
HAL Id: tel-02795630
https://hal.inrae.fr/tel-02795630

Submitted on 5 Jun 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modelling the topology of ecological bipartite networks
with statistical models for heterogeneous random graphs

Jean-Benoist Léger

To cite this version:
Jean-Benoist Léger. Modelling the topology of ecological bipartite networks with statistical models for
heterogeneous random graphs. Life Sciences [q-bio]. Université Paris Diderot - Paris 7, 2014. English.
�NNT : �. �tel-02795630�

https://hal.inrae.fr/tel-02795630
https://hal.archives-ouvertes.fr


Université Paris Diderot (Paris 7)
Sorbonne Paris Cité

École doctorale : Frontières du Vivant

Doctorat

Discipline : Sciences interdisciplinaires du vivant
Statistiques et écologie

Jean-Benoist Leger

Modelling the topology of ecological bipartite networks with statistical models
for heterogeneous random graphs

Thèse dirigée par : Jean-Jacques Daudin et Corinne Vacher
Soutenue le : 30 janvier 2014

Rapporteurs :
M. Christophe Ambroise,
M. Eric Kolaczyk

Jury :
Mme Isabelle Dajoz, Présidente,
Mme Élisa Thébault, Examinatrice,
M. Christophe Ambroise, Rapporteur,
M. Jean-Jacques Daudin, Co-directeur,
Mme Corinne Vacher, Co-directrice.



2



Remerciements

Il est une chose de se lancer dans une thèse, il est une chose de réaliser son
travail de thèse, il est une chose de rédiger son manuscrit, mais il en est une autre de
rédiger ses remerciements de thèse. Lors de la rédaction du manuscrit, j’ai souvent
entendu me dire, ou dire à d’autres, ton manuscrit n’est pas ton testament ; autant
je conçois que cela puisse être la vérité qu’il me semble que les remerciements de
thèse puissent constituer un arrêt de mort.

Cet exercice, conventionnel et formel, revêt une importance capitale, et bien
souvent, c’est la seule chose que liront de la thèse toutes les personnes non spécia-
listes du domaine de recherche. Ces remerciements sont ce qui restera aux yeux de
la majorité. Ai-je pour autant envie d’écrire des remerciements ? Je ne le sais guère.
Non que je n’aie personne à remercier, loin de là, mais je n’imagine pas que cette
forme constitue la meilleure alternative pour remercier ceux qui ont contribué de
manière directe et indirecte à cette thèse.

Comment devrais-je alors procéder ?
Une éventualité serait de rédiger les remerciements sous la forme d’une liste insi-

pide et exhaustive. Une liste à énumération m’a paru être pendant une période une
solution raisonnable. Mais le choix de la méthode de classement apparaît comme
une problématique induite délicate à traiter, et il est exclu d’utiliser l’ordre alpha-
bétique usuel, puisqu’il consiste à approuver un classement suivant les personnes
tout au long de leur vie, ne leur permettant ni d’évoluer, ni d’être surpris. Beau-
coup d’autres classements sont possibles, suivant un condensat cryptographique
comme le SHA-1 par exemple. Je complique singulièrement la tâche de ceux qui
voudraient vérifier leur position dans le classement. D’autres choix simples peuvent
être envisagés, comme un classement par l’ordre alphabétique de la seconde lettre
du prénom. Mais la justification de l’utilisation de la seconde lettre et non de la
troisième s’avère délicate, et on ne pourrait pas exclure le choix volontaire de la
seconde lettre pour faire apparaître un protagoniste particulier avant un autre.
Bref, J’ai pris la décision de ne pas rédiger mes remerciements sous forme de liste.

J’ai également choisi de nommer la majorité des personnes par leurs prénoms,
non qu’il soit naturel d’utiliser leurs prénoms pour tous, mais cela confère une
homogénéité agréable, du moins à l’écriture de ces remerciements, je n’ai fait d’ex-



4

ception que pour le jury et le comité de thèse.
Tout d’abord, comme il se doit, je tiens à remercier mes encadrants de thèse,

Jean-Jacques et Corinne. Ils m’ont apporté beaucoup et formé l’un et l’autre à la
recherche, et je leur dois énormément. Jean-Jacques m’a appris à organiser mes
idées, à les présenter, les écrire, et les hiérarchiser. Il m’a également appris à les
abandonner lorsqu’il était nécessaire de le faire, et même si ce fût difficile, je dois
l’en remercier. Corinne m’a été d’une très grande aide dans de processus d’écriture,
et j’espère réussir un jour à décrire à l’écrit un concept comme elle le fait. Elle
m’a également appris à relier mes idées à l’écologie, et à ne pas croire qu’au côté
théorique des méthodes, je dois l’en remercier.

Il m’apparaît également judicieux de remercier Christophe Ambroise et Éric
Kolaczyk, rapporteurs de ma thèse, dont les commentaires très intéressants ont
permis de comprendre l’importance relative des points abordés, et les éléments
à améliorer. Je remercie également Élisa Thébault et Isabelle Dajoz, pour avoir
accepté de faire partie de mon jury.

Tom Snijders, Louis-Félix Bersier, Catherine Matias et Colin Fontaine, au sein
de mes comités de thèse m’ont beaucoup apporté, aussi bien en termes d’idées que
d’orientation, je les en remercie.

Il convient maintenant de remercier ceux, qui ont à chaque instant refréné leurs
pulsions meurtrières, c’est-à-dire les thésards qui ont partagé mon bureau. Aurore,
bien qu’ayant tenté au moyen de divers projectiles d’attenter à ma vie, n’a pas eu
suffisamment de conviction pour arriver à ses fins, je l’en remercie, et je m’excuse
de l’éventuel traumatisme que j’ai pu causer. Antoine, qui a tenté plusieurs fois de
se débarrasser de mon encombrante personne en provoquant l’ire d’Aurore, il est
ainsi de certaines personnes, agissant de manière détournée, subtiles et vicieuses.
Alice, qui bien que n’ayant tenté à aucun moment, du moins à ma connaissance,
de se débarrasser de moi, a été d’un calme et d’une patience spectaculaires.

Je profite de ces remerciements pour présenter mes excuses à Julie pour l’avoir
vouvoyée pendant deux ans. Je remercie Pierre, Marie-Pierre et Tristan, dans le
bureau voisin, qui nous a supportés. Pierre, qui a dû parcourir les affres de mon
code, mérite une attention toute particulière. Je remercie également Tristan qui
a été mon premier contact dans le labo. Marie-Pierre par son goût de l’étrange,
comme l’orange, a su apporter de manière subtile de l’incongru à un bureau de
thésard en rédaction.

Même s’ils sont membres de l’infâme, le perfide, l’ignoble bureau des doctorants
du bas, ils méritent à titre personnel des remerciements pour l’ambiance apportée
dans le labo, il s’agit de Frédéric, Jean-Baptiste, et Aurélien. Virginie Branier
n’étant pas conviée dans ces remerciements. Ils ont su apporter la détente à ceux
qui rédigeaient, et pour Frédéric et Aurélien, l’insouciance de ceux qui ne rédigeront
pas dans l’année. Je dois aussi remercier Marie, du nouveau bureau des doctorants



5

du haut, à ce titre, et en particulier pour la mini randonnée à vélo, qui a été
un très court mais utile bol d’air dans la rédaction. Même s’il ne s’agit pas de
remerciement, j’en profite pour souhaiter bon courage à Jean-Baptiste pour sa
rédaction.

Je remercie également Stéphane, couramment considéré comme un dieu, pour
nous avoir montré un idéal, Liliane, qui m’a appris à doser avec précision mes cri-
tiques, Gabriel, Sarah, Marie-Laure, Maud, Celine, Pierre, Eleanna, Émilie, Anna,
Loïc, Souhil, Éric, Guillaume, Julien, pour leur soutien.

Je remercie également Odile et Francine de m’avoir guidé dans les labyrinthes
administratifs de l’INRA. Damien et Hamid, qui ont fait en sorte que les serveurs
fonctionnent, et accueillent mes calculs, méritent un remerciement.

Je pense avoir énuméré toutes les personnes au labo qui ont contribué de ma-
nière indirecte à ce manuscrit, dans le cas où j’en aurais oublié, je présente mes
excuses les plus sincères.

Lorsque j’ai commencé cette thèse je vivais dans une colocation que je quali-
fierais d’étrange, pour rester conforme à la réalité. Cette expérience m’a beaucoup
marqué et j’ai entretenu dès lors des relations avec certaines personnes qui m’ont
soutenu et ouvert l’esprit durant ma thèse. Je pense en particulier à Émilien, un
mélange entre un sociologue et un physicien, et à Matthias un mélange entre un
physicien et un geek pythoniste, me soutenir durant la rédaction. Au caractère
étrange de ces deux personnages, je me dois de ne pas oublier Smaïl, qui, philo-
sophe de son état, est capable de nous interroger sur le sens profond et le bien-fondé
de nos recherches. Je me dois également de ne pas oublier de remercier Camille,
Carole, Cécile, Félix et Pierre.

Je pense également à ceux qui ne m’ont soutenu, et qui considèrent que l’oubli
est la meilleure des solutions tout en oubliant qu’une absence trop flagrante est
plus marquante qu’une présence très discrète. Je ne les remercie pas.

Je me dois de penser à ceux qui m’ont permis d’entretenir ma folie durant
ma thèse, à réflechir et à imaginer, des choses diverses et variées. À ce titre, je
remercie les anciens et nouveaux membres du crans avec qui j’ai pu aborder des
thèmes qui m’étaient chers, me permettant d’avoir un pied dans un monde qui à
défaut d’être normal, était extérieur à la thèse. Au même titre, je dois remercier les
gens qui m’ont permis d’avancer sur mon moteur de recherche d’itinéraire cyclable,
les membres d’OpenStreetMap France, la pratique cycliste était un moyen sûr de
s’extraire de la thèse.

Enfin, il convient de ne pas oublier les membres de ma famille, qui ont su,
chacun à leur manière, m’apporter un important soutien, Claudy et Robert, mes
parents, Arlette ma grand-mère, et Francine ma tante.

Et pour terminer, je remercie Jean Boucasier.



6



Résumé

Un réseau écologique constitue une représentation de l’ensemble des interac-
tions entre espèces dans un contexte donné. L’analyse de la structure topologique
de ces réseaux permet aux écologues d’identifier et de comprendre les processus
sous-jacents. La détection de sous-groupes d’espèces interagissant fortement en-
semble, souvent nommés communautés ou compartiments, est un des principaux
moyens pour interpréter la structure sous-jacente des réseaux.

La méthode de détection de communauté la plus utilisée dans les réseaux écolo-
giques est la méthode de maximisation de la modularité. Toutefois, cette popularité
semble plus fondée sur des raisons historiques, et en particulier le premier article
publié sur ce thème dans ce contexte, que d’un choix rationnel avec de solides
justifications.

Il existe de nombreuses autres méthodes de détection de communauté, et de
manière plus générale de classification non supervisée, qui peuvent être utilisées
pour analyser des réseaux écologiques. L’analyse des réseaux est actuellement un
sujet de recherche en pleine expansion avec des applications dans des domaines de
recherches variés comme la génomique, les sciences sociales, l’informatique, ou la
physique. À notre connaissance, il n’existe pas de comparaison des méthodes de
classification non supervisée dans le cas des réseaux écologique.

Nous avons effectué une revue des méthodes disponibles de classification non su-
pervisées des nœuds d’un réseau, et nous avons comparé une partie de ces méthodes
dans un contexte écologique. Nous avons montré que la méthode de maximisation
de la modularité produit des résultats satisfaisants pour détecter les sous-groupes
d’espèces dans des réseaux bipartites, mais que cette méthode donne rarement les
meilleurs résultats dans l’ensemble des méthodes comparés. Nos résultats montrent
que l’algorithme edge-betweennes avec le critère de modularité pour sélectionner le
nombre de groupes donne les meilleurs résultats dans le cas des réseaux d’interac-
tion bipartite binaire. Dans le cas des réseaux valués, l’inférence du stochastic block
model donne de très bons résultats, mais au prix d’un temps de calcul important.

Afin d’évaluer la contribution relative des différents processus pouvant ex-
pliquent la structure d’un réseau d’interaction, nous avons introduit de l’infor-
mation extérieure au réseau (covariables) dans les méthodes de classification non
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supervisée ; par exemple, nous avons utilisé l’effort d’échantillonnage et la fré-
quence de rencontre entre espèces afin d’expliquer la structure du réseau d’inter-
action. Après avoir développé un programme en C++ d’inférence du stochastic
block model avec des covariables, nous avons analysé deux réseaux d’interaction
arbre–champignon et arbre–insecte. Ces résultats sont préliminaires, mais l’appli-
cation de la méthode semble ouvrir des perspectives intéressantes dans l’étude des
réseaux écologiques.

De manière parallèle, nous avons également cherché des communautés dans un
réseau écologique de nature différente, un réseau de reproduction entre arbres col-
lecté sur deux espèces ayant la capacité de s’hybrider entre elles. Nous avons utilisé
ces résultats pour discuter d’un concept central en écologie, le concept d’espèce.



Abstract

An ecological network is a representation of the whole set of interactions be-
tween species in a given context. Ecological scientists analyse the topological
structure of such networks, in order to understand the underlying processes. The
identification of sub-groups of highly-interacting species (usually called communi-
ties, or compartments) is an important stream of research.

The most popular method for the search of communities in ecological networks
is the modularity optimization method. However this popularity is more due to
the first paper published on this topic than to a rational choice based on solid
grounds.

There are many other clustering methods that could be used to delimit commu-
nities in ecological networks. The analysis of complex networks is indeed a rapidly
growing topic with many applications in several scientific fields, such as genomics,
social, computer and physical sciences. To our knowledge, no comparison of dif-
ferent clustering methods is available in the case of ecological networks.

Here we reviewed the whole set of methods available for clustering networks and
we compared them using an ecological benchmark. We showed that modularity
maximization is a satisfactorily method for clustering species in ecological bipartite
networks, but it is not the best. Our results showed that the edge-betweenness
algorithm with modularity criterion for selecting group number is a good method
for retrieving sub-groups of highly interacting species in binary bipartite networks.
The stochastic block model gave very good results in the case of weighted bipartite
networks, but it was very time consuming.

In order to assess the relative contribution of several processes to the network
structure, we integrated exogenous information in the clustering model. For in-
stance, we integrated the sampling effort and some ecological mechanisms such as
the encounter probability between species. After having developped a C++ pack-
age based on the stochastic block model with covariates, we analysed two bipartite
antagonistic networks with this method, a tree-fungus and tree-insect network.
The results are still preliminary but the method seems to us very promising for
future ecological studies.

Finally we searched communities in a different kind of network, a mating net-
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work between individuals belonging to two hybridizing tree species. We used our
results to discuss a concept which is central in ecology, the species concept.
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Chapter 1

Introduction

1.1 Networks in ecology

Ecology is the scientific study of interactions among organisms and their envi-
ronment, such as the interactions organisms have with each other and with their
abiotic environment. An ecological network is a representation of the whole set of
interactions between species in a given context (in a given geographic area, over
a particular period of time). Network nodes correspond to species and network
links represent biotic interactions (predation, parasitism, mutualism).

1.1.1 Ecological networks topology

The topology of ecological networks is often described by using the following
properties:

— Connectance, i.e. the proportion of realized ecological interactions among
the potential ones (see Dunne et al., 2002).

— Node degree distribution, i.e. the statistical properties of the distribution
of number of interactions per species (see Jordano et al., 2003; Bascompte
and Jordano, 2007)

— Nestedness. A nested network displays both asymmetric specialization —
i.e. species with few interactions (‘specialist’ species) preferentially interact
with species with many interactions (‘generalist’ species) — and a dense core
of interactions created by symmetric interactions between generalist species
(see Almeida-Neto et al., 2008; Ulrich et al., 2009)

— Modularity, or compartmentalization. Compartmentalization is character-
ized by recognizable subsets of interacting species, with species more likely
to be linked within than across subsets (see Krause et al., 2003; Krasnov
et al., 2012; Rezende et al., 2009; Guimera et al., 2010.
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There are however alternative ways of grouping species together within a net-
work (Allesina and Pascual, 2009). Instead of grouping together highly-interacting
species, species can be grouped according to their interaction profile. In this way,
the species belonging to the same group tend to have a similar structural role. For
instance, the generalist species tend to be grouped together, and specialist species
tend to be grouped together. Hereafter this type of group is called Structurally
Homogeneous Subset (Leger et al., 2013).

It is noteworthy that the study of compartimentalization is not disconnected
from the study of stability (McNaughton, 1978). For instance, following Stouf-
fer and Bascompte (2011), compartmentalization increases persistence of species.
Many authors studied the influence of the structural properties of ecological net-
works, such as nestedness and compartimentalization, on their dynamics.

1.1.2 Ecological networks dynamics

The characterization of network dynamics allows to answer various questions
about biodiversity conservation (see Traveset et al., 2013). Analysis of network
dynamics allows to study the stability of the network. There are various definitions
of stability used in ecology. The stability can be:

— Local stability and resilience. This stability index represents the robustness
of the system to infinetismal perturbation, and the ability to recover from
this perturbation (i.e. to come back to the equilibrium point without con-
siderations of time). This definition is used by Neubert and Caswell 1997,
Chen and Cohen (2001) and Pimm and Lawton (1978).

— Reactivity. This stability index represents the short-term stability and the
ability to rapidly recover from a perturbation. This stability index is de-
scribed by Neubert and Caswell (1997) and Chen and Cohen (2001).

— Variability. This stability index measures the fluctuations of species abun-
dances, when a perturbation is applied. This definition is used by Pimm
(1984).

— Persistence. This stability index refers to the number of species which do
not get extinct. This measure is used by Hofbauer and Sigmund (1998),
Chen and Cohen (2001) and Thébault and Fontaine (2010).

1.2 Statistical methods for networks

Data sets structured as networks are present in many domains such as social
science, engineering and physics, molecular and population biology, ecology and
computer science. Many methods and models have been developped from three
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communities: physics, statistics and computer science (Kolaczyk, 2009). Below we
present a very brief introduction to this huge topic.

Statistical models for social networks defined for static networks include con-
ditionally uniform models, latent space models and exponential random graph
models (Snijders, 2011). The review made by Snijders (2011) underlines and dis-
cusses the probabilistic model. Computational and statistical estimation are more
underlined in Hunter et al. (2012).

The community of computer science and statistical physics have developped
closely related models from a different point of view. Some models assume a
progressive building of the network node by node using simple rules and other ones
underline general properties of networks such as scale-free probability distribution
function of the degrees or the small world property (Kolaczyk, 2009; Strogatz,
2001).

The work done in this PhD thesis is inter-disciplinary. It lies at the crossroads
between statistics, computer science and ecology. The identification of sub-groups
of higly-interacting species in ecological networks is a main stream of research. Our
work is thus aimed at comparing and improving the network clustering methods
and models, for future applications to ecological networks.

1.3 Problematic and outline

The most popular method for the search of groups of highly-interacting species
in ecological networks is the modularity optimization method using the simulated
annealing optimization approach (Guimera and Amaral, 2005) implemented in
the software NETCARTO. However this popularity is more due to the first paper
published on this topic than to a rational choice based on solid grounds. In the
field of genomics the clustering for networks is often done using the MCL algorithm
(Van Dongen, 2000), which has been found as the best by Vlasblom and Wodak
(2009).

There are many other clustering methods that can be used and no comparison
is available. The objective of our work is

1. to review the whole set of methods available for clustering networks in
chapter 2.

2. to compare them using an ecological benchmark in chapter 3.

3. most of the above methods are not well suited to assess the relative con-
tribution of different ecological mechanisms to the network structure. For
that, we integrated exogenous information in the clustering model, such as
sampling artefacts ecological mechanisms such as the encounter probabil-
ity between species. After having developped (Chapter 4) a C++ package
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based on the stochastic block model with covariates Mariadassou et al.
(2010), we analysed two bipartite antagonistic networks with this method,
a tree-fungus and tree-insect network. The results are still preliminary
(Chapter 5).

4. The assumption that species are grouped in communities is perhaps too
stringent and not always pertinent in ecological studies. It is possible to
use a more flexible model using continuous latent variables in place of the
discrete ones associated with the clusters. In collaboration with Lelia La-
gache and Remy Petit, we have used the model continuous stochastic block
model to analyse a mating network (Lagache et al., 2013) (Appendix A).
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Chapter 2

Detection of structurally
homogeneous subsets in graphs

This article was published in Statistics and Computing.

Abstract

The analysis of complex networks is a rapidly growing topic with many ap-
plications in different domains. The analysis of large graphs is often made via
unsupervised classification of vertices of the graph. Community detection is the
main way to divide a large graph into smaller ones that can be studied separately.
However another definition of a cluster is possible, which is based on the structural
distance between vertices. This definition includes the case of community clusters
but is more general in the sense that two vertices may be in the same group even if
they are not connected. Methods for detecting communities in undirected graphs
have been recently reviewed by Fortunato. In this paper we expand Fortunato’s
work and make a review of methods and algorithms for detecting essentially struc-
turally homogeneous subsets of vertices in binary or weighted and directed and
undirected graphs.

Keywords: Graphs, Clusters, Random Walk, Spectral Clustering, Stochastic
Block Model, Bipartite Graphs

2.1 Introduction

The analysis of complex networks is a rapidly growing topic with many ap-
plications in different fields such as social sciences, physics, computer science,
molecular biology and ecology. The size of the social and biological datasets and
the size of the networks created by human-kind are growing with time. This is
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an issue because networks with thousands of vertices are difficult to analyze as a
whole object.

An obvious strategy consists in dividing the big network into smaller indepen-
dent ones and analyzing each small network separately. Therefore at this time,
one of the most important challenges is to build unsupervised classification of the
vertices. Most of the current research is focused on the search for a community
structure with high connectivity between vertices of the same cluster and low con-
nectivity between vertices of different clusters. This strategy has been used in
the field of molecular biology to obtain "independent modules" in metabolic or
Protein-Protein interaction networks in the domain of molecular biology. It has
also been used to extract the scientific communities from bibliometrics networks
or social groups in social networks. Recently a very large and impressive review of
community detection methods and algorithms in graphs has been made by Fortu-
nato (2010). This paper describes many methods but also gives some elements for
comparing them on benchmarks.

However this strategy has its own limits because in some cases connected ver-
tices may be very different. A typical example is bipartite graphs such as host-
parasite networks, where there is a connection between a host species and a parasite
species if the species parasites the host species. Therefore the host species and the
parasite species may be in the same community, putting in the same bag two very
different species. Therefore there is a need for a more general definition of what
constitutes a cluster of vertices in networks.

Another definition of a cluster is possible, which is based on the structural dis-
tance between vertices. Two vertices are in the same group if they have a similar
profile of connection to the other vertices. This definition includes the case of
community clusters but is more general in the sense that two vertices may be in
the same group even if they are not connected. Moreover it is possible to obtain
groups of vertices which are not connected within groups but are highly connected
to another group of vertices. This notion of structural distance is related to the
definition of the Structural Equivalence of Actors in a social network defined by
Lorrain and White (1971): actors are structurally equivalent if they have iden-
tical relational ties to and from all the actors in a network. These two different
approaches are introduced Burt (1978): “There are several questions that can be
posed for a specific project that might lead an individual to analyze subgroups in
terms of cohesion versus structural equivalence. Here, considering a series of such
questions, I conclude that subgroups based on structural equivalence are to be pre-
ferred to those based on cohesion.”

Two classes of methods for clustering the vertices of graphs can thus be defined
with two different goals:

1. to obtain communities i.e. subsets of vertices strongly connected within
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subsets and loosely connected between subsets,

2. to obtain structurally homogeneous subsets, i.e. subsets of vertices having
the same or similar interaction profiles.

The concept of structurally homogeneous subsets generalizes the concept of com-
munity in the sense that a community is also a structurally homogeneous subset
when the structure of the graph is represented by communities, because vertices
in the same community share the same structural connectivity behavior. In Fig-
ure 2.1, in the same non-bipartite network, there is an example of the difference
between communities and structurally homogeneous subsets with a hub structure.
Even if hubs are within communities, they have a different behavior in the network
structure, and they are classified in different structurally homogeneous subsets.

N1 N3N2

N5

N4

N7N6 N8

N1 N3N2

N5

N4

N7N6 N8

Communities Structural homogeneous subsets

Figure 2.1: Difference between communities and structural homogeneous subsets
in a hub structure network

Fortunato’s review is focused on community detection for binary undirected
graphs. In this paper we expand Fortunato’s work and give a review of methods
and algorithms for detecting essentially structurally homogeneous subsets of ver-
tices in binary or weighted and directed or undirected graphs. Moreover we do not
try to give an exhaustive list of methods. We prefer to limit the scope to what we
have presumed to be the main methods, and to make a self-contained presentation
of each of them. Note that we do not present the methods for very large graphs
with more than 106 vertices, such as the world-wide web or telephone network.

The methods for detecting Structurally Homogeneous Subsets come from three
different scientific fields: computer science, physics and statistics. Each scientific
community has its own journals and there are few links between them. Statisticians
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prefer to use probabilistic or statistical models whereas the other two communi-
ties use algorithmic or optimization methods. Optimization methods optimize a
criterion which represents the quality of the partition of the graph. Algorithmic
methods use a sequence of operations to build a partition of the graph. Proba-
bilistic models are models of the process which are supposed to have generated the
data and statistical methods are used to estimate the parameters of the proba-
bilistic model. In this review a significant part is given to statistical models which
had little space in Fortunato’s review.

Section 2.2 gives the basic notations, some transformations of the base data
and a toy graph that will be analyzed throughout the paper. Section 2.3 presents
the methods of clustering based on an algorithm, Section 2.4 presents the methods
based on an optimization criterion, Section 2.5 is devoted to statistical models for
clustering graphs. Section 2.6 illustrates methods on the Zachary’s Karate Club
Network. The last section gives a summary of the methods and some links between
them.

2.2 Basic notations and an example

Let us consider a graph (or network) G = (V, E) with V the set of n vertices
(or vertices) and E ⊂ V × V the set of edges. The value of the edge from i to
j is wij ≥ 0. The self loops (wii 6= 0) may be accepted or not. The matrix W
is the matrix of weights. Let (do

W )i =
∑

j wij be the out-degree of vertex i and
(di

W )j =
∑

i wij be the in-degree of vertex j. The matrix of outgoing degrees Do
W

is the diagonal matrix composed of (do
W )i, i = 1 · · · , n (with a similar definition

for Di
W ).

The graph is non-weighted (binary) when wij ∈ {0, 1}. In that case, W is
called the adjacency matrix. The graph is undirected when W is symmetric. In
that case, (do

W )i = (di
W )i = (dW )i and DW is called the degree matrix. A bipartite

graph is a graph whose vertices can be divided into two disjoint sets A and B such
that every edge connects a vertex in A to one in B.

Each method will be illustrated on the toy example presented in the following
section. Searching for clusters is only relevant if the graph is void-free, so we
suppose that no vertex of the toy graph is isolated.

2.2.1 A toy example

The toy example (Fig.2.2) is a binary, undirected graph, with 10 vertices.
Vertices 1 to 5 are of one type, and vertices 6 to 10 of another. The adjacency
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matrix W and the degree matrix D are (only non-zero values are printed):

W =




1 1 1
1 1

1 1 1
1 1

1
1
1 1
1 1 1

1 1
1 1 1




D =




3
2

3
2

1
1

2
3

2
3




N10

N1 N3N2 N5N4

N7N6 N9N8

Figure 2.2: Bipartite toy-example

The difference between the community and structural homogeneity appears
clearly in Figure 2.3: if one searches for communities, that is groups of vertices
more connected within groups than between groups, one will find the clusters
of the column titled "communities" including some vertices which have different
connectivity behavior, with respect to bipartite network, in the same group. On
the other hand the structurally homogeneous subsets are exclusively composed of
one type of vertex. The bottom right case, with 4 clusters, decomposes each of
the two clusters of the top left case into two subgroups, separating the two types
of vertices. Note that this toy-example is proposed here for illustration purposes,
showing that structurally homogeneous clusters may be composed of vertices that
are not connected within-group. With real data things are not so clear-cut: in
the same graph some clusters may be communities and other ones may be poorly
connected within-group and characterized by a high connectivity to a given cluster.
Some examples of this configuration of clusters are given in Daudin et al. (2008) for
a metabolic network and in Picard et al. (2009) for different biological networks.

2.2.2 Transformation of the raw graph

The methods for detecting clusters of vertices can either be applied to the raw
matrix of weights (or adjacency matrix) or to a weighted matrix obtained by a
similarity transformation of the raw matrix. The same method used on the raw
graph or the transformed one may give different results.

Therefore the process of clustering graphs may contain two successive steps:
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communities structurally homogeneous subsets
2 clusters

10

1 32 54

76 98 10

1 32 54

76 98

4 clusters

10

1 32 54

76 98 10

1 32 54

76 98

Figure 2.3: Various clusters obtained for the toy-example

1. The pre-treatment step, i.e. a transformation of the raw graph into a mod-
ified one, This step is not mandatory.

2. The application of a given clustering method to the modified graph.

In this paper we focus on the clustering methods, but the importance of the pre-
treatment step, i.e. the transformation of the raw graph in a modified one, should
not be underestimated in practice. Note that there are two types of transformation:

1. the transformation does not bring any new information concerning the ver-
tices or the edges. In this case the transformation defines a specific sim-
ilarity measure between vertices suited to answering a specific question.
These transformations are generally not useful with generative statistical
models that are supposed to model how the raw data have been generated.
They are more often used in combination with algorithmic or optimization
methods.

2. there is some more information available which is not included in the raw
data W . This information may be included in the statistical model using
co-variates on the edges or on the vertices. The algorithmic or optimiza-
tion methods must include a pre-treatment using a transformation of W
incorporating the new information.

The transformation of the raw data provides a weighted graph whose weights are
a measure of similarity between each pair of vertices. Note that new edges may
be produced by this procedure and old ones can be deleted. Note also that many
similarity indices exist and that the similarity index should be chosen according
to the scientific question. Let us consider the toy-example (Figure 2.2). If the
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aim is to cluster the vertices with similar connectivity behavior, using the Jaccard
similarity index may be a good choice. The Jaccard coefficient between two vertices
i and j is the number of vertices connected to i and j divided by the number of
vertices connected to i or j.

After this transformation, we obtain the following similarity matrix and the
graph of Figure 2.4 which has two connected components, one per type of vertex.

For the particular case of bipartite graph note that two connected components
are obtained, separating the two types of vertices. This is not the general case.

SJ =




−

2

3
− (sym)

1
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1
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−
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Figure 2.4: The toy example graph transformed with Jaccard’s measure of simi-
larity

Note that similarity transformation can change the meaning of groups. With
the Jaccard similarity index, communities in the transformed graph are struc-
turally homogeneous subsets in the original graph.

2.3 Methods based on an algorithm

The clustering methods that do not use a statistical model may be divided into
two classes: both are defined by an algorithm, but this algorithm may be designed
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or not to optimize a criterion. The following section presents the algorithmic
methods that do not explicitly optimize any criteria.

2.3.1 Markov Cluster algorithm (MCL)

Synopsis

Name Markov Cluster algorithm (MCL)
Type of method Algorithm

Type of graphs

Undirected a, weighted or not, inducing an associated er-
godic Markov Chain

a. The condition of ergodicity is more problematic to obtain for
directed graph

Type of clusters Structurally Homogeneous Subsets

Summary
This method uses random walks on the graph and classi-
fies in the same group the vertices whose associated ran-
dom walk converge to the same state

Time complexity
The author claims a time complexity of O (|V |3), but this
complexity is obtained by considering the number of iter-
ations as constant.

The MCL algorithm (Van Dongen, 2000) allows the search for structurally
homogeneous subsets by considering a random walk on the graph.

A random walk on the graph is a sequence of moves at discrete time points,
from one vertex to another, along graph edges. The probability of a move along
an edge is proportional to its weight. Let Eit be the event of being in the set i in
time t. For all t, (Eit)i=1···n only depends on (Eit−1)i=1···n, therefore the random
walk is a Markov chain. The behavior of a random walk from a starting vertex is
determined by the set of probabilities of a move from this vertex to another vertex
j in t steps for all (j, t). A vertex is characterized by the behavior of the random
walk starting from this vertex. The main idea of this method is to consider that
vertices with the same random walk behavior are in the same cluster.

A standard random walk (with no inflation factor) on a connected graph con-
verges to the same asymptotic state of the Markov chain for any starting vertex.
The objective of the MCL algorithm is to build k clusters with k > 1, so the usual
random walk has to be modified to achieve this goal. The idea of the MCL algo-
rithm is to constrain the random walk to converge to a different state depending
on the starting vertex. This is achieved using the inflation operation. The more
important the inflation operation is, the more numerous the obtained asymptotic
states are. The aim of the MCL algorithm is to group vertices whose associated
random walks converge to the same state.
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Let the transition matrix of the Markov chain be T = (Wsl)(Do)−1
Wsl

. Tij is
the probability of going from vertex j to vertex i in one step. Therefore T is a
column-wise stochastic matrix (∀j,

∑
i Tij = 1). Note that in MCL notation, the

transition matrix is the transpose of the usual notation for the transition matrix
of the Markov chain, which is a row-wise stochastic matrix. T is the matrix of
probabilities of transition in one step and T k is the matrix of probabilities of
transition in k steps.

Let T (1) = T . MCL alternates two operations indexed by k starting at k = 1:

1. T (2k) = (T (2k−1))ek , is the transition operation which allows the progress of
the random walk. The importance of this operation is larger when ek is
large.

2. T (2k+1) = Γrk
(T (2k)) is the inflation operation which allows the random

walk to converge toward several stable states. Γrk
is a term by term rk

power operator followed by a column sum normalization. This operation
inflates the high values of the matrix T (2k) and reduces the small ones. For
example, Γ2([.5, .3, .2]) = [.25, .09, .04]/.38 = [.66, .24, .11]. The importance
of the inflation operation is larger when rk is large.

The algorithm ends when T (k) is idempotent (T (k+1) = T (k)). Denote T (∞) this
idempotent matrix. The columns of T (∞) correspond to the vertices of the graph.
Each row of T (∞) defines a cluster. Non-zero values within each row indicate
the composition of the cluster. In the general case, several clusters are empty.
Therefore there are fewer clusters than vertices. When a vertex belongs to several
clusters, different affectation rules may be applied.

The Markov chain of the random walk must be ergodic. In particular the
Markov Chain must be aperiodic and irreducible. Some graphs must be modified to
satisfy this aperiodicity, generally by adding self-loops. The irreducible condition is
always satisfied for undirected graphs, but can be not satisfied for directed graphs.
For example in a bipartite graph, when all edges connect one type of vertex to
another, there is one set of absorbent states, and consequently the Markov Chain
is reducible. A directed bipartite graph must be transformed (for example by
symmetrization) before using the MCL algorithm.

In any case, applying the MCL method means clustering a graph which is not
the true one (because of the addition of self-loops). However the true graph can
be approached with a graph with very low weighted self-loops.

Figure 2.5 shows that the MCL algorithm applied to the toy example with uni-
tary self-loops, retrieves communities instead of structurally homogeneous subsets.
This is because the vertices with different structural connectivity behavior have
the same structural behavior in the random walk when self-loops are added to the
graph. To illustrate this idea, let us imagine the random walk on the graph without
self-loops. In this case, the random walk would alternate between the two types
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high weight on self-loops a low weight on self-loops b

high ek,
low rk

10

1 32 54

76 98 10

1 32 54

76 98

low ek,
high rk

10

1 32 54

76 98 10

1 32 54

76 98

a. Wii = 1, unitary self-loops
b. 1

10
weighted self-loops

Figure 2.5: MCL applied to the toy example with 4 combinations of tuning pa-
rameters

of vertices. The algorithm would not converge and this is why the possibility of
null self-loops is a priori excluded when using MCL. Nevertheless decreasing the
weight (∆) of self-loops is allowed. In the toy example with a decreased value of
the self-loops (10 times less than unitary edges), structural homogeneous subsets
are obtained (see Figure 2.5).

There are three tuning parameters, ∆, ek and rk. Their values have a great
impact on the number of clusters of the final result, see Figure 2.5. There are few
groups when ek

rk
is high and many groups when ek

rk
is low. The author does not

give any default option for the choice of ek and rk. After a (limited) number of
empirical trials we have found that values around 2 for these two parameters could
be a good choice. ∆ should be small in order to capture structurally homogeneous
clusters.

MCL gives satisfactory results for dense graphs, and is less efficient for sparse
graphs. To our knowledge, this method has been applied mostly in the domain
of molecular biology. Brohee and Van Helden (2006) found that MCL gives sat-
isfactory results for the extraction of complexes from protein-protein interaction
networks.
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Pons-Latapy distance. Pons and Latapy (2006) propose a distance based on
a random walk on the graph. This distance is introduced for binary, undirected
graphs but can be extended to the case of weighted, undirected graphs. Like MCL,
this method requires the addition of self-loops if the Markov chain is not ergodic.

The method consists in stopping the random walk after a small number of
steps, k. The transition matrix after k steps is T k where T k

ij is the probability of
transition from vertex j to vertex i in k steps. As for MCL, a vertex is character-
ized by the behavior of the random walk starting at this vertex, but this method
studies the behavior of a truncated random walk instead of the asymptotic be-
havior of a modified (by the inflation factor) random walk. Two vertices j1, j2

which have a similar structural behavior (in the graph with self-loops) spawn two
random walks which have, for all i, a similar probability of going in k steps to the
vertex i. Therefore the column vectors T k

j1
and T k

j2
are similar. To compare the

structural behaviors of vertex j1 and vertex j2, the distance
∥∥∥T k

j1
− T k

j2

∥∥∥
2

between

T k
j1

and T k
j2

can be computed . The issue is that this distance is also influenced
by the vertex degree because the probability of going from vertex j to vertex i is
affected by the degree of vertex i (a random walk has a higher probability of going
to a vertex of high degree). Therefore a re-normalization is applied to vectors
T k

j1
and T k

j2
by dividing their rows by the degree of the corresponding vertices.

The re-normalized vectors are D
− 1

2
Wsl

T k
j1

and D
− 1

2
Wsl

T k
j2

. The Pons-Latapy distance
between vertices j1 and j2 is defined as the distance between re-normalized vectors

D(j1, j2) =
∥∥∥∥D

− 1
2

Wsl
T k

j1
− D

− 1
2

Wsl
T k

j2

∥∥∥∥
2
.

This distance is only an intermediate element in the algorithm and does not in-
clude the classification of the vertices. After computing the Pons-Latapy distances,
a supplementary classification step is necessary. A hierarchical agglomerative al-
gorithm is thus applied to the Pons-Latapy distance matrix in order to cluster the
vertices of the graph.
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Figure 2.6: Pons-Latapy distance matrices for k = 4 corresponding to the toy
example (Figure 2.2) with unitary (M1) and 1
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-weighted self-loops (M 1
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are ordered as N1 · · · N5, N6 · · · N10
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There is a strong influence of the weight of self-loops. In the case of the toy
example, the Figure 2.6 shows that the results are completely changed when these
weights are changed: with unitary self-loops, the distance matrix does not separate
vertices which have a different structural linkage behavior. For example, N1 and
N2 are closer to N6, N7, N8, than to N3, N4, N5. As with MCL, decreasing the
weight of self-loops increases the ability of the method to separate vertices which
have different structural behaviors.

There are three tuning parameters, k, ∆ and the specific hierarchical algorithm
used in the classification step, such as UPGMA, Ward or maximum linkage algo-
rithms. The authors do not give any advice about their choice. Our empirical
trials suggest that k = 3 could be a good choice. As for MCL, ∆ should be small
in order to capture structurally homogeneous clusters.

2.3.2 Hierarchical agglomerative clustering algorithm

Synopsis

Name Hierarchical Agglomerative clustering algorithm
Type of method Algorithm
Type of graphs Graph with a dissimilarity between vertices
Type of clusters depends on the dissimilarity

Summary This method groups vertices into meta-vertices recursively

Time complexity
Basically O (|V |3), with an additive cost in memory, a
time complexity of O (|V |2 log (| V |)) can be reached

This algorithm is useful for clustering graphs once a distance between ver-
tices has been defined. Note that we have two graphs, the original one and the
weighted graph of dissimilarities. This algorithm gives communities of the graph
of dissimilarities, but the clusters obtained can be structurally homogenous sub-
sets or communities for the original graph, depending on the distance used in the
algorithm. The result depends on the local or global building of the dissimilarities
between vertices: for instance, if the dissimilarity between vertices is the Jaccard
or Pons-Latapy (see section 2.3.1) dissimilarity measures, then one obtains struc-
turally homogeneous subsets. Conversely if the dissimilarity between two vertices
equals one when two vertices are not linked and 0 when there is an edge between
them, then one obtains communities. The usual hierarchical agglomerative algo-
rithms are well known (Hartigan, 1975): Ward, single linkage, complete linkage
or UPGMA (Unweighted Pair Group Method with Arithmetic Mean). A clas-
sification algorithm such as a hierarchical agglomerative algorithm or a k-means
method are the necessary final step for some methods that only compute a distance
between vertices or continuous latent positions for vertices. Therefore the results
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Figure 2.7: Clusters obtained with Ng-normalized and Absolute Eigenvalue Spec-
tral Clustering, with k ∈ {2, 4}

of these methods depend not only on their own tuning parameter but also on the
peculiar classification algorithm used to cluster the vertices.

2.3.3 Spectral Clustering

Synopsis

Name Spectral Clustering
Type of method Algorithm
Type of graphs Undirected, weighted or not
Type of clusters Communities or Structurally Homogeneous Subsets

Summary

This method computes continuous latent variables using
eigenvectors of the Laplacian matrix of the graph and clas-
sifies the vertices using a k-means algorithm based on the
most important latent variables.

Time complexity
Time complexity depends mainly on the computation of
the eigen decomposition, basically O (|V |3).

This algorithm first proposed by Donath and Hoffman (1973) allows the search
for communities by considering the Laplacian matrix of the graph, L = DW − W .
This algorithm spawned a family of algorithms which are well described by Von
Luxburg (2007). It applies only to undirected graphs, but there is some work in
progress to extend it to directed graphs.

It is known that if a graph has k connected components, the Laplacian matrix
has a null eigenvalue with multiplicity k (Von Luxburg, 2007). Each eigenvector
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associated with the null eigenvalue is composed of zero and non-zero values. A
non-zero value for the jth eigenvector and the row i means that vertex i is in
connected component j. If the graph has k communities, the Laplacian matrix
has k eigenvalues close to zero. The idea of Spectral Clustering is to determine
the composition of the k communities by considering the k eigenvectors associated
with the k lowest eigenvalues.

Let L = DW − W be the unnormalized Laplacian and LN = I − D
−1/2
W WD

−1/2
W

the normalized Laplacian. The Spectral Clustering algorithm has several variants.
The first three are described in Von Luxburg (2007) and the last one is more recent:

1. the unnormalized Spectral Clustering computes the first k eigenvectors
sorted by the eigenvalues in ascending order U = [u1, · · · , uk] of L,

2. the Shi-normalized Spectral Clustering computes the first k eigenvectors
sorted by the eigenvalues in ascending order U = [u1, · · · , uk] of D−1

W L,

3. the Ng-normalized Spectral Clustering computes the first k eigenvectors
sorted by the eigenvalues in ascending order, V = [v1, · · · , vk] of LN and U
is the V −matrix row-norm normalized,

4. the Absolute Eigenvalue Spectral Clustering computes the first k eigen-
vectors sorted by the absolute value of eigenvalues in descending order
U = [u1, · · · , uk] of I − LN , see Rohe et al. (2011). In contrast to the other
three variants, it allows the search for structurally homogeneous subsets.

Then the clusters are obtained by a k-means algorithm with k clusters on the
n row vectors of matrix U . Each vertex is associated to a point in a k-Euclidean
space. The coordinates of vertex i in this space are given by row i of the matrix
U .

The toy example allows us to show the differences between the Absolute Eigen-
value Spectral Clustering and the Ng-normalized Spectral Clustering, (Figure 2.7).
One can see that the first one detects the bipartite structure and the second one
does not.

The tuning parameters of the Spectral Clustering algorithm are the choice of
a specific method among the four (or more) possible ones, the number of latent
variables and the number of clusters k.

Correspondence Analysis (CA). The CA developed by Hirschfeld (1935);
Benzecri (1973) is a general method to analyze contingency tables. For undirected
graphs, it can be described as a variant of Spectral Clustering considering the

square of the normalized Laplacian, LCA =
[
D

−1/2
W WD

−1/2
W

]2
. Let k be the number

of clusters. The CA clustering computes the first k eigenvectors sorted by the
eigenvalues in descending order V = [v1, · · · , vk] of LCA and U = D

1/2
W WV . Note

that the eigenvalues of LCA are the square of the eigenvalues of I − LN with the
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same associated eigenvectors. Therefore the k first eigenvectors of CA (sorted by
the eigenvalues of LCA) are the k first eigenvectors of I −LN sorted by the absolute
values of the eigenvalues of I − LN . As for Spectral Clustering, the clusters can be
obtained by a k-means algorithm with k clusters on the n row vectors of matrix U .
Therefore the Correspondence Analysis is equivalent to the Absolute Eigenvalue
Spectral Clustering. This confirms the fact observed by Von Luxburg (2007) that
many Spectral Clustering methods developed in different scientific communities
are actually identical.

2.3.4 Edge-Betweenness

Synopsis

Name Edge Betweenness
Type of method Algorithm
Type of graphs Undirected Unweighted
Type of clusters Communities

Summary

This method introduces a measure of the importance of a
link to connect communities and it cuts edges with high
values until the communities are disconnected from each
other

Time complexity
No complexity is given by authors. igraph implementa-
tion (Csardi and Nepusz, 2006) complexity is O (|V ||E|).

This algorithm, proposed by Girvan and Newman (2002), allows the search
for communities. The main idea is to remove edges from the network until the
communities are disconnected from each other. The edges to be removed are chosen
as a function of a criterion called edge-betweenness. For illustrating the concept
of betweenness, let us imagine that one should go from one "side" the network to
the other by following edges. An edge with a high betweenness is an edge that is
included in most paths between the two "sides" of the network. For instance, on
the toy example, the edge with the highest betweenness is the edge between N3

and N8 in Figure 2.2.
More formally, the betweenness of one edge is equal to the number of shortest

paths, using this edge, for all the pairs of vertices of the graph. The algorithm
alternates the following steps:

1. the betweenness of all existing edges in the network is computed,

2. the edge with the highest betweenness is removed,

3. the betweenness of all edges affected by the removal is computed.

The method iterates as long as an edge remains. At the end of the algorithm,
one obtains a classification tree showing the sequence of divisions of the network.
Communities are obtained by truncating the classification tree.
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Figure 2.8: Clusters obtained with Edge-Betweenness with k ∈ {2, 4}

This algorithm needs to choose the level for stopping the classification tree,
which is equivalent to choosing the number of groups. Applied to the toy example,
it gives the communities of Figure 2.8. By definition, this algorithm cannot detect
the structurally homogeneous clusters that are not communities.

2.4 Methods based on an optimization criterion

The following section presents the algorithmic methods that explicitly optimize
a criterion.

2.4.1 Modularity criterion

Synopsis

Name Modularity
Type of method Optimization
Type of graphs Directed or not, weighted or not
Type of clusters Communities

Summary
This method optimizes the Modularity which represents
the quality of partition as the difference between the ex-
pectation of edges inside and outside communities.

Time complexity

The algorithm provided by Guimera is very time expen-
sive and in many cases not usable in practice. An example
of greedy implementation (Clauset et al., 2004) complex-
ity is O(|E|d log (|V |), where d is the depth of the dendro-
gram describing the community structure.

The modularity, proposed by Newman and Girvan (2004), is a global quality
measure of a partition.

The modularity measures the difference between the actual and expected within-
community edges relative to a null model assuming a connectivity between vertices
that is proportional to their degrees. Let C = (C1, · · · , Ck) be a partition of G.
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Figure 2.9: Clusters obtained by maximizing the Modularity (each of them have
the same modularity)

There are two equivalent definitions of the modularity of C in the undirected graph
G:

1. MC =
∑

q(eqq − a2
q) with eql = 1

2m

∑
ij Wijδq(i)δl(j) where m is the total

number of edges, δq(i) = 1i∈Cq
is equal to one if i is in the class q and zero

if not and aq =
∑

l eql,

2. M = 1
2m

∑
ij(Wij −

(dW )i(dW )j

2m
)δ(i, j) with δ(i, j) =

∑
q δq(i)δq(j) equal to

one if i and j are in the same class.

For directed graphs the modularity is defined by: MC = 1
2m

∑
ij(Wij−

(do
W

)
i
(di

W
)
j

2m
)δ(i, j).

The partition with the best (maximum) modularity is obtained using an opti-
mization algorithm such as greedy algorithms or simulated annealing algorithms.
Obtaining the best partition is NP-hard.

The optimization can be done conditionally to a fixed number of groups, or
not.

Guimera et al. proposed the following algorithm. Optimization is done by a
Simulated Annealing (SA), with levels of temperature decreasing exponentially.
Three movements are possible:

1. individual movement of a vertex from one module to another

2. merging of two modules

3. splitting of one module into two, choice of modules being made by another
SA at the level of the module

This algorithm does not need any proper tuning parameter, but there are
optimization parameters in the simulated annealing. This algorithm is highly
computationally intensive; therefore one may have to modify some optimization
parameters in order to obtain a result with a reasonable time. This algorithm,
applied on the toy example, gives the communities clusters of the Figure 2.9. By
construction, this algorithm cannot detect the structurally homogeneous clusters
that are not communities.

Since the Guimera algorithm is usable only for small graphs, greedy algorithms
exist to optimize the modularity, see Clauset et al. (2004).
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Figure 2.10: Clusters obtained with Cut cost with k ∈ {2, 4}

2.4.2 Cut

Synopsis

Name Cut criterion
Type of method Optimization
Type of graphs Undirected, unweighted
Type of clusters Communities

Summary
This method minimizes the number of edges between com-
munities by removing edges from the network until the
communities are disconnected.

Time complexity Depends on greedy implementation

The idea (see Raj and Wiggins, 2010 for a recent reference) is to suppress
some edges from G to obtain an unconnected partition of vertices with a minimum
modification cost. The cut between two subsets (V1, V2) of V from the (V, E) graph
is Cut(V1, V2) =

∑
v1∈V1,v2∈V2

Wv1,v2 . There are three cut criteria on a partition C,
the cut Cut(C), the ratio cut, rCut(C) and the normalized Cut, nCut(C):

1. Cut(C) =
∑

q<l Cut(Cq, Cl) = 1
2

∑k
q=1 Cut(Cq, V \ Cq).

2. rCut(C) =
∑k

q=1
Cut(Cq ,V \Cq)∑

i,j∈Vq
Wij

.

3. nCut(C) =
∑k

q=1
Cut(Cq ,V \Cq)

Cut(Cq ,V )
.

The partition with the best (minimum) cut is obtained using an optimization
algorithm such as heuristics, greedy algorithms or simulated annealing algorithms.
Obtaining the best Cut partition is NP-hard for the three criteria. In practice only
approximated methods can be used.

Applied to the toy example, these methods give the community clusters of
the first column of Figure 2.10. By definition, these algorithms cannot detect the
structurally homogeneous clusters that are not communities.

Tuning parameters are the choice of the cut criteria and the number of groups.
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2.5 Methods developed with a model

Statisticians propose probabilistic models that are supposed to take into ac-
count the random variability in the data. These models are generative models
in the sense that they mimic the real data generation. This section presents a
synthetic summary of the more detailed review made in Daudin (2011).

All of these models use latent variables. These latent variables may be discrete
and give directly the classification of the vertices such as in the Stochastic Block
Model (SBM, Section 2.5.3). Alternative models such as the Model-Based Cluster-
ing for Social Networks (MBCSN, Section 2.5.1) and Random Dot Product Graph
(RDPG, Section 2.5.2) use continuous latent variables; therefore a supplementary
step of classification is necessary.

The above models assume that a vertex pertains to only one class, but there
are alternative models such as the Continuous Stochastic Block Model (CSBM,
section 2.5.4), which allows each vertex to pertain to several classes, these models
are also known under the name of Grade of Membership (see Manton et al., 1994
and Erosheva, 2005).

2.5.1 Model-based clustering for social networks (MBCSN)

Synopsis

Name Model-based clustering for social networks (MBCSN)
Type of method Model-based method
Type of graphs Undirected and unweighted
Type of clusters Communities

Summary

This method assumes that the graph is a realization of a
generative model and infers its parameters. The model
assumes that each vertex has a position in a continuous
latent space, and linking behavior of each pair of vertex
is determined by the distance between the vertices in the
latent space.

Time complexity Not known

The model Handcock et al. (2007) assumes that, conditionally to d−multidimensional
latent variables zi attached to the vertices and observed variables xi,j attached to
the edges, the Wi,j are independent and

Pij = P (Wij = 1) =
eβ0xi,j−β1|zi−zj |

1 + eβ0xi,j−β1|zi−zj |

.
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The probability of connection between vertices i and j is greater for vertices
whose latent variable values are similar. The distribution of the latent variables is
a mixture of k multivariate Gaussian distribution. The parameters of the mixture
model and β0 and β1 are estimated with Bayesian or Maximum-Likelihood methods
using MCMC and the values of the latent variables are predicted for each vertex.
An R Package latentnet is available. Applied to the toy example with no covariate
Xi,j on the edges, d = 2 and k = 2, the package latentnet gives the community
clusters of the top left corner of Figure 2.2. With d = 4 and k = 4, one obtains
only two clusters that are the same ones as with k = 2 and d = 2.

Tuning parameters are d the dimension of the latent space, and k the number
of distributions which is the number of wanted groups k.

2.5.2 Random Dot Product Graphs (RDPG)

Synopsis

Name Random Dot Product Graphs (RDPG)
Type of method Model-based method
Type of graphs Undirected and unweighted
Type of clusters Communities

Summary

This method assumes that the graph is the realization of
a generative model and infers its parameters. The model
assumes that the vertices lie in a continuous latent space
and the linking behavior of each pair of vertices is deter-
mined by the position of the vertices in the latent space.
Then a classification method such as the k-means algo-
rithm classifies the vertices

Time complexity Not known

The multidimensional scaling (MS) method, applied to the similarity matrix
P , consists in positioning each vertex in a metric space of latent variables so that
the similarity between vertices is approximately kept. The underlying model is
P = TT ′, where the (n, d)-matrix T contains the coordinates of the vertices in a
d-dimensional metric space. The naive MS method is not well suited for modeling
P, with two major drawbacks: TT ′ does not lie in [0, 1]n

2
if T ∈ R

d and TT ′ is
symmetric so it is not suited for the modeling of directed graphs.

The Random Dot Product Graph defined in Marchette and Priebe (2008) is

Pij = f(t′
itj) with ti ∈ R

d and f(x) ∈ [0, 1].

f is a simple threshold in Marchette and Priebe (2008): f(x) = 0 if x < 0,
f(x) = x if 0 ≤ x ≤ 1 and f(x) = 1 if x > 1.
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To get around the second drawback, the RDPG model is extended with two
vectors for each vertex, an in-vector V and an out-vector U , such that the model be-
comes Pij = f(u′

i.vj). Another way to get around the symmetry of P , called DEDI-
COM, was proposed by Harshman (1978) and well described in Trendafilov (2002).
This model uses only one vector for each vertex but inserts a non-symmetric (d, d)-
matrix A in the dot product. The model is

X = TAT ′ + E

the matrix T is constrained by T ′T = I and T and A are obtained by mini-
mizing ‖X − TAT ′‖2. Several algorithms have been proposed to achieve this task
(see Kiers et al., 1990).

Tuning parameters are d the dimension of the latent space, and the number of
groups.

2.5.3 Stochastic Block Model (SBM)

Synopsis

Name Stochastic Block Model
Type of method Model-based method (SBM)
Type of graphs Directed or not, weighted or not
Type of clusters Structurally Homogeneous Subsets

Summary

SBM is a mixture model where each vertex is supposed
to pertain to only one structurally homogeneous subset.
The assignment of vertices to subsets is done by inferring
the model parameters.

Time complexity
Each iteration of VEM is O(|V |2). The number of itera-
tions depends on the number of nodes. For sparse graphs
the inference can be made in O(|E|).

The first probabilistic model which explicitly integrates heterogeneity in the
network topology, the Stochastic block model, has been proposed by mathemati-
cians and statisticians working in the domain of social science such as White et al.
(1976), Holland et al. Holland et al. (1983) and Snijders and Nowicki (1997).
These authors have developed this model in concordance with the notion of Struc-
tural Equivalence in a graph. Therefore the SBM is built to detect structurally
homogeneous subsets.

The intuitive idea developed by White et al. (1976) (see also Arabie et al., 1978
and Winship and Mandel, 1983) is that the vertices of a graph may be classified
into groups. Two vertices of the same group are connected in the same way to the
other vertices. Therefore the adjacency matrix, sorted by the number of the group
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in row and column, appears to be partitioned in homogeneous blocks composed of
0 or alternatively of 1.

BLOCKER and CONCOR (White et al., 1976) were historically the first algo-
rithms for clustering vertices. More recently Snijders and Nowicki (1997) used the
Markov Chain Monte Carlo method for estimating the parameters.

The modern version of the Stochastic Block Model is a mixture model, using
discrete latent variables giving the assignment of each vertex to a group, where
each vertex is supposed to pertain to only one group. The model for a binary
directed network is the following:

i = 1, n vertices pertains to q = 1, k classes. The class of each vertex is defined
by a hidden discrete latent variable Zi = q, if vertex i pertains to class q, with
Probability Distribution Function (pdf) given by Zi ∼ M(1, α1, α2, ...αk) and M
is a multinomial pdf.

Wij = 1 if there is an edge from vertex i to vertex j and 0 if there is no edge,
and conditionally to Z, Wij are independent Bernoulli random variables with

P (Wij = 1/Zi = q, Zj = l) = πql

Table 2.1 shows that the model is very flexible for it is able to modelize hubs,
communities or hierarchical structures.

Table 2.1: Examples of SBM

Description Graph k π

Erdos 1 p

Hubs 4




0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0




Communities 2

(
1 ε
ε 1

)

Hierarchical 5




0 1 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0




Sinkkonen et al. (2008a) propose an alternative mixture model which allows
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the analysis of large graphs. This model uses latent variables which operate not
on the vertex level but on the edge level.

Daudin et al. (2008) used a variational method of estimation allowing the anal-
ysis of network up to 3000 vertices. Hofman and Wiggins (2008) use a Bayesian
variational approach for a particular case of SBM with two parameters, πq,q = a
and πq,l = b for q 6= l. Mariadassou et al. (2010) have extended the variational es-
timation method to weighted networks with probability distribution of the weights
pertaining to the exponential family. Identifiability and consistency results have
been obtained by Celisse et al. (2011), Rohe et al. (2011), Ambroise and Matias
(2011), Bickel and Chen (2010) and Choi et al. (2012). A frequent criticism against
SBM is that the number of clusters is not a fixed number for real-life networks
and large networks have more clusters than small ones. However this point has
been taken into account and some consistency results are obtained in an asymp-
totic framework that allows the number of clusters to increase with the number of
vertices.

There is a C-Package Mixnet that uses the variational method. Applying this
package to the toy example allows the retrieval of the subsets of the column "Struc-
turally homogeneous subsets" in Figure 2.3.

For sparse graphs, Decelle et al. (2011) use belief propagation to infer parame-
ters of the stochastic block model, and achieve a complexity linear to the number
of edges.

There is only one tuning parameter, the number of clusters, k. It is possi-
ble to infer it from the data, see Daudin et al. (2008) and Hofman and Wiggins
(2008), using a penalized or a Bayesian criterion. Sinkkonen et al. (2008b) presents
Bayesian non-parametric methods which address the criticism of a fixed number
of clusters.

2.5.4 Continuous Stochastic Block Model (CSBM)

Synopsis

Name Continuous Stochastic Block Model (CSBM)
Type of method Model based method
Type of graphs Directed or not, weighted or not
Type of clusters Structurally Homogeneous Subsets

Summary

This method assumes that the graph is a realization of a
generative model and infers its parameters. The model
assumes that each vertex is a mixture of virtual vertices
whose connectivity properties are known.

Time complexity Not known
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The Stochastic Block Model model can be written under the form

Pij = P (Wij = 1) =
∑

q,l=1,k

ziqaqlzjl

where ziq = 1 if the vertex i is in class q, and 0 if not, which gives the matrix
relation P = ZAZ ′,

with Z the (n, k)-matrix containing the ziq. If we allow ziq to be in [0, 1] (and
not in (0, 1)) then each vertex does not pertain to only one group, which bears more
flexibility to the model. This leads to the CSBM (Continuous-SBM) developed in
Daudin et al. (2010).

This model displays the vertices in a continuous space. Therefore a supplemen-
tary step of clustering must by applied for obtaining groups. There is a MATLAB
package C-Mixnet for this model. Applying this package, followed by a k-means
clustering, to the toy example allows to retrieve the subsets of the column "Struc-
turally homogeneous subsets" in Figure 2.3.

There is only one tuning parameter, the number of clusters, k. However it is
possible to infer it from the data, see Daudin et al. (2008).

Other models allow each vertex to pertain to several classes such as the Mixed
Membership Stochastic Block Model (Airoldi et al., 2008) and the Overlapping
Stochastic Block Model (Latouche et al., 2011).

2.6 Application to the Zachary’s karate club

The Karate Club network, introduced by Zachary (1977) is one of the most
famous data set from the social science literature. The members of a karate club
at a US University in the 1970s are the vertices of the network. Edges represent
friendship relations between the members. This example is highly interesting be-
cause shortly after the observation, the club was split into two components. The
resulting two groups are represented in Figure 2.11. Therefore one may easily
compare the groups obtained by any clustering method to the exact split. A close
examination of the graph shows that some members are highly connected to other
members. These members, such as numbers 1 for the group on the left side of
Figure 2.11 and 33, 34 for the other group have probably played a leading role
in the split. Therefore one may consider that there are four groups: the leadings
members and the satellite members of each group. Therefore we have decided to
show the results of each method with 2 and 4 groups.

The results of 8 methods (EB, Pons-Latapy, Modularity, MCL, unnormalized
SC, Absolute SV, SBM and CSBM) are given in Figures 2.12 to 2.18 presenting
the graph with colored vertices. Each color corresponds to a cluster obtained by
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the method. For all the methods excepted MCL we give the result with 2 groups
(on the left side of the figure) and with 4 groups (on the right side).

In the case of 2 groups there are 3 classes of results:

1. The real split with one (MCL) or two (EB) errors of classification.

2. A somewhat isolated subgroup from the left group (members 5, 6, 11, 16
and 17), connected to no other member excepted member 1 on one side and
all the other members on the other side (Pons-Latapy, SC unnormalized).

3. A group composed of high degree vertices (members 1, 2, 3, 33, 34) and a
group composed of low degree vertices (SC absolute, SBM, CSBM).

In the case of 4 groups there are 3 classes of results:

1. EB and Modularity split the left group in one subgroup composed of the
isolated subgroup (members 5, 6, 11, 16 and 17), and split the right group
in two subgroups,

2. SBM and CSBM give the leadings members and the satellite members of
each group, with one error of classification (member 9),

3. SC absolute gives groups separated by connectivity behavior, in leading
behavior classes and satellite behavior classes.

This simple comparison from one small data set cannot be taken as a bench-
mark, but is only an illustration of two points:

1. the results may be very different from one method to another.

2. the result obtained with a given method are coherent with its objective.
EB, Modularity and MCL (with 1

10
-weighted self-loops) find communities

and SC(absolute), SBM and CSBM find structurally homogeneous subsets.

2.7 Conclusion

There are mathematical relations between some of the methods:

1. The Markov Chain Clustering and the Spectral Clustering are two ways to
study the behavior of the Markov Chain associated with a random walk
along the graph. This behavior is controlled by the transition matrix and
the asymptotic behavior of its power. The power of a matrix is related to its
spectral decomposition which is studied in the Spectral Clustering method.
Therefore the two methods are linked even if they do not necessarily give
exactly the same results. Von Luxburg (2007) gives a detailed analysis of
the connections between Spectral Clustering and Random Walks.
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Figure 2.11: Zachary’s Karate Club network. Colors show real fission of the club

24

25

26

27

20

21

22

23

28

29
1

3

2

5
4

7

6

9

8

11

10

13

12

1514

17

16

19

18

31

30

34

33

32

24

25

26

27

20

21

22

23

28

29
1

3

2

5
4

7

6

9

8

11

10

13

12

1514

17

16

19

18

31

30

34

33

32

Figure 2.12: Edge-betweenness for 2 and 4 groups method applied to the Zachary’s
Karate Club network

2. The Spectral Clustering and the cut-methods are also linked by the fol-
lowing relations: let x be a vector with xi = 1 if i ∈ V1 and xi = −1 if
i ∈ V2. Then Cut(V1, V2) = 1

2
x′Lx. Von Luxburg (2007) also gives a detailed

analysis of the connections between spectral clustering and Cut criteria.

3. Rohe et al. (2011) proved that for undirected graphs, the Absolute Eigen-
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Figure 2.13: Hierarchical clustering method to Pons-Latapy distance for 2 and 4
groups applied to the Zachary’s Karate Club network
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Figure 2.14: Modularity method without choice of number of groups (left) and
MCL method without choice of number of groups (right) applied to the Zachary’s
Karate Club network

value Spectral Clustering is asymptotically able to approximately retrieve
the clusters if the data are generated by SBM. Some work is in progress
from the same authors to extend these results to directed graphs.

We can summarize the methods in Table 2.2. They are sorted by ascending level
of generality. The first three methods cannot retrieve structural homogeneous
subsets of vertices that are not communities. These three methods are devoted
to one objective, the detection of communities and it seems difficult to generalize
them to a more general objective. On the other hand the SBM model, which
has been built around the concept of structural equivalence, is more general for
it can detect every type of structurally homogeneous subset. Spectral Clustering
and Random Walk methods have been used for a long time to detect communi-
ties. However these methods may be customized to be able to detect structurally
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Figure 2.15: Spectral clustering (unweighted variant) method for 2 and 4 groups
applied to the Zachary’s Karate Club network
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Figure 2.16: Spectral clustering (Absolute Eigenvalues variant) method for 2 and
4 groups applied to the Zachary’s Karate Club network

homogeneous subsets as well (Rohe et al., 2011). The trick for random walk meth-
ods consists in decreasing the value of self-loops. The modification of the usual
Spectral Clustering consists in keeping not only the eigenvectors corresponding to
the higher eigenvalues but also the ones corresponding to the negative eigenvalues
that have a high absolute value, see Rohe et al. (2011). It is quite surprising that
this new method is equivalent to a very old one, Correspondence Analysis.

Comparing methods to relevant datasets of networks is not a trivial task, many
points must be considered. To have a reference partition, simulated networks
can be a solution. However, the simulation method must be carefully choosen
not to advantage a subset of methods, and in particular, must be different from
generative models used by some methods. On the other hand, real world networks,
in general case, do not provide any reference partition. A comparison of methods
in a particular case of simulated bipartite networks is under work.
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Figure 2.17: Stochastic Block Model method applied for 2 and 4 groups applied
to the Zachary’s Karate Club network
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Figure 2.18: Continuous Stochastic Block Model method for 2 and 4 groups applied
to the Zachary’s Karate Club network
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Table 2.2: Summary of the clustering methods
Method Type of Method a Directed b Weighted c Goal d Tuning parameters

Edge-Betweenness A N N C none
Cut O N Y C Criteria

Modularity O Y Y C none
Spectral Clustering A N Y C or SHS method, k e

Hierarchical Clustering A N Y C or SHS method

Markov Chain Clustering A Y Y SHS r f, ef , ∆ g

Pons-Latapy A N Y SHS ke, ∆g

SBM M Y Y SHS ke or none
CSBM M Y N SHS ke or none

MBCSN h M N N C d i and ke

RDPG M N N C di

a. A for algorithm, O for optimization, M for probabilistic model
b. Y if the method can be applied to a directed graph, N otherwise
c. Y if the method can be applied to a weighted graph, N otherwise
d. C for Community research algorithm, SHS for Structural homogeneous subset research

algorithm
e. k is the number of groups
f. e and r are the importance of transition and inflation step, e

r
control the number of

groups
g. Weight of self-loops added for ergodicity
h. Model-based clustering for social network
i. d is the dimension of the latent space
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Chapter 3

Graph clustering methods differ
in their ability to detect patterns
in bipartite ecological networks

Abstract

Network ecology has been an extraordinarily fertile field of research during
the last 15 years. Simultaneously, a number of graph clustering methods have
been developped by physicians, statisticians and computer scientists. However,
only a couple methods are currently used by researchers in ecology. Here we
compared several graph clustering methods in terms of their ability to retrieve
species groups in ecological bipartite networks. The methods compared were the
edge-betweeness algorithm, one method of modularity maximization, two spectral
clustering methods, two Markov chain clustering methods and the stochastic block
model. They were applied to the weighted and binarized version of 6400 bipartite
networks, simulated with ecologically-relevant parameters. Our results showed
that the edge-betweenness algorithm with modularity criterion for selecting group
number is a good method for retrieving sub-groups of highly interacting species in
binary bipartite networks. The stochastic block model gave very good results in the
case of weighted bipartite networks, but it was very time consuming. In the case
where thousands of weighted networks should be analyzed in a reasonable amount
of time, an algorithmic efficient version of modularity maximization appears as a
good alternative.

Keywords: ecological network, community, compartmentalization, nested-
ness, edge-betweeness, modularity maximization, spectral clustering, Markov chain
clustering, stochastic block model
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3.1 Introduction

Interactions between species form complex networks, called ecological networks.
Most ecological networks contain several sub-groups of species, distinguishable
by the higher density or the higher strength of interactions. These sub-groups
of species have received various names in the ecological literature (reviewed by
Dormann and Strauss, 2013), including compartment, module, cohesive group or
community. Detecting these sub-groups of interacting species is important for
ecologists for three reasons. First, it provides a simplified picture of the network
(Allesina and Pascual, 2009). Second, it reveals the processes underlying the as-
sembly of the network (e.g. Vacher et al., 2008b; Rezende et al., 2009; Krasnov
et al., 2012). Third, it has implications for the functioning (especially, the stabil-
ity) of the network (e.g. Fontaine et al., 2011; Stouffer and Bascompte, 2011).

Since the seminal article by Olesen et al. (2007), modularity maximization
(Newman and Girvan, 2004) with a simulated annealing optimization approach
(Guimera and Amaral, 2005) is the most widely used method for detecting such
sub-groups in ecological networks. Other methods (reviewed by Fortunato, 2010;
Leger et al., 2013) have been neglected so far by ecologists. These methods orig-
inate from various fields of research (physics, mathematics, statistics, computer
science) and are of two kinds (Allesina and Pascual, 2009; Leger et al., 2013):
those that detect sets of highly interacting nodes (hereafter called communities)
and those that detect sets of nodes that have similar interaction patterns (hereafter
called structural homogeneous subsets (SHS) as in Leger et al., 2013). Although
the two kinds of methods correspond to different lines of research (Allesina and
Pascual, 2009; Leger et al., 2013), the difference between both is not so clear-cut
because nodes within a community tend to have similar interaction patterns. Both
kinds of methods may thus be used to detect sets of highly interacting species in
ecological networks.

Our aim here is to compare the ability of several methods of graph cluster-
ing, including modularity maximization, to detect sub-groups of highly interacting
species in ecological networks. Although it would be relevant to merge different
types of interactions within the same ecological network (Fontaine et al., 2011),
the ecological literature is traditionally divided between the study of food webs
and the study of bipartite networks (such as plant-pollinator or host-parasite net-
works). Here we focused on the latter and simulated several thousands of bipartite
weighted ecological networks, with known sub-groups. We then assessed the ability
of each clustering method to retrieve the sub-groups, depending on the properties
of the sub-groups and several other properties of bipartite networks (total number
of species, ratio between the number of plant (or host) species and the number of
pollinator (or parasite) species, total number of interactions, mean weight of the
interactions, degree of nestedness). The simulated networks were then binarized
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and the analyses were performed again, in order to investigate whether the accu-
racy of the clustering methods changes with binarization and whether the ranking
of clustering methods differs between weighted and binary networks.

3.2 Materials and methods

3.2.1 Graph clustering methods

Seven methods, chosen according to their popularity in ecology but also in
bioinformatics or social science, were compared in this study. They are briefly
described below and more details are available in Leger et al. (2013).

Modularity maximization (Mod) is a method proposed by Newman and Gir-
van (2004) to detect communities. The modularity measures the mean difference
between the actual and expected within-community edges under a null model as-
suming a connectivity between vertices that is proportional to their degrees. Sev-
eral algorithms have been proposed to obtain the maximum (Clauset et al., 2004)
The algorithm used in our study is the one proposed by Newman (2006), which is
based on successive splits by spectral analyses of a modularity matrix.

The edge-betweeness (EB) algorithm has been proposed by Girvan and New-
man (2002) to detect communities. The main idea is to remove edges from the
network until the communities are disconnected from each other. The edges to be
removed are chosen using a criterion called edge-betweenness.

The MCL algorithm (MCL) (Van Dongen, 2000) was initially developed to
detect communities. The method builds clusters considering the behavior of a
random walk on the graph. Vertices with the same random walk behavior are
classified within the same cluster. The method requires that the network contains
self-loops, so self-loops are added if they are not in the raw data. The standard
weight of self-loops is equal to 1.

Leger et al. (2013) proposed to reduce the weight of self-loops to e.g. 1
10

. They
showed that in that case, the algorithm (MCL- 1

10
) tends to detect SHS.

Spectral clustering methods, first proposed by Donath and Hoffman (1973), are
based on the Laplacian matrix of the graph. They determine the composition of
the k clusters by applying a k-means algorithm to the nodes contained in a vector
space generated by the k eigenvectors associated with the k lowest eigenvalues of
the Laplacian matrix of the graph. There are several variants described in Von
Luxburg (2007). In this study, we used two variants: the Ng-normalized spec-
tral clustering (NSC) which was developed to find communities and the Absolute
Eigenvalues Spectral Clustering (ASC) (see Rohe et al. 2011) which was developed
to detect SHS.

The Stochastic Block Model (SBM) (White et al., 1976; Mariadassou et al.,
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2010) is a probabilistic model which explicitly integrates heterogeneity in the net-
work topology. This model was developed to detect SHS structure. According
to the model, two nodes belonging to the same group have the same probabil-
ity of connection with a third node. This probability depends only on the group
membership of the three nodes.

3.2.2 Simulation of ecological bipartite networks

In order to compare the efficiency of the graph clustering methods, we applied
them to simulated networks with known communities. The simulation method
was designed according to the two following requirements:

First, the simulation model should create networks similar to real ecological
ones. To define the value of the parameters of the simulation model, we thus
analyzed the structure of 23 unweighted and 24 weighted networks taken from the
Interaction Web Database (Table 3.1). The ecological relevance of the simulated
networks was then assessed by comparing simulated networks and real ecological
networks for five topological properties: the cumulative distribution of degrees
for each level of the network (Fig. 3.1 and 3.2), the frequency distribution of
dependence for each level of the network (Fig. 3.3 and 3.4) and the frequency
distribution of asymmetry values of dependences as defined in Bascompte et al.
(2006) (Fig. 3.5). The distributions in simulated networks were similar to those
observed by Jordano et al. (2003) and Bascompte et al. (2006) for real ecological
networks.

Second, the simulation model should not favour one graph clustering method
over others. We therefore chose simulation model developed by Thébault and
Fontaine (2010), because it is not linked with any clustering method. We adapted
it in order to simulate weighted networks.

The simulation of each weighted network was done in three steps. First, we
defined the total number of nodes n1 on the higher network level (usually cor-
responding to parasite species, pollinator species or herbivore species), the total
number of nodes n2 on the basal network level (usually corresponding to host
species or plant species), the total number of links nl, the total weight of all links
nw, the number of groups g, the compartmentalization index pcomp and the nest-
edness index pnest.

Second, the attractivity of each node was randomly defined using a power law
probability distribution with power equal to 2, and nodes were assigned to the
g groups randomly with the same probability for each group. The groups were
not constrained to have exactly the same size. Most of the groups contained both
types of nodes (higher or basal level), but in some cases with n2 low and g high,
some groups contained only one type of node.

Third, the network links were simulated by using the following algorithm:
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Dataset Habitat type Location Data type # of species in the
lower trophic level

# of species in the
highter trophic level

Ollerton et al. (2007) Coral reefs East coast of Africa
and the Red Sea
through the Indian
Ocean to the western
Pacific, and from
southeastern Aus-
tralia to the latitude
of Tokyo

binary 10 26

Joern (1979) Arid grasslands Marathon,Trans-
Pecos, Texas, USA

binary 54 24

Joern (1979) Arid grasslands Altuda, Trans-Pecos,
Texas, USA

binary 52 22

Leather (1991) Whole country Finland binary 5 64
Leather (1991) Whole country Finland binary 6 88
Arroyo et al. (1982) Andean scrub Chile binary 87 98
Arroyo et al. (1982) Andean scrub Chile binary 43 62
Arroyo et al. (1982) Andean scrub Chile binary 41 28
Clements and Long
(1923)

Montane forest and
grassland

USA binary 96 276

Dupont et al. (2003) High-altitude desert Tenerife, Canary Is-
lands

binary 11 38

Hocking (1968) Arctic community Canada binary 29 86
McMullen (1993) Multiple communi-

ties
Galápagos Islands binary 106 54

Medan et al. (2002) Xeric scrub Laguna Diamante,
Mendoza, Argentina

binary 21 45

Medan et al. (2002) Woody riverine veg-
etation and xeric
scrub

Río Blanco, Men-
doza, Argentina

binary 23 72

RAMIREZ and
BRITO (1992)

Palm swamp commu-
nity

Venezuela binary 33 53

Robertson (1929) Agricultural area
dominated by crops,
with some natural
forest and pasture

USA binary 456 1429

Barrett and He-
lenurm (1987)

Boreal forest Canada individuals caught 12 102

Blüthgen and Fiedler
(2004)

rainforest Australia no. visits 51 41

Davidson et al.
(1989)

rainforest Peru no. visits 8 18

Davidson and Fisher
(1991)

tropical forest Peru no. visits 6 4

Elberling and Olesen
(1999)

Alpine subarctic
community

Sweden no. visits 23 118

Fonseca and Ganade
(1996)

Amazon rainforest Brazil no. visits 16 25

INOUYE and PYKE
(1988)

Montane forest Australia individuals caught 42 91

Mosquin and Martin
(1967)

Arctic community Canada individuals caught 11 18

Motten (1986) Deciduous forest USA no. visits 13 44
Olesen et al. (2002) Coastal forest Mauritius Island no. visits 14 13
Olesen et al. (2002) Rocky cliff and open

herb community
Azores Islands no. visits 10 12

Ollerton et al. (2003) Upland grassland KwaZulu-Natal
region, South Africa

individuals caught 9 56

Schemske et al.
(1978)

Maple-oak woodland USA no. visits 7 32

Small (1976) Peat bog Canada individuals caught 13 34
Vázquez (2002) Evergreen montane

forest
Argentina no. visits 10 29

Vázquez (2002) Evergreen montane
forest

Argentina no. visits 9 33

Vázquez (2002) Evergreen montane
forest

Argentina no. visits 9 27

Vázquez (2002) Evergreen montane
forest

Argentina no. visits 10 29

Vázquez (2002) Evergreen montane
forest

Argentina no. visits 8 35

Vázquez (2002) Evergreen montane
forest

Argentina no. visits 8 26

Vázquez (2002) Evergreen montane
forest

Argentina no. visits 7 24

Vázquez (2002) Evergreen montane
forest

Argentina no. visits 8 27

Table 3.1: Table 3.1: List of the real antagonistic and mutualistic bipartite
networks used in this study. Networks were extracted from the interaction web
database (http://www.nceas.ucsb.edu/interactionweb/)).

http://www.nceas.ucsb.edu/interactionweb/


62
Graph clustering methods differ in their ability to detect patterns in bipartite

ecological networks

10
-4

10
-3

10
-2

10
-1

10
0

10
0

10
1

c
u
m
 
p
r
o
b
a
b
i
l
i
t
y

degree

Figure 3.1: Complementary cumulative distribution of the degrees of the antago-
nist species for the simulated networks at the central point, on a log-scale. The
linear trend is typical of the scale free distribution observed by Jordano et al.
(2003) for real ecological networks.
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Figure 3.2: Complementary cumulative distribution of the degrees of the host
species for the simulated networks at the central point, on a log-scale. The linear
trend is typical of the scale free distribution observed by Jordano et al. (2003) for
real ecological networks.
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Figure 3.3: Frequency distribution of dependence values as defined by Bascompte
et al. (2006), for antagonist species for simulated networks at the central point.
The distribution is similar to those observed by Bascompte et al. (2006) for real
ecological networks.
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Figure 3.4: Frequency distribution of dependence values as defined by Bascompte
et al. (2006), for host species for simulated networks at the central point. The dis-
tribution is similar to those observed by Bascompte et al. (2006) for real ecological
networks.
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1. initialization of the network with no link

2. while the total weight, nW , is not reached

(a) one type of node is chosen randomly: the first type of node is chosen
with probability equal to n1

n1+n2
(the second type is thus chosen with

probability n2

n1+n2
)

(b) one node is chosen randomly in the type chosen in (a)

(c) the set of the allowed partner nodes of the chosen node in (b) is:
— with probability pcomp: the set of nodes which are in the other type

and in the same group than the node chosen in step (b)
— with probability 1 − pcomp: the set of all the nodes of the other type,

without taking account of their membership to a group

(d) the partner node is chosen in the set of allowed partner nodes defined
in (c):
— with probability pnest: randomly with a probability proportional to

its attractivity
— with probability 1 − pnest: randomly with uniform probability

(e) the weight of the link between the two nodes chosen in steps (b) and
(d) is modified as follows:
— if the weight is stricly positive, it is incremented by one
— if the weight is null and the total number of links, nl, is not reached

a link with a weight equal to one is added

3. If the total number of links nl is not reached the network is discarded.

Based on the 47 ecological networks taken from the Interaction Web Database
(Table 3.1), we found that some pairs of parameters among n1, n2, nl and nw were
highly correlated. Allowing them to vary independently would lead to simulated
networks very different from real ones. Therefore we used a reparametrization with
almost independent new parameters that represent network size and connectivity.

The correlation between n1 and n2 (Fig. 3.6) was highly significant for ecological
networks. The ratio n1

n2
and the product n1n2 were less correlated (Fig. 3.7).

Therefore we used these two new parameters in place of n1 and n2. n1n2 represents
the size of the network (the number of possible links) and n1

n2
the ratio between the

two types of nodes. Their distribution for real ecological networks are respectively
shown in figures 3.8 and 3.9.

The number of edges nl and the size of the network n1n2 were correlated in
ecological dataset networks (Fig. 3.10). The relationship between log(nl) and
log(n1n2) was almost linear, with the slope of the linear regression equaled to .63
(Figs. 3.10). log(nl) − .63 log(n1n2) is the residual of this regression. It is not
correlated with the regressor log (n1n2). The expression nl

(n1n2).63 is therefore not
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Figure 3.5: Frequency distribution of symmetry values as defined by Bascompte
et al. (2006) for simulated networks at the central point. The distribution is similar
to those observed by Bascompte et al. (2006) for real ecological networks.
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Figure 3.6: Relationship between the number of hosts species n1, and the number
of antagonist species n2, on a log-scale. Each cross represents an ecological network
among the 47 networks taken from the Interaction Web Database. n1 and n2 are
clearly linked.
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Figure 3.7: Relationship between the ratio of nodes types n1

n2
, and the product

n1n2, on a log-scale. Each cross represents an ecological network among the 47
networks taken from the Interaction Web Database. n1/n2 and n1n2 are not linked
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Figure 3.8: Empirical distribution of the product of number of species of both
types, n1n2, for 47 networks taken from the Interaction Web Database. The white
zone corresponds to the ecological range, the studied range includes the light grey
zone. The dark grey zone is not studied. The central point is represented by the
green vertical line.
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correlated with n1n2 (Fig. 3.11). We thus chose to use nl

(n1n2).63 as a new parameter
instead of nl. This new parameter represents the connectivity of the network. Its
ranges were chosen using the ecological dataset (Fig. 3.12).

The total weight of the network nw was correlated with the number of edges nl

in the weighted ecological networks dataset (Fig. 3.13). We chose the mean weight
of the edges nw

nl
as new parameter and its studied range was chosen according to

the ecological dataset (Fig. 3.14).
The ecologically relevant ranges for the four new parameters are given in Ta-

ble 3.2. Ranges used for simulations (called studied parameter ranges in Table 3.2)
were slightly larger than ecological ranges. It was not possible to give an ecological
range for g, pcomp and pnest, because these three parameters cannot be measured
in real networks. Therefore we used a large studied range for them. The large
range of the number of groups g constrained the studied range for the network size
n1n2. Indeed the number of species of each type must be greater or equal than
the number of groups. Thus the minimum value for the studied range of network
size (i.e. 56) was slightly greater than the minimum value found in the ecological
dataset (i.e. 38).

The networks were simulated by keeping all the parameters fixed to a central
point, except one that was allowed to vary within the studied range. In the case of
size and connectivity parameters, the central point was defined as the geometrical
mean value for real ecological networks. A network simulated with this central
values had 64 species on the higher network level, 18 species on the basal network
level, 120 edges and 1018 as total weight. We arbitrarily chose g = 4, pcomp = .6
and pnest = .5 for central values. This choice corresponds to a rather strongly com-
partimentalized and nested network with four compartments. The varying param-
eter was allowed to take 10 different values (except for the number of groups that
took only four values). One hundred networks were simulated for each parameter
combination. This simulation design resulted in (6×10+4)×100 = 6400 weighted
networks. The binary version of the networks was obtained by replacing positive
weights by one.

Number of groups

The number of groups in a real ecological network is usually unknown. All the
clustering methods provide an estimate of this number. It is therefore logical to
let the method estimate the number of groups and then compare the results to
the true partition. However some methods may give an estimate of the number
of groups that is far from the truth, and thus obtain poor results. Therefore we
displayed two kinds of results: the results when the number of groups is estimated
by the method (unknown number of groups), and the results when the true number
of groups is given before the clustering (fixed number of groups).
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Figure 3.9: Empirical distribution of the ratio of the numbers of species of both
types, n1/n2, for 47 networks taken from the Interaction Web Database. The white
zone corresponds to the ecological range, the studied range includes the light grey
zone. The dark grey zone is not studied. The central point is represented by the
green vertical line.
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Figure 3.10: Relationship between the number of edges nl, and the product of
the numbers of species of both types n1n2, on a log-scale. Each cross represents
an ecological network among the 47 networks taken from the Interaction Web
Database. nl and n1n2 are clearly linked. The red line is the regression line.
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Figure 3.11: Relationship between the ratio nl

(n1n2)0.63 , and the product of the num-
bers of species of both types n1n2, on a log-scale. Each cross represents an eco-
logical network among the 47 networks taken from the Interaction Web Database.
There is no relation between them.
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Figure 3.12: Empirical distribution of the ratio nl

(n1n2)0.63 , for 47 networks taken
from the Interaction Web Database. The white zone corresponds to the ecological
range, the studied range includes the light grey zone. The dark grey zone is not
studied. The central point is represented by the green vertical line.
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Figure 3.13: Relationship between the total weight of edges nw, and the number
of edges, nl, on a log-scale. Each cross represents an ecological network among
the 47 networks taken from the Interaction Web Database. nw and nl are clearly
related.
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Figure 3.14: Empirical distribution of the mean weight by present edge, nw

nl
, for 47

networks taken from the Interaction Web Database. The white zone corresponds
to the ecological range, the studied range includes the light grey zone. The dark
grey zone is not studied. The central point is represented by the green vertical
line.
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The number of groups is not an input parameter for the methods MCL, MCL 1
10

and Mod. A few adjustments were thus made to obtain the results with a fixed
number of groups. The MCL algorithm chooses automatically the number of
groups, but this latter depends on the ratio of the expansion and the inflation
coefficients (for a unknown number of groups used values are respectively 2 and
2.6). We dynamically changed this ratio to have a number of groups which is close
to the fixed number of groups. It was not always possible to obtain exactly the
fixed number of groups, but the difference was always very small. The modularity
maximization algorithm selects the number of groups which maximizes the mod-
ularity for all partitions. In order to obtain a fixed number of groups, we have
implemented a greedy algorithm which restricts the search to partitions with the
fixed number of groups.

The number of groups is an input parameter for NSC, ASC, EB and SBM. In or-
der to apply these methods to simulated networks in the case of an unknown num-
ber of groups, the number of groups was selected by using an additional method
or criteria. In the case of EB, the number of groups was estimated by maximizing
the modularity. In the case of SBM, we used the ICL criterion to select the num-
ber of groups (see Daudin et al. 2008). As long as we know, very few methods,
if any, exist for estimating the number of groups for spectral clustering methods.
We therefore used a method which is simple and works well in practice on the
simulations. This method is based on the eigenvalues of the Laplacian matrix.
The eigenvectors were choosen in relation with the eigenvalues in growing order
conditionally to be lower than 1

2
.

3.2.3 Criteria used to compare the efficiency of the clus-
tering methods

Quality of clustering

We assessed the ability of each clustering method to retrieve groups of species.
For that, we compared the obtained partition with the true partition by using the
adjusted rand-index (Rand, 1971) for each simulated network. The adjusted rand-
index takes its values in the range [−1, 1]. An adjusted rand-index value equal
to 1 corresponds to a perfect clustering. A value of 0 is expected for a random
clustering. We calculated two adjusted rand indexes, one indicating the quality of
clustering for the basal network level (the ’adjusted rand-index for host species’,
ariH) and the other indicating the quality of clustering for the higher network level
(the ’adjusted rand-index for antagonist species’, ariA).
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Quality of prediction

We also assessed the ability of each clustering method to predict edges between
the groups of species, by calculated the adjusted R2 (R2

a) for each simulated net-
work. A method that does not associate correctly groups of species has a poor
adjusted R2.

The R2 is the square of the correlation coefficient between the observed and
predicted edges. The predicted value for an edge between two nodes is defined
as the mean value of the observed edges between the groups to which the two
nodes have been classified. Prediction is restricted to the edges between the two
levels of the bipartite network. The number of parameters for obtaining this
prediction is thus equal to the product of the number of groups in the basal network
level, gH , with the number of groups in the higher network level, gA. The R2

is adjusted by taking into account this number, by using the expression R2
a =

1 − (1 − R2) n1n2−1
n1n2−gHgA−1

.

3.3 Results

3.3.1 Relative efficiency of the clustering methods when
applied to ecological bipartite networks with average
properties

We first compared the clustering methods for average ecological networks (sim-
ulated by fixing the network properties to the central point), in the case where
the number of groups was estimated by the method itself. In the case of binary
networks (Fig. 3.15), all the methods, except SBM, strongly over-estimated the
number of groups and hardly retrieved their composition, with mean adjusted
Rand indexes lower than .25. SBM under-estimated the number of groups and
had the lowest adjusted Rand indexes. EB was the method which gave the best
estimated number of groups and their composition. In the case of weighted net-
works (Fig. 3.16), all the methods gave better results than for binary networks.
SBM was the method which estimated the most precisely the number of groups
and it retrieved well their composition, with mean adjusted Rand indexes equal
to .4 for the basal network level and .6 for the higher network level. It was also
among the three best methods regarding the ability to predict associations between
groups. EB also performed well, despite a high over-estimation of the number of
groups.

The relative performance of the methods changed in the case where the true
number of groups was given to the method before the clustering step. NSC was
the method which retrieved the most precisely the composition of groups, both for
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Parameter name Parameter ex-
pression

Ecological pa-
rameter range

Studied param-
eter range

Central point

compartmentalization index pcomp [.1, .9] .6
Nestedness index pnest [.1, .9] .5
Number of groups g {2, 4, 8, 16} 4
Size n1 × n2 [38, 36 · 103] [56, 100 · 103] 1.2 · 103

Ratio between types n1

n2
[1, 12] [1, 46] 3.5

Connectivity parameter
nl

(n1n2)0.63
[.41, 4.75] [.41, 16.2] 1.4

Mean links weight nw

nl

[1.5, 48] [1.25, 270] 8.5

Table 3.2: Names, expression, ecological and studied range of the seven parameters
of the simulations. The central point corresponds to the central values for each
parameter.
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Figure 3.15: Box-plots of the 100 replicates obtained on binary networks for un-
known number of groups at the central point. Up-left: adjusted Rand index for
antagonist species, up-right: adjusted Rand index for host species, bottom-left:
R2

a for prediction of edges, bottom-right: number of estimated groups divided by
the true number (4 for communities methods, 8 for the SHS methods)
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Figure 3.16: Box-plots of the 100 replicates obtained on weighted networks for
unknown number of groups at the central point. Up-left: adjusted Rand index for
antagonist species, up-right: adjusted Rand index for host species, bottom-left:
R2

a for prediction of edges, bottom-right: number of estimated groups divided by
the true number (4 for communities methods, 8 for the SHS methods).
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binary (Fig. 3.17) and weighted networks (Fig. 3.18). Knowing the true number
of groups improved the performance of SBM on binary networks (Fig. 3.17), but
it drastically reduced that of EB for weighted networks (Fig. 3.18).

Execution processor time are presented in Table 3.3. Mod was the fastest
method. SBM was the slowest. Real execution time of SBM was lower than
processor execution time since SBM used parallelized estimation. However, SBM
was also the slowest for real execution time (not shown).

3.3.2 Effect of network properties on the hierarchy be-
tween clustering methods

The effect of network properties on the relative performance of the clustering
methods was investigated in the case where the number of groups was estimated
by the method itself. We first compared the ability of the methods to estimate the
true number of groups. In the case of binary networks (Fig. 3.19), SBM does not
find any group except the two trophic levels, and all the other methods strongly
overestimated the number of groups when the size of the network was high or when
the true number of groups was low. EB give the more stable and the best results for
all values of the parameters except in the case of high connectivity. Variations in
the degree of nestedness and compartmentalization hardly changed the quality of
the estimation of the number of groups. In the case weighted networks (Fig. 3.20),
all the methods, except SBM and MCL 1

10
, had a tendency to over-estimation of the

number of groups when the size of the network was high or when the true number
of groups was low. This was particularly true for EB and Mod. EB strongly
overestimated the number of groups in most cases, especially when the degree of
compartmentalization was low, the degree of nestedness was high, the number of
species in the higher network level was high in comparison with the number of
species in the basal network level and when the mean weight of links increased.

Variations in the network properties also changed the ability of the methods
to retrieve the composition of the groups, as indicated by the variations in the
ariA and ariH indexes. In the case of binary networks (Fig. 3.19), all the methods
except SBM better retrieved the groups when the degree of compartmentalization
was high. SBM did not retrieve the groups at all. The same result was obtained
in the case of weighted networks (Fig. 3.20), for all the methods including SBM.
In that case, the ability of the methods to retrieve the groups also increased with
the number of groups and the connectivity, but decreased with the network size.

Finally, variations in the network properties changed the ability of the methods
to predict the associations between groups, as indicated by variations in the R2

a

index. Variations in the case of weighted networks (Fig. 3.20) were stronger and
more consistent than in the case of binary networks (Fig. 3.19). In the case of
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Figure 3.17: Box-plots of the 100 replicates obtained on binary networks for known
number of groups at the central point. Up-left: adjusted Rand index for antago-
nist species, up-right: adjusted Rand index for host species, bottom-left: R2

a for
prediction of edges.
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Figure 3.18: Box-plots of the 100 replicates obtained on weighted networks for
known number of groups at the central point. Up-left: adjusted Rand index for
antagonist species, up-right: adjusted Rand index for host species, bottom-left:
R2

a for prediction of edges.
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Method Unknown number of groups Known number of groups
Binary Weighted Binary Weighted

ASC 1m 35s 1m 30s 1m 27s 1m 21s
SBM 22h 26m 11h 49m 22h 26m 11h 49m

MCL 1
10

33s 31s 7m 40s 7m 59s
MCL 31s 32s 6m 8s 6m 5s
NSC 1m 25s 1m 23s 1m 24s 1m 17s
Mod 11s 13s 8s 9s
EB 31s 12m 59s 31s 12m 56s

Table 3.3: Execution time of methods for a network on the central point. Given
time is processor time, i.e. equivalent execution time on a single processor com-
puter which only run one job. Some methods as SBM use parallel computing
and processor time must be divided by the number of threads to obtain the real
execution time
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Figure 3.19: Relationships between the performances of the methods and the
network parameters for unknown number of groups and binary networks. ariA:
adjusted Rand index for antagonist species, ariH: adjusted Rand index for the host
species, R2

a: adjusted R square for the prediction of edges, last column: number
of estimated groups divided by the true number (g for communities methods, 2g
for the SHS methods), size: n1n2, ratio: n1

n2
, connectivity: nl

(n1n2)0.63 .



80
Graph clustering methods differ in their ability to detect patterns in bipartite

ecological networks

ariA ariH adj r2 number of found groups
number of simulated groups

pcomp
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1

0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1

pnest
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1

0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1

g
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

10
1

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

10
1

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

10
1

0

2

4

6

8

10

12

10
0

10
1

10
2

size
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

10
1

10
2

10
3

10
4

10
5

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

10
1

10
2

10
3

10
4

10
5

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

10
1

10
2

10
3

10
4

10
5

0

20

40

60

80

100

10
0

10
1

10
2

10
3

10
4

10
5

10
6

ratio
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

10
0

10
1

10
2

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

10
0

10
1

10
2

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

10
0

10
1

10
2

0

2

4

6

8

10

10
-1

10
0

10
1

10
2

10
3

connectivity
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

10
0

10
1

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

10
0

10
1

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

10
0

10
1

0

1

2

3

4

5

10
-1

10
0

10
1

10
2

weights
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

10
0

10
1

10
2

10
3

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

10
0

10
1

10
2

10
3

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

10
0

10
1

10
2

10
3

0

1

2

3

4

5

6

7

8

10
-1

10
0

10
1

10
2

10
3

ASC

SBM
MCL

1/10

MCL

NSC

Mod

EB

Figure 3.20: Relationships between the performances of the methods and the
network parameters for unknown number of groups and weighted networks. ariA:
adjusted Rand index for antagonist species, ariH: adjusted Rand index for the host
species, R2

a: adjusted R square for the prediction of edges, last column: number
of estimated groups divided by the true number (g for communities methods, 2g
for the SHS methods), size: n1n2, ratio: n1

n2
, connectivity: nl

(n1n2)0.63 .
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weighted networks (Fig. 3.20) , all the methods gave a better prediction when the
degree of compartmentalization was high, the true number of groups was high, the
network size was small and the network connectivity was low.

In the case where the number of groups was known, the effect of network prop-
erties on the relative performance of the clustering methods was investigated. For
binary networks results are shown figure 3.21 and for weighted networks figure 3.22.

3.4 Discussion

Our results showed that some methods of graph clustering performed better
than others at retrieving sub-groups of highly interacting nodes. Among the clus-
tering methods included in this study, and in the case of binary bipartite networks
simulated with ecologically relevant parameters, the edge-betweenness algorithm
consistently gave the best results. It retrieved the composition of the sub-groups
and kept a moderate over-estimation of the number of sub-groups. The edge-
betweenness algorithm was also very efficient at retrieving the composition of
the sub-groups in the case of weighted bipartite networks, but it strongly over-
estimated the number of sub-groups in that case. The stochastic block model was
another very good method for weighted networks, but it was the slowest method
in terms of computation time. Contrary to the edge-betweenness algorithm, it es-
timated precisely the number of sub-groups in weighted networks. It is noteworthy
that the stochastic block model was not able to retrieve the sub-groups in binary
networks, despite its good performance on weighted networks.

Modularity maximization, which is the most popular clustering method in ecol-
ogy, gave satisfactorily results for both weighted and binary networks, although it
had a tendency to over-estimate the number of sub-groups (by a factor of between
2 and 3). It was among the three best methods for a wide range of ecological net-
works. However this clustering method suffers a major drawback: it can be very
time consuming depending on the method used to maximize the modularity. For
instance, the simulated annealing optimization approach (Guimera and Amaral,
2005) implemented in the software NETCARTO, which has often been used in
ecological studies (Martos et al., 2012; Gómez et al., 2010; Guimera et al., 2010
Meskens et al., 2011; Traveset et al., 2013; Danieli-Silva et al., 2012; Krasnov et al.,
2012 Genini et al., 2012), is particularly slow. We could not use it in our study
to cluster several thousands of networks. Therefore, we used another approach to
maximize the modularity (Newman, 2006). This approach is implemented in the
new software MODULAR (Marquitti et al., 2013), which has been developed for
analyzing the structure of thousands of networks in a reasonable amount of time.
This software offers the choice between several maximization approaches and also
between several modularity metrics. The modularity metrics used in our study is
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Figure 3.21: Relationships between the performances of the methods and the net-
work parameters for known number of groups and binary networks. ariA: adjusted
Rand index for antagonist species, ariH: adjusted Rand index for the host species,
R2

a: adjusted R square for the prediction of edges, size: n1n2, ratio: n1

n2
, connec-

tivity: nl

(n1n2)0.63 .
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Figure 3.22: Relationships between the performances of the methods and the
network parameters for known number of groups and weighted networks. ariA:
adjusted Rand index for antagonist species, ariH: adjusted Rand index for the
host species, R2

a: adjusted R square for the prediction of edges, size: n1n2, ratio:
n1

n2
, connectivity: nl

(n1n2)0.63 .
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the one proposed by Newman (2006). We chose it because it is the most com-
mon modularity metrics and because it has been applied to bipartite ecological
networks, although it was developed for unipartite networks. Other modularity
metrics, developed specifically for bipartite networks (Barber, 2007; Guimerà et al.,
2007), may have been used.

Our results also showed that the accurate estimation of the number of sub-
groups, which is an input parameter in several clustering methods, is sometimes
as important as the clustering step itself. Among the clustering methods included
in this study, the number of sub-groups is an input parameter for spectral clus-
tering methods, the stochastic block model and the edge betweenness algorithm.
The number of sub-groups must be selected according to a criterion before the
clustering step. For the other methods the number of sub-groups is automatically
chosen by the algorithm.

All the methods, exept the stochastic block model, over-estimate the true num-
ber by a factor greater or equal to 2, leading to the building of chimeric groups.
However the corrected Rand index is not necessarily bad with two many sub-
groups, if these estimated sub-groups are just divisions of the true sub-groups.

The criterion ICL associated with the stochastic block model has been built
in order to avoid over-estimation, and this is checked in the simulation results.
However in the case of binary networks, the number of subgroups was consis-
tently underestimated by ICL. The clustering obtained with the stochastic block
model was just able to separate the two trophic levels of the bipartite network.
In contrast, when the accurate number of subgroups was selected, the stochastic
block model performed much better. The criterion used to estimate the number
of sub-groups should thus be improved, in order to increase the applicability of
the stochastic block model to binary, bipartite ecological networks with similar
structure of network obtained by the simulation algorithm.

Another important result of our study is that the retrieved sub-groups were
generally more accurate for host species than for antagonist species. This result
may be accounted for by the lower number of host species in ecological networks.
The amount of information per host species contained by the network is thus
higher than the amount of information per antagonist species, leading to a better
classification of host species. Interestingly, a relationship between subgroups and
phylogeny has often been found for host species but not for antagonist species
(Vacher et al., 2008a; Krasnov et al., 2012). Evolutionary processes have been
proposed to account for this asymmetric pattern. Our results suggest that the
clustering method is an alternative explanation.

Finally, our results showed that the clustering methods which are the best
at retrieving the subgroups are not those which best retrieve the links between
the subgroups. As already mentioned, detecting sub-groups of highly interacting
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species is important for ecologists because it provides a simplified picture of the
network (Allesina and Pascual, 2009). Estimating the number of sub-groups and
their composition allows drawing the first part of the picture. The picture would
be very incomplete without the links between the sub-groups. Our results showed
that spectral clustering methods were the most efficient at predicting these links
in the case of weighted networks, although they were less efficient than other
methods at retrieving the composition of the sub-groups. The stochastic block
model and modularity maximization also gave good predictions, contrary to the
edge betweenness algorithm.

In conclusion, according to our results, researchers in ecology should favor the
edge-betweenness algorithm with the modularity criterion for group number selec-
tion in order to retrieve sub-groups of highly interacting species in binary bipartite
networks. In the case of weighted bipartite networks, they should rather favor the
stochastic block model, since it accurately estimates the number of sub-groups
and it retrieves well their composition and the links between them. Unfortunately,
this method is very time consuming. Modularity maximization is a good alterna-
tive, knowing that recent developments allow analyzing thousands of networks in
a reasonable amount of time.
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Chapter 4

Wmixnet: Software for Clustering
the Nodes of Binary and Valued
Graphs using the Stochastic
Block Model

This article was submitted to Journal of Statistical Software.

Abstract

Clustering the nodes of a graph allows the analysis of the topology of a network.
The stochastic block model is a clustering method based on a probabilistic

model. Initially developed for binary networks it has recently been extended to
valued networks possibly with covariates on the edges.

We present an implementation of a variational EM algorithm. It is written
using C++, parallelized, available under a GNU General Public License (version 3),
and can select the optimal number of clusters using the ICL criteria. It allows us
to analyze networks with ten thousand nodes in a reasonable time.

4.1 Introduction

Complex networks are being more and more studied in different domains such
as social sciences and biology. The network representation of the data is graphically
attractive, but there is clearly a need for a synthetic model, giving an enlightening
representation of complex networks. Statistical methods have been developed for
analyzing complex data such as networks in a way that could reveal underlying
data patterns through some form of classification.
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Unsupervised classification of the vertices of networks is a rapidly developing
area with many applications in social and biological sciences. The underlying idea
is that common connectivity behavior shared by several vertices leads to their
grouping in one meta-vertex, without losing too much information. Thus, the
initial complex network can be reduced to a simpler meta-network, with few meta-
vertices connected by few meta-edges. Picard et al. (2009) show applications of
this idea to biological networks and Nowicki and Snijders (2001) and Handcock
et al. (2007) to social networks.

Model-based clustering methods model the heterogeneity between nodes by
grouping the nodes into classes. The model used in this paper is an extension
of the stochastic block model (SBM) (Nowicki and Snijders, 2001). This model
assumes that the nodes are distributed into groups, and connectivity between
nodes is driven by node group memberships.

SBM for non-binary graphs, with or without covariates has been introduced in
Mariadassou et al. (2010). In this paper, a variational Expectation–Maximization
algorithm has been used to estimate parameters and to predict groups.

This article introduces wmixnet, an implementation of the variational ex-
pectation–maximization algorithm for this extension of the stochastic block model
with or without covariates for three families of laws of probability: Bernoulli,
Poisson, Gaussian.

This implementation allows us to estimate parameters and to predict node
groups and covariate effects for graphs which are valued or binary, directed or not,
and with or without covariates.

4.2 SBM model with covariates

We introduce here the stochastic block model with covariates and three proba-
bility distributions.

4.2.1 Notations

Graph. Consider a graph G = (V, E, w), where
— V is the set of nodes, labelled in {1, · · · , n},
— E is the set of edges, which is a subset of V 2,
— w : E → R, is the function which gives edge weights.
— Y : V 2 → Rp, is the function which gives the covariate vector associated to

each couple of nodes.
We assume without loss of generality that E = V 2, with the convention w(i, j) = 0
if there is no edge from vertex i to vertex j.
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Groups. Consider Q classes of nodes. For a given partition (C1, · · · , CQ) of V ,
for a node i and a group q, let Z be defined as Ziq = 1 ⇔ i ∈ Cq. And let
Zi = (Zi1, · · · ZiQ).

4.2.2 The model

Nodes. The class memberships of the nodes are driven by independent identi-
cally distributed multinomial distributions:

∀i ∈ V Zi
i.i.d.
∼ M(1, α)

where α = (α1, · · · , αQ) and
∑

q αq = 1.

Edges. For each couple of nodes (i, j) the probability law of the link is driven
by their class memberships and the (i, j) covariate Y (i, j):

(w(i, j)|(i, j) ∈ Cq × Cl) ∼ Fql(Y (i, j)).

4.2.3 Probability laws

Generally, various probability laws can be used. The probability distributions
which are implemented in wmixnet are the following:

— Bernoulli:
without covariates: Fql(Y (i, j)) = B(πql). This model does not use co-

variates and can model only binary networks. This is the classical stochastic
block model model.

with covariates (with homogeneous effects): Fql(Y (i, j)) = B(πql
1

1+exp(−βT Yij
).

This model uses covariates and can model only binary networks. The effect
of covariates is the same for all pairs of classes.

with covariates (with heterogeneous effects): Fql(Y (i, j)) = B(πql
1

1+exp(−βT
ql

Yij
).

This model uses covariates and can model only binary networks. The effect
of covariates is not the same for all pairs of classes.

— Poisson:
without covariates: Fql(Y (i, j)) = P(λql). This model does not use

covariates and can model networks with non negative integer weights.
with covariates (with homogeneous effects): Fql(Y (i, j)) = P(λql(Y (i, j))

where λql(Y (i, j) = λql exp(βT Y (i, j)). This model uses covariates and can
model networks with non negative integer weight. The effect of covariates
is the same for all pairs of classes.

with covariates (with heterogeneous effects): Fql(Y (i, j)) = P(λql(Y (i, j))
where λql(Y (i, j) = λql exp(βT

qlY (i, j)). This model uses covariates and can
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model networks with non negative integer weight. The effect of covariates
is not the same for all pairs of classes.

— Gaussian:
without covariates: Fql(Y (i, j)) = N (µql, σ2). This model does not use

covariates and can model networks with real weight.
with covariates (with homogeneous effects): Fql(Y (i, j)) = N (µql(Y (i, j)), σ2)

where µql(Y (i, j)) = µql + βT Y (i, j). This model uses covariates and can
model networks with real weight. The effect of covariates is the same for
all pair of classes.

with covariates (with heterogeneous effects): Fql(Y (i, j)) = N (µql(Y (i, j)), σ2)
where µql(Y (i, j)) = µql + βT

qlY (i, j). This model uses covariates and can
model networks with real weight. The effect of covariates is not the same
for all pair of classes.

4.2.4 Analysis of groups when covariates are used

Without covariates, groups are sets of nodes which have the same connectivity
behavior (in probability), and groups can be easily interpretable using the connec-
tivity matrix ([πql], [λql] or [µql]).

With covariates, groups are sets of nodes which have the same connectivity
behavior (in probability) conditionally to covariates. Two nodes of the same group
can have different connectivity behavior due to different values of covariates.

For a model with covariates, groups are covariate-residual groups. There are
two points of view:

— the focus is on the effects of the covariates and groups model the (residual)
connectivity which is not explained by covariates,

— the focus is on the groups which helps in suggesting some sources of het-
erogeneity after correcting the artefact due to covariates.

One can test the effect of covariates using a likelihood ratio test between models
with and without covariates.

4.3 Estimation method

The estimation method is described in Mariadassou et al. (2010). The like-
lihood is not computable in a reasonable time, and a variational approximation
is done and a variational expectation–maximization is used. The ICL criterion is
used for choosing the number of groups, see Mariadassou et al. (2010).

Some estimation implementation details which differ from the framework in-
troduced in Mariadassou et al. (2010) are explained here.
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4.3.1 Initialization

As in the general case on expectation–maximization algorithm, the initialization
plays a major role in the quality of the local maximum found.

In Mariadassou et al. (2010), the authors propose to use a hierarchical cluster-
ing to initialize the algorithm. In a real case of network analysis this initialization
is often an extremal one (most of the initialized groups contain only one node)
and the expectation–maximization algorithm converges to a local maximum which
may be far from the global maximum.

The Absolute Value Spectral Clustering algorithm is consistent for finding
groups in SBM (with Bernoulli probability law without covariates), see Rohe
et al. (2011). We use the absolute spectral clustering to initialize the expectation–
maximization algorithm.

When there are covariates, the spectral clustering is done on the residual graph,
after eliminating the effect of covariates by regression.

4.3.2 Smoothing

To determine if an estimation for Q groups has reached a bad local maximum,
we use two findings:

— With an ascending number of groups, models are nested. A model with Q
groups can be interpreted as a model with Q + 1 groups, so the likelihood
must increase with Q.

— Empirical findings make us say that the ICL criterion is convex.
A reinitialization of the expectation–maximization can be done. The new ini-

tialization is obtained in two ways:
— merging two groups of the Q + 1 result (descend mode)
— splitting one group into two groups of the Q − 1 result (ascend mode), this

split is done by a spectral clustering of the residual graph on Q − 1 groups.
There are two modes of reinitialization:
— the minimal one, reinitializations are done each time one of the two findings

(see above) is not respected,
— the exhaustive one, all reinitializations are done; while it improves like-

lihood, this option is very time-consuming and cannot be used with non
small graphs.

4.3.3 Parallelism

Many steps of the estimation can be done independently:
— The expectation–maximization algorithm for various Q
— Reinitialization in ascend and descend mode
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Considering that computers and computing units have more than one logical
processor, this implementation uses threads to parallelize the implementation as
much as possible.

4.4 wmixnet program

This section introduces the wmixnet program and the program usage.

4.4.1 Sources availability and installation

wmixnet is provided on the GNU General Public Licence version 3, and C++

sources are available on the wmixnet page:
— http://www.agroparistech.fr/mia/productions:logiciels

— http://www.agroparistech.fr/mia/productions:logiciel:wmixnet

wmixnet should be installable from sources on any Linux distribution, when
dependencies are provided:

— IT++ library, used for matrix calculation. This library uses blas and
lapack, well-known algebra libraries.

— boost library, for many aspects including parallelism.

4.4.2 Input format

The input format is a plain text with the following specifications:
— each line describes a node
— for each line the first two columns describe the indexes of starting and

ending nodes
— for each line the third column describes the weight of the edge
— for each line the fourth to end columns (if present) describe the covariates

associated to the edge.
There are some constraints:
— node indexes must start from 1 to the number of nodes
— each edge must have the same number of covariates.
If an edge is not present, and if no covariates are used, the corresponding lines

can be omitted; otherwise the line must be present with a weight of zero.
Functions are provided to write a file following these specifications, with adja-

cency matrices, and covariate matrices, for GNU R, and MATLAB or GNU Octave.

http://www.agroparistech.fr/mia/productions:logiciels
http://www.agroparistech.fr/mia/productions:logiciel:wmixnet
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4.4.3 Output format

The output format contains the model parameters for all explored numbers of
groups.

Model parameters are:
— α, the parameters of the multinomial distribution
— θ, the parameters of the probability law of the edge weight conditionally to

groups of nodes,
for the Bernoulli model, θ = (π),
for the Poisson model, θ = (λ),
for the Poisson model with covariates θ = (λ, β),
for the Gaussian model θ = (µ, σ2),
for the Gaussian model with covariates θ = (µ, σ2, β).

The output contains variational parameter estimates (τ) which give the nodes
membership in groups.

The output also contains values of criteria such as pseudo-likelihood and the
ICL criterion.

There are three output formats provided:
— Plain text output format (named text), which is a human readable file.
— GNU R file output format, which is an GNU R loadable file. Nevertheless this

file can be easily read by a human.
— MATLAB or GNU Octave file output format, which is a MATLAB and GNU

Octave loadable file. Nevertheless this file can be easily read by a human.

4.4.4 Command line usage

wmixnet is usable with command line, and the following arguments must be
provided:

— --input to specify the input file,
— --symmetric to indicate if the graph is an undirected graph if applicable,
— --model to specify the model in

bernoulli for Bernoulli without covariate
BH for Bernoulli with covariates (homogeneous effects)
BI for Bernoulli with covariates (heterogeneous effects)
poisson for Poisson without covariate
PRMH for Poisson with covariates (homogeneous effects)
PRMI for Poisson with covariates (heterogeneous effects)
gaussian for Gaussian without covariate
GRMH for Gaussian with covariates (homogeneous effects)
GRMI for Gaussian with covariates (heterogeneous effects)
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— --Qmax to specify the maximum number of groups, or --Qauto to let the
program choose the maximum number of groups,

— --smoothing to specify the smoothing mode
none no reinitialization is done (by default)
minimal reinitializations are done for detected problems
exhaustive all reinitialization are done (time-consuming option, only

for small graphs)
— --output to specify the output file,
— --output-format to specify the output format

text (by default)
R for GNU R loadable file
matlab or octave which are synonymous for MATLAB and GNU Octave

loadable file.

4.4.5 Empirical complexity

Some simulations suggest the following estimation of complexity:

t = Cmodel n2.46 g2.1 1.03p

with
— t the total processor time (equivalent time on a mono-core computer, with-

out parallelization, which executes only this job)
— Cmodel a constant which depends on the model. Since absolute values are

not pertinent, ratios are given:
Cpoisson

Cbernoulli
= 3.9

CPRMH

Cbernoulli
= 21

Cgaussian

Cbernoulli
= 840

CGRMH

Cbernoulli
= 1350

This ratio is dependent on the way each model is implemented. Some
models allow us to vectorize some steps, have explicit maxima, and thus
are significantly faster

— n the number of nodes
— g the number of groups found
— p the number of covariates (the size of the covariate vector)

4.4.6 Capacity of extension

In the wmixnet program, the estimation procedure and other model-common
parts are implemented once. Only model-specific functions are present for each
model. Therefore it is relatively easy to add other models in the wmixnet program.
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4.5 Example

Here we introduce the analysis of two ecological networks, obtained from one
host–parasite network from the Département Français des Forêts database. These
networks are the same as the ones used in Mariadassou et al. (2010) to illustrate
the estimation method, refer to Mariadassou et al. (2010) for details.

4.5.1 Projected networks

We considered two undirected, valued networks having parasitic fungal species
(n = 154) and tree species (n = 51) as nodes, respectively. Edge strengths was
defined as the number of shared host species and the number of shared parasitic
species, respectively.

4.5.2 Covariate data

For each network we have covariates for each pair of nodes:
— Taxonomic distance

For trees, based on the NCBI Taxonomy Browser, species are evenly dis-
tributed over two taxonomic classes (Magnoliophyta and Conipherophyta)
and further subdivided in 8 orders, 13 families and 26 genera. Following
Poulin (2005), we considered that the taxonomic distance is equal to 0 if
species are the same, 1 if they belong to the same genus, 2 to the same
family, 3 to the same order, 4 to the same taxonomic class and 5 if their
only point in common lies in belonging to the phylum Streptophyta.

For fungi, with the same considerations as trees, the taxonomic distance
between species is computed and has values in the range from 0 to 6.

— For the tree species network, a geographical distance can be introduced
between each pair of tree species. The geographical distance is the Jaccard
distance computed on the profiles of presence/absence in 309 geographical
units covering the entire French territory.

4.5.3 Example of command line

For the analysis of the tree species network, for the Poisson model without
covariates, the command line is:

wmixnet --input Trees.spm --symmetric \

--model poisson \

--Qauto --smoothing exhaustive \

--output Trees.m --output-format octave
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4.5.4 Results

On the tree species network

In Figure 4.1, we plot the ICL criterion for Poisson model without and with
covariates (taxonomic distance, geographical distance or both). For the model
without covariates the maximum is reached with 7 groups. With the geographical
covariates, the maximum is reached for 6 groups, with a little improvement of
the ICL criterion. For the model with the taxonomic covariates, the maximum is
reached for 4 groups, with a larger improvement of the ICL criterion. Adding the
geographical covariates to the taxonomic covariates does not improve the criterion.
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Figure 4.1: ICL criterion values obtained for Poisson and Poisson with covariates
on the trees network

Tree species are divided into two taxonomic classes Coniferophyta and Mag-
noliophyta, and we can observe the repartition of each class into groups for each
analysis. In Table 4.1, we present proportions obtained with the best (for the ICL
criterion) number of groups for the Poisson model without covariates. We can see
groups which contain in most cases only trees from one class, so the information
extracted by groups contains the taxonomic information. In Table 4.2, we present
proportions obtained with the best number of groups (for the ICL criterion) for the
Poisson model with the taxonomy covariate. There is less information extracted
(4 groups instead of 7) but group information is not redundant with taxonomy
information.
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Group 1 2 3 4 5 6 7
Group proportion (%) 11.8 17.6 17.8 7.9 13.7 11.6 19.5

Coniferophyta proportion (%) 100 22.2 22 0.1 0 84.5 100
Magnoliophyta proportion (%) 0 77.8 78 99.9 100 15.5 0

Table 4.1: Group proportions and group composition for the analysis with the
Poisson model without covariate on the tree species network.

Group 1 2 3 4
Group proportion (%) 15.7 21.6 37.2 25.5

Coniferophyta proportion (%) 25 63.6 47.4 53.9
Magnoliophyta proportion (%) 75 36.4 52.6 46.1

Table 4.2: Group proportions and group composition for the analysis with the
Poisson model (PRMH) with taxonomic covariate on the tree species network.

On the fungi network

In Figure 4.2, we plot the ICL criterion for the Poisson model without and
with covariates (taxonomic distance). For the model with and without taxonomic
covariates the maximum is reached with 15 groups in both cases. There is no real
improvement by adding the taxonomic covariates to the model, and one conclusion
may be that taxonomic covariates are not able to explain a part of the fungus
species graph structure.

This conclusion can be made using the difference in the ICL criterion, which
contains the difference in the log-likelihood and a penalty for the number of pa-
rameters, or a test can be done on the log-likelihood difference.
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Chapter 5

Deciphering the mechanisms
shaping ecological networks: a
framework and a method

Abstract

Most methods for identifying communities in ecological networks cannot inte-
grate additional information or covariates such as sampling effort. In this study we
present a statistical model, the Stochastic Block Model with covariates, applicable
to weighted bipartite networks, that is able to retrieve the structure of the net-
work and integrate covariates. It can be used to evaluate the relative contribution
of several factors potentially shaping the interactions between species. We will
apply this model to two antagonistic networks, one host-parasite network and one
plant-insect network. a

5.1 Introduction

Understanding whom interacts with whom and why is a salient question in
ecology, as evidenced by the proliferation of studies on ecological networks in the

a. This paper is in preparation and will be completed on three points:
— Two networks are considered. Only the results on the tree-fungal network are presented

here. Some more work is needed for the tree-insect network.
— One of the sampling covariates (Sampling Antagonist, SA) is not yet integrated in the

analysis. However the complete model, including the covariate SA, is presented in the
method section.

— The result and discussion sections have to be completed.
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past 20 years (Ings and Chittka, 2008). In the case of food webs, several conceptual
models (reviewed by Capitán et al. 2013), often based on species body size, have
been proposed to explain the complex structure of the observed interactions. In
the case of host-parasite interactions, which are usually represented by bipartite
networks, species body size is not a relevant trait for predicting interactions. Other
conceptual models have thus been proposed.

For instance, Combes (2001) proposed the concept of filters to summarize the
mechanisms shaping host-parasite interactions. Two species may interact with
each other if they pass over the encounter filter and then the compatibility filter.
The mechanisms acting on the encounter filter include the degree of overlap in the
species geographical range, the degree of similarity in their habitat requirements
and the degree of temporal synchronization between the interacting phases of
the two species. Species behavior, when it exists, may also prevent or favor the
encounter. The mechanisms acting on the compatibility filter include the quality
of the resource and the degree of complementarity between the interaction traits
of the two species.

Vázquez et al. (2009) proposed a similar framework in the case of plant-
mutualist interactions, with some mechanisms depending on the geographical dis-
tribution of the species and some mechanisms depending on the traits of the in-
teracting species. He also added the effect of sampling on the observed network
structure. In the present study, we considered a similar but simplified framework,
with three main mechanisms acting on the observed network structure (Fig. 5.1)
the probability of species encounter, the degree of species compatibility and the
sampling effort.

Our aim is to evaluate the relative contribution of each of these three forces on
the structure of weighted, bipartite ecological networks. for that, we developped
a statistical model, applicable to weighted bipartite networks, that can be used to
evaluate the relative contribution of several factors potentially shaping the interac-
tions between species. We apply it to two antagonistic networks, one host-parasite
network and one plant-insect network.

5.2 Materials and methods

5.2.1 The network data

The network data were collected by the French Department of Forest Health
(DSF) between 1986 and 2006, over whole France. By using the 10744 records
of symptoms caused by parasitic fungal species to forest trees, we reconstructed a
quantitative network of interactions between 46 tree species and 140 fungal species.
By using the 28547 records of damage caused by herbivorous insects to forest trees,
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we reconstructed a quantitative network of interactions between tree species and
insect species. All the records were georeferenced on a grid with a resolution of
16km, by using the GPS point of the record (when available) or the name of the
town in which the record was made. Values of interaction strength, defined as the
total number of records for a species pair, ranged from 0 to 895 for the tree-fungus
network and 0 to 3611 for the tree-insect network.

5.2.2 The statistical model

Let Xi,j be the observed interaction strength between tree species i and an-
tagonist species j. The probability distribution of Xi,j is assumed to be a Poisson
distribution with parameter λi,j. The model takes into account the three main
mechanisms acting on the observed network structure: compatibility, encounter
and sampling Figure 5.1.

Sampling We assumed that the sampling effort of tree species i depends on its
total abundance and on its economic value. Indeed, DSF observers have
a higher probability of observing abundant tree species and thus a higher
probability of observing an interaction with an antagonist species. Simi-
larly, higher economic value of a tree species induces more intense health
monitoring for this species. We assumed that the abundance of tree species
and their economic value are well synthesized by the total number of records
STi for tree species i in the whole DSF database, including all types of tree
health problems (Piou, pers. comm). The probability that foresters work-
ing for the DSF record an interaction between tree species i and antagonist
species j may also depend on the total abundance of antagonist species j,
on the visibility of the symptoms or damage it causes and on the knowledge
of foresters about this species. We assumed that these variables are well
synthesized by the total number of records SAj for antagonist species j in
the database. The sampling effort on the interaction between species i and
j is assumed to be the result of the product of the two sampling efforts,
denoted by Si,j and defined by

Si,j = ST βST

i SAβSA

j

with βST and βSA parameters of the model. These parameters are unknown
and were estimated using the network data.

Encounter We assumed that the frequency of encounter Ei,j between tree species
i and antagonist species j depends on their frequency of encounter in each
of the 2083 quadrats of the grid in the DSF database. We assumed that
the frequency of encounter between tree species i and antagonist species
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j in quadrat k is proportional to the products of their abundances. The
abundance ETk,i of tree species i in quadrat k was estimated by using the
surface given by the Inventaire Forestier National (IFN).
However, we noticed that some tree species were recorded as having a health
problem in a given quadrat in the DSF database, although they were absent
from this same quadrat according to the IFN database. This was partic-
ularly the case for tree species having a sparsed distribution or present in
sub-urban areas, such as plane trees (Platanus hybrida). In order to correct
the inconsistencies between the two databases, we added a grove of 10ha
in every quadrat where a tree species was present according to the DSF
database, but absent according to the IFN database. Overall, this addition
hardly increased the total forest area (+0,47%).
The abundance EAk,j of antagonist species j in quadrat k was estimated by
using the DSF database itself, since we did not have any other data source
about the geographical distribution of antagonist species. We assumed that
EAk,j was proportional to the total number of records of symptoms or
damage caused by antagonist species j in quadrat k. Finally, we defined
Ei,j as:

Ei,j =

(
∑

k

ETk,iEAk,j

)βE

where βE is a parameter of the model. This parameter is unknown and was
estimated using the network data.

Compatibility The degree of compatibility between tree species i and antagonist
species j should theoretically be influenced by the degree of matching be-
tween their interaction traits. However, in practice, we do not have a list of
the traits involved in the interactions, with their values, for the hundreds of
species included in the networks. Thus no covariate is available for measur-
ing the degree of compatibility between tree species and antagonist species.
In such case it is possible to use latent (not observed but inferred using
the network data) variables. Tree species and antagonist species were thus
classified in QT and QA groups of species respectively. The probability dis-
tribution of the interaction strength between two species only depends on
the groups to which these species belong. Hence, species belonging to the
same group tend to have similar connectivity behaviors. This assumption
is well suited to our data, since previous analyses have shown the existence
of such groups in the studied networks. Specifically, closely related tree
species tend to have similar parasitic fungal species (see Vacher et al. 2008;
Vacher et al. 2010; Mariadassou et al. 2010 and Daudin et al., 2010). The
discrete latent variable model is
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λi,j‖(i ∈ Gq, j ∈ Gl) = λq,l

with QT QA parameters λq,l. These parameters are unknown and were esti-
mated using the network data.
However, this part of the model contains but cannot be reduced to the com-
patibility mechanism. It contains all the mechanisms shaping the network
structure, except the sampling and encounter mechanisms.

Finally the statistical model including the three main mechanisms acting on
the observed network structure (Fig. 5.1) is the following:

λi,j‖(i ∈ Gq, j ∈ Gl) = λq,lEi,jSi,j

= λq,l

(
∑

k

ETk,iEAk,j

)βE

ST βST

i SAβSA

j

This model is called Stochastic Block Model (SBM) with covariates.

5.2.3 Application of the model to the data

Missing data

The statistical treatment of the model does not allow missing data. Hence the
covariates have to be known for each tree-antagonist species pair included in the
analysis. Moreover the estimation step of the statistical model needs the network
to be connected. Given these constraints, we applied the model to a subset of
the data. The subset of the tree-fungus network was a connected component
composed 41 tree species belonging to 4 families and 140 fungal species belonging
to 25 families, with each family composed of at least three species. The subset
of the tree-insect network was a connected component composed 48 tree species
belonging to 10 families and 278 insect species belonging to 51 families, with each
family composed of at least three species.

Contribution of each mechanism

The fit of a given model is given by the loglikelihood. However increasing
the number of covariates and/or latent variables increases the loglikelihood. To
correct this artifact, we used a penalized aproximate loglikelihood criterion, called
ICL (Mariadassou et al., 2010). Higher values of ICL correspond to a better fit.
To assess the relative contribution of a mechanism to the network structure, we
computed the difference between the ICL of the full model (including the three
mechanisms) with the ICL of the model without this mechanisms.
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Choice of the number of groups

The numbers of groups QT and QA were chosen using the ICL criteria for the
full model.

Modification of the estimation algorithm for bipartite graph

The algorithm for SBM was modified to take into account the bipartite struc-
ture of the network.

Computing the association between latent groups and taxonomy

Cross-tabulation tables between latent groups and families were computed for
each trophic level. P-values chi-square were computed to assess the statistical
significance of the association. To account for small frequency values in the cross-
tabulation, the P-values were computed using simulations (ith 100000 replicates)
in place of the usual chi-square asymptotic P-value, using the function chisq.test
of the R-package.

5.3 Results

The higher ICL value was obtained for 10 groups (Figure 5.2). Host species and
antagonist species were separated, giving 10 groups of tree species and 9 groups
of antagonist species described (Table 5.1 and 5.2). A very significant association
between tree species groups and genus was found (P-value = 4 · 10−05). On the
opposite the association between antagonist species groups and genus was not
statistically significant (P-value = 0.268 ). The same findings were obtained for
the associations between species groups and classes (P-values respectively equal to
1.8 · 10−4 and 5.9 · 10−2).

The model was able to predict the observed values of the network, as shown
by the correlation between the predicted and observed values (Figure 5.3) and
the comparison of the heatmaps of the observed and predicted adjacency matrices
(Figure 5.4). The estimates of the parameters of the covariates are β̂ST = 0.238
and β̂E = 1.02, βSA has not been estimated. The estimates of the parameters λql

are given in Figure 5.5.
The most important value de λq,l was between Castanea sativa and Fomitopsis

cytisina (between T7 and A8). This is an outlier, because interaction between these
two species was observed only once. Given the low values for the sampling and
encounter covariates, the observation of an interaction between these two species is
highly improbable. This explains the high λ7,8 estimated value. More interestingly,
the strongest links (after correction by the encounter and sampling) were between
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Figure 5.1: Variables potentially accounting for the probability that foresters work-
ing for the French Department of Forest Health (DSF) observe host-antagonist
interactions. Observable variables are shown in grey boxes. Those which are in-
cluded in the model are in bold. Latent variables, which cannot be observed nor
directly measured, are shown in dotted boxes

Group genus Class
T1 Abies Carpinus Fraxinus Pinus(3) Tilia Coniferopsida (3), Magnoliophyta(3)
T2 Abies Cedrus Picea Coniferopsida (3)
T3 Picea Pinus Pseudotsuga Sorbus Coniferopsida (3), Magnoliophyta
T4 Alnus Fagus Robinia Magnoliophyta(3)
T5 Pinus Platanus Populus(6) Prunus Coniferopsida, Magnoliophyta(8)
T6 Quercus(5) Magnoliophyta(5)
T7 Castanea Magnoliophyta
T8 Abies Larix Pinus(3) Coniferopsida (5)
T9 Acer(2) Larix Quercus Coniferopsida, Magnoliophyta(3)
T10 Acer Quercus Magnoliophyta(2)

Table 5.1: Tree species composition of the groups obtained by the 10-groups model
with covariate ST and SA.

Group Class
A1 Pucciniomycetes(5), Leotiomycetes(4), Agaricomycetes(3), Sordariomycetes(2), Dothideomycetes
A2 Sordariomycetes(6), Dothideomycetes(5), Leotiomycetes(4), Agaricomycetes(4), Pucciniomycetes
A3 Agaricomycetes(7), Sordariomycetes(6), Leotiomycetes, Dothideomycetes
A4 Sordariomycetes(3) ,Leotiomycetes(3), Dothideomycetes(3), Dacrymycetes
A5 Sordariomycetes(11), Leotiomycetes(4), Pucciniomycetes(3), Taphrinomycetes(2), Agaricomycetes, Dothideomycetes
A6 Sordariomycetes(5), Dothideomycetes(2)
A8 Agaricomycetes
A9 Agaricomycetes(17), Sordariomycetes(12), Leotiomycetes(4), Dothideomycetes(3), Eurotiomycetes, Pucciniomycetes,

Pezizomycetes, Taphrinomycetes
A10 Leotiomycetes(2), Dothideomycetes(2), Agaricomycetes

Table 5.2: Fungus species composition of the groups obtained by the 10-groups
model with covariate ST and SA.
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groups T5 and group A5. One may notice also the strong links between groups
4 and 8 and 9 and 2. Low values for λq,l underline the low level of interaction or
the absence of interaction between some groups of tree species and some groups
of antagonist species even when probability of encounter between these species is
high. This may be accounted for by a lack of compatibility between these groups
of species. For example few or no interactions are present between (T1, T4, T10)
and A6, T4 and A4.

5.3.1 Relative importance of the three mechanisms

The table gives the ICL for different models. The quantitative importance of
each mechanism is summarized by the differences between ICLs: 302.0 for the sam-
pling, 3610.6 for the encounter and 15372.38 for the other mechanisms including
compatibility.

5.4 Ongoing work and discussion

The results for the tree-insect network have not been obtained yet, due to the
very long computation time. Results obtained for the tree-fungus network suggest
that the main mechanism is the compatibility followed by the encounter and that
the sampling has a marginal effect on the structure of network. This preliminary
interpretation of the results will be confirmed later, because the interpretation
of λq,l values requires further discussion. estimated well enough. Applying the
method to simpler networks, with better known covariates, would be useful.
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Figure 5.5: The estimates of the parameters λql for the 10-groups model with
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Model ICL
compatibility,encounter, sampling -5578.72
compatibility,encounter -5880.75
compatibility,sampling -9491.36
encounter, sampling -20951.1
none -39627.7

Table 5.3: ICL values obtained for the different models with 10 groups.
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Abstract

Although interfertility is the key criterion upon which Mayr’s biological species concept is based, it has never been
applied directly to delimit species under natural conditions. Our study fills this gap. We used the interfertility criterion
to delimit two closely related oak species in a forest stand by analyzing the network of natural mating events between
individuals. The results reveal two groups of interfertile individuals connected by only few mating events. These two
groups were largely congruent with those determined using other criteria (morphological similarity, genotypic
similarity and individual relatedness). Our study, therefore, shows that the analysis of mating networks is an effective
method to delimit species based on the interfertility criterion, provided that adequate network data can be assembled.
Our study also shows that although species boundaries are highly congruent across methods of species delimitation,
they are not exactly the same. Most of the differences stem from assignment of individuals to an intermediate
category. The discrepancies between methods may reflect a biological reality. Indeed, the interfertility criterion is an
environment-dependant criterion as species abundances typically affect rates of hybridization under natural
conditions. Thus, the methods of species delimitation based on the interfertility criterion are expected to give results
slightly different from those based on environment-independent criteria (such as the genotypic similarity criteria).
However, whatever the criterion chosen, the challenge we face when delimiting species is to summarize continuous
but non-uniform variations in biological diversity. The grade of membership model that we use in this study appears
as an appropriate tool.
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Introduction

According to the biological species concept, the ability to
interbreed (i.e. interfertility) is a defining property of species [1].
Yet, to our knowledge, the interfertility criterion has never been
used to delimit species on the basis of mating events observed
under natural conditions. Only artificial crosses have been used
for this purpose, including in fungi (e.g. [2]), plants [3], or
insects [4]. However, this approach has been criticized (e.g.
[5,6]) because artificial crosses bypass some pre-mating
barriers to hybridization: mating events observed under artificial
conditions might not reflect what would naturally occur. Hence,
to date, there is no satisfactory example of the use of the
interfertility criterion to delimit species. In fact, the methods
used most frequently for species delimitation are not derived
from the well-known biological species concept but are derived
from other concepts such as the phylogenetic species concept,

the genotypic species concept and the morphological species
concept. Species definitions according to these concepts and
possible associated criteria for species delimitation are listed in
Table 1.

One potential method of species delimitation based on the
interfertility criterion is the analysis of mating networks. Mating
networks represent mating events between individuals [7].
Nodes of the network represent the individuals and links
connect the individuals between whom mating events have
occurred. Applying methods of network clustering [8–10] to
mating networks should allow the identification of subsets of
strongly interconnected nodes that correspond to species. If
the biological species concept is strictly interpreted, then a
species should correspond to a connected component of the
mating network (Figure 1A). A connected component is a
subset of nodes within the network that are directly or indirectly
connected but are not connected to nodes not contained in the
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subset. According to a relaxed biological species concept,
which allows for some level of hybridization between species
[11–13], a species should correspond to a community in the
mating network (Figure 1B). Communities are subsets of nodes
with a high density of links within the group and a lower density
of links between different groups [8]. It is in this latter case,
when species hybridize, that species delimitation based on the
interfertility criterion is particularly challenging and network
analysis may be particularly useful.

The idea of analyzing mating networks to delimit species
according to the biological species concept was proposed more
than 40 years ago by Sokal and Crovello [14] but it does not
appear to have been put into practice. Building a mating
network is indeed a difficult task as it requires a very large data
set of mating events collected under natural conditions. The
species should be sympatric and have semi-permeable
reproductive barriers so that the issue of species delimitation is
relevant. Furthermore, the species should be not only
outcrossing (with a low selfing rate) but also highly polygamous
and have multiple offspring per generation so that actual
mating events are representative of potential mating events
between individuals at a given time [15–17]. If such data were
available, would the analysis of mating networks be an
effective method to delimit species based on the interfertility
criterion? Would the boundaries between species be the same
as those obtained using other species delimitation criteria?

To answer these questions, we investigate the congruence
between four methods of species delimitation, derived from the
biological, morphological, genotypic and phylogenetic species
concepts (Table 1), by applying them to two hybridizing tree
species living in sympatry. The study site is a 5 ha mixed stand
of Quercus robur and Q. petraea comprising 298 adult trees
originating from natural regeneration [18]. As many other
closely related plant species [19], these two oak species

hybridize under natural conditions [20], including in the studied
stand [21–23]. To delimit species according to the interfertility
criterion, we analyze the network of observed natural mating
events between pairs of adult trees by using a method of
network clustering. Each node of the mating network
corresponds to an adult tree and each link corresponds to at
least one mating event between two trees. To cluster
individuals, we selected among available methods of network
clustering [8–10] the Continuous Stochastic Block Model (C-
SBM) recently introduced by Daudin et al. [24]. C-SBM
synthesizes the heterogeneity of a real network by producing a
simplified version of the network composed of a few virtual
nodes, called extremal hypothetical nodes (EHNs). Unlike
many methods of network clustering, which assume that each
node belongs to only one group, C-SBM allows nodes to
exhibit mixed connectivity behavior by assuming that each
node of the real network is a mixture of the EHNs. This method
is thus particularly suited to our study. Indeed, because the two
previously identified oak species [23,25] are known to hybridize
[22], we expected to find some individuals with a mixed
reproductive behavior, i.e. breeding with both species. The
same method was used to delimit species based on genetic
relatedness between individuals. In that case, each node of the
network corresponds to an adult tree and links connect the
individuals that are considered to be related based on their
genotype. Finally, we compare individual assignments obtained
by analyzing the mating network and the relatedness network
with those previously obtained in the same study site using
criteria of morphological and genotypic similarities [23,25]. We
then discuss how to summarize continuous but non-uniform
variations in biological diversity.

Table 1. Major species concepts with associated possible criterion for species delimitation.

Species concept Species definition according to this concept

Possible criterion for species
delimitation derived from this
definition

Possible method of species
delimitation using this criterion

First application of
this method at the
study site

Biological species
concept

Species are “groups of actually or potentially

interbreeding natural populations, which are

reproductively isolated from other such groups”[1].
According to Hausdorf [17], “natural populations” can be
replaced by “individuals” in this statement without
change of meaning.

Higher natural interfertility
between individuals within
than among species

Clustering of the network of natural
mating events between individuals
using Continuous Stochastic Block
Model (C-SBM) [24].

this study

Phylogenetic
species concept

A species is “a diagnosable cluster of individuals within

which there is a parental pattern of ancestry and

descent, beyond which there is not, and which exhibits

a pattern of phylogenetic ancestry and descent among

units of like kind” [29].

Higher genetic relatedness
between individuals within
than among species

Clustering of the network of
relatedness relationships between
individuals using C-SBM [24].

this study

Genotypic species
concept

A species is a “genotypic cluster of individuals that can

overlap without fusing with its siblings” [17,52]

Higher genotypic similarity
between individuals within a
species

Clustering of the individuals based on
their multilocus genotype with
STRUCTURE [50]

Guichoux et al. 2012
[23]

Morphological
species concept

Species are “the smallest detected samples of self-

perpetuating organisms that have unique sets of

characters” [53,54].

Higher morphological
similarity between individuals
within than among species

Clustering of the individuals based on
several morphological traits with a
factorial discriminant analysis [55].

Bacilieri et al. 1996
[26]
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Results

Species Delimitation based on Interfertility
According to the AIC criterion, the best model for the mating

network was the one with four EHNs, followed by the models
with five and three EHNs (Figure S1 in File S1). We selected
the model with three EHNs because the two other models
highlighted the structure of the sampling design (Text S1 in File
S1). According to the connectivity matrix for the EHNs (Figure
2A), EHN0 corresponds to a virtual node not connected to the
whole network. This EHN, which is systematically present in
the network models produced by C-SBM [24], makes it
possible to take into account the variation in the number of
links attached to the nodes of the real network. The two other

EHNs, called EHNB1 and EHNB2, were strongly connected
within themselves and were not connected to the other EHNs.

The nodes of the mating network (each corresponding to an
individual) were then represented in a triangle, with one EHN at
each point (Figure 2A). The higher the proportion of a given
EHN in the mixture of a node, the closer the node was to this
EHN in the triangle. According to the connectivity matrix for the
EHNs (Figure 2A), the nodes that had a high proportion of
EHN0 in their mixture were weakly connected to the mating
network. The nodes that had a high proportion of EHNB1 in their
mixture belonged to a group of nodes strongly connected to
each other and weakly connected to nodes with a high
proportion of EHNB2. Conversely, the nodes that had a high
proportion of EHNB2 in their mixture belonged to a group of
nodes strongly connected to each other and weakly connected

Figure 1.  Example of mating networks with species boundaries.  Each node of the network, represented by a black star or a
white circle, is an individual. Each link of the network, represented by a thin black line, corresponds to a mating event between two
individuals. In A, there is no mating event between the two groups of individuals whereas in B, a few mating events occur between
groups. Species boundaries according to a strict application of the biological species concept are indicated by a continuous thick
black line. Species boundaries according to a relaxed interpretation of the biological species concept, allowing interspecific
hybridization, are indicated by a broken red line. In network theory, the continuous black line delimits the connected components of
the network whereas the broken red line delimits communities.
doi: 10.1371/journal.pone.0068267.g001
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Figure 2.  Triangular representation of the nodes of (A) the mating network and (B) the relatedness network, indicating the
mixture of EHNs (i.e. Extremal Hypothetical Nodes) for each node according to C-SBM.  In A, nodes that are on the edge
between EHN0 and EHNB1 are classified in group B1 whilst nodes on the edge between EHN0 and EHNB2 are classified in group B2.
Other individuals are classified as intermediates (group Bi). In B, nodes that are on the edge between EHN0 and EHNP1 are
classified in group P1 whilst nodes on the edge between EHN0 and EHNP2 are classified in group P2. Other individuals are classified
as intermediates (group Pi). Connectivity matrices for the EHNs are presented next to each triangular representation. Non-zero
values are given in bold.
doi: 10.1371/journal.pone.0068267.g002
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to nodes with a high proportion of EHNB1. There were,
therefore, two groups of adult trees in the mating network
within which mating events were frequent and between which
mating events were rare. The graphical representation of the
network confirmed this result (Figure 3A). According to the
relaxed interpretation of the biological species concept, these
two groups of individuals should correspond to two biological
species (Figure 1B).

In order to assign the individuals to the two species, we
classified the nodes of the mating network according to their
relative proportions of EHNB1 and EHNB2. We assumed that an
individual belonged to species B1 if the corresponding node
was a mixture of EHN0 and EHNB1 and only of these two nodes.
Conversely, we assumed that an individual belonged to
species B2 if the corresponding node was a mixture of EHN0

and EHNB2. Other individuals were classified as being
reproductively intermediate (group Bi). In the triangular
representation (Figure 2A), individuals assigned to species B1
were on the edge between EHN0 and EHNB1 (n=78 individuals)
whilst individuals assigned to species B2 were on the edge
between EHN0 and EHNB2 (n=121 individuals). Intermediate
individuals were within the triangle (n=7 individuals). The three
groups are shown in different colors in the network
representation (Figure 3A).

Species Delimitation based on Relatedness
According to the AIC criterion, the optimal number of EHNs

in the relatedness network was six. Models with three, four, five
and seven EHNs were also good models (Figure S2 in File S1).
As we did not find any satisfactory way to identify the best
model (Text S2 in File S1), we selected the model with three
EHNs to facilitate a comparison between the relatedness
network structure and the mating network structure. According
to the connectivity matrix for the EHNs (Figure 2B), EHN0

corresponded to a virtual node not connected to the whole
network. The two other EHNs, called EHNP1 and EHNP2, were
strongly connected within themselves and were not connected
to the other EHNs. Like the mating network, the individuals
were, therefore, classified into three groups called P1, P2 and
Pi. Group P1 (n=70 individuals located on the edge between
EHN0 and EHNP1 in the triangular representation; Figure 2B)
and group P2 (n=108 individuals located on the edge between
EHN0 and EHNP2; Figure 2B) comprised individuals with high
within-group and low between-group degrees of relatedness.
The third group Pi (n=28 individuals located within the triangle;
Figure 2B) included trees related to both P1 and P2 individuals
and trees with few relatives. The three groups are shown in
different colors in the network representation (Figure 3B).

Species Delimitation based on Morphology and
Multilocus Genotypes

The morphological similarity criterion has previously been
used by Bacilieri et al. [26] to identify all trees from the study
site. Based on their results, we assigned the individuals to two
pure morphological groups (called M1 and M2 in this study and
corresponding to Q. robur and Q. petraea, respectively) and to
a morphologically intermediate class (called Mi). Guichoux et
al. [23] used genotypic similarity as a criterion to assign the

trees of the study site to species. Based on their results, we
classified the adult trees in two purebred groups (hereafter
called G1 and G2) and one genetically intermediate class (Gi).

Congruence between the Four Methods of Species
Delimitation

In order to assess the congruence between the four methods
of species delimitation, we compared the spatial distribution of
the three groups of individuals identified with each method. The
species boundaries are very similar (Figure 4). Among the 206
adult trees included in the mating network and in the
relatedness network, there were 97 trees classified consistently
in the B1, P1, G1 and M1 groups and 63 trees classified
consistently in the B2, P2, G2 and M2 groups. We therefore re-
named groups B1, P1, G1 and M1 Q. robur and groups B2, P2,
G2 and M2 Q. petraea. Based on this classification, there were
only four species inversions associated with the delimitation
methods (Table S1 in File S1). Among the 206 adult trees, 42
were classified as intermediates according to at least one
method. Surprisingly, no individual was classified as
intermediate according to all four methods. Therefore, 91% of
the discrepancies between the four methods were caused by
assignments to the intermediate class (Figure S3 and Table S1
in File S1).

There were nine discrepancies between the individual
assignments according to the genotypic and morphological
similarity criteria on the one hand and the interfertility criterion
on the other hand. We investigated whether the biotic
environment of the individuals might account for these
discrepancies. Our hypothesis is that the neighborhood of each
tree influences its mating system and might thus influence its
assignment to species based on the interfertility criterion,
whereas it would hardly affect its assignment to species based
on the genotypic and morphological criteria. We therefore
examined the neighborhood of each tree for which the
assignment to species based on genotypic and morphological
similarity criteria were congruent (N= 192). For each tree, we
calculated the proportion of allospecific neighbors within a
radius of 69m (corresponding to the average distance of pollen
dispersal within stand for Q. petraea, the species with the
smallest dispersal ability [22]). We found, by performing a
logistic regression, that the proportion of allospecific neighbors
had a significant effect on the congruence between the
individual assignments according to the genotypic and
morphological similarity criteria on the one hand and the
interfertility criterion on the other hand (χ2=6.5, df=1, p-
value=0.01). The individuals with congruent assignments had
fewer allospecific neighbors on average (29%, versus 51% for
individuals with incongruent assignments). Hence, individual
species assignments based on the interfertility criterion were
environment-dependent.

Discussion

To our knowledge, this is the first time that the interfertility
criterion is used successfully to delimit species under natural
conditions. The analysis of a network of mating events between
pairs of adult trees, constructed on the basis of a powerful
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paternity analysis of a large number of seedlings produced
under natural conditions, allowed us to identify two groups of
interfertile individuals with only a few mating events between

groups. The two groups that were delimited, corresponding to
two species according to a relaxed interpretation of the
biological species concept (Figure 1B), were closely congruent

Figure 3.  Graphical representation of (A) the mating network and (B) the relatedness network, using the software PAJECK
with the following parameters: Draw/Layout/Energy/Kamada-Kawaï/Separate Components.  Individuals classified into the B1
group (in A) or the P1 group (in B) are shown in green, individuals belonging to the B2 group (in A) or the P2 group (in B) are shown
in yellow, and intermediate individuals are shown in black.
doi: 10.1371/journal.pone.0068267.g003
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with those obtained previously using morphological and
genotypic similarity as criteria for species delimitation [23,26].
Indeed, 88% of the individuals were classified consistently
according to the interfertility, morphological similarity and

genotypic similarity criteria. Our results do not support earlier
claims that the interfertility criterion cannot be applied in the
field (e.g. [14,15]), particularly in the genus Quercus [27]. They
show instead that the analysis of mating networks can be used

Figure 4.  Species boundaries based on interfertility (A), relatedness (B), genotypic similarity (C) and morphological
similarity (D) criteria, represented on the map of the stand.  In A, B and C, individuals classified into the B1, P1 or G1 species,
respectively, are represented by yellow triangles. Individuals classified into the B2, P2 or G2 species are represented by green
diamonds. Intermediate individuals are represented by black crosses. In D, individuals classified into M1 are shown in red,
individuals classified into M2 in blue and morphologically intermediate individuals are indicated by black crosses. Individuals of the
M1 group are assigned to Q. robur and individuals of the M2 group to Q. petraea on the basis of current taxonomical practices.
doi: 10.1371/journal.pone.0068267.g004
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for delimiting species according to the biological species
concept, as first suggested by Sokal and Crovello [14].

However this method of species delimitation has two main
drawbacks. First, adequate network data are difficult to
assemble. In our study we performed a paternity analysis on as
many as 3046 offspring produced by 51 mothers in order to
construct the mating network for adult trees. Despite the very
large number of offspring, our network data did not allow us to
assign all the individuals in the forest stand to species. Not all
individuals sired offspring and some sired too few offspring to
be reliably connected to the network. For example, three of the
individuals whose assignment based on the interfertility
criterion differed from that based on the three other criteria
were represented by a single offspring in the progeny test.
They were thus connected to the mating network through just a
single link. Second, the sampling design may generate some
heterogeneity in the network structure that blurs the biological
heterogeneity caused by the existence of different species.
This happened in our network data because we harvested the
offspring of only 20% of the trees in the stand. The harvested
trees (i.e. mother-trees), therefore, had more links in the mating
network than the other trees. To solve both problems, one
would have to harvest seeds from all the individuals in the
stand, assuming that all of them produced seeds. In principle,
this goal could be achieved with our biological system by
extending sampling over multiple years, because oak species
are perennial and monoecious. However this would be
impossible for annual or dioecious species. Another possibility
to reduce the noise caused by sampling would be to introduce
the sampling structure as a covariate in the statistical model
(e.g. [28]). Unfortunately, the Continuous Stochastic Block
Model [24], which was selected for this study because it allows
modeling continuous variations in the connectivity properties of
the nodes, does not currently allow the incorporation of
covariates.

Our results further show that the analysis of the network of
contemporary relatedness relationships is a relevant method
for delimiting species. The two groups found in our study might
be interpreted as corresponding to two different ‘phylogenetic
species’ [29], if phylogenetic relationships are considered in a
broad sense so as to include contemporary pedigree
relationships. Methods of species delimitation derived from the
phylogenetic species concept have almost exclusively focused
on deep ancestry using tree-based phylogenetic methods
(reviewed in 30, but see 31). These methods are not well-
suited for delimiting hybridizing species because horizontal
gene transfers between species, caused by hybridization and
subsequent backcrossing events, produce conflicts between
gene trees and species trees [32,33]. Compared to data on
mating events, data on relatedness were easier to acquire and
there was no sampling issue. The analysis of the relatedness
network revealed two groups of individuals with high within-
group and low between-group degrees of relatedness. These
two groups were highly congruent with those obtained using
interfertility, morphological similarity and genotypic similarity as
criteria, indicating that the analysis of relatedness networks
may have potential for species delimitation. However, this
method also has some drawbacks: the best model had five

groups of related individuals and we did not find any hypothesis
accounting for their origin; the number of species should thus
be known in advance in order to apply this method.

By comparing the results obtained with the four criteria used
for species delimitation (i.e. interfertility, relatedness
relationships, morphological or genotypic similarities), we
showed that the species boundaries were largely congruent
across methods of species delimitation. Our analyses
confirmed the existence of two groups of individuals that were
both morphologically and genetically differentiated. We also
showed that the individuals of each group preferentially mated
and were more related with each other than with individuals
from the other group. Therefore, there were two ‘evolutionary
lineages’ in the studied stand. The Lineage Species Concept
introduced by Simpson [34,35], then taken up by Wiley [36] and
de Queiroz [16,37,38], focuses on the question of congruence
among methods of species delimitation. For these authors,
modern species concepts (e.g. morphological, phylogenetic,
genotypic and biological) assimilate, explicitly or implicitly,
species ‘to separately evolving (segments of) metapopulation
lineages’ and are thus all by-products of the lineage species
concept [16,17]. This should account for the high degree of
congruence among species delimitation methods.

Another important result of this comparison is that,
irrespective of the criterion used for delimiting species, we
found intermediate individuals that had features of both
species. Interestingly, the individuals classified as
intermediates often differed across methods. In particular, no
individual was consistently classified as intermediate according
to all four methods. These discrepancies might be explained by
the thresholds that were chosen empirically to delimit purebred
species and by data quality problems. As mentioned above,
examining more offspring per parent tree may improve species
delimitation based on the interfertility criterion. Similarly, a
greater number of molecular markers [39] may improve
methods of species delimitation based on the genotypic and
relatedness criteria. Likewise, a larger number of morphological
markers [26] may improve morphological species delimitation.
However, we believe that these discrepancies may also reflect
a biological reality. Indeed, as shown in other studies [40–42],
including in oaks [22,43], species relative abundance affects
hybridization rate. An individual tends to reproduce with its
neighbours. If it is surrounded by numerous allospecifics and
few conspecifics (e.g. [22,42]), this can result in much
hybridization. Such an individual will tend to be assigned to
another species or to a reproductively intermediate class,
according to methods of delimitation based on interfertility.
Therefore, we expect some discrepancies in species
assignments between methods based on environment-
dependent criteria (such as that based on the interfertility
criterion) and methods based on environment-independent
criteria (such as that based on the genotypic similarity
criterion). Because of these fundamental differences among
methods, it is impossible to compute a reference dataset that
would give the correct assignment of each individual. Our
results thus cannot be used to identify one method of species
delimitation that would produce more reliable assignments than
the others. Instead, our results show that different methods of
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species delimitation produce slightly different results when
applied to real biological data.

Conclusion

Our results confirmed the existence of two differentiated
groups of individuals at the study site, corresponding to two
species: Quercus robur and Q. petraea. However, depending
on the criterion used for assigning individuals to species (i.e.
interfertility, relatedness, morphological or genotypic
similarities), the boundary between species was not exactly the
same. Most of the differences stem from assignment of
individuals to an intermediate category. This finding illustrates
the continuous nature of variation between species. The model
we used, which belongs to a category called ‘grade of
membership models’ (reviewed in 10) is appropriate for
synthesizing continuous (but not uniform) variations in
biological diversity. However, to get closer to the species
concepts, which generally define species as groups of
individuals, we finally classified the individuals into non-
overlapping groups. Our approach, therefore, illustrates the
influence of concepts on our (mis)representation of species
and on our understanding of biological diversity. Frost and Hillis
[44], as well as Mayr [45], proposed defining species as ‘a
whole’ instead of as a group of individuals. According to our
study, species could also be defined as an ‘extreme point’ to
which individuals are more or less close, thus allowing the
possibility of an individual being a mixture of two different
species.

Materials and Methods

Species Delimitation based on Interfertillity
To construct the mating network for the adult trees, we made

use of a progeny test involving 3046 offspring resulting from
open pollination, harvested from 51 mother-trees distributed
across the entire stand (Figure S4 in File S1). A paternity
analysis was conducted [22] by genotyping all the offspring
from the test and all the adults trees for which DNA was
available, using 12 multiplexed microsatellite (SSR) markers
developed by Guichoux et al. [46]. According to the paternity
analysis, 1575 offspring had only one possible father in the
stand, 54 offspring had several potential fathers in the stand
and 1417 offspring had no father in the stand [22]. Based on
the offspring for which only a single father was found, we
identified 198 father-trees in the stand. These trees included 43
trees that were also mothers, because oak trees are
monoecious. Based on these results, we reconstructed 1629
mating events between 206 adult trees within the stand. These
mating events allowed us to identify 751 couples of trees that
mated at least once, indicating that they were interfertile under
natural conditions. These data were represented by an
undirected and unweighted network in which each of the 206
nodes corresponded to an adult tree and each of the 751 links
corresponded to at least one mating event between two trees.

Then, the network was modeled with C-SBM [24]. The
parameters of the model are the connectivity coefficients
between the EHNs and the coefficients of the mixture of EHNs

for each node of the real network. For each possible number of
EHNs, the parameters of the model were inferred by the
maximum likelihood method, derived using the MATLAB
program C-Mixnet (available at http://www.agroparistech.fr/mia/
doku.php?id=productions:logiciels/). Then, the optimal number
of EHNs in the network was determined by using the AIC
criterion [24]. The results were visualized with the software
PAJEK [47].

Species Delimitation based on Relatedness
In order to build the relatedness network, we estimated the

relatedness of the 206 adult trees included in the mating
network. The estimation was performed with the software
COANCESTRY [48], which offers seven different estimators of
relatedness. As recommended by Wang [48], we used the
1629 offspring for which both parents were known to determine
the most suitable estimator. The triadic likelihood estimator
(denoted TrioML in COANCESTRY [49]) was selected because
it produced relatedness values closest to zero for unrelated
offspring, closest to 0.25 for half-sibs and closest to 0.5 for full-
sibs. With this estimator, the highest relatedness value
between two unrelated offspring was 0.22. We therefore
treated 0.22 as a threshold: trees whose relatedness value was
higher than this were considered to be related individuals and
the other trees were considered to be unrelated. The
relatedness relationships were then represented by an
unweighted and undirected network with 206 nodes, each
corresponding to an adult tree, and 1078 links connecting the
individuals considered to be related. As in the case of the
mating network, we modeled the network structure using C-
SBM [24] and we visualized the results with the software PAJEK

[47].

Species Delimitation based on Morphology
The morphological similarity criterion has previously been

used by Bacilieri et al. [26] to identify all trees from the study
site. These authors performed a factorial discriminant analysis
(FDA) based on 31 leaf morphological traits to delimit the
species. Their study revealed the presence of two groups of
individuals differing in their morphology. The first axis of the
FDA accounted for 33% of the total variance and was highly
correlated to the morphological markers traditionally used by
taxonomists to distinguish Q. robur from Q. petraea. The
distribution of the individuals along this axis was used to
assign, graphically, the individuals to two pure morphological
groups (called M1 and M2 in this study and corresponding to
Q. robur and Q. petraea respectively) and to a morphologically
intermediate class (called Mi). Among the 206 adult trees
included in the mating and relatedness networks, 123 trees
were assigned to M1, 80 to M2 and 3 to Mi (Figure S5 in File
S1).

Species Delimitation based on Multilocus Genotypes
Guichoux et al. [23] used genotypic similarity as a criterion to

assign the trees of the study site to species. These authors
genotyped the adult trees with the multiplex of 12 SSRs
developed by Guichoux et al. [46] and with a chip of 262 single-
nucleotide polymorphisms (SNP) enriched with markers highly
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differentiated between species [23]. They used the software
STRUCTURE [50] to group the individuals into genotypic clusters
but did not formally determine the optimal number of genotypic
clusters in the stand before performing the clustering. Here we
used the ΔK statistic [51] to identify the number of genetically
different groups. The optimal number of clusters was two
(Figure S6 in File S1), as previously assumed by Guichoux et
al. [23]. The adult trees were therefore classified in two
purebred groups and one genetically intermediate class.
Among the 206 adult trees included in the mating and
relatedness networks, 78 trees were assigned to the first
purebred group (hereafter called G1), 118 to the second
purebred group (G2) and 10 to the genetically intermediate
class (Gi) (Figure S7 in File S1).

Supporting Information

File S1.  (PDF)
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