
HAL Id: tel-02795652
https://hal.inrae.fr/tel-02795652

Submitted on 5 Jun 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Stochastic Expectation Maximization algorithms for
estimation in latent variable models: developments,

analysis and applications.
Estelle Kuhn

To cite this version:
Estelle Kuhn. Stochastic Expectation Maximization algorithms for estimation in latent variable mod-
els: developments, analysis and applications.. Mathematics [math]. Université Paris Sud - Paris 11,
2015. �tel-02795652�

https://hal.inrae.fr/tel-02795652
https://hal.archives-ouvertes.fr


Université Paris-Sud

Faculté des sciences d'Orsay

École doctorale de mathématiques Hadamard (ED 574)

Unité de Recherche INRA, MaIAGE (UR 1404)

Mémoire présenté pour l'obtention du

Diplôme d'habilitation à diriger les recherches

Discipline : Mathématiques

par

Estelle KUHN

Stochastic Expectation Maximization algorithms

for estimation in latent variable models :

developments, analysis and applications.

Rapporteurs :

Christophe ANDRIEU

Didier CONCORDET

Pascal MASSART

Date de soutenance : 5 novembre 2015

Composition du jury :

Didier CONCORDET (Rapporteur)

Florence FORBES (Examinatrice)

Jean-Michel MARIN (Examinateur)

Pascal MASSART (Rapporteur)

Christian ROBERT (Examinateur)

Stéphane ROBIN (Examinateur)

Sophie SCHBATH (Invitée)





Merci !
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à travailler au cours de ces années d’activités de recherche. Sans eux, ce manuscrit ne serait pas tel qu’il
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ou moins marquées, de confronter des points de vue plus ou moins déterminés. Ces moments de discussion,
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4 Estelle Kuhn

Introduction en français

Parcours scientifique

Mon stage de DEA effectué sous la direction de Marc Lavielle fut ma première expérience de recherche

en statistique. A cette occasion, nous avons collaboré étroitement avec un géophysicien pour résoudre

un problème d’estimation en tomographie dans un contexte à données manquantes en implémentant un

algorithme numérique. Ce projet initial rassemble à lui seul les composantes principales de mes activités

de recherche depuis lors.

J’ai ensuite effectué une thèse en statistique à l’Université Paris Sud sous la direction de Marc Lavielle.

J’ai proposé, étudié et mis en oeuvre des algorithmes pour l’estimation par maximum de vraisemblance

dans des modèles à variables latentes non linéaires. J’ai effectué des applications en pharmacologie et en

traitement du signal en collaboration avec des scientifiques de ces deux domaines. Après mon doctorat,

j’ai exercé en tant que mâıtre de conférence à l’Université Paris Nord au Laboratoire d’Analyse, de

Géométrie et de leurs applications pendant quatre ans. J’y ai poursuivi mes activités de recherche en

statistique et ai développé de nouvelles collaborations motivées par des applications en analyse d’image

et en nutrition. Depuis 2009, je suis chargée de recherche à l’INRA au département Mathématiques et

Informatique Appliquées (MIA). J’exerce ma fonction au sein de l’équipe DYNENVIE de l’unité MIA de

Jouy-en-Josas. Je m’intéresse à de nouvelles applications telles que l’étude de dynamique de population

en épidémiologie ou en agronomie, ou encore l’étude de la croissance des plantes en collaboration avec

des scientifques de l’INRA et d’autres organismes. J’oriente et développe ma recherche théorique en

statistique pour apporter des réponses pratiques aux questions soulevées par ces applications.

Contexte scientifique

Les problématiques statistiques auxquelles je m’intéresse découlent majoritairement de l’analyse de phéno-

mènes complexes dans lesquels interviennent différentes quantités : certaines sont observables, plus ou

moins directement, d’autres pas. Un exemple classique est celui de la déconvolution de signal où l’on

observe le signal d’intérêt bruité. L’objectif est d’obtenir à partir des seules quantités observées des

informations sur les quantités d’intérêt non observées ou partiellement observées. Les outils probabilistes

habituellement utilisés dans ce cas sont les modèles à variables latentes. Les quantités d’intérêt non

accessibles sont modélisées par des variables aléatoires non observées aussi appelées latentes. Les quantités

accessibles sont modélisées par des variables aléatoires pour lesquelles on observe une réalisation. La

dépendance entre les observations et les variables latentes est modélisée par la distribution jointe. Un des

enjeux principaux pour le statisticien est de caractériser cette distribution à partir des seules observations.

Dans la suite, on supposera que cette distribution jointe est paramétrique. L’objectif est alors de fournir

un estimateur des paramètres du modèle, ainsi que de la variance de cet estimateur (par exemple pour

construire des intervalles de confiance). L’estimateur du maximum de vraisemblance (EMV) est un de ceux

considérés classiquement dans ce contexte. Il est obtenu comme solution du problème d’optimisation en le

paramètre de la vraisemblance observée, c’est-à-dire la vraisemblance marginale définie comme l’intégrale
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de la vraisemblance jointe sur les variables latentes. Dans des modèles complexes, cette intégrale n’admet

généralement pas de forme analytique et le problème d’optimisation ne peut être résolu par un calcul

direct. Dans ce cas, un algorithme d’optimisation peut permettre d’obtenir une approximation numérique

de l’EMV.

Un des algorithmes les plus répandus est l’algorithme Expectation Maximization (EM) proposé par

Dempster et al. [1977]. Il s’agit d’un algorithme déterministe itératif, chaque itération comportant deux

étapes. La première consiste à évaluer l’espérance de la log-vraisemblance complète conditionnellement

aux observations et à la valeur courante du paramètre (étape E) ; dans la seconde, la valeur du paramètre

est mise à jour en maximisant cette quantité (étape M). Pour des modèles exponentiels, cet algorithme

converge vers un maximum local de la vraisemblance observée sous des hypothèses générales de régularité

du modèle. Cependant, dans de nombreux modèles, l’espérance conditionnelle de la log-vraisemblance

complète n’admet pas d’expression analytique et l’algorithme EM ne peut être implémenté. Des algo-

rithmes alternatifs ont été proposés, soit en approximant la vraisemblance, soit en faisant intervenir

une étape de simulation des variables latentes. La plupart de ces algorithmes ne possèdent pas de pro-

priétés théoriques de convergence, ou requièrent des hypothèses de convergence peu réalistes, ou encore

nécessitent de très longs temps de calcul.

L’algorithme Stochastic Approximation Expectation Maximization (SAEM) proposé par Delyon et al.

[1999] est une version stochastique de l’algorithme EM qui possède d’intéressantes propriétés combinant

celles de l’approximation stochastique et celles de l’algorithme EM. L’étape E de l’algorithme EM est

remplacée par deux étapes. Dans la première, une réalisation des variables latentes est simulée selon

la loi conditionnelle, dans la seconde, cette réalisation est utilisée pour calculer une quantité auxiliaire

approximant l’espérance conditionnelle de la log-vraisemblance complète par un schéma d’approximation

stochastique. La convergence presque sûre de cet algorithme vers un maximum local de la vraisemblance

observée a été établie sous des hypothèses générales de régularité du modèle (cf. Delyon et al. [1999]).

L’algorithme SAEM est facile à implémenter et nécessite de faibles temps de calcul. Il peut être appliqué

à des modèles complexes sous réserve de savoir simuler des réalisations des variables latentes selon la loi

conditionnelle aux observations. Cette condition restreint drastiquement le champ des applications possi-

bles. De façon plus générale, l’étape de simulation des variables latentes requiert une attention spécifique.

En effet, des comportements numériques atypiques peuvent apparâıtre lorsque les variables latentes sont

de grande dimension, car leur distribution est souvent multimodale dans ce contexte.

Mes thèmes de recherche principaux concernent le développement, l’analyse et l’implémentation de

nouveaux algorithmes stochastiques dérivant de l’algorithme déterministe EM et permettant d’obtenir

une approximation numérique d’un estimateur des paramètres pour des modèles probabilistes complexes

à variables latentes. Les applications font partie intégrante de mes travaux de recherche, les nouvelles

applications posant de nouvelles problématiques, à la fois de modélisation et computationnelles, et peuvent

elles mêmes conduire à de nouveaux développements mathématiques et algorithmiques. Cette symbiose

entre recherche statistique et applications est un élément clé de la dynamique de mes activités de recherche

et passe par des collaborations étroites avec des scientifiques d’autres domaines.
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Organisation du manuscrit

L’essentiel de mes travaux de recherche est présenté dans ce manuscrit. J’ai choisi de les regrouper en

trois parties comme suit.

Dans la première partie, après une brève description du problème de l’estimation dans des modèles

à variables latentes et des algorithmes d’optimisation existants, je présente des développements autour

de l’algorithme SAEM et leurs analyses. Au cours de ma thèse dirigée par Marc Lavielle, nous avons

proposé d’introduire dans l’étape de simulation de l’algorithme SAEM une méthode de Monte Carlo par

chaines de Markov (MCMC) permettant ainsi d’appliquer cet algorithme sans avoir besoin de simuler des

réalisations des variables latentes selon la loi conditionnelle [A1]. Cet algorithme, noté SAEM-MCMC

dans la suite, conserve toutes les propriétés intéressantes de l’algorithme SAEM initial tout en étant

facile à mettre en oeuvre. Nous avons démontré sa convergence presque sûre vers un point critique de

la vraisemblance observée sous des hypothèses générales de régularité du modèle et sous une hypothèse

forte pour la loi des variables latentes, à savoir être à support compact. Par la suite, en collaboration

avec Alain Trouvé et Stéphanie Allassonnière, nous avons relâché cette hypothèse en introduisant une

étape supplémentaire de troncature à chaque itération de l’algorithme [A3]. Nous avons obtenu le même

résultat de convergence pour cet algorithme avec troncature sous des hypothèses générales de régularité

seulement. Par ailleurs, l’algorithme proposé est facile à implémenter et rapide. Nous obtenons également

un estimateur de la matrice d’information de Fisher observée [A1].

Dans le cas de variables latentes de grande dimension, la performance des méthodes MCMC clas-

siques décroit rapidement lorsque cette dimension augmente. Motivée par des applications en analyse

d’images, je me suis intéressée aux techniques de simulation de variables aléatoires de grande dimension.

En collaboration avec Stéphanie Allassonnière, nous avons proposé une version anisotrope de l’algorithme

Metropolis Adjusted Langevin (AMALA). Nous avons démontré son ergodicité uniforme. Nous l’avons

utilisé comme échantillonneur dans l’algorithme SAEM-MCMC et avons prouvé la convergence presque

sûre de cet algorithme vers un point critique de la vraisemblance observée, ainsi qu’un théorème de la

limite centrale [A12]. En collaboration avec Gersende Fort, Benjamin Jourdain, Tony Lelièvre et Gabriel

Stolz, nous avons étudié l’algorithme de Wang Landau, bien adapté pour simuler des variables en grande

dimension. Nous avons démontré son ergodicité uniforme ainsi qu’un théorème de la limite centrale [A11].

Nous avons également analysé son comportement via une étude de simulations [A8].

Dans la deuxième partie, je présente mes travaux relatifs à la modélisation et à l’estimation paramétrique

dans des modèles à effets mixtes, en particulier dans les modèles déformables en analyse d’image, ainsi

que mes travaux liés à des problématiques de tests en régression gaussienne. En collaboration avec

Marc Lavielle, nous avons proposé d’utiliser l’algorithme SAEM-MCMC pour obtenir une approxima-

tion numérique de l’EMV dans des modèles à effets mixtes. Ces modèles sont fréquemment utilisés pour

l’analyse de mesures longitudinales répétées. Lorsque le modèle est linéaire en les effets aléatoires et que

l’erreur résiduelle est gaussienne, la vraisemblance est explicite et l’estimateur du maximum de vraisem-

blance peut être calculé par une optimisation directe. En revanche, hors de ce contexte spécifique, la

vraisemblance n’admet pas forcément de forme analytique, rendant le calcul de l’EMV difficile. Il faut
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alors recourir à des procédures numériques plus complexes, souvent longues en temps de calcul, et pour

lesquelles il n’existe pas toujours de propriétés théoriques garantissant leur convergence. L’algorithme

SAEM-MCMC est une solution efficace, rapide et convergente, pour calculer l’EMV dans des modèles à

effets mixtes, en particulier non linéaires. Nous l’avons appliqué pour des modèles de courbes de crois-

sance et de pharmacocinétique [A2]. En collaboration avec Alain Trouvé et Stéphanie Allassonnière, nous

avons appliqué l’algorithme SAEM-MCMC avec l’étape de troncature à un modèle déformable d’images

dans un cadre bayésien, motivé par la petite taille des échantillons disponibles en imagerie médicale [A3].

Un modèle déformable permet de représenter un échantillon d’images d’un objet d’intérêt par une image

de référence et des déformations géométriques, de sorte que chaque image de l’échantillon est obtenue

comme résultat d’une déformation géométrique de l’image de référence, à une petite erreur près. Les

déformations géométriques sont les variables latentes du modèle. Nous avons considéré dans un premier

temps des petites déformations linéaires et avons utilisé un échantillonneur de type Gibbs hybride comme

méthode MCMC pour des variables multivariées de dimension raisonnable. Cette application est à la

source des développements liés aux variables latentes de grande dimension présentés dans la première

partie, l’algorithme de Gibbs hybride devenant très gourmand en temps de calcul lorsque la dimension

des variables latentes augmente. En collaboration avec Stéphanie Allassonnière, nous avons considéré une

extension de ce modèle à un modèle de mélanges. Dans de nombreuses applications, il est nécessaire de con-

traindre le type de déformations géométriques considérées. Par exemple, les déformations difféomorphes

n’autorisent pas les recouvrements dans l’image et empêchent des changements de topologies. Un modèle

de mélanges permet de modéliser l’échantillon d’images comme étant issu de plusieurs populations ayant

des images de référence topologiquement différentes (par exemple avec ou sans ”boucle” pour le chiffre

manuscrit 2). Dans le cas de mélange de modèles déformables, la mise en oeuvre de l’algorithme SAEM-

MCMC donnent lieu à des comportements numériques instables liés aux états absorbants. Nous avons

proposé un algorithme stochastique d’estimation spécifique que nous avons mis en oeuvre et pour lequel

nous avons établi la convergence vers un point critique de la vraisemblance [A5]. Par la suite, en collab-

oration avec Stéphanie Allassonnière et Stanley Durrlemann, nous avons appliqué l’algorithme SAEM-

MCMC avec l’échantillonneur AMALA au modèle déformable à grandes déformations difféomorphes

[A13]. Le nouvel algorithme révèle tout son potentiel dans ce contexte de très grande dimension. Nous

avons également développé une extension du modèle permettant d’optimiser la position des points de

contrôle de la déformation, simultanément aux autres paramètres du modèle. Nous avons aussi proposé

un critère empirique pour sélectionner un nombre optimal de points de contrôle, dans le but d’optimiser

la dimension du modèle. Les applications, réalisées en image sur la base US POSTAL et sur des données

d’imagerie médicale 2D et 3D, sont regroupées à la fin de cette partie.

En collaboration avec France Mentré et Adeline Samson, nous avons comparé la pertinence de traite-

ments effectués sur deux groupes de patients. Dans ce cadre, j’ai appliqué l’algorithme SAEM-MCMC à

des modèles de pharmacologie. Nous avons appliqué l’algorithme SAEM-MCMC pour effectuer l’estimation

de paramètres sous l’hypothèse nulle et sous l’alternative et avons ensuite appliqué un test du rapport

de vraisemblance. En collaboration avec Mohamed Sahmoudi, Karim Abed-Meraim, Philippe Ciblat et

Marc Lavielle, nous avons appliqué l’algorithme SAEM-MCMC pour estimer les paramètres d’un modèle
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de séparation de sources pour des signaux à queue lourde. Ces travaux détaillés au chapitre 2 de ma thèse

de doctorat [T] et dans le proceeding [P2] ne sont pas présentés dans ce manuscrit.

Motivée au départ par la question du choix de modèle pour les modèles à effets mixtes, j’ai proposé

en collaboration avec Sylvie Huet un test d’adéquation de modèles pour tester une hypothèse de type

linéaire sur l’espérance d’un vecteur gaussien à erreurs bloc corrélées à structure de covariance connue

aux paramètres près [A10]. Nous avons démontré que notre procédure de test est asymptotiquement

consistante et puissante sur une large classe d’alternatives. Nous avons également proposé une version

bootstrap de notre test et montré sa consistance. Nous avons évalué via une étude de simulation les

propriétés non asymptotiques de nos procédures sur des échantillons de taille finie et les avons appliquées

à un jeu de données de couverture forestière de Galicie.

J’ai également effectué un travail d’appui statistique pour la mise en oeuvre d’une procédure de test

multiple en régression gaussienne, réalisé en collaboration avec Renaud Rincent et Alain Charcosset,

généticiens à l’INRA, pour étudier la puissance de détection de Quantitative Trait Loci le long du génome

dans un modèle à effets mixtes linéaire faisant intervenir la matrice d’apparentement. Nous avons étudié

les performances de la procédure en fonction de l’estimateur considéré pour cette matrice [A9]. Ce travail

n’est pas présenté dans ce manuscrit.

Dans la troisième partie de ce document, j’ai regroupé mes travaux relatifs à la modélisation et

l’estimation en analyse de survie. En collaboration avec Charles El-Nouty, j’ai étudié les modèles de

fragilité proposés par Vaupel et al. [1979] qui sont une extension du modèle de Cox et permettent de pren-

dre en compte l’hétérogénéité présente dans les données de survie en introduisant des variables latentes.

Notre intérêt pour ces modèles a été motivé par de nombreux échanges avec des chercheurs de l’Unité

de Recherche en Epidémiologie Nutritionnelle (UREN) de l’Université Paris 13 qui ont fréquemment be-

soin d’analyser ce type de jeux de données. Très riches du point de vue de la modélisation, ces modèles

sont relativement complexes du point de vue mathématique et l’estimation des paramètres y est souvent

difficile. Dans de nombreux cas, les algorithmes existants n’apportent pas de solutions satisfaisantes.

Nous avons proposé d’appliquer aux modèles de fragilité l’algorithme SAEM-MCMC pour obtenir une

approximation numérique de l’estimateur du maximum de vraisemblance [A6]. Nous avons démontré que

sous des hypothèses générales de régularité vérifiées par les modèles de fragilité classiques, l’algorithme

SAEM-MCMC était presque sûrement convergent vers un point critique de la vraisemblance observée.

Nous avons comparé les performances de cet algorithme à celles d’autres algorithmes sur des données

simulées et réelles. Les résultats numériques montrent un net avantage à l’utilisation de l’algorithme

SAEM-MCMC, tant du point de vue de la vitesse d’exécution que de celui de la précision.

En collaboration avec Luc Duchateau et Klaartje Goethals, chercheurs en biométrie à la faculté

vétérinaire de l’Université de Ghent, nous avons analysé un jeu de données d’épidémie de mastitis en

mettant en oeuvre des modèles de fragilité avec des variables de fragilité multivariées possédant différentes

structures de corrélation [R1]. Pouvoir considérer ces modèles complexes permet d’étudier le risque de

propagation de la maladie en fonction de la position locale de l’infection. L’estimation des paramètres qui

était jusqu’alors impossible en un temps raisonnable dans de tels modèles est réalisée par l’algorithme
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SAEM-MCMC. Nous comparons quatre modèles emboités en utilisant des tests du rapport de vraisem-

blance. Nous justifions a posteriori la validité à distance finie de ce test par une étude de simulation.

Dans le cadre d’une collaboration avec Catherine Picon-Cochard, biologiste à l’INRA, j’ai effectué un

travail d’appui statistique sur l’utilisation du modèle de Cox pour l’analyse de données morphométriques

de racines en fonction de covariables environnementales [A7]. Ce travail n’est pas présenté dans ce

manuscrit.

Pour finir, mes conclusions et perspectives de recherche sont rassemblées dans la dernière partie du

manuscrit.
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Introduction

Scientific path

My first experience in statistical research took place during my master’s internship supervised by Marc

Lavielle (INRIA Saclay Ile de France). We addressed, in close collaboration with a geophysicist an esti-

mation problem in tomography in a missing data setting by implementing a numerical algorithm. This

project covered the principal components of my future research activities.

Then, I did a Phd in statistics at University Paris Sud supervised by Marc Lavielle. I have proposed,

studied and implemented algorithms for maximum likelihood estimation in non linear latent variables

models. I have applied them in pharmacology and signal processing in collaboration with scientists of

these fields. After my Phd, I worked as assistant professor at University Paris Nord at the ”Laboratoire

d’Analyse, de Géométrie et de leurs applications” during four years. I continued my research activities in

statistics and developed new collaborations motivated by applications in image processing and nutrition.

Since 2009, I am researcher at INRA in the departement ”Mathématiques et Informatique Appliquées”

(MIA) in the team DYNENVIE of the unit MIA in Jouy-en-Josas. I am interested in new applications

as the study of population dynamics in epidemiology or agronomy, and as the study of plant growth

in collaboration with scientists of INRA and of others instituts. I position and develop my theoretical

research activities with the objective of providing practical answers to the questions raised by these

applications.

Scientific context

I am interested in statistical problems raised by the analysis of concrete complex phenomena in which

several quantities are involved: some are observed, more or less directly; others are not. A classical

example is the deconvolution problem where the signal of interest is observed up to a noise term. The

objective is to extract information on the non-observed or partially observed quantity of interest from the

observations. The usual probabilistic tools used in such cases are latent variable models. The quantities of

interest that are inaccessible are modeled with unobserved random variables, also referred to as latent or

missing variables. The observations are modeled with random variables that are observed. The dependence

between observations and latent variables is specified by the joint distribution. One of the main goals

for the statistician is therefore to characterize this distribution on the basis of observations alone. In

this manuscript, I will assume that this joint distribution is parametric. The objective is then to provide

an estimate for the model parameter, as well as for the variance of this estimate (for example, to build

confidence intervals). The maximum likelihood estimate (MLE) is one of the estimates usually considered

in this context. It is obtained by solving the optimization in the parameter of the observed likelihood,

i.e., the marginal likelihood defined as the integral of the joint likelihood over the latent variables. In

complex models, this integral admits in general no analytical expression and the optimization cannot be

directly solved. In such cases, a numerical value of the MLE may be obtained by using an optimization

algorithm.
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One of the most common algorithms is the Expectation Maximization (EM) algorithm proposed by

Dempster et al. [1977]. It is a deterministic iterative algorithm, where each iteration is composed of two

steps. The first consists in evaluating the conditional expectation of the complete log-likelihood given

the current parameter estimate value (step E); in the second one, the parameter value is updated by

maximizing this quantity (step M). For models belonging to the curved exponential family, this algorithm

converges toward a local maximum of the observed likelihood under general regularity assumptions on

the model. However, in numerous models, the conditional expectation of the complete log-likelihood has

no analytical expression and the EM algorithm cannot be implemented. Alternative algorithms have been

proposed, either based on approximations of the likelihood or by introducing a simulation step of the

latent variable. Most of them have no established theoretical convergence property, require unrealistic

assumptions for theoretical convergence, or require very long computation times.

The Stochastic Approximation Expectation Maximization (SAEM) algorithm proposed by Delyon

et al. [1999] is a stochastic version of the EM algorithm that has interesting properties, combining those

of stochastic approximation procedures and those of the EM algorithm. Step E of the EM algorithm is

divided into two steps. In the first one, a realization of the latent variable is drawn from the conditional

distribution; in the second one, this realization serves to calculate an auxiliary quantity that approximates

the conditional expectation of the complete log-likelihood through a stochastic approximation procedure.

The almost sure convergence of this algorithm toward a local maximum of the observed likelihood is

established under general regularity assumptions on the model (cf. Delyon et al. [1999]). It is easy to

implement and requires only short computation times. It can be implemented in complex models as

soon as it is possible to draw a realization of the latent variable from the conditional distribution. This

condition drastically limits the application possibilities. More generally, the simulation step of the latent

variable requires close attention since atypical numerical behavior can result from its implementation, in

particular, for multimodal latent variable distributions or high dimensional ones.

My main research subjects deal with the development, the analysis and the implementation of stochas-

tic algorithms derived from the deterministic EM algorithm that makes it possible to calculate a numerical

value of a parameter estimate for complex latent variable models. Applications are an integral part of my

research activities. New problematics in modeling and in computation arise from applications and raise

new theoretical and algorithmic developments. This symbiosis between statistical research and applica-

tions is a key element of the dynamics of my research activities and is based on close collaboration with

scientists in other fields.

Manuscript organization

In this manuscript, I describe my main contributions, broken down into three parts as follows.

In the first part, after a short description of the estimation problem in general latent variable models

and the existing algorithms used to address it, I present developments and analysis of the SAEM algo-

rithm. During my PhD which was supervised by Marc Lavielle, we proposed the introduction of a Monte
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Carlo Markov Chain (MCMC) method into the simulation step of the SAEM algorithm. This makes it

possible to implement the algorithm without being able to draw a realization of the latent variable from

the conditional distribution [A1]. This algorithm, designated as SAEM-MCMC below, maintains the good

theoretical and practical convergence properties of the SAEM algorithm and, at the same time, extends

its application possibilities. We first proved the almost sure convergence of the generated estimate se-

quence toward the maximum likelihood estimate under usual regularity assumptions on the model and a

strong assumption on the latent variable support, i.e., having a compact support. Later, in collaboration

with Alain Trouvé (ENS Cachan, CMLA) and Stéphanie Allassionnière (Ecole Polytechnique, CMAP),

we relaxed this strong assumption by adding a truncation step to each iteration of the algorithm [A3].

We obtained the same convergence result under general regularity assumptions alone. Moreover, the re-

sulting algorithm is easy to implement and very fast. We also obtained an estimate of the observed Fisher

information matrix.

However, considering latent variables of high dimension, the efficiency of classical MCMC methods

quickly decreases as the dimension increases. Motivated by complex application settings in image analysis,

I focused on sampling methods adapted to this context. In collaboration with Stéphanie Allassionnière, we

proposed a new Anisotropic Metropolis Adjusted Langevin Algorithm (AMALA). We proved its uniform

ergodicity. We also used it as a sampler in the SAEM-MCMC and proved the almost sure convergence

of the generated estimate sequence toward the maximum likelihood estimate under usual regularity

assumptions, as well as a central limit theorem [A12]. In addition, in collaboration with Gersende Fort

(CNRS, TELECOM ParisTechTelecom, LTCI), Benjamin Jourdain, Tony Lelièvre and Gabriel Stolz,

(Ecole des Ponts ParisTech, CERMICS), we studied another sampling algorithm that was well adapted

to the high dimension setting, known as the Wang Landau algorithm. We proved its uniform ergodicity as

well as a central limit theorem [A11]. We also studied its behavior by performing numerical simulations

[A8].

The second part covers my contributions concerning with modeling and parametric estimations in

mixed effects models, in particular, in the deformable template model in image analysis, and with the

testing problematic in Gaussian regression models.

In collaboration with Marc Lavielle, we proposed using the SAEM-MCMC algorithm to obtain a nu-

merical value of the MLE in mixed effects models. These models are particularly used to analyze repeated

longitudinal data. When the model is linear in the random effects and the residual random error Gaussian,

the likelihood has an explicit analytical expression and the maximum likelihood estimate can be calcu-

lated through some direct optimization. On the other hand, outside this specified context, the likelihood

usually does not admit an explicit analytical form, making it difficult to evaluate the MLE. It is then nec-

essary to appeal to more complex numerical procedures, often time-consuming, and not always provided

with theoretical convergence properties. The SAEM-MCMC algorithm is an efficient solution, fast and

convergent, to evaluate the MLE in mixed effects models, in particular, in non-linear ones. We used it

for parameter estimation in growth curve models and in pharmacodynamic models [A2]. In collaboration

with Alain Trouvé and Stéphanie Allassonnière,we implemented the SAEM-MCMC algorithm with the

additional truncation step to estimate parameters in a deformable template model in a Bayesian setting
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useful in medical imaging where samples are usually small [A3]. Deformable template models allow us

to represent a sample of images with a reference image called template and geometrical deformations, so

that each image of the sample is obtained as the result of the geometrical deformation of the template,

up to a small error term. The geometrical deformations are the latent variables of such a model. We first

considered the case of small linear deformations and used a hybrid Gibbs sampler as the MCMC method.

This application motivated the development of high dimensional latent variables presented in the first

part of this manuscript, since the hybrid Gibbs sampler becomes very time-consuming as the dimension

of the latent variable increases. Later, in collaboration with Stéphanie Allassonnière,we proposed a spe-

cific algorithm for parameter estimation in the multicomponent model which is a mixture of deformable

template models motivated by a crucial modeling issue [A5]. In numerous applications, it is necessary to

constrain the type of geometrical deformations considered, in particular, so that the diffeomorphic defor-

mations do not allow overlapping and prevent topological changes from occuring between the template

and the observation, thus creating the need of a mixture model. Since the SAEM-MCMC algorithm is

sensitive to numerical phenomena such as trapping states in such a case, we proposed a specific stochastic

estimation algorithm and implemented it. We also established its convergence property toward a local

maximum of the observed likelihood. Finally, in collaboration with Stéphanie Allassonnière and Stanley

Durrlemann, we applied the SAEM-MCMC algorithm provided with the AMALA sampler to the very

complex deformable template model using large diffeomorphic deformations [A13]. The new algorithm

takes on its full meaning in this high dimensional setting. We also developed an extension that allowed

us to optimize the position of the control points of the deformation, simultaneously with the estimation

of the other model parameters. We proposed an empirical criterion to select an optimal number of con-

trol points as well, leading to the optimization of the model dimension. All the applications related to

deformable template models and the different estimation algorithms were performed on the US POSTAL

handwritten digit database and 2D and 3D medical image databases. The corresponding experimental

results are presented in Section 5.5.

I also implemented the SAEM-MCMC algorithm to carry out the parameter estimation in pharma-

cological models and signal processing. In collaboration with France Mentré and Adeline Samson,we

compared the efficiency of treatments given to two patient groups. We used the SAEM-MCMC algo-

rithm to carry out the parameter estimation under the null hypothesis and under the alternative, and

subsequently applied the likelihood ratio test. In collaboration with Mohamed Sahmoudi, Karim Abed-

Meraim, Philippe Ciblat and Marc Lavielle,we applied the SAEM-MCMC algorithm to carry out the

parameter estimation in blind source separation for heavy tailed signals. These contributions are detailed

in Chapter 2 of my PhD manuscript [T] and in the proceedings [P2], respectively, and are not presented

in this manuscript.

Motivated at the beginning by the model choice issue for mixed effects models, we finally proposed, in

collaboration with Sylvie Huet a goodness-of-fit test for testing a linear hypothesis on the expectation of

a Gaussian vector with block correlated errors with a known covariance structure up to some parameters

[A10]. We established that our test procedure was asymptotically of the nominal level and consistent over

a large class of alternatives. We also proposed a bootstrap version of our procedure. Using a simulation
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study, we evaluated the finite sample size properties of our procedures and applied them to a forest cover

dataset of Galicia.

I also did a statistical support study on a multiple test procedure in Gaussian regression, in collabo-

ration with Renaud Rincent and Alain Charcosset, geneticians at INRA, to study the power of detection

of Quantitative Trait Loci along the genome in a non linear mixed effects model involving the kinship

matrix. We have studied its performances according to the estimate used for the kinship matrix [A9].

This work is not presented in this manuscript.

In the third part, I included my contributions dealing with modeling and estimation in survival analysis.

In collaboration with Charles El-Nouty, we considered the frailty models introduced by Vaupel et al.

[1979] which are an extension of the Cox model that takes the heterogeneity that exists in survival data

into account by introducing latent variables. We were interested in these models since we have been

in contact with researchers at the Unité de Recherche en Epidémiologie Nutritionnelle (UREN) at the

University of Paris 13, who often need to analyze this type of dataset. Very rich from a modeling point

of view, these models are very complex from a mathematical point of view, and the estimation task is

often very difficult. In numerous cases, the existing algorithms do not provide satisfactory solutions. We

proposed the application of the SAEM-MCMC algorithm to frailty models to evaluate the MLE [A6]. We

proved that under general regularity assumptions fulfilled by classical frailty models, the SAEM-MCMC

algorithm is almost surely convergent toward a local maximum of the observed likelihood. We compared

the performances of this algorithm with others that exist in the literature on simulated data and on a real

set of bladder cancer data. The numerical results showed a net advantage when using the SAEM-MCMC

algorithm, both in terms of the accuracy of the limit as well as the computation time.

In collaboration with Luc Duchateau and Klaartje Goethals (Faculty of Veterinary Medicine, Ghent

University), we have analyzed a mastitis epidemic dataset using frailty models with a frailty vector of size

four with different covariance structures [R1]. Assessing the correlation structure in cow udder quarter

infection times allows us to analyze the propagation risk of the disease as a function of the position of

the infection. The parameter estimation that could not be performed in a reasonable time in such models

until now, is done using the SAEM-MCMC algorithm. We compared four nested models using likelihood

ratio tests. Using simulation studies, we justified a posteriori the use of likelihood ratio tests for finite

sample size.

I also did a statistical support study in collaboration with Catherine Picon-Cochard on the application

of the Cox model for analyzing morphometric plant root data as a function of environmental covariables

[A7]. This work is not presented in this manuscript.

Finally, my conclusions and perspectives can be found in the last part of this manuscript.
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Part I

Extending the Stochastic Approximation

Expectation Maximization Algorithm

The first part is composed of my research dealing with the development, the study and the implementation

of a new stochastic version of the Expectation Maximization (EM) algorithm. Related studies include

[A1,A3,A8,A11,P1,P2,T,A12].

In the first part, after a short description of the estimation problem in general latent variable models

and the existing algorithms used to address it, I present developments and analysis of the SAEM algo-

rithm. During my PhD which was supervised by Marc Lavielle, we proposed the introduction of a Monte

Carlo Markov Chain (MCMC) method into the simulation step of the SAEM algorithm. This makes it

possible to implement the algorithm without being able to draw a realization of the latent variable from

the conditional distribution [A1]. This algorithm, designated as SAEM-MCMC below, maintains the good

theoretical and practical convergence properties of the SAEM algorithm and, at the same time, extends

its application possibilities. We first proved the almost sure convergence of the generated estimate se-

quence toward the maximum likelihood estimate under usual regularity assumptions on the model and a

strong assumption on the latent variable support, i.e., having a compact support. Later, in collaboration

with Alain Trouvé (ENS Cachan, CMLA) and Stéphanie Allassionnière (Ecole Polytechnique, CMAP),

we relaxed this strong assumption by adding a truncation step to each iteration of the algorithm [A3].

We obtained the same convergence result under general regularity assumptions alone. Moreover, the re-

sulting algorithm is easy to implement and very fast. We also obtained an estimate of the observed Fisher

information matrix.

However, considering latent variables of high dimension, the efficiency of classical MCMC methods

quickly decreases as the dimension increases. Motivated by complex application settings in image analysis,

I focused on sampling methods adapted to this context. In collaboration with Stéphanie Allassionnière, we

proposed a new Anisotropic Metropolis Adjusted Langevin Algorithm (AMALA). We proved its uniform

ergodicity. We also used it as a sampler in the SAEM-MCMC and proved the almost sure convergence

of the generated estimate sequence toward the maximum likelihood estimate under usual regularity

assumptions, as well as a central limit theorem [A12]. In addition, in collaboration with Gersende Fort

(CNRS, TELECOM ParisTechTelecom, LTCI), Benjamin Jourdain, Tony Lelièvre and Gabriel Stolz,

(Ecole des Ponts ParisTech, CERMICS), we studied another sampling algorithm that was well adapted

to the high dimension setting, known as the Wang Landau algorithm. We proved its uniform ergodicity as

well as a central limit theorem [A11]. We also studied its behavior by performing numerical simulations

[A8].
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1. Estimation in the Latent Variable Models

1.1. Latent variable models

We consider a latent variable model defined as follows: the observed variable is denoted by y and the

latent variable (also referred to as the missing or hidden variable) by z. The observed variables are related

to the latent variables. This link is specified through the joint distribution of the complete variable defined

by (y, z). We assume that this joint distribution has a density against a given σ-finite Borelian measure

µ which belongs to a parametric family denoted by {f(y, z; θ), θ ∈ Θ}, where the parameter θ takes its

value in a subset of Rp denoted by Θ. This joint distribution defines the parametric probabilistic latent

variable model. The most popular ones are hidden Markov models, hierarchical models and mixed effects

models. Such models are widely used in many application fields such as tomography, signal processing,

pharmacology, genetics, economics and image analysis.

Given the probabilistic latent variable model, the statistician is interested in estimating the parameter

θ from the observed data y, the latent variable z being unobserved. In a frequentist estimation approach,

a very popular estimator with good asymptotical properties in many classical models is the Maximum

Likelihood Estimator (MLE) of the parameter θ, namely the value θ̂ of θ that maximizes the observed

likelihood g defined by:

g(y; θ) =

∫
f(y, z; θ)µ(dz). (1.1)

We can also consider a Bayesian estimation approach, for example if only few observations are available or

if a priori information is available and has to be introduced into the probabilistic model. The parameter θ

is considered as a random variable that follows a given prior distribution denoted by q. A useful estimator

would then be the Maximum A Posteriori (MAP) estimator, namely the value θ̃ of θ that maximizes the

posterior distribution denoted by p and defined by:

p(θ|y) ∝ g(y; θ)q(θ).

In the following, I consider a frequentist estimation approach and focus on the Maximum Likelihood

Estimator (MLE). However all the considerations developed in this section can be directly transposed to

the Bayesian context by replacing the MLE with the MAP estimator, as will be done in Section 5.

As soon as the joint distribution of the complete variable (y, z) is complex, it is often not possible to

directly compute the numerical value of such estimators as the solution of an optimization problem. It is

then necessary to use numerical algorithms to evaluate an estimated value of this estimator.

1.2. Numerical algorithms for estimation

A useful tool to compute a numerical value of the Maximum Likelihood Estimator θ̂ is the Expectation

Maximization (EM) algorithm introduced by Dempster et al. [1977]. This is an iterative algorithm that

generates a sequence of estimated values (θk)k converging toward a stationary point of the observed

likelihood g under some regularity assumptions of the model (see Dempster et al. [1977], Vaida [2005],
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Wu [1983]). The heuristic of this algorithm is based on the following strategy: the variable z being

unobserved, instead of maximizing the observed log-likelihood log g(y; θ) in θ, it is instead possible to

maximize the expectation of the complete log-likelihood conditional to the observed variable y equal to

E(log f(y, z; θ)|y; θ), which might be a realistic approximation of log g(y; θ) denoted by l(θ) for a given

observation y in the sequel. The two steps of iteration k of the algorithm consist in alternatively updating,

first, the conditional expectation:

Q(θ|θk−1) = E(log f(y, z; θ)|y; θk−1) (1.2)

using the current parameter value θk−1 and, second, the parameter by maximizing Q according to θk =

argmaxθ Q(θ|θk−1). The initial value θ0 is chosen arbitrarily. Applying Jensen’s inequality shows that the

sequence (log g(y, θk))k is non-decreasing where the sequence (θk)k is generated by the algorithm. The

structural hypothesis always assumed to study its theoretical convergence is that the complete likelihood

belongs to the curved exponential family, meaning that the complete likelihood f(y, z; θ) can be written

as:

f(y, z; θ) = exp [−ψ(θ) + 〈S(z), φ(θ)〉] ,

where 〈·, ·〉 denotes the Euclidean scalar product, the sufficient statistics S is a function on Rl, taking

its values in a subset S of Rm and ψ, φ are two functions on Θ (note that S may also depend on y, but

we omit this dependency for the sake of simplicity). This condition is usual within the framework of EM

algorithm applications and is fulfilled by a large range of complex models.

Moreover, Wu [1983] exhibits some strong assumptions that ensure the convergence of the sequence

(θk)k toward a local maximum of the observed log-likelihood log g.

Nevertheless, one or both steps of this algorithm may not always be easily carried out in complex

latent variable models. Thus, alternative algorithms were developed to allow wider range of applications

for the EM algorithm.

When the M-step cannot be done analytically, alternative satisfactory solutions have been proposed,

e.g., based on the Newton algorithm (see Lange [1995]) or on conditional maximization (see Meng [1994]).

On the contrary, overcoming the difficulty of an untractable E-step leads to alternative solutions that

are not as satisfactory. When the computation of the conditional expectation defined in Equation (1.2)

is not feasible, two types of alternatives, in particular, have been proposed. The first ones are based on

an approximation of the underlying likelihood function, e.g., by its first or second order development. To

the best of my knowledge, there is no theoretical convergence property established in that case, probably

since it is difficult to control the propagation of the error made by such an approximation. Several authors

proposed using a Laplace approximation for the computation of the conditional expectation defined in

Equation (1.2). In the case of non-linear mixed effects models, it was proposed by Vonesh [1996] but very

restrictive assumptions were required to prove the theoretical convergence of the generated sequence (θk).

The second ones are based on the simulation of the unobserved variable. Let us mention the stochastic

EM algorithm proposed by Celeux and Diebolt [1986]. The authors proved the almost sure convergence

in mean of the generated sequence toward a stationary point of the observed likelihood. They extended

their approach to mixture models by adding a simulated annealing step and proved the almost sure
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convergence toward a local maximum likelihood. Another algorithm was proposed by Wei and Tanner

[1990] who used a Monte Carlo sum to approximate the conditional expectation defined in Equation

(1.2) at each iteration leading to the so-called Monte Carlo EM (MCEM) algorithm. Fort and Moulines

[2003] established its almost sure convergence toward a local maximum of the observed likelihood but

this algorithm is time consuming since it is necessary to simulate a huge quantity of auxiliary variables

at each iteration.

1.3. The Stochastic Approximation Expectation Maximization (SAEM) algorithm

The Stochastic Approximation Expectation Maximization (SAEM) algorithm was proposed by Delyon

et al. [1999] and combined the idea of simulating the unobserved variable to the nice convergence property

of the stochastic approximation. It is based on the construction of a sequence (Qk(θ))k, which will

asymptotically produce a good approximation of the conditional expectation defined in Equation (1.2).

The E-step of the EM algorithm is divided into two steps. Consider the iteration k. First, a realization

zk of the latent variable is sampled from the conditional distribution πθk−1
(z|y) of z conditional to y

using the current value of the parameter estimate θk−1. Second the quantity Qk is updated through a

stochastic approximation procedure using the realization zk. Let (γk)k be a decreasing positive step size

sequence. The algorithm remains to:

Initialization step: Initialize θ0 in a fixed compact set.

Then, for all k ≥ 1 the kth iteration consists in three steps :

Simulation step: simulate zk from the conditional distribution πθk−1
(·|y).

Stochastic approximation step: compute the quantity

Qk(θ) = Qk−1(θ) + γk−1(log f(y, zk; θ)−Qk−1(θ)), (1.3)

Maximization step: update the parameter value according to θk = argmaxθ Qk(θ).

Delyon et al. [1999] proved the almost sure convergence of the sequence (θk)k toward a local maximum

of the observed likelihood by using martingale theory results. This algorithm therefore has very interesting

convergence properties and requires only short computation times. Nevertheless, it suffers from several

drawbacks. Most of them are common to other algorithms of this type. First, since the limit is a local

maximum, it may depend on the initialization point, making it necessary to run the algorithm several

times with different initializations. Second, the nature of the limit point has to be investigated to be sure

that it is a global maximum. Finally, the last drawback, specific to this algorithm, is the requirement of

simulating the unobserved variable from the conditional distribution, significantly limiting its application.
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2. Using the Monte Carlo Markov Chain method in the SAEM algorithm

During my PhD, which was supervised by Marc Lavielle, we proposed a new version of the classical

SAEM algorithm that does not require the simulation of the unobserved variable from the conditional

distribution.

I provide the details of the Monte Carlo Markov Chain method below and its insertion into the SAEM

algorithm.

2.1. Monte Carlo Markov Chain (MCMC) method

Given some objective distribution π to be reached, a MCMC procedure consists in generating an ergodic

Markov chain having it as limiting distribution (see Gilks et al. [1996], Robert [1996]). The most common

type of MCMC algorithm is the Metropolis Hastings algorithm. Its transition probability consists in

sampling a candidate from a proposal (also referred to as instrumental) distribution q and accepting it

with a probability equal to the acceptance ratio defined as:

α(z, z′) = min

{
π(z′|y)q(z′, z)

π(z|y)q(z, z′)
, 1

}
(2.1)

This provides a transition kernel Π of this form: for any Borel set A ∈ B:

Π(x,A) =

∫
A

α(x, z)q(x, z)dz + 1A(x)

∫
X

(1− α(x, z))q(x, z)dz . (2.2)

This procedure always accepts the new value z′ when the likelihood ratio π(z′|y)
q(z,z′) is larger than the

previous one.

Another well-known MCMC algorithm for multivariate random variables is the Gibbs sampler (see

Gilks et al. [1996], Robert [1996]). Its transition probability consists in updating each coordinate at a

time by simulating it from its conditional distribution, conditional to all of the other coordinates. This

algorithm is particularly well adapted to the Bayesian context when using conjugate laws, since simulation

tasks are carried out directly. Otherwise, it is possible to use a Metropolis Hastings step in one simulation

step of the Gibbs sampler, leading to the so-called hybrid Gibbs sampler. However, since the dimension

of the variable becomes huge, the computation time drastically increases and numerical problems such

as trapping states may appear. This often limits its implementation, as will be seen in Section 5.2.

2.2. The SAEM-MCMC algorithm

Let us assume that we are not able to simulate the missing data zk at iteration k from the conditional

distribution πθk(·|y). In such a case, we propose using a MCMC procedure to simulate the value zk of

the latent variable at iteration k. In practice only the simulation step (S-step) of the SAEM algorithm is

modified; the other two remain unchanged. In fact, instead of simulating the unobserved variable from

the conditional distribution, we simulate it from the transition kernel Πθ of an ergodic Markov Chain
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that has this conditional distribution πθ as stationary distribution. Since we consider only parametric

models P in this manuscript that belong to the curved exponential family, the stochastic approximation

can be made either on the complete log-likelihood or on the sufficient statistics S of the model using a

positive step-size sequence (γk)k∈N. Finally, we update the parameter in the M-step.

Thus the algorithm can be summarized as follows:

Initialization step: Initialize θ0, s0 and z0 in fixed compact sets.

Then, for all k ≥ 1 the kth iteration consists in three steps :

Simulation step: simulate zk from the transition probability Πθk−1
(zk−1, ·).

Stochastic approximation step: compute the quantity

sk = sk−1 + γk−1[S(zk)− sk−1], (2.3)

Maximization step: update the parameter value according to:

θk = θ̂(sk) where θ̂(s) = argmax
θ

[−ψ(θ) + 〈S(z), φ(θ)〉] . (2.4)

This algorithm still has interesting theoretical properties and its implementation is fast and easy.

Moreover, it can be applied to many complex latent variable models. Assuming that the latent variable z

has a compact support, we prove the almost sure convergence of the sequence (θk)k toward a stationary

point of the observed likelihood under some usual regularity assumptions on the model, on the transition

kernel of the MCMC method, ensuring its ergodicity, and on the step size sequence (see [A1]).

Theorem 2.1. Assume that some usual regularity assumptions on the model, the transition kernel and

the step size sequence are fulfilled. Assume in addition the assumption (C): the sequence (sk)k≥0 takes its

values in a compact subset of S. Then, w.p. 1, limk→+∞ d(θk,L) = 0 where d(x,A) denotes the distance

of x to the closed subset A and L = {θ ∈ Θ, ∂θl(y; θ) = 0} is the set of stationary points of l.

We apply a result of Benveniste et al. [1990] to control small random Markovian perturbations.

To relax the restrictive assumption of bounded support for the latent variable, we proposed, in col-

laboration with Stéphanie Allassonnière and Alain Trouvé, to add a truncation step to the algorithm

(see [A3]). In fact, to prove the convergence of the sequence generated through the stochastic approxi-

mation procedure, it is first necessary to prove its stability i.e. it stays in some given compact set. The

assumption of bounded support for the latent variable allowed us to prove this in the algorithm without

using the truncation procedure. Introducing a more general technique that involves truncation on random

boundaries allows us to prove this without assuming that the support of the latent variable distribution

is bounded. Our proof is based on the general stability and convergence results for stochastic algorithms

with truncation on random boundaries given in Andrieu et al. [2005]. The main technical point is that in

the presence of unbounded latent variables, the usual regularity conditions as a function of the parameters

for the solutions of the Poisson equations for the Markovian dynamic cannot be verified and have to be

relaxed.
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The truncation on random boundaries can be formalized as follows. Let (Kq)q≥0 be a sequence of

increasing compact subsets of S so that ∪q≥0Kq = S and Kq ⊂ int(Kq+1), for all q ≥ 0. Let ε = (εk)k≥0

be a monotone non-increasing sequence of positive numbers and K a compact subset of RN . We construct

a sequence ((zk, sk))k≥0 as follows. As long as the stochastic approximation does not wander outside the

current compact set and is not too far from its previous value, we run the SAEM-MCMC algorithm. As

soon as one of these conditions is not satisfied, we reinitialize the sequences of z and s using a projection,

we increase the size of the compact set and continue the iterations until convergence (for more details see

Andrieu et al. [2005]). This is detailed in the following steps:

Initialization step: Initialize z0 and s0 in two fixed compact sets.

Then, for all k ≥ 1 the kth iteration consists in four steps :

Simulation step: Draw one new element z̄ of the non-homogeneous Markov Chain with respect to the

kernel with the current parameters Πθk−1
and starting at zk−1.

z̄ ∼ Πθk−1
(zk−1, ·) .

Stochastic approximation step: . Compute

s̄ = sk−1 + γζk−1
(S(z̄)− sk−1) . (2.5)

Truncation step: If s̄ is outside the current compact set Kκk−1
or too far from the previous value sk,

then restart the stochastic approximation in the initial compact set, extend the truncation boundary

to Kκk and start again with a bounded value of the missing variable. Otherwise, set (zk, sk) = (z̄, s̄)

and keep the truncation boundary to Kκk−1
. Update the sequence ζk and κk following Andrieu et al.

[2005].

Maximization step: Update the parameters using (2.4).

The index κ denotes the current active truncation set, the index ζ is the current index in the sequences

γ and ε and the index ν denotes the number of iterations since the last projection.

2.3. Estimation of the observed Fisher Information Matrix

An estimation procedure should generate a point estimate θ̂ together with the covariance of the estimate

(e.g., to enable construction of confidence sets for the true parameter value). The asymptotic theory for

maximum likelihood estimation, when established, ensures that:

√
n(θ̂ − θ?)→n→∞ N (0, I(θ?)−1) , (2.6)

where θ? is the MLE and I(θ?) is the observed Fisher Information Matrix. Thus, an estimate of the

asymptotic covariance of θ̂ is the inverse of the observed Fisher information matrix −∂2
θ l(θ̂).
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Thanks to the maximum likelihood estimator obtained with the SAEM-MCMC algorithm, it is possible

to simultaneously obtain an estimation of the Fisher Information Matrix. In [A1] we propose a method

to estimate this matrix by using the fact that the gradient (the Fisher score function) and the Hessian

(observed Fisher Information) of the log-likelihood l can be almost directly obtained from the simulated

missing data z. Using the so-called Fisher identity, the Jacobian of the log-likelihood of the observed data

l(θ) is equal to the conditional expectation of the complete data likelihood:

∂θl(θ) , E[∂θ log f(y, z; θ)|y; θ]

where ∂θ denotes the differential with respect to θ. By analogy with the implementation of the SAEM

algorithm, the following approximation scheme is proposed:

∆k = ∆k−1 + γk

[
∂θ log f(y,z(k); θk)−∆k−1

]
.

Using Louis’ missing information principle (Louis [1982]), the Hessian of l at θ is the observed Fisher

Information matrix ∂2
θ l(θ) that may be expressed as:

∂2
θ l(θ) = Eθ[∂

2
θ log f(y, z; θ)] + Covθ[∂θ log f(y, z; θ)].

where Covθ(ψ(z)) , Eθ[(ψ(z) − Eθ(ψ(z)))(ψ(z) − Eθ(ψ(z)))t]. Using this expression, it is possible to

derive the following stochastic approximation procedure to approximate ∂2
θ l(θ):

Gk =Gk−1+γk

[
∂2
θ log f(y,z(k); θk)+∂θ log f(y,z(k); θk)∂θ log f(y,z(k); θk)t −Gk−1

]
Hk = Gk −∆k∆k

t.

Knowing that the algorithm proposed above converges to a limiting value θ? and that l is regular enough,

(−Hk) converges to the inverse of the observed Fisher Information Matrix −∂2
θ l(θ

?) (see [A1]).

3. Toward an efficient sampling step in high dimension

3.1. A new Anisotropic Metropolis Adjusted Langevin Algorithm (AMALA)

In collaboration with Stéphanie Allassonnière, we proposed a new anisotropic version of the well-known

Metropolis Adjusted Langevin Algorithm (MALA) [A12].

Let us first recall the steps of the Metropolis Adjusted Langevin Algorithm (MALA), which is a

particular case of the Metropolis Hastings algorithm (see Gilks et al. [1996]). The focus is on optimizing

the proposal distribution.

Let us denote by π the pdf of the target distribution with respect to the Lebesgue measure on X ,

an open subset of Rl. We assume that π is positive continuously differentiable. At each iteration k of

this algorithm, a candidate Xc is simulated with respect to the Gaussian distribution with expectation

Xk + σ2

2 D(Xk) and covariance σ2Idl where Xk is the current value,

D(x) =
b

max(b, |∇ log π(x)|)
∇ log π(x) , (3.1)
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Idl is the identity matrix in Rl and b > 0 is a fixed truncation threshold. Note that the truncation of the

drift D was already suggested in Gilks et al. [1996] to provide more stability.

The Gaussian proposal of the MALA algorithm is optimized with respect to its expectation guided

by the Langevin diffusion. One step further is to optimize also its covariance matrix. A first step in this

direction was proposed in Atchadé [2006]. The covariance matrix of the proposal is given by a projection

of a stochastic approximation of the empirical covariance matrix. It produces an adaptive Markov chain.

This process involves some additional tuning parameters that have to be calibrated. Since our goal is to

use this sampler in an estimation algorithm, the sampler has a different target distribution (depending

on the current estimate of the parameter) at each iteration. Therefore, the optimal tuning parameter

may be different along the iterations of the estimation process. Although we agree with the idea of

using adaptive chains, we prefer taking advantage of the dynamic of the estimation algorithm. For these

reasons, we propose a sampler in the spirit of Atchadé [2006], Girolami and Calderhead [2011] or Marshall

and Roberts [2012] without providing an adaptive chain. The adaption will result from the dependency

of the target distribution with respect to the parameters of the model that are updated throughout

the estimation algorithm. The proposal remains a Gaussian distribution, but both the drift and the

covariance matrix depend on the gradient of the target distribution. At the kth iteration, we are provided

with Xk. The candidate is sampled from the Gaussian distribution with expectation Xk + δD(Xk), and

the covariance matrix δΣ(Xk) denoted in the sequel N (Xk + δD(Xk), δΣ(Xk)) where Σ(x) is given by:

Σ(x) = εIdl +D(x)D(x)T , (3.2)

D is defined in Equation (3.1) and ε > 0 is a small regularization parameter. Note that the threshold

parameter b leads to a symmetric positive definite covariance matrix with bounded non zero eigenvalues.

We introduce the gradient of log π into the covariance matrix to provide an anisotropic covariance matrix

depending on the amplitude of the drift at the current value. When the drift is large, the candidate is

likely to be far from the current value. This big step may not be of the right amplitude and a large

variance will allow for more flexibility. Moreover, this makes it possible to explore a larger area around

these candidates, which would not be possible with a fixed variance. On the other hand, when the drift

is small in a particular direction, it means that the current value is within a region of high probability

for the next value of the Markov chain. Therefore, the candidate should not move too far neither with a

large drift nor with a large variance. This makes it possible to extensively sample around large modes,

which is of particular interest. This covariance also makes it possible to treat the directions of interest

with different amplitudes of variance, as is already the case with the drift. It also provides dependencies

between coordinates since the directions of large variances are likely to be different from the Euclidean

axis. This is taken into account here by introducing the Gram matrix of the drift into the covariance

matrix.

Since our purpose was to plug the AMALA sampler into the SAEM-MCMC algorithm, we have to

consider a parametric family of target densities (πs)s and the corresponding transition kernels (Πs)s. In

particular, we exhibit new assumptions that enable us to prove that the AMALA sampler is uniformly

geometrically ergodic when considering a parametric family of target densities (πs)s and the corresponding

transition kernels (Πs)s.
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We require a usual assumption on the stationary distributions namely the so-called super-exponential

property given by:

(B1) For all s ∈ S, the density πs is positive with continuous first derivative such that:

lim
|x|→∞

n(x).∇ log πs(x) = −∞ (3.3)

and

lim sup
|x|→∞

n(x).ms(x) < 0 (3.4)

where ∇ is the gradient operator in Rl, n(x) = x
|x| is the unit vector pointing in the direction of x

and ms(x) = ∇πs(x)
|∇πs(x)| is the unit vector in the direction of the gradient of the stationary distribution

at point x.

We assume also some regularity properties of the stationary distributions with respect to s.

(B2) For all x ∈ X , the functions s 7→ πs and s 7→ ∇x log πs are continuous on S.

We now define for some β ∈]0, 1[, Vs(x) = csπs(x)−β where cs is a constant so that Vs(x) ≥ 1 for all

x ∈ X . Let also V1(x) = inf
s∈S

Vs(x) and V2(x) = sup
s∈S

Vs(x).

Let us assume conditions on V2:

(B3) There exists b0 > 0 such that, for all s ∈ S and x ∈ X , V b02 is integrable against Πs(x, .) and

lim sup
b→0

sup
s∈S,x∈X

ΠsV
b
2 (x) = 1 . (3.5)

We obtain the following result:

Proposition 3.1. Assume (B1-B3). Let K a compact subset of S. There exist a function V ≥ 1, a set

C ⊆ X , a probability measure ν such that ν(C) > 0 and there exist constants λ ∈]0, 1[, b ∈ [0,∞[ and

ε ∈]0, 1] such that for all s ∈ K :

Πs(x,A) ≥ εν(A) ∀x ∈ C ∀ABorel set , (3.6)

ΠsV (x) ≤ λV (x) + b1C(x) . (3.7)

The proof is performed in three steps. We first prove the existence of small sets being any compact

subset of Rl. Then, we prove the Drift condition for each transition kernel Πs with a function Vs for all

s ∈ S following the lines of Jarner and Hansen [2000] and Atchadé [2006]. The fact that both the drift

and the covariance matrix are bounded even depending on the gradient of log πs enables partially similar

proofs.

Finally, the most technical step consists in exhibiting a single function V built from the family of

functions {Vs}s satisfaying the Drift condition for all kernels Πs for s ∈ S.

We highlight the efficiency of the AMALA sampler by comparing its mixing properties with those

of the MALA sampler. We used both algorithms to sample from a 100 dimensional normal distribution
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with a zero mean and a non-diagonal covariance matrix. Its eigenvalues range from 1 to 10. The eigen-

directions are chosen randomly. Ten examples of autocorrelations of both chains are plotted in Figure 1

where we can see that there is a significant benefit of using the anisotropic sampler. To evaluate the

weight of the anisotropic term D(x)D(x)T in the covariance matrix, we compute its amplitude (as its

non zero eigenvalue since it is a rank one matrix). We see that it is of the same order as the diagonal

part on average and increases up to 15 times more. This shows the importance of the anisotropic term.

Figure 1. Ten examples of autocorrelations of the MALA (blue) and AMALA (red) samplers to target the 100 dimensional
normal distribution with anisotropic covariance matrix.

3.2. Coupling the AMALA sampler and the SAEM algorithm

In collaboration with Stéphanie Allassonnière, we proposed using the AMALA sampler in the simulation

step of the SAEM-MCMC algorithm presented in Section 2.2 [A12]. Thus, at each iteration k of the

algorithm, simulated values of the missing data are drawn from the transition probability of the AMALA

algorithm described in Section 3.1 with the current value of the parameters. The others steps remain

unchanged.

We proved that the parameter estimate sequence generated by the AMALA-SAEM algorithm converges

almost surely toward a stationary point of the likelihood under some regularity assumptions.

Theorem 3.1. Assume some regularity conditions on the model and some usual conditions on the step

size sequences. Assume that the family of conditional density probability functions {πθ̂(s)(·|y), s ∈ S}
satisfies (B1-B3).

Let K be a compact subset of X and K0 a compact of S. Then, for all z0 ∈ K and s0 ∈ K0, we

have lim
k→∞

d(θk,L) = 0 a.s. where (θk)k is the sequence generated by the AMALA-SAEM Algorithm and

L , {θ ∈ Θ, ∂θl(θ) = 0}.

The proof follows the same lines as the one given in [A3]. In particular, we first prove the sufficient

usual Drift conditions (cf. Delyon et al. [1999]). We also prove in details that the transition kernel Πs is

Lipschitz in s ∈ S. This proof extends the one proposed in Andrieu and Moulines [2006] to kernels and

stationary distributions both depending on the parameter s ∈ S.

The complete algorithm involves only three parameters: b, the threshold for the gradient that appears in

the expectation as well as in the covariance matrix; δ, the scale on this gradient; and ε, a small regular-

ization parameter to ensure a positive definite covariance matrix. The scale δ can be easily optimized in
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terms of the data we are dealing with to adapt to the range of the drift. The value of the threshold b is,

in practice, never reached.

We also established a Central Limit Theorem for the parameter estimate sequence generated by the

AMALA-SAEM algorithm.

Theorem 3.1 ensures that the number of re-initializations of the sequence of stochastic approximation

of the AMALA-SAEM Algorithm is finite almost surely. We can therefore consider only the non truncated

sequence when we are interested in its asymptotic behavior. Moreover there are a priori multiple possible

limiting points so we need to restrict our attention to the set of trajectories that converge to a given

limiting point θ∗ = θ̂(s∗).

Let us introduce some usual assumptions in the spirit of these of Delyon [2000].

(N1) The function h is C1 in some neighborhood of s∗ with first derivatives Lipschitz and J the Jacobean

matrix of the mean field h in s∗ has all its eigenvalues with negative real part.

(N2) Let gθ̂(s) be a solution of the Poisson equation g − Πθ̂(s)g = Hs − pθ̂(s)(Hs) for any s ∈ S. There

exists a bounded function w such that

w −Πθ̂(s∗)w = gθ̂(s∗)g
T
θ̂(s∗)

−Πθ̂(s∗)gθ̂(s∗)(Πθ̂(s∗)gθ̂(s∗))
T − U (3.8)

where the deterministic matrix U is given by :

U = Eθ̂(s∗)
[
gθ̂(s∗)(z)gθ̂(s∗)(z)

T −Πθ̂(s∗)gθ̂(s∗)(z)Πθ̂(s∗)gθ̂(s∗)(z)
T
]
. (3.9)

(N3) The step size sequence (γk) is decreasing and satisfies γk = 1/kα with 2/3 < α < 1.

Theorem 3.2. Under the assumptions of Theorem 3.1 and under (N1)-(N3), the sequence

(sk − s∗)/
√
γk converges in distribution to a Gaussian random vector with zero mean and covariance

matrix Γ where Γ is the solution of the following Lyapunov equation:

U + JΓ + ΓJT = 0.

Moreover, denoting θ∗ = θ̂(s∗), we have:

1
√
γk

(θk − θ∗)→L N (0, ∂sθ̂(s
∗)Γ∂sθ̂(s

∗)T ).

This proof follows the lines of the proof of Theorem 25 of Delyon [2000]. However several of its

assumptions are not satisfied by our stochastic approximation. Therefore we exhibit lighter assumptions

leading to the same final result when combined with Drift and Hölder conditions.

3.3. Convergence study of the Wang Landau Algorithm

In collaboration with Gersende Fort, Benjamin Jourdain, Tony Lelièvre and Gabriel Stoltz, we study the

Wang Landau algorithm, from a theoretical point of view as well as from a practical one [A11,A8].

I was interested in this study, having in mind to use the Wang Landau algorithm as sampler in the

SAEM-MCMC algorithm. However I do not investigate further this possibility for two main reasons. First,
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the AMALA sampler developed in Section 3.1 gave very satisfaying theoretical and practical results when

used as sampler in the SAEM-MCMC algorithm; second, using adaptive sampler such as the MALA

version proposed by Atchadé [2006] into the estimation algorithm let to less performant results. One

possible interpretation is that the dynamics of the parameter update in the estimation algorithm plays

the role of the adaption process in the sampling step. Therefore I do not consider the coupling of the

Wang Landau algorithm with the SAEM algorithm.

3.3.1. Introduction

The Wang-Landau algorithm belongs to the class of free energy biasing techniques (see Lelièvre et al.

[2007]) which have been introduced in computational statistical physics to efficiently sample thermo-

dynamic ensembles and to compute free energy differences. These algorithms can be seen as adaptive

importance sampling techniques, the biasing factor being adapted on-the-fly in order to flatten the target

probability measure along a given direction. Let us explain this with more details.

Let π be a multimodal probability measure over a high-dimensional space X ⊆ RD. Classical algorithms

to sample π such as a Metropolis-Hastings procedure with local proposal moves typically converge very

slowly to equilibrium since high probability regions are separated by low probability regions. Averages

have to be taken over very long trajectories in order to visit all the modes of the target probability

measure π.

The idea of free energy biasing techniques is to flatten the target probability along a well-chosen direction

through an importance sampling procedure in order to more easily sample π. More precisely, assume that

we are given a measurable function O defined on X and with values in a low dimensional compact space,

or in a discrete space. Let us introduce O∗π the image of the measure π by O: for any test function ϕ on

the image O(X) of X by O,
∫
O(X)

ϕ(y)O ∗ π(dy) =
∫
X
ϕ(O(x))π(dx). The free energy biased probability

measure π? is defined by the two following properties:

(i) the image O ∗ π? of π? by O is the uniform measure on O(X).

(ii) for each y ∈ O(X), the conditional distributions of x given O(x) = y under π(dx) and π?(dx)

coincide i.e. there exists a measurable function h : O(X)→ R+ such that π?(dx) = h(O(x))π(dx).

The bottom line of free energy biasing techniques is that it should be easier to sample π? than to

sample π since, by construction, O∗π? is the uniform probability measure. Then, sampling from π could

be obtained by importance sampling from π?. The fact that π? is indeed much easier to sample than π

actually depends on the choice of O. It is not an easy task to define and to design in practice a good choice

for O and we do not discuss further these aspects here. This is related to the choice of a “good” reaction

coordinate in the physics literature, which is a very debatable subject. We refer for example to Chopin

et al. [2012] for such an analysis in the context of free energy biasing techniques used to sample posterior

distributions in Bayesian statistics.

Of course, the difficulty is that in general, O ∗ π is unknown so that it is not possible to sample from

π?. The idea is then to approximate O ∗ π on the fly in order to, in the longtime limit, sample from π?.
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This is the adaptive feature of these algorithms: the importance sampling factor is computed as time

goes, in order to penalize states (namely level sets of O) which have already been visited. To approximate

π? at a given time, one could either use the occupation measure of the Markov chain up to the current

time or one could use an approximation over many Markov chains running in parallel (see Lelièvre et al.

[2007], Minoukadeh et al. [2010]).

In terms of mathematical analysis, approximations based on many replicas in parallel are typically

easier to analyze, since they can be related in the limit of infinitely many replicas to mean field models

for which powerful longtime convergence analysis techniques can be used. We refer for example to Lelièvre

et al. [2008] and Lelièvre and Minoukadeh [2011] for such an analysis. The convergence analysis and, more

importantly, the study of the efficiency of free energy biased techniques for approximations based on the

occupation measure are much more involved since correlations in time of the Markov process play a

crucial role. Our aim is to propose a convergence analysis for the Wang-Landau algorithm.

3.3.2. Description of the Wang-Landau algorithm

The Wang-Landau algorithm both computes a penalty sequence {θn, n ≥ 0} approximating in the long-

time limit the probability measure O∗π and samples draws {Xn, n ≥ 0} distributed in the longtime limit

according to π?. The update of the penalty sequence follows a Stochastic Approximation algorithm (see

Benveniste et al. [1990], Robbins and Monro [1951]) and is of the form

θn+1 = θn + γn+1Hn(Xn+1, θn) .

Different strategies about the field Hn and the adaption schedule {γn, n ≥ 1} have been proposed in

the literature. In the original paper of Wang and Landau [2001], the authors came up with a stochastic

adaption schedule hereafter called flat histogram Wang-Landau. In this procedure, the updating param-

eter γn remains constant up to the random time when the sampling along the chosen order parameter O
is approximately uniform, the “amount of uniformity” being measured according to the current value

of γn. Then γn is lowered and a new updating procedure of the weights starts with a constant stepsize.

Another strategy consists in a deterministic update of the adaption sequence {γn, n ≥ 1}.

We now describe the Wang landau algorithm we studied. Let us consider a partition X1, . . . ,Xd of X

in d ≥ 2 elements, and define, for any i ∈ {1, . . . , d},

θ?(i)
def
=

∫
Xi

π(x)λ(dx) . (3.10)

In the following, Xi will be called the i-th stratum. Each weight θ?(i), which is assumed to be positive,

gives the relative likelihood of the stratum Xi ⊂ X. In practice, the partitioning could be obtained by

considering some smooth function ξ : X→ [a, b] and defining, for i = 1, . . . , d− 1,

Xi = ξ−1
(

[αi−1, αi)
)
, (3.11)
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and Xd = ξ−1 ([αd−1, αd]), with a = α0 < α1 < . . . αd = b (possibly, a = −∞ and/or b = +∞). In our

previous notation, the order parameter is thus the discrete function O defined by

∀x ∈ X, O(x) = i if and only if x ∈ Xi . (3.12)

In the following we consider a function O with values in a discrete finite set {1, . . . , d}. Then, we have

π?(dx) =
1

d

d∑
i=1

1O(x)=i

θ?(i)
π(dx) , (3.13)

where θ?(i) = π ({x ∈ X, O(x) = i}) = O ∗ π(i) for i ∈ {1, . . . , d}.
The above discussion motivates the fact that the weights θ?(i) typically span several orders of mag-

nitude, some sets Xi having very large weights, and other ones being very unlikely under π. Besides,

trajectories bridging two very likely states may need to go through unlikely regions. To efficiently explore

the configuration space, and sample numerous configurations in all the strata Xi, it is therefore a natural

idea to resort to importance sampling strategies and reweight appropriately each subset Xi. A possible

way to do so is the following. Let Θ be the subset of (non-degenerate) probability measures on {1, . . . , d}
given by

Θ =

{
θ = (θ(1), . . . , θ(d))

∣∣∣∣∣ 0 < θ(i) < 1 for all i ∈ {1, . . . , d} and

d∑
i=1

θ(i) = 1

}
.

For any θ ∈ Θ, we define the probability density πθ on (X,X ) (endowed with the reference measure λ) as

πθ(x) =

(
d∑
i=1

θ?(i)

θ(i)

)−1 d∑
i=1

π(x)

θ(i)
1Xi(x) . (3.14)

This measure is such that the weight of the set Xi under πθ is proportional to θ?(i)/θ(i). In particular,

all the strata Xi have the same weight under πθ? . Unfortunately, θ? is unknown and sampling under πθ?
is typically unfeasible.

The Wang-Landau algorithm precisely is a way to overcome these difficulties: at each iteration of

the algorithm, a weight vector θn = (θn(1), . . . , θn(d)) is updated based on the past behavior of the

algorithm and a point is drawn from a Markov kernel Pθn with invariant density πθn . The intuition for

the convergence of this algorithm is that if {θn, n ≥ 0} converges to θ? then the draws are asymptotically

distributed according to the density πθ? . Conversely, if the draws are under πθ? , then the update of

{θn, n ≥ 0} is chosen such that it converges to θ?.

We now describe precisely the algorithm we considered. Let {γn, n ≥ 1} be a [0, 1)-valued deterministic

sequence. For any θ ∈ Θ, denote by Pθ a Markov transition kernel onto (X,X ) with unique stationary

distribution πθ(x)λ(dx); for example, Pθ is one step of a Metropolis-Hastings algorithm with target

probability measure πθ(x)λ(dx).

Consider an initial value X0 ∈ X and an initial set of weights θ0 ∈ Θ (typically, in absence of any

prior information, θ0(i) = 1/d). Define the process {(Xn, θn), n ≥ 0} as follows: given the current value

(Xn, θn),
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• Draw Xn+1 under the conditional distribution Pθn(Xn, ·);
• Set i = O(Xn+1) where O is given by (3.12). The weights are then updated as{

θn+1(i) = θn(i) + γn+1 θn(i) (1− θn(i)) ,

θn+1(k) = θn(k)− γn+1 θn(k) θn(i) for k 6= i.
(3.15)

Note that since γn ∈ [0, 1), θn ∈ Θ for any n ≥ 0. The update of the probability vector θn can be recast

equivalently into the stochastic approximation framework upon writing

θn+1 = θn + γn+1H(Xn+1, θn) , (3.16)

where H : X×Θ→ [−1, 1]d is defined componentwise by

Hi(x, θ) = θ(i) (1Xi(x)− θ(O(x))) . (3.17)

The updating strategy (3.15) (or equivalently (3.16)) is a modification of the original Wang-Landau

algorithm obtained by (i) using a deterministic schedule for the evolution of the step-sizes used to modify

the values of the weights (instead of reducing the value of these step-sizes at random times when the

empirical frequencies of the strata are sufficiently uniform: this is the flat histogram version of the Wang-

Landau algorithm) and (ii) linearizing at first order in γn the update of the weight θn.

Concerning this second point, the standard Wang-Landau update is

θn+1(i) = θn(i)
1 + γn+11Xi(Xn+1)

1 + γn+1θn(O(Xn+1))
. (3.18)

The update (3.15) is obtained from (3.18) in the limit of small γn.

3.3.3. Convergence of the Wang-Landau algorithm

Despite the Wang-Landau algorithm has been successfully applied for many problems of practical in-

terest, there are many open questions about its longtime behavior and its efficiency. Such a longtime

behavior study relies on the convergence of stochastic approximation algorithms with Markovian inputs

(see Andrieu et al. [2005], Benveniste et al. [1990]) combined with the convergence of adaptive Markov

chain Monte Carlo samplers Fort et al. [2012]; for both parts, the stability of the sequence {θn, n ≥ 0} is

a fundamental property. Stability here means that the sequence {θn, n ≥ 0} remains in a compact subset

of the probability measures on {1, . . . , d} with support equal to the support of O ∗ π.

We consider here the Wang-Landau algorithm with a deterministic adaption sequence {γn, n ≥ 1}
for a precise definition of the algorithm) and address both the convergence of {θn, n ≥ 0} to O ∗ π and

the convergence of {Xn, n ≥ 0} to π?. More precisely, we prove first that the sequence {θn, n ≥ 0} is

stable, which is a crucial point for applications: no ad hoc stabilization techniques (such as truncation at

randomly varying bounds Chen et al. [1988]) is required. We also prove the almost-sure convergence of

{θn, n ≥ 0} as well as a Central Limit Theorem. We then prove the ergodicity and a strong law of large

numbers for the draws {Xn, n ≥ 0}.
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We adopt this linear update (3.15) for the stability and the convergence analysis. The main advantage

is that it makes the proof of convergence simpler; nevertheless, since γn converges to zero, these stability

and convergence results are unchanged and could be proved along the same lines for the standard Wang-

Landau update (3.18).

The proof of the convergence of the Wang-Landau algorithm relies on its reformulation (3.16) as a

stochastic approximation procedure. Since the draws {Xn, n ≥ 1} satisfy for any measurable non-negative

function f :

E [f(Xn+1)|Fn] = Pθnf(Xn) , (3.19)

where Fn denotes the σ-field σ(θ0, X0, X1, . . . , Xn).

The main difficulty, when proving the almost-sure convergence of such algorithms, is the stability,

namely how to ensure that the sequence {θn, n ≥ 0} remains in a compact subset of Θ. We use a

traditional approach to answer this question: we first prove that our algorithm satisfies a recurrence

property i.e. the sequence {θn, n ≥ 0} visits infinitely often a compact subset of Θ; we then show that

there exists a Lyapunov function with respect to the mean-field function h : Θ→ [−1, 1]d

h(θ) =

∫
X

H(x, θ)πθ(x)λ(dx) =

 d∑
j=1

θ?(j)

θ(j)

−1

(θ? − θ) , (3.20)

with strong enough properties so that the recurrence property implies stability. Different strategies based

on truncations are proposed in the literature to circumvent the stability problem (see e.g. Kushner and

Yin [1997]). The most popular technique is the truncation to a fixed compact set but this is not a

satisfactory solution since the choice of this compact is delicate: a necessary condition for convergence is

that the compact contains the unknown desired limit. An adaptive truncation has been proposed by Chen

et al. [1988] which avoids the main drawbacks of the deterministic truncation approach.

We first prove that, under conditions on the target density π and the step-size sequence {γn, n ≥ 1},
the algorithm (3.16) is recurrent, so that such truncation techniques are not required.

We detailed here the assumptions on the Metropolis dynamics and on the adaption rate. Our conditions

fall into three categories: conditions on the equilibrium measure (see A1), on the transition kernels

{Pθ, θ ∈ Θ} (see A2) and conditions on the step-size sequence {γn, n ≥ 1} (see A3). It is assumed that

A1 The probability density π with respect to the measure λ is such that 0 < infX π ≤ supX π <∞. In

addition, inf1≤i≤d θ?(i) > 0 where θ? is given by (3.10).

The minorization condition on π certainly is the most restrictive assumption: it is introduced in order

to prove the recurrence of the algorithm (3.16). This condition can be removed by adding a stabilization

step to (3.16) (such as a truncation technique at random varying bounds Chen et al. [1988], Kushner and

Yin [1997]) in order to ensure the recurrence.

A2 For any θ ∈ Θ, Pθ is a Metropolis-Hastings transition kernel with invariant distribution πθ dλ,

where πθ is given by (3.14), and with symmetric proposal kernel q(x, y)λ(dy) satisfying infX2 q > 0.
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The minorization condition on q implies that the transition kernels {Pθ, θ ∈ Θ} are uniformly (geo-

metrically) ergodic.This property allows a simple presentation of the main ingredients for the limiting

behavior analysis of the algorithm. Extensions to a more general case could be done by using the same

tools as in Fort et al. [2012] (see also [Andrieu et al., 2005, Section 3]) and controlling the dependence

upon θ of the ergodic behavior.

A3 The sequence {γn, n ≥ 1} is a [0, 1)-valued deterministic sequence such that

1. {γn, n ≥ 1} is a non-increasing sequence and limn γn = 0;

2.
∑
n γn =∞;

3.
∑
n γ

2
n <∞.

We first proved the following result.

Proposition 3.2. Under A1 and A2, there exists ρ ∈ (0, 1) such that for all θ ∈ Θ, for all x ∈ X and

for all A ∈ X , it holds:

Pθ(x,A) ≥ ρ
∫
A

πθ(x)λ(dx) , (3.21)

sup
θ∈Θ

sup
x∈X
‖Pnθ (x, ·)− πθ dλ‖TV ≤ 2(1− ρ)n, (3.22)

where for a signed measure µ, the total variation norm is defined as

‖µ‖TV = sup
{f : supX |f |≤1}

|µ(f)| .

We state that, almost surely, there exists a compact subset of Θ such that θn belongs to this compact

subset for infinitely many n. For any n ≥ 0, set

θn = min
1≤j≤d

θn(j) . (3.23)

We prove the following theorem:

Theorem 3.1. Assume A1, A2 and A31. Then,

P
(

lim sup
n→∞

θn > 0

)
= 1 . (3.24)

The proof is based on the following consideration. The value of the smallest weight increases when the

chain goes into the corresponding stratum (see the updating formula (3.15)). Under the stated assump-

tions, we prove that the chain {Xn, n ≥ 0} returns in the strata of smallest weights often enough for the

smallest weight to remain isolated from 0.

Then we addressed the almost-sure convergence of the sequence {θn, n ≥ 0} to θ?.

Theorem 3.2. Assume A1, A2 and A3. Then, P
(

lim
n→∞

θn = θ?

)
= 1.
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The proof relies on Andrieu et al. [2005] which provides sufficient conditions for convergence of stochas-

tic approximation techniques. The first step consists in rewriting the weight update (3.16) as

θn+1 = θn + γn+1h(θn) + γn+1

(
H(Xn+1, θn)− h(θn)

)
, (3.25)

where h is given by (3.20). The heuristic idea is that, if the step-size quickly is sufficiently small, and

the Metropolis dynamics converges sufficiently fast to equilibrium for θ fixed (a result given by Proposi-

tion 3.2), the update of θn is indeed close to an update with the averaged drift h(θn). However, in order

for the updates of the weights to be non-negligible, the step-sizes should not be too small. The balance

between these two opposite effects is encoded in the conditions A32-3.

From a technical viewpoint, the proof of the theorem relies on two main tools. The first one is to show

that the function V : Θ→ R+ given by

V (θ)
def
=

d∑
i=1

θ?(i) log

(
θ?(i)

θ(i)

)
(3.26)

is a Lyapunov function with respect to the mean-field h, namely 〈∇V (θ), h(θ)〉 < 0 for θ 6= θ? and

〈∇V (θ?), h(θ?)〉 = 0 (here, 〈·, ·〉 denotes the scalar product in Rd). This motivates the fact that {θn, n ≥ 0}
may converge to θ?. The second important result establishes that the remainder term γn+1 (H(Xn+1, θn)− h(θn))

in (3.25) vanishes in some sense. This step is quite technical and requires regularity-in-θ of the transition

kernels Pθ and the invariant distributions πθ. The conclusion then follows from [Andrieu et al., 2005,

Theorem 2.3] and Theorem 3.1.

Finally we studied the asymptotic behavior of the chain {Xk, k ≥ 0}. We established the following

result.

Theorem 3.3. Assume A1, A2 and A3. Then, for any bounded measurable function f ,

lim
n→∞

E [f(Xn)] =

∫
X

f(x)πθ?(x)λ(dx) , (3.27)

1

n

n∑
k=1

f(Xk)
a.s.−→

∫
X

f(x)πθ?(x)λ(dx) . (3.28)

This theorem shows that the distribution of the sample Xn converges to πθ?(x)λ(dx), where, we recall

πθ?(x) =
1

d

d∑
i=1

π(x)

θ?(i)
1Xi(x) .

Moreover, the empirical mean of the samples {f(Xk), k ≥ 0} converges to
∫
f πθ? dλ. Hence, although the

weights θn evolve in the adaptive algorithm, ergodic averages can be thought of as averages with fixed

weights θ?.

In many practical cases, averages with respect to π are of interest. In this case, the Wang-Landau

procedure is used as some adaptive importance sampling strategy. In order to obtain averages according
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to π along a trajectory of the algorithm, some reweighting has to be considered. A natural strategy is to

use some stratified-type weighted sum of the samples {Xk, k ≥ 1}:

In(f)
def
= d

d∑
i=1

θn(i)

(
1

n

n∑
k=1

f(Xk)1Xi(Xk)

)
.

We also prove the following result:

Theorem 3.4. Assume A1, A2 and A3. Then for any bounded measurable function f ,

lim
n→∞

dE

[
d∑
i=1

θn(i) f(Xn) 1Xi(Xn)

]
=

∫
X

f(x)π(x)λ(dx) , (3.29)

In(f)
a.s.−→

∫
X

f(x)π(x)λ(dx) . (3.30)

There are of course many other reweighting strategies. We have discussed only one possible choice.

May be the above estimator is not the best one.

We also state a Central Limit Theorem on the error (θn − θ?). We show that the rate of convergence

depends upon the step-size sequence {γn, n ≥ 1} and discuss an averaging strategy in order to reach the

optimal rate of convergence. An additional assumption is required on the sequence {γn, n ≥ 1}:

A4 limn γn
√
n = 0, and one of the following condition holds:

1. log(γn/γn+1) = o(γn);

2. log(γn/γn+1) ∼ γn/γ? with γ? > d/2.

Theorem 3.5. Assume that A1, A2, A3 and A4 hold. Then {γ−1/2
n (θn − θ?) , n ≥ 1} converges in

distribution to a centered Gaussian distribution with variance-covariance matrix σ2U? where σ2 = d/2 in

case A4(1) and σ2 = γ?d/(2γ? − d) in case A4(2),

U?
def
=

∫
X

{
Ĥθ?(x)ĤT

θ?(x)− Pθ?Ĥθ?(x) Pθ?Ĥ
T
θ?(x)

}
πθ?(x)λ(dx) , (3.31)

and

Ĥθ?
def
=
∑
n≥0

Pnθ? (I − πθ?)H(·, θ?) =
∑
n≥0

Pnθ? (H(·, θ?)− h(θ?)) .

Notice that Ĥθ? is the Poisson solution associated to the pair (Pθ? , H(·, θ?)), namely Ĥθ? is a solution

to: find g : X→ R such that

g − Pθ?g = H(·, θ?)−
∫
X

H(x, θ?)πθ?(x)λ(dx) .

By Proposition 3.2 and the results of [Meyn and Tweedie, 2009, Chapter 17], such a function exists and

is unique up to an additive constant.

Theorem 3.5 shows that the rate of convergence depends upon the step-size sequence {γn, n ≥ 1}:
when γn = γ?/n

α for α ∈ (1/2, 1], the maximal rate of convergence is reached with α = 1 and the rate
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is O(n−1/2). When γn = γ?/n, one could be interested in optimizing the variance-covariance matrix:

introducing a gain matrix Γ in the algorithm (3.16) yields the update

θ̌n+1 = θ̌n + γn+1Γ H(Xn+1, θ̌n) .

It is proved in [Benveniste et al., 1990, Proposition 4 p.112] that for a large family of gain matrix (so-

called ”admissible gains”) a Central Limit Theorem still holds for the sequence of random variables

{
√
n(θn − θ?), n ≥ 0}, the minimal variance-covariance is equal to d2U? and is reached with Γ = dγ−1

? Id.

Since Γ is a scalar matrix, this discussion evidences that the minimal variance-covariance matrix d2U? is

reached when choosing γn = d/n.

From a practical point of view, it is known that stochastic approximation algorithms are more effi-

cient when the step-size sequence decreases at a slow rate: in the polynomial schedule, this means that

γn = γ?/n
α with α close to 1/2. As shown by Theorem 3.5, this yields a slower rate of convergence.

Nevertheless, combining Wang-Landau update with an averaging technique allows to reach the optimal

rate of convergence and the optimal variance-covariance matrix: by applying [Fort, 2014, Theorem 1.4],

it can be proved that {
√
n
(

1
n

∑n
k=1 θk − θ?

)
, n ≥ 1} converges in distribution to a centered Gaussian

distribution with variance-covariance matrix d2U?.

3.3.4. Numerical studies

We complete our theoretical convergence results by a simulation study to discuss the efficiency of the

Wang-Landau procedure.

This algorithm is actually known to be useful in metastable situations, namely when the original

Markov chain (with transition kernel Pθ0) remains trapped for very long times in some regions (called

the metastable states). Metastability is one of the major bottleneck of standard Markov Chain Monte

Carlo techniques, since ergodic averages should be considered over very long times in order to obtain

accurate results. Our aim is to show that in such a metastable situation, the Wang-Landau algorithm

indeed is an efficient sampling procedure. We consider a toy model composed of only three strata: two

large probability strata (the metastable states) separated by a low probability stratum (the transition

state). We analyze theoretically the first exit times out of a metastable state.

We show that the Wang-Landau algorithm allows to rapidly escape from a metastable state, namely

from a large probability stratum surrounded by small probability strata. We are able to precisely quan-

tify the time the system needs to go from the first metastable state to the second one. We show in

particular that the exit time is dramatically reduced with the Wang-Landau dynamics compared to the

corresponding non-adaptive dynamics.

Finally we show that (most of) the results obtained for the very simple three-state model are still valid

for a less simple example inspired by target measures used in computational statistical physics.
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Part II

Inference in mixed effects models, in

deformable template models and in

Gaussian regressions

The second part included my contributions dealing with modeling and parametric estimation in mixed

effects models, in particular in the deformable template model in image analysis, and with the testing prob-

lematic in Gaussian regression models. Related studies include [A2,A3,A4,A5,A10,A12,A13,P3,P4,P5,T].

In collaboration with Marc Lavielle, we proposed using the SAEM-MCMC algorithm to obtain a nu-

merical value of the MLE in mixed effects models. These models are particularly used to analyze repeated

longitudinal data. When the model is linear in the random effects and the residual random error Gaussian,

the likelihood has an explicit analytical expression and the maximum likelihood estimate can be calcu-

lated through some direct optimization. On the other hand, outside this specified context, the likelihood

usually does not admit an explicit analytical form, making it difficult to evaluate the MLE. It is then nec-

essary to appeal to more complex numerical procedures, often time-consuming, and not always provided

with theoretical convergence properties. The SAEM-MCMC algorithm is an efficient solution, fast and

convergent, to evaluate the MLE in mixed effects models, in particular, in non-linear ones. We used it

for parameter estimation in growth curve models and in pharmacodynamic models [A2]. In collaboration

with Alain Trouvé and Stéphanie Allassonnière,we implemented the SAEM-MCMC algorithm with the

additional truncation step to estimate parameters in a deformable template model in a Bayesian setting

useful in medical imaging where samples are usually small [A3]. Deformable template models allow us

to represent a sample of images with a reference image called template and geometrical deformations, so

that each image of the sample is obtained as the result of the geometrical deformation of the template,

up to a small error term. The geometrical deformations are the latent variables of such a model. We

first considered the case of small linear deformations and used a hybrid Gibbs sampler as the MCMC

method. This application motivated the development on high dimensional latent variables presented in

the first part of this manuscript, since the hybrid Gibbs sampler becomes very time-consuming as the

dimension of the latent variable increases. Later, in collaboration with Stéphanie Allassonnière,we pro-

posed a specific algorithm for parameter estimation in the multicomponent model which is a mixture of

deformable template models motivated by a crucial modeling issue [A5]. In numerous applications, it is

necessary to constrain the type of geometrical deformations considered, in particular, so that the diffeo-

morphic deformations do not allow overlapping and prevent topological changes from occuring between

the template and the observation, thus creating the need of a mixture model. Since the SAEM-MCMC

algorithm is sensitive to numerical phenomena such as trapping states in such a case, we proposed a spe-

cific stochastic estimation algorithm and implemented it. We also established its convergence property

toward a local maximum of the observed likelihood. Finally, in collaboration with Stéphanie Allassonnière
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and Stanley Durrlemann, we applied the SAEM-MCMC algorithm provided with the AMALA sampler

to the very complex deformable template model using large diffeomorphic deformations [A12,A13]. The

new algorithm takes on its full meaning in this high dimensional setting. We also developed an extension

that allowed us to optimize the position of the control points of the deformation, simultaneously with

the estimation of the other model parameters. We proposed an empirical criterion to select an optimal

number of control points as well, leading to the optimization of the model dimension. All the applications

related to deformable template models and the different estimation algorithms were performed on the

US POSTAL handwritten digit database and 2D and 3D medical image databases. The corresponding

experimental results are presented in Section 5.5.

Motivated at the beginning by the model choice issue for mixed effects models, we finally proposed, in

collaboration with Sylvie Huet a goodness-of-fit test for testing a linear hypothesis on the expectation of

a Gaussian vector with block correlated errors with a known covariance structure up to some parameters

[A10]. We established that our test procedure was asymptotically of the nominal level and consistent over

a large class of alternatives. We also proposed a bootstrap version of our procedure. Using a simulation

study, we evaluated the finite sample size properties of our procedures and applied them to a forest cover

dataset of Galicia.

4. Maximum Likelihood Estimation in Mixed Effects Models

4.1. Mixed effects models

Mixed effects models were introduced mainly for modeling repeated longitudinal data (see Davidian and

Giltinan [1995]). Such models allow us to analyze responses of a population of individuals that share

a global behavior with the exception of some individual variations. Some of them are shared by all the

individuals of the population, whereas the others are random, depending on the individuals or possibly on

sub-groups of the population. Thus, the model has two types of parameters: global parameters defined as

the fixed effects, and parameters that vary among the population defined as random effects. These kinds

of observations are usually the result of repeated measurements of some individuals that are repeatedly

observed under different experimental conditions. Such settings are very common in practice, for example,

in the fields of pharmacokinetics, biological growth, epidemiology and econometry. We refer to Pinheiro

and Bates [2000] for more details on mixed effects models.

Let us consider here the following general mixed effects model defined as:

yij = g(tij , φi, β) + h(tij , φi, β)εij , 1 ≤ i ≤ n , 1 ≤ j ≤ mi (4.1)

where yij is the jth observation of the ith individual, at some known instant tij . Here, n is the number

of individuals and mi is the number of observations of individual i. The random effects (φi) are assumed

to be independent identically distributed. We denote by η the parameter of their common distribution.

The vector β also denotes unknown population parameters, that do not appear in the distribution of the

random effects φi. The within-group errors (εij) are assumed to be i.i.d. Gaussian random variables with
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a mean zero and unknown variance σ2. We assume that the (εij) and the (φi) are mutually independent.

The model is said to be nonlinear if the functions g or h are nonlinear in the random effects φi.

Note that mixed effects models are a particular type of latent variable model introduced in Section 1

since the responses (yij) are observed and the random effects (φi) are unobserved.

4.2. Maximum Likelihood Estimation

We choose a frequentist approach and consider the maximum likelihood estimator of the unknown pa-

rameter vector θ = (β, η, σ2).

The theoretical study of the MLE has been addressed by Nie and Yang [2005]. It is a difficult task. The

authors studied different asymptotics, as the number of individuals and/or the number of observations per

individual tend to infinity. Under some regularity assumptions on the model, they proved the consistency

and the asymptotic normality of the MLE.

Let us now focus on the computation of the MLE in practice. For linear mixed effects models, the

estimation of the unknown parameters can be treated with the usual EM algorithm (Dempster et al.

[1977]), or with a Newton-Raphson algorithm (Pinheiro and Bates [2000]). However, nonlinear functions

are often more suitable for modeling considerations. Estimating the parameters by maximizing the ob-

served likelihood then requires a specific approach. Different methods, based generally on linearization

of the log-likelihood, were suggested for dealing with nonlinear models. A Laplace approximation was

proposed by Vonesh [1996], and a Bayesian approach was proposed by Racine-Poon [1985], Wakefield

et al. [1994], Wakefield [1996]. Walker [1996] uses a Monte-Carlo EM algorithm, whereas a simulated

pseudo maximum likelihood estimator for these specific models was developed by Concordet and Nunez

[2002]. These methods are either not proven to be convergent or are very time-consuming. Therefore,

applying the SAEM-MCMC algorithm presented in Section 2 is a powerful tool for the estimation task

in mixed effects models.

4.3. Applications to a growth curve model and to a pharmacodynamic model

4.3.1. The orange tree dataset

We consider the example of orange trees to illustrate our algorithm. This data was studied by Pinheiro

and Bates [2000] and is available on S-plus. The data consist in seven measurements of the trunk circum-

ference of each of five orange trees. Pinheiro and Bates [2000] uses a logistic curve to model the trunk

circumference yij of tree i at age xj :

yij = g(xj , φi;β1, β2) + εij 1 ≤ i ≤ n , 1 ≤ j ≤ m, (4.2)

g(xj , φi;β1, β2) =
φi

1 + exp
(
−xj−β1

β2

) . (4.3)

We assume here that the error terms εij are independent Gaussian centered variables of variance σ2. On

the one hand, the asymptotic trunk circumference φi is treated as a random effect and is assumed to be
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Table 1
Comparison of EM and SAEM estimates after 100 and 1000 iterations.

Parameters β1 β2 µ τ2 σ2

θ0 650 250 100 50 10

θEM
100 727.89 348.06 192.05 1001.45 61.51
θEM
1000 727.91 348.07 192.05 1001.49 61.51

θSAEM
100 725.34 346.11 191.46 1020.26 60.56
θSAEM
1000 727.36 347.67 191.93 1003.76 61.52

Gaussian with mean µ and variance τ2. On the other hand, the age at which the tree attains half of its

asymptotic trunk circumference β1 and the growth scale β2 are treated as two fixed effects. Setting

g1(φi) = φi and g2(β1, β2, xj) =
1

1 + exp
(
−xj−β1

β2

) , (4.4)

the likelihood of the complete model has the form:

f(y,φ; θ) = (2πσ2)−
nm
2 (2πτ2)−

m
2 × exp

− 1

2σ2

∑
i,j

(yij − g1(φi)g2(β1, β2, xj))
2 − 1

2τ2

∑
i

(φi − µ)
2


where θ = (β1, β2, µ, τ

2, σ2).

Note that the EM algorithm can be implemented in this model. Thus, the value obtained with this

algorithm may be considered as the maximum likelihood estimate of θ. The estimation of the parameters

after 100 and 1000 iterations with EM and SAEM are displayed in Table 1.

We can observe that EM has almost converged after 100 iterations. In this example, the step size

sequence (γk) used for SAEM was: γk = 1 for 1 ≤ k ≤ 100 and γk = (k − 99)−1 for k ≥ 100. After some

iterations, the SAEM algorithm has converged to a neighborhood of the MLE of θ. Since γk = 1 during

the first iterations, no further stochastic approximation is performed. Thus, the behavior of the sequence

(θSAEMk ) remains quite perturbed until iteration 100. After that, the introduction of a decreasing step

size allows the almost sure convergence of the sequence (θSAEMk ) to θ̂MLE .

The Fisher Information of the MLE can also be estimated by using the stochastic approximation scheme

presented in Section 2.3. In Table 2, we present the estimated standard deviation of each component of

(θEM ) and (θSAEM ), obtained after 100 and 1000 iterations. We observe once again that the SAEM

algorithm provides a good estimation in just a few iterations.

Table 2
Estimation of the standard deviation of θEM and θSAEM obtained after 100 and 1 000 iterations.

Parameters β1 β2 µ τ2 σ2

σ̂(θEM
100 ) 13.51 13.04 14.15 633.39 14.70

σ̂(θEM
1000) 13.51 13.04 14.15 633.40 14.70

σ̂(θSAEM
100 ) 12.89 12.51 13.83 604.53 13.41

σ̂(θSAEM
1000 ) 13.51 13.04 14.15 633.40 14.70
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4.3.2. Extension to a heteroscedastic model

Let us now consider the following heteroscedastic model for this same example:

yij =
φi

1 + exp
(
−xj−β1

β2

) (1 + εij). (4.5)

Note that we are outside the scope of the exponential model. One solution consists in regarding the

fixed parameters (β1, β2) as the realization of a Gaussian random vector of mean (µ1, µ2) and a diagonal

covariance matrix with diagonal terms (τ2
1 , τ

2
2 ). As before, φ = (φi) is a sequence of i.i.d. Gaussian

random variables of mean µ and variance τ2.

It is important to observe that we do not change the model by doing this. The fixed effects remain

fixed effects, since we still consider only one vector (β1, β2) for the whole population.

4.3.3. Comparisons with other methods on a pharmacodynamic model

In this section, we consider the nonlinear population pharmacodynamic model used by Walker [1996]

for comparing the MLEs obtained with the EM algorithm to approximate MLEs obtained from the

NONMEM package.

Simulated data are given by:

yij = φ1i −
φ2ixj
φ3i + xj

+ εij ; 1 ≤ i ≤ n , 1 ≤ j ≤ m (4.6)

where n = 30, m = 6, x1 = 0, x2 = 5, x3 = 10, x4 = 20, x5 = 40 and x6 = 80. The random effects and

the additive noise are simulated with Gaussian distributions:

φ1i ∼iid N (105, 64) , φ2i ∼iid N (12, 36) , φ3i ∼iid N (10, 12.25) , εij ∼iid N (0, 4).

According to Sheiner et al. [1991] and Walker [1996], this model can be used for the analysis of blood

pressure y as a function of the dose d of an anti-hypertensive drug from a longitudinal study.

Walker [1996] compares different popular methods of estimation,such as FOCE (First-Order Condi-

tional Estimation) and LAPLACIAN methods of NONMEM. He computes the means and the standard

errors based on 50 simulations for these different estimators. Table 3 reproduces these values, with the

estimates and standard errors obtained with the SAEM algorithm as well. We see that the EM algorithm

of Walker and the SAEM algorithm give similar results, but it is important here to observe that only 300

iterations of the SAEM algorithm are performed for each single simulated dataset. Computing time for

the SAEM algorithm is then very much reduced, in comparison to the Monte-Carlo EM algorithm that

requires a sampling of 10,000 random variates at each iteration and converges very slowly. Table 3 also

gives the estimation of the standard deviation of the MLE, using the approach proposed in Section 2.3.

This method seems to be very accurate since these values are just below the empirical standard deviation

computed from the 50 simulations.
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Table 3
Pharmacodynamic model: comparison of parameter estimates. The means and the estimated square roots of the MSEs

between parentheses, based on 50 simulations.

Parameters Exact FOCE LAP EM SAEM σ̂(θ̂
MLE

)
µ1 105 105.5 (1.8) 105.3 (1.6) 105.4 (1.7) 104.7 (1.5) 1.4
µ2 12 12.2 (1.2) 12.4 (1.3) 12.3 (1.3) 11.8 (1.3) 1.0
µ3 10 9.0 (2.8) 9.7 (2.4) 9.7 (1.6) 10.1 (0.9) 0.6
τ21 64 59.7 (20.9) 58.4 (20.2) 60.0 (20.1) 62.1 (16.6) 14.5
τ22 36 31.5 (11.0) 30.7 (11.9) 30.9 (10.7) 34.4 (10.8) 7.6
τ23 12.25 6.6 (7.6) 13.3 (6.1) 10.1 (2.9) 11.2 (3.0) 2.8

It should also be recalled that the gap observed between the true value of the parameter and the limit

of the parameter estimate sequence generated by the algorithm results from two phenomena: first, the

convergence of the maximum likelihood estimate toward the true value of the parameter that occurs as

the number of individuals n tends to infinity; second, the convergence of the parameter estimate sequence

generated by the algorithm toward a local maximum of the observed likelihood that occurs as the number

of iterations of the algorithm tends to infinity.

5. Statistical modeling and estimation for Deformable Template Models

In this section, I present my contributions to the analysis of deformable template models, from modeling

to parameter estimation.

5.1. The Bayesian Mixed Effects Template Model

We considered the hierarchical Bayesian framework for dense deformable templates developed in Al-

lassonnière et al. [2007] . Each image of a given population is assumed to be generated as a noisy and

randomly deformed version of a common template drawn from a prior distribution on the set of templates.

Individual deformations are hidden variables of the model or equivalently random effects in the mixed

effects setting, whereas the template and the law of the deformations are parameters (or equivalently

fixed effects) of interest.

5.1.1. The observation model

We considered gray level images (yi)1≤i≤n observed on a grid of pixels {vu ∈ D ⊂ R2, u ∈ Λ} that is

embedded in a continuous domain D ⊂ R2, (typically D = [−1, 1] × [−1, 1]). Although the images are

observed only at the pixels (vu)u, we are looking for a template image I0 : R2 → R defined on the plane

(the extension to images on Rd is straightforward). Each observation y is assumed to be the discretization

on a fixed pixel grid of a deformation of the template, plus independent noise. For each observation, there

exists an unobserved deformation field z : R2 → R2 such that for u ∈ Λ:

y(u) = I0(vu − z(vu)) + ε(u) ,
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where ε denotes an independent additive noise.

Considering the template and the deformations as continuous functions would lead to a dense problem.

We use the same framework as chosen in Allassonnière et al. [2007] to describe both the templates

I0 and the deformation fields z. Our model takes two complementary aspects into account: photometric

- indexed by p- corresponding to the templates and the noise variances, and geometric -indexed by

g- corresponding to the deformations. We choose a representation of both the templates I0 and the

deformations z by finite linear combinations of the kernels centered at some fixed landmark points in the

domain D: (vp,j)1≤j≤kp (respectively, (vg,j)1≤j≤kg ). They are therefore parameterized by the coefficients

α ∈ Rkp and β ∈ (Rkg )2 that yield: ∀v ∈ D,

Iα(v) , (Kpα)(v) ,
kp∑
j=1

Kp(v, vp,j)α
j ,

zβ(v) , (Kgβ)(v) ,
kg∑
j=1

Kg(v, vg,j)β
j .

For the sake of clarity, we denote the collection of data and their corresponding deformation coefficients

by yt = (yt1, . . . , y
t
n) and βt = (βt1, . . . , β

t
n), respectively. The statistical model of the observations we

consider is a generative hierarchical one. We assume conditional normal distributions for y and β:
β ∼ ⊗ni=1N2kg (0,Γg) | Γg ,

y ∼ ⊗ni=1N|Λ|(zβiIα, σ2Id) | β, α, σ2 ,

(5.1)

where ⊗ denotes the product of distributions of independent variables and zIα(u) = Iα(vu− z(vu)), for u

in Λ denotes the action of the deformation on the template image. The parameters of interest are α which

determines the template image; σ2, the variance of the additive noise; and Γg, the covariance matrix of

the variables β. We assume that θ = (α, σ2,Γg) belongs to an open parameter space Θ:

Θ , { θ = (α, σ2,Γg) | α ∈ Rkp , ‖α‖ < R |, σ > 0, Γg ∈ Sym+
2kg
} ,

where ‖.‖ is the Euclidean norm, Sym+
2kg

is the cone of real positive 2kg×2kg definite symmetric matrices,

and R is an arbitrary positive constant.

5.1.2. The Bayesian Statistical Model

Even though the parameters are finite dimensional, the maximum likelihood estimator can yield degen-

erate estimates when the training sample is small. Introducing prior distributions on the parameters

regularized the estimation with small samples. The analytical effect of such priors can be seen in the

parameter update steps (cf. Allassonnière et al. [2007]). We use a generative model based on standard

conjugate prior distributions for parameters θ = (α, σ2,Γg) with fixed hyper-parameters. Specifically,

we assume a normal prior for α, an inverse-Wishart prior on σ2 and an inverse-Wishart prior on Γg.
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Furthermore, all priors are assumed to be independent. This yields θ = (α, σ2,Γg) ∼ qpara , νp ⊗ νg
where

νp(dα, dσ
2) ∝ exp

(
−1

2
(α− µp)t(Σp)−1(α− µp)

)(
exp

(
− σ2

0

2σ2

)
1√
σ2

)ap
dσ2dα, ap ≥ 3 ,

νg(dΓg) ∝

(
exp(−〈Γ−1

g ,Σg〉F /2)
1√
|Γg|

)ag
dΓg, ag ≥ 4kg + 1 .

(5.2)

For two matrices A and B, we define 〈A,B〉F , tr(AtB) as the Frobenius dot product on the set of

matrices where tr denotes the trace of the matrix.

5.2. Maximum A Posteriori Estimation

In this Bayesian framework, the parameter estimation will be performed by Maximum A Posteriori (MAP)

defined as:

θ̃n = argmax
θ∈Θ

p(θ|y) ,

where p denotes the posterior likelihood of the parameters given the observations. The dependence on

n refers to the sample size. The existence and consistency (as the number of observed images tends to

infinity) has been proven (see Allassonnière et al. [2007]). This contrasts with earlier studies in Glasbey

and Mardia [2001] because it uses a penalized likelihood or the more recent maximum description length

approach in Marsland et al. [2007] for which consistency cannot be proved because the deformations are

considered as nuisance parameters to be estimated.

However, the maximization problem of the posterior distribution has no closed form in our case,

which prevents a direct computation of θ̃n. The EM algorithm, although quite natural for maximizing a

likelihood under a hierarchical model with missing variables, is not adapted to the deformable template

model. In fact, direct computation is unfortunately not tractable and we have to find a solution to

overcome the problematic E step where we have to compute an expectation with respect to the conditional

distribution of β given y.

A first attempt was proposed in Allassonnière et al. [2007] where this conditional distribution is approx-

imated by a Dirac distribution at its mode. The authors called their algorithm the Fast Approximation

with Mode EM (FAM-EM). The results were very interesting, but the authors point out the lack of

convergence of the FAM-EM algorithm when the quality of the input images is not good, and, typically,

when they are noisy. Note that the FAM-EM algorithm mentioned in that paper corresponds analytically

exactly to the EM-Laplace (see Vonesh [1996]). Indeed, the algorithm achieves its limits in several cases.

Using the SAEM algorithm would make it necessary to sample the hidden variable from the conditional

distribution. This sampling is not possible in this complex model.

We therefore apply the SAEM-MCMC algorithm with truncation on random boundaries proposed in

[A3] to approximate the MAP estimator θ̃n.

But the setting of deformable template models deals with high-dimensional missing variables. This

raises several issues. If we simulate candidates for the hidden variable as a complete vector, it appears that
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most of the candidates are rejected. This is a typical high dimensional concentration phenomenon: locally,

around a current point, the proportion of the space occupied by acceptable moves becomes negligible

when the space dimension grows. From a more practical point of view, even if the proposed candidate

is drawn with respect to the current prior distribution, it creates a deformation that is very different

from the current one and too large for the corresponding deformed template to fit the observations. This

yields very few possible moves from the current missing variable value, and the algorithm is stuck in a

non-optimal location or converges very slowly. As a consequence, the infinite support of the unobserved

variables is not well covered by the simulated variables.

One solution is to update the chain one coordinate at a time, conditional on the others. This corresponds

to a Gibbs sampler and leads to more relevant candidates that have a higher chance of being accepted

(see Amit [1996]). From an image analysis point of view, this puts stronger conditions on the type of

deformations that are produced when proposing a candidate for each coordinate. Knowing the tendency

of the movement given by the other coordinates, the candidate will either confirm it or not depending

on if this is a suitable movement. It will thus be accepted with a corresponding probability. Even if some

coordinates remain unchanged, some others are updated, enabling the algorithm to visit a larger part

of the missing variable support. However, as the dimension grows, the computation time becomes very

long. We thus adopt another approach: instead of updating only one coordinate, we optimize the proposal

distribution in a high dimension. This can be efficiently done by using the AMALA sampler presented in

Sections 3.1 and 3.2.

5.3. Estimation in the Bayesian mixture model

In collaboration with Stéphanie Allassonnière, we considered the framework of the multicomponent model

introduced in Allassonnière et al. [2007] and extended the estimation method developed for the deformable

template model to this multicomponent model [A5].

Let us consider the statistical estimation of the component weights and of the image labels in a

multicomponent model given a set of images. In the existing methods, the templates of each component

and the label are estimated iteratively (for example in methods like K-means) but the geometry, and

related to this the metric used to compute the distances between elements, is still fixed. Moreover, the

label, which is not observed, is, as the deformations, considered as a parameter and not as a hidden

random variable. These methods do not lead to a statistical coherent framework for the understanding

of deformable template estimation and none of these iterative algorithms derived from those approaches

have a statistical interpretation in terms of parameter optimisation in a generative model that describes

the data.

We therefore considered the statistical framework for dense deformable templates developed in Allas-

sonnière et al. [2007] in the generalized case of a mixture model for multicomponent estimation. Each

image of a database is assumed to be generated from a noisy random deformation of a template image

picked randomly among a given set of possible templates. All the templates are assumed to be drawn from

a common prior distribution on the template image space. To propose a generative model, each deforma-

tion and each image label have to be considered as hidden variables. The templates, the parameters of
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the deformation laws and the components weights are the parameters of interest. This generative model

allows us to automatically break down the database into components and, at the same time, to estimate

the parameters corresponding to each component while increasing the likelihood of the observations.

We consider a mixture of the deformable template models, which allows a fixed number τm of com-

ponents in each training set. This means that the data will be separated into τm (at most) different

components by the algorithm. For each observation yi, we consider the pair (βi, τi) of unobserved vari-

ables that correspond to the deformation field and to the label of image i, respectively. We denote this

below by yt , (yt1, . . . , y
t
n), by βt , (βt1, . . . , β

t
n) and by τ t , (τ1, . . . , τn). The generative model is:

τ ∼ ⊗ni=1

τm∑
t=1

ρtδt | (ρt)1≤t≤τm ,

β ∼ ⊗ni=1N (0,Γg,τi) | τ , (Γg,t)1≤t≤τm ,

y ∼ ⊗ni=1N (zβiIατi , σ
2
τiId|Λ|) | β, τ , (αt, σ

2
t )1≤t≤τm ,

(5.3)

where zβIα(u) = Iα(vu − zβ(vu)) is the action of the deformation on the template Iα, for u in Λ, and δt

is the Dirac function on t. The parameters of interest are the vectors (αt)1≤t≤τm coding the templates,

the variances (σ2
t )1≤t≤τm of the additive noises, the covariance matrices (Γg,t)1≤t≤τm of the deformation

fields and the component weights (ρt)1≤t≤τm . We denote the parameters by (θt, ρt)1≤t≤τm so that θt

corresponds to the parameters composed of the photometric part (αt, σ
2
t ) and the geometric part Γg,t for

component t. We assume that for all 1 ≤ t ≤ τm, the parameter θt = (αt, σ
2
t ,Γg,t) belongs to the open

space Θ defined as Θ = { (α, σ2,Γg) | α ∈ Rkp , |α| < R, σ > 0, Γg ∈ Sym+
2kg
} , where R is an arbitrary

positive constant and Sym+
2kg

is the set of strictly positive symmetric matrices. Concerning the weights

(ρt)1≤t≤τm , we assume that they belong to the set % =

{
(ρt)1≤t≤τm ∈]0, 1[τm |

τm∑
t=1

ρt = 1

}
.

We choose a normal distribution for the unobserved deformation variable because of the background we

have in image analysis. In fact, the registration problem is an issue that has been studied in depth over the

past two decades. The goal is, given two images, to find the best deformation that will match one image

close to the other. Such methods require choosing the kind of deformations that are allowed (smooth,

diffeomorphic, etc). These conditions are equivalent, for some of these methods, to choose a covariance

matrix that enables to define an inner product between two deformations coded by a vector β (cf. Amit

et al. [1989], Miller et al. [2002]). The regularization term of the matching energy in the small deformation

framework treated in this paper can be written as: βtΓ−1
g β. This looks like the logarithm of the density

of a Gaussian distribution on β with 0 mean and a covariance matrix Γg. The link between these two

points of view has been given in Allassonnière et al. [2007]; the mode of the posterior distribution equals

the solution of a general matching problem. This is why we set such a distribution on the deformation

vector β. Moreover, many experiments have been run using a large variety of such a matrix that now

gives us a good initial guess for our parameter. This leads us to consider a Bayesian approach with a

weakly informative prior.

We use a generative model that includes natural standard conjugate prior distributions with fixed
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hyper-parameters. These distributions are an inverse-Wishart prior on each Γg,t and σ2
t and a normal

prior on each αt, for all 1 ≤ t ≤ τm. All priors are assumed to be independent.

For the prior law νρ, we choose the Dirichlet distribution, D(aρ), with density:

νρ(ρ) ∝

(
τm∏
t=1

ρt

)aρ
, with fixed parameter aρ .

For the sake of simplicity, let us denote this by N , 2nkg and by T , {1, . . . , τm}n so that the missing

deformation variables take their values in RN and the missing labels in T . We also introduce the following

notations: η = (θ, ρ) with θ = (θt)1≤t≤τm and ρ = (ρt)1≤t≤τm .

In our Bayesian framework, we choose the MAP estimator to estimate the parameters:

η̃n = argmax
η

p(η|y) , (5.4)

where p(η|y) denotes the posterior distribution of η given the observations y.

In practice, to reach this estimator, we maximize this posterior distribution using a Stochastic Approx-

imation EM (SAEM) algorithm coupled with a Monte Carlo Markov Chain (MCMC) method as used

for the one component model in [A3]. However in the multicomponent model we show that it cannot be

driven numerically. In fact, the direct generalization of the algorithm presented in [A3] turns out to be

of no use in practice because of some trapping state problems.

If we consider the full vector (β, τ ) as a single vector of missing data, we can use the hybrid Gibbs

sampler on RN × T . Even if this procedure provides an estimated parameter sequence which would

theoretically converge toward the MAP estimator, in practice, as mentioned in Robert [1996], it would

take a quite long time to reach its limit because of the trapping state problem: when a small number

of observations are assigned to a component, the estimation of the component parameters is hardly

concentrated and the probability of changing the label of an image to this component or from this

component to another is really small (most of the time under the computer precision).

We can interpret this from an image analysis viewpoint: the first iteration of the algorithm gives a

random label to the training set and computes the corresponding maximiser η = (θ, ρ). Then, for each

image, according to its current label, it simulates a deformation field which only takes into account the

parameters of this given component. Indeed, the simulation of β through the Gibbs sampler involves a

proposal whose corresponding Markov chain has q(β|τ ,y, η) as stationary distribution. Therefore, the

deformation tries to match y to the deformed template of the given component τ . The deformation field

tries to get a better connection between the component parameters and the observation, and there is only

small probability that the observation given this deformation field will be closer to another component.

The update of the label τ is therefore conditional to this deformation which would not leave much chance

to switch component.



Inference in mixed effects models 47

To overcome the trapping state problem, we will simulate the optimal label, using as many Markov

chains in β as the number of components so that each component has a corresponding deformation which

“computes” its distance to the observation. Then we can simulate the optimal deformation corresponding

to that optimal label.

Since we aim to simulate (β, τ ) through a transition kernel that has qpost(β, τ |y, η) as stationary

distribution, we simulate τ with a kernel whose stationary distribution is qpost(τ |y, η) and then β through

a transition kernel that has qpost(β|τ ,y, η) as stationary distribution.

For the first step, we need to compute the weights q(t|yi, η) ∝ q(t, yi|η) for all 1 ≤ t ≤ τm and all

1 ≤ i ≤ n which cannot be easily reached. However, for any density function f , for any image yi and for

any 1 ≤ t ≤ τm, we have

q(t, yi|η) =

(
Eqpost(β|yi,t,η)

[
f(β)

q(yi, β, t|η)

])−1

. (5.5)

Obviously the computation of this expectation w.r.t. the posterior distribution is not tractable either but

we can approximate it by a Monte Carlo sum. However, we cannot easily simulate variables through the

posterior distribution qpost(·|yi, t, η) as well, so we use some realisations of an ergodic Markov chain having

qpost(·|yi, t, η) as stationary distribution instead of some independent realisations of this distribution.

The solution we propose is the following: suppose we are at the kth iteration of the algorithm and let

η be the current parameters. Given any initial deformation field ξ0 ∈ R2kg , we run, for each component t,

the hybrid Gibbs sampler Πη,t on R2kg J times so that we get J elements ξt,i = (ξ
(l)
t,i )1≤l≤J of an ergodic

homogeneous Markov chain whose stationary distribution is q(·|yi, t, η). Let us denote by ξi = (ξt,i)1≤t≤τm
the matrix of all the auxiliary variables. We then use these elements for the computation of the weights

pJ(t|ξi, yi, η) through a Monte Carlo sum:

pJ(t|ξi, yi, η) ∝

(
1

J

J∑
l=1

[
f(ξ

(l)
t,i )

q(yi, ξ
(l)
t,i , t|η)

])−1

, (5.6)

where the normalisation is done such that their sum over t equals one, involving the dependence on all

the auxiliary variables ξi. The ergodic theorem ensures the convergence of our approximation toward the

expected value. We then simulate τ through ⊗ni=1

τm∑
t=1

pJ(t|ξi, yi, η)δt.

Concerning the second step, we update β by re-running J times the hybrid Gibbs sampler Πη,τ on

RN starting from a random initial point β0 in a compact subset of RN . The size of J will depend on the

iteration k of the SAEM algorithm in a sense that will be precised later, thus we now index it by k.

The density function f involved in the Monte Carlo sum above needs to be specified to get the

convergence result proved in the last section of this paper. We show that using the prior on the deformation

field enables to get the sufficient conditions for convergence. This density is the Gaussian density function

and depends on the component we are working with:

ft(ξ) =
1

√
2π

2kg√|Γg,t| exp

(
−1

2
ξtΓ−1

g,tξ

)
. (5.7)

Let (ηk) be the sequence generated by the algorithm 2.2 using the sampler described above. We

obtained the following convergence result:
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Theorem 5.1. Under the assumptions of Theorem 4.2 of [A5], we have for all β0 ∈ K, τ 0 ∈ T , s0 ∈ S
and η0 ∈ Θ× %,

lim
k→∞

d(ηk,L) = 0 P̄β0,τ0,s0,0-a.s ,

where P̄β0,τ0,s0,0, is the probability measure associated with the chain (Zk = (βk, τ k, sk, κk))k≥0 starting

at (β0, τ 0, s0, 0) and L , { η ∈ η̂(S), ∂l
∂η (η) = 0}.

Proof. Even if the only algorithmic difference between our algorithm and the SAEM algorithm is the

simulation of the missing data which is not done with respect to the conditional law qpost(β, τ |y, η) but

through an approximation which can be arbitrarily close, this yields a very different proof. Indeed, whereas

for the SAEM algorithm, the stochastic approximation leads to a Robbins-Monro type equation with no

residual term rk, our method induces one. The first difficulty is therefore to prove that this residual term

tends to 0 while the number of iterations k tends to infinity. Our proof is decomposed into two part, the

first one concerning the deformation variable β and the second one the label τ . The first term requires to

prove the geometric ergodicity of the Markov chain in β generated through our kernel. For this purpose,

we prove some typical sufficient conditions which include the existence of a small set for the transition

kernel and a drift condition. Then, we use for the second term some concentration inequalities for non

stationary Markov chains to prove that the kernel associated with the label distribution converges toward

the conditional distribution qpost(τ |y, η).

The second difficulty is to prove the convergence of the excitation term ek. This can be carried out as in

Delyon et al. [1999] using the properties of our Markov chain and some martingale limits properties.

5.4. Estimation in the Large Diffeomorphic Deformable Mapping Model

In collaboration with Stéphanie Allassonnière and Stanley Durrlemann, we applied the Anisotropic

Metropolis Adjusted Langevin Algorithm as a sampler into the SAEM-MCMC algorithm to estimate

the parameters in the Large Diffeomorphic Deformable Mapping Model [A13]. We also proposed an ex-

tension of the model to optimize the position of the control points as well as a criterion to select the

number of control points.

5.4.1. Introduction

Formerly we consider a simple deformation model may be the so-called “linearized deformation”. A

linearized deformation φ is defined by the displacement field v of each point in the domain D ⊂ Rd:
∀r ∈ D, φ(r) = r+ v(r). The main advantage of this class of deformations is its numerical simplicity as

it parameterizes the deformation by a single vector field v. Nevertheless, even with regularity conditions

on v, there is no guarantee that the deformation is invertible, meaning that the deformation may create

holes or overlapping regions in the domain. To avoid such unrealistic behaviors, diffeomorphic maps that

preserve the topology of the shapes in the image set should be considered. This means that we assume

that every sample has the same topology or, equivalently, that differences within sample shapes do not

rely on changes in topology.
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Diffeomorphic deformations can be built on linearized deformations within the framework of the Large

Diffeomorphic Deformation Metric Mapping (LDDMM), which was introduced by Trouvé [1998] and

Christensen et al. [1996] and further developed by Allassonnière et al. [2005], Beg et al. [2005], Glaunès

et al. [2003], Holm et al. [2004], Joshi and Miller [2000], Miller and Younes [2001]. In this framework,

the above linearized deformations are considered to be infinitesimal deformations, and the vector field

v is seen as an instantaneous velocity field. The composition of such deformations creates a flow of

diffeomorphisms, which can be written at the limit as the solution of a differential equation. The set of

such diffeomorphisms can be equipped with a group structure and a right-invariant metric, providing

regularity on the driving velocity fields. It follows that the set of images is given the structure of an

infinite-dimensional manifold, on which distances are computed as the geodesic length in the deformation

group between the identity map and the diffeomorphism that maps one image on to another.

It was shown by Durrleman [2010] that this infinite dimensional deformation set can be efficiently

approximated by a finite control point parameterization that carries momentum vectors. This finite di-

mension reduction is a key aspect for statistical analysis. Durrleman et al. [2012] have enforced the

velocity fields that are defined everywhere in the domain to be parameterized by a finite set of control

points. Positions of control points are not given as a prior but optimized as parameters of the statistical

model. As a consequence, control points tend to move to the regions that show the greatest variability

among samples while optimizing a least-square criterion. At the same time, this optimization makes it

possible to reduce the number of control points for the same matching accuracy, compared to the case

where control points are fixed as the nodes of a regular lattice.

Once the deformation model has been fixed, it is necessary to estimate the parameters of the as-

sociated statistical model including, in particular, the template image. Different algorithms have been

proposed to solve the template estimation. Most of them are based on a deterministic gradient descent.

In particular, Durrleman et al. [2012] managed simultaneously the optimization in control point posi-

tions and momentum vectors using a joint gradient descent. Although it provided visually interesting

results in several practical cases, the nature of the limit is not identified. Moreover, this type of method

fails in specific cases, in particular, when using noisy training data. Another point of view is to consider

stochastic algorithms, e.g., Zhang et al. [2013] using a Hamiltonian Monte Carlo sampler into a Monte

Carlo Expectation Maximization algorithm in the dense LDDMM setting, although there is no theoretical

convergence property proved for this algorithm.

We considered now the LDDMM setting where the deformations are parameterized by a finite number

of initial control point positions and momenta such as in Durrleman et al. [2012]. To do this, we extend

the generative statistical model of Allassonnière et al. [2007]. In that model, the deformations are assumed

to be linearized and are modeled as random variables that are not observed. This enables us to estimate

the representative parameters of their distribution that will characterize the geometric variability. On the

one hand, we extend this approach to the LDDMM framework. On the other, we introduce the control

point positions as population parameters into the model so that they can be optimized in the estimation
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process. This enables us to better fit the deformation model leading to a more accurate estimation of the

geometric parameters.

From an algorithmic point of view, we propose to use the Anisotropic Metropolis Adjusted Langevin

Algorithm (AMALA) within the SAEM algorithm introduced in [A12]. This algorithm has shown itself

to have very interesting theoretical and numerical properties. Indeed, the AMALA sampler enables us to

better explore the target distribution support in very high dimensions, compared to other samplers. It

also increases the speed of convergence of the estimation algorithm. Moreover, we take advantage in our

sampler of the efficient computation used in the joint gradient descent by Durrleman et al. [2012] so that

the optimization of control point positions is of no additional cost at each iteration.

Another interesting question is how to optimize the number of control points required to parameterize

the deformations. Indeed, the number of control points essentially depends on the variability in the data:

it should be estimated rather than fixed by the user. In the geometric approach [Durrleman et al., 2012],

control points were automatically selected using a L1 type penalty that tends to zero out momentum

vectors of small magnitude. Numerically it is solved by an adapted gradient descent known as FISTA

(see Beck and Teboulle [2009]). However, this penalty acts on each observation separately, meaning that

a control point that is needed to match only a single observation will be kept in the final set of control

points. From a statistical point of view, this control point can be thought of as an outlier that could

preferably be removed from the basis. The L1 penalty is also not suitable for statistical purposes, since

its associated distribution, namely the Laplace prior, does not generate sparse variables. In other words,

the criterion with the L1 penalty that is minimized in Durrleman et al. [2012] could not be interpreted

as the log likelihood of a statistical model that generates sparse solutions.

We propose to include a sparsity constraint in the parameter space of our statistical model through a

thresholding step, borrowing ideas from the Group LASSO literature initiated in Bach [2008]. This has

the advantage to select control points based on their importance for the description of the variability of

the whole population, and not only of one single sample. The thresholding step is then included in the

Maximization step, so that the same AMALA-SAEM algorithm can be used for the estimation process.

We also exhibit a criterion to select an optimal threshold leading to an optimal number of control points.

5.4.2. The LDDMM model

The model of diffeomorphic deformations we choose is derived from the Large Deformation Diffeomorphic

Metric Mapping (LDDMM) framework (see Dupuis et al. [1998], Miller et al. [2002], Trouvé [1998]), which

generalizes the linearized deformation setting that has been used for the statistical estimation of atlases

by Allassonnière et al. [2007]. In the linearized deformation setting, the deformation φ is given by :

φ(r) = r + v(r), ∀ r ∈ D , (5.8)

with d = 2 or 3, and v a vector field on Rd.
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To build a diffeomorphic map, we use the linearized deformations given in Equation (5.8) as infinites-

imal steps, and consider the corresponding vector field as an instantaneous velocity field. More precisely,

we consider time-dependent velocity fields (vt)t for a time-parameter t varying in [0, 1]. The motion of a

point r0 in the domain of interest D describes a curve t→ r(t) which is the integral curve of the following

Ordinary Differential Equation (ODE) called flow equation :
dr(t)

dt
= vt(r(t))

r(0) = r0 .

(5.9)

The deformation φ1 is defined as follows:

∀r0 ∈ D, φ1(r0) = r(1) .

Conditions under which this map φ1 is diffeomorphic can be found in Beg et al. [2005]. In particular, the

existence, uniqueness and diffeomorphic property of the solution are satisfied if the velocity vt belongs to

a RKHS at all time t and is square integrable in time.

Under these conditions, the model builds a flow of diffeomorphic deformations φt : r0 −→ r(t) for all

t ∈ [0, 1]. The flow describes a curve in a sub-group of diffeomorphic deformations starting at the identity

map. The RKHS V plays the role of the tangent space of such an infinite-dimensional Riemannian

manifold at the identity map Id. We can provide this group of diffeomorphisms with a right-invariant

metric, where the square distance between the identity map Id = φ0 and the final deformation φ1 is given

as the total kinetic energy used along the path: d(Id, φ1)2 =
∫ 1

0
‖vt‖2V dt, where ‖ · ‖V is the norm in the

RKHS. The existence and uniqueness of minimizing paths have been shown by Miller et al. [2002].

According to mechanical principles, one can show that the kinetic energy is preserved along the geodesic

paths, namely for all t ∈ [0, 1] ‖vt‖V = ‖v0‖V . Moreover, the velocity fields (vt) along such paths satisfy

Hamiltonian equations, meaning that the geodesic is fully parametrized by the initial velocity field v0.

This velocity field plays the role of the Riemannian logarithm of the final diffeomorphism φ1. Therefore,

it belongs to a vector space and allows the definition of tangent-space statistics in the spirit of Vaillant

et al. [2004] and Pennec [2006].

Following Durrleman et al. [2011] and Durrleman et al. [2012], we further assume that v0 is the

interpolation of momentum vectors (αk,0)k at control point positions (vg,j ,0)k :

v0(r) =

kg∑
k=1

Kg(r, vg,j ,0)αk,0 , (5.10)

where Kg is the kernel associated to the RKHS V . In this context, it has been shown in Miller et al.

[2006] that the velocity fields (vt)t along the geodesic path starting at the identity map in the direction

of v0 keep the same form:

vt(r) =

kg∑
k=1

Kg(r, vg,j(t))αk(t) , (5.11)
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where the control point positions (vg,j(t))k and the momentum vectors (αk(t))k satisfy the Hamiltonian

equations: 

dvg,j(t)

dt
=

kg∑
l=1

Kg(vg,j(t), cl(t))αl(t)

dαk(t)

dt
= −

 kg∑
l=1

dck(t)(Kg(vg,j(t), cl(t))αl(t))

t

αk(t)

(5.12)

with initial conditions vg,j(0) = c0,k and αk(0) = α0,k for all 1 ≤ k ≤ kg. This is similar to the equations

of motion of a set of kg self-interacting particles, with Kg modeling the interactions. One can easily

verify that the Hamiltonian defined as Ht = ‖vt‖2V =
∑kg
k=1

∑kg
l=1 αl(t)

tKg(cl(t), vg,j(t))αk(t) is constant

in time when control point positions and momentum vectors satisfy the system (5.12).

This model defines a finite dimensional subspace of the group of diffeomorphisms. For a given set

of initial control points, the diffeomorphisms are parametrized by the momentum vectors attached to

them. For one instance of the initial momentum vectors, one builds the motion of the control points

and of the momentum vectors by integrating the Hamiltonian system (5.12). Then, they define a dense

velocity field at each time t according to Equation (5.11). Finally, one can find the motion φt(r0) of any

point r0 in the domain D by integrating the flow equation (5.9). In this framework, the tangent-space

representation of the diffeomorphic deformation φ1 is given by the initial velocity field v0 parametrized

by z = ((c0,k, α0,k))k, called the initial state of the particle system. The position φ1(r) depends on the

parameters ((c0,k, α0,k))k via the integration of two non-linear differential equations in Equation (5.12)

and Equation (5.9).

Remark 5.1. The LDDMM framework formulation involves a coupling on the control point and the

momentum evolutions along the geodesic path which is not the case in the linearized deformation setting.

This joint equation introduces more constraints reducing the dimension of the solution space. Therefore,

the identifiability of the control point positions may be expected in our LDDMM framework. This property

would most probably fail in the linearized deformation setting where the momenta and the control points

are not coupled.

5.4.3. Statistical model

As pointed out in Allassonnière et al. [2007], the gradient descent optimization with respect to the

template together with the momenta does not necessarily converge if the training set is noisy. To solve

this problem, we introduce here a statistical model where we consider the deformations as well as the

control point positions as non-observed random variables, in the spirit of the BME template model [A3].

We choose to model our data by a generative hierarchical model. In this model, the distribution of the

deformations in the diffeomorphism group is parametrized. In a statistical approach, these parameters

are estimated from the data, thus providing a metric in the shape space which is adapted to the data and

takes into account the deformation constraints. This is in contrast to geometric approaches that estimate
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the template using a fixed metric.

More precisely, let I0 be a template image: I0 : Rd → R. We consider an observation, namely an image

y, as a noisy discretization on a regular grid Λ of a diffeomorphic deformation of the template image.

Let φz1 be the solution of both the flow equation (5.9) and the Hamiltonian system (5.12) with initial

condition z = ((c0,k, α0,k))k. Then, for all s ∈ Λ,

y(s) = I0((φz1)−1(rs)) + σε(s), (5.13)

where σε denotes an additive centered Gaussian random noise on the grid Λ with variance σ2, and rs is

the coordinate of the voxel s in the continuous domain D.

We are provided with n images y = (yi)1≤i≤n in a training set. We assume that each of them follows

the probabilistic model (5.13) and that they are independent.

We consider the initial state of particles, namely the control point positions and the momentum

vectors, as random variables and estimate their probabilistic distributions, restricting ourselves to the

case of parametric distributions. We assume that control points live in the template domain D and that

they are the same for all observations. By contrast, the momentum vectors attached to them are specific

to each observation, as they parametrize the matching of the template with each sample image.

Therefore, we propose the following probabilistic model: we assume that the initial control point po-

sitions c0 = (c0,k)1≤k≤kg are drawn through a Gaussian distribution with mean c̄0 and covariance acId

where Id is the identity matrix of dimension dkg. We define the initial momenta α0 = (αi0)1≤i≤n with

αi0 = (αi0,k)1≤k≤kg . We assume that the variables (αi0)1≤i≤n are independent identically distributed and

follow a Gaussian distribution with mean 0 and covariance matrix Γg. Note that this covariance matrix

depends on the initial control point positions as the momenta are attached to them. Moreover the mo-

menta α0 are assumed to be independent of the control point positions c0 given Γg.

Following the same lines as Allassonnière et al. [2007], we parametrize the template function I0 as a

linear combination of gray level values of fixed voxels (vp,j)1≤k≤kp equidistributed on the domain D. The

interpolation kernel is denoted by Kp and the combination weights are denoted by w: ∀r ∈ D,

I0(r) =

kp∑
k=1

Kp(r, vp,j)wk . (5.14)

The action of a diffeomorphism on this template is the linear combination of the deformed kernel with

the same weights: ∀r ∈ D,

Kz
pw(r) = I0 ◦ (φz1)

−1
(r) =

kp∑
k=1

Kp

(
(φz1)

−1
(r), vp,j

)
wk . (5.15)

The parameters of the model are θ = (w, σ2,Γg, c̄0) and the random variables (α0, c0) are considered

as hidden random variables. As we often deal with small sample size in practice, we restrict our inference

to a Bayesian setting. Some of the priors can be informative as the one of Γg. Other priors may be
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non-informative as for the expectation of the control point positions for which no additional information

is available. The complete model writes therefore:

θ = (w, σ2,Γg, c̄0) ∼ νp ⊗ νg

c0 ∼ Ndkg (c̄0, acId)| θ,

αi0 ∼ Ndkg (0,Γg)| θ, ∀1 ≤ i ≤ n ,

yi ∼ N|Λ|(K
(c0,α

i
0)

p w, σ2Id) | (c0,α
i
0), θ, ∀1 ≤ i ≤ n .

(5.16)

We define the prior distributions as follows:

 νg(dΓg, dc̄0) ∝

(
exp(−〈Γ−1

g ,Σg〉F /2) 1√
| det(Γg)|

)ag
· exp

(
− 1

2 (c̄0 − µc)tΣ−1
c (c̄0 − µc)

)
dΓgdc̄0,

νp(dw, dσ2) ∝ exp
(
− 1

2wtΣ−1
p w

)
·
(

exp
(
− σ2

0

2σ2

)
1√
σ2

)ap
dwdσ2 ,

where 〈., .〉F designs the Frobenius scalar product and the hyper-parameters satisfy ag ≥ 4kg+1, Σg = Id,

σ2
0 > 0, ap ≥ 3 and Σp is derived from the interpolation kernel Kp and the photometric grid (vp,j)1≤k≤kp

(see Allassonnière et al. [2007] for more details). Concerning the hyper-parameters of the control point

prior (µc,Σc), we choose µc to be the vector of the equidistributed grid coordinates. The covariance matrix

Σc is assumed non-informative. All priors are the natural conjugate priors and are assumed independent

to ease derivations.

Remark 5.2. From a modeling point of view, the positions of the control points could have been consider

as parameters of our model since they are fixed effects of the whole population as well as the template.

However considering control points as parameters does not lead to a model belonging to the exponential

family. Thus, we could not benefit from the convergence properties and efficient implementation of the

SAEM algorithm for this class of models. Therefore, we model the control point positions as random

variables following a Gaussian distribution.

5.4.4. Parameter estimation

Let us define y = (y1, ..., yn). We consider the Maximum A Posteriori (MAP) estimator denoted by θ̂n

obtained by maximizing the posterior density of θ conditional to y as follows :

θ̂n = argmax
θ

p(θ|y). (5.17)

We first show that for any finite sample the maximum a posteriori will lie in the parameter set Θ;

this is non-trivial due to the highly non-linear relationship between parameters and observations in the

model.
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Theorem 5.2 (Existence of the MAP estimator). For any sample y, there exists θ̂n ∈ Θ such that

q(θ̂n|y) = supθ∈Θ q(θ|y) .

We are interested in the consistency properties of the MAP estimator without making strong assump-

tions on the distribution of the observations y denoted by P . We seek to prove the convergence of the

MAP estimator to the set Θ∗ defined by :

Θ∗ = { θ∗ ∈ Θ | EP (log q(y|θ∗)) = sup
θ∈Θ

EP (log q(y|θ))}.

Theorem 5.3 (Consistency). Assume that Θ∗ is non empty. Then, for any compact set K ⊂ Θ, for all

ε > 0,

lim
n→+∞

P ( δ(θ̂n,Θ∗) ≥ ε ∧ θ̂n ∈ K ) = 0 ,

where δ is any metric compatible with the usual topology on Θ.

The proof follows the lines of Allassonnière et al. [2007]. Indeed, the observed likelihood of our dif-

feomorphic BME template model has the same regularity properties and asymptotic behaviors in the

parameters as the linearized one.

To compute the MAP, we use the AMALA-SAEM algorithm proposed in [A12]. Indeed in our applica-

tions, the missing variables composed of the initial momenta and positions of control points z = (c0,α0)

are of very high dimension.

5.4.5. Extension toward sparse representation of the geometric variability

Obviously, the number of degrees of freedom needed to describe the variability of a given shape should

be adapted to this shape. Therefore, the number of control points in our model should be estimated as a

parameter of the model and not fixed by the user. This leads to automatically optimize the dimension of

the deformation model. We propose here to simultaneously optimize the positions of the control points

and select a subset of the most relevant ones for the description of the variability.

In Durrleman et al. [2012], the control point selection is done adding an L1 penalty on the momenta

to the energy Eθ and performing an adapted gradient descent called FISTA (see Beck and Teboulle

[2009]). The effect of this penalty is to zero out momenta of small magnitude and to slightly decrease the

magnitude of the other ones. A control point which does not contribute to at least one of the template-

to-observation deformations at the convergence of the algorithm is called inactive. Note that since control

points move in the domain, inactive control points may become active during the optimization process,

and vice-versa.

This method suffers from three main limitations. First, the Laplace prior associated to the L1 penalty

does not generate sparse observations. Second, the method keeps active control points that may contribute

to only few template-to-observation deformations. Lastly, L1 penalty implies a soft thresholding step on

the momentum vectors, thus reducing the norm of these vectors keeping the direction and therefore the

local curvature. As a consequence, important momenta for the description of the variability will also be

penalized. In the following, we propose to select control points given their importance to describe the
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variability of the whole population, and not of outliers. The idea is to inactivate a control point if the

distribution of the momenta attached to it is not strongly correlated with the momentum distribution of

other control points. Therefore our procedure selects control point positions and their number, relevant

with regards to the whole population.

This constraint on the momenta is taken into account in the model by assuming that the geometric

covariance matrix Γg is of the form Γg = Ag + εgId, where εg is a small positive real number and Ag is a

sparse symmetric positive matrix. We introduced a positive threshold λ which plays an equivalent role as

the weight of the L1 penalty in the criterion optimized in Durrleman et al. [2012]. The larger, the sparser

the solution. We do not consider a control point whose contribution to Ag is lower than the threshold in

a given sense defined through the parameter update equation [A13]

This modified update is performed at each iteration of the estimation algorithm in the M-step.

To go one step further, we propose to automatically select an optimal threshold λ. We consider a

criterion based on two relevant quantities namely the data attachment residual over the training images

and the number of active control points. Indeed, the larger the threshold, the larger the residual and

the lower the number of active control points. These quantities are computed for different values of the

threshold. These sequences are then normalized to 1. The optimal threshold is chosen to be the point

where the two normalized sequences intersect.

5.5. Experiments

We apply all the proposed estimation algorithms in the BME template models on different datasets. The

first one is the USPS hand-written digit base as used in Allassonnière et al. [2007]. The other two are

medical images of 2D corpus callosum [A4] and 3D murine dendrite spine excrescences [A12]. We present

in this manuscript only the results obtained for the template estimation. The corresponding results for

the geometrical parameter and the residual variance are given in the corresponding papers.

We begin with presenting the experiments on the USPS database. In order to make comparison, we

estimate the parameters in the same conditions as in the previous mentioned works that is to say using

the same 20 images per digit. Each image has grey level between 0 (background) and 2 (bright white).

These images are presented on the left panel of Figure 2. We also use a noisy training dataset generated

by adding a standardized independent Gaussian noise. These images are presented on the right panel

of Figure 2. We test five algorithms: the deterministic approximation of the EM algorithm (FAM-EM)

presented in Allassonnière et al. [2007], four SAEM-MCMC where the sampler is either the MALA, the

adaptive MALA proposed in Atchadé [2006], the hybrid Gibbs sampler presented in [A3] and our AMALA

algorithm.
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Figure 2. Left: twenty images per digit of the training set used for the estimation of the model parameters (inverse video).
Right: same images with additive noise of variance 1.

5.5.1. Computational performances

The computational time is smaller for the three MCMC-SAEM algorithms using ”MALA-like” samplers

compared to the FAM. Comparing to the hybrid Gibbs-SAEM, the computational time is 8 times lower

with the AMALA-SAEM in this particular case of application. Indeed, the hybrid Gibbs sampler requires

no computation of the gradient. However, it includes a loop over the coordinates of the hidden variable,

here the deformation vector of size 2kg = 72. At each of these iterations, the candidate is straightforward

to sample whereas the computational cost lies into the acceptance rate. When this becomes heavy, the less

times you calculate it, the better. In the AMALA-SAEM, this acceptance rate only has to be calculated

once for each image. Therefore, even when the dimension of the hidden variable increases, this is of

constant cost. The main price to pay is the computation of the gradient. Therefore, a tradeoff has to

be found between the computation of either one gradient or dkg acceptance rates in order to select the

algorithm to use.

5.5.2. Results on the template estimation

All the estimated templates obtained with the five algorithms and noise-free and noisy training data

are presented in Figure 3. As noticed in [A3], the FAM-EM estimation is sharp when the training set

is noise-free and is deteriorated while adding noise. This behavior is not surprising with regard to the

theoretical bound established in Bigot and Charlier [2011] in the particular case of compact deformation

group. Considering the adaptive sampler, it does not reach a good estimation of the templates which are

still very blurry and noisy in both cases. The problem seems to come from the very low acceptation rate

already at the beginning of the estimation. The bad initial guess we have about the covariance matrix of

the proposal seems to block the chain. Moreover, the tuning parameters are difficult to calibrate along

the iterations of the estimation algorithm. Concerning the estimated templates using the Gibbs, MALA



58 Estelle Kuhn

and AMALA samplers, they look very similar to each other using the noise-free data as well as the noisy

ones. This similarity confirms the convergence of all these algorithms toward the MAP estimator. In this

case, the templates are as expected: noise free and sharp.

Nevertheless, when the dimension of the hidden variable increases, both the Gibbs and the MALA

samplers show limitations. We run the estimation on the same noisy USPS database, increasing the

number kg of geometrical control points. We choose the dimension of the deformation vector equal to

72, 128 and 200. The Gibbs-SAEM would produce sharp estimations but explodes the computational

time. For this reason, we did not run this algorithm on higher dimension experiments. The results are

presented in Figure 4. Concerning the MALA sampler, it does not seem to capture the whole variability of

the population in such high dimension. This yields a poorly estimation of the templates. This phenomenon

does not appear using our AMALA-SAEM algorithm. The templates still look sharp and the acceptation

rates remain reasonable.

Algo./
Noise

FAM Hybrid Gibbs MALA Adaptive MALA AMALA

No
Noise

Noise

Figure 3. Estimated templates using the five algorithms on noise free and noisy data. The training set includes 20 images
per digit. The dimension of the hidden variable is 72.

5.5.3. 2D medical image template estimation

A second database is used to illustrate our algorithm. As before, in order to make comparisons with

existing algorithms, we use the same database presented in [A4]. It consists of 47 medical images, each

of them is a 2D square zone around the end point of the corpus callosum. This box contains a part of

this corpus callosum as well as a part of the cerebellum. Ten exemplars are presented in the top rows of

Figure 5.

The estimations are compared with these obtained with the FAM-EM and the hybrid Gibbs-SAEM

algorithms and with the grey level mean image (bottom row of Figure 5). In this real situation, the

Euclidean grey level mean image (a) is very blurry. The estimated template using the FAM-EM (b)

provides a first amelioration in particular leading to a sharper corpus callosum. However, the cerebellum

still looks blurry in particular when comparing it to the shape which appears in the template estimated

using the hybrid Gibbs SAEM (c). The result of our AMALA-SAEM is given in image (d). This template
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Dim. of deformation /
Sampler

2kg = 72 2kg = 128 2kg = 200

MALA

AMALA

Figure 4. Estimated templates using MALA and AMALA samplers in the stochastic EM algorithm on noisy training data.
The training set includes 20 images per digit. The dimension of the hidden variable increases from 72 to 200.

is very close to (c) as we could expect at a convergence point. Nevertheless the AMALA-SAEM has much

lower computational time than the hybrid Gibbs-SAEM. This shows the advantage of using AMALA-

SAEM in real cases of high dimension.

5.5.4. Experiments in the LDDMM model

We consider the model with random control points presented in Section 5.4.3 as well as its simplified

version where the control points are fixed. The number of control points is chosen equal to 4, 9 or

16 depending on the experiments. We infer the atlas of each digit independently using our stochastic

estimation algorithm for the two models.

We present the estimated templates obtained with both models and varying number of control points

in Figure 6. The first row shows the template images estimated with control points fixed. The second one

provides the estimated templates together with the estimated control point positions.

As expected, the contours in the template image become sharper in both cases as the number of control

points is increased. Moreover, the number of control points being fixed, the sharpness of the estimated

template is improved by allowing the control points to move toward optimized positions. We can also note

that the estimated control points are informative as they tend to move toward the contours of the digits,

and in particular toward those that correspond to the regions of highest variability among samples. It is

particularly noticeable on digits 5 and 6 for example.

Mouse mandible experiment in LDDMM model

We consider a second training set composed of 36 X-ray scans of mouse mandibles. Five of them are

presented in Figure 7. The estimated template images resulting from three different experiments are

shown in Figure 8. The image on the left shows the template estimated using 260 fixed equidistributed

control points. The image on the middle (resp. right) shows the estimated template using 117 (resp. 70)
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(a) (b) (c) (d)

Figure 5. Medical image template estimation. Top rows : 10 Corpus callosum and cerebellum training images among
the 47 available. Bottom row : (a) mean image. (b) FAM-EM estimated template. (c) Hybrid Gibbs - SAEM estimated
template. (d) AMALA-SAEM estimated template.

estimated control points. These templates look similar, thus showing that the same photometric invariants

have been captured in each experiment. These invariants include the main bones of the mandibles (i.e. the

brightest areas in the image). The decrease in number of control points is balanced by the optimization

of their optimal positions. Control points in the right image are noticeably located on the edges of the

shape in order to drive the dilation, contraction and opening of the mandible. Depending on the desired

precision of the atlas, we can reduce even more the number of control points. This enables a faster

estimation task at the cost of providing less information about the data.

Us Postal dataset experiment in LDDMM model

We conduct different experiments with different thresholds λ between 0.3 and 0.8 in order to see the

evolution of the sparsity with respect to this parameter and also to capture the most interesting one

(depending on the training digit). The initial number of control points is set to 16. The results of these

experiments are presented in Figure 9.

As expected, increasing the threshold λ decreases the final number of selected control points, whose

effects on template sharpness and description of variability have been presented in Figure 6. Using the

modified parameter update equation to enforce sparsity allows to automatically select a subset of control

points leading to estimation results of the same accuracy (see Figure 9). Contrary to the L1 prior used by

Durrleman et al. [2012], our sparsity prior selects a small number of control points without penalizing the

magnitude of the momenta. Hence the variability of the model is not under-estimated. In this respect, our

thresholding process has an effect which is closer to the expected L0 norm than its surrogate L1 norm.
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Figure 6. Estimated templates with varying numbers of control points (Left: 4. Middle: 9. Right: 16). Top: fixed control
point model. Bottom: estimated control point model.

Figure 7. Five training images from the mouse mandibles.

Figure 8. Estimated templates of the mouse mandible images obtained with 260 fixed control points (left), with 117 (middle)
and 70 (right) estimated control points.
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Independently of the threshold λ, control points move in areas where the shape is the most variable.

This can be noticed in the loop of the digit 2 which is highly variable, especially in contrast to the loop of

the digit 6 which is much more stable in shape across observations. This can be seen by a fastest decrease

in number of control points when the threshold λ is increased for the digit 6 compared to digit 2. It is also

interesting to notice how our model deals with a mixture of 2 that could be written with or without a

loop. Such variability violates the hypothesis of our model, which assumes that observations derive from

a diffeomorphic deformations of the template image. In this situation, the model estimates a template

image that is fuzzy in the region of the loop: the non-diffeomorphic variability has been interpreted as a

photometric variation. To overcome this problem, one may investigate the use of several template images

in the atlas along the lines of [A5].

Figure 9. Evolution of the estimated templates and of their number of active control points with respect to the threshold
parameter. From left to right: λ equals to 0.3, 0.45, 0.6, 0.75 and 0.8.

The optimal threshold is chosen applying the proposed criterion. Figure 10 shows the estimated tem-

plates with their control points corresponding to the optimal threshold. The number of control points

reflects the variability of the digits. In particular, very constrained shapes (see digits 1 and 9) require

fewer control points than very complex irregular forms (see digits 3 and 8).

5.5.5. Experiments in the mixture model

We considered the multicomponent model decribed in Section 5.3. We ran the SAEM-MCMC algorithm

presented in Section 5.3 on the US Postal dataset. In Figure 11, we showed the two estimated templates

obtained in the mixture model by the algorithm with 40 training examples per class. It appeared that

the two components reached were meaningful, such as the 2 with and without loop or American and

European 7.
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Figure 10. Estimated templates with their optimal numbers and positions of control points.

Figure 11. Estimated prototypes of the two components model for each digit (40 images per class; 100 iterations; two
components per class).
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6. Goodness-of-fit test for Gaussian regression with block correlated errors

In collaboration with Sylvie Huet, we proposed a goodness-of-fit test for testing linear hypothesis on the

expectation of a Gaussian vector with block correlated errors [A10].

6.1. Introduction

We consider n independent Gaussian vectors Yi, i = 1, . . . , n with unknown expectation fi and covariance

matrix Σi known up to some unknown parameters. The covariance matrix W of the random variable

Y = (Y T1 , . . . , Y
T
n )T has a block diagonal structure composed of n squared blocks. This assumption

means that the n blocks behave independently but that a correlation exists among the observations

within the same block. Many models in various application fields may be covered by this framework, e.g.,

Gaussian multiresponse regression models with heteroscedastic errors, autocorrelated error models and

mixed-effects models.

For the sake of simplicity, we assume that all Yi have the same size J . Let us denote the expectation

of Y by f = (fT1 , . . . , f
T
n )T . Our aim is to test the null hypothesis that f belongs to a specific linear

subspace V of RnJ against the alternative that it does not, without making any other assumption about

its covariance matrix W than the block diagonal structure detailed above. For example, it would be

possible to test the linearity of the relationship between the response and one covariate, or to test that

a subset of covariates suffices to model the response.

Checking the adequacy of the model is of particular interest when analyzing data. Several graphical

tools are proposed in regression models and, in particular, in linear mixed-effects models (see Diggle et al.

[2002], for example). Our interest is in goodness-of-fit testing procedures, also referred to as lack-of-fit

or specification tests. Our objective is to propose a procedure without any a priori knowledge about f ,

which is adaptive rate-optimal and consistent against local alternatives.

A recent review on goodness-of-fit tests for regression models is provided by Gonzalez-Manteiga and

Crujeiras [2013]. Several papers have considered the case where fi takes the particular form fi =

(µ(Xi,1), . . . , µ(Xi,J))T for each i = 1, . . . , n, for some function µ and for some covariates (Xi,j , j =

1, . . . , J), taking values in Rr. Some tests are based on nonparametric function estimation methods since

it appears logical to compare a nonparametric estimation of µ to a parametric one computed under the

null hypothesis. We refer, for example, to Chen [1994], Eubank and LaRiccia [1993], Härdle and Mammen

[1993], Härdle et al. [1998], Hart [1997], Müller [1992], Staniswalis and Severini [1991]. However, these

methods present several drawbacks. Some of them require some a priori choice of the regularity of µ, and

the result of the test depends on this choice. Moreover, a data driven choice of the smoothing parameter

involved in the non-parametric estimation, like the bandwidth in a kernel estimator, for example, may

affect the level of the test. Another procedure proposed by Dette and Munk [1998] is based on the es-

timation of the empirical L2 distance between µ and the null hypothesis, and does not depend on the
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choice of such a smoothing parameter. Horowitz and Spokoiny [2001] proposed a procedure that rejects

the null hypothesis if the distance between the nonparametric kernel estimator and the kernel-smoothed

parametric estimator of µ under the null hypothesis is large for some bandwidth within a grid. This

test asymptotically achieves the desired level. It is rate-optimal among adaptive procedures over Hölder

classes of alternatives and almost achieves the parametric rate of testing for directional alternatives. A

similar approach was proposed by Guerre and Lavergne [2005].

An alternative approach is based on the cumulative sums of residuals over covariates or predicted values

of the response variable. Due to their construction, such procedures do not depend on any smoothing

parameter. They have shown themselves to be of an asymptotic level equal to the nominal level. They

are consistent and optimal for testing the null hypothesis versus directional alternatives at the rate of

n−1/2 ( see Diebolt and Zuber [2001], Stute [1997], Su and Wei [1991]).

A different approach proposed by Crainiceanu and Ruppert [2004] for testing a polynomial function

versus a parametric alternative consists in testing for the presence of a random effect, the alternative

being characterized by splines with random coefficients. This approach requires the choice of the degree

and knots of the splines. The test procedure is based on likelihood ratio test statistics and on their exact

distributions under the null hypothesis. A similar procedure based on wavelets was proposed by Claeskens

et al. [2011].

Baraud et al. [2003] proposed a multiple testing procedure for the expectation of the response variable

Y in the case of a homoscedastic one-dimensional Gaussian regression with an unknown variance param-

eter. It is based on a large collection of Fisher tests, each of them testing that f belongs to V against

a parametric alternative of possibly high dimension. The size of the test is exactly equal to the nominal

level. The authors showed that the procedure is simultaneously consistent and rate-optimal over various

classes of alternatives.

In the case of mixed-effects models, many papers have dealt with the problem of testing the random

effects, but only a few papers have focused on the problem of testing the fixed effects. A review of methods

for testing polynomial covariate effects in linear and generalized linear mixed models is given by Huang

and Zhang [2008].

In the case of generalized linear mixed-effects models, following the approach of Härdle et al. [1998],

Lombard́ıa and Sperlich [2008] proposed a procedure that combines the fully parametric likelihood ap-

proach for random effects models with a semiparametric regression profiled likelihood. The test statistic

is based on the distance between estimates of the function µ under the null hypothesis and under the

alternative. The asymptotic properties under the null hypothesis are established. A parametric bootstrap

procedure is proposed for estimating the quantiles of the statistics distribution.

Pan and Lin [2005] generalized the work of Su and Wei [1991] and Stute [1997], and proposed several

procedures based on the cumulative sums of residuals. As in the case of homoscedastic regression, their

procedures do not depend on the choice of a smoothing parameter. They show that their tests are

asymptotically of the nominal level. In the particular case of linear mixed-effects models, they show the

consistency of their procedure when the marginal mean is misspecified.
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Scheipl et al. [2008] generalized the procedure proposed by Crainiceanu and Ruppert [2004] for linear

mixed-effects models. Following the work of Greven et al. [2008], they proposed to compute a pseudo-

likelihood by plugging an estimator of the random part of the mixed-effects model into the complete

likelihood. To our knowledge, no theoretical property has been established in that context. Recently,

Greven and Crainiceanu [2013] established theoretical results for the score test statistic under the null

hypothesis, the dimension of the spline basis being allowed to increase with the sample size. Nevertheless,

the asymptotic distribution under the null hypothesis is not available in the case of mixed models.

6.2. Model and testing procedure

We consider the Gaussian regression model with block correlated errors. Let Y1, . . . , Yn be n Gaussian

independent random vectors so that for each i = 1, . . . , n, E(Yi) = fi and Var(Yi) = Σi(γ̄). The vectors

(fi)1≤i≤n are unknown vectors of RJ , and the matrices (Σi)1≤i≤n are symmetric positive matrices that

depend on q unknown parameters designated as γ̄. All the results presented in this paper remain true in

the general case where the dimensions Ji are not all equal to J as soon as maxi Ji is smaller than some

constant.

The random vector Y satisfies:

Y = f +W 1/2(γ̄)ε, (6.1)

where ε is a centered, standardized Gaussian vector of RnJ , and W = W (γ̄) is the block diagonal matrix

with Σi(γ̄) in block i. Our aim is to test the null hypothesis that f belongs to V , where V is a linear

subspace of RnJ of dimension p. Many regression models in which it is of interest to test goodness-of-

fit may satisfy Equation (6.1). Such models have been widely studied in the literature (e.g., Davidian

and Giltinan [1995], Demidenko [2004], Diggle et al. [2002], Jones [1993], Pinheiro and Bates [2000],

Seber and Wild [1989], Vonesh and Chinchilli [1997]). Let us quote for example linear mixed effects

models, hierarchical models, heteroscedastic regression models, regression models with autocorrelated

errors, growth curves models.

We propose a goodness-of-fit test to test that the expectation of Y belongs to a specific linear subspace.

We generalize the procedure developed by Baraud et al. [2003] to our framework as follows: we define a

collection of alternative hypotheses whose cardinality may depend on n, and build on parametric models

with low and high dimensions, diversified enough to cover a wide variety of possible alternatives. For each

of these alternatives, we consider the likelihood ratio test statistic that would be obtained if the covariance

matrix W were known. We then replace the unknown covariance matrix in this statistic by its maximum

likelihood estimate. The distribution of each statistic under the null hypothesis is approximated by a χ2

distribution. Using the Bonferroni adjustment, the null hypothesis is rejected as soon as it is rejected by

one of the parametric tests.

The heuristic of our testing procedure can be described in the following way. Let us first assume that

the matrix W is known, and consider the test of level α ∈]0, 1[ of the hypothesis H0 : f ∈ V against the

alternative H : f ∈ V + S where S is a linear subspace of RnJ such that the projection of S onto the
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space orthogonal to W−1/2V in RnJ is non zero. The likelihood ratio test statistic (see Cox and Hinkley

[1974]) denoted by TS(W,Y ) is defined as:

TS(W,Y ) =
∥∥∥ΠSΠ(W−1/2V )⊥W

−1/2Y
∥∥∥2

.

The hypothesis H0 is rejected if TS(W,Y ) > χ̄−1
D (α), where D is the dimension of Π(W−1/2V )⊥S and

where χ̄−1
D (α) designates the (1− α)-quantile of a χ2 distribution with D degrees of freedom.

Since the matrix W is unknown, we propose to plug the test statistic into the maximum likelihood

estimator Ŵ of W under the alternative hypothesis H.

Following the idea proposed by Baraud et al. [2003] in the linear Gaussian regression model, the

multiple testing procedure is constructed as follows. Let us consider a collection of linear subspaces of

RnJ denoted as {Sm,m ∈M} where M is a set of indices that depends on n. We denote the hypothesis

f ∈ V + Sm by Hm and the maximum likelihood estimator of W under Hm by Ŵm. We assume that for

each m ∈M, the dimension Dm of Π
(Ŵ
−1/2
m V )⊥

Sm is greater than 1. Following the Bonferroni procedure,

we choose some sequence {αm,m ∈M} of positive numbers satisfying
∑
m∈M αm = α. The statistic for

testing that f belongs to V against that it does not is then defined as:

T (α) = sup
m∈M

{
Tm(Ŵm,Y )− χ̄−1

Dm
(αm)

}
, (6.2)

where Tm stands for TSm . The hypothesis H0 is rejected when T (α) is positive.

6.3. Theoretical results

We evaluate the properties of the procedure when the sample size n tends to infinity, taking the fact

that the cardinality of the collection as well as the dimensions of the alternatives are allowed to grow

with the sample size into account. We show that the test is asymptotically of the desired level and that

it is consistent over a large class of alternatives. In particular, the rates of testing are the same as those

obtained in the homoscedastic case.

6.3.1. Asymptotic level and power

Consider the regression model as defined in Equation (6.1). Let V be a linear subspace of RnJ , and

let {Sm,m ∈M} be a collection of linear subspaces as defined in Section 6.2. Let {αm,m ∈M} be a

sequence of positive numbers such that
∑
m∈M αm = α.

Assuming some regularity assumptions on the model and on the collection of linear subspaces, we have

the following theorem:

Theorem 6.1. Suppose that D4
m/n tends to 0 and

∑
m(Dm/n)1/3 tends to 0. Consider the statistic T (α)

as defined in Equation (6.2), then:

lim
n→+∞

PH0
(T (α) > 0) ≤ α,

where PH0
denotes the probability when f ∈ V .
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Following are some comments about the assumptions that make it possible to prove this theorem.

Assuming that D4
m/n tends to 0, it is possible to show the existence of the parameter estimators defined

under Hm. Moreover, if θV denotes the p coefficients of ΠV f in V , it can be shown that the estimator

of the parameters θV is
√
n/Dm-consistent. Because the modeling of the covariance matrix W does not

depend on Sm, and as a result of the block diagonal structure of W , the estimator of γ̄ is
√
n-consistent.

Finally the statistic Tm(Ŵm,Y) is asymptotically equal to a χ2 variable with Dm degrees of freedom up

to a remainder term that is of order Dm/
√
n. This result follows from the consistency of the parameter

estimators and from the regularity of the density of a χ2 variable. Assuming that
∑
m(Dm/n)1/3 tends

to 0, it is possible to control the discrepancies between Tm(Ŵm,Y) and the χ2 over all alternatives Hm.

Let us now consider the power of the test. Assuming some regularity assumptions on the model and

on the collection of linear subspaces , we have the following result:

Theorem 6.2. Suppose that for all m ∈ M, D4
m/n tends to 0. Let En be the set of f ∈ RnJ for which

there exists m ∈M such that:

1

n
‖f −ΠV+Smf‖

2
= O

(
1√
n

)
, (6.3)

1

n
‖Π(W−1/2V )⊥W

−1/2f‖2 ≥ 1

n
‖ΠS⊥m

Π(W−1/2V )⊥W
−1/2f‖2 + v2

n,m ,

with v2
n,m =

κ

n

[√
Dm log

(
log(n)

αm

)
+ log

(
log(n)

αm

)]
(1 + o(1)) ,

for some positive constant κ. Then:

lim
n→+∞

sup
f∈En

Pf (T (α) ≤ 0) = 0,

where Pf denotes the probability under Model (6.1).

Following are some comments about the theorem. For each m ∈M, under the assumption that D4
m/n

tends to 0, the estimators of the parameters under Hm converge in probability under Pf . Their rates of

convergence are the same under Pf as under PH0
.

The condition ‖f −ΠV+Smf‖
2

= O (
√
n) results from remainder terms in the asymptotic expansion

of Tm(Ŵm,Y) of the following form: ‖ΠSmΠ(W−1/2V )⊥(Ŵ
−1/2
m −W−1/2)f‖2. It can be shown that these

terms are of the order ‖f −ΠV+Smf‖/
√
n. If this quantity does not vanish, then we are not able to give

an expansion for Tm(Ŵm,Y) under Pf .

Finally, it should be emphasized that the power of our procedure is comparable to the power of the

exact procedure proposed by Baraud et al. [2003] in the case of Gaussian linear regression variance with

independent and homoscedastic errors.

6.3.2. Detection of local alternatives

The aim of this section is to establish the power of the test for vectors f such that ‖f −ΠV f‖ is of order
√

log log n.
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We consider a linear space S such that the dimension D of Π(W−1/2V )⊥S is greater than 1, and we

denote the maximum likelihood estimator of W under the assumption ′′f ∈ V + S′′ by Ŵ .

Let us denote the canonical basis of RnJ by {ei,a, a = 1, . . . , J, i = 1, . . . , n}. The collection {Sm,m ∈M}
is composed here of all vectors of the canonical basis such that the dimension Dm of Π

(Ŵ−1/2V )⊥
Sm is

equal to 1. The collection {αm,m ∈M} is defined as before.

Finally, we consider the test statistic:

U(α) = sup
m∈M

{
Tm(Ŵ ,Y )− χ̄−1

1 (αm)
}
. (6.4)

Assuming some regularity assumptions on the model and on the collection of linear subspaces, we have

the following result.

Theorem 6.3. Suppose that D4/n tends to 0 and that for all m ∈ M, αm ≥ exp(−n/(log n)3). If we

consider the statistic U(α) as defined in Equation (6.4), then:

lim
n→+∞

PH0
(U(α) > 0) ≤ α,

where PH0 denotes the probability when f ∈ V .

For g ∈ RnJ such that ‖g‖2/n is bounded, let:

An(g) =

{
f ∈ RnJ such that f = ΠV f +

√
log log n

n
g

}
.

If f ∈ An(g), and if there exists m0 such that:

‖ΠSm0
Π(W−1/2V )⊥W

−1/2g‖2 ≥ Cn log

(
1

αm0

)
, (6.5)

then:

lim
n→+∞

Pf (U(α) ≤ 0) = 0 ,

where Pf denotes the probability under Model (6.1).

6.3.3. The Bootstrap procedure

We also propose a bootstrap procedure for estimating the quantiles of the distribution of each test statistic

and prove that this bootstrap procedure is asymptotically of the desired level.

In the preceding sections, we proposed a test procedure based on the approximation of the quantiles

of Tm(Ŵm,Y) by those of a χ2 variable with Dm degrees of freedom. An alternative to this procedure is

the bootstrap, where the quantiles of Tm(Ŵm,Y) are approximated by the quantiles of their bootstrap

distribution under H0.

Let ε? be a centered, standardized Gaussian vector of RnJ independent of ε, and let:

Y ? = ΠV Y + Ŵ
1/2
0 ε?, (6.6)



70 Estelle Kuhn

where Ŵ0 is the maximum likelihood estimator of W under H0.

Let T ?m = Tm(Ŵ ?
m,Y

?), where Ŵ ?
m is the bootstrap version of Ŵm, and let q?m(α) be the (1−α)-quantile

of the distribution of T ?m conditional on Y . We then consider the test statistic defined as:

T ?(α) = sup
m∈M

{
Tm(Ŵm,Y )− q?m(αm)

}
. (6.7)

The hypothesis H0 is rejected when T ?(α) is positive.

The proof that the asymptotic level of the bootstrap procedure is α is similar to the proof of Theo-

rem 6.1. However, it needs to uniformly control the difference between the distribution function of Tm and

its bootstrap version. This leads to an additional assumption about the collection M, precisely, about

the cardinality of the subset M1 defined as the set of m ∈M such that Dm = 1.

Theorem 6.4. Assume that the assumptions of Theorem 6.1 are fulfilled and that |M1|/n1/5 tends to

0. Let the statistic T ?(α) be defined as in Equation (6.7), then:

lim
n→+∞

PH0
(T ?(α) > 0) ≤ α.

6.3.4. Numerical studies

We conducted a simulation study to to assess the performances of our procedure when n is fixed, and

to compare it with the omnibus test proposed by Pan and Lin [2005] based on cumulative residuals. We

consider the case of a functional regression model with random effects where we observe (Yij , Xij) for

i = 1, . . . n and j = 1, . . . J under the following model:

Yij = µ(Xij) + bi + εij ,

where the variables bi and εij are independent centered Gaussian variables with the variance denoted as

σ2
b and σ2, respectively. Our aim is to test that µ is constant. In that case, V is the linear space spanned

by the column vector with all components equal to 1.

We consider three types of alternatives, the first with smooth variations, the second with heavy vari-

ations and the third with oscillations. We study the level and the power of the test, as well as the effect

of the choice of the collection of linear subspaces.

The simulation study shows that the bootstrap procedure is particularly efficient in the case of a small

sample size. Our tests give results on the same order as those of Pan and Lin in the case of regular

deviations from the null hypothesis and outperform their method in the context of oscillating deviations

from the null hypothesis.

We complete our experiments by considering a real dataset of forest coverage in Galicia already treated

in Lombard́ıa and Sperlich [2008]. This application highlights, in particular, the advantage of our proce-

dure of being independent of the choice of the smoothing parameter.
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6.3.5. Perspectives

It would be interesting to investigate further works in this area. First, one could consider a non linear

hypothesis instead of a linear one. The test procedure could be extended possibly using an approximation

function basis. Second, one could investigate the case where the size J of each Gaussian vector goes to

infinity. This would lead to test functional hypothesis.
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Part III

Modeling and Inference in Survival Analysis

In the third part, I included my contributions dealing with modeling and estimation in survival analysis.

Related studies include [A6,A7,P6,R1].

In collaboration with Charles El-Nouty, we considered the frailty models introduced by Vaupel et al.

[1979] which are an extension of the Cox model that takes the heterogeneity that exists in survival data

into account by introducing latent variables. We were interested in these models since we have been

in contact with researchers at the Unité de Recherche en Epidémiologie Nutritionnelle (UREN) at the

University of Paris 13, who often need to analyze this type of dataset. Very rich from a modeling point

of view, these models are very complex from a mathematical point of view, and the estimation task is

often very difficult. In numerous cases, the existing algorithms do not provide satisfactory solutions. We

proposed the application of the SAEM-MCMC algorithm to frailty models to evaluate the MLE [A6]. We

proved that under general regularity assumptions fulfilled by classical frailty models, the SAEM-MCMC

algorithm is almost surely convergent toward a local maximum of the observed likelihood. We compared

the performances of this algorithm with others that exist in the literature on simulated data and on a real

set of bladder cancer data. The numerical results showed a net advantage when using the SAEM-MCMC

algorithm, both in terms of the accuracy of the limit as well as the computation time.

In collaboration with Luc Duchateau and Klaartje Goethals (Faculty of Veterinary Medicine, Ghent

University), we have analyzed a mastitis epidemic dataset using frailty models with a frailty vector of size

four with different covariance structures [R1]. Assessing the correlation structure in cow udder quarter

infection times allows us to analyze the propagation risk of the disease as a function of the position of

the infection. The parameter estimation that could not be performed in a reasonable time in such models

until now, is done using the SAEM-MCMC algorithm. We compared four nested models using likelihood

ratio tests. Using simulation studies, we justified a posteriori the use of likelihood ratio tests for finite

sample size.

7. Some survival models

7.1. Context and notation

Survival analysis consists mainly in the study of event times of interest for different individuals of a

given population. For example, this could be failure times such as the death of some patients from a

given disease in epidemiology, the breakdown of some systems in reliability, or the appearance of some

particular leaves of interest for a plant in agronomy. The analysis of event times attempts to answer

many questions such as: which proportion of a population will survive past a certain time? How will the

surviving individuals die or fail? Are there particular characteristics that increase or decrease the chance

of survival? Are there multiple causes of death or failure?
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Let us introduce some general notations useful in the context of survival analysis. We consider a

population of N individuals. We denote by Ti the random variable corresponding to the event time of

interest, also referred to as lifetime, of the i-th individual of the population for 1 ≤ i ≤ N .

A crucial quantity of interest is the survival function of the i-th individual defined for t > 0 by

Si(t) = P (Ti ≥ t). The most popular estimator of the survival function based on the lifetime data is the

Kaplan-Meier estimator (see Kaplan and Meier [1958]) that has been studied by many authors.

A second quantity of interest is the hazard rate λi of the i-th individual defined for t > 0 by:

λi(t) = lim
dt→0+

P (t ≤ Ti < t+ dt|Ti ≥ t)
dt

,

which is the probability for the i-th individual that the event of interest arises at time t given that it has

not arisen before t. This quantity can be interpreted in epidemiology, for example, as the risk of dying

from a given disease, a constant hazard rate corresponding to a chronic disease.

The survival function can be related to the hazard rate as follows. Let us assume that the random

variable Ti has a probability density function denoted by fi. Then, for t > 0, we have:

λi(t) = lim
dt→0+

P (t ≤ Ti < t+ dt|Ti ≥ t)
dt

=
1

Si(t)
lim

dt→0+

Si(t)− Si(t+ dt)

dt
=
fi(t)

Si(t)
= −[logSi(t)]

′ ,

thus

Si(t) = exp

(
−
∫ t

0

λi(s)ds

)
.

Note that a constant hazard rate equal to λ will correspond to an exponential distribution of parameter

λ for the survival time Ti.

As mentioned before, it could be interesting to link some particular characteristics of the individuals

of the population to their behavior when faced with the event of interest. For example if we consider

several treatments for a population of patients, then covariates such as the type of treatment, age and

gender of the patient can be taken into account in the model. Some survival models make it possible to

include covariates in the analysis of lifetimes. The most popular one is the Cox model (see Cox (1972)).

7.2. The Cox Proportional Hazards Model

The Cox Model, also known as the Proportional Hazards Model, states that covariates act multiplicatively

on the hazard rate. Thus, the hazard rate is explained as follows:

λi(t) = λ0(t) exp(x′iβ), (7.1)

where Xi are the covariates of individual i, λ0 is an unknown baseline function, and β is a parameter effect

vector. Note that two individuals sharing the same covariates have the same hazard rate. However, the

lifetimes of two individuals sharing the same covariates differ due to the hazard of the lifetime distribution.

The main assumption of the Cox model is the so-called risk proportional assumption.
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Indeed, as a consequence of Equation (7.1), we have:

logSi(t) = −
∫ t

0

λ0(s) exp(x′iβ)ds,

leading to:

log(− logSi(t)) = x′iβ + log

(∫ t

0

λ0(s)ds

)
.

Thus, if we consider two groups A and B of individuals with the same covariates within each group,

the plot of the function t→ log(− log(SA(t)) should be obtained as the vertical translation of the one of

t → log(− log(SB(t)). This is illustrated on simulated data in Figure 12. However, the datasets do not

often satisfy this assumption. For example, Figure 13 presents the plot of the survival function of real

data that do not satisfy this assumption.

Figure 12. Plots of t→ log(− log(S(t)) in red for group A and in blue for group B.

Figure 13. Plots of t → log(− log(S(t)) in red for the group without treatment and in blue for the group with treatment
for a real dataset.
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A classical underlying assumption of the Cox model is that the observations are independent, at least

conditionally on covariates. However, this assumption is often not fulfilled by the data because of the lack

of homogeneity for the population of interest. For example it can happen that failure times are clustered

into groups such as families or geographical areas. Illustrations on medical datasets are given in Aalen

and Tretli [1999] where the authors studied the incidence of age on testiculars cancer, or in Gray [1994,

1995] where the author showed the effects of participating institutions in a multicenter lung cancer trial.

The same frameworks are developed in economy (see Horowitz [2009]).

To face this lack of fit of the Cox model, one solution is to take the heterogeneity present in the data

into account by introducing some random effects in the modeling of the hazard rate. This is the aim of

frailty models introduced by Vaupel et al. [1979].

7.3. The Frailty Model

Let us introduce some notations used in the context of frailty models. We consider a population of

individuals clustered into N groups. For 1 ≤ i ≤ N , we denote by ni the size of the i-th group. For

1 ≤ i ≤ N and 1 ≤ j ≤ ni, the event time for the subject j of the group i is modeled by a random

variable denoted by Tij . We also consider here the censoring time for the subject j of the group i which is

modeled by a random variable denoted by Cij . However, the event time (Ti) and the censored time (Ci) are

generally not observed. Let us also define the random variables Yij = min(Tij , Cij) and ∆ij = 1{Tij≤Cij},

where 1A denotes the indicator function of any set A. We observe the couples (Yij ,∆ij)1≤i≤N,1≤j≤ni .

Let bi be the common frailty random vector for the i-th group for 1 ≤ i ≤ N . The initial choice

of Vaupel et al. [1979] of the Gamma distribution for the frailty was motivated by its mathematical

convenience. It was extended by Clayton and Cuzick [1985] to other frailty distributions. We refer to

Hougaard [2000] and to Duchateau and Janssen [2008] for further information on the choice of the frailty

law.

Denote by β an unknown parameter effects vector and by λ0 the unspecified baseline hazard function.

Let xij and zij be design vectors of covariates associated with failure.

Consider λij(t|bi) the conditional hazard function for the j-th individual of the i-th group at time t.

The traditional frailty model is defined by:

λij(t|bi) = λ0(t) exp(xtijβ + ztijbi), (7.2)

for 1 ≤ i ≤ N, 1 ≤ j ≤ ni and t ≥ 0, where t denotes the transposition operator.

The classical assumptions on the frailty model are given below:

• F1 : The censoring times (Cij)1≤i≤N,1≤j≤ni are independent of the event times (Tij)1≤i≤N,1≤j≤ni
and of the frailties (bi)1≤i≤N .

• F2 : Conditional to the frailties (bi)1≤i≤N , the event times (Tij)1≤i≤N,1≤j≤ni are independent.

• F3 : The frailties (bi)1≤i≤N are independent and identically distributed with probability density

function fη on Rq, where η is an unknown vector.
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We denote the vector of all unknown parameters by θ = (α, β, η).

Recall that the frailties are unobserved random variables. The frailty model (7.2) can therefore be seen

as a linear mixed effects model for the logarithm of the hazard function. In the terminology of mixed

effects models, the frailties (bi)1≤i≤N correspond to random effects and the vector β to fixed effects. Thus,

the frailty model can also be viewed as a proportional hazards model with random effects, also referred

to as proportional hazards mixed model (see Vaida and Xu [2000]).

7.3.1. Estimation in Frailty Model

We choose here a frequentist approach and consider the MLE for the parameter θ, namely the value θ̂N

of θ which maximizes the marginal likelihood denoted by LobsN (see Duchateau and Janssen [2008]).

This quantity is obtained by integrating the complete likelihood LN over the unobserved frailties, given

by:

LN (y, δ,b; θ) =

N∏
i=1

fη(bi)×
N∏
i=1

ni∏
j=1

(
λij(yij |bi)δij exp

(
−
∫ yij

0

λij(u|bi)du
))

, (7.3)

where we denote the vectors corresponding to the realizations (yij), (δij) and (bi) by y, δ and b, respec-

tively.

Asymptotic theoretical properties for the Maximum Likelihood Estimator (MLE) were established by

Murphy [1994], Murphy [1995] and Parner [1998]. The authors proved under general conditions that θ̂N

exists and converges toward θ as N goes to infinity with probability one. Nevertheless it is often not

possible in many practical cases to compute the MLE directly. To overcome this crucial difficulty, two

main approaches were developed.

The first one consists in applying Cox’s idea to the frailty models in order to obtain an approximated

marginal likelihood. Examples where this approach is used can be found in McGilchrist and Aisbett [1991]

(penalized likelihood), in Nielsen et al. [1992] (partial likelihood), in Therneau and Grambsch [2000]

(penalized partial likelihood) and in Rondeau et al. [2003] (penalized full likelihood). This approach has

been extended to a Bayesian model introduced by Ducrocq and Casella [1996] and developed by Legrand

et al. [2005] and Legrand et al. [2009].

Consider now the second approach. It consists in a numerical approximation of the MLE instead of

a direct computation. Since the frailties are not observed, the underlying model belongs to the family

of models with hidden variables. Thus, a powerful tool to solve the MLE problem is the EM algorithm

proposed by Dempster et al. [1977]. However, in many frailty models, the EM algorithm cannot be directly

applied, more specifically, the expectation step (E-step). Thus, several authors suggest approximations

of this algorithm. We mention two of them here that are commonly used. Ripatti et al. [2002] applied

the Monte Carlo EM (MCEM) algorithm to frailty models. It was introduced by Wei and Tanner [1990],

whereas its convergence in a general setting was established by Fort and Moulines [2003]. However,

it requires intensive computation time. Cortiñas Abrahantes and Burzykowski [2005] then applied the

deterministic EM-Laplace to frailty models. Unfortunately this method requires that the number of
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observations sharing the same frailty tends to infinity. In practice, this assumption is often not fulfilled,

for example, in twin studies. Moreover, this method can induce some bias (see Cortiñas Abrahantes

and Burzykowski (2005, pp. 853-859)). A well-known example of the lack of convergence is given in

Allassonnière et al. [2007] (pp. 12-13). As a result, it must be used very carefully. As far as we know,

there is no theoretical proof of the convergence of the other existing approximations.

8. Estimation in Frailty Model using the SAEM-MCMC Algorithm

8.1. Algorithmic method

In collaboration with Charles El-Nouty,we proposed to use the Stochastic Approximation Expectation

Maximization with the Monte Carlo Markov Chain (SAEM-MCMC) algorithm introduced in (A1) for

maximum likelihood estimation (MLE) in frailty models (see [A6]). We briefly recall here the characteris-

tics of this method detailed in Section 2. The usual expectation step of the EM algorithm is divided into

two new steps: the first one consists in simulating one realization of the non observed frailties, whereas the

second one computes a stochastic approximation of the complete log-likelihood by using this simulated

value of the frailties. The maximization step follows the same lines as those of the EM algorithm.

Moreover, this algorithm of convenient use has theoretical properties and requires less simulations than

the MCEM algorithm. The proposed algorithm also makes it possible to deal with the multivariate frailty

models without assumption on the frailty covariance structure. Another advantage of the SAEM-MCMC

algorithm is that it generates the estimation of the observed Fisher information matrix at the same time.

8.2. Convergence property of the algorithm

I detail here the assumption required to ensure the convergence of the proposed estimation algorithm, as

well as the related convergence result.

Let us introduce two additional assumptions on the frailty model denoted (F4-F5). The first concerns

the baseline function λ0, whereas the second one deals with the frailty distribution fη.

• F4 : Regularity of the baseline function. The function λ0 belongs to the set of functions

defined on R+ at values in R+ parameterized by the vector α taking values in an open subset A of

Ra, which are twice continuously differentiable on A.

• F5 : Exponential family for the frailty distribution. The probability density function fη of

the frailties belongs to the set of exponential probability density functions where η takes values in

an open subset B of Rb, which are twice continuously differentiable on B.

Extra assumptions denoted by (H1-H2) and by (SAEM1-SAEM3) in [A6] are made on the regular-

ity of the model and on the stochastic approximation procedure, respectively (see [A6] for more details).

Our convergence result is given in the following theorem.
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Theorem 8.1. Assume that (F1-F5), (H1-H2) and (SAEM1-SAEM3) are fulfilled. Let (θk) be the

sequence generated by the SAEM-MCMC algorithm. We then have, with probability 1

lim
k→+∞

d(θk,L) = 0,

where the distance of x to the closed subset A is denoted by d(x,A) and the set of stationary points of

logLobsN by L = {θ ∈ Θ, ∂θ logLobsN (y, δ; θ) = 0}.

Note that under additional regularity assumptions, the almost sure convergence of the sequence (θk)k

toward a local maximum of logLobsN is obtained (see [A1]).

The usual choices made for the parametric baseline λ0 (respectively for the frailty distribution) satisfy

the assumption (F4) (respectively (F5)). We refer to Duchateau and Janssen [2008] for further informa-

tion about this field. For example, when the frailty follows a Gaussian, a Gamma or a Weibull distribution,

the SAEM-MCMC algorithm converges almost surely toward the MLE under weak additional regularity

conditions.

8.3. Experiments on a bladder cancer dataset and simulation studies

8.3.1. Experiments a the bladder cancer dataset

Let us briefly describe the bladder cancer dataset (EORTC trials 30781, 30782, 30791, 30831, 30832, 30845

and 30863 Genito-Urinary Tract Cancer Group) that we deal with. It is composed of 2596 eligible patients

recruited by 63 medical centers. One hundred patients having missing values and 24 centers have less than

20 patients. In our analysis, we keep 2286 patients and 39 medical centers with more than 20 patients as

in Abrahantes et al. [2007] and in Legrand et al. [2005].

The study of the dataset shows that it is a setting with approximately 51% of censuring and that

approximately 80% of the individuals follow an intravesical treatment (see Sylvester et al. [2006]).

Figure 14. Plot of t→ log(− log(S(t)) in red for the group without treatment and in blue for the group with treatment.

Figure 8.3.1 shows that the proportional hazards model assumption is not fulfilled by this dataset. We

therefore consider a Gaussian frailty model with two frailty terms, referred to as Model I and defined as
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follows:

λij(t|bi) = λ0(t) exp
(
b0i + xtij(β + b1i)

)
,

for 1 ≤ i ≤ N, 1 ≤ j ≤ ni and t ≥ 0, where bi = (b0i, b1i)
t, the random variables (b0i)1≤i≤N (respectively,

(b1i)1≤i≤N ) are independent and identically distributed Gaussian N (0, σ2
0) (respectively, N (0, σ2

1)), and

the sequences (b0i)1≤i≤N and (b1i)1≤i≤N are independent. Note that b0i and b1i do not have a symmetric

role. Model I, already considered by Abrahantes et al. (2007) and by Legrand et al. [2005], is used to

analyze the dataset of bladder cancer and also to carry out our simulation studies in the next section.

The event times Tij correspond to times from randomization to the date of the first bladder recurrence,

censoring the patients without recurrence at the date of the last available follow-up cystoscopy. The

covariate xij is equal to zero if the j-th patient of the i-th group receives no further intra-vesical treatment

and equal to one otherwise. More generally, this covariate indicates whether the patient is classified in

the good or poor prognosis group based on the particular prognostic index considered (see Legrand et al.

[2009]). The variable b0i can be understood as a random center effect, whereas the variable b1i is viewed

as a random treatment per center interaction. Finally, the parameter β is the fixed treatment effect. We

refer to Sylvester et al. [2006] for detailed and complete information on the dataset.

Before starting the numerical studies, we have to choose the parametric baseline function λ0. The

SAEM-MCMC algorithm can handle a large class of functions. For example we may choose the Gompertz

function λ0(t) = λ exp(γt), λ > 0, γ ∈ R, or the Weibull function λ0(t) = λ ρ tρ−1, λ > 0, ρ > 0 for t ≥ 0

(see Duchateau and Janssen (2008, p 29)). Nevertheless, as in Abrahantes et al. [2007], we assume in this

section that the baseline function is constant to compare our results with others found in the literature.

Hence, the vector of unknown parameters becomes:

θ = (λ0, β, σ
2
0 , σ

2
1).

We can easily verify that the regularity assumptions (F1-F5), (H1-H2) and (SAEM2) are fulfilled

by Model I. To satisfy the assumption (SAEM1), we choose the sequence (γk)k so that if 1 ≤ k ≤ 50,

then γk = 1; otherwise: γk = 1
(k−50)2/3

. Finally, we choose the transition probability Πθ as a hybrid Gibbs

sampler, also known as the Metropolis Hastings within Gibbs algorithm, in order to verify assumption

(SAEM3). The proposal distribution is chosen to be equal to the distribution of the frailty terms.

We apply three algorithms to estimate the parameters θ = (λ0, β, σ
2
0 , σ

2
1). We emphasize that we

implement the MCEM algorithm (respectively, the EM-Laplace algorithm) according to the method

given in Ripatti et al. [2002] (respectively, in Cortiñas Abrahantes and Burzykowski (2005)).

Different random initializations were tested. To investigate the nature of the limit points, we compute

an estimate of the logarithm of the marginal likelihood for each limit point using a Monte Carlo sum. We

present the relevant numerical results in Table 4 corresponding to the trajectory that gives the estimate

of the logarithm of the marginal likelihood with the biggest value.

Let us first comment on the behavior of each algorithm, on the one hand, with respect to the conver-

gence of the trajectories and, on the other, with respect to the computing time.

Consider the convergence problem first. When we apply the SAEM-MCMC algorithm or the MCEM

algorithm, all the trajectories converge. The situation is totally different with the EM-Laplace algorithm.
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Table 4
Model I. Estimation of the parameters θ = (λ0, β, σ2

0 , σ
2
1), of the mean model-based standard error in parentheses and of

the marginal log-likelihood for the bladder cancer data

Algorithm / Estimate λ0(×10−4) β σ2
0 σ2

1 log(Lobs
N )

EM-Laplace 10.563(0.6487) −0.0167(0.0704) 0.4074(0.0923) 0.0032(0.0007) −9490.47
MCEM 7.261(0.6441) −0.2178(0.1224) 0.0915(0.0080) 0.1783(0.0156) −9366.59
SAEM-MCMC 7.265(0.7186) −0.2313(0.0880) 0.0840(0.0292) 0.1849(0.0637) −9365.41

To obtain a satisfactory Laplace approximation, we have to choose a very sharp covering (or tolerance) of

order 10−6 to find a global minimum and to assume regularity conditions on the conditional distribution of

the frailty variables. Otherwise, many trajectories do not converge. Moreover, the nature of the trajectory

is deeply affected by small variations of the initial values. This phenomenon is not really surprising and

is also highlighted in [A3] where the EM-Laplace algorithm is termed as FAM-EM algorithm.

Consider now the computing time problem. As soon as the EM-Laplace converges, it requires the same

computation time as the SAEM-MCMC algorithm. However, when the EM-Laplace does not converge,

the computation time can increase considerably. Finally, the use of the MCEM algorithm requires a com-

putation time ten times greater than the SAEM-MCMC, taking the number of Monte Carlo simulations

equal to 5 during the first 50 iterations and equal to 1000 thereafter. This is the main difficulty to apply

the MCEM algorithm and therefore justifies the use of the SAEM-MCMC algorithm.

Let us now comment on the numerical results.

As expected, the two stochastic algorithms give same order estimates of parameters and of the

marginal log-likelihood, whereas those obtained by using the deterministic algorithm are very differ-

ent. The EM-Laplace algorithm leads to an estimation of the marginal log-likelihood by −9490.47, which

is strictly lower than the estimations of the marginal log-likelihood obtained with the MCEM algo-

rithm and with the SAEM-MCMC algorithm, −9366.59 and −9365.41, respectively. Note that these two

last values are local maxima of the marginal loglikelihood. The estimates of the parameters (10.563 ×
10−4,−0.0167, 0.4074, 0.0032) given by the EM-Laplace algorithm do not maximize the marginal log-

likelihood and are consequently meaningless. The estimated standard errors given by the two stochastic

algorithms have the same order for λ0 and β, whereas there is a small gain for σ2
0 and σ2

1 when using the

MCEM algorithm.

Some studies for the same real dataset suggest that for any i = 1, . . . , 39, the center effect b0i could be

correlated with the treatment per center interaction b1i. For this purpose, we consider a second model,

referred to as Model II and defined as follows:

λij(t|bi) = λ0(t) exp
(
b0i + xtij(β + b1i)

)
,

for 1 ≤ i ≤ N, 1 ≤ j ≤ ni and t ≥ 0, where the N random vectors (bti)1≤i≤N are independent and
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Table 5
Models I and II. Estimation of the parameters, of the mean model-based standard error in parentheses and of the

marginal loglikelihood for the bladder cancer data

Model / Estimate λ0(×10−4) β σ2
0 σ2

1 σ01 log(Lobs
N )

I 7.265(0.7186) −0.2313(0.0880) 0.0840(0.0292) 0.1849(0.0637) ×××× −9365.41
II 7.243(0.4869) −0.2540(0.0699) 0.0306(0.0002) 0.1077(0.0006) 0.0573(0.000003) −9357.51

identically distributed multivariate Gaussian:

bi =

(
b0i

b1i

)
∼ N2

((
0

0

)
,

(
σ2

0 σ01

σ01 σ2
1

))

We insist on the fact that we introduce a dependence structure on the two frailty terms. To study

Model II, we limit ourselves to the SAEM-MCMC algorithm. In Table 5 we recall the results obtained

for Model I in Table 4 and give the new numerical results for Model II. Note that the parameter σ01 only

exists in Model II.

We would like to make some comments on these results at this point. Models I and II have the same

order estimates for λ0 and β, whereas the estimates of σ2
0 and σ2

1 are lower when considering Model II.

This is not really surprising because there is a covariance term σ01. Concerning standard error terms,

there is a big gain when considering Model II, particularly for the parameters σ2
0 and σ2

1 .

Based on the numerical results obtained for Model II, it is natural to determine if the covariance σ01 is

significantly different from zero. Since Model I and Model II are nested, we do a likelihood ratio test where

the null hypothesis is ”σ01 = 0”. The numerical value of the test statistic is −2
(
−9365.41 + 9357.51

)
=

15.80. Let Z be a χ2(1) random variable. Since 15.80 > 6.63 where P (Z > 6.63) = 0.01, we reject the

null hypothesis at level 1%. Finally, we recommend the use of Model II to analyze this dataset.

8.3.2. Simulation studies

We conduct a simulation study to highlight the performance of our method regarding the other ones that

exist in the literature in the same setting as the analysis of the bladder cancer dataset carried out above.

We consider two different settings of censoring namely a moderate one and a heavy one. The design

vectors xij are equal to 1 for 70% of the individuals and 0 for 30% of the individuals in the moderate

censoring setting with 40% of censoring, and equal to 1 for 50% of the individuals and 0 for 50% of

the individuals in the heavy censoring setting with 60% of censoring. Although the parameter λ0 could

be estimated, we set λ0 = 0.077 in order to keep the same choice as the one made in Abrahantes et al.

[2007]. We generate R = 250 datasets for each setting. Let us denote by θ(r) = (0.077, β(r), σ
2(r)
0 , σ

2(r)
1 ) the

estimates obtained on the r-th simulated dataset for 1 ≤ r ≤ R. Hence, the estimate θ̂ is the empirical

mean of the (θ(r))1≤r≤R. The standard error of θ̂ is computed by two methods. The first one is the

empirical standard error σ̂(θ̂) of this estimate whereas the second one is the so-called mean model-based
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Table 6
Model I in a moderate setting with true value θ = (0.077, 0.7, 0.4, 0.8) (where λ0 = 0.077 is known). Estimation with the

three algorithms of the parameters and of standard errors in parentheses (first number: mean model based; second
number: empirical)

Algorithm / Estimate β σ2
0 σ2

1

EM-Laplace 0.849(0.031/0.296) 0.206(0.067/0.215) 0.765(0.204/0.481)

MCEM 0.765(0.179/0.151) 0.366(0.195/0.116) 0.778(0.289/0.195)

SAEM-MCMC 0.729(0.072/0.122) 0.392(0.128/0.098) 0.768(0.215/0.133)

Table 7
Model I in a heavy setting with true value θ = (0.077,−0.182, 0.4, 0.8) (where λ0 = 0.077 is known). Estimation with the

three algorithms of the parameters and of standard errors in parentheses (first number: mean model-based; second
number: empirical)

Algorithm / Estimate β σ2
0 σ2

1

EM-Laplace -0.155(0.129/0.156) 0.385(0.085/0.094) 0.766(0.165/0.200)

MCEM -0.167(0.189/0.174) 0.391(0.199/0.113) 0.782(0.270/0.228)

SAEM-MCMC -0.178(0.132/0.152) 0.392(0.120/0.109) 0.785(0.239/0.192)

standard error that corresponds to the square root of the empirical mean of the variance estimate given

by the inversion of the Fisher Information Matrix.

Numerical results are given in Tables 6 and 7. For each algorithm and each parameter, we present three

numbers: the first one corresponds to the estimation of the parameter, whereas the two last numbers

correspond to the estimation of the standard error, computed by the two methods described above.

In both censoring settings the SAEM-MCMC algorithm provides a better numerical approximation of

the true parameter value than the EM-Laplace and the MCEM algorithms in terms of bias and empirical

standard error estimates. However, although the EM-Laplace algorithm often leads to smaller mean

model-based standard errors estimates, it also leads to bigger differences between the empirical and the

mean model-based estimates of the standard errors. Note also that we obtain good approximations using

the MCEM algorithm. However, to reach the same accuracy as in the results obtained by the SAEM-

MCMC algorithm, we have to consider large sample sizes in the Monte Carlo approximation that lead to

longer computation times.

9. Assessing the correlation structure in cow udder quarter infection times through

extensions of the correlated frailty model

In collaboration with Charles El-Nouty (LAGA, University Paris 13 Sorbonne Paris Cité), Luc Duchateau

and Klaartje Goethals (Faculty of Veterinary Medicine, Ghent University), we propose to assess the

correlation structure in cow udder quarter infection times through several correlated frailty models [R1].

The main contribution of this work is to consider frailty models with an unknown correlation structures
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on the frailty vector of size 4 which describe precisely the random effects of each of the 4 udder quarters.

The usually correlated frailty models were only handling frailty vectors of size 2, because the parameter

estimation could not be carry out efficiently. By using the convergent stochastic estimation algorithm

presented in Section 8, the estimation task can now be achieve precisely in a reasonable time. We consider

different possible correlation structures between all the frailty terms and analyze the performance of each

corresponding model. We also compare these nested correlated frailty models by using the likelihood ratio

test. We evaluate the performance of the estimation algorithm and of the finite sample size property of

the likelihood ratio test on simulated data in this setting.

The existing correlated frailty model methodology is extended to clusters of size four and two different

correlation structures. Wienke (2011) gives an excellent overview of the correlated frailty model. Most of

the research on the correlated frailty model has been done for bivariate survival data, i.e., clusters of size

two. Parameter estimates are in most cases obtained by rewriting the correlated frailty model in copula

form, next estimate the marginal survival functions, and finally estimating the association parameter(s)

after imputation of the marginal survival functions in the copula form. The cluster size of four allows us

to investigate many more different correlation structures, and compare them to choose the most likely

correlation structure generating the data , using the log likelihood ratio test. Furthermore, the used

methodology, the SAEM-MCMC algorithm, is much more linked to the frailty model framework, and

does not require the transformation to the copula format.

9.1. Mastitis dataset: times to infection in four clustered udder quarters

Mastitis or udder infection is economically the most important dairy cow disease in the western world

(Seegers et al., 2003). Infections occur at udder quarter level, as the four udder quarters are fully separated,

and are infected individually. From a point of view of controlling the disease in a herd, it is essential to

know whether udder quarters have a higher risk of infection when one of the udder quarters is infected.

With one of the udder quarters infected, it would be helpful to know as well whether each of the three other

udder quarters have the same possibly increased risk, or whether the risk of infection differs according to

the location of the udder quarter relative to the infected udder quarter.

In order to study such relationships between the four udder quarters, the individual udder quarters

were followed up for one lactation period for infection, which generated clustered censored infection

time data (Laevens et al., 1997). Obviously, the four udder quarters are clustered within a cow. Such

multivariate data can be modeled in different ways to cope with the clustering structure (Duchateau and

Janssen, 2008), but in our modeling approach it is important to capture and quantify the association

between the infection times of the udder quarters within a cow. The copula model and the frailty model

are two possible approaches.

The mastitis dataset consists in 1196 cows. The udder quarters of each cow are followed up individually

for time to infection in a lactation period. The udder quarter in which no infection occured are right

censored at the time of the end of the lactation period. Two different covariates are introduced in the

frailty model. Parity is considered at two levels, primiparous and multiparous, and is a cow characteristic.

Location is either front or rear, and changes obviously from one quarter to another within a cow.
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9.2. Several correlation structures for the frailty model

We consider general frailty models as defined in Section 7.3 whose conditional hazard rate satisfayes

Equation (7.2) to analyze this dataset.

Our purpose is to focus on the effect of the relative location of the infected udder quarter on the

propagation of the infection. Thus we are interested in frailty models having a frailty vector of size 4

having a specific correlation structure on its components.

Let us denote the 4-dimensional frailty random vector by bi = (bi1, bi2, bi3, bi4)′ for the i-th cow for

1 ≤ i ≤ N and the vector of all frailty terms by b = (bi)1≤i≤N . We make the classical independence

assumptions for the frailty models: the censoring times (Cij)1≤i≤N,1≤j≤4 are independent of the event

times (Tij)1≤i≤N,1≤j≤4 and of the frailties (bi)1≤i≤N ; conditionally to the frailties (bi)1≤i≤N , the event

times (Tij)1≤i≤N,1≤j≤4 are independent.

Denote by λ0(t) the unspecified baseline hazard function at time t. In our setting the constant hazard

rate is not realistic for describing the time to udder quarter infection, as it is mentioned in Goethals

et al. [2009]. Therefore we assume that the baseline function has a Weibull parametric expression given

by λ0(t) = λ0γt
γ−1 for λ0 > 0 and γ > 0.

Denote by xij the 2-dimensional design vector of covariates associated with failure. This corresponds

to the primiparous or multiparous status of the cow and the location of the udder quarter, namely front or

rear. Let us introduce β = (β1, β2) an unknown 2-dimensional vector corresponding to the two covariate

effects. Note that the value of one covariate (location) changes within a cow whereas the other one (parity)

changes between cows, i.e. the four udder quarters of a cow have the same parity.

Let us denote the conditional hazard function by λij(t|bi) for the j-th individual of the i-th group at

time t and the transposition operator by t. The frailty model M1, for 1 ≤ i ≤ N, 1 ≤ j ≤ 4 and t ≥ 0 is

given by:

λij(t|bi) = λ0γt
γ−1 exp(xtijβ + bij), (9.1)

where the frailties (bi)1≤i≤N are independent and identically multivariate Gaussian distributed N (0,Σ)

with positive definite covariance matrix Σ given by:

Σ = σ2


1 ρ1 ρ2 ρ3

ρ1 1 ρ3 ρ2

ρ2 ρ3 1 ρ1

ρ3 ρ2 ρ1 1


with σ2 ≥ 0 and (ρ1, ρ2, ρ3) ∈ [−1, 1]3. This leads to the following explicit restrictions on the parameters:

|ρ2 − ρ3| < 1− ρ1

|ρ2 + ρ3| < 1 + ρ1

0 < σ2

.

We insist on the fact that the rank of Σ equals 4. This ensures that the Gaussian law of the frailty

random vector is non degenerate, i.e., its support is equal to the whole space R4.
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Figure 15. The correlation structure between the random effects of the four udder quarters for model M1 with ’FL’ front
left, ’FR’ front right, ’RL’ rear left and ’RR’ rear right udder quarter.

Let us denote the vector of all unknown parameters of the frailty model by

θ = (λ0, γ, β1, β2, σ
2, ρ1, ρ2, ρ3),

taking values in the open subset Θ of R8 defined by:

Θ = R+∗ × R+∗ × R2 × R+∗ × [−1, 1]3.

Figure 15 shows the correlation structure between the random effects of the udder quarters correspond-

ing to the covariance matrix Σ defined in the model M1. The correlation between the random effects of

the front left and right quarters and the rear left and right quarters is denoted by ρ1. The correlation

between the random effects of the front left and rear right quarters and the front right and rear left

quarters is denoted by ρ2. The correlation between the random effects of the left front and rear quarters

and the right front and rear quarters of the front left udder quarter is denoted by ρ3.

We focus now on three particular models derived from the correlated frailty model M1, by consider-

ing more and more specific correlation structures imposed on the frailty random vector. Each of them

corresponds to a practical situation for the interactions between udder quarters.

We define the sub-model M2 of model M1 by putting the correlation ρ3 equal to the correlation ρ2.

The matrix Σ being positive definite, it follows:
|ρ1| < 1

|ρ2| < 1+ρ1
2

0 < σ2

.

We define the sub-model M3 of model M1 by putting the correlations ρ2 and ρ3 all equal to the

correlation ρ1. Thus in modelM3 the correlation between each pair of random effects is equal to ρ1. Note

that the model M3 is also a sub-model of model M2.
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The matrix Σ being positive definite, it follows:{
− 1

3 < ρ1 < 1

0 < σ2
.

We define the sub-model M4 of modelM1 by assuming that there is no correlation between any pair

of random effects. Note that the modelM4 is a sub-model of modelM3 obtained by setting the value of

ρ1 equal to zero.

The covariance matrix Σ of model M4 is given by:

Σ = σ2I4,

where σ2 > 0 and I4 denotes the identity matrix of size 4.

Model M4 thus assumes independence between the event times in a cluster, or stated differently: the

fact that an udder quarter has an infection does not have an influence on the hazard of infection for the

three other udder quarters. ModelM4 is termed as univariate frailty model, because each subject has its

own frailty term.

We will now focus on parameter estimation in these four frailty models. We insist again on the fact

that the four models M1,M2,M3 and M4 are nested. This allows us to apply the likelihood ratio test

to compare them in the forthcoming sections.

9.3. Statistical analysis of the mastitis dataset

We choose a frequentist approach and consider the Maximum Likelihood Estimate (MLE) for the param-

eter θ, namely the value θ̂N of θ which maximizes the marginal likelihood LobsN (Y,∆; θ) (see Duchateau

and Janssen [2008]). We apply the estimation algorithm for frailty models presented in [A6].

We focus now on the theoretical properties of the algorithm.

Some particular assumptions on the frailty model have been proposed and stated in Theorem 1 in

[A6] to ensure the almost sure convergence of this stochastic estimation algorithm toward the set of

stationary points of the observed likelihood. They are fulfilled by the Weibull baseline function and

by the multivariate Gaussian distribution for the frailty. Moreover the model M1, as well as the three

sub-modelsM2,M3 andM4, satisfy the other additional regularity assumptions (denoted by (H1-H2)

and (SAEM2) in Theorem 1) required to apply the convergence theorem. Furthermore we choose a

step size sequence ν = (νk)k and a transition probability kernel Πθ for the stochastic approximation

procedure which satisfy assumptions (SAEM1) and (SAEM3) of Theorem 1. Thus applying the result

of Theorem 1 in [A6] proves that the parameter estimated sequence (θk)k generated by our algorithm

converges almost surely towards the set of stationary points of the observed likelihood

Parameters and mean model based standard errors estimates are obtained applying the methods

described in Section 8, for each of the four models (cf Table 8). The mean model based standard errors

are obtained as the square root of the diagonal components of the inverse of the Fisher Information

Matrix.



Inference in Survival Analysis 87

Table 8
Parameter estimates and mean model based standard errors in parenthesis for the mastitis dataset for each of the four
models M1, M2, M3 and M4 with λ0 and γ the parameters of the Weibull baseline hazard, β1 the effect of parity, β2

the effect of location and σ2, ρ1, ρ2 and ρ3 the parameters of the random effect distribution. The last line gives the
log-likelihood.

Models
Parameters M1 M2 M3 M4

λ0 0.0104 0.0097 0.0098 0.0120
(0.0017) (0.0018) (0.0018) (0.0016)

γ 2.6373 2.6568 2.6433 2.6807
(0.0498) (0.0486) (0.0521) (0.0762)

β1 0.9321 0.9848 0.9937 0.9983
(0.2175) (0.2085) (0.2001) (0.1116)

β2 -0.3189 -0.3237 -0.3234 -0.2678
(0.0659) (0.0686) (0.0683) (0.1040)

σ2 9.0715 9.1781 9.6812 7.7059
(0.2934) (0.2821) (0.3919) (0.5208)

ρ1 0.9026 0.9003 0.8883 ×
(0.0124) (0.0133) (0.0123)

ρ2 0.8913 0.8772 × ×
(0.0214) (0.0145)

ρ3 0.8700 × × ×
(0.0198)

Loglik. -3889.6 -3889.8 -3891.8 -4867.5

Let us make some comments on the numerical results obtained from the real data set of mastitis.

The parameter estimates of the baseline hazard function and of the covariates effects are similar, except

for those obtained for model M4 which has a very elementary frailty correlation structure. The residual

variance parameter σ2 is higher in the models M1,M2 and M3, compare to model M4. This can

be explain by the fact that this term grows to allow the model to fit the data under more constrain

correlation structure. The correlation parameters ρ1 and ρ2 are stable in these three models and very

close to 1. The estimated log-likelihoods are also similar except for the modelM4 which has a much lower

one. and lead us to conclude via a likelihood ratio test that the model M4 is very too simple for fitting

this data set. The three other models give similar estimation results and log-likelihood values. We next

compare modelM3 with modelM2. The likelihood ratio test statistic equals 4.23, leading to the p-value

P (X > 4.23) = 0.04, where X is a chi-squared random variable with one degree of freedom. Therefore,

model M3 can be rejected in favour of model M2 at the 5% significance level. Nevertheless let us keep

in mind that the values of the stochastically estimated log-likelihood are very closed from each others

leading to take this result with some precaution. Finally it is clear that model M1 does not lead to a

better fit, as the log-likelihood value is only increasing minimally.

Model M2 is withheld for the current data set. The correlation structure in this model demonstrates

first the substantial correlation between the udder quarter infection times within a cow. Therefore, an

infected udder quarter is a higher risk factor for the three other udder quarters of the same cow than for

udder quarters of a different cow. Many of the observed infections are from bacteria that are widespread

in the environment so it could be rather due to the status of the cow than to the nearby presence of

an infected udder quarter that makes that the other udder quarters of the same cow are more at risk.
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Table 9
The mean of the parameter estimates of the 500 generated datasets for the different parameters with the empirical and

mean model based standard errors in parenthesis in models M2 and M3.

Para. modelM2 modelM3

λ0 = 0.01 0.0114(0.0031/0.0015) 0.0098 (0.0018/0.0016)
γ = 2.75 2.7171(0.1427/0.0467) 2.7703 (0.1131/0.0502)
β1 = 0.90 0.8721(0.2017/0.1891) 0.9253 (0.2107/0.1902)
β2=-0.32 -0.3136(0.0787/0.0911) -0.3358 (0.0833/0.0773)
σ2 = 9 8.7712(1.0588/0.3087) 9.1954 (1.0276/0.4801)
ρ1 = 0.8 0.8056(0.0259/0.0186) 0.7989 (0.0193/0.0132)
ρ2 = 0.7 0.7039(0.0257/0.0498) ×

On the other hand, model M2 also reveals that the risk factor for an udder quarter is increased more

if the udder quarter is in the same region, i.e., either front or rear, as the infected udder quarter. This

finding means that the nearby presence of an infected udder quarter has the effect of increasing the risk

of infection.

9.4. Simulation studies

The aim of the simulation studies is the validation of the results obtained for the mastitis data set in

Section 9.1. In the first subsection 9.4.1 the bias of the parameter estimates for the two best models

M2 and M3 is investigated through simulations in similar settings as the real dataset. In the second

subsection 9.4.2, the finite sample size property of the likelihood ratio test for models M2, M3 and M4

is considered to ensure that the level of the test is close to the nominal one.

9.4.1. Parameter Estimation Evaluation for Models M2 and M3

Data are simulated from models M2 and M3 using a similar setting as in the mastitis dataset. In total

N = 1196 clusters are chosen, each cluster consisting in 4 infection times. Also the effect of parity and

location is included.

The following parameter values are used to generate the data: λ0 = 0.01, γ = 2.75, β1 = 0.90, β2 =

−0.32, σ2 = 9, ρ1 = 0.8 and ρ2 = 0.7 (only for model M2).

For each of the two modelsM2 andM3, 500 datasets were generated and the methods of Section 8 are

applied to obtain the parameter and mean model based standard errors estimates for each of the datasets.

The simulation results are presented in Table 9 and summarized by the mean of the parameter estimates

of the 500 datasets, the empirical standar errors and the mean of the mean model based standard errors

of the 500 datasets.

The mean of the estimates is closed to the true value for all parameters in each of the two models

M2 andM3. In most cases, the values obtained for the estimated variances are also coherent, the model

based one being lower than the empirical one.
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Table 10
Empirical percentage of rejection of the LRT of H0: the true model is M4 against H1: the true model is M3 at level α.

α/σ2 4 9 16
0.01 0.005 0.015 0.020
0.05 0.045 0.065 0.080
0.10 0.110 0.125 0.135

Table 11
Empirical percentage of rejection of the LRT of H0: the true model is M3 against H1: the true model is M2 at level α

(σ2 = 9).

α/ρ1 0.3 0.5 0.8
0.01 0.030 0.015 0.010
0.05 0.085 0.060 0.055
0.10 0.135 0.115 0.095

9.4.2. Likelihood ratio tests

In this section we investigate through a simulation study the finite sample size property of the likelihood

ratio test (LRT) for testing the hypothesis H0: the true model is model M4 against the hypothesis

H1: the true model is model M3. To that purpose, we repeat 200 times the following experiment: we

simulate under modelM4 a data set using the general setting described in Subsection 9.4.1, we estimate

from these simulated data the MLE of the parameters in model M4 and in model M3 and compute

the corresponding log-likelihood ratio test statistic. Then we compute the empirical confidence level for

different levels α ∈ {0.01, 0.05, 0.10}. Note that the model M4 is a sub-model of model M3 with the

value of parameter ρ1 being equal to zero which is not at the boundary of the parameter space. Thus the

likelihood ratio test statistic converges in law towards a chi square random variable with one degree of

freedom (see Cox and Hinkley [1974]). The corresponding quantiles are then respectively equal to 6.63,

3.84 and 2.70. We repeat this experiment for different values of the parameter σ2 chosen in {4, 9, 16}. The

results are presented in Table 10. For example, for σ2 = 9, we get an empirical percentage of rejection for

the LRT of 0.065 which is close to the nominal level α = 0.05. We observe that the empirical percentage

of rejection differs more from the nominal level α when the variance parameter equals to 16.

We conduct the same experiment taking H0: the true model is M3 against hypothesis H1: the true

model is M2. We fix the residual variance parameter σ2 to 9 and let the correlation parameter ρ1 vary

between 0.3, 0.5 and 0.8. The corresponding results are presented in Table 11. We observe that the

empirical percentage of rejection differs more from the nominal level when the correlation parameter ρ1

equals 0.3.

The empirical results given in Tables 10 and 11 demonstrate that the LRT can be applied for a finite

sample size N equal to 1196 when the parameter σ2 is closed to 9 (and smaller) and when the parameter

ρ1 is closed to 0.5 (and larger). This heuristic observation ensures the validity of the LRT with the mastitis

data in the previous section.
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Conclusions and perspectives

This manuscript summarizes my contributions to the field of statistical research. They mainly deal with

developments, studies and applications of new stochastic algorithmic methods derived from the Expec-

tation Maximization algorithm for estimation in complex latent variable models. I attempted to address

the theoretical aspects and the practical ones in each of my contributions. Most of my research was

inspired by practical problems. Their consequences were mainly to provide more flexibility in modeling

since they give solutions for parameter estimation in many complex latent variable models used in differ-

ent application fields. This makes it possible, in particular, to more efficiently assess numerous complex

phenomena.

All of the research topics mentioned in this document were not treated in the same way. Some were

explored in depth from several different angles, leading to other developments. Other ones, generally more

recent, are still being investigated and will most certainly lead to new research directions. I mentioned in

the manuscript below some contributions some open questions which could lead to further developments.

Besides my major actual perspectives motivated by practical questions are detailed in the next paragrafs.

Estimation in partially observed multi-type branching processes

In collaboration with Catherine Larédo (INRA, MIA), we will address the estimation in partially observed

multi-type branching processes with immigration. This work is motivated by the analysis of the dynamics

of rape populations. This plant has two specific properties: first, it is feral, meaning that it is able to grow

by itself without particular care; second, the seeds can remain in a seed bank in the soil for several years

before eventually giving rise to a new plant. A multi-type branching process is well adapted to modeling

this dynamics where the different types correspond to the flowers, the seeds on the soil, the seeds in the

seed bank in the soil, etc. Nevertheless, only some types were observed, namely the flowers. The model

parameters such as the probability of a seed in the seek bank in the soil eventually giving rise to a new

plant, characterize the dynamics and are of great interest for controlling the behavior of such a population.

The estimation of these parameters is usually done in branching processes through optimization of contrast

processes such as conditional least squares. However, in the presence of unobserved types in multi-type

branching processes, this is no longer possible. One alternative to these approaches could be to consider

the maximum likelihood approach. Note that the unobserved types are latent variable of the multi-type

branching processes. However it is not possible to apply directly an EM like algorithm, the model being

non exponential when considering usual reproduction and immigration distributions. Therefore we plan

to consider an approximated Gaussian model for the multi-type branching process in which the estimation

can be carried out through maximum likelihood by using a stochastic estimation algorithm. Our purpose

is to adapt the work presented in Section 2.2 to this context to compute the MLE in the approximated

Gaussian model. The proposed estimation algorithm will be apply to a rape dataset collected in Selomnes.

We also plan to study the asymptotic property of the maximum likelihood estimate in the approximated

model under misspecified model conditions. Our approach may be generalized to other multivariate
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partially observed models.

Modeling and estimation of epidemic dynamics

In collaboration with Elisabeta Vergu, (INRA, MIAJ), we are studying the epidemic dynamics modeled

by compartment models and estimation in such models. The propagation of epidemic is often described by

compartments, where one compartment corresponds to one possible status of an individual, e.g., sensitive,

infected or recovered, in the simple case. The estimation task is difficult since observations are very often

partial. Models in which the estimation can be carried out often require stringent structural assumptions

of the population dynamics, e.g. Markovian. Such an assumption is of course not realistic since it implies

that the recovering rate is constant, i.e., the sojourn times in the different compartments are distributed

from an exponential distribution that is not realistic. We propose to consider a new non Markovian

dynamics compartment model, that also takes the errors raised by the observation process into account.

We plan to consider the maximum likelihood estimate and to evaluate it in practice through a stochastic

estimation algorithm. We project to study the theoretical properties of the maximum likelihood estimate

and of the stochastic estimation algorithm. Simulations studies and application to real epidemic data will

also be carried out.

Modeling and estimation in survival data analysis

The two contributions to estimation in the frailty models presented in the third part of the manuscript

have given rise to several interesting questions.

In collaboration with Charles El-Nouty (University Paris 13 Sorbonne Paris Cité, LAGA), we plan to

address the case of maximum likelihood estimation in frailty models with a piecewise constant baseline

function or a non parametric one. From a modeling point of view, this will make it possible to be free from

the choice of a specific parametric form for the baseline, which is not obvious in practice. Another similar

theoretical development will be to consider the partial likelihood, as was done for the estimation in the

Cox model, rather than the marginal likelihood. This also allows us to bypass the effect of the parametric

choice for the baseline. Finally, motivated by practical applications in epidemiology, we are interested in

the estimation in competing risk models that integrate frailty terms. In competing risk approaches, the

hazard rate is obtained as the sum of several independent hazards, each corresponding to different risks.

Such modeling is, for example, well adapted to considering the risk of death, on the one hand, from a

cancer, and, on the other, from cardiovascular disease.

In collaboration with Luc Duchateau and Klaartje Goethals (Faculty of Veterinary Medicine, Ghent

University), we plan to assess the correlation structure in a malaria epidemic dataset in Ethiopia by

introducing spatial modeling in the correlation matrix of the frailty vector. Moreover, in this dataset, the

individuals are clustered through two stages, namely the villages and the houses. This will be modeled

by using hierarchical models.

Another open question in the frailty model setting is the one of model validation. It would be interesting

to propose goodness-of-fit tests, in particular for testing hypotheses on the covariates used in the design
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matrices and on the correlation structure of the frailty terms.

Analysis of plant growth

In collaboration with Hervé Monod (INRA, MIAJ), Alain Charcosset (INRA, URGV Le Moulon) and

François Tardieu (INRA, LEPSE), we are interested in genotype by environment interaction. In particular,

we plan to address parameter estimation in dynamic plant growth models based on several types of data

including different genotypes and different environmental conditions. Indeed multiple information sources

such as bibliographies, datasets obtained on platforms and datasets obtained in field conditions exist. All

of this information is relevant when estimating model parameters. However, since the objective is to use

the dynamic model to predict phenotypic characteristics in field conditions for existing or possibly new

genotypes in different climatic scenarios. Thus parameter estimation requires close attention, particularly

concerning the use of platform datasets which do not report all the phenomena existing in fields conditions.

Therefore we have to integrate in the global estimation process, possibly also in the modeling, all these

different types of data taking into account their specificity. Besides modeling task can also be addressed

since most of the dynamic models are deterministic, although they model stochastic plants behavior. Thus

it would be interesting to enrich these models by adding stochastic terms taking the existing variablity

into account.

This work takes place within the project ”investissement d’avenir” AMAIZING coordinated by Alain

Charcosset.

In collaboration with Paul-Henry Cournède and Charlotte Baey (ECP, Digiplante), we are provided

with a given deterministic dynamic model for plant growth, having parameters which may depend on the

plants genotype. First, we are interested in identifying which of the model parameters could be considered

fixed for several genotypes to reduce the model dimension. We plan to use non linear mixed effect models

and to determine which parameters can be modeled as population parameters to analyse some arabidopsis

data. In a second time, we plan to cluster the different genotypes of our dataset by using a mixture model

in the spirit of [A5].

This work takes place within the project ”plante entière” of the Institut de Modélisation des Sciences

du Vivant (IMSV), directed by Vincent Fromion (INRA, MIG).

In collaboration with Adrienne Ressayre (INRA, URGV Le Moulon), we plan to analyze maize leave

dataset. Geneticians are interested in leaf area, since it is directly link with photosynthesis and therefore

with plant development, resulting in early or late flowering time. Moreover, leaf area seems to be a

genotypic characteristic. To validate this hypothesis, we plan to use the BME template model presented

in [A3] to estimate leaf patterns for several genotypes possibly clustered.

This work takes place within to a global project ITEMAIZE dedicated to the study of the early de-

velopment of maize, in particular the floral transition, coordinated by Christine Dillmann (UPS, URGV

Le Moulon) actually submitted.
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Motivated by the collection processes for agronomic data in plant growth studies, I am interested

in considering more precisely the particular form of partially observed data called current status data:

observations are composed of the observation date and of the status of the individual at this date. This

can be viewed as a form of complex censoring. Let us consider the following example: the interest is in the

appearance of the third leaf of the maize plant. In practice, may be the technician crosses the field every

two days only, leading to the observation, for example, that on day d, the maize plant has two leaves,

and that on day d+2, it has three leaves, generating the censored information that the third leaf appears

between days d and d+2. Such data frequently arise in plant growth studies in agronomy. Note that such

data are also common in the field of epidemiology, leading to many possible applications. Modeling such

partially observations leads to specific complex latent variable models. Parameter estimation is therefore

particularly intricated. Existing methods are based on several types of approximations and suffer from

theoretical background and numerical limitation. New subtantial developments from both the theoretical

and the practical point of view are therefore required in this field.
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S. Greven, C. M. Crainiceanu, H. Küchenhoff, and A. Peters. Restricted likelihood ratio testing for zero

variance components in linear mixed models. J. Comput. Graph. Statist., 17(4):870–891, 2008. ISSN

1061-8600. .

E. Guerre and P. Lavergne. Data-driven rate-optimal specification testing in regression models. Ann.

Statist., 33(2):840–870, 2005. ISSN 0090-5364. .
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T. Lelièvre, M. Rousset, and G. Stoltz. Computation of free energy profiles with adaptive parallel

dynamics. J. Chem. Phys., 2007.
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