV.2.10. ]

V1.5.2. From ET in the auxiliary space to R@T) in the initial space
Lemma VI.5.4.
d; (R(Z,), RY) < (L/[%[[A4]) - d; (210 ) -

Proof Tt follows from property (i) in Lemma V1.4.8 that € ¢ R~ (R4). Therefore,
we can write

d,(R(Z,); Rd)—rpllégHR &) gl < min HR )~ R(@)|,
min[R(;) ~R(@), < uRn -%HgT -4,

=[R]-d, (éT, %),

where |R] is the operator norm of R. To conclude the proof, let us prove that the

latter is bounded from above by L, /| %] | 4|. Let g € (R”*7)%*%_ By definition of
R, and using the Lipschitz constant L, from Lemma VI.4.6 which is common to the
linear applications rlk (a, -), we have

IR(g ||—Zr[kag) <2Hrk]ag ELH%"

ke H ke ke
ac A ) acAA ac A
J%J@szﬂ — LI Igl,.
ke
ac A

which concludes the proof. ]



146 APPROACHABILITY WITH PARTIAL MONITORING

VI1.5.3. Decomposition of R@T)

- We have the following expression of the image by R of the average auxiliary payoff
gT'
Lemma VI.5.5.
T _
R T E kg;g >\T k d f
ac A
Proof. Using the definitions of R, Z,, g, and the linearity of R and r¥/(4, -), we can

write

1 & 1 & 1 g
R(15e) -5 SR - DL
t=1 t:l

V1.5.4. Average e&imator} k, ) is close to average flag {1 (k, 2)
Lemma VI.5.6.

Y Mk a) || (k. @) — Frlk.a)

ke F
ac A

8
S |TNNFE|| A | — + 59—
| <zl r<¢_ m)

Proof. Letk € % and a € 4. Consider the random process (X, (k, a)),-; defined by

X,(koa) =15 o (Fi= 1)

and to which we are aiming at applying Corollary A.0.5. (X, (k, 4)),>; is a martingale
difference sequence with respect to filtration (¢,),.;. Indeed, since 1 (b~ a—a} is

%} —0

measurable with respe&t to ¢,

E 1y (i 1)

?f] = L, a=a} ™ |:.?‘t —f
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where the last equality follows from (i) in Lemma V1.4.10. Moreover, using (iii) from
Lemma V1.4.10, we bound each X, (k, a) as follows.

}22+||ft||2 Sl sti 00

_ 7] |37| 2|7
+ Is (3, 7| < =,
y g; 2l y 7 y

where we used the fact that y > 1 for the last inequality. As far as the conditional
variances are concerned, we have
2 - 2
) eslp-st

E X,k 2l | 9] =B |1y o |F— £
R 2 2
ell7ff|=] +E 5] 7] < ZE+ 121 < 220

where the first term of the second line has been bounded using property (ii) from
Lemma VI.4.10, whereas the second term is bounded by | 7| since

2
02 = 656 2,05 ] = X st )2 < 197
€y

1X,(k, a)

+17] <

Therefore we have

1 & 217
tHEIPIRHEAREES

We can now apply Corollary A.0.5 with M = 2|7| /yand V = 2|7 |* /v to get:

817] , 819
STy 3Ty’
2

Besides, it follows from the definition of X, (k, ) that

1 T
Tgxt(k

—

%2_31 X, (k,a) = Ar(k,a (]:[ ]T(k’ﬂ>>-

Finally, by summing over k£ and 4, we obtain:

Z 7\T(k» a)

ke
ac A

(Frlkow) = frka))

8 8
<|NTNF] | A | —=+ 50 | -
2 w/T‘Y 3TY
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VIL.5.5. Average estimator JA” k, ) is close to F* k

Lemma VI.5.7.

—ha 1 q9)
Zdz@Ta?f) < ’%HJQ(ZYI—TJFW)

ke
acf

Proof. Consider the set Z defined by
T e ke A
Zo =[] (FnB,)”,
ke

and let us assume for the moment that the following inclusion holds:
Ty C %A Z. (VL3)

Foreach k € % and 4 € A, F* beinga closed convex cone, Proposition [V.2.10 gives

ka
the following expression of the distance of g t0F k.,

7).

ka Ska
d < G‘f) max <N
2 gT ~ka€<g?)gm‘%2 gT

By summing over k and 4, we have:

(& o) =8 ma (g

#) = max 3 (g,7)

= e T
14 max (g, [£) = V%121 ds (2. ),

where for the inequality we used inclusion (V1.3), and for the last equality Propo-
sition 1V.2.10 together with the fact that Z = %° N B, by definition. Taking the
expectation and substituting distance dz(gT, €) by the bound from Lemma V1.5.3
yields the result.

Let us now prove inclusion (V1.3). Let Z = (2*)4cq € Z,. First, let us prove that
ac A

zc @ Let g€ . We can write

(glz) = Y, (2*|gh) .
keH
ac A
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But for each k € % and a € A4, by definition of £~Z>0, we have 7% € (¥*)°, and since
€ C er%(?/f)"% by definition, we also have gk“ € F*k. Therefore, <g ]z > <0
and consequently, (|Z) < 0. This proves Z, C #°.

Let 2 € Z,. By definition of %, we have H%k“Hz < lforallk € % and a € A.

Thus
2, = | X el < /1%,
ke
ace A

and therefore Z, C \/|%||A] - B,. Finally, we have

%o C & N[ A]- B, = V%] 4] &

VIL.5.6. rl¥l(a, ]:”T(k, a))is close to r(a, fr(k, a))

Lemma VI.5.8.
Y k@) | Frk a)) — a, Fokea))|| | < Lol 19601 [ —= 4 2o
ke% T 2 V TY 3TY
ac

HJﬁg( m?)

Proof. Let (k, a) € % x A and denote [ := fr(k, a) and_)? JA” k, a) to alleviate

notation. Denote P the Euchdcan pro;ccfhon onto F*. Then of course P¥/( f ) be-
longs to ¥, and since r(a, - ) and r¥(4, -) coincide on Z G'/"' ¥ by Lemma V1.4.5, we can
write

~ ~ ~

t(a, ) —t¥(a, ) =r1(a, f) —r(a, f) +r(a, f) — r(a, P (]AF))
+r(a, PU(f)) — eM(a, f).

Thus, by taking the norm and using the triangle inequality and the Lipschitz constant
L, which is common to r(a, -) and rl*(a, -) to get

Hr(af—r[k] , f) <Lr( A2+2'd2<]}, ?f)).

We now multiply by A (k, 2). The last term in the above right-hand side is trans-
formed as

~

Drtka) &y (J, 74) =2-d, (hkoa)f, 7 >—2d2(g/;a 7t),
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where used the fa& that F* is a convex cone to push the facor A1 (k, 4) into the dis-
tance. Therefore,

ka

T(k,a)”r(a, f)—rl¥(a H <L, M(kya Hf fH +2L, - d2< %f)

Finally, we get the result by taking the expectation, summing over k and 4, and

plugging Lemmas VI1.5.6 and VL5.7. []

VI1.5.7. giscloser to RY than r
Lemma VI.5.9.

&y | X Mrlka) - gla, yrlk ), RE [ <dy | X Mk a) - x(a, fr(k, )

ke keF
ac A acA

Proof. Letk € % and a € 4. First note that f(§(k, a)) = fr(k, a). Indeed, using
the affinity of f,

1 1
f(Grtk,a) = f | s ‘) INg(k,a)] o
Grk. ) (Nﬂk,a)lteN%my) Nk o
1 i
= Nl teN%km fi=frlk a).

For each component # € {1, ..., d}, we have g*(a, j1(k, a)) < r*(a, fr(k, a)) by
property (i) in Proposition VI.4.4. Finally, using the explicit expression of the Eu-
clidean distance to R4, we have

2
d
dy | ) dr(k,a)-gla, yr(ka), RE | = | D | D Mr(k a)-g'(a yr(k, a))
ke n=l \ ke
ac A \ ac A
+
2
d
< I D Mk a) - 1(a (a, fr(k, a))
\nzl ke
ac A N

=d, | D] d(ka)-r (a, fr(k, a)),
ke
acA
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V1.5.8. Decomposition of g(a,, y,) with respect to the realized auxiliary attion
(k> a,)
Lemma VI.5.10.

T
;‘ E gla, y,) = E (k. a) - g(a, yr(k, a))

t=1 ke %
ac A

Proof. Using the definitions of N (k, 2) and A (k, a), and the linearity of g(a, - ), we

have

1 & 1
T Zg(dw yt> = T E Z g(d yt)
t=1 ke teN L (k,a)
ac A
[Nt (k, )] 1
= (2, y:)
%3% T  [Ng(ka) t@%:k B

V1.5.9. From g(i,, j,) to g(a,, y,)
Lemma VI.5.11.

1 & 1 &
T 248l i) — 7 2384 1)
t:l

t=1

+2 .
T ¥ Isll,

] 27 gl
2

Proof. Consider the process (X,),-; defined by
X, = glip j) — A =v)8(as 3,) — 18, 3,)
and the filtration (¢7),.; where ¢/ is generated by
(ks @ty Y1 1o Sto v Rets @15 Y15 15 Se—1s Res 45 91)-

(X});>1 is martingale difference sequence with respect to filtration (%47),-;. Indeed,
knowing ¢/, the law of i, is (1 — y)a, 4+ yu by definition of the strategy, and thus the
law of (3,, j,) is (1 — y)a, + y#) ® y,. We can then write, by bilinearity of g:

Elg(i, j.) |91 = 1 —7)g(a: y,) +vg(#, 3,)-
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Moreover, | X, ||, is always bounded by 2 Igll,:

1Xcll, = 10 =7) (G ji) — 8law 3:)) + v (8(irs ji) — 8l yt))Hz
< A=7) gl ji) — gl yt)”z + 718G ji) — g(u, )’t)”z
<2lgl,.

We can thus apply Corollary A.0.3 with M = 2 |g|, to get

1 & 2/ |gll
S 2 e
=1
2
Therefore,
1 & 1 &
TZglt,Jf 7 28 )| = |5 2 X + (8, 3) — g, 1)
- -
T 2 ' 2
1 T v T
< TZIXt + T%(g(”’yt) gww}’r))
t= t=
2 2
1 T
< |l=
< TZ{XI +27]gl,
2
And taking the expectation:
1 1 & 2T |gl
L AN < v 18l .
T§g<lt’]t) nglg(ﬂt’yt) ] STUT +27||g||2
2

VI.5.10. Final bound

We now combine the above lemmas in the order pecified at the beginning of the
section to get:

2y |g|l 8 8
E o, R < L2272 % L%
d, (gr> RY)] T +2v|gl, + L [7][F]]A] +3Tv

VTy

3L, n|7”
+ 5V HJ@I(}1T . )

Injecting the values of v and v yields the result.
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VI.6. Outcome-dependent signals

This se¢tion studies the special case where the law s(i, j) of the signal does not
depend on the pure action i of the Decision Maker. In other words, we assume that

s(-,j) isconstant, forall je 7.

We aim at construéting a strategy which achieves a O(T~/2) convergence rate.
Again, we assume that the target set is the negative orthant R% and thatitis approach-
able. We will heavily rely on elements from the previous sections. To take advantage
of the above assumption, the strategy from Section V1.4 will be modified in two ways.
Firgt, the estimator will be simpler since exploration is unnecessary, and second, the
mixed action of the Decision Maker will not be perturbed with the uniform distribu-
tion. Unless tated otherwise, all previous notation and assumptions stand.

The modified strategy is defined as follows. Let vy > 0 be a parameter. For1 < ¢ <
T;

t—1

e compute Z, = P35 (7] E§S> and X, := X(2,) € A(% x A).

s=1
e draw (k,, a,) ~ X, and then i, ~ a,;
e observe signal s, € ¥ and compute estimator

~

ft: (85t) efoﬂ;

iced

o set g, = §((ky a,), fo)-
The definition of the strategy implies that the law of i, knowing ¥, is 4,. Let us state
the properties of the new estimator.

Lemma V1.6.1. Fort > 1,
Q) E[f.|9] =Elf.19)

(i) ||f.

2
=17l
2

Theorem VI.6.2. Let T > 1. Against any strategy of Nature, the above strategy with
parameter vy = (T |T|) V2 guarantees

27 (I8l + 2L, /197 |91 4))
T2 '

E[d, (g7, RY)] <
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One can check that statements from Lemmas VI.5.4, VL.5.5, VL.5.9 and V1.5.10
still hold. We state and prove below new versions of the remaining lemmas, which
were affe¢ted by the modifications of the estimator and the law of i,. The analysis can
be summarized as follows.

T
gr iscloseto % Y g(a,,y,) (Lemma VL6.7)
t=1
isequalto Y, Ar(k,a) - g(a, yr(k,a)) (Lemma VI5.10)
ke
acHA

is closer to R¢ than

g

Mk, a) - t(a, fr(k,a)) (LemmaVI5.9)

ke
acHA
iscloseto Y] Ar(k,a)-r¥(a j_f (Lemma V1.6.6)
ke
ac€ A
is equal to (g ) (Lemma VL5.5)
d

(Lemmas VI.5.4 and V1.6.3).

iscloseto R

V1.6.1. Average auxiliary payoff §T is close to auxiliary target set ©

Lemma VI1.6.3.

R 1 /4
B[4, (7 )] < 5p + 10

Proof’ We follow the proof of Lemma VI5.4. The regret bound given by
TheoremlI.3.1 till holds:

T T V]
E (g:12) — E (g:12,) < EHZ“
t=1

t=1

NzB

In Lemma VI.5.4, the second sum was nonpositive in expectation thanks to the fact
that E [ 1%,

since the property of the estimator is guaranteed by Lemma VI1.6.1. Therefore, we
have

} = E[f,|¥,]. The same reasoning can be applied in the present case

TR 1 o |-
B[ (2 €)] < 51 + 7" [21 Hgtni] .
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Then, for1 < t < T, we have
2

(l{kr:k’ dt:a}ft>k€% - ‘
ac A 2

where we used property (ii) from Lemma VL.6.1 for the last equality. The result fol-
lows. ]

~ 2 _ |l P > 11*
lg 2 g(<kt’at)’ft>2: ft2:|9|,

VI.6.2. Average eﬁimator} (k, a) is close to average flag f(k, a)

Lemma VI1.6.4.
Y Mk a) [Frlk o) — Frika)| | <219 |4] —ﬂf'*
% 2

Proof. Letk € % and a € A. As in Lemma V1.5.6, we consider

X, (k, a) = ﬂ{kt:k, a,=a} (.?‘t - ft) >

which is a sequence of martingale differences with respect to filtration (¢, ), thanks
to property (i) from Lemma VIL.6.1. But this time, we use Corollary A.0.3 instead of
Corollary A.0.5. Each X, is bounded as follows

+||ft||2: FARS Z” s(i, 3,)| 2+/191,

1%, (k, 2)| \

f

where we used property (ii) from Lemma VI.6.1. Corollary A.0.3 then gives

= - 1 & ||
E )\T(k, ﬂ) fT(k, ﬂ) —fT(k, ﬂ) =E szt(k’ Ll) < 2 T
2 t=1
2
The result follows by summing over k € % and a € A. ]

VI1.6.3. Average estimator ]AF k, a) is close to F*
Lemma VI1.6.5.

2 d <gT’ 9‘7) < V| F||A] <2y1_T+T)

keI
ac A
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Proof 'The following inequality from the proof of Lemma V1.5.7 still holds

Y & (&) 7)< V1114l ds (2. 7).

keF
ac A

Then, taking the expectation and injecting the new bound on E [dz @T’ %)} given
by Lemma V1.6.3 yields the result. []

~

VL6.4. t¥(a, f._(k, a))is close to r(a, fr(k, a))
Lemma V1.6.6. Forallk € % and a € A,

E| Y Mk a)|le(a frlka) — ¥, f (b a))| | <2L,|%] |4 @
ke F 2
ac A

1
T L/T% 14 (n—Tmm).

Proof. Letk € % and a € . Using notation f = fr(k, ) and} = ]:’T(/e, a), the
following inequality from the proof of Lemma V1.5.8 still holds

hrlk,a)[e(a, ) = 40, P <L drtea)|[f - F + 2L (77 7).

The result follows from taking the expetation, summing over ¥ € % and /%, and
inje¢ting the bounds from Lemmas V1.6.4 and VL.6.5. []

VI.6-5- From g(it’ ]t> to g(ﬂp yt)
Lemma VI1.6.7.
1 1 &

T E g(i, j,) — T E g(a,, y,)

t=1 t=1

. VT

] _ Vel
2

Proof. The process (g(i,» j,) — g(a,» ¥;)),>1 is a martingale difference sequence with
respect to filtration (%), introduced in the proof of Lemma VI.5.11. It is moreover
bounded by 2 ||g|.. Therefore, Corollary A.0.3 gives:

] _2velgl,
2

1 & 1 &
T 2 g<it’ ]t) T 2 g(“t’ Vs)
=1

t=1

E

VT
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V1.6.6. Final bound

Similarly to the proof of Theorem VI.5.1, the combination of the above lemmas
gives:

_ 2y/rgl, N 2L, |F]|A| /|7 ]

ST VT
3L FK| | A 1
LA (L)

nT

E [d; (gr RZ)]

Injecting the value of v yields the resul.

VI1.7. Discussion

V1.7.1. Computational efficiency

We discuss the computational efficiency of the strategies studied in Sections VIL.5
and VL6. The following arguments hold for both.

The first step of the strategy is the computation of z, which consists of an Eu-
clidean proje&ion onto & := €° N B,, which is efficient. Indeed, #° beinga closed
convex cone, the Euclidean projetion onto % can be immediately deduced from the
Euclidean projection onto ©°. The latter proje&ion can be efficiently computed since
€° is a polytope (as it can be easily checked). The second step is the computation of
X, := X(%,) which, according to the definition of X in Proposition V1.4.9, can be com-
puted by solving the following minimax problem:

codmin , max(g(% f)[z,)

The sets A(% x A) and F being polytopes, this can be solved efhciently using e.g.

linear programming. Then, the computations of estimator f, and auxiliary payoff g,
are easy.

Therefore, the whole strategy can be efhciently computed. Moreover, the per-step
complexity is constant.

V1.7.2. Uniform guarantee over time

To achieve the guarantee given in Theorem VI.5.1 the time-horizon T must be
known in advance in order to tune the parameters 1 and y accordingly. Let us quickly
explain how to obtain a strategy with a convergence guarantee of the same order that
holds uniformly over time, without resorting to a doubling trick.
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We first deal with parameter . As explained in Se&ion IV.5, it is always possible
to choose an oracle x such that condition (IV.1) is satisfied. Let us assume that this
is the case. As shown in the proof of Lemma V1.5.3, Z, = P5 (v Ei: Z,) can also be

written
- I, .2
z, = argmax 4 {7 2) =5zl ¢
ze&

which corresponds, according to Theorem IV.5.1, to Blackwell’s strategy associated

‘ﬂ A
iMr

&

with target set € (which is closed convex cone), oracle %, and vector payoffs g,. The
same theorem assures that Z, does not depend on the value of parameter v. Thus, the
strategy can be run with any fixed value of v, and the bound from Lemma V1.5.3 would
still hold for any value of v > 0. Therefore, the parameter 1 need not be tuned as a
funé&ion of the time-horizon T, because it does not have be chosen at all.

We now turn to exploration parameter y. We modify the strategy by making it
time-dependent:

Y, = min {yot_1/3, l} ,

where v, > 0 is to be chosen later. Lemmas VI.5.4, VI.5.5, VI.5.9 and VI1.5.10 are
unaffected by this modification. Lemma VI1.4.10 can be immediately adapted by re-
placingin the bounds y by y,. Using the fact that y, is nonincreasing, the statements of
Lemmas V1.5.3, VI.5.6, VI.5.7 and V1.5.8 can be adapted by replacing y by y. Finally,

in Lemma V1.5.11, v, which appears in the numerator, is replaced by
g, 1y 370 3yr
=YY <= Nyt BT = 2L for T large enough.
TUNST L 2 )

t=1

Opverall, combining the modified lemmas as in Section V1.5.10, we obtain a bound
in which each term already has the expe&ted dependency in T. Therefore, v, can be
tuned independently of T to eventually obtain a bound identical to Theorem VI.5.1
up to multiplicative constants.

VI1.7.3. High probability guarantee and almost-sure convergence

Theorem VI.S.1 only provides a convergence guarantee in expectation. We
quickly describe how the analysis can be adapted to obtain, for the same strategy, a
high probability guarantee as well as almost-sure convergence.

We do not modify Lemmas VI.5.4, VI.5.5, VI.5.9 and V1.5.10 as they do not in-
volve expe&tations.

The proof of Lemma VIL.5.3 is modified as follows in order to obtain a high
probability guarantee on d, @T’ €). We can easily see that ((2:12;))s>1 is a bounded

sequence of super-martingale differences with respect to filtration (96,),-; and that
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(Hgtﬂi — (|7 /7)*);>1 is a bounded sequence of super-martingale differences with
respect to (¥¢,),~;. Applying the Hoeffding—Azuma inequality (Proposition A.0.1)
then gives the high probability version of the lemma.

The modification of Lemmas VI.5.6 and V1.5.11 is straightforward. We simply ap-
ply the high probability version of the involved concentration inequalities instead of
the bounds in expe&ation: Proposition A.0.4 instead of Corollary A.0.5 and Propo-
sition A.0.2 ingtead of Corollary A.0.3, respe&ively.

The high probability versions of Lemmas V1.5.7 and VI.5.8 immediately follow
from those of Lemma VI1.5.3, and Lemmas V1.5.6 and VL.5.7, respetively.

Then, the almost-sure convergence follow from a standard Borel-Cantelli argu-
ment.

V1.7 4. Using other regret minimizing strategies

As explained in the proof of Lemma V1.5.3, the strategy defined in Section V1.4.4
is based on a regret minimizing strategy, é]acc1ﬁcally, the Mirror Descent strategy as-
sociated with the Euclidean regularizer on Z and congtant parameter ¥. As detailed
in the proof, this strategy guarantees the following regret bound:

T 1 1 T 5
maxz g1z E(gt|zt \2_—'_22' t”z‘

S =1 =1

We can easily see that any regret minimizing trategy which guarantees a regret
bound of the form

T T

- s " e A LA
max Y} (Z,[7) — ) (@3, < S B 21 1212
= t=

t=1

could be used to construct an alternative approachability strategy for the initial game,
with the same rate of convergence. In particular, any Mirror Descent strategy from
Section 1.3 associated with some strongly convex regularizer on Z would be appro-
priate.

An interesting question is whether the choice of another regularizer would help
improve the dependency in |7|, |#| and |.4| of the bound from Theorem VI.5.1.
Note however that a general regularizer would not 4 priori retain the computational
efficiency of the Euclidean regularizer (see Se&ion VI.7.1).

V1.7.5. Comparison with [MPS14]

The strategy proposed in [MPS14] is computationally efhicient and has a
dimension-independent convergence rate of O(T /). We here highlight a few ideas
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which were already present in [MPS14], and those we have introduced in the
present work to achieve an optimal convergence rate of O(T~/3).

[MPS14] already used the single-valued map r which is a simpler version of the
set-valued map m, which retains the key property characterizing the approachability
of the target set (see Proposition VI1.3.2 and property (ii) in Proposition V1.4.4). Be-
sides, the decomposition of ¥ and A(7) into polytopes was considered to obtain the
piecewise-aflinity of r. This fundamental property was then used in the averaging of
the flag estimators. The proposed strategy is constructed by dividing time into blocks
of the same length: the Decision Maker plays a constant mixed action on each time
block, which is used to average the flag estimators; and the Decision Maker changes
his mixed a&ion from one block to the other in order to achieve the convergence to
the target set.

The strategy constructed in Section VI.4.4 manages to average the estimators and
to approach the target a# the same time, resulting in an improved (and optimal) con-
vergence rate of O(T1/3). We enumerate some of the main ideas used to achieve this.
Firt, we introduce the linear map R which allows to easily relate the auxiliary game
and the initial game. In particular, it gives a simple comparison between a) the dis-
tance of the average payoff to the target set in the initial game and b) the distance of
the average auxiliary payoff to the auxiliary target set (Lemma VI1.5.4). Moreover, it
combines well with the use of convex cones. Those are used, in particular, to consider

the distance dz(z;ﬂ, FFk) ingtead of d, (]A”T(k, a), F*): this avoids the difficulty of
having a different estimator normalization for each couple (k, 2), by simply consider-

ing working with sums. Finally, the auxiliary target set @ is defined by

¢ =] # where @*=R}(R)N(Fh*.
ke %
The set R} (R?) corresponds to approaching the negative orthant in the initial game,

whereas the set (%) corresponds to making the sure the average estimator f. ok, a)

is close to F*. Considering the intersection therefore allows to manage both a# he
same time.

VI1.8. Proofs of technical lemmas

VI.8.1. Proof of Lemma VI1.4.3

Letl < n < dand b € B. Let us first prove that (-, b) is piecewise afline.
The map f being affine and defined on A(%), the set £ 1(b) is a polytope. Denote
Vo> -+ » Vg its vertices. Let x € A(F). By linearity of g(x, - ), r”(x, b) can then be
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written

n — n —1 —
r'(x, b) = maxg’(x, £ (b)) = max g"(x, 3y,,)-
1”( -, b) now appears as the maximum of a finite family (g"(-, y;, ,))1<,<, Of linear
functions. It is therefore piecewise afhine and so is r( -, b). Therefore, for each b € 3
there exists a decomposition of A(7) into polytopes on each of which r( -, b) is affine.
9B being finite, we can consider the decomposition (%),  which refines all of them.
t( -, b) is therefore affine on each polytope & forall b € %B. Let us now prove that
t(-, f)is athne on each polytope ' forall f € F.

Let f € F,0 € %, x,x, € F'andh € [0,1]. Using property (iii) from
Lemma VI.4.2, we consider the unique decomposition f = 3, _, wb-bandk € %
such that suppu C F*. Using the definition of r and the affinity of r( -, b) on &*, we
have

r( + (1= W)xg, 1) = Y, b rQ + (1= N)x,, b)

beR
= 2w O (x, b) + (1= N)x(x,, b))
beR
=2 2wl (b P L
beB beB

= hr(xp, f) + (1= Vr(xy, ),

where the last equality stands because of the uniqueness of the decomposition of f
lets us recognize the definitions of r(x;, b) and r(x,, b) from Equation (V1.2).

V1.8.2. Proof of Proposition VI.4.4

(i) Let x € A(7) and y € A(F). Denote f = f(y). We use property (iii) from
Lemma VL.4.2 to get the unique decomposition f' = 3, _,, ub-band k € % such that
supppu C F*. £1beingaffine on F* by property (ii) in Lemma V1.4.2, we have

g(x,y) € glx, £71(f)) = (x,f 1( DT b)) =g (x, > Hb'fl(b))
besuppp be B
¥oubglx £71h)).

besupp
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Then foreach1 < n < d,
g"(x,y) <max Y, ul-glx, £71(b) = Y ub - maxg(x, £1(b))

besupp be B

= Y r(x,b) = r'(x, f),

beRB

where for the second equality, we recognized the definition of t*(x, b) from Equation
(VL1) on page 137, and the the last equality, the definition of r*(x, f) from Equation
(V12).

(ii) Let f € #. Thanks to the characerization of approachability from Proposi-
tion V1.3.2, there exists x € A(7) such that m(x, f) € R4. Let f = e ub - bbe
the unique decomposition of f given by Lemma VI1.4.2. With the same arguments as
above, we have foreach1 <z < d,

= 2 yb 1"(x, b) = E yb -max g"(x, £ 1(b))

be B be B

= max Y, ub - g*(x, £71(b)) = maxg” (x, f1 (E ub - b))
beRB beRB
= max g"(x, f }(f)) = maxm”(x, f) < 0.

Therefore, r(x, f) € R%.
(iii) Letx € A(Y), k € %, f1, fz Fkand ) € 10, 1]. We use property (iii) from
LcmmaVI42towr1tcf1 P w-band f, = Zbe% [/.2 bwith suppp; C F*and

supp p, C F*. The unique decomposition of : f; + (1—2) f, given by Lemma V1.4.2
is then

Mi+A=2f= 0w+ 1=p3) - b

beRB

Therefore, using the definition of r and the affinity of r(x, - ) on F*,

r(x, Af1+(1=N)f) =1 (x, 20w+ (1T =0)Eh) - b)

beB

= 3 Owd + (1= 0)pb) - x(x, b)

be
=AY ulor(x b)+ SRR IEN)
be B be B

=Ar(x, f1) + (L=4) - x(x, f3).
(iv) is already proved in Lemma V1.4.3.
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VI.8.3. Proof of Lemma VI1.4.5

Letk € % and x € A(7). Let us consider span(F*) C R”*7, the linear $pan of
F*. There exists a basis (f}, ..., fq) of span(%F*) such that f, belongs to F* for each

1 < p < g. We now define r¥l(x, -) on span(F*) by setting
rl®(x, fp) = r(x, fp), for each element fp of the basis,

and extending linearly. r*(x, -) can then be further extended to the whole space
R7*7 by setting its value to zero on some complementary subspace of span(F*).

Let us now prove that rl*/(x, -) coincides with r(x, -) on F*. Let f € F* In
particular, f belongs to span(%*) and can be uniquely written

q
f:Z'}\PfP, where A, ..., A, €R.
p=1

q

The application ¥ (x, -) being linear by definition, we have

q
¥ (x, f) = lepr(x, fp):
=

We now aim at proving that the above sum is equal to r(x, f). This cannot be done
by dire¢tly applying the affinity of r(x, - ) (property (iii) in Lemma V1.4.4) because
some of the above coefhicients 4 , may be negative. To overcome this, we first separate
the terms according to the signs of the coefficients A ,. We denote A™ (resp. A7) the
sum of all positive (resp. negative) coefficients A, and write

Hix, )= 3 Al f,)+ 3 Lrlx f))

)\P>0 )‘p<0

A A
=A" )] (A_i> r(x, f,) +A” > (A—Ii> r(x, f,).

» 1p<0

Since each of the above sum is now a convex combination, we can apply the affinity

of r(x, -):

A A
r[k](x, f) =At.r (x, 7\230 (A—‘i> fp) +Ar (x,)\go (A—p> fp) .
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Let us prove that

cwsra(st (v 200)
<0

=(1—A")r]|x Z (

)\>0

)

For relation (VI.4) to be true, it is now enough to prove that A™ + A~ = 1. Since
Fkc F c A(¥)7, forany fo = (f5)cy € F*, we have
i€y

L fi=XN2ufi=X1=17
€ €T s€F =

By applying the above to f and the f 1 We get

‘g’:EfiS:Z (Z )‘p §+1§<:0>\P lzf)

SESL s€ \ A >0
i€y i€y »

IR DRI DI

)\ >0 st )\ <0 565‘7

=AT T+ AT,
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and we indeed get A + A~ = 1 by dividing by |7|, which concludes the proof.

VI1.8.4. Proof of Lemma VI1.4.6

Property (i) follows from the definition of L, and the linearity of the map r*!(a, -).
(ii) Letk € #,ae€ Aand f, [ € F. (G'k)ke% being a finite decomposition of
F into convex polytopes, there exists a finite sequence (k;, k. .., k,) in % such that

the ks are all different and a sequence (fy = f, f1, f5, .., f, = f) in the affine
segment [f, f'] such that [f,, f,] C F* foreach1 < p < gq. Therefore, using the
fac that t%1(4, -) and r(a, - ) coincide on F* for all k¥’ € %, we can write

t(a, f) = x(a, ), = |2 (x(a f o) = x(a f))

p=1

2

q
k k
_ Er[ p](ﬂ,f £l ] fp
p=1

2

<iWWMJL1 fa, £l
p:l

q
< LrPZ_:lepl - pr2
=L |f - £,

where the last equality holds because the points f, ..., f, 4 are aligned and ordered.

VI1.8.5. Proof of Lemma VI.4.8

(i) Let k € . R (R?) is a closed convex cone as the inverse image via a linear
application of the closed convex cone R (Proposition 1V.2.6). ¥ is a closed convex
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cone by definition, and (# %)~ is thus a closed convex cone as a Cartesian product of
closed convex cones. Therefore, &% = R;{(R?) N (F#)* is also a closed convex cone

as the intersection of two closed convex cones. Then, € is also a closed convex cone
as a Cartesian produc of closed convex cones.
(ii) Let g = (2*)es € €. By definition of %, for each k € %, (g*4),._,, belongs
ac A

to #* and thus to (F*). Therefore, g € er%(?f)ﬂ?. Moreover,

Z Rk aeﬂa
ke

belongs to R?. Indeed, each term of the above sum belongs to R? because for all
k€%, (3%) e, € €F C RYRY).

VI.8.6. Proof of Lemma VI1.4.10

(i) Leti € 9. Using the conditional expe&ation with respe& to event {i, = i}, we

have
Ly, .
_ {lt:Z}
7] = {mg

:P[_q?]xE[

E[8 = i}]
E G {it - l}] ‘ EZD {it - l}]
=E[s(i, y,) |91, {i, = i}]
=E
E

G,

E|f:

S

Pli, =i[9]

EZ2D {it = l}]

i

[s(3, 3:) [ 9]
1%,

hence the result.
(ii) We write

o1

Gy

JZE{E M) 5

4 Pli,=i|%,] *

2
5t

=Pli,=i|9,|xXE _—
= BT, =117,

)

icy

EZ2D {it = l}]
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_2 z—z|‘§] [
_ 1
_Z]P’[ =1i| 9]

0| %0 i =1}

icy
2
_1of
Y
where the last inequality stands because P[i, = i| ¢,] > y/|7| by definition of the
Strategy.
(iii) We have
P Yt 5 2,
= — L 5 =N1, —2
= Zleh =™ : ) =t p — i) 9,2
W i |7 \
<
map IR
VIL.8.7. Proof of Lemma VI.6.1
(i) Fori € 7, we write
E[f; f?t]:E[]E[BSt (gt’yt]|(gt] Efs(i,y,) 9] =E[f}| %]

(ii) The Euclidean norm of a Dirac being equal to 1,

ze?H E
ieJy

2
5, | =191

ft

2






CHAPTER VII
CONTINUOUS-TIMEMIRROR DESCENT

This chapter is extracted from the paper A continuous-time approach to online opti-
mization, in collaboration with Panayotis Mertikopoulos, in preparation.

Abstra&

We consider a family of learning strategies for online optimization problems that
evolve in continuous time and we show that they lead to no regret. From a more
traditional, discrete-time viewpoint, this continuous-time approach allows us to
derive the no-regret properties of a large class of discrete-time algorithms including
as $pecial cases the exponential weight algorithm, online mirror descent, smooth
fictitious play and vanishingly smooth fittitious play. In so doing, we obtain a
unified view of many classical regret bounds, and we show that they can be
decomposed into a term temming from continuous-time considerations and a term
which measures the disparity between discrete and continuous time. As a result, we
obtain a general class of infinite horizon learning strategies that guarantee an
O(n~2) regret bound without having to resort to a doubling trick.

VII.1. Introdu&ion

Online optimization focuses on decision-making in sequentially changing envi-
ronments (the weather, the stock market, etc.). More precisely, at each stage of a re-
peated decision process, the agent/decision-maker obtains a payoft (or incurs a loss)
based on the environment and his decision, and his long-term objective is to maximize
his cumulative payoft via the use of past observations.

The worst-case scenario for the agent — and one which has attracted considerable
interest in the literature — is when he has no Bayesian-like prior belief on the environ-
ment. In this context, the cumulative payoft difference between an oracle-like device
(a decision rule which prescribes an a&ion based on knowledge of the future) and a

169
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learning Strategy (a rule which only relies on past observations) can become arbitrar-
ily large, even in very simple problems. As a result, in the absence of absolute payoft
guarantees, the most widely used online optimization criterion is that of regret mini-
mization, anotion which was first introduced by [Han57] and has since given rise to a
vigorous literature at the interface of optimization, statistics and theoretical computer
science — see e.g. [CBL06], [SS11] for a survey. Specifically, the cumulative regret of a
strategy compares the payoff obtained by an agent that follows it to the payoff that he
would have obtained by constantly choosing one a&tion; accordingly, one of the main
goals in online optimization is to devise strategies that lead to (vanishingly) small av-
erage regret against any fixed action, and irrespective of how the agent’s environment
evolves over time.

In this paper, we take a continuous-time approach to online optimization and we
consider a class of strategies that lead to no regret in continuous time. From a more
traditional, discrete-time viewpoint, the importance of this approach lies in that it
provides a unifying view of the regret properties of a broad class of well-known
online optimization algorithms. In particular, the discrete-time version of our family
of $trategies is an extension of the general class of online mirror descent (OMD)
algorithms (themselves equivalent to “Following the Regularized Leader” (FtRL) in
the case of linear payoffs; see e.g. [SS11], [Bubl11], [Haz12]) with a time-varying
parameter. As such, our analysis contains as $pecial cases ) the exponential
weight (EW) algorithm ([LW94], [Vov90]) and its decreasing parameter variant
([ACBGO02]); &) smooth fictitious play (SFP) ([FL99], [BHS06]) and vanishingly
smooth fictitious play (VSFP) ([BF13]); and ¢) the method of online gradient
descent (OGD) introduced by [Zin03] (the Euclidean predecessor of OMD).

With regards to the OMD/FtRL family of algorithms, the vanishing regret
bounds that we derive by using a time-varying parameter are not particularly new:
bounds of the same order can be obtained by taking existing guarantees for
learning with a finite horizon and then using the so-called “doubling trick”
([CBFH"97], [Vov98]).! That said, the introduion of a time-varying parameter
has several advantages: ) it allows us to integrate SFP and VSFP into the fold and to
derive explicit bounds for their regret; &) it provides a unified any-time analysis
without needing to reboot the algorithm every so often (to the best of our
knowledge, such an analysis only exists for the EW algorithm with a time-varying
parameter ([Bubll], [ACBGO02])); and ¢) in the case of ordinary convex
optimization problems with an open-ended termination criterion (as opposed to a
fixed number of steps), a variable parameter leads to more efficient value
convergence bounds than a variable step-size.

1. Inanutshell, the doubling trick amounts to breaking up the learning timeline in blocks of expo-
nentially increasing horizon, and then resetting the algorithm at the start of each block with an optimal
parameter for the block’s (finite) horizon.
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Building on an idea that was introduced by [W]97] in the framework of con-
vex optimization and by [Sor09] in the study of the exponential weight algorithm,
the key ingredient of our analysis is the descent from continuous to discrete time.
More precisely, given an online optimization problem in discrete time, we construct
a continuous-time interpolation where our continuous-time dynamics lead to no re-
gret; then, by comparing the agent’s payoffs in discrete and continuous time, we are
able to deduce a bound for the agent’s regret in the original discrete-time framework.

One of the main contributions of this approach is that it leads to a unified
derivation of several existing regret bounds with disparate proofs; secondly, it allows
us to decompose many classical bounds into two components, a term coming from
continuous-time considerations and a comparison term which measures the
disparity between discrete and continuous time (see also [PM13] for an alternative
interpretation of such a decomposition). Each of these terms can be made arbitrarily
small by itself, but their sum is coupled in a nontrivial way that induces a trade-off
between continuous- and discrete-time considerations: in a sense, faster decay rates
in continuous time lead to greater discrepancies in the discrete/continuous
comparison — and hence, to slower regret decay bounds in discrete time.

Finally, we also give a brief account of how the derived regret bounds are related
to classical convergence results for certain convex optimization and stochastic con-
vex optimization algorithms—including the proje&ted subgradient (PSG) method,
mirror descent (MD), and their stochastic variants ([NY83], [NJLS09]), and we il-
lustrate a (somewhat surprising) performance gap incurred by using an optimization
algorithm with a decreasing parameter instead of a decreasing step-size.

VIL.1.1. Paper outline

In Setion VII.2, we present some basics of online optimization to fix notation
and terminology; then, in Se&tion VIL.3, we define regularizer funtions, choice maps
and the class of variable-parameter OMD/FtRL strategies that we will focus on. The
core of our paper consists of Sec¢tions VII.4 and VILS5: we first show that the corre-
sponding class of continuous-time strategies leads to no regret in Se¢tion VIL4; this
analysis is then translated to discrete time in Se&ion VIL.5 where we derive the no-
regret properties of the class of algorithms under consideration. Finally, in Section
VIL6, we establish several links with existing online learning and convex optimiza-
tion algorithms, and we show how their properties can be derived as corollaries of our
results.

VII.1.2. Notation and preliminaries

Let d be a positive integer and let V = R? be equipped with an arbitrary norm |-
The dual of V will be denoted by V* and the induced dual norm on V* will be given
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by the familiar expression:

Iyl = sup [{ylx)|, (VILI)

Ixl<1

where (y|x) denotes the canonical pairing between y € V*and x € V. For a
nonempty subset U C V will use the notation |U| = sup__, [ x]|-

In the rest of our paper, € will denote a nonempty compact convex subset of V;
moreover, given a convex fun&ion f: V. — R U {+oo}, its effective domain will be
the convex set dom f = {x € V : f(x) < oo}. For convenience, if f: € — Ris
convex, we will treat f asa convex function on V by setting f(x) = 4o forx € V €;
conversely, if f: V — RU{+oo} hasdomain dom f = €, we will also treat f asareal-
valued fun&ion on € (in all cases, the ambient §pace V will be clear from the context).
We will then say thatv € V* isasubgradient of f arx € € if f(x")— f(x) > (v|x" — x)
for all x” € €; likewise, the set 0 f(x) = {v € V* : visasubgradient of f at x} will
be called the subdifferential of f ar x and f will be called subdifferentiable if d f (x) is
nonempty for all x € dom f.

If it exists, the minimum (resp. maximum) of a fun&ion f: V — R U {4co} will
be denoted by f i, (resh. finax)- Moreover, if 4 = {4, ..., a,} is a finite set, the
set A(A) of probability measures on 4 will be identified with the standard (d — 1)-
dimensional simplex A; = {x € Ri : Eil x; =1} of R%; also, the elements of A will
be identified with the corresponding vertices of A(.A4), i.e. the canonical basis vetors
{e;}L, of R?. Finally, for x, y € R, we will let |x| = max{k € Z : k < x} and [x] =
min{k € Z : k > x}, and we will write x V y = max{x, y} and x A y = min{x, y}.

VIL.2. The model

The heart of the online optimization model that we consider is as follows: at every
discrete time instance # > 1, an agent (decision-maker) chooses an a&ion from a
nonempty convex acion set € C V and gains a payoff (or incurs a loss) determined
by some time-dependent function. Information about this function is only revealed
to the agent after he picks his attion, and the agent’s objective is to maximize his long-
term payoff in an adaptive manner.

VIL.2.1. The core model

Let € C V denote the agent’s action $pace. Then, at cach stage » > 1, the process
of play is as follows:

1. The agent chooses an action x,, € €.
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2. Nature chooses and reveals the payoff vector u, € V* of the n-th stage and the agent
receives a payoff of (u,|x,).

3. The agent uses some decision rule to pick a new action x,,,; € € and the process is
repeated ad infinitum.

More precisely, define a #rategy to be a sequence of maps o, : (V*)" 1 — €,n > 1,
such that o, ; determines the player’s action at stage #n+1in terms of the payoft vectors
wi, ..., € V* that have been revealed up to stage # (in a slight abuse of notation,
o} will be regarded as an element of ). Then, given a sequence of payoff ve&ors
u = (u,),>1 in V*, the sequence of actions generated by o will be

an = Gn+1<u1, ,un), (VII.Z)
and the agent’s cumulative regret with respet to x € % is defined as:

n

Reg™(x) = 3 (gl) — 3 {ugly)
k=1 k=1
(VIL3)

n n
Z (| x) — E (up|op (s oy ) -
k=1 k=1

In what follows, we focus on strategies that lead to 7o (or, at worst, small) regret:

Definition VIL.2.1. A $trategy o leads to e-regret (¢ > 0) if, for every sequence of
payoft ve&tors (u,,),,~; in V* such that ||z, < 1:

lim sup — . max Reg”"(x) < . (VIL4)

nooco N x€€
In particular, if (VIL.4) holds with ¢ = 0, we will say that o leads to no regrez.

Remark VII.2.2. Thedefinition of an e-regret strategy depends on the dual norm ||-||,
of V* (and hence, on the original norm | - | on V); on the other hand, the definition
of “no regret” is independent of the norm.

Remark VIL.2.3. In our framework, we can easily see that a strategy leading to -
regret against “any sequence” is equivalent to leading to e-regret against “any strategy
of nature”. However, this may not be true in the randomized setting we present in the

following paragraph.

Despite its simplicity, this online linear optimization model may be used to ana-
lyze more general online optimization models. In what follows, we summarize some
examples of this kind.

2. Nature may be adversarial, i.e. #,, may be chosen as a funcion of xy, ..., x,,.
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VII.2.2. The case of the simplex and mixed actions

Consider a discrete decision process where, at each stage # > 1, the agent chooses
an action a,, from a finite set of pure actions A4 = {1, ..., d}. To do so, the agent draws
a, according to some probability distribution x,, € A(A); then, once 4, is drawn,
the payoff vector u,, € [—1,1]¢ which prescribes the payoff u, , of each a&iona € A
is revealed and the agent receives the payoft #, , that corresponds to his choice of
action. Moreover, we assume that Nature’s choice of payoft ve¢tor u,, does not depend
on pure action a,,.

In this setting, a strategy is still defined as in the core model of Se¢tion VII.2.1
with the agent’s a&ion set replaced by the set of mixed actions A(A4).? The agent’s
realized regret with respect to a pure a&tion 2 € A will then be

n

2 (uk,a - Mk,ak)’ (VIIS)
k=1

and we will say that a strategy o leads to e-realized-regret (resp. to no realized regret for
e =0)if
lim sup 1 max ) (u, — i) <€ (as), (VILG6)

nooco N acAh =l

<

alloo

for every $trategy of Nature choosing payoff vectors (u,,),~; in R? such that |«
1. # Besides, consider the filtration (% ,),~, where &, is generated by

(2015 Uy By von s Xy g5 Uy 15 By 15 Xy Bhyy)-

Then, then conditional expectation E [uwn F n} is equal to (u,|x,,). Using a classical
argument based on Heeffding’s inequality and the Borel-Cantelli lemma, the realized
regret can be shown to be close with high probability to the regret as defined in Section
VIL.2.1 (see Lemma I1.2.1). Therefore, the minimization of (VILS5) is then reduced

to the core model of Se&ion VII.2.1:

Proposition VIL.2.4 ([CBL06], Corollary 4.3). If a strategy o leads to e-regret with
respect to the uniform norm on NV, it also leads to e-realized-regret.

VIIL.2.3. Online convex optimization

We briefly discuss here a more general online convex optimization model where
losses are determined by a sequence of convex functions. Formally, the only change

3. In a more general setting, the choice at each stage might depend not only on the past payoff

ve&ors, but also on the agent’s realized a&tions 4, ..., 4,,.
4. This condition is also called external e-consistency ([FL99], [BHS06]).



REGULARIZER FUNCTIONS, CHOICE MAPS AND LEARNING STRATEGIES 175

from Section VIL.2.1 is that at each stage » > 1, the agent incurs a loss €,,(x,,) deter-
mined by a subdifferentiable convex loss function ¢,: € — R. In thisnonlinear setting,
the information revealed to the agent after playing includes a (negative) subgradient

€ —0¢,(x,) C V*ofg, at x,, so the incurred cumulative regret with respect to a
fixed a&ion x € % is:

k=1 k=1

By convexity, €,(x") — ¢4(x) < (v|x” — x) forall v € 3¢;(x") and for all x € €; in this
way, (VIL7) readily yields:

n n

kzn: € (xp) — kzn: € (x) zn: (o — x) = Y (wg|x) — D (gl (VILS)
=l =l Pt

k=1 k=1

where u, € —0¢,(x;,). This last expression can obviously be interpreted as the regret
incurred by an agent facing a sequence of payoff vetors u,, € V* (cf. the core model
of Se&ion VII.2.1), so a §trategy which guarantees a bound on the right-hand side of
(VIL.8) will guarantee the same for (VIL.7). Consequently, when the loss functions ¢,
are uniformly Lipschitz continuous, results for the core model can be direétly trans-
lated into this one.

VIL.3. Regularizer functions, choice maps and learning strategies

VIL.3.1. Regularizer fun&tions and choice maps

We begin with the concept of a regularizer function:

Definition VII.3.1. A convex fun&ionh: V — RU{+oo} will be called a regularizer
function on € if dom b = € and h|y is strictly convex and continuous.

Remark VIL.3.2. This definition is intimately related to the notion of a Legendre-
type fun&ion (see e.g. [Roc70, Se&tion 26]); however, as was recently noted by [SS07]

(and in contrast to the analysis of e.g. [BF13], [Bub11] and [BHS06]), we will not
require any differentiability or steepness assumptions.

A key tool in our analysis will be the convex conjugate b*: V* — R U {+oo} of b

defined as
b(9) = supl{ylx) — b)) (VIL9)
xXe
Since hisequalto +cconV {%}andh|, is continuous and stri¢tly convex, the supre-
mum in (VIL9) will be attained at a unigue point in €. This unique maximizer then
defines our choice map as follows:
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Definition VIL.3.3. The choice map associated to a regularizer fun&ion b on € will

be the map Q;: V* — € defined as
Q,(y) = argmax{(y|lx) —h(x)}, ye V" (VIL10)

x€€

Example VIL.3.4 (Entropy and logit choice). In the case of the simplex (¢ = A)),>
a classical example of a choice map is generated by the entropy function

d .
h(x) = {Ei—l xilogx, ifx €Ay, (VIL11)
+oo otherwise.
A standard calculation then yields the so-called logiz choice map:
Qy) = (N, ., e%). (VIL12)
X e

This map is used to define the exponential weight algorithm (cf. Se&ion VIL6), and its
importance stems from the well known fact that it leads to the optimal regret bound

for & = A,; ([CBLOG, Theorems 2.2 and 3.7]).

Example VIIL.3.5 (Euclidean proje&tion). Another important example arises by tak-
ing the squared Euclidean distance as a regularizer fun&tion; more precisely, we define
the Euclidean regularizer on € as

1 2 .
hix) = {2 I<l; ifx €@, (VIL13)

+oo otherwise.

The associated choice map Q,,: RN — € corresponds to taking the orthogonal pro-
jeGtion with respet to €

Qy(y) =argmax{ (ylx) — 3[x[3}

x€€
—argmin{  3xl3— Olx) + 31l3} = argminfy —#l. (VILL4)
xXe€ xXe€

Example VII.3.6 (Bregman proje&tions). The Euclidean example above is a $pecial
case of a class of proje¢tion mappings known as Bregman projections ([Bre67]).

LetF : V — RU{+oo} bea proper convex function, differentiable on its domain.
Let us denote & = dom F and for x, x” € 9, the Bregman divergence Dy : 9 x 9 —
R is defined as

Dp(x, x") = F(x) — F(x") — (VE(x')|x — x7) . (VIL15)

5. In this setting, choice maps are more commonly known as smooth best reply maps

([FL98], [HS02], [BHS06], [BF13]).
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Hence, given a compact set € C 2, the associated Bregman projection of a point x, €
9 onto ¥ is given by

prf (xg) = argmin Dg(x, x). (VIL16)

x€€

Now assume that F* is also differentiable on its domain which we will denote 2*. It is
easy to check that for y € 2%, VF*(y) € 2 and VF(VF*(y)) = y. Then, the process
of mapping y € 2* to VF*(y) and then projecting to € can be written as a choice
map in the sense of (VIL.10):

pry VE*(y) = argmin{F(x) — F(VF*(y)) — (VE(VF*(y))|x — VF*(y))}

x€€
= argmin{F(x) — (y|x)} = argmax{(y|x) — h(x)} = Q,(»),
x€¥ xeR?
(VIL17)

where b, = F|, and b(x) = 4o forx € R* {&}.

VIL.3.2. Strategies generated by regularizer fun&ions

The class of strategies that we will consider in the rest of this paper is a variable-
parameter extension of the so-called online mirror descent (OMD) method - it-
self equivalent to the family of algorithms known as Follow the Regularized Leader
(FtRL) in the case of linear payoffs (see e.g. [SS11] and [Haz12)).

In a nutshell, this class of strategies may be described as follows: the agent aggre-
gates his payoffs over time into a score vector y € V* and then uses a choice map to
turn these scores into ations and continue playing. Formally, if b is a regularizer func-
tion on the agent’s action space € and (1), is a positive nonincreasing sequence, the

Strategy o = <G£’y]”> generated by b with parameter v, is defined as
>1

nz

O'n+1(1/t1, e M‘n) = Qh <y]n zn: uk) ’ (VIIlg)

k=1

with o; = Q;(0). The corresponding sequence of play x,, .| = o,,(%;, ..., u,) will
then be given by the recursion:

Un = Unfl + Ups
Xpt+l — Qh(nnUn>

In addition to the standard variants of OMD/FtRL, a list of examples of strategies
and algorithms that can be expressed in this general form is given in Table VIL.1. A
more detailed analysis (including the regret properties of each algorithm) will also be
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provided in Se&ion VIIL.6; we only mention here that the variability of 1, will be key
for the no-regret properties of : when v, is constant, the strategy (VII.18) does not
guarantee a sublinear regret bound (sec e.g. [SS11] and [Bub11]).

VIIL.3.3. Regularity of the choice map and the role of strong convexity

In this section, we derive some regularity properties of the choice map Q, that will
be needed in the analysis of the subsequent se¢tions. We begin by showing that Q, is
continuous and equal to the gradient of h*:

Proposition VIL.3.7. Lez b be a regularizer function on €. Then h* is continuously dif-
ferentiable on € and NVb*(y) = Q,,(y) forall y € V*.

Proof. For y € V*, we have
x €0 (y) <= yedh(x) <= x¢€ argmax , . {{y|x") —h(x)},  (VIL19)

ie. ab*(y) = argmaxx,e%{(y]x’) — h(x")}. However, since the latter set only con-

sists of Q,,(y), b* will be differentiable with Vh*(y) = Q,(y) for all y € V*. The
continuity of Vh* then follows from [Roc70, Corollary 25.5.1]. ]

In the discrete-time analysis of Section VIL.5, (VII.18) will be shown to guarantee
a regret bound of a simple form when Q, is Lipschitz continuous. This last require-
ment is equivalent to b being strongly convex:

Definition VIL3.8. Let f: RY — RU {+oo} bea convex function, let | - | be a norm
onR% and let K > 0.

(1) £ is K-Zrongly convex w.rt. | - | if, for all wy, w, € R and for all & € [0, 1]:
f Qo+ (1=Nwy) < Af(wy)+ 1) f (wy) =3 KAMI=2) fwy —wy[*. (VIL20)
(2) fis K-strongly smooth w.rt. || - || if it is differentiable and, for all w;, w, € R%:
flwy) < flwy) +(V f(wy)lwy —wy) + 5K wy — | (VIL21)

Strong convexity of a fun&ion was shown in [KSST12] to be equivalent to strong
smoothness of its conjugate. In turn, this equivalence yields the following characteri-
zation of Lipschitz continuity:

Proposition VIL.3.9. Lez f: V — R U {400} be proper and lower semi-continuous.
Then, for K > 0, the following are equivalent:

(2) f is K-Strongly convex with respect to || - |.



REGULARIZER FUNCTIONS, CHOICE MAPS AND LEARNING STRATEGIES 179

(i) f* is differentiable and ¥V f* is1/K-Lipschitz.
(iii) f* is1/K-Strongly smooth with repect to | - | ..
Hence, given that regularizer fun&ions are proper and lower semi-continuous by
definition, Proposition VII.3.9 leads to the following characterization:
Corollary VII.3.10. Let b be a regularizer function € andK > 0. The associated choice
map Q, is K-Lipschitz continuous if and only if b is K-Strongly convex with respect to || - ||.

This chara&erization of the Lipschitz continuity of V f* (which will be of particu-
lar interest to us) is a classical result in the case of the Euclidean norm — see e.g. [RW98,
Proposition 12.60]. On the other hand, the implication (ii) => (iii) appears to be
new in the case of an arbitrary norm (though the proof technique is fairly standard).

Proof of Proposition VI1I.3.9. We will show that (i) = (ii) = (iii) = (i).
(i) = (ii). — See e.g. [BT03, Proposition 3.1], [Nes09, Lemma 1] or [SS07,
Lemma 15].

(i) = (iii). — Fix y, 9, € V¥, letz = y, — y;, and set $(£) = f*(y; + tz),
t € [0,1]. Identitying V with V** and | - |,, with | - |, we have:

¢'(1) = ¢'(0) = (Vf*(n +12) = V[ (3)l2)
<zl IV +22) =V ()l < éIIZHf, (VIL22)

where the first inequality follows from the definition of the dual norm and the second
from the assumed Lipschitz continuity of f*. By integrating, we then get:

8(6) — $(0) < &/(0)t + 3l (V1L.23)
and hence, fort = 1:
) = () <V ly— ) + %”J’z —nl: (VIL.24)
which shows that f* is 1/K-strongly smooth.
(iii) = (i). — Since f is proper and lower semi-continuous, it will also be closed.
Our assertion then follows from e.g. [KSST12, Theorem 3]. ]

We close this section by stating the strong convexity properties of the regularizer
fun&ions of Examples VII.3.4 and VIL3.5 (which thus imply the Lipschitz continuity
of the corresponding choice maps):

Proposition VIL.3.11. With notation as in Examples VII.3.4 and VII.3.5, we have:
(1) The entropy b: Ay — R of (VIL11) is 1-Strongly convex wrt. | - |
(ii) The Euclidean regularizer b: € — R of (VIL.13) is 1-strongly convex w.rt. || - | 5.

Proof The $trong convexity of the Euclidean regularizer is trivial; for the strong con-
vexity of the entropy with respect to | - |}, see e.g. [BT03, Proposition 5.1]. ]
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VIL.4. The continuous-time analysis

Motivated by a technique introduced by [Sor09] in the context of the exponential
weight (EW) algorithm, we present in this se¢tion a continuous-time version of the
class of strategies of Section VII.2 and we derive a bound for the induced regret in
continuous time. This will then enable us to bound the actual discrete-time regret by
comparing the continuous- and discrete-time variants of this and the previous setion
respectively.

In continuous time, instead of a sequence of payoft vectors (u,,),,~ in V*, the agent
will be facing a measurable and locally integrable §tream of payoff vectors (#,),cp  in

V*. Hence, extending (VIL.18) to continuous time, we will consider the process:

x5 =Q,, <Vlr f: u, ds) , (VIL.25)

where (1,) scr, isa positive, nonincreasing and piecewise continuous parameter, while

x{ € % denotes the agent’s action at time ¢ given the history of payoff ve¢tors u,,
0<s<t®
Our main result in this section is the following regret bound for (VIL.25):

Theorem VIL4.1. If b is a regularizer function on € and (v,) 1k, 18 a positive, non-

increasing and piecewise continunous parameter, then, for every locally integrable payoff
Stream (u,),cp in V*, we have:
+

(ux) ds — ft (uxt) ds < @ (VIL.26)
0 '

A
max
x€€ J

Proof. Assume first that v, is of class C! and let y, = 7, fo ‘4, ds. Then, forall x €
and for all # > 0, Fenchel’s inequality gives:

ft (n]x) ds = (32]) < b*(y,) + h(x) < b (y,) 4 hmax. (VIL27)
0 N N yr N
On the other hand, with x{ = Q,(y,), we will also have by definition:

N N 0 N

Consider the fun&ion ¢: (x, ) fot (u,|x) ds — b(x)/n,. For fixed t > 0, one can
check that x¢ maximizes ¢(x,t), so we can apply the envelope theorem (see

6. In the rest of the paper, we will consistently use 7 and k for discrete indices and s, £, ... for con-
tinuous ones.
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e.g. [MCWGY95, Theorem M.L.1]) to differentiate ¢(x%, £) with respect to #:

d b*<yt) o aq) c _ c ﬁt c
% N, = E(xt’ t) = <ut’xt> + Eh(xz) < <ut‘xt> + bmmn%’ (VH'29)

where we used the fa that, by assumption, 7 < 0. Integrating (VIL.29) then yields
b*(y:) _ b*(y0) ! ] ’ Doni

< [y ds+ b [ ds= [ (uxe) ds— Tmin (vIL30

oS 20 [l ds b [ S5 ds = [ Gsl) de—Zmn, (VIL30)

where we have used the fact that b*(y,) = b*(0) = —h,,;, in the second step. Hence,
by combining this last equation with (VII.27), we finally obtain:

f 1, |x) d5<f |t} ds — Pmin | Pax (VIL31)

N N

and our claim follows by taking the maximum of the left-hand side over x € %.

If ¥, is not smooth, let 0>, m = 1,2..., be a sequence of positive and nonin-
creasing parameters of class C! that converges pointwise to 1,. Then, if we let y7* =
ny f u, dsand x7* = Q,(y?), we will also have x”” — x¢ pointwise for all s € [0, 7]

by the continuity of Qh By the dominated convergence theorem, this implies that
fo ‘ (u]x™) ds — f ) ds and our assertion follows by the bound (VIL31) for

smoothly varying paramcters []

Remark VII.4.2. We should note here that the quantity 8, = b,,,, — b, in (VIL26)
can be taken arbitrarily small so there is no “optimal” regret bound in continuous time.
That said, we shall see in the following setion that smaller values of 6, result in greater
digparities between continuous and discrete time, thus leading to a trade-off for the
regret in discrete time.

VIL.5. Regret minimization in discrete time

In this section, our aim will be to provide a bound for the regret incurred by the
discrete-time $trategy (VIL.18). To that end, our approach will be as follows: first,
given a positive nonincreasing parameter (1,,),-; and a sequence of payoff vectors
(#,,) 1> we construct their continuous-time counterparts by setting

u, = Ltm (VH.SZa)

and

e = M1 (VH-32b)
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forallr € R, (ie.n, = v, if# > landn, = »; otherwise). Then, given a regu-
larizer h: € — R, we will compare the cumulative payoffs of the processes (x,,),~
and (x7)cg_that are generated by (VIL18) and (VIL.25) in discrete and continuous

time respectively. In this way, the derived regret bound will consist of two terms: one
coming from the continuous-time bound (VIL.26), and a term coming from the dis-
crete/continuous comparison. Formally:

Theorem VILS5.1. Let b be a K-Strongly convex regularizer on € and let (v,),~ be a
positive nonincreasing parameter. Then, for every sequence of payoff vectors (u,)),~ in V*,

the sequence of play

k=1
genervated by the Strategy o = (o‘ﬁ’”” Jus19f (VIL18) guarantees the bound
h h

max RCgZ’u(x) S L

min I < 2
R TR kElnk_lﬂukH*, (VIL34)

where we have sext vy = ;. In particular, if |u,|, < M for some M > 0, then:

h
R a,u < max
2‘16:1}( g (x)

_hmin M2 <
- + 5% k}]lnk_l. (VIL35)

Proof Define the continuous-time interpolations of %, and »,, as in (VIL.32) and let
Y, =" fo “u, ds; Then, for the continuous-time process x; = Q,, (y,) generated by
(VIL25), we will have:

n—1
Xp = Qh (nnl E u‘k) = x;_p (VII36)
k=1

and hence, for k > land ¢ € (k — 1, k), the payoffs corresponding to x{ and x;, will
differ by at most
[ o) — Cmglocg) | = | Comg| 5§ — x5 ) |

1
< otell IQ(3:) = Qe < llwallu 13: = yalles (VIL37)

where the lagt inequality follows from the 1/K-Lipschitz continuity of Q, (Corol-
lary VII.3.10). On the other hand, the definition of y, gives

12
=il = s [ wds

< Mgl (2 — &+ 1), (VIL38)
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which leads to the estimate:

n

173
j;) (uy|5f) — E (g |xp,)

k=1

f (u35) — (sl |

<1§”] H ||2fk (t—k+1)de
J— Rtz " R
—Kk:171k1 ki)

1 n
= 55 2 el (VIL39)
k=1

In view of this discrete/continuous comparison, we thus obtain:

2

= dt
m;gkzl (mgl) = max | (u,]x)

< [t e B

n

N S hmax B hmin
Z (elxp) + K E Mt g2 + y]—, (VIL40)
k=1 k=1

n

where the firt inequality follows from Theorem VIL4.1 and the lagt one from
(VIL39); the bounds (VI1.34) and (VIIL.35) are then immediate. ]

To get the optimal dependence of the bound (VII.35) in 7, both terms should scale
as /7 (otherwise, one would be slower than the other). In this case, we get a bound
for the average regret which vanishes as O(n~/2):

Corollary VIL.5.2. Let (u,),~, be asequence of payoffvectors in V*. Then, with notation
as in Theorem VILS. 1, the sequence of play

%0 =Q, <\/ K<hmla\x42_n Pnin) 2 uk> (VIL41)

k=1

guarantees the regret bound.:

hmax _ hmin 1

Proof. Set ), = b, — boin and 1, = n/+/n with = M~1/K3,. Then:

n n—1 1 n—1 1
=AY — <n+ Zdt<n(1+2v7), VIL43
k}_]lnk 1= nkE_]l =< nfo 7 N (1+2v/n) ( )
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so the bound (VII.35) becomes:

3 B < v 12y =2y 2 (4 v,

[]

Remark VIL.5.3. We should stress here that regret guarantees of the same order as
(VIL.42) can be obtained for the OMD/FtRL family of algorithms by optimizing the
choice of parameter over a finite learning horizon and then restarting the algorithm
every so often, using the doubling trick ((CBFH97], [Vov98]) to guarantee a sub-
linear regret bound in the long run. The doubling trick may thus be seen as a $pecial
case of a nonincreasing parameter; for the general case, the bounds (VII.34)/(VIL.35)
describe in a precise way the impact of the variability of 1, on the method’s regret
guarantees (see also Se@ion VIL6 for a more detailed discussion).

Remark VIL5.4. The dependence of vy on 3, K and M in (VIL.42) has been chosen
precisely so as to minimize the expression (3,/1 + M?1/K) over all > 0.

Remark VIL.5.5 (On the dependence on K and the choice of optimal b). The depen-
dence of the bound (VI1.42) on K is clearly artificial: (VI1.42) remains invariant if b
is rescaled by a positive constant, so it suffices to consider regularizer functions that
are 1-strongly convex over €. This then leads to the following question: given a norm
||| 072 V and a compact convex subset € C V, which 1-Strongly convex function minimizes
Ponax — Pmin? With the exception of the Euclidean norm, this question does not seem
to admit a trivial answer (cf. Se&ion VIL.7.1 for a more detailed discussion).

By expressing the cumulative payoff gap between discrete- and continuous-time
exactly, Theorem VIL5.1 can be extended further to regularizer functions that are not
strongly convex over €. The only thing that changes in this case is that the comparison
term of the bound (VIL.35) is replaced by a term involving the Bregman divergence
associated with the convex conjugate h* of h.

The following result is a variable-parameter extension of Theorem 5.6 in [BCB12].

Theorem VIL.5.6. Lez b be a regularizer function on €. Then, with notation as in The-
orem VILS.1, the Strategy o = (0'2 Vus1 0f (VIL18) guarantees the regret bound:

-
maxReg™*(x) < M+E—Dh ) (VIL44)

x€¥ Y]n — 17]7

where we have set y,; =N, X _ U ¥y = N1 Dp_q Ui and Mg = 1.
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Proof: With notation as in the proof of Theorem VIL5.1, the variables y;" in the state-
ment of the theorem may be expressed more concisely as:

t
yu = lim y, = lim v]tf u, ds, (VIL45)
t—n 0

t—n
and hence, with », right-continuous, we get x,, = Q,(y,_;) = Q,,(y," ;). Accordingly,

if x¢ = Q(y,) denotes the continuous-time process generated by (VIL.25), then, for
all k > 1and forallt € (k—1, k), we will have:

<”t|xf‘> — (el xp) = <ut|Qh(yt)> - <”k‘Qh<.)’/2;1)> = <uk|Vh*<yt)> - <”k|v})*<3’/-:71)> .

(VIL46)
In this way, noting that (x,|Vh*(y,)) is simply the derivative of b*(y,)/n,_; for ¢ €
(k—1, k), we obtain the following comparison over (k — 1, k):

k k d
[ sy de— Gulsg) = fk G 00) de = (T (57.)

k—1 1 Mgy dt
y] B (h*()’k> (30 — (0 — 2l VR (92))
1
= V]_Dh (V> Vi) - (VIL47)
In view of the above, the claim follows by summing this bound over k =1, ..., z and
plugging the resulting expression in the first inequality of (VIL.40) — which holds
independently of any assumptions on h. O

VIL6. Links with existing results

In this section, we discuss how certain existing results in online optimization and
(stochastic) convex programming can be obtained as corollaries of the general analysis
of the previous sections.

VIL.6.1. Links with known online optimization algorithms

The Exponential Weight Algorithm. — The exponential weight (EW) algorithm
was introduced independently by [LW94] and [Vov90] as a learning strategy in dis-
crete time. Motivated by the approach of [Sor09] who used a continuous-time variant
to retrieve the algorithm’s classical regret bounds, we show here how the same bounds
can be obtained dire&tly from Theorem VILS5.1.

The framework of the EW algorithm is that of randomized action selection as in
Se&ion VIL.2.2. Specifically, let A = {1, ..., d} be a finite set of pure attions, and let
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the agent’s a&tion set be the unit simplex # = A, of R? — the latter being endowed
with the ¢! norm || - |;. In this context, the EW algorithm is defined as:

U}’l - Un_l + un)
. B eYin (EW)
imtl = Sd U
Ej:l e i

wherey > 0isa (fixed) parameter and (1,,),- is a sequence of payoff ve&ors in [1, 1]¢
(so that ||u,|.. < lin the induced dual norm).

Example VII.3.4 in Se&ion VIL.3.1 shows that (EW) corresponds to (VII.18) with
N, = nand h(x) = Zil x;log x;. Since by, — b, = logd and b is 1-§trongly convex
with respe& to || - |; (cf. Proposition VIL.3.11), Theorem VIL5.1 readily yields the
bound

max Reg (4) < logd | mn (VIL48)

ac A n Yl 2

Additionally, if the time horizon » is known in advance, the optimal parameter choice

n = +/2logd/nleads to
max Reg (a) < \/2nlogd, (VIL49)

which, as far as the dependence on d and # is concerned, is the best possible bound a
strategy can guarantee in this framework — see e.g. [CBL06, Theorem 3.7].

Remark VILG6.1. By takingu, € [0, 1)¢ (as is often the case in the literature) and then
shifting to [~1/2,1/2]%, Theorem VILS.1 can be applied with M = 1/2. This yields
a fator of 1/8 in the second term of (VIL.48) and leads to the bound obtained by
[CB97] and [CBLOG].

The Exponential Weight Algorithm with v, = 1//n. — [ACBGO02] considered
the following variant of (EW)

UVl — U}’l—l + ui’l’
Ln d nU,n/\/ﬁ'
Zj:1€ g

In our context, a direct application of Corollary VIL.5.2 with M = K = 1 then gives

1
max Reg (a) <2y/nlogd + z\/logd, (VIL50)

a bound which, unlike (VIL.49), has the advantage of holding uniformly in time.
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Smooth Fi&itious Play. — The smooth fi&itious play (SFP) process was introduced
by [FL95] (see also [FL98] and [FL99]), and its regret properties were examined fur-
ther by [BHS06] using the theory of stochastic approximation — but without provid-
ing any quantitative bounds for the regret.

Just like the EW algorithm, SEP falls within the randomized actions framework
of Se&ion VIL2.2. In particular, SFP corresponds to the sequence of play generated
by (VIL.18) for an arbitrary regularizer on A; and with parameter v/% for somen > 0
; $pecifically:

Xptl = Qy (ﬂ E ”k) . (SFP>
" =1

With regards to the regret induced by (SFP), [BHS06, Theorem 6.6] show that for

every ¢ > 0, there exists some * = n*(¢) such that the §trategy (SFP) with parameter

n > n* leads to e-realized-regret. On the other hand, combining Proposition VII.2.4

with Theorem VIL5.1 yields the following more precise statement:

Proposition VIL.6.2. Let b be a K-trongly convex regularizer on the unit simplex Ay C
R endowed with the ¢ norm. Then, for every sequence of payoffvectors (u,,),=, in [—1,1)4,
the Strategy (SFP) with parameter > 0 guarantees

bmax _ hmin " lOg?’I. "
< —. .
max Reg (a) < ; nt St (VIL51)

In particular, (SFP) with parameter v leads to (b, — byin) /1 (realized) regret.

max

Proof. Simply combine the logarithmic growth estimate ¥/, k™! <1+ logn for the
harmonic series and Theorem VIL.5.1 with v, = v/n; the claim for the realized regret
then follows from Proposition VII.2.4. [l

Remark VII.6.3. It should be noted here that the qualitative analysis of [BHS06]
does not require b to be strongly convex; that said, if b is strongly convex, Proposition
VIL6.2 gives a quantitative bound on the regret.

Vanishingly Smooth Fictitious Play. — The variant of SFP known as vanishingly
smooth fititious play (VSFP) was introduced by [BF13], and its regret properties
were established using sophisticated tools from the theory of differential inclusions
and stochastic approximation — but, again, without providing explicit regret bounds.
Using the same notation as before, VSFP corresponds to the sequence of play

Xptl = Qh (nn Enl uk) > (VSFP)

k=1

where b is a §trongly convex regularizer on A and the sequence 1, satisfies:
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(Al) lim,_, . nn, = +co.
(A2) n, = O(n*) for some o > 0.
Under these assumptions, the main result of [BF13] is that (VSFP) leads to no re-

alized regret; in our framework, this follows directly from Proposition VII.2.4 and
Theorem VIL5.1 (which also gives a quantitative regret guarantee):

Proposition VIL.6.4. With notation asin Proposition VII.6.2, the strategy (VSFP) with
N, satisfying assumptions (A1) and (A2) guarantees the regret bound

1 hmax B hmin 1 ;
max — Reg (a) < + 77K kzl”lleb (VIL52)

act n n ny,

and thus leads to no regret. In particular, if v, = wn=* for some . € (0, 1), then:

1 h . —bh_. nn 1
- < max min . .
i n Regn(a) - yul 2(1—a)K * 2Kn (VIL53)

—o

Proof. 'The bound (VIL.52) is an immediate corollary of Theorem VILS5.1; the no-

regret property then follows from Assumptions (Al) and (A2). Finally, if y,, = nn™*,
we get

n n—l1 7n—1 nl—oc
N =1+ k=<1 +f redr=1+ 2, (VIL54)
k=1 k=1 0 l—a
and (VIL.53) follows by substituting the above in (VIL.52). ]

Remark VIL.6.5. If we take h(x) = El‘,lzl x;logx; and o = 1/2, (VSFP) boils down to
(EW’); the bound (VIL.50) then also follows from (VIL53).

Online Gradient Descent. — The online gradient descent (OGD) algorithm was
introduced by [Zin03] in the context of online convex optimization that we described
in Se&ion VII.2.3 - see also [Bub11, Section 4.1]. Here, we focus on a so-called /azy
variant ([SS11, p. 144]) defined by means of the recursion

Un S Unfl -1 agn(xr)’

X, = argmin [x — U, [,
x€€

(OGD-L)

where ¢,: € — R is a sequence of M-Lipschitz loss functions, 1 > 0 is a constant
parameter, and the algorithm is initialized with Uy = 0.
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In view of Example VIL.3.5, (OGD-L) corresponds to the strategy o = (O‘Z’y])n>1
generated by the Euclidean regularizer hon € — defined itselfas in (VII.13). Theorem
VIL5.1 thus yields the regret bound:

1 52 nM?
Z < 2% 4
max; Reg,(x) < 30+

(VIL55)
with 82 = max, . ||x|5 — min,c¢ ||5. Accordingly, if the time horizon 7 is known
in advance, the optimal choice for is } = 8¢ /(M /%), leading to a cumulative regret
guarantee of Moy, /%, which is essentially the bound derived by [SS11, Corollary. 2.7]
(see also [Bub11, Theorem 3.1] for the greedy variant). ”

Online Mirror Descent. — The family of (lazy) online mirror descent (OMD) algo-
rithms studied by Shalev-Shwartz [SS07, SS11] is the most general family of strategies
that we discuss in this se&tion (see also [Bub11] for a greedy version). In particular,
the OMD class of strategies contains EW and OGD as $pecial cases, and it is also
equivalent to the family of Follow the Regularized Leader (FtRL) algorithms in the
case of linear payoffs ([SS11], [Haz12]).

Following [SS11] (and with notation as in Se&ion VIL.2.3), let ¢,: € — Rbea
sequence of convex functions which are M-Lipschitz with respe to some norm || - |
on R?. Then, given a regularizer funcion b on €, the lazy OMD algorithm is defined
by means of the recursion:

Un € Un—l d aQn('xn)’
Xntl = Qb(Un>’
where ) > 0 is a fixed parameter and the algorithm is initialized with Uy = 0. Asare-

sult, if b is taken K-strongly convex with respe&t to || - |, Theorem VIL.5.1 immediately
yields the known regret bound for OMD:

(OMD-L)

-
max Reg (x) <

. M2
min + Y]

: s (VIL56)

VII.6.2. Links with convex optimization

Ordinary convex programs can be seen as online optimization problems where the
loss function remains constant over time and the agent secks to attain its minimum
value. In what follows, we outline how regret-minimizing strategies can be used for
this purpose and we describe the performance gap incurred by using a method with a
variable §tep-size instead of a variable parameter.

7. For the difference between lazy and greedy variants, see Section VIL7.2.
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Let f: € — R be a convex real-valued function on % and let (y,,),~; be a posi-
tive sequence (which we will later interpret as a sequence of step-sizes); also, given a
sequence (x,,),>; in €, let

n
v 21 VR

X0 € argmin f(xy), X === : (VILS7)
1<k<n Zk:l Yk
If we use the notation x, € {x™", x}} to refer interchangeably to either x™" or xJ,
Jensen’s inequality readily gives:
fay) < i ¥l 0] (VILSS)
2y Yk
Now consider the algorithm:
Uu,eU,;—v,0 ;

Xptl = Qh (y]nUn) >

where v, is a sequence of step sizes and ,, is a sequence of parameters. In the case of a
congtant parameter 1, = 1, (VIL.59) then becomes

Un € Un—l - ‘Ynaf(xn)’
%1 = Qp(U,).

which is a lazy variant of the mirror descent (MD) algorithm ([NY83]). In particular,
if b is the Euclidean regularizer on €, the algorithm boils down to alazy version of the

standard proje@ed subgradient (PSG) method:

Un S Unfl - Ynaf(xn>’

%, = argmin [x — U, |,
x€€

(MD-L)

(PSG-L)

The following corollary shows that these lazy versions guarantee the same value
convergence bounds as the corresponding greedy variants — see e.g. [BT03, Theo-
rem 4.1].

Corollary VII.6.6 (Constant parameter, variable step size). Lez f: € — R be an M-
Lipschitz convex function and let (x,,),~, be the sequence of play generated by (MD-L) for
some K-strongly convex regularizer b on €. Then, the adjusted iterates x|, € {x™™, x}} of
X, Sarisfy:

hm - hmin + leK_l . i
f5) < fn+ =2 2R BT

_ VIL60)
Ly Vk (
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Proof. Witho = (O'z’n”)@l, u, € =701 (x;) and x, € {xMn, x}}, we have:

n

Reg“(x) = X} (mylx —xp) = = Yive (f (%) = f(x) = Yovie- (f () — f(x))
k=1 k=1 k=1
(VILG61)
where the last §tep follows from (VII.58). By taking x € argmin f, we then obtain:
Reg™*(x)
f(x) = frmin < ~—— (VIL62)
L1 Vi

The result then follows by applying Theorem VII.5.1 and using the fact that |u,], <
lv.0 f ()]l < veM (recall that f is M-Lipschitz continuous). O

One can see that the best convergence rate that we get with constant v and step-
sizes of the form y, o n~* is O(logn//n) for o = 1/2 (and there is no straighforward
choice of v, leading to a better convergence rate). On the other hand, by taking a
constant step-size v, = 1and varying the algorithm’s parameter v, o< n~V2, we do
achieve an O(nY/2) rate of convergence.

Corollary VIL.6.7 (Constant step size, variable parameter). With notation as in
Corollary VIL.6.6, let (x,,),,1 be the sequence of play generated by (VI1.59) with

- 1 K(hmax B hmin)
Ny = M\/ - : (VIL63)

and constant y, = 1. Then, the adjusted iterates x|, € {x™", x}} of x,, guarantee

() < fimin +2My/ % (% + 4%) : (VILG64)

Proof. Similar to the proof of Corollary VIL.6.6. [

VI1.6.3. Noisy observations and links with §tochastic convex optimization

Assume that at every stage n = 1, 2, ... of the decision process, the agent does not
observe the actual payoft ve¢tor u,, € V*, but the realization of a random ve&tor 7,
satisfyingE [ #%,|%,] = u,, where ¥, is generated by

(%15 thys Bhys By wen s Xy g5 Uy 15 By 5 By 15 Xy 1)

In this case, alearning strategy o can be used with the observed vectors i, thusleading
to a (random) sequence of play X, ., = o,,,(#, ..., %,) — see e.g. [SS11, Se&ion 4.1]

for a model of this kind.
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In this framework, the agent’s (maximal) cumulative regret, which is the quantity
of interest, is given by

n

max E (| ) — ] (g %y - (VIL65)
*€% 10 k=1

On the other hand,
rj?eacé( E (1] x) kz_l (1, %) - (VIL66)

can be interpreted as the agent’s cumulative regret against the observed payoft se-
quence (i,,),~;. The above two quantites can be related (in average) as follows. We
assume that [|i,| < M (a.s.). As for the first term involving the maximum,

)

k_”k

1
max — E (u|x) = e%n<2uk+2 uy, — iy,
k=1

e%”nkl

n

*

where the last term is small with high probability: indeed, since E [, —u;, | ¥ ;] = 0,
a classical argument based on bounded martingale differences can be used. We deal
with the second sum similarly by noting that E [(#,|X,) | F,] = (E [, | F]|%) =
(uy)x,) and that:

n n n

LSl = 13y ke + 1 (o ).

The guarantees of Theorem VIL.5.1 therefore translates to the present framwork
with high probability.

The above can be adapted to the framework of stochastic convex optimization as
follows: let f: € — R be a Lipschitz convex function on %, let (y,,),~; be a positive
sequence of step sizes, and consider the strategy o generated by (VIL.18) withn =1
and b a K-strongly convex regularizer on €. Then, the sequence of play

56n+1: n+1( Ylgl’--- Yngn = ( Z'}’kgk> (VIIG7)

where g, is a random ve&or with E| 7,|2,.1,.... 8] = g, € 0f(X,) may be
written recursively as:

U, €U, —7,0f(%),

(MDSA-L)
n+1 Qh( )
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This algorithm may be seen as a lazy version of the so-called mirror descent
stochastic approximation (MDSA) process of [NJLS09]; in particular, using the
Euclidean regularizer leads to the lazy $tochagtic projected subgradient (SPSG)
method: o

Un € Un—l o YnafOén)’

&n-‘rl = argmin ”X - Un”Z
x€€

(SPSG-L)

min

min_ %7} as before, we can adapt

Setting u,, = —v,, ¢, #, = —Y,g, and taking X, € {X
Corollary VIL6.6 to we get, forall x € €,

E[f(%) — f(x)] <E Ekl )~ f<x>>} (VIL6S)
<E ﬁ kz_jl (a6 — %,9] (VIL69)
_E ﬁ :IE iy — %) | yk]] (VIL70)
_E :EZII ykgl@yx—m] (VIL71)
< Pman = P ;j_i\iKl 2803 (VIL72)

which is essentially the same value guarantee as that of greedy MDSA ([NJLS09,
Eq.2.41]).

VII.7. Discussion

VIL.7.1. On the optimal choice of b

As mentioned in the discussion after Corollary VII.5.2, the following open ques-
tion arises: given a norm || - || on V and a compacl, convex subset € C V, which 1-Strongly
convex regularizer on h: € — R has minimal depth 8, = b, — by

As the following proposition shows, in the case of the Euclidean norm on V, this
minimal depth is half the radius squared of the smallest enclosing sphere of %

Proposition VIL7.1. Let h: € — R be a 1-strongly convex regularizer function on €
with respect to the 2 norm | - ||, on V. Then:

hnax — Prin = %min max |x” — x|3, (VIL73)

max x' €€ x€E¥€

m
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ALGORITHM & h(x) N INPUT NORM

EW Ay Y. x;logx; CONSTANT u, ¢
EW’ Ay X x;logx; n/vn u, ¢!
SFP Ay ANY n/n u, ¢!
VSFP Ay ANY nm* (0 <a<l) u, ¢
OGD-L ANY : ||x||§ CONSTANT —Vf,(x,) 2

OMD-L ANY ANY CONSTANT —Vf,.(x,) ANY
PSG-L ANY L[] 1 —7,V f(x,) 02

MD-L ANY ANY 1 —7.,V f(x,) ANY

MDSA-L  ANY ANY 1 —1,(Vf(x,) +&,) ANY
SPSG-L ANy  3|xf] 1 1, (Vflx,)+E,) &

Table VII.1. — Summary of the algorithms discussed in Section VIL6. The suffix “L” indicates a
“lazy” variant; the INPUT column stands for the stream of payoff ve&tors which is used as input for
the algorithm and the NORM column specifies the norm of the ambient space; finally, , represents a

zero-mean stochastic process with values in RY,
and equality is attained by taking

Ly o2
h(x):{znx %olz fx €, (VIL74)

+oo otherwise,

z%here X € argmin ,_max,cq [x" — x|3 is the center of the smallest enclosing Sphere of

Proof. Letting x; € argmin _

h

2 : :
h(x)and x, € argmax___[x — x,3, we readily get:

max bmin 2> b(xZ) - b(xl)

1 1
2 2 : 2
= z”xz — x5 = 5 Mmax lx — x5 = 2 o e lx— "3, (VIL7S)

where the second inequality follows from the strong convexity of b and the fact that
dh(x;) 0. That (VIL.74) attains the bound (VII.73) is then a trivial consequence of
its definition, as is its geometric characterization. ]
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Figure VIL1. — Graphical illustration of the greedy (dashed) and lazy (solid)
branches of the proje&ted subgradient (PSG) method.

Desbite the simplicity of the bound (VII.73), this analysis does not work for an

arbitrary norm because 3 x — x, |* might fail to be 1-§trongly convex with respec to
|- | - for instance, |x — x,|?# is not even $#ic#ly convex.

VIL.7.2. Greedy versus lazy

To illustrate the difference between lazy and greedy variants, we first focus on the
PSG method run with congtant step y = 1 for a smooth fun&ion f: € — R. The
two variants may then be expressed by means of the recursions:

X,y = argmin |x — a,,, (VIL.76a)
xXE€EC
for the greedy version and:
Yn = Yn-1 _vf<xn>
(VIL76b)

Xnyl = argmin HX o )’n”z
x€®
for the lazy one.

As can be seen in Fig. VIL1, the greedy variant is based on the classical idea of
gradient descent, i.c. adding —V f'(x,) to x,, and projecting back to % if needed. On
the other hand, in the lazy variant, the gradient term —V f(x,)) is o added to x,,, but
to the “unprojected” iterate y, ; we only project to % in order to obtain the algorithm’s
next iterate. Owing to this modification, the lazy variant is thus driven by the sum
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V* VE(x,) — z, = VF(x,) — Vf(x,)

/ \ /

Vo, 4, = VF*(z,) — %, = pre(a,)

(a) Greedy Mirror Descent
VI Yu1 = 3 — V(5 0) — -

\% Xpyl = Qh(yn) Xpi2 = Qh(yn+l>
(b) Lazy Mirror Descent

Figure VIL.2. — Greedy and Lazy Mirror Descent with y,, = 1.

In the case of mirror descent with an arbitrary regularizer function b, the lazy ver-
sion has an implementation advantage over its greedy counterpart. Specifically, given
a proper convex function F such that F = hon % (cf. Example VIL3.6), greedy mirror
descent is defined as:

VIL.77a
Xptl — prf<dn>’ ( )

where the Bregman projection prf (a,) is given by (VIL.16); on the other hand, lazy
MD is defined as
In = Yn1— Vf('xn)’

Xptl = Qh(.yn>

The computation steps for each variant are represented in Figure VIL.2. The first step
in the greedy version which consists in computing VF has no equivalent in the lazy
version, which is thus computationally more lightweight.

(VIL77b)

S



CHAPTER VIII

A UNIVERSAL BOUND ON THE
VARIATIONS OF BOUNDED CONVEX
FUNCTIONS

This chapter is extracted from the paper A universal bound on the variations of
bounded convex functions, vo appear in Journal of Convex Analysis.

Abstra&

Given a convex set C in a real vector $pace E and two points x, y € C, we investigate
which are the possible values for the variation f(y) — f(x), where f : C — [m, M|
is a bounded convex fun&ion. We then rewrite the bounds in terms of the Funk weak
metric, which will imply that a bounded convex fun&ion is Lipschitz-continuous
with respect to the Thompson and Hilbert metrics. The bounds are also proved to
be optimal. We also exhibit the maximal subdifferential of a bounded convex func-
tion at a given point x € C.

VIIIL.1. The variations of bounded convex fun&ions

Let Cbe a convex set of a real vector space E. Given two points x, y € C, we define
the following auxiliary quantity:

Tc(x, y) =sup{t >1|x+t(y —x) € C}.

Clearly, 7 takes values in [1, +oo]. Intuitively, it measures how far away x is from the
boundary in the direction of y, taking the “distance” xy as unit. Clearly, tc(x, y) =
+ooifand only if x + R, (y — x) C C. Our first result is the following.
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Tc(x, y) /

Figure VIIL.1. — An intuitive representation of what T¢(x, y) measures.

Theorem VIIL1.1. Lez m < M be two real numbers. Let C be a convex set of a real

vector Space E and f : C — [m, M] a convex function. For every couple of points (x, y) €
C?, f satisfres:

M—m M—m
Trerm ST TSRS
1
T (s J’)fl
0 —
T (x5 y)

Figure VIIL.2. — Illustration of the bound in the case m = 0 and M = 1. The thick
horizontal line represents the cross sec¢tion of C.

Proof. It is enough to prove the result for functions with values in [0, 1], since we can
consider (M — m)~1(f — m). Let x, y be two points in C. Let ¢ be such that1 < ¢ <
Tc(x, ¥). By definition of 7, and because C is convex, we have x + #(y — x) € C. We
can write y as a convex combination of x + #(y — x) and x with coeflicients 1/# and
(t —1)/t respetively:
xtly— )+ (- D

t

Y
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By convexity of f, we get:

f(_)’) _f(x> < f(x+t(y_x)t) + (t_l)f(x> —f(x)
_ flar =)~ f

< <

t

~ |

b

where the lagt inequality comes from the fact that f has values in [0, 1]. By taking the
limitast — t¢(x, y), we get:

1
— f(x) < .
fO) =) <
The lower bound is obtained by exchanging the roles of x and y. ]

VIIL.2. The Funk, Thompson and Hilbert metrics

In this section, we rewrite the result from Theorem VIIL1.1 as a Lipschitz-like
property in the framework of convex sets in normed spaces. But1/7( is far from being
a distance. We thus consider the Funk, Thompson and Hilbert metrics (which were

introduced in [Fun29], [Tho63] and [Hil95] respe&ively) and establish the link with
Tc.

We restrit our framework to the case where C is an open convex subset of a
normed $pace (E, | - ||). Let x, y € C. If tc(x, y) < +o0, we can define b(x, y) to be
the following point:

b(x, y) = x +1c(x y)(y — %)

Note that since C is open, when b(x, y) exists, it is necessarily different from y. This
will be necessary to state the following definitions.

Definition VIII.2.1. Let Cbe an open convex subset of a normed space (E, | - ||). We
define

(i) the Funk weak metric:

ifte(x, y) < o0
0 otherwise

(ii) the Thompson pseudometric:

Te(x, y) = max (Fe(x, ), Fe(y, %)) ;
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(iii) the Hilbert pseudometric:

He(x, 3) = 5 (Fo( 3) + Fe(n, ).

Remark VIIL.2.2. Even if we will abusively call them mezrics, they fail to satisfy the
separation axiom in general. The Thompson and the Hilbert metrics are thus pseudo-
metrics. Moreover, the Funk metric not being symmetric, it actually is a weak metric.
The Thompson and the Hilbert metrics are respe&ively the max-symmetrization and
meanvalue-symmetrisation of the Funk metric. For a detailed presentation of these
notions, see e.g. [PTO7].

We now establish the link between t¢(x, y) and Fo(x, y).

Proposition VIIL.2.3. Lez C be an open convex subset of a normed space (E, | - |). For
every points x, y € C, the following equality holds:

Fc(x, y) = —log (1 - Tc(olc, y)) '

Proof Let x,y € C. If 1c(x, y) = +oo, the right-hand side of the above equality is
zero, as expeted. If 7 (x, y) < +oo, T (x, y) can be expressed with the norm. Since
by definition b(x, y) = x + t¢(x, y)(y — x), we have

|lx — b(x, y)| ly — b(x, y)|
Te(x, y) = ——220 and  te(x, y) —1 = L—"2220
o) =Ty e etey) ol
And thus: y
TR
ly — b(x, y)| Tc(%, y)
Therefore,

Fe(x, y) = —log (1 - TC<91C: y)) '

[]

By combining Theorem VIII.1.1 and the above proposition, we get the following
corollary.

Corollary VII1.2.4. Lez C an open convex subset of a normed space (E, || - ||) and f :
C — [m, M| be a convex function. Then, for all x, y € C, the following bounds hold.

(i) ~(M—=m) (1= ) < fly) = f(x) < (M —m) (1= e Fels))
(i) |f(y) — f(x)| < (M —m) (1—e Tel)).
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i) 1£(y) — F0)] < (M=) (1 e2et5).
Remark VIIIL.2.5. From (ii), by using the inequality ¢~

()= FO < (M= m) (1— e Telw)
< (M= m)Te(x y),

* > 1—s, we get:

and similarly for (iii). Every convex fun&ion f : C — [m, M] is thus (M — m)-
Lipschitz (resp. 2(M —m)-Lipschitz) with respe& to the Thompson metric (resp. the
Hilbert metric).

VIIL3. Optimality of the bounds

We show in this se¢tion that the bounds obtained in Theorem VIII.1.1 are optimal
in the following sense. For a given convex set, and for a given couple a points, there
is a fun&ion which attains the upper bound (resp. the lower bound). In other words,
forx, y € C:

M—m
. ?gﬁ,w (f(y)— flx) = (o)
i _ M—m
f:(f:gl[g%w (f(y)— f(x)) = )

In the proof of the following theorem, it will be very convenient to extend the
notion of convexity to fun&ions defined on C and taking values in R U {—oo} (and
not R U {+oo}). Obviously, the result according to which the upper envelope of two
convex fun&ions is also a convex fun&ion remains true.

Theorem VIIL3.1. Lezr m < M be two real numbers. Let C be a convex set of a real

vector Space E. For every couple of points (x, y) € C?, there exists a convex function f -
C — [m, M] (resp. g : C — [m, M]) such that the upper bound (resp. lower bound) of
Theorem VIII 1.1 is attained; in other words:

B M—m

f(y> _f(x> Tc(x, y)

(m‘ﬁ gly) —glx) = —Tl\f&, :cn)> '

Proof. Let x and y be two points in C, and let us construct a convex fun&ion [ :
C — [0, 1] satistying the equality. If t¢(x, y) = +oo, the bound is zero, and f = 0 is
adequate. From now on, we assume that T (x, y) < +oc. The idea of the construction
is the following. Let us first consider the line through x and y. We want f to increase
from 0 at x tolat the boundary in the direction of y, in an affine way; and to be equal to
zero in the other dire¢ion. Then, we will have to extend f toall Cinaconvex way. Let
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4 =1c(x, y)(y — x). Forevery z € C, let us define o(z) = sup {# > 0|z + ti € C}.
o clearly takes values in [0, +o]. Consider the following function.

$: C — [—oo,]]
z l—a(z).

Let us prove that ¢ is convex. Let z; and z, be two points in C and z3 = Az; + (1 —

_1 1 1 1 2 5
¢ 0 ¢ 3 2 35 ¢ 1
L ii L L C L
.—: B B B aC
X y )
| Tc(x’ J’)ﬁf
o)

Figure VIIL3. — The construction of ¢. The dotted curves are the level lines, whose
corresponding values are $pecified above.

M)z, (with % € (0,1)) a convex combination. By definition of o, if we take two real
numbers s; and s, such that 0 < 5; < o(2;) and 0 < 5, < o(2,), we have:

21+ 51 € C
Z2+52126C.

And thus, the convex combination of these two points with coefficients A and 1 — A

also belongs to C:
Mz + 511) + (1= 1) (=5 + s,4) € C.

This point can be rewritten with zs:
z3+ (As;+ (1—2)s,) s € C.

By definition of ¢(z3), we have As; + (1 — A)s, < o(z3). This inequality is true for
every s; < o(z;) and s, < z(s,). Consequently:

Ao(z)) + (1—N)o(z,) < o(z3).
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We can now prove the convexity inequality.

$(z3) =1—0(z3) <1—(ha(z)) + 1= Mo (z,))
=Ml=oa(z)) + 1=V =0(z))
= 2(z1) + (1= 1)d(z2).

We now choose f = max(¢, 0). Since ¢ < 1, f takes values in [0, 1]. Let us prove
that f satisfies the desired equality. Let us compute f(x) and f(y)

o(x) =sup{t > 0|x+ti € C}

=sup{t > 0|x+ttc(x, y)(y —x) € C}

_ 1 ) sup{t' > 0|x+¢t(y—x) € C}

Te(x, )
= el y)
(X, y) e
=1
Thus ¢(x) =1—o(x) = 0 and f(x) = max(0, 0) = 0. Similarly, we can prove:
_ Telx y) —1
7) el y)

and thus, ¢(y) = 1-0(y) = 1c(x, y) ' and f(y) = max(t¢(x, )1, 0) = 1 (%, )~
We finally get:

The construéion of ¢ is analogous. ]

VIII.4. The maximal subdifferential

In the case of a nonempty convex subset C C R”, and a given point x, € C,
we wonder what is the maximal subdifferential at x, (in the sense of inclusion) for
a func&tion f : C — [m, M]. We will prove that there is a maximal one, and will
express it in terms of the subdifferential of a translation of the Minkowski gauge. For
cach xy € C, we define g¢ , : C — [0,1] by

gC.x,(x) = inf{h > 0[x —x, € M(C—x)}.

This funcion is obviously well-defined, and can be seen as a Minkowski gauge
centered in x; and restricted to C. It is well-known fact that the Minkowski gauge is
a convex fun&ion. So is this one.
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Theorem VIIL.4.1. Lez C be a nonempty convex subset of R” and x € C. We have

max 0f(x)=M—m)dgc .(x),
omax | 0f(x) = (M= m)dge. ()

[feonvex
where the maximum is understood in the sense of inclusion.
Proof. Letus first relate g¢ . to 7. Let xp, x € C. We have
gC.x,(x) = inf{d > 0]x — x5 € MC—x0)}

-1
:sup{t>0|x—x0 € %(C—xo)}
=sup{t > 0|xg+t(x —xq) € C}_l
1

(%0, %)

Let us prove the result in the case » = 0 and M = 1, from which the general
case follows immediately. Let f : C — [0, 1] be a convex function and x, € C. Let
us show that 8 f(x,) C 9 gC.x, (%) This is true if 8 f(x) is empty. Otherwise, let

{ € 3f(xq). Forevery x € C, we have

(U] — x0) < f(x) — f(0) < —
T(xg, X)

= gC,xO (.XI) = gC,xO (x) - gC,xO <x0>’

where we used Theorem VIIL1.1 for the second inequality. If x ¢ C, the equality also
holds, since g¢ .. (x) = +oo. We thus have 8 f(xg) C 9gc,, (x9). We conclude by

saying that g¢ ., isa convex funétion on C with values in [0, 1]. []



APPENDIX A
CONCENTRATIONINEQUALITIES

Proposition A.0.1 (Hoeffding—Azuma for super-martingale
differences [Hoe63, Azu67]). Let (X,),s be a super-martingale difference sequence
with respect to a filtration (§,),~:

E[X,|9,4]<0, t>0.
Let M > 0 and we assume that | X,| < M almost-surely for all t > 1. Then, for alle > 0

and'T > 1,
1 & 2T
P[Tgxt>€] <CXP <—m)

Proposition A.0.2 (Corollary 3.5 in [KS91]). Lez (U,),- be a sequence of martingale
differences in RY, bounded almost-surely by M > 0:

ve>l [Uf, <M, as
Then, for everye > 0 and T > 1,

1 T
72U

Te

2
> € < ZCXP (-m) .

2 .
Corollary A.0.3. Under the assumptions of Proposition A.0.2, we bhave:

Y

t=1

<M

>—II
I

2

Proof 'The result follows from Proposition A.0.2 by integrating the tail of the distri-
bution:

_ —+ oo o0 2 2
E(|0d,] = [ B[I0],> ¢ dec [ 20T d

_zf e (T/4M%) dg — M[

205
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[]

The following Bernstein-like inequality is proved in [Pin94]—see also [TY14,
Corollary A.2].

Proposition A.0.4. Let (X,),> be a martingale difference sequence in a Hilbert space
with respect to a filtration (§,),~. Suppose that | X,| < M almost-surely, and

—

S NE[IX %] < V.

t=1

Then,
X, ¢
< — .
P max Z S Zexp ( 2TV+2Ma/3>
Corollary A.0.5. Under the assumptions of Proposition A.0.4,
1 & V  4M
T 4% T+ 3T

Proof” Let A > 0 to be chosen later.
_ +00 _
E[Xd] = [ P[[Xe]>] e
0
+oo 22’1"2
S Zf xp (_ZVT n 2MeT/3> de
+oo 2T
_2f CXP( 2V + 2Me /3) de
U T d
( of, o (‘zsw/A T M/3>) )
Foo el
=2 (A e (g ) )

(s [5G+ o))

4V M
2A+T<A+3>.

Choosing A = /2V /T gives:

- V 4M
B [[Re]] < 42/ 5 + T




207







Bibliography

[AB09] Jean-Yves Audibert and Sébastien Bubeck. Minimax policies for adver-
sarial and stochastic bandits. In Proceedings of the 22nd Annual Confer-
ence on Learning Theory (COLT), pages 217-226, 2009.

[ABH11] Jacob Abernethy, Peter L. Bartlett, and Elad Hazan. Blackwell ap-
proachability and low-regret learning are equivalent. In JMLR: Work-
shop and Conference Proceedings (COLT), volume 19, pages 27-46,
2011.

[ABL13] Jean-Yves Audibert, Sébastien Bubeck, and Gébor Lugosi. Regret in
online combinatorial optimization. Mathematics of Operations Re-

search, 39(1):31-45, 2013.

[ACBFS02] Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert E. Schapire.
The nonstochastic multiarmed bandit problem. SLAM Journal on Com-
puting, 32(1):48-77,2002.

[ACBGO2] Peter Auer, Nicolo Cesa-Bianchi, and Claudio Gentile. Adaptive and
self-confident on-line learning algorithms. Journal of Computer and Sys-
tem Sciences, 64(1):48-75, 2002.

[AHRO8] Jacob Abernethy, Elad Hazan, and Alexander Rakhlin. Competing in
the dark: An efhcient algorithm for bandit linear optimization. In Pro-
ceedings of the 2151 Annual Conference on Learning Theory (COLT), pages
263-274,2008.

[AHR12] Jacob Abernethy, Elad Hazan, and Alexander Rakhlin. Interior-point
methods for full-information and bandit online learning. IEEE Trans-
altions on Information Theory, 58(7):4164-4175,2012.

[AK04] Baruch Awerbuch and Robert D. Kleinberg. Adaptive routing with
end-to-end feedback: Distributed learning and geometric approaches.
In Proceedings of the Thirty-sixth Annual ACM Symposium on Theory of
Computing, pages 45-53. ACM, 2004.

209



210

BIBLIOGRAPHY

[ALST14] Jacob Abernethy, Chansoo Lee, Abhinav Sinha, and Ambuj Tewari.

Online linear optimization via smoothing. In JMLR: Workshop and
Conference Proceedings (COLT), volume 35, pages 807-823, 2014.

[ALT16] Jacob Abernethy, Chansoo Lee, and Ambuj Tewari. Perturbation tech-

[AMSS]

[AYPS12]

[Azu67]

[BCB12]

[BDH"08]

[Ber73]

[BF13]

[BFP+14]

niques in online learning and optimization. In Tamir Hazan, George
Papandreou, and Daniel Tarlow, editors, Perturbations, Optimization,
and Statistics, Neural Information Processing Series, chapter 8. MIT
Press, 2016. to appear.

Robert J. Aumann and Michael Maschler. Game theoretic analysis of
a bankruptcy problem from the Talmud. Journal of Economic Theory,
36(2):195-213, 1985.

Yasin Abbasi-Yadkori, David Pal, and Csaba Szepesvari. Online-to-
confidence-set conversions and application to sparse stochastic bandits.
In JMLR: Workshop and Conference Proceedings (AISTATS), volume 22,
pages 1-9,2012.

Kazuoki Azuma. Weighted sums of certain dependent random vari-
ables.  Tohoku Mathematical Journal, Second Series, 19(3):357-367,
1967.

Sébastien Bubeck and Nicolo Cesa-Bianchi. Regret analysis of stochas-
ticand nonstochastic multi-armed bandit problems. Machine Learning,
5(1):1—122, 2012.

Peter L. Bartlett, Varsha Dani, Thomas Hayes, Sham Kakade, Alexan-
der Rakhlin, and Ambuj Tewari. High-probability regret bounds for
bandit online linear optimization. In Proceedings of the 2151 Annual
Conference on Learning Theory (COLT), 2008.

Dimitri P. Bertsekas. Stochastic optimization problems with nondif-
ferentiable cost fun&tionals. Journal of Optimization Theory and Appli-
cations, 12(2):218-231, 1973.

Michel Benaim and Mathieu Faure. Consistency of vanishingly smooth
fititious play. Mathematics of Operations Research, 38(3):437-450,
2013.

Gébor Bartdk, Dean P Foster, Ddvid Pil, Alexander Rakhlin, and
Csaba Szepesvéri. Partial monitoring — classification, regret bounds,
and algorithms. Mathematics of Operations Research, 39(4):967-997,
2014.



BIBLIOGRAPHY 211

[BHS06] Michel Benaim, Josef Hofbauer, and Sylvain Sorin. Stochastic approxi-
mations and differential inclusions. Part I1: Applications. Mathematics
of Operations Research, 31(4):673-695, 2006.

[BL10] Jonathan M. Borwein and Adrian S. Lewis. Convex analysis and nonlin-
ear optimization: theory and examples. Springer, 2010.

[Bla54] David Blackwell. Controlled random walks. In Proceedings of the Inter-
national Congress of Mathematicians, volume 3, pages 336-338, 1954.

[Bla56] David Blackwell. An analogof the minimax theorem for ve&tor payoffs.
Pacific Journal of Mathematics, 6(1):1-8, 1956.

[BMO05] Avrim Blum and Yishay Mansour. From external to internal regret. In

Learning Theory, pages 621-636. Springer, 2005.

[BMS14] Andrey Bernstein, Shie Mannor, and Nahum Shimkin. Opportunistic
approachability and generalized no-regret problems. AMathematics of
Operations Research, 39(4):1057-1083, 2014.

[BPS10] Gdabor Bartdk, David Pal, and Csaba Szepesvari. Toward a classifica-
tion of finite partial-monitoring games. In Proceedings of the 215 Inter-
national Conference on Algorithmic Learning Theory (ALT), pages 224~
238. Springer, 2010.

[Bre67] Lev M. Bregman. The relaxation method of finding the common point
of convex sets and its application to the solution of problems in convex
programming. USSR Computational Mathematics and Mathematical
Physics, 7(3):200-217, 1967.

[BT03] AmirBeck and Marc Teboulle. Mirror descent and nonlinear projected
subgradient methods for convex optimization. Operations Research Let-

ters, 31(3):167-175, 2003.

[Bub11] Sébastien Bubeck. Introduction to Online Optimization: Lecture Notes.
Princeton University, 2011.

[Bub15] Sébastien Bubeck. Convex optimization: Algorithms and complexity.
Foundations and Trends in Machine Learning, 8(3-4):231-357, 2015.

[BV04] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cam-
bridge university press, 2004.



212

BIBLIOGRAPHY

[CBY7]

[CBFH*97]

[CBLO3]

[CBLO6]

[CBLS05]

[CBLS06]

[CH15]

[CM12]

[CZ92]

[DH06]

[DKC13]

Nicolo Cesa-Bianchi. Analysis of two gradient-based algorithms for
on-line regression. In Proceedings of the Tenth Annual Conference on

Computational Learning Theory (COLT), pages 163-170. ACM, 1997.

Nicolo Cesa-Bianchi, Yoav Freund, David Haussler, David P. Helm-
bold, Robert E. Schapire, and Manfred K. Warmuth. How to use expert
advice. Journal of the ACM, 44(3):427-485, 1997.

Nicolo Cesa-Bianchi and Gabor Lugosi. Potential-based algorithms
in on-line prediction and game theory. Machine Learning, 51(3):239-
261,2003.

Nicolo Cesa-Bianchi and Gabor Lugosi.  Prediction, learning, and
games. Cambridge University Press, 2006.

Nicolo Cesa-Bianchi, Gdbor Lugosi, and Gilles Stoltz. Minimizing re-
gret with label efficient predi&ion. IEEE Transactions on Information
Theory, 51(6):2152-2162, 2005.

Nicolo Cesa-Bianchi, Gébor Lugosi, and Gilles Stoltz. Regret min-
imization under partial monitoring. Mathematics of Operations Re-

search, 31(3):562-580, 2006.

Alon Cohen and Tamir Hazan. Following the perturbed leader for on-
line structured learning. In JMLR: Workshop and Conference Proceedings
(ICML), volume 37, pages 1034-1042, 2015.

Alexandra Carpentier and Rémi Munos. Bandit theory meets com-
pressed sensing for high dimensional stochastic linear bandit. In Inzer-
national Conference on Artificial Intelligence and Statistics, pages 190—
198, 2012.

Yair Censor and Stavros Andrea Zenios. Proximal minimization algo-
rithm with D-functions. Journal of Optimization Theory and Applica-
tions, 73(3):451-464, 1992.

Varsha Dani and Thomas P. Hayes. Robbing the bandit: Less regret in
online geometric optimization against an adaptive adversary. In Pro-
ceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete
Algorithm, pages 937-943. Society for Industrial and Applied Mathe-
matics, 2006.

Josip Djolonga, Andreas Krause, and Volkan Cevher.  High-
dimensional gaussian process bandits. In Advances in Neural Informa-
tion Processing Systems (NIPS), volume 26, pages 1025-1033, 2013.



BIBLIOGRAPHY 213

[DLN13] Luc Devroye, Gabor Lugosi, and Gergely Neu. Prediction by random-
walk perturbation. In JMLR: Workshop and Conference Proceedings
(COLT), volume 30, pages 460-473,2013.

[FKMO05] Abraham D. Flaxman, Adam Tauman Kalai, and H. Brendan McMa-
han. Online convex optimization in the bandit setting: gradient de-
scent without a gradient. In Proceedings of the Sixteenth Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 385-394. Society for
Industrial and Applied Mathematics, 2005.

[FL95] Drew Fudenberg and David K. Levine. Consistency and cautious fic-
titious play. Journal of Economic Dynamics and Control, 19(5):1065-
1089, 1995.

[FL98] Drew Fudenberg and David K. Levine. Zbe theory of learning in games,
volume 2. MIT press, 1998.

[FL99] Drew Fudenberg and David K. Levine. Conditional universal consis-
tency. Games and Economic Bebhavior, 29(1):104-130, 1999.

[Fos99] Dean P. Foster. A proof of calibration via Blackwell’s approachability
theorem. Games and Economic Behavior, 29(1):73-78, 1999.

[ES97] Yoav Freund and Robert E. Schapire. A decision-theoretic generaliza-
tion of on-line learning and an application to boosting. Journal of Com-

puter and System Sciences, 55(1):119-139, 1997.

[Fun29] Paul Funk. Uber geometrien, bei denen die geraden die kiirzesten sind.
Mathematische Annalen, 101(1):226-237, 1929.

[EV97] Dean P. Foster and Rakesh V. Vohra. Calibrated learningand correlated
equilibrium. Games and Economic Behavior, 21(1):40-55, 1997.

[(Gal78] Janos Galambos. Tbe asymptotic theory of extreme order Statistics. John
Wiley, New York, 1978.

[Gerl3] Sébastien Gerchinovitz. — Sparsity regret bounds for individual se-
quences in online linear regression. 7The Journal of Machine Learning

Research, 14(1):729-769, 2013.

[GLSO01] Adam J. Grove, Nick Littlestone, and Dale Schuurmans. General con-
vergence results for linear discriminant updates. Machine Learning,

43(3):173-210, 2001.



214 BIBLIOGRAPHY

[Gol64] Alan A. Goldstein. Convex programming in Hilbert $pace. Bulletin of
the American Mathematical Society, 70(5):709-710, 1964.

[Gor99] Geoffrey J. Gordon. Regret bounds for predi¢tion problems. In Pro-
ceedings of the Twelfth Annual Conference on Computational Learning
Theory (COLT), pages 29-40. ACM, 1999.

[GW98] Claudio Gentile and Manfred K. Warmuth. Linear hinge loss and
average margin. In Advances in Neural Information Processing Systems

(NIPS), volume 11, pages 225-231, 1998.

[Han57] James Hannan. Approximation to Bayes risk in repeated play. Contri-
butions to the Theory of Games, 3(97-139):2, 1957.

[Haz12] Elad Hazan. The convex optimization approach to regret minimiza-
tion. In S. Nowozin S. Sra and S. Wrigh, editors, Optimization for Ma-
chine Learning, pages 287-303. MIT press, 2012.

[Hil95] David Hilbert. Uber die gerade linie als kiirzeste verbindung zweier
punkte. Mathematische Annalen, 46(1):91-96, 1895.

[HKW10] Elad Hazan, Satyen Kale, and Manfred K. Warmuth. Learning rota-
tions with little regret. In Proceedings of the 23rd Conference on Learning
Theory (COLT), pages 144—154, 2010.

[HMCO00] Sergiu Hartand Andreu Mas-Colell. A simple adaptive procedure lead-
ing to correlated equilibrium. Economerrica, 68:1127-1150, 2000.

[HMCO1] Sergiu Hart and Andreu Mas-Colell. A general class of adaptive strate-
gies. Journal of Economic Theory, 98(1):26-54, 2001.

[Hoe63] Wassily Hoeffding.  Probability inequalities for sums of bounded
random variables.  Jowrnal of the American Statistical Association,

58(301):13-30, 1963.

[HP04] Marcus Hutter and Jan Poland. Predi&ion with expert advice by fol-
lowing the perturbed leader for general weights. In Proceedings of the
15th International Conference on Algorithmic Learning Theory (ALT),
pages 279-293. Springer, 2004.

[HS02] Josef Hofbauer and William H. Sandholm. On the global convergence
of §tochastic fittitious play. Econometrica, 70(6):2265-2294, 2002.



BIBLIOGRAPHY 215

[HW09] David P. Helmbold and Manfred K. Warmuth. Learning permutations
with exponential weights. Tbe Journal of Machine Learning Research,
10:1705-1736,2009.

[KM14] Joon Kwon and Panayotis Mertikopoulos. A continuous-time ap-
proach to online optimization. 47Xiv:1401.6956, 2014.

[Koh75] E. Kohlberg. Optimal strategies in repeated games with incomplete
information. International Journal of Game Theory, 4(1):7-24, 1975.

[KP16a] Joon Kwon and Vianney Perchet. Blackwell approachability with par-
tial monitoring: Optimal convergence rates. 2016.

[KP16b] Joon Kwon and Vianney Perchet. Gains and losses are fundamentally
different in regret minimization: the sparse case. arXiv:1511.08405,
2016.

[KS91] Olav Kallenberg and Rafal Sztencel. Some dimension-free features
of ve&tor-valued martingales. Probability Theory and Related Fields,
88(2):215-247, 1991.

[KSST12] Sham M. Kakade, Shai Shalev-Shwartz, and Ambuj Tewari. Regular-
ization techniques for learning with matrices. Zbe Journal of Machine
Learning Research, 13(1):1865-1890, 2012.

[KV05] Adam Kalai and Santosh Vempala. Efficient algorithms for online de-
cision problems. Journal of Computer and System Sciences, 71(3):291-
307, 2005.

[KW95] Jyrki Kivinen and Manfred K. Warmuth. Additive versus exponenti-
ated gradient updates for linear prediction. In Proceedings of the Twenty-

Seventh Annual ACM Symposium on Theory of Computing, pages 209—
218. ACM, 1995.

[KW97] Jyrki Kivinen and Manfred K. Warmuth. Exponentiated gradient ver-
sus gradient descent for linear predictors. Information and Computa-

tion, 132(1):1-63, 1997.

[KWO01] Jyrki Kivinen and Manfred K. Warmuth. Relative loss bounds for mul-
tidimensional regression problems. Machine Learning, 45(3):301-329,
2001.

[KWK10] Wouter M Koolen, Manfred K. Warmuth, and Jyrki Kivinen. Hedging
structured concepts. In Proceedings of the 23rd Conference on Learning
Theory (COLT), pages 93-105, 2010.



216 BIBLIOGRAPHY

[Kwol4] Joon Kwon. A universal bound on the variations of bounded convex
fun&ions. arXiv:1401.2104, 2014.

[Leh03] Ehud Lehrer. A wide range no-regret theorem. Games and Economic
Behavior, 42(1):101-115, 2003.

[LMS08] Gébor Lugosi, Shie Mannor, and Gilles Stoltz. Strategies for predic-
tion under imperfe& monitoring. Mathematics of Operations Research,
33(3):513-528, 2008.

[LP66] Evgeny S. Levitin and Boris T. Polyak. Constrained minimization
methods. USSR Compurational Mathematics and Mathematical Physics,
6(5):1-50, 1966.

[LR85] Tze LeungLai and Herbert Robbins. Asymptotically efficient adaptive
allocation rules. Advances in Applied Mathematics, 6(1):4-22, 1985.

[LS07] Ehud Lehrer and Eilon Solan. Learning to play partially-specified equi-
librium. Levine’s Working Paper Archive, 2007.

[LW94] Nick Littlestone and Manfred K. Warmuth. The weighted majority
algorithm. Information and computation, 108(2):212-261, 1994.

[MCWGY95] Andreu Mas-Colell, Michael Dennis Whinston, and Jerry R. Green.
Microeconomic theory. Oxford University Press, 1995.

[Mor62] Jean-Jacques Moreau. Décomposition orthogonale d’un espace hilber-
tien selon deux cones mutuellement polaires.  Comptes rendus de

[Académie des Sciences, 255:238-240, 1962.

[MPS11] Shie Mannor, Vianney Perchet, and Gilles Stoltz. Robust approach-
ability and regret minimization in games with partial monitoring. In
JMLR: Workshop and Conference Proceedings (COLT), volume 19, pages
515-536,2011.

[MPS13] Shie Mannor, Vianney Perchet, and Gilles Stoltz. A primal condition
for approachability with partial monitoring. Journal of Dynamics and
Games, 1(3):447-469, 2013.

[MPS14] Shie Mannor, Vianney Perchet, and Gilles Stoltz. Set-valued approach-
ability and online learning with partial monitoring. The Journal of Ma-
chine Learning Research, 15(1):3247-3295, 2014.



BIBLIOGRAPHY 217

[MS03] Shie Mannor and Nahum Shimkin. On-line learning with imperfect
monitoring. In Learning Theory and Kernel Machines, pages 552-566.
Springer, 2003.

[MS10] Shie Mannorand Gilles Stoltz. A geometric proof of calibration. Mazh-
ematics of Operations Research, 35(4):721-727,2010.

[NB13] Gergely Neu and Gébor Barték. An efficient algorithm for learn-
ing with semi-bandit feedback. In Proceedings of the 24th Interna-
tional Conference on Algorithmic Learning Theory (ALT), pages 234—
248. Springer, 2013.

[Nes09] Yurii Nesterov. Primal-dual subgradient methods for convex problems.
Mathematical programming, 120(1):221-259, 2009.

[NJLS09] Arkadi Nemirovski, Anatoli Juditsky, Guanghui Lan, and Alexander
Shapiro. Robust stochastic approximation approach to stochastic pro-
gramming. SIAM Journal on Optimization, 19(4):1574-1609, 2009.

[NY83] Arkadi Nemirovski and David B. Yudin.  Problem Complexity and
Method Efficiency in Optimization. Wiley Interscience, 1983.

[OCCBI15] Francesco Orabona, Koby Crammer, and Nicolo Cesa-Bianchi. A gen-
eralized online mirror descent with applications to classification and
regression. Machine Learning, 99(3):411-435,2015.

[Per10] Vianney Perchet. Approchabilité, calibration et regrex dans les jeux a infor-
mations partielles. PhD thesis, Université Pierre-et-Marie-Curie, 2010.

[Perlla] Vianney Perchet. Approachability of convex sets in games with par-
tial monitoring.  Journal of Optimization Theory and Applications,
149(3):665-677,2011.

[Per11b] Vianney Perchet. Internal regret with partial monitoring: Calibration-
based optimal algorithms. 7he Journal of Machine Learning Research,
12:1893-1921, 2011.

[Per14] Vianney Perchet. Approachability, regret and calibration: Implications
and equivalences. Journal of Dynamics and Games, 1(2):181-254,2014.

[Per15] Vianney Perchet. Exponential weight approachability, applications to
calibration and regret minimization. Dynamic Games and Applications,

5(1):136-153, 2015.



218 BIBLIOGRAPHY

[Pin94] Iosif Pinelis. Optimum bounds for the distributions of martingales in
Banach spaces. The Annals of Probability, 22(4):1679-1706, 1994.

[PM13] Vianney Perchet and Shie Mannor. Approachability, fast and slow. In
JMLR: Workshop and Conference Proceedings (COLT), volume 30, pages
474-488,2013.

[PQ14] Vianney Perchet and Marc Quincampoix. On a unified framework for
approachability with full or partial monitoring. Mathematics of Opera-
tions Research, 40(3):596-610, 2014.

[PSO01] Antonio Piccolboni and Christian Schindelhauer. Discrete predic-
tion games with arbitrary feedback and loss. In Proceedings of the 14th
Annual Conference on Computational Learning Theory (COLT), pages
208-223. Springer, 2001.

[PT07] Athanase Papadopoulos and Marc Troyanov. Weak metrics on Eu-
clidean domains. JP Journal of Geometry and Topology, 7(1):23-44,
2007.

[Rob52] Herbert Robbins. Some aspects of the sequential design of experiments.
Bulletin of the American Mathematical Society, 58(5):527-535, 1952.

[Roc70] R. Tyrrell Rockafellar. Convex Analysis. Princeton University Press,
1970.

[RST11] Alexander Rakhlin, Karthik Sridharan, and Ambuj Tewari. Online
learning: Beyond regret. In JMLR: Workshop and Conference Proceed-
ings (COLT), volume 19, pages 559-594, 2011.

[RT09] Alexander Rakhlin and Ambuj Tewari. Lecture notes on online learn-
ing. 2009.

[Rus99] Aldo Rustichini. Minimizing regret: The general case. Games and Eco-
nomic Behavior, 29(1):224-243, 1999.

[RW98] R. Tyrrell Rockafellar and Roger J-B Wets.  Variational analysis.
Springer-Verlag, Berlin, 1998.

[RZ96] Jorg Rambau and Giinter M. Ziegler. Proje&ions of polytopes and
the generalized Baues conje¢ture. Discrete & Computational Geometry,
16(3):215-237, 1996.

[Shil5] Nahum Shimkin. An online convex optimization approach to Black-
well’s approachability. a7Xiv:1503.00255,2015.



BIBLIOGRAPHY 219

[SLO5] Gilles Stoltz and Gébor Lugosi. Internal regret in on-line portfolio se-
le&ion. Machine Learning, 59(1-2):125-159, 2005.

[Sle62] David Slepian. The one-sided barrier problem for gaussian noise. Be//
System Technical Journal, 41(2):463-501, 1962.

[Sor09] Sylvain Sorin.  Exponential weight algorithm in continuous time.
Mathematical Programming, 116(1-2):513-528, 2009.

[Spi02] Xavier Spinat. A necessary and sufficient condition for approachability.
Mathematics of Operations Research, 27(1):31-44, 2002.

[SS07] Shai Shalev-Shwartz. Online learning: Theory, algorithms, and applica-
tions. PhD thesis, The Hebrew University of Jerusalem, 2007.

[SS11] Shai Shalev-Shwartz. Online learning and online convex optimization.
Foundations and Trends in Machine Learning, 4(2):107-194, 2011.

[Tho63] A. C. Thompson. On certain contra&tion mappings in a partially or-
dered vecror space. Proceedings of the American Mathematical Society,
14(3):438-443, 1963.

[TWO03] Eiji Takimoto and Manfred K. Warmuth. Path kernels and multiplica-
tive updates. The Journal of Machine Learning Research, 4:773-818,
2003.

[TY14] Pierre Tarres and Yuan Yao. Online learning as stochastic approxima-
tion of regularization paths: optimality and almost-sure convergence.
IEEE Transaltions on Information Theory, 60(9):5716-5735,2014.

[VEKW14] Tim Van Erven, Wojciech Kotlowski, and Manfred K. Warmuth. Fol-
low the leader with dropout perturbations. In JMLR: Workshop and
Conference Proceedings (COLT), volume 35, pages 949-974, 2014.

[Vov90] Volodimir G. Vovk. Aggregating strategies. In Proceedings of the Third
Workshop on Computational Learning Theory (COLT), pages 371-383.
Morgan Kaufmann, 1990.

[Vov98] Vladimir G. Vovk. A game of predi¢tion with expert advice. Journal of
Computer and System Sciences, 2(56):153-173, 1998.

[WJ97] Manfred K. Warmuth and Arun K. Jagota. Continuous and discrete-
time nonlinear gradient descent: Relative loss bounds and convergence.
In Electronic Proceedings of the Sth International Symposium on Artificial
Intelligence and Mathematics, 1997.



220 BIBLIOGRAPHY

[WKO08] Manfred K. Warmuth and Dima Kuzmin. Randomized online PCA
algorithms with regret bounds that are logarithmic in the dimension.
Journal of Machine Learning Research, 9(10):2287-2320, 2008.

[Zin03] Martin Zinkevich. Online convex programming and generalized in-
finitesimal gradient ascent. In Proceedings of the Twentieth International
Conference on Machine Learning (ICML), 2003.



Index

e?-regularizer, 40, 56, 99

adversarial, 17-19, 32, 173

approachability, 11,12, 17,21,71,78, 85,
89,131-133,135, 139, 159, 160,
162

approachable, 19, 20, 131, 134, 135, 135,
136, 139, 140, 153

B-set, 20,76,76,78,79, 82,82, 86,90,91
bandit, 7,8, 11, 12,17, 19, 61, 64, 66,97,
99,106, 119, 121
Bernoulli distribution, 122, 124, 125
Bernstein’s inequality, 146, 147, 155, 159,
206,206
bipolar theorem, 73
Blackwell
condition, 20, 76, 140
Strategy, 11,20,78,79, 81, 158
Borel-Cantelli lemma, 52, 84, 159, 174
Bregman
divergence, 24, 25, 34, 34, 42, 43, 54,
69,78,120, 176, 184
projection, 26, 176, 196
Bregman Proximal Minimization

Algorithm, 25

calibration, 21, 132

central limit theorem, 110

concentration inequality, 205

concentration inequality, 50-52, 84, 100,
152, 155, 156, 159, 205, 206

cone

polar, 72, 74,75

convex
cone, 21,72,72-76,79, 82,135,139,
140, 148, 150, 157, 158, 165, 166
losses, 11, 44
optimisation, 11, 21, 26, 45, 170,
171, 189,191, 192
convexity
strong, 25, 31, 33, 34, 34-43, 45, 46,
52,53, 56,58-60, 69, 77, 81, 83,
87,101, 102, 159, 178, 179, 182,
184, 186, 187, 189, 190,
192-195

domain, 33, 172
doubling trick, 99, 111, 157, 169, 170,

184
dual
norm, 37,53,75, 101, 102,171, 173,
179, 186

space, 24-26,31,72,73
Dual Averaging, 26

efficiency, 89, 92, 131, 133, 157, 159
entropic
regularizer, 39, 92, 176, 179
entropy, 39, 92, 176,179
estimator, 62-64, 119, 141, 146, 148,
153-155, 160
Euclidean
projection, 21, 40, 45, 79, 135, 141,
149,157,176
regularizer, 40, 40, 45, 79, 159, 176,
179, 189, 190, 193

221



222

INDEX

Euler scheme, 22

EXP3,7,11,61, 62,63

experts, 18, 50, 53, 60, 61, 65, 66, 85, 89,
98

exploration, 129, 153, 158

Exponential Weights Algorithm, 7, 11,
49,51,53,53-55,57, 61, 66, 85,
88, 98-101, 104, 105, 111, 112,
169, 185, 186

Fenchel’s inequality, 42

Fi¢titious Play, 32

first-order oracle, 21

flag, 134, 134, 137, 146, 155, 160

Follow the Leader, 41, 60

Follow the Perturbed Leader, 7, 11, 65,
65, 66

Follow the Regularized Leader, 27, 33,
170,171,177, 184, 189

full information, 12, 17, 19, 61, 84, 113,
116, 131-133, 135, 139, 140

Funk metric, 197, 199, 200

generator, 71, 74, 75, 76, 78, 82, 85, 86,
91

Greedy Mirror Descent, 24, 25, 27, 64,
99,119, 195

Hessian, 36, 40, 69

Hilbert metric, 8, 12, 197, 199-201

Hoeflding—Azuma inequality, 51, 52,
84,100, 110, 152, 155, 156, 159,
205, 205

Implicitly Normalized Forecaster, 64
improvement for small losses, 55, 104
inequality
Bernstein, 146, 147, 155, 159, 206,
206
concentration, 50-52, 84, 100, 152,
155, 156, 159, 205, 206
Fenchel’s, 42

Hoeftding—Azuma, 51, 52, 84, 100,
110,152,155, 156, 159,205, 205
Jensen, 127, 190
Pinsker, 125, 127
internal regret, 11,71, 89,93, 93, 132
invariant measure, 90, 92

Jensen’s inequality, 127, 190
Kullback-Leibler divergence, 122, 125

Lazy Mirror Descent, 25-27

Legendre—Fenchel transform, 24, 33, 67,
75,101

loss func&ion, 19, 44, 45, 175, 188, 189

lower bound, 104, 106

martingale, 52, 146, 151, 155, 156, 192,
205, 206
metric
Thompson, 197, 199-201
minimax optimality, 66, 84, 85, 89
minimax regret, 12, 19, 50, 51, 103, 119,
121
Minkowski gauge, 203
Moreau
decomposition theorem, 73
theorem, 67

no-regret, 32, 41, 52, 53, 56, 57, 59-61,
63, 88, 89, 92, 132, 169-171,
178,183,187, 188

oblivious, 32,119

online
combinatorial optimization, 66, 71,
84, 84
convex optimization, 19, 44, 174,
188
linear optimization, 7, 11, 31, 31, 60,
173
oracle

first-order, 21



INDEX

223

orthant, 71,75, 136, 142, 153, 160

partial monitoring, 12, 17,71, 131-133,
135

Pinsker’s inequality, 125, 127

polar cone, 72, 74,75

polytopial decomposition, 136, 160, 161

portmanteau lemma, 110

potential, 21,71,78, 119

primal ¢pace, 24, 25, 31

Proje¢ted Gradient Descent, 23, 24

Proximal Algorithm, 22

realized regret, 50, 50, 51, 53, 59, 61, 62,
174, 187
regret, 18, 32
bound, 41, 52-54, 56-59, 63, 88,
92,101, 104, 105,112,117, 120,
180, 182184, 187, 188
internal, 11,71, 89,93, 93, 132
minimax, 12, 19, 50, 51, 103, 119,
121
no, 32, 41, 52, 53, 56, 57, 59-61, 63,
88, 89, 92, 132, 169-171, 178,
183, 187, 188
realized, 50, 50, 51, 53, 59, 61, 62,
174, 187
swap, 8, 11,71, 89,90, 92
regularizer, 27, 33, 33, 34, 37-41,
43-46, S1, 53, 56, 58-60,
66-69,76,79, 82,87, 88,91, 92,
99, 101-104, 112, 115, 117,
159, 171, 175-177, 179, 180,
182, 184, 187, 189, 190, 192,
193,196
02, 40, 56, 99
entropic, 39, 92, 176, 179
Euclidean, 40, 40, 45, 79, 159, 176,
179, 189, 190, 193
relative entropy, 122, 125

signal, 17, 131, 132, 134, 134, 135, 141,
153
simplex, 38, 39, 49, 51, 66, 85, 86, 133,
172,176, 186
Sion’s minimax theorem, 68, 75, 136
Slepian’s lemma, 107, 108
smooth argmax, 78
Smooth Fictitious Play, 7, 11, 49, 58-60,
170, 187
softmax, 78
$pace
primal, 24, 25, 31
sparse payoft ve¢tors, 49, 55, 57, 64, 98,
102-104
Step-size, 22, 23, 25, 45-47, 170, 171,
189-191
$tochastic
matrix, 92
§trong
convexity, 25, 31, 33, 34, 34-43, 45,
46,52, 53, 56, 58-60, 69, 77, 81,
83, 87, 101, 102, 159, 178, 179,
182, 184, 186, 187, 189, 190,
192-195
smoothness, 178, 179
super-martingale, 83, 158, 159, 205
support fun&ion, 75,75, 91
swap regret, 8, 11,71, 89, 90, 92

target set, 11, 12, 19, 71-73, 90, 131,
132, 136, 139, 140, 143, 153,
154, 158, 160

Thompson metric, 197, 199-201

Vanishingly Smooth Fictitious Play, 7, 11,
49,59, 60, 170, 187, 188



	Introduction
	First part
	I Mirror Descent for regret minimization
	I.1 Core model
	I.2 Regularizers
	I.3 Mirror Descent strategies
	I.4 Convex losses
	I.5 Convex optimization

	II Experts setting
	II.1 Model
	II.2 Mirror Descent strategies
	II.3 Exponential Weights Algorithm
	II.4 Sparse payoff vectors
	II.5 Smooth Fictitious Play
	II.6 Vanishingly Smooth Fictitious Play
	II.7 On the choice of parameters
	II.8 Multi-armed bandit problem

	III Follow the Perturbed Leader
	III.1 Presentation
	III.2 Historical background
	III.3 Reduction to Mirror Descent
	III.4 Discussion

	IV Mirror Descent for approachability
	IV.1 Model
	IV.2 Closed convex cones and support functions
	IV.3 Mirror Descent strategies
	IV.4 Smooth potential interpretation
	IV.5 Blackwell's strategy
	IV.6 Finite action set
	IV.7 Online combinatorial optimization
	IV.8 Internal and swap regret


	Second part
	V Sparse regret minimization
	V.1 Introduction
	V.2 When outcomes are gains to be maximized
	V.3 When outcomes are losses to be minimized
	V.4 When the sparsity level s is unknown
	V.5 The bandit setting

	VI Approachability with partial monitoring
	VI.1 Introduction
	VI.2 The game
	VI.3 Approachability
	VI.4 Construction of the strategy
	VI.5 Main result
	VI.6 Outcome-dependent signals
	VI.7 Discussion
	VI.8 Proofs of technical lemmas

	VII Continuous-time Mirror Descent
	VII.1 Introduction
	VII.2 The model
	VII.3 Regularizer functions, choice maps and learning strategies
	VII.4 The continuous-time analysis
	VII.5 Regret minimization in discrete time
	VII.6 Links with existing results
	VII.7 Discussion

	VIII A universal bound on the variations of bounded convex functions
	VIII.1 The variations of bounded convex functions
	VIII.2 The Funk, Thompson and Hilbert metrics
	VIII.3 Optimality of the bounds
	VIII.4 The maximal subdifferential


	Appendix
	A Concentration inequalities
	Bibliography
	Index


