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PREFACE

As the world�s leading flavors and fragrances company, Givaudan designs and 

manufactures aromas and perfumes for large varieties of applications from luxury perfumery 

to home products. So far, the incorporation of perfumes in readily biodegradable and 

hydrosoluble bio-based materials is a key challenge in industrial applications such as indoor 

deodorizers or cleaning/washing products. 

The �Fractionation and Transformation of Agro resources� research group of the 

Laboratory of Agro-Industrial Chemistry has been studying for more than 15 years different 

materials coming from renewable agricultural resources (i.e. maize, corn, plum, pea�) The 

thermo mechanical transformation of these products and by-products allows to conceive many 

materials among which some are nowadays industrialized. Knowledge and know-how on the 

physicochemical properties and the processing of natural polymers have already let to foresee 

a various range of materials and structures in which some aromatic compositions can be 

incorporated. 

Furthermore, in the same research group, a specific research axis has been dedicated to 

the development of new natural encapsulating materials and the �Analytical chemistry and the 

transformation of agro-constituents and their environmental impact� research group of the 

very same lab possesses analytical devices and expertise to qualify and quantify the 

incorporation and the release of volatile organic compounds in any kind of matrices. 

The compatibility between the partners was then optimal to study the incorporation 

and the release of model perfumes in a bio-based matrix and thus develop new encapsulating 

agro-materials. However they had to meet and this encounter was possible thanks to the work 

of a French designer. 

Gilles Belley led in 2009 a brainstorm on a project called �The Vegetal Factory�, in 

collaboration with Stephanie Sagot, head of the art center �La Cuisine� and with the 

Laboratory of Agro-Industrial Chemistry. In this project, he offered the possibility to integrate 
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natural materials, biodegradable and sensitive to environmental conditions, inside our 

domestic habitat. He drew, in particular, two objects called �The twig� and �The branch�. 

These were supposed to liberate perfumes upon humidification inside the household. The 

whole project was later awarded from the Agora Grant for design and noticed by Givaudan. 

From these product concepts has been build a more tangible research project about the 

twin-screw extrusion encapsulation of perfumes in a bio-based matrix, with a precise 

requirement specification: producing a water-soluble and glassy delivery system containing at 

least 10% (w/w) of perfume. This project was the framework of this PhD thesis. 

The present manuscript is structured in four chapters. 

The first chapter presents an overview of the evolution of flavor encapsulation by extrusion in 

the past six decades. 

 It presents the key issues of melt extrusion when compared to other encapsulation 

technologies especially in terms of environmental footprint, operating conditions, 

encapsulating and encapsulated materials used and final properties of the delivery systems. 

Figure 1. Twig perfume on its stone support, courtesy of La 

fabrique Végétale. Photography Felipe Ribon & Gilles Belley 
Figure 2. Branch perfume and its fragrance diffuser, courtesy of 

La fabrique Végétale. Photography Felipe Ribon & Gilles 

Belley
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The second one describes the physicochemical properties of different maltodextrins 

according to their DE-values, focusing on their melt viscosity and glass transition 

temperatures. The effect of two plasticizers is also discussed. 

 The goal of this preliminary study was to define suitable materials and operating conditions 

before starting the twin-screw experiments. 

The third chapter is related to the determination of the extrusion encapsulation 

conditions using a model hydrophobic active compound, MCT-oil. Before using a complex 

perfume it was necessary to start with a simpler product to set up the extrusion processing. To 

facilitate the incorporation of the hydrophobic compound in the hydrophilic maltodextrin-

based matrix, two kinds of compatibilizing biopolymers are compared: pea protein isolate and 

a modified starch hydrolyzate (Hi-Cap 100). Investigations of the physicochemical 

characteristics (morphology and thermal properties) of these new bio-based delivery systems 

are characterized. 

The last chapter is composed of two parts; the first part corresponds to the extrusion 

encapsulation of a technical perfume and characterization of the final properties of the 

obtained delivery systems. The second part, deals with the study of the encapsulation 

efficiency of the process and the kinetic release profile of the perfume under different 

environments. Additionally, sensory assessments regarding a potential application in the 

fragrance field are conducted. 

Each of these chapters is written in the form of a scientific publication. 
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Chapter 1 

Melt Extrusion encapsulation of flavors: a 

review
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Abstract 

Encapsulation of flavor and aroma compounds has been largely explored in order to meet 

appraisal demands from consumers by improving the impact of flavor during the consumption 

of food products. Even though several techniques have been used for encapsulating volatile 

compounds, i.e. spray drying, fluidized bed coating, coacervation and melt extrusion, those 

most frequently used in the food industry are spray drying and melt extrusion. In this article, 

the different techniques of encapsulation of flavors and fragrances in polymer-based matrices 

by extrusion are reviewed and partly re-defined, emphasizing the differences between the 

various techniques reported so far and the role of matrix types, additives and operative 

conditions. Also, the role of water as a key parameter for controlled release and shelf stability 

of the delivery system will be discussed.  

Keywords: Microencapsulation, melt extrusion, ram extrusion, melt injection, fragrances, 

flavors 

Remark: published in Polymer Reviews, Volume 56, issue 1, 2016, 

doi:10.1080/15583724.2015.1091776
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1. INTRODUCTION

Flavors, fragrances and bioactive food compounds (employed in the nutraceutical and the 

pharmaceutical domains) are often supplied in powder or granulated form for better handling 

and more accurate dosing in final product. Over the last decades, encapsulation technologies 

have added new functionalities to these forms, such as protection against evaporation, 

oxidation, moisture and other aggressive environmental agents to provide extended shelf life, 

or controlled release under pre-determined conditions 1�6.  

The most common encapsulation technologies used in the flavor industry comprise spray 

drying, spray coating and extrusion 6�12, and earlier variants of extrusion also known as melt 

injection, have been known since the late 50�s. A common feature to all these technologies is 

the dispersion of the active substance (or encapsulated material) in a matrix that is impervious 

to both active substance and external deleterious agents. 

Extrusion cooking is widely used in the food industry since the seventies. This highly 

versatile processing technology allows the combination of many unit operations (i.e. mixing, 

grinding, cooking, extraction�), among which encapsulation has recently been investigated. 

As encapsulation technique, melt extrusion is promising on economic and environmental 

points of view, as it is a one pot process (formation of the wall material, dispersion of the 

active principle, and forming of the encapsulated material), without any use of organic solvent 

and a reduced energy and water consumption (especially when compared to spray-drying).  

This review focuses on the state of the art on melt extrusion encapsulation of flavors and 

fragrances. This technology was first reported in industrial patents, and is now becoming an 

academic research topic. 

Section 2 covers the basics of flavor encapsulation, emphasizing the influence of matrix 

materials, compatibilizers and morphology on encapsulation efficiency and release behavior. 

Section 3 focuses on the matrix itself, emphasizing the influence of humidity on its 

encapsulating properties. Usually, this matrix is built up of carbohydrates and is in the glassy 

state, although other matrices have also been used. The way this matrix is formulated and 

processed and how the core material is incorporated into this matrix during extrusion are key 

parameters that are discussed in detail. 

Finally, Section 4 deals with extrusion itself, emphasizing the importance of process 

parameters on the overall quality of the product. 
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2. MICROENCAPSULATION OF FRAGRANCES AND ODOR ACTIVE COMPOUNDS IN 

SOLID FORMS

Flavors and fragrances are highly complex chemical compositions of sensitive volatile 

organic compounds with different physicochemical properties (i.e. volatility, water solubility) 

and an average molecular weight from about 50 to 300 Da. The capture, the retention and the 

rendition of such complex compositions in their integrity, combining with low losses during 

encapsulation, are the key objectives of encapsulation 5,6,13�15. In the last two decades, the 

volume of encapsulated oils has grown significantly. In 2001 it was estimated that 20% to 

25% of all flavors commercialized in the world, were in an encapsulated form, and between 

10% and 20% of these could not be encapsulated by spray-drying 16. In order to satisfy this 

important demand, melt extrusion appeared as a suitable and flexible technology to produce 

such encapsulates in large volumes. Furthermore, extrusion had a number of advantages over 

spray drying, such as lower energy consumption during operation and minimal emission of 

odor-contaminated exhaust air. Finally, the conditions of extrusion allow a better control of 

the state of the matrix, especially if carbohydrates glasses are considered 17. Benczcedi et al., 
18 have demonstrated that lemon, lime and tangerine flavors had better stability (no oxidation 

was observed) and longer shelf life when encapsulated by melt extrusion compared to spray-

drying (4 years at 20°C compared to 2 years at 20°C). The drawbacks of extrusion are the 

limited loading, usually not exceeding 15% to 20% and the coalescence of the droplets of 

active compounds 19,20. 

The two first studies of flavor encapsulation by �extrusion� used a carbohydrate matrix 

comprising sucrose and corn syrup to entrap the essential oil 21,22. Following these pioneering 

works, the development and research of new materials and procedures for the encapsulation 

of flavors increased significantly in the food industry. Encapsulation of aroma compounds in 

a carbohydrate polymer in a glassy state, also known as �glass encapsulation�16 became very 

popular, and numerous patents were submitted by companies like Griffith Laboratories, 

Sunkist Growers, Nabisco Brands and McCormick & Company 23�27. All processes described 

herein involve the entrapment of the flavor in a carbohydrate matrix (starch, modified starch, 

corn syrup, sucrose, gums, maltodextrins�). Patents disclosing the use of biopolymers-based 

matrix by melt-extrusion instead of low molecular weight sugars, dextrins and maltodextrins 
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were mainly published in the 1990�s (Fig.1) 28�30, by industrial companies. Details about the 

encapsulation process and the key process parameters are usually scarce in such documents. 

Figure 1. Trends in extrusion encapsulation technologies in the last decades. 

All of these methods are, however, based on the same process steps:  

(i) Incorporating a volatile compound (flavor, fragrance or other sensitive 

molecules) in a thermoplastic matrix and  

(ii) Forcing this mass through an orifice or die to shape the encapsulated 

material.  

The release mechanism involved in these technologies is essentially dissolution in water, 

which may be immediate or delayed in time. Temperature may also be used as a trigger, but 

more occasionally. Alternative mechanisms, such as diffusion or mechanical breakage of 

core-shell capsules 6 are not discussed in this review. 
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The efficiency and quality of the overall encapsulation process is the result of the combination 

of system morphology, i.e. the way the encapsulated material is dispersed in the matrix, and 

the physical state of this matrix.  

Classically, the system is viewed as a dispersion of the oil phase in the form of small 

inclusions in the matrix. Different morphologies have been postulated for different release 

profiles (Fig. 2): 

(i) Coarse dispersion in the matrix 23,30�33, 

(ii) Fine dispersion using emulsifying and/or compatibilizing agents 34,35,  

(iii) Film coating of the core material 36�43,  

(iv) Fine dispersion and external film coating,  

(v) Fine dispersion and coating of the core and the matrix 32. 

Figure 2. Schematic view of possible encapsulation morphologies obtained using extrusion 
microencapsulation. 

The most appropriate matrix physical state for encapsulation is the glassy state, where both 

free volume and molecular mobility are minimized 30,44�47. Hence, the glass transition 
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temperature of the matrix is a key parameter for encapsulation in solid matrices. This will be 

discussed more thoroughly in the next sections. The polarity of the matrix is another key 

factor that controls both encapsulation and retention of the volatiles. Hence, for hydrophobic 

ingredients, such as flavor and especially fragrances, the highest retention is obtained in 

hydrophilic matrices, which can be easily explained in terms of solubility. Besides, 

hydrophilic matrices have low permeability with respect to oxygen (Section 3.2). Hence, 

carbohydrates in the glassy state show better retention of volatile compounds and extended 

shelf life stability 13,16,46,48�50. The encapsulation in glassy carbohydrates is also referred to 

glassy microencapsulation. 

However, the situation is rendered more complex by the fact that individual molecules may 

interact with the matrix itself, which in turn affects the properties of this matrix and the 

release profile of the flavor. The chemical diversity of encapsulated ingredients is therefore 

another key feature, which must retain attention. The most recurrent flavors used in the food 

industry and reported in the literature are diacetyl, terpenes, such as d-limonene, terpene 

alcohols, such as geraniol, menthol and thymol, terpene ketones, such as camphor and 

menthone, short chain esters, such as ethyl propionate and isoamyl butyrate, aldehydes, such 

as acetaldehyde and hexanal, lactones, such as heptalactone and nonalactone, sulfur-

containing ingredients, such as 3-methylthiohexanol, thiolactones and the like, and nitrogene- 

and nitrogene-sulfur heterocycles, such as pyrazines and thiazoles. Flavor (and perfume) 

ingredients are therefore characterized by a broad range of physico-chemical properties, 

whereas the most relevant of these properties as far as encapsulation is concerned are the 

presence of chemical functions, molecular weight and steric hindrance, vapor pressure and 

relative solubility in both oil and matrix phase. All of these parameters control the interactions 

between the ingredients and the matrix, their diffusion through this matrix, the encapsulation 

yield, the storage stability of the dry product and the release profile 7,10. 

The interactions of flavor ingredients and the matrix and their effects on flavor encapsulation 

and release have been extensively investigated in the literature. In particular, the formation of 

flavor complex with starch has attracted much interest 51�54. Most of these studies have, 

however, been performed in solution, i.e. under conditions where starch is fully plasticized 

and amylose has a sufficient conformational flexibility to accommodate guest molecules and 

form the inclusion complexes. It has been proven by DCS and X-ray diffraction 

measurements, that complexation proceeds through amylose helix formation to form 

reversible inclusion complexes. Such conditions are not met in extrusion, due to the low water 
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content of the extrudate, unless higher processing temperatures are applied. The formation of 

flavor-cyclodextrin complex is also well documented 7,38,42,55. In all cases, the inclusion 

complexation constant has been found to depend strongly on the molecular shape and polarity 

of the guest molecule. The encapsulation and release of flavors in and from low molecular 

weight carbohydrates and carbohydrate oligomers, such as corn syrup solids and 

maltodextrins, has been extensively reviewed in the case of spray drying Goubet et al. 7 as 

well as in the case extrusion-mediated glass encapsulation 17,48,56. It appears from the above 

studies, that the entrapment of flavor ingredients at the molecular level in the matrix can 

occur, providing suitable interactions that can lead to flavor-carbohydrate complex with 

reduced diffusion. Such interactions have been investigated by inverse gas chromatography, 

providing a better understanding on how retention and release work in these systems. Owing 

to the complexity and diversity of these oils, the study and quantification of retention or 

release of volatile compounds remain difficult, and few standardized methods are known. In 

some studies, polymer-flavor complexes in solution have been analyzed in order to determine 

the type of interactions involved and how flavors are released 7,57�59. Other studies focused 

their attention on determining the type of interactions existing between the solid matrix and 

two or three specific flavor compounds, thanks to inverse gas chromatography 60�62. Hence, 

contradictory results are frequent. For example, Gunning et al. 63 observed that the percentage 

of flavor release from a low water content sucrose/maltodextrin matrix into the headspace 

increased when temperature raised above 60°C, while the contrary was found in other 

maltodextrin matrix 64. In the latter case, thermally enhanced retention was attributed to a 

change in the polarity of the matrix with increasing temperature 64. As documented later in 

this review, such discrepancies are certainly linked to different level of moisture in the matrix.  

Direct entrapment or solubilization of the flavor ingredients in the matrix has been considered 

as a convenient way to encapsulate volatile substances. The quality of such encapsulation 

process depends, however, on the flavor-matrix interactions mentioned above. For example, 

lactones are better retained in starch-based matrices, while alcohols are better encapsulated by 

carbohydrates, whereas flavors ingredients having similar chemical functions but different 

molecular weights or topologies may show different entrapment behavior 7. This selectivity 

may lead to strong distortion of the flavor release profile. Furthermore, the flavor loading that 

can be reached by this method is limited to 3 to 6 (%w/w) of the extrudate. Above this limit, a 

flavor exudation occurs during the extrusion process, leading to the formation of separated 

liquid phase, which may flow out of the extrudate or disperse in the matrix in the form of 

irregularly shaped liquid inclusion (Fig 2, case (i)). Such a coarse dispersion leads to the 
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formation of large amounts of surface oil, which is deleterious to the quality of the product. 

The presence of surface oil is indeed highly undesirable, because  

(i) Surface oil is not encapsulated and therefore its release is not controlled and 

(ii) Such oil is readily oxidized, which leads to loss of product organoleptic 

quality, and contributes to powder caking. High quality encapsulates must have 

low surface oil levels. 

An intensive development work has been done in the last decades to increase the flavor load 

in encapsulates, while keeping the surface oil at the lowest possible level and extending the 

storage stability of the product. This is usually achieved by providing a fine dispersion of the 

encapsulated oil in the matrix by using suitable combinations of mixing powder and 

solubilizing or compatibilizing agents 18 (Section 3). The resulting product morphology after 

drying is that of a �dry emulsion� (Fig 2, case (ii)). 

Figure 3. Spray dried particles with �dry emulsion� morphology (courtesy of Givaudan Schweiz AG). 

Figure 3 shows such morphology in the case of a spray-dried powder with oil inclusions 

having a diameter of less than one micron. The matrix was obtained by spray drying a high 

internal phase fragrance emulsion comprising maltodextrins and modified starch. This method 

allows increasing the payload more than 40% 8. Another way to reduce surface oil of the 

extrudate involves preparing an emulsion of the active compound, comprising a film-forming 

agent, and injecting this emulsion directly into the extruder (Fig 2, case (iii)). This 
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pretreatment effectively decreases flavor losses during the process and allows co-

encapsulation of different flavors in the same encapsulate 40. 

Figure 4. Scheme of release profile depending on the morphology of the delivery system obtained by 
extrusion. 

The release of the encapsulated actives from systems based on carbohydrates is triggered by 

exposure to moisture. Critical water-induced plasticization of the matrix, which is marked by 

a decrease of the carbohydrate glass transition to sub-ambient temperatures, starts at 50% to 

70% relative humidity 56. Ultimately, the matrix dissolves and the full flavor is released. 

Figure 4 schematizes the expected influence of the product morphology on the release rate of 

the active compound over time if the encapsulate is exposed to moisture. Note that, in the 

present case, increasing time (at constant moisture) is equivalent to increasing the moisture 

content or the water activity in the system. This is, however, an idealized view, which is 

shown here for guiding the reader through this review. The fast and early release corresponds 

to encapsulation of the active compound without any pre-encapsulation or coating treatment 

prior to extrusion (curves (i) & (ii)). Release of these kinds of structure is more known as a 

burst-like release, all the compounds are liberated at the same time. Incorporating a film-

forming agent at the oil/matrix interface increases the resistance to moisture and may result in 

a more gradual flavor release (curve (iii)). Finally, combining above morphologies with an 
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external coating leads to similar release profiles, but delayed in time (or occurring at a higher 

moisture level)(curves (iv) & (v)). For example, Menzi et al. 65 have proposed to apply a 

vegetable fat coating on granulated materials obtained by spray coating of a flavor/water 

emulsion on a sugar carrier material, which was shown to improve the storage stability of 

encapsulated flavors and to delay their release in chewing gums. Alternatively, Leusner et al. 
66, Bouquerand 36, and Chang et al. 35 have employed Miglyol as an additive to their 

formulation, in order to provide extra protection to their active principle, as well as to reduce 

the release rate. Others techniques and other wall materials have also been explored in order 

to lower the production cost and to target other application areas 28,67,68. 

It must be stressed, however, that the loss of volatiles from encapsulates during handling and 

storage starts at water levels much below than the plasticization limit. This leakage involves 

at least three mechanisms:  

(i) Evaporation of the surface, 

(ii) Diffusion of the subsurface flavor oil droplets to the surface of the matrix, and  

(iii) Exudation of the flavor compounds through the matrix fractures or cracking 63. 

Controlling the hygroscopicity and the physical integrity (absence of capillary cracks and 

other defects) of the matrix is therefore a crucial aspect of flavor and fragrance encapsulation. 

For example, high molecular weight carbohydrates offer longer shelf live and high stability to 

active compounds compared to short molecular weight sugars and maltodextrins 14,69. On the 

other hand, starch, modified starches, proteins or gums give delivery systems with 

thermoplastic behaviors, which gradually swell in presence of moist environments and slow 

down the release of the active principle 16.  

If the aim of the final product is to enhance the release rate, low molecular weight polymers 

such as maltodextrins having a high dextrose equivalent (DE) must be used. For example, 

Swisher 22 and Schultz and Calif 21 have used in their formulations low molecular weight 

carbohydrates (e.g. sucrose, corn syrup). The same effect can be obtained by using plasticizer, 

such as glycerin and other polyols (Section 3.4.4), which are less volatile than water, and 

therefore are better retained in the matrix. 

The next section provides an overview of the carriers and additives used in extrusion 

encapsulation. 
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3. MATRIX MATERIALS

3.1. Introduction 

Matrix materials used in extrusion encapsulation must combine good processability and good 

barrier properties. This is achieved by using certain biopolymers or mixtures of biopolymers 

and low molecular weight molecules, such as sugars and sugar alcohols (Table 1). The most 

frequently used matrix materials, or carriers, are carbohydrates. The choice of encapsulating 

materials is based on five criteria: natural origin, barrier properties with respect to gas and 

small volatile molecules, large scale and low cost availability 12,70,71. The advantage of using 

such biomaterials for microencapsulation is on one hand the simplicity of the release 

mechanism, mainly triggered by moisture or heat, and on the other hand their 

biodegradability. Flavor encapsulation additionally requires food industry authorized 

materials. However, the major drawback of these natural carriers, when used without 

additives, is the low flavor load of about 5 to 6% (w/w) 72. The use of lipids and proteins has 

also been reported (Table 1). 

Many researchers have focused their attention on two aspects of biomaterial-mediated 

encapsulation: 

(i) the physicochemical properties of the matrix, such as molecular weight, 

viscosity, solubility, film forming properties, degree of polymerization and 

chemical functional groups, which can significantly affect the retention and 

release of aroma compounds 7 and  

(ii) (ii) the physical state of the carrier, which, as mentioned above, is a key 

parameter to successful encapsulation.  

Carbohydrate oligomers, starch and proteins, like most non cross-linked, thermoplastic 

polymers, can be found in two physical states: a viscoelastic or �plastic�-state, where the 

polymers are characterized by a high chain mobility, and where the active materials can be 

dispersed in the matrix; and a glassy, brittle state, where active materials have a very low 

mobility and are therefore entrapped in the carrier (or matrix) 7,12,29,69.  

A major prerequisite for stable encapsulation of volatile materials is that the matrix is below 

its glass transition temperature Tg. Indeed, below Tg, diffusion processes slow down 
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dramatically, due to the abrupt decrease of the mobility of the polymer chains and the 

concomitant decrease of the matrix free volume in the matrix 56,63. However it has been 

demonstrated that diffusion is more important in the vicinity of the polymer matrix glass 

transition temperature, than above this temperature, because the free volume below glass 

transition is higher, so diffusion of solutes is enhanced. A key feature of most biomaterials 

and especially of carbohydrates is the fact that the level of water included in the matrix 

controls Tg. The relationship between water activity and Tg in carbohydrate has been 

extensively discussed by Slade and Levine 73 and is still the most important factor influencing 

processability and volatile retention14. Water molecules insert between the polymeric chains, 

opening the three dimensional structure of the polymer and breaking interactions between 

chains. Low energy interactions between water molecules and polymeric chains are thus 

established, and so the polymeric structure becomes soft and flexible, i.e. the polymer goes 

from a brittle, glassy state to a plastic, rubbery state (Section 3.4.4). Product stability is 

governed by the amount of water, both added and already existing inside the system; water is 

the key factor controlling the stability of biopolymers 74�77. Kollengode and Hanna 38,55 have 

demonstrated that a delivery system with low moisture content (9%) showed higher retention 

of volatiles like cinnamic aldehyde, eugenol, nonanoic acid and 3-octanone, than delivery 

system with high moisture content (17%). Gunning et al. 63 have demonstrated in their studies 

that retention of volatiles is correlated to the glass transition temperature of the system. For 

instance, in a low water content matrix composed of maltodextrin and sucrose, the highest 

amounts of volatiles were released when the matrix was above its glass transition temperature. 

However, water may be a handicap because all the volatile compounds are flashed off when 

water evaporates during processing. High temperature and pressure inside the extruder barrel 

make the steam rapidly blow off out to the surface of the matrix dragging the volatiles with it 
78. This is one of the major causes of flavor and fragrance loss during processing. For all of 

these reasons, controlling the exact formulation prior to extrusion process can be crucial for 

the final product16,69. 
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Table 1 Review of all the different wall materials and additives used in extrusion microencapsulation (melt injection and melt extrusion) in chronological order

Reference Wall material 

(Swisher, 1957) Corn syrup 

(Schultz and Calif, 1958) Corn syrup, sucrose, dextrose, maltose, mannose, galactose 

(Sair and Sair, 1980) Casein, sodium hydroxide 

(Miller and Mutka, 1987) 
Carbohydrates, i.e starch, modified starch, sucrose, maltose, corn syrup, fructose, dextrose, 

glycerol, maltodextrins (DE2-DE20) 

(Saleeb and Pickup, 1989) Maltose monohydrate, maltodextrins, mannose,  

(Carr et al., 1991) Native corn starch 

(Kollengode and Hanna, 1997a) Corn starch+ �-cyclodextrins 

(Kollengode and Hanna, 1997b) Corn starch 

(Black et al., 1998) Whey protein, lipids, modified starch, maltodextrins, dextrose, sucrose, lactose,

(Hau et al., 1998) Wheat starch 

(Porzio and Popplewell, 1999) 
Maltodextrins (DE5-DE15), corn syrup (DE24-DE42), starch, modified starch, gum, 

gelatine 

(Saleeb and Arora, 1999) 
Maltose, glucose, maltotriose, mannose, sucrose, dextrose, xylitol, arabinol, sorbitol, 

mannitol, corn syrup, 

(Reifsteck and Jeon, 2000) Corn syrup, flour, starch 

(Ubbink et al., 2001) Potato, corn starch, modified starch, proteins, glycerol 

(Benczedi and Bouquerand, 2001) 
Sucrose, glucose, lactose, maltose, fructose, ribose, dextrose, sorbitol, mannitol, xylitol, 

lactitol, pentatol, arabinose, pentose, xylose, galactose, maize syrup, maltodextrins (DE8-
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DE10), gums 

(Porzio and Popplewell, 2001) 

Maltodextrins (DE10-DE15), corn syrup (DE24-DE42), gums, starch, modified starch, 

methoxypectin, ribose, glucose, fructose, galactose, xylose, sucrose, maltose, proteins 

(casein) 

(Porzio and Zasypkin, 2010) 
Modified starches, maltodextrins (DE10-DE20), sucrose, maltose, glucose, xylose, fructose, 

trehalose corn syrup (DE24-DE42), fatty acids, gums, proteins (casein) 

(Bhandari et al., 2001) Soy flour, corn flour, corn starch, �-cyclodextrins 

(Benczedi and Bouquerand, 2001) 
Sucrose, maltose, fructose, mannitol, glucose, ribose, dextrose, arabinose, sorbitol, xylose, 

galactose, starch, maltodextrins, gums, modified starch, proteins 

(Lengerich, 2002) 

Starch, modified corn starches, cyclodextrins, cellulose, polyvinyl alcohol, dextrins, corn 

syrup, gelatin, sorbitol, casein, carrageenan, alginates, pectins, xanthan, gum arabic, guar 

gum, fat, chitosan 

(Benczedi and Bouquerand, 2003) 
Sucrose, maltose, fructose, mannitol, glucose, ribose, dextrose, arabinose, sorbitol, xylose, 

galactose, starch, maltodextrins, gums, modified starch, protein 

(Leusner et al., 2002) 
Oligosaccharides (oligofructose), inulin, fructose, sucrose, dextrose, maltose, lactose, 

medium chain triglycerides 

(Kohlus and Pacha, 2004) Sucrose, fructose, maltose, ribose, mannitol, maltodextrins, Xylitol, polybutyl-methacrylate 

(Yuliani et al., 2004) Sucrose, maltose, glucose syrup, glycerine, glucose, � cyclodextrin 

(Yuliani et al., 2006) Corn starch, � cyclodextrin 

(Gouin, 2004) Maltodextrins, starches, fat 
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(Porzio and Zasypkin, 2010; Zasypkin 

and Porzio, 2004; Zasypkin, 2011; 

Zasypkin et al., 2013) 

Modified starch, lactose, dextrose, maltodextrins 

(Bohn et al., 2005) Sucrose, maltodextrins 

(Valentinotti et al., 2006) 

Sucrose, maltose, glucose, lactose, levulose, ribose, dextrose, isomalt, sorbitol, mannitol, 

xylitol, lactitol, pentatol, arabinose, maltodextrins, gums, hydrogenated starch, 

cyclodextrins, cellulose 

(Bouquerand, 2007) 
Maltodextrins (DE8-DE10), lactose, dextrins, pre-gelatinized starch, medium chain 

triglycerides 

(Chang et al., 2010) Maltodextrins (DE8-DE10), medium chain triglycerides 

(Lengerich et al., 2010) 
Caseinates, wheat proteins isolates, pre-gelatinized starch, low molecular weight 

carbohydrates, durum flour 

(Benczedi et al., 2011) 
Mono and di-saccharides, citric acid, hydrogenated corn syrup, polysaccharides, gums, 

maltodextrins, modified starch 

(Gregson and Sillick, 2012a) 
Erythritol mannitol, sorbitol, maltodextrins (DE10-DE20), gum acacia, alginates, pectins, 

proteins, hydrogenated starch hydrolysates 

(Gregson and Sillick, 2012b) 
Maltodextrins (DE10-DE20), modified starch, sucrose, maltose, trehalose, soy lecithin, 

antioxidants 

(M. A. Emin and H. P. Schuchmann, 

2013) 
Native maize starch 

(T. M. Goss Milani et al., 2014) Soy protein isolate 



Chapter I - Melt Extrusion encapsulation of flavors: a review 

�

21 Natalia CASTRO 2016 

(Chang et al., 2014) Modified starch/ matodextrin/lecithin 

(Tackenberg et al., 2015) Maltodextrins (DE-12 and DE-17)/ sucrose
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3.2. Carbohydrates and polysaccharides 

Carbohydrates were the first polymers used for flavor encapsulation, and are still being used 

because of their good physicochemical properties (low viscosity, good solubility in water and 

excellent barrier properties with respect to volatile organic compounds, at least under dry 

conditions) 7,79. Presently, starches, modified starches and sugars, either in a glassy or 

crystalline state, are considered to be the best hydrophilic matrices for entrapment and 

protection of volatiles. This can be explained by the low solubility of oxygen and volatiles in 

the matrix and, by the low free volume available for molecular transport 13. The advantages of 

amorphous carbohydrate matrices in a glassy state are illustrated in the review by Ubbink and 

Krüger 69. Amorphous food powders present great barrier properties against flavor losses and 

oxidation and are therefore often used for encapsulation and stabilization of complex flavor 

mixtures.  

However, as already mentioned above, the quality of the protection against oxidation and 

leakage depends strongly on the glass transition temperature, which in turn depends on the 

water activity in the carbohydrate matrix, and on the surface to volume ratio of the extruded 

materials, since changing the granule morphology can impact the rate of water uptake and 

volatile losses 69. 

3.2.1. Maltodextrins 

Maltodextrins are obtained by acid or enzymatic hydrolysis of starch and, depending on how 

they are produced, may differ in their dextrose equivalent (DE) (relative to the degree of 

hydrolysis, a higher DE means greater hydrolysis), which ranges from 0 (corresponding to 

long-chain glucose polymers) to 100 (corresponding to pure glucose). The DE is inversely 

proportional to the average molecular weight of the polysaccharide, and the maltodextrins 

normally found in microencapsulation have a DE varying from 3 to 20 80. Maltodextrins are 

the reference wall material in extrusion entrapment of food ingredients due to their film-

forming properties, high water solubility, low oxygen solubility, binding characteristics, good 

protection against oxidation and low cost 12.  

The influence of the molecular weight and DE of maltodextrins on the behavior of the carriers 

has been extensively discussed in the so-called �food polymer science� approach, 14,71,73. In 

fact, molecular weight is the one parameter that is directly linked to physicochemical 
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properties (viscosity, glass transition temperature, solubility�) even though DE can also be 

correlated to some physicochemical properties, e.g solubility of the polysaccharide increases 

when DE increases. Some authors have reported that the retention of flavors decreases with 

increasing DE 3,7,67,81 and this has been attributed to the fact that, when DE increases, the 

maltodextrins become more hygroscopic and their solubility in water increases, which does 

not favor the retention of volatiles. Conversely, when DE decreases, hygroscopicity also 

decreases, while the molecular weight, the apparent viscosity, the cohesiveness, the glass 

transition temperature and the film-forming properties increase, with all of these properties 

favoring of a good encapsulation.  

However, maltodextrins have low emulsifying properties and for this reason some emulsifiers 

are needed in order to improve the incorporation of the active material, as well as to lower the 

viscosity and to enhance the flow of the melt inside the extruder. Moreover, by lowering the 

surface tension of the extrudate, the emulsifiers help to give products with a less sticky and 

less porous surface 36 which is beneficial to a better encapsulation of volatiles. 

Examples of different formulations, as well as some encapsulation rates and efficiency are 

given in Table 2. In general, compositions of the delivery system are almost the same, the 

moisture content of the extrudate is similar for all studies covered, no matter whether the 

active compounds are flavors, fragrances or bioactive food compounds. 
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Table 2 Composition of delivery systems using only maltodextrins as the main ingredient (nd=not determined) 

Reference 

Initial formulation 

composition (% 

w/w) 

Active core 

(%w/w) 

Extrudate 

moisture 

content 

(%w/w) 

Encapsulation 

efficiency  (% 

w/w) 

Encapsulation Rate   

(% w/w) 
Technology 

(Porzio and 

Popplewell, 1999) 

Maltodextrin DE-10 

/water (85.6/5.3) 
Diacetyl (9.1) 8.3 nd 4.9 Melt Extrusion 

(Porzio and 

Popplewell, 2001) 

Maltodextrin DE-10 

/water(81.4/10) 
Diacetyl (8.6) 7.6 nd 4.4 Melt Extrusion 

(Benczedi and 

Bouquerand, 2001) 

Maltodextrin DE-

19/water/lecithin 

(90/6/1) 

Strawberry 

flavor (3) 
nd nd nd Melt Extrusion 

(Benczedi and 

Bouquerand, 2003) 

Maldotextrin DE-

19/water/silicon 

dioxide/lecithin(87/7

/2/1) 

Fragrance (3) nd nd nd Melt Extrusion 

(Bouquerand, 

2007) 

Maltodextrin DE-

10/miglyol/lecithin 

(77.6/1/0.5) 

Ascorbic acid 

(20.8) 
nd nd 18.9 Melt Extrusion 
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Reference

Initial formulation 

composition (% 

w/w)

Active core 

(%w/w)

Extrudate 

moisture 

content 

(%w/w)

Encapsulation 

efficiency  (% 

w/w)

Encapsulation Rate   

(% w/w)
Technology

(Chang et al., 2010) 

Maltodextrin/lecithin

/miglyol 

(75.6/1/0.5) ; 

(88.4/1/0.4) 

Ascorbic acid 

(18.9) ;(16.1) 
(9.2) ;(7.9) (97.2) ;(97.9) (18.6) ;(15.3) Melt Extrusion 

(Benczedi et al., 

2011) 

Maltodextrin DE-

19 ;DE-12 ;DE-6 

(83) 

Orange oil 

(nd) 
nd nd (8.3) ; (8.1) ; (7.9) Melt Extrusion 
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3.2.2. Starch 

Starch is a polysaccharide, consisting of D-glucose chains. It is a mixture of two homopolymers, 

amylose, which is a linear polymer (10-20%) and amylopectine, which is a crosslinked polymer 

(80-90%). Amylose and amylopectin are interconnected by 1,4-� and 1,6-� glycosidic bonds, 

which are part of the ramifications in the molecule�s structure. For this reason, the supra-

molecular structure of starch is in a semi-crystalline form. Amylopectin is organized in the form 

of sheets giving the crystalline portion and amylose is in an amorphous form. Under normal 

conditions of temperature and pressure, starch is insoluble in aqueous solvents 12,71,82. 

Several studies have been conducted to better understand the thermal transitions, and the changes 

of physical state of starch. The theory mentioned by Donovan 83 allowed a better understanding 

of what is happening during the changes in the physical state of this material, and particularly for 

determining in which states the polymeric matrix is when water and temperature are in excess 
84,85. Swelling of the amorphous regions is observed when water is in excess (the hydrogen bonds 

between the polysaccharide chains are cut, and the starch granules absorb water and swell). This 

phenomenon is associated with the initiation of the gelatinization temperature (60°C-85C°, 

depending on the type of starch). The crystalline regions are degraded (dissociation and opening 

of the amylopectin �propellers�) and starch is converted into a gel. 

When starch is in a gelatinized state, the phenomenon of retrogradation (reorganization of its 

crystalline structure) is observed. In this case, the gel is more rigid and tends to expel water 

included between the polysaccharides chains (a phenomenon known as syneresis). Starch 

rearranges itself into a more crystalline and stiff structure. The glass transition of the sample 

depends on the rate of hydration. Actually pre-gelatinized starch is used for the entrapment of 

volatiles, due to enhanced diffusion of the latter, and in fact, pre-gelatinized starch is soluble in 

cold water, which facilitates processing conditions for encapsulation.  

Since starch is a more complex molecule than maltodextrins (greater physicochemical 

properties) more interactions can be established with active compounds. Starch has often been 

used in extrusion encapsulation (Table 3) due to the stable inclusion complexes of starch forms 

with flavor 51. Indeed these inclusion complexes proved to be stable at high temperatures and 

showed great stability when stored for longer periods of time. Forming these complexes requires 

however conformational changes of the amylose moieties, which require in turn high processing 

temperatures to counterbalance the relatively low level of water in the extrudate. 
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Regarding the physicochemical properties of starch, it has been demonstrated that amylose 

content can affect expansion and in fact, it increases with the amylose content (this is without 

taking into account temperature and moisture content). It has been found that the expansion ratio 

increases from 8.3 to 16.4 as the amylose content of native starch increases from 0 to 50%. 

Above 50% of amylose content, the expansion ratio decreases 86. As expansion is related to 

volatile losses, it is assumed that for better retention, starch with low amylose content should be 

chosen. In addition, Hau et al. 31 have shown that for starch with an amylose/amylopectin ratio of 

27/73, water content influences the binding of volatiles. In fact, volatile uptake increases as the 

water content of the delivery system increases from 19% to 43%, and this could be due to the 

decrease of viscosity of the melt allowing the volatile compound to be better dispersed inside the 

carrier. However, when the moisture content increases, the expansion ratio decreases and this 

tendency is the same for starches with different amylose contents (amylose content varied from 0 

to 70%). The maximal expansion ratio of various starches was obtained with a moisture content 

of 14% 86. 

The extrusion of starch involves its gelatinization, at least partially, with water or a 

water/plasticizer mixture before or during the initial steps of the extrusion, and the water content 

ranges typically from 10 to 45%. In some cases part of the water is added together with the 

encapsulated oil in the form of an emulsion 40.  
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Table 3 Composition of the delivery systems using only starch as the main ingredient (nd=not determined) 

Reference 
Initial formulation 

composition (% w/w) 

Active core 

(%w/w) 

Extrudate 

moisture 

content 

(%w/w) 

Encapsulation 

efficiency (% 

w/w) 

Encapsulation 

Rate (% w/w) 
Technology 

(Carr et al., 1991) 
Corn starch/water 

 (80-95/10) 
Atrazine (5-20) 8-25 73 - 96 nd Melt Extrusion 

(Kollengode and 

Hanna, 1997b) 
Corn starch/water  (95/nd) 

Cinnamaldehyde 

(5) 

nd 

24.1 

nd 
Melt Extrusion 

(direct injection) 

Eugenol (5) 20.5 

nonanoic acid 

(5) 
15.1 

3-octanone (5) 25.8 

(Hau et al., 1998) 
Wheat starch/water 

(67.3-84.1/15.90-32.7) 

Diacetyl, 3-

methylbutanal, 

heptane (nd) 

19-43 nd nd Melt Extrusion 

(Ubbink et al., 2001) Potato 

starch/capsule/glycerol/water

Orange oil 

(5.8) 
nd nd nd Melt Extrusion 
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(64.1/2.4/2.7/25) 

Reference
Initial formulation 

composition (% w/w)

Active core 

(%w/w)

Extrudate 

moisture 

content 

(%w/w)

Encapsulation 

efficiency (% 

w/w)

Encapsulation 

Rate (% w/w)
Technology

(Lengerich, 2002) 

Semolina/wheat 

gluten/wheat 

starch/vegetable oil /water 

(25.1/18/25.1/7.9/1.3) 

Various 

materials 

(22.3) 

nd nd nd Melt Extrusion 

(M. A. Emin and H.P. 

Schuchmann, 2013) 
Native Maize starch (nd) 

Medium chain 

triglyceride (4) 
18 nd nd Melt extrusion 
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3.2.3. Modified starch 

In the context of encapsulation, the term �modified starch� actually includes dextrins, on which 

octenyl succinate groups have been grafted by esterification of the hydroxyl groups with mono 

octenyl succinic acid. These products are obtained by acidic or enzymatic degradation of starch 

and subsequent chemical treatment with the succinic derivate. The modifications are made in 

order to improve the chemical and physical properties of the dextrin to meet specific needs. The 

advantage of the so-called starch octenylsuccinate, also known as OSAN (octenyl succinic 

anhydride), lies in its remarkable emulsifying properties, which are related to the presence of the 

hydrophobic octenyl moieties that allow better interactions with aroma compounds 12,82. The 

roles of these materials on the retention of volatiles in carbohydrate matrices have been 

discussed in the study made by Zasypkin and Porzio 30. Clear benefits were found in terms of oil 

droplet dispersion, viscoelastic properties and surface oil. 

It should be noted that there are other ways to modified starches, for example by oxidation in the 

presence of sodium hypochloride in order to decrease its viscosity. Or, on the other hand, to 

improve its viscosity, starch can be modified with propylene oxide. In general, starch properties 

can be modified according to the final application (i.e. thickening agent, emulsifier, texturizing 

agent). 

3.2.4. Carbohydrate mixtures 

Mixtures of oligosaccharides are often used either in spray-drying or extrusion encapsulation of 

flavors because they offer wall material with better barrier properties 14,15,50. As mentioned 

above, the physicochemical properties of carbohydrates are a key parameter that needs to be 

taken into account during formulation and processing of delivery systems. In particular, high 

molecular weight polysaccharide matrices have higher residual porosity, which enhances oxygen 

uptake and is detrimental to final product shelf life. However, high molecular weight 

polysaccharides may be easier to process owing to their higher viscosity. As usual in 

formulation, a trade-off between both performance indicators can be reached by mixing different 

molecular weight polysaccharides. And in fact, most of the formulations used for encapsulation 

of volatiles or other sensitive active materials found in the literature used a mixture of different 

molecular weight carbohydrates, see Table 4 below (starch, maltodextrins and mono- or di-

saccharides e.g. sucrose, mannose, lactose�).  
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The most recurrent formulations found in the literature are those employing a mixture of high 

molecular weight polysaccharides (molecular weight greater than 2000 Da) and low molecular 

weight polysaccharides (molecular weight less than 1000 Da), for example a mixture of 

maltodextrin and glucose syrup or maltodextrin and gums, or starch and maltodextrins or 

disaccharides 14. Such mixtures (Table 4) allow adjustment of the glass transition temperature, 

the hygroscopicity and porosity of the matrix. 

Cyclodextrins, and more particularly �-cyclodextrins, are cyclic oligosaccharides which have 

also been considered as wall material in combination with other oligosaccharides. These 

materials are obtained from starch by enzymatic conversion and are very resistant to high 

temperatures (100 to 300°C). Cyclodextrins have a toroid structure, with the inner core less 

hydrophilic than the surface of the molecule. The advantage of this arrangement is that the inner 

core can establish inclusion complexes with various hydrophobic substances, while remaining 

water-soluble. �-cyclodextrins have been used in melt extrusion microencapsulation to pre-

encapsulate flavors prior to extrusion; either by forming a flavors/�-cyclodextrins emulsion or by 

spray-drying the flavors with �-cyclodextrins 12,38,41,42,78. 
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Table 4 Composition of delivery systems of oligosaccharides as the main ingredient (nd= not determined), for melt extrusion, examples listed are calculated for one hour of production 

Reference 
Initial formulation 

composition (% w/w) 

Active core 

(%w/w) 

Extrudate moisture 

content (%w/w) 

Encapsulation 

efficiency (% w/w)

Encapsulation 

Rate (% w/w) 
Technology 

(Schultz and Calif, 

1958) 

Sucrose/corn 

syrup/water 

(53.8/26.9/14) 

Orange oil 

(5.4) 
nd nd nd Melt Injection 

(Miller and Mutka, 

1987) 

Corn syrup/sugar /water 

(48/33/nd) 

Orange oil 

(17.5) 
5 nd 16.7 Melt Injection 

(Saleeb and 

Pickup, 1989) 

Maltose 

monohydrate/maltodext

rin (24.1/72.5); 

mannose/maltodextrin 

(24/72.2) 

Ethyl 

butyrate 

(3.4); lemon 

oil (3.8) 

3-6 nd (3.4) ; (3.3) 
Melt Extrusion 

(single screw) 

(Kollengode and 

Hanna, 1997a) 

Corn starch/�-

cyclodextrin (nd) 

Cinnamaldeh

yde, eugenol, 

nonanoic 

acid, 3-

octanone (nd)

nd 
(42) ; (46) ; (26) ; 

(36) 
nd 

Melt Extrusion 

(direct injection) 
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Reference
Initial formulation 

composition (% w/w)

Active core 

(%w/w)

Extrudate moisture 

content (%w/w)

Encapsulation 

efficiency (% w/w)

Encapsulation 

Rate (% w/w)
Technology

(Black et al., 1998) 

Whey 

protein/sucrose/maltode

xtrin/water 

(50/25/25/excess) 

Cinnamic 

aldehyde (nd)
nd nd nd Melt Extrusion 

(Porzio and 

Popplewell, 1999) 

Maltodextrin/corn 

syrup/methyl cellulose 

(72.5/20/7.5) 

Orange oil 

(nd) 
nd nd 8.3 Melt Extrusion 

(Gunning et al., 

1999) 

Sucrose/maltodextrins 

(52.8/47.2) 

Cherry, 

pepper mint 

flavors (nd) 

(3.5) ;(5.2) nd (10) ; (7.4) Melt Injection 

(Reifsteck and 

Jeon, 2000) 

Corn 

syrup/sugar/flour/starch 

(nd) 

Flavors (nd) nd nd nd Melt Extrusion 

(Zasypkin and 

Porzio, 2004) 

Hi-

Cap100/EmCap12639/l

actose (40/30/30); 

EmCap12634/Hi-

Lemon flavor 

(10-20) 
(7.7) ;(7.6) nd nd Melt Extrusion 
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Cap100/lactose 

(40/20/40) 

(Bohn et al., 2005) 
Sucrose/maltodextrin 

(nd) 

Benzaldehyd

e (nd) 
(4-5.4) nd nd Melt Injection 

(Yuliani et al., 

2006) 

Native corn starch/�-

cyclodextrin (nd) 

d-Limonene 

(nd) 
nd nd nd 

Melt Extrusion 

(pre- encapsulation 

by spray drying) 

(Gregson and 

Sillick, 2012b) 

Maltodextrin/trehalose/l

eci-thin/water 

(35.8/35.8/0.8/19.3) 

Orange oil 

(8.3) 
5.8 nd nd Melt Injection 

(Chang et al., 

2014) 

Modified 

starch/maltodextrin/leci

thin 

Vitamine E 

(5-8) 
nd nd 93 Melt Extrusion 

(Tackenberg et al., 

2015) 

Maltodextrine DE12 

and Maltodextrine DE-

17/sucrose (nd) 

Orange 

terpenes  and 

tocopherol 

(nd) 

nd nd 67 Melt Extrusion 
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3.3. Proteins 

Due to their amphiphilic, emulsifying, film forming and solubility properties, proteins are now 

used as an innovative raw material for microencapsulation, and those most often employed are 

sodium caseinate, soy and pea protein isolates. Whey proteins and soy proteins make good wall 

materials for flavor and essential oil encapsulation due to their good gel-forming, emulsifying 

and surfactant properties. Indeed, these protein isolates have been widely used, mainly by spray-

drying 87, in microencapsulation of different types of active materials (i.e. essential oils, flavors, 

tocopherols, oils rich in polyunsaturated fatty acids, etc) 71,88. 

The major problem related to proteins is that they are not as chemically inert as polysaccharides, 

and side reactions can take place (Schiff base formation and Maillard reactions). This may result 

in browning (oxidation reaction between amino-acid groups of proteins and aldehyde groups of 

the flavor molecule) of the final product 87,89,90. As a result, interactions between proteins and 

flavors may cause a loss of flavor perception in the final product or the production of off-flavors. 

The latter are the result of the reaction of aldehydes with the amino, disulfide, sulphydryl or thiol 

groups of the proteins through Van der Waal interactions or hydrogen bonds 78. 

In fact, the determination and understanding of the type of interactions between flavors or 

fragrances and proteins have raised considerable interest among academic researchers. Landy et 

al.,59 have investigated the interactions between aroma compounds and proteins (sodium 

caseinate) by measuring the vapor-liquid partition equilibrium (by headspace analysis or 

exponential dilution) in order to understand how these volatiles are retained. They were able to 

establish that, depending on the concentration of protein and the type of chemical group of 

volatile compounds, retention can be affected. In some cases, the liberation of active compounds 

is slowed down or inhibited due to irreversible interactions between some flavor compounds and 

the protein support (i.e. aldehydes and ketones interact with the amino acids) 91. These 

interactions result in flavor loss or modification. There are two major problems related to 

proteins as encapsulating agent; (i) proteins are highly reactive compounds that can bind 

irreversibly to flavor molecules inducing loss or modification of the flavor, (ii) proteins are 

molecules with different types of chemical groups and structure, thus they can have different 

interaction sites (i.e. hydrophobic and/or hydrophilic binding sites). For example, soy proteins do 

not retain some volatile compounds such as alcohols but they do retain aldehydes and ketones 

through irreversible interactions and consequently the release rate of these volatiles is very low.  
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Furthermore, hydrophobic core materials may be more soluble in proteins, because of the 

presence of hydrophobic moieties in this material, which may lead to enhanced diffusion and 

leakage of the encapsulated active, especially if the latter is volatile. 

Mixtures of proteins and fats, or proteins and oligosaccharides have also been proposed 23,90. For 

example, Lengerich et al. 39 used a mixture of protein and flour (durum flour and whey protein) 

as matrix (Table 5). Alternatively, the pre-encapsulation of the active compound in a water-in-oil 

emulsion has been proposed in order to improve the barrier properties of the delivery system 
40,92. In this case, the aqueous phase was composed of a solution of sodium caseinate, and the 

emulsion was injected directly into the second barrel of a seven-section barrel extruder. This 

latter preparation gave higher encapsulation efficiency than the encapsulation efficiency found in 

Black�s work 23.  

In addition, Black et al. 23 have also determined the release rate behavior of different proteins 

(gluten, soy protein, egg albumin, acid casein, whey protein concentrate) mixed with a mixture 

of polysaccharides (e.g. sucrose and maltodextrins) and glycerin as plasticizer. They determined 

that for cinnamic aldehyde (principal component of cinnamon flavor) gluten had the highest 

release rate compared to the other proteins, and indeed gluten has better viscoelastic properties 

than the other proteins cited above. 

These results confirm that proteins admixed with polysaccharides or fat are better carriers than a 

matrix composed only of proteins. As mentioned in Guichard�s paper 90, a solution of sodium 

caseinate (0,1% in water) and egg albumin decreases the activity coefficient of flavor 

compounds and ensures better retention. In these types of mixtures, proteins act more as a 

compatibilizing rather than encapsulating agent; they help to decrease the surface tension of the 

flavors and the polymer matrix in order to obtain homogeneous blends. 
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Table 5 Composition of delivery systems using proteins or mixture of proteins and oligosaccharides as the main ingredient (nd=not determined) 

Reference 
Initial formulation composition 

(% w/w) 

Active 

core 

(%w/w) 

Extrudate 

moisture 

content 

(%w/w) 

Encapsulation 

efficiency (% 

w/w) 

Encapsulation 

Rate (% w/w) 
Technology 

(Sair and Sair, 1980) Casein/water (43.2/45.8) 
Orange oil 

(7.6) 
6 92 nd Silent cutter Autoclave 

(Black et al., 1998) 
Whey protein/ maltodextrins (lodex-

10)/ sucrose/water (nd/nd/nd/excess) 

Cinnamic 

aldehyde 

(nd) 

nd nd nd 

Extrusion (not specified if 

melt injection or melt 

extrusion) 

(Lengerich et al., 2010) 

Durum flour/wheat 

protein/sodium 

caseinate/glycerol/erythrobic/

water (35.3/8.8/2.3/12/2.4/27) 

Oil rich in 

polyunsatu

rated fatty 

acids/vanill

a (11.9/0.3)

nd nd nd Melt extrusion 
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3.4. Additives 

3.4.1. Introduction 

Additives can be considered as components, which impart specific properties to the final 

product. For instance hydrophobic coating compounds like waxes or oils are normally employed 

to enhance oxidative stability and lower releasing rates. Plasticizers are employed to decrease the 

processing temperature and thus avoiding thermal degradation 68. Carboxylic acids like ascorbic 

acid, citric acid, erythorbic acid and other components such as lecithin, caseinate and gelatin are 

used as food preservatives and/or antioxidants 50,93. However, the most important additives in 

terms of encapsulation performances are certainly emulsifiers which can be added either to the 

feed emulsion or to the carrier itself in order to ensure small oil droplets of aroma or fragrance 

compounds inside the matrix, thereby providing better dispersion in the carrier and higher 

protection of the core material 16. Table 1 gives a perfect overview of all the �raw materials� 

used. 

3.4.2. Emulsifiers and other compatibilizing agents 

Emulsifiers are used in encapsulation principally to increase the compatibility between the 

matrix and the active materials. Besides the OSAN modified starch mentioned above, a number 

of emulsifiers could be used.  

Gums, such as gum Arabic, have been proposed and used either alone or in combination with 

maltodextrins. For example, Jacquot et al. 79 found efficient flavor encapsulation by spray drying 

a flavor /gum Acacia/maltodextrin (DE18) emulsions, although gums are also claimed to delay 

water uptake and thereby enhancing the controlled release of the encapsulate 32. However, these 

high molecular weight compounds are detrimental to the matrix barrier properties against oxygen 

and to the protection against oxidation 94. Therefore, due to these two limitations and also to the 

fact that gums are rather expensive and suffer from irregular market availability and variable 

quality, they are preferred as additives and not as a polymer matrix.   

Another solubilizer widely employed in microencapsulation is lecithin, soy lecithin being the 

most used of the range. Lecithin has the additional advantage of acting as a lubricant, thereby 

improving the flowability of the melt. It helps to decrease the stickiness (especially for 

maltodextrins and starches) and the structural surface defaults on the surface of the delivery 

system 35,36,50,92,93. An additional benefit is the lowering of the extrudate surface tension, which 
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in turn decreases the porosity of the product and provides a better protection against oxygen 

permeability.  

Medium chain triglycerides (MCT) are less well known than gums or lecithin and are 

synthesized from glycerol and fatty carboxylic acids (i.e caproic, caprylic, capric, and lauric 

acids). There are different types of MCT depending on the length of the major fatty acid chain 

(from C6 to C12) and all are colorless, tasteless and odorless, hence their use in the food and 

cosmetics industry. In microencapsulation, they are used as lubricants providing better flowing 

materials and easier shaping of the molten mixture at the die exit. In addition, they offer 

protection to the active ingredient by acting as a coating material, thus slowing down release of 

the active compound 35,36. Moreover, in some studies, MCT have been used as �solvent vector� 

in which the flavors or fragrances are dissolved in order to facilitate their handling or to offer an 

extra protection (formation of an oil/flavor droplets) prior to processing 16. In recent studies, 

MCT is employed as a model active-oil compound allowing to determine the dispersion and the 

mixing efficiency of twin-screw extrusion processing 19,20. Additionally, they can also act as 

antioxidant because they are able to reduce the vapor pressure of the active material 40. 

According to the references cited before, MCT can be used with any type of carriers, but here 

they are specially employed with maltodextrins, starch and oligosaccharides (oligofructose), as 

emulsifiers and vectors to enhance the adsorption of the active compound.  

Hydroxypropyl methylcellulose (HPMC) is a semi-synthetic polymer employed in some 

formulations to control the release of flavors when the delivery systems have to be solubilized in 

water. Porzio and Popplewell 95 have suggested that, when dissolved in water, HPMC 

rehydrates, thereby increasing the viscosity of the medium and slowing down the diffusion of the 

flavor in the medium. HPMC is less commonly used than OSAN-modified starch, lecithin or 

gums. 

Finally, ethyl cellulose is commonly found in the food industry as a colloidal stabilizing agent 

(E462). In microencapsulation it is also used as a viscosity modifier because it allows decreasing 

the interfacial tension between the core material and the encapsulating carrier to be lowered, 

along with the energy required. 
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3.4.3. Antioxidants 

The second group of additives is antioxidants. These are usually employed in the case of 

microencapsulation of sensitive and readily oxidizable active compounds e.g. oils rich in 

polyunsaturated fatty acids, bioactive food compounds like polyunsaturated fatty acids (omega-3 

oils), fragrances and flavor compounds 25,41,66,96�99. For example, the antioxidants most 

commonly employed for protection of volatiles or high sensitive core compounds are ascorbic 

acid, citric acid, erythorbic acid, and mixed tocopherols 99.  

3.4.4. Plasticizers 

In the polymer industry, plasticizers are an important class of low molecular weight compounds, 

whose role is to modify the mechanical properties of polymers, by lowering down the glass 

transition temperature. Plasticizers reduce the density, the viscosity, the hardness, and the 

strength of a polymer. And at the same time they render the system more flexible and resistant to 

fractures 100 and improve the processability of the polymer. 

In the case of melt extrusion microencapsulation, plasticizers are required to ensure formation of 

the melt inside the extruder�s barrel. If the carrier employed is in a solid-state, a plasticizer may 

be necessary. However for some carrier, depending on the physical state of the core material, the 

use of a plasticizer may be optional 23. In general two groups of plasticizers are distinguished in 

this area, water and polyols (also known as low molecular weight alcohols). 

As already mentioned out in the preceding sections, water is the most frequently used plasticizer 

for carbohydrates and is also a key process parameter (Table 6). However, other plasticizers, 

such as sugar alcohols, polyols, glycols, polyglycols, linear alcohols, glycerin, etc., have been 

proposed to avoid early losses of volatile by water (or flash) distillation during the process. The 

sugar alcohols are synthesized from carbohydrates whose carbonyl groups have been reduced to 

a primary or secondary hydroxyl group. Polyols are low molecular weight plasticizers, 

characterized by their significant impact on the mechanical properties. They are often employed 

in the fabrication of biopolymeric films because they improved the mechanical properties of 

these films in terms of flexibility and elasticity 101,102. For example sorbitol, glycerol, erythritol, 

xylitol, and aqueous-based compositions such as alcoholic solutions of polypropylene glycol, 

polyethylene glycol, pentanol and hexanol are used for plasticization of the biopolymer matrix in 

extrusion microencapsulation 23,40,99,103. All of these alternative plasticizers are bulkier than water 
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and are supposed to provide matrix materials more ductile and homogeneous in the extruder 

barrel. One drawback is that such matrices are also more permeable to volatiles, and another is 

that such alternative plasticizers are not easily removed from the final product. Both drawbacks 

are detrimental to encapsulation. 

23 evaluated the release rate of cinnamic aldehyde using the same type of carrier but changing the 

nature of the plasticizer: glycerin or water. Modified starch, whey protein, soy protein and egg 

albumin were tested for the same amounts of plasticizers. Results showed that flavor release was 

more important for extrudates plasticized with water than extrudates plasticized with glycerin 

(and this is true for all the matrices except for the modified starch matrix). Besides, Porzio and 

Popplewell 95 have used water as a plasticizer, setting very low initial water content around 3 to 

5% (w/w), in order to obtain an extrudate glass transition temperature of equal or higher than 

40°C. 
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Table 6 Composition of delivery system and its initial and final moisture content in relation with the glass transition temperature (nd=not determined)

Reference 
Initial formulation 

composition (%w/w) 

Core material 

(%w/w) 

Initial moisture 

content (%w/w) 

Extrudate 

moisture 

content (%w/w) 

Tg (°C) Technology 

(Swisher, 1957) 
Corn syrup/brominated 
vegetable oil/emargol 
(88/4.1/0.8) 

Orange oil 
(7.1) 

3-8.5 nd nd Melt Injection 

(Schultz and 
Calif, 1958) 

Sucrose/corn syrup 
(53.8/26.9) 

Orange oil 
(5.4) 

14 nd nd Melt Injection 

(Sair and Sair, 
1980) 

Casein (43.2) 
Orange oil 
(7.6) 

45.8 6 nd 
Silent cutter 
Autoclave 

(Miller and 
Mutka, 1987) 

Corn syrup/sugar 
(48/33) 

Orange oil 
(17.5) 

nd 5 nd Melt Injection 

(Saleeb and 
Pickup, 1989) 

Maltose 
monohydrate/maltodext
rin (24.1/72.5); 
mannose/maltodextrin 
(24/72.2) 

Ethyl butyrate 
(3.4); lemon 
oil (3.8) 

nd 3-6 50-80 
Melt Extrusion 
(single screw) 

(Kollengode 
and Hanna, 
1997b) 

Starch (95,2) 

Cinnamaldehy
de, eugenol, 
nonanoic acid, 
3-octanone: 
(nd) 

15 nd nd 
Melt Extrusion 
(direct injection) 

(Black M., 
Popplewell L., 
and Porzio M. 
1998) 

Whey 
protein/maltodextrins 
(DE10)/ sucrose 
(50/25/25) 

Cinnamic 
aldehyde (nd) 

Excess nd nd 

Extrusion (not 
specified if melt 
extrusion or melt 
injection) 
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(Porzio M. and 
Popplewell L. 
1999) 

Maltodextrin (85.6) Diacetyl (9.1) 5.3 8.3 35-50 Melt Extrusion 

(Hau M., Gray 
D., and Taylor 
A. 1998) 

Wheat starch (67.3-
84.1) 

Diacetyl, 3-
methylbutanal, 
heptane (nd) 

15.9-32.7 19-43 nd Melt Extrusion 

(Gunning et al., 
1999) 

Sucrose/maltodextrins 
(52,8/47,2) 

Cherry, pepper 
mint flavors 
(nd) 

nd (3.5); (5.2) nd Melt Injection 

(Reifsteck and 
Jeon 2000) 

Corn 
syrup/sugar/flour/starch 
(nd) 

Flavors (nd) nd nd nd Melt Extrusion 

(Porzio and 
Popplewell, 
2001) 

Maltodextrin DE10 
(81.4) 

Diacetyl (8.6) 10 7.6 51 Melt Extrusion 

(Benczedi and 
Bouquerand, 
2001) 

Maltodextrin 
DE19/lecithin (90/1) 

Strawberry 
flavor (3) 

6 nd <40 Melt Extrusion 

(Ubbink et al., 
2001) 

Potato starch/capsule 
E/glycerol 
(64.1/2.4/2.7) 

Orange oil 
(5.8) 

25 nd nd Melt Extrusion 

(Leusner et al., 
2002) 

Fructooligosaccharide/
Miglyol (65.8/4.9) 

Calcium (28) 1.3 nd nd Melt Extrusion 

(Benczedi and 
Bouquerand, 
2003) 

Maldotextrin 
DE19/silicon 
dioxide/lecithin 

Fragrance (3) 7 nd 40 Melt Extrusion 
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(87/2/1) 

(Zasypkin and 
Porzio, 2004) 

Hi-
Cap100/EmCap12639/l
actose (40/30/30); 
EmCap12634/Hi-
Cap100/lactose 
(40/20/40) 

Lemon flavor 
(10-20) 

nd (7.7);(7.6) 
(13); 
(15) 

Melt Extrusion 

(Bohn et al., 
2005) 

Sucrose/maltodextrin 
(nd) 

Benzaldehyde 
(nd) 

nd 4-5.4 38- 54 Melt Injection 

(Yuliani et al., 
2006) 

Native corn starch/�-
cyclodextrin (nd) 

d-Limonene 
(nd) 

nd nd nd 
Melt Extrusion 
(pre- encpasulation 
by spray srying) 

(Bouquerand, 
2007) 

Maltodextrin 
DE10/miglyol/lecithin 
(77.6/1/0.5) 

Ascorbic acid 
(20.8) 

nd nd 35.8 Melt Extrusion 

(Chang et al., 
2010) 

Maltodextrin/lecithin/m
iglyol 
(75.6/1/0,5);maltodextri
n/lecithin/miglyol 
(88.4/1/0,5) 

Ascorbic acid 
(18.9);(16.1) 

(4);(2) (9.2);(7.9) <35 Melt Extrusion 

(Zasypkin, 
2011) 

OSAN starch/gournd 
oregano/lactose/dextros
e monohydrate 
(43.88/18.62/25.27/2.65
) 

Flavor (6.6) 2.4 7.6 44.9 Melt Extrusion 

(Benczedi et al., 
2011) 

Maltodextrin DE19, 
DE12, DE6 (83) 

Orange oil (nd) 25 7.5-15.1 49-54 Melt Extrusion 
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(Gregson and 
Sillick, 
2012a,b) 

Maltodextrin/trehalose/l
ecithin (35.8/35.8/0.8) 

Orange oil 
(8,3) 

19.3 5.8 51 Melt Injection 

(M.A. Emin and 
H.P. 
Schuchmann, 
2013) 

Native maize starch 
Medium chain 
triglycerides 
(4) 

18 nd nd Melt Extrusion 

(Chang et al., 
2014) 

Modified 
starch/maltodextrin/leci
thin 

Vitamin E (5-
8) 

nd nd 30 Melt Extrusion 

(Tackenberg et 
al., 2015) 

Maltodextrin DE12 or 
Maltodextrin DE17/ 
sucrose 

Orange 
terpenes and 
tocopherols 
(nd) 

4-5.7 2-12 54-58 Melt Extrusion 
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4. EXTRUSION MICROENCAPSULATION TECHNOLOGIES

4.1. Introduction 

A categorization of the extrusion technologies for microencapsulation has been made in recent 

works 29,67,68,104, leading to a clear distinction between ram extrusion (also called melt injection) 

and screw extrusion (also called melt extrusion). 

Swisher 22, Schultz and Calif 21 defined ram extrusion as a process consisting of a rotating screw 

inside a heated cylindrical barrel, where the raw materials are introduced in order to be melted. 

Next, a piston (here called a ram) pressurizes the molten mixtures through a die and transforms 

them into the desired shape. The main advantage of ram extrusion is the simplicity of the set-up. 

The major inconvenience is the limited melting capacity of the apparatus, producing poor 

temperature and composition uniformity in the extrudate 68. The resulting material has the 

consistence of a hard candy entrapping the active. 

In screw extrusion, the apparatus is composed of a single screw or two co-rotating screws inside 

a multiple heated barrel section, with inlets in each barrel where the raw material or additives 

can be introduced. The design of the apparatus allows controlled shear stress and controlled 

temperature depending on the conditions desired. In addition, according to the screw profile, 

different conveying, mixing and shearing zones can be established to treat the materials. The raw 

materials are then mixed, melted and transported to a die system where the molten mass is 

shaped. The advantage of screw extrusion is its versatility in terms of operating conditions. The 

major disadvantage is the difficulty of accurately controlling the parameters of this complex set-

up to ensure the good and constant quality of the final product. On the other hand, to achieve a 

high quality material trough using an extrusion process, it is important to have a solid 

background knowledge in the materials science, so that the adequate formulation and the process 

variables can accurately be chosen 16,30,67�69. 

Co-extrusion consists of a dual fluid stream of immiscible liquid core and shell materials. 

Coating and core materials are pumped separately through concentric feed tubes and exit through 

the concentric orifices of the nozzles as a fluid rod or drop under the action of mechanical or 

sonic vibrations. Thanks to the action of surface tension, the wall material entraps the core 

material. The wall material is further solidified by a temperature drop or cross-linked in a bath 

containing suitable cross-linking agents. This technology does not need a pre-treatment of the 
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carriers nor the active compounds 2,8,105,106. This type of process will not be further addressed in 

this review.  

The process steps of the three technologies used for microencapsulation of volatile organic 

compounds referred as extrusion encapsulation are described in Table 7. The term extrusion is 

used here to designate the exiting of a molten mass through an orifice under pressure (either by a 

mechanical piston, as for melt injection, or forced by an endless screw as in melt extrusion). The 

three technologies employ similar carrier materials and almost the same operational conditions. 

However melt extrusion differs from the two others because it does not involve the cooling step 

using a dehydrating solvent and in general the melting of the coating material and the injection 

of the core are made in-situ. The product delivered by the three methods is a matrix where the 

active compounds are dispersed inside, usually in the form of droplets. 

Melt extrusion is considered nowadays as one of the most promising techniques for 

microencapsulation of flavors and bioactive compounds because it is a highly flexible process, 

economical and environmentally friendly. The versatility of the twin-screw extruder allows 

adapting the conditions and parameters depending on the carrier, core material and the product 

desired. 

Table 7 Overview of extrusion microencapsulation processes: melt injection, co-extrusion and melt extrusion (Zuidam and 
Shimoni, 2010) 

Technology Melt Injection or Durarome Co-Extrusion Melt Extrusion  

Process steps 

1.  Melting of the coating material                         

1. Dissolution or dispersion 

of the active compound in oil  

(emulsion)                            

1. Melting of the coating   material   inside 

a twin-screw extruder     

2. Dispersion or dissolution of the 

active compound in the coating 

material 

2. Preparation of the aqueous 

or fat coating material 

2. Direct introduction of the active 

compound (pure or in a pre-encapsulated 

form) 

  3. Extrusion of the molten 

mixture through filter              

3. Using of a concentric 

nozzle, and simultaneously 

pressing the oil phase 

through the outer one 

3. Dispersion of the active compound into  

the coating material  

�
4. Coating and dehydration of the 

extrudate (cooling solvent) 

 4. Dehydration of the  

extrudate  by dropping it into 

a gelling or cooling bath 

(cooling solvent)  

4. Cooling and shaping of the extrudate 

(ambient temperature) 

Morphology Matrix Reservoir Matrix 

Load rate (%) 5-20 70- 90 5-40 
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4.2. Melt injection or Durarome® or Ram extrusion 

The first technologies that were developed to encapsulate sensitive and volatile organic 

compounds relied on the preparation of an emulsion where flavors were finely dispersed in the 

coating material. Next, the dough was forced to exit through an orifice, and the high mechanical 

stress and shear allowed a homogeneous, finely dispersed emulsion and a semi-solid matrix to be 

produced. Finally a cooling step was required to obtain a solid glassy extrudate, and thus the 

mixture was cooled down in an isopropanol bath (also called a bath of dehydrating liquid) and 

then shaped into granulates 10,107,108. These steps are shown in Figure 5. The aim was only to 

protect the sensitive active ingredient. These methods were called "extrusion encapsulation" 

since they involved in their process the use of a screw (as a stirrer or as a shear stress tool) in 

order to force a molten carbohydrate mixture to exit through a die or a series of dies 
14,16,21,22,25,41,56,106,107,109. 

Figure 5. Scheme of extrusion encapsulation method adapted from Swisher 22. 

Particle size (�m) 200-2000 150- 8000 300-5000 
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The process of encapsulation is divided here into three steps; the first step consists of melting the 

carbohydrate matrix in the presence of a plasticizer (generally water or glycerol), if required. 

Usually, the melting temperatures do not exceed 140°C in order to avoid thermal degradation of 

the active compound. Typical melting temperatures lie between 110 and 140°C. The second step 

corresponds to the addition of the active ingredient into the melt. In cases where the core 

ingredient is sensitive to oxidation, this step is carried out under an inert atmosphere. From the 

literature, the active compound is added to the carrier mixture, directly or as an oil-in-water 

emulsion, and the mixture is strongly stirred so as to disperse the flavor into the melting 

carbohydrate matrix. The third step is exiting and cooling of the dough. The mixture is forced to 

exit through a die, which results in the formation of a homogeneous product where the flavor is 

finely dispersed. The matrix is still in the rubbery state, but it is directly cooled down and 

dehydrated in isopropanol to induce transition to the glassy state. As shown in Table 8, 

microencapsulation by melt injection can be carried out in various types of apparatus (steam 

jacket mixer, tank reactor with an orifice or multiple nozzles). Depending on the type of device, 

different forms can be obtained (rods, droplets). 

The drying step is mandatory every time the extrudate contains high levels of plasticizers and 

cold isopropanol is often used as a drying agent at this stage. Concomitantly, the extrudate is 

transformed into a glassy matrix by the dual effect of desiccation and cooling. This drastic shift 

from a paste to a glassy state fosters the entrapment of the active compound. 

The Durarome® process named after the trade name of the first commercially available line of 

encapsulated flavors made by Firmenich S.A. 17,48,56, is based on this method and involves the 

dispersion of the flavor into a sucrose and maltodextrin candy matrix.  

However, the cooling step is more considered as a counterproductive stage rather than being an 

advantage, because it is an extra step in the whole process and increases both the time and the 

cost of production. This is not to mention the costs due to solvents like isopropanol and the fact 

that such a process is not compliant with today�s food regulations, which tend to limit the use of 

organic solvent in food production processes. 

Nonetheless, it is important to stress that the aim of encapsulation in these early days, was to 

protect the flavor compounds against oxidation and evaporation, in order to extend the flavored 

product�s shelf life 21,22,25,26. The controlled release of the active compound is a more recent 

property that can be adjusted by modifying either the formulation of the microcapsules or the 

processing conditions 69. 
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Different apparatus have been developed since the pioneering work of Swisher to perform ram 

extrusion. These go from vertical screw-less extruders to multiple needle droplet-generators (also 

known as a nozzle encapsulation technology), and those mentioned in Uhlemann and Reiss� 

review 14. Actually there are six other methods ((i) simple dripping, (ii) electrostatic extrusion, 

(iii) coaxial airflow, (iv) vibrating jet/nozzle, (v) jet cutting, (vi) spinning disk atomization), 

which have been recently described in the literature as extrusion encapsulation technologies. 

However they correspond more to a co-extrusion encapsulation technology because they are 

based on the same principles as melt injection 4,5,11.
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Table 8 Extrusion microencapsulation by melt injection or ram extrusion technology: description of all the processing conditions 

Type of apparatus Emulsification conditions Cooling conditions Reference 

Steam Jacketed Lenhart mixer 

1. Emulsification of the carrier 

material 

 2. Emulsification of the core 

material and additives 

3. Melting and mixing between 85 

and 125°C 

Isopropanol bath (-20°C) and 

vacuum dried 
(Swisher, 1957) 

Mixer and heater reactor, with 

an orifice 

1. Emulsification of the carrier 

material  

2. Emulsification of the core 

material and additives, 

3. Melting and mixing between 

130 and 150°C 

Cold air tunnel (Schultz and Calif, 1958) 

Steam Jacketed stainless vessel 

with an agitator equipped with a 

plate with multiple orifices of 

0,762 mm of diameter 

1. Emulsification of the carrier 

material  

2. Emulsification of the core 

Isopropanol bath (-20°C) and 

vacuum dried 
(Miller and Mutka, 1987) 



Chapter I - Melt Extrusion encapsulation of flavors: a review 

�

Natalia CASTRO 2016 52

material and additives 

3. Melting and mixing between 

125 and 130°C 

nd 

1. Melting of the carriers 

2. Melting of the core material and 

additives 

3. Emulsification step 

Isopropanol bath (-20°C) (Bohn et al., 2005) 

Tank reactor with a stirrer and 

outlet valve with die holes 

1.Melting and emulsification of 

the carriers and additives 

2. Emulsification of core material 

and additives 

3. Emulsification of carriers and 

core material at 70°C 

Dehydrating solvent isopropanol or 

hexane (-4°C) 
(Valentinotti et al., 2006) 
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4.3. Melt extrusion or extrusion microencapsulation 

Melt extrusion encapsulation differs from melt injection encapsulation, not only because the 

apparatus employed is different but also because no pre- and/or post-treatment is applied to the 

materials (carriers, active compounds and extrudate). The major difference between these two 

processes is the moisture content: in melt injection high levels of water are required so that the 

slurry can be extruded; while in melt extrusion the melt can take place at low water content 

levels. The advantage of working at low moisture content is that no post-extrusion drying 

process after is required, thus the material obtained is more homogenous (has less fractures on 

the surface). Therefore, melt extrusion encapsulation corresponds to a process allowing a glassy 

delivery system to be obtained, by melting matrix components and mixing them with the active 

compounds under specific conditions.  

 The technology applied is generally a twin-screw extruder, whose flexible configuration allows 

the melting, addition, mixing and cooling of the carbohydrate mixture in a continuous system. 

According to the configuration of the extruder, different barrel temperatures, various inlet ports 

for liquid injection or solid feed, and screw profiles (conveyance, mixing and nest against) can 

be set up depending on the active ingredient and the biopolymer matrix 15,19,20,49. The process is 

usually divided into three steps (Figure 6): first of all, the introduction of powder mixture of the 

carbohydrate into the extruder�s first barrel section, plus a plasticizer or additives can be added if 

required into the barrel next to the solid feed section. Then the heating and mixing zone are 

established upstream in order to form a rubbery, viscous and homogeneous mass before the 

introduction of flavors. Finally these flavors can be finely dispersed into the molten mass in the 

last sections of the extruder, via a pump 16. 

The liquid aroma compounds are generally introduced into the extruder�s first barrel sections or 

right at the end. Also, depending on the product�s final application, a pre-encapsulation step 

and/or post-coating of the delivery system can be made in order to increase final product 

performance. 

Single-screw extrusion can also be used here, but the mechanical shear exerted on the molten 

mass is lower than in twin-screw extrusion, due to the fact that only a conveying screw is used, 

and this is filled-up all along the extruder barrel. Saleeb and Pickup 27 have employed a single-

screw extruder for the encapsulation of orange oil flavor in a maltodextrin matrix. Extrusion 

temperature was ranged between 98 and 105°C and screw speed was set around 60 rpm. The 
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flavor load obtained in this example was similar to the values found in twin-extrusion 

encapsulation that are around 5 and 40% (Table 9). 

Figure 6. Scheme of flavor encapsulation by melt extrusion using a Twin-screw extruder adapted from 
Ubbink and Schoonman 16. 
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Table 9 Processing parameters for melt twin-screw extrusion microencapsulation:*extruder has 4 temperatures zones, the numbers in brackets correspond to a range of values. SME (=specific 
mechanical energy) 

Type of extruder (ratio L/D) 
Feeder rate 

solid (kg/h) 

Feeder rate 

liquid (kg/h) 

Screw speed 

(rpm) 

Temperature 

profile (°C) 

Die diameter 

(mm)  

Pressure die 

(Pa) 
SME (kJ/kg) Reference 

(Coperion) ZSK30 &ZSK57- 

16:1& 34:1 
5.4 nd [50- 500] nd nd nd nd (Carr et al., 1991) 

(Plasticorder) 2803 - 20:1 nd nd 100 *60,120,110, 100 7 nd [360- 540] 
(Kollengode and Hanna, 1997a, 

1997b) 

(Clextral) BC 21- 16:1 3.7 [0.7 -1.81] nd *50, 100, 120, 80 10 nd nd (Hau et al., 1998) 

nd 6.8 [0.18-0.42] nd [93- 121] nd nd nd (Porzio and Popplewell, 2001) 

(Clextral) BC 21& BC45- 

16:1& 20:1 
[5- 50] nd nd [90-130] [0.7- 2] [1x105 -50x105] < 10 

(Benczedi and Bouquerand, 

2001)(Benczedi and Bouquerand, 

2001)(Benczedi and Bouquerand, 

2003)(Benczedi et al., 2011) 

(Berstorff) ZE25- 40:1 3.5 nd nd 
[70-120] a(die 50-

70) 
7 2.1x106 nd (Ubbink et al., 2001) 

(Clextral) BC45- 20:1 [25-35] [0.10- 0.481] 175 
[140-160] a(die 

185-195) 
4 nd nd (Boutboul et al., 2002a) 

(Coperion) 

ZSK25&Buhler44-40:1 

4 [0.4-1.1] [150-200] 
[15-120] 

[0.5-1] 
nd < 180 

(B. H. Van Lengerich, 

2002)(Lengerich et al., 2010) 9.6 [3.2-6.8]  80 0.5 

(Buhler) DNDL44- 40:1 9 0.18 nd [30-160] [0.25- 1] nd < 180 (Leusner et al., 2002) 

40:1 & 50:1 [2.16-115] nd [50-700] nd [0.8-1] nd < 180 (Kohlus and Pacha, 2004) 

nd [6-15] [0.12-0.72] 100 <121 0.79 6.86x106 nd 

(Zasypkin and Porzio, 2004; 

Zasypkin, 2011; Zasypkin et al., 

2013) 

(Prism Eurolab) KX16- 40:1 0.96 0.4 [158- 242] [50-167] 2 nd nd (Yuliani et al., 2006) 

(Clextral) BC 21- 16:1 nd nd nd nd [1-3] [1x105 -10x105] nd (Bouquerand, 2007) 
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(Haake Polylab System)- 24:1 3 nd 80 *80, 105, 115, 95 3 [1x106 -3.5x106] nd (Chang et al., 2010) 

ZSK 26 Mc Coperion 29 10-30 1-3 300-800 140 3 nd nd
(M. A. Emin and H.P. 

Schuchmann, 2013) 

LTW 26 HB-Feinmechanik 

GmbH&Co (25:1)) 
1.50-3.00 nd [248-748] 105-145 1.25 nd [920-2115] (Tackenberg et al., 2015) 
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4.4. Key process parameters 

The processing conditions in extruders are strongly determined by the chemical stability and 

physical properties of the coating and matrix material (molecular weight, desired glass 

transition of the final product, melt viscosity and melting point). All these properties should 

be taken into account to establish adequate processing conditions 68. However, depending on 

the technology applied (ram extrusion, Durarome® or melt extrusion) process variables are 

also very important and can directly affect the macroscopic characteristics of the final 

product, e.g. the texture, aspect, and release properties. Figure 6 shows the different 

independent processing variables, for melt extrusion, influencing the properties of the final 

material 110. 

As already mentioned, carbohydrates constitute the mostly used matrix materials in melt 

extrusion and extrusion encapsulation 69, and since these materials are essentially glassy and 

brittle, polar plasticizers are necessary to insure homogeneous melting of the carrier under 

appropriate thermo-mechanical stress and shear conditions. The preferred plasticizer is 

water. 

The glass transition temperature of the delivery system depends on two important process 

parameters: extrusion temperature and moisture content. In addition, extrusion temperature 

and moisture content are directly related to viscosity and in the same way the volatile 

retention relies on viscosity. For this reason, temperature and moisture content are considered 

the most important factors affecting volatile retention. Therefore controlling viscosity is 

critical and thus, measurements of exit die pressure are always made 94. The examples given 

in Table 9 show that, in general, pressure at the die exit is in of the same range for the studies 

presented (1x105 and 7x106 Pa) and glass transition temperatures for these delivery systems 

are around 30°C and 50°C. This implies that the moisture contents employed for these 

formulations are of the same order. And in fact, moisture content of the examples shown in 

Table 6, are in agreement with the pressure values given in Table 9. Zasypkin and Porzio 30, 

Chang et al. 35 and Benczedi et al. 34 measured pressures at the die�s exit of 6,86x106 Pa, 

3,5x106 Pa and 1x105 to 50x105 Pa and a moisture content of 7,5% (w/w), 9,3% (w/w) and 

12,3% (w/w) respectively.  

As mentioned earlier, water is the key parameter governing the stability of biopolymers. It 

influences the crystalline and amorphous structures, the glass transition temperature and 

consequently the thermoplastic properties of biopolymers. Increasing the moisture content of 
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a biopolymer increases the chain mobility and the heat capacity, but it decreases the viscosity 

and the system glass transition temperature. All these physico-chemical properties can be 

explained by how water interacts with the biopolymer 74. Understanding water-biopolymer 

interactions gives a better insight thermo-mechanical processing. Similarly, knowing water-

biopolymer interactions allows the processing conditions to be determined in order to better 

target the final properties of the material. 

Glass transition temperature of the biopolymer is correlated to water-biopolymer interactions. 

Thanks to a combination of mechanical spectrometry and differential scanning calorimetry 

data, the glass transition temperature of a protein-based matrix can be determined. The results 

provide a better understanding of the phase transition behavior of amorphous biopolymers at 

different moisture contents. For instance, Kokini and co-workers 111 determined protein state 

diagrams, in order to predict physical states and phase transitions of the material during 

processing conditions (e.g. extrusion or baking). Figure 7 shows the state diagram of proteins 

under different physical conditions (i.e. cooling, heating, drying, wetting) during extrusion 

cooking processing. As mentioned above, this diagram demonstrates the importance of 

moisture content and the temperature conditions that are required to obtain the desired 

polymeric matrix during a thermo-mechanical process (melt extrusion, melt injection, thermo-

molding�). 
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Figure 7. State diagram showing transformations of proteins during the wetting, heating, cooling, 
and drying stages of extrusion cooking adapted from Kobini et al. 111. 

The other main process variables in melt extrusion are the temperature profile, screw profile 

and geometry, screw speed, feed flow rate, moisture content and feed composition 19,20,49. 

The influence of these variables can be evaluated by measuring the mechanical or the 

thermal energy, the residence time, or other properties of the extrudate like product 

expansion (axial and radial expansion), breaking strength, encapsulation efficiency and 

release rate 35,112,113. The process of melt extrusion encapsulation has different independent 

variables and measurable responses that must be taken into account (Figure 8). The most 

frequently measured responses are encapsulation rate or encapsulation efficiency, and both 

can be used for discussion. 
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Figure 8. Scheme of Twin-screw extrusion microencapsulation processing variables; on the left the 
independent process variables and, on the right the measurable responses. 

The processing conditions described in both patents and academic works (Table 9) are quite 

similar. The temperature profile is more or less the same, but the choice of extrusion 

temperature depends on the type of matrix and active material. In the case of active 

materials like sensitive oils rich in polyunsaturated fatty acid, extrusion temperature does 

not exceed 120°C 39,98. In fact, the temperature profile retained for melt extrusion does not 

exceed 160°C in order to avoid thermal degradation of the compounds to be encapsulated 

(fragrances, flavors, bioactive food compounds�). However, not only the core material, but 

also the carrier material may be affected by the temperature profile. For example, mixtures 

of oligosaccharides are more resistant to temperature than maltodextrins, which begin to 

break down at around 180°C. Hence, Leusner et al. 66 have applied an extrusion temperature 

of about 160 °C to entrap ascorbic acid and calcium in a mixture of oligosaccharides, while 

Chang et al. 35 applied a temperature no higher than 115° to entrap ascorbic acid, just in 

maltodextrins. 
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Although the temperature profile has a great impact on flavors� stability during processing, 

screw speed is also important to control in order to avoid degradation of the flavors by 

mechanical shear stress. Indeed, screw speed is crucial because it exerts shear stress into the 

polymer/active core mixture, modifying its viscosity by involving self-heating through 

viscous friction, and also determining the residence time of the mixture inside the extruder. 

Usually a long residence time and high shear stress can cause thermal degradation not only 

of the active core (flavors, fragrances, bioactive food compounds) but also of the carriers 

(degradation, polymerization or offside reactions). Similarly, viscosity decreases when the 

shear stress exerted increases. For this reason, when the compound to be entrapped is very 

sensitive to temperature or shear stress, mild extrusion conditions are required. In the 

example quoted above, Chang et al., 35,50 have employed gentle temperatures not above 

115°C and a screw speed of 80 rpm for the encapsulation of ascorbic acid in maltodextrin. 

In the case of proteins used as carriers, screw speed is around 150 rpm, in order to avoid 

their degradation by mechanical shear. 

The screw profile, along with the temperature profile or screw speed, is the major parameter 

governing the structural transformation of the polymeric matrix (viscosity, expansion, 

physical changes). Hence, the screw profile can play a central role influencing the residence 

time inside the extruder. Nonetheless in some papers, this parameter is not described or 

studied. In general the screw profile chosen for most of the examples found in the literature 

consisted of conveying and mixing elements. Reverse pitch screw elements are avoided in 

order to reduce both shear stress and residence time. Recent works have focused on the 

influence of screw profile on the polymer-based matrix, but not on the effect that it could have 

on volatile�s retention 19,20. 

The parameter that has been given the most of attention in the literature is the location of the 

flavor injection port. In fact, depending on the position where the flavor is introduced in the 

extruder barrel, the retention of volatiles can change, possibly leading to significant losses 

during the process 15,55,78,94. Indeed, the location of the injection port directly influences four 

key factors in the extrusion process, which in turn may impact the retention of volatiles. These 

factors are: (i) the pressure drop when the extrudate exits the die, (ii) the relative volatility and 

diffusion (thermodynamic parameters) of the active compounds in the system, (iii) the 

interactions between the active compounds and the matrix, and (iv) the degradation reactions 

(oxidation, thermal degradation, polymerization). For example, Lengerich 98 has demonstrated 

that changing the point of introduction can reduce the losses of active compounds. The 
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highest loss (72,3%) was obtained when active compound was introduced in the first barrel 

section, whereas when it was introduced into the seventh barrel section of the extruder, losses 

were about 12,2%. This is because when the active compound is injected into the first barrel, 

it is exposed to temperatures around 120°C and 140°C for a longer period of time. 

Conversely, if the active compound is introduced in barrel seven, it is only exposed briefly to 

high temperatures.  

There are three methods to introduce flavors into an extruder. The first consists of pre-

incorporation of the flavors into the feed material prior to extrusion, either by preparing an 

emulsion of carrier/active core, or by spray-drying the flavors with a part of solid carrier and 

then mixing this with all carrier material. The disadvantage of this method is that since the 

active compound is added at the beginning of the extrusion process, volatile molecules are 

more likely to be degraded because of the harsh conditions at the beginning of the extrusion 

process. The second method is the direct injection of flavors into the extruder, into the last or 

the middle barrel section. The problem with this procedure is that, even though it leads to 

better retention rates, flavors are lost due to expansion at the extruder�s exit die, due to the 

pressure increase linked to the reduction in size of the exit die. As a consequence the volatiles 

are flashed-off at the die level. Finally, the last method is a combination of pre-incorporation 

and post-coating of the delivery system, this method is highly cost-intensive but it improves 

the quantity of flavor retained in the matrix and allows the release of the active compounds to 

be slowed down. 

A principal difficulty encountered when encapsulating liquids by extrusion processes is solid-

liquid separation, which leads to oil exudation from the extrudate mass and is due to filtration 

of the phase having the highest mobility through the less mobile phase (for a comprehensive 

overview of solid-liquid separation in extruder, see Bouvier and Campanella 114). 

Hence, rare are the papers where flavors are introduced directly into the extruder without any 

pre-encapsulation treatment. Kollengode and Hanna 38,55 were the first to inject pre-

encapsulated the flavors directly into the end barrel section of an extruder. In their case, the 

flavors were pre-encapsulated with �-cyclodextrin and then injected into the extruder. Even 

though this technique of pre-encapsulation of the core material before extrusion allows having 

a better protection of flavors against losses, the pre-encapsulation step raises the cost, and 

even more so if �-cyclodextrin is employed. Using �-cyclodextrin and spray drying are very 

highly expensive pre-encapsulation techniques. 
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In more recent industrial patents, direct injection of flavors in the form of an emulsion (i.e. 

direct injection of flavors in a pre-encapsulated form) has become more and more common in 

order to minimize losses of volatiles during the extrusion process, vary the release rate and 

reduce production costs. Core materials are introduced into the extruder as an emulsion of 

active and additive (plasticizers, compatibilizing agents and antioxidants compounds). Or in 

other cases, core materials are mixed with a part of the matrix compounds that are in a liquid 

state (i.e. corn syrup) 35,40,55,66,115. 

The use of extrusion as a microencapsulation technology is relatively new and comprehensive 

engineering models adapted to the behavior of paste-like oil-in-matrix �emulsions� are 

missing. In this context, the comprehensive exposition of the engineering principles of 

extrusion technology in food and non-food materials, recently published by Bouvier and 

Capanella 114, can be considered as an inspiring source for further work in this area. 
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5. CONCLUSION AND FUTURE PROSPECTS

Encapsulation of flavors and fragrances, as well as other active compounds (nutraceutics 

and bioactive food components, pesticides, dyes, enzymes) is a domain that is still in 

expansion due to the increasing consumer�s demands for better quality from the raw 

materials to the final products.  

It is a must to reduce energy consumption, waste production and pollution. Therefore, global 

policies are focused on leading research and industrial development, into a more 

environmentally friendly and sustainable domains 116 . 

Twin-screw extrusion can be seen as versatile technology that can be employed in different 

industrial domains, and can contribute with great benefits to sustainable development i.e. for 

green extraction of raw materials 117�119. 

As an encapsulation process, twin-screw extrusion technology can be categorized as a green 

process (if compared with other encapsulation technologies: interfacial polycondesation, 

suspension and emulsion polymerization, and fluidized bed coating among others). Twin-

screw extrusion encapsulation, as it was mentioned before, is a one-pot encapsulation 

technique, which combines: the formation of the wall material, the dispersion of the active 

principle, and at the exit of the die the forming of the encapsulated material. All these three 

different stages take place inside the barrel or the die of the extruder 30. To compare, spray-

drying encapsulation technology needs the prior preparation of the liquid formulation 
8,105,107,120,121. The reducing number of steps in an industrial process contributes to reduce 

energy consumption. Moreover, encapsulation by twin-screw extrusion does not require a 

pre- or post-treatment after extrusion unlike most of the other encapsulation methods. 

Two other remarkable assets of twin-screw extrusion are the absence use of organic solvents 

(contrary to the polymerization techniques122 and fluidized bed coating123) and the low 

amount of water (20% water content) as compared with spray-drying technology (that 

requires more than 80% of water). Both of these points involve the reduction of pollution 

and production costs during the manufacturing process. 

To counteract the strong dominance of spray drying in the microencapsulation area, apart 

from reducing production costs, extrusion encapsulation appears as a versatile and 

sustainable technique for glassy microencapsulation. Extrusion microencapsulation is 
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presented as a pioneering technology allowing the creation of new delivery systems, 

providing not only protection of the active compound but also, in some extent, its controlled 

release. 

There remain, however, clear areas of improvement that would help extrusion encapsulation 

to become a more universal tool. In first rank, increasing the internal, encapsulated liquid 

phase (payload) in the extrudate would help reducing the material cost and make the 

technology more affordable for other applications, such as laundry products or agro-

formulations. Secondly, there is a strong need for matrices having simultaneously a high 

encapsulation power and a low hygroscopicity, e.g. for better stability under moist 

environment. Finally, much remains to be done in the area of triggered release of volatile 

materials under pre-defined conditions.  

Among the different technologies employed in extrusion encapsulation, with all the 

processing parameters that have to be controlled in order to obtain �the perfect delivery 

system� with the specific characteristics (Tg, moisture content, encapsulation efficiency�), 

a lack of understanding of the phenomena occurring during microencapsulation seems to be 

the major limitation in this domain. For this reason a concerted approach to food material 

science, materials science, flavor and fragrances chemistry and physical chemistry are 

required for further progress in this area. Emphasis must be given to determine the type of 

interactions between the matrix and the encapsulated materials, the state of this matrix, and 

the extrudate morphology, so as to establish the mechanisms, which control the release of 

volatile active compounds when and where they are desired. 
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Transition Chapter 1 to 2 

Thanks to this overview about the different types of extrusion processes employed 

for the encapsulation of active compounds in the food, fragrance, agriculture and 

pharmaceutical domains, twin-screw extrusion has been demonstrated to be a versatile, cost 

efficient and green technology. The large number of patents denoted its great performance 

on the industrial scale. 

Carbohydrates appear as excellent wall material for the encapsulation of flavors and 

active ingredients for pharmaceutical applications. And since the encapsulation of various 

active compounds in starch-based matrix using this process has been studied in detail, 

maltodextrins seem a good alternative for new bio-based material. 

The Laboratory of Agro-Industrial Chemistry (LCA) has great knowledge on twin-

screw extrusion; not only on the transformation/fractionation of by-products from the food 

and agriculture, but also on the elaboration of bio-composites. Relying on this know-how, it 

was obvious that this technology could be used for the elaboration of new maltodextrin-

based matrices for the incorporation of organic volatile compounds. 

Our investigations were then oriented on the determination and analysis of the 

physicochemical properties of different types of maltodextrins. The aim of these 

characterizations was to predict the behavior of the raw materials before exploring extrusion 

encapsulation conditions.  

For this reason in the next chapter, a series of elementary physicochemical analysis 

(DVS, TGA, DMA, SEC, rheology measurements�) were run so as to identify the adequate 

wall material. 
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Abstract 

In this study, five different types of maltodextrins (DE-2, DE-6, DE-12, DE-17 and DE-19) 

were characterized for the physic-chemical properties. TGA, DVS and SEC analyses were 

carried out and additionally apparent melt-viscosity (in a micro-extruder) and the glass 

transition temperature (analyzed by DMA) of maltodextrin/plasticizer mixtures were also 

measured in order to evaluate both the effect of plasticizer nature and content and the effect 

of the DE-value. For this, three plasticizing agents were compared: water, D-sorbitol and 

glycerin. The adsorption isotherms showed that depending on the DE-value and the relative 

humidity they were exposed to, different behavior could be obtained. For example, for 

relative humidities below 60% RH maltodextrin DE-2 was the least hygroscopic. And on the 

contrary for relative humidities above 75% RH maltodextrin DE-2 was the most 

hygroscopic. The rheology measurements showed that the viscosity decreased with the 

increase of the DE-value and the plasticizer content, as expected. On the contrary, no direct 

correlation could be established between the DE-value and the glass transition temperature. 

These results demonstrated that to predict maltodextrins behavior and to better adapt the 

process conditions, combined analyses are mandatory as the DE-value alone is not 

sufficient. The most compelling evidence was obtained by size exclusion chromatography, 

which pointed out that maltodextrins had a bimodal molecular weight distribution composed 

of high and low, molecular weight oligo-saccharides. Indeed, maltodextrins are highly 
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polydisperse materials (i.e. polydispersity index ranging from 5 to 12) and that should be 

the reason why such distinct behaviors were observed in some of the physico-chemical 

analyses that were preformed. 

Keywords: Maltodextrins, dextrose equivalent value, apparent viscosity, glass transition 

temperature, water sorption isotherm, molecular weight distribution 

Remark: in press Carbohydrate Polymers, doi:10.1016/j.carbpol.2016.03.004 

1. INTRODUCTION

Maltodextrins are obtained from the acid and/or enzymatic controlled hydrolysis of starch. 

Maltodextrins are composed of D-glucose units connected by (1-4) glucosidic linkage to 

give D-glucose polymers of variable length and therefore different molecular weight. The 

number of the reducing sugar content is defined by the dextrose equivalent value (DE-

value), which is calculated on a dry weight basis. Maltodextrins are a mixture of saccharides 

with a DE-value ranging from 3 to 20. Starch is associated to a DE-value of zero, and 

glucose to a DE-value of 100 1,2. 

Maltodextrins are one of the most common compounds used in the cosmetic, food and 

pharmaceutical domain. It can be employed as the main ingredient of a formulation or as an 

additive. Maltodextrins are great film forming and texturizing agents, as they can increase 

viscosity, retard crystallization or decrease stickiness and hygroscopicity of a mixture but 

also improve shelf-life stability of food matrices (Roos & Karel, 1991). Maltodextrins are 

popular in the food industry not only for all the previous reasons but also because they are 

highly soluble in water and non-sweet compared to classical sugars 3,4. Not to mention that 

maltodextrins are odor-, color- and tasteless so they appear as the best option to be 

employed as encapsulating agents either by spray-drying or twin-screw extrusion. 

Nowadays, maltodextrins are used as the main ingredient rather than additive for the 

elaboration of bio-based materials by melt extrusion 5�7. 

The key for a successful encapsulation of an active compound is based on the understanding 

of the physicochemical properties of the wall material employed and therefore the 
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adaptability of the process conditions and of the technology to be used. For maltodextrins, 

the main problem is the lack of experimental data concerning the physicochemical 

properties of these raw materials. Actually, there are more mathematical models allowing 

predicting the behavior of some of the physicochemical properties than studies measuring 

them because of the rigidity and brittleness of these carbohydrates-based materials. 

Therefore in order to better understand maltodextrins, the aim of this paper was to determine 

in the first place the molecular characteristics (molecular weight distribution, sorption 

isotherm, apparent viscosity, and glass transition temperature) of five different grades of 

pure maltodextrins; and in a second place, to analyze the effect of the type and the amount 

of plasticizer on the apparent viscosity and glass transition temperature of these mixtures. 

Ergo, the formulations herein studied can be adapted to the principal encapsulation 

technologies. Thus, tuning the formulation upstream can for instance improve the 

flowability of the mixture inside an extruder, and control the properties of the final 

maltodextrin-based products. 

2. MATERIALS AND METHODS

2.1. Raw materials 

Roquettes Frères (Lestrem, France) supplied maltodextrins with different dextrose 

equivalent (Glucidex-2, Glucidex-6, Glucidex IT-12, Glucidex IT-19 and Glucidex 17). 

These maltodextrins are obtained by controlled hydrolysis of native corn-starch. The main 

difference between these two ranges of product is based on the powder particle size. 

Glucidex-IT has bigger particle size, providing a better solubilization and free-flowing 

properties. Two plasticizers were employed, glycerin  (CAS: 56-81-5, MW=92 g.mol-1) and 

D-sorbitol (CAS: 50-70-4, MW=182 g.mol-1) both supplied by Sigma Aldrich (St Quentin 

Fallavier, France). Reagents used for the dextrose titration and for size exclusion 

chromatography were also provided by Sigma Aldrich: Copper (II) sulphate pentahydrate 

(CAS: 7758-99-8, MW=249.69 g.mol-1), Methylene blue (CAS: 61-73-4, MW=319.85 

g.mol-1), potassium sodium tartrate tetrahydrate (CAS: 6381-59-5, MW=282.22 g.mol-1), 

sodium hydroxide (CAS: 1310-73-2, MW: 40 g.mol-1), Di-sodium hydrogen phosphate 

(CAS: 10028-24-7, MW=177.99 g.mol-1), sodium phosphate (CAS: 10049-21-5, 

MW=138.0 g.mol-1) and sodium chloride (CAS: 7647-14-5, MW=58.44). 
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2.2. Determination of the dextrose equivalent value of maltodextrins 

The DE-value were measured by the Hagedorn-Jensen method 8 in order to confirm the 

dextrose equivalent value established by the manufacturer. The DE-values obtained for the 

five different types of maltodextrins are in agreement with the DE-values indicated by the 

supplier (Table 1). �Theoretical� degree of polymerization and number average molecular 

weight were determined by the following equations 1 and are summarized in Table 1: 

������ � ���	��

�           (1) 

������ � ����� � ��         (2) 

The molecular characteristics presented in Table 1 are used as references to compare with 

the experimental values obtained in this study in section 3.1.  

Table 1. Measured DE-value of different types of maltodextrins (triplicates). DE-values were experimentally measured. 
DPtheo and Mntheo were calculated from equations 1 and 2.

Molecular Characteristics  

Maltodextrin DE-X 

DE-2 DE-6 DE-12 DE-17 DE-19 

DE-value 2.1±0.0 6.29±0.02 12.31±0.02 17.7±0.04 19.04±0.06 

DP theo 52.9 17.7 9.0 6.3 5.8 

���theo (g.mol-1) 8589 2880 1480 1035 963 

2.3. Size exclusion Chromatography 

SEC analyses were performed using a Dionex (Voisins le Bretonneux, France) size 

exclusion chromatography (SEC) equipped with a high-sensitivity inverse refractive index 

detector Prostar 350/352 from Varian Analytical Instruments (Walnut, C.A., USA). 

The average molecular weights of maltodextrins were determined by gel permeation 

chromatography (GPC) on a PL aquagel-OH 50 columns. The column system was 

composed of three columns; 2 Agilent PL aquagel-OH 30 8 �m, 7.5 x 300 mm (p/n 1120-

6830 Polymer Laboratories Ltd. Church Stretton, UK) and a PLgel precolumn. The column 

oven temperature was set at 30°C. The eluents were 0.02 M NaCl in 0.005 M sodium 

phosphate buffer Sigma Aldrich (St Quentin Fallavier, France), at pH 7 and prepared as the 

protocol described by 9. 



Chapter II - Influence of DE-value on the physicochemical properties of maltodextrin samples for melt extrusion processes 

�

Natalia CASTRO 2016  84

External calibration was made with Pullulan standards, from Polymer Laboratories 

(Marseille, France), with specific average molecular weights ranging from 360 and 380,000 

Da, dissolved in 0.005 M sodium phosphate buffer with 0.02 M NaCl, pH 7.5. 

The results were treated by Chromeleon software in order to obtain the number average 

(Mn), the weight average (Mw) molecular weights and the polydispersity index (Ip) of each 

analyzed sample. All samples were run in triplicates. 

2.4. Determination of the moisture content 

Moisture content of the samples was determined by gravimetric method (NF-V-ISO03-921). 

One gram of each sample was weighted and left to dry in an oven at 103±2°C for 24 hours 

until there were no mass variations of the sample. Measures were run in triplicates for each 

sample. 

2.5. Dynamic vapor sorption analyses (DVS) 

Water sorption isotherms were performed on a Dynamic Vapor Sorption (DVS) Advantage 

System from Surface Measurement Systems (Alperton, UK). This machine is equipped with 

a very accurate recording microbalance, able to measure changes in the sample mass as low 

as 0.1�g. Samples were exposed to a constant temperature (25°C) and programmed relative 

humidities varying from 0 to 90% divided into 15% increments (14 steps). A mixture of dry 

and moisture-saturated nitrogen flowing over the samples assured the changes in the relative 

humidity of the DVS-chamber. Ten milligrams of the sample were placed inside the 

chamber and before starting the data acquisition, all the samples were dried for 300 minutes 

under a stream of dry nitrogen (0% RH) at 103°C in order to obtain the dry weight. 

Equilibrium was achieved, when the changes in the mass of the sample were lower than 

5.10-3 % min-1. 



Chapter II - Influence of DE-value on the physicochemical properties of maltodextrin samples for melt extrusion processes 

�

85  Natalia CASTRO 2016 

2.6. Thermogravimetric Analysis (TGA) 

Thermogravimetric analyses were performed on a SETSYS-Evolution TGA-SETARAM 

Instrumentation KEP Technologies (Caluire et Curie, France) in order to establish the 

thermal stability of each compound. The temperature of analysis was set from 25°C to 

600°C at a ramp rate of 7.5 °C/minute, under inert Argon atmosphere. The samples 

weighted between 13 and 25 mg. 

The onset temperature was mathematically determined by the intersection between the ray 

parallel to the plateau of the mass weight of the sample after dehydration and the ray going 

through the vertex of the DTG plot. The onset temperature corresponds to the start of the 

major sample degradation. All the graphics were plotted thanks to Origin software 

(OriginLab Corporation, Northampton, MA, USA). 

2.7. Rheology: apparent viscosity 

The apparent viscosity measurements of different maltodextrin/plasticizer mixtures, at 

constant temperature (80°C), were performed on a Haakee MiniLab Micro Rheology 

Compounder (Thermo Fisher Scientific, USA), equipped with a back flow channel, designed 

as a slit capillary, with two pressure transducers; one in the entrance and another one at the 

exit of the capillary zone. The apparent viscosity is deduced from the capillary geometry and 

the calculated apparent shear rate �� , which in turn was determined from the volume flow ��
and the pressure drop. Around 7 and 10 g of the maltodextrin/plasticizer mixture was 

introduced manually and measurements were made from 219 to 821 s-1 shear rate gradient 

(corresponding to a screw speed varying from 50 to 250 rpm). 

Viscosity measurements were obtained for the following compositions, maltodextrin/water 

88/12 (% (w/w) and maltodextrin/plasticizer 80/20 (% (w/w). However viscosity 

measurements for the formulations containing 10 (%, w/w) of plasticizer were impossible 

because the torque alarm of the apparatus was triggered. 
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2.8. Dynamic Mechanical Analysis   

Glass transition temperature (Tg) of maltodextrin/plasticizer films (film preparation is 

described below) were measured on a Triton Technology Dynamic Mechanical Analysis 

apparatus (Triton Technology, UK), by thermal scans in the simple geometry of the single 

cantilever-bending mode. The amplitude (25�m) and the multi-frequency (1 and 10 Hz) 

modes were kept constant during the analysis. Samples were placed in an aluminum pocket 

and the temperature range of analysis was set from -100°C to 200°C at a scanning rate of 

2°C/minute. Therefore the mechanical properties of the samples cannot be considered but all 

thermal relaxations in the temperature range studied, are related to the sample inside the 

pocket. 

Maltodextrins films were prepared by casting method. They were prepared by dissolving 

20g of maltodextrin/plasticizer mixture 90/10 and 80/20 (% (w/w)) in 100 mL of tap water 

at room temperature and stirred with a magnetic stirrer at 1200 rpm for 10 minutes. Films 

were stabilized in a controlled humidity chamber set up at 60% of relative humidity and 

25°C for two weeks before analysis. Experiments were run in duplicates. 

3. RESULTS AND DISCUSSION

3.1. Molecular characterization of pure maltodextrins 

3.1.1. DE-value assessment and molecular weight distribution 

The average number molecular weight and degree of polymerization of the different types of 

maltodextrins used in this study were calculated thanks to the measured DE-value and were 

compared to the results obtained by size exclusion chromatography (Table 2). 

�#$%&�!����� &.��"�&'�"�&� "#%�#&%��(��#(( " $��1"��%��(�-����� !�"#$%�:�"#/�#&�� %;���$�' ��>��' �" �#&����5 "�1 �

-�� &.��"�6 #1'��� � "-#$ ��+,� =.��#�$�:;��$��	��' �>��' �" �#&���� 1"  ��(�/��,- "#0��#�$�� � "-#$ ��+,�

 =.��#�$�:�;���$�&�"" %/�$�%�����' �$.-+ "��5 "�1 �-�� &.��"�6 #1'���$���6�&�"" %/�$�%�����' �6 #1'���5 "�1 �

-�� &.��"�6 #1'�?�+��'%�6 " � !/ "#- $����,�- �%." ��+,�����:$>�;�

Maltodextrin 
DE-X 

Mn (g.mol-1) Mw (g.mol-1) Ip 
Mntheo

(g.mol-1) 
DPtheo

DE-2 - - - 8589 52.9 

DE-6 2225±57 25847±583 12±1 2879 17.7 

DE-12 1507±24 15400±265 10±1 1479 9.0 

DE-17 983±31 5672±431 6±1 1035 6.3 



Chapter II - Influence of DE-value on the physicochemical properties of maltodextrin samples for melt extrusion processes 

�

87  Natalia CASTRO 2016 

DE-19 937±59 4978±785 5±1 962 5.8 

The molecular weight distribution of maltodextrins is crucial because it allows to get a better 

understanding of their behavior in terms of structural and functional properties 10. For that 

reason, the determination of the molecular weight distribution of the four types of 

maltodextrins is at the bottom of this study. The molecular weight distribution of the 

analyzed maltodextrin became narrower as the DE-value increased, since the polymer chains 

were shorter.  

It can be noticed, in Figure 1, that all maltodextrins had a bimodal molecular weight 

distribution; they were composed of high and low molecular weight oligo-saccharides. The 

first peak corresponded to the higher molecular weight polysaccharides. For maltodextrins 

with high DE-value, the retention time was more or less the same. However, maltodextrin 

DE-12 presented a larger population of high molecular weight polysaccharides than DE-17 

and DE-19 maltodextrins. On the contrary, the peak of maltodextrin DE-6 presented an 

interesting shape.  
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Figure 1. SEC Chromatogram of different grads of maltodextrins. 

In fact, the first peak presented the shortest retention time and a shoulder peak can be 

appreciated at 14.5 minutes. This shoulder peak indicates the presence of even higher 

molecular weight polysaccharides. Thus maltodextrin DE-6 had the most important and 

largest population of high molecular weight polysaccharides.  

On the opposite, for the second peak, representing low molecular weight oligo-saccharides, 

the order was almost inverted. Maltodextrin DE-6 presented a small population of low 

molecular weight polysaccharides. Whereas, maltodextrins DE-17 and 19 were composed of 

a considerable population of low molecular weight oligo-saccharides. However, 

maltodextrin DE-12 was the one having the lowest molecular weight oligo-saccharides, even 

though this population was restricted.  Therefore maltodextrin DE-6 and DE-12 were the 

ones having the largest molecular weight distribution among all the others, confirmed by the 

high values of the polydispersitiy index (respectively 12 and 10) and degree of 

polymerization (respectively 17.7 and 9.0).  

The results obtained in our study are in agreement with the literature. These commercial 

maltodextrins found in the market have a broad molecular weight distribution as 
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demonstrated in the study of Dokic et al. (1998)1. And acid hydrolysis is known to give 

mixture of saccharides with a wide molecular weight range varying sometimes from 

monomer to polymers of the same size than starch 11. 

The molecular weight distributions of maltodextrins DE-6, 12 and 19 are in agreement with 

the values found in the literature 1,5,10�16. 

3.1.2. Hygroscopicity 

In the literature some theories concerning the DE-value and the hygroscopic character of 

maltodextrins are exposed. In general, maltodextrins are considered to by polysaccharides 

with a low hygroscopic character 17. Looking more closely at the DE-value of maltodextrins, 

it is expected that, when the DE-value increases, the hygroscopic character of maltodextrin 

is also increased, since the surface of contact is increased. This characteristic was confirmed 

by 11, where high molecular weight maltodextrins presented low moisture content and 

conversely low molecular weight maltodextrins had high moisture content. However, our 

results seemed to indicate two different behaviors depending on the relative humidity on 

which maltodextrins were exposed to and the transition zone where the behavior change 

occurred is comprised between 60 and 75% RH (Figure 2). Indeed in this region it appeared 

that the adsorption behavior of all maltodextrins changed. As a matter of fact, is in this area 

that any maltodextrins changed behavior. On the one hand maltodextrins DE-6 remains the 

most hygroscopic followed by maltodextrins DE-19. On the other hand, at 68% RH, 

interestingly, the three other maltodextrins intersected themselves.  

In general the sorption-desorption isotherms of all maltodextrins presented a sigmoidal 

shape and showed a pronounced hysteresis (in this paper only sorption is represented). They 

were all associated to a type II sorption isotherm except for maltodextrin DE-2 that was 

more like a type III sorption isotherm and presented a very unique hygroscopic behavior, 

and will be discussed later on this paper. The transition zone (60
%RH
75) marked a clear 

difference between the �bonded-water� bound onto the surface of the sample and the free-

water (i.e. microcapillary water). Type II isotherms correspond to the general isotherm 

found in all food products. Meaning that for maltodextrins having a type II isotherm, water 

is first bond to the most polar groups onto the surface of maltodextrins, and then water is 
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adsorbed on all the free hydroxyl groups corresponding to the hydration monolayer. Then, 

when all the polar sites are occupied, water molecules are bound to the monolayer through 

hydrogen bonding and/or Van der Waals interactions. This corresponds to the multilayer 

formation.  

On the contrary, maltodextrin DE-2 seemed more like a type III isotherm, because in the 

curve there was no flattish part indicating the formation of the monolayer. In other words, 

for maltodextrin DE-2 there was an immediate formation of a multilayer system, with strong 

adsorption of �free water� observed at higher relative humidities. Perhaps, because 

maltodextrin DE-2 is longer and consequently has a high molecular weight, it is possible 

that the polymeric chain tends to entangle. Therefore absorption of water occurs in a 

�disorganized� way. The multilayer starts to form even though there are still hydroxyl 

groups available on the surface but not of easy access for the water molecules. Further 

information will be required to prove the organization of the polymeric chain of 

maltodextrins DE-2 compared to high DE-value maltodextrins.  

On the contrary, for the maltodextrins of high DE-value, the multilayer starts to form once 

all the hydroxyl groups on the surface are occupied since they are easy to access (there is no 

entanglement of the polymeric chains).  

For all these reasons, and to sum up, two tendencies emerge from this study. 

On one hand and for relative humidities below 60% RH, moisture content increases as the 

molecular weight of maltodextrins increases. Herein hygroscopicity increases as the DE-

value decreases. Meaning that the longer the polymeric chains are, the more hydroxyl 

functions are available to adsorb water. Thus maltodextrin DE-6 is the most hygroscopic. 

The same tendency was observed for starch and hydrolysate starch products of different 

molecular weight studied by 18,19 due to the fact that the longer the polymeric chain is, the 

more important is the affinity for water and thus, higher is the water retention in the 

material. When the polymeric chains are longer, there is a high probability that chains begin 

to entangle with each other giving rise to a disordered system and therefore increasing the 

free-volume. 

On the other hand, and for relative humidities above 60% RH, moisture content increases as 

the molecular weight of maltodextrins decreases. Therefore maltodextrin DE-19 presented 

the most hygroscopic character among the high DE-value maltodextrins. This is in 
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agreement with the results obtained by 11 were high DE-value maltodextrins had higher 

moisture content than low DE-value maltodextrins. This allied what was mentioned before, 

that is to say that the shorter the polymer chains are, more important is the surface area of 

exchange. 

Maltodextrins DE-2 and DE-12 have particular sorption isotherm depending on the relative 

humidity of the environment meaning perhaps significant changes on their macromolecular 

structure. Maltodextrin DE-2 behaves more as long-chain than as a small-chain polymer. In 

fact, its sorption isotherm is very much a like as the ones obtained for starches 20,21. 

Figure 2. Vapor sorption isotherm of the various types of maltodextrins. 

The sorption isotherm permits to have a general idea of the hygroscopic character of the 

material and thus predict the shelf-life stability of the material under specific environmental 

or process conditions 12. In this case for example, maltodextrin DE-12 will be more stable 

than maltodextrin DE-2 when exposed to environment above 60% RH. In addition if the 

final application is targeting a delivery system that must be highly hygroscopic, 
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maltodextrin DE-6 and DE-12 will be privileged over others (off course for relative 

humidities below 60% RH). The same remarks was pointed out in the study of 3 where high 

molecular weight oligosaccharides lead to an increased moisture absorption. However it was 

reported in other study that when maltodextrins were exposed to high relative humidities 

(90% RH), the affinity to water for low DE-value maltodextrin increased. Maltodextrin DE-

4 had a moisture content of 6% (w/w) opposed to maltodextrin DE-15 which had a moisture 

content of 3% (w/w) 11. Special attention must be given when comparing all these different 

studies because the botanical origin of maltodextrin and the type of hydrolysis are crucial 

parameters affecting the final physicochemical properties of maltodextrins. This can be one 

of the reasons explaining such differences disclosed in the literature. 

3.1.3.  TGA 

Thermogravimetric analysis allows determining the thermal stability of each maltodextrin. 

In general, all the maltodextrins presented the same dehydration and decomposition phases 

corresponding to the classical thermogravimetric profile of carbohydrates 22,23. As it is 

represented in Figure 3, the first stage (temperature range from 25°C to 150°C) is associated 

to the dehydration of maltodextrins, which is a small weight loss. For the five analyzed 

maltodextrins the weight loss fitted perfectly to the moisture content measured in the 

sorption isotherms (Figure 2). The second stage corresponds to the region where 

decomposition reactions take place and where the major weight loss of the samples 

occurred. Since the analyses where run on an inert atmosphere, the total degradation of 

maltodextrins to the ash content was not completed (this part being related to the third stage, 

the completely degradation of the sample). 

Maltodextrin DE-6 showed a more slightly rapid decomposition than the other types of 

maltodextrins, meaning that in this particular case the lower the DE-value is, the more rapid 

the decomposition will be. At the end of the pyrolysis reactions maltodextrin DE-19 had lost 

79.27% of the initial weight and maltodextrin DE-6 and DE-12 have lost around 80 to 83% 

of their initial weight respectively. 

As stated in the thermogram above, the five maltodextrins could withstand temperatures up 

to 250°C without fearing their degradation. This implies that temperature can be one of the 

process parameter, in twin-screw extrusion for example, to be modified in order to regulate 
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the viscosity or the glass transition temperature of the system. Off course, special attention 

must be given when extrapolating the temperature conditions to extrusion because this 

thermal analysis was made at inert atmosphere. 

Figure 3. TGA of different grades of maltodextrins. 

3.2. Rheology and DMA analysis of maltodextrin/plasticizer mixtures 

3.2.1. Rheology: apparent viscosity measurements 

Maltodextrins are highly soluble in water and thus measurement of their viscosity is 

classically performed in solution but the characterization of their apparent melt viscosity 

was quite a challenge. Small amounts of water and plasticizer (not exceeding more than 20 

(%, w/w)) were employed. After several trials, the chosen process temperature was 80°C to 
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keep it as low as possible for future encapsulation of thermolabile active compounds. Also 

to allow measurements of the viscosity of high molecular weight maltodextrins, because for 

temperatures below 80°C their viscosity was too high. Indeed, for high molecular weight 

maltodextrins 80°C was the perfect temperature to have a non-Newtonian fluid behavior, 

whereas at higher temperature there was no viscosity at all (for the same amount of 

plasticizer). For these reasons the temperature 80°C was found to be ideal because allowing 

viscosity measurements for this wide range of maltodextrins. These results accentuated the 

fact that maltodextrins can be extruded at low temperature. D-sorbitol and glycerin were 

used at two different ratios 10 and 20 % (w/w). And water constituted the third plasticizer 

added at a ratio of 12 (%, w/w). It was not possible to test D-sorbitol, glycerin, and water at 

the same ratios because the viscosity behavior for each plasticizer was not the same. For 

example, viscosity measurements were not possible for mixtures of maltodextrins containing 

10% (w/w) of water only. Besides, in the case of water at 20% (w/w) the mixtures behaved 

as a Newtonian fluid thus no viscosity was able to be measure. 

The apparent viscosity (�) of the different maltodextrin/plasticizer mixtures was determined 

by the Power-law or Ostwald-de Waele equation: 

� � �	 �� ����          (3) 

The apparent viscosity � (Pa.s), K is the flow consistency index (Pa.sm), ��  shear rate (s-1) 

and m is the power-law index. The flow consistency index (K) corresponds to the value of 

the viscosity for a 1 s-1shear rate equals. And the power-law index, m, indicates the type of 

fluid based on their flow behavior with respect to a Newtonian fluid. Therefore, for m values 

below 1, samples are considered as pseudoplastic or shear thinning fluids. According to this, 

all the maltodextrins/plasticizer formulations tested behaved as shear thinning fluids. In 

general, the results showed that the pseudoplastic index varied conversely to the flow 

consistency index Table 3. Moreover, the values of the apparent viscosity of all formulations 

were more or less in the same order of magnitude (Figure 4). 
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Table 3. Flow consistency and power-law indexes of the maltodextrins mixtures with 12% (w/w) of water and 20% (w/w) 
of plasticizer.

Formulation K (Pa.s) m R² 

Maltodextrine DE-2 + water 12% (w/w)  39875 0.06 0.99 

Maltodextrine DE-6 + water 12% (w/w) 22636 0.07 0.94 

Maltodextrine DE-12 + water 12% (w/w) 33838 0.09 0.99 

Maltodextrine DE-17 + water 12% (w/w) 334 0.64 0.98

Maltodextrine DE-19 + water 12% (w/w) 942 0.53 0.95

Maltodextrine DE-2 + glycerol 20% (w/w) 24300 0.13 0.99 

Maltodextrine DE-6 + glycerol 20% (w/w)  23950 0.13 0.98 

Maltodextrine DE-12 + glycerol 20% (w/w) 132 0.76 0.92 

Maltodextrine DE-17 + glycerol 20% (w/w) 61 0.85 0.79 

Maltodextrine DE-12 + D-sorbitol 20% (w/w) 18059 0.15 0.96 

Maltodextrine DE-17 + D-sorbitol 20% (w/w) 20649 0.11 0.96 

Maltodextrine DE-19 + D-sorbitol 20% (w/w) 270 0.43 0.84 

When exposed to the same moisture content 12% (w/w) and at the same temperature 80°C 

maltodextrin DE-2 had the highest viscosity among the other maltodextrins (Figure 4). The 

flow consistency index of maltodextrin DE-6 was 22636 Pa.s and was 33838 Pa.s for 

maltodextrin DE-12, which indicates that viscosity of maltodextrin DE-6 was lower than the 

viscosity of maltodextrin DE-12. Though, maltodextrin DE-12 was supposed to have a 

lower viscosity since its average molecular weight is smaller than the average molecular 

weight of maltodextrin DE-6 (respectively 15400g.mol-1 and 25847 g.mol-1). Maltodextrins 

with low DE-value are expected to have a higher viscosity 10. For instance, 1 also found 

unexpected behavior related to the viscosity of concentrated maltodextrin solutions. In fact, 

maltodextrin DE-25 had a viscosity higher than maltodextrin DE-15. This discrepancy is 

explained due to the higher percentage of longer linear chains and broader molecular mass 

distribution of maltodextrin DE-25 compared to maltodextrin DE-15. In our case, even 

though maltodextrin DE-6 had a more important part of high molecular weight 

polysaccharides than maltodextrin DE-12, the polydispersity indexes of both were about of 

the same range (respectively 12 and 10). Meaning that both maltodextrins had broader 

molecular mass distributions. Based on the power law index, maltodextrin DE-2, DE-6 and 
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DE-12 had similar values (Table 3) very closed to 0, revealing an important entanglement of 

the polymeric chains due to high molecular weight oligomers. 

Related to maltodextrin DE-17 and DE19, the power-law index indicates that they were the 

ones presenting a more plastic character among the other three maltodextrins and very low 

entanglement of the polymeric chains. Additionally, interesting results were obtained for 

maltodextrin DE-19 at 20% (w/w) of glycerin. In fact glycerin is such a good plasticizer that 

for maltodextrin DE-19 the mixture behaved as a Newtonian fluid (viscosity did not 

decrease when increasing shear rate). 

Glycerin appeared to be a better plasticizer than D-sorbitol since it decreased considerably 

the viscosity for the same type of maltodextrin. For example, considering the same amount 

of plasticizer, the values of the flow consistency and the power-law indexes for maltodextrin 

DE-12 were much lower for glycerin (K=132 Pa.s, m=0.76) than for D-sorbitol (K=18059 

Pa.s, m=0.15). Another argument demonstrating that glycerin was a better plasticizer than 

D-sorbitol is the fact that for high molecular weight maltodextrins (e.g. maltodextrin DE-2 

and DE-6) viscosity measurements were possible only for mixtures containing 20 (%, w/w) 

of glycerin. 

With regard to the DE-value and viscosity (no matter how it is measured) there is a linear 

dependency 1,2,10. The viscosity of the mixture decreases as the DE-value increases. Based in 

our results, this linear dependency between DE-value and viscosity is respected for the 

mixtures containing 20% (w/w) of plasticizer. However in the case of water at 12% (w/w) 

this linearity is not respected. Indeed maltodextrin DE-19 presented a higher viscosity than 

maltodextrin DE-17 maybe because it has a more important population of high molecular 

weight polysaccharides than maltodextrin DE-17. 
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Figure 4. Apparent viscosity of the different mixtures of maltodextrin/plasticizer tested at 80°C:  
a) Maltodextrins + water12% (w/w), b) Maltodextrins + glycerin 20% (w/w), c) Maltodextrin + 

D-sorbitol 20% (w/w) 

3.2.2. DMA 

Glass transition temperature (Tg) has been longtime used as an accurate indicator for food 

matrices stability 24. Indeed, Tg behavior influences the properties of food materials like 

texture, taste and off course shelf-life stability during the stocking conditions and, last but 

not least, it served as an indicator to determine the melt extrusion process parameters 

(Sablani, Kasapis, & Rahman, 2007). Molecular weight of the material, water content and 

process temperature are the main parameters affecting the Tg. For those reasons, for the last 

80 years, the Tg of mono- and oligosaccharides have been exhaustively studied since they 

are the main ingredient of food products 26�30,30.  

Maltodextrins are very rigid and brittle materials and therefore their characterization and 

workability have been a challenge. Even though several thermodynamic models have been 

developed 16,28,31,32 in order to determine by extrapolation the glass transition temperature of 

pure and dry maltodextrins, there�s still a gap between the experimental values found and 

those determined by the existing mathematical models 2,13,15,24,26,27. After all, the 

determination of the glass transition temperature has always been a challenge in material 

science, specially the glass transition temperature of carbohydrates. Recent studies have 
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pointed out the importance of the mass transfer involving the polymer and its plasticizer, 

and the impact of the transient moisture content of the broadening of the measured glass 

transition 16. Based on the literature, the glass transition temperature of maltodextrins 

decreases when the DE-value increases, since the length of the polymer chain is lower (DP 

is lower). In this part, special attention is given to the glass transition temperature of the 

maltodextrin/plasticizer mixture to investigate the influence of the DE-value and of the 

plasticizer nature. 

Figure 5 represents the classical thermogram obtained by DMA. In this chart, each plot is 

associated respectively to a mixture of a specific maltodextrin/plasticizer, in this case D-

sorbitol at 10% (w/w).  

The thermograms of all the maltodextrin/plasticizer films presented the same shape; 

especially two relaxations, � and � were observed (Figure 5). In this paper only the 

thermogram for maltodextrin/D-sorbitol 10 (%, w/w) is illustrated. The first relaxation, 

noted �, is associated to polymer rich region and corresponds to the relaxation on the right 

of the thermogram. And the second relaxation, �, is associated to plasticizer rich phase and 

is the one found on the left side of the thermogram 10,33. 
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Figure 5. Thermogram obtained by Dynamic Mechanical Analysis for different grades of 
maltodextrins with 10% (w/w) of D-sorbitol. 

In our case, the classical model of Couchman-Karaz 31 used for the determination of the 

glass transition temperature of an homogeneous blend constituted of two components, does 

not fit our experimental results. The values of the � relaxation temperature measured were in 

agreement with the thermic relaxation associated to pure sorbitol -3°C, pure glycerin -52°C 

and pure water -137°C 33. The relaxation on the right corresponded to a relaxation proper to 

the polymer and known to be representative of the glass transition temperature. Herein, 

noted as relaxation � (Figure 5). In this study particular attention is given to the � relaxation 

because it controls the product final properties. 

The role of plasticizers is to increase the mobility of the polymeric chains by introducing 

themselves between the polymeric chain, and creating H-bond interactions 

plasticizer/polymer 34. This allows opening the polymeric chains and increasing the mobility 

and thus the free volume of the polymer. When the free volume of the polymer is increased, 

the viscosity of the polymer is then reduced and hence the glass transition temperature is 

also decreased. So, a plasticizer is classified as an excellent plasticizer when the free volume 
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of the polymer is increased and thus the viscosity and the glass transition temperature are 

reduced. 

Figure 6. Linear dependencies Tg-DE-value; Tg measured for maltodextrins/plasticizer mixtures 
10% (w/w) of plasticizer ( n=2). 

For all the compositions containing 10 or 20% (w/w) of plasticizer, it is clear that there was 

a trend depending on the DE-value. Maltodextrin DE-12 could be considered as the hinge 

element of the two tendencies observed. For low DE-value, glycerin appeared to be a better 

plasticizer than D-sorbitol since both of the relaxation temperatures were decreased (Table 4 

and 5). However, for high DE-value maltodextrins, D-sorbitol was a better plasticizer than 

glycerin since the � relaxation is slightly lower than for those with glycerin. This trend can 

clearly be observed thanks to Figure 6, representing only the glass transition temperatures of 

the systems containing 10% (w/w) of plasticizer. 
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Table 4. Relaxation temperatures and moisture content of the mixtures maltodextrin/plastizicer at 10% (w/w). 

Maltodextrin DE-

value 

Plasticizer 

(10 %, w/w)

T� (1Hz) 

°C 

T� (1Hz) 

°C 

Moisture 

content % (w/w)

Maltodextrin DE-2 
glycerin 51 -59 10.6±0.2 
sorbitol 62 -10 10.0±0.2 

Maltodextrin DE-6 
glycerin 49 -58 9.4±0.5 
sorbitol 68 -17 10.0±0.2 

Maltodextrin DE-12
glycerin 55 -55 8.7±0.4 
sorbitol 33 -12 8.7±0.2 

Maltodextrin DE-17
glycerin 35 -55 8.6±0.7 
sorbitol 30 -15 12.3±0.5 

Maltodextrin DE-19
glycerin  30 -55 9.3±0.3 
sorbitol 26 -15 9.8±1.4 

Table 5. Relaxation temperatures and moisture content of the mixtures maltodextrin/plastizicer at 20% (w/w). 

Maltodextrin DE-

value 

Plasticizer 

20% (w/w) 

T� (1Hz) 

°C 

T� (1Hz) 

°C 

Moisture 

content % (w/w)

Maltodextrin DE-2 
glycerin 15 -51 12.9±0.1 
sorbitol 39 -12 9.8±0.2 

Maltodextrin DE-6 
glycerin 10 -52 10.3±0.1 
sorbitol 41 -12 10.3±0.1 

Maltodextrin DE-12
glycerin 13 -30 10.6±0.0 
sorbitol 33 -12 8.9±0.2 

Maltodextrin DE-17
glycerin 38 -40 10.8±0.3 
sorbitol 30 -15 8.8±0.3 

Maltodextrin DE-19
glycerin  26 -45 10.5±0.1 
sorbitol 26 -15 9.0±0.0 

In the presence of glycerin at 10% (w/w) the � relaxation decreased when the DE-value 

increased except for DE-12. The same tendency was observed for D-sorbitol, the �

relaxation decreased when the DE-value increased except for maltodextrin DE-6. For both 

plasticizers, the measured values for the � relaxation temperature were more or less of the 

same range and did not change much when the DE-value or the amount of plasticizer was 

increased. 

However, for maltodextrins films with 20% (w/w) of glycerin, results were unexpected, 

since the glass transition temperature increased with the DE-value. Indeed, the � relaxation 
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increased and the � �relaxation decreased as the DE-value increased. This behavior was 

associated to a segregation phenomenon. The blend was more like a heterogeneous mixture 

and thus glycerin acted as antiplasticizer agent. This plasticizer/antiplasticizer behavior has 

already been noticed for D-sorbitol used in starch-based films. For example, at low sorbitol 

content (below 27 (%, w/w)) sorbitol acts as an antiplasticizer by increasing the glass 

transition temperatures of the films 33. For example, in the case of maltodextrin DE-17, the �

relaxation increased when the amount of glycerin increased demonstrating that segregation 

occurs and thus the antiplasticizing effect of glycerin. 

Moisture content of films containing 10 (%, w/w) of plasticizer (Table 4) and films 

containing 20 (%, w/w) of plasticizer (Table 5) were about the same range (from 8.6 to 12.9 

(%, w/w)). Glycerin films presented higher moisture content than sorbitol films. Clearly 

because glycerin is more hygroscopic than sorbitol and as a consequence it has a higher 

capacity to adsorb water than sorbitol films 35. This was in agreement with other studies, 

where glycerin plasticized films of starch, gluten and whey protein presented higher 

moisture content than sorbitol films 17,35�37.  Two tendencies were observed; for low DE-

value maltodextrins in the case of glycerin the moisture content decreased as the DE-value 

increased. On the contrary for sorbitol, the moisture content increases as the DE-value 

increases. As for the high DE-value maltodextrin there was no relevant behavior to stress 

out since the moisture content remained constant as the DE-value increased. 

3.3. Global outline of maltodextrins behavior 

The first important thing to remember of this study, before going further on the discussion, 

is that the use of the DE-value as a predicting tool for description of the physicochemical 

properties of maltodextrins is not completely the most appropriate. The degree of dextrose is 

a necessary parameter but not sufficient to predict the physicochemical properties of 

maltodextrins, given that it does not take into account the bimodal molecular weight 

distribution of these materials and their polydispersity (Figure 1). 

There were clearly two different behaviors observed depending on the DE-value. The gap 

seems to be marked by maltodextrin DE-12, in the case of hygroscopicity, glass transition 

temperature and viscosity. Maltodextrin DE-6 and DE-12 had similar viscosities behaviors 

that could be explained by the their very dispersive molecular weight profile, both had the 

highest dispersive index and degree of polymerization. Conversely, the similarities of the 
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molecular weight profile of maltodextrin DE-17 and DE-19 were the basis of unexpected 

glass transition and viscosity behaviors. 

Maltodextrin DE-2 was taken apart from the other four maltodextrins since it presented a 

completely different behavior relating to hygroscopicity and degradation. Its behavior 

recalled the behavior of long chain polysaccharides more like amylose or amylopectin. 

Rheological and DMA results have demonstrated that glycerin is a better plasticizer than D-

sorbitol for all types of maltodextrins. For DMA tests, both the � and � relaxations presented 

lower values for films containing glycerin than for those containing D-sorbitol. Besides, the 

formulations containing glycerin presented the lowest viscosity value compared to the 

formulations made with D-sorbitol. Indeed, D-sorbitol has a more significant steric 

hindrance than glycerin, thus it is more difficult to fit within the polymer chains. Besides, 

for the same mass of plasticizer weighted, as D-sorbitol has a higher molecular weight than 

glycerin, less molecules of D-sorbitol were present in the mixture and so its plasticizer effect 

was lower. Our findings confirm previous results where glycerin was also found as a better 

plasticizer than D-sorbitol for starch-based materials 17. 

It is hard to establish a direct correlation between the DE-value and the glass transition 

temperature even though, for some studies, there is a linear correlation 2,10,15. The difficulty 

to establish this correlation is based in on the fact that the DE-value does not take into 

account that maltodextrins are composed of a bimodal molecular weight distribution. 

Expressed differently, maltodextrins are composed of a mixture of different DP-fractions 

and the DE-value omits this fact. Also, the DE-value neglects the molecular structure of 

maltodextrins, and it has been demonstrated that linear chains give rise to a higher glass 

transition temperature than branched chains of the same weight average molecular weight 2. 

Not to mention, that related to viscosity, linear chains have a lower viscosity than branched 

chains. In line with what was just mentioned, maltodextrin DE-12 had a significant 

proportion of high molecular weight polysaccharides that could be branched and therefore 

be responsible of the important viscosity. Or, in terms of molecular weight distribution 

maltodextrin DE-19 had a more important population of high molecular weigh 

polysaccharides and therefore its viscosity was more important than maltodextrin DE-17�s 

viscosity at 12% (w/w) of moisture content (Figure 4). For this reason, it is more rigorous to 

correlate the whole molecular weight distribution of maltodextrins to the viscosity and the 

glass transition temperature.  
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For example, the glass transition temperature of maltodextrin DE-12 (55°C) was higher than 

the glass transition temperature of maltodextrin DE-17 (35°C) at the same amount of 

glycerin at 10% (w/w) (Table 4). However increasing the plasticizer amount of 20% (w/w) 

completely changed the trend, glass transition temperature of maltodextrin DE-12 (13°C) 

was lower than glass transition temperature of maltodextrin DE-17 (38°C) (Table 5). Taking 

a deeper look inside the others maltodextrins, it is imperative to remark that there was an 

optimal plasticizer content for each maltodextrin. For example in the case of glycerin; for 

maltodextrin DE-2, increasing the plasticizer content allowed to decreased the α relaxation 

temperature, acting as a plasticizing agent. However for maltodextrin DE-17, increasing the 

glycerin content induced an increase of the � relaxation temperature acting as 

antiplasticizing agent (Figure 6). For D-sorbitol, increasing the amount of plasticizer did not 

influence the α relaxation, for high DE-value maltodextrins. This seems to imply, that for 

each DE-value maltodextrins there was an optimal amount of plasticizer. 

For the sorption isotherm maltodextrins DE-12 and DE-6 were the most hygroscopic among 

the other maltodextrins for relative humidities below 60% RH because they were the ones 

having a more important population of high molecular weight polysaccharides. This was 

expected as the higher the degree of polymerization is, the higher the amount of bounded 

water is. In addition, maltodextrin DE-19 was more hygroscopic than maltodextrin DE-17 

because it had a more important population of high molecular weight polysaccharides. It 

seems that for relative humidities below 60% RH, high molecular weigh polysaccharides are 

responsible for the water adsorption. In contrast, for relative humidities above 60% RH low 

molecular weigh polysaccharides are responsible of water adsorption, reveling a structural 

change in the macroscopic organization when the threshold humidity is past. Additional 

experiments, as X-ray diffraction, will be interesting to verify the organization of such 

carbohydrates according to their molecular weight and moisture content. 
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4. CONCLUSION 

To better understand the behavior of maltodextrins and hence adapt the extrusion process 

conditions, the DE-value is not the only parameter to take into account because in some 

particular cases it does not predict the behavior of Tg or the viscosity in specific 

environments. It is better to trust the molecular weight distribution or the sorption isotherm 

in order to get a better understanding. 

It is very important not underestimate the botanical origin of starch, as well as the 

amylose/amylopectin ratio since both parameters directly affect the molecular weight 

distribution of maltodextrins, and thus their physicochemical properties. Special attention 

needs also to be given to the type of hydrolysis since it will determine the molecular weight 

distribution of maltodextrins. An acid hydrolysis will give a broader molecular weight 

distribution conversely to the enzymatic hydrolysis. Nowadays enzymatic cocktails 

(amylase and pullulanase enzymes) combine with acid hydrolysis are employed in order to 

obtained maltodextrins with a more accurate molecular weight profile. 

The role of a plasticizer in general is to improve the processability of a mixture, in both 

ways by allowing setting up softer processing conditions (in terms of temperatures or 

mechanical strength by decreasing the viscosity) and also by enhancing the incorporation 

and dispersion of active agents. As a consequence, the flowability of the mixture being 

extruded is increased. 

The most important thing worth noting in this study, based on the rheological 

measurements, moisture content and off course, the DMA relaxations temperatures, is that 

glycerin is a better plasticizer than D-sorbitol. This is because glycerin is a very low 

molecular weight molecule and highly hygroscopic therefore, it binds easily to water and to 

the polymeric chains by H-bond interactions. As a consequence, glycerin allows a better 

disentanglement of the polymeric chains, enhancing water adsorption.  

However maltodextrins are very complex materials and their window of processability is 

very narrow. If the plasticizer content is to below 10% (w/w) maltodextrins are brittle and 

unstable. And if the plasticizer content is above 20% (w/w) maltodextrins are too ductile to 

be handle. We want to bring the attention to the fact that maltodextrins can be extruded at 

low temperature, which changes operating conditions that are commonly used. This brings a 

large range of applications without fearing degradation of thermolabile active compounds 
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and reducing Maillard's reaction from taking place in carbohydrates-based materials. And 

last but not the least, extrusion of maltodextrins at low temperature is an appealing 

economical argument. Under these circumstances, maltodextrin DE-12 for example, seems 

to be an efficient raw material for melt extrusion applications. While maltodextrin DE-19 is 

more appropriate to be used for spray drying due to its lower viscosity and its hydrophilic 

character at high relative humidities38,39. 
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Transition chapter 2 to chapter 3 

Maltodextrins were selected as the wall material for the new bio-based delivery 

systems. According to the specifications of the final product, which were a highly 

hygroscopic and glassy matrix at room temperature, and based on the results obtained on the 

viscosity, thermal and sorption isotherm measurements, maltodextrin DE-12 was selected as 

the best suited for this application. 

Indeed, maltodextrin DE-12 presented an adequate viscosity at 12% (w/w) moisture 

content at 80°C and presented the highest hygroscopic character when exposed at relative 

humidities comprised between 30-75% RH. Besides, at the two distinct amounts of 

plasticizers, maltodextrins, in general, were at a glassy state at room temperature. 

In the next chapter, the determinations of the extrusion processing conditions were 

addressed. In one hand, the temperature and screw profile and additionally, the moisture 

content were established so as to have the best compromise between the viscosity and the 

texture of the blend. And in another hand, the maximum amount of active ingredient that 

could be incorporated was also determined. The selected encapsulated material was MCT-

oil, a model hydrophobic compound used to optimize and validate the extrusion and 

encapsulation process. Once these four parameters were optimized, characterizations of the 

obtained bio-based delivery systems were examined. 

Furthermore, comparison between a classical compatibilizing agent, such as a 

modified starch, and a non-common one, pea protein isolate (=PPI) was evaluated notably 

regarding the maximal incorporation of the MCT-oil and the flowability of the mixture 

during extrusion. 



�



�



�

CHAPTER 3 

Twin-screw extrusion encapsulation of a 

hydrophobic model compound in 

maltodextrin matrix using a 

compatibilizing biopolymer 

  



Chapter III - Twin-screw extrusion encapsulation of a hydrophobic model compound 

�

Natalia CASTRO 2016  116

Twin-screw extrusion encapsulation of a 

hydrophobic model compound in maltodextrin 

matrix using a compatibilizing biopolymer  

Natalia Castroa, b, Christine Raynauda, b, Antoine Rouillya, b , Vanessa Durrieua, b 

a Université de Toulouse, INP-ENSIACET, LCA (Laboratoire de Chimie Agro-industrielle), 

F-31030 Toulouse, France 

b INRA, UMR-1010-CAI, F-31030 Toulouse, France 

Email: Antoine.rouilly@ensiacet.fr 

Phone number: (+33) 5 34 32 35 09 

Fax: (+33) 5 34 32 35 97 

Abstract  

In the last decades, the incorporation of phytochemical or nutraceutical components into 

carbohydrate-based matrix using twin-screw extrusion has become a promising 

encapsulation technology. Carbohydrates (e.g. starch, maltodextrins) are the most recurrent 

materials employed in the food and pharmaceutical domains for the encapsulation of active 

components. However, the influence of all the process parameters on the properties of the 

final product remains a challenge and is quite difficult to estimate. Even though, there are 

now several groups of research interested in the elucidation of the effect of extrusion 

parameters (e.g. screw speed, screw geometry, and feed rates�) on the functional 

properties and microstructure of the final product, there is still a lot of things to explore and 

discover in this field. Therefore, in this paper, special attention has been given to the 

incorporation of a hydrophobic model compound (medium chain triglyceride oil = MCT-

oil), in a maltodextrin matrix with a compatibilizing biopolymer. A comparison between four 

different formulations and the influence of the MCT-oil content have also been investigated. 

Promising results were obtained comparing pea protein to a commonly used compatibilizer 

(octenyl succinate hydrolysate starch = Hi-cap100) especially concerning the 

physicochemical properties (i.e. hygroscopicity, glass transition temperature) of the delivery 
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system and the encapsulation rates of the MCT-oil (up to 90% of encapsulation efficiency 

for a MCT-oil load of 12%). Moreover, twin-screw extrusion has proved to be a very 

suitable and versatile technology to be employed in this encapsulation domain. 

Key words: Twin-screw extrusion, medium chain triglycerides oil, maltodextrin, 

encapsulation, pea protein isolate 

1. INTRODUCTION

As mentioned in Chapter 1, extrusion has proved its great performances in different domains 

since it is a versatile and low cost technology 1,2. In particular, in the food and 

pharmaceutical industries, where it has demonstrated its efficiency for encapsulation 

applications 3,4. Even though the encapsulation rates of extrusion is claimed to be around 

12% 5, that compared to spray-drying, is still a low encapsulation efficiency, the number of 

extruded delivery systems continues to grow 6

Indeed, spray drying has been for more than five decades the most employed technology, at 

an industrial scale, for the encapsulation of nutraceutical, flavors, pigments or 

pharmaceutical active compounds as it is a versatile and low-cost technology, allowing high 

load of actives 7�11. 

However, extrusion encapsulation seems a good alternative to counter the hegemony of 

spray drying. As mentioned above, extrusion is a versatile technology that can be easily 

adapted to a large variety of wall and active ingredients, in order to obtain in one step 

process, a diverse range of products with different textures and shapes 3. In fact, recent 

studies have reported that, in the flavor industry for example, around 2-3% of their products 

were elaborated by melt extrusion. This demonstrates that extrusion has gained ground in 

the encapsulation field, and revealed itself, as a promising technology 3,12,13. 

For this reason, and based on the know-how earned in the food industry and the bio-based 

materials from starch produced by melt extrusion 14�16, we decided to employ this 

technology to elaborate a new bio-based delivery system. 
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Several studies have reported carbohydrates as the most recurrent wall material employed in 

flavor encapsulation 13,17�19. The benefits of using carbohydrates as wall materials are based 

on the following properties: 

- Limit the molecular diffusion of labile molecules so as to increase their stability 

during storage 4,20 ; 

- Lower viscosity values (for starch hydrolysate derivatives 21) ; 

- Excellent protection against oxidation (e.g. for encapsulation of oils 22,23) ; 

- Good bulk properties; 

- Inexpensive. 

The objective of this study was to propose an innovative bio-based delivery system 

elaborated by twin-screw extrusion to encapsulate hydrophobic compounds. This new 

delivery system had to be highly hygroscopic, in order to easily release the active 

compounds when exposed to different relative humidities. And obviously, the delivery 

system had to be at a glassy state at room temperature, so the active compound can be 

protected from external degradations. 

According to this, MCT-oil and maltodextrins were respectively chosen as model 

hydrophobic compound and main wall material for this new bio-based delivery system. Four 

mixtures were selected as the new bio-based delivery systems:  

• A-10: Maltodextrin I-12/pea protein (90/10): containing 10% (w/w) of PPI;  

• B-15: Maltodextrin I-12/pea protein (85/15): containing 15 % (w/w) of PPI; 

• C-1: Maltodextrin I-12/pea protein/ modified starch (89/10/1): containing 10% 

(w/w) of PPI and 1% (w/w) of Hi-cap100; 

• D-5: Maltodextrin I-12/pea protein/modified starch (85/10/5): containing 10%of PPI 

and 5% (w/w) of Hi-cap100 

However, the major draw back of carbohydrates is their poor emulsifying properties, which 

induce low flavor load. Hence, two biopolymers (pea protein or modified starch) were tested 

as compatibilizing agent. To differentiate our work from other studies, we decided not to use 

any additional emulsifying agents. Under these circumstances, we could focus on the 

influence of the formulation on the extrusion conditions. 
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The purpose of this work was to evaluate the influence of these additives (pea protein isolate 

and Hicap100) and the MCT-oil load on process parameters (extrusion operating conditions: 

screw configuration, temperature profile) and product final properties (hygroscopicity, 

thermal properties, encapsulation efficiency). Determinations of the extrusion parameters 

were conducted in favor to establish mild processing conditions and the least number of 

steps (no pre- or post-treatment, so as to reduce costs).  
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2. MATERIALS AND METHODS

2.1. Materials 

2.1.1. Maltodextrin 

Based on our preliminary study on maltodextrins, maltodextrins 24 DE-12 (Glucidex IT-12), 

supplied by Roquettes Frères (Lestrem, France), revealed itself as the best candidate to be 

employed as the main ingredient of the bio-based material. 

In fact, maltodextrin DE-12 presented the highest viscosity values compared to maltodextrin 

DE-17 and DE-19 in presence of water, sorbitol or glycerol. Related to the hygroscopic 

character, maltodextrin DE-12 was the one having the highest hygroscopicity for a large 

range of humidities comprised between 10 and 60% RH. 

Consequently, maltodextrin DE-12 suited perfectly the specifications of the final product 

and met all the requirements for the extrusion process.  

2.1.2. Modified starch: Hi-cap100 

Hi-cap100® was provided by Ingredion GmbH (Hamburg, Germany). Hicap100 belongs to 

the group of modified starches derived from waxy maize, more known as the OSA-starches 

(for Octenyl-Succinate Acid starches) 

The OSA-starch was patented by 25. It is obtained by the esterification of starch in presence 

of octenyl succinic anhydrides. This modification confers to the OSA-starch greater stability 

against oxidation, an active-surface due to the carboxyl group (that can be negatively 

charged), and an amphiphilic nature thanks to the octenyl moiety. 

All these qualities make Hicap100 an excellent emulsifier and/or compatibilizer agent to be 

used for the encapsulation of flavors, vitamins, and oils (cf. Chapter 1, § 3.2.3). 
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2.1.3. Pea protein isolate 

Pea protein isolate (PPI), SFP-87, was supplied by Roquettes Frères (Lestrem, France).  

PPI was analysed for proximate composition (moisture, lipid, ash and protein contents) and 

amino acid profile using the same protocols described by � for plant protein isolate.  

PPI is composed of 5.33 ± 0.01 % (w/w) of ashes, 0.47 ± 0.01% (w/w) of lipids, 7.03 ± 0.52 

% (w/w) of polysaccharides and, 80.22 ± 0.01 of proteins.  

The amino acid profile of pea protein isolate was performed with Biochrom30 (Cambridge, 

UK) and its composition is shown in Table 1. It can be seen that Aspartic, Glutamic and 

Leucine acids are the principal amino acids composing the pea protein isolate. It is very 

important to know the composition and the chemical structure of the amino acids that make 

up pea protein isolate, in order to understand the possible interactions that can be set with 

the other ingredients of the matrix (e.g. maltodextrins and water) and the active compound. 

Table 1. Composition of pea protein isolate: Amino acid distribution 

Amino acid % (w/w)

Aspartic acid 11.67 

Threonine 4.35 

Serine 6.86 

Glutamic acid 17.27 

Glycine 7.40 

Alanine 6.56 

Cysteine 0.61 

Valine 5.41 

Methionine 1.17 

Isoleucine 4.42 

Leucine 8.44 

Tyrosine 2.66 

Phenylalanine 4.21 
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Histidine 2.32 

Lysine 6.67 

Arginine 5.52 

Proline 6.16 

Herein PPI is employed as an innovative compatibilizer agent, to be compared to the 

�classical� compatibilizer Hicap100. Indeed, PPI have proved to be a performant additive in 

spray-drying encapsulation, thanks to its good film-forming and emulsifying properties, and 

also because it is non-allergenic 27. 

2.1.4. MCT-oil: Medium-chain triglycerides 

Miglyol812N Neutraloel (CAS=65381-09-1), was supplied by CREMER Oleo, GmbH & 

Co. KG (Hamburg, Germany). 

Miglyol812N, also known as medium-chain triglycerides (=MCT-oil), is composed of a 

glycerol backbone and three fatty acids, in this case caprylic and capric fatty acids (Table 2). 

The fatty acids come from palm kernel oil and coconut oil. 

This oil is largely used in the pharmaceutical and food industry, as an excipient to improve 

the texture and viscosity of a product. Also, it is used as solvent in the food industry for the 

production of dietary food. 

MCT-oil is odorless, tasteless, colorless and stable at high temperature (its boiling point is 

456°C). 
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Table 2. Composition of the MCT-oil; x=8 or/and x=10. 

Name Structure 
Molecular 

Weight (g/mol-1) 

Caprylic and capric 

triglyceride
372.54 

MCT-oil has been chosen as the model hydrophobic compound to be encapsulated thanks to 

its well defined functional properties, its thermal stability, and its suitable viscosity. Besides, 

it does not form lipid-amylose complexes when mixed with starch or other starch 

derivatives28. 

2.2. Twin-screw extrusion encapsulation 

As mentioned in the introduction, four formulations were chosen as new bio-based delivery 
systems: 

• A-10: Maltodextrin I-12/pea protein (90/10): containing 10% (w/w) of PPI;  

• B-15: Maltodextrin I-12/pea protein (85/15): containing 15 % (w/w) of PPI; 

• C-1: Maltodextrin I-12/pea protein/ modified starch (89/10/1): containing 10% 

(w/w) of PPI and 1% (w/w) of Hi-cap100; 

• D-5: Maltodextrin I-12/pea protein/modified starch (85/10/5): containing 10%of PPI 

and 5% (w/w) of Hi-cap100 

All the different blends were conducted using a co-rotating and co-penetrating twin-screw 

extruder Evolum HT25 from Clextral (Firminy, France). The extruder is composed of ten 

thermo-regulated modules of 10 cm length each (Table 3). The screws have a 25 mm 

diameter and a distance between the shafts of 21 mm.  
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Table 3. Technical characteristics of the Evolum HT25 extruder. 

Characteristics  HT25 Evolum (Clextral, France) 

L/D ratio 40 

Barrel internal diameter (mm) 25 

Barrel  Dext/Dint 3.32 

Screw diameter (mm) 24.8 

Lenght of a module (mm) 100 

Numbre of modules 10 

The screw profile was divided in four zones: conveying, plasticization and two mixing zones 

(Figure 1). Plasticization and mixing zones were only composed of kneading and mixing 

elements (BL22/+45° and BL22/90°). In the first part of the extruder, the carbohydrate 

mixture was fed at a rate of 4.3-4.4 kg/h with gravimetric feeder K-Tron KML KT20, 

Coperion K-Tron Pitman, Inc. (Sewell, USA) composed of two concave screws. Then, it 

was mixed with water (1.8 kg/h), directly pumped into the second barrel with a magnetic 

centrifugal pump VERDERmag GLMD, VERDER Sarl (Eragny-sur-Oise, France), which 

enhanced plasticization of the blend under the mechanical shear of the screws. MCT-oil was 

introduced at barrel five after the plasticization of the blend thanks to peristaltic pump 

PM600 JOUAN S.A. (Saint-Herblain, France) as illustrated in Figure 1. External calibration 

of both water and MCT-oil pumps, were realized before extrusion, so as to determine their 

exact feed rate. No die at the end of the extruder barrel was employed in order to avoid the 

flash-off of water due to the high pressure generated on the extrudate by the size reduction 

from the barrel to the die. 

All the samples were stabilized in a controlled climatic chamber at 60% of relative humidity 

and 25°C, more than three weeks before analysis. 
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Figure 1. Twin-screw extruder Evolum HT25 configuration and screw profile for the elaboration of 

the bio-based matrix. 

2.3. Physicochemical characterization  

2.3.1. Moisture content 

Moisture content of the samples was determined by gravimetric method (NF-V-ISO03-921). 

One gram of each sample was weighted and leave to dry in an oven at 103±2°C for 24 hours 

until there were no mass variation of the sample. Measurements were run in triplicates for 

each sample. 

2.3.2. Hygroscopicity: Sorption isotherms 

Water sorption isotherms were performed on a Dynamic Vapor Sorption (DVS) Advantage 

System from Surface Measurement Systems (Alperton, UK). This machine is equipped with 

a very accurate recording microbalance, capable of measuring changes in the sample mass 

as low as 0.1�g. Samples were exposed to a constant temperature (25°C) and programmed 
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relative humidities varying from 0 to 90% divided into 15% increments (14 steps). A 

mixture of dry and moisture-saturated nitrogen flowing over the samples assured the 

changes in the relative humidity of the DVS-chamber. Ten milligrams of the sample were 

placed inside the chamber and before starting the data acquisition, all the samples were dried 

for 300 minutes under a stream of dry nitrogen (0% RH) at 103°C in order to obtain the dry 

weight. Equilibrium was achieved when the changes in the mass of the sample were lower 

than 5.10-3 % min-1. 

2.3.3. Glass transition temperature 

Glass transition temperature (Tg) of the extrudates were measured on a Triton Technology 

Dynamic Mechanical Analysis (DMA) apparatus (Triton Technology, UK), by a thermal 

scan in the simple geometry of the single cantilever-bending mode. The amplitude (25�m) 

and the multi-frequency (1 and 10 Hz) mode were kept constants during the analysis. 

Samples were placed in an aluminum pocket and the temperature range of analysis was set 

from -100°C to 200°C at a scanning rate of 2°C/minute. 

2.3.4. Colorimetry 

The colors of the extrudates and three raw materials were measured by a Chroma-Meter CR-

410 colorimeter, Minolta, (Carrière-sur-Seine, France). Extrudate samples were placed on a 

glass support of 50 mm of diameter directly on the top of the apparatus for measurement. 

The CIELAB color scale was used to measure three colors parameters: L*=0 (black) to 

L*=100 (white), -a* (greenness) to +a* (redness), and �b* (blueness) to +b* (yellowness).  

The total color difference �E* with respect to the control were calculated using the 

following equation: 

��  � !"�#  $% � "�&  $% � "�'  $%
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Each formulation has its own control sample, which corresponds to the extrudate without 

any MCT-oil. 

2.3.5. Morphological analysis: SEM and X-ray tomography 

Morphology of the extrudates was examined by scanning electron microscopy (SEM). SEM 

observations were performed with a LEO435VP scanning electron microscope LEO 

Electron microscopy Ltd., (Cambridge, UK) operated at 8kV. All the samples were 

metallized with silver under vacuum before observation. 

The porosity of the samples was analyzed by ImageJ. ImageJ is an open source Java-based 

software developed by the National Institute of Health (Bethesda, USA). This image 

treatment allowed characterizing the extrudate in terms of morphological aspects (i.e. 

porosity) and other structural heterogeneities (e.g. surface and texture). 

For each sample, distinct images at different magnifications were analyzed, in order to have 

an exhaustive morphological analysis of the sample. The imageJ parameters were the same 

for all the analyzed samples. First, the image was selected and the region of interest was 

chosen. The ROI (region of interest), defined as a square having the following dimensions 

W=270 and H=270, was the same for all the samples. A binary image was generated and the 

software made an automatic calculation of the porosity, after the calculation parameters 

were fixed. The image treatment process by ImageJ is presented on Figure 2. 
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Figure 2. Procedure of the morphological analysis. 

X-ray tomography was carried out on a Skycan 1174 from Brucker (Kontich, Belgium), 

equipped with a 50kV and 800µA X-ray source. The scan was performed with a 10µm voxel 

size. Images were reconstructed by NRecon program from the same supplier.  

The advantage of the SEM compared to the Microtomography X-ray is that it is possible to 

observe porosity going below 10 µm. Therefore these two techniques are considered to be 

complementary for morphological studies. 

2.4. Model compound content: ASE extraction 

Extraction of the MCT-oil from the extrudates was performed on a pressurized liquid 

extractor ASE 350 form Thermo Scientific Dionex (Villebon sur Yvette, France). Seven 

grams of extrudate, grinded at 2 mm particle size, were mixed with three grams of 
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Fontainebleau sand from VWR (Fontenay-sous-Bois, France) and put into a 10 mL stainless 

steel cell extraction. The cells were equipped with a stainless steel frit and cotton glass to 

avoid the solid particles to block up the collection pipe. Cyclohexane, from Sigma-Aldrich 

(St Quentin Fallavier, France) was used as solvent extraction. The oven temperature was set 

to 60°C and three cycles, at 150 bars, were required to extract all the MCT-oil contained in 

the matrix. Solvent was evaporated thanks to a rotary evaporation from BUCHI (Flawil, 

Switzerland) and the extracted MCT-oil was gravimetrically weighted. Each sample was run 

in triplicates. 

The encapsulation efficiency (EE), the encapsulation rate (ER) and the incorporation rate 

(IR) were defined by equations (1), (2) and (3) showed below: 

���"($ � )*+,-./�012345206
)*+,-./�.7.2.4/  �88  (1) 

�9�"($ � )*+,-./�012345206
*:  �88  (2) 

;9�"($ � )*+,-./�.7.2.4/
*:  �88   (3) 

mMCToilextracted: amount of MCT-oil extracted by ASE extraction 

mMCToilinitial: amount of MCT-oil initial incorporated in the mixture 

ME: mass of the extrudate (dry matter) used for the extraction 

Remark: all the experiments that were carried out in this chapter were performed on samples 

coming from one extrusion production.  
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3. RESULTS

The following part is focused on the procedures that were undertaken in order to establish 

the extrusion processing conditions for the encapsulation of a model hydrophobic 

compound. 

3.1. Mild temperature extrusion 

3.1.1. Introduction 

Melt-extrusion can be considered as complex multivariable technology, where thermal, 

chemical and mechanical stresses are generated by the screws and as a result transform the 

raw materials. The object final properties and its morphology strongly depend on the 

extrusion parameters 5,13,29. However due to the complexity of the mechanisms involved 

during extrusion, it is difficult to establish a correlation between the product properties and 

the process parameters 3,4. To get a better understanding of all the mechanisms taking place 

inside the extruder and how the active compounds are dispersed within the molten matrix, 

modeling of extrusion has recently appeared as an accurate tool to better adjust extrusion 

parameters according to the desired product final properties 30. 

In our case, we first optimized the process parameters (i.e. screw configuration and 

temperature profile) in order to obtain sufficiently flexible conditions to extrude different 

formulations and matrix compositions with various amounts of MCT-oil. Secondly, in order 

to investigate the influence of the composition on the process parameters, and thereafter try 

to understand the impact of these process conditions on the final properties of the delivery 

system, extrusion conditions determined in the first part of this study were kept constant for 

the different formulations tested. Therefore, the effects of the addition of PPI, Hi-cap100, 

and the different incorporation rates of the MCT-oil were evaluated. 
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3.1.2. Twin-screw extrusion 

Extrusion results using a conical twin-screw extruder with a backflow channel (see Chapter 

2) allowed understanding the behavior of the solid state of maltodextrins and confirmed our 

choice on the maltodextrin DE-12 as main ingredient of the matrix. 

However, all the setting conditions determined in the mini extruder were not directly 

transferable to a twin-screw extruder 31. The main reasons were on one hand the low torque 

of the mini compounder compared to that of Evolum 25. And on the other hand, the screw 

geometry of the mini compounder did not exactly reproduce the shear strength imparted by 

the real extruder. Moreover, the micro-extruder operates in a recirculating mode with a 

mixture prepared in advance which is not the case on a regular twin-screw extrusion 

process.  

For all experiments, the mixtures were at the beginning extruded with maximum water 

content and then the solid content was increased up to the setting value. Then, the water 

content was decreased to a minimum value still allowing a processable melt extrusion and 

obtaining an extrudate at the exit of the extruder.  

The screw speed was regulated so as to prevent high torque (100% torque corresponds to 

200 Nm). 

For this study, extruding the mixture through an exit die at the end of the barrel was not 

possible, because the mixture solidified really quickly and provoked an emergency 

shutdown of the extruder (mixture solidified inside the extruder�s barrel or either was to 

sticky to put into shape). 32 reported the same difficulty to shape the extrudate at the exit of 

the extruders. 

3.1.3. Optimization of the process parameters 

3.1.3.1. Screw profile 

Four different profiles (Figure 3) were tested in order to obtain the adequate shear mixing 

forces without degrading the biopolymer blends. The screw profile was set up based on the 

screw profile used to plasticize starch 31,33�35 but without putting high pressure/shearing 

zones in order to avoid protein or active compound degradation. 
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Figure 3. Different screw profile configurations. 

The screw profile 0, very similar to the above cited profile, was composed of a plasticizing 

zone (a) and mixing zone (b) using kneading elements of different lengths (BL22/90° of 1 

and 0.5mm). Unfortunately, it was too restrictive to allow the conveying of the mixture. For 

this reason the profile 1 was composed of three smaller plasticizing and mixing (c, d, e) 

zones (only kneading elements of 1mm of length). However there was neither plasticization 

of the matrix nor dispersion of the MCT-oil. Therefore, for the configuration of profile 2, 

kneading elements BL22/+45° of 0.5mm of length (f) were employed to enhance the 

conveying and plasticizing of the bio-polymer and water mixture, but the mixing zone (g) 

was still not important enough to guarantee the mixing. Finally profile 3 was defined with an 

important plasticizing zone composed of kneading elements BL22/+45° of 0.5mm of length 

(h) and two mixing zones constituted of kneading elements BL22/90° (i, j). The separation 

of the mixing zones allowed inducing compression and expansion of the matter, in order to 

facilitate the dispersion of the active ingredient and to obtain a homogeneous extrudate. 

Table 4 gives a detailed description of the main characteristics of each screw element 

composing profile 3, used for our study. 
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Profile 3 allowed plastifying, dispersing and mixing all the different ingredients in order to 

obtain at the exit of the extruder, the bio-based delivery system. The challenge was to reduce 

at a maximum the exudation of the MCT-oil. For this reason, different incorporation rates 

were tested to establish the optimal incorporation of the oil that the biopolymer mixture 

could retain. The objective was also to set up soft extrusion conditions in terms of 

mechanical shear and temperature so as to avoid denaturation/fragmentation and degradation 

of the raw materials while dispersing the active compound.  

Table 4. Screw elements used in the final screw profile and their mechanical effects. 

Screw 

description 
Scheme 

Mixing 

power 

Shearing 

power 

Conveying 

power 
Remarks 

T1F (trapezoid, 
conjugated 
section with 

simple thread) 

�

� �

�   

- - + 
Feeding and 

transport 

C2F 
(conjugated 
section with 

double thread) 

� �� � �

�

�    

� � �

  

�    

+ + +++ 
Feeding and 

transport 

BL22/90° 
(bloc element) 

+++++ ++ - 

Mixing, 
radial 

compression, 
high shear, 
increase of 

the residence 
time 
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BL22/+45° 
(bloc element) 

�

� ��

�   

+++++ ++ + 

Mixing, 
conveying, 

radial 
compression, 
high shear, 
increase of 

the residence 
time 

3.1.3.2. Temperature profile 

The mild temperature conditions used was one of the originality of this study as compared to 

other studies that employed hot melt extrusion temperature above 100°C presented Table 5. 

Table 5. Examples of some extrusion encapsulation profile temperatures. 

References Extrusion profile temperature (°C) 

32 (Tackenberg, Krauss, Schuchmann, et al., 2015) 113-140 

4 (Emin & Schuchmann, 2013b) 140 

3 (Emin & Schuchmann, 2013a) 130-170 

28 (Emin et al., 2012) 150 

36 (Chang et al., 2010) 80-105 

29 (Zasypkin & Porzio, 2004) 104-113 

37 (Carvalho & Mitchell, 2000) 40-170 

38 (Kollengode & Hanna, 1997) 60-120 

39 (Ilo, Tomschik, Berghofer, & Mundigler, 1996) 150-160 

40 (Carr, Wing, & Doane, 1991) 70-125 

This temperature range is very attractive to work with thermolabile and highly flammable 

active compounds without fearing their thermal degradation and reducing the risk of 

Maillard reactions to take place. 
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The temperature profile (Table 6) was adjusted in order to avoid thermal degradation of the 

active ingredient and reduce PPI degradation/fragmentation 41 and was also modulated in 

order to enhance flowability of the mixture inside the extruder barrel. The maximum 

temperature value was set as 50°C. As mentioned above, the water content was first 

increased to reach the adequate viscosity of the blend. 

Table 6. Extrusion profile temperature. 

Module of the barrel  T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 

Temperature (T°C) 20 20 40 50 50 40 40 40 40 40 

3.1.3.3. Formulations: sample preparation 

The elaboration by extrusion of a bio-based material composed only of maltodextrin DE-12 

was impossible, since the window of processability was very narrow. Indeed at high water 

content (around 30% (w/w)) the mixture was not extrudable since no shear was applied and 

the mixture was too diluted. On the contrary, at low water content (below 15% (w/w)) the 

maltodextrin concentration in the solution was so high, that in the mixing elements the shear 

was very strong and as a consequence, maltodextrins were immediately dehydrated and thus 

caramelized.  For these reasons, extrusion of maltodextrins alone was not possible.  

Therefore additives were required to enhance the extrudability of maltodextrins. Classic 

compatibilizer agent, Hi-cap100 and an innovative one, pea protein isolate were used for the 

bio-based mixture. 

Four matrices formulations were then tested, with the following compositions: 

• Maltodextrin I-12/pea protein (90/10): A-10, containing 10% (w/w) of PPI;  

• Maltodextrin I-12/pea protein (85/15): B-15, containing 15 % (w/w) of PPI;

• Maltodextrin I-12/pea protein/ modified starch (89/10/1): C-1, containing 10% 

(w/w) of PPI and 1% (w/w) of Hi-cap100;

• Maltodextrin I-12/pea protein/modified starch (85/10/5): D-5, containing 10%of 

PPI and 5% (w/w) of Hi-cap100.

PPI has been selected to increase the viscosity of the blend, but also to improve the affinity 

between the hydrophilic matrix and the hydrophobic active compound thanks to their 

amphiphilic character, which confers good emulsifying properties (due to the chemical 
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structure of various PPI amino acids (Table 1)). Hi-cap100 was added only as 

compatibilizing agent as it is classically used in encapsulation field. 

  

3.1.4. Effect of MCT-oil and Hicap100 content on SME 

Incorporation of MCT-oil has been carried out with the four different matrices, with a 

content varying from 8 to 15% (w/w). Table 7 summarizes the optimized extrusion 

processing conditions for the different incorporation rates of MCT-oil tested. 

Table 7. Summary of the final processing conditions. 

Extrusion parameters   

Screw speed (rpm) 225 

Feed rate solid mixture (kg.h-1) 4.40 

Feed rate water (kg.h-1) 1.80 

Feed rate MCT-oil 8% (kg.h-1) 0.53 

Feed rate MCT-oil 10% (kg.h-1) 0.66 

Feed rate MCT-oil 12% (kg.h-1) 0.83 

Feed rate MCT-oil 15% (kg.h-1) 1.13 

The specific mechanical energy (SME) corresponds to the work input from the drive motor 

into the material being extruded, from which a part is dissipated as heat. SME characterizes 

the extrusion process by indicating the amount of mechanical energy transferred from the 

extruder to the material, involving its physical and chemical transformation. In fact, SME 

not only gives an indication about the performance of extrusion, but also about the final 

product characteristics such as density, solubility, and expansion index (Guerrero, 2012). 

For example, a high SME could be associated to molecular breakdown or degradation of the 

material being extruded.  

The screw speed, the extruder temperature, the moisture content, the screw configuration, 

and the feed composition directly influence SME. Viscosity of the extruded material is the 
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most evident response variable that can be adjusted in order to modify the SME. In general, 

high SME corresponds to high viscosity. 

The SME corresponding to the extruder used in this study is given by the following 
equation: 

<�� � =->03
?006�3420 � =) @

@ABC 
D

DABC
?006�3420 � E F 5-GH IJ @

@ABC D
DABC

?006�3420   

Pm: power supplied by the drive motor (Watts) 

Feed rate: (kg/h) 

T: torque (%) 

Tmax: maximum torque of the extruder (Tmax=100%) 

N: screw speed (rpm). 

Nmax: maximum screw speed of the extruder (Nmax = 1200 rpm) 

U: electric potential (U = 400 V) 

I: electric current (I = 57A) 

Cos �: theoretical efficiency of the extruders engine (cos � = 0.9) 

Without any addition of MCT-oil, extrusion of matrices showed a decrease of SME values, 

with the increase of the content of both PPI and HiCap100 (Table 8). Adding 5 additional 

parts of PPI significantly decreases the SME value, which seemed to indicate that long chain 

polymers incorporation facilitate maltodextrin extrusion. With the same amount of pea 

protein (10% w/w), the increase of the Hi-cap 100 ratio provoked also a marked decrease of 

the SME. Adding only 1% of Hi-Cap 100 gave better processability than 5 additional parts 

of PPI (C-1 compared to B-15).  

When MCT-oil was added, two behaviors were observed depending on the matrix 

compositions. With protein only, SME tended to decrease with the increasing amount of 
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incorporated MCT-oil, this effect was really remarkable for formulation A-10. This was 

expected since MCT-oil besides being the encapsulated compound may act as a lubricating 

agent. This behavior was also observed in other studies 28,42 where the MCT-oil was 

premixed with the active compound, and the SME was immediately lowered when it was 

employed. 

Table 8. Variations of the SME at different MCT-oil incorporation rates. 

Formulation 

Incorporation 

rate of MCT-

oil (%) 

Torque (%) 
Total feed 

rate (kg.h-1) 

SME     

(Wh.kg-1) 

Moisture 

content (%) 

A-10 

0 32 5.75 370.87 9.4±1.9 

9 35 6.37 366.16 - 

10 30 6.40 312.38 9.3±0.1 

11 29 6.45 298.70 9.3±1.0 

12 25 6.50 255.13 8.6±0.1 

B-15 

0 18 6.20 193.47 10.2±0.3 

8 16 6.73 158.43 9.4±0.3 

10 16 6.86 155.43 9.9±0.0 

12 18 7.03 170.63 11.4±0.1 

C-1 

0 16 6.20 171.98 10.2±0.3 

8 20 6.73 198.04 12.5±0.1 

10 20 6.86 194.29 13.0±0.2 

12 14 7.03 132.71 10.6±0.1 

D-5 

0 13 6.20 139.73 8.5±0.4 

8 24 6.73 237.65 12.0±0.1 

10 19 6.86 184.57 12.6±0.1 

12 20 7.03 189.59 10.3±0.2 

15 13 7.33 118.19 11.9±0.6 
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With the addition of Hi-cap 100, SME tended to first increase with MCT-oil content, 

indicating a specific interaction between both compounds, confirming the Hi-cap 100 

emulsifying properties. 

It is important to highlight that the obtained values of the SME were relatively lower 

compared to values reported on other studies. For example, values of the SME ranging from 

569 to 2894 Wh.kg-1were found in 42. This can be explained by the harsher extrusion 

conditions employed: high temperature and screw speed, and lower water content.  

It is worth noticing that the innovative part of these delivery systems is the use of PPI, 

because there are few studies reporting the use of proteins in extrusion for the elaboration of 

bio-based materials (composites or /and films) 43.  

3.2. Physical properties of the delivery systems 

The next section is addressed to the characterization of these new bio-based delivery 

systems, in terms of physicochemical properties, as well as the determination of their 

encapsulation performances. 

3.2.1. Incorporation of MCT-oil 

ASE extraction allowed evaluating the quantity of MCT-oil incorporated in the extrudate 

after stabilization (when the torque and the screw speed values are on stable regime). 

Comparing formulation A-10 to formulation B-15 (Figure 4), the incorporation of 5 

additional parts of PPI allowed doubling the encapsulation efficiency. This demonstrated 

that PPI helped to increase the affinity between the matrix and the MCT-oil. Gharsallaoui et 

al. (2012) also noticed that thanks to PPI, the encapsulation rate of MCT-oil/maltodextrin 

spray-dried microparticles was improved. This result proved that PPI acts as a 

compatibilizer agent due to its amphiphilic structure.  
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The same results were observed for formulation C-1 when compared to formulation A-10. 

The addition of 1% (w/w) of modified starch improved by a factor 2 the encapsulation 

efficiency (and that, for all the formulations at different incorporation rates of MCT-oil).  

Both Hi-cap100 and PPI, due to their chemical structures, behaved as surfactant by 

increasing the affinity between the hydrophilic matrix and the hydrophobic MCT-oil and by 

improving the dispersion of the MCT-oil droplets (as demonstrated by the SEM later in this 

chapter). 

However, it should be noted that the encapsulation efficiencies for formulation B-15, at 8 

and 10% (w/w) of incorporation rate, were higher (92 and 93 % respectively) than 

formulation C-1 (83% and 86% respectively). 

Figure 4. MCT-oil encapsulation efficiency. 

For both formulations it was not possible to increase the incorporation rate of MCT-oil 

above 12% (w/w) as we observed that the active was not incorporated into the matrix and 

even splashed out at the exit of the extruder�s barrel. 
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Formulation D-5, with 5 additional parts of modified starch, allowed a higher MCT-oil 

incorporation rate up to 15% (w/w), without exudation and with a valuable encapsulation 

efficiency (90%) corresponding to a final encapsulation rate of 15.41%. However, for lower 

MCT-oil incorporation rates, the encapsulation efficiencies were lower than the 

corresponding ones for formulations B-15 and C-1. This was particularly remarkable for 8% 

of incorporation rate, suggesting that a too high Hi-cap100 content was not suitable to 

encapsulate low amount of MCT-oil. 

Table 9. Incorporation rate, encapsulation efficiency, encapsulation rate of the extruded formulations. 

Formulation  Incorporation 

rate (%) 

Average 

Encapasulation 

rate (%) 

Average Encapsulation 

Efficiency (%) 

A-9% (w/w) MCT-oil 9.00 3.56 39.60 ±1.52 

A-10% (w/w) MCT-oil 10.00 3.90 39.05 ±4.26 

A-11%  (w/w) MCT-oil 11.00 7.00 62.63 ±1.02 

A-12% (w/w) MCT-oil 12.06 6.21 51.75 ±2.52 

B-8% (w/w) MCT-oil 8.69 8.00 92.06 ±0.92 

B-10% (w/w) MCT-oil 11.06 9.52 93.07 ±0.44 

B-12% (w/w) MCT-oil 13.21 12.83 96.28 ±0.13 

C-8% (w/w) MCT-oil 9.00 7.55 83.88 ±0.48 

C-10% (w/w) MCT-oil 11.06 9.52 86.10 ±0.71 

C-12% (w/w) MCT-oil 13.21 12.83 97.16 ±0.20 

D-8% (w/w) MCT-oil 8.95 5.63 62.95 ±1.14 

D-10% (w/w) MCT-oil 11.01 8.37 76.07 ±1.78 

D-12% (w/w) MCT-oil 14.49 11.04 76.15 ±1.01 

D-15% (w/w) MCT-oil 17.03 15.41 90.53 ±0.62 

The encapsulation efficiencies obtained for our bio-based delivery systems (Table 9) were 

found very encouraging as compared to the literature. For example, Emin et al. (2012) 
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reported to have an encapsulation efficiency of β-carotene, in a starch-based matrix, of about 

70% by twin-screw extrusion.  

PPI showed to be a good compatibilizer agent almost as efficient as Hi-cap100. Indeed, PPI 

allowed a good dispersion and stabilization of the MCT-oil within the matrix and obtaining 

a homogeneous extrudate. 

3.2.2. Color 

The color of an object is one of the principal characteristics that industrials have to give 

particular attention to, in order to fulfill consumer�s acceptance. For example, in the case of 

cosmetics, hygiene, pharmaceuticals and food products, there is a tendency for white 

products, since this color is often associated to clean and high quality (e.g. purity). 

L, a* and b* color values, as well as the total color difference (�E*) of the extrudate are 

presented in Table 10. 

Table 10.  Color mean values (L*, a*, b*, and �E*) of the raw materials and the extrudates. 

Formulation 

MCT-oil 

content 

(%) 

L* a* b* �E* 

Pea protein  80.38 4.71 18.20 - 

Maltodextrin DE-12  94.30 -0.20 1.27 - 

Hi-cap100  98.75 -0.15 0.94 - 

MCT-oil  35.34 0.52 -0.23 - 

0 87.54 0.90 9.57 control 

 9 87.09 1.76 13.05 3.61 

A-10 10 80.45 3.72 18.50 11.75 

 11 83.20 2.85 17.21 9.00 

 12 80.90 3.48 18.60 11.50 

0 88.80 1.57 11.69 control 

 8 85.07 2.91 15.84 5.74 

B-15 10 82.80 3.26 16.71 8.00 
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 13 79.49 3.45 18.72 11.82 

0 87.65 0.95 9.88 control 

 8 87.09 1.76 13.05 3.32 

C-1 10 85.67 1.45 12.94 3.68 

 13 84.70 2.24 15.09 6.12 

0 89.52 1.23 10.77 control 

 8 84.72 1.89 14.10 5.88 

D-5 10 85.76 1.75 13.89 4.91 

 13 81.38 3.31 18.63 11.51 

 15 87.76 1.83 12.45 2.51 

Looking only at the values of (�E*), we were able to evaluate the impact of the MCT-oil 

incorporation on the color change of the extrudates. In this case, each formulation was 

compared to its control, which corresponds to the extrudate without any MCT-oil. Hence, 

important values of (�E*) suggested that the difference in terms of color were considerable. 

The color change was visually noticeable for (�E*) values above or equal to 5. 

There are three interesting trends to discuss according to the extrudate color changes: (i) the 

impact of the addition of PPI and Hi-cap100 on the color of the extrudates. Herein, only the 

extrudates without any MCT-oil are compared. (ii) The impact of the incorporation of the 

MCT-oil on the color of the extrudates. (iii) And last but not the least, the impact of the 

processing conditions on the color (i.e. process temperature and screw speed). 

Of course, all these three phenomena occurred at the same time, but to get a better 

understanding of what happened, we decided to analyze them separately. 

The increase of PPI (from 10% to 15%) and the addition of Hi-cap 100 (1% and 5%) 

induced no significant change of the lightness (L*). Since PPI has a yellowish color, we 

could expect the biopolymer mixture would turn �darker�. This was confirmed by the slight 

increase of a* and b* values. 
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However, for all the formulations, the L* values decreased after extrusion compared to the 

L* value of DE-12 maltodextrin (L*=94,3), the main constituent of the bio-based matrices. 

The extrudates turned darker, probably due to the incorporation of PPI and eventually the 

formation of Maillard�s products and change of conformations in the polysaccharides and 

protein chains. 

Related to the extrudates containing MCT-oil, it can be seen that when the MCT-oil content 

was increased, the extrudates became visually more brownish (Figure 5). Indeed, a* and b* 

increased as the MCT-oil content and this was observed for all the extrudates. Specially the 

increase of the b* parameter implied a tendency to yellow. 

Figure 5. Observable color changes of the extrudates at different incorporation rates of MCT-oil. 
Herein presented formulation C-1 and D-5.  

Ruiz-Gutierrez et al.44 (2014) demonstrated that increasing the screw speed (from 225 to 325 

rpm) and/or the extrusion temperature (140°C), induced the increase of a* and b* 

parameters of their starch-based matrices, indicating a tendency towards yellow-reddish 

extrudates. These results allowed proving that harsh extrusion conditions enhance Maillard�s 

reactions. And it is known that Maillard�s products are responsible of the browning and 

darkening of the extrudates. 
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Guerrero45 (2012) pointed out that the extrudate browning was due to Maillard�s reactions 

between soy protein isolates and sugars. These reactions involve the formation of a protein-

carbohydrate complex, where the amine group in the protein reacts with the carbonyl group 

of the reducing sugar to form a Schiff base, which further forms an Amadori compound 

(Figure 6) (also known as melanoidins) which is an insoluble polymer characterized by its 

brown color 46. 

Figure 6. Maillard�s reaction between amine protein and sugar take from 45. 

In our case, the extrusion conditions were considered to be mild (screw speed of 225 rpm 

and extrusion temperature of 50°C) compared to other studies 4,42,44,47, but the observed 

color changes suggested that Maillard reactions could occur between PPI and maltodextrin 

DE-12. 

What is a fact is that the darkening of the extrudates involved by the MCT-oil content 

increase might be linked to the SME variations (Table 8). 
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3.2.3. Morphology analysis 

The aim of the SEM and microtomography was to establish a gross description of the 

morphological structure (i.e. porosity) and surface heterogeneities of the extrudate, related to 

the incorporation of MCT-oil. 

The surface morphology of the extrudates was similar from one formulation to another. 

All the extrudates presented a multi-varied porosity, with a high proportion of macropores 

(pores diameter � 50 nm), according to the IUPAC classification on pores. 

SEM of the four different extrudates corresponding to formulation A, B, C and D (with 8-

9% MCT-oil) are presented on Figure 7. 
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Figure 7. A) A-8 (%, w/w) MCT-oil 10µm scale x1.00K; B) B-8 (%, w/w) MCT-oil 10µm x1.00K; 
C) C-8 (%, w/w) MCT-oil 10µm x1.00K; D) D-8 (%, w/w) 10µm x1.00K. 

�
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The disappearance of the granular structure and the homogeneity of the surface evidenced 

that plasticization of the materials inside the extruder occurred.  

Looking at the average diameter for all formulations, increase of the MCT-oil content in the 

extrudate provoked a pore widening resulting from the heterogeneous mixture, the oil 

tending then to coalesce (Table 11). The increase of hydrophobic compound rate may result 

in a less efficient mixing in the extruder. 

A large variety of pores of different sizes were observable on the surface, therefore the 

extrudate presented a multipore structure with a broad porosity distribution (Figure 7). 

Thanks to the imageJ morphological analysis, a statistical distribution of the number and 

type of pores could be measured for all the different extrudates at different MCT-oil 

incorporation rates.  

Table 11. Porosity distributions of the different formulations. 

Formulation 

Incorporation 

rate of MCT-oil 

(%) 

Total number 

of pores 

Porosity 

ranged (µm) 

Average pore 

diameter (µm) 

A-10 

0 24 0.58-1.69 0.95 

9 18 0.83-10.36 1.87 

10 8 0.65-2.03 1.87 

11 8 0.92-1.64 1.55 

12 12 1.86-6.78 2.56 

B-15 0 79 0.55-9.77 1.37 
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8 66 0.72-7 2.47 

10 nd nd nd 

12 nd nd nd 

C-1 

0 39 0.64-1.70 0.91 

8 20 0.55-1.64 0.71 

10 10 0.68-7.85 4.51 

12 6 3.19-7.88 5.53 

D-5 

0 nd nd nd 

8 33 0.55-8.08 2.49 

10 9 0.33-6.12 3.53 

12 nd nd nd 

15 9 4.5-37.1 6.96 
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The average pore diameter was used as an indicator of the major pore population that 

represents the most the type of porosity of the sample. For example, formulation A-10 at 

10% (w/w) of MCT-oil content had an average pore diameter of 1.87µm. In other words, the 

most representative population of pores of this sample had an average pore diameter of 

1.87µm. 

Preliminary analysis obtained by X-ray tomography (Figure 8) corroborated SEM results, 

meaning that the extrudates presented multiple porosity morphology and a more or less 

disrupted surface. However, it is worth noticing that at 10µm voxel size, smaller porosity 

was not determined, thus the existing micro porosity of the extrudate at the interior of the 

extrudate was not estimated.   

Figure 8. X-ray tomography image of formulation B-8% (w/w) MCT-oil. Grey color corresponds to 
the border between two different phases. 

It is important to understand the process parameters in order to achieve the control of the 

morphology of the final product. The droplet dispersion and size can vary depending on 

screw speed and configuration and on feeder rate. These parameters can also affect the 

viscosity and therefore the droplet breakup and coalescence.  

Emin and Schuchmann (2013) have evaluated the dispersive mixing efficiency of a 

hydrophobic compound in a starch-based matrix by twin-screw extrusion. They 

demonstrated that increasing the oil content led to bigger droplet size. This result was 
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expected because of the higher collision frequency involved by a higher droplet number, 

resulting in more coalescence during extrusion. 

Herein, the droplet size increased with the oil content for all tested formulations, which is 

consistent with previous studies. 

When comparing the effect of the �stabilizing� agent (so the role played by PPI and Hi-

cap100), for low incorporation rates of MCT-oil (<10%), the use of Hi-cap100 led to 

structures containing more pores, with an improved distribution size, while for higher 

amounts, PPI allowed to get more smaller pores. 

Incorporation of 10% of MCT-oil revealed itself as an optimal incorporation rate since for 

all tested formulations the pore distribution seemed to be more homogeneous, the dispersion 

of the pores was improved and the pore diameter reduced. 

The addition of 1% (w/w) of Hi-cap100 allowed having a more narrow pore distribution: the 

number of pores of the same diameter was increased, and also the pores were of smaller 

size. Whereas the addition of either 5% of PPI or 5% of Hi-cap100 (for formulations B and 

D the same behavior was observed) led to broader pore distribution, with a pore size 

significantly increased. 

In conclusion Hi-cap100 had a better performance as a compatibilizing agent than PPI, 

based on the size of droplet formation. Hi-cap100 decreases the surface tension of the 

diverse ingredients and facilitates dispersion of the MCT-oil within the matrix. Smaller 

droplet size would indeed prevent probability for two droplets to coalesce.  

3.2.4. Storage stability: evolution of the moisture content 

Water is the crucial parameter to control to have a successful extrusion and thus, to obtain 

adequate properties of the final product 29,32,36. Water not only plays an important role as a 

plasticizer by decreasing the glass transition temperature and/or the viscosity of the polymer 

mixture, but also because it ensures transferring the heat from the extruder to the polymer 

mixture 48. 
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Increasing the amount of water can decrease the viscosity of the polymer mixture, and as a 

consequence decrease the torque and the SME. In our case, the water content during the 

extrusion was maintained around 20 and 30% (w/w) so as to ensure mild extrusion 

conditions in terms of screw speed and barrel temperature. In that manner, the mixture had 

the adequate viscosity to be conveyed without fearing degradation of the polymer mixture 

due to high mechanical stress 28,49,50. The use of large amount of water for extrusion was 

already reported in other studies as �wet-extrusion�, where the feed moisture content was 

greater than 40% (w/w) 51.  

The high amount of water added during extrusion is also the reason why we measured lower 

SME values compared to other works. Most of them employed harsh extrusion conditions 

such as low water content below 10% (w/w) 32, screw speed above 250 rpm 28,40 and high 

extrusion temperatures around 140°C 3,28,32,37,39,44. Even though all these reported studies had 

different extrusion conditions, at the end, all the extrudates had more or less the same range 

of equilibrium moisture content. The recurrent moisture content found in the literature for 

bio-based materials made either for food applications (encapsulation of pigments, flavors or 

just extruded food products) or for encapsulation of nutraceutical, can vary from 8 up to 

15% (w/w) 29,36,44,47,52. 

An advantage for working at low water content is to ensure longer shelf-life stability of the 

extrudates. 53,54

In our study, all the formulations presented desorption moisture content varying from 8 to 

13% (w/w) after drying and stabilization at 60% RH (Figure 9). 
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Figure 9. Influence of the incorporation rate of MCT-oil on the moisture content of extrudates (n=3, 
corresponds to the repetition of this experiment). 

For the extrudates without MCT-oil, formulation D-5 was the one with the lowest moisture 

content and interestingly formulations B-15 and C-1 had the same moisture content. 

Comparing formulation A-10 to formulation B-15, increasing the protein content of 5 parts 

increased the moisture content. Thus, increasing the pea protein content slightly enhanced 

the water sorption. For both formulations (A-10 and B-15) the moisture content did not 

present any significant variation with the amount of MCT-oil, at least until 10% of MCT-oil, 

indicating that MCT-oil incorporation did not involve changes in the intermolecular 

interactions between macromolecular chains. Conversely, for the maximum MCT-oil 

incorporation rate (13%), the significant moisture increase for formulation B-15 could be 

caused by a modification of protein chain interactions, inducing the release of hydrophilic 

sites. It is difficult to comment any further because of the difference of the encapsulation 

efficiency between both formulations (Figure 4). 

Moisture content of formulations C-1 and D-5 had the same behavior when the MCT-oil 

content was increased. Increasing the MCT-oil content up to 8% (w/w) provoked an increase 

of the moisture content. This could be explained by the fact that Hi-cap100 hydrophobic 
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moieties were mobilized by MCT-oil, freeing hydrophilic parts in the matrices and thus 

enhancing water uptake. 

Above 10% of MCT-oil, moisture content decreased for both formulations, once the MCT-

oil content continued to increase. 

3.2.5. Hygroscopicity 

Looking to adsorption isotherms obtained from dried samples, the behavior towards water 

was sensibly different (Figures 10 and 11). 

In general, the isotherm of the extrudate without any hydrophobic compound presents an S 

shape curved, which corresponds to a type II isotherm. The adsorption of water is done step-

by-step, first by the constitution of the monolayer, and then once all the available sites are 

occupied, the multilayer system is formed. 

On the contrary for the extrudates with MCT-oil, isotherms are more associated to a type III, 

where water is immediately absorbed as a multilayer system, and then a strong absorption of 

the free water due to the morphology of the material. 

  

Figure 10. Sorption isotherm of formulations A and B: Impact of the MCT-oil content. 
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Figure 11. Sorption isotherm of formulations C and D: impact of the MCT-oil content. 

In general, hygroscopicity decreased with the increase of the incorporation rate of MCT-oil, 

for all formulations. This was expected since the part of hydrophobic compound in the 

mixture was increased and consequently the matrice loses its hygroscopic character.  

For all the samples, the drastic sorption change remained around 75% RH., which 

corresponds to the occurrence of unbound water on the matrice. 

Therefore there would be a limit of the load of the hydrophobic compound to be 

encapsulated if the main characteristic of the delivery system is to be highly hygroscopic.  

Therefore, an incorporation rate around 8 and 10% (w/w) of MCT-oil will be ideal because 

extrudates presented a homogeneous pore size distribution and no exudation was observed.  

3.2.6. Thermal properties 

  

Figure 12. DMA graphs for formulations B-15 and D-5 at different incorporation rates of MCT-oil. 
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Figure 13. Influence of the MCT-oil incorporation rate on the glass transition temperature for 
formulations A-10, B-15, C-1 and D-5. 

For all the formulations, the bio-based delivery systems obtained were in a glassy state at 

room temperature (Figures 12 and 13) since their � relaxation was above 40°C. The �

relaxation that corresponds to a zone richer in plasticizer did not varied for formulations A-

10 and B-15 (-14°C), neither for formulations C-1 and D-5 (around -10 to -20°C). 

For formulations A-10 and B-15, and MCT-oil incorporation rate below 8% (w/w), MCT-oil 

acted as an antiplasticizing agent. Inversely, above 8%, it acted as a plasticizer. On the other 

hand, for formulations C-1 and D-5, the tendency was reversed, as observed in Figure 12.  

The � relaxation observed on the left side of the graphs, seemed to be associated to the 

MCT-oil since it appeared at the same temperature whatever the formulation or the IR of 

MCT-oil. This relaxation was not observed for the formulation without MCT-oil. The 

temperatures for that � relaxation varied form -14°C to -20°C for all the formulations. 

The reason why the encapsulation efficiency of our delivery system was so high compared 

to the values mentioned on the literature could be because the glass transition temperature of 

the matrices were, at least, 20°C above the room temperature. As a result our bio-based 

systems were at a glassy state at room temperature and so the active is protected and the 

diffusion of the active molecules was slowed down. 
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4. DISCUSSION

Encapsulation of a hydrophobic model compound (MCT-oil) in a maltodextrin-based matrix 

by twin-screw extrusion was only possible thanks to the use of some compatibilizing 

biopolymers (i.e. pea protein isolate and Hi-cap 100). Extrusion operating conditions were 

kept mild (a maximum temperature of 50°C and a specific mechanical energy between 120 

and 370 Wh.kg-1) but allowing, in the best conditions, to reach encapsulation rate and 

efficiency of respectively 12.8% and 96.3%. 

PPI was selected because proteins are composed of amino acids among which some bear 

hydrophobic side chains (such as leucine, alanine, valine or isoleucine for the most abundant 

in PPI (Table1)). Therefore, PPI can act as a compatibilizer agent, facilitating the 

incorporation of the hydrophobic MCT-oil.  

During the twin-screw extrusion process, PPI could also be considered as a texturing agent: 

without any PPI it was impossible to process maltodextrins alone and the addition of 5 more 

parts (from A-10 to B-15) provoked a drop of the SME by a factor 2 from 370.9 to 193.5 

Wh.kg-1.  

The use of only 10 % of PPI was not sufficient to ensure the encapsulation of the MCT-oil. 

SME was still high; encapsulation rate did not exceed 7% (for an incorporation rate of 11%), 

its moisture content was stable whatever the amount of MCT-oil incorporated and MCT-oil 

had a significant anti-plasticizing effect on the matrix glass transition. 

Thanks to an additional incorporation of 5parts of PPI or of a classical compatibilizing agent 

(i.e. Hi-cap 100), encapsulation was clearly improved. But each component did not seem to 

act with the same mechanism. Formulation B-15, with 15 % of PPI, proved, whatever the 

incorporation rate (below 13%), high encapsulation efficiency, a relatively high number of 

pores and a stable and high glass transition temperature (around 62-63°C).  

While with the use of Hicap100, SME first increased with addition of MCT-oil before 

decreasing, encapsulation rate reached 15.4% but with some lower efficiencies than for B-

15. Pores were smaller for low incorporation rates and started to grow largely with the 

increasing amount of MCT-oil, equilibrium moisture content increased with the increasing 

of the incorporation rate and inversely glass transition tended to decrease (especially for D-

5). All these observations would let us think that, with the use of PPI, the MCT-oil is 
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trapped during the extrusion in the hydrophobic region of the proteic structure, in smaller 

domains and that these domains do not take part in the glass transition of the matrix, which 

is more governed by hydrophilic interactions. While with the use of Hicap100, its smaller 

chains (Hi-cap100 is produced by chemical modification of a hydrolyzed starch) play the 

role of surfactant getting all around the MCT-oil droplets and permitting its incorporation in 

bigger hydrophilic domains of the matrix and thus acting slightly on the material glass 

transition (Figure 14). But taking into account the complexity of the whole system, more 

experiments would be mandatory to further confirm these assumptions, such as FTIR or 

affinity chromatography. 

Figure 14. Influence of the Hicap100 addition on the entrapment of MCT-oil droplets in 
maltodextrin/PPI matrices. 
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5. CONCLUSIONS

Melt extrusion used as an encapsulation technology for the protection of a model 

hydrophobic compound, employing biopolymer mixtures of maltodextrins, pea protein 

isolates and modified starch was possible and optimized in order to obtain bio-based 

delivery systems. Extrusion allowed obtaining homogeneous mixture with multiple porosity 

morphology. The surface texture is, in general, smooth with several irregularities (pores, 

cracks). 

The innovative part of these delivery systems is the use of pea protein isolate as the 

compatibilizer agent, which not only allowed to have better encapsulation rates of the MCT-

oil, by increasing the affinity between the two immiscible phases but also improved the 

extrudability of the mixture. Among all the formulations tested, formulation B (containing 

15% (w/w) of PPI) had the highest encapsulation efficiency (96%) for an encapsulation rate 

of 13 %. Based on these results, pea protein isolate performed similarly than 1-5% of Hi-

cap100, but without influencing the material glass transition temperature.  

In chapter four, the validation of the extrusion encapsulation conditions that were found, are 

tested with a real active compound mixture, which will correspond to the incorporation of a 

fragrance in our bio-based matrices. 
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Transition chapter 3 to chapter 4 

To summarize, in chapter 3 the extrusion encapsulation conditions were fixed in 

terms of:  

• Screw and temperature profile: (ranging for 20 to 50°C),  

• Screw speed (225 rpm),  

• Formulations amongst which four were retained: A-10, containing 10% 

(w/w) of PPI, B-15, containing 15 % (w/w) of PPI, C-1, containing 10% 

(w/w) of PPI and 1% (w/w) of Hi-cap100, D-5, containing 10%of PPI and 

5% (w/w) of Hi-cap100) 

• Moisture content (20% (w/w)).  

These conditions allowed having blends with acceptable texture and viscosity so as to 

enhance the dispersion of the active liquid compound.  

MCT-oil was selected as a model hydrophobic compound to be encapsulated in our 

agro-materials. The satisfactory incorporation rates of MCT-oil were found to vary between 

8 to 12% (w/w). The obtained delivery systems were at a glassy state at room temperature 

guaranteeing the protection of the active compound. They remained stable at 60% RH for a 

large period of time. And they presented very promising encapsulation efficiencies up to 

90%. 

In chapter four these extrusion encapsulation conditions were tested for the 

incorporation of a specific perfume composed by Givaudan. The perfume was specially 

designed to study the interactions between the odor active compounds and the matrix. For 

that reason it is composed of molecules representing different chemical groups as well as all 

range of volatilities.  

This perfume was mixed with MCT-oil at two different contents before being 

incorporated in the maltodextrin-based matrices. The delivery systems were characterized 

for thermal and morphological properties. Additionally, a kinetic release study of the 

fragrance under different environments was investigated. 

The olfactive performances of the obtained agro-materials were studied in order to 

evaluate their possible application in the fragrance industry. 
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Abstract  

Twin-screw extrusion encapsulation is a flourishing technology not only in the 

pharmaceutical and food fields, but also in the world of fragrances. This environmentally 

friendly and cost effective process could become an interesting counter part of spray drying. 

However, there is still a lot of fundamental studies to be done, that require more 

investigations in order to get a better comprehension of the physical processes involved 

during extrusion and thus, control the final properties of the product. Based on the 

statements mentioned above and with the aim of elucidate the plausible correlations 

between the process parameters and final characteristics of the product, the encapsulation 

of a pre-defined fragrance, in a bio-based matrix composed of maltodextrins and a 

compatibilizing agent, using a twin-screw extruder was investigated. Therefore the purposes 

of this chapter were the thermal and morphological characterization of the delivery systems 

obtained. Additionally, the study of the release of the perfume under different environments 

was also carried out so as to determine the impact of water. Encouraging encapsulation 

rates above 60% were measured, and interesting interactions between the aldehydes 

composing the perfume and the matrix ingredients were also observed. Olfactory tests were 
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carried out in the framework of a future application of these bio-based matrices in the 

fragrance industry. 

Key words: Twin-screw extrusion, carbohydrate mixture, encapsulation perfume, perfume  

1. INTRODUCTION

Perfume is a very complex and sensitive mixture that can be easily affected by external 

agents, such as temperature, moisture content, light and oxygen exposure. Perfume actually 

consists of mixtures of different volatile ingredients having their own physicochemical 

properties (volatility, solubility, viscosity) and reactivity. Depending on applications, the 

number of perfumery ingredients in a composition could range from 20 (for instance, in 

surface care applications) up to 500 (in fine fragrances and luxury products).  

Perfume composition is usually described as what is known in the art as olfactive pyramid  

(Figure 1): (i) top notes, which correspond to low molecular weight compounds and thus, 

the most volatiles. Top notes are responsible of the first scent impression, (ii) middle or 

heart notes, corresponding to medium molecular weight molecules that are more or less 

volatile, which represent the core of the fragrance and which scent last for a couple of hours. 

(iii) And bottom notes that are the heaviest molecular weight compounds, and are 

responsible of the long lasting scent of the perfume.  

One of the key responsibilities of perfumery houses is first to create hedonically pleasant 

composition but also to design fragrances stable in the different applications. One way to 

protect fragrances is to encapsulate the composition so that the perfumery ingredients do not 

react/degrade with base components therefore creating coloration, viscosity or even 

solubility issues. Although several techniques of encapsulation are known in the art (i.e. 

spray-drying, interfacial polymerization, polymerization), little is known regarding extrusion 

as a process to encapsulate fragrances. As mentioned in the other chapters, extrusion has 

demonstrated its high interest for encapsulation of food and pharmaceutical domains and 

therefore could be one of the most suitable and innovative technology to be employed for 

the encapsulation of perfumes 1,2.  
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Results obtained in Chapter 3, allowed establishing mild extrusion conditions for an 

hydrophobic model compound: 

• ��6� !�".%#�$�� -/ "��." �:@3)A�;�

• � �#.-�%&" 6�%/  ��:3�"/-;�

• ��6�- &'�$#&���%�" %%��//�# ��:�� =.�� �%&" 6�/"�(#� ;�

In terms of encapsulation efficiency, using MCT-oil as model hydrophobic compound, 

the results were very promising (up to 90%). Besides, the delivery systems showed good 

long-term stability when exposed to 60% of relative humidity at 25°C. 

At this state of the project, several challenges have emerged. The main issues are on one 

hand, to have high encapsulation efficiency of all the molecules composing the perfume, 

and on the other hand, to be able to release them in a homogeneous way. Controlling 

release profile thus raises high challenges and consequently highlights the lack of control 

and knowledge on the interactions occurring between the active compounds and the 

matrix components, as there has been poor investigation in the literature about the type 

of interactions that can take place when a complex mixture, as a perfume, is 

encapsulated in a carbohydrate matrices by twin-screw extrusion. 

The purpose of this chapter was to encapsulate a model perfume into the four different 

matrices studied in chapter 3, and thereafter to evaluate their release profile at distinct 

environments. In this perspective, the influence of the moisture content as well as other 

thermal analysis of the matrices were analyzed in order to better understand the kinetic 

and olfactive release of the perfume. 

��
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Figure 1. Structure of a perfume, courtesy of Givaudan France SAS. 

All experiments presented in this chapter were issued from a single extrusion campaign. These 

results correspond to preliminary assays to establish more accurate conditions for future up-scale 

process. 

The obtained results allowed having a first insight into the mechanical and analytical behavior of 

these new encapsulants materials.  
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2. MATERIALS AND METHODS

2.1. Raw materials 

2.1.1. Matrix components 

Maltodextrin DE-12 (Glucidex IT-12) and Pea Protein Isolate (PPI), SFP-87, were supplied 

by Roquettes Frères (Lestrem, France). Hi-cap100 was provided by Ingredion GmbH 

(Hamburg, Germany). And Miglyol 812N Neutraloel (CAS=65381-09-1), was supplied by 

CREMER Oleo, GmbH & Co. KG (Hamburg, Germany). 

The four formulations used for the encapsulation of the perfume were the same formulations 

employed for the encapsulation of the MCT-oil (see Chapter 3). 

The formulations were the following: 

• Maltodextrin I-12/pea protein (90/10): A-10, containing 10% (w/w) of PPI;  

• Maltodextrin I-12/pea protein (85/15): B-15, containing 15 % (w/w) of PPI;

• Maltodextrin I-12/pea protein/ modified starch (89/10/1): C-1, containing 10% 

(w/w) of PPI and 1% (w/w) of Hi-cap100;

• Maltodextrin I-12/pea protein/modified starch (85/10/5): D-5, containing 10% of 

PPI and 5% (w/w) of Hi-cap100.

2.1.2. Citrus: a model perfume 

Citrus was a model perfume, exclusively designed by Givaudan�s perfumers and scientists. 

This Citrus perfume was created in order to be hedonically pleasant but also to represent 

with only 25 molecules a wide variety of fragrance molecules in terms of different 

physicochemical properties: 

• Only twenty molecules composed the perfume 

• Volatility 

• Solubility in water 
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• Chemical reactivity thanks to the presence of distinct chemical groups:  aldehydes, 

ketones, alcohols, � 

The design of the perfume was also conceived in order to facilitate GC/MS analyses by 

reducing the number of isomers and co-elutions. 

Our objectives with this model perfume was first to encapsulate it in the bio-based matrix, 

then to establish the possible interactions between the perfume�s molecules and the matrix, 

and last but not the least, to determine the effect of the incorporation of the perfume on the 

physicochemical properties of the delivery system. The olfactive footprint of Citrus had 

citrus and fresh notes, with light floral facets. Another key point was that one of the 

molecules composing the perfume, Isopropyl Myristate, also called IPM, could be employed 

as a solvent, which acted as a compatibilizer agent too, enhancing the incorporation of the 

perfume into matrices. Its composition is detailed in Table 1 and the olfactive structure is 

presented below (Figure 2). 

Figure 2.�Structure of Citrus.
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Table 1. Composition of Citrus: physicochemical properties of each volatile compound. The compounds underlying are the ones followed in this study

Commercial name IUPAC name 
CAS 

number 
Structure 

Kovats 

index 

(DB5-ms) 

MW 

(g.mol-1) 

Proportions 

(%/1000) 

HEXENOL-3-CIS 3-hexene-1-ol  928-96-1 853 100 10 

METHYL HEPTENONE 
PURE 

6-methyl-5-heptene-2-
one 

110-93-0 934 126.2 15 

MANZANATE 
ehtyl-2-
methylpentanoate 

39255-32-8 889 144 5 

ALDEHYDE C 8 
OCTYLIQUE FCC 

n-octanal 124-13-0 950 128.21 15 

DIPENTENE limonene 138-86-3 974 136.2 50 

DIHYDRO 
MYRCENOL 

2-methyl-6-
methyleneoctan-2-ol 

18479-59-9 1036 156.3 150 
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ALDEHYDE C 9 
NONYLIC 

n-nonanal 124-19-6 1108 142.2 30 

CITRAL TECH 
3,7-dimethyl-2,6-
octadienal 

5392-40-5 1265 152.20 80 

GERANIOL 980 
(2)-3,7-dimethylocta-
2,6-diene-1-ol 

106-24-1 1247 154.30 100 

ALDEHYDE C 10 n-decanal 112-31-2 1228 156.30 50 

ACET GERANYL 
SYNTH 

(2E)-(3,7-
dimethylocta-2,6-
dienyl)acetate 

105-87-3 1299 196.3 60 

ALDEHYDE C 11 
UNDECYLENIQUE 

10-undecenal 112-45-8 1270 168.30 10 
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RHUBAFURAN 
furan-tetrahydro-2,4-
dimethyl-4-phenyl 

82461-14-1 1358 176.20 0.7 

DAMASCONE DELTA 
2-beten-1-one, 1-
(2,6,6-trimethyl-1,3-
cyclohexadien-1-yl), �

23726-93-4 1408 190.30 10 

NEOCASPIRENE 

2,9-dimethyl-6-
propane-2yl-1-
oxaspiro (4,5-)-deca-
3,9-diene 

89079-92-5 1444 206.32 5 

FLORHYDRAL 
3-(3-isopropylphenyl) 
butanal 

125109-85-
5 

1463 190.28 10 

ETHYL VANILLINE 
3-ethoxy-4-
hydroxybenzaldehyde 

121-32-4 1480 166.17 0.2 

NEROLINE 2-ethoxynaphthalene 93-18-5 1511 177.20 30 
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LILIAL 
3-(4-tert-butylphenyl)-
2-methylpropanal 

80-54-6 
�

�

1554 204.30 100 

NEROLIDOL 
(3-S-6-Z)-3, 7, 11-
trimethyldodeca-
1,6,10-triene-3-ol 

142-50-7 1557 222.40 90 

PRECYCLEMONE B 

1-methyl-4-(4-
methylpent-3-enyl)-
cyclohex-3-ene-1-
carbaldehyde 

 52475-86-
2 

1585 206.30 30 

TRIDECENE NITRILE tridec-2-enenitrile 22629-49-8 1592 193.30 0.1 

SPIROGALBANONE 
PURE 

1-spiro-(4,5)-dec-9-
ene-9-ylpent-4-ene-1-
one 

224031-71-
4 / 224031-

70-3  
1700 218.30  2 

FIXOLIDE 

Ethanone, 1-(5, 6, 7, 
8-tetrahydro-3,5, 5, 6, 
8, 8-hexamethyl-2-
naphthalenyl)- 

21145-77-7 1789 258.40 100 

ISOPROPYL propane-2- 110-27-0 � 1860 270.50 47 
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MYRISTATE yltetradecanoate 

  
�
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2.2. Twin-screw extrusion encapsulation 

Different blends were tested using a co-rotating and co-penetrating twin-screw extruder Evolum 

HT25 Clextral (Firminy, France). The extruder is composed of ten thermo-regulated modules of 

10 cm length each. The screws have a 25 mm diameter and are distance of 21 mm. As it was 

described in Chapter 3, the extruder screw profile was divided in four different zones: 

conveying, plasticizing and two mixing zones, and optimized to allow extrusion for all the four 

formulations. 

The solid mixture (4.4kg.h-1) was fed into the first part of the extruder with gravimetric feeder K-

Tron KML KT20, Coperion K-Tron Pitman, Inc. (Sewell, USA) and, it was immediately mixed 

with water 20-22% (w/w), to ensure thanks to the thermo-mechanical stress, the plasticization of 

the blend before the active compound addition at barrel 5. 

To verify the stability of the extrusion conditions, two temperature sensors were placed in barrel 

4 (during the plasticization zone) and in barrel 10 (before exiting the extruder) to monitor the 

temperature of the blend. The experimental set-up of the extruder is presented in Figure 3. 

Figure 3. Twin-screw extruder Evolum HT25 configuration and screw profile for the elaboration of the 
bio-based matrix 
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The extrusion operating conditions are summarized in Table 2. Taking into account the 

advantages of using MCT-oil as a solvent vector to favor the incorporation rate of the active in 

the matrix 3�5, we decided to test two different mixtures of Citrus/MCT-oil e.g. 50/50 and 80/20. 

For both mixtures, the perfume loading was fixed at 10% (w/w) with respect to the solid polymer 

mixture. Citrus/MCT-oil mixture was introduced into the plasticized mixture at barrel 5 thanks to 

a peristaltic pump PM600 JOUAN S.A. (Saint-Herblain, France). 

Table 2. Extrusion process conditions

Extrusion parameters Specifications 

Screw speed (rpm) 225 

Feed rate solid mixture (kg.h-1) 4.40 

Feed rate water (kg.h-1) 1.40 

Feed rate Citrus/MCT-oil(80/20) (kg.h-1) 0.63 

Feed rate Citrus/MCT-oil (50/50) (kg.h-1) 1.10 

The temperature profile was optimal because all the barrel temperatures were fixed at a much 

lower temperature than the flash point of the molecules of the perfume. In our case, extruding at 

low temperature, was clearly an advantage because it reduced the risk to have thermal 

degradation of the active molecules, minimized their evaporation and prevented flash-off the 

molecules. The temperature profile corresponds to the profile temperature used for the 

encapsulation of MCT-oil (Table 3). 

Table 3. Extrusion profile temperature

Module of the barrel  T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 

Temperature (T°C) 20 20 40 50 50 40 40 40 40 40 

The eight formulations are detailed on Table 4. The composition was calculated in relation to the 
initial feeder rates and the solid mixture dry matter. 
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Table 4. Formulations tested: initial composition introduced in the extruder. The load of Citrus was fixed to 10% (w/w) related to 
the solid mixture, for all the formulations�

Formulation 

Maltodextrin 

DE-12 (%) 

PPI 

(%) 

Hi-Cap100 

(%) 

Citrus 

(%) 

MCT-oil 

(%) 

Water 

(%) 

A-10 + Citrus/MCT-oil (50/50) 57.6 6.4 0 8 8 20 

A-10 + Citrus/MCT-oil (80/20) 61.2 6.8 0 8 2 22 

B-15 + Citrus/MCT-oil (50/50) 54.4 9.6 0 8 8 20 

B-15 + Citrus/MCT-oil (80/20) 57.8 10.2 0 8 2 22 

C-1 + Citrus/MCT-oil (50/50) 56.96 6.4 0.64 8 8 20 

C-1 + Citrus/MCT-oil (80/20) 60.52 6.8 0.68 8 2 22 

D-5 + Citrus/MCT-oil (50/50) 54.4 6.4 3.2 8 8 20 

D-5 + Citrus/MCT-oil (80/20) 57.8 6.8 3.4 8 2 22 

The samples were collected in an aluminum pan and dried at 50°C during two minutes. After 

drying, the samples were stored inside a blister and hermetically stored in a climatic chamber at 

0%RH at 25°C during three weeks before the kinetic study. 

2.3. Physicochemical characterization of the delivery system 

2.3.1. Moisture content: Karl Fisher 

Moisture content of all samples was determined thanks to the Karl-Fisher-Titration method. The 

measurement of the moisture content in the samples was conducted with a volumetric titrator V-

20 METTLER-TOLEDO (Giessen, Germany). A commercial mixture of methanol and 

formamide (1:1), from Riedel-deHaen (Seelze, Germany) was employed as solvent, and 

Hydranal Composit-5 was used as a titrant.  

Extrudates were stabilized in four controlled humidity chambers setup at 33%, 60%, 75% and 

90% of relative humidity and 25°C for eight weeks before analysis. 

All the titrations were performed in triplicates for each sample. 
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2.3.2. Glass transition temperature (DMA) 

Glass transition temperature (Tg) of the extrudates was measured on a Triton Technology 

Dynamic Mechanical Analysis apparatus (Triton Technology, UK), by a thermal scan in the 

simple geometry of the single cantilever-bending mode. The amplitude (25�m) and the multi-

frequency (1 and 10 Hz) mode were kept constants during the analysis. Samples were placed in 

an aluminum pocket and the temperature range of analysis was set from -100°C to 200°C at a 

scanning rate of 2°C/minute. 

Extrudates were stabilized at four controlled humidity chambers set up at 33%, 60%, 75% and 

90% of relative humidity and 25°C for eight weeks before analysis. 

2.4. Morphological analysis: SEM 

Morphology of the extrudate was examined by scanning electron microscopy (SEM). The 

particles were deposited on conductive double-faced adhesive tape and sputter-coated with 

silver. SEM observations were performed with a LEO435VP scanning electron microscope LEO 

Electron microscopy Ltd., (Cambridge, UK) operated at 8kV. All the samples were metallized 

with silver under vacuum before observation. 

The porosity of the samples was analyzed by ImageJ. ImageJ is an open source Java-based 

software developed by the National Institute of Health (Bethesda, USA) and employed as an 

image-processing tool in the scientific domain. This image treatment allowed to characterized 

the extrudate in terms of morphological aspects (i.e. porosity) and other structural 

heterogeneities (e.g. surface and texture). 

These analyses allowed having estimation about the morphological aspect of these extrudates.  
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2.5. Model perfume characterization 

2.5.1. GC-MS-FID 

The volatiles of the perfume in the different bio-based delivery systems were identified and 

quantified by combined Gas Chromatography (GC)/ Flame ionization detection (FID) / Mass 

spectrometry (Clarus® 500GC /TurboMass MS detector, Perkin Elmer, Villebon-sur-Yvette, 

France). The injector and the detector (FID) were heated respectively to 250°C and 280°C. A 

column (50m x 0.25 mm x0.25 µm) with a (5%-phenyl)-methylpolysiloxane phase Agilent J&W 

DB-5ms, from Agilent Technologies (Les Ulis, France) was employed. The temperature started 

at 40°C, held for one minute and ended at 70°C with a temperature ramp of 20°C/min. Followed 

by a temperature ramp of 2°C/min, starting at 70°C and ending at 200°C. Then, to ensure that 

nothing remained in the column, a temperature ramp of 20°C/min was applied, from 200°C to 

280°C, and the program ended by equilibration for 10 minutes at 280°C. Helium was used in a 

splitless mode as a gas carrier and the column flow rate was fixed at 1.52 mL/min. The injections 

of 0.5µL of each of these solutions were performed in quadruplicate. Mass spectra were recorded 

in electron impact mode (70eV) between 35  to 400 m/z mass range at a scan speed of 3.63 scan 

s-1.

First, the perfume was injected so as to identify and quantify all its twenty molecules. Their 

identification was made based on their retention index (Table 1) and mass spectra. Results were 

checked with the NIST2011 Mass Spectral Library. 

The same analytical method was employed to identify the perfume�s composition, to prepare the 

calibration curves, as well as for the quantification analysis of the volatiles in the extrudates. 

Results were expressed as mean values with the corresponding standard deviations. 

2.5.2. GC Calibration of Citrus 

An internal calibration, using methyl decanoate 99% (CAS: 110-42-9, MW=186.29 g.mol-1) as 

an internal standard from Sigma Aldrich (St Quentin Fallavier, France), was made in order to 

establish a calibration curve for six molecules among the twenty molecules composing the 

perfume. The concentration of the internal standard was fixed at 1.10-4 g.mL-1. The six selected 



Chapter IV Industrial Approach: Incorporation of a perfume in a bio-based matrix by TSE 

�

Natalia CASTRO 2016  186

molecules were considered to be representative of the whole range of volatility of the perfume: 

limonene, dihydromyrcenol, n-decanal, lilial, IPM and fixolide. For instance, the perfume was 

used as the standard mixture solution for quantification and determination of the calibration 

curves. Figure 4 illustrates the chromatogram of Citrus and the six selected molecules. 

Figure 4. Chromatogram of Citrus (Area=f (retention time (min)). A=limonene; B=dihydromyrcenol; 
C=n-decanal; D=lilial; E=IPM and F=fixolide

Thus, five geometric dilutions of the standard solution with different concentrations ranging 

from 0.39 mg.mL-1 to 6.25 mg.mL-1 were prepared in methanol HPLC (�99.9%) grade (CAS: 

67-56-1, MW=32.04 g.mol-1) supplied by Sigma Aldrich (St Quentin Fallavier, France), and 

analyzed in a gas chromatograph Clarus®500, coupled to a mass spectrometer Turbo Mass 

Perkin Elmer® in the same conditions as described in 2.5.1. 

Knowing the concentration of the internal standard and its peak area, the value of the 

concentration of each molecule in each solution could be determined by plotting the ratio of the 
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areas as a function of the concentration ratios. The linear relationship of the calibration curves 

are expressed as follow: 

K�L�MN
K��� � O PQ�L�MNQ��� R

Where, K�L�MN� is the area of the corresponding volatile organic compound of the perfume, 

K��� is the area of the corresponding internal standard, Q�L�MN is the concentration of the 

corresponding volatile organic compound and, Q��� is the known concentration of the internal 

standard. In this case S�TU corresponded to 1. 10-4 g.mL-1.  

Linear calibrations plots were obtained with a coefficient of determination of 0.9976 (limonene), 

0.9991 (dihydromyrcenol), 0.9985 (n-decanal), 0.9718 (lilial), 0.9960 (IPM), and 0.9997 

(fixolide). An illustration of the calibration curve of fixolide is presented below (Figure 5). 

Figure 5. Calibration curve of fixolide
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2.5.3. Solid/liquid extraction 

Approximately one gram of the extrudate containing the perfume was grinded and added to a 50 

mL volumetric flask. Then, 3 mL of water was added in order to enhance the dissolution of the 

extrudate. To the volumetric flask 50 µL of a standard solution of Methyl decanoate at 1.10-4

g.mL-1 was introduced. The volumetric flask was completed to the mark with methanol. The 

solutions were ultrasonicated (>20kHz) for 20 minutes. Before the solutions were placed into a 

GC-vial, they were filtered thanks to a PTFE filter (13 mm of diameter and 0.45µm pore size) 

from VMR International S.A.S (Fontenay-Sous-Bois, France). 

Extractions were conducted in duplicates for each extrudate. The molecules were identified 

based on their retention time and specific mass spectrum. 

As a result the amount of perfume remaining on the matrix was determined by interpolation 

using the linear relationship form the calibration curves. 

2.6. Kinetic release study 

The aim of this kinetic study was to investigate the effect of humidity on the release profile of 

the perfume. As reminder the principal characteristics of these delivery systems were that they 

must be highly hygroscopic, and so release of the active could be triggered by humidity. Four 

different climatic chambers were used in order to analyze the behavior of the bio-based delivery 

systems.  

Two climatic chambers were fixed at 60% and 75% RH at 25°C. The other two climatic 

chambers were home made thanks to hermetical boxes of 30 L and saturated salt solutions: 

MgCl2 (CAS: 7757-79-1, MW=101.10 g.mol-1) for the chamber at 33% RH at 25°C. And, KNO3 

(CAS: 7791-18-6, MW=203.31 g.mol-1) for the chamber at 90% RH at 25°C. Both salts were 

provided by Sigma Aldrich (St Quentin Fallavier, France). 

The kinetic study started after the extrudates were stabilized for three weeks, so all could 

samples reach equilibrium, at hermetically closed chambers at 0% RH at 25°C after they were 

produced and was conducted over 28 days. The different stages of the process are illustrated in 

Figure 6, and the climatic chambers employed are shown in Figure 7. 
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Figure 6. Scheme of the 3 stages of the process: The production, then stabilization at 0% RH and the 
conditioning for the kinetic study 

Figure 7. Pictures of the climatic chambers: A=33% RH at 25°C; B=60% RH at 25°C; C=75% RH at 
25°C; D=90% RH at 25°C 

The kinetic study for the samples that were conditioned at 33% RH at 25°C started a month later 

as the climatic chamber needs to go back to equilibrium. 
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2.7. Sensory tests 

In this section, the olfactive performance of the bio-based delivery systems produced by twin 

screw-extrusion were tested against market products for 2 application fields: powder detergent 

and air care applications.  

It is noteworthy to remind, that based on the specifications of the new encapsulated systems 

(highly hygroscopic and glassy at ambient temperature) the evident targeted applications for the 

extrudates were air fresheners and perfume for detergent or WC block products.  

The first olfactive evaluation was to analyze the extrudate as an air freshener product. The 

second olfactive test was to investigate the fragrance bloom of the extrudate when added in a 

detergent-base powder. 

An intern expert panel, consisting of Givaudan employees with strong knowledge and 

understanding of the market products, evaluated the samples for their performance and their 

olfactive character. 

To evaluate the olfactive performance of the extrudates, a 5-points hedonic scale test (Figure 8) 

was carried out to measure the odor intensity. This type of sensory experiment judges if an odor 

is perceived (detection of the odor threshold of the perfume) and determines how strong is the 

perceived odor 8. 
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Figure 8. 5-points hedonic scale used for olfactive evaluation 

Prior to the olfactive assessment, all samples were analyzed in order to determine the quantity of 

perfume in the matrix.  

The olfactive evaluation was conducted at iso-oil loading versus benchmarks containing the 

same citrus perfume model. 

Remark: all the olfactive tests were carried out with extrudate that were stocked for more than 

nine months on a hermetic blister at 4°C. Only extrudates of a Citrus/MCT-oil content of (80/20) 

were analyzed. 

2.7.1. Air-fresheners 

Air fresheners are products used for eliminating or masking the malodors, or just simply to 

perfume indoor spaces. Usually, market products have a lifetime between 30 and 50 days. They 

exist in wide range of products in the market, from sprays, gels, plug-ins to candles and incense 

burners. 

The sensory booths are humidity- and temperature-controlled hermetic rooms. The booths are in 

aluminum because it�s a neutral material relating to absorption or emission of volatile organic 

compounds.  

The testing was carried out in a large booth (25m3 booths, 21°C, 50% RH) specifically designed 

with a constant airflow. The airflow was turned off during the testing. The testing was conceived 
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so that each sample contains the same amount of fragrance and has approximately the same 

surface area. The samples were placed on the booths 40 minutes before the olfactive tests begin 

to ensure diffusion of the perfume in the room. The fans were turned on for 5 seconds to 

dispersed the franfrance around the booth and then the assessment began. 

The olfactive performance and character of the system was first assessed through a porthole in 

the door of the booth, then Givaudan expert panel enter the booth to complete the assessment. 

The overall perceived by the Givaudan expert panel suing à 0-5-intensity scale judged intensity. 

Tests were performed over a month and evaluations were realized at three-time points to 

understand the evolution of hedonic intensity and profile: on day-1, day-19 and day-28. 

2.7.2. Powder detergent 

Although fragrance is used in relatively low dosage (<2%) and does not intervene in the cleaning 

performance of the detergent, special attention is always given to perfume because it is the first 

aspect entering in contact with consumers 9. Indeed, an inadequate fragrance can impact on the 

cleaning efficiency perceived by the consumer and ultimately deteriorate the image of a good 

detergent.  

For the detergent evaluations, an actual �in use� test of a powder detergent product in �hand-

washing� conditions was performed. This type of �in use� tests allow to give direct information 

about the bloom of the fragrance 10. 

The extrudates were first finely grinded to powder and then mixed to an unperfumed powder 

detergent base. From now on it will be reefer as the mixture. The bio-based delivery systems 

were compared to two reference products. The first one was the so-called �free-oil�, which 

corresponds to the perfume directly mixed with the perfume-free detergent base powder. The 

free-oil was considered as the control sample, since the �bloom� of the perfume for this sample 

was the strongest. The second product used is Givaudan proprietary technology, Bloomtech®, a 

water-soluble spray-dried starch-based matrix containing up to 50% of perfume. 

All samples were tested at iso-oil loading, 15 grams of the mixture were added to three liters of 

water in a vessel. The solution was immediately stirred thanks to a glass rod and trained panelists 

scored the bloom of the perfume 
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Remark: all the experiments were performed on samples that were issued from one extrusion 

production. 
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3. RESULTS AND DISCUSSION

3.1. Characterization of the delivery system 

In this first section, the analysis of the physicochemical properties of the delivery systems and 

the influence of the process parameter are addressed. Correlations between results obtained in 

Chapter 3 and in this Chapter are also discussed. 

3.1.1. Study of the process parameters: influence of the SME and the temperature 

profile 

The specific mechanical energy as well as the temperature profile of the extruder were two of the 

process parameters monitored in order to evaluate the impact of the formulations on the final 

properties of the delivery system. One of the key advantages for this study is that all the 

independent process variables were kept constant. Besides, the incorporation rate of the 

fragrance, for all the eight formulations, was maintained constant at 10% (w/w), but two 

perfume/MCT-oil ratios were tested (50/50 and 80/20, (w/w)). So, a direct correlation between 

formulations, SME and temperature profile could be established. 

SME corresponding to the extruder herein employed was given by the following equation, as 

defined on Chapter 3: 
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Pm: power supplied by the drive motor (Watts) 

Feed rate: (kg/h) 

T: torque (%) 

Tmax: maximum torque of the extruder (Tmax=100%) 
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N: screw speed (rpm). 

Nmax: maximum screw speed of the extruder (Nmax = 1200 rpm) 

U: electric potential (U = 400 V) 

I: electric current (I = 57A) 

Cos �: theoretical efficiency of the extruder�s engine (cos � = 0.9) 

The recorded process parameters are summarized in Table 5. 

The temperature profile of the extruder was stable during the extrusion experiments and for all 

the formulations tested. There was neither auto-heated zones nor drastic increase of the 

temperature when the Citrus/MCT-oil mixture was incorporated. The stability of the torque and 

profile temperature during extrusion was remarkable as no increase was observed for the 

different MCT/citrus oil ratio tested at different loading/incorporation rates. 

It is important to stress out that, for both thermic sensors, the measured temperatures were 10 to 

20°C below the set temperature, respectively 50 and 40°C. This may be explained because the 

thermic sensors only measure the temperature at the surface of the mixture extruded and not the 

barrel�s temperature or the temperature of the whole mixture inside the barrel. This was also 

noticed by Emin & Schuchmann11, (2013a) and Godavarti & Karwe12, (1997). As a result, the 

temperature measured by the thermic sensors only served, in our case, as an alert signal that 

helped to indicate if dehydration of the mixture was occurring on the zones were the mechanical 

shear was stronger (generally, in the zones where the kneading and mixing screw elements were 

set). Due to high mechanical shear, the mixture could indeed dehydrate and its temperature could 

rapidly increase through viscous friction. 

Table 5. Extrusion process parameters values  

Formulation 
Torque 

(%) 

Total feed 

rate (kg.h-1) 
SME (Wh.kg-1) 

T(°C) 

module 4

T(°) 

module 10

A-10 10 5.80 114.90 35 31 

A-10 + Citrus/MCT-oil (50/50) 10 6.90 96.58 33 31 
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A-10 + Citrus/MCT-oil (80/20) 13 6.43 134.73 34 30 

B-15 10 5.80 114.90 34 29 

B-15 + Citrus/MCT-oil (50/50) 9 6.90 86.92 33 30 

B-15 + Citrus/MCT-oil (80/20) 10 6.43 103.64 33 30 

C-1 13 5.80 149.37 32 34 

C-1 + Citrus/MCT-oil (50/50) 12 6.90 115.90 30 34 

C-1 + Citrus/MCT-oil (80/20) 11 6.43 114.00 28 33 

D-5 11 5.80 126.39 35 34 

D-5 + Citrus/MCT-oil (50/50) 10 6.90 96.58 34 30 

D-5 + Citrus/MCT-oil (80/20) 11 6.43 114.00 33 30 

All the measured SME values were below 200 Wh.kg-1 implying that the mixtures were 

plasticized 13. 

Figure 9. Influence of the IR of Citrus/MCT-oil on the SME 
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SME expresses how much energy is required to transform and mix all the ingredients inside the 

extruder in order to obtain a homogeneous mixture. In Chapter 3, MCT-oil was considered to act 

as a lubricating agent because it decreased the SME as its content was increased.  

At first sight (Figure 9), in the case of the active mixture Citrus/MCT-oil, the SME of 

formulations B, C and D had the same tendency; SME decreased as MCT-oil content increased. 

However, for these formulations, the active mixture was splashed out at the exit of the extruder, 

suggesting that either there was no sufficient mixing to incorporate the entire active compound 

mixture inside the matrix, or that the amount of the active mixture was too high and therefore not 

everything could be incorporated.  

As a matter of fact, for formulations containing the active mixture at (50/50) % (w/w) of content, 

there was less solid available for the same load of Citrus (10 % (w/w)). When the active mixture 

is added at (80/20) % (w/w) of content, the total load of the hydrophobic actives was fixed at 10 

% (w/w), whereas for an active mixture at (50/50) of content, the load of the hydrophobic active 

mixture was at 16% (w/w). So, not only there was less solid available but also there was an 

excess of active to be incorporated, which explained its splashing out at the exit of the extruder 

and the strong exudation of the delivery systems after extrusion. So the SME continue ti decrease 

from loading of Citrus/MCT-oil of 80/20 to 50/50, not because the process requires less energy 

but because there was an exces of active mixture to be incorporated. 

These results confirmed what it was demonstrated on Chapter 3, good incorporation rates were 

obtained for an active load ranging below 12 % (w/w). 

So, the SME decreased because there was an excess of active compound, and therefore there was 

no shearing stress that could be applied into the mixture, which was more liquid than solid. As a 

consequence the torque and the SME were lower because of an excess of lubricating agent. 

Formulation C-1% (w/w) presented the highest SME when no active mixture was incorporated 

but showed the most important decrease in SME value when incorporating active mixture. This 

result might be related  to the fact that to low amount of Hi-cap100  was required to allow a 

better incorporation of the active compound mixtures at distinct contents. 
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Formulation B-15% (w/w) had the lowest SME values for the different incorporation rates, 

suggesting that this formulation was the best in terms of mixing efficiency and rheology 

compared to the other three formulations. 

Formulation A-10% (w/w) presented the highest SME value for an active mixture content of 

Citrus/MCT-oil at (80/20). This was expected, since the same pattern was found on chapter 3, 

where formulation A, with an incorporation rate of 11% of MCT-oil, had the highest SME value 

(298 Wh.kg-1), indicating that only 10% of PPI was not sufficient to increase the affinity 

between these two immiscible phases (e.g. the hydrophilic matrix and the hydrophobic active 

mixture), and thus more energy was required to ensure a good encapsulation and an efficient 

mixing. Even with an incorporation rate of MCT-oil of 12%, the SME value remained higher 

(255 Wh.kg-1) than the other formulations. So, in this case the SME value suggested that affinity 

between the hydrophilic matrix and the hydrophobic active mixture were poor, and thus more 

energy was needed to ensure an efficient mixing of all the ingredients. 

3.1.2. Thermal properties  

The bio-based matrix was elaborated with three different raw materials (e.g. maltodextrins, PPI 

and Hicap100) and water, which of course, is one of the key parameters in this study since it 

controls the shelf-life stability of the final product 14. The thermal properties of the matrices were 

very difficult to analyze, due to their complex nature; not only because they were elaborated with 

more than two ingredients, but also because of the complexity of the active compound mixture 

that was incorporated. In fact, Citrus/MCT-oil revealed itself as a mixture of a large variety of 

molecules with different chemical properties. The chemical properties of the molecules 

composing the active mixture modified indeed the thermal behavior of the wall material as it can 

be seen on the thermograms of the Figure 10. 

Determining the glass transition temperature of delivery systems is crucial since it serves as an 

indicator to know in which conditions the product must be stored but also used. Besides, the 

glass transition temperatures can help to get a better understanding of how the active compound 

could be released 15,16. 
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Herein, we considered that maltodextrins, PPI and Hi-cap100 were miscible and, as a result the 

matrix mixture obtained was homogeneous. Therefore, the � relaxation temperature was 

associated to the glass transition temperature of the whole matrix. This statement allowed 

focusing our attention on the impact of the incorporation of Citrus/MCT-oil compound on the 

thermal behavior of these four matrices. In addition, the evolution of the glass transition 

temperature of each matrix that was exposed to different relative humidities was also 

investigated.  

For all the matrices that were analyzed at different humidities, the thermal behavior was similar. 

For all the samples, three or four thermic relaxation temperatures were observed testifying the 

complexity of the system. The thermograms presented below (Figure 11) showed the DMA of 

extrudates C-1 exposed to different relative humidities. 

  

  

Figure 10. DMA thermograms of formulation C-1 exposed to different relative humidities

The thermogram (Figure 11) of the matrices exposed to 33% RH at Citrus/MCT-oil content of 

(80/20) put in evidence all the possible existing thermal relaxations, since under this 
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environment the effect of water was limited and consequently, liberation of the active compound 

was expected to be very low. Three to four thermal relaxations were detected: α, α�, β and γ.  

Figure 11. DMA of the 4 formulations exposed to 33% RH at 25°C

Based on the results obtained in Chapter 3, the thermal relaxation due to the plasticizing effect of 

the MCT-oil was identified and associated to a β relaxation temperature around -30°C to -10°C 

(for the formulations containing Citrus/MCT-oil at (50/50) the relaxation β was observable). 

Indeed, the β  relaxation that often appeared as a well-defined peak for the compositions 

containing Citrus/MCT-oil at 50/50% (w/w) and as a small and large peak for compositions 

containing Citrus/MCT-oil at 80/20% (w/w) was attributed to the effect of MCT-oil.  

Respectively, the γ thermal relaxation was associated to the effect of a second plasticizer. In 

general the lowest thermal relaxations are related to small, polar plasticizer, as polyols. This 

second plasticizer effect was attributed to the polar molecules of the perfume like hexenol-3-cis, 

geraniol, and dihydromyrcenol all presenting a hydroxyl group and low molecular weight. 

The thermograms showed the possible competition existing between the plasticizer effects of 

each active principle. The different thermal relaxations pointed out the presence of distinct 
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regions. On one hand, a region rich in hydrophobic plasticizer corresponding to the MCT oil, and 

on the other hand a zone rich in hydrophilic plasticizer associated to the polar molecules of the 

perfume. The more the thermal relaxations tend to very low temperatures, the more they are 

assigned to polar and small plasticizers such as water, which glass transition temperature is 

modeled around -137°C /-139°C 17�20.  

In the following section, the analysis of the evolution of the glass transition temperature as well 

as the influence of the active compound compositions of the delivery systems were discussed. 

The values of the β are not presented in here. 

Thermal relaxations for the formulation containing Citrus/MCT-oil at (50/50): 

Related to the evolution of the glass transition temperature of the bio-based matrices we 

observed that when the relative humidity increased, the glass transition temperature for all the 

four formulations decreased (Figure 12). This behavior was expected since the water absorption 

by the extrudate provoked a depression of the glass transition temperature 21�23. Moreover, the 

glass transition temperatures of all formulations at 33%, 60% and 75% RH were above the room 

temperature (between 60°C to 80°C), confirming that the delivery systems were at a glassy state. 

These delivery systems presented very low exudation onto the surface after stabilization and, 

were very rigid and brittle materials. Moreover, they were stable, in terms of texture and 

appearance, under these conditions over a period of eight months, fulfilling partly the industrial 

specifications. On the contrary, samples kept at 90% RH developed mold after 3 months of 

stabilization.  

As expected, the formulations stabilized at 33% of relative humidity presented the highest glass 

transition temperature whereas the extrudates stored at 90% RH had the lowest glass transition 

temperature (Tg). Their Tg, herein noted as the α relaxation temperature was below the ambient 

temperature, meaning that extrudates were at a rubbery state. The measured values of the Tg 

were in agreement with the texture of the extrudates. In fact, extrudates at 90% RH were 

malleable molten dough, with visual noticeable exudation onto the surface. Considering these Tg 

values, it was expected that volatile retention for these bio-based matrices must be very low. 

Figure 12 showed the evolution of the glass transition temperature for each formulation (with 

50/50 perfume/MCT-oil mixture) depending on the relative humidity that they were exposed to. 

Formulation A-10 presented the highest glass transition temperature for all tested relative 

humidities. Meaning that thanks to the addition of 5% (w/w) of PPI or of 1 to 5% (w/w) of Hi-
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cap100 the glass transition temperature of the mixture could be decreased without changing the 

experimental conditions in terms of extrusion screw, temperature profile and water.  

Figure 12. Impact of the relative humidity on the glass transition temperature of extrudates containing 
Citrus/MCT-oil (50/50) mixture. Comparison between formulations A, B, C and D. 

Thermal relaxations for the formulation containing Citrus/MCT-oil at (80/20): 

In this case, the same tendency for the evolution of the glass transition temperature of the 

extrudates was observed. The glass transition temperature decreased as the relative humidity 

increased (Figure 13). Again, the formulations stabilized at 90%RH presented a glass transition 

temperature below the room temperature (from -11 to -34°C). 
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Figure 13. Impact of the relative humidity on the glass transition temperature of extrudates containing 
Citrus/MCT-oil at (80/20) of content. Comparison between formulations A, B, C and D. 

Herein the impact of the incorporation of Citrus/MCT-oil at (80/20)% (w/w) could be 

appreciated for formulations A and C, whose glass transition temperature was higher when 

exposed to 60%RH than at 33%RH. Perhaps, this could be explained by a higher loss of volatiles 

during stabilization at these humidities, since water uptake by the samples enhanced the 

diffusion of the volatiles molecules through the matrix. As a consequence, the small 

plasticization effect of the perfume molecules was lost and so the glass transition temperature 

increased. It is important to take into account that when the glass transition temperature was 

decreased two phenomena could occur. On one hand if the glass transition temperature of the 

matrix is decreased, mobility of the active compound is favored, and thus its release is boosted. 

On the other hand the release of the active compound could induce a slight increase of the glass 

transition temperature of the system, if the active compound is considered to have a plasticizing 

effect. In our case, variations of the glass transition temperatures of the matrix were clearly 

provoked by the effect of water. 

These types of phenomenon are related to the homogeneity of the wall material, in terms of 

moisture content and distribution of the active compound. Indeed, the absorption of water, and 
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thus the glass transition temperature of the different layers of the materials are slightly different 
15,24. That could explain why formulation A and C, respectively at 60% and 75%RH presented a 

higher glass transition temperature than at 33%RH. 

Again, extrudates exposed at 90% RH were not considered to be interesting since their glass 

transition temperature was too low and as a consequence samples were not stable under these 

circumstances.  

3.1.3. Moisture content 

Moisture contents of the extrudates stabilized in controlled climatic chambers at different 

humidities are presented in Table 6. As expected, when the extrudates were stabilized at higher 

relative humidities, the moisture content in the extrudates increased. These results pointed out 

that the matrices are good adsorbent materials. For extrudates stocked at 33% RH, formulations 

A and B were more hygroscopic than formulations C and D. On the contrary, at 90%RH the 

formulations C and D were more hygroscopic than formulations A and B. These different 

behaviors can be explained to the fact that at high humidities pea proteins are more susceptible to 

be degraded and so, the hygroscopic character was reduced 25,26. Extrudates stocked at 60% RH 

presented almost the same moisture content. 

It is noteworthy to mention that extrudates were very stable for more than eight months under 

stocking conditions at 60 and 75% RH, since no sights of mold or fungi were observed. Besides, 

the physical structure of the extrudates remained unchanged, and very solid. On the contrary, for 

the extrudates at 90%RH after two months of stabilization, mold and fungi were developed. 

This is a positive sign because it confirms that the delivery systems were biodegradable.  

The issue is that at humidity levels above 75% RH the extruded agro-materials were not stable.  
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Table 6. Moisture content of the extrudates containing Citrus/MCT-oil at (80/20)% (w/w) of content

Relative Humidity 

(%) 

Formulation Moisture content % 

(w/w) 

33 

A-10 8.26 ±1.0 

B-15 8.81 ± 0.6 

C-1 7.42 ± 1.0 

D-5 8.07 ± 1.4 

60 

A-10 10.72 ± 1.0 

B-15 10.47 ± 1.3 

C-1 10.58 ± 2.3 

D-5 10.21 ± 3.5 

75 

A-10 11.13 ± 0.6 

B-15 12.02 ± 1.0 

C-1 7.98 ± 2.2 

D-5 11.65 ± 0.3 

90 

A-10 13.49 ± 1.8 

B-15 12.73 ± 1.3 

C-1 24.83 ± 2.1 

D-5 14.31 ± 1.6 

The moisture contents measured at 90% RH seemed surprisingly low when compared to those 

measured at 75% RH. Especially, when looking to their corresponding glass transition 

temperatures. It is then possible that the analysis had been compromised, maybe because of the 

trigger of their biodegradation. 
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3.1.4. Morphology  

The same morphological analysis by SEM and ImageJ treatment that was made on Chapter 3 

was also run for the extrudates containing Citrus/MCT-oil as the active compound. Formulation 

B-15+Citrus/MCT-oil (80/20) and formulation C-1+ Citrus/MCT-oil (80/20 were investigated. 

Results were expressed as the average pore diameter, which corresponds to the ratio between the 

pore diameter (for each population of pores determined) and the total number of pores of the 

sample (Table 7). 

Table 7. Morphological structures of Extrudates B and C at Citrus/MCT-oil at (80/20): pore distribution

Formulation 

Citrus 

theoretical 

load (% 

(w/w)) 

Pore 

population 

Ferret  

Diameter 

(µm) 

Average 

Ferret 

Diameter 

(µm) 

B-15+ Citrus/MCT-oil 
(80/20) 

10 

83 0.61 

3.60 156 2.37 

73 9.61 

C-1+ Citrus/MCT-oil 
(80/20) 

10 

21 0.64 

1.24 113 1.7 

56 0.55 
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Figure 14. SEM of Citrus extrudates at Citrus/MCT-oil (80/20)% (w/w) content; A: formulation B-15 at 
20µm x500 and B: formulation C-1 at 20µm x500 

According to the results exposed in Table 15 and the SEM images of Figure 14, both of the 

delivery systems presented a macroporosity structure and a homogeneous pore distribution. 

Indeed, the surface of the extrudates was less fractured and smoother, compared to the extrudates 

with 100% of MCT-oil obtained in chapter 3. As illustrated on Figure 15, formulation B had 

bigger pores than formulation C. The smaller size of the pores of formulation C corresponded to 

a better stabilization of the active compound droplets within the material. Comparison of these 

two formulations lead to the conclusion that the addition of 1% of Hi-cap enhanced the 

formation of a narrow population of small pore diameter, whereas PPI favored the organization 

of a broad population of larger pore diameter, what was already observed in Chapter 3. 

This demonstrated that Hi-cap100, in terms of droplet formation, reduced more the interfacial 

tension between the active mixture compound and the matrix and thus generated smaller droplet 

size with a more homogeneous pore distribution than PPI. 

3.2. Kinetic release study of Citrus 

The aim of this section was to evaluate the efficiency of the extrusion encapsulation process on 

volatile retention, especially the impact of the process itself on the preservation of the perfume. 

Furthermore, the release performances of these delivery systems, when exposed to different 

relative humidities, were also discussed. The liberation of the perfume was followed for a month.  



Chapter IV Industrial Approach: Incorporation of a perfume in a bio-based matrix by TSE 

�

Natalia CASTRO 2016  208

3.2.1. Evaluation of extrusion process on volatile retention 

To judge about the encapsulation performance of the twin-screw extrusion process, the 

encapsulation rate of the four formulations at Citrus/MCT-oil content of (80/20) was measured 

by applying the following equation: 

��V&WXYZ&�[���9&���"�9$ � �N�\]^_`a^\b
��  �88

MCextracted: mass of all the molecules of Citrus extracted (mg) 

ME: mass of the dry extrudate (g) 

The extrudates that were evaluated were kept under stocking conditions before analysis (4°C on 

a hermetic blister for nine months). The encapsulation rates are presented on Table 8. 

Table 8 Encapsulation rates of the four formulations after extrusion. RSD*=relative standard deviation 

Formulation Encapsulation Rate (%)
RSD* 

(%) 

A-10 + Citrus/MCT-oil (80/20) 6.7 ± 0.4 6.5 

B-15 + Citrus/MCT-oil (80/20) 6.2 ± 0.1 1.2 

C-1 + Citrus/MCT-oil (80/20) 7.4 ± 0.2 2.9 

D-5 + Citrus/MCT-oil (80/20) 7.9 ± 0.1 0.9 

The encapsulation rate values obtained for all the four formulations were acceptable. Indeed, 

encapsulation efficiencies of about 67 to 79% were obtained for all the formulations, where 

formulations C and D showed the best results. The performances obtained for our delivery 
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systems were comparable to those mentioned in the literature for twin-screw extrusion 

encapsulation and summarized on Table 9.  

The encapsulation efficiency is defined as: 

��V&WXYZ&�[����OO[V[��Vc�"��$ � �N�\]^_`a^\b
�N�ded^d`f  �88

MCextracted: mass of all the molecules of Citrus extracted (mg) 

MCinitial: mass of all the molecules of Citrus incorporated initially (mg) 

Table 9. Encapsulation efficiencies reported in the literature for twin-screw extrusion encapsulation 

References Active compounds Type of matrix 
EE 

(%) 

27 orange terpenes and tocopherols 
maltodextrins DE-12+ 

sucrose 
60-95 

28 antrazine starch 68-89 

29 orange oil 
maltodextrin DE-2+ 
saccharose + lecithin 

85 

30 butter and lemon flavor 
OSAN starches+dextrose, 

lactose 
80 

4,31 ascorbic acid starch <97 

32 natural pigments starch 36-77 

However, due to the differences of the matrix material and the active compound employed, as 

well as the differences related to the analytical quantification methods and process parameters it 

was difficult to judge about the efficiency and performance of our system compare to others. 

For instance, it is important to remind that, for twin-screw extrusion encapsulation, the load of 

the active compound has been settled to be between around 10 to 12% (w/w), and that the most 

common quantification method employed is GC-FID. Although each sampling method has 

always to be adapted to the encapsulated compound, the type of matrix and the process 
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employed, it is difficult to compare these results and to have a constructive feedback about it. 

Taking into account these statements, we will try to highlight the advantages and limitations of 

our delivery systems, as well as to discuss the points that are considered to be as future 

improvements for the extrusion encapsulation process. 

Figure 15 and 16 roughly corresponds to a plot representing the amount of molecules of Citrus 

that had been lost during the extrusion process as the analysis was conducted on different 

matrices which had been stocked on a blister at 4°C just after being extruded. The secondary axis 

corresponds respectively to the volatility and polarity of the molecules and, it helps to have a 

mapping about how molecules were released based on this characteristic. Hence, we were able to 

get a better understanding of the possible interactions that could take place between the perfume 

molecules and the matrix ingredients, according to their physicochemical properties 

Thanks to these figures, there are two important points that need to be highlighted. The first 

point corresponds to the low impact of the extrusion process on the perfume composition and the 

second point is the evidence of existing interactions between the molecules of Citrus and the 

matrix. 

To begin, for all four formulations, it was remarkable to notice that most of the highly volatile 

compounds such as manzanate and methyl heptenone for example, were preserved. Therefore, 

the process could be considered as efficient regarding the conservation of volatiles. Indeed an 

encapsulation process can be classified as performant based on the preservation of the most 

sensitive active compounds. Herein, it proves that our processing conditions were mild in terms 

of temperature and mechanical shear since these molecules still retained in the matrices after 

extrusion (almost 30% of the molecules remained on the matrix). 

This clearly might be contemplated as an advantage compared to other extrusion encapsulation 

processes, in view that no pre-encapsulation of the active ingredient, usually by spray drying or 

freeze-drying, was required prior to extrusion. This was the case of Ruiz-Gutiérrez et al.32

(2015), Yuliani et al.33 (2006) and Kollengode & Hanna34 (1997) which encapsulated the active 

ingredient before extrusion to ensure its protection. Sure their procedures guaranteed the 

conservation of the active ingredient against harsh extrusion conditions, but their encapsulation 
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efficiencies were not higher than the ones obtained in this study. On top of that, we could also 

assume that pre-encapsulating the active ingredient generates extra cost and time production, 

therefore being less competitive to our process. 

Figure 15. Influence of the matrix ingredients on the volatility (HS= head space (µg/L) of the molecules 
of the perfume 
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Figure 16.�Influence of the matrix ingredients on the polarity of the molecules of the perfume�

Turning to the active/wall interactions, a trend that stands out was that for all the four delivery 

systems, molecules having an aldehyde function, such as aldehyde C8, C9, C10, C11, florhydral, 

neral, geranial, and rhubafuran presented very high PRM loss values (around 70% and 80%) 

compared to higher volatile molecules as manzanate, suggesting that interactions between 

aldehydes and the matrix ingredients took place. One can suspect that these types of interactions 

were covalent interactions, occurring between these free aldehydes compounds and the amino 

acid of the PPI. The fact that volatile compounds like methyl heptenone had smaller PRM loss 

value than neral, for example; lead us to believe that only covalent interactions between this 

compound and the matrix could be responsible of this behavior. 

In Chapter 3, Maillard�s reaction occurred between the carbonyl group of the reducing sugar of 

maltodextrins and the amino acid of PPI so as to obtain the so-called Amadori compounds 35,36,36. 

As for the Maillard reaction, the reactivity comprises aldehyde and amine functions that may 

form covalent binding. We could envision a similar reactivity between the aldehyde compounds 

present in the perfume and the amino acid of PPI. 



Chapter IV Industrial Approach: Incorporation of a perfume in a bio-based matrix by TSE 

�

213  Natalia CASTRO 2016 

Besides, all the aldehyde compounds presented in the Citrus formulation were relatively 

hydrophobic (clogP value between 2 and 4), which also might explain the high interaction 

between the matrices. 

Several studies on the flavor and matrices interactions have indeed demonstrated that proteins 

used as wall materials interacted with aldehyde compounds either by covalent irreversible 

binding or by hydrophobic interactions, or both 38�42. Gremli37 (1974) studied the interactions 

between soy protein isolate and some flavors compounds in solutions with the aim of 

understanding the consequences of flavoring soy products. He determined that aldehydes showed 

higher retention percentages (between 37 and 100%) than ketones (between 5 and 68%) in a 5% 

(w/w) solution of soy protein. Alcohols did not interact with soy protein. The problem is that 

extrusion modifies the structure of proteins and as a consequence, the interactions between an 

extruded protein and an aldehyde would not be the same as they could be when proteins and the 

aldehydes are in solution. In extrusion cooking for example, is believed that proteins are opened 

and rearranged in a fibrous way favoring the formation of reversible interactions with volatile 

compounds.  

Our delivery systems permitted to put in evidence two facts: 

• Interactions between the matrix and the aldehydes compounds were noticed by the high 

PRM loss values compared to the other perfume ingredients. 

• Adding 5% of PPI or Hi-cap100, allowed reducing the retention of all the aldehydes 

except for rhubafuran. The first case could be explained by the fact that when the amount 

of PPI was increased perhaps the interactions between maltodextrins and PPI were 

favored, and thus less amino groups of PPI were available to react with free aldehydes 

compounds. In the second case, we could make the assumption that the excess amount of 

Hi-cap100 could surround the aldehyde compounds, and thus preventing them from react 

with the amino group of PPI.  

This behavior was found to be very interesting because for a specific amount of compatibilizing 

agent, either Hi-cap100 or PPI seemed to prevent or favor the aldehyde/matrix interactions.  

A more accurate study would be required in order to better elucidate the type of interactions 

herein involved. After all, not only the chemical properties of the active and the wall materials 

are responsible of the interactions, but also the physical properties of the delivery systems 38,43�45. 
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For this reason, surface energy analysis (IGC-SEA) could be of strong interest, because it would 

allow to determine the enthalpy of adsorption of the injected compound, (i. e. one of the 

molecules composing the perfume) on the surface of the stationary phase (e.g. the stationary 

phase is composed of the wall material without any active ingredient, at a precise moisture 

content) at different physical states by only varying the temperature profile of the column 46,47. In 

that way the influence of the physical state of the delivery system on the interactions with the 

active ingredients can be studied.  

In general, the extrusion conditions developed turned out to be performant. However the 

interactions between the aldehydes and the matrix ingredient could be seen as a major drawback, 

because the main objective of encapsulation is to protect the active without interfering with it.  

Regarding the polarity of the different perfumery ingredients, no relationship was noticed related 

to their weight loss during extrusion. 

3.2.2. Study of the release behavior under different relative humidities 

In this complex system, it is difficult to establish if the core/matrix is a single phase or a biphasic 

system. Therefore it is quite difficult to propose a release mechanism to describe the release 

profile of the six molecules studied.  Under these circumstances, we assumed that perfume 

release from our delivery systems was mostly done by diffusion. 

Release profile of all the molecules followed in this study had the same pattern, meaning that the 

major perfume lost occurred during the first day of the kinetic study. The major release was 

observed for the extrudates that were stocked at 90%RH and 25°C (Figure 17), which was 

expected since the extrudates were at a rubbery state under these conditions. This was confirmed 

by the low values of their glass transition temperature (A=-11°C, B=-25°C, C=-26°C and D=-

34°C) for all four formulations at a Citrus/MCT content of (80/20). Therefore, diffusion of the 

active compounds inside the matrix was favored. Besides, the high moisture content values of 

the extrudates (around 12-14% (w/w)) also contributed to the release of the encapsulated 

molecules. 
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Kinetic release study for the formulations containing Citrus/MCT-oil (80/20) at 90%RH: 

Figure 17. Kinetic release study of the four extruded formulations with Citrus/MCT-oil (80/20) stabilized 
at 90%RH and 25°C. 0 days corresponds to the theoretical composition of the perfume on 1g of extrudate 

loaded at 10% (w/w).  

From the graphics showed on Figure 18, illustrating the amount of molecule remaining on the 

extrudate over time, there was not too much information that could be analyzed since for the first 

days the major part of the perfume was already released. And in the following days, we noticed 

that the amount of molecules remaining on the extrudate increased. This phenomenon was more 

marked for low volatile molecules such as fixolide and IPM. Actually it seemed like if the 

extrudates re-adsorbed the molecules that were released. The fact was that two of our climatic 

chambers (33% and 90% RH) were hermetically closed and no renewable air was ensured. This 

could be the reason why the amounts of molecules remaining on the extrudates through time 

were increased. Besides, these climatic chambers were the smallest in volume compared to the 

other two. Indeed, our climatic chambers were more as an equilibration room, where the released 

molecules and the environment reached equilibrium. 
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Kinetic release study for the formulations containing Citrus/MCT-oil (80/20) at 33%RH: 

The same technical issue was observed on the climatic chamber at 33% and 25°C, because they 

were hermetically closed chambers where no renewable air was ensured. From day 3 to day 14 

the amount of molecules remaining on the extrudate was slightly increased, almost for all 

molecules (Figure 18). 

Figure 18. Kinetic release histograms of formulations A and B at 33% RH at 25°C. 0 days correspond to 
the theoretical composition of the perfume on 1g of extrudate loaded at 10% (w/w). 

�

For this reason a global analysis of the kinetic release behavior was made at 33%RH without 

going into details. For the general release behavior of our delivery systems, under this condition, 

it was observed that the amount of perfume remaining in the extrudates after three days was 

higher compared to the other relative humidities. This trend was valid for all the four 

formulations. 

Despite this drawback in our experimental setting, we could however estimate high retention 

values of the extrudates knowing the measured values of the glass transition temperature. As it 

was highlighted on §3.2.1, the glass transition temperatures of the extrudates were the highest at 

this relative humidity. Thus, the delivery systems were in a glassy state, and so the retention of 

the active compounds should be guaranteed. 
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Kinetic release study for the formulations containing Citrus/MCT-oil (80/20) at 60% and 

75%RH: 

The formulations that were stocked at 60%RH and 75R%RH (Figures 19 and 20) showed the 

same behavior in terms of release. The most volatiles molecules (i.e. limonene, n-decanal) were 

rapidly released, but the high molecular weight molecules, like IPM, lilial and fixolide, were 

more retained, since they showed little variation during the kinetic analysis.  

No significant differences were observed for all the extrudates exposed to 60 and 75% RH at 

25°C. 

Figure 19. Kinetic release histograms of four extruded formulations with Citrus/MCT-oil (80/20) at 60% 
RH and 25°C. 0 days correspond to the theoretical composition of the perfume on 1 g of extrudate loaded 

at 10% (w/w). 
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Figure 20. Kinetic release histograms of four extruded formulations with Citrus/MCT-oil (80/20) at 75% 
RH and 25°C. 0 days correspond to the theoretical composition of the perfume on 1 g of extrudate loaded 

at 10% (w/w). 

To summarize, the major part of the perfume was lost in the first days of the kinetic study, 

showing that the four matrices had a rapid release profile when exposed to different humidities. 

Indeed, we observed that the perfume release appeared to stabilize over time as no variations 

were observed after 14 days. 

We also observed that less aldehyde were lost when the PPI content was increase.  

3.2.3. Study of the release behavior: influence of the Citrus/MCT-oil content 

Formulations B-15 and C-1 were the ones chosen to compare the effect of the Citrus/MCT-oil 

content on the release of the perfume. This choice was established on the results obtained in 

Chapter 3, where addition of 5% (w/w) of PPI or of 1% (w/w) of Hi-cap100 led to the same 

behavior in terms of compatibilizing agents. Therefore in this part, we have attempted to 
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understand the behavior of these two compatibilizing agents when the amount of active principle 

added is modified. 

Retention of the active mixture was found to be better for formulation at (80/20) of content than 

for formulations at (50/50) for both of the formulations B-15 and C-1 at 60% and 75%RH (Table 

10 and 11). For example in the case of fixolide, the remaining amount in the extrudate for 

formulation B-15+Citrus80 was of 6.38 mg.g-1 of dry extrudate and on the contrary for 

formulation B-15+Citrus50 it was around 2.38 mg.g-1 of dry extrudate, at 60%RH in the case of 

formulation C-1 at 75%RH, the amount of n-decanal retained in the matrix for the composition 

of the active mixture at (80/20) was of 2.07 mg.g-1 of dry extrudate and for the active at (50/50) 

it was of 1.13 mg.g-1 dry extrudate. 

Low retention values were obtained for the formulations containing Citrus/MCT-oil at 50/50. 

These results were expected considering that during extrusion, splashing out of the extruder was 

observed and the extrudates presented high exudation levels after stabilization at 0%RH at 25°C.  

In our case, we believed that this poor retention of the active within the matrix was provoked to 

an excess of the MCT-oil, which acted as a solvent in which the perfume was dissolved ant thus 

increased the dissimilarities between the hydrophilic matrix and the hydrophobic active mixture. 

Both ingredients could also have been on competition when incorporated in the matrix. To 

confirm these statements, further experiments will be required. 

Table 10. Amount of n-decanal remaining on the extrudate after 3 days under 60 and 75%RH at 25°C 

Relative 

Humitity %RH 

at 25°C 

Citrus/MCT-

oil content 

B-15 (mg/ g 

of dry 

extrudate) 

C-1 (mg/ g of dry 

extrudate) 

60 

(50/50) 1.16 ± 0.05 1.35 ± 0.06 

80/20) 1.78 ± 0.01 2.03 ± 0.01 

75 

(50/50) 1.13 ± 0.04 1.28 ± 0.02 

(80/20) 2.07 ± 0.02 2.41 ± 0.02 
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Table 11. Amount of fixolide remaining on the extrudate after 3 days under 60 and 75%RH at 25°

Relative 

Humitity %RH 

at 25°C 

Citrus/MCT-

oil content 

B-15 (mg/ g of 

dry extrudate) 

C-1 (mg/ g of dry 

extrudate) 

60 

(50/50) 2.57 ± 0.23 2.43 ± 0.08 

80/20) 6.38 ± 0.11 5.52 ± 0.02 

75 

(50/50) 2.27 ± 0.04 2.40 ± 0.11 

(80/20) 5.98 ± 0.18 6.81 ± 0.26 

There were no significant differences between the two compatibilizing agents tested in terms of 

retention of the perfume (Figure 21 and 22). 

Figure 21. Kinetic release histograms of formulation B at different Citrus/MCT content at 60% RH and 
75%RH at 25°C. 0 day corresponds to the theoretical composition of the perfume on 1 g of extrudate 

loaded at 10% (w/w). 
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Figure 22. Kinetic release histograms of formulation C at different Citrus/MCT content at 60% RH and 
75%RH at 25°C. 0 day corresponds to the theoretical composition of the perfume on 1 g of extrudate 

loaded at 10% (w/w). 

�

3.3. Outlooks: industrial application of the bio-based delivery systems 

The objectives of these olfactive tests were to identify the possible application of our bio-based 

delivery system in the fragrance industry. Results will provide a first glimpse on how the new 

extruded bio-based delivery systems behaved when encapsulating a complex mixture of 

fragrances. These experiments were an attempt to initiate a real use of these delivery systems. 
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3.3.1. Air Fresheners 

Figure 23. 5-point hedonic scale test of the olfactive performances of the extrudates matrices vs 
benchmarks over time, tested for air freshener application; d1= day 1 and d19= day 19. 

The data presented in Figure 23 indicate the olfactive performance (i.e. intensity) of the different 

samples over time. As expected, the 2 benchmarks demonstrated very good performance at 

initial time, with olfactive character very close to the pure fragrance. The performance of the 

carrageenan gel significantly drops at day 19 when compared to microporous membrane. 

The performance of the extruded delivery systems were overall in line with benchmarks at d1 for 

all formulations, except for formulation C-1 which was really underperforming. Formulation C-1 

had the poorest olfactive performance and hedonics, due to the strong smell of the matrices itself 

that perhaps masked the olfactive character of the Citrus. However, for the other formulations, 

the olfactive footprint of Citrus was still perceivable and recognizable even though the character 

was perceived to be less room filling and with more bottom notes than the microporous 

membrane. To evaluate the performance overtime, a second olfactive analysis was conducted on 

day 19. All matrices were more underperforming to the microporous membrane benchmark, 

once again confirming the rapid release of the perfume in our bio-based matrices. 

In parallel, a weight loss study on the different samples was carried out under controlled 

environments in order to better understand how the perfume was released from the extrudate 

when tested as air fresheners. Around twenty to twenty-five grams of the extrudates were 

weighted and put on controlled climatic chambers; one setup at 22°C at 45%RH and the second 

one was fixed at 37°C at 75%RH. The evolution of the mass of the sample was followed over a 

period of two to five weeks. The amount of residual water of the extrudates was taken into 
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account to correct the curves of weight loss of the sample (Figure 24). The weight loss curves, 

confirmed the fact that most of the perfume was released within the first 3 days of stabilization. 

This corroborates the results obtained for all the formulations regarding the kinetic study. Our 

delivery systems display rapid release profile of the active when exposed to high levels of 

humidities. 

Figure 24. Evaporation profiles of different samples at iso-oil loading and comparable surface at different 
environments. A: corresponds to 22°C at 45%RH and B: corresponds to 37°C at 75%RH 
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All extruded delivery systems presented a very rapid release profile of volatiles compared to the 

gel and the membrane for both conditions. 

At 22°C and 45% RH, all extruded samples reached a plateau after 5 days, showing that there is 

no more water or perfumery ingredient loss whereas the slopes for both gel and membrane are 

more linear, with less than 30% of weight loss over 5 days.  

The samples exposed at 37°C at 75%RH showed more similitude, although the release profile of 

all extruded samples are still much more rapid than for membrane or gel. In this case, the impact 

of both temperature and humidity could be visualized. 

These curves are very important because they help us to understand why the olfactive 

performances of the extrudates were so low for day 19 compared to the olfactive performance of 

the membrane. However, the granulometry of our delivery systems was not homogenous, and 

thus this could induce some difference on how the perfume was released when exposed to 

different conditions, because the surfaces of the samples were not exactly the same. This might 

also explain the differences on weight loss between the benchmarks and our samples. Further 

studies detailing the weight loss per surface would be quite interesting to really compare and 

understand the release profile of the extruded matrices versus known benchmarks.  

Nevertheless, it is important to emphasize that for day 1, the olfactive performance of 

formulations A-10, B-15 and D-5 were in line with standard benchmarks and that no strong 

olfactory shift was noticed. 
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3.3.2. Detergence 

In the detergence field, new encapsulating materials have to respect certain aspects in terms of 

olfactive performance, solubility, visual aspect and texture, anticaking power, and process 

production.  

Figure 25. Evaluation of olfactive performance of bloom stage at iso-oil for free oil, spray-dried starch 
particles and extruded matrices: Detergence application 

Preliminary dissolution tests, for rapid implementation of extrudate, were run in order to have a 

global idea of their solubility when compared to the benchmark product, i.e. Bloomtech® herein 

employed. As well as for the air freshener�s olfactive tests, the samples were manually grinded, 

and as a consequence the particle size was not homogeneous. Indeed, our delivery systems were 

very hard solid matrices and so, their grinding was very difficult. 

Performances of all four formulations A, B, C and D (Figure 25) were significantly lower when 

compared to the free-oil sample. However, it is surprising that among the four formulations 

tested, the performance of A and B were quite similar to the performance of Bloomtech®. 

However, due to the difficulty of the sample preparation, and their low solubility in water (their 
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dissolution took twice as long as the Bloomtech®) it was decided that the test must not be 

continued.  

Indeed, on top of the dissolution aspects, our extrudates, used as such, could not fit to other 

specifications required for powder detergent applications as they presented agglomeration and 

particle size homogeneity issues.  

Despite the results related to the olfactive performance of the delivery system for detergence 

applications, the formulation but also the processing of the extrudates could be improved in 

order to fulfill the requirements needed in this domain. For example to avoid the agglomeration 

and particle size issues an anticaking agents as microcrystalline cellulose or lecithin may be 

added. 

4. DISCUSSION

It is important to stress out that our extrusion encapsulation process is a very attractive 

alternative for the encapsulation of active compounds, because of the mild conditions that were 

established. This mild extrusion process, which reported SME values below 200 Wh.kg-1 (Table 

9), allowed preserving volatile compounds such as manzanate (Figure 15). This is a very positive 

result since twin-screw extrusion is considered to be a harsh technology for encapsulation of 

sensitive ingredients (i.e. thermolabile and volatile compounds) due to the high mechanical shear 

and elevated temperature required for some matrices (Table 9 of Chapter 1). Therefore, in other 

studies, they have reported a pre-encapsulation step prior to extrusion in order to avoid 

degradation of the active compounds. 

Even though, our matrices slightly modified the olfactive profile of the perfume, the storage 

stability and the encapsulation rates obtained (6.2 to 7.8%) were encouraging and are 

comparable to those divulged in the literature (Table 13), not only for the same type of 

encapsulation process, but also comparable to other encapsulation process, as for example spray-

drying. 
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These results confirmed Uhlemann & Reiss's48 (2010) statement related to the impact of 

extrusion on flavor or fragrance encapsulation. Indeed, extrusion encapsulation allowed having a 

longer shelf-life stability of the delivery system during the stocking conditions (above months 

stability) at expenses of a modified flavor profile. It is inevitable not to have any interactions 

between the active compounds and the wall material ingredients and as a consequence of those 

interactions; the olfactive profile of the perfume might be changed. 

As a matter of fact, the matrix ingredients seemed to have an important affinity towards aldehyde 

compounds and this statement was valid for all four formulations. Indeed, we suspect that these 

interactions occurred between the amino groups of PPI and the aldehyde compounds of the 

perfume and thus, they are of the covalent type binding 39,41. These reactions are known as part 

of Maillard�s reaction and are often found in flavor encapsulation. Not to mention that 

hydrophobic interactions could also take place between fragrances and modified starch as 

mention by Guichard�s39 work (2002). 

Nevertheless, there were some differences observed between the four formulations with respect 

to their behavior towards aldehydes. As mentioned on § 3.2.1, interactions towards aldehydes 

were not the same if the PPI content was increased or not. For example, it appeared that the 

addition of 5% of PPI (comparing formulation A to formulation B) helped to reduce the 

interactions between aldehydes and proteins. The same trend was observed when 5% of Hi-

cap100 was added (comparing formulation A to formulation D) interactions between 

aldehydes/PPI decreased. Conversely, the addition of 1% of Hi-cap100 increased the aldehyde 

retention. These results suggested that by the addition of these compatibilizer agents, we could 

modified the microenvironment around the active compounds, and thus modulate their retention 

and their release 49. 

About the retention of volatile compounds, in spray drying for example, low molecular weight 

molecules with low clogP values, always presented poor retention rates as they are highly 

volatile and have less affinity with hydrophobic encapsulating agents. For example, Charve and 

Reineccius50 (2009) spray-dried (E)-2-hexenal in different matrices material and all presented 

high losses of this compound. So, it is expected to see that very small and high volatility 

compounds such as methyl-heptenone, manzanate, geraniol had poor retention values in 

extrusion encapsulation. In contrast, molecules with high molecular weight and clogP, like 

fixolide, IPM, trans-nerolidol and neocaspirene, showed higher retention. The analytical results 
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as well as the sensory evaluations confirmed these slight changes perceived on the olfactive 

footprint of Citrus, even though it was overall pretty in line to the original Citrus. 

With respect to the thermal behavior, the most important part was to confirm that for all the four 

matrices, the glass transition temperatures were above the room temperature. Again, having the 

delivery systems at a glassy state was ideal in order to reduce molecular diffusion of the perfume 

at stocking conditions. This is one of the industrial specification that was achieved: we were able 

to produce matrices, that for a large range of relative humidities (33 to 75% RH at 25°C) could 

be at a glassy state and thus, protect the active components. Although this may be true for all the 

extrudates except for the extrudates that were stock at 90%RH which had a glass transition 

temperature below 0°C. 

Regarding the kinetic results and the determined glass transition temperature of the extrudates, 

the release profile of the perfume could be anticipated. The retention of volatiles decreased as the 

relative humidity of the surrounding environment was increased, what was expected and, in 

agreement with the reported literature. 

What is important to note, regarding the glass transition temperature of our delivery systems, is 

that for such different extrusion conditions (in terms of extrusion temperature, matrix 

ingredients, initial water content, and screw speed) we were able to obtained similar or even 

higher glass transition temperature than the other studies 4,18,28,30,31,33,48,51,52. This is very 

attractive since mild extrusion temperatures could be beneficial to encapsulate thermolabile 

components, like perfumes. 

The encapsulation of Citrus/MCT-oil at (80/20) was considered to give better results than 

extrudates of Citrus/MCT-oil at (50/50), not only because during extrusion there were fewer 

active mixture losses and the extrudates showed little exudation, but also because best retention 

values and longer stability were obtained. As a matter of fact, the formulations containing 

Citrus/MCT-oil at (50/50) were already above the maximum amount of active that could be 

incorporated if we take into account both ingredients (e.g. Citrus and MCT-oil) as active 

compounds. This excess of active compounds was also confirmed by the lowest values of SME 

measured (around 96 Wh.kg-1) and, by the splashing out of the active mixture at the exit of the 
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extruder. The excess amount of MCT-oil was also observed thanks to appearance of segregation 

zones on the thermograms (Figure 10) suggesting that there might be competition between these 

two active ingredients. 

Last but not least, concerning the sensory evaluation, the olfactive performances of our delivery 

bio-based systems were indeed relatively lower than the benchmark product they were compared 

to. The olfactive footprint of Citrus was recognizable even though a slight smell of base was 

perceived.  

Furthermore, formulation B presented higher olfactive performance than formulation C, for the 

detergence and air freshener applications. This could be explained by the fact that formulation B 

had more important pore population and bigger average pore diameter than formulation C (Table 

11). This implies that morphology might enhance release of the perfume, resulting in a more 

important bloom. 

It is noteworthy to mention that the olfactive test of the extrudates were carried out after nine 

months of being produced and kept at stocking conditions (hermetic blister at 4°C). The fact that 

the analyzed samples were old could be impairing to their olfactive performances. Hence these 

preliminary results are encouraging for a plausible application, perhaps in other industrial 

domain. 

  



Chapter IV Industrial Approach: Incorporation of a perfume in a bio-based matrix by TSE 

�

Natalia CASTRO 2016  230

5. CONCLUSIONS

The extrusion conditions that were established for the encapsulation of the perfume were 

considered to be efficient since for a 10% (w/w) of Citrus load the encapsulation rates obtained 

(60-80%) were comparable to those reported in the literature for twin-screw extrusion.  

Besides, the process conditions allowed to preserve high volatile compounds such as manzanate 

and methyl-heptenone, which is an asset for this kind of technology that are considered to be 

harsh. This proved that the process parameters established were mild, and it was also confirmed 

by the low SME values measured.  

Sure, extrusion encapsulation of flavors and fragrances provides slight modifications of active 

compound profile conversely to other encapsulation techniques, but nevertheless it offers longer 

shelf-life stability thanks to the higher glass transition temperature and low moisture content. 

However, in terms of release and thus, olfactive profile of the perfume, there are still some 

parameters that could be improved. For example, the formulation of the matrix can be improved 

in order to decrease core/wall interactions, in particular for aldehydes. In this case, the 

formulation of the perfume or the matrix could be modulated to reduce the affinity between these 

compounds and as a result boost their release.  However, investigations related to active 

compound and extruded delivery systems interactions are few, due to the complexity of the 

systems, therefore more research are required. Solubility of the delivery systems could also be 

improved if the targeted application will be detergence. In that case the amount of PPI in the 

matrix could be reduced or replaced for example by Hi-cap100, which has a better solubility in 

water. 

Conversely, the process parameters could be adjusted to modify the properties of the matrices. 

Either by increasing the solid feed rate to increase the encapsulation rate or, increasing the screw 

speed to reduce the residence time of the mixture inside the extruder and as a result also increase 

the encapsulation rates 11. 

The biggest challenge related to flavor and/or fragrance encapsulation is to produce a matrix 

material where the flavor or fragrance will keep exactly the same sensory characteristics at the 

different stages of the industrial process (during encapsulation, stocking and when employed). 

Obviously, for us it will be very interesting to be ale to put into shape the delivery system 
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directly after extrusion, because in that way all the delivery system will have the exactly same 

shape. Consequently, it will be easier to study the release behavior and avoid the problems 

related to agglomeration and particle size homogeneity. 

In conclusion, the obtained results are very encouraging, not only in terms of encapsulation but 

also in terms of scientific discovery related to the interactions occurring between an extruded 

matrix and the core material. Off course, all these results came from a single extrusion campaign. 

Therefore, a critical analysis is recommended to put into perspective the observations and 

hypostesis herein exposed. So, more experiments (meaning more extrusion campaigns) are 

mandatory to corroborate the tendencies and to verify the hypothesis mentioned in this thesis but 

also to have a more accurate understanding of the complexes phenomenons involved. This only 

shows that there are still many phenomena to be explored in order to master twin-screw 

extrusion encapsulation of perfumes. 
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GENERAL CONCLUSIONS

One of the areas of expertise of the Laboratory of Industrial-Chemistry (LCA) is the 

encapsulation of active principles, using natural polymers, by spray drying. Willing to extend 

this topic and combining it with the long lasting experience of the lab in twin-screw extrusion, 

the frame of this PhD was then to develop an innovative delivery system, by incorporating a 

hydrophobic compound in a bio-based hydrophilic matrix in a one-step extrusion process. 

Therefore, the driving force behind this PhD project was related to the understanding of 

core/wall interactions in such thermo-mechanical process and their impact on the final properties 

of the delivery system. 

Simultaneously, the industrial purpose of this work was to elaborate by twin-screw 

extrusion a perfume diffuser from natural and biodegradable materials that was sensitive to the 

environmental conditions. For example, the moisture content of the surrounding could trigger the 

release of the perfume. Therefore, the specifications of the industrial partner were to implement 

an innovative encapsulation process for fragrance�s protection. The delivery system had to be 

made from biopolymers, be water-soluble and at a glassy state at room temperature. And the 

most important requirement was, that the delivery system had to respect a perfume load of 10% 

(w/w).  

After an exhaustive bibliographic study on all melt extrusion encapsulation processes 

(experimental conditions, wall materials, active ingredients, physicochemical properties of the 

encapsulating materials), we decided to elaborate maltodextrin-based matrices for the 

encapsulation of the perfume as it is commonly employed in the flavor industry and as it is 

highly water sensitive. However as these polymers are never used alone in twin-screw extrusion 

(short chain length and too hydrophilic to retain hydrophobic compounds), the use of a 

compatibilizing agent seemed mandatory.  

To differentiate our bio-based delivery systems from current techniques used in flavor 

encapsulation, we have chosen to use a non-common compatibilizing agent, in this case pea 

protein isolate (PPI). Vegetal proteins are known (and our lab has a specific experience in that 

domain) to demonstrate some interesting encapsulation efficiency as they bear hydrophobic 

moieties allowing the proteins to blend correctly with hydrophobic compounds during thermo-

mechanical process. The performance of PPI was then compared to a classical compatibilizer, a 

modified starch (i.e. Hi-cap 100). Another challenge that we decided to impose was to develop 
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our process within the frame of the green chemistry principles, by trying to reduce the number of 

steps during the encapsulation process, the production of by-products and by avoiding the use of 

toxic solvents. 

These objectives were achieved through the use of twin-screw extrusion technology as 

the encapsulation process. This technique was at the heart of our research project.  

Before exploring the extrusion experimental conditions, a series of elementary 

experiments were performed on a lab scale on five different DE-value maltodextrins in order to 

select the most appropriate for this application. Indeed, formulation of new bio-based products 

always demands for knowledge on the physicochemical properties of the raw materials to be 

employed, so as to better orientate the type of process and the conditions to be applied. 

According to the rheological and thermal results, we were able to conclude that 

maltodextrins are very peculiar materials, because their window of processability is very narrow. 

As we tested different plasticizers, we noticed that if more than 20% (w/w) of plasticizer is used, 

materials become so ductile that they cannot be handled, whereas with less than 10% (w/w) of 

plasticizer, materials were too brittle. Taking this into account, maltodextrin DE-12 was the most 

convenient one for the wall material, after all, it had the right viscosity at low moisture content 

(i.e. 12% w/w) at 80°C (its flow consistency was about 33838 Pa.s) and presented an adequate 

hygroscopic character for environments having a relative humidity below 75% RH at 25°C. 

During this work, the correlation between the physicochemical properties of maltodextrins with 

their DE was also discussed, as DE alone cannot describe accurately the molecular weight 

distribution of maltodextrins.  

Up-scaling the process to industrial twin-screw equipment, it was observed that when 

only maltodextrin and water mixtures were extruded without any compatibilizing agent (i.e. PPI 

or Hi-cap100), it was no possible to obtain a product. Actually, the addition of a compatibilizer 

like PPI and/or Hi-cap100 was necessary to render the mixture extrudable and to facilitate the 

incorporation of the active ingredient. Due to this, four formulations were optimized for the 

elaboration of biopolymer mixture matrices: 

• A-10, containing 10% (w/w) of PPI,  

• B-15, containing 15 % (w/w) of PPI,  

• C-1, containing 10% (w/w) of PPI and 1% (w/w) of Hi-cap100, 
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• D-5, containing 10% (w/w) of PPI and 5% (w/w) of Hi-cap100 

The addition of the compatibilizing agents permitted to put in evidence the following 

facts related to their mechanism of action: 

• The addition of PPI not only allowed to process maltodextrin, but also allowed to 

increase the encapsulation rates of MCT-oil, a model hydrophobic compound. Indeed, the 

highest encapsulation efficiencies were obtained for formulation B-15, that were around 

96% for an encapsulation rate of MCT-oil of 13%. Besides, the obtained delivery 

systems presented stable glass transition temperatures and very low exudation, as long as 

the incorporation rate of MCT-oil was below 13%. This may be explained by the fact that 

MCT-oil is trapped in the hydrophobic regions of the proteic structure, and these domains 

do not take part in the glass transition temperature of the matrix (62-72°C).  

• The addition of 1 to5% of Hi-cap100 clearly improved the encapsulation rates (up to 

15.4%). However, the encapsulation efficiencies were lower than for formulation B-15. 

Interestingly, the smaller size of the pores indicated that Hi-cap100 acted as a surfactant 

by getting all around the MCT-oil and thus facilitating its dispersion into the hydrophilic 

domains of the matrix. For this reason the glass transition temperature of these 

formulations (40-60°C) were lower than for formulations B-15. 

Noteworthy, the color of the extrudates changed with the addition of PPI; they became 

slightly brownish, due to Maillard�s reactions between the carbonyl group of reducing sugars of 

maltodextrins and the amino group of PPI. The specific mechanical energy (SME) values 

measured for the bio-based delivery system varied between 120 to 370 Wh.kg-1, which indicated 

very mild conditions for the process 

Regarding the results obtained for the delivery systems containing the perfume, we 

noticed that even though the MCT-oil was employed as a vector to enhance the incorporation of 

the perfume, there was a limit amount for which the MCT-oil did not play such a role, and acted 

more as another core material. Indeed, when the perfume was incorporated in a mixture of 

Citrus/MCT-oil at (50/50) % of content, a part of this mixture was splashed out of the extruder, 

suggesting that no all the mixture was incorporated. This was confirmed by the amount of 

perfume remaining in these extrudates, which were much lower than for the formulations 
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containing Citrus/MCT-oil at (80/20) % of content. In this particular case the SME value was not 

taken as an indicator of mild extrusion conditions but more as an indicator of an excess of 

lubricant agent. 

On the contrary, results obtained for the delivery system with Citrus/MCT-oil at (80/20) 

were interesting. Encapsulation rates of 6.7 to 7.9% for initial load of the perfume of 10% (w/w) 

were considered acceptable. The SME values were much lower than those obtained for the 

systems containing only MCT-oil as the active. 

Results of the kinetic study were not compelling at this stage for a perfumery application, 

given the fact that the major part of the perfume was released during the first days, and this was 

observed for all the formulations in all the different climatic chambers they were exposed to. 

Thereafter, the release over time did not show significant variation after 14 days of study. 

Our delivery system showed a stronger affinity for aldehyde compounds during 

processing. These compounds were more retained than the others perhaps due to covalent 

binding with the amino acids of PPI. Due to these interactions, the olfactive profile of Citrus was 

obviously modified. Yet, we observed that the addition of 5% of Hi-cap100 or PPI, helped to 

decrease aldehyde retention. This suggested that by modulating the formulation of the matrix or 

the perfume these interactions could be avoided. 

The olfactive performances, for air freshener and detergence application, of our bio-based 

delivery system were underperforming compared to the benchmarks employed (e.g. gel, 

microporous membrane and starch-based capsule, all tested at iso-oil loading. For detergent 

application, we suspected that the matrix was not soluble enough to instantly release the perfume 

upon addition in water.). For air freshener application, this was explained by the fact that our 

extrudates had a very rapid release within the first days. Samples reached a plateau after 5 days, 

suggesting that there was no more water or perfume released. Nevertheless, it is important to 

highlight that at day 1 of the air freshener tests, the olfactive performance of formulation A, B 

and C were acceptable since no strong olfactory shift was noticed and their performance were in 

line with benchmarks. 

Scanning electron microscopy permitted to determine the morphology of the bio-based 

delivery systems. In general, our extrusion conditions induced the formation of homogeneous 

extrudates, with multiple macroporosity morphology (pore diameter was superior to 50 nm) and 

with several irregularities onto the surface. 
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The advantages of the twin-screw extrusion encapsulation process developed herein can be 

outlined as follow: 

• One-step process allowing the incorporation of an active compound in a polymeric 

matrix without any pre- or post-treatments. This results in a cost-effective technology. 

• No production of by-products during the processing. No waste of materials. 

• Low water consumption. The amount of water needed to plasticize the mixture was less 

than 25 % (w/w). 

• The ingredients employed are from natural origin (except for the modified starch that had 

been chemically treated) and are biodegradables. 

• Mild extrusion conditions: In one hand the extrusion temperatures fixed were all below 

50°C and on the other hand SME values measured were considered to be low (< 

370Wh.kg-1), for both the active ingredients tested. These mild extrusion conditions are 

highly attractive for the encapsulation of very sensitive and thermolabile compounds 

such as manzanate and methyl heptenone in our case but that should be extended in the 

future to other sensitive molecules (i.e. pigments or polyphenols). 

• Even though the extrusion conditions were mild, the mixing efficiency of the designed 

screw profile was still performing.  This was demonstrated by the encouraging 

encapsulation efficiencies of MCT-oil obtained. They could reach encapsulation 

efficiencies above 80% for encapsulation rates varying between 8-13%. And in the case 

of Citrus/MCT-oil at (80/20) of content, the encapsulation efficiencies attempted were 

acceptable (between 67 to 79%) for an incorporation rate of 10% (w/w). 

• Adaptability of the extrusion conditions. No adjustments of the established extrusion 

conditions (e.g. screw profile, screw speed, feeders rates and temperature profile) were 

required even though we varied the formulations and the active compounds.  

• No use of an external organic plasticizer was necessary. Obtained delivery systems were 

at glassy state at room temperature ensuring the protection of the active compounds. 

• The delivery systems were stable for a long period of time at 25°C at relative humidities 

ranging from 33 to 75% RH, which is an important factor to consider for industrial 

applications. 

• The use of PPI is considered innovative since it not only acted as a compatibilizer agent 

enhancing the incorporation of hydrophobic compounds into hydrophilic matrices, but 
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also acted as a texturing agent by improving the viscosity of the blend and thus 

facilitating its extrusion.  

However this process presented several inconvenients: 

• The major drawback of this process was the impossibility of putting into shape the 

material mixture at the exit of the extruder�s die. This technological issue may be 

responsible of the sampling problems for the kinetic release study, since the samples did 

not present the same exposed surface. This issue could be explained by the fact that the 

mixture was very complex and as it was already mentioned for pure maltodextrins, the 

workability window was very narrow. The use of a die provoked an important increase of 

the shear stress applied onto the mixture when exiting the extruder's barrel followed 

consequently by the flash-off of the water remaining in the sample. Specific die design or 

post-treatment of the extrudate would have to be studied in order to produce better-

defined encapsulating objects.  

• In the case of the incorporation of the perfume, suspected interactions between the 

aldehydes composing the perfume and the amino acids of the PPI were observed. These 

interactions are problematic because they modified the olfactive profile of the perfume. 

In encapsulation, the wall materials must be inert to the active compound so to avoid 

their modification or degradation.  

• Extrusion is a multivariable input output process that most of the time is seen as a black 

box. Therefore several process parameters can influence the same final property and are 

sometimes difficult to study. 

• The distribution/dispersion of the active compound inside the extruder barrels was 

scantily investigated. So, for the same formulation, depending on the time of the 

sampling, it is plausible that one extrudate has more core material than the second 

extrudate.  

• The thermal and the sorption isotherms proved that the core/wall systems created in this 

project were very complex systems in different aspects: mechanical, thermal and 

analytical speaking (because of the interaction with volatile compounds with specific 

chemical groups).  Therefore, their analysis and interpretation were very challenging 
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Even though during this project, several studies were carried out in order to elucidate the 

phenomena involved during the extrusion encapsulation process, trying to correlate the 

processing conditions and the product final properties, there are still some scientific aspects that 

required further investigations: 

• Interactions between the matrix ingredient and the aldehydes of the active compound are 

very interesting because it proved that extruded protein also interact by covalent binding 

to the aldehydes. Therefore, perhaps modification of the proteins would be necessary in 

order to reduce their affinity for aldehydes. 

• Working on the formulation of the perfume or the matrix materials in order to reduce or 

to avoid these types of interactions. The perfume composition can be designed in a 

manner that all the components could be released in the same way (modulate their vapor 

pressure), of course if they do not interact with the matrix. 

• The pre- or post-treatment of the matrix or the active ingredient could be implemented so 

as to improve the encapsulation efficiency of the delivery system and improve their 

release properties. 

• Increasing the encapsulation rates by tuning the extrusion processing parameters like the 

screw speed or the solid feed rates. For example in the case of the incorporation of a 

perfume, it is better either to increase the mechanical shear of the extruder so as to 

improve the mixing efficiency and thus increase the incorporation and retention of the 

active compound, and/or to adjust the formulation in order to decrease the possible 

interactions that reduce the incorporation and retention of the active compounds. As the 

formulations and the properties of the delivery systems are better characterized, it would 

be extremely valuable to further modulate the extrusion process parameters.  

We can conclude that thanks to the mild extrusion processing parameters that we were 

able to establish that a hydrophobic model compound, such as MCT-oil, and a technical 

perfume, such as Citrus, could be incorporated into bio-based matrices by twin-screw extrusion. 

It is also important to mention that all this work has been conducted in respect of the industrial 

specifications: a natural, biodegradable and hygroscopic matrix. 
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However, lots of areas remained unexplored and required further investigations. 

Especially to improve the encapsulation rates, to better understand the core/matrix interactions 

and the behavior of the mixture during extrusion. 



�



�
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APPENDIX

Recovery rate 

The recovery rate helps to evaluate the general performance of an analytical procedure. The 

recovery rate allows verifying if there is a systematic or random error throughout the different 

stages of the analytical procedure (either at the extraction step or the analytical response). In the 

food chain the recovery rate is often used as a mandatory control quality method 6.  

The aim of the recovery rate in this particular case was to determine the possible matrix effect on 

the analysis of the analytes. Meaning that, the recovery rate may assess the matrix effect on the 

perfume at the extraction stage. The protocol was based on the extraction protocol described in 

section 2.5.4. A known quantity of the analyte was added to the �blank extrudate�. The blank 

extrudate corresponds to an extrudate without any perfume. And then the blank extrudate and the 

analyte were subjected to the same extraction procedure. 

The perfume load for extrusion experiments was fixed at 10% (w/w) with respect to the solid 

polymeric mixture. For this reason, the perfume was also added at 10% (w/w) with respect to the 

�blank extrudate�.  

Recovery rate for formulations containing Citrus/MCT-oil (80/20): 

In a 50 mL volumetric flask approximately 0.87 g of blank extrudate, 0.1 g of Citrus and 0.026 g 

of MCT-oil were added. Then 3mL of water and 50µL of the Methyl decanoate standard at 

0.1g.mL-1 were introduced. The sample was mixed to favor the dissolution of the solid and then 

completed to the mark with methanol. The volumetric flask was ultrasonicated (>20kHz) for 

twenty minutes. The solution was filtered with a PTFE filter and was put in a GC-vial and 

analyzed with the same analytical method described before. For the formulations containing 

Citrus/MCT-oil (50/50) the recovery rate procedure was identical, except that the amount of 

blank extrudate, Citrus and MCT-oil were adapted. 

Results of the recovery rate were the following: 
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Recovery rate results for Citrus/MCT-oil (80/20): 

Figure 5. Summarizing histogram of the recovery rate values for all the four formulations at Citrus/MCT-
oil (80/20) (n=4).

For all the four formulations and all the molecules except limonene and lilial, the mean recovery 

values (Tables 5 and 6) were within the range of acceptability, i-e 70 and 120% 7. Besides, 

results presented a repeatability RSD 
 10%, which means that the matrix effect on the perfume 

can be considered to be low and as a consequence the extraction procedure was approved. So, 

the recovery rate value was not required for the quantification of the amount of perfume 

encapsulated. 

However, this experiment put into evidence the possible interactions between the matrix 

components and the perfume (Figure 5). Even though there were not significant differences 

between the four formulations, it seemed that formulations B and C retained more all the six 

molecules than formulations A and D. 
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Based on this recovery rates, the extraction protocol selected could be improved in manner to 

find the right balance between the extraction solvent(s) and the molecules composing the 

perfume. And at the same time, that extraction solvent(s) have the fewer interaction with the 

constituents of the matrix. 

Then again, this experiment does not take into account the influence of the process on the mixing 

of all the ingredients, since here they were just put into solution. 

Note that the results obtained by measuring the recovery rate did not reproduce identically what 

happened inside the extruder barrel in terms of encapsulation. In fact, in extrusion all the 

ingredients were intimately mixed and transformed (e.g. plasticized). For the recovery rate, the 

ingredients were only added to a solution. The active compound was not physically encapsulated 

but more precisely emulsified. Besides, there was no plasticization at all. Therefore, the 

interactions between the matrix and the perfume could have been underestimated. 

Recovery rate results for Citrus/MCT-oil (50/50): 

Figure 6.�Summarizing histogram of the recovery rate values for all the four formulations at Citrus/MCT-
oil (50/50) (n=4). 
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The same trend was observed for formulations containing Citrus/MCT-oil at (50/50). All the 

recovery rates measured were within the range of acceptability (Tables 7 and 8), except for lilial 

that presented recovery values equal or superior to 120%. Thus, the recovery rate was not taken 

into account either for the calculation of the amount of perfume encapsulated in the matrices. 

In this case, formulation A had a more important retention for medium and low volatility 

compounds compared to formulation C (Figure. 6). These results corroborated the fact that 

interactions between the matrix and the perfume do exist, but also that, comparing formulations 

with different proportions of Citrus/MCT-oil; MCT-oil seemed to play a role on the matrix 

retention behavior. Here, as all the ingredients were put into solution, it appeared that the 

increase of the MCT-oil facilitated the extraction of the perfume. 
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