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The results of this study suggest that adopting genomic selection can be more profitable than classic selection in terms of genetic gain, provided that, at least, a medium size reference population is available (around 2,000 individuals). They show, especially in dairy breeds, that the GS potentials of reducing generation interval could greatly increase the genetic gain. In meat sheep breeding program, exploring the possibility of combining genomic information and meat phenotypes gave higher genetic gain than classic or pure genomic selection. In terms of economic impacts, results of the meat sheep breeding program we modeled show that all genomic selection strategies are more expensive than classic selection. However, the contribution margins (total revenues minus total variable costs) of some GS variants were slightly higher than benefits from classic selection. The study also shows, across breeds and selection strategies, that optimizing the use of decision variables could greatly increase the genetic gain and benefits, compared to the current situation.

With this thesis we can conclude that adopting genomic selection in small ruminant breeding programs is possible and could be more beneficial than classic selection in some cases. However, there are more obstacles compared to dairy cattle, especially, construction of reliable reference populations and high costs of genotypes relative to the value of selection candidates. These might delay implementation in general or prevent it in some breeds.
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Résumé

La sélection génomique (SG) des animaux et des plantes a été rendue possible grâce aux avancées des biotechnologies, notamment des puces à ADN de haute densité et de faible coût. Son efficacité et sa profitabilité a été clairement démontrée chez les bovins laitiers, où elle a été très rapidement mise en pratique. En revanche, son application pour les petits ruminants est encore limitée, et, notamment, n'a pas démarré en France. Ses potentialités sont toutefois à l'étude dans quelques programmes concernant les ovins et caprins laitiers, et les responsables des filières correspondantes désirent connaitre l'efficacité de cet outil dans leur situation. Cependant, la prudence est de règle, compte tenu des différences entre les schémas de sélection des bovins laitiers et des petits ruminants.

Cette étude fait partie d'un programme entrepris pour évaluer l'utilisation et la gestion de l'information génomique dans les schémas de sélection ovin et caprin. Au cours de cette thèse ont été examinés (1) l'impact de la SG sur le gain génétique dans des schémas de sélection de petits ruminants, (2) l'efficacité économique de la SG en petits ruminants, en prenant l'exemple d'un programme de sélection ovin-viande ; (3) l'importance d'une optimisation de certaines décisions (quantifiées par des variables dans un modèle décrivant les schémas) pour maximiser le progrès génétique et [START_REF] Harvey | Limited discrepency search[END_REF] une piste contribuant à l'optimisation de la population de référence. Les modèles utilisés appartiennent au champ des méthodes déterministes et les exemples ont porté sur les schémas de sélection existants (ovins laitiers, ovins viande et caprins laitiers).

Les résultats de cette étude suggèrent que la sélection génomique peut être plus rentable que la sélection classique en terme de gain génétique, à condition qu'une population de référence de taille moyenne soit disponible (environ 2000 individus). Ils montrent, en particulier dans les schémas laitiers, que le potentiel de la SG de réduire l'intervalle de génération pourrait fortement augmenter le gain génétique. Dans le schéma ovin allaitant modélisé, combiner l'information génomique et les phénotypes de caractères bouchers donne plus de gain génétique que la sélection classique ou la SG sans phénotype sur les candidats. En termes d'impacts économiques, les résultats du schéma ovin allaitant modélisé montrent que toutes les stratégies de sélection génomiques sont plus onéreuses que la sélection classique. Cependant, les gains marginaux (recettes totales moins coûts variables) de certains scénarii de SG s'avèrent légèrement plus élevés que pour la sélection classique. L'étude montre également, dans tous les schémas et stratégies de sélection, que l'optimisation de l'utilisation de variables de décision pourrait grandement augmenter le gain génétique et l'efficacité économique, par rapport aux situations actuelles.

Avec cette étude, on peut conclure que la mise en place de la sélection génomique dans les programmes de sélection des petits ruminants est possible et pourrait être plus bénéfique que la sélection classique dans certains cas. Cependant, il y a plus d'obstacles par rapport aux bovins laitiers, en particulier, la construction d'une population de référence fiable et des coûts élevés de génotypages par rapport à la valeur des candidats à la sélection. Ces obstacles pourraient freiner sa mise en oeuvre, voire l'empêcher dans certaines races. 

General introduction

The idea of genomic selection, i.e., estimating breeding values and making selection decisions before selection candidates gain performances, allows higher genetic improvement compared to conventional selection (here mostly referred to as classic selection). In classic selection, candidates' breeding values (EBV) are estimated based on their own and /or collateral phenotypes and a pedigree. For many years, selection of best reproducers has been based on these EBV. These classic breeding procedures have proved to be very effective because significant genetic improvements have been realized for many traits in many breeds and species. However, this selection heavily needs recording rapidly and at a large scale the performances of the selection candidates and/or their relatives and this can limit the rate of genetic improvement, especially in cases of low heritability, hard or expense to measure traits and sex limited traits. For many sex limited traits, selection candidates wait for performances of their progeny, which delays selection decisions and increases costs.

For more than two decades, technologies and methods to use DNA information have constantly been developed and breeding industries have always tried to include these advancements in breeding programs. The DNA information was first used in breeding programs in form of gene assisted selection (GAS) and marker assisted selection (MAS).

In GAS, phenotypes were combined with molecular genotypes of candidates at identified genes for the concerned traits. In MAS, breeding values of selection candidates were estimated by combining classical information (phenotypes and pedigree) and effects of markers that map the QTL (QTL, quantitative trait loci). Both procedures showed potentials to increase selection accuracy and thus genetic progress of the breeding programs. However, application in commercial animal breeding programs have been limited

to few cases because of many factors such as low marker density, few genes or QTL detected and explaining only a small part of genetic variability, expensive genotyping techniques, etc. (reviewed in section 2.2 of this thesis).

Since a few years, the basic principles of livestock breeding programs are deeply changing, thanks to the biotechnological progresses, especially the SNP chip technology which allows the generalization of the MAS to thousands genetic markers, the so-called "genomic selection". Genomic selection (GS) means selecting candidates based on their genetic values, estimated from their marker data (here referred to as genomic breeding values (GBV)). The main requirement of estimating GBV is the "reference population", a population whose animals have phenotypes and marker data from which prediction equations are trained. These prediction equations can then be used to predict GBV of un-phenotyped individuals. Potentially, this suggests that in GS selection, candidates can accurately be known and ranked before their reproductive age and that females'

GBV accuracy can be as good as the one in males. For that, Genomic selection has been described as a technology that is capable of revolutionizing animal breeding and is, indeed, being rapidly adopted in many dairy cattle breeding programs, and is in perspectives in other breeds and species.

However, to realize the above potentials of GS, some conditions have to be met:

amongst others, there is a consensus that (i) marker density should be high enough to capture the extent of linkage disequilibrium (LD) between markers and QTL in the concerned populations; (ii) a large reference population that has reliable phenotypes (e.g., daughter yield deviations of progeny tested dairy bulls); (iii) high relationship between reference population and selection candidates; etc. (reviewed in sub-section 2.3.3 of this thesis). So far, only dairy cattle breeding programs have been able to meet most of the conditions and other breeds and species are studying on how to extend GS procedures to their specific breeding programs. For small ruminant breeding programs, which are the focus of this thesis, the reality is different and less favorable to genomic selection as defined today.

In France, the small ruminant population is made of many breeds, but with mainly three specializations: dairy sheep, meat sheep and dairy goats breeds. Corresponding breeding programs are very diverse in terms of population size, breeding organizations, selection goals, tools and resources used, etc. But globally, the picture is that they have small numbers of females in breeding unit (from a few thousand to less than 100 thousand, except for Lacaune breed (Table 1. 1,1.3 and 1.5)). Selection strategies always include a mass selection for females on their maternal abilities in all breeds; a progeny test of best young males (from a small to a medium number) on female traits for dairy breeds and often a performance test of rams on meat traits and sometimes a progeny test of rams (a small number) on meat and /or maternal traits for meat sheep breeds.

As regards to prospects of implementing genomic selection (as defined in dairy cattle), the small ruminant industries face many difficulties, though the extent may vary from breed to breed.

1.

Concerning the construction of a reference population, we broadly identify two situations for current sheep and goats breeding programs: (i) schemes that perform progeny testing of best sires for traits in routine genetic evaluation and hence, in theory, can form reference populations with reliable phenotypes. However, the reality is that very few males are progeny tested per breed, except in the Lacaune and Red Faced Manech dairy sheep schemes (around 420 and 150 rams, respectively). Other breeding schemes progeny test roughly 10 to 50 males per year. Consequently, building a reference population from this base can take many years and old individuals can be disconnected to selection candidates. (ii) Some schemes, especially in meat sheep breeds, do not use progeny testing technique to increase selection accuracy due to many reasons, like small breeding units, low use of artificial insemination (AI) and moderate heritability of the meat traits included in routine selection. For these breeds specifically, and for new traits in all breeds in general, the reference population is likely to be composed of males that are not progeny tested and /or females, both of which have less accurate phenotypes. Also, for all breeds, corresponding breeding programs are only organized in France and international consortia to pool reference populations for a breed are not possible. Coupled with less reliable phenotypes, reference population of some thousand individuals seems necessary to achieve satisfactory accuracy (i.e., the average accuracy of current selection designs).

2.

Implementing GS might require extra costs compared to current selection strategies. In small ruminants, progeny testing is not as expensive as in cattle and decreasing the number of progeny tested rams or eliminating the procedure might not cover costs of genotyping. Looking at an approximate price of 123 e per animal in sheep and 120 e in goat, to have a reasonable accuracy, establishment and renewal of a reference population would amount to hundreds of thousands of Euros. Also the costs of genotyping selection candidates relative to their economic value is still high and will affect on how many candidates can be genotyped to increase selection intensity and genetic gain, and on updating the reference population.

3.

The possible reduction of generation interval in some schemes, owing to early qualification of reproducers, will not be as dramatic as is expected in dairy cattle. In fact, the current generation interval is moderate because a big proportion of females is produced by young males that are not progeny tested.

4.

Finally, the small ruminant industry has less resources compared to cattle industry and this impedes on the rapidity with which a new technology can be adopted.

However, considering great predicted benefits of GS in dairy cattle, constant progresses in biotechnology and the very fast modification of dairy cattle breeding plans towards adoption of this technology, the French sheep and goat breeding organizations are strongly interested in studying the efficiency and profitability of GS in their situation. This optimism is coupled with some positive elements: mainly (i) the success of the National plan for scrapie resistance through the PrP gene assisted selection in sheep breeding programs. Breeding associations have been able to organize, with the help of ministry of agriculture and academics, a very efficient and large scale plan for the improvement of scrapie resistance based on the PrP genotyping of about 1 million animals, and DNA from all progeny tested rams have been collected and stored since 2004. This resource is helping in building reference populations in some breeds. (ii) Some similarities of small ruminant schemes to dairy cattle plans, like the procedure of progeny testing. This means that GS in small ruminant can also decrease the generation interval at some extent. This coupled with the potential to evaluate females on male traits and vise versa, with good accuracy. (iii) Previous work, knowledge and materials from QTL designs and long history of sharing knowledge with cattle industries via INRA research center and other institutions. To start, different research and research and development programs, among others, Roquefort'in, GENOVICAP and Genomia have been initiated.

The PhD

My PhD research is part of the GENOVICAP program. This program was started in 2010, by Institut de L'Elevage (French Livestock Institute) in collaboration with INRA.

Its mandate was mainly to contribute to the acquisition, use and management of genomic information in dairy sheep, meat sheep and dairy goats breeding programs. The program had four major tasks of which one was dedicated to the work of this PhD.

The PhD had mainly three aims:

1. To do inventory of the current breeding programs and identify the specific factors that could boost or limit the spread of molecular techniques.

2. To evaluate the usefulness of the genomic information to the genetic improvement of small ruminant species (dairy sheep and goat, meat sheep).

3. To conceive realistic (and profitable) selection plans.

Outlines of the thesis

Keeping in mind that genomic selection might not be implemented in all small ruminants breeding programs in the near future, we compared the two strategies (classic and genomic selection). Chapter 1 reminds about different elements of designing breeding programs and gives a brief inventory of the current small ruminant breeding programs in France. Chapter 2 reviews the use of genomic information and specifically genomic selection in different species of animal farms. In chapter 3, different breeding programs, representing dairy sheep, meat sheep and dairy goats have been modeled. The most important objective was to compare classic and genomic selection scenarios of each breeding program, on their genetic gains. Chapter 4 contains an economic analysis of classic and genomic selection of a typical meat sheep breeding program. Chapter 5 contains preliminary work on some of the approaches that can be used to optimize the choice of a reference population for genomic selection.

Chapter 1

Animal breeding programs Introduction

Breeding programs are organized structures that are set up to genetically improve livestock populations through the process of artificial selection. To all candidates available for selection, breeding values are estimated (EBV) using own and/or relatives records and available pedigree. Candidates are ranked based on these EBV and only a proportion of the best becomes parents of the next generations. Due to differences in species, breeds, reproductive technology, mating systems, financial resources, etc. breeding programs show a wide range of complexity or sophistications, but all are founded on same basic concept: to generate and disseminate genetic superiority continuously. Breeding programs are frequently evaluated based on their genetic gain, monetary genetic gain, inbreeding or selection accuracy. This chapter presents a review on the components of breeding programs, models of breeding programs and the current organization of the small ruminant breeding programs in France.

Components of breeding programs 1.Breeding goal

The breeding goal or breeding objective is the desired direction of change for a given breeding program and thus, is the first element to be defined when designing a breeding program. It specifies which traits to be improved and the emphasis given to each trait. The breeding goal for a breed can differ in different regions and can change over time. Generally, breeding objectives are influenced by many factors, and should be defined considering the needs and priorities of many stakeholders involved in breeding Chapter 1. Animal breeding programs (i.e., the breeding organizations, the animal owners or producers, the food industry, the consumers of animal products, and increasingly also the general public). Most domestic animal breeding programs started with breeding objectives that focus on improving performances of economic traits (i.e., production traits like milk quantity and composition, growth rate, feed efficiency, litter size, etc) (e.g., [START_REF] Phocas | Developing a breeding objective for a French purebred beef cattle selection programme[END_REF][START_REF] Olesen | Definition of animal breeding goals for sustainable production systems[END_REF]. Recently, mainly due to consumer and society demands, and considerations in environment preservation and ethics of production, traits related to product quality (e.g., meat quality), animal welfare (e.g., health), gas emissions (Nitrogen emission) are progressively included in breeding objectives of many breeding programs (e.g., [START_REF] Olesen | Definition of animal breeding goals for sustainable production systems[END_REF][START_REF] Nielsen | A Method to Define Breeding Goals for Sustainable Dairy Cattle Production[END_REF].

In genetic improvement, the breeding objective is formalized in an equation that combines all traits to be improved in the selection candidates and the relative emphasis given to each trait:

H = BV 1 v 1 + BV 2 v 2 ... + BV m v m
Where H is the breeding objective, also called "true aggregate breeding value", BV is a vector of true breeding values of m traits included in the breeding objective and v is a vector of the relative weights for each trait. The relative weights (v) can be technical weights, when the target genetic superiority is to be expressed in physical unit of the trait or economic weights, when the improvement is expressed as monetary profit due to a genetic one-unit improvement of a trait (also called marginal profit of a trait). H and BV are unknown true values and have to be estimated from the traits that are measured.

Selection criteria

Selection criteria are based on traits that can be measured on the selection candidates and/or their relatives and can be used as predictors of traits included in the breeding objective (Hazel, 1943). These measured traits (selection criteria) can be different or similar to traits included in breeding objective. Traits in selection criterion that are not in breeding objectives are commonly referred to as indicator traits. The use of indicator trait is very important when the corresponding trait is expensive, difficult or impossible to measure. The value of an indicator trait will depend largely on the magnitude of co-heritability and genetic correlation between the objective trait and the indicator trait [START_REF] Woolliams | The value of indicator traits in the genetic improvement of dairy cattle[END_REF]. After defining the breeding goal, formalized in a true aggregate breeding value (H), the selection criteria can be built trough an index (I)

Chapter 1. Animal breeding programs containing n measured traits.

I = X 1 b 1 + X 2 b 2 ... + X n b n
Where X is a vector of phenotypic performance deviations (deviations from population mean) of traits included in the index, measured on the selection candidates or their relatives and b is a vector of weighting factors of concerned traits. The I traits (index or criteria traits) are either the same traits as in H (aggregate genotype or breeding objective traits) (m = n) or they are just genetically correlated (i.e., indicator traits) with those in H (m = n ). At this step, it is also decided on which and how many animals can be measured (i.e., own or relatives performance testing), where to be measured (i.e., on-farm or on-station testing).

Genetic evaluation

After the breeding goal has been defined and prediction traits chosen, the selection candidates are evaluated based on all information available: pedigree, own phenotypes or/and genotypes or information on relatives. Genetic evaluation aims at defining, as accurately as possible, which candidates can be the best parents of the next generation.

Different methods have been developed for breeding value predictions. Seminal papers in animal genetic evaluations defined the optimized index (Hazel, 1943) and best linear unbiased prediction (BLUP) [START_REF] Henderson | Best linear unbiased estimation and prediction under a selection model[END_REF].

The selection index developed by Hazel and Lush (1942) and Hazel (1943) was conceived in the framework of multiple-trait selection. In general, selection index is a multiple regression method, where breeding values are regressed on phenotypes (of the selection criteria) to find index coefficients (b) in such way that information from all sources (own and relatives) is optimally used to rank animals on their breeding values. The procedure entails solving the above index equations (H and I) to determine the respective weightings of the measured traits (selection criteria or index traits):

COV                     X 1 X 2 . . . X n           , (X 1 , X 2 , • • • , X n )                     b 1 b 2 . . . b n           = COV                     X 1 X 2 . . . X n           , (BV 1 , BV 2 , • • • , BV m )                     v 1 v 2 . . . v m          
In matrix notation the above equations are abbreviated as: P b = Gv, where P is the To overcome these constraints, Henderson developed mixed model equations to simultaneously estimate fixed and random effects, with the famous best linear unbiased prediction (BLUP) of breeding values (e.g., Henderson,1975). It is like the index selection applied to data corrected by generalized least squares for fixed effects. This predictor was extended to the full use of available information on relatives with the BLUP animal model. However, the genetic theory behind BLUP and selection index is the same.

The operational differences are: firstly, in BLUP the correction of the systematic environmental effects is done simultaneously with the prediction of breeding values (i.e., random effects of animals) and, secondly, in BLUP animal model all available relatives' information can be used (by numerator relationship matrix) and not just predefined groups of relatives. With BLUP, all available information is used in the general model of genetic evaluation.

The following is brief procedure of solving the BLUP in a simple case of one trait and additive random effect.

y = Xb + Za + e
Where y is n x 1 vector of observed (measured) phenotype values; n: number of records, b is p x 1 vector of fixed effects to be estimated; p: number of levels for fixed effects, a is q x 1 vector of random effects (breeding values) to be predicted; q : number of Chapter 1. Animal breeding programs levels for random effects, X and Z are corresponding design matrices allocating records to fixed effects and to animal effects, respectively, and e is n x 1 vector of residuals.

It is assumed that the expectations are E(y) = Xb, E(a) = 0 and E(e) = 0. Further it is assumed that e ∼ N (0, Iσ 2 e ), a ∼ N (0, Aσ 2 a ) and cov(a, e) = 0. A is a matrix of relationships between all animals [START_REF] Wright | Coefficients of inbreeding and relationship[END_REF] andσ 2 a is the additive genetic variance of the trait. Following [START_REF] Henderson | Best linear unbiased estimation and prediction under a selection model[END_REF], the b and a effects can be predicted simultaneously by mixed model equations (MME):

  X R -1 X X R -1 Z Z R -1 X Z R -1 Z + G -1      b â   =    X R -1 y Z R -1 y   
Where R = Iσ 2 e and G = Aσ 2 a . Then, the accuracy (r) of evaluation can be calculated from the diagonals of the inverse of the MME [START_REF] Henderson | Best linear unbiased estimation and prediction under a selection model[END_REF]. [START_REF] Mrode | Linear Models for the Prediction of Animal Breeding Values[END_REF] showed that if the coefficients of the generalized inverse matrices of the MME are given as:

  C 11 C 12 C 21 C 22  
The accuracy can be calculated in such way that:

P EV = C 22 σ 2 e = (1 -r 2 )σ 2 a ;
where PEV is the prediction error.

For an animal i in the evaluation,

d i σ 2 e = (1 -r 2 )σ 2 a with d i the i th diagonal element of C 22 . Then, r = √ 1 -d i λ, where λ = σ 2 e /σ 2 a .
The BLUP in all its form, i.e., sire, animal or maternal models have been intensively used in genetic evaluations of many breeding programs of different domestic animals.

Since computation capacity is not longer a limiting factor BLUP has replaced selection index in routine genetic evaluations of reproducers.

Selection and mating

In simple terms, selection is to decide, basing on estimated BV, which animals are going to be parents of the next generations in order to move in the direction of the breeding goal. On genetic level, selection targets to increase the frequency of desirable alleles controlling the genes of concerned traits. In practice, selection results in phenotypic population mean and variance changes of the breeding goals traits. Different sorts of artificial selections are possible (directional, stabilizing and divergent), but in commercial breeding programs the directional selection is mostly used because the breeder most often wants to increase the breeding goal traits. In that way selection can be done (i) by keeping as reproducers the candidates whose genetic merit exceed a certain threshold Chapter 1. Animal breeding programs (s), named as "truncation selection" (e.g., Bichard et al., 1973) or (ii) by approaches that try to maximize the genetic gain while constraining the increase of inbreeding, named as "optimum contribution selection" [START_REF] Meuwissen | Maximizing the response of selection with a predefined rate of inbreeding[END_REF]. Different studies reported that, in long term perspectives, optimum contribution selection greatly increases the genetic gain because it optimizes the contribution of selected parents to next generations and thus, limits inbreeding and its ultimate consequences (e.g., [START_REF] Meuwissen | Maximizing the response of selection with a predefined rate of inbreeding[END_REF][START_REF] Avendaño | Expected increases in genetic merit from using optimized contributions in two livestock populations of beef cattle and sheep[END_REF][START_REF] Koening | Approaches to the management of inbreeding and relationship in the German Holstein dairy cattle population[END_REF].

Mating is to decide on how to mate the selected candidates in way to maximize genetic gain and decrease the rate of inbreeding. In other words, to optimize both short and long term genetic gains (Colleau et al., 2009). Mating decisions have an impact on selection response and genetic variability in populations following selection because some selected animals are more related than others and if mated can results in higher inbreeding in progenies. In principle, there are two ways to make pairs of mates: random and nonrandom (assortative, minimum coancestry, compensatory, and factorial mating). Ideally, mating should be performed to give an optimal compromise between genetic gain and inbreeding. Different methods that can optimize mate allocation have been suggested (e.g., [START_REF] Sonesson | Mating schemes for optimum contribution selection with constrained rates of inbreeding[END_REF]Colleau et al., 2009;[START_REF] Kinghorn | An algorithm for efficient constrained mate selection[END_REF].

Different reproductive technologies, such as Artificial insemination (AI) for males and multiple ovulation and embryo transfer (MOET) for females can be used to increase the number of progeny per parent and thus, remove limitations of performing high selection pressure. In practice, unlike AI, MOET is used on a low scale and mostly in dairy cattle [START_REF] Smith | Use of embryo transfer in genetic improvement of sheep[END_REF][START_REF] Cognié | Current status of embryo technologies in sheep and goat[END_REF][START_REF] Van Arendonk | Factors affecting commercial application of embryo technologies in dairy cattle in Europe-a modelling approach[END_REF]. The main advantage of these technologies in genetic improvement has been a reduced number of selected parents and increased genetic and economic gains of breeding programs. They are also used as tools to diffuse genetic gain.

Response to selection

Generally speaking, selection is one of the mechanisms (others being drift, mutation and migration) that change the allele frequency of the population, and hence impact different characteristics of the population. In breeding programs, selection targets to increase the frequency of desirable alleles.

Genetic gain

Selection changes the performance of individuals and populations in following generations after selection by increasing the allele frequencies of the favorable genes. In breeding pro-Chapter 1. Animal breeding programs grams these changes are observed in improved performances of the offspring compared to their parents. This gain can be theoretically predicted when designing a breeding program. The rate of genetic gain as a response to one cycle of selection is a function of selection intensity (i), accuracy of breeding values (r IH ), additive genetic standard deviation (σ a ) and generation interval (L). In most breeding programs the amount and type of information available to evaluate selection candidates vary and consequently, the r IH varies. Some candidates have to wait for long time to acquire information that guarantees high accurate EBV and thus, the age of candidates when their offspring are born is also higher. This is the case of males when they have to be progeny tested to estimate their breeding values, for instance, for maternal traits. Also there exist different needs in numbers of male and female parents because they have different reproductive capacities, affecting the selection pressure that can be done. To account all these differences in predicting the rate of genetic gain [START_REF] Rendel | Estimation of genetic gain in milk yield by selection in a closed herd of dairy cattle[END_REF] proposed to consider four different selection paths, i.e., males to produce males (MM), males to produce females (MF), females to produce males (FM) and females to produce females (FF). If different classes of selection candidates are used for a given selection path (for example, the MF path may contain males in progeny testing and selected males after progeny testing is finalized) it can also be taken into account in the formula by weighing the genetic superiority of each class by its contribution to the selection path. A model can be written as:

AGG = p j c jp i j r IH j σ a j p j c jp L j
Where AGG is the annual genetic gain and c jp is the fraction contributed by animal category j to selection path p.

In predicting genetic superiority of selected candidates, truncation selection is commonly used, where only animals above a certain EBV value, T (threshold), are chosen as breeding animals. With the common assumption of normal distributions of EBV, the selection intensity is a function of the selected proportion (q).

i = exp(-0.5T 2 ) q √ 2π; where q = ∞ T (exp(-0.5x 2 ) √ 2π)dx
When n individuals are selected from a limited number (say m) of selection candidates the above formula overestimates the selection intensity. This can be corrected from order statistics [START_REF] Barrows | Expected selection differentials for directional selection[END_REF]. The corrected selection intensity, i * , can be calculated Chapter 1. Animal breeding programs accounting for the population size:

i * = i -[ 1 -q 2q(m + 1) ] 1 i
Where i is the selection intensity assuming selection candidates are independent and effectively many (i.e., infinite number), q is the proportion selected and m is the finite population size. [START_REF] Bulmer | The effect of selection on genetic variability[END_REF] suggested an alternative method to account for finite sample size by correcting on selected proportion, q * , with q * = (n + 0.5)/[m + n/(2m)].

These corrections are particularly important in breeding schemes that have very few individuals in breeding units. Also, the predicted selection intensity (i or i * ) should be corrected for correlations among EBVs of selection candidates. When genetic evaluation depends largely on information from close relatives (e.g., full sibs, half sibs and parents)

estimates of EBVs are correlated because all candidates are evaluated using same source of information. This further reduces the realized selection intensity and can be predicted as in [START_REF] Hill | Order statistics of correlated variables and implications in genetic selection programmes[END_REF]:

i * * = i -[ 1 -q 2q(m + 1)(1 -t + t/n) ] 1 i
Where t is the intra-class correlation between selection candidates, which is the ratio of between individual variance (genetic and permanent environment) and phenotypic variance, t = (var(g) + var(pe))/var(y). Other approximations to correct for inter-class family correlations have also been proposed (e.g., [START_REF] Phocas | Approximating selection differentials and variances for correlated selection indices[END_REF]. These corrections are important because many genetic evaluation methods use family member information (e.g., BLUP), which means selection is not only between individuals but also between families. As families become larger, their number becomes small and EBVs of sibs are more similar, which decrease the selection intensity.

Variance reduction

Selection also reduces genetic variance and thus, reduces genetic gain in following generations due to the "Bulmer effect" (Bulmer, 1971). It is well established that a selected group of individuals will be more similar than the population as a whole due to gametic phase disequilibrium. The additive genetic variance (σ 2 a ) of the population is reduced to σ 2 * a in the selected group (Bulmer, 1971).

σ 2 * a = (1 -r 2 IH k)σ 2 a Chapter 1.
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In which r 2 IH is the square root of the accuracy (reliability) of selection; k = i(i -T ) is variance reduction factor; i is the selection intensity and T the corresponding deviation at the point of truncation from the population mean. The magnitude of the decrease in variance by selection depends on the selection precision and selection intensity (Bulmer, 1971).

The decrease in genetic variance for following generations is counteracted by free recombination at meiosis (Mendelian sampling), and a balance is reached after a few generations. The recurrent equation for σ 2 a of following generation (t + 1) is:

σ 2 a(t+1) = 0.5(σ 2 * as(t) + σ 2 * ad(t) ) + 0.5σ 2 a(0)
Where σ 2 a(t+1) , σ 2 * as(t) and σ 2 * ad(t) are the variances of progenies, their sires and dams, respectively, and 0.5σ 2 a(0) is the Mendelian-sampling variance, which is estimated to be equal to half of the genetic variance of the unselected population. If the base population has under gone selection, the level of inbreeding should be accounted for because it further decreases the all three terms of variance with a factor: 1 -F t-1 ,with F t-1 the inbreeding level in parental generation.

Inbreeding

In addition to the above common effects of selection which are usually taken into account while modeling breeding programs, selection also increases inbreeding in offspring of the selected population and decreases the effective population size (Ne). Selection increases inbreeding: (i) by changing the contribution of individuals to the next generations: assuming random mating of selected individuals, selection still increases the rate of inbreeding because selected individuals (or families) contribute more offspring to the next generations than unselected individuals; (ii) by affecting the relationship among individuals: normally, all individuals in breeding program are related to some extent, but, selection further increases the relationship in selected individuals (i.e., parents of the next generations) because individuals from same family (related individuals) tend to have more similar breeding values than the average of the population and, consequently are often selected or culled together. All these phenomena increase the frequency of some alleles (desirable) at the expense of others (undesirable), and consequently increase the probability that two alleles taken at an arbitrary locus in an individual be identity by descend (inbreeding). The magnitude of the effect of evolutionary force (in particular selection) of the inbreeding on population level is classically measured by the rate of Chapter 1. Animal breeding programs inbreeding (∆F ) [START_REF] Wright | Coefficients of inbreeding and relationship[END_REF]:

∆F = (F t -F t-1 )/(1 -F t-1 )
Where t is the generation number and F t is the average inbreeding level in generation t.

In idealized population (a population whose sex ratio equals 1, its members can mate and reproduce with any other member of the other sex and no overlapping generations) only submitted to drift due to its limited size, the level of inbreeding can be approximated as:

F t = (1 -1/2N )F t-1 + 1/2N
Where N is the number of unrelated individuals giving ∆F = 1/2N the rate of inbreeding. When the breeding population departs from the idealized population the inbreeding rate can still be calculated by the previous formula but, with effective size of the population (Ne) instead of the breeding individuals: ∆F = 1/2N e. When there are different numbers of male (N m ) and female (N f ) parents the inbreeding rate is approximated as: ∆F = 1/8N m + 1/8N f . However, when the population is undergoing selection such as in real breeding program, the ∆F is no longer directly proportional to the number of breeding parents because parents do not contribute equally to the next generations and some parents are more related than others. In ongoing breeding program, it can be calculated directly from the pedigree of the breeding individuals. The inbreeding of an individual i is equal to the coefficient of kinship between his parents and can be calculated as:

F i = A ii -1
Where F i is the inbreeding level of the individual i at the current generation and A ii are the diagonal elements of the matrix of relationships among all individuals in pedigree.

In modeling breeding programs, different methods and theories on the prediction of inbreeding in population undergoing selection have been developed (e.g., [START_REF] Woolliams | Predicting Rates of Inbreeding in Populations Undergoing Selection[END_REF]. Though the increase in level of inbreeding is unavoidable, effort can be put in practical breeding programs to minimize this increment. This is reflected in different methods and algorithms to assist in selection and mating by optimizing the contributions of parents to offspring (e.g., [START_REF] Meuwissen | Maximizing the response of selection with a predefined rate of inbreeding[END_REF][START_REF] Koening | Approaches to the management of inbreeding and relationship in the German Holstein dairy cattle population[END_REF]Colleau et al., 2009;[START_REF] Kinghorn | An algorithm for efficient constrained mate selection[END_REF]. These algorithms are far from being routinely used in all breeding programs, but breeders can use other simpler practical procedures to decrease the increment of inbreeding. For example, in France, in the Lacaune dairy sheep breeding program, beyond classical rules of selection and mating, special attention is also paid Chapter 1. Animal breeding programs on the relationships between selection candidates to limit co-selection or mating of close relatives. In most meat sheep breeding programs in France, selection is done within group of individuals of relatively same age and from same grand sire families. In addition, the fact that, in some breeding programs, a proportion of matings is done with natural service males decreases the rate of inbreeding.

Modeling and optimizing breeding programs

Designing a breeding program is a complex task because of many interactions between many population and genetic parameters used. It also involves many actors who expect different outcomes of the breeding program (i.e., breeding organizations, breeders, farmers and consumers). For that, mathematical methods are used to evaluate different alternatives before any implementation. The best design is the one that maximizes the breeding objective. Regardless of the method, modeling a breeding program deals with mathematical description of the population and setting up rules for genetic evaluation, selection and mating of selection candidates for a period of time. Such models predict consequences of corresponding breeding program designs in terms of genetic gain, (breeding) return, (breeding) costs, (breeding) profit, generation interval, rate of inbreeding, etc. for a certain period of time (investment period). Broadly, there are two basic approaches of modeling a breeding program: deterministic and stochastic.

Deterministic models

Deterministic approach uses mathematical equations to describe relations between population and genetic parameters and uses of genetic theory to set rules for evaluation, selection and mating of reproducers. It models the breeding program on the population level (groups of individuals) and uses population parameters (demographic, genetic and decisional variables) to predict gains (genetic or monetary) and inbreeding.

Asymptotic model of genetic gain

Using elements defined in section 1, such as selection intensity, selection accuracy and generation interval, the expected annual genetic gain (AGG) from a breeding program is directly predicted using the Rendel and Robertson formula [START_REF] Rendel | Estimation of genetic gain in milk yield by selection in a closed herd of dairy cattle[END_REF], as:

AGG = 4 p=1 i j r IH j σ a j 4 p=1 L j
Where i j and r IH j are selection intensity and accuracy of the animal category j, L j is the average age of category j when their offspring are born and summation is over the 4 selection paths as defined by [START_REF] Rendel | Estimation of genetic gain in milk yield by selection in a closed herd of dairy cattle[END_REF] (MM, MF, FM and FF for males to males, males to females, females to males and females to females, respectively). This formula assumes that only a single category of animals contributes to a corresponding selection path and thus all categories contribute equally to next generations. Since then, different studies have extended the formula to account for other situations, such as many more selection categories and the fact that animals in same category but with different age can actually have different genetic levels and could be further divided into age classes ( e.g., Bichard et al., 1973;Elsen and Mocquot, 1976;Ducrocq and Colleau, 1989). Bichard (1973) extended the model to include the idea that animals of younger age classes are genetically superior to older animals because the former are from the parents that are more improved (considering the population is under selection). He proposed the optimal selection method, where all selection candidates are continuously evaluated and selected on unique truncation point any time they gain information. For that, the average superiority of a selection category is given as:

µ sj = l γ sjl i sjl r IH sjl σ a sjl
Summation is over all age classes considered (depends on time units this animal category is used for breeding). µ sj is the average genetic superiority of selection category j of sex s(males or females); γ sjl is the contribution of age class l, i sjl and r IH sjl are selection intensity and accuracy for the selection of selection category j of sex s in the age class l and σ a sjl is corresponding genetic standard deviation.

With asymptotic model, it is assumed that the AGG is predicted at the equilibrium stage, i.e., when the same selection scheme is practiced for many generations. Otherwise, it does not take into account of the inherent fluctuations of genetic gain from a single round of selection to subsequent generations, especially for the first few time units after selection is practiced.

Dynamic model of genetic gain

The methodology based on a dynamic model was developed independently by Hill (1974) and Elsen and Mocquot (1974) and is now commonly known as "gene flow method" .

The procedures they developed enable to explicitly describe and follow the passage of genes of selection candidates through a population with overlapping generations for a Chapter 1. Animal breeding programs defined time period (i.e., investment period). This is particularly adapted to prediction of discounted returns from a breeding program, the economic gain being calculated on the basis of the flow of genes of each sex-age group of candidates through the population.

To apply the principles of gene flow, all animals in any breeding tier (e.g., nuclear, multiplication or commercial tier) must be divided into sex groups (males and females), and each group further structured in terms of age (e.g., time unit: period between two reproductive cycles) classes to form several different sex-age classes. Three important phenomena are considered: reproduction, aging and selection:

1. At any selection cycle, individuals of each sex in an age class 1 get their genes from selection candidates who were in previous cycle (generation) (i.e., through reproduction process).

2. At any time unit t, individuals of any sex-age class other than 1 got their genes from animals which belong to same sex, but one unit younger class at t -1 (i.e., through aging process).

3. When a selection step occurred during the cycle t -1 for a class of individuals of age a -1, the mean genetic value of the corresponding animal of age a at time unit t is increased accordingly.

The gene proportion and hence genetic superiority at time unit t can be given as:

m (t) = P m (t-1) + ∆
Where m (t) is a vector of mean additive genetic values of selection groups at time t, P is transmission matrix whose elements are proportions of genes of each sex-age class at time unit t, received through reproduction and aging, from relevant sex-age classes and ∆ is a vector of genetic superiority of selected animals, whose elements differ from zero if a selection step occurred for the corresponding class, during the cycle. Unlike the asymptotic model, the gene flow method accounts for the fluctuation of genetic superiority due to overlapping generations.

The second credit of the dynamic model (gene flow) is that the discounted returns from a breeding program can be predicted along with the genetic gain. To take into account the time delay until the genetic superiority of selected candidates for a trait can be expressed in certain groups of progeny or in the whole breeding population in subsequent generations, the gene expression in all animal groups and generations have to be discounted to a fixed time (i.e., time when animals were selected as parents). Then, Chapter 1. Animal breeding programs the economic return from a single sex-age class candidates to following generations can be given by the following formula:

R = T t=1 n em (t) vd (t)
Where R is the discounted return, n is a vector with numbers of animals by sex-age group that express the trait in each given time unit, e is the number or amount of expressions of the trait per animal, v is a vector with economic values per unit of genetic improvement for the trait per animal that expresses the trait in each sex-age group and d = 1/(1 + r) t is a discounting factor at time t with r, the discount rate per time unit.

Being deterministic in nature, the above two models are very advantageous in computation time and resources. This favors evaluation of many alternative breeding programs and the most optimal can be recommended. Also deterministic models give more insight on how genetic and monetary gains and inbreeding are realized in breeding program because they are modeled explicitly from the theory of quantitative genetics. However, deterministic models can get very complex because the functionality and evolution of the population have to be followed by analytical formulae. The simplification can lead to inaccurate predicted outputs.

Stochastic model

In stochastic approach, a breeding program is modeled on individual level by simulating each animal, its genetic and phenotypic characteristics. The breeding program is simulated in detail on a computer, emulating what would happen in real life. The simulator create pedigree and performance records, just as would be in real breeding program.

Then, relevant statistical methods are used to estimate breeding value and the best candidates on these EBV used to produce the next generation.

For that, following rules of inheritance, a base population of parents is simulated:

y i = µ + g i + e i
Where y i , g i and e i are phenotypic value, genetic value and environmental effect, respectively, for individual i and µ is the pre-defined population mean. Except the mean, other variables in the model are random variables and are sampled from a known distribution (e.g., normal distribution). After the base population is simulated, rules of genetic evaluation, selection and mating (as reviewed in section 1) are defined and the best males and females on merit of selection criterion are allowed to produce next generation. The progenies' phenotypes can be created as:

y kij = 0.5g si + 0.5g dj + g mkij + e kij
Where g si and g dj are the genetic values of the sire and dam, g mkij is the Mendelian sampling contribution to the individual k and e kij is the corresponding environmental effect. The Mendelian (g mkij ) and environmental effect (e kij ) are obtained for each progeny by sampling from a known distribution (as the one parents were sampled from).

With stochastic models, the genetic gain per time unit can, for instance, simply be calculated as the difference in average of true breeding values of the animals born in t = T with T the total investment period as mentioned above, and animals born in time unit t = 0, divided by the time units in investment period:

AGG = 1 n [ n i=1 BV i t=T - n i=1 BV i t=0 ]/T
In which n is the number of animals, BV is the true breeding value and other terms are as defined above.

Because the breeding population is simulated in detail, stochastic breeding programs are close to reality. Rules of genetic evaluation, selection and mating are set as in real breeding program and thus, responses to selection such as genetic gain, inbreeding, variance reduction, etc. are estimated. Its disadvantages relate to time/computer power requirement and the user does not gain much insight compared to deterministic approach. Simulation of a large number of replicates of a large breeding scheme may take from several hours to days making the approach less suited as an operational tool to quickly evaluate alternative schemes. Since stochastic simulation does not explicitly model mechanisms like accuracy, generation interval, etc., the user may not be able to appreciate the relationship between their determinants. Hence, it is difficult to extend results to other breeding schemes that have not been simulated.

Optimizing breeding programs

In modeling breeding programs many parameters are used. Many combinations of decision variable levels are possible, giving many different values of the breeding goal. It is thus necessary to use mathematical methods to find a combination of all decisional parameters that maximize the breeding objective. In mathematical terms, the optimization Chapter 1. Animal breeding programs of a breeding program is to maximize an objective function under certain constraints.

The goal is to determine the values of decision parameters (e.g., number of males selected, capacity of progeny testing, etc.) which correspond to a maximum value of the objective function, considering some inherent biological, demographic and/or economic constraints. The mathematical form of this problem can be written as:

M ax f (x) or M in f (x); subject to x l < x < x u constraints
Where x is a vector of decisional variables to be optimized, x l and x u are corresponding lower and upper limits, respectively. The objective function to be optimized depends on the breeding goal and can be technical efficiency (i.e., increase the annual genetic gain, decrease the rate of inbreeding) or economic efficiency (i.e., increasing profit, reducing costs, etc.).

Current organization of the French small ruminant breeding programs

In France, modern breeding programs for sheep and goats were conceived in the 1970s.

All major breeds are structured with a pyramidal management system of two tiers: The top tier contains the nucleus flocks where the genetic superiority is created and the lower tier includes the commercial or production farms that use the genetic superiority. [START_REF] Lagriffoul | Sheep breeding programs in France using modern reproductive methods : Application for genetic improvement of scrapie resistance in the national sheep flock[END_REF].

There are many breeding programs with a great variability in terms of operations and resources. In this section a brief description of the current structure of meat sheep, dairy sheep and dairy goats breeding programs is given. On top of these two groups of traits, a special attention was put on resistance to scrapie disease. After the mad cow disease crisis, selecting reproducers carrying favorable alleles at the PrP gene is compulsory.

Meat sheep breeding programs

Infrastructures or tools of breeding programs

In France and most other countries, the nucleus flocks ( the "breeding stock") are owned by farmers. 

Nucleus farms

They are owned by farmers who are member to the "Organisme de Sélection" of the given breed. These farmers (breeders or "Sélectionneurs") follow strict routine activities of official performance recording supervised by the designed "Organisme de contrôle de performance or performance recording organism" (OCP). The latter organizes ruminants data recording under the supervision of the Ministry of Agriculture. Even if not official Reproduction for-mula+ weight at ˜30 days Prolificacy, growth at 30 days (PAT30) and Average Daily Gain (0 -30 days) indices of parents are calculated and candidates selected on their parents' index values.

Complete formula

Formula Elevage+ weight at ˜70 days Prolificacy, growth at 30 days (PAT30) and Average Daily Gain (0 -30 days), indices of parents and candidates' own growth at 70 days (PAT70) are calculated. Candidates are selected on their parents and own PAT70 index values.

breeding tools, nucleus farms are fully involved,since breeding activities start here. In the breeding process nucleus farms serve mainly two roles: First as breeding tools, where selection candidates are born and earlier measurements recorded. Depending on the breed and breeding goal three different formulas are followed in performance recording (see Table 1.2). These records are used to update the parents' breeding values which are, the only information used to rank young lambs in nuclear farms. The selection index of the candidates is calculated as the mean breeding value of their parents. Based on this index and scores on conformation, female lambs judged superior are kept in farms as ewe replacements while best male candidates are sent to collective centers (CE or SCI) for further control and evaluations.

Second, to support progeny test: For breeding programs with progeny testing for maternal abilities, a proportion of ewes in the nucleus flocks are mated to progeny test rams to produce ewes that are controlled for the evaluation of their sires. It is important to note that the testing capacity can be partially constrained by the proportion of females available for this activity and consequently affect the selection intensity and genetic progress made in progeny testing breeding program.

Livestock center (CE, Centre d'Elevage)

The CE centers are used for collective management of best male lambs selected from nucleus farms. They are mainly used for breeds with small population size and without progeny testing on meat abilities (or sometimes testing for only maternal traits). The CE centers have flexible and relatively simple protocol compared to other breeding tools:

-Male candidates, selected on their parents' EBV enter the centers aged approximately 3 to 5 months and are controlled for around 4 months (a period from weaning to first service). -Candidates are given notes "index CE" which are combinations of their parents' average EBV and their own scores on conformation traits. Sometimes, there is no genetic selection but management. The candidates controlled in CE are used mostly as natural service rams in nucleus and production farms. The selection and management done in CE help to maintain the breed standard, to organize exchanges of males among herds (in view to conserve genetic diversity) and to share costs of evaluating young males.

Individual Control Station (SCI, Station de Control Individuelle)

In addition of being collective management centers of best male candidates (just as CE), the Station de Control Individuel (SCI) have protocols to control and evaluate young male candidates on their own meat traits. The procedures ensure that after an adaptation period in the center, male candidates can be genetically compared. The unbiased genetic comparison is made possible by limiting any factor other than individual genetics to influence the expression of desired traits. So, males enter in the SCI as group of relatively same age (70 +/-10 days) and are compared within group (intra-bande) to limit age effect . Adaption period lasts, in average, 2 weeks and concentrate feed are given ad libitum or served in equal quantity to each candidate. In most SCI centers four traits (growth, average daily gain, muscle fat content and lean meat content) are recorded and a total merit index is calculated. Almost, all animals with an index superior to the mean are preselected as future reproducers (qualified as "Recommandés"). The best are sent to the progeny testing centers (CIA) and the remaining Recommandés used in nucleus flocks as natural service males. In production farms, the Recommandés are used, but also some of the low quality rams are used in nucleus farms because they are actually superior to their contemporaries of the commercial farms. Generally, the selection pressure is low to medium for all selection groups across breeds, due to many factors such as: small population size, low use of AI, use of fresh semen only, concerns of genetic variability, etc.

Artificial Insemination Center (CIA, Centre d'Insémination Artificielle)

CIA centers are established to manage rams in progeny testing and facilitate optimal semen collection and dissemination. Each ram in progeny testing is allowed to produce a sample of offspring which are controlled for his evaluation. The testing capacity is breed Chapter 1. Animal breeding programs and OS dependant but medium, in general, for all meat sheep breeding programs. The protocols ensure that each candidate has, at least 20 progeny for his accurate evaluation.

Depending on the breed and breeding goal, rams in CIA centers are progeny tested on either, maternal traits, meat traits or both. After progeny testing the best rams are selected (proven rams) and kept for large dissemination of genetic progress, mainly, in the nucleus flocks.

Genetic Evaluation, qualification and selection of reproducers

Genetic evaluation is officially done by INRA and EBV (commonly called index) published by Institute de l'Elevage. In general, BLUP methodologies are used to simultaneously estimate EBV and fixed effects of all candidates for all traits recorded (traits of the selection criteria used to predict breeding goal). At each stage of selection, elementary index (EBV of each trait) or total merit index combining all traits is produced. In nucleus farms, lambs are evaluated on parents' performances (parents EBV, including prolificacy and milk value). In SCI, the index of young males is based on own meat performances recorded in SCI and in CIA, index of progeny tested rams is estimated based on their progeny test records. After each evaluation, candidates are qualified and the best selected for reproduction or for following evaluations:

In nucleus farms: After evaluation on their parents' performance and screened for scrapie resistance (based on PrP genotypes), lambs are qualified as "reconnu". After elimination on conformation, the best young males sent to CE or SCI for collective management or for management and evaluation, respectively. The "reconnu" females are further evaluated on their milk and prolificacy values and these EBV are regularly (one to four times per year) updated as they gain more information. The best females are qualified as "Mère à Bélier (MB)" (i.e., females with the highest EBV and sufficient accuracy) and "Mère à Agnelle (MA)" (as second best). The remaining proportion is the "Mère de Service (MS)" which are least preferred as parents.

In SCI: The "reconnu" male candidates in SCI are evaluated on their meat performances. Depending on the breed and breeding goals, different traits are measured and SCI total merit index calculated (see tools of breeding programs) and expressed in scores of 0 to 100 (the worst to the best candidates, respectively). All candidates with an index superior to the mean are qualified as "Recommandés". Approximately, 20% best of the total SCI population are chosen for progeny testing and the remaining of the recommandés are used as natural service rams (Evrain, 2008).

In CIA: The "recommandés" selected for progeny testing are further evaluated on their progeny's performances. As the SCI index, the CIA total merit index is a combination of all traits measured on the progeny (depending on the breeding goal). It is expressed as a note of -10 to 10 (worst to the best candidates). After this evaluation , depending on the breed, candidates are qualified as AMBO (proven rams best for meat traits), ELITE (best for both meat and maternal traits), and AMEL (best for maternal traits). These males have the highest genetic superiority of the selection cycle and are thus used preferentially to produce male replacements (Male to Male path). Some breeding programs progeny test for a single group of traits, i.e., meat or maternal abilities and in that that case the best proven rams can be AMBO or AMEL, respectively.

Mating and dissemination of genetic gain

In mating, it is decided which of the selected males will be bred to which of the selected females (planned mating) to generate the highest genetic superiority in male replacements first and then female replacements. For example, Mère à Bélier x Proven rams mating preferentially give male replacements. Dissemination of genetic progress from nucleus to production farms is done by selling IA, live Rams and/or females.

Dairy sheep breeding programs

The French dairy sheep population was estimated at 1.445 million ewes, of which 302,309 ewes had official records and thus constitute the breeding stock (in 2012). Breeding programs are organized for 5 breeds: Lacaune, Red-Faced Manech, Black-Faced Manech, Basco-Béarnaise and Corse. Like meat sheep, breeding programs are based on the pyramidal management system where the breeders of the nucleus flocks at the top use all the breeding tools needed (for pedigree and official performance recording, breeding value estimation, selection and planned mating of reproducers), to create genetic progress, and to organize its dissemination to the commercial flocks. Unlike the meat sheep, dairy sheep selection plans have relatively similar structures and use same types of breeding tools (breeding centers and AI centers) for the 5 breeds. However, equipments can vary with breeding criteria and capacity of the breeding organization. All these programs perform selection at three stages: early selection of lambs based on their parents' breeding values, selection of females on own phenotypes and progeny testing of rams. Table 1.3 gives figures to illustrate the size of the respective breeding units. were taken into account in the Lacaune breed, through udder morphology and mastitis resistance. Moreover, from the years 2000, resistance to scrapie (using information of PrP gene) was an additional breeding goal, applied to selection male candidates. Till early 1990s, the total merit index (ISOL, index synthétique ovin lait) was of the type:

H ISOL = BV F Y v F Y + BV P Y v P Y
, and later included P C and F C [START_REF] Barillet | Amélioration génétique de la composition du lait des brebis laitières: situation, résultats et perspectives[END_REF].

The weighting factors (v) are determined depending on the breeding goal and are different from breed to breed. The BV t are corresponding breeding values of trait t as defined above. By including fat and protein yield, the milk quantity is indirectly improved owing to positive correlations with milk yield. However, as there are unfavorable correlations between yield traits and content traits (for a review, see [START_REF] Barillet | Genetic improvement for dairy production in sheep and goats[END_REF], compromise had to be done when calculating weighting factors (v). In the late nineties and early 2000s, traits related to resistance to mastitis (e.g., somatic cell count) and udder conformation (e.g., teat angle, udder cleft, udder depth) have been studied (e.g., [START_REF] Barillet | Genetic analysis for mastitis resistance and milk somatic cell score in French Lacaune dairy sheep[END_REF][START_REF] Rupp | Evaluation génétique des béliers Lacaune sur les comptages de cellules somatiques pour l'amélioration de la résistance aux mammites[END_REF] and appeared to have unfavourable correlations with production traits.

As production traits showed a regular and efficient genetic gain, functional traits had to be included in the breeding goal of the Lacaune selection program. Functional traits should also be included in breeding programs of other dairy sheep in near future. Indeed, Chapter 1. Animal breeding programs as a history of the dairy sheep improvement in France, the Lacaune dairy breeding program was the first to be established and evolved its breeding tools with respect to its breeding goals. It has since remained the most elaborate and advanced dairy sheep breeding program, and hence, a model for other dairy breeds in terms of breeding goals and breeding tools but, of course, with some breeds specificities.

Tools of breeding programs

The five dairy sheep breeds are almost exclusively (Pyrenean and Corse breeds) or dominantly (Lacaune breed) raised in their region of origins, one of the reason being the link between the cheese produced and the local breed to protect the originality of the cheese.

They are concentrated in three regions: Rayon de Roquefort for Lacaune breed; western Pyrenean area for RFM, BFM and Basco-Béarnaise breeds and Corsica Island for Corse breed. Therefore, breeding programs and tools used are organized in each breed specific region (Table 1.4). The farmers (breeders) of the nucleus stock of a given breed adhere to the breed organization and one of the breeding companies of the given breed. Among other contract obligations, farmers allow official routine recording (performed by recording organizations, which are closely linked to breeding companies, if not the same) of the specified traits. Through official recording, all the breeders of the nucleus support progeny testing (one half of the AI done are from rams in progeny-testing). They have to provide the young rams chosen from planned mating to the breeding company (for future progeny testing). They also can sell reproducers to the commercial farmers. Out of the nucleus flocks, farmers of commercial flocks also may do some simplified milk recording to be able to accurately rank females within flocks.

In dairy sheep, three different types of infrastructures are recognized in coordinating breeding activities, namely, nucleus farmers, breeding centers and AI centers. Similar to meat breeding programs, nucleus farms is the place where first breeding activities are done, i.e., evaluation and selection of lambs; recording, evaluation and selection of females. They also facilitate progeny testing. The best young rams are chosen by the breeding companies to enter the breeding center at about 1-month-old. All the young rams gathered in the breeding center have a similar management, especially feeding and health management. They are also submitted to light treatments or melatonin implantation in order to favor the future semen production. Conformation and standard traits are also screened, as well as the capacity to give goad semen for AI, and the best male candidates are sent to AI centers for progeny testing. None of the traits observed in the breeding center are included (yet) in breeding goal to require selection. AI centers are used to manage, evaluate and select AI rams. Like breeding centers, AI centers belong to breeding company which owns AI rams. 

Genetic Evaluation and selection of reproducers

INRA carries out the official genetic evaluation and Institut de l'Elevage is in charge of publishing the indices. Only records from official recording system are used for genetic evaluation. BLUP animal model with repeated records is used, which includes fixed environmental effects and random additive genetic and permanent environment effects [START_REF] Barillet | Use of an animal model for genetic evaluation of the Lacaune dairy sheep[END_REF]Astruc et al., 2002). Also, since 1999, the evaluation takes into account heterogeneity of variances, using a model close to the one set up in French dairy cattle genetic evaluation [START_REF] Robert-Granié | Accounting for variance heterogeneity in French dairy cattle genetic evaluation[END_REF]: variances (genetic, residual and permanent environment) are allowed to vary according to flocks, year and parity (Astruc et al., 2002). Indices for each trait and a total merit index are published as deviation from EBV of a floating base updated each year. Selection candidates are then selected based on the total merit index at each selection stage (parents' average and mass selection in nucleus flocks and progeny testing selection in AI centers). After parents' average selection, the best young males born from planned mating are destined to progeny testing and the second best reared to serve as natural service (NS) rams. After progeny testing the best proven rams are qualified as sires of rams (PAB, "Pères à Béliers") and the second best qualified as general proven rams (commonly known as "améliorateur"). Normally, all proven rams reproduce with AI. Females with the best breeding values are qualified as dams of rams (MB, "Mères à Béliers"), the rest of the females being dams of ewes (MA, "Mères à Agnelles"). 

Mating and dissemination of genetic gain

Mating is performed to ensure that best parents are used to produce replacements of males and then, females. There is what we can call "planned mating", where PAB are mated to best females (MB) and "ordinary mating", where any qualified category of males is mated to remaining qualified females. Planned mating is normally performed with 100% AI and with a priority to produce males to replace elite males. Ordinary mating is done by both AI rams and NS rams, and is usually done to satisfy the needs of replacing females. Contrary to cattle or goats, in sheep, AI is done by fresh semen, and that decreases the number of offspring each ram can produce. Nevertheless, the rate of AI use in nucleus farms is, in average, higher in French dairy sheep breeding programs compared to other small ruminants breeding programs, in France and in the world. The AI rate in nucleus flocks was 85% for Lacaune, around 53% for Pyrenean breeds and 39% for Corsican breed (Astruc et al., 2002). The proportion of AI with progeny-testing rams is high since it represents 50% of the AI, this proportion being the same in each nucleus flock. The rest of the AI are performed with sires of rams (mainly) or proven rams. Genetic progress is diffused from nucleus flocks to commercial population by AI or natural mating rams. There is few diffusing of ewes in dairy sheep.

Dairy goats breeding programs

In France there are many goats breeds, but, only two dairy breeds (Alpine and Saanen)

have well organized breeding programs and dominate the total goats population (59% for Alpine and 38% for Saanen of total goats population in France). Other breeds have newer and modest breeding programs (e.g., Angora breed) or conservation programs whose primary purpose is to preserve their genetic diversity and maintain and if possible increase their numbers. The breeding programs are coordinated by CAPGENES, which is the breeding company accredited by the Ministry of Agriculture. Breeders own and manage females of the breeding units, but, elite males belong to CAPGENES. Table 1.5

gives numbers to illustrate size of the dairy goats breeding programs.

Breeding programs of Alpine and Saanen

With their inherent potentials for milk production, Alpine and Saanen are preferred to local breeds by almost all goat farmers. This advantage has been greatly enhanced over the last 30 years by the establishment of effective selection plans.

Breeding goal

In general, a breeding goal is specific to each breed and production system and is defined to meet the needs of stakeholders and market demands. So, in France, the ideal breeding goal for Alpine and Saanen would be to breed animals that give high quantity and quality of milk for cheese. Initially, as was in dairy sheep, the breeding goal of Alpine and Saanen breeding programs has been to improve milk production traits, such as milk yield and its composition (i.e., milk (MY), fat (FY), protein (PY), fat content (FC) and protein content (PC)), traits that are essential for cheese yield. The breeding goal was an index "Caprine Combined Index (ICC) that combines these traits with economic weighing factors specifying the importance of each trait. Since 2000s morphological traits relative to body (thorax perimeter, back, and rump angle), feet and legs (distance between hocks, feet angle, pasterns), udder (floor position, rear udder attachment, rear udder, fore udder and udder profile), teat dimension (length, diameter, form), and teat location (angle, placement, orientation) have been studied [START_REF] Clement | Elaboration d'un index synthetique caprin combinant les caracteres laitiers et des caracteres de morphologie mammaire[END_REF] and are being included selectively. [START_REF] Clement | Elaboration d'un index synthetique caprin combinant les caracteres laitiers et des caracteres de morphologie mammaire[END_REF] showed that the correlations among these later traits and to production traits are different in Alpine and Saanen. So, the weighing factors given to each trait in the index are different for the 2 breeds. These morphology related traits are combined in index called "Caprine morphologic index (IMC) and the two indices form a global index (IG), specific to each breed [START_REF] Clement | Elaboration d'un index synthetique caprin combinant les caracteres laitiers et des caracteres de morphologie mammaire[END_REF]. The inclusion of mastitis related traits is under study [START_REF] Clement | Vers la mise en place d'une sélection pour la résistance aux mammites chez les caprins laitiers[END_REF].

Tools of breeding programs

Similar to dairy sheep, the first breeding activities of dairy goats breeding programs are done in registered and contracted farms (farms that have official milk recording system).

Pre-selection of young males, selection of females and management of females is done in these nuclear farms. Then, preselected males are managed in livestock centers till progeny testing. Males qualified for progeny testing are kept in AI centers and progeny tested on females of the nuclear farms.

Selection, mating and diffusing of genetic gain

After selection on parent average EBV, candidates are selected on their breeding values estimated by BLUP animal model. The BLUP evaluation uses univariate models for production traits and multivariate models for conformation (type) traits. These models involve combined analysis of all breeds to improve the estimation of genetic and environment effects in mixed breed herds. These models could be improved to accounts for heterogeneous variances, allowing a more accurate selection of females [START_REF] Robert-Granié | Accounting for variance heterogeneity in French dairy cattle genetic evaluation[END_REF]. Selection is done separately for each breed, but same procedures to qualify best males and females are applied to both breeds. For mating design, there is what we can call "planned mating", where elite males (commonly known as sires of bucks) are mated to best females (dams of bucks) and "ordinary mating", where any qualified category of males is mated to remaining qualified females. Planned mating is normally performed with 100% AI and with a priority to produce males to replace elite males.

Ordinary mating is done by both AI bucks and natural service bucks, and is usually conditioned by the female replacement needs. Similar to cattle, but contrary to sheep, mating in goats breeding programs is facilitated by the use of frozen semen and this could, in principle increase the capacity of male reproducers and thus, a good connection of farms and all other benefits of AI in breeding programs as observed in dairy cattle breeding programs (e.g., increase genetic gain as a result of high selection pressure on the males selection paths, dissemination of genetic gain, etc.). However, AI use in goats is still developing and now it is estimated that the rate is around 40% in the Alpine and Saanen breeding programs. Mating is done by taking into account the relationship of selected parents to decrease the rate of inbreeding.

Chapter 2

Use of genomic information in breeding programs

Introduction

The genetic selection discussed in chapter one is now called classical or conventional selection. In classical selection estimation of breeding values only uses pedigree and phenotypes as source of information. The development of biotechnology, mainly the ability to use DNA information as genetic markers has provided other information for genetic evaluation and thus, alternative selection strategies. There are: Gene Assisted Selection (GAS), which makes use of the identified genes influencing the traits under evaluation, Marker Assisted Selection (MAS), which organises the parallel follow up of different linkage groups known to carry genes involved in trait variability, these genome regions are known as quantitative traits loci (QTL) and the genomic selection (GS), which is a form of MAS where markers cover the entire genome.

Gene and marker assisted selection

Gene assisted selection (GAS) is a selection where the classical information (phenotype) is combined with identified genes in the evaluation model. GAS can be the most accurate and easy selection if many genes are identified, and control a big part of the genetic variance. Compared to MAS, this was considered to be a direct selection because genes controlling the character could be used directly in selecting candidates. Including genes in genetic evaluation improves the prediction accuracy, and thus, genetic gain. Because classical selection relies on phenotypes only, GAS can be significantly superior in cases where traits have low heritability, few records, sex limited traits where a long progeny testing is used: if genes controlling big part of the genetic variability have been identified, breeding programs can be restructured and probably progeny testing or other time consuming recording systems avoided.

The gene and polygenic information can be combined in the general model of genetic evaluation:

y = µ + Xγ + Zu + e
Where µ is the overall mean, γ and u are vectors of gene and polygenic effects, respectively, e is the random residual and X and Z are design matrices.

A number of genes affecting important traits have been discovered in many species and breeds. For example in different sheep breeds genes affecting ovulation and prolificacy (e.g., Booroola, Inverdale gene, Lacaune, etc.) (e.g., [START_REF] Mulsant | Prolificacy genes in sheep: the French genetic programmes[END_REF][START_REF] Davis | Major genes affecting ovulation rate in sheep[END_REF], genes controlling resistance to parasites and diseases like scrapie resistant gene (PrP)(e.g., [START_REF] Elsen | Genetic susceptibility and transmission factors in scrapie: detailed analysis of an epidemic in a closed flock of Romanov[END_REF][START_REF] Dominik | Quantitative trait loci for internal nematode resistance in sheep: a review[END_REF] and genes affecting muscle growth and development such as Callipyge, Double Muscling, etc. [START_REF] Cockett | The callipyge mutation and other genes that affect muscle hypertrophy in sheep[END_REF] have been reported. In goat breeds, the effect of alpha (s1)-casein on milk composition have been largely reported (e.g., [START_REF] Manfredi | Effects of as1 casein variants on dairy performance in goats[END_REF][START_REF] Sanchez | Potential benefit from using the alpha(s1)casein genotype information in a selection scheme for dairy goats[END_REF] and many genes have also been reported in other species like cattle ( many are reported in database by Ogorevc et al., 2009) and pig (e.g., Le [START_REF] Roy | Evidence for a new major gene influencing meat quality in pigs[END_REF][START_REF] Rothschild | The estrogen receptor locus is associated with a major gene influencing litter size in pigs[END_REF].

Though intensive work have been done to identify candidate genes in almost all domestic animals and many genes have been identified so far, the use of most of them in GAS have remained in research or on small scale application (e.g., [START_REF] Larzul | Potential gain from including major gene information in breeding value estimation[END_REF][START_REF] Dekkers | Commercial application of marker-and gene-assisted selection in livestock: Strategies and lessons[END_REF][START_REF] Sanchez | Potential benefit from using the alpha(s1)casein genotype information in a selection scheme for dairy goats[END_REF]. In a simulation study including the alpha (s1)casein in selection criteria of the goat breeding program, [START_REF] Sanchez | Potential benefit from using the alpha(s1)casein genotype information in a selection scheme for dairy goats[END_REF] reported that significant benefits in response to selection were observed only when the major gene had a large effect.

In case genes are not identified, markers in linkage (in linkage equilibrium (LE)

or linkage disequilibrium (LD)) with genes can be used instead, in a marker assisted selection (MAS). The main idea in using linked markers in MAS model is that markers can be a proxy to QTL alleles. MAS is most advantageous or envisaged when classical selection accuracy is low. Again, in the formula of annual genetic gain (AGG), the use of QTL (MAS) is associated with increased selection accuracy. This means that MAS can do better than classical selection in situations where traits under selection have low heritability, availability of few recordings (e.g., due to expensive recording), traits measured late in life; such that trait recordings are not available at the time of selection, and disease resistance traits (requirements of expensive and risky challenge testing).

Similar to GAS, MAS consists of two big steps: first, finding the biggest and statistically significant QTL of the traits under genetic evaluation, second, combining the QTL and the polygene (the genetic part that is not influenced by detected QTL).The polygene cannot be ignored because it constitutes, generally, a large fraction of the total genetic variance and still needs trait recording (have to await trait records before turning over the generation). Unless many and big QTL have been detected and control large part of genetic variance, MAS breeding schemes cannot benefit from reduced generation interval. MAS have been implemented successfully in few commercial breeding programs and significant benefits have been reported [START_REF] Boichard | Implementation of marker-assisted selection in French dairy cattle[END_REF][START_REF] Bennewitz | Top down preselection using marker assisted estimates of breeding values in dairy cattle[END_REF][START_REF] Dekkers | Commercial application of marker-and gene-assisted selection in livestock: Strategies and lessons[END_REF]. In many species, QTL were detected within a relatively large confidence interval (10 cM or more) and all markers in the region and surroundings had to be included in the genetic evaluation model.

This QTL and polygenic information can be included in the BLUP animal model [START_REF] Fernando | Marker assisted selection using best linear unbiased prediction[END_REF]:

y = µ + Xg + Zu + e
Where y is data vector; g and u are vectors of QTL and polygenic effects, respectively.

Instead of assuming that there are a limited number (e.g., 2 for 1 SNP) of QTL alleles, and estimating probabilities for each animal having one of these x alleles, the Fernando and Grossman model assumes that every founder animal has two unique QTL alleles, and then estimates the effects of all these alleles. The vector g ∼ N (0, Gσ 2 g ), with G the identity by descent (IBD) matrix between QTL alleles and σ 2 g is the QTL variance. u ∼ N (0, Aσ 2 u ), A is the numerator relationship matrix between all animals and σ 2 u is the polygenic variance. Other terms are as defined above.

A huge number of QTL, listed in animal QTL database [START_REF] Hu | Animal QTLdb: an improved database tool for livestock animal QTL/association data dissemination in the post-genome era[END_REF], have been detected, especially in pig and cattle, but also in other species. However,application in commercial animal breeding programs have been limited as mentioned above. Some of the reasons are:(i) Quantitative traits are explained by many genes or QTL with small effect each. Studies by [START_REF] Meuwissen | The use of marker haplotypes in animal breeding schemes[END_REF] and [START_REF] Sanchez | Potential benefit from using the alpha(s1)casein genotype information in a selection scheme for dairy goats[END_REF] showed that the gain in selection response from using individual genes was proportional to the variance they explained. So, if only few genes or QTL are known they will explain a small proportion of genetic variance of a quantitative trait of interest and the response to selection by GAS or MAS will proportionally be small. (ii) When there are many genes or QTL, their effects are small and the estimation is rarely accurate [START_REF] Hayes | The distribution of the effects of genes affecting quantitative traits in livestock[END_REF].(iii) Before the sequencing of many domestic animal genomes and subsequent discovery of many SNP markers, there was a limited number of markers to detect all QTL, and the cost of genotyping these few markers was very high.

To overcome some of the difficulties, following the ideas of Lande and Thomson (1990), Meuwissen et al. (2001a) developed and suggested methods to simultaneously use all genome segments in estimation of animal's breeding value. With the recent developments in genotyping animals for high-density arrays of SNP, breeding values can be estimated taking into account the whole genome information.

Genomic selection

Genomic Selection (GS) is the estimation of genomic breeding values (GBV) with the help of many markers covering the entire genome. With very high marker density, it is assumed that all QTL (and thus, genes) are in LD with at least some of the markers or haplotypes (Meuwissen et al. (2001a). In a sense, it is marker assisted selection (MAS) covering the whole genome with dense markers [START_REF] Fernando | Marker assisted selection using best linear unbiased prediction[END_REF]. The process requires a reference population (animals with known phenotypes and genotypes) on which marker effects are estimated. Once the marker effects are estimated, breeding values of validation or target population (young selection candidates with genotypes only) are predicted by summing up all the estimated marker effects. Simulations and real data results demonstrated that high accuracy of GBV can be achieved (e.g., Meuwissen et al., 2001a;Lund et al., 2011;Boichard et al., 2012). Some of the common and important assumptions with GS are: (i) marker density is high enough that any QTL is in high LD with some of the markers, (ii) markers effects are the same across populations (reference and selection candidates) and (iii) the distribution of marker effects is known.

With genomic selection, all components of the expected AGG (AGG = i * r IH * σ a /L) can be potentially modified to increase genetic gain. For instance, (i) genetic gain was achieved in many classic selection schemes via the wide use of the very best progenytested males (predicted with very high accuracy), which was enabled by means of AI.

Progeny testing implies long generation intervals and huge costs related to waiting-males maintenance and progeny-group constitution. Avoiding this procedure and not compromising the selection accuracy can significantly increase AGG. (ii) Because progeny testing is expensive, especially in dairy cattle, only a limited number of young sires can be progeny tested each year, limiting the selection intensity. As genotyping costs decrease, many candidate can be typed and thus increase selection pressure. (iii) Se-lection accuracy can be increased if suitable conditions to estimate it are met, i.e., a sufficient reference population with reliable phenotypes, high density markers to exploit all LD between marker and QTL and a high relationship between reference and validation individuals. Because genomic selection alleviates some of these costs and technical constraints in favor of dairy cattle selection plans, the dairy cattle breeding industry has rapidly integrated genomic information into selection programs (Hayes et al., 2009b;Lund et al., 2011;Boichard et al., 2012). The application of GS in other species is under discussion as reported by Pimentel and Konig (2012) in beef cattle, Haberland et al. (2012) in horse, Tribout et al. (2012) in pig and Shumbusho et al. (2013) in sheep and goats breeding programs.

Genomic prediction model

In general, genomic evaluation model is the classical evaluation model where the animal polygenic effects are replaced by marker effects or both marker and polygene effects.

There are commonly 2 models fitted to estimate genomic segments (marker or haplotypes) effects, which in turn are used to calculate GBV of selection candidates.

Pure genomic model

This model assumes that all additive genetic variance of the trait is captured by markers (or haplotypes) which are in LD with all QTL that control that trait (e.g., Meuwissen et al., 2001a;[START_REF] Legarra | Performance of genomic selection in mice[END_REF].

y = 1nµ+ m i=1 x i g i +e
Where y is the data vector; µ is the overall mean; 1n is a vector of n ones; m is the number of SNP; gi represents the genetic effect of SNP i; xi is a column vector of genotypes (0, 1 or 2 for 11, 12, 22 genotypes, respectively) at SNP i; X is matrix whose columns are xi; and e is a vector of random error deviates with e ∼ N(0, Iσ 2 e ), where σ 2 e is error variance. The distribution assumed for SNP effects (g) depends on the method used to solve the model. The most common method is a genomic best linear unbiased predictor (GBLUP) where SNP effects follow a normal distribution, g ∼ N (0, σ 2 g ). The marker and fixed effects can be estimated from the mixed model equations:

  μ ĝ   =   1 n 1 n 1 n X X 1 n X X + Iλ   -1   1 n y X y   with λ = σ 2 e /σ 2 g
Then, the estimated SNP effects (ĝ) are applied to the genotypes of selection candidate to predict their GBV.

GBV = Wĝ

Where GBV is a vector of the genomic breeding values of the selection candidates, W is a matrix allocating selection candidates' genotypes to estimated marker effects ĝ.

Genomic and polygenic model

It is an extension of model 1 by including the polygenic additive effect. The polygene term is thought to account for any QTL or genes not tracked by markers [START_REF] Calus | Accuracy of genomic selection using different methods to define haplotypes[END_REF][START_REF] Legarra | Performance of genomic selection in mice[END_REF].

y = 1nµ+ m i=1 x i g i +Zu + e
Where y, µ, m, xi, gi and e are as defined above. Z is an incidence matrix allocating animals to records and u is a vector of polygenic effects. u ∼ N(0, Aσ 2 a ) and A is the numerator relationship matrix. The effects can be obtained by solving the MME for fixed, marker and polygenic terms:

     μ ĝ û      =      1 n 1 n 1 n X 1 n Z X 1 n X X + Iλ 1 X Z Z 1 n Z X Z Z + A -1 λ 2      -1      1 n y X y Z y      with λ 1 = σ 2 e /σ 2 g and λ 2 = σ 2 e /σ 2 u
Then, the GBV for selection candidates are predicted as:

GBV = Wĝ+û
Where u is a vector of polygenic effects; ĝ and W are the estimated SNP effect and incidence matrix allocating selection candidates' genotypes to ĝ as given above.

The benefits of including the polygenic term is to put some selection pressure on QTL of low allele frequencies or poorly linked to markers, that may not be captured by the markers (Goddard, 2009a). It was also reported that including a polygenic term is associated with: reduced bias in estimation of marker or haplotypes variance [START_REF] Calus | Accuracy of breeding values when using and ignoring the polygenic effect in genomic breeding value estimation with a marker density of one SNP per cM[END_REF][START_REF] Rius-Vilarrasa | Influence of model specifications on the reliabilities of genomic prediction in a Swedish-Finnish red breed cattle population[END_REF], increased persistence of genomic accuracy across generations (Solberg et al., 2009b), and reduced sensitivity to the prior distribution of marker effects [START_REF] Rius-Vilarrasa | Influence of model specifications on the reliabilities of genomic prediction in a Swedish-Finnish red breed cattle population[END_REF]. Indeed, most genomic selection implemented in dairy cattle have included this term in the genomic predictions (review by Hayes et al. (2009b). However, [START_REF] Legarra | Performance of genomic selection in mice[END_REF] used both model to test the performance of genomic selection in mice and found that the "polygenic term" had no benefits on genomic accuracy for the four traits analyzed.

In both models, the component xg that explains the QTL (or gene) effect can be deduced by single marker alleles, or haplotypes. For single markers, QTL effects are captured by marker alleles in high LD with QTL alleles. For biallelic markers such as SNP, two allelic effects are estimated per locus or one substitution effect at each locus. An alternative to using single marker alleles is to construct haplotypes of more markers and estimate effect of each haplotype. Haplotypes with high identity by descent (IBD) probability are considered to be the same to reduce the number of parameters (effects) to be estimated (Meuwissen and Goddard, 2001b;[START_REF] Calus | Accuracy of genomic selection using different methods to define haplotypes[END_REF]. When using haplotypes, it is assumed that a QTL is in the midpoint of marker-bracket of the haplotype. It is expected that, a QTL which is not in LD or in low LD with single SNP can be in LD with haplotype (multiple markers), and so, in that case haplotype approach will be superior to single marker approach in estimating QTL effects. Different simulation studies showed that both approaches are not significantly different in estimating QTL parameters (position and effect) when the marker density is sufficient [START_REF] Grapes | Comparing Linkage Disequilibrium-Based Methods for Fine Mapping Quantitative Trait Loci[END_REF][START_REF] Zhao | Power and Precision of Alternate Methods for Linkage Disequilibrium Mapping of Quantitative Trait Loci[END_REF]. However, the haplotype approach was more accurate in cases of low marker density [START_REF] Meuwissen | Fine Mapping of Quantitative Trait Loci Using Linkage Disequilibria With Closely Linked Marker Loci[END_REF][START_REF] Grapes | Comparing Linkage Disequilibrium-Based Methods for Fine Mapping Quantitative Trait Loci[END_REF]. Recently, [START_REF] Calus | Accuracy of genomic selection using different methods to define haplotypes[END_REF] compared the accuracy of GBV when haplotypes or single markers were used to predict the QTL effects at different levels of LD between adjacent markers.

They found that the advantage of haplotypes over single markers decreased as the LD between adjacent markers increased. At the LD corresponding to a correlation, r 2 = 0.215 between adjacent markers, the haplotype and single marker approaches gave very similar accuracies. This means that when genome segments' effects are estimated in closely related population, i.e., population with high extent of LD, single markers are sufficient because individuals have in common big genome segments that are well captured by markers.

The common practice is that SNP or haplotypes are treated as QTL to estimate effects at each locus. Consequently, the LD between QTL and markers or haplotypes is crucial to account for all genetic variance at the QTL, and the later affect the accuracy of GBV prediction. In this chapter, only a brief description and results of the most applied to genomic evaluation. A general model can be used to show some of the differences of the methods:

Statistical methods to estimate marker effects

y = 1µ+ m i=1 x i g i δ i +e
Where y is a vector of trait phenotypes, µ is the overall mean, x i is a SNP genotype (e.g., 0,1 or 2 for homozygous, heterozygous or homozygous, respectively, of each of the allele variant, as was defined before) at locus i, δ i is 0/1 variable indicating if SNP has effect and thus included in the model, and e is the vector of random residuals. Thus, there are X matrix containing x i elements and a vector g containing g i elements.

Least square

Least square (LS) method estimates SNP effects as fixed effects (Meuwissen et al., 2001a;Habier et al., 2007), which means it does not explicitly assume any distribution for marker effects. LS is highly affected by degrees of freedom because it performs a regression of markers to data in estimating marker effects. In the general model above, the expected value of y is 1µ + Xg and the variance of y is Iσ 2 e with no variance for g since these effects are fixed estimates. In estimating GBV for genomic selection, many markers are used and thus more effects have to be estimated, often, than observations. This makes LS unable to estimate the entire genome wide marker effects. Meuwissen et al. (2001a) used LS in two steps to reduce the number of effects:

In step 1, they performed a regression for every haplotype and only haplotypes exceeding a certain threshold (considered as QTL) were kept. In step 2, the selected Chapter 2. Use of genomic information in breeding programs haplotypes were fitted simultaneously to estimate their effects. Non significant segments (haplotypes) were assumed to have zero effect on the trait. In this simulation study of Meuwissen et al. (2001a) they concluded that LS was the less accurate of the four methods they tested because it overestimated some haplotypes effects and its choices of QTL to include in the model were not optimal. However, later, Habier et al. (2007) compared Least Square to genomic BLUP (RR-BLUP) and BayesB in assessing the effect of genomic relationship to GBV accuracy over generations and reported that accuracies estimated by LS and BayesB were more persistent and less affected by genomic relationship than RR-BLUP. They discussed that the accuracy of LS in Habier et al. (2007) study was higher to LS accuracy found by Meuwissen et al. (2001a) because the former used a more relax threshold to select segments with significant effects. They also suggested that optimizing the threshold at which QTL are selected will further improve the accuracy of LS. In general LS did not gain more attention in genomic evaluation.

To overcome the problems of more explanatory variables (predictors) compared to response variables (records), commonly called the "n << m" problem, where n is number of observations and m is the number of markers , some genomic prediction studies have tested methods that reduce the dimensions of the data (Solberg et al., 2009a;[START_REF] Colombani | A comparison of partial least squares (PLS) and sparse PLS regressions in genomic selection in French dairy cattle[END_REF]; such as principal components regression (PCR), partial least square regression (PLSR) and sparse PLSR (sPLSR).

Principal components regression (PCR)

The PCR is a well known method to reduce dimensions by looking for linear combinations of columns of X (matrix of predictors) that have maximum variance and thus, maximum information. The original m variables in X = [x 1 ...x m ] are transformed in new predictor set T = [t 1 ...t k ], with k ≤ min(n -1, m). The new variables t i , called scores or principal components, are a weighted average of the original X. Then, the PCR uses these score vectors as explanatory variables and regresses y on t 1 , ..., t k for some k ≤ min(n -1, m):

y = 1µ+ k i=1 t i β i +e
Where β is a vector of coefficients of regressions (here, relevant marker effects). Solberg et al. (2009a) compared PCR and PLSR to BayesB in estimating GBV and genomic accuracy and reported that they gave lower accuracy than BayesB in all cases of marker density tested. PCR and PLSR were also less responsive to the advantages of higher marker density. However, the PLSR and PCR were computationally faster and simpler.

Partial least square regression (PLSR) and sparse PLSR

The PLSR is also used as an alternative to least square in problems where n < m. It is often preferred to PCR when the predictors are highly collinear [START_REF] Frank | A statistical view of some chemometrics regression tools[END_REF]. PLSR construct linear combinations (called "latent variables") of the original variables that have simultaneously high variance (just as PCR) and high correlation with the response variable. Then, PLSR perform regression of y on these latent variables (or scores):

y = 1µ+ k i=1 t i q i +e
Where T is a n x k matrix of latent variables, q is a k x 1 vector of loadings, and generally k << m. The matrix T is calculated as XW , where W is a matrix of weights.

Although PCR and PLSR are effective in reducing the dimensionality of the model, they lack the ability to select most important variables (principal components or latent variables). [START_REF] Chun | Sparse partial least squares regression for simultaneous dimension reduction and variable selection[END_REF] developed a new methodology (the sparse PLS) that simultaneously perform dimension reduction and variable selection. The sPLSR puts a penalty of only selecting relevant latent variables. Complete parameterization and adaptation to genomic selection of PLSR is given by Solberg et al. (2009a) and both PLSR and sPLSR by [START_REF] Long | Dimension reduction and variable selection for genomic selection: application to predicting milk yield in Holsteins[END_REF] and [START_REF] Colombani | A comparison of partial least squares (PLS) and sparse PLS regressions in genomic selection in French dairy cattle[END_REF]. In study by Solberg et al. (2009a), PLSR gave slightly higher genomic accuracy than PCR but lower than the accuracy with BayesB. Also both PCR and PLSR gave lower average regression coefficients compared to BayesB. [START_REF] Colombani | A comparison of partial least squares (PLS) and sparse PLS regressions in genomic selection in French dairy cattle[END_REF] reported that PLSR and sparse PLSR were fast as GBLUP in computation time but gave lower genomic accuracy.

It is clear that regression methods that reduce dimensionality of marker data are economic in computational costs but they might omit some useful information. This could be due to low capacity to account for population structure when they construct principal components or latent variables. However, they provide a rapid analysis of large amounts of data to obtain EBVs from high-density markers. Solberg et al. (2009a) concluded that the prediction ability of these methods can be improved by optimizing the number of principal components or latent variables.

Genomic BLUP

To avoid some drawbacks of least square related methods most genomic prediction studies use methods that estimate SNP effects as random estimates or estimate directly GBV of genotyped candidates. The most commonly used are BLUP based genomic prediction methods, where SNP effects are assumed normally distributed with a similar variance.

In the prediction model,y = 1µ+ m i=1 x i g i δ i +e; the indicator parameter, δ i = 1, the E[y] = 1µ and the variance,var(y) = XX σ 2 g + Iσ 2 e . Different variants of genomic BLUP models have been developed, such as SNP-BLUP, GBLUP and Single-step BLUP.

SNP-BLUP, is a BLUP at SNP level. SNP effects are first estimated in the reference population and then applied to genotypes of selection candidates to calculate GBV. In the mixed model: y = 1µ + Xg + e, the vector g of SNP effects can be directly estimated as: ĝ = (X X + λI) -1 X y and g ∼ N (0, Iσ 2 g ); where λ = σ 2 e /σ 2 g and σ 2 g is the marker variance, which can be estimated or derived from previous estimates of the overall genetic variance (σ 2 a ):

σ 2 g = σ 2 a /2 p i (1 -p i )
, where p i is the reference allele frequency. Then, the vector of GBV of genotyped candidates is given by:â = 1μ + W ĝ. In this BLUP approach, the genomic relationship matrix does not have to be explicitly constructed.

GBLUP, is the BLUP at the animal level. Marker genotypes are used to estimate a relationship matrix between all individuals (phenotyped individuals of the reference population and non-phenotyped selection candidates), the so called "G matrix", which is then used in the mixed model equations, similar to classical BLUP. When calculated from dense markers, the G matrix is reported to give reliable relationships between individuals, because, in addition to additive genetic relationships between individuals, G also exploits LD and co-segregation around the QTL, which takes into account the history of the population (Habier et al., 2013). The MME can be written as:

y = 1µ + Za + e
Where a is a vector of genomic breeding values of selection candidates and Z is a matrix of genotypes. a ∼ N (0, Gσ 2 a ), where G = ZZ /2 p j (1 -p j ) (Habier et al., 2007). These two methods are reported to give similar prediction accuracies and the only differences are in ease of setting up and computation requirements. [START_REF] Koivula | Different methods to calculate genomic predictions -Comparisons of BLUP at the single nucleotide polymorphism level (SNP-BLUP), BLUP at the individual level (G-BLUP), and the one-step approach (H-BLUP)[END_REF] reported that the technical advantages of SNP-BLUP is that it can be easy to automate GBV calculation of the new candidates and the advantages of GBLUP is it offer a straight forward way to calculate prediction error variances. However, GBLUP can be computationally demanding if many SNP and animals are used due to the need to invert G matrix and possibly the MME coefficient matrix.

Single-step BLUP, is the BLUP that simultaneously use pedigree, phenotypes and genotypes to estimate GBV. In general, single step BLUP is the GBLUP where the G matrix is replaced by H matrix that contains variance-covariance relationships Chapter 2. Use of genomic information in breeding programs between all genotyped and non-genotyped animals. In the MME: y = 1µ + M a + e;

where a ∼ N (0, Hσ 2 a ) is the vector of breeding values of all animals. H = A + A∆, where A∆ is a matrix of deviations of expected relationships (A matrix) from realized matrix (G matrix) [START_REF] Legarra | A relationship matrix including full pedigree and genomic information[END_REF][START_REF] Misztal | Computing procedures for genetic evaluation including phenotypic, full pedigree, and genomic information[END_REF]. The single-step BLUP has advantages of estimating GBV in single step and using all available information and hence, decrease errors and bias. The study by [START_REF] Koivula | Different methods to calculate genomic predictions -Comparisons of BLUP at the single nucleotide polymorphism level (SNP-BLUP), BLUP at the individual level (G-BLUP), and the one-step approach (H-BLUP)[END_REF] reported that singlestep BLUP gave higher genomic accuracy than did SNP-BLUP and GBLUP. So far, the BLUP based methods are the most used in real data genomic evaluations, mainly because they give better or comparable prediction accuracies than other methods in many quantitative characters (Hayes et al., 2009b). However, when traits have major genes (or QTL) Bayesian methods that assume SNP specific variances perform better than BLUP (Hayes et al., 2009b).

Bayesian methods

Different Bayesian methods have been developed to solve genomic evaluation models (e.g., Meuwissen et al., 2001a;[START_REF] Habier | Extension of the bayesian alphabet for genomic selection[END_REF][START_REF] Legarra | Improved Lasso for genomic selection[END_REF]. Unlike the BLUP methods, the Bayesian methods, as one of their properties, allow markers effects to have different distributions (e.g., normal, gamma, exponential, etc.). In the metaanalysis study on QTL distribution by [START_REF] Hayes | The distribution of the effects of genes affecting quantitative traits in livestock[END_REF] they found that QTL have a relatively gamma distribution where many loci have small (near zero) effects and few loci with large effects. Consequently, since marker (haplotypes) effects are used to explain the underlying QTL effects, then, their distribution should resemble the QTL effects distribution. [START_REF] Hayes | The distribution of the effects of genes affecting quantitative traits in livestock[END_REF] also reported that 17% and 35% of the leading QTL explained 90% of the genetic variance for the dairy and pig distributions, respectively. Of course the distribution of QTL effects should vary from trait to trait.

In general, the Bayesian genomic methods can be distinguished by the assumptions they make about the distribution of SNP effects and their variances. In their first genomic selection study, Meuwissen et al. (2001a) compared four different methods of which two used Bayesian statistics to estimate marker effects, which they termed BayesA and BayesB. Subsequently, different studies tested other Bayesian procedures for the prior of marker effect and variance distributions which resulted in many Bayesian alphabets being used for genomic predictions. Below I briefly review the assumptions made on SNP effect and variances when using BayesA, BayesB and LASSO and general results produced by Bayesian methods compared to BLUP.

BayesA.

As it was defined by Meuwissen et al. (2001a), BayesA assumes that all QTL (or SNP) have effects, but with a specific prior variance for each, V(g j ) ∼ N(0, Iσ 2 g j ). The variances of the QTL are modeled with a prior distribution of a scaled inverse chisquare, which allows some QTL to have small effects and others bigger effects, as opposed to BLUP. The prior distribution is given by:

P(σ 2 g j ) ∼χ -2 (v, S )
Where v is the degrees of freedom and related to the shape of the distribution and S

is the scale parameter. This formulation means that SNP effects are being sampled from a fat-tailed distribution of the form of "student t-distribution". For some traits,

this assumption of fat tailed distribution may have a better approximation to the real distribution of the QTL effects than assumptions of GBLUP. Hayes et al. (2009b) compared BayesA and GBLUP in predicting GBV from real data and found BayesA was slightly more accurate for many traits than GBLUP. However, for fertility trait, BayesA performed worse than GBLUP.

BayesB. The Bayesian approach called BayesB (Meuwissen et al., 2001a) assumed that a big proportion (π) of haplotypes (or SNP) do not have any effect and only a small fraction (1 -π) have effect. The effect of these relevant SNP (1 -π) are sampled from a normal distribution and their individual specific variance sampled from a scaled inverse chi-square distribution.

V(g j ) ∼ N(0, Iσ 2 g j )

The prior distribution:

   σ 2 g j = 0 with a probability π P (σ 2 g j ) ∼ χ -2 (v, S) with a probability 1 -π
Where parameters are as defined above for BayesA. In the study by Meuwissen et al. (2001a) π was predefined and this could negatively affect the accuracy if a value not consistent with the true QTL distribution is chosen. To overcome this, follow up studies proposed methods to sample π from a uniform distribution and was estimated simultaneously with other parameters [START_REF] Habier | Extension of the bayesian alphabet for genomic selection[END_REF] and giving rise to other Bayesian alphabets. BayesB has outperformed other genomic methods in simulated data and real data where big QTL exist (e.g., Meuwissen et al., 2001a;Hayes et al., 2009b).

Bayesian LASSO. Alternative to BayesA and BayesB, non zero QTL effects are assumed to follow a double exponential distribution (e.g., [START_REF] Legarra | Improved Lasso for genomic selection[END_REF][START_REF] Colombani | Application of Bayesian least absolute shrinkage and selection operator (LASSO) and BayesC methods for genomic selection in French Holstein and Montbéliarde breeds[END_REF]. Different studies comparing Bayesian LASSO and other genomic methods have, in general, reported that the LASSO accuracy was comparable to GBLUP accuracy but inferior to BayesB accuracy.

Till today, many genomic prediction methods have been tested on simulated or real data, but, there is no consensus on the best method to recommend. It is clear that the performance of these statistical methods depends largely on the genetic architecture of the trait under studied. It is accepted that Bayesian methods perform similarly or slightly worse than GBLUP when the target trait is affected by many QTL each with a small effect, and better when the trait is influenced by a few large QTL (e.g., Hayes et al., 2009b;[START_REF] Verbyla | Accuracy of genomic selection using stochastic search variable selection in Australian Holstein Friesian dairy cattle[END_REF]. It was also reported that methods treat information on population structure differently. In simulated data, Habier et al. (2007) demonstrated that GBLUP depended more on family relationship between reference and selection populations than Least Square and BayesB, and, consequently, when marker effects were not re-estimated its prediction accuracy decreased sharply. The distribution of QTL effect should be a pre-requisite in choosing the statistical method. When characters are influenced by many QTL of small effect methods assuming small effects and equal variance for all QTL are most appropriate. In contrary, for major genes or big QTL, Bayesian methods are known to give high accuracy because in their assumption of QTL effect they allow big effects to exist.

Factors affecting genomic prediction accuracy

The genomic prediction accuracy (r GBV ) is the correlation between genomic estimated breeding value (GBV) and true breeding value (TBV) of the selection candidates. Several parameters have impact on the genomic prediction accuracy (r GBV ) such as linkage disequilibrium (LD) between markers and QTL, marker density, relationship within the reference population and to the selection candidates, size and characteristics of the reference population, reliability of the trait and the distribution of QTL effects (Habier et al., 2007;[START_REF] Hayes | Technical note: prediction of breeding values using markerderived relationship matrices[END_REF]Habier et al., 2010).

In next pages, I will review the above 5 parameters as regards to their effect in genomic prediction. Though one can try to explain the effect of each parameter separately, some of them act together to influence the genomic prediction. LD determines the genetic variation that can be explained by markers and the variation in relationships between reference and selection candidates. Marker density requirements depend on the LD extent within the concerned populations. Also, closely related individuals share big chromosome segments and thus LD extend to longer distances, which means that only few markers would suffice to have all QTL in close LD with markers.

Linkage disequilibrium

Linkage disequilibrium (LD) is the non random association between alleles at different loci in a given population. There are different measures of LD but the commonly used are D, D and r 2 [START_REF] Lewontin | The interaction of selection and linkage. I. General considerations; heterotic models[END_REF][START_REF] Hill | Linkage disequilibrium in finite populations[END_REF]). The coefficients D and D

were introduced by [START_REF] Lewontin | The interaction of selection and linkage. I. General considerations; heterotic models[END_REF] as the deviation from the expected allele frequency of 2 loci A and B:

D ij = f A i B j -f A i f B j
Where A i and B j are alleles of loci A and B, respectively, f A i and f B j are frequencies for each allele, f A i f B j is the expected frequency of jointly observing A i and B j in a given population (assuming random association) and f A i B j is the observed frequency. This coefficient can take positive or negative values, indicating that alleles are in a coupling or a repulsive state. Its normalized form, D is rather more used:

D = |D| D max , D max =    min[f A i f B j , (1 -f A i )(1 -f B j )] if D ij < 0 min[(1 -f A i )f B j , (1 -f B j )f A i ] if D ij > 0
The D and D measures of LD are influenced by frequencies of individual marker alleles, and so are biased in estimating and comparing LD among multiple pairs of loci. [START_REF] Hill | Linkage disequilibrium in finite populations[END_REF] proposed a pair-wise correlation, r 2 that is less dependent on allele frequency:

r 2 ij = D 2 ij f A i f B j (1 -f A i )(1 -f B j )
The r 2 is so far the preferred measure of LD, because it is less dependent on allele frequency and it can be used as an approximation of genetic variation explained by markers i.e., the r 2 between a marker and an (unobserved) QTL is the approximate proportion of variation caused by the QTL alleles. Compared to D measures, r 2 gives better estimates of population structure. [START_REF] Pritchard | Linkage Disequilibrium in Humans: Models and Data[END_REF] reported that the decline in r 2 with genetic distance is an indicator of how many markers and phenotypes are required in an initial genome scan to detect QTL and hence, any genomic predictions.

Chapter 2. Use of genomic information in breeding programs

Different population evolution forces cause the LD; some causes are punctual (i.e., due to a single event) while others are recurrent (i.e., the causative factors persist).

Punctual causes of LD are the founder effect (when a given population derives from a few ancestors e.g., population bottleneck), one admixture event of populations with different allele frequencies and a new mutation. Recurrent disequilibrium can be caused by a genetic drift (due to a limited population size), a continuous admixture of populations or selection [START_REF] Hill | Linkage disequilibrium in finite populations[END_REF].

In GS, LD is probably the most important factor that can influence the accuracy of prediction because the concept of genomic prediction relies on the assumption that all genetic variation is explained by markers which are in complete or high LD with QTL. LD is also believed to be linked to genetic relationship between individuals because related individuals have bigger chromosome segments in common and thus, LD extent is high in related individuals (Goddard et al., 2011).

Marker density

In few years, important developments in sequencing and genotyping in many species made it possible to genotype animals for many thousands of SNP markers at relatively low cost. The so called SNP chips (high density markers) are now available for many domestic animals (e.g., 50k and 777k for cattle, 50k and 700k for sheep, 60k for pig, 60k for goats, 600k for chicken, etc.). They are available for genome-wide analysis and genomic prediction of animal genetic merits.

Sufficient marker coverage is needed to capture consistent LD between markers and QTL. The density requirement depends mainly on the genetic diversity of the population (as can be measured by LD or Ne) and whether the genomic evaluation is within a breed or across breeds. Meuwissen et al. (2001a) demonstrated how to obtain high genomic accuracy (r GBV of up to 0.85) assuming a LD, r 2 = 0.2. The marker densities that can give this LD extent depend on the genetic diversity of the concerned population. For example, [START_REF] Lu | Linkage disequilibrium in Angus, Charolais and crossbred beef cattle[END_REF] reported that in Angus, Charolais and their crossbreds beef cattle the average LD was around r 2 = 0.31 when the gap between markers was 0-30kb and around r 2 = 0.15 when the gap increased to 60 -100kb. In Dutch and Australian Holstein-Friesian, Australian Angus, and New Zealand Friesian and Jersey cattle, de Roos et al. ( 2008) estimated that to achieve an average r 2 = 0.2, 43-75K SNP would be required within breed and ˜300K SNP for across-breed analyses. However, depending on the LD or Ne of the population, increasing marker coverage may not improve genomic prediction because some of the markers are redundant. [START_REF] Rincon | Hot topic: Performance of bovine high-density genotyping platforms in Holsteins and Jerseys[END_REF], in a preliminary study of 16 dairy cattle (10 Holstein and 6 Jersey) genotyped using the BovineHD and the BOS1 arrays, reported that relatively larger proportions of the SNP dataset were redundant (49.5% and 21.1%, respectively, had LD r 2 = 0.9). This was also reported in simulation study by [START_REF] Harris | The impact of high density SNP chips on genomic evaluation in dairy cattle[END_REF], that increasing SNP density from 20K to 1000k increased LD between flanking markers and QTL but also increased the number of uninformative SNP.

Genetic relationship

The basis of animal genetic evaluation is to relate the variation in phenotypic or genotypic values of the individuals and/or of their relatives to variation in relationships between these individuals. This variation in relationships can be in two forms: (i) variation in relationship between pairs of individuals, because in a pedigree or any population structure, some individuals are more related than others. (ii) Within a pair, depending on the locus, individuals may share more or less alleles than expected due to Mendelian sampling (linkage).

This variation in relationships was derived to predict genomic accuracy using analytical formulae, before data on selection candidates are collected (Daetwyler et al., 2008;Goddard, 2009a;Hayes et al., 2009c) or from genotypes of reference and selection populations [START_REF] Vanraden | Efficient methods to compute genomic predictions[END_REF]. The variation in relationships was used to derive the number of effective loci (M e), assuming the reference and selection candidates are not related (Goddard, 2009a;Hayes et al., 2009c) and with a predefined relationships between these two populations (Hayes et al., 2009c) when there was no LD between markers and QTL present in the population simulated.

For following generations without re-estimating the marker effects, accuracy due to relationships decreased faster than the one due to LD (Habier et al., 2007). They concluded that genomic accuracy is generated by markers which capture either persistent association with QTL (LD) and additive genetic relationship. Though, it doesn't change the overall accuracy, [START_REF] Wientjes | The Effect of Linkage Disequilibrium and Family Relationships on the Reliability of Genomic Prediction[END_REF] reported that the size of the reference population influences the relative effect of LD and family relationships on the accuracy of genomic prediction; small reference population results in a higher effect of family relationships compared to LD, and larger reference populations result in a higher effect of LD on accuracy.

In reality, it is impossible to separate LD and genetic relationship effects on the genomic prediction because markers on same chromosomes are not independent and hence both LD and relationships are concurrently used.

Reference population

In estimating GBV, prediction equations are calibrated with the genotypes and phenotypes of reference individuals and applied to genotypes of selection candidates to estimate their GBV and accuracy of prediction. The size and the composition of this reference population are essential parameters affecting the prediction precisions. Different studies (e.g., [START_REF] Bastiaansen | Longterm response to genomic selection: effects of estimation method and reference population structure for different genetic architectures[END_REF]Pszczola et al., 2012) say that prediction accuracy increases with the size of the reference population and with its quality, defined as (i) high genetic relationship with the selection candidates, (ii) high genetic diversity (low relationship) within the reference population and (iii) reliable phenotypes (e.g., Daughter yield deviation (DYD) estimated from many daughters).

Sufficient reference population size with the quality defined above is not a big problem for what I can call "international dairy cattle breeds" such as Holstein, Brown Suisse, Jersey, Nordic Red Dairy cattle and probably few others, because they already have large breeding programs and thus big numbers of progeny tested bulls, and they can do collaborations among countries to exchange data (Lund et al., 2011;[START_REF] Wiggans | The genomic evaluation system in the United States: Past, present, future[END_REF][START_REF] Su | Genomic prediction for Nordic Red Cattle using one-step and selection index blending[END_REF][START_REF] Jorjani | Joint genomic evaluation in Brown Swiss populations[END_REF]. However, in small dairy and beef cattle breeds and small ruminant breeds, construction of such reference population is a big challenge.

There are few or no progeny tested males and the progeny test groups are relatively small to give reliable phenotypes and most of the concerned breeding programs are small. These breeding programs have to use different strategies, such as multiple breeds pooling for a reference population or use of non progeny tested animals (females and Chapter 2. Use of genomic information in breeding programs young males). Including cows in the reference population has recently been suggested in dairy cattle to increase the reliability of genomic predictions in case the number of AI sires is limited [START_REF] Mc Hugh | Use of female information in dairy cattle genomic breeding programs[END_REF]Buch et al., 2012a). Such a strategy or using non progeny tested males might gain interest in small ruminants given the lack of progeny testing capacity and the decreasing costs of genotyping. 

Reliability of phenotypes

The reliability or heritability of the characters in evaluation is very important for genomic prediction. A trait with high reliability is an accurate predictor of the genotype and this has an effect on the number of observations needed to predict accurate GBV. If observations (phenotypes) are accurate predictors of their genotypes, then few of them are needed to give accurate prediction of genetic values. This is one of the differences in using progeny tested bulls that have reliable DYD and cows or non progeny tested males in the reference population. Assuming that all other factors affecting the GBV accuracy are held constant, Goddard and Hayes (2009b) calculated the effect of heritability on r GBV and the size of the reference population (nref ) to obtain a specific accuracy. For example, r GBV = 0.5 could be obtained with nref of around 2200 individuals if the heritability of the trait was h 2 = 0.5, and with nref superior to 12000 if the h 2 ≤ 0.1 (Figure 2.1).

Multi-breed genomic evaluation

Requirements of an ideal genomic evaluation as recommended today, made GS only suitable for large dairy breeding programs, such as Holstein breeding programs that have huge reference populations, highly reliable phenotypes (DYD), high extent of LD in the population, have breeding programs in many countries for possible cooperations, etc. In small dairy and beef cattle breeds and in other species, such as sheep and goats, many difficulties have delayed the integration of genomic selection into breeding programs.

Though the degree of difficulties varies from breed to breed, some are common:

• Many breeds have generally smaller breeding programs compared to highly commercial dairy cattle breeding programs, and that make it difficult to assemble sufficient reference population sizes. Several initiatives have, however, been created

to exchange genotypes of a breed across countries, for example, the InterGenomics consortium for the Brown Swiss breed [START_REF] Jorjani | Joint genomic evaluation in Brown Swiss populations[END_REF] and the collaboration between breeding schemes of the Nordic Red Dairy cattle in Denmark, Sweden, Finland and Norway [START_REF] Su | Genomic prediction for Nordic Red Cattle using one-step and selection index blending[END_REF][START_REF] Makgahlela | Across breed multi-trait random regression genomic predictions in the Nordic Red dairy cattle[END_REF] and other projects are going on (probably in many countries) to share information across breeds, e.g., the GEMBAL and GENOMIA projects for beef and small dairy cattle breeds and dairy sheep breeds, respectively, both in France.

• Some of these breeds may have larger Ne, partially because they have been less

selected compared to more international breeds, resulting in weaker associations between markers and QTL, and thus, requiring higher marker density.

Both of these factors are keys to control genomic prediction accuracy. The recent developments of high density SNP panels such as the Illumina Bovine HD (777K) for cattle, the 600K Affymetrix for chicken and the soon to come 700k for sheep could increase the GBV accuracy in such populations. Having large densities in SNP reduces the physical distance between markers and QTL, and hence should strengthen the statistical association between them. At such marker density, associations between markers and QTL may be also maintained across breeds, making it possible to build across-breed prediction equations and to capitalize on reference populations of several breeds. However, preliminary analyses of high-density chips with the genomic BLUP evaluation model only resulted in marginal gains within breeds [START_REF] Su | Genomic prediction for Nordic Red Cattle using one-step and selection index blending[END_REF] and across breeds (e.g., Hayes et al., 2009a;[START_REF] Pryce | Short communication: Genomic selection using a multi-breed, across-country reference population[END_REF][START_REF] Karoui | Joint genomic evaluation of French dairy cattle breeds using multiple-trait models[END_REF].

Predicted benefits from genomic selection in breeding programs

Genomic selection has been described as a technology that is capable of revolutionizing animal breeding and is now being adopted in many dairy cattle breeding programs, and is in perspectives in other breeds and species. With genome wide information, GBV of selection candidates can be estimated as earlier as when the DNA information is available. The potential technical benefits of genomic information, coupled with its costs have generated more interests in how to design optimal genomic breeding programs.

In general, genomic information have been included in two types of genomic breeding designs (i) pre-selection genomic schemes (GS-PT) and (ii) young genomic schemes (GS-Y). In pre-selection genomic schemes young males entering progeny testing are selected based on their GBV. The choice is whether the number of progeny tested males should remain constant compared to classic breeding schemes or reduced in order to offset the costs of genotyping young males. In young genomic schemes, young males selected on their GBV are directly used as best male reproducers, omitting progeny testing.

This reduces the generation interval and costs related to feeding and housing of waiting males in progeny testing (Schaeffer, 2006;Konig et al., 2009b). Some studies have also considered the additional impacts of genotyping dams of sires. Table 2.1 gives some published results on benefits of genomic selection in different species.

In modeling aspects, genomic schemes have been modeled with deterministic or stochastic simulations (with same procedures as in section 1.2).

In deterministic model, the use of whole genome information in breeding programs was first proposed by Dekkers (2007) by extending the selection index methods. Like the classical selection index, the approach can use defined sources of information on animals and traits. Genomic information is modeled as an indicator trait, which is highly heritable and genetically correlated with index traits. This indicator trait is modeled with a heritability of 1, meaning that genotyping errors are ignored. This heritability was considered as the repeatability of marker information (Buch et al., 2012b). With this approach, the correlation between the genomic information and the selection index traits reflects the accuracy for genomic predictions (Dekkers, 2007). As it was mentioned before, this genomic accuracy can be estimated from data [START_REF] Vanraden | Efficient methods to compute genomic predictions[END_REF] or with analytical formulae (Daetwyler et al., 2008;Goddard, 2009a).

In stochastic model, a population is simulated (each individual and its chromosomes, markers and QTL) and evaluation and selection procedures done as in real situation.

Briefly, historical generations are simulated to create initial level of LD and establish a mutation-drift equilibrium state, and then, a founder population of the breeding schemes is sampled from the ancestral population. QTL effects are sampled from a known statistical distributions and the true breeding value (TBV) of each individual estimated as the sum of the effects of QTL it inherited. Then, phenotypic observations are reconstructed from TBV by adding a residual term sampled from a normal distribution to achieve a desired heritability. After, marker effects and GBV are predicted performing genomic evaluation as described in previous sections of this chapter, using phenotypes and genotypes as input parameters. The rate of genetic gain per year is then defined as the difference in average breeding values of the animals born in year t + n and animals born in year t, divided by n years.

Results of modeled genomic schemes

Genetic gain. Simulation studies predicting potential benefits of GS have reported higher AGG for GS compared to traditional selection in dairy cattle (e.g., Schaeffer, 2006;Colleau et al., 2009;Konig and Swalve, 2009a;Pryce et al., 2010;Lillehammer et al., 2011a), beef cattle (Pimentel and Konig, 2012), horses (Haberland et al., 2012), in pig (Lillehammer et al., 2011b;Tribout et al., 2012) and recently in sheep and goats (Shumbusho et al., 2013). In these studies, most genomic scenarios gave higher AGG compared to classical schemes and the increase in AGG by GS has ranged from 0% to about 117% in the studied breeds. Table 2.1 gives results on the efficiency in terms of genetic gain and inbreeding of genomic selection relative to classic selection.

These studies show many differences in simulated parameters, such as the r GBV assumed or the reference population assumed to estimate it, number of males and/or females genotyped per year, heritabilities of traits in study, etc. However, they show a similar pattern in that GS-Y give higher genetic (or monetary) gain than GS-PT. This is because the young genomic scheme realizes the full potentials of genomic selection with regard to higher accuracy of selection on young animals and shorter generation interval.

Some studies also reported that the benefits of genomic selection were more pronounced when traits in study had low heritabilities, because genomic data added relatively more information to predict breeding values for these traits. For example, Lillehammer et al. (2011a) showed that compared to classic selection, AGG was increased by 29%, 40% and 70% in young genomic schemes for heritability values of 0.30, 0.05 and 0.01, respectively.

Inbreeding. Compared to conventional selection, most of the genomic scenarios show a decreased rate of inbreeding. This is partially explained by the fact that genomic information provides more information on Mendelian sampling term and thus more weight are put on the individual's own information compared to parent average information [START_REF] Daetwyler | Inbreeding in genome-wide selection[END_REF]. This makes it possible to distinguish among sibs without own information, as opposed to classical BLUP. With the possibility of eliminating progeny testing (which is normally very expensive) and thus reduce costs, some studies proposed to increase selection candidates in order to select more elite reproducers (e.g., Pryce et al., 2010;Colleau et al., 2009). This makes the GS-Y schemes also very attractive in terms of reducing the rate of inbreeding per generation. However, due to low generation interval in GS-Y schemes, the rate of inbreeding per year might be higher than in GS-PT or in conventional selection.

Economic gain.

In published studies, very few have analyzed the economic impacts of genomic selection at a breeding company or industry level. In his study Schaeffer (2006) calculated the costs of running both conventional and genomic schemes and reported that adopting a GS-Y scheme could reduce costs by 92%. The low costs of GS-Y was a result of omitting progeny testing in its procedures, which was more expensive than acquiring genotypes. Konig et al. (2009b) reported that adopting genomic selection can double discounted profit in the German Holstein population, compared to classic selection. This was mainly due to reduction in generation interval, increase in selection accuracy in young bulls and dams of sires and the fact that costs of progeny testing offset costs of genotyping. Considering the particularities of breeding schemes or other species, the economic benefits, if any, of the genomic selection might be lower compared to dairy cattle. However, in the recent study by [START_REF] Sitzenstock | Efficiency of genomic selection in an established commercial layer breeding program[END_REF] about the efficiency of genomic selection in the commercial layer breeding program, they reported higher discounted profit for GS-Y and GS-PT compared to conventional selection.

In general, all published studies reported, at least, a genomic scenario that was more attractive in terms of genetic gain, monetary genetic gain (where studied) and rate of inbreeding (where studied) than classical selection. However, it is important to keep in mind that (i) genomic selection is still in its early stage, and no empirical data (realized outputs) to confirm predicted benefits, and (ii) the fact that simulation studies tend to overestimate expected gains. Genomic selection in French small ruminant breeding programs

Introduction

Since selection based on GBV was proposed a decade ago (Meuwissen et al., 2001a), intensive work has been done to evaluate its feasibility, accuracy and profitability in different species and breeds. All prediction studies have showed that gains (genetic and monetary) will depend on the existing structures and resources of the breeding programs and how they are able to restructure and adapt a new technology. As it was mentioned in previous chapter, genomic selection has already been implemented in many important dairy cattle breeding programs and is recommended to other cattle breeds and some other species. Though results vary from study to study, huge technical and economic gains have been predicted for dairy cattle genomic schemes (e.g., Schaeffer, 2006;Konig et al., 2009;Buch et al., 2012), but moderate to low technical gains are being reported in other breeds and species, like beef cattle (Pimentel and Konig, 2012), horse (Haberland et al., 2012), pig (Tribout et al., 2012) and sheep and goats breeding programs (in this chapter, section 3.4). The results of these modeling studies should be interpreted with caution, considering the parameters used, such as the heritabilities of traits, the GBV accuracy assumed or deterministically calculated and the number of genotypes allocated to males and females.

Currently, there is no routine genomic evaluation in small ruminant breeding programs in France, but different projects have been initiated, and intensive research is going on to evaluate the feasibility, efficiency and profitability of this new selection tool.

Effectively, research in genomic evaluation is in progress for Lacaune and Red-Faced Manech dairy sheep and for Alpine and Saanen dairy goats (e.g., Duchemin et al., 2012;Baloche et al., 2013;Carillier et al., 2013).

Dairy sheep

The • Evaluating the actual accuracy of the GBV in the situation of French dairy sheep.

• Testing an across-breed genomic evaluation using the Manech and Latxa breeds whose proximity allowed hope even with a density of 54k SNP.

The main results obtained can be summarized as follows (Duchemin et al., 2012;Baloche et al., 2013): accuracy of genomic evaluation estimated by cross-validation, in Lacaune and Red-Faced Manech breeds, showed a gain, compared to parent average of polygenic evaluation, varying between 10 to 41% according to the breed and trait. The reliability calculated in Lacaune reached 0.5, which is intermediate between the reliability of parent average and the reliability obtained with 30 to 40 daughters (average number of daughters in the first crop of progeny-testing). These results are encouraging but are less dramatic than those obtained in dairy cattle. This should be explained by a limited reference population size, less accurate phenotypes (progeny testing in dairy cattle is calibrated to get 100 daughters), a less important LD due to less inbreeding (use of fresh semen in sheep and very seasoned AI period prevent from the star system known in dairy cattle, meaning that a large number of rams are used, each one producing a limited number of semen straws).

The technical results, even though they showed a gain in accuracy with genomic evaluation, are not as impressive as in dairy cattle. Moreover, the actual already limited generation interval and the physiologic constraints with AI explain a smaller gap between conventional and genomic selection, as expected in dairy cattle. In this context, the economic efficiency is a highly relevant issue in dairy sheep, as in all small ruminants.

Dairy goats

Since the availability of the Illumina goat SNP50 BeadChip at the end of 2011 [START_REF] Tosser-Klopp | Goat genome assembly, Availability of an international 50K SNP chip and RH panel: An update of the International Goat Genome Consortium projects[END_REF], genomic evaluation and selection can be assessed with real data in this species. In the two French dairy goat breeding programs, studies are going on to evaluate the genomic accuracy and other impacts of GS in these breeds. In the recent and first published study on genomic evaluation in goats (Carillier et al., 2013), genotypes of 852 bucks and up to 2,254 females of Alpine and Saanen breeds were used. The female population was initially organized for QTL detection, and thus was from few sire families.

With the approach of multi-breed reference population, Carillier et al. (2013) used GBLUP to estimate GBV and prediction accuracy for each breed. They found that genomic evaluation accuracies ranged from 36% to 53% depending on the trait. The gain in accuracy compared to classic parent average evaluation ranged from 3.4% to 21.3%. These results are in same order of magnitude to what is reported in dairy sheep, but clearly inferior to dairy cattle. Further studies are on going to test other methods that can better take into account the structure of these populations and decrease bias in evaluation (Carillier: Personal communication).

As part of this PhD, we predicted the impact that GS might have on genetic gain of ABSTRACT: In conventional small ruminant breeding programs, only pedigree and phenotype records are used to make selection decisions but prospects of including genomic information are now under consideration. The objective of this study was to assess the potential benefits of genomic selection on the genetic gain in French sheep and goat breeding designs of today. Traditional and genomic scenarios were modeled with deterministic methods for 3 breeding programs. The models included decisional variables related to male selection candidates, progeny testing capacity, and economic weights that were optimized to maximize annual genetic gain (AGG) of i) a meat sheep breeding program that improved a meat trait of heritability (h2 ) = 0.30 and a maternal trait of h 2 = 0.09 and ii) dairy sheep and goat breeding programs that improved a milk trait of h 2 = 0.30. Values of ±0.20 of genetic correlation between meat and maternal traits were considered to study their effects on AGG. The Bulmer effect was accounted for and the results presented here are the averages of AGG after 10 generations of selection. Results showed that current traditional breeding programs provide an AGG of 0.095 genetic standard deviation (σ a ) for meat and 0.061 σ a for maternal trait in meat breed and 0.147 σ a and 0.120 σ a in sheep and goat dairy breeds, respectively. By optimizing decisional variables, the AGG with traditional selection methods increased to 0.139 σ a for meat and 0.096 σ a for maternal traits in meat breeding programs and to 0.174 σ a and 0.183 σ a in dairy sheep and goat breeding programs, respectively. With a medium-sized reference population (nref) of 2,000 individuals, the best genomic scenarios gave an AGG that was 17.9% greater than with traditional selection methods with optimized values of decisional variables for combined meat and maternal traits in meat sheep, 51.7% in dairy sheep, and 26.2% in dairy goats. The superiority of genomic schemes increased with the size of the reference population and genomic selection gave the best results when nref > 1,000 individuals for dairy breeds and nref > 2,000 individuals for meat breed. Genetic correlation between meat and maternal traits had a large impact on the genetic gain of both traits. Changes in AGG due to correlation were greatest for low heritable maternal traits. As a general rule, AGG was increased both by optimizing selection designs and including genomic information.

INTRODUCTION

Genomic evaluation (Meuwissen et al., 2001) is largely being adopted in dairy cattle breeding programs (e.g., Hayes et al., 2009;Lund et al., 2011;Boichard et al., 2012). By including genomic information, genomic breeding values (GBV) can be estimated accurately without having to phenotype the candidates. This means that it is now possible to select for traits that are expensive or difficult to measure, to select candidates early in life, to select females on male traits and vice versa, and ultimately to increase the annual genetic gain (AGG). Simulation studies reported greater AGG with genomic selection (GS) compared with traditional selection in dairy cattle (e.g., Schaeffer, 2006;Konig and Swalve, 2009), beef cattle (Pimentel and Konig, 2012), and horses (Haberland et al., 2012). Studies using genomic information for the genetic evaluation of small ruminants are emerging (Daetwyler et al., 2012;Duchemin et al., 2012) and, to our knowledge, there is no published work on the impacts of GS on the genetic gain of small ruminant breeding programs. In these species, specific factors could limit the AGG obtained from GS, mainly because of the lack of enough reliable phenotypes to accurately predict GBV, the relatively short generation interval, and the high genotyping cost per animal. However, with developments in genomics and the possible reduction of genotyping costs, GS could also be profitable in sheep and goat selection programs in the near future.

The aim of this study was to model, optimize, and compare the AGG of genomic and conventional selection scenarios relevant to 3 real small ruminant breeding programs. A medium-sized reference population of individual animals was assumed for the GS schemes of each breed. Factors that might affect the accuracy of genomic prediction were not studied, but the deterministic formulas described by Daetwyler et al. (2008) and Goddard (2009) were used instead.

MATERIALS AND METHODS

Animal Care and Use Committee approval was not obtained for this study as no animals were used.

In this study, breeding programs currently used for meat and dairy small ruminants were modeled considering their designs and functionalities to assess alternative, optimized, traditional, and genomic scenarios.

Breeding Schemes

The different elements of small ruminant breeding programs are represented in Fig. 1a. This breeding scheme is based on the selection scheme used for the Mouton Ile de France breed, a meat sheep breeding program that consists of multiple stages of selection and uses different sources of information. In a first selection stage lambs are selected on average EBV of meat and maternal traits of their parents, a second stage consists of selecting young rams on their meat records, and, in a final stage, rams are selected based on the meat and maternal records of their progeny. Figure 1b shows a more simplified breeding scheme corresponding to other small ruminant breeding programs, such as those used for dairy sheep and dairy goats. This simple scheme is based on the programs currently used for dairy breeds such as the Red Faced Manech (RFM) sheep and the Alpine goat. In these selection plans, males are at first selected on the average EBV of their parents and then selected again after progeny testing. In all breeding programs, females are first selected based on the average EBV of their parents and, in a second phase, on their phenotypes. Technical documents for the concerned breeding schemes are available on request.

Breeding Schemes Scenarios

To assess the potential impacts of GS and optimization in current sheep and goats breeding programs, we modeled, optimized, and compared 9 scenarios for the meat sheep breeding program and 3 scenarios for each of the dairy sheep and goat breeding programs, with or without genomic information. All scenarios are listed in Table 1 and described hereafter. Table 1 also gives corresponding sources of information on male selection candidates and types of selection for each scenario. For all scenarios, young males and females were considered selection candidates based on the breeding values of their parents (i.e., average EBV of parents) of corresponding traits (i.e., meat and maternal traits for meat sheep breeding program and maternal trait for dairy breeding programs).

Meat Breeding Program: Two-Trait Selection

Selection was performed for meat and maternal traits. Scenario Class-PT-Culling. This scenario reflects the conventional breeding program. Therefore, after selection on average EBV of meat and maternal traits of parents, young males were selected based on their meat records and the final selection step performed with independent culling methods on both meat and maternal records of the progeny. This method is commonly used in French meat breeding programs involving selection on meat and maternal traits because data for the meat trait are recorded at an earlier stage for the progeny. Indeed, when trait records become available at different ages or when there are differences in the costs of records, then use of independent culling levels may give greater aggregate economic return than index selection (Ducrocq and Colleau, 1989). This scenario was used as a reference for the meat breeding program.

Scenario Class-PT-Index. This scenario used the same sources of information as Class-PT-culling, but the selection step after progeny testing was performed using an index combining progeny records for both meat and maternal traits to form a single selection criterion. This scenario was used to study the effect of adopting a combined selection index in current breeding programs.

Scenario Class-Young. The scenario assumes the conventional breeding program without progeny testing. After a selection on average EBV of parents for both traits, young males were selected based on their meat value. Among the selected males, the top best were qualified as elite males and used for AI mating; the others were qualified as natural service (NS) males. This scenario was used to study the effect of lowering generation interval and selection accuracy.

Genomic Selection. This was a pure genomic selection scenario. Young male selection candidates were genotyped and best reproducers selected on their GBV of meat and maternal traits at an early age. This scenario was similar to the "turbo scheme" proposed for use in dairy (Buch et al., 2012) to quantify the effect of reducing the generation interval and use of genomic information.

Scenario GS-Pheno. Young male selection candidates were genotyped and phenotyped for the meat trait. Indeed, in meat sheep breeding programs a meat phenotype can be recorded before reproduction age. This scenario is therefore similar to the GS scenario with an additional meat phenotype. This scenario was aimed at assessing the usefulness of the genomic selection strategy for both traits when a meat phenotype is available from an early age.

Scenario GS-PT-Culling. This scenario consisted of 2 stages of selection and included GS as a preselection step. Young males were genotyped and selected on their GBV for progeny testing (as for the GS scenario). Then, independent culling level methods were used to select proven rams (elites) based on progeny test results.

Scenario GS-PT-Index. This scenario also used the GS scenario procedures as a preselection step. After progeny testing, elite rams were selected using a single index that combined meat and maternal records of their progeny.

Scenario GS-pheno-PT-Culling.

Combined GBV of both traits and a meat phenotype were used to preselect rams (GS-pheno scenario) for progeny testing. After progeny testing, elite rams were selected by independent culling levels for both trait values. This scenario is similar to GS-PT-culling with an additional meat phenotype in the preselection step and to Class-PT-culling with additional genomic information in the preselection step.

Scenario GS-pheno-PT-Index. This scenario used same sources of information as GS-pheno-PT-culling, but elite rams were selected using index that combine meat and maternal progeny records.

For all scenarios that included genomic information, the number of genotyped males was either equal to the current number of male selection candidates (i.e., 300 individuals as given in Table 2) or optimized with a maximum limit of 500 individuals.

Dairy Breeding Programs: Single-Trait Selection

Conventional breeding programs for RFM dairy sheep and Alpine dairy goat breeds were modeled, optimized, and compared with alternative genomic breeding programs.

Scenario Class-PT-Index. For each breed, this scenario was the reference and models the design and functionalities of the schemes currently in use. After the selection on average EBV of maternal trait of parents, males are progeny tested and elite males selected on maternal values of their progeny.

Scenario GS-PT-Index. In this scenario genomic information was used to preselect candidates for progeny testing. After a selection on average EBV of a maternal trait of parents, males were genotyped and selected on their GBV for progeny testing. Elite males were then selected based on maternal values of their daughters. This scenario was similar to Class-PT-index in terms of generation interval.

Genomic Selection. This was a pure genomic scheme. After the selection on average EBV of maternal trait of parents, males were genotyped and selected on the basis of their GBV. Progeny testing was avoided.

In all genomic scenarios, it was assumed that 500 male Alpine goat and 1,000 RFM sheep selection candidates were genotyped per year. These numbers were set in an effort to remain close to the current availability of male selection candidates and capacity of each breeding program.

Parameter Assumptions

Population parameters and variables used in the model are provided in Table 2. Equations describing relationships among parameters, decision variables, and internal variables of the model and constraints on internal variables are also given in Appendix 1. These equations describe different elements of the selection process. For meat breeding programs, the genetic response was predicted for 2 traits: i) a maternal trait (prolificacy) of heritability (h 2 ) = 0.09 and repeatability (rep) = 0.12 and ii) a meat trait (ADG) of h 2 = 0.30. Three levels of genetic correlations (ρ mb ) between the 2 traits were examined: ρ mb = 0.20, 0.00, or -0.20. In the real practice of this meat breeding program it is considered there is no correlation between meat and maternal traits. However, small genetic correlations between litter size and weaning weight in Merino sheep have been reported [START_REF] Safari | Genetic correlations among and between wool, growth and reproduction traits in Merino sheep[END_REF]. So in this study we wanted to explore possible effects that small values of genetic correlation can have on AGG. To reduce the number of combinations, the phenotypic correlation was set equal to the genetic correlation. In dairy breeding programs, a milk trait of h 2 = 0.30 and rep = 0.50 was studied. Decisional variables were optimized for fair comparisons between the various alternative schemes, but also, results are provided with AI limited to its current level of use in breeding units. Indeed, the use of AI in breeding programs for small ruminants is still limited by many factors, such as its cost and use of fresh semen in sheep. Because any optimal AI-related parameters described in this study might not easily be adopted in practice, we also compared scenarios where other decisional variables were optimized but AI restricted.

Genetic Selection Model

Deterministic methods were used to describe selection and predict genetic response. Selected males and females were divided into groups based on their sex s (s = 1 for males and s = 2 for females), category j (3 to 5 categories for males, depending on selection schemes scenario and 2 categories for females) of different genetic levels, and age class l (up to 3 classes for males and up to 4 or 6 for females, depending on breeds) at selection. Each year, different male categories were qualified depending on the selection modalities adopted. For scenarios in which selection was carried out using independent culling methods, 5 male categories were considered: Elite*, Elite m , and Elite b (to refer to the best males on both traits, maternal traits, and meat traits, respectively), Test (males in progeny testing), and NS (natural service males, which are the last category in genetic level), as shown in Fig. 1a. When selection after progeny testing was index based, Elite* and Elite (respectively, to refer to the first and second category on genetic level basis), Test (males in progeny testing), and NS (natural service males) parent groups were qualified after selection (Fig. 1b). In scenarios without progeny testing, only 3 categories were included (Elite*, Elite, and NS) after each selection cycle. Females were divided into dams of sires (DS) and dams of dams (DD; to refer to first and second categories in genetic Economic weights between traits w 0.5 --1 RFM = Red Faced Manech. level, respectively). These subdivisions were considered to reflect the genetic heterogeneity currently observed for reproducers in breeding units. To emulate current practice, males were selected considering a single selection cycle per generation whereas females were reclassified every year on the basis of their EBV, a unique truncation point being used across a multiple normal distribution of female genetic levels for different age classes.

The genetic superiority of a selected male category at each selection stage was calculated as

1 1 1 jl jl jl IH a i r µ = σ , in which 1 jl i is the selection intensity, 1 jl IH r
is the correlation between index (I) and breeding goal (H) for the selection of males belonging to category j and age class l, and a σ is the standard deviation of the breeding values. Within a given category, all males were assumed to have the same age at selection. Therefore, l was always 1 for selected males.

Selection Intensity

Selection intensities were obtained for males after each selection stage via integration of a truncated univariate (for single trait or index) standard normal distribution:

( ) ( ) ( ) 1/2 2 1 1 1 exp 0.5 / 2 / 1/ j j j i T q   = - π   , with ( ) 2 1 1/2 0.5 1 1/ 2 j x j T q e dx ∞ -   = π   ∫ ,
in which T 1j is the single trait or index threshold above which category j males were kept. For 2-trait independent culling selection, a standard bivariate normal distribution (SBN) was used:

( )
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, in which T b1j and T m1j are truncation points of the joint distribution of meat (b) and maternal (m) genetic values, q 1j is the proportion selected, and ρ bm is the correlation between meat and maternal traits. Functions C05ADF and D01AMF of the NAG (Numerical Algorithms Group Ltd., Oxford, UK) library were used for accurate numerical integration of normal distributions. The selection intensity of any subsequent selection events was calculated based on the proportion selected at that stage and taking into account the reduction in genetic variance due to previous selection steps.

Females were evaluated on their own phenotypes and selected after the optimal rule selection scheme proposed by Bichard et al. (1973) and Elsen and Mocquot (1976).

With this method, animals are selected with a unique truncation point across multinormal distributions of their breeding values. This method maximizes the genetic superiority of selected parents, considering that animals of younger age classes are genetically superior to older animals but known with a lower precision. The average superiority of each female category (i.e., DS or DD) was calculated as 

Selection Accuracy

The correlation between I and H (r IH ) was calculated using selection index methods including either phenotypic or genomic information or both. The methodology described by Dekkers (2007) that combines phenotypic and genomic information via selection index theory was used. With this method, genomic information is included as a trait with a heritability of 1 (i.e., the repeatability of SNP information) and genetic correlation to the selection criterion is determined by its prediction accuracy (r GBV ). Genomic prediction accuracies were calculated using the formula described by Daetwyler et al., (2008).

r GBV = {nref × [h 2 /(nref × h 2 + Me)]} 1/2 ,
in which Me = 2NeL/log(4NeL) is the number of effective genome segments (Goddard, 2009), which depends on the effective population size of the considered population (Ne) and the genome length in morgans (L), nref is the number of animals forming the reference population, and h 2 is the heritability of the trait. The use of h 2 in the above formula means that genotyped animals in the reference population also had their own phenotypes.

The breeding goal was H = (BV b , BV m )w when applying an index selection on 2 traits, in which BV b and BV m are the breeding values of meat and maternal traits, respectively, and w is a vector of weights. It must be emphasized that these weights were not the economic weights classically defined in the selection index theory but technical weights to be optimized to maximize the overall (on 2 traits) genetic progress created by the selection scheme. Indeed, in this situation with 2 traits, the objective function was a linear combination of the genetic progress of both traits weighted by economic weights (α). This objective function depended on a number of decisional variables to be optimized to give a maximum overall genetic gain. Depending on the selection scheme and available information sources (Table 1), the index, l, included genomic values, phenotypes, or both sources of information for male selection candidates. Females were evaluated on their own repeated phenotypes.

Following standard selection index procedures, genetic and genomic parameters for individual selection candidates or their progeny were used to set up matrices P, G, and C. Matrix P was the variances and covariances matrix between all components of the selection index for the given scenario (e.g., I = (P b , GBV b , GBV m )b for the GS-pheno scenario), G was the matrix of variances and covariances between these components of the selection index and the additive genetic values for the traits in the breeding goal, and matrix C contained genetic variances and covariances between all traits in the breeding goal. When the type of information in the index was only phenotypes, elements of P and G were calculated as a function of phenotypic and genetic parameters of the traits, as described by Hazel (1943). When information sources in the index included GBV, elements of P and G matrices were computed as described by Dekkers (2007). Then, the vector b of index coefficients, the variance of the breeding goal, 2 H σ = w′Cw, the variance of the index, 2 I σ = b′Gw, and the selection accuracy of each trait, r I,BV = cov(BV, I/σ BV σ I ), were calculated for each scenario.

The AGG of all 4 selection paths p (MM, MF, FM, and FF for males to males, males to females, females to males, and females to females, respectively) for each trait was then calculated as AGG = Σ p Σ j c sjlp μ sjl /Σ p Σjc sjlp L sjl , in which summations included selection paths p and selected category j, c sjlp is the fraction contributed by animal category j of sex s and age class l to selection path p, and μ sjl and L sjl are corresponding genetic superiority and average age, respectively.

Accounting for Variance Reduction

Selection reduces genetic variance and thus reduces genetic gain in subsequent generations due to the "Bulmer effect" (Bulmer, 1971). To account for this variance reduction and consequences on genetic response, the AGG was predicted, as proposed by Pryce et al., (2010), by averaging the genetic response over 10 generations corrected for variance reduction after each cycle of selection. In generation t, the variance of a selected category (sjl) was calculated as ( )

2* 2 2 , , 1 jl sjl t sjl t IH r K σ = σ - , in which 2 , sjl t
σ is the genetic variance before selection and 2* , sjl t σ after selection of group sjl in generation t, 2 jl IH r is the selection accuracy, and K is a variance reduction factor. The above formula of Bulmer (1971) was extended to the different selection modalities used in the breeding programs studied here. Because candidate groups within each sex have different genetic levels, the variance of selected parents contributing to each selection path (p) was calculated accounting for the variability of both means and variances of categories contributing to the corresponding path:
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, in which summation is over selected category j and age l contributing to pth selection path, 2* , p t σ is the variance of selected parents of pth path, c sjlp is the contribution of category sjl to that pth selection path, and 2* , sjl t σ and μ sjl are, as defined previously, the variance and genetic superiority of the selected group sjl, in generation t, respectively. Hence, the genetic variances in newborns of the subsequent generation are the assembled genetic variances of selected parents and Mendelian-sampling variance:

( ) ( ) 2 2* 2* 2 1, 1 , , / 4 / 2 
t MM t FM t a +   σ = σ + σ + σ   and ( ) ( ) 2 2* 2* 2 2, 1 , , / 4 / 2 t MF t FF t a +   σ = σ + σ + σ   , in which 2 1, 1 t + σ and 2 
2, 1 t + σ are the variances of male and female progenies, respectively, and 2 / 2 a σ is the Mendelian-sampling variance, which is estimated to be equal to one-half of the genetic variance of the unselected population.

Optimization

The objective function to be maximized was the total genetic gain for a considered selection criterion. It was laid out as

Maximizing AGG tot (x) = α b .AGGb(x) + α m .AGGm(x), subject to x l ≤ x ≤ x u constraints
in which x is a vector of decision variables (initial values given in Table 2), x l and x u are the lower and upper limits of constraints, respectively, and α b and α m are the weights given to the genetic progress of meat and maternal traits, respectively, in the overall genetic gain. AGG tot is the total annual genetic gain, and AGGb and AGGm are the annual genetic gains for the meat and maternal traits, respectively. Vector [α b , α m ] was first given values [START_REF] Albrecht | Genome-based prediction of testcross values in maize[END_REF][START_REF] Albrecht | Genome-based prediction of testcross values in maize[END_REF] and then varied to assess the stability of the function in different scenarios. In single-trait situations, such as found in dairy breeds, AGG tot (x) = AGG(x) without α weight. The E05JBF subroutine of the NAG library was used to maximize the above function. It is designed to find a global minimum or maximum of an arbitrary function, subject to simple bound constraints using a multilevel coordinate search method.

RESULTS

Predicted Genetic Gain in Current and Optimized Schemes

The expected AGG in current and optimized conventional and genomic breeding programs is given in Table 3 for meat breed and in Table 4 for dairy breeds. All results presented in this paper are the averages of 10 generations of selection taking into account the Bulmer effects on genetic progress. In the GS scenarios, a medium-sized reference population (nref = 2,000) of genotyped and phenotyped individuals and Ne = 200 were used to calculate the r GBV . A fair comparison of GS and classic selection scenarios must be based on same optimal conditions. As the current use of decisional variables of the studied breeding programs may not be optimal, comparisons were performed with currently used and optimized decisional variables.

Meat Breeding Program

In its current form, the breeding program for the meat breed "Mouton Ile de France" is expected to give an annual genetic gain of 0.095 genetic standard deviation (σ a ) for the meat trait and 0.061 σ a for the maternal trait. These results are very low compared with the dairy breeding programs modeled in this study or to the gains commonly predicted in dairy cattle. Indeed, as previously mentioned, breeding programs for small ruminants, especially meat sheep, involve inherent factors that limit genetic gains (e.g., few animals per breeding unit, limited use of AI, low capacity of progeny testing) and also have less than optimal designs. As explained above, these designs should be optimized to guarantee a fair comparison of alternative schemes. Table 3 shows that optimizing designs (current to optimized) significantly increased genetic gain in all scenarios for both meat and maternal traits. The greatest increase was observed in the reference scenario, Class-PT-culling, where the genetic gain was increased by 57.4% for the meat trait and 46.3% for the maternal trait. Optimization of design led to an improvement of genetic Class-PT-culling: phenotypic selection and progeny testing with independent culling level selection, Class-PT-index: phenotypic selection and progeny testing with index selection, Class-young: phenotypic selection without progeny testing, GS: pure genomic selection, GS-pheno: combined genomic and a meat phenotype selection, GS-PT-culling: genomic selection and progeny testing with independent culling level selection, GS-PT-index: genomic selection and progeny testing with index selection, GS-pheno-PTculling: combined genomic and a meat phenotype selection and progeny testing with independent culling level selection, and GS-pheno-PT-index: combined genomic and a meat phenotype selection and progeny testing with index selection.

2 Decisional variables are those used in current breeding programs except for genomic information 3 Decisional variables were optimized but AI was limited to its current level of use in the breeding unit. Optimized_AI: the use of AI is not optimized. 4 No restriction on AI. gain in all meat-breeding scenarios of over 20% for the meat trait and 14% for the maternal trait, except in 2 scenarios where the increase for the maternal trait was of less than 7% (i.e., GS and GS-pheno scenarios). It is also important to note that similar trends were observed by optimizing designs without modifying the rate of AI [Current to Optimized_AI (all decisional variables are optimized except the number of doses of AI); Table 3]. This suggests that genetic gain can be improved without increasing the amount of AI used in a breeding unit [i.e., by optimizing parameters such as the number of male selection candidates, male progeny tested, progeny group size, elite males, and technical weights of the selection index (w b , w m )].

The comparison of the genetic gains obtained with different scenarios using optimized parameters showed that including genomic information generally provided greater overall AGG. The combined genetic gain in both traits (AGGb + AGGm) was greater by approximately 14% for GS-pheno and GS-PT-index and 17% for GS-pheno-PT-index as compared with the reference scenario (Class-PT-culling). The increase was, however, of less than 7% for the other scenarios. Similar trends were observed when comparing scenarios with limited AI, but the superiority of genomic schemes was slightly greater. For individual traits, increases were of up to 24.4% for the meat trait (Class-PT-culling vs. GS-pheno) and 31.2% for the maternal trait (Class-PT-culling vs. GS-pheno-PT-index). However, the genetic gains were slightly reduced for the maternal trait with the "GS-pheno" scenario and for the meat trait with the "GS-pheno-PT-culling" scenario. When the size of the reference population was over 2,000 individuals, the trait and combined genetic gain of all genomic scenarios were superior to conventional scenarios (Fig. 2). Using the same information sources, the combined genetic gain was greater when index selection methods were used than with independent culling level methods.

Dairy Breeding Programs

Results for the 2 dairy breeding programs are shown in Table 4. The selection plan for the RFM sheep breed as it is designed and used today is expected to give a predicted annual genetic gain of 0.147 σ a (for a milk trait of h 2 = 0.30 and a repeatability of 0.50). Comparisons based on optimized schemes showed that the genetic gain was significantly increased by including genomewide information: up to 26.9% for the GS-PTindex scenario where genomic information was used to preselect candidates for progeny testing and 51.7% for the pure GS scenario where selection of elite rams was exclusively based on genomic information and progeny testing avoided. The results for the breeding program of "Alpine" dairy goats showed a similar trend, with use of genomic information increasing the genetic gain by 18.6% for the GS-PT-index scheme and 26.2% for the pure GS scheme (Table 4). Trends were similar when scenarios were compared with limited AI. Optimizing the designs increased the genetic gain for all scenarios and both breeds. The increase was greatest for the conventional scenario where AGG increased by 18.4% for RFM sheep and by 52.5% for Alpine goats (i.e., from 0.147 σ a to 0.174 σ a for RFM sheep and from 0.120 σ a to 0.183 σ a for Alpine goats). These theoretical results are relatively close to the realized genetic gains in these breeding programs. In the RFM breeding program, the AGG of milk yield was calculated at 4.33 kg/yr, which is equivalent to 0.173 σ a (Astruc et al., 2002). In the Alpine breeding program, the AGG of milk yield was reported to be 8.63 kg/yr, which is equivalent to 0.122 σ a [START_REF] Montaldo | Organisation of selection programmes for dairy goats[END_REF]. Therefore, genetic variance changes after each selection step and generation, and this affects genetic response. In all conventional and genomic scenarios, the Bulmer effect was accounted for to avoid incorrect ranking of selection strategies. Indeed, selection intensities and accuracies varied among scenarios and the Bulmer effect was estimated as a function of selection accuracy and intensity (Bulmer, 1971). The GBV prediction accuracies (r GBV ) used here were calculated as suggested by Daetwyler et al. (2008) and Goddard (2009). Using these methods, r GBV is greatest when Ne and genome size are small and the reference population size is big. Published studies on genetic diversity in sheep [START_REF] Huby | Genetic variability of six French meat sheep breeds in relation to their genetic management[END_REF][START_REF] Palhiere | Impact of strong selection for the PrP major gene on genetic variability of four French sheep breeds[END_REF][START_REF] Garcia-Gamez | Linkage disequilibrium and inbreeding estimation in Spanish Churra sheep[END_REF] and goat [START_REF] Araújo | Genetic diversity between herds of Alpine and Saanen dairy goats and the naturalized Brazilian Moxotó breed[END_REF][START_REF] Ribeiro | Drift across the Atlantic: Genetic differentiation and population structure in Brazilian and Portuguese native goat breeds[END_REF] breeds have shown that small ruminant populations are heterogeneous and display high effective population sizes compared with most selected cattle breeds. This is positive for the long term selection response but, with the methods used here, negatively affects the genomic prediction accuracies. Also, these methods (Daetwyler et al., 2008;Goddard, 2009) assume the reference and validation populations are not closely related, which could underestimate the genomic prediction accuracy. Indeed, genomic evaluation studies have shown that GBV are more accurate when selection candidates are closely related to the reference population (Habier et al., 2007(Habier et al., , 2010)).

The optimization procedures used here maximized the AGG by optimizing, within certain limits, the number of young male selection candidates, tested males, progeny group size, use of AI, numbers of selected males (elites and NS), and relative weights in the breeding goal.

The results obtained here confirm the need to optimize designs; as compared with the expected level for current practices, AGG was greatly increased for all scenarios by optimization. The greatest increases were recorded for conventional selection methods, where AGG was increased by 50.6% in meat sheep, 18.4% in dairy sheep, and 52.5% in dairy goats. Indeed, in meat sheep the increase of AGG obtained by optimization was nearly equivalent to the increase that the use of genomic information can offer with current decisional variables. Our results highlight i) Table 5. Annual genetic gain for meat (AGGb) and maternal (AGGm) traits and relative gain (RG) on combined traits (%) compared with the reference scheme (Class-PT-culling) for genetic correlations(ρ mp ) = 0.0 or -0.2 or 0.2) and different breeding scenarios Scenarios were compared with optimized decisional variables, but limited AI. The genomic prediction accuracy (r GBV ) was calculated considering effective population size (Ne) = 200, a genome size of 27 Morgan, and reference population size (nref) = 2,000. Class-PT-culling: phenotypic selection and progeny testing with independent culling level selection, Class-PT-index: phenotypic selection and progeny testing with index selection, Class-young: phenotypic selection without progeny testing, GS: pure genomic selection, GS-pheno: combined genomic and a meat phenotype selection, GS-PT-culling: genomic selection and progeny testing with independent culling level selection, GS-PT-index: genomic selection and progeny testing with index selection, GS-pheno-PT-culling: combined genomic and a meat phenotype selection and progeny testing with independent culling level selection, and GS-pheno-PT-index: combined genomic and a meat phenotype selection and progeny testing with index selection. GS-pheno 17.39 28.37 27.50 1 GS-PT-culling: genomic selection and progeny testing with independent culling level selection, Class-PT-culling: phenotypic selection and progeny testing with independent culling level selection, Class-PT-index: phenotypic selection and progeny testing with index selection, GS-pheno-PT-culling: combined genomic and a meat phenotype selection and progeny testing with independent culling level selection, GS: pure genomic selection, GS-PT-index: genomic selection and progeny testing with index selection, GSpheno-PT-index: combined genomic and a meat phenotype selection and progeny testing with index selection, and GS-pheno: combined genomic and a meat phenotype selection. the suboptimality of current breeding programs and ii) the importance of using meat phenotypes recorded at an early age in the selection criteria. In principle, the model developed herein could be extended to include selection in finite populations, rate of inbreeding, and the economic aspects of breeding strategies.

Genetic Gain

In the meat breeding program, where 2 traits were improved, genomic information increased AGG by 1 to 17.9% depending on the scenario. Genomic scenarios were most efficient when a meat phenotype was combined with genomic information to select or preselect elite sires, except when selection was performed using independent culling levels. When optimized designs were compared, the purely GS was only 5.5% superior to conventional selection. This demonstrates the importance of a phenotype, in situations where it is recorded at an early age and when the reference population is small (nref = 2,000). Our results are consistent with the decreased performance of independent culling methods compared with index (Hazel and Lush, 1942). For all scenarios of the meat breeding program, genomic superiority was less than that reported in dairy cattle studies (e.g., Schaeffer, 2006;Konig and Swalve, 2009;Pryce et al., 2010) mainly due to some limitations in population parameters such as few individuals in breeding units, low use of AI, and small progeny testing capacity, which negatively affect selection intensity and accuracy.

In dairy sheep and goat breeding programs, when parameters were optimized, the benefits of including genomic information reached 51.7% for dairy sheep and 26.2% for dairy goats. The superiority of genomic schemes was mainly due to low generation interval and use of genomic information to preselect progeny test males, a step that is not available in conventional selection. The increase in AGG was greatest when progeny testing was eliminated, which means the benefits of short generation interval are greater than the losses in low accuracy. This is in line with the results reported for dairy cattle where progeny testing was eliminated (e.g., Schaeffer, 2006;Konig and Swalve, 2009;Pryce et al., 2010;[START_REF] Egger-Danner | Hot topic: Effect of breeding strategies using genomic information on fitness and health[END_REF]. The 51.7% increase in AGG for RFM sheep was close to the genomic benefits reported in these dairy cattle studies but not as high as results reported by Schaeffer (2006). Indeed, unlike in our study, Schaeffer (2006) considered genomic information in the female to male selection path, greater reduction in generation interval, and greater genomic accuracy. The r GBV corresponding to nref = 2,000 used here was relatively small compared with that used in dairy cattle genomic evaluation studies, either by simulation (Meuwissen et al., 2001) or with real data [START_REF] Vanraden | Invited review: Reliability of genomic predictions for North American Holstein bulls[END_REF]. It could, however, be realistic in small ruminants (Duchemin et al., 2012).

When r GBV was increased via the increase of individuals in the reference population, genomic superiority clearly increased in all scenarios. Also, the importance of phenotypic information and preselection for progeny testing decreased when the size of the reference population increased.

The genetic gain for meat and maternal traits was very sensitive to their genetic correlation, especially for the maternal trait. This could be due to disparity in heritabilies between the 2 traits. Indeed, a study on the efficiency of genomic selection on net merit [START_REF] Togashi | The efficiency of genome-wide selection for genetic improvement of net merit[END_REF] reported that the efficiency was affected by heritability, correlations, and genetic variance ratio between traits. This could be the reason why the choice of best scenario was affected when the maternal trait had very low heritability compared with the meat trait in the present study. Whether selection is conventional or genomic, our results show the importance of having accurate genetic parameter estimates for multitrait selection.

In this study, only male selection candidates were genotyped because we assume, due to the cost of genotyping and the value of reproducers, that the first attempts to use genomic selection in small ruminants will prioritize males. Indeed, a recent study describing a genotyping strategy for genomic selection by [START_REF] Henryon | Most of the benefits from genomic selection can be realized by genotyping a small proportion of available selection candidates[END_REF] found that only genotyping male candidates brings most of the benefits expected from genomic selection.

To conclude, AGG in all scenarios was increased by optimization of decisional variables and including genomic information. However, these benefits remain on the technical aspects. So further studies should evaluate the monetary inputs and outputs of these selection strategies. Class-PT-culling: phenotypic selection and progeny testing with independent culling level selection, Class-PT-index: phenotypic selection and progeny testing with index selection, GS: pure genomic selection, GS-pheno: combined genomic and a meat phenotype selection, GS-PT-index: genomic selection and progeny testing with index selection, GS-PT-culling: genomic selection and progeny testing with independent culling level selection, GS-pheno-PT-index: combined genomic and a meat phenotype selection and progeny testing with index selection, and GS-pheno-PT-culling: combined genomic and a meat phenotype selection and progeny testing with independent culling level selection. 2 Current: decision variables are those used in the current breeding program except for genomic information, Optimized AI: other decisional variables were optimized but AI was limited to its current level of use in the breeding unit and Optimized AI: all decision variables are optimized. 

Introduction

Genomic selection (GS) became possible due to high genotyping technology that allow individuals to be typed for thousands of markers (i.e., SNP) distributed over the whole genome. With statistical methods and assuming that those SNP are in linkage disequilibrium (LD) with all genes, breeding values of selection candidates are estimated directly from markers (Meuwissen et al., 2001). This new way of genetic evaluation is already in routine in many dairy cattle breeding programs and is in perspectives in other species. Recent studies in sheep and goats reported that genomic evaluation of young males was more accurate than parent average of polygenic evaluation (Daetwyler et al., 2012;Duchemin et al., 2012;Baloche et al., 2013;Carillier et al., 2013).

The benefits of GS in terms of genetic gains over conventional selection strategies have been reported, now, in many farm animal breeding programs and great economic gains also have been reported in dairy cattle (Schaeffer, 2006;Konig et al., 2009). These expected benefits were due, mainly, to reduction in generation interval, increase in accuracies of the estimated breeding values of young bulls and bull dams, and the reduction in costs for progeny testing (Schaeffer, 2006). The breeding structures and the inherent biological conditions in sheep breeding programs differ from those in dairy cattle in many aspects: in sheep breeding programs, generation interval is relatively short, only few males are progeny tested, joint use of AI and Natural Service males and use of only fresh semen affect progeny testing capacity, progeny testing is less expensive compared to cattle and costs of genotype relative to economic value of the selection candidate is still high in small ruminants. So, the expected technical and economic benefits could be less remarkable than in dairy cattle. A recent study (Shumbusho et al., 2013) showed that there is, however, genetic gain benefits associated to genomic selection in small ruminant breeding programs. However, this study did not demonstrate that, in this species, breeding programs with higher genetic gains are better in economic efficiency. Indeed, economic benefits of a breeding program depends on the genetic gain, but also on other many parameters such as the extent and timing of expression of those genetic gains, the economic value of one unit of genetic gain and the costs of all inputs.

The objectives of this study were to compare costs, monetary genetic gains and revenues of classic and genomic selection plans, taking the example of the Mouton Ile de France sheep meat breeding program. To compare different selection strategies, costs and revenues were counted at the industry level because genetic superiority created in nuclear farms is diffused in both nuclear and production farms.

Materials and Methods

The Mouton Ile de France breeding scheme targets to improve meat and maternal traits.

Its structure and all population parameters are given in the study of Shumbusho et al. (2013). Briefly, the breeding unit contains around 14, 000 ewes, of which 70% are candidates to dams of sires selection path. In total, around 40 proven (used as artificial insemination (AI) rams) and 300 natural service rams are available to service the breeding unit. Each year, around 300 young males enter central testing station, where they are evaluated on own meat performance. Then, around 20 males are progeny tested and each is required to have at least 20 progeny records for its evaluation. Females are evaluated on their maternal performance.

r GBV = nref * h 2 /(nref * h 2 + M e)
In which M e = 2N eL/log(4N eL) is the number of effective genome segments (Goddard, 2009) which depends on the effective population size of the considered population (N e) and the genome length in Morgan (L), nref is the number of animals forming the reference population and h 2 is the heritability of the trait. For genomic selection, genomic information was available for male selection candidates (Ms) only. This is still a researchable question of how much and how often the reference population should be renewed, to maintain or improve the prediction accuracy. The consensus is that the reference population should be updated, at least to keep same accuracy of GBV.

Assuming that this an established breeding program, the costs of forming an initial reference population are not included in variable costs.

The general formula of total variable costs, per year, for any selection scenario is given as:

C = i cv i X i +cgeno
In which cv i is the unit cost of the i th decision variable, X i is the value or level of the decision variable and cgeno are costs related to genotyping and extra statistical costs that are only specific to genomic scenarios. The term cgeno is equal to, cgeno = Genoc(Ms + 0.2 * nref) + statc; where Genoc is the cost of genotyping one individual, M s is the number of male selection candidates, nref is the size of the reference population and statc is the fixed costs of statistical analyses due to genomic information.

Apart from costs of genomic information, other costs can be divided into:

Costs related to maintenance, recording and loss in slaughter of male selection candidates (cmale).

cmale = M s * M sc p (1 -qM s) + M s * M sc m
Where M sc p is a unit cost for loss in slaughter, M sc m costs of maintenance and recording male selection candidates. qM s is the proportion of males selected as reproducers or males kept for further evaluation.

Costs of keeping male reproducers (crepro).

crepro = nElite * elitec + nN S * N Sc
Where elitec and N Sc are unit costs of maintaining elites and natural service rams, respectively. nElite and nN S are numbers of elite and NS rams used in a given scenario.

Costs of artificial insemination (cAI).

cAI = pAI * pAIc in which, pAI is the number of AI doses and pAIc is the cost per dose.

Costs related to progeny testing (ctest).

ctest = T est * testc b + T est * testc m
Where testc b and testc m are costs of progeny testing one ram on meat and maternal traits, respectively. T est is the number of males progeny tested per year. Table 2 gives decisional variables, corresponding cost parameters and shows which selection scenarios are concerned.

With the above formula and unit costs in Table 2, we calculated variable costs associated to classic and genomic selection strategies using decision variables in Table 3. These decision variables are results of the optimization model presented in Shumbusho et al. (2013). These variable costs cover costs related to genomic information (i.e., for genomic scenarios), costs of maintenance, recording and due to loss in slaughter for male selection candidates, costs of keeping male reproducers, costs of artificial insemination and costs of progeny testing (i.e., for sceranios where progeny testing is adopted). and production (N F h ) farms. For maternal traits, the expression of genetic superiority of one round of selection can happen more than once because females are generally used as reproducers for several years. Thus, females from selected parents express their maternal superiority with a factor: a 1 +n i=a 1 (1/(1 + d)) i , where a 1 is the age (number of time units) when females start expressing the genetic superiority, n is the number of times females are used as reproducers and d is the discounting rate. We assumed that genetic superiority in meat traits is only expressed in male progenies of selected parents, and therefore, just once. Table 4 gives population parameters related to numbers of animals that realize the genetic progress.

(iii) When the expression starts. This is the time lag between creation and start of expression of genetic superiority. This lag is clearly taken into account in a dynamic model (Elsen and Mocquot, 1974;Hill, 1974) by following the flow of genes of selected parents to their descendants throughout the investment period. In an asymptotic model, like the one used in this study, we approximated this lag by the mean generation interval, ( L), in nucleus farms. In production farms, the lag between creation of genetic superiority in nuclear and its realization in production farms ( Lh ) is in addition affected by the capacity of diffusion of genetic gain (r h ), Lh = L/r h (i.e., the asymptotic mean generation interval between a selected cohort in the nucleus and its first descendants born in the production farms: a proportion r h of these descendants are offspring, (1-r h )r h grand offspring etc.).

This approximation is rather conservative because it neglects erratic realizations of the first few years (Elsen and Mocquot, 1974;Hill, 1974).

Finaly, (iv) revenues depend on how long the genetic superiority is expressed. Nor-mally, the created genetic superiority is permanent, but for practical reasons, it is common to count till the end of investment period (T ) (in this study we used 30 years).

The revenues from selection on maternal traits (R m ) are given as:

R m = AM GG m × a1+n i=a1 [1/(1 + d)] i N F n × T t= L [1/(1 + d)] t + N F h × T t= Lh [1/(1 + d)] t
In which, AM GG m is the annual genetic gain on maternal traits, expressed in monetary unit and other terms are as defined above.

For meat traits, the revenues (R b ) are given as:

R b = AM GG b × N A n × T t= L [1/(1 + d)] t + N A h × T t= Lh [1/(1 + d)] t
In which, AM GG b is the annual genetic gain on meat traits, expressed in monetary unit.

Which result in the total revenues of: Here we defined the economic efficiency of any selection scenario as the contribution margin (MC), the difference between revenues and variable costs.

R = R m + R b Note that terms T t= L [1/(1 + d)] t and T t= Lh [1/(1 + d)] t are also equal to [1/(1 + d)] L T t=0 [1/(1 + d)] t and [1/(1 + d)] Lh T t=0 [1/(1 + d)] t , respectively. Where [1/(1 + d)]
CM = R -C
In which, R, C and CM relate to revenues, total variable costs and economic efficiency of a given selection scenario.

The above procedures were used to predict costs, revenues and contribution margins of different selection scenarios in two approaches:

1. Using decision variables in Table 3.

2. By optimizing the decision variable in order to maximize the total annual monetary genetic gain at fixed levels of variable costs. 

Results

Variable costs of different selection strategies 

Genetic and economic returns

The annual monetary genetic gain (AMGG) and corresponding revenues of different selection strategies are given in Table 6. Across scenarios, looking at the individual index, genetic progress and revenues for the meat traits were higher than the ones for maternal traits. This can partially be explained by the fact that meat index had high variance and selection accuracy compared to maternal index. Comparing scenarios at their contribution margins (CM)[CM= total revenues minus total variable costs] the results (Table 6)

show that GS-Pheno scenario gave the highest economic benefits. All genomic scenarios were superior to classic selection (Class-PT-Index), except the GS at the "Optimized" level of optimization. However, apart from the GS-Pheno, the benefits remain small. In non progeny testing scenarios the CM were higher when optimization was at the level of Optimized AI compared to Optimized, which means that increasing the quantity of AI doses was not economically beneficial. This was the opposite in progeny testing scenarios (i.e., Class-PT-Index and GS-PT-Index). Across scenarios, optimizations increased overall AMGG, revenues and CM. For classic selection, optimizing the use of decisional variables was more beneficial than including genomic information to an optimized classic design.

Optimized returns at given total variable costs

The optimized overall AMGG at different levels of variable costs are plotted in Figure 1 and corresponding revenues in Figure 2. Increasing investments via increase of variable costs increased the overall AMGG and revenues of all selection scenarios. The plateau, a state where increasing costs did not increase revenues was reached at approximately 240 K e for Class-PT-Index, GS and GS-Pheno scenarios and at 300 K e for the GS-PT-Index scenario. Scenarios GS-Pheno and GS-PT-Index gave highest optimized returns at, almost, all investment levels. However, the GS-PT-Index reached its maximum revenues at higher costs compared to others. Note that in GS and GS-Pheno scenarios, the costs of genotyping can be partially compensated by savings of eliminating progeny testing.

The results in Figure 3 show that in terms of economic efficiency (contribution margin), the scenario GS-Pheno was the most efficient at all levels of total variable costs studied.

Looking at each selection scenario, there is a point (or at least an interval) of variable costs where it is most efficient to invest, with respect to total variable costs spent. This economic efficient peak is at low costs for scenarios without progeny testing; at 180 K e for GS and 200 K efor GS-Pheno compared to progeny testing scenarios where the peaks are at 240 K e and 300 K e, respectively, for Class-PT-Index and GS-PT-Index. Costs were immediate, but revenues were outcomes of the expressed genetic superiority from progeny of selected parents. For that, we discounted revenues to the present terms with mainly two considerations, (i) "when and which animals realize the genetic 

Costs

In this study, genomic costs included genotyping costs of male selection candidates and 20% of the reference population with the OvineSNP50 BeadChip (with an approximate current price of 123 e/animal), plus 3,000 e of statistical analyses due to genomic information. Our results show that all the three genomic scenarios are more expensive than the classic scenario. Comparing scenarios at the current use of decisional variables, costs related to genomic information were up to 89,100 e (32.7% of total variable costs of GS and GS-Pheno scenarios) while costs of progeny testing were 56,000 e (22.6% of total what is predicted in dairy cattle breeding programs. Schaeffer (2006) compared costs of genotyping male selection candidates and dams of sires to costs of progeny testing in dairy cattle breeding program and found that costs of proving bulls would reduce by 92% (this was when genotyping an individual was assumed at $500) . However, compared to our results, much higher extra costs were predicted in pig breeding programs [START_REF] Tribout | Economic aspects of implementing genomic evaluations in a pig sire line breeding scheme[END_REF]. In their study, [START_REF] Tribout | Economic aspects of implementing genomic evaluations in a pig sire line breeding scheme[END_REF] showed that in pig breeding programs, genomic selection will not benefit from organizational changes that could save costs or time (like progeny testing).

If costs of genotyping were at 70 e/animal the GS and GS-Pheno scenarios would have been cheaper that classic selection. The reduced costs of genotyping can be envisaged under two considerations. First, with the constant developments in sequencing and genotyping technologies and the progressive decrease in genotyping costs, it is reasonable to suggest that costs of genotyping will continue to decrease. Second, costs of genotyping can be reduced assuming that selection candidates will be genotyped on low density (thus low cost) chips and imputation techniques will be used. Imputation is already being used in dairy cattle genomic evaluation and excellent results have been reported [START_REF] Dassonneville | Effect of imputing markers from a low-density chip on the reliability of genomic breeding values in Holstein populations[END_REF][START_REF] Huang | Assessment of alternative genotyping strategies to maximize imputation accuracy at minimal cost[END_REF]. Considering that we are dealing with established breeding scenarios, in genomic costs we did not count the costs of genotyping the initial reference population. With our reference population of 2,000 individuals, their costs amount to 246,000 e, which can be distributed over the investment period of 30 years (without discounting this could be 8,200 e/year). This could have slightly increased the costs of genomic scenarios, but the ranking can't be affected since genomic scenarios were already more expensive. Also subtracting 8,200 e/year) from the predicted contribution margins can have very minimal impacts.

Economic revenues and efficiency

In general, GS-Pheno and GS-PT-Index scenarios gave highest annual monetary genetic gain and associated revenues for mainly two reasons. In GS-Pheno, this was due to short generation interval and sustained high accuracy of index. Unlike the GS scenario where the accuracy depended only on genomic information (with a nref = 2,000), the GS-Pheno combined the genomic information with a meat phenotype. This gave high accuracy on meat index and thus high corresponding genetic trend. In GS-PT-Index scenario, the superiority was due to genomic pre-selection for progeny testing males. At low investment, progeny testing scenarios had lower returns, which could be explained by the high costs dependency of the GS-PT-Index and by the fact that both GS-PT-Index and Class-PT-Index scenarios must satisfy the progeny testing capacity (which involve, particularly, costs of AI and progeny testing). The fact that GS-PT-Index scenario at high costs (from 280 K e) was superior to GS-Pheno in respect to AMGG (Figure 1), but inferior in terms of economic return and CM (Figures 2 and3) may be due to long generation in GS-PT-Index. In average, the creation of genetic superiority (in breeding unit) takes longer with GS-PT-Index than GS-Pheno and that affects the realization when counted in same investment period.

In terms of economic efficiency, GS-Pheno scenario was the most efficient, by up to around 15% superior to classic selection in contribution margins, when compared at the optimized level. Indeed, on top of giving higher revenues as a result of high annual genetic gain, GS-Pheno scenario was relatively less expensive because, same as GS scenario, the costs of progeny testing were saved. For GS scenario, the costs of phenotyping male selection candidates in central testing station were maintained to renew the reference population for following generations. This affected its economic efficiency because this meat phenotype was not used to improve selection accuracy. Obviously, if a phenotype can be recorded before reproduction age, it should be combined with genomic information to improve selection accuracy and predicted genetic gain. Although GS-PT-Index gave high revenues, its superiority in contribution margins were lower because it used higher costs compared to other scenarios. Non progeny testing scenarios reached their highest revenues at relatively low costs and thus were most efficient with less investment.

In conclusion, this study showed that some forms of genomic implementation in small ruminant breeding programs comparable to one we studied, are somehow more profitable than classic selection. However, these economic gains are lower than technical gains (annual genetic gain) recently predicted in sheep and goats breeding programs. The results also confirm the necessity to optimize the use of decisional variables. The comparison was done at the industry level without differentiating revenues associated to nuclear or production farms. It would be interesting to analyze detailed costs and benefits of each shareholder of the industry (i.e., breeding organizations, breeders and farmers).

Appendix:Indices of meat and Maternal traits

In this study, the meat index (I b ) is a combination of average daily gain (ADG), back fat depth (BFD) and conformation score (ConfS) traits.

I b = b (p a , p f , p c )
Where b is a vector of index coefficients for these measured traits and p s are phenotypic values, as deviations from population mean, of these traits. The breeding goal (H b ) is:

H b = a (BV a , BV f , BV c )
In which, a is a vector of economic values of traits included in breeding goal and BV s are the true breeding values of these traits. The above equations are solved following the index methodology procedures (Hazel, 1943):

b = P -1 Ga
Where P is a matrix of covariances among observations in index, G is a matrix of relations between index and breeding values and vector a is as defined above. Where p p and p m are phenotypic values, as deviations from population mean, of prolificacy and milk value, respectively. The b is vector of corresponding index coefficients. The breeding objective is defined as:

H m = a (BV p , BV m )
In which a and BV s are as defined above, but for corresponding maternal traits. With index methodology procedures, as shown above, the matrix P of covariances among information sources (index traits) and matrix G of covariances between index and breeding goal traits are constructed and all index solutions calculated: b = P -1 Ga; σ Optimizing the reference population in a genomic selection design

Introduction

In the previous chapters the precision of the genomic evaluation was considered as a parameter, independent on the other variables characterizing the breeding plans. This precision was given by the Daetwyler et al (2008) formulae which involves the number of effective genome segments, the effective size of the population, the genome length, the size of the reference population and the trait heritability. Amongst many other hypotheses, this formula assumes that the SNPs are causative in the trait variability, that there is no relationships between individuals belonging to the reference and / or the selected populations and that SNPs are in full linkage equilibrium. Goddard (2009) and Goddard et al (2011) extended this formula to the situation of SNP linked to causal mutations rather than directly involved in the genetic variability.

The hypothesis of absence of relationships between individuals is a very crucial limit of these approaches. If the first papers describing and evaluating the genomic selection assumed that the high density SNP chips give the opportunity to use the so called historical linkage disequilibrium coming from long histories of selection, mutation, migration and recombination, more recent analyses of the efficiency of these genomic approaches suggested or demonstrated that a big part of the precision of genomic estimator is coming from familial structures (Habier et al., 2007;[START_REF] Gianola | Additive Genetic Variability and the Bayesian Alphabet[END_REF]Albrecht et al., 2011;Pszczola et al., 2012;Habier et al., 2013) and linkage (Goddard, 2009;Hayes et al., 2009;Habier et al., 2010;Goddard et al., 2011).

In many practical implementations of genomic selection, the reference population will be a part of the population under selection. The most important applications so far, in dairy cattle , are clearly of this type, the individuals used for assessing the SNP effects being progeny tested bulls. As the precision of the genomic selection decreases when genetic distance between reference and selection groups increases, regular recalibration of the marker effects from more recent groups of animals will be necessary. This recalibration will be automatic when genomic selection is the general rule, with a systematic genotyping of all selection candidates. However, for less intense use of the technique (e.g., in sheep industry which most often has limited resources and cannot organize a full use of genomics), optimizing the choice of individuals to be genotyped in a reference population makes sense.

This question was recently explored by Rincent et al (2012), who considered the reverse problem: having a population of individuals already genotyped, including a group of selection candidates, what is the most efficient choice of individuals to be phenotyped, i.e., to assemble in a calibration set, in order to maximize the mean precision of candidates genomic evaluation ? They compared, on real data, different criteria to evaluate this precision, mean Predicted Error Variance or expected reliability when using a GBLUP. For a given criteria, their mathematical formalization was the maximization of a non linear function of binary variables (δ i = 1 if individual i is to be phenotyped, 0

if not) linked by a linear constraint ( δ i = n).

The same approach could be informative when dealing with the direct question:

knowing the population structure defined by a real pedigree, and replacement rules of reproducers (number of males and females, selection and mating plan etc.), and given the number of genotypes which can be created / year, which animals should be genotyped to maximize the mean precision of candidates' GBV? Rincent et al (2012) and Pszczola et al (2012), showed that the relation between reference and candidates has a big effect on this precision. To generalize and quantify these observations, a possible line of research would be to characterize the best choice of animals to enter in the reference group, for various population structures, and various genetic hypotheses for instance about linkage disequilibrium. The elements of characterization could be the distribution of relationship coefficients in the reference population and between reference and candidates populations, as well as the family structure of those populations. The idea would be, for each envisioned case, to simulate some populations, and for each of them to optimize the choice of the reference panel.

As this is a big computational work, accelerating the optimization process is a very needed preliminary. Rincent et al (2012) used the simulated annealing algorithm to solve their optimization problem. This is one amongst many other solutions. Simulated annealing is a local search method which, in theory, converges in probability towards the global maximum, but which, in practice, may need very long computation time [START_REF] Dréo | Métaheuristiques pour l'optimisation difficile[END_REF].

In Let X the n r ×m matrix of all genotypes in P r . Elements of X are x ij = a ij -2f j with a ij ∈ {0, 1, 2} the number of A j alleles for individual i at marker j (alleles A j /B j ) and f j the A j frequency. The SNPs effect are estimated by q = (X X + Iλ) -1 X y , with y the phenotypes vector (described as y = Xq + e with q ∼ N (0, Iσ 2 q ), e ∼ N (0, Iσ e e )) and λ = σ 2 e /σ 2 q . The X matrix is a subset of the Z matrix corresponding to all phenotyped individuals (P r ∪ P o ):

Let g k = w T k q the genomic value of individual k ∈ P c , with q, the marker effects vector and w k the incidence line describing k s genotypes. The aim is the maximization of GBV mean precision of the n c candidates, r 2 = 1 nc k r 2 g k ,ĝ k . The correlations may be written different ways, including r 2 g k ,ĝ k = v(ĝ k ) v(g k ) = 1 -λ w k (X X+Iλ) -1 w k w k w k (Rincent et al (2012) considered another formulation of the correlation).

The X T X matrix is Z ∆Z, the ∆ matrix being diagonal with elements δ i (1 if individual i ∈ P r , 0 if ∈ P o ). We explored first and second order of X T X + Iλ inverse Taylor approximations: X T X λ + I This preliminary results indicate alternatives to Simulated annealing as a solver of the maximization problem. However the quality of the Taylor approximation must be assessed, first observations (not reported here) showing that it may be poor. Using the results of these approximation as starting points for global method is an alternative. It is also necessary to extend this first observation to the non approximated criteria ( ther), and to compare alternative strategies in terms of computation time and convergence quality.

Article III

A paper presented in the Workshop on Constraint-Based-Methods for Bioinformatics, Sweden,2013

The present work aims at providing a tool for optimizing the reference population design. Populations displaying realistic linkage disequilibrium structures were simulated. Efficiency of different reference population designs were evaluated from the mean correlation between true and GBLUP estimated breeding values. As in [START_REF] Rincent | Maximizing the reliability of genomic selection by optimizing the calibration set of reference individuals: Comparison of methods in two diverse groups of maize inbreds (zea mays l.)[END_REF], this criterion was used as an objective function to be maximized given a constraint of the reference population size. This paper describes a new approach to perform this optimization using a Taylor approximation in the framework of integer linear/quadratic/constraint programming and weighted Max-SAT/CSP.

The genomic selection design problem

The phenotyped population has n p individuals. Among them, we want to select n r individuals, forming the reference population, to be genotyped on m markers. The candidate population has n c individuals, different of those in the phenotyped population. These candidate individuals are assumed to be already genotyped.

We assume a GBLUP linear mixed model [START_REF] West | Linear mixed models: A practical guide to using statistical software[END_REF] for the observed phenotypes of the reference population with the genetic effects modeled as random effects (and no fixed effects for the purpose of this study). In matrix notation, we have:

y = Xq + e
where y = (y 1 , . . . , y nr ) is the column vector of observed (single value) phenotypes for the reference population, X = (∀l ∈ [1, n r ], ∀i ∈ [1, m] x li ) the matrix of recentered genotypes for the reference population with n r rows and m columns, q = (q 1 , . . . , q m ) is the column vector of m random genetic effects, and e is a vector of independent and identically distributed random error terms representing an environmental deviation. For each genotype, we have x li = a li -2f i , where a li ∈ {0, 1, 2} is the number of alleles A i possessed by individual l at marker i (having two possible alleles A i , B i ), and f i is the frequency of A i in the population.

q and e follow a normal distribution with zero mean and different variances: ∀i ∈ [1, m], q i ∼ N (0, σ 2 q ) and e ∼ N (0, σ 2 e ). We denote λ = σ 2 e σ 2 q , a known parameter value in our simulation. It can be shown that λ is related to heritability h 2 of the observed phenotypes: λ =

(1-h 2 )2 m i fi(1-fi) h 2
. The estimation of the random genetic effects q = (q 1 , . . . , qm ) is obtained by the following formula [START_REF] West | Linear mixed models: A practical guide to using statistical software[END_REF]: q = (X T X + λI) -1 X T y

We define the quality of this estimation on the candidate population by the mean square Pearson correlation r 2 g,ĝ = 1 nc nc k r 2 g k ,ĝ k , by marginalizing the phenotypes, where g k = w k q is the genotypic value of individual k and ĝk = w k q its estimate, with w k = (w k1 , . . . , w km ) is the row vector of recentered genotypes of individual k in the candidate population.

Using standard calculus we get:

r 2 g k ,ĝ k = cov 2 (g k , ĝk ) var(g k )var(ĝ k ) = var(ĝ k ) var(g k ) = 1 -λ w k (X T X + λI) -1 w T k w k w k T
Our goal is to maximize the quality of the estimation, that is to minimize: with v 1 = nr l x 2 l1 , v 2 = nr l x 2 l2 , and c = nr l x l1 x l2 . For the general case, we will approximate the matrix inversion by using a Taylor approximation. In the case of a Taylor approximation of order 1, we have: We can rewrite this objective function by introducing Boolean variables δ l ∈ {0, 1} for all individuals in the phenotyped population (l ∈ [1, n p ]). We denote z li the recentered genotype of individual l at marker i in this population (whereas x li is on the reference population). To conclude we are going to minimize a quadratic objective function with n p (1 + n p ) terms, n p Boolean variables (δ l ∀l ∈ {1, . . . , n p }), and an additional linear cardinality constraint np l δ l = n r . Note that the time for computing the objective function coefficients is already O(n 2 p n c m). Depending on the size of this minimization problem, it can be solved by complete search methods (e.g., best-first or depth-first Branch and Bound) or by local search methods (e.g., simulated annealing or Tabu search) in the framework of integer linear/quadratic/constraint programming and weighted Max-SAT/CSP.

D(X) = λ
D(X) = λ

Comparison of 01LP, 01QP, 01BQO, CP, Max-SAT, WCSP solvers

We compare the models described in Section 3 and 4, in terms of CPU-time, for solving the Taylor approximation of order 2. We vary the problem size n p from 20 to 200, and experiment with different ratios nr np from 0.25 to 0.5. We also compare with an unconstrained model where the cardinality constraint np l δ l = n r has been discarded.

We compare the 01LP solver SCIP (version 1.2.0), the 01LP and 01QP solver IBM ILOG cplex (version 12.4.0.0), the semidefinite programming based BQO tool BiqMac [START_REF] Rendl | Solving Max-Cut to optimality by intersecting semidefinite and polyhedral relaxations[END_REF], the pseudo-Boolean solvers clasp (version 2.0.4) and SAT4J (version 2.3.4), the CP solver mistral (version 1.3.40), the Max-SAT solvers minimaxsat [START_REF] Heras | Minimaxsat: An efficient weighted max-sat solver[END_REF] and maxhs [START_REF] Davies | Solving maxsat by solving a sequence of simpler sat instances[END_REF] (both using the tuple encoding as described in [START_REF] Bacchus | Gac via unit propagation[END_REF]), all solvers using default options, and the WCSP solver toulbar2 (version 0.9.63 ) using default options except an initial limited discrepancy search phase [START_REF] Harvey | Limited discrepency search[END_REF] with a maximum discrepancy of 2 (option -l=2 and no initial upper bound). SCIP, toulbar2, and mistral are accessed via the Python multi-solver modeling interface offered by NumberJack4 . All real value coefficients in the models are multiplied by M = 0.01 and rounded to the nearest integer, ensuring completeness of the solvers. We measured the search effort for finding the optimum and proving optimality as reported in Table 1.

For the smallest instances (n p ∈ [20, 100]), the quadratic programming solver QP/cplex and the semidefinite programming based boolean quadratic optimization tool BiqMac, used in the unconstrained case only, clearly dominate the other solvers. For the largest instances (n p ∈ {200}), all the approaches failed to solve the problem in less than 10 hours.

In order to solve large problems (up to n p = 200), we use a two-step procedure. First, we apply a local search method, called ID Walk for Intensification / Diversification Walk [START_REF] Neveu | Id walk: A candidate list strategy with a simple diversification device[END_REF], available as a library [START_REF] Neveu | INCOP: An Open Library for INcomplete Combinatorial OPtimization[END_REF] 5 integrated in toulbar2. Due to its neighborhood structure (changing only one variable assignment per move), ID Walk can only be applied to the unconstrained problem. We perform 1 run of ID Walk with 10,000 iterations, selecting at random among 200 candidate neighbors. The best solution found by the local search method is then used as a pre-selection of the individuals6 such that the second step is done by a complete search method (using SCIP) to satisfy the cardinality constraint. The resulting two-step procedure is called ID Walk&SCIP.

For the smallest instances solved optimally by complete search methods (n p ∈ [20, 100]), ID Walk&SCIP always found the optimum for the unconstrained the Taylor approximation of order 2 for a phenotyped population up to 100 individuals. Also, performances of all the solvers vary based on the tightness of the cardinality constraint. These results are useful to assess the quality of local search methods, which are able to tackle much larger problems. Moreover, we have shown how to combine a local search and a complete method in a simple two-step procedure, while degrading the solution quality when the desired number of selected individuals differs significantly from the local search solution. More experiments remain to be done to better distinguish the quality of the two Taylor approximations, and to analyze the performance of local search methods on realistic datasets (n p ≈ 10, 000) and the properties of the resulting reference population structures.
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n

  x n matrix of phenotypic variances and covariances among the measured traits, G is the n x m matrix of genetic covariances between the n measured traits and the m traits of the breeding objective (aggregate genotype) and the b = P -1 Gv and v are vectors of n index weights and m economic values respectively, as defined previously. These equations use as inputs variables: economic values, heritabilities, phenotypic and genetic (co)variances and correlations of concerned traits on selection candidates, as well as type and number of relatives' information. This selection index, I = Ĥ is the best linear predictor (BLP) of true breeding value of the selection candidates. The choice of b coefficients maximizes the correlation between H and I, r IH = cov(I, H). It means that, ranking selection candidates based on index, one has the best chance of ranking them according to their true genetic merit. Nevertheless, the selection index, in its original definition, lacks some important properties: (i) it can only consider predefined groups of relations (e.g., parents, half-or full-sibs) and thus loses in accuracy; (ii) it is biased because genetic differences among contemporary groups are not accounted for; (iii) It only calculate random effects and assumes that observations are pre-adjusted to correct environmental effect (data completely balanced) and (iv) It assumes that expected values and variances between observations and additive effects are known.

Figure 2 . 1 :

 21 Figure 2.1: Accuracy of GBV of un-phenotyped individuals with increasing number of phenotype records in the reference population used to estimated SNP effects, for different heritabilities (h 2 ). Ne is 100.

  availability, since 2009, of the Ovine SNP50 BeadChip (Illumina) and the quick development of the use of genomic information in dairy cattle have awakened the interest of the French dairy sheep breeding organizations to study the relevance of genomic selection in their breeds. Two major Research and Development programs have been carried out : the Roquefort'in program (2010-2013) in the Lacaune breed and the Genomia program (2010-2012) gathering the Manech and Basco-Béarnaise (north side of the Basque country) and the Latxa (south side of the Basque country) breeds. Both programs have benefited from efficient breeding schemes, with progeny testing of a large number of rams, especially in the Lacaune (450 rams each year) and Red-Faced Manech (150 rams each year) breeds. Moreover, blood samples from all progeny-tested rams had been collected and stored from the late nineties, offering the possibility to build large and deep reference populations. These projects had many objectives: • Setting up a reference population. In 2013, the reference population reached 4400 rams in the Lacaune breed (rams born from 2003 to 2013), 1430 rams in the Red-Faced Manech (from 1999 to 2009), 560 rams in the Basco-Béarnaise (from 1999 to 2012) and 330 rams in the Black-Faced Manech (from 1996 to 2007).
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 12 sheep and goat breeding programs. Corresponding results are in Article I and values of optimized decision variables are in Tables 3.1, 3.2 and 3.3 for the three studied breeding programs. F. Shumbusho, J. Raoul, J. M. Astruc, I. Palhiere and J. M. Elsen programs Potential benefits of genomic selection on genetic gain of small ruminant breeding doi: 10.2527/jas.2012-6205 originally published online June 4, 2013 2013, 91:3644-3657. J ANIM SCI http://www.journalofanimalscience.org/content/91/8/3644 the World Wide Web at: The online version of this article, along with updated information and services, is located on Potential benefits of genomic selection on genetic gain of small ruminant breeding programs . Shumbusho,* † 2 J. Raoul,* J. M. Astruc,* I. Palhiere, † and J. M. Elsen † Institut de l'Elevage, F-31321 Castanet-Tolosan, France; and †INRA, UR631 SAGA, F-31326 Castanet-Tolosan, France

Figure 1 .

 1 Figure 1. Population structure and selection steps of the studied breeding schemes. Full lines indicate mating paths and dotted arrows indicate selection based on parent averages (PA), own performance (OP), and progeny testing (PT). Male selected categories for the meat breeding program (a) are natural service (NS) males, test males (Test), and proven males; Elite b , Elite m , and Elite* to refer to best animals for meat, maternal, and both traits, respectively.Selected categories for the dairy breeding programs (b) are NS males, Test, and proven males; Elite* and Elite to refer to first and second categories on genetic level. Female selected categories are dams of sires (DS) and dams of dams (DD) for all breeding programs. These candidates are selected each year to renew a proportion of the corresponding total male and female reproducers in breeding unit (i.e., nNS, Test, nElite b , nElite m , and nElite* males for the meat breeding program; nNS, Test, nElite, and nElite* males for the dairy breeding programs and DS and DD females for each breeding program).

  summation includes all age classes l, γ 2jl is the contribution of age class l, i 2jl and accuracy for the selection of females of category j and age class l, and 2 jl σ is the genetic standard deviation of the corresponding female category, corrected for genetic reduction due to previous selection on age class.

Figure 2 .

 2 Figure 2. Effect of reference population size on the annual genetic gain (AGG) of the meat breeding program. (a) Gains on meat trait and (b) gains on maternal trait. Different lines indicate different scenarios at the optimized variables: GS = pure genomic selection, GS-pheno = combined genomic and a meat phenotype selection, GS-PT-index = genomic selection and progeny testing, and Class-PT-culling = conventional selection. For genomic scenarios, the genomic prediction accuracy (r GBV ) was calculated considering Ne = 200 and a genome size of 27 Morgan.

L and [ 1 /

 1 (1 + d)] Lh factors discount for the time lag between creation and realization of genetic change in nuclear and production farms, respectively.

Figure 1 :

 1 Figure 1: Optimized total Annual Monetary Genetic Gain (AMGG on meat + AMGG on maternal traits) at given total variable costs for different selection scenarios of the breeding program

Figure 2 :

 2 Figure 2: Total revenues of different selection scenarios of the breeding program at different levels of total variable costs

Figure 3 :

 3 Figure 3: Contribution margins at different levels of total variable costs for different selection scenarios of the breeding program

  index and breeding goal variances are calculated as : σ 2 I b = b Ga and σ 2 H b = a Ga, respectively. Finally, the reliability or heritability of the index:CD b = σ 2 I b σ 2 H b .For maternal index (I m ), two traits were combined, i.e., prolificacy (Pr) and milk value (MV). The later trait (milk value) is the weight of lambs at 30 days, which is a prediction of the mothering ability of her dam.I m = b (p p , p m )

  2 I b = b Ga; σ 2 H b = a Ga and h 2 b or CD b = σ 2 I b σ 2 H bChapter 5

  collaboration with MIA laboratory of INRA Toulouse, we explored other techniques, my contribution being the design of example populations close to the Red-Faced Manech sheep selection plan, and the simulation of individuals in these populations carrying a 10 000 SNPs genome in Wright-Fisher equilibrium. The population is made of three groups: the n c candidates (sub population P c ), the n r phenotyped individuals entering in the reference population P r , and the n o phenotyped individuals not selected in the reference group (P o ). The total number of phenotyped individuals is n p = n r + n 0 and n = n p + n c is the size of the population. The genotypes are measured for m markers.
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 2 • • • . The resulting functions to maximize are linear and quadratic function of the δ i variables, respectively. Different maximization algorithms were compared.Concerning the second order approximation, the optimization of the quadratic problem can be directly solved with quadratic programming . Alternatively, the quadratic objective function can be simplified as a linear programming question adding composite Boolean variable (δ ij = 1 if δ i = δ j = 1). Different solvers were tested by S. de Givry and G Katsirelos (SCIP, IBM ILOG cplex, BiqMac, clasp, STA4J, listral, minimaxsat, maxhs). Alternatively, the problem can be reformulated in terms of Weighted Constraint Satisfaction Problem and our biometrician colleagues used their Toolbar2 solver as a solution for this approach.As described in the following paper presented in WCB 2013 (Workshop on Constraint-Based-Methods for Bioinformatics), solutions for a few examples differing by the sample size were reached rapidly with the quadratic programming solver (cplex) when considering the cardinality constraint δ i = n and with the semi definite programming based Boolean quadratic optimization tool BiqMac when leaving this constraint.

  T X + λI) -1 wT k with ∀k ∈ [1, n c ], ∀i ∈ [1, m] wki = wk2 )(X T X + λI) -1 ( wk1 , wk2 ) T 2 + λ) + w2 k2 (v 1 + λ) -2 wk1 wk2 c ( w2 k1 + w2 k2 )((v 1 + λ)(v 2 + λ)c 2 )

  oh z oj ) Finally we reorganize the terms depending on the different combinations of δ l variables.
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 1 2: Performance records in nucleus flocks (Campagne 2009: Institut de l'Elevage)

	Formula	Activities
		(records)

Use of information Reproduction formula

  

	Recording	mat-	Paternity and maternity certification; prolifi-
	ings and lambings	cacy index calculation
	Formula		
	Elevage "milk		
	value"		

Table 1 .

 1 3: Dairy sheep breeding programs

	Breed	Breeding	Rams in	Rams progeny	Total proven	AI doses in
		unit	CE	tested/year	rams in CIA	breeding unit
	Red-Faced Manech	8,050	230	150	120	42,300
	Basco Béarnaise	24,000	85	50	40	11,500
	Black-Faced Manech 12,400	50	30	25	5,900
	corse	16,000	410	25	35	6,000
	Lacaune	171,000	1,700	420	500	141,800
	Source: Comité National Brebis Laitière (CNBL), 2013		

Breeding goals

Dairy sheep are raised to primarily produce milk for cheese and thus breeding goals are chosen to give high quantity and quality of milk for cheese. Breeding goals are defined by the breed organizations (OS) for the breed and breeding activities carried out by breeding companies (ES) and breeders. In dairy sheep, breeding goals have been evolving with time and according to the breed; starting with milk yield, they steadily included milk composition traits: first fat yield (FY) and protein yield (PY) (1987 in Lacaune breed and 2001 in Pyrenean breeds) and after fat content (FC) and protein content (PC) (1992 in Lacaune breed and 2009 in Pyrenean breeds). Recently, functional traits

Table 1 .

 1 4: Selection organizations and breeding companies for the five dairy sheep breeds

	Region (Breeds)	Organisme	Breeding com-	Organization for
		de sélection	pany	milk recording
		(OS)		
	Rayon de Roquefort	OS UPRA	Service Elevage	SE Confédération de
	(Lacaune)	Lacaune	Confédération de	Roquefort; Unotec;
			Roquefort; Coop	EDE81;	EDE48;
			OVITEST	SCP3034; EDE82.
	Pyrénées Atlantiques	OS ROLP	CDEO	CDEO
	(RFM, BFM and Basco-	(Pyrenean		
	Béarnaise)	breeds).		
	Corsian Island (Corse)	OS Brebis	CORSIA	CA Haute Corse; CA
		Corse		Corse du Sud

Table 1 .

 1 5: Dairy goats breeding programs

	Breed	Breeding	Rams in	Rams progeny	Total proven	AI doses in
		unit	CE	tested/year	rams in CIA	breeding unit
	Alpine	90,000	110	45	40	40,000
	Saanen	70,000	75	35	35	28,000
	Source: Renard (2008) and Danchin-Burge et al. (2012)		

  Genomic selection depends on simultaneous estimation of SNP (or haplotypes) effects across the genome. Thus a huge number of effects are to be estimated, more than observations (records) available. This creates computation problems for all methods in general, and limitations for those depending on degrees of freedom to estimate effects such as Least squares. A key parameter in estimating effects is the prior distribution of SNP effects, which is commonly used to classify GS methods. Since the first developments of genomic evaluation and selection byMeuwissen et al. (2001a) many methods have been developed and tested for GBV estimation and accuracy. Broadly, genomic selection methods can be divided into parametric and non-parametric. In parametric methods (i.e., methods that assume that data are derived from a type of probability distribution), the most common are linear regression, genomic BLUP and Bayesian related methods.

Table 2 .

 2 

	1: Rates of annual genetic gain (AGG) and rate of inbreeding per year (∆F ) of the young genomic schemes (GS-Y) and
	pre-selection schemes (GS-PT) reported in different studies					
	Study	Species	Model	Genotyped candidates	Accuracy	Efficiency of GS 1		
					of GBV				
						GS-Y		GS-PT	
						AGG	∆F /y	AGG	∆F /y
	Schaeffer, (2006)	Dairy cattle	Deterministic Males and dams of sires	0.75	117	-	-	-
	Konig and Swalve (2009)	Dairy cattle	Deterministic Males and dams of sires	0.5 to 0.9	Up to 90	-	-	-
	Colleau et al. (2009) 2	Dairy cattle	Stochastic	Males	Estimated	84	-23	88	69
	Pryce et al. (2010)	Dairy cattle	Deterministic Males	0.77	59	-63	16	0
	Lillehammer et al. (2011a)	Dairy cattle	Stochastic	Males	Estimated	29	14	11	-43
	Buch et al. (2012)	Dairy cattle	Stochastic	Males and dams of sires	Estimated	102	17	29	-67
	Pimentel and Konig (2012)	Beef cattle	Deterministic Males	0.1 to 0.9	28 3	-	-	-
	Haberland et al. (2012)	Horse	Deterministic Males and females	0.1 to 0.9	-	-	65	
	Lillehammer et al. (2011b)	Pig	Stochastic	Males and females	Estimated	23 to 91	-65 to -35	-	-
	Tribout et al. (2012)	Pig	Stochastic	Males and females	Estimated	-44 to 84	-49 to -60	-	-
	Shumbusho et al. (2013)	Dairy sheep	Deterministic Males	Calculated 4 51.7	-	26.9	-
		Meat sheep	Deterministic Males	Calculated 4 5.5	-	14.5	-
		Dairy goats	Deterministic Males	Calculated 4 26.2	-	18.6	-
	Sitzenstock et al. (2013)	Layer Chicken Deterministic Males and females	Calculated 4 60 to 150	-	3 to	-
								42	
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 1 Summary of breeding schemes simulated scenarios

	Scenario 1

Table 2 .

 2 Parameters of the breeding programs studied

	Parameter

Table 3 .

 3 Annual genetic gain for meat (AGGb) and maternal (AGGm) traits for different scenarios of the meat breeding program

	Selection scheme	Current 2	Optimized_AI 3	Optimized 4
	scenario 1	AGGb AGGm AGGb AGGm AGGb AGGm
	Class-PT-culling 5	0.095 0.061	0.121 0.087	0.139 0.096
	Class-PT-index	0.112 0.072	0.126 0.094	0.143 0.108
	Class-young	0.113 0.046	0.135 0.047	0.140 0.043
	GS	0.115 0.091	0.143 0.102	0.151 0.097
	GS-pheno	0.146 0.093	0.169 0.098	0.173 0.095
	GS-PT-culling	0.102 0.084	0.117 0.089	0.141 0.096
	GS-PT-index	0.113 0.095	0.131 0.115	0.146 0.123
	GS-pheno-PT-culling 0.108 0.097	0.126 0.102	0.130 0.120
	GS-pheno-PT-index 0.121 0.093	0.139 0.119	0.151 0.126
	1			

Table 4 .

 4 Annual genetic gain for different scenarios of the Red Faced Manech (RFM) sheep and Alpine goat breeding programs Class-PT-index: phenotypic selection based on progeny tests records and with index selection, GS-PT-index: genomic selection and progeny testing with index selection and GS: pure genomic selection.

	Selection scheme		RFM			Alpine	
	scenario 1	Current 2	Optimized_AI 3	Optimized 4	Current 2	Optimized_AI 3	Optimized 4
	Class-PT-index	0.147	0.167	0.174	0.120	0.173	0.183
	GS-PT-index	0.205	0.217	0.221	0.176	0.193	0.216
	GS	0.248	0.254	0.264	0.207	0.223	0.231
	1						

2 

Decisional variables were those used in current breeding programs except for genomic information.

Table 6 .

 6 Sensitivity of the objective function to economic weights of meat and maternal traits in the overall genetic gain

	Selection scheme		Superiority to reference (%)
	scenario 1	αm/αb 2 = 1.5/0.5 αm/αb = 1/1	αm/αb = 0.5/1.5
	GS-PT-culling	-10.63	-0.96	2.00
	Class-PT-culling 3	0.00	0.00	0.00
	Class-PT-index	-3.38	5.77	6.00
	GS-pheno-PT-culling	5.31	9.62	9.00
	GS	8.21	17.79	15.00
	GS-PT-index	13.53	18.27	19.50
	GS-pheno-PT-index	16.91	24.04	21.00

Table 3 .

 3 1: Values of decision variables of the modeled scenarios of the Mouton Ile de France breeding program, at different optimization levels

	Scenario 1	Optimization	Decision variables					
		level 2								
			Ms	Test	nT pAI	nElite*	nElite m nElite b nNS
	Class-PT-Culling	Current	300	20	20	5,000	13	10	13	300
		Optimized AI	310	21	26	5,000	8	9	7	53
		Optimized	290	35	34	8,300	8	7	11	50
	Class-PT-index	Current	300	20	20	5,000	20	30	-	300
		Optimized AI	310	28	30	5,000	10	17	-	120
		Optimized	380	32	48	8,200	14	10	-	50
	GS	Current	300	-	-	5,000	20	-	-	300
		Optimized AI	400	-	-	5,000	14	-	-	52
		Optimized	600	-	-	5,900	17	-	-	50
	GS-Pheno	Current	300	-	-	5,000	20	-	-	300
		Optimized AI	420	-	-	5,000	15	-	-	68
		Optimized	460	-	-	6,000	18	-	-	50
	GS-PT-Index	Current	300	20	20	5,000	20	20	-	300
		Optimized AI	320	18	36	5,000	8	10	-	85
		Optimized	420	28	46	7,800	12	11	-	50
	GS-PT-culling	Current	300	20	20	5,000	13	13	13	300
		Optimized AI	300	28	25	5,000	7	8	4	61
		Optimized	467	38	35	8,250	9	8	7	12
	GS-Pheno-PT-	Current	300	20	20	5,000	20	20	-	300
	Index									
		Optimized AI	325	21	34	5,000	8	8	-	73
		Optimized	410	30	46	7,700	11	8	-	40
	GS-Pheno-PT-	Current	300	20	20	5,000	13	13	13	300
	culling									
		Optimized AI	310	23	30	5,000	7	7	6	128
		Optimized	380	26	61	7,800	8	9	12	40
	1									

Table 3 .

 3 2: Values of decision variables of the modeled scenarios of the Red-Faced Manech, at different optimization levels .Shumbusho 1,2 , J.Raoul 1 , J.M. Astruc 1 , I. Palhiere 2 , S. Lemarié 3 , A. Fugeray-Scarbel 3 , and J.M. Elsen * 2 1 Institut de l'Elevage, F-31321 Castanet-Tolosan, France 2 INRA, UR631 SAGA, F-31326 Castanet-Tolosan, France 3 INRA, UMR GAEL, Univ. Grenoble Alpes, 38040 Grenoble Cedex 9

	Scenario 1	Optimization	Decision variables		
		level 2					
			Test	nT	AI	nElite* nElite nNS
	Class-PT-index	Current	150	35	33,000 30	80	300
		Optimized AI	197	30	33,000 19	15	130
		Optimized	195	35	51,000 27	55	60
	GS-PT-index	Current	150	35	33,000 30	80	300
		Optimized AI	140	32	33,000 20	29	200
		Optimized	170	70	48,000 25	27	100
	GS	Current	-	-	33,000 30	80	300
		Optimized AI	-	-	33,000 21	74	210
		Optimized	-	-	46,000 56	81	210
	Table 3.3: Values of decision variables of the modeled scenarios of the Alpine goat
	breeding program, at different optimization levels			
	Scenario 1	Optimization	Decision variables		
		level 2					
			Test	nT	AI	nElite* nElite nNS
	Class-PT-index	Current	40	80	36,000 30	30	1,500
		Optimized AI	70	64	36,000 14	10	700
		Optimized	112	65	71,000 31	29	0
	GS-PT-index	Current	40	80	36,000 30	30	1,500
		Optimized AI	51	59	36,000 24	10	700
		Optimized	140	85	71,000 25	20	0
	GS	Current	-	-	36,000 30	30	1,500
		Optimized AI	-	-	36,000 25	28	740
		Optimized	-	-	71,000 47	55	0

F

Table 1 :

 1 Economic values (a), genetic standard deviation (SD), heritabilities (bold on diagonal), genetic (above diagonal) and phenotypic (below diagonal) correlations of the traits included in selection indices of decision variables. Genotyping costs are those spent on male selection candidates and on the renewal of the reference population (a 20% proportion was supposed here).

	Trait 1		a	SD Pr MV ADG BFD ConfS
	Prolificacy (%)	Pr	0.48 16 0.09 0	0	0	0
	Milk value (kg)	MV	0.94 0.9 0	0.2 0	0	0
	Average daily gain (g/j)	ADG	0.005 20 0	0	0.18 0.01 0
	Back fat depth (mm)	BFD	9.41 0.63 0	0	-0.08 0.29 0.11
	Conformation Score	ConfS 7.31 0.23 0	0	0.11	0.11 0.3

Table 2 :

 2 Decision variables, corresponding costs and how selection scenarios are concerned with certain costs

	Decision	Corresponding costs	Symbol Unit costs	Scenario concerned		
	variable			(cv i )				
					Class-PT-Index	GS GS-Pheno	GS-PT-Index
	M s	Loss in slaughter value for male	M sc p	30	x	x	x	x
		selection candidates						
		Records and maintenance of	M sc m	100	x	x	x	x
		males in SCI						
	Test	Progeny testing on meat trait	testc b	1,800	x			x
		(external service)						
		Progeny testing on maternal	testc m	1,000	x			x
		trait (maintenance of the Ram)						
	nElite	Maintenance of Elite rams per	elitec	400	x	x	x	x
		year						
	nNS	Maintenance of Natural service	N Sc	300	x	x	x	x
		rams per year						
	pAI	Cost of one AI dose	pAIc	10	x	x	x	x
		Cost of a genotype	Genoc 1	123		x	x	x
		Cost of statistical analysis per	Statc 2	3,000		x	x	x
		year						

1 

Costs of genotypes are specific and vary within genomic schemes 2 Cost of extra statistical analyses are fixed and specific to genomic schemes

Table 3 :

 3 Values of decision variables of the modeled scenarios, at different optimization level A n ) and production (N A h ) farms and females in nucleus (N F n )

	Scenario 1 Optimization	Decision variables		
		level 2						
			Ms	Test nT pAI	nElite* nElite nNS
	Class-PT-	Current	300	20	20 5,000 20	30	300
	index							
		Optimized AI	310	28	30 5,000 10	17	120
		Optimized	380	32	48 8,200 14	10	50
	GS	Current	300	-	-	5,000 20	-	300
		Optimized AI	400	-	-	5,000 14	-	52
		Optimized	600	-	-	5,900 17	-	50
	GS-Pheno	Current	300	-	-	5,000 20	-	300
		Optimized AI	420	-	-	5,000 15	-	68
		Optimized	460	-	-	6,000 18	-	50
	GS-PT-	Current	300	20	20 5,000 20	20	300
	Index							
		Optimized AI	320	18	36 5,000 8	10	85
		Optimized	420	28	46 7,800 12	11	50

Table 4 :

 4 Parameters related to numbers of animals that realize the genetic gain and used to calculate revenues of the selection strategies

	Parameter

Table 5

 5 gives the detailed variable costs of running any of the 4 modeled selection scenarios, when the cost of genotyping an individual is 123 e or 70 e. Comparing total variable costs of scenarios at any optimization level (i.e., Current, Optimized AI or Optimized)shows that running any genomic scenario is more expensive than classical selection, when a genotype costs 123 e, but less expensive to classical selection if a genotype could cost 70 e (except the GS-PT-Index). The scenario GS-PT-Index is the most expensive because in addition to costs common to all scenarios it also uses both costs of genotyping and progeny testing. The current costs of genotyping an individual with the OvineSNP50

BeadChip array is around 123 e, so, interpretations and further comparisons are done considering that genotyping an individual costs 123 e.

Table 5 :

 5 Detailed variable costs when the costs of a genotype is 123 e or 70 e for different selection schemes at different optimization levels

	Optimization level	Costs 1	Class-PT-Index	GG	GS-Pheno	GS-PT-Index

Table 6 :

 6 Annual monetary genetic gain (AMGG) for meat (b) and maternal (m) indices, and revenues (R) and contribution margins (CM) in Million Euro, from different selection strategies AM GG b and AM GG m are annual monetary genetic gain on meat and maternal traits, respectively.2 R b , R m , R and CM are revenues on meat traits, maternal traits, total revenues and contribution margins, respectively, all in Million Euro.

	Scenario	Optimization	AM GG b	1 AM GG m	1 R b	2	R m	2	R 2	CM 2
		level								
	Class-PT-Index	Current	0.440	0.156	1.029	0.240	1.269	1.022
		Optimized AI	0.509	0.178	1.190	0.275	1.464	1.243
		Optimized	0.556	0.216	1.301	0.334	1.634	1.390
	GS	Current	0.438	0.205	1.025	0.315	1.340	1.068
		Optimized AI	0.515	0.210	1.204	0.324	1.528	1.304
		Optimized	0.545	0.194	1.276	0.299	1.575	1.291
	GS-Pheno	Current	0.533	0.194	1.247	0.298	1.546	1.274
		Optimized AI	0.630	0.198	1.473	0.305	1.777	1.544
		Optimized	0.639	0.191	1.495	0.294	1.789	1.539
	GS-PT-Index	Current	0.444	0.216	1.039	0.333	1.372	1.036
		Optimized AI	0.510	0.281	1.192	0.433	1.625	1.360
		Optimized	0.590	0.283	1.380	0.436	1.816	1.479
	1									

Table 2 .

 2 Relative distances between the best solutions found by the local search method ID Walk followed by SCIP post-processing and by a complete search method (QP/cplex). CPU-times in seconds for ID Walk and SCIP are given in parentheses when appropriate.

		ID Walk&SCIP	
			nr/np	
	np	25%	50%	Unconstr.
	20	0.17%(0.3 + 0.1)	0%(0.3 + 0.03) 0%(nr = 9)
	40	0.32%(0.6 + 0.39)	4.17%(0.6 + 1.17) 0%(nr = 15)
	60	0.59%(0.9 + 0.64)	4.56%(0.9 + 9.17) 0%(nr = 21)
	100	0%(1.4 + 2.47) 34.2%(1.4 + 18, 684) 0%(nr = 25)
	200 14.32%(2.8 + 22, 746) 55.16%(2.8 + 36, 000) 0%(nr = 35)

The performance of genomic schemes in % of AGG and rate of inbreeding relative to classic selection, considering that the classic selection is at 0.

Genomic selection in comparison to marker assisted selection.

Comparing genetic gain per generation of conventional (scenario 1) and pure genomic (scenario 5) selection on global index, and when the reference population was 2500 individuals(Pimentel and Konig, 2012).

The genomic prediction accuracy was calculated with analytical formulae ofDaetwyler et al. (2008) orGoddard (2009).
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For the dairy breeds, selection targeted to improve a maternal trait. at INRA Institut National de la Recherche Agronomique on August 4, 2013 www.journalofanimalscience.org Downloaded from

NS = Natural Service.

The number of genotyped males of Mouton Ile de France breed was always equal to male selection candidates (Ms).

Decisional variables were optimized to guarantee a fair comparison of alternative selection scenarios.

Only 1 record was considered per paternal half-sib. at INRA Institut National de la Recherche Agronomique on August 4, 2013 www.journalofanimalscience.org Downloaded from

The Class-PT-culling was used as a reference scenario. There was no genetic correlation between meat and maternal traits. For genomic scenarios, the r GBV was calculated using Ne = 200, a genome size of 27 Morgan, and nref = 2,000. Ne = effective population size; r GBV = the genomic prediction accuracy; nref = reference population size.

Decisional variables were optimized but the AI was limited to its current level of use in the breeding unit. Optimized_AI: the use of AI is not optimized.

No restriction on AI. The genomic prediction accuracy (r GBV ) was calculated based on Ne = 200, nref = 2,000, and a genome size of 27 Morgan for RFM and 30 Morgan for Alpine. Ne = effective population size; nref =reference population size. at INRA Institut National de la Recherche Agronomique on August 4, 2013 www.journalofanimalscience.org Downloaded from

The αb and αm are economic weights of meat and maternal traits, respectively, considered in the objective function.

The reference scenario with which the relative change was compared.at INRA Institut National de la Recherche Agronomique on August
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The contribution (c slp ) of any selected parents of sex s and genetic level l to a corresponding selection path p depends on their reproductive capacity and is limited by the contributions of other parent categories of the same sex but of superior genetic level.

Elite = best males of genetic level;DS and DD = first and second best female categories on genetic level; MM, MF, FM and FF for males to males, males to females, females to males and females to females selection paths, respectively.

AI Elite = amount of AI per elite sire used in breeding unit; nElite = total number of elite sires in breeding unit; Ms = male selection candidates; cm = number of females/male replacement; renF = number of females to replace/year; cf = number of females/female replacement; Test = males to be progeny tested/year; nT = number of progeny/test sire.at INRA Institut National de la Recherche Agronomique on August
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Class-PT-index: conventional scheme that does progeny testing, GS: pure genomic selection, GS-PTindex: genomic selection and then progeny testing.

[START_REF] Bacchus | Gac via unit propagation[END_REF] Current: decision variables are those used in the current breeding program except for genomic information, Optimized AI: other decisional variables were optimized but AI was limited to its current level of use in the breeding unit and Optimized AI: all decision variables are optimized.

Heritabilities and correlations are from the study of[START_REF] Bibé | Genetic parameters of growth and carcass quality of lambs at the french progeny-test station berrytest[END_REF] and economic values and SD from the study of[START_REF] Guerrier | Définition économique des objectifs de sélection en ovins allaitants. Application à la race Blanche du Massif Central[END_REF].

Class-PT-index: phenotypic selection and progeny testing with index selection, GS: pure genomic selection, GS-pheno: combined genomic and a meat phenotype selection, GS-PT-index: genomic selection and progeny testing with index selection.

Current: decision variables are those used in the current breeding program except for genomic information, Optimized AI: other decisional variables were optimized but AI was limited to its current level of use in the breeding unit and Optimized AI: all decision variables are optimized.

cgeno: costs related to genomic information; cmale: costs related to to male selection candidates; crepro: costs of keeping male reproducers; cAI: costs of artificial insemination; and ctest: costs of progeny testing.

http://mulcyber.toulouse.inra.fr/projects/toulbar2

http://numberjack.ucc.ie/ and http://github.com/eomahony/Numberjack/ tree/fzn.

INCOP version1.1 http://www-sop.inria.fr/coprin/neveu/incop/ presentation-incop.html

Either by discarding the remaining unselected individuals if too many individuals have been selected by the local search method, or by fixing the selected individuals if they are less than the required number n r .

Available information on males Selection stage and modalities 2 Meat breed 3 

Class-PT-culling

Meat phenotype on young males Meat and maternal progeny test records First on meat phenotype Second on independent culling levels on both traits Class-PT-index Meat phenotype on young males Meat and maternal progeny test records First on meat phenotype Second on index of both traits Class-young Meat phenotype on young males 1stage selection, on meat phenotype GS Genotypes on young males 1 stage selection, on index of both traits GS-pheno Genotypes on young males Meat phenotype on young males 1 stage selection , on index of both traits

GS-PT-culling

Genotypes on young males Meat and maternal progeny test records First on index of both traits Second on independent culling levels on both traits

GS -PT-index

Genotypes on young males Meat and maternal progeny test records First on index of both traits Second on index of both traits GS-pheno-PT-culling Genotypes on young males Meat phenotype on young males Meat and maternal progeny test records First on index of both traits Second on independent culling levels on both traits

GS -pheno-PT-index

Genotypes on young males Meat phenotype on young males Meat and maternal progeny test records First on index of both traits Second on index of both traits Dairy breeds 4 Class-PT-index Progeny test records 1 stage selection, on index

GS-PT-index Genotypes on young males Progeny test records

First on index Second on index

GS

Genotypes on young males 1 stage selection, on index 1 Class-PT-culling: phenotypic selection and progeny testing with independent culling level selection, Class-PT-index: phenotypic selection and progeny testing with index selection, Class-young: phenotypic selection without progeny testing, GS: pure genomic selection, GS-pheno: combined genomic and a meat phenotype selection, GS-PT-culling: genomic selection and progeny testing with independent culling level selection, GS-PT-index: genomic selection and progeny testing with index selection, GS-pheno-PT-culling: combined genomic and a meat phenotype selection and progeny testing with independent culling level selection, and GS-pheno-PT-index: combined genomic and a meat phenotype selection and progeny testing with index selection. 2 Selection stages listed here were after a selection based on parents breeding values of corresponding traits. This selection was taken into account in the proportions contributed by each parent category. 3 For the meat breed, selection targeted to improve meat and maternal values.

Effect of Reference Population Size

The effects of reference population size on the annual genetic gain of the meat and dairy breeding programs are presented in Fig. 2 and3, respectively. As expected, the results show that the genetic response increases with the size of the reference population in all scenarios in which genomic information was included. In all breeds, the change in genetic gain obtained by increasing the size of the reference population was substantially larger for the scenario where selection depended only on genomic information (i.e., the GS scenario). In all scenarios increasing the reference population size resulted in a diminishing return increase of genetic gain; this was particularly the case for scenarios using both phenotypic and genomic information (e.g., GS-pheno, GS-PTindex scenarios). At the reference population size of 1,000 individuals in dairy and 2,000 individuals in meat breeding programs, genomic scenarios outperformed conventional scenarios.

Effects of Correlation between Meat and Maternal Traits

The results presented in Table 5 show that genetic correlations between traits greatly impact the genetic gain for all scenarios. For both traits the AGG changed consistently along with the genetic correlation, being the most strongly impacted maternal traits. This is usually due to correlated response that could be greater for a trait with less informative information sources (e.g., low heritability and/or less information included in index). When comparing the relative gain of different scenarios (Table 5) to that of the reference, a high sensitivity to correlations was found for all scenarios. A negative genetic correlation had the largest effect on the scenarios ranking, being the most affected the scenario in which an early meat phenotype was combined with genomic information was the most affected (GS-pheno).

Effects of Economic Weights on Genetic Gain

To test the stability of the results against economic weights, we analyzed the effect of economic weights in the objective function on the total genetic gain of the Mouton Ile de France breed. Results in Table 6 show that changes to these weighting parameters affected the total genetic gain but that the rank and relative differences between alternative breeding programs were not significantly changed.

DISCUSSION

The objective of this study was to predict the potential benefits of genomic selection on the genetic gain that can be expected in breeding programs for small ruminants. Selection targeted to improve 2 traits in meat sheep breed and a single trait in both dairy sheep and goat breeds. Comparisons of alternative conventional and genomic selection strategies were based on the AGG. For genomic schemes, a mediumsized reference population was considered to calculate genomic prediction accuracies. The effects of reference population size on the genetic gain were also evaluated. All selection scenarios were optimized to ensure comparisons were fair.

The Selection Model

The model was developed to be flexible to include the various components of the selection strategies as observed in actual small ruminant breeding programs. It took into account overlapping generations and included single-and 2-stage selections for males and selection of females across age classes with a unique truncation point across multinormal distributions of their breeding values. 

APPENDIx 1.

Relationships between parameters and decision variables and contributions of each reproduction category to male and female progenies. Appendix Table 1 of this appendix contains simple equations that associate the parameters and decisional variables given in Table 2 of this article. Appendix Table 2 shows how parent contributions were calculated. 

Appendix

Proportion of females selected as dams of males q DS q DS = DS/(F × pF) Proportion of females selected as dams of females q DD q DD = DD/F Proportion of males progeny tested q Test q Test = Test/(Ms × surM) Proportion of males selected as NS sires q NS q NS = nNS/(MS × surM) Proportion of proven sires q Elite q Elite = Elite/(Test × surM)

Progeny testing capacity is limited by females and AI available nT × Test × cf < F × pAI Amount of AI per elite sire used in breeding unit, depended on AI capacity and was limited by AI max AI Elite AI max ≥ AI Elite = (F × pAI -AI test )/nElite 1 tm and tf = time units males and females are kept in service, respectively; surM and surF = stayability of males and females, respectively, in breeding unit; surL = survival rate at maturity; ferAI and ferNS = fertility with AI and with natural service, respectively; pr = prolificacy; sr = sex ratio; pAI = quantity of AI as percent of recorded females; nElite = total elite sires in breeding unit; nNS = total number of natural service sires in breeding unit; F: number of recorded females; nT = number of progeny/test sire; Test = males to be progeny tested/year; Ms = male selection candidates; pF = percent of females qualified to be dams of male replacements; AI max = maximum number of AI doses per elite sire in breeding unit.

2 NS = Natural Service.

Appendix Table 2. Proportions contributed by each parent category 1 

Abstract

The recent studies of genomic evaluation using real data and prediction of genetic gain by modeling breeding programs have reported that moderate benefits can be expected by replacing classic selection with genomic selection (GS) in small ruminants. The objectives of this study were to compare costs, monetary genetic gain and economic efficiency of classic selection and GS at the level of a meat sheep industry. Deterministic methods were used to model selection based on multi-traits indices in a sheep meat breeding program. Decisional variables related to male selection candidates and progeny testing capacity were optimized to maximize annual monetary genetic gain (AMGG). For GS, a reference population of 2,000 individuals was assumed and genomic information was available for evaluation of male candidates only. The results showed that all GS scenarios, at all optimization levels, were associated with more total variable costs than classic selection, when genotyping costs 123 e/animal. In terms of AMGG and economic revenues, only GS scenarios where genomic information was combined with meat phenotypes (GS-Pheno) or with progeny testing (GS-PT-Index) were superior to classic selection. The predicted economic efficiency, defined as revenues minus total variable costs, showed that the best GS scenario (GS-Pheno) was up to 15% more efficient than classic selection. Across selection scenarios, optimizations increased the overall AMGG, revenues and economic efficiency. As a conclusion, the study showed that some forms of genomic selection strategies can be more beneficial than classic selection, provided that the genomic selection is already initiated (i.e., the initial reference population is available). Optimizing the current use of decisional variables can give more benefits than including genomic information in optimized designs.

Selection schemes scenarios

To evaluate the differences in costs and economic efficiency of classic and genomic selection, four different selection scenarios have been studied in respect to variable costs and economic efficiency. Scenarios have been described in Shumbusho et al. (2013) and are briefly defined hereafter.

Class-PT-Index. This is a classical selection scheme, where estimates of breeding values (EBV) were based on phenotypes and pedigree information. After selection on parents' average EBV, young males were selected based on their meat index and then, after progeny testing, on a global index combining meat and maternal traits. This scenario was used as a reference in comparison to genomic scenarios.

Genomic selection (GS)

. This is a pure genomic selection scenario. Young male selection candidates were genotyped and best reproducers selected on their GBV of meat and maternal traits at an early age. This scenario was modeled to quantify the effect of reducing the generation interval and use of genomic information.

GS-pheno.

In this scenario young male selection candidates were genotyped and phenotyped for the meat traits. Then, best reproducers were selected on index combining genotypes and a meat index. This scenario was aimed at assessing the usefulness of the genomic selection strategy for both traits when meat phenotypes are available from an early age.

GS-PT-index. This scenario also used the GS scenario procedures as a pre-selection step. After progeny testing, elite rams were selected using a single index that combined meat and maternal records of their progeny.

In all selection scenarios, females are first selected based on their parents' average

Response to selection

Selection response was predicted with deterministic methods based on selection index theory (Hazel, 1943), extending the model developed in Shumbusho et al. (2013) to include multiple traits in each index. The model predicts selection accuracy and genetic superiority of selection candidates, accounting for their age and genetic level.

In this study, two indices were constructed to represent two groups of traits: meat and maternal traits, which are the improvement targets in many meat sheep breeding programs in France (including the Mouton Ile de France breeding program). The meat index (I b ) was a combination of average daily gain (ADG), back fat depth (BFD) and conformation score (ConfS) traits, and the maternal index (I m ) included prolificacy (Pr) and milk value (MV). Genetic parameters and economic values of these indices traits are in Table 1 and details on the used index formulae are in Appendix 1. By using traits' phenotypic and genetic variances in their physical units and correlations, and their economic values, the genetic progress was expressed in monetary unit per unit change of the index (i.e., annual monetary genetic gain (AMGG)).

The genomic information was modeled as a trait with a heritability of 1.0, which was genetically correlated to the corresponding selection index (Dekkers, 2007). This genetic correlation between the genomic information and the index was equal to the accuracy of genomic prediction, r GBV , which depends on the reference population. The r GBV was predicted using formulae of Daetwyler et al. (2008) and Goddard (2009):

Evaluation of variable costs of different selection strategies

In this study, we only considered costs that vary among studied selection scenarios.

These variable costs correspond, on the one hand, in levels of decisional variables (or some of them) and on the other hand, in genomic information costs. Following the model and selection scenarios described in the recent study by Shumbusho et al. (2013), we predicted the annual total variable costs (C) of adopting any selection strategy. For genomic schemes, costs of genotyping and extra statistical analyses were added to costs

Economic revenues and efficiency of different selection strategies

Revenues from genetic improvement depend on many factors, mainly:

(i) the magnitude of genetic change (e.g., annual genetic gain expressed in physical or monetary units).

(ii) the extent of expression (which and how many animals realize the genetic change). This concerns the whole industry because genetic progress created in nuclear is realized in both nuclear and production farms. In case of the Mouton Ile de France breeding program where selection targets to improve meat and maternal traits, the genetic change is realized 

Introduction

Thanks to the discovery of very abundant Single Nucleotide Polymorphisms (SNP) and availability of high throughput genotyping technologies, genomic selection, as described by [START_REF] Meuwissen | Prediction of total genetic value using genome-wide dense marker maps[END_REF] more than ten years ago, became realistic and rapidly turned to be the new standard in Dairy cattle breeding schemes [START_REF] Schaeffer | Strategy for applying genome-wide selection in dairy cattle[END_REF]. Its application to other species is still a matter of discussion, as described for instance by [START_REF] Tribout | Efficiency of genomic selection in a purebred pig male line[END_REF] in pig or [START_REF] Shumbusho | Potential benefits of genomic selection on genetic gain of small ruminant breeding programs[END_REF] in sheep. Genomic selection schemes comprise two steps. The estimation step, performed from phenotypes and genotypes recorded in a reference population, provides estimations of SNPs effects on the quantitative trait of interest. Different models were proposed for these estimations, the simplest, Genomic Best Linear Unbiased Prediction (GBLUP), modeling the performance as the sum of fixed nuisance effects and all SNPs random effects with a prior in a Gaussian distribution of known variance [START_REF] Meuwissen | Prediction of total genetic value using genome-wide dense marker maps[END_REF]. The selection step comprises an estimation of Genomic Breeding Values (GBV) merging the genotypic information about each candidate and the SNP effects previously estimated. Amongst other factors, the efficiency of genomic selection largely depends on the design of the reference population [START_REF] Albrecht | Genome-based prediction of testcross values in maize[END_REF][START_REF] Pszczola | Reliability of direct genomic values for animals with different relationships within and to the reference population[END_REF]. There are increasing evidence that closer the reference population to the selected population is, more precise the genomic evaluation will be. As an example, between breeds designs with SNPs estimated in a breed and selection candidates belonging to another breed (e.g. Jersey and Holstein breeds in dairy cattle) are efficient only with very dense SNP chips [START_REF] De Roos | Linkage disequilibrium and persistence of phase in holstein-friesian, jersey and angus cattle[END_REF].

Integer linear/quadratic/constraint programming models

We add n 2 p extra variables γ lo in order to linearize the quadratic objective function. For every pair of Boolean variables (δ l , δ o ), there is a Boolean variable γ lo that is equal to 1 iff δ l = δ o = 1. We have the following 0/1 linear programming (01LP) formulation:

By removing the last three inequations and replacing γ lo by δ l * δ o , we get a 0/1 quadratic programming (01QP) formulation. The same 01QP formulation can be used by constraint programming (CP) languages such as MiniZinc [START_REF] Marriott | The design of the zinc modelling language[END_REF]. By removing the cardinality constraint, we get a pure boolean quadratic optimization (BQO) formulation.

Weighted CSP and weighted Max-SAT models

A Weighted Constraint Satisfaction Problem (WCSP) [START_REF] Meseguer | Soft constraints processing[END_REF] P is a triplet P = (X, F, k) where X is a set of variables and F a set of cost functions. Each variable x ∈ X has a finite domain of values that can be assigned to it. A cost function f (S) ∈ F , with scope S a sequence of distinct variables of X, is a function which associates to every assignment t of its variables a positive integer in [0, k] where k is a maximum integer cost used for representing forbidden assignments.

The Weighted Constraint Satisfaction Problem is to find a complete assignment t minimizing the total cost W = f (S)∈F f (t[S]) where t[S] denotes the projection of t over variables S. This optimization problem has an associated NP-complete decision problem.

The genomic selection cost minimization problem has X = {δ 1 , . . . , δ np , x 1 , . . . , x np+1 }, all δ l (resp. x l ) domains are equal to {0,1} (resp. [0, n r ]),

We define:

with M a large value used to convert real numbers into integers (rounding to the nearest integer). We have W D 2 (X) + C, where C is a positive constant shift value used in order to keep all cost functions positive. Cost functions f (x l , δ l , x l+1 ) are used to decompose the cardinality constraint np l δ l = n r into an equivalent set of low arity cost functions, by introducing extra counting variables {x 1 , . . . , x np+1 }.

By removing the part for encoding the cardinality constraint, we get a formulation ready for Max-SAT solvers.

Preliminary results

Simulation of genomic data

A population with a linkage disequilibrium (LD) extent comparable to one found in a real sheep population (Manech Tête Rousse breed) was simulated with the QMSim software [START_REF] Sargolzaei | Qmsim: a large-scale genome simulator for livestock[END_REF]. For that, a historical population of 20, 000 individuals was simulated for 1, 050 generations by considering an equal number of individuals from both sexes, discrete generations, random matings, no selection and no migration to create an initial LD, and establish a mutation-drift equilibrium state. For the first 1, 000 generations, the population size was decreased to 2, 000 individuals and then increased to 16, 000 individuals within the last 50 generations to create a bottleneck and eventual decrease in effective population size as known in domestic animals. Furthermore, 15, 000 females and 350 males from the last historical generation were used as founders of the selected population. From the founder population, 10 overlapping generations of selection (with 20% and 30% replacement rate for females and males, respectively) and random mating were simulated as contemporary born animals. For the purpose of this study, females from generations 8 and 9 served as the phenotyped population, i.e., n p ≤ 20, 928, where to select the reference population, and males from generation 10 were used as the candidate population, i.e., n c ≤ 10, 453. The simulated genome consisted of m = 10, 000 SNP markers, equally spaced across 5 chromosomes of 100 cM each and 2.5 * 10 -5 mutation rate per marker. problems. The distance to the optimum increases slightly when the required number n r is (very) different than the one found for the unconstrained case, e.g., being up to 34% for n p = 100, n r = 50 as reported in Table 2. The overall time of the two-step procedure is clearly dominated by its second step, e.g., unfinished after 10 hours for n p = 200, n r = 100, which means that the proposed approach should scale to larger problems only if n r is close to the optimal unconstrained number of selected individuals.

Table 1. Time in seconds of complete search methods (-: unsolved after 10 hours, N/A: non applicable for BiqMac,minimaxsat, and maxhs, which were applied only in the unconstrained case). For unconstrained instances, the number of selected individuals (n r ) in the optimal solution is given in parentheses. 

SCIP cplex

Conclusion

We have presented an optimization problem occuring in the context of genomic selection design. Finding the optimal reference population can be approximated by a quadratic minimization problem on Boolean variables with a cardinality constraint. Preliminary results showed that only quadratic programming solvers such as cplex and the semidefinite programming based boolean quadratic optimization tool BiqMac, in the unconstrained case, are able to solve optimally Chapter 6

General conclusions

This study presented the first results on the impacts of genomic selection (GS) on genetic gain and economic efficiency of small ruminant breeding programs, focusing on breeds with medium to small-sized breeding units. It addressed the optimization of different decision variables to maximize the genetic gain. At the end, we contributed ideas on how to optimize the reference population, which is normally the crucial limiting factor in adopting GS in small ruminant breeding programs.

In summary, the findings suggest that in terms of genetic gain, GS is more beneficial than classic selection, provided that, at least, a medium reference population is constructed (around 2,000 individuals). The genomic superiority was highest in scenarios without progeny testing for dairy breeds (dairy sheep and dairy goats). This means that the gain due to reduction in generation interval is higher than the loss due to decrease in accuracy of progeny testing. In the meat sheep breeding program, highest benefits were found in scenarios that included meat phenotypes (in case they can be recorded before reproduction age). This shows the importance of phenotypic information as long as they do not increase generation interval, which is the case for some meat related traits. In terms of economic impacts of GS, it was not a surprise that GS scenarios were more expensive than classic selection. In small ruminant breeding programs, possible costs reduction due to current organizational changes to implement GS, if any, will be less compared to dairy cattle. For example, in the scheme we modeled, costs related to genomic information accounted for 32.7% of the total variable costs of the GS scenarios, while costs of progeny testing represented 22.6% of the classic selection. So, even without progeny testing GS schemes need more investment than classic selection at comparable levels of decision variables (same level of optimization). Comparing selection scenarios on their economic efficiency, defined as total revenues minus total variable costs, shows that some GS scenarios were more efficient than classic selection. Nevertheless, the eco-Chapter 6. General conclusions nomic superiority of GS was of low magnitude compared to genetic gain superiority of same GS scenarios.

Furthermore, the results showed that optimizing decision variables can greatly increase the genetic gain and economic efficiency in all selection scenarios. Indeed, in most cases, gains due to optimization were greater than the ones due to inclusion of genomic information. This suggests that some small ruminant breeding programs can, actually, improve their genetic gain by optimizing the decision variables. Though our optimization model did not explicitly constrain the rate of inbreeding, comparing to dairy cattle the increase in inbreeding is lower in small ruminants due to joint use of AI and natural service rams, and use of only fresh semen in sheep. However, it could be interesting to study the evolution of inbreeding in these simulated schemes, considering the different selection strategies (classic and genomic). This could be done best by modeling these selection scenarios with a stochastic model, which can allow to study the impacts of selection on the simulated populations as in real life.

Possible applications

The study contributed to the knowledge about two questions: (i) how much can GS impact sheep and goats breeding programs? (ii) How optimal are the current small ruminant designs? The answers and possible applications to real situations vary among breeding schemes. Though GS can improve genetic gain, the magnitude will depend on the breeding program concerned. The fact that GS involves more costs than classic selection, its adoption in small ruminants remains a business decision. This is partially because the costs are real and immediate while economic benefits will depend on expressed genetic superiority and will be materialized later. Due to diversities in small ruminant breeding programs, it is necessary to discuss difficulties and challenges of implementing GS at the breed level. For instance, the availability of a reference population (e.g., individuals with own performances, progeny tested rams, multi-breed pooling, etc.), the traits to be included, the role of each stakeholder of the industry, etc. It is even possible that genomic selection, as defined today, might not be of interest in some breeding programs!

The example we modeled here showed that the economic benefits of using genomic information are rather modest. This economic efficiency depended on the level of investments, with some scenarios requiring more variable costs than others to maximize their contribution margins. An important point, however, should be kept in mind concerning the magnitude of the revenues, the model (asymptotic model) we used is not flexible to follow how much and often superior genes are inherited. For instance, it neglects the Chapter 6. General conclusions erratic expressions of first few years. It would be a good idea to model same example with a dynamic model.

The study confirmed the need to optimize the use of decision variables, like the number of male selection candidates, progeny testing capacity, the rate of AI, etc. However, the practice should be customized to each breeding program. For example, the results

showed that increasing the AI in non progeny testing scenarios was not necessarily beneficial, while this was the opposite in progeny testing schemes. This means that the optimal level of any decisional variable should be checked for each breeding program.

As regards to implementation of GS, it is important to emphasize that in many small ruminant breeding programs extra costs, compared to classic selection, will have to be invested. Therefore, it is important to analyze costs and revenues at the shareholder level because most of the selection related costs are borne by breeding organizations and breeders, while revenues are realized by the whole industry.

Problem of the reference population

The first step in genomic selection is the construction of a reference population of individuals with genotypes and phenotypic observations. The results of this thesis (article I and II) were produced assuming we have a reference population composed of males that are not progeny tested and /or females. Inasmuch as our position was to quantify the impacts of different selection strategies of established breeding programs, only the renewal of the reference population was accounted for in calculating costs. However, in reality, gathering the initial reference population can be an obstacle to adopt reference population in many sheep and goats breeding programs. In France, only in dairy breeds (sheep and goats) genotyping at 50K has started in order to build reference populations and test genomic evaluations. Moreover, except in Lacaune breed, the reference population (made of progeny tested rams) is less than 2,000 individuals. The situation could be worst in meat sheep because very few rams are progeny tested (e.g., Table 1.1). Actually, in very small breeding programs (like many of the meat sheep breeds), even, forming a medium reference population of non progeny tested individuals can be a challenge because very few male candidates are phenotyped per year. In addition, in these breeding programs the existing selection tools are not optimal which can limit implementation of any new technology (e.g., Genomic selection). So, the implementation of GS in small ruminants will also depend on the size and capacity of the breeding program concerned.

The idea we raised in chapter 5 of optimizing the choice of individuals of the reference population is very important, especially, for the implementation of GS in small ruminant breeding programs. In addition to challenges that could be shared with small Chapter 6. General conclusions cattle breeding programs (e.g., few or no individuals of highly reliable phenotypes) small ruminants have the problem of high costs of genotyping relative to the value of candidates. So the idea of optimizing the reference population is highly recommended. There are some known factors for an ideal reference population (reviewed in sub-section 2.3.3 of this thesis) but, there is no established rule to know, before hand, which individuals (in a given breeding program) should be genotyped to maximize the GBV accuracy of the candidates. Situations deviating from the dairy cattle reference populations are not yet fully explored. For example in meat sheep breeding programs, a reference population could include individuals with own performance records rather than progeny means.

However, without the rule to optimize the choice of these individuals, to achieve reasonable accuracies of GBV with a reference population based on own performance records would require large numbers of genotyped animals, especially for low heritability traits.