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Title: The evolution of cavitation resistance in conifers 

Abstract 
Forests worldwide are at increased risk of widespread mortality due to intense drought under 

current and future climate change. In particular, conifer species seem extremely vulnerable to 

mortality due to hydraulic failure or embolism. The main objective of this thesis was to examine 

conifer resistance to embolism in an evolutionary framework. Firstly, we uncovered 9-fold 

variation in resistance to embolism across 250 species from the 7 conifer families, culminating 

in a new world record in Callitris tuberculata (P50 = -18.8 MPa). We demonstrated the 

evolutionary relationship between increased embolism resistance and the anatomy of bordered 

pits. By combining this unprecedented physiological dataset with a time-calibrated phylogeny 

of over 300 species, we retraced conifer diversification and the evolution of embolism 

resistance. We discovered multiple evolutionary dynamics with several conifer lineages shifting 

to higher rates of speciation and trait evolution. We found that conifers with high drought 

resistance diversified more rapidly, especially crown groups of Cupressaceae composed of the 

Cupressus-Juniperus clade and the Callitris clade. Within this last group, diversification rates 

increased over the course of the aridification of Australia over the last 30 million years. We 

show how their xylem has been shaped by drought, becoming more resistant to embolism, but 

crucially we found no trade-off with water transport efficiency or construction costs. This work 

greatly expands our understanding of how vascular plants have evolved to cope with extreme 

drought. 

Key words: embolism, drought, evolution, conifer, xylem, climate change 

Titre: Evolution de la résistance à la cavitation chez les conifères 

Résumé 
Les forêts du monde entier sont menacées de mortalités importantes lors de sécheresses 

intenses liés au changement climatique. Les conifères en particulier semblent extrêmement 

vulnérables à la mort par dysfonctionnement hydraulique de leur système vasculaire ou 

embolie. Le principal objectif de cette thèse est d’étudier la résistance à l’embolie des conifères 

dans un cadre évolutif. Premièrement, nous avons mis en évidence que la résistance à l’embolie 

varie d’un facteur neuf sur plus de 250 espèces parmi les 7 familles de conifères, atteignant un 

nouveau record du monde avec Callitris tuberculata (P50 = -18.8 MPa). Nous avons montré le 

lien évolutif entre cette résistance et l’anatomie des ponctuations aréolées. En combinant cette 

base de données unique avec une phylogénie calibrée de plus de 300 espèces, nous avons retracé 

la diversification des conifères et l’évolution de leur résistance à l’embolie. Nous avons 

découvert que plusieurs lignées de conifères ont brusquement changé de dynamiques 

évolutives, avec l’accélération de la spéciation et de l’évolution de résistance à l’embolie. En 

outre, les conifères plus résistants se sont diversifié plus rapidement, notamment les genres 

Cupressus, Juniperus et Callitris (Cupressaceae). La diversification de ces derniers s’est 

accélérée avec l’aridification de l’Australie sur les derniers 30 Millions d’années. Nous 

montrons que leur xylème a été façonné par la sécheresse, devenant plus résistant à l’embolie 

mais surtout sans compromettre l’efficience du transport de l’eau ou augmenter son coût de 

construction. Cette thèse élargit notre compréhension de l’évolution des plantes vasculaire face 

aux sécheresses intenses. 

Mots clés: embolie, sécheresse, évolution, conifères, xylème, changement climatique 

BIOGECO 
[Biodiversité, gènes et communautés, UMR 1202, 33610 Pessac, France]
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I. Introduction/contexte : 

Le changement du climat causé par l’activité humaine va entraîner, au cours des décennies à venir, 

des sécheresses et des canicules plus intenses, plus fréquentes et plus longues, avec des conséquences 

lourdes pour les écosystèmes du monde entier (Stocker et al., 2013). On dénombre notamment de 

nombreux épisodes de mortalités importantes d’arbres (notamment de conifères) dans les forêts à 

travers le monde (Allen et al., 2010). Ceci pourrait entrainer des conséquences importantes sur 

l’activité économique de ces régions, leur biodiversité et plus largement sur les cycles de l’eau et du 

carbone. Chez les arbres, il semble que le dysfonctionnent hydraulique lié au phénomène de 

« cavitation » est la cause majeure de mortalité lors de sècheresses intenses (Anderegg et al., 2016), 

seul ou en interaction avec d’autres phénomènes (McDowell et al., 2008; Sala et al., 2010). D’après la 

théorie de « Cohésion-Tension », le mouvement de l’eau dans les plantes est gouverné par 

l’évaporation d’eau par les stomates qui créé une dépression et tire l’eau à travers le système 

vasculaire : le xylème (Dixon, 1914; Tyree and Zimmermann, 2002). Ce mécanisme met sous tension la 

colonne d’eau dans la plante (pression négative, en MegaPascals), qui est maintenue en cet état 

métastable par les fortes liaisons hydrogène entre les molécules d’eau. Lorsque la demande 

évaporative augmente lors de sécheresses, la vaporisation de l’eau à cause de la tension excessive (ou 

« cavitation ») crée des embolies qui viennent boucher les éléments conducteurs de sève (trachéides 

et vaisseaux), limitant l’apport en eau aux parties aériennes (Tyree and Sperry, 1989).  

Il existe un seuil de réduction de la conductance du xylème au-delà duquel les arbres sont incapables 

de survivre (Brodribb et al., 2010; Urli et al., 2013) : chez les conifères, on mesure P50 (MPa), la pression 

à laquelle 50% des trachéides sont « embolisés ». Ce paramètre directement lié à valeur sélective des 

espèces varie largement entre espèces au sein du taxon des conifères (Maherali et al., 2004), mais 

cette variation n’est pas uniformément distribuée. Par exemple, le genre Pinus et plus largement à 

l’échelle de la famille, les Pinaceae montrent très peu de variabilité pour ce trait (Delzon et al., 2010). 

Au sein des espèces, il semble qu’il y’ait relativement peu de différentiation génétique, ce qui indique 

des contraintes évolutives (Lamy et al., 2011). A l’opposé, les Cupressaceae peuvent être très 

vulnérables (Taxodium distichum) ou très résistants (Callitris columellaris) (Pittermann et al., 2012).  

Il apparaît donc un besoin crucial de mieux comprendre le fonctionnement des plantes lors de 

sècheresses extrêmes, afin de mieux prédire l’impact du changement climatique sur les écosystèmes 

forestiers. De plus, étudier l’évolution du xylème et de sa capacité à résister à la cavitation peut nous 

permettre de comprendre comment certains groupes d’espèces sont devenus exceptionnellement 
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résistants. L’objectif de cette thèse est donc d’examiner la résistance à la cavitation des conifères dans 

un contexte évolutif. Pour cela, nous avons allié une stratégie d’échantillonnage et de phénotypage 

d’un maximum d’espèces de conifères couvrant l’ensemble de la diversité taxonomique de ce groupe 

et des outils de la biologie comparative utilisant la phylogénétique.  

Quels groupes de conifères ont évolué vers un xylème extrêmement résistant à la cavitation ? 

Quelles modifications au niveau du xylème sont liées à cette évolution (anatomie des ponctuations 

aréolées, dimensions des trachéides, densité du bois, conductance hydraulique) ? Quel est le rôle du 

climat dans cette évolution et à quel moment a-t-elle eu lieu ? Pour répondre à ces questions, cette 

thèse est organisée en trois parties : i) nous présentons d’abord la grande variabilité de 

l’écophysiologie des conifères grâce à une base de données sans précèdent; puis ii) dans une seconde 

partie, grâce à une nouvelle phylogénie pour plus de 300 espèces de conifères, nous montrons 

l’existence de plusieurs dynamiques évolutives chez les conifères, avec un lien entre résistance à la 

cavitation et diversification et iii) dans la dernière partie, nous détaillons la radiation évolutive du genre 

Callitris lors de l’aridification du continent Australien, accompagné d’une transition remarquable vers 

un xylème adapté aux conditions de sécheresses extrêmes.  

II. La variabilité globale de l’écophysiologie des conifères 

Nous avons mesuré P50 de plus de 270 espèces de conifères (des sept familles et 63 sur 70 genres 

existante – Chapitre 1) avec la technique du CAVITRON (Cochard et al., 2005). Ce paramètre de 

résistance à la cavitation varie d’un facteur dix, de -1.6 à -18.8 MPa. La majeure partie de cette 

variabilité est limitée aux Cupressaceae, Taxaceae et Podocarpaceae, et nous avons trouvé très peu de 

variation pour ce trait au sein des Pinaceae et Araucariaceae. Les espèces du biome méditerranéen 

sont par ailleurs les plus résistantes, bien qu’une large variation soit évidente au sein de chaque biome 

(à part le biome boréal). La théorie prévoit qu’une forte résistance à la cavitation est liée à un coût de 

construction du bois plus important, pour résister aux fortes tensions présentes dans le xylème. Nous 

avons vérifié cette hypothèse avec un lien entre densité du bois et P50 – en fait, une forte résistance à 

la sécheresse implique un bois plus dense, mais le corolaire n’est pas vrai, puisqu’il existe des espèces 

vulnérables à bois extrêmement dense. Par contre, il n’y a pas de réduction de la conductivité du 

xylème avec l’augmentation de la résistance à la cavitation. Ces relations sont maintenues lorsque l’on 

tient compte de la proximité phylogénétique des espèces. A l’échelle des conifères, l’évolution de ce 

trait ne semble pas être contrainte, puisque nous avons découvert peu de signal phylogénétique, c’est-

à-dire que les espèces proches sont moins similaires qu’attendu sous un modèle évolutif simple. Nous 

avons découvert en Australie le record du monde de résistance à la cavitation, Callitris tuberculata, qui 

a évolué pour atteindre une barrière physique limitant le transport de la sève chez les arbres à la limite 



Résumé substantiel 

vii 
 

du désert (Chapitre 2). Sa P50 de -18,8 MPa indique qu’il est capable de transporter de l’eau à des 

pressions proches du point de vaporisation de l’eau à température ambiante. Enfin, grâce à des 

observations au microscope électronique à balayage nous avons mis en évidence une corrélation entre 

évolution de la résistance à la cavitation et l’anatomie fine du xylème (Chapitre 3). Chez les conifères, 

les pores entre trachéides comportent une membrane poreuse (margo) et un épaississement central 

(le torus) qui est dévié pour venir se plaquer sur l’ouverture du pore lorsque la pression devient 

intenable dans un des trachéides (Pittermann et al., 2005). La ponctuation agit alors comme une valve, 

empêchant la propagation de l’embolie. Nous avons montré que l‘évolution d’une forte résistance à la 

cavitation est liée à une évolution du degré de recouvrement du pore par le torus (l’efficacité de l’effet 

« valve »).  

III. Evolution de la résistance à la sécheresse et diversification des conifères. 

Pour replacer cette variabilité écophysiologique dans un contexte évolutif, nous avons établi une 

phylogénie moléculaire de 300 espèces de conifères, en utilisant des séquences de plusieurs gènes 

disponibles sur des banques de données en ligne (Chapitre 4). Les branches de cette phylogénie ont 

ensuite été transformées pour représenter des millions d’années en utilisant des fossiles datés comme 

points de calibration. En se basant sur ce travail, nous avons ensuite modélisé la diversification des 

conifères et l’évolution de P50 en utilisant une méthode Bayésienne (BAMM ; Rabosky et al., 2013; 

Rabosky, 2014) qui évalue des modèles complexes ou chaque portion de la phylogénie peut appartenir 

à une dynamique macro-évolutive propre. Nous avons découvert de multiples dynamiques de 

diversification, avec par exemple une forte augmentation du renouvellement de certaines lignées de 

Pinaceae (plus forts taux de spéciation et d’extinction au sein du groupe Picea-Pinus) depuis 150 

millions d’années. En parallèle, la famille des Podocarpaceae a vu son taux de diversification nettement 

augmenter il y a 70 millions d’années. Ceci est probablement grâce à sa compétitivité face à la 

domination des plantes à fleurs à cette période, via une augmentation de sa surface photosynthétique 

(Biffin et al., 2012). Enfin, nous avons mis en évidence deux sauts de diversification parallèles dans les 

« groupes-couronnes » de la famille : Cupressaceae, dans l’hémisphère nord (sous-familles 

Cupressoidae) et l’hémisphère Sud (sous-famille Callitroidae). Ces dynamiques évolutives de 

diversification accélérées sont apparues il y a environ 50 millions d’années, ce qui correspond à une 

période de refroidissement et de modification des régimes hydriques au niveau global. Nous montrons 

aussi que sur cette même période, le taux d’évolution de la résistance à la cavitation de ces deux 

groupes a explosé, notamment sur les dernières 30 millions d’années. Ces résultats semblent 

confirmer que la résistance à la cavitation a conféré à ces deux groupes écologiquement similaires un 

fort succès évolutif leur permettant se diversifier en colonisant les milieux arides qui ont commencé à 

apparaître à partir de la fin de l’Eocène. Ce lien a ensuite été confirmé en utilisant un autre modèle 
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(QUASSE ; FitzJohn, 2012) qui a confirmé le lien étroit dans notre étude entre un taux de diversification 

élevé et une forte résistance à la cavitation.  

IV. La radiation évolutive de Callitris face à l’aridification de l’Australie  

Le groupe-couronne de la sous-famille Callitroidae comprend une vingtaine d’espèces (des genres 

Callitris, Actinostrobus et Neocallitropsis) distribuées à travers l’Australie et la Nouvelle-Calédonie. 

Avec le record du monde de résistance à la cavitation à la limite du désert Australien et des espèces 

tropicales de forêt humide, ce groupe est un candidat idéal pour étudier en détail l’évolution du xylème 

lors d’une radiation évolutive vers les milieux arides. Nous avons donc mesuré pour toutes les espèces 

de ce groupe la résistance à la cavitation, la conductance hydraulique du xylème et différents 

paramètres anatomiques du xylème (Chapitre 5). Grâce à une nouvelle phylogénie, nous montrons 

que la diversification de ce groupe suit l’aridification de l’Australie, d’abord graduellement aux 

alentours de 30 millions d’années, puis très rapidement au cours des dernières 15 millions d’années. 

En parallèle, la résistance à la cavitation s’est décuplée, pour passer d’environ -4 MPa chez les espèces 

de Nouvelle-Calédonie à plus de -15 MPa chez plusieurs espèces du continent Australien. Grâce à des 

données climatiques pour toutes ces espèces, nous avons mis en évidence le rôle important du climat 

pour l’évolution du xylème (P50, dimensions des trachéides) sans toutefois affecter la densité du bois 

ou l’efficience de transport de l’eau. Une nouvelle fois, nous n’avons trouvé aucune influence de la 

résistance à la cavitation sur la densité du bois d’une part ou la conductance hydraulique d’autre part. 

Il semble donc que ces espèces sont capables de développer une forte résistance à l’embolie sans 

affecter par ailleurs la performance de leur xylème, probablement grâce à des adaptations au niveau 

des ponctuations. 

Conclusions et perspectives 

Dans cette thèse, nous avons largement élargit notre connaissance du fonctionnement des 

conifères lors de sècheresses intenses, fournissant des données concrètes pour mieux modéliser et 

prédire la réponse des écosystèmes forestiers aux changements du climat. Nous avons clarifié les liens 

entre différents traits émergents du xylème, avec l’absence de relation entre résistance à la cavitation 

et efficience du transport de l’eau. Bien qu’une relation semble exister entre densité du bois et P50, 

celle-ci n’est pas valable pour tous les conifères. La seule chose que l’on puisse dire est qu’il existe un 

seuil de densité de bois en dessous duquel une forte résistance à la cavitation ne peut exister. Grâce à 

la phylogénétique et à des approches de biologie évolutive, nous avons de plus montré le rôle de la 

sécheresse dans l’évolution des conifères, notamment chez les Cupressaceae, chez qui l’évolution de 

la résistance à la sécheresse au cours des dernières 50 millions d’années est accompagnée d’une rapide 

diversification. D’autres facteurs sont nécessaires pour expliquer la diversification des autres familles, 
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tels que l’apparition des Angiospermes pour les Podocarpaceae. La rapidité du changement climatique 

moderne pourrait fortement limiter la possibilité d’adaptation, et l’avenir semble incertain pour les 

nombreuses espèces de conifères déjà menacés d’extinction actuellement et à l’aire de répartition 

restreinte.  
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Foreword 

The work for this thesis was done within the BIOGECO research unit, and was supported by 

a competitive grant through the doctoral school program. The Callitris project (and my two 

month trip to Australia) was financed by a mobility grant from the LabEx COTE (ANR-10-

LABX-45), and I obtained a grant from Western Sydney University (the Hawkesbury Institute 

for the Environment). This thesis is based on published articles (or in preparation) and is 

therefore mostly in English, but a substantial abstract is available in French. 

Avant-propos 

Cette thèse a été réalisée au sein de l’UMR BIOECO, et financée par une bourse ministérielle 

via le concours de l’école doctorale. J’ai effectué une mobilité de deux mois (mai-juillet 2014) 

en Australie grâce au soutien du LabEx COTE (ANR-10-LABX-45) et une bourse d’accueil 

pour jeunes chercheurs de Western Sydney University – Hawkesbury Institute for the 

Environment. J’ai fait le choix de rédiger une thèse sur articles, c’est-à-dire que le texte est 

composé des articles publiés ou en préparation, donc en anglais. Un résumé présentant le 

contexte et les objectifs de la thèse, ainsi que la méthodologie adoptée et les principaux résultats 

est néanmoins disponible en français. 
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1. Climate change and drought-induced tree mortality by hydraulic failure 

Anthropogenic climate change is challenging ecosystems across the world, forcing natural 

populations to adapt, migrate, or face extinction (Walther et al., 2002). The impacts of the 

changing climate are already evident in ecosystems across the planet, with coral-reef dieback 

due to ocean acidification and temperature rise (Hoegh-Guldberg et al., 2007), droughts 

affecting many terrestrial ecosystems (Allen et al., 2010; Zhao and Running, 2010) and extreme 

climatic events (droughts, heatwaves and storms) severely impacting human communities 

globally, through failing crops, cardiovascular and respiratory health issues and spreading of 

infectious diseases, storm damage and extensive flooding (Patz et al., 2005). As key members 

of forest ecosystems and important carbon sinks, tree species are the focal point of much 

research into the impact of climate change, and into patterns of species adaptability or migration 

capacity (Pearson, 2006; Aitken et al., 2008; Delzon et al., 2013). Visible worldwide, drought 

is having a dramatic impact on forest species, with high mortality rates recorded for example 

in western North-America (van Mantgem et al., 2009) or Canadian boreal forests (Peng et al., 

2011), but also at a global scale across all eco-regions (Allen et al., 2010; Settele et al., 2014; 

Bennett et al., 2015; Fig. 1).  

Figure 1. Forest ecosystems with reported drought or heat-induced mortality (since 1970), reproduced 

from (Settele et al., 2014). Background colours represent forest cover (grey is no forest cover). Red dots 

are taken from (Allen et al., 2010), white dots are compiled and listed in (Settele et al., 2014). 
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Worryingly, many regions are projected to suffer from more frequent, prolonged, and severe 

drought episodes (Stocker et al., 2013). These events can negatively impact photosynthesis and 

growth rates, potentially turning forests into carbon sources, and generally affecting the water 

and carbon cycles (Bonan, 2008; Kurz et al., 2008; Anderegg et al., 2015c). There is therefore 

an urgent need to further our knowledge and understanding of plants’ response to drought, for 

example to improve modelling of their future distributions, predict areas of high mortality, plan 

ahead by selecting species and/or varieties in managed forests, and to assist in breeding 

programs for the forestry industry.  

Response to prolonged water-stress involves mechanisms both passive and active at whole-

plant, organ, cellular, and molecular levels, and therefore is necessarily complex and varies 

within a plant and between individuals and species (Levitt, 1980; Fang and Xiong, 2015). 

Although there is considerable debate as to what exactly kills a tree during drought (Sala et al., 

2010; Anderegg et al., 2015b), catastrophic failure of the water-transport system due to drought-

induced xylem embolism is emerging as the major driver of tree mortality (Anderegg et al., 

2012; Anderegg and Anderegg, 2013; Balducci et al., 2014; Anderegg et al., 2015a; Rowland 

et al., 2015; Anderegg et al., 2016). Another leading cause is described as the “carbon-

starvation” hypothesis (McDowell et al., 2008), which refers to the depletion of a plants’ non-

structural carbohydrate (NSC) reserves since plants cannot assimilate carbon at a high enough 

rate during drought (due to stomatal closure). However, recent studies have shown that i) trees 

subjected to drought die sooner than starved trees (Hartmann et al., 2013) and ii) tree mortality 

can be predicted exclusively using loss of vascular transport capacity due to embolism 

(Anderegg et al., 2015a) precise monitoring of the dynamics of NSC reserves in plants is 

challenging, and their exact role in survival during and/or after drought is unclear (Hartmann, 

2015). Furthermore, there remains much disagreement between NSC measurement methods 

and even between labs using the same method on the same samples (Quentin et al., 2015). 

Additionally, complex interactions between hydraulic failure and carbon starvation are likely, 

and investigations into plant mortality during drought are further confounded by biotic attacks 

(Mitchell et al., 2013; Dickman et al., 2014; Sevanto et al., 2014; Gaylord et al., 2015; Hartmann 

et al., 2015). In contrast, there is strong evidence of a direct link between plant death and 

dramatic failure of water transport (Brodribb and Cochard, 2009; Brodribb et al., 2010; Urli et 

al., 2013), which is both well understood and is routinely measured worldwide to quantify plant 

drought-resistance (Sperry and Tyree, 1988; Cochard et al., 2013; Lens et al., 2013).  
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The upward flow of water through vascular tissue (xylem) in plants is driven by evaporation 

of water at the leaf surface, a process called transpiration. The depression caused by the surface-

tension of each air/sap meniscus in the leaves creates a water-potential gradient throughout the 

plant (Fig. 2), gradually pulling up the water-column in the plant as water is lost to the 

atmosphere through evaporation. This is known as the Cohesion-Tension theory (Tyree, 1997; 

Angeles et al., 2004), because 1) this passive water-transport mechanism induces negative 

pressure - or tension - within the xylem sap, and 2) this transmission of tension through the 

plant is enabled by the cohesive forces (hydrogen bonds) that bind water molecules to each 

other and to the cell walls. 

Figure 2. Water transport in plants and the Cohesion-Tension theory (© 2011 Pearson Education, Inc.). 

Evaporative demand (highly negative water-potentials) from the air drives evaporation in the stomatal 

chambers (top right). The negative water pressure gradient (left, blue arrow) is transmitted downwards 

through the water column in the xylem (right), to the finest root hairs that take in water from the soil 

(bottom right).  
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While this process enables plants to extract water from dry soils, and move it to tens of meters 

above the ground against the pull of gravity, it depends entirely on maintaining an intact 

vascular network filled with water in a metastable liquid state, and therefore relies “on an 

inherently vulnerable transport system” as “any break in the column necessarily disrupts water 

flow” (Tyree and Sperry, 1989). Indeed, air-bubbles can be drawn into conductive xylem 

elements from neighbouring air-filled spaces or cells, according to the “air-seeding hypothesis” 

Figure 3: Comparison of pit structure, 

water-flow and air-seeding in Conifers 

(left) and Angiosperms (right). 

Reproduced from Pittermann et al., 

2005. A. SEM images of torus-margo 

pits in conifers and homogenous 

membrane in Angiosperms. B. Cross-

section schematic view of the position 

of the membranes between two 

functional elements, with arrows 

showing water flow through the 

membrane pores. C. Network of 

conducting cells, with one air-filled 

element. D. Membranes in their 

deflected “sealed” position between the 

conducting elements and the air-filled 

“embolized” one, showing the locations 

of air-seeding. 
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(Cochard et al., 2009). When so-called “cavitation” occurs, the small initial gas-bubble spreads 

to fill the entire cell, which is then air-filled, or embolized, and therefore no longer functional, 

thus reducing the plant’s overall capacity to feed water to its aerial organs (Sperry and Tyree, 

1988). We note here that throughout this thesis we use “cavitation” and “embolism” 

interchangeably, as if the terms were synonyms; cavitation refers to the initial air-bubble 

inception and expansion, whereas embolism refers to the final results, i.e. an air-filled conduit. 

During drought, with increased evaporative demand at the leaf and lower (more negative) soil 

water-potential, xylem tension increases, leading to increasing numbers of cavitation events, 

drastically reducing hydraulic conductance (Sperry and Sullivan, 1992). At short time-scales, 

Figure 4: Gas exchange functions and xylem cavitation across varying levels of drought. In normal 

conditions (right, xylem pressure close to 0), xylem pressure is maintained at healthy levels by 

regulation of stomatal conductance (green curve). During seasonal drought, gas exchange stops but 

low levels of cavitation are observed. Exceptional years (decennial, centennial) cause further 

lowering of xylem pressure into values inducing low levels of embolism, until P50 is reached (P88 

for angiosperms). Reproduced from (Delzon and Cochard, 2014).  
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plants regulate water-loss to avoid water-potentials that could cause grievous injury to their 

water-transport system due to embolism (Brodribb et al., 2003). Plants go to extreme lengths to 

protect their xylem, shedding leaves to reduce transpiration, and stopping photosynthesis for 

long periods – leading to death from lack of carbon-assimilation (Plaut et al., 2012). Recent 

views place hydraulic failure as a rare event, occurring during prolonged, exceptional drought, 

well after regular gas-exchange has ceased (see Figure 4; Delzon and Cochard, 2014). Some 

authors have suggested that plants can recover relatively easily from embolism and experience 

daily cycles of refilling (Brodersen et al., 2010; Zufferey et al., 2011; Knipfer et al., 2016). 

However, the precise mechanisms involved, conditions required remain elusive and natural 

selection for a loss of vascular function at daily peak evaporative demand seems counter-

intuitive (Zwieniecki and Holbrook, 2009; Rockwell et al., 2014). Furthermore, recent 

controversies regarding measurement artefacts causing severe overestimation of species 

embolism levels (Wheeler et al., 2013; Torres-Ruiz et al., 2015; Pivovaroff et al., 2016) have 

called a great deal of evidence for refilling into question. 

Plants have evolved to prevent these problems, with for example a multitude of inter-

connected conductive elements that translate into a multitude of pathways for water to ascend 

the tree, minimizing the impact of the loss of a few conductive elements to embolism. Also, 

water flows from one element to another through pores (pits) with a membrane (margo) that 

acts as a barrier to air bubbles and prevents the spread of embolism throughout the xylem. 

Additionally, conifers possess a central thickening of the membrane (the torus) that acts as a 

valve to isolate the air-filled tracheids from the rest of the system (Bailey, 1916). In vessel-

bearing species (Angiosperms), cavitation occurs as air-bubbles are pulled through the porous 

membrane, whereas in Gymnosperms, the torus prevents this leakage (see Fig. 3). In this case, 

an imperfect seal between the torus and the pit-aperture is the probable location of air-leakage 

in conifer bordered-pits (Delzon et al., 2010; Pittermann et al., 2010). This seems to confer 

increased resistance to drought-induced cavitation to coniferous species, that are generally less 

vulnerable than Angiosperms (Maherali et al., 2004; Choat et al., 2012).  

Resistance to drought-induced cavitation is related to fitness, since it seems to give trees 

increased chance of survival in case of severe drought. For example, in the southwestern USA, 

a mixed conifer forest suffered high mortality rates in the wake of a drought period in the early 

2000s. The more cavitation-resistant Juniperus monosperma was hardly affected while more 

vulnerable Pinus edulis was decimated (Breshears et al., 2009). Previous work has highlighted 

a wide cavitation resistance range in tree species (Maherali et al., 2004; Delzon et al., 2010), 
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and this variation seems to be linked to their ecology, with species from arid regions more 

resistant to cavitation than mesic species (Brodribb and Hill, 1999; Maherali et al., 2004), 

justifying the use of cavitation resistance as a metric of plants’ adaptation to water-stress. There 

is good  evidence that there is a level of drought beyond which plants cannot recover even with 

the return of sufficient hydration, with mortality well correlated with the water-potential 

inducing 50% loss of conductance to emboli (Blackman et al., 2009; Brodribb and Cochard, 

2009; Brodribb et al., 2010; Anderegg et al., 2012; Choat et al., 2012; Urli et al., 2013). P50 can 

be considered a more appropriate predictor of mortality than other measurements of water status 

(turgor loss point or stomatal response) because per cent loss of conductance is a meaningful 

representation of xylem desiccation.  

With the increased understanding of plant water-transport and its’ potential flaws, techniques 

were developed to keep track of plants’ physiological state. For example, water-status of a leaf 

is routinely measured by imposing positive pressure on the leaf using a “pressure bomb” 

(Scholander et al., 1964; Tyree, 1972), and observing the point when water starts bubbling out 

of the cut extremity of the twig/petiole, which is equivalent to the (negative) leaf water pressure. 

Xylem dysfunction, or cavitation, was first quantified using the acoustic method: as the sap 

ruptures, energy is released as acoustic emissions – from audible “clicks” to ultrasound 

emissions (Milburn and Johnson, 1966; Tyree and Sperry, 1989) – which can be tracked to draw 

the dynamics of loss of conductance in the sample. More recent methods involve directly 

monitoring water-flow decrease as stress is imposed to a plant or sample (leaf, branch, or root). 

Drought-stress can be slowly induced by letting the sample or plant dehydrate (“bench 

dehydration technique”), or the process can be accelerated by using centrifugal force (static or 

flow-centrifuge techniques) to induce negative pressure in the xylem analogous to that 

experienced by the plant during drought. By visualizing percent loss of conductance of the 

xylem as a function of xylem pressure (MPa), one obtains a so-called vulnerability curve 

(generally a sigmoid), from which one can derive estimates of a sample’s “cavitation resistance” 

– notably from the inflexion point, i.e. the pressure at which 50% of total hydraulic conductance 

is lost (P50 – in megaPascals), and the slope of the curve (S – in %.MPa-1). Some of these 

methods are more or less prone to biases or artefacts, prompting a recent debate about which is 

the “benchmark” or reference method, notably because of difficulties caused by open-vessels 

in the sample (Cochard et al., 2013; Wheeler et al., 2013; Rockwell et al., 2014; Torres-Ruiz et 

al., 2014; Wang et al., 2014; but see Jacobsen and Pratt, 2012; Sperry et al., 2012). Recently, 

non-destructive “un-biased” methods are slowly unravelling these issues (Bouche et al., 2015; 



Introduction 

 

10 
 

Cochard et al., 2015; Torres-Ruiz et al., 2015; Brodribb et al., 2016; Choat et al., 2016). As 

leaves are the organs the most exposed to highly negative water-potentials, they could act as 

fuses for the water-transport system, “cavitating” early at the onset of drought conditions to 

protect the more costly tissues in the branches (Tyree et al., 1993; Tyree and Zimmermann, 

2013). However, recent results show similar resistance to cavitation of the xylem in branches 

and leaves in Pinus pinaster (Bouche et al., 2015), and in any case very strong relationship 

between branch P50 and leaf P50 exists (Tim Brodribb, pers. comm., Bartlett et al. in prep). A 

recent study reported very low intra-tree (branch, trunk and root) variability for P50 in several 

conifer species (Bouche et al., 2016). All cavitation resistance measurements and values 

reported in this thesis are therefore measured on branches, using a single method, the so-called 

Cavitron (or in-situ flow-centrifuge method) that has been shown to be accurate in conifers 

(Cochard et al., 2010; Choat et al., 2016; Pivovaroff et al., 2016).  

The rate at which cavitation occurs varies widely between species (Maherali et al., 2004; 

Delzon et al., 2010), with vulnerable species rapidly losing conductance at moderate tensions 

(P50 around -2 to -0.5 MPa), whereas some species can withstand high xylem tensions before 

embolism starts to occur (P50 < -4 MPa). However, a study comparing severity of drought 

experienced by trees (i.e. the lowest water-potentials observed seasonally) to levels of drought 

inducing death by hydraulic failure (i.e. P50) found global convergence in tree vulnerability to 

drought across ecosystems (Choat et al., 2012), i.e. wet and dry forest have an equally limited 

hydraulic safety margin regarding lethal levels of drought.  This worrying state of affairs has 

led a major push towards understanding tree hydraulic function (and dysfunction) in recent 

years, building on theoretical understanding of water transport through vascular tissues (Dixon 

and Joly, 1895; Dixon, 1914; Tyree, 2003; Tyree and Zimmermann, 2013), and advances in 

techniques to measure accurately and rapidly a plant’s intrinsic resistance to drought (see a 

review of methods in Cochard et al. (2013). On the one hand, Northern Hemisphere coniferous 

species tend to be dominant or abundant forest species, and widespread mortality could lead to 

great loss of biodiversity and would dramatically affect some of the worlds’ largest terrestrial 

carbon sinks - notably the huge boreal forests – adding a positive feedback effect on the 

greenhouse effect (Anderegg et al., 2015c). Furthermore, some conifers are among the most 

economically important tree species in the world, not least in the Aquitaine region (France), 

where maritime pine forms one of Europe’s largest managed forests, covering about 10 000 

square kilometres. On the other hand, in many parts of the world (Mexico, South-East Asia and 

South-East China, New Caledonia) conifers are in high diversity but often with extremely 
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reduced distributions and are often local endemics (Eckenwalder, 2009). A third of all conifer 

species are considered endangered (IUCN, 2015), and many examples of forest die-back 

implicate coniferous species (Martínez-Vilalta and Piñol, 2002; Bigler et al., 2007; van 

Mantgem et al., 2009; Peng et al., 2011; McDowell et al., 2015).  

2. Conifers 

Conifers are an ancient group of vascular seed-plants that first appeared nearly 300 million 

years ago, and are the largest surviving group of gymnosperms (which also include Cycads, 

Gnetophytes and Ginkgo), with over 600 species grouped in 7 families (Pinaceae, 

Araucariaceae, Podocarpaceae, Taxaceae, Cephalotaxaceae, Sciadopityaceae, and 

Cupressaceae), and around 80 genera (Farjon, 2010). Some remarkable conifers include the 

tallest trees in the world (Sequoia sempervirens), the most massive (Sequoiadendron 

giganteum), some of the oldest living organisms (either as a single tree – Pinus longaeva, or as 

a resprouting stump – Picea abies). Over their long history, they have evolved to occur in some 

of the wettest environments (in tropical rainforests in south-east Asia, New Caledonia) and 

some of driest deserts (Cupressus dupreziana in the Sahara, or Callitris in the Australian 

desert), stretch far into the Arctic circle (e.g. Larix gmelinii in the Taymyr Peninsula in Siberia) 

and into the upper reaches of the Himalaya (Juniperus tibetica in Southeastern Tibet at 4900m 

- Miehe et al., 2007). Such ecological ubiquity is matched by an equal measure of 

morphological and physiological variation. Conifer leaves go from long needles (Pinaceae) to 

small triangular scales (Cupressaceae) and broad flattened “leaves” (Podocarpaceae). While 

most conifers are evergreen, some species are deciduous (mainly Taxodium and Larix), and one 

species - Parasitaxus usta - is a root parasite, its exclusive host being another conifer, 

Falcatifolium taxoides. Despite their global presence, their distributions reveal a strong 

biogeographic signal reflecting their ancient history, with only the Cupressaceae family 

spanning the equator, the other families being restricted to either hemisphere. Conifer diversity 

is not uniformly distributed, either spatially or taxonomically. Their diversity reveals patterns 

of high abundance but limited diversity in high latitudes and low abundance but high diversity 

in sub-tropical to tropical areas (Enright and Hill, 1995; Farjon, 2010). Furthermore, most 

conifer species are part of a handful of genera (e.g. Pinus, Podocarpus, Abies, Juniperus), and 

some small geographic regions host a remarkable number of conifer species, for example New 

Caledonia (43 endemic species) or Mexico (~50 pine species).  
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Recent work using phylogenetics has aimed at explaining some of these biogeographic and 

diversification patterns. Leslie et al. (2012) found that Northern Hemisphere (NH) conifer 

clades are younger than their Southern Hemisphere (SH) counterparts, likely due to climatic 

upheavals being more frequent and severe in the NH, whereas pockets of stable favourable 

climate have been maintained in the SH. Cardoso et al. (Cardoso et al., 2015) found support for 

increased speciation rates in high altitude NH clades. Conifers produce separate (male) pollen 

cones and (female) seed cones, which tend to be woody and scaly (the ancestral state), but 

derived “fleshy” cones have evolved separately several times (in Taxaceae, Podocarpaceae and 

Juniperus). A large majority of conifers with fleshy cones also have derived dioecy (separate 

male and female plants), and monoecy (the plesiomorphic state with one plant bearing both 

types of cones) has been retained in most lineages with “dry” scaly cones and wind-dispersed 

seeds. However, no relationship between breeding system (monecy vs dioecy) or dispersal 

(wind/gravity vs animal-dispersed) and diversification rates has been found (Leslie et al., 2013). 

At a family level, Podocarp lineages with flattened leaves diversified while facing competition 

for light during the rise of the Angiosperms (Biffin et al., 2012), while their scale-leaved 

counterparts’ diversification rates remained constant. More generally, conifers are thought to 

have been gradually excluded by competition with Angiosperms into less favourable 

ecosystems, notably poorer, drier and colder environments over the last 100 million years 

(Bond, 1989), among other hypotheses (Augusto et al., 2014). For example, Cupressaceae 

crown groups are hypothesized to have diversified into dry environments during the later 

Eocene (Pittermann et al., 2012).  

Across such an old and diverse clade, fitness-related traits should show signals of adaptive 

evolution, with clades exposed to a dry climate evolving drought-tolerance adaptations such as 

increased cavitation resistance. When the world enters a drier climatic cycle, developing a 

significant evolutionary innovation (such as a new strategy to face drought) could even lead to 

adaptive radiations, by opening up new niche space to diversify into. Previous work has indeed 

shown evolutionary convergence for this trait, with multiple lineages independently evolving 

increased cavitation resistance, both in Angiosperms and Conifers (Maherali et al., 2004; 

Pittermann et al., 2012). However this variation seems to be limited to some clades, with for 

example the pine genus (Pinus) showing low variation for cavitation resistance (Delzon et al., 

2010), indicating some form of evolutionary stasis. A study of North-American junipers 

revealed a degree of phylogenetic conservatism, with closely-related species having more 
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similar trait values than expected by chance (Willson et al., 2008) which  in turn reflects some 

form of evolutionary constraint on P50. 

Cavitation resistance is one of several inter-connected hydraulic traits, with demonstrated 

trade-offs at various levels between P50 and mechanical strength and water-transport efficiency: 

selective forces acting on one of these traits will be balanced by opposite forces selecting for 

another trait, which could reduce variation and evolution of cavitation resistance. As water is 

transported through the xylem at high tensions, huge forces are applied to cell walls which 

could lead to their collapse under sufficient strain. Reinforced cell walls, i.e. increased wall 

thickness versus lumen diameter, are better at resisting implosion due to high xylem tension but 

reduce water flow, both by a reduction in total transporting area and by reducing conductivity 

of inter-conduit pores (Sperry, 2003; Sperry et al., 2006).  

Resistance to hydraulic failure by cavitation seems to come from anatomical adjustments at 

areas of possible air-leakage within pit structures, e.g. reducing pore size in pit membranes in 

Angiosperms and improving the valve-effect efficiency of the torus structure in Conifers - both 

of which lead to a parallel increase in resistivity to water-flow (Hacke and Sperry, 2001). 

Functional trade-offs are hypothesized to maintain a certain susceptibility to xylem cavitation, 

as developing a “safe” xylem is balanced against competitive needs, for example water-

transport efficiency and lower wood construction cost, especially in wetter climates (Tyree et 

al., 1994; Hacke et al., 2006; Pittermann et al., 2006a; Pittermann et al., 2006b; Sperry et al., 

2008). This would contribute to explain the relatively narrow safety-margin observed on a 

global sample of tree species (Choat et al., 2012) between levels of drought routinely 

experienced by species on the one hand and the lethal threshold that induces irreversible damage 

to the xylem on the other. Although there is evidence for a simple relationship between xylem 

efficiency and xylem safety across a broad sample of angiosperms and gymnosperms (Gleason 

et al., 2015), there are no species that have attained both high safety and high efficiency while 

somewhat paradoxically, some species seem to maintain vulnerability and remain relatively 

inefficient. 

At an intra-specific level, cavitation resistance has shown a surprising lack of scaling with 

the environment even for species with very wide distributions. For example, one study found 

no significant effect of climatic aridity on P50 whereas other traits (such as branch leaf-to-

sapwood area ratio) were plastic over the wide range of Pinus sylvestris (Martínez-Vilalta et 

al., 2009). When comparing populations from the whole climatic range of maritime pine (P. 
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pinaster), (Lamy et al., 2011) found less genetic differentiation for cavitation resistance (Qst) 

than expected under genetic drift (neutral markers, Fst), with the authors concluding that the 

trait is likely canalized, suggesting genetic constraints on cavitation resistance variation in this 

species. Little is known about the genetic determinism of cavitation resistance, although work 

on model species such as Arabidopsis (Tixier et al., 2013), and search for QTLs (Quantative 

Trait Loci – Lamy, 2012) offer some leads to follow in the future. Because cavitation resistance 

is related to the fine anatomy of the xylem, notably at the inter-tracheid pit level, it is probably 

associated to the genetic architecture of cell and cell-wall development, and therefore is likely 

under strong genetic regulation, as random changes can have disastrous consequences for 

growth, water-transport efficiency and mechanical support. A gene implicated in determining 

P50 could be implicated in other traits (pleiotropy), and a multitude of genes could also interact 

to establish this phenotype (polygenic trait) - such complex genetic networks necessarily limit 

the impact of a single mutation on a single gene, therefore reducing the variability on which 

natural (and artificial) selection can act. It is worth noting however that recent results for Fagus 

sylvatica, a widespread angiosperm species, go against this trend (Schuldt et al., 2015), which 

is in keeping with the observation that within-species variation for P50 is higher in Angiosperms 

than Gymnosperms (Anderegg, 2015). 

3. Evolutionary biology 
Examining cavitation resistance at a macro-evolutionary scale releases some of these 

constraints, notably by integrating over millions of years of cumulative changes and multiple 

evolutionary strategies displayed in various lineages, each evolving independently across the 

planet. However, reconstructing past evolution and understanding processes that shaped clades 

millions of years ago based on data from extant species poses many challenges.  

For example, relationships between extant species are not always clear, and placement of 

fossils with certainty in lineages is sometimes tricky. Traits of interest are not always directly 

measurable on fossil specimens (for soft tissues for example) and fossils can be incomplete or 

ambiguous, completely lacking for some lineages or at least coverage can be biased toward 

some clades because of the peculiar conditions required for fossil conservation. Thankfully, 

following the emergence of the field of phylogenetics, evolutionary biology has been able to 

overcome some of these hurdles, with the development of models of diversification and trait 

evolution based on phylogenetic trees. Some authors point out nonetheless some obvious 

limitations of “tree thinking”, such as trying to infer processes when only observing patterns 

(Losos, 2011). 



Introduction 

 

15 
 

 

Box 1. Phylogeny workflow 

This box describes the general process behind constructing a time-calibrated phylogeny for a 

group of species. I discuss some of the choices I made and the software I used to build the 

phylogenies in this thesis.  

 
DNA sequence data 

Sometimes the only option is to obtain fresh samples (leaves for example) and perform DNA 

extraction and sequencing, which is becoming increasingly quick and cost-effective. Some 

groups of well-studied species and genes are already sequenced and online in databases such as 

Genbank (Benson et al., 2011). The choice of which genetic regions to sequence (or download) 

is not trivial: depending on the scope of the study, a gene with slow rates of evolution can be a 

good choice for a large scale study of distant species, or give too little resolution in a group of 

closely related species. Conversely, a fast evolving non-coding region (intergenic spacers for 

example) could be so diverged they are impossible to align and compare for distant species, but 

useful to resolve infra-generic relationships. Once the sequences are obtained, they must first 

be aligned to be allow comparison of each position across all species - various alignment 

programs exist, the more commonly used are for example Muscle, ClustalW and MAFFT. The 

sequence alignment must be manually checked to remove errors with an editing program like 

MEGA (Tamura et al., 2011). Multiple sets of sequences can be constructed, thus increasing 

the data used for estimation of the phylogenetic relationships between the taxa. 

Molecular tree building: 

Two main families of phylogenetic analysis are commonly used, that use either maximum 

likelihood or Bayesian inference. Both these inference methods are based around a similar 

principle: finding a tree (with topology and branch lengths) and a substitution model parameters 

that are a “good” fit to the sequence data, measured by their likelihood given the data. The 

substitution model simply describes the rates of transition between nucleotides (A to T, C to G 

for example) in the form of a rate matrix.  
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BOX 1. PHYLOGENY WORKFLOW (CONTINUED) 

Maximum likelihood software - such as RAxML (Stamatakis et al., 2005) – produce a quick 

starting tree, estimate the substitution model parameters from the data, then try and improve the 

likelihood score of the model by modifying the tree using a stepwise algorithmic procedure. 

Statistical support for clades is evaluated by bootstrapping, which is usually performed by 

resampling sites from the nucleotide sequences. 

Bayesian inference methods use Markov Chain Monte Carlo (MCMC) to rapidly generate a 

large series of candidate models that provide an approximation (or sample) of the posterior 

probability density of the model. The frequency of a topology in the sample converges to the 

posterior probability of that given topology. The proportion of trees in the sample that contain 

a given clade gives an estimate of the posterior probability of the clade: BI produce a summary 

tree topology that includes clades supported by high posterior probabilities. MrBayes (Ronquist 

et al., 2012) and BEAST (Drummond and Rambaut, 2007) are the most used BI phylogenetic 

programs. 

Fossil calibration and dating: 

These phylogenetic trees (phylograms) have branch lengths in units of molecular distance, 

for example in substitutions per million sites. Evolutionary inferences need transformed trees 

where the branches are proportional to time, or chronograms.  

The molecular clock hypothesis states that molecular evolution (the accumulation of 

mutations) occurs at a steady rate over time and lineages. First proposed for protein sequence 

evolution in the 60s, evidence from DNA sequences shows that various factors (such as 

generation time) can affect clock rates in different lineages of a tree, which explained initial 

discrepancies between time estimates obtained from dated phylogenies with a global molecular 

clock and ages estimated from the fossil record. More recent models “relax” the assumptions 

of the molecular clock to allow rates to vary across the tree, while also assuming that 

neighbouring branches are likely have relatively similar rates. Different methods have been 

developed to implement molecular clocks, using independent historical data to calibrate certain 

nodes in the tree (usually fossil information), and then to model rates across the tree (Kumar, 

2005; Anderson, 2007; Ho and Duchêne, 2014). BEAST allows simultaneous estimation of tree 

topology and node ages, and implements various relaxed clock models. The penalized-

likelihood method is implemented in r8s and the R package “ape” (Sanderson, 2002; Kim and 

Sanderson, 2008; Paradis, 2013). 
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Evolutionary theory states that all living things on earth share common ancestry (Darwin, 

1859), therefore their relatedness can be determined by examining heritable traits, notably by 

observing and comparing their DNA sequences. For example, human and chimpanzee (our 

closest relative) DNA sequences are highly similar, much more for example than between 

human and cat. Over the last decades, rising availability of DNA data and the combined 

advances in modelling molecular evolution and computing power have enabled the construction 

of large phylogenetic trees, retracing with varying degrees of confidence the relationships 

between living organisms (see Box 1). 

The branching patterns within time-calibrated phylogenies give insight into the tempo of 

diversification within the clade, for example long branches (with no bifurcations) indicate low 

speciation and/or high extinction and multiple bifurcations over a few million years imply a 

burst of speciation (Nee et al., 1992; Nee et al., 1994). Simple models for bifurcating 

phylogenies exist, such as the constant rate birth-death model (BD), governed simply by a 

speciation rate - i.e. the probability at any given time that a given lineage will split, giving rise 

to two daughter lineages – and an extinction rate – i.e. the probability of a lineage at any time 

going extinct. More recently, models that allow rates to vary across the tree, or where rates 

depend on various factors (e.g. the environment, trait values, or lineage diversity) have been 

developed (see Stadler, 2013). These models can be fit to empirical phylogenies, usually by 

maximizing the likelihood of the data under various models. For example, given a BD model, 

at any point of the phylogeny we can estimate the likelihood that some speciation and extinction 

rates will result in the observed branching pattern, descendant extant species and their trait 

values. Working backwards through the tree towards the root, the model likelihood is obtained 

for the whole tree, and can be for example be compared to alternative models using likelihood 

ratios or Akaike’s Information Criterion (AIC). 

Similarly, by combining phylogenies with trait data for extant species, one can reconstruct 

trait evolution throughout the clade (Felsenstein, 1985). For example, one of the simplest and 

most used models is Brownian Motion (BM). Derived from the stochastic motion of molecules 

in a gas, BM describes evolution as a random process where at any time, a lineage’s trait value 

can increase or decrease by a random amount, drawn from a normal distribution, centred on 0 

and of variance σ². When a lineage split occurs, trait values in the descendant lineages start 

evolving independently. These random changes in character states are governed σ², which 

describes the rate of character evolution under the model. Knowing the phylogeny and trait data 

of a clade, one can estimate the best BM model parameters using maximum likelihood. BM is 
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a general model that is suitable for cases where trait evolution occurs due to genetic drift, 

directional selection with dynamic optimums, or where stasis is followed by quick bursts of 

rapid evolution (O’Meara et al., 2006). Extensions to this model include the Ornstein-

Uhlenbeck (OU) model, where the BM random process is pulled towards an optimum value 

(which is the same for all lineages), which is appropriate for modelling traits under global 

directional selection. Across large clades with diverse life-histories and ecologies, it seems 

reasonable that a single BM model may not always be appropriate to capture the diversities of 

evolutionary dynamics that can exist. More complex models have recently been developed 

which fit models with shifts between multiple evolutionary processes: different lineages can 

belong to different evolutionary dynamics (Alfaro et al., 2009; Eastman et al., 2011; Beaulieu 

et al., 2012; Thomas and Freckleton, 2012; Rabosky et al., 2014).  

A common ancestor, living in an ancestral ecological niche, gives rise to closely related 

species are necessarily ecologically similar (Darwin, 1859). Traits in related species tend to be 

more similar than expected, simply because these species share evolutionary history, which 

across clades can lead to spurious trait correlations. Phylogeny therefore needs to be accounted 

for when investigating evolutionary relationships between traits (Felsenstein, 1985). One 

simple method for correcting for phylogeny is the PIC method (Phylogenetically Independent 

Contrasts), where the relationship is investigated not on species trait values, but on contrasts, 

calculated at each node of the phylogeny, between each pair of species/clades. This removes 

phylogenetic correlation as the difference between trait values represents the variance 

accumulated on the independent evolutionary pathways since the divergence at the most recent 

ancestor. Among more recent methods increasingly being used are the Phylogenetic 

Generalized Least Squares (PGLS; Revell, 2010). This phylogenetically informed regression 

uses the λ transformation to correct the error structure of the regression for phylogenetic signal 

induced by similarity of trait values in related species. This is more robust than PICs since it 

does not overcorrect for phylogeny when trait evolution deviates from BM (an assumption of 

PICs).  

Finally, because in many cases diversification and trait evolutionary dynamics are inter-

dependent, models have been developed where a lineages’ speciation and extinction rates are 

dependent on character states (Maddison et al., 2007; Fitzjohn et al., 2009; Fitzjohn, 2010; 

FitzJohn, 2012). For example, (Pyron and Wiens, 2013) showed that tropical amphibian 

lineages were more diverse than their temperate cousins, due to increased speciation and 

reduced extinction rates (similar trends have been found for mammals (Rolland et al., 2014)). 
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These methods enable us to identify major drivers of diversification, either morphological or 

anatomical traits or ecological factors.  

By combining ecophysiology and evolutionary biology, this thesis breaks ground by bridging 

a gap between disciplines, and shines a new light on conifer evolution. Understanding how 

species have become so remarkably adapted to their sometimes extreme environments can help 

us predict how they will respond to future environmental challenges. 

4. Objectives 

The main objective of this thesis was to examine conifer drought-resistance in an evolutionary 

framework, combining plant physiology, ecology and evolutionary biology to understand how 

this clade has been shaped by exposure to severe drought. This work is organized into three 

parts: the first aims to expand our knowledge of the breadth and diversity of conifer 

ecophysiology, while the second offers an evolutionary perspective on conifer cavitation 

resistance and its role the diversification of Conifers. The final part is a detailed investigation 

into the evolution of the most cavitation-resistant genus, the Australian cypress-pines Callitris.  

Part I. Drought adaptation of conifer hydraulics: wide global variation in 

ecophysiology and xylem anatomy 

Although our global understanding of plant function during drought stress has advanced 

greatly over the last decades, the full scale of the variation in species responses to drought is 

unknown, prompting the need for a systematic approach, covering the largest possible 

taxonomic and ecological scale. Given the current climatic context, a further emphasis was 

placed on identifying species and/or genera with affinities for dry environments, to better 

understand species survival under the effects of extreme drought. 

Chapter 1: Global Variation of Drought-Tolerance in Conifers - Delzon et al. (in prep)  

We took advantage of new high-throughput measurement techniques to screen a large number 

of species spanning all conifer families (90% of genera), in the aim to construct a global conifer 

cavitation-resistance database. Our working hypothesis was that wide variation in P50 existed 

in conifers, and that since species tend to be well adapted to their environments, a fitness related 

trait such as cavitation resistance would track species climate. We found amazing 10-fold 

variation in species P50, which was mainly concentrated in the Podocarpaceae, Cephalotaxaceae 

and Cupressaceae families. However, the pattern is reversed in the Pinaceae family, with very 

little variation. Species from the Mediterranean biome tend to be more resistant than species 
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from the temperate and boreal biomes, although there is wide variation within each biome. We 

found support for a trade-off between construction costs and safety from cavitation, but no 

associated reduction in hydraulic conductivity.   

Chapter 2: Extreme Aridity Pushes Trees to Their Physical Limits (Larter et al., Plant 

Physiology, 2015) 

One major question we wanted to answer was how far tree species can go to limit the risk of 

embolism during drought? As part of a wider sampling project of the genus Callitris, Callitris 

tuberculata (Western Australia) was found to be the most resistant to cavitation tree species 

ever measured. With a range expanding into some of the driest parts of Australia, this species 

can survive xylem tensions extremely close to the physical limit of liquid water transport. 

Chapter 3: A broad survey of hydraulic and mechanical safety in the xylem of conifers 

(Bouche, Larter et al. 2014, Journal of Experimental Botany). 

We looked at the fine anatomy of xylem across a wide sample of species, and found a strong 

relationship between cavitation resistance and various inter-tracheid pit level traits linked to the 

efficiency of sealing of the pit aperture by the torus when it is deflected. A trade-off was also 

evidenced between cavitation resistance and construction costs, with wider tracheid walls in 

resistant species, likely due to increased mechanical stress under higher tensions in xeric 

species.  

Part II. The evolution of cavitation-resistance and its role in the diversification 

of Conifers 

Previous work has shown either evolutionary lability or strong constraints for cavitation 

resistance evolution. Taking advantage of this unprecedented physiological database, and by 

adopting macro-evolutionary modelling approaches, we examined the evolutionary patterns in 

cavitation resistance and the diversification of Conifers.  

Chapter 4: Drought and the evolution of cavitation resistance drives Conifer 

diversification (Larter, Delzon et al., in prep.) 

At both a global scale and across geological time, this study aims at examining conifer 

ecophysiology in an evolutionary framework. How and when did drought tolerant conifer 

lineages appear and diversify? Can we find a link between ecophysiology and diversification? 

After building a time-calibrated phylogeny for over 300 conifer species, we implemented 

several diversification and trait evolution models. We identify several bursts of diversification 
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across conifer taxa, notably in Pinaceae, Podocarpaceae, and twice in Cupressaceae. We show 

that multiple conifer clades have independently and rapidly evolved towards increased 

cavitation resistance, and demonstrate a link between increased cavitation resistance and 

lineage speciation and extinction dynamics. 

Part III. Adaptive radiation of Callitris: linking hydraulics, xylem anatomy and 

climate across the driest continent on Earth 

Chapter 4: The evolution of Callitris xylem driven by climate during an adaptive 

radiation 

The Callitris genus radiated across Australian dry environments over the last 30 million years. 

Occupying both wet and extremely dry areas, and displaying the full range of cavitation 

resistance, this group offers a unique perspective into the evolution of plants to cope with 

extreme xylem pressure drops during drought. Within a phylogenetic framework, we found a 

strong role of aridity in determining xylem hydraulic traits such as cavitation resistance and 

tracheid dimensions, but no effect on hydraulic conductance. We found no evidence of a safety-

efficiency trade-off. Using a time-calibrated phylogeny, we find that the radiation of Callitris 

coincides with increasing trends of aridity across the Australian continent.  
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Global Variation of Drought-Tolerance in Conifers 

 

 

 

 

Summary 

Conifers are one of the most ecologically and economically important plant Orders that 

exhibits wide variation in key functional traits spanning approximately 300 Million years of 

evolution. Of particular interest given their longevity and stature, is the evolution of stress 

tolerance in the water-transport system. Using the newly developed CAVITRON technique, an 

extensive dataset has been developed for cavitation resistance (P50, the negative pressure 

inducing 50% loss of hydraulic conductance), a fitness-related trait critical for plant survival 

during severe drought. We analyzed the global variation in cavitation resistance, wood density, 

and hydraulic conductivity across 277 conifer species from the seven extant conifer families 

growing in the four main biomes. P50 widely varied across species and genera (from -1.6 to -

18.8 MPa) and within all biomes, except in the boreal forest. Using a time-calibrated molecular 

phylogeny, we find low phylogenetic signal and that convergent evolution of high resistance to 

cavitation occurred in several lineages. Much of the present day variation was associated with 

crown groups within Cupressaceae, whereas Pinaceae exhibited a strong evolutionary stasis. 

There was no evidence for correlated evolution between hydraulic conductivity and P50, but a 

significant trend to increasing wood density with cavitation resistance, suggesting an 

evolutionary basis for a trade-off between safety and construction cost. These findings provide 

a global and integrative understanding of the macro-evolution and cross-species variation in a 

core fitness-related trait in conifers. 

 

Introduction 

Conifers are a very important component of terrestrial ecosystems and grow under widely 

differing conditions of climate and soil. They currently occur from dry woodlands (Cupressus) 

to boreal forests (Picea) in the Northern hemisphere and from semi-arid woodland (Callitris) 

to rainforests (Podocarpus) in the Southern hemisphere. They dominate many forests in the 

northern hemisphere (e.g. Taiga and coniferous temperate forests) and are of high timber and 
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horticultural value, providing all the world’s softwood timber for construction and housing in 

temperate regions. The fossil record indicates that the conifers evolved towards the end of the 

Carboniferous, approximately 300 million years ago, and were a diverse and ecologically 

important component of the vegetation until the Late Mesozoic (Hill, 2005). Since the 

Cretaceous, conifers have declined in diversity and relative abundance while angiosperms have 

gradually expanded their distribution and their diversity (Lidgard and Crane, 1988; Bond, 1989; 

Enright and Hill, 1995; Augusto et al., 2014). Extant conifers tend to be most predominant in 

harsh ecosystems (cold, dry, nutrient-poor and after catastrophic disturbance) and consist of 

seven families (Araucariaceae, Cephalotaxaceae, Cupressaceae, Pinaceae, Podocarpaceae, 

Sciadopityaceae and Taxaceae) comprising about 630 species (Farjon and Page, 2001) of which 

28% are threatened (IUCN, 2015). 

Global evidence of drought-induced forest dieback has been reported recently (van Mantgem 

et al., 2009; Allen et al., 2010), especially in conifer woodlands and forests (Breshears et al., 

2005; Bigler et al., 2007; Peng et al., 2011; Sánchez-Salguero et al., 2012). These examples of 

drought-related tree mortality have grown more frequent during the past decade and suggest 

that no forest type or climate zone is invulnerable to rapid change in climate. However, 

mortality rate is highly variable among species, with significant differences recorded in conifer 

species growing in the same site (Breshears et al., 2005). Accumulating observational and 

experimental evidence suggests that the vulnerability of water transport systems to drought-

induced embolism is causally linked to survival and may be responsible for inter-specific 

differences in mortality (Davis et al., 2002; Maherali et al., 2004; Cochard et al., 2008; Brodribb 

and Cochard, 2009; Brodribb et al., 2010). For instance, the massive drought-related die-off in 

North American pinyon-juniper woodlands was confined largely to the cavitation vulnerable 

Pinus edulis, rather than the co-occurring and cavitation resistant Juniperus monosperma 

(Breshears et al., 2005). The same pattern was reported in southern European woodland 

(Sánchez-Salguero et al., 2012) with a higher drought-related impact in more vulnerable (Pinus 

sylvestris, P50=-3.2 MPa) than more resistant species to cavitation (Pinus halepensis, P50 is 

around -5 MPa, (Delzon et al., 2010; David-Schwartz et al., 2016). Global surveys of cavitation 

resistance in woody species also show that xeric species are more resistant to embolism than 

mesic species (Maherali et al., 2004; Cochard et al., 2008; Choat et al., 2012), which suggests 

that the ecological distribution of plants is affected by their ability to withstand embolism. To 

further predict variation in mortality responses among ecosystems and species, more detailed, 

specific physiological insights are now needed, especially about drought-induced failure of the 
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hydraulic system given that drought frequency and severity will likely increase in many regions 

in the future (Jentsch et al., 2007; Coumou and Rahmstorf, 2012; Stocker et al., 2013). 

 Associations between vulnerability to cavitation resistance and aridity suggest that natural 

selection has shaped its evolution (Maherali et al., 2004). Nevertheless, the well-known trade-

off between transport efficiency (i.e. hydraulic conductance) and xylem safety (i.e. cavitation 

resistance) is commonly invoked to explain the evolution of the large range in cavitation 

resistance among species (Tyree et al., 1994; Tyree and Zimmermann, 2002). Xylem 

conductivity and tracheid size are potentially constrained by hydraulic safety considerations, 

such as resistance to freezing-induced cavitation, to conduit implosion and to water stress-

induced cavitation (see (Sperry et al., 2008 for an authoritative overview). Xylem cavitation 

and embolism is caused by air sucked into conduits at high water tension through porous walls 

and is therefore intimately linked to the anatomy of pit membranes (Jarbeau et al., 1995; 

Cochard et al., 2009; Delzon et al., 2010). Increasing porosity of pit membranes makes water 

transport more efficient, but it also makes transporting elements more vulnerable to air-seeding. 

For the uniformly porous pit membrane of angiosperms, where greater safety from air-seeding 

cavitation through inter-vessel pits occurs when the total area of pits decreases (Wheeler et al., 

2005), selection for greater pit membrane porosity may constrain the evolution of cavitation 

resistance. In tracheid-bearing conifers, however, resistance to air-seeding only depends on how 

airtight the torus-pit aperture seal is (Delzon et al., 2010). It is therefore unlikely that a trade-

off between transport efficiency and xylem safety occurs among species. 

Wood density, which describes the proportion of the xylem that is tissue and cell walls (i.e., 

conduit walls) and the space within cell walls (i.e., lumen area and wall porosity), might be 

indirectly linked to cavitation resistance in conifers. Hydraulic failure also occurs when 

negative pressures overcome the ability of the xylem conduit walls to resist implosion 

(collapse), the strength of the conduit being proportional to how thick the xylem wall is relative 

to the lumen diameter. Trees must therefore develop thicker xylem walls and/or smaller conduit 

diameters to prevent xylem wall collapse under negative pressure (Hacke et al., 2001), resulting 

in subsequent increases in xylem construction costs and wood density. Previous studies have 

indeed reported a correlation between cavitation resistance and wood density across conifer 

species (Hacke and Sperry, 2001; Jacobsen et al., 2005; Delzon et al., 2010), but too few species 

were examined to provide a global pattern. 

Relative to angiosperms, few conifer species have been investigated to date (Delzon et al., 

2010; Pittermann et al., 2010) and extensive measurements of cavitation resistance are needed 
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to better characterize the global variation and the evolution of this traits over the conifer taxa. 

This was not possible prior to the development of a new device, the so-called CAVITRON 

(Cochard et al., 2005) and the set-up of high-throughput phenotyping platforms that allow  

characterization of cavitation resistance (P50, xylem pressure inducing 50% loss of hydraulic 

conductance) by measuring a vulnerability curve on a branch sample in less than 15 min. This 

new technology allows us to screen a lot of species, but also populations and genotypes in order 

to assess the intra-specific variability for this trait (Lamy et al., 2011). 

In this study, we investigated the variability of cavitation resistance among 277 conifer 

species from the seven extant families, growing in the four main biomes in both hemispheres 

and tested the extent to which interspecific variation is due to convergent evolution or trait 

conservatism. We then analyzed the relationship between cavitation resistance traits, hydraulic 

conductance (transport efficiency) and wood anatomy taking phylogeny into account. We 

hypothesized that (i) cavitation resistance of conifer species strongly reflects phylogenetic 

history with a high degree of conservation within clades as conifers are considered to be highly 

conservative in their morphology, with a number of species being referred to as “living fossils” 

(Prager et al., 1976; Niklas, 1997)), (ii) the variability of cavitation resistance should be highest 

in the Cupressaceae because this family inhabits a diversity of regions in both hemispheres and 

grows in some of the driest and wettest environments of the planet, and (iii) that a global trade-

off forces higher wood density with increasing cavitation resistance, but that in conifers no 

safety-efficiency trade-off exists. Exploring the relationship between phylogenetic history and 

interspecific variation in cavitation resistance may help us to explain the distributions and the 

successful survival of conifers during extreme drought. 

 

 

Methods 

Plant material  

From 2005 to 2015, we sampled 276 conifer species among the seven existing Pinophyta 

families: Araucariaceae (n=28), Cephalotaxaceae (n=5), Cupressaceae (n=85), Pinaceae 

(n=93), Podocarpaceae (n=54), Sciadopityaceae (n=1) and Taxaceae (n=10) (Farjon, 2010). 

Samples were collected in Royal Botanic gardens (Kew London, Sydney and Hobart) and 

Bedgebury National Pinetum (UK) during the winter-spring period at which time plants should 

have been experiencing minimal water stress. One or two branches were sampled in three to 

ten mature individuals per species. Only straight branches 40 cm long were selected in the upper 



 Part I – Chapter 1 

 

30 

 

part of the crown using a telescopic pool-pruner or a slingshot. Immediately after the sampling 

in the morning, needles were removed and stems were wrapped up with damp paper and 

conditioned with plastic bags to avoid transpiration. Then, samples were brought back to the 

high-throughput phenotyping platform (http://sylvain-delzon.com/caviplace, University of 

Bordeaux, France) and kept refrigerated at 4°C until measurements were taken.  

 

Hydraulic and wood density traits  

Xylem cavitation was assessed with the CAVITRON, a centrifuge technique following the 

procedure described by Cochard (Cochard, 2002; Cochard et al., 2005). Centrifugal force was 

used to establish negative pressure in the xylem and to provoke water stress-induced cavitation, 

using a custom-built honeycomb aluminium rotor (Precis 2000, Bordeaux, France) mounted on 

a high-speed centrifuge (Sorvall RC5c+, USA). This technique enables measurement of the 

hydraulic conductance (ki) of a branch under negative pressure. Xylem pressure (Pi) was first 

set to a reference pressure (-0.5 MPa) and hydraulic conductance (ki) was determined by 

measuring the flux of a reference ionic solution (10 mmol dm-3 KCl and dm-3 mmol dm-3 CaCl2 

in deionized water) through the sample. The centrifugation speed was then set to a higher value 

for three minutes to expose the sample at a more negative pressure. For each pressure step, 

hydraulic conductance (ki) was determined by measuring displacement speed of the air-water 

meniscus at the downstream extremity of the branch. This measurement was performed with a 

calibrated CCD camera (Scout sca640, Basler, Germany) coupled with custom software 

(Cavisoft version 3.2, BIOGECO, University of Bordeaux). This software is also used for 

associated data acquisition and computation of conductance and vulnerability curves. 

Conductance was measured four times for each step, and the average was used to compute the 

percent loss of xylem conductance (PLC in %). PLC was determined at each pressure step 

following the equation:  

        Eqn 1 

where kmax corresponds to the maximum hydraulic conductance measured at low speed. The 

procedure was repeated for at least eight pressure steps with a -0.5 or -1 MPa step increment 

until PLC reached at least 90%. Rotor velocity was monitored with a 10 rpm resolution 

electronic tachymeter and xylem pressure was adjusted to about -0.02 MPa. The percent loss of 

xylem conductance as a function of xylem pressure (MPa) represents the sample’s vulnerability 

http://sylvain-delzon.com/caviplace
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curve (VC). A sigmoid function (Pammenter and Vander Willigen, 1998) was fitted to the VC 

from each sample using the following equation: 

       Eqn 2 

where P50 (MPa) is the xylem pressure inducing 50% loss of conductance and S (% MPa-1) 

is the slope of the vulnerability curve at the inflexion point. P50 is a measure of the resistance 

to embolism of the sample, whereas S indicates the rate at which embolism occurs with 

increasing levels of drought. The xylem-specific hydraulic conductance (ks) was estimated from 

kmax and the sapwood area of the branch, defining the transport efficiency.  

Wood density was measured with an indirect-reading X-ray densitometer (Polge, 1966) on 

the samples used for cavitation measurements (226 species in total). Two orthogonal (longest 

and shortest axes) radial density profiles were obtained by analyzing the scanned images with 

WinDENDRO software (Guay et al., 1992). For each sample, we derived three parameters from 

the distribution of wood density values (after removing the values corresponding to the pith), 

the mean value (Dmean), the 10th percentile (Dmin) and the 90th percentile (Dmax). A cross-

validation was done using the classical direct gravimetric method (water displacement) on a 

sub-sample (60 species). A 27-cm-long segment was submerged in water to measure its fresh 

volume by water displacement using an analytical balance. Then, samples were dried in an oven 

at 70 °C until constant weight to determine their dry masses. The linear relationship between 

mean densities resulting from the X-ray scans and gravimetric densities was positive and highly 

significant (R2=0.67; P<0.0001). 

 

Construction of phylogenetic trees 

Sequences for 314 Gymnosperm species were retrieved from GENBANK (Benson et al., 

2011) using the PHLAWD pipeline (Smith et al., 2009). To build a phylogeny for all species in 

the P50 dataset, we obtained sequences for chloroplast genes rbcL and matK, nuclear gene 

phyP, and to provide further resolution within genera, we used the largely used ITS1–5.8S–

ITS2 ribosomal DNA region. Due to high sequence variability in the ITS regions, we separated 

the large conifer families resulting in 5 separate alignments (Pinaceae, Araucariaceae, 

Podocarpaceae, Taxaceae-Cephalotaxaceae and Cupressaceae). We used three Cycad species 

(Cycas micronesica, Zamia furfuracea, and Encephalartos ferox) as outgroup based on the 

sister-relationship between Cycads and conifers, the higher confidence in their early fossil 
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record for calibration (Leslie et al., 2012), and the uncertainty surrounding the phylogenetic 

placement of Ginkgo biloba (Wang and Ran, 2014). All alignments were then manually 

checked and trimmed using MEGA6 (Tamura et al., 2011), and concatenated into a multi-gene 

dataset using Mesquite (Maddison and Maddison, 2015). A full maximum likelihood tree 

search was conducted using RAxML (Stamatakis, 2006) with 1000 bootstrap replicates. The 

single best tree was used to construct a time-tree using chronos:ape in R, using a relaxed clock 

model and specifying a set of fossil 15 calibration points used in Leslie et al., 2012. More 

detailed information on the phylogenetic reconstruction and dating analysis can be found in 

Larter et al. (in prep.). 

 

Data analysis 

Variations of trait values (P50, S, ks and wood density) among taxonomic group and biomes 

were assessed using a one-way analysis of variance. In order to put the amount of trait 

conservatism into a taxonomic context, we performed a taxonomically nested analysis of 

variance. Lastly, to explore this taxonomic variation at a finer scale, we also computed the 

coefficient of variation (CV) of cavitation resistance traits for each taxonomic group and biome 

with eight or more species. Statistical analyses were conducted using the SAS software (version 

9.2 SAS Institute, Cary, NC, USA). Cavitation resistance values (P50) were converted to 

positive to aid interpretation of results (an increase in P50 means an increase in resistance). To 

evaluate bivariate trait relationships, we conducted cross-species Spearman correlations, to 

account for non-linearity of the relationships.  

Additionally, conifer species are phylogenetically related and share some degree of 

evolutionary history. They therefore cannot be considered as statistically independent, since 

closely-related species necessarily resemble each other (Felsenstein, 1985; Harvey and Pagel, 

1991). PGLS accounts for phylogeny in regressions by reducing the weight of data-points that 

share common ancestors (Symonds and Blomberg, 2014). We log-transformed all variables 

prior to the linear regression analysis.  

Several comparative methods are commonly used to investigate phylogenetic signal, i.e. to 

test whether close species tend to have similar trait values. We used two metrics: Pagel’s λ and 

Blomberg’s K (Pagel, 1999; Blomberg et al., 2003; Revell et al., 2008; Revell, 2010; Kamilar 

et al., 2013). λ takes values between zero and one, and is a transformation parameter of the 

interior branches of the tree, reducing (to zero) or maximizing (λ = 1) the shared evolutionary 

pathways between species. A value of λ = 0 implies that trait evolution is independent from the 
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phylogeny, whereas λ = 1 indicates perfect phylogenetic dependence, i.e. that the trait has 

evolved according to Brownian motion (BM). λ was estimated by maximum likelihood 

optimization  and tested both against 0 and 1  using likelihood ratio tests λ. K varies on the 

interval [0; +inf]. A K value of 1 implies a BM model of evolution, with K values <1 indicating 

less similarity between close species than expected under BM (low phylogenetic signal), and 

K>1 indicating the reverse. Significance of phylogenetic signal is tested by comparing the 

variance of phylogenetic independent contrasts (PICs, Felsenstein, 1985) of the original data to 

the variance of PICs over 999 permutations of trait values.  

We performed PGLS and phylogenetic signal tests in the R statistical environment (R Core 

Team, 2015). We implemented phylogenetic generalized least-squares (PGLS) regressions 

using pgls {caper} (Orme, 2013), and calculated phylogenetic signal using both 

fitContinuous:geiger (Harmon et al., 2008) and phylosig:phytools (Revell, 2012). 

Results 

Inter-specific variation  

In the present study, 63 out of the 70 extant genera were sampled corresponding at least to 

80% of the generic diversity within the three largest families (Cupressaceae, Pinaceae and 

Podocarpaceae). Cavitation resistance (P50) varied widely within the conifer taxa with a mean 

P50 of -5.18 ± 0.18 MPa (mean ± SE). The “bois bouchon” (Retrophyllum minus) from New 

Caledonia was the least resistant to cavitation (P50 = -1.58 MPa), while                                                                                                                                                                                                                                                                                                                                                                                                                               

the semi-arid australian conifer Callitris tuberculata was the most resistant species ever 

measured (P50 = -18.82 MPa). The distribution of cavitation resistance across species was 

skewed and nonnormal (skewness = -1.78, Shapiro-Wilk test= 0.79, p = 0.0001; Fig. 1 bottom 

inset), with 50% of the species having a P50 ranging between -3 and -6 MPa. The variation in 

P50 was primarily attributable to genera within a family (59%) whereas species only explained 

23 % of the variance. The more cavitation resistant genera were Tetraclinis, Actinostrobus, 

Callitris, Cupressus, Platycladus, Juniperus, Diselma, Cupressocyparis, Widdringtonia (Fig. 

1) and all belong to the Cupressaceae family. However, most of the Cupressaceae previously 

included in Taxodiaceae were highly vulnerable to cavitation; P50 ranged between -2.3 to -3.4 

MPa for Taxodium, Glyptostrobus, Metasequoia, Athrotaxis and Taiwana. Therefore, the 

highest variability of cavitation resistance was observed within the Cupressaceae family (7-

fold, CV=52%, Fig. S1, Table S1). In contrast, within the Araucariaceae, Cephalotaxaceae, 

Taxaceae and Pinaceae families, P50 only varied by less than 2.5-fold (CV=14-18%; Table S1; 
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Fig. S1). Within the latter family, Cedrus species were the more cavitation resistant (e.g. Cedrus 

deodara P50 = -6.69 MPa) whereas all the Pinus species (CV=13%) ranged between -5.03 MPa  

Figure 1. Cavitation resistance (P50, xylem pressure inducing 50% loss in hydraulic conductance) of 63 

conifer genera. Mean value of P50 for each family is shown in the upper inset. Frequency distribution of 

species cavitation resistance is shown in the lower inset. Vulnerability curves were measured in 276 

species using the CAVITRON technique (n=3-7 specimen per species).  
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(the Mediterranean pine Pinus halepensis) and -2.7 MPa (the high elevation pines Pinus densata 

from China and P. wallichiana from the Himalaya, Fig. S1). The Podocarpaceae exhibited an 

intermediate variability with a CV of 28 %. Overall, the Cupressaceae and Cephalotaxaceae 

(n=4 only) families had the most negative P50 (the more resistant to cavitation) whereas the 

Araucariaceae and Pinaceae family had the least negative mean values (the more vulnerable 

to cavitation; Fig. 1 inset, p<0.0001). 

 

Conifers from the southern hemisphere (mean P50 = -5.50 MPa, n=80) were significantly 

more cavitation resistant than those from the northern hemisphere (mean P50 = -4.74 MPa, 

n=123, p=0.0465). Cavitation resistance of conifers also dramatically varied within biomes, 

about five-fold in mediterranean, temperate and tropical biomes, whereas the variability was 

rather low (1.5-fold; Fig. 2) in the boreal biome consisting mainly of Pinaceae (larch, spruce, 

fir and pine). Mean P50 values of species occurring in the mediterranean biome were 

significantly more negative (P50 = -8.13 MPa; p<0.0001, Fig. 2) than those in the temperate and 

tropical biomes (P50 = -4.41 MPa and P50 = -4.60 MPa, respectively). Species from the boreal 

forest were the more vulnerable to cavitation with a mean P50 of -3.41 MPa (Fig 2). Finally, 

among the five different leaf shapes of conifers, species with scale-like leaves were significantly 

more cavitation resistant than those from the other groups (Fig. S2). 

The slope of the vulnerability curve (S) also dramatically varied among species (17-fold) 

from 8 % MPa-1 for Diselma archeri to 206 % MPa-1 for Pinus pumila; species from the 

Cupressaceae and Cephalotaxaceae families having the smallest slope and therefore embolized 

very slowly (Fig. S3). Wood density varied slightly across species (2.5-fold), with an overall 

mean of 0.57 g cm-3. The maximum was 0.83 g cm-3 for Pherosphaera hookerianana, and the 

minimum was 0.33 g cm-3 for Pinus devoniana. Finally, xylem specific hydraulic conductance 

(ks) varies 50-fold across conifers. High and low values of were found within each family (Fig. 

S3): for instance Pinus leiophylla (Pinaceae; ks = 0.0022 m².MPa-1 s-1), Callitris intratropica 

(Cupressaceae; ks = 0.0013 m² MPa-1 s-1) or Afrocarpus mannii (Podocarpaceae; ks = 0.0011 m² 

MPa-1 s-1) have among the highest ks values, and whereas Libocedrus bidwillii (Cupressaceae; 

ks = 0.000083 m² MPa-1 s-1), Microcachrys tetragona  (Podocarpaceae; ks = 0.000085 m² MPa-

1 s-1) and Pinus bungeana (Pinaceae;  ks = 0.000098 m² MPa-1 s-1) are among the least efficient.    
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Figure 2. The distribution of cavitation resistance (P50, xylem pressure inducing 50% loss in hydraulic 

conductance) for the 276 species studied ranked by magnitude within the four main biomes. The mean 

P50 for each biome is shown in the inset. 

Phylogenetic signal 

Phylogenetic signal indices showed greater trait convergence than conservatism for hydraulic 

traits in the Pinales. We found higher variation in traits than expected under the Brownian 

motion evolution model (as tested by the K statistic) (Table 1). K values range from 0.04 (for 
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ks) to 0.2 (for S), which indicates that related species were more dissimilar than expected under 

BM. The PIC variance test (proposed by Blomberg et al., 2003) was significant except for ks, 

meaning the distribution of trait values at the tips of the phylogeny is non-random (again, except 

for hydraulic conductance ks).  

These results are corroborated by λ values, which are all less than 1, i.e. closely related 

species show trait values more different than expected under the BM model (Table 1). For all 

traits except ks, λ was significantly different from 0, indicating an intermediate level of 

phylogenetic signal.  

 

Table 1. Phylogenetic signal in hydraulic traits in Conifers, using Blomberg’s K (Blomberg et al. 

2003) and Pagel’s λ (Pagel, 1999). Bold font indicates significant deviation from 0 (no signal) and 1 

(Brownian Motion model, λ only). 

 

P50: xylem pressure inducing 50% loss of hydraulic conductance  

S: slope of the vulnerability curve 

ks: xylem specific hydraulic conductance 

ρ: wood density 

 

   λ log-likelihood scores 

  K p (p vs 0; p vs 1) λ λ = 0 λ = 1 

P50 0.06 0.04 0.77 
(<0.001; <0.001) 

-522.4 -628.4 -741.8 

S 0.20 <0.001 0.85 
(<0.001; <0.001) 

-1133.3 -1292.9 -1251.0 

ks 0.04 0.54 0.01 
(0.77; <0.001) 

1514.2 1514.2 1359.3 

ρ 0.11 <0.001 0.69 
(<0.001; <0.001) 

266.6 227.1 178.5 
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Figure 3. Phylogeny of 252 conifer species and their cavitation resistance (bars represent P50, pressure 

inducing 50% loss of hydraulic conductance, coloured by family). From the inside out, the gray circles 

indicate P50 values of -10 MPa and -20 MPa. Branches are coloured according to maximum likelihood 

reconstructed P50 values. 
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Figure 4. Cavitation resistance (P50) 

versus mean values of vulnerability 

curve slope (top panel) and wood density 

for conifer branches (bottom panel). The 

curve in the top panel is the best fit of a 

non-linear model. In the bottom panel, 

the dotted line suggests a boundary 

below which data are excluded because 

of conduit implosion. Error bars 

represent SE. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The extent to which interspecific variation in traits is due to convergent evolution or trait 

conservatism can also be illustrated by mapping traits onto the phylogeny of Pinophyta. The 

distribution of P50 along the phylogeny (Fig. 3) reveals that high resistance to cavitation has 

evolved several times in the Cupressaceae. For instance, distantly related genera such as 

Callitris, Cupressus, Juniperus and Tetraclinis have all evolved toward a more resistant xylem 

(low values for both P50 and S (Fig. S3)). Moreover, Figure 3 highlights the very low variability 
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in Pinaceae relative to the other lineages (top side of the figure). No clear pattern was found 

for ks and wood density (Fig. S3).  

Correlation between traits 

We found a strong negative correlation between P50 and S (s = -0.78; Fig. 4b, Table 2), 

showing that the rate of embolism decreases as cavitation resistance increases and that species 

with P50 lower than -6 MPa always embolise very slowly (low S values). This tight relationship 

is confirmed by the PGLS analysis (Table 2). 

Despite the huge observed ranges of P50 and ks, no correlation between specific hydraulic 

conductivity (ks) and cavitation resistance traits (P50 and S) was observed as determined by 

either cross-species correlations or the PGLS analyses (Table 2). ks was only weakly correlated 

with wood density in the Spearman correlation analysis, and not correlated once phylogeny was 

considered using PGLS (see Table 2).   

 

Table 2: Relationships between hydraulic traits through Spearman correlations, linear regressions and 

PGLS among cavitation resistance traits (P50 and S), xylem specific conductivity (ks) and wood density 

(ρ) within the conifer taxa. P50 values were converted to positive values for an easier interpretation of 

the correlation (increasing P50 means increasing cavitation resistance), and all data was log-transformed 

for the regression analysis. Bold font indicates statistical significance at ɑ = 0.05. n is the number of 

species included in the analysis. λ is the phylogenetic signal found in the regression’s residual error. 

  Spearman Correlations Linear regressions PGLS regressions 

  n s p Coef. R² p n 
λ 

(95% CI) 
Coef. R² p 

P50 S 276 -0.79 <0.0001 -1.18 0.61 <0.001 252 
0.76 

(0.60; 0.86) 
-0.74 0.33 <0.001 

 ks 246 -0.0062 0.92 0.06 0.00 0.42 223 
0.13 

(-; 0.54) 
-0.01 0.00 0.92 

 ρ 225 0.37 <0.0001 1.15 0.14 <0.001 210 
0.5 

(-; 0.67) 
0.79 0.10 <0.001 

S ks 246 0.042 0.51 0.04 0.00 0.42 223 
0.22 

(-; 0.56) 
0.16 0.01 0.07 

 ρ 225 -0.42 <0.0001 -0.09 0.20 <0.001 210 
0.56 

(0.34; 0.74) 
-0.08 0.06 <0.001 

ks ρ 196 -0.18 
0.01 

 
-1.20 0.08 <0.001 182 

0.00 
(-; 0.32) 

-1.25 0.09 <0.001 
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However, greater wood density was associated with increasing cavitation resistance and 

flatter vulnerability curves (s = 0.37 and s = -0.42 respectively; Fig. 4a and Table 2). The lower 

boundary of the data was closely correlated with the limit of wood density under which tracheid 

elements may experience implosion (Hacke et al., 2001): resistant species are exposed to much 

higher xylem tension, and therefore cannot have low wood density These relationships hold 

when phylogeny is taken into account  (Table 2), indicating that these traits are evolutionarily 

linked. 

Discussion 

It is commonly assumed that the rate of evolution of conifers has been slow, mainly because 

of the lack of gross morphological differences between some Mesozoic conifer fossils and their 

living relatives (e.g. Metasequoia, Wollemia, Araucaria) and their homogeneous wood showing 

much less variability than in angiosperms (Greguss and others, 1955). Yet, our results provide 

a new functional perspective of the evolutionary history of this major lineage. Phylogenetic 

signal indices across the whole conifer phylogeny show convergent evolution for hydraulic 

traits in the Pinales, with close relatives showing less similarity than expected under Brownian 

motion. However, this overall trend of homoplasy arose predominantly from the divergence 

between families (with species from different families evolving toward similar phenotypes), 

whereas low variation was generally found within families (closely related species were 

phenotypically similar at this taxonomic level). Genus indeed explained the largest amount of 

the variance in cavitation resistance (more than 60%). In addition, the study of cavitation 

resistance from the emergence of the conifers revealed that much of the present day variation 

was associated with drought resistant clades in Cupressaceae. The Cupressaceae evolved 

toward a more cavitation resistant xylem over time as they might be outcompeted by fast-

growing angiosperms in wet and nutrient-rich environments (Bond, 1989; Berendse and 

Scheffer, 2009)whereas the Pinaceae exhibited a strong evolutionary stasis. The comparison of 

P50 values among conifer families supported our initial hypothesis that Pinaceae are more 

vulnerable to xylem embolism and show less variability in this trait than other conifers. These 

results indicate that is important to consider the variation among different conifer lineages, 

rather than treating them as one gymnosperm functional group. 

Different families, different evolutionary histories  

While cavitation resistance varies over a large range (from -1.5 to -18.8 MPa), more than 

half of the studied conifer species presented a P50 between -3 and -5 MPa. The variability of 

this trait appeared to be family dependent and was much higher in Cupressaceae and 
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Podocarpaceae  (CV = 52 % and 28 %, respectively) than in all the other families (CV < 18%). 

In addition, there was a marked evolution toward more drought resistant xylem in 

Cupressaceae, and little or no diversification for P50 in other families. Cupressaceae species 

widely occur in both hemispheres from wet habitats (Athrotaxis, Metasequoia, Taxodium and 

Taiwania) to very arid woodlands (Actinostrobus, Callitris, Cupressus, Juniperus, Platycladus 

and Tetraclinis Brodribb and Hill, 1997; Brodribb and Hill, 1999) while for instance species 

from the Pinaceae family mostly inhabit temperate climates in the Northern hemisphere. The 

evolution toward a higher resistance to water stress-induced cavitation in Cupressoid and 

Callitroid clades of the Cupressaceae (Juniperus, Cupressus and Callitris) might help explain 

the successful survival of these genera during drought (Pittermann et al., 2012) and could 

contribute to the rapid expansion of these drought-resistant species into arid lands (Adams and 

Demeke, 1993, Jackson et al. 2002) Though more modestly, Podocarpaceae also exhibited 

variability in resistance to cavitation that reflects a range of habitats from equatorial rainforest 

to Mediterranean climates in Africa and Australia. However, further phylogenetic analyses are 

required to test the hypothesis whether this family evolved toward a less cavitation resistant 

xylem to persist in angiosperm-dominated equatorial forests. A recent study showed for 

example that the ancestral foliage state in Podocarpaceae featured imbricate leaves and that a 

shift to flattened leaves and wet habitats occurred in all the larger clades at the same time 

angiosperms were radiating (Biffin et al., 2012)). This pattern seemingly contrasts with the 

broad trend towards drought tolerance - and small scale-like leaves - in Cupressaceae, and 

probably explains the lack of a trend in P50 for Podocarps over time.  

In contrast, the Pinaceae exhibited very low variability between species and genera, with 

exception of Cedrus which presented higher resistance to cavitation than the other genera. 

Cavitation resistance was remarkably stable within the Pinus genus, showing strong evidence 

of persistent similarity of function among closely related taxa in this lineage. The high 

vulnerability to embolism of pines compared to other conifers had been reported in previous 

studies (e.g. Delucia et al., 2000; Piñol and Sala, 2000; Martínez-Vilalta and Piñol, 2002). Slow 

anatomical and physiological evolution is a characteristic feature of Pinaceae and has been 

ascribed to their slow chromosomal evolution (Prager et al., 1976). It is also worth noticing that 

comparative genomics has revealed a high degree of macro-synteny (conservation of gene 

content) and collinearity (conservation of gene order across genetic linkage maps) in the 

Pinaceae (Pelgas et al., 2006; Pavy et al., 2012; de Miguel et al., 2015). However, although 

diversification for P50 in Pinaceae was small, they exhibit higher adaptation than angiosperms 
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(Buschiazzo et al., 2012). One spectacular example of ecophysiological evolution was recently 

reported for the Vietnamese pine (Pinus krempfii) which has evolved broad leaves, i.e. flattened 

needles, to compete for light with evergreen angiosperm trees in tropical forests (Brodribb and 

Feild, 2008).  

The lack of evolution of cavitation resistance in Pinaceae could be associated with several 

factors, including stabilizing selection for an optimal P50 value or constrained by a lack of 

genetic variation for cavitation resistance within populations. Though estimates of selection on 

Pinaceae populations are rare, recent evidence indicates that there is no genetic differentiation 

among populations from contrasted environments and limited additive genetic variance in Pinus 

pinaster (Lamy et al., 2011). Furthermore, a comparison of the distribution of neutral markers 

and quantitative genetic differentiation suggests that population differentiation was lower than 

expected from genetic drift alone, which means that (i) natural selection favoured the same 

mean phenotype in different environments maintaining ancestral traits (consequence of uniform 

selection) or (ii) cavitation resistance is canalized. Similar lack of differentiation have been 

published for other pine species, i.e. P. hartwegii (Sáenz-Romero et al., 2013) and P. halepensis 

(N. MartinStPaul, pers. com.). This result is consistent with the hypothesis that absence or 

paucity of genetic variation may constrain the evolution of cavitation resistance, suggesting that 

the history of this trait in the Pinaceae might have been guided in part by restrictions on genetic 

variation rather than insufficient time since an evolutionary divergence or phylogenetic niche 

conservatism (Lusk, 2008).  

This evolutionary stasis is notably different from the pattern observed in Cupressaceae and 

might be attributed to different strategies of drought adaptation among clades. Many Pinaceae 

avoid dehydration through isohydric stomatal regulation, and typically close stomata at leaf 

water potentials higher than -2 MPa (Lopushinsky, 1969; DeLucia et al., 1988; Green and 

Mitchell, 1992). In addition, several Pinaceae respond to growth in arid conditions by reducing 

the leaf:sapwood area ratio, which increases whole plant hydraulic conductivity (Margolis et 

al., 1995; Mencuccini and Grace, 1995; Delucia et al., 2000; Delzon et al., 2004). This change 

reduces the free energy required to extract water from soils, and keeps water potential gradients 

from dropping to levels which cause cavitation (Mencuccini and Grace, 1995; Maherali and 

DeLucia, 2001). In contrast, Cupressaceae species growing in dry habitats can sustain more 

negative water potential and have a wide safety margin (tolerance strategy) (Meinzer et al., 

2009). If Pinaceae have evolved dehydration avoidance as a means to cope with drought, then 

populations may not experience selection for xylem that is more resistant to water stress induced 
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cavitation. Another confirmation of this strategic dichotomy between these two groups of 

conifers is the divergence in stomatal closure mechanism, with Pinaceae sealing their stomata 

tighly using abscissic acid, whereas cavitation resistant Cupressaceae species let leaf desication 

passively seal stomata (Brodribb et al., 2014). The latter therefore allow lower water-potentials 

through leaky stomata, in exchange of more rapid recovery of function following re-watering. 

They have therefore evolved to more negative P50 to avoid risk of xylem embolism during 

prolonged drought, while Pinaceae and other clades using abscissic acid favour avoiding the 

risk of embolism.  

 

Hydraulic safety vs. efficiency trade-off in conifers 

The possibility of a trade-off between cavitation resistance (safety) and xylem hydraulic 

conductivity (efficiency) was tested but no evidence of an inverse relationship between P50 and 

ks was found within the conifer taxa. In a meta-analysis including both angiosperm and conifer 

species, Maherali et al. (2004) found that the significant relationship between ks and P50 was 

primarily driven by the structural difference between the two lineages. If the two clades are 

considered separately (or a phylogenetically independent contrast analysis is performed), no 

correlation was observed as in our study focusing only on a wide sample of conifers and taking 

phylogeny into account using PGLS. This result confirms that the size of conduits and therefore 

transport efficiency are not constrained by the need to avoid of water-stress induced cavitation 

in tracheid-bearing species (Brodribb and Hill, 1999; Kavanagh et al., 1999)). Hydraulic 

conductivity (efficiency) is determined by both lumen and end-wall resistances; the latter 

contributed 64% to total xylem resistance to water-flow in tracheid-bearing species (Pittermann 

et al., 2006a; Sperry et al., 2006). According to the pit area hypothesis, resistance to cavitation 

increased with decreasing total pit area between conduits (Wheeler et al., 2005). However, the 

mode of air-seeding in the torus-margo pits of conifer tracheids does not appear to follow this 

hypothesis but rather the valve effect theory (Delzon et al., 2010), for which the Achilles’ heel 

of conifer conduits is the adhesion of the torus to the pit border (seal capillary-seeding; Bouche 

et al. 2014). Moreover, the porosity of the torus itself might be another air-seeding mechanism 

in tracheids (torus-capillary-seeding; Jansen et al. 2012). To tightly seal the pit aperture, the 

torus must be both fully impermeable and wider than the pit aperture. Therefore, safety from 

cavitation constrains torus size and structure but not the amount of pit membrane, the size of 

tracheid or the margo porosity. Therefore, there is no evidence that protection against air-
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seeding in conifer tracheids is linked to conduit size and transport efficiency (Pittermann et al., 

2006a). 

Conifer wood consists mostly of tracheids, and conduit reinforcement can be achieved with 

minimum investment at the tissue level. P50 was significantly correlated with wood density, 

with resistant species to cavitation having a denser wood. Correlated evolution between wood 

density and cavitation resistance in conifers suggests a trade-off between safety and 

construction cost. The high values of wood density always observed for cavitation-resistant 

species (P50<-8 MPa) which experience more negative water potential in natura (Choat et al., 

2012) suggest that the evolution of thick and lignified cell walls is a prerequisite for conduits 

to resist to implosion under negative pressure(Sperry et al., 2006). However, the high variability 

of wood density among species that are vulnerable to cavitation (-2 MPa < P50 <-6 MPa, see 

Fig. 4), together with the lack of relationship between these two traits at the intraspecific 

level(Lamy et al., 2012), demonstrate that the use of wood density as a proxy of drought 

tolerance is not generally good practice. Moreover, there was a slight but significant correlated 

evolution between transport efficiency and wood density, which suggests that transport 

efficiency may be constrained more by conduit implosion under negative xylem water potential 

than by water-stress induced cavitation per se. However, given that changes in the ratio of cell 

wall thickness to lumen size (thickness-to-span ratio) with cavitation resistance have been 

reported among few conifer species (Hacke et al., 2001; Sperry et al., 2006; Willson et al., 

2008), tracheid diameter and wall-thickness need to be investigated over a broad range of 

conifers to properly test this hypothesis.  

 

Conclusion 

Conifer trees are on average over 3-fold more resistant to cavitation than angiosperm trees 

(P50angio = -1.94 MPa reported in Maherali et al. 2004). The evolution of their vascular system 

- with the appearance of the torus-margo pit membrane - allows conifers to enhance the ability 

of the pit to prevent air-seeding between tracheids (i.e. the torus has the capacity to act as  a 

valve by sealing the pit aperture (Delzon et al., 2010; Pittermann et al., 2010). Our results, 

together with recent studies demonstrate that the living conifers are not relicts, but (i) are 

relatively recent (most Cenozoic crown group conifers are significantly younger than their 

angiosperms counterparts (Crisp and Cook, 2011) and (ii) have evolved a vascular system with 

a sophisticated inter-conduit pit that much more efficiently prevents water-stress embolism than 

vessel pits in angiosperms, while crucially not penalizing water-transport efficiency. This 
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evolutionary innovation in conifer xylem opened up a range of cavitation resistance that has 

been inaccessible to their sister group, the angiosperms. However, the lack of evolutionary 

change for cavitation resistance in the Pinaceae lineage, likely due to genetic constraints on 

macroevolution, might restrict their ability to adapt their vascular system to environmental 

changes. Our results show how a combination of an extensive ecophysiological dataset for a 

core fitness-related trait and phylogenetic approaches can lead to a greater perception of the 

evolutionary history of this Order. This study offers insights both into how conifers have 

responded to climate change in the past and how future climate change may affect them. 
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Supplementary information 
 

Table 1: Coefficient of variation (CV) of the studied traits for each family (with a number of species 
>8) and biome. Taxa or biomes with low magnitude of variance (CV<20%) are in bold.  

 

  CV 

  P50 S ks ρ 

Family Araucariaceae 14 28 54 12 
 Cephalotaxaceae 17 18 68 - 
 Cupressaceae 52 65 62 13 
 Pinaceae 18 38 52 15 
 Podocarpaceae 28 51 50 9 
 Taxaceae 13 45 19 16 

Biome Boreal 14 32 57 10 
 Mediterranean 47 78 57 12 
 Temperate 38 62 59 14 
 Tropical 46 72 56 15 

 

P50: xylem pressure inducing 50% loss of hydraulic conductance; S: slope of the vulnerability curve; ks: 
xylem-specific hydraulic conductance; ρ: total wood density  
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Figure S1. Variability of cavitation resistance (P50, xylem pressure inducing 50% loss in hydraulic 

conductance) across species within the five largest families (Araucariaceae, Cupressaceae, Pinaceae 

Podocarpaceae and Taxaceae (including Cephalotaxaceae)).  
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Figure S2. Mean value of xylem pressure inducing 50% loss in conductance (P50) for each type of leaf 

shape. Error bars represent SE. 
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Figure S3. Values of cavitation resistance (S, slope of 

the vulnerability curve), transport efficiency (ks, xylem 

specific hydraulic conductance) and wood density (ρ) 

are mapped onto the phylogenetic tree of conifers 

(black bars). Nodes are listed in a clockwise manner. 
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Drought-induced hydraulic failure is a leading 
cause of mortality of trees (McDowell et al., 2008; 
Anderegg et al., 2012) and has become a major 
concern in light of future climate predictions, with 
forests across the world showing signs of vulnerability 
to intense and prolonged drought events (Allen et al., 
2010). We show here that Callitris tuberculata, a 
conifer species from extremely dry areas of Western 
Australia, is the most cavitation resistant tree species 
in the world to date (mean xylem pressure leading to 

50% loss of hydraulic function [P50] = 218.8 MPa). 

Hydraulic conductance is maintained in these plants at 
pressures remarkably close to the practical limit of 
water metastability, suggesting that liquid water 
transport under the cohesion-tension theory has 

reached its operational boundary. 
Coping with desiccation is one of the greatest 

challenges faced by plant life on land, and the 

evolution of specialized tissue for the transport of 

water played a key role in the colonization of 

continents (Black and Pritchard, 2002; Sperry, 2003). 

As well as evolving mechanisms to reduce water loss 

(e.g. stomata and waxy leaf surfaces), land plants also 

have to provide their aerial organs with water to fuel 

photosynthesis, supply metabolism, and control leaf 

temperature through transpiration, even when water 

availability is low. Driven by competition for limited 

resources, plants have perfected their vascular systems 

over hundreds of millions of years, enabling vertical 

transport of water to heights in excess of 100 m above 

the ground and resulting in the dominance of trees 

across a wide range of terrestrial ecosystems. 

However, trees are excluded from extremely dry and 

cold climates; we propose here that an absolute limit 

for water transport in trees exists, set by the physical 

properties of liquid water, restricting the existence of 

woody non succulent trees in dry deserts. 

The movement of water against gravity in trees is 
driven by a remarkably simple process, described by 
the tension-cohesion theory (Tyree and Sperry, 1989; 
Tyree, 1997; Sperry, 2003). Evaporation at the leaf 
surface causes water in the plant to move up through a 
specialized transport tissue and drives water uptake 
from the soil. This leads water in the xylem to be 
stretched at negative pressures. However, cohesive 
forces due to hydrogen bonds bind water molecules 

together and also onto cell walls, sufficiently to 

maintain water in a liquid yet metastable state prone to 
sudden vaporization by cavitation. In moist soils, these 

pressures are moderate, typically above 22 MPa, but 

during drought, they decrease considerably, as plants 
are forced to extract water from drying soil, which 
reduces the stability of the water column. Below a 

specific pressure threshold, cavitation events occur 

when airwater menisci located at pores between xylem 
conduits break (Tyree, 1997; Cochard et al., 2009; 
Mayr et al., 2014), vaporizing sap, reducing xylem 
conductance, and eventually leading to plant death by 
desiccation (Brodribb et al., 2010; Urli et al., 2013). 
The xylem pressure at which cavitation occurs, 
leading to 50% loss of hydraulic function (P50), is a 
trait that varies widely across species (Delzon et al., 
2010; Bouche et al., 2014) and links with climate: 
xeric species are more resistant to cavitation than 
species that occupy more mesic habitats (Brodribb and 
Hill, 1999; Maherali et al., 2004; Choat et al., 2012; 
Pittermann et al., 2012). Conifers are generally more 
resistant to cavitation than angiosperms (Maherali et 
al., 2004; Choat et al., 2012), likely due to the presence 
of a pressure-activated safety valve that reduces the 
spread of air between xylem cells (Bouche et al., 

2014). The most cavitation-resistant trees known  

1This work was supported by the French National Research Agency in the 

framework of the Investments for the Future Program within the COTE 

Cluster of Excellence (grant no. ANR–10–LABX–45) and by the 

Hawkesbury Institute for the Environment, University of Western Sydney, 

through its Research Exchange Program. 

* Address correspondence to sylvain.delzon@u-bordeaux.fr. S.D. conceived 

the original screening and research plans; S.D. and S.P. supervised the 

experiments; M.L. performed most of the experiments; R.B. provided 

technical assistance to M.L.; M.L. and S.D. designed the experiments and 

analyzed the data; M.L. wrote the article with contributions of all the authors; 

S.D., S.P., H.C., and T.J.B. supervised and complemented the writing. 

 

 

 

http://orcid.org/0000-0002-4390-4195
http://orcid.org/0000-0001-8289-5757
http://orcid.org/0000-0003-3442-1711


 Part I – Chapter 2 

 

59 

 

804 Plant Physiology, July 2015, Vol. 168, pp. 804–807, www.plantphysiol.org  2015 American Society of Plant Biologists. All Rights Reserved. 
 

Figure 1. C. tuberculata 
appearance, distribution range, 
and climate. A, C. tuberculata 
from the sampled population 
near Lake Grace in Western 
Australia. The inset shows a 
close-up view of the tuberculate 
female cones of this species 
(photograph by A. Wesolowski). 
B, Map of Australia showing C. 
tuberculata’s distribution 
(hatched area; the red star is the 
sampling location). Background 
colors represent mean annual 
precipitations. The inset at top 
left shows annual rainfall and 
temperature anomalies over the 
20th century compared with the 
average (1961–1990) for 
southwestern Australia. Red bars 
highlight hot and/or dry years, 
and the black line indicates the 
10-year moving average. 
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Figure 2. Vulnerability curve for C. tuberculata. 

Points show average loss of conductance ±SE for 15 

pressure classes across all individuals. The black line 

is the Pammenter model for the species average P50 

(white star) and slope; the gray shaded area shows 

95% confidence limits for the mean. The orange 

vertical line represents the maximum speed of the 

centrifuge. The red dashed curves and the red 

shaded area show bulk cavitation probability curves 

at 20˚C, 30˚C, and 40˚C (from left to right). Box plots 

show the distribution of published P50 values for 384 

angiosperm species (light blue) and 160 

gymnosperm species (green). Outliers are detailed 

in the inset at top right. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
to date are conifers of the genus Callitris from 
Australia and New Caledonia, in particular Callitris 
columellaris, displaying a P50 of 16 MPa (Brodribb et 
al., 2010). Here, we present the record cavitation 
resistance of Callitris tuberculata (Cupressaceae; Fig. 
1; Supplemental Materials and Methods S1). This tree 
species is common in extremely arid ecosystems of 
southwestern Australia, where its range stretches far 
into the Great Victoria Desert (Fig. 1B). In this area, 
the climate is dry and hot, with most rainfall occurring 
during a short wet season (Supplemental Fig. S1). At 
its most extreme margin, the average annual rainfall is 
below 180 mm, and annual evapotranspiration can 
exceed rainfall 10 times, presumably making this 
species one of the most drought-tolerant trees in the 

world. 
Our results show that this species from the desert 

tree line produces a previously unparalleled P50 of -
18.8 ± 0.6 MPa (n = 9; Fig. 2; Supplemental Fig. S2; 

Supplemental Table S1), making it, to our knowledge, 

the most drought resistant tree ever measured. At -21 

MPa, the lowest pressure we could achieve with our 
device (thus extending the experimental xylem 

pressure range by nearly 20%, from -17.3 MPa; 

Brodribb et al., 2010), around 25% to 50% of xylem 

conduits were still functional, with the final cavitation 

events predicted to occur at about -25 MPa. Could 

evolution push xylem pressure to more extreme values 

to enable this species to colonize even drier habitats? 

Strikingly, physics’ answer is no, as C. tuberculata has 

reached the operational limit of water metastability. 
According to the classical nucleation theory 

(Debenedetti, 1996), homogenous water cavitation 

occurs at pressures below -120 MPa at ambient 

temperature, as has been verified by experiments 

using microscopic liquid water inclusions in quartz 
(Zheng et al., 1991; Azouzi et al., 2013). Conversely, 
other experimental data suggest that bulk cavitation 
occurs heterogenously on ubiquitous impurities at 

much higher pressures, from -20 to -30 MPa, 

depending on the method used to induce negative 
pressure, water purity, and water temperature (for 
review, see Caupin et al., 2012). Consistently, in 
recent experiments based on a synthetic tree (Wheeler 
and Stroock, 2008; Vincent et al., 2012), bulk 

cavitation occurs rapidly at tensions of around -22 

MPa. The presence of impurities, dissolved minerals, 
and nutrients in xylem sap (Buhtz et al., 2004; 
Krishnan et al., 2011) leads us to speculate that bulk 
cavitation in tree xylem will likely occur at similar 
pressures, setting an absolute physical limit for water 
transport in trees during drought. 

Drought stress has pushed this species to evolve the 
most resistant xylem, to the point that C. tuberculata 

is able to potentially maintain water flow up to the 

limit of physical properties of liquid water. Already 
growing in an environment severely limited by water 
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availability, its adaptation to future conditions (i.e. by 
lowering P50) may be restricted by reaching this 
physical boundary. Indeed, in southwestern Australia, 
a strong trend toward a drier and warmer climate has 
been evidenced over the 20th century (Fig. 1B, inset). 
This could lead to a contraction of forest at the desert 
margin, but it also offers the possibility of a range 
expansion into historically wetter regions to the 
southwest. 

Hydraulic failure is one of the main hypotheses to 
explain tree death following prolonged periods of 
drought (Anderegg et al., 2012). Experiments have 
shown that, after reaching cavitation levels of around 
50% in conifers or 90% in angiosperms, trees cannot 
recover (Brodribb et al., 2010; Urli et al., 2013). 
Furthermore, a recent study showed that trees in all 
ecosystems function with similarly narrow safety 
margins regarding this threshold to cavitation (Choat 
et al., 2012). Like southwestern Australia, many 
regions are projected to suffer from increasingly 
frequent and severe droughts (Stocker et al., 2013), 
highlighting the need to better understand the 
physiological responses of trees to drought stress to 
improve predictions of the impact of climate change 
on forests and woodlands. Our results suggest that C. 
tuberculata is an ideal candidate for further 
investigations, for example into xylem anatomy 

modifications allowing the evolution of increased 

cavitation resistance. Evolution toward xylem safety 
from cavitation leads to a tolerance strategy, allowing 
plants to maintain limited function even in stressed 
conditions. We have discovered an absolute limit to 
this evolutionary path due to water metastability in the 
xylem, explaining why trees tend to be excluded from 
the most arid ecosystems. 

Supplemental Data 

The following supplemental materials are available. 

Supplemental Figure S1. Climate data. 

Supplemental Figure S2. Vulnerability curves for all individuals. 

Supplemental Table S1. Hydraulic traits for Callitris spp. 

individuals. 

Supplemental Materials and Methods S1. Detailed description of 

data collection and analysis. 
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 1 

Supplemental material:  2 

Materials and Methods:  3 

Sampling   4 

As part of investigations into record cavitation-resistant conifers, we collected samples 5 

(branches of about 40 cm) from a population of Callitris tuberculata near Lake Grace (WA, 6 

Australia) in July 2014. They were immediately wrapped in wet paper towels with foliage removed, 7 

and sent for measurement at the BIOGECO lab at INRA - University of Bordeaux (France; 8 

http://sylvain-delzon.com/?page_id=536) where they were kept in dark, damp and refrigerated 9 

conditions until measurements were conducted.   10 

Vulnerability curves  11 

Cavitation resistance was estimated with the flow-centrifuge technique, based on the 12 

Cavitron method (Cochard et al., 2005), in which centrifugation is used to induce negative pressure 13 

in the xylem of the sample and conductance is monitored during spinning (as measured by the water 14 

flow through the stem). Samples were cut to length (27 cm), then bark was removed and the ends 15 

were re-cut with a clean razor blade. We used a specially designed centrifuge rotor, reinforced to 16 

allow previously unattainable speeds of above 13000 rpm. We thus reached a record maximum 17 

speed of 15000 rpm, which induces xylem pressure of around -21 MPa. Maximum conductance is 18 

estimated at low speed (high pressure), then we gradually increase rotation speed, repeatedly 19 

measuring conductance at least 3 times at each pressure step. As xylem pressure is forced to more 20 

negative values, cavitation events occur, leading to a drop in hydraulic conductance, which is 21 

classically represented as so-called vulnerability curves, percent loss of conductance (or PLC) as a 22 

function of pressure. Each individual vulnerability curve was fit using the Pammenter model 23 

(Pammenter and Vander Willigen, 1998), with P50 derived as the pressure leading to a 50% decrease 24 

in conductance (Supplemental Fig. S2). This procedure has been extensively described elsewhere, 25 

see for example Methods in Delzon et al. (2010) and Jansen et al. (2012). Individual P50 and other 26 

parameters for each individual are presented in Supplemental Table S1. Conductance measurements 27 

for all individuals were pooled and binned into 15 pressure classes, to create an average vulnerability 28 

curve (Fig. 1). The shaded area in Fig. 1 represents the 95% confidence interval for the mean 29 

obtained with the CLM option in the Means Procedure in SAS. All statistical analyses was 30 

conducted using SAS software (SAS 9.4 Institute, Cary, NC, USA).  31 

This method also enables estimation of xylem specific conductivity, a measure of xylem 32 

capacity to transport water. No significant correlation with xylem safety from cavitation was 33 
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found within this population of C. tuberculata (regression analysis r²=0.035; P=0.63), indicating 34 

absence of a functional trade-off between safety and efficiency.   35 

Cavitation resistance data  36 

We extracted published measurements of cavitation resistance from Choat et al. (2012) and 37 

Bouche et al. (2014) of both Angiosperm and Gymnosperm species to allow comparison of Callitris 38 

tuberculata to other species. These datasets are available online respectively from the Nature and 39 

Journal of Experimental Botany websites.   40 

Bulk cavitation curves  41 

Bulk heterogeneous cavitation curves for temperatures of 20, 30 and 40°C (likely to occur 42 

in the xylem of C. tuberculata during summer drought) were constructed based on  43 

equation 12 in Herbert et al. (2006).  44 

Climate data  45 

Annual temperature and precipitation deviation from the 1961-1990 average was obtained 46 

from the Australian Bureau of Meterology (http://www.bom.gov.au). Callitris tuberculata 47 

occurrences were downloaded from the Global Biodiversity Information Facility (GBIF; 48 

http://www.gbif.org), and used to outline an approximate distribution range. Climate layers were 49 

then obtained from Worldclim (Hijmans et al., 2005) (http://www.worldclim.org) and the Global 50 

Aridity Index and PET datasets (http://www.cgiar-csi.org/data/global-aridityand-pet-database), and 51 

data for each location was extracted in QGIS 2.4.0 (Quantum, 2011) using the point-sampling tool. 52 

We show here the average monthly precipitations and maximum daily temperature for all locations 53 

obtained from GBIF (Supplemental Fig. S1).  54 

  55 
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Figure S1.  Climate diagram of average monthly precipitations and maximum temperatures for 95 

Callitris tuberculata’s estimated range. Black bars represent monthly precipitations, and the red 96 

curve shows maximum temperatures.  97 

  98 

Figure S2. Vulnerability curves for nine individual trees of Callitris tuberculata. Each point 99 

represents mean value of percent loss of hydraulic conductance over at least three measurements of 100 

hydraulic conductance (bars represent ± standard error). Lines represent the Pammenter model fit 101 

to each individual curve, and dashed lines show were the model was expanded beyond experimental 102 

data.  103 

Table S1. Cavitation resistance parameters for each individual. P50, P12, and P88 are, respectively, 104 

the xylem pressure inducing 50%, 12% and 88% loss of xylem hydraulic conductance. S is the slope 105 

of the vulnerability curve at P50. ks is the specific xylem conductivity, a standardized measurement 106 

of the samples’ capacity to transport water.  107 
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Abstract  

Drought-induced forest dieback has been widely reported over the last decades, and the evidence for a direct 
causal link between survival and hydraulic failure (xylem cavitation) is now well known. Because vulnerability 
to cavitation is intimately linked to the anatomy of the xylem, the main objective of this study was to better 
understand the xylem anatomical properties associated with cavitation resistance. An extensive data set of 
cavitation resistance traits and xylem anatomical properties was developed for 115 conifer species, with 
special attention given to the micro-morphology of bordered pits. The ratio of torus to pit aperture diameter, 
so-called torus overlap, increased with increasing cavitation resistance, while the flexibility of the margo 
does not seem to play a role, suggesting that air-seeding is located at the seal between the aspirated torus 
and pit aperture. Moreover, punctured tori were reported in various Pinaceae species. Species resistant to 
cavitation had thicker tracheid walls, while their lumen diameter (conduit size) was only slightly reduced, 
minimizing the impact on hydraulic conductance. The results also demonstrated (i) the existence of an 
indirect trade-off between hydraulic safety and mechanical strength; and (ii) a consistency between species 
distribution and xylem anatomy: species with a wide torus overlap and high valve effects are found in arid 
environments such as the Mediterranean region.  

Key words: Cavitation resistance, hydraulic efficiency, mechanical strength, seal capillary-seeding, torus–margo 
pit, xylem anatomy, wall implosion.  

Introduction  
Evidence for drought-induced forest dieback has been 

reported worldwide (Bigler et al., 2007; Van Mantgem et 

al., 2009; Allen et al., 2010; Peng et al., 2011; 

SanchezSalguero et al., 2012). There is growing evidence 

that all forest types or climate zones are equally vulnerable 

to drought events, even in currently mesic environments 

(Allen et al., 2010; Choat et al., 2012). Although 

gymnosperms seem to be on average more resistant to 

cavitation (Maherali et al., 2004; S. Delzon et al.,  

unpublished data) and have greater hydraulic safety 

margins per se than angiosperms (Choat et al., 2012), they 

are also not immune to drought-induced mortality 

(Breshears et al., 2005; Sanchez-Salguero et al., 2012; 

Hartmann et al., 2013).   
   Resistance to cavitation is a crucial trait in trees to cope 

with drought stress (Cochard and Delzon, 2013) in addition 

to, for example, rooting depth, internal water storage, and 

changes in biomass allocation or leaf anatomy. Indeed,  
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substantial evidence of a direct causal link between drought 

resistance and cavitation resistance has been highlighted in 

both conifers (Brodribb and Cochard, 2009; Brodribb et al., 

2010) and angiosperms (Barigah et al., 2013; Urli et al., 

2013). Global surveys of cavitation resistance in woody 

species have not surprisingly shown that species from xeric 

climates are more resistant to embolism than species from 

wet climates (Maherali et al., 2004; Cochard et al., 2008; 

Choat et al., 2012). Incorporation of phylogenetic 

information strengthened these adaptive inferences and 

suggests that cavitation resistance-related traits are under 

natural selection (Maherali et al., 2004; Willson et al., 2008; 

Pittermann et al., 2010). Hence, there is convincing evidence 

that the geographical distribution of many tree species is 

determined by their ability to resist droughtinduced 

embolism (Engelbrecht et al., 2007; Choat et al., 2012; 

Delzon and Cochard, 2014).   
   Drought-induced embolism occurs in the xylem, in which 

water is transported under tension (Tyree and Zimmerman, 

2002). While the exact mechanisms remain unknown, 

drought-induced embolism formation is thought to occur via 

air leakage from an embolized conduit (non-functional) to a 

functional conduit. When the pressure in the xylem is 

sufficiently negative, the rupture of an air–sap meniscus 

allows propagation of air bubbles through porous 

interconduit pit membranes (Crombie et al., 1985; Cochard 

et al., 1992; Jarbeau et al., 1995; Tyree and Zimmerman, 

2002). Cavitation resistance would therefore be influenced 

by the structure and function of bordered pits. Accordingly, 

variation in xylem anatomy, conduit characteristics, and 

bordered pits has been associated with cavitation resistance 

in both angiosperms (Sperry and Hacke, 2004; Jansen et al., 

2009; Lens et al., 2011) and conifers (Hacke et al., 2004; 

Domec et al., 2006; Delzon et al., 2010).  

Cavitation in angiosperms occurs by air-seeding at the pit 

membrane level. Under well-hydrated conditions, the pit 

membrane separating two functional vessels is in a relaxed 

position (i.e. unaspirated) and sap flows through the pores of 

the membrane. When water stress occurs, the pressure 

difference between an embolized and functional vessel leads 

to the rupture of an air–sap meniscus located within the pit. 

Embolism formation in angiosperms seems to depend on the 

size of the largest pores in the pit membranes (Choat et al., 

2003, 2004; Christman et al., 2009). In conifers, the inter-

tracheid pits are morphologically characterized by a 

centrally located torus and a porous margo region. When the 

pressure difference in xylem increases, the deflection of the 

torus against the pit aperture seals off the embolized tracheid 

(Liese and Bauch, 1967; Bailey, 1913). This so-called ‘valve 

effect’ prevents the spread of air into the functional xylem 

and may depend on the torus diameter relative to pit aperture 

diameter (Hacke et al., 2004; Domec et al., 2006; Delzon et 

al., 2010). How does cavitation occur in torus–margo pits? 

Different mechanisms of air-seeding have been proposed to 

explain cavitation in conifers (for a review, see Cochard, 

2006). Recent studies demonstrated that as for angiosperms, 

cavitation occurs by rupture of an air–sap meniscus in the 

vicinity of the pit membrane (Sperry and Hacke, 2004; 

Cochard et al., 2009), but the exact location of where the 

meniscus breaks is unknown. Two mechanisms are likely: 

(i) air bubbles pass through pores at the edge of the torus 

when the torus and the inner wall of the pit membrane are 

not perfectly sealed (seal capillary-seeding hypothesis; 

Cochard et al., 2009; Delzon et al., 2010; Pittermann et al., 

2010); and (ii) the torus structure is not fully impermeable, 

meaning that air bubbles may pass through tiny pores (torus 

capillary-seeding hypothesis; Jansen et al., 2012). 

According to recent studies, the first is more likely in most 

conifer families, while the second may be an additional 

mechanism in Pinaceae (Jansen et al., 2012). Additional 

anatomical observations of bordered pits in a broader range 

of conifers are believed to provide further details about how 

embolism formation occurs in gymnosperms.   
   Conifer tracheids are involved not only in water transport 

but also in mechanical support of the plant. The length of a 

tracheid, its diameter, and the thickness of its wall are factors 

contributing to mechanical strength. Based on 

measurements and theoretical estimations, cavitation 

resistance is correlated to the ‘thickness to span’ ratio of 

tracheids (Hacke et al., 2001; Sperry et al., 2006; Domec et 

al., 2009; Arbellay et al., 2012). Higher absolute resistance 

to cavitation is associated with lower negative sap pressure 

and requires stronger tracheids with a higher thickness to 

span ratio to resist to mechanical stress. An increase in the 

thickness to span ratio, probably due to reduced lumen 

diameter (Pittermann et al., 2006b; Sperry et al., 2006), thus 

also enhances the resistance to water stress. The 

physiological consequences of this trade-off between 

hydraulic safety and mechanical strength has received 

considerable attention (Baas et al., 2004; Domec et al., 2006, 

2009; Pittermann et al., 2006a, b, 2011; Choat et al., 2007). 

Therefore, conduit structure is potentially constrained by 

safety considerations (Sperry et al., 2008).     In this study, 

the linkage between xylem anatomy and resistance to 

drought-induced cavitation was assessed using a large 

database of 115 conifer species. By broadly sampling across 

conifer phylogeny and four major terrestrial biomes, the 

objectives were (i) to better understand how xylem 

anatomical properties associated with air-seeding influence 

the mechanical strength of the xylem; and (ii) to assess the 

evolutionary trends of xylem anatomy in the selected taxa. It 

was hypothesized (i) that the anatomy and functional 

properties of pit pairs strongly influence cavitation 

resistance in conifer species—more specifically it was 

believed that the valve effect (product of torus–aperture 

overlap and margo flexibility) plays a major role in 

cavitation resistance; and (ii) that increased cavitation 

resistance is associated with higher mechanical strength.  

Materials and methods  

Plant material  
Anatomical observations and cavitation measurements were 

conducted on 60 conifer species. Additional data were retrieved 

from Delzon et al. (2010) and Jansen et al. (2012) (40 and 15 
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Table 1. Taxonomic diversity of conifers and species studied (following Farjon et al., 2008). 

 species, respectively) and completed by measuring novel 

characteristics. A total of 115 species, including seven families and 

45 genera (see Table 1, and Supplementary Table S1 available at 

JXB online), were used to test the relationship between cavitation 

resistance and anatomical  traits. All anatomical observations have 

been carried out on material that had previously been used for 

measuring   cavitation resistance. These observations were limited 

to one individual for most species and, in cases where several 

samples were available, the sample that was closest to the average 

P50 value; that is, the xylem pressure inducing 50% loss of 

hydraulic conductance, was selected. Although the intraspecific 

variability in pit anatomy can be considerable between organs 

(roots showed dramatic differences in conduit and pit anatomical 

properties compared with branches; Domec et al., 2008; Jansen et 

al., 2009; Schoonmaker et al., 2010), here it was assumed that 

intraspecific variation was smaller than interspecific variation 

(Matzner et al., 2001; Maherali et al., 2004; Martinez-Vilalta et 

al., 2009). Moreover, to avoid any additional intra-organ 

variability, only anatomical features in the xylem of young 

branches were measured.  
Microscope techniques  
Light microscopy Four to five transverse sections were cut for each 

sample with a sliding microtome, stained with safranin (1%), and 

fixed on a microscope slide. Sections were observed with a light 

microscope (DM2500, Leica, Germany) at the University of 

Bordeaux. Five photos per section were taken with a digital camera 

(DFC290, Leica, Germany), and analysed with WinCell (Regent 

Inst., Canada). Scanning electron microscopy (SEM) SEM 

observations were conducted at Ulm University with a Hitachi 

cold-field emission scanning electron microscope and with a 

benchtop scanning electron microscope at the University of 

Bordeaux (PhenomG2 pro; FEI, The Netherlands). For the Hitachi 

SEM, thin (1 μm) radial sections were cut in different parts of the 

stem, air-dried, coated with platinum using a sputter coater 

(Emitech Ltd; Ashford, UK) for 2 min at 10 mA, and observed 

under 2 kV. For the benchtop SEM, samples of 5–8 mm long were 

cut with a razor blade in a radial direction. After drying for 24 h in 

an oven at 70 °C, the samples were fixed on stubs, coated with 

gold using a sputter coater (108 Auto; Cressington, UK) for 40 s 

at 20 mA, and observed under 5 kV.   
Transmission electron microscopy (TEM) A transmission electron 

microscope was used to obtain ultrastructural details of pit 

membranes for 33 species. One stem per species was cut into 1 

mm3 blocks and dehydrated in an ethanol series. The ethanol was 

gradually replaced with LR White resin (London Resin Co., 

Reading, UK) over several days (for more details, see Jansen et al., 

2012). Then, transverse ultrathin (between 60 nm and 90 nm) 

sections were cut using a diamond knife and collected on 100 mesh 

copper grids. The ultrathin sections were manually stained with 

uranyl acetate and lead citrate. Observations were carried out with 

a JEOL JEM-1210 transmission electron microscope (Jeol, Tokyo, 

Japan) at 80 kV accelerating voltage, and digital images were 

taken using a MegaView III camera (Soft Imaging System, 

Münster, Germany).  

Xylem anatomical features  
All anatomical features related to tracheids and bordered pits (see 

Table 2) were based on earlywood, which is responsible for most 

of the hydraulic conductance (Domec and Gartner, 2002). Based 

on light microscopy images (×200 magnification), the tracheid 

lumen diameter (DT; the simple average of the equivalent circle 

diameter) and the thickness of the double wall between 

neighbouring conduits (TW) were measured. Pit membrane 

diameter (DPM), aperture diameter (DPA), and torus diameter (DTO) 

were measured using SEM (Fig. 1). The distance between two pit 

borders (LPB; Fig. 1), the number of margo pores (NMP), the mean 

and maximum diameter of margo pores (DMP, DMPmax), and the 

mean diameter of pores in the torus (DTP) (Fig. 2) were measured 

using SEM images. Because the LPB parameter varies depending 

on the distribution of pits in tracheids, a constant distribution of 

pits along the entire length of a tracheid was assumed for these 

measurements. Average values for all anatomical features were 

determined based on a minimum of 20 measurements. All 

anatomical measurements were conducted using ImageJ freeware 

(W.S. Rasband, ImageJ, US National Institutes of Health, 

Bethesda, MD, USA, http://imagej.nih.gov/ij/, 1997–2012).  
 Xylem anatomical properties  
The following functional properties of pit membranes and 

tracheids (Table 2) were estimated from anatomical measurements 

to investigate micro-morphological variation in relation to 

embolism formation.  
Seal capillary seeding The margo flexibility [F=(DPM–DTO)/DTO], 

the torus overlap [O=(DTO–DPA)/DTO], and the valve effect 

(VEF=F×O) were estimated following Delzon et al. (2010). DPM is 

the pit membrane diameter, DPA the pit aperture diameter, and DTO 

is the torus diameter.  
Margo and torus capillary seeding pressure The pressure 

difference between two adjacent tracheids required to break the 

air–water meniscus in the margo was calculated following the 

Young–Laplace equation:  

PMC  =–[4cosτ(α)] / DMP  
    where τ (0.0728 N m–1 at 20 °C) is the surface tension of water, 

α is the contact angle between the microfibrils and the meniscus 

(assumed equal to 0°), and DMP is the average diameter of the 

margo pores.  

The pressure difference required to break the air–water meniscus 

in the torus when it is already sealed against the pit aperture was 

calculated as:  

PTC DTP =–[4cosτ(α)] / DTO   
   where DTP is the mean diameter of a pore in the torus.  
Torus deflection  

The pressure difference required to aspirate the pit membrane onto 

the pit border was estimated according to Domec et al. (2006):  

PTD N eA rDPM =–(2 MOEeA ) / (πr DPM )  
   where N is the number of margo strands, which was assigned to 

the average value of 55 and 200 strands per pit (Domec et al., 

2006).   

Family  Genera  Genera sampled  Species  Species sampled  
Araucariaceae    3    3    41      9  
Cephalotaxaeae    1    1    11      3  
Cupressaceae  30  25  133    43  
Pinaceae  11    7  228    35  
Podocarpaceae  19  14  186    19  
Sciadopityaceae    1    1      1      1  
Taxaceae    5    2    23      5  
Total  70  53  627  115  
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 Table 2. Anatomical traits and functional properties with reference to their acronym, definition, microscope  

technique units, and number of measurements 

Acronym  Definition  Technique  Unit  Minimum number 
of measurements  

Anatomical 
  

DT  

 features  
  
Tracheid lumen diameter : the simple  average 
of the equivalent circle diameter  

  

LM or TEM  

  

µm  

  

30  
DMP  Margo pore diameter  SEM  nm  50  
DMPmax  Maximum margo pore diameter  SEM  nm  50  

DPA  Pit aperture diameter (horizontal  diameter 
at its widest point)  SEM or TEM  µm  20  

DPM  Pit membrane diameter (horizontal  diameter 
at its widest point)  SEM or TEM  µm  20  

DTO  Torus diameter (horizontal diameter  at 
its widest point)  SEM or TEM  µm  20  

DTP  Torus pore diameter  SEM  nm  20  
NMP  Number of pores in a margo  SEM  -  -  
LPB  Distance between pit adjacent borders  SEM  µm  20  

TTW  Tracheid wall thickness measured as the  
double wall between two adjacent tracheids  LM or TEM  µm  30  

Functional 

DH  
traits  
Hydraulic diameter = ƩDT

5/ƩDT
4  -  µm  -  

F  Flexibility of the margo = (DPM – DTO)/DTO  -  -  -  
LE  Ligament efficiency  -  -  -  
O  Torus overlap = (DTO – DPA)/DTO  -  -  -  
PWI  Wall implosion pressure  -  MPa  -  
PMC  Margo capillary seeding pressure  -  MPa  -  
PRS   Rupture stretching pressure  -  MPa  -  
PTC  Torus capillary-seeding pressure  -  MPa  -  
PTD  Torus deflection pressure  -  MPa  -  
RPA  Pit aperture resistivity  -  MPa s m-3  -  
RMP  Margo pore resistivity  -  MPa s m-3  -  
RP  Total pit resistivity  -  MPa s m-3  -  
TW DT

-  Thickness to span ratio  -  MPa s m-3  -  
VEF  Valve effect = O x F  -  -  -  

MOE is the modulus of elasticity of the strands (taken at 3.5 GPa;  
Domec et al., 2006) and eA is the margo spoke strain at aspiration  
(eA=0.03DPM/DPM–DTO).  
Rupture stretching The pressure difference needed to break strands 

of the margo was estimated following Domec et al. (2006):  

PRS=-2JN[(DPM/2r)/π(DTO/2+(DPA/2)²]-PTD  

   where J is the tension of a strand between the aspirated position 

and stretched position when the torus goes through the pit 

aperture and no longer covers the whole aperture [J=0.0147(eS–

eA) MOE] and eS is the margo spoke strain in the stretched 

position [eS=(DTO–DPA+0.03DPM)/(DPM–DTO)].  
Pit hydraulic resistance The hydraulic trade-off associated with 

cavitation resistance was quantified by calculating the pit 

aperture resistivity (RPA), margo resistivity (RM), and total pit 

resistance (RP) following Hacke et al. (2004) and Pittermann et 

al. (2010):  

RPA=[128TPAυ /(πDPA)4 +24υ/DPA
3]  

  where υ is the viscosity of the water (0.001 Pa.s at 20°C) and TPA is 

the thickness of a single pit border calculated from the double wall 

thickness (TPA=81% of TW; Domec et al., 2008).  
RM = [24υ/(NMPDMP)3] f (h) 

where NMP is the number of pores in the margo and f(h) is the 

function of h, the proportion of the margo occupied by pores 

[h=NMPπ(NMP/2)2/π(DPM/2)2]. The total pit resistance RP equals the 

sum of RPA and RM (RP=RPA+RM).  
   The thickness to span ratio was also estimated as it reflects the 

tracheid contribution to conductance. It corresponds to TW/DT, 

where TW is the double wall thickness and DT the tracheid lumen 

diameter (the simple average of the equivalent circle diameter).  

Xylem failure by theoretical conduit implosion The conduit 
implosion pressure was defined as the pressure difference across 

the tracheid wall required to cause bending stress to exceed the 
wall strength. It was estimated using methods described by Domec 

et al. (2008):  

PWI=(ω/β)(TW/DT)² LE (IH/IS) 

where ω is the strength of the wall material assumed to be 80 MPa 

(Hacke et al., 2001), and β is a coefficient taken as 0.25. The 

moment ratio, IH/IS, represents the ratio of the second moment of 

area of a wall with pit chamber (IH) to that of a solid wall with no 

pit chamber present (IS). Hacke et al. (2004) showed that IH/IS does 

not change with air-seeding pressure, and is on average ~0.95 in 

conifers. The ligament efficiency [LE=1–DPA/(DPM+LPE)] 

quantifies the spatial distribution of the pit aperture in the wall.  
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Fig. 1. Tracheid and pit membrane structure. (A) Transverse view of two adjacent tracheids. TW, double wall thickness; DT, tracheid lumen 

diameter. (B) Radial view of a pitted wall. LPB, distance between two adjacent pit borders. (C) Transverse (top) and radial (bottom) view of 

a bordered pit membrane. DPM, pit membrane diameter; DTO, torus diameter; DPA, pit aperture diameter.  

Cavitation resistance  
Cavitation resistance data were retrieved from Delzon et al. (2010; 

unpublished data). Data analyses were carried out for several 

cavitation traits, P50 (xylem pressure inducing 50% loss of 

hydraulic conductance), S (slope of the vulnerability curves) 

(Pammenter and Vander Willigen, 1998), P12 (xylem air entry), 

and P88 (xylem pressure at which 88% of conductivity is lost) (for 

more details, see Domec and Gartner, 2001). As similar results 

were found for all cavitation parameters, it was decided to present 

the relationship between anatomical traits and P50 for simplicity. 

However, xylem air entry pressure (P12) was also used to test 

whether cavitation occurs before or after torus deflection.  
Data analysis  
Cross-species correlations between xylem anatomical traits and 

cavitation resistance were tested with a Pearson correlation 

coefficient (r) and a Spearman correlation coefficient (s) for 

nonlinear data. In addition, the species distribution in the four 

major biomes was retrieved from Delzon et al. (unpublished data), 

and variations of anatomical traits among biomes were assessed 

using a one-way analysis of variance (ANOVA). Data and 

statistical analyses were conducted using the SAS software 

(version 9.3 SAS Institute, Cary, NC, USA).  

   Phylogeny can induce bias when testing for correlations in pairs 

of traits within a group of species. Because of shared evolutionary 

history between related species, the assumption of independence 

of classical statistical tests and correlations is disregarded 

(Felsenstein, 1985; Harvey and Pagel, 1991; Garland et al., 1992). 

The phylogenetically independent contrast method (or PIC; 

Felsenstein, 1985) is a common workaround for this issue: 

differences (or contrasts) in trait values are computed for each pair 

of species and each node of the phylogeny; these are statistically 

independent, and represent the evolutionary divergences in traits 

at each node (for more detailed information, see Felsenstein, 1985;  

Garland et al., 1992). Furthermore, the PIC method is used to test 

for correlated evolution between traits: a significant positive trend 

(i.e. PICs for trait A are positively correlated with PICs for trait 

B) means that for each node of the phylogeny a change in the value 

of trait A is associated with the evolution of trait B. 

Phylogenetically independent contrasts analyses (PICs; 

Felsenstein, 1985) were run in R (R Development Core Team, 

2008) using the ‘ape’ package (Paradis et al., 2004).     This 

method requires knowledge of the phylogeny of the studied taxa 

with branch lengths. To this end, DNA sequences for three 

generally available genes (chloroplast genes rbcL and matK, and 

nuclear gene phyP) were retrieved from GenBank (Benson et al., 

2010) and aligned using PHLAWD (PHyLogeny Assembly With 

Databases; Smith et al., 2009; http://code.google.com/p/phlawd). 

Alignements were visually checked and trimmed in MEGA 5.0 

(Tamura et al., 2011). Maximum Likelihood (ML) phylogenetic 

analyses were run in RAxML (version 7.0.3; Stamatakis, 2006). 

A separate GTR+CAT rate model was assigned to each partition, 

and each search was conducted 100 times and the best maximum 

likelihood (ML) tree was retained.  

Results  
Inclusion of phylogenetic information was useful to identify 

adaptive relationships between anatomical properties and 

cavitation resistance. Below both cross-species correlations 

between variables analysed with Pearson or Spearman  

correlation (r or s) coefficients and phylogenetically 

independent contrasts (PICs) are presented.  
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Pit membrane functional properties  
P50 was significantly correlated with functional properties of 

the bordered pit such as torus–aperture overlap (O) and 

valve effect (VEF; product of torus overlap and margo 

flexibility) (Table 3, Fig. 3). This relationship was also 

supported by the PIC analyses, suggesting a correlative 

evolution between cavitation resistance and pit membrane 

functional properties. Increasing valve effect (VEF) 

increased cavitation resistance. Variation in valve effect was 

mainly due to change in torus–aperture overlap as margo 

flexibility varied weakly among species. Following cross-

species correlations, pit aperture diameter (DPA) contributed 

more to torus–aperture overlap than to torus diameter (DTO) 

(Fig. 3). However, the PIC analyses did not confirm this 

trend (Table 3).  
   Based on interspecific analyses, rupture stretching 

pressure (PRS) was highly correlated to P50 (Table 3). Margo 

strength increased with increasing cavitation resistance.  
However, PRS was always much lower than P50 (PRS= –4.67 

to –71.31 MPa; P50= –2.23 to –15.79 MPa; Supplementary 

Fig. S1 available at JXB online), suggesting that cavitation 

took place before mechanical rupture of the margo strands. 

For all species, torus aspiration occurred at a relatively high 

xylem pressure (close to 0 MPa, PTD= –0.03 to –0.33 MPa; 

Supplementary Fig. S1 available at JXB online) as compared 

with the xylem air entry pressure (P12= –0.91 to –12.66 

MPa; Supplementary Fig. S1 available at JXB online). 

Moreover, the pressure difference inducing margo capillary 

rupture (PMC) was lower (more negative) than the pressure 

difference required to deflect the torus towards the pit 

aperture (PTD) (PMC= –0.10 to –0.75 MPa;  
Supplementary Fig. S1 available at JXB online). This means 

that torus deflection occurs before an air–water meniscus 

breaks through the margo of a pit membrane. Cavitation 

resistance was positively correlated with total pit resistivity 

(RP) and pit aperture resistivity (RPA; Table 3; Fig. 5A, C) 

but not with margo resistivity (RM; Table 3; Fig. 5B), 

suggesting that the margo pores  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Pit membrane porosity. T, torus; M, margo. (A) Radial view of a pit membrane with a porous margo. ImageJ software was used to 
measure the diameter of the largest pore in the margo (DMPmax; red pores) and the average of margo pore diameter (DMP; average of blue 
and red pores). (B) Radial view of a pit membrane with punctured torus. ImageJ software was used to estimate the average diameter of  
the pores in a torus (DTP).  

Anatomical properties  

Across species, cavitation resistance (P50) was negatively 

correlated with pit aperture diameter (DPA; Table 3) showing 

that species with narrower pit apertures are more resistant to 

cavitation. However, these relationships were not supported 

by correlations using PICs (Table 3). No relationship was 

found between cavitation resistance and other anatomical 

traits such as tracheid lumen diameter (DT), torus diameter 

(DTO), or pit membrane diameter (DPM). The same results 

were found for correlations with P12, P88, and the slope of 

vulnerability curves (Supplementary Table S2 available at 

JXB online).  
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 Bold values indicate significant correlations at P<0.05. 

are not involved in cavitation resistance in conifers. 

However, these trends were not confirmed by the PIC 

analysis (Table 3). Concerning the 70 species tested for the 

torus capillary-seeding hypothesis, only 16 species were 

found with punctured tori, mostly belonging to the Pinaceae 

family. The size of the pores varied from 12 nm to 144 nm. 

Only a weak but significant correlation was found between 

cavitation resistance and torus capillary-seeding pressure 

(PTC, s=0.52, P=0.046; Supplementary Fig. S2 available at 

JXB online). The air-seeding pressure based on the size of 

plasmodesmatal pores in tori was of the same order of 

magnitude as the P50 values.  

Mechanical properties  

Spearman correlations and PIC analyses showed a positive 

correlation between the thickness to span ratio (TW DT –1) 

and cavitation resistance (P50; Fig. 4A; Table 3). Variation 

in TW DT –1 across conifers was mainly determined by 

changes in double cell-wall thickness (TW; s=0.60, 

PIC=0.57) rather than a change in tracheid lumen diameter 

(DT; Fig. 4B). Moreover, tracheid lumen diameter and wall 

thickness were positively correlated (s=0.65, PIC=0.52; Fig. 

4C), meaning that wall thickness and tracheid lumen 

diameter varied in the same way when total tracheid size 

changed. Wall implosion pressure (PWI) was also positively 

correlated with cavitation resistance (Table 3; Fig. 4C). For  

 

most of the species, PWI was always more negative than P50 

(PWI= – 4.69 to – 32.14 MPa), suggesting that conduit 

implosion does not occur before cavitation. Comparing the 

data plot in Fig. 4C with the 1:1 line, the difference between 

PWI and P50 decreased from vulnerable species (low absolute 

P50 values) to resistant species (high absolute P50 values). 

The PIC analyses suggest that traits related to cavitation 

resistance and mechanical strength have evolved jointly.  

Species distribution  
Significant differences in xylem anatomy and hydraulic 

properties were found between the four biomes. In general, 

torus–aperture overlap, valve effect, and thickness to span 

ratio were significantly higher for the Mediterranean biome 

than the other biomes (Table 5). Species from 

Mediterranean regions showed a 2-fold higher cavitation 

resistance (more negative P50) than in the other biomes 

(Table. 5).  

Discussion  
Pit anatomy and cavitation resistance  

Across the 115 species studied, bordered pit properties of 

early wood tracheids (torus–aperture overlap and valve  

Table 3. Pearson (r) and Spearman correlation (s), and phylogenetically independent contrast correlations (PICs) for 

relationships between anatomical and functional traits with cavitation resistance (P50) in conifers  

The number of species measured is mentioned for each parameter.  

 Correlation with P50    PIC    n  

 r s P-value  PIC p-value  

Pit membrane properties        

   DMP  0.21  0.19    38 
   DMPmax  0.05  0.71    38 
   DPA   -0.30 0.002  -0.13 0.23 97 
   DPM  0.12  0.21  0.18 0.07 96 
   DTO  0.06  0.54    88 
   F   -0.04 0.7  0.02 0.82 88 
   NMP  0.22  0.14    42 
   O   0.46 <0.0001  0.24 0.03 87 
   PMC  0.1  0.94    38 
   PRS  -0.43  0.0002    65 
   PTC  0.52  0.046    16 
   PTD  0.20  0.10    66 
   VEF   0.52 <0.0001  0.30 0.006 87 
Mechanical features         
   DT  -0.17  0.12    72 
   DH   -0.31 0.007  -0.06 0.59 72 
   TW   0.15 0.17  0.22 0.007 81 
Mechanical properties         
   PWI   -0.51 0.0001  0.49 <0.0001 63 
  TW DT-1   0.41 0.0003  0.30 0.01 73 
Pit membrane resistance         
   RPA   0.30 0.01  0.23 0.05 73 
   RMP   0.09 0.57  0.37 0.03 38 
   RP   0.47 0.005  -0.09 0.60 33 
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effect) are the best proxy to explain the variability of 

cavitation resistance: species resistant to cavitation have a 

high valve effect (corresponding to both torus–aperture 

overlap and membrane flexibility). This is consistent with 

the seal capillary-seeding hypothesis (Delzon et al., 2010).  

Regarding the flexibility of the margo, previous studies 

suggested that this feature could play an important role in 

the process of cavitation. First, Hacke et al. (2004) 

mentioned that margo flexibility could allow the torus to 

be pulled out through the pit aperture, so that species that 

are vulnerable to cavitation should have a more flexible 

margo. In contrast, Delzon et al. (2010) reported that a high 

margo flexibility may facilitate the torus to move toward 

the pit border and improve the seal between the torus and 

the pit aperture. The present study showed that most of the 

valve effect efficiency is due to variation in the torus–

aperture overlap, while the flexibility of the margo does 

not seem to play a substantial role. Furthermore, the results 

confirm that torus capillary-seeding may provide an 

additional airseeding mechanism in Pinaceae. While this 

must be interpreted with caution because SEM 

observations do not allow pores that completely pass 

through the torus to be distinguished from those that are 

limited to the surface of the torus, Jansen et al. (2012) 

showed that at least a few pores in each species with 

punctured tori completely pass through the torus. 

Punctured tori are also observed in some members of 

Cupressaceae and Cephalotaxaceae (see Table 4, and 

Jansen et al., 2012). Plasmodesmata need to be associated 

with early developmental stages of the torus in 

combination with a lack of matrix removal from the torus  

by autolytic enzymes during cell hydrolysis (Murmanis 

and Sachs, 1969; Dute, 1994; Dute et al., 2008). Thus, the 

taxonomic limitation of punctured tori to these families is 

assumed to reflect developmental differences in torus 

ontogeny. However, because of the lack of a distinct torus 

in Araucariaceae (Bauch et al., 1972), no comment can be 

made on the mechanism of air-seeding for this family. 

Nevertheless, in terms of cavitation resistance, 

Araucariaceae are highly vulnerable to air-seeding (P50= – 

2.02 to –3.3 MPa). Pittermann et al. (2010) showed that the 

more cavitation resistant a species is the more pronounced 

is the torus–margo difference.   
   In this study, two additional mechanisms of air-seeding 

were also investigated, and they were excluded in agreement 

with Cochard et al. (2009). The pressure difference needed 

to break the margo (PRS) was more negative than P50, 

regardless of the number of margo strands (Supplementary 

Fig. S1 available at JXB online). Therefore, cavitation was 

not due to breaking of the margo strands but to capillary 

rupture of the air–sap meniscus (Cochard et al., 2009). 

Furthermore, the results demonstrate that cavitation does 

not occur at the pores in the margo, but when the torus 

becomes aspirated against the pit border and seals the pit 

aperture (Petty, 1972; Sperry and Tyree, 1990; Hacke et al., 

2004; Domec et al., 2006; Delzon et al., 2010).  

Mechanical properties  
The present data indicated a strong trade-off between  
hydraulic and mechanical safety with a significant   

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3. Relationship between cavitation resistance (P50) and anatomical traits [pit aperture diameter (A), torus diameter (B)] and functional 
properties [torus overlap (C), valve effect (D)] of pit membrane in conifers. Red circles are binned into ranges of P50 and plotted in log scale. 
Raw data (mean values per species) are shown as small grey points behind binned data. Linear regressions shown are based on raw data 
and indicate when the correlation is significant. 
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evolutionary association between increasing cavitation 

resistance and increasing thickness to span ratio of 

tracheids. As in previous studies (Sperry et al., 2006; 

Pittermann et al., 2005), the present results show that 

species resistant to cavitation have thicker tracheid walls 

relative to lumen area. While Pittermann et al. (2006b) and 

Sperry et al. (2006) concluded that variation in the thickness 

to span ratio was determined by lumen diameter rather than 

cell wall thickness, the present study demonstrated the 

opposite: the wall thickness but not the lumen diameter 

appears to be responsible for the trade-off between 

hydraulic safety and mechanical strength. A mechanical 

constraint on xylem anatomy could explain this relationship. 

Higher cavitation resistance is associated with lower 

negative sap pressure (Maherali et al., 2004; Choat et al., 

2012), which requires tracheids with a higher thickness to 

span ratio to resist mechanical stresses. Cavitation 

resistance might therefore be indirectly linked to thickness 

to span ratio. From a functional perspective, thicker walls in 

relation to lumen area do not improve drought-related 

cavitation resistance as this phenomenon occurs at the 

bordered pit level. Taking into account that there is certainly 

a carbon cost limitation in building up tracheid walls, Sperry 

et al. (2006) suggested that walls are close to their maximum 

thickness. Thereby, conifer trees can only compete for 

higher mechanical strength by narrowing their tracheid 

lumina, while levels of ray and axial parenchyma remain 

typically low. However, our study showed that as cell 

diameter increased, cell-wall thickness varied 

proportionally much more than lumen diameter. This 

suggests that there could be a minimum lumen diameter 

threshold that maintains a minimum level of hydraulic 

conductance.   
   The results confirm that hydraulic failure by implosion is 

unlikely in lignified tracheids of conifers. Conduit 

implosion of xylem has been observed in stems of a few 

Pinaceae, but only in tracheids with severe reduction of 

lignification in their secondary walls (Barnett, 1976; 

Donaldson, 2002). Indeed, some degree of lignification is 

required to allow normal xylem function and water 

conduction. The data show that the pressure needed to cause 

conduit implosion in lignified tracheids is related to 

cavitation resistance, but is for most species more negative 

than P50. The minimum water potential measured in conifer 

species is generally less negative than P50, suggesting that 

the conduit implosion pressure is unlikely to occur under 

field conditions (Choat et al., 2012). These results suggest 

that cavitation always occurs before xylem collapse. 

According to Domec et al. (2009), safety factors for 

implosion are high compared with air-seeding. One 

interpretation of such a safety margin is that there has been 

strong selective pressure to avoid implosion (Pittermann et 

al., 2006b). Even so, evidence of collapse has been observed 

in needles of Podocarpaceae, but localized in extra-xylary 

transfusion tracheids (Brodribb and Holbrook, 2005). 

Dysfunction by collapse seems more likely to occur in these 

cells than in the xylem because of their parenchymatous 

origin, irregular shape, large lumen, and high pit density 

(Aloni et al., 2013).  
  

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4. Relationship between (A) thickness to span ratio and cavitation resistance (P50); (B) wall thickness (grey circles), lumen diameter (black 
circles), and thickness to span ratio; (C) wall implosion pressure and cavitation resistance (P50); and (D) wall thickness and lumen diameter. 
Regression lines are indicated when the correlation is significant.  
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Fig. 5. Relationship between pit aperture resistance (A), margo 
resistance (B), and total pit resistance (C) and cavitation resistance 
(P50). The regression line is indicated when the correlation is 
significant.   

Species distribution  

Only a few investigations were carried out on the 

relationship between conifer species distribution and 

xylem anatomy. Previous studies on hydraulic traits have 

provided evidence of considerable variations of cavitation 

resistance between species from contrasting environments, 

with individuals from xeric regions more resistant than 

those from mesic regions (Maherali et al., 2004; Choat et 

al., 2005, 2012; Vinya et al., 2013). Swenson and Enquist 

(2007) and Slik et al. (2008) highlighted the existence of 

geographic variations in wood density with significantly 

denser wood in dryer habitats. The present study confirmed 

these trends and, in addition, it was hypothesized that 

xylem anatomical and, in particular, bordered pit 

properties would differ between the different biomes, in 

Table 4. Ratio of species with punctured tori per total number of 

species studied with reference to their taxonomic family   
Family  Punctured torus species/total species*  
Araucariaceae   -  
Cephalotaxaeae    1/3  
Cupressaceae   3/32  
Pinaceae  15/17  
Podocarpaceae   0/15  
Sciadopityaceae    0/1  
Taxaceae    0/4  
Total  19/72  

 a Species studied for the torus capillary-seeding hypothesis 

agreement with the  variability of cavitation resistance. The 

distribution analyses strengthen the conclusion that species 

growing in arid environments such as the Mediterranean 

region present the following combination of distinct 

anatomical features: wide torus–aperture overlap, high 

valve effect, and large thickness to span ratio. Results from 

the variation in cavitation resistance in combination with the 

distribution of species showed a substantial ability of 

species from xeric habitats to resist drought induced 

cavitation and support mechanical strength. However, it 

does not mean that conifers from Mediterranean habitats are 

immune to drought stress (Choat et al., 2012).  

Conclusion  
Based on both cross-species correlations and PIC analyses, 

the wide taxonomic sample examined here enabled the 

demonstration that cavitation is most likely to occur by seal 

capillary-seeding via the overlap of the torus on the pit 

aperture, while torus capillary-seeding could provide an 

additional mechanism in Pinaceae. Testing the 

consequences of increasing cavitation resistance 

highlighted an indirect tradeoff between hydraulic safety  
(P50) and mechanical strength (thickness to span ratio) over 

a broad range of species. This study illustrates that the 

torus–aperture overlap and the thickness to span ratio 

represent the two most useful proxies to estimate cavitation 

resistance. It was also found that dysfunction by conduit 

implosion in xylem tracheids is unlikely as the theoretical 

implosion pressure is unrealistic for most species. Secondly, 

increased cavitation resistance did not come at a cost of 

decreased tracheid lumen diameter and should therefore 

have only a minor impact on hydraulic efficiency. 

Compared with angiosperms, conifers seem to be able to 

achieve greater cavitation resistance without considerably 

sacrificing hydraulic efficiency. This growth strategy could 

allow conifers to colonize seasonally arid habitats that are 

subject to freezing-induced embolism formation (Hacke et 

al., 2005). The bordered pit anatomy of the xylem could 

slightly affect the ability of the species to resist drought 

induced embolism and consequently conifer distribution. 

Although it is felt that the approach used here of studying 

few individuals per species is valid when covering a large 

number of species, further work on the intraspecific and 

intra-individual variability of conifers would be required to 

better understand hydraulic trade-offs and functional 

adaptations to different environments.  
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Table 5. Variation in anatomical and hydraulic traits among biomes  

Mean values of P50, torus–aperture overlap (O), valve effect (VEF), and thickness to span ratio (TW/DT) for the four main biomes 

represented in this study.  

  Torus-aperture overlap  Valve effect  Thickness to span ratio  P50  

Mediterranean  0.41 ±0.02     a  0.21 ±0.008     a  0.25 ±0.01      a  7.93 ±0.1       a  
Tropical  0.29 ±0.03     b  0.16 ±0.01       b  0.23 ±0.01      ab  4.23 ±0.2       b    

Temperate  0.28 ±0.01     b  0.14 ±0.006     b  0.22 ±0.008    ab  3.87 ±0.34     b  

Boreal  0.32 ±0.03     b  0.15 ±0.01       b  0.19 ±0.01       b  3.39 ±0.62      b   

p-value  <0.0001  <0.0001  0.01  <0.0001  

  
A P-value <0.05 indicates a significant difference between biomes, and the letters (a, b) indicate to what extent the biomes differ  
from each other.  
  

Supplementary data  

Supplementary data are available at JXB online.   
   Figure S1. Relationship between (A) cavitation resistance 

(P50) and rupture stretching pressure, (B) xylem air entry 

pressure (P12) and torus deflection pressure, and (C)  margo 

capillary-seeding pressure and torus deflection pressure.    

Figure S2. Relationship between torus capillary-seeding 

pressure and cavitation resistance (P50).   
  Table S1. List of species studied with reference to their 

taxonomic family, origin, and average cavitation resistance 

values (P50).   
  Table S2. Pearson (r) and Spearman correlation (s) for 

relationship between anatomical/functional traits and 

cavitation traits (P50, P12, P88, and slope) in conifers.  
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Species   Authority   
Origin and accesion  
number   

P 50   MPa) ±  ( 
SE   

Hylan d   

Supporting information  
Table S1. List of species studied with reference to their taxonomic family, origin and average cavitation 

resistance values (P50).
a Material studied in this paper; b Material studied by Delzon et al. 2010; c 

Material studied by Jansen et al. 2012.   

Family  

Araucariaceae  Agathis atropurpurea a  RBG Sydney, 20100069 -2.89 ± 0.27  

Araucariaceae  Agathis australis a  (D.Don) Lindl.  Bedgeburry National 

Pinetum, 17-0581  -2.13  

Araucariaceae  Agathis microstachya a  J.F.Bailey & C.T.White  RBG Mount Annan, 

865566  -2.55 ± 0.07  

Araucariaceae  Agathis robusta a  
(C.Moore ex F.Muell.) 

F.M.Bailey  RBG Mount Annan  -2.90 ± 0.06  

Araucariaceae  Araucaria araucana a  (Molina) K.Koch  Argentina  -3.06 ± 0.81  

Araucariaceae  Araucaria bidwillii a  Hook.  RBG Sydney, 19074  -3.01 ± 0.08  

Araucariaceae  Araucaria cunninghamii a  Aiton ex D.Don  RBG Sydney, 863087  -2.64 ± 0.08  

Araucariaceae  Araucaria heterophylla a  (Salisb.) Franco  RBG Sydney, 15960  -2.96 ± 0.07  

Araucariaceae  Araucaria hunsteinii ab  K.Schum.  RBG Sydney, 902638  -2.43 ± 0.08  

Araucariaceae  Wollemia nobilis a  
W.G.Jones, K.D.Hill & 

J.M.Allen  RBG Sydney  -3.32 ± 0.15  

Cephalotaxaceae Cephalotaxus fortunei ac  Hook.  RBG Kew, 1969-16466  -7.26 ± 0.48  

Cephalotaxaceae Cephalotaxus harringtonia ac  
(Knight ex J.Forbes) K.Koch  

RBG Kew, 1969-16244  -7.21± 0.47  

Cephalotaxaceae Cephalotaxus wilsoniana a  Hayata  Bedgeburry National 

Pinetum, 22-0202  -7.92 ± 0.29  

Cupressaceae  Actinostrobus pyramidalis b  Miq.  
Clermont-Ferrand, France  

-10.72 ± 0.57  

Cupressaceae  Athrotaxis cupressoides a  D.Don  RBG Kew, 2003-2212  -3.16 ± 0.34  

Cupressaceae  Athrotaxis laxifolia a  Hook.  
Bedgeburry National 

Pinetum, 10-671  -2.47 ± 0.19  

Cupressaceae  Austrocedrus chilensis a  (D.Don) Pic.Serm. &  
Bizzari  Argentina  -4.96 ± 0.19  

Cupressaceae  Callitris columellaris ac  F.Muell.  
University of Tasmania, 

Hobart  -15.79 ± 0.18  

Cupressaceae  Callitris endlicheri a  (Parl.) F.M.Bailey  RBG Tasmania, Hobart  -12.94 ± 0.70  

Cupressaceae  Callitris glaucophylla a  
Joy Thomps. & 

L.A.S.Johnson  
RBG Mount Annan, 

873453  -15.30 ± 0.36  

Cupressaceae  Callitris gracilis ac  R.T.Baker  
University of Tasmania, 

Hobart  -12.26 ± 0.59  

Cupressaceae  Callitris intratropica a  R.T.Baker & H.G.Smith  RBG Sydney  -12.81 ± 0.73  

Cupressaceae  Callitris oblonga a  Rich. & A.Rich.  
Bedgeburry National 

Pinetum, 22-0229  -10.88 ± 0.85  

Cupressaceae  Callitris preissii ac  Miq.  University of Tasmania, 

Hobart  -14.97 ± 0.50  

Cupressaceae  Callitris rhomboidea abc  R.Br. ex Rich & A.Rich.  University of Tasmania, 

Hobart  -10.32 ± 0.53  

Cupressaceae  Calocedrus formosana a  (Florin) Florin  
Bedgeburry National 

Pinetum, 22-279  -4.92 ± 0.65  

Cupressaceae  Chamaecyparis obtusa ac  (Siebold & Zucc.) Endl.  RBG Kew, 1969-10594  -3.71 ± 0.12  

Cupressaceae  Chamaecyparis pisifera ac  (Siebold & Zucc.) Endl.  
RBG Kew, 607-1260702  

-3.46 ± 0.21  

Cupressaceae  Cryptomeria japonica a  (Thunb. ex Lf.) D.Don  Japan  -3.66 ± 0.16  
Cupressaceae  Cunninghamia lanceolata a  (Lamb.) Hook.  RBG Kew, 1973-16525  -3.50 ± 0.17   

Cupressaceae  x Cupressocyparis leylandii a  
(A.B.Jacks. & Dallim.) 

Dallim.  RBG Kew  -8.58 ± 0.17  

http://www.ipni.org/ipni/idPlantNameSearch.do;jsessionid=269A99869192652788BF73D1CC338D22?id=92689-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Bjsessionid%3D269A99869192652788BF73D1CC338D22%3Ffind_wholeName%3DAgathis%2Batropurpurea%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do;jsessionid=269A99869192652788BF73D1CC338D22?id=92689-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Bjsessionid%3D269A99869192652788BF73D1CC338D22%3Ffind_wholeName%3DAgathis%2Batropurpurea%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do;jsessionid=269A99869192652788BF73D1CC338D22?id=92689-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Bjsessionid%3D269A99869192652788BF73D1CC338D22%3Ffind_wholeName%3DAgathis%2Batropurpurea%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do;jsessionid=968F8F7E02F54553B11FCB99DCD62419?id=676649-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Bjsessionid%3D968F8F7E02F54553B11FCB99DCD62419%3Ffind_wholeName%3DAgathis%2Bmicrostachya%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do;jsessionid=968F8F7E02F54553B11FCB99DCD62419?id=676649-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Bjsessionid%3D968F8F7E02F54553B11FCB99DCD62419%3Ffind_wholeName%3DAgathis%2Bmicrostachya%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=261672-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DAgathis%2Brobusta%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=261672-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DAgathis%2Brobusta%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=261672-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DAgathis%2Brobusta%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=261672-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DAgathis%2Brobusta%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=261681-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DAraucaria%2Baraucana%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=261681-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DAraucaria%2Baraucana%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=261684-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DAraucaria%2Bbidwillii%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=261684-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DAraucaria%2Bbidwillii%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=77095056-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DAraucaria%2Bcunninghamii%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=77095056-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DAraucaria%2Bcunninghamii%26output_format%3Dnormal
http://en.wikipedia.org/wiki/Richard_Anthony_Salisbury
http://en.wikipedia.org/wiki/Richard_Anthony_Salisbury
http://en.wikipedia.org/wiki/Richard_Anthony_Salisbury
http://en.wikipedia.org/wiki/Karl_Moritz_Schumann
http://en.wikipedia.org/wiki/Karl_Moritz_Schumann
http://www.ipni.org/ipni/idPlantNameSearch.do?id=1118486-2&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DAustrocedrus%2Bchilensis%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=1118486-2&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DAustrocedrus%2Bchilensis%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=294851-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DCallitris%2Bendlicheri%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=294851-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DCallitris%2Bendlicheri%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=930252-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DCallitris%2Bglaucophylla%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=930252-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DCallitris%2Bglaucophylla%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=930252-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DCallitris%2Bglaucophylla%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=930252-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DCallitris%2Bglaucophylla%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=134028-3&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DCallitris%2Boblonga%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=134028-3&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DCallitris%2Boblonga%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=294855-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DCalocedrus%2Bformosana%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=294855-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DCalocedrus%2Bformosana%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=261870-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DCryptomeria%2Bjaponica%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=261870-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DCryptomeria%2Bjaponica%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=676726-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DCupressocyparis%2B%2Bleylandii%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=676726-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DCupressocyparis%2B%2Bleylandii%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=676726-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DCupressocyparis%2B%2Bleylandii%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=676726-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DCupressocyparis%2B%2Bleylandii%26output_format%3Dnormal
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Cupressaceae  Cupressus dupreziana ac  A.Camus  RBG Kew, 1970-61193  -10.29 ± 0.06  

Cupressaceae  Cupressus funebris a  Endl.  Bedgeburry National 

Pinetum, 21-0595  -10.63 ± 0.61  

Cupressaceae  Cupressus glabra ab  Sudw.  France  -11.32 ± 1.03  

Cupressaceae  Cupressus macrocarpa a  Hartw.  Bedgeburry National 

Pinetum, 29-0407  -6.73 ± 0.38  

Cupressaceae  Cupressus sempervirens ab  L.  France  -10.39 ± 1.10  

Cupressaceae  Cupressus torulosa ac  D.Don  RBG Kew, 1996-1799  -8.35 ± 0.59  

Cupressaceae  Diselma archeri a  Hook.f.  RBG Tasmania, Hobart  -8.72 ± 0.54  

Cupressaceae  Fitzroya cupressoides a  (Molina) I.M.Johnst.  Argentina  -5.00 ± 0.37  

Cupressaceae  Juniperus chinensis a  L.  Bedgeburry National 

Pinetum , 03-4  -10.88 ± 0.54  

Cupressaceae  Juniperus communis ab  L.  France  -6.37 ± 0.22  

Cupressaceae  Juniperus osteosperma ab  (Torr.) Little  Utah, USA  -8.68 ± 0.35  

Cupressaceae  Juniperus scopulorum ab  Sarg.  Montana, USA  -9.83 ± 0.30  

Cupressaceae  Metasequoia glyptostroboides bc Hu & W.C.Cheng  RBG Kew, 1980-6256  -2.91 ± 0.13  

Cupressaceae  Papuacedrus papuana a  (F.Muell.) H.L.Li  RBG Sydney, 20114  -4.69 ± 0.23  

Cupressaceae  Platycladus orientalis ac  (L.) Franco  RBG Kew, 1976-3574  -9.04 ± 0.45  

Cupressaceae  Sequoia sempervirens abc  (D.Don) Endl.  University of Bordeaux, 

Château du Haut-carré  -4.38 ± 0.17  

Cupressaceae  Sequoiadendron giganteum abc  (Lindl.) J.Buchholz  University of Bordeaux, 

Château du Haut-carré  -3.78 ± 0.06  

Cupressaceae  Taiwania cryptomerioides ac  Hayata  RBG Kew, 1994-900  -3.38 ± 0.29  

Cupressaceae  Taxodium distichum ab  (L.) Rich.  France  -2.29 ± 0.07  

Cupressaceae  Taxodium mucronatum a  Ten.  RBG Sydney, 2005973  -2.23 ± 0.11  

Cupressaceae  Tetraclinis articulata a  (Vahl) Mast.  RBG Sydney, 940902  -13.21 ± 0.75  

Cupressaceae  Thuja plicata abc  Donn ex D.Don  RBG Kew, 1973-18600  -4.20 ± 0.13  

Cupressaceae  Thujopsis dolabrata ac  (L.f.) Siebold & Zucc.  RBG Kew, 1969-16072  -4.15 ± 0.38  

Cupressaceae  Widdringtonia nodiflora a  (L.) E.Powrie  RBG Tasmania, Hobart  -7.87 ± 0.49  

Cupressaceae  Xanthocyparis nootkatensis ac  (D.Don) Farjon & D.K.Harder  RBG Kew, 1969-13806  -5.13 ±0.25  
Pinaceae  Abies alba ab  Mill.  France  -4.00 ± 0.11  

Pinaceae  Abies balsamea c  (L.) Mill.  University of Alberta, 

Edmonton, Canada  -3.64 ± 0.34  

Pinaceae  Abies forrestii a  Craib  RBG Kew, 1993-1445  -3.42 ± 0.07  

Pinaceae  Abies grandis ab  (Douglas ex D.Don) Lindl.  Idaho, USA  -3.65 ± 0.06  

Pinaceae  Abies lasiocarpa ab  (Hook.) Nutt.  Idaho, USA  -3.62 ± 0.07  

Pinaceae  Abies pinsapo ab  Boiss.  France  -4.15 ± 0.14  

Pinaceae  Abies sachalinensis a  Mast.  Hokkaido, Japan  -3.23 ± 0.07  

Pinaceae  Cedrus atlantica abc  (Endl.) G.Manetti ex  
Carrière  RBG Kew, 2000-4686  -5.13 ± 0.08  

Pinaceae  Cedrus deodara bc  (Roxb. ex D.Don) G.Don  Clermont-Ferrand, France  -6.69 ± 0.36  
Pinaceae  Larix decidua abc  Mill.  RBG Kew, 1979-6300  -4.11 ± 0.27  

Pinaceae  Larix gmelinii a  (Rupr.) Kuzen.  Bedgeburry National 

Pinetum, 07-0095  -3.13 ± 0.18  

Pinaceae  Larix occidentalis ab  Nutt.  Idaho, USA  -4.21 ± 0.14  

Pinaceae  Picea abies b  (L.) H.Karst.  France  -3.66 ± 0.09  

Pinaceae  Picea engelmannii b  Parry ex Engelm.  Montana, USA  -4.18 ± 0.09  

Pinaceae  Picea glauca c  (Moench) Voss  University of Alberta, 

Edmonton, Canada  -4.35 ± 0.26  

Species   
Origin and accesion  
number   

P 50   ( MPa) ±  
SE   

Authority

  Species 
Family 

http://www.ipni.org/ipni/idPlantNameSearch.do?id=261925-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DCupressus%2Bfunebris%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=261925-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DCupressus%2Bfunebris%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=676748-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DCupressus%2Bglabra%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=676748-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DCupressus%2Bglabra%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=262058-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DDiselma%2Barcheri%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=262058-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DDiselma%2Barcheri%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=676786-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DFitzroya%2Bcupressoides%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=676786-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DFitzroya%2Bcupressoides%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=676786-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DFitzroya%2Bcupressoides%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=262178-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DJuniperus%2Bchinensis%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=262178-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DJuniperus%2Bchinensis%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=132523-2&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DJuniperus%2Bosteosperma%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=132523-2&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DJuniperus%2Bosteosperma%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=676865-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DJuniperus%2Bscopulorum%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=676865-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DJuniperus%2Bscopulorum%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=294873-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DPapuacedrus%2Bpapuana%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=294873-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DPapuacedrus%2Bpapuana%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=263774-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DTaxodium%2Bmucronatum%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=263774-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DTaxodium%2Bmucronatum%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=677193-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DTetraclinis%2Barticulata%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=677193-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DTetraclinis%2Barticulata%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=677193-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DTetraclinis%2Barticulata%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=294877-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DWiddringtonia%2Bnodiflora%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=294877-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DWiddringtonia%2Bnodiflora%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=1084057-2&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DAbies%2Bbalsamea%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=1084057-2&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DAbies%2Bbalsamea%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=676569-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DAbies%2Bforrestii%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=676569-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DAbies%2Bforrestii%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=1033427-2&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DAbies%2Bgrandis%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=1033427-2&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DAbies%2Bgrandis%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=676606-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DAbies%2Bpinsapo%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=676606-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DAbies%2Bpinsapo%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=261629-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DAbies%2Bsachalinensis%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=261629-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DAbies%2Bsachalinensis%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=50881822-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DCedrus%2Batlantica%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=50881822-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DCedrus%2Batlantica%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=50881822-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DCedrus%2Batlantica%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=50881822-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DCedrus%2Batlantica%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=676701-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DCedrus%2Bdeodara%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=676701-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DCedrus%2Bdeodara%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=262420-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DLarix%2Bdecidua%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=262420-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DLarix%2Bdecidua%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=77092562-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DLarix%2Bgmelinii%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=77092562-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DLarix%2Bgmelinii%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=262444-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DLarix%2Boccidentalis%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=262444-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DLarix%2Boccidentalis%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=30376938-2&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DPicea%2Babies%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=30376938-2&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DPicea%2Babies%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=1137649-2&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DPicea%2Bengelmannii%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=1137649-2&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DPicea%2Bengelmannii%26output_format%3Dnormal
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Pinaceae  Picea likiangensis a  (Franch.) E.Pritz.  RBG Kew, 1970-6137  -3.86 ± 0.13  

Pinaceae  Picea mariana c  (Mill.) BSP.  Edson, Canada  -5.21 ± 0.19  

Pinaceae  Pinus albicaulis ab  Engelm.  Montana, USA  -3.19 ± 0.10  

Pinaceae  Pinus cembra ab  L.  Austria, Europe  -3.02 ± 0.17  

Pinaceae  Pinus contorta b  Douglas ex Loudon  Montana, USA  -3.90 ± 0.18  

Pinaceae  Pinus edulis b  Engelm.  Utah, USA  -4.03 ± 0.06  

Pinaceae  Pinus flexilis ab  E.James  Montana, USA  -3.71 ± 0.18  

Pinaceae  Pinus halepensis ab  Mill.  France  -4.67 ± 0.05  

Pinaceae  Pinus hartwegii c  Lindl.  RBG Kew, 1996-1016  -3.42 ± 0.05  

Pinaceae  Pinus mugo ab  Turra  Austria, Europe  -3.74 ± 0.07  

Pinaceae  Pinus nigra c  J.F.Arnold  RBG Kew, 1973-15503  -3.52  

Pinaceae  Pinus pinaster abc  Aiton  Bordeaux, France, 503, 

361, 441, 463B  -3.72 ± 0.07  

Pinaceae  Pinus pinea ab  L.  France  -4.34 ± 0.16  

Pinaceae  Pinus ponderosa ab  Douglas ex Loudon  Montana, USA  -3.86 ± 0.05  

Pinaceae  Pinus radiata c  D.Don  University of Tasmania, 

Hobart  -4.37 ± 0.14  

Pinaceae  Pinus sylvestris b  Frankis ex  Businsky  France  -3.20 ± 0.02  

Pinaceae  Pinus uncinata ab  Ramond ex DC.  France  -0.17 ± 0.17  

Pinaceae  Pinus wallichiana c  A.B.Jacks.  RBG Kew, 1979-2373  -2.83 ± 0.11  

Pinaceae  Pseudolarix amabilis a  (J.Nelson) Rehder  RBG Kew, 1960-13101  -4.16 ± 0.15  

Pinaceae  Pseudotsuga menziesii ab  (Mirb.) Franco  Montana, USA  -3.68 ± 0.15  

Podocarpus  Acmopyle pancheri a  (Brongn. & Gris) Pilg.  RBG Tasmania, Hobart  -3.62 ± 0.07  

Podocarpus  Afrocarpus gracilior a  (Pilg.) C.N.Page  RBG Tasmania, Hobart, 

10128  -6.36 ± 0.10  

Podocarpus  Dacrycarpus dacrydioides b  (A.Rich.) de Laub.  Australia  -2.51 ± 0.16  

Podocarpus  Dacrydium araucarioides a  Brongn. & Gris  Noumea, New  
Caledonia  -3.78 ± 0.39  

Podocarpus  Falcatifolium taxoides a  (Brongn. & Gris) de Laub.  RBG Tasmania, Hobart  -5.55 ± 0.53  

Podocarpus  Halocarpus bidwillii a  (Hook.f. ex Kirk) Quinn  Bedgeburry National 

Pinetum, 14-465  -5.35 ± 0.21  

Podocarpus  Lagarostrobos franklinii a  (Hook.f.) Quinn  RBG Kew, 14-53  -4.35 ± 0.36  

Podocarpus  Manoao colensoi a  (Hook.) Molloy  RBG Tasmania, Hobart, 

40838  -2.88 ± 0.21   

Podocarpus  Phyllocladus trichomanoides a  D.Don  Bedgeburry National 

Pinetum, 17-0386  -7.10 ± 0.25  

Podocarpus  Podocarpus elatus a  R.Br ex Endl.  RBG Sydney, 20040141  -6.74 ± 0.39  

Podocarpus  Podocarpus lawrencei a  Hook.f.  Bedgeburry National 

Pinetum, 14-464  -3.82 ± 0.21  

Podocarpus  Podocarpus rubens a  de Laub.  RBG Tasmania, Hobart, 

10116  -3.73 ± 0.04  

Podocarpus  Podocarpus salignus a  D.Don  Bedgeburry National 

Pinetum, 1993-1660  -4.28 ± 0.16  

Podocarpus  Podocarpus spinulosus a  (Sm.) R.Br ex Mirb.  RBG Sydney, 990828  -6.84 ± 0.34  

Podocarpus  Podocarpus totara a  G.Benn. ex D.Don  Wakehurst, 2009-2494  -4.95 ± 0.16  

Podocarpus  Prumnopitys ladei a  (F.M.Bailey) de Laub.  RBG Sydney, 822906  -6.68 ± 0.23  

Podocarpus  Retrophyllum comptonii a  (J.Buchholz) C.N.Page  RBG Tasmania, Hobart, 

99069  -2.54 ± 0.09  

Podocarpus  Saxegothaea conspicua a  Lindl.  Argentina  -3.39 ± 0.23  

Podocarpus  Sundacarpus amarus a  (Blume) C.N.Page  RBG Tasmania, Hobart, 

1331  -2.83 ± 0.14  

Sciadopityaceae  Sciadopitys verticillata ac  Siebold & Zucc.  RBG Kew, 1979-48  -4.07 ± 0.10  

Species 
  

Origin and accesion  
number   

P 50   ( MPa) ±  
SE   

Family Authority 

http://www.ipni.org/ipni/idPlantNameSearch.do?id=50881856-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DPicea%2Blikiangensis%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=50881856-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DPicea%2Blikiangensis%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=262755-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DPinus%2Balbicaulis%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=262755-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DPinus%2Balbicaulis%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=262872-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DPinus%2Bcontorta%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=262872-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DPinus%2Bcontorta%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=262915-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DPinus%2Bedulis%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=262915-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DPinus%2Bedulis%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=196982-2&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DPinus%2Bflexilis%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=196982-2&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DPinus%2Bflexilis%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=677083-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DPinus%2Bmugo%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=677083-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DPinus%2Bmugo%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=263230-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DPinus%2Bponderosa%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=263230-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DPinus%2Bponderosa%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=263350-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DPinus%2Bsylvestris%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=263350-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DPinus%2Bsylvestris%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=263396-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DPinus%2Buncinata%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=263396-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DPinus%2Buncinata%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=677125-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DPseudolarix%2Bamabilis%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=677125-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DPseudolarix%2Bamabilis%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=677141-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DPseudotsuga%2Bmenziesii%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=677141-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DPseudotsuga%2Bmenziesii%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=946474-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DAfrocarpus%2Bgracilior%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=946474-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DAfrocarpus%2Bgracilior%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=687947-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DDacrycarpus%2Bdacrydioides%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=687947-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DDacrycarpus%2Bdacrydioides%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=261997-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DDacrydium%2Baraucarioides%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=261997-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DDacrydium%2Baraucarioides%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=687978-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DFalcatifolium%2Btaxoides%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=687978-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DFalcatifolium%2Btaxoides%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=910729-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DHalocarpus%2Bbidwillii%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=910729-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DHalocarpus%2Bbidwillii%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=910807-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DLagarostrobos%2Bfranklinii%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=910807-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DLagarostrobos%2Bfranklinii%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=988952-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DManoao%2Bcolensoi%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=988952-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DManoao%2Bcolensoi%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=262608-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DPhyllocladus%2Btrichomanoides%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=262608-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DPhyllocladus%2Btrichomanoides%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=263475-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DPodocarpus%2Belatus%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=263475-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DPodocarpus%2Belatus%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=263516-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DPodocarpus%2Blawrencei%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=263516-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DPodocarpus%2Blawrencei%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=906894-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DPodocarpus%2Brubens%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=906894-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DPodocarpus%2Brubens%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=263576-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DPodocarpus%2Bsalignus%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=263576-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DPodocarpus%2Bsalignus%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=263582-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DPodocarpus%2Bspinulosus%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=263582-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DPodocarpus%2Bspinulosus%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=263597-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DPodocarpus%2Btotara%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=263597-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DPodocarpus%2Btotara%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=688015-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DPrumnopitys%2Bladei%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=688015-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DPrumnopitys%2Bladei%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=946468-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DRetrophyllum%2Bcomptonii%26output_format%3Dnormal
http://www.ipni.org/ipni/idPlantNameSearch.do?id=946468-1&back_page=%2Fipni%2FeditSimplePlantNameSearch.do%3Ffind_wholeName%3DRetrophyllum%2Bcomptonii%26output_format%3Dnormal
http://en.wikipedia.org/wiki/Carl_Ludwig_Blume
http://en.wikipedia.org/wiki/Carl_Ludwig_Blume
http://en.wikipedia.org/wiki/Carl_Ludwig_Blume
http://en.wikipedia.org/wiki/Carl_Ludwig_Blume
http://en.wikipedia.org/wiki/Christopher_Nigel_Page
http://en.wikipedia.org/wiki/Christopher_Nigel_Page
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Family  Species  Authority  
Origin and accesion 

number  
P50 (MPa) ± 

SE  
Taxaceae  Taxus baccata ab  L.  France  -6.49 ± 0.31  

Taxaceae  Taxus brevifolia ab  Nutt.  Montana, USA  -6.44 ± 0.30  

Taxaceae  Torreya californica ac  Torr.  RBG Kew, 1969-14196  -6.39 ± 0.30  

Taxaceae  Torreya grandis (fortune) ac  Fortune ex. Lindl.  RBG Kew, 1973-20815  -4.69 ± 0.25  

Taxaceae  Torreya nucifera ac  (L.) Siebold & Zucc.  RBG Kew, 1969-15523  -5.95 ± 0.30  
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Table S2. Pearson (r) and Spearman correlation (s) for relationship between anatomical/ functional 

traits and cavitation/hydraulic traits (P50, P12, P88 and slope) in conifers.  

  

  

DMP  

Pearson correlati 

P50  

ons  

P12  P88  slope  
0.21  0.25  0.18  0.2  

DMPmax  

DPM  

0.05  0.03  0.07  0.06  

0.12  0.18  0.08  0.11  

DT  -0.17  -0.17  -0.17  0.01  

DTO  0.06  0.16  0.0008  0.36***  

NMP  0.22  0.19  0.24  -0.23  

PWI  -0.51***  -0.46***  -0.51***  0.38**  

TTW  0.15  0.14  0.15  -0.19  

(TTW/DT)  

  

0.41***  

  

0.36**  

  

0.42***  

  

-0.3**  

  

  

  

DPA  

Spearman correlations  

P50  P12  P88  slope  
-0.3**  -0.13  -0.39***  0.46***  

DH  -0.31**  -0.20  -0.31**  0.26*  

F  -0.01  -0.21*  0.12  -0.26*  

O  0.46***  0.5***  0.4***  -0.3**  

PMC  0.01  0.11  -0.03  0.03  

PRS  -0.43***  -0.34**  -0.47***  0.43***  

PTC  0.52*  0.55*  0.42  -0.31  

PTD  0.12  -0.14  0.3*  -0.41***  

RMP  0.09  -0.04  0.15  -0.17  

RPA  0.3**  0.1  0.41***  -0.49***  

RP  0.47**  0.33  0.58***  -0.54***  

VEF  0.52***  0.5***  0.5***  -0.4***  
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Supplementary figures    

  

Figure S1. Relationship between (a) cavitation resistance (P50) and rupture stretching pressure, (b) 

xylem air entry pressure (P12) and torus deflection pressure and (c) between margo capillary-seeding 

pressure and torus deflection pressure.  

  

 

Figure S2. Relationship between torus capillary-seeding pressure and cavitation resistance (P50).  
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Drought and the evolution of embolism resistance drives Conifer 

diversification 

Maximilian Larter1, Delzon Sylvain1, et al. (In preparation) 

1BIOGECO, INRA, Univ. Bordeaux, 33615 Pessac, France  

 

Abstract 

Conifers are an ancient group of trees that has evolved and adapted to occupy the broad range 

of habitats available today. Several combined factors are considered to have shaped this group 

to its current distribution and diversity, notably the emergence of flowering plants during the 

late Cretaceous. Recent work has shown the remarkable variation that exists in conifers for 

resistance to drought-induced xylem embolism (P50), a trait that has been linked to survival 

during extreme drought. Furthermore, embolism resistance displays some interesting macro-

evolutionary patterns, with some families seemingly in stasis (Pinaceae, Araucariaceae) while 

others seem more labile (Cupressaceae, Podocarpaceae). Using a time-calibrated phylogeny 

and embolism resistance data for over 250 species from the seven extant conifer families, we 

assessed both cavitation resistance evolution and conifer diversification, and tested the 

hypothesis that drought is a major driver of conifer diversification. We uncovered multiple 

evolutionary dynamics, with low background rates of diversification and P50 evolution shifting 

to several faster evolving regimes. By modelling both processes simultaneously we show that 

diversification rate increases across conifer lineages with increasing cavitation resistance. The 

rapid dynamics we found in Cupressaceae crown groups composed of genera Juniperus and 

Cupressus in the Northern Hemisphere, and Callitris in the Southern Hemisphere are paralleled 

by huge upticks in P50 evolution rate. However, the diversification shifts in Pinaceae (around 

150 Mya) and Podocarpaceae (~70 Mya) are likely uncoupled from drought and possibly related 

to the emergence of cold environments and the rise of Angiosperms, respectively. We provide 

the first conclusive evidence of climate driving the diversification of conifers, with two parallel 

radiations into dry habitats in both hemispheres through xylem evolution towards increased 

cavitation resistance. 

 

Introduction  

Conifers are an extraordinarily diverse group of trees, occurring in all continents except 
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Antarctica, with over 600 species in 70 genera and 7 families (Farjon, 2010). With a long 

evolutionary history detailed by the fossil record, conifers were globally dominant in the early 

Cretaceous, they have since declined in most parts of the world concomitantly with the rise to 

dominance of flowering plants (Angiosperms) from around 100 million years ago (Mya) 

(Augusto et al., 2014). They nonetheless remain a major component of many ecosystems and 

are present in every eco-region across the world, from wet tropical forests and arid deserts to 

the boreal and alpine tree-lines. Despite a reputation for being “living fossils”, they display 

remarkable variation in shape, size, morphology and physiology, in keeping with their 

ecological ubiquity (Eckenwalder, 2009). However, conifer diversity is not uniformly 

distributed across the globe, notably with low diversity in higher latitudes and several regions 

of high endemism (e.g. New Caledonia). Similarly, while some genera contain a single species 

with an extremely limited distribution (e.g. Sciadopytis, sole member of its family), some 

genera with a host of species are distributed widely across the globe, but remain restricted to 

one hemisphere, for example Pinus (113 species), Podocarpus (97 species), Juniperus (53 

species) or Abies (47 species). Restricted distributions and lack of diversity of extant conifer 

taxa are the legacy of a long history of extinction during most of the Cenozoic (65 Mya to 

present), with high rates inferred from the fossil record especially around 29 and 16 Mya 

(Crepet and Niklas, 2009). Many competing hypotheses have been proposed to explain both the 

decline of Gymnosperms and the rise of Angiosperms, including reproduction (entomophily vs. 

anemophily), seedling establishment and growth, light-harvesting, and water transport (Bond, 

1989). However, at such temporal and spatial scales, multiple events and processes are likely 

involved (Augusto et al., 2014). Of particular interest is the proposed “climate framework” 

(Augusto et al., 2014), as it could explain both the decline of some lineages due to increased 

climatic stress during the global drying of the Eocene and the subsequent success of some 

coniferous lineages due to increased drought tolerance.  

Although more research is needed to explain what exactly kills a plant during drought (Sala 

et al., 2010) hydraulic failure due to embolism is emerging as a leading cause of mortality 

(Anderegg et al., 2012; Balducci et al., 2014; Anderegg et al., 2016), either alone or in complex 

species-dependent interactions with other factors like depletion of non-structural carbohydrates 

or biotic attacks (Mitchell et al., 2013; Dickman et al., 2014; Sevanto et al., 2014). Resistance 

to drought induced cavitation, or the ability of vascular plants to withstand very negative water-

potentials is therefore an adaptive trait which could be implicated in a species’ survival during 

climatic upheavals. A species’ cavitation resistance (described by P50) is related to its climate 
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of origin (annual rainfall, aridity index) across a wide range of tree species (both angiosperms 

and gymnosperms) and biomes (Brodribb and Hill, 1999; Maherali et al., 2004; Bouche et al., 

2014). Furthermore, the remarkable scale of variation in this trait within Conifers – i.e. from -

1.6 MPa to -18.8 MPa (Delzon et al., 2010; Larter et al., 2015) - and multiple occurrences of 

convergent evolution of high resistance to cavitation (Maherali et al., 2004; Choat et al., 2012; 

Pittermann et al., 2012; Bouche et al., 2014) leave a pattern of evolutionary lability and a strong 

signal of adaptive evolution.  

The combined rise of phylogenetics, large trait databases and the development of new 

comparative methods has allowed the analysis of diversification and trait evolution in large 

clades within a statistical framework (for a review see Pennell and Harmon, 2013) - from simple 

models fitting single speciation and extinction rates across whole phylogenies to more complex 

models allowing multiple clade-specific evolutionary dynamics (Rabosky et al., 2014). Recent 

investigations have also focused on the relationship between diversification patterns and trait 

evolution, i.e. finding evidence for a link between higher rates of speciation in a group that 

displays a particular trait (or trait value) than a related group that doesn’t (Maddison et al., 2007; 

FitzJohn, 2012).  

The aim of this study was to investigate the evolution of drought tolerance in conifers and its 

importance for the diversification of Conifers. Specifically, we wanted to identify when and in 

which conifer lineages increasing xylem cavitation-resistance evolved, and whether these 

clades have diversified more rapidly as a result of increased drought tolerance. To this end, we 

constructed a dated molecular phylogeny for over 300 species of conifers, and combined this 

with physiological information for over 250 species from a conifer cavitation resistance 

database. We find strong evidence for multiple evolutionary dynamics in Conifers, both in 

diversification patterns and in the evolution of embolism resistance with the highest rates 

observed in crown groups within Cupressaceae. We also detected trait-dependent 

diversification, with higher drought-tolerance associated with increased speciation rates in non-

Pinaceous conifers. 

In the current context of climate change, the predicted increase in frequency and severity of 

drought events has already led some regions to experience severe die-back of some species, 

notably conifers (Allen et al., 2010). Rapid climate change likely outpaces the migration 

capacity of long-lived woody plant species such as conifers, therefore possibly resulting in 

extirpation or even extinction for species with either i) a severely restricted distribution with 
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low diversity like many conifer species today (IUCN, 2015), or ii) conservative lineages with 

low adaptability or evolvability, another characteristic of gymnosperm lineages. On the other 

hand, physiological (or phenological) adaptation to drought could enable increased survival in 

dry environments giving some lineages a competitive edge over other tree species, over time 

even resulting in ecological radiations. Using our knowledge of current conifer ecophysiology, 

we can look into the past and examine the diversification of conifer lineages with contrasting 

strategies facing drought. 

Methods: 

Phylogenetic reconstruction and dating: 

We obtained DNA sequences using PHLAWD (PHyLogeny Assembly with Databases, 

http://phlawd.net/), a pipeline that queries the GenBank database using a specified list of 

species , and a template sequence as a comparison base to filter-out non-homologous sequences 

(Smith et al., 2009). The resulting alignments were manually checked and trimmed using Mega 

5 (Tamura et al., 2011). We constructed a large dataset of DNA sequences for chloroplast genes 

RBCL, MATK and nuclear gene PHYP, and the ITS1-5.8S-ITS2 nuclear ribosomal DNA 

region. Since the ITS region is highly variable at this evolutionary scale, we separately built 

five different alignments, based on family relationships, i.e. one alignement for each of 

Pinaceae, Araucariaceae, Podocarpaceae, Cupressaceae and Taxaceae-Cephalotaxaceae (we did 

not include Sciadopitys verticillata in the datasets for this region). We used three cycad species 

(Cycas micronesica, Zamia furfuracea and Encephalartos ferox) as outgroup, and also included 

Nothotsuga longibracteata to add a fossil calibration point within the Pinaceae family. We also 

included 58 other conifer species, that haven’t been included in the physiological dataset, so 

they were pruned from the tree prior to comparative analyses, but their sequences were present 

for the phylogenetic analyses. Then we used Mesquite (Maddison and Maddison, 2015) to 

concatenate the sequences into a single file for phylogenetic analysis. The final dataset of 314 

species contained 11578 sites with a large proportion of missing data (about 65%; accessions 

used in Suppl. Table 1). We used RAXML (Stamatakis, 2006) to construct a maximum 

likelihood tree, using a separate GTR+GAMMA model for each data partition. We conducted 

1000 bootstrap searches and a full ML search using “-# 1000” and “–f a” options.  

To test the impact of tree topology on our analysis, we also ran MrBayes (v3.2, (Ronquist et 

al., 2012), a Bayesian phylogenetic inference program that uses Monte-Carlo Markov Chains 

to estimate parameter posterior distributions for two parallel independent runs of 30 million 

http://phlawd.net/
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generations each, and computed maximum clade credibility trees for each run. Convergence 

was checked by examining runs parameters in Tracer (Rambaut et al., 2014).  

We largely followed the fossil calibration points from Leslie et al. (2012), except for the 

Picea-Cathaya divergence, which is based on Picea burtonii a fossil spruce from the early 

Cretaceous (~140-133 Mya), because of some uncertainty in the placement of Cathaya (i.e. Lin 

et al., 2010). To have more age constraints within the Pinaceae family, we added two fossils 

from Mao et al. (2012), for the age of crown Pinaceae and the split between Pinus and Picea. 

We implemented a conservative approach by placing a 40 million year interval on all 

calibrations that are based on a minimum age only (due to the presence of fossil taxa), and a 

less conservative approach with a 20 million year interval. We also tested the impact of crown 

group fossil calibrations with a “deep nodes” analysis that contained only 4 constraints: on the 

root, and at the base of Pinaceae, the Araucariaceae – Podocarpaceae clade, and the split 

between Taxaceae – Cupressaceae. The complete information for the fossils used in this study 

are available in the supplementary text and Suppl. Table 2). 

We used the chronos function in the R package “ape” to transform the RAxML tree and the 

two MrBayes consensus phylograms into fossil calibrated chronograms. This function 

implements a penalized-likelihood approach similar to the program r8s (Sanderson, 2002; Kim 

and Sanderson, 2008; Paradis, 2013). Fossil ages are specified as minimum and maximum age 

constraints on nodes indicated using the most recent common ancestor (MRCA) of two species 

(e.g. the root node was specified as the MRCA of Cycas micronesica and Pinus pinaster, with 

a minimum age of 275, and a maximum age of 350). We tested values for the smoothing 

parameter λ from 10-6 to 106 by increments of 10, and selected the value with the highest 

likelihood – in all cases this was 10-6. Low values of λ (close to 0) allow rates to vary more 

between branches, resulting in a less “clock-like” model. Molecular and time-calibrated 

phylogenies (with calibrated nodes indicated) are available as Supplementary Fig. S1 (RAxML 

analysis) and S2 (MrBayes analysis). Similar tree topologies were obtained with RAxML and 

MrBayes, and most genus-level nodes receive strong support, represented by bipartition 

frequencies from the 1000 bootstraps in RAxML and Bayesian Posterior Probablities for the 

Bayesian analysis in MrBayes. Pinaceae are sister to all remaining conifers, Araucariaceae and 

Podocarpaceae are grouped together, with Sciadopitys sister to the Cupressaceae – Taxaceae 

(sensua lato, i.e. including Cephalotaxaceae) clade. Some deep nodes within early diverging 

Podocarpaceae have low support, similarly to previous work with the matK and ITS regions 
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(Biffin et al., 2011). Phyllocladus-Lepidothamnus are sister to all remaining Podocarps in the 

RAxML topology, but are grouped with the Prumnopityoid clade (Prumnopitys, Sundacarpus, 

Halocarpus, Lagarostrobos, Manoao) in the MrBayes consensus tree (albeit with low support). 

Our dating analyses yielded consistent dates across topologies and calibration sets, with dates 

with the 20 MA interval slightly younger overall (Supplementary Fig. S3). The “deep nodes 

only” resulted in unrealistically young crown group ages. We present results for all subsequent 

analyses on the more conservative 40 MA calibration analysis using the “best tree” from the 

RAxML tree search.  

Physiological data: 

We used the cavitation resistance database developed at the Caviplace lab (Delzon et al. 2015 

- INRA/University of Bordeaux - BIOGECO UMR 1202, Pessac), using 252 species, covering 

the seven extant conifer families, and over 90% of genera. This dataset also covers the large 

ecological distribution evident among conifers, from boreal forest, high altitude tree-lines, to 

wet tropical rainforest species and drought-tolerant desert shrubs. Xylem pressure inducing 

50% loss of conductance due to cavitation (P50) varies in this group from around -2 MPa to 

close to -19 MPa (Delzon et al. 2015, Larter et al. 2015). Cavitation resistance was measured 

using the Cavitron technique (Cochard et al., 2005), that uses centrifugal force to generate 

xylem pressure analogous to drought in plants. By measuring water flow as the sample branch 

is spinning, we can determine loss of conductance as cavitation events occur in the xylem, 

resulting in a vulnerability curve (representing percent loss of conductance as a function of 

xylem pressure) from which we derive the P50 parameter using the Pammenter sigmoid model 

(Pammenter and Vander Willigen, 1998). 

Diversification and trait evolution using BAMM and diversitree.  

1) We separately modelled conifer diversification and the evolution of drought tolerance 

using BAMM (Bayesian Analysis of Macroevolutionary Mixtures (Rabosky, 2014)), that 

implements complex models with multiple macro-evolutionary dynamics 

(speciation/extinction and trait evolution) on phylogenetic trees in a Bayesian framework. The 

program uses reversible-jump MCMC to explore candidate models with any number of shifts 

to new evolutionary dynamics, each with their own speciation, extinction, or phenotypic 

evolutionary processes. BAMM evaluates anything from a simple model with a single tree-

wide evolutionary dynamic to more complex models where any branch can contain a shift to a 

new evolutionary regime. Each candidate model is therefore composed of a set of evolutionary 
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dynamics, with associated shifts (between dynamics) and rates painted onto the phylogeny. The 

program implements an exponential change model, where evolutionary rates decrease or 

increase through time (time-varying model), and also allows for time-constant processes. By 

summarizing across the posterior distribution we can, i) calculate an average evolutionary rate 

for each branch of the phylogeny (see Fig. 1-A and B), ii) determine the probability that two 

species belong to the same dynamic (i.e. that there are no shifts on the branches leading to them 

from their most recent common ancestor – see Fig. 1-C and D), iii) determine the marginal 

posterior odds that each branch contains a shift (see Fig. 2) and iv) extract which models (i.e. 

which sets of shifts) seem most likely, based on their frequency in the posterior distribution (see 

Suppl. Fig. S6 and S7). BAMM is linked to a set of analysis and visualization tools within the 

R statistical environment (“Bammtools”). Convergence of the BAMM runs was checked by 

visualizing the log-likelihood throughout the run, and making sure effective sample sizes 

were >1000, using the “coda” package in R. Diversification analyses we run for 10 million 

generations (sampling every 1000) and trait evolution analyses for 40 million generations 

(sampling every 10’000). In all cases we discarded the first 25% of the chain as burn-in.  

2) Trait dependent diversification models were fit using maximum likelihood with the 

“diversitree” package in R, that implements models where different trait values are associated 

with increased/decreased speciation and extinction rates (Quantitative State Speciation and 

Extinction (Fitzjohn, 2010; FitzJohn, 2012)). Diversification is modeled according to a birth-

death process (with speciation and extinction parameters), and trait evolution is modelled by a 

diffusion process, that includes both a directional “drift” parameter and a stochastic “noise” 

parameter. We fit models where speciation was linear, sigmoidal functions of trait values, which 

were compared to the “trait independent” diversification model (i.e. constant speciation). 

Extinction was kept constant or as a linear function of trait values. QUASSE also allows the 

tree to be split to fit separate trait dependent speciation and extinction models in different clades. 

We used this option to test the hypothesis that diversification in Pinaceae is driven by different 

factors from the rest of conifers. We therefore specified a split at the corresponding node in the 

phylogeny, i.e. the most recent common ancestor of all non-Pinaceous conifers. We 

incorporated incomplete sampling by specifying a global sampling fraction of 0.42, since our 

dataset contained around 250 species out of the total of around 600 conifers total. We tested 

models with and without the trait “drift” parameter. Models were compared using Akaike’s 

Information Criterion, which measures the goodness of fit of each model while correcting for 

the increasing number of parameters, and model improvement was tested using the likelihood 
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ratio test. We used -P50 as positive trait values to facilitate interpretation of the models (i.e. an 

upward trend indicates a positive effect of increased cavitation resistance on diversification). 

To ensure proper convergence of the optimizer, we started optimization runs from different 

starting points, and run each optimization multiple times. Some concerns have been raised 

recently concerning all SSE methods including QUASSE (Rabosky and Goldberg, 2015; 

O’Meara and Beaulieu, 2016). Not least, they are susceptible to infer false positives, i.e. find 

conclusive evidence of trait dependent diversification for neutral simulated traits (Rabosky and 

Goldberg, 2015). It is hypothesized that some phylogenies fall victim to this bias due to possibly 

to high heterogeneity in diversification rates. We tested this issue by simulating trait evolution 

using Brownian motion (using the BM parameter best fit to the P50 data) along our phylogeny. 

For each trait, we then compared a neutral model to a model where speciation is a linear function 

of trait value. We also ran QUASSE on the MrBayes topology and the 20 MA calibration set to 

evaluate the impact of topology on our results, and to test whether the RAxML tree (or the 

inferred dates) was responsible for “false positive” results of trait-dependent diversification. 

Results 
BAMM analyses:  

We found overwhelming evidence for multiple evolutionary dynamics in conifer 

diversification and cavitation resistance evolution. Accordingly, evolutionary rates varied 

widely across the phylogeny, with approximately 10-fold increases in net diversification rates 

(Fig. 1A) and several hundredfold increases in cavitation resistance evolution rates (Fig. 1B). 

In both analyses, low background rates in Pinaceae, Araucariaceae, Taxaceae, and the early 

diverging Cupressaceae (old Taxodiaceae) give way to more rapidly evolving dynamics in 

Podocarpaceae and Cupressaceae. Crown Callitroidae (i.e. genus Callitris and associated 

genera Neocallitropsis and Actinostrobus) display the highest diversification and trait evolution 

rates (Fig. 1A and B). 

Conifer diversification dynamics: 

We found a constant low speciation and extinction dynamic was shared across most basal 

Pinaceae, Araucariaceae, Taxaceae and the early diverging Cupressaceae, and basal lineages of 

the Cupressoidae subfamily (respectively letters A, C, F and H in Fig. 1C). Several clades have 

transitioned to new rapid diversification dynamics: in Pinaceae, Pinus and Picea (Fig. 1C – 

“B”) and both crown Callitroidae (Fig. 1C – “G”) and the Cupressus-Juniperus clade (Figure 

1C – “I”) within Cupressaceae. A shift is also recovered at the base of a large Podocarpoid – 

Dacrydioid clade (Podocarpaceae), with evidence for an additional shift on the branch leading 

to genus Podocarpus (Fig. 1C – “D” and “E”). 
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Figure 1. Conifers diversification and cavitation resistance evolution rates and dynamics in 

Conifers. Average branch rates across all post-burn-in samples for the BAMM diversification 

(A) and P50 (B) analyses. Conifer diversification (C) and P50 evolution (D) macro-evolutionary 

cohort analyses representing the probability that two species belong to the same evolutionary 

dynamic. Family names in C and D are abbreviations of those in A-B. The Cycad outgroup is 

indicated as “Cyc.”. The star represents Sciadopytis, and Taxaceae (Tax.) includes 

Cephalotaxaceae for clarity. Letters “a” and “b” indicates the P50 dynamic shifts within Pinus 

(see main text). Block letters (C) and numbers (D) highlight groups of species that share a 

dynamic. 
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Drought-resistance evolution dynamics:  

Modelling of cavitation resistance evolution follows strikingly similar patterns, with an 

ancestral low background rate giving way to more rapidly evolving processes in several clades. 

Rates remain low throughout the history of the Pinaceae family (Fig. 1D – “1”; Fig. 3). There 

is nonetheless strong support for two recent shifts within genus Pinus: i) for a group of Mexican 

and Western American pines (section Trifoliae, sub-section Ponderosae) that includes P. 

ponderosa, P. jeffreyi, P. coulteri, P. devoniana, and P. hartwegii (Fig. 1B, D: “a”) and ii) on the 

branch leading to P. pinaster (Fig. 1B, D: “b”), both supported by high marginal odd ratios (Fig. 

2B). These shifts are linked to rapid increases in P50 to relatively vulnerable species (P. 

devoniana P50 = -3 MPa and P. pinaster -3.7 respectively), which are nested in more resistant 

groups (respectively, P. ponderosa with P50 = -3.9 MPa and P50 = -4.7 MPa for P. brutia and P. 

halepensis). P50 evolution shifts to a faster family level evolutionary dynamic for 

Podocarpaceae, with further evidence of shifts within genus Podocarpus (see Fig. 2B). These 

dynamics are characterized by much variation in P50 with the emergence of very resistant 

species within very vulnerable clades (e.g. Pherosphaera and Afrocarpus). Embolism resistant 

genus Cephalotaxus displays higher rates of evolution than the more vulnerable Taxaceae (Fig. 

1B). The two largest shifts are placed within Cupressaceae, i) at the base of the crown 

Cupressoid clade including Cupressus, Juniperus, Calocedrus and Tetraclinis (see Fig. 1D - 

“9”) and ii) within crown Callitroidae (Fig. 1D – “7”). In both these clades, large upticks in 

evolution rate lead to the emergence of extreme embolism resistance crown groups from much 

more vulnerable basal lineages (i.e. Papuacedrus, Austrocedrus and Thuja, Chamaecyparis 

respectively).   

We summarized branch level support for the shifts by computing shift marginal odd ratios, 

which are the branch-specific probabilities of shifts corrected by their prior probabilities (that 

depend on branch length) (Shi and Rabosky, 2015). The previously described evolutionary 

dynamics are overwhelmingly well supported, with both high marginal shift probabilities and 

odd ratios (Fig. 2). There is however some uncertainty on the exact placement of the shift 

leading to crown Callitroidae, for both analyses, with successive branches with strong evidence 

of a shift. In this clade, the basal lineages of Papuacedrus and Austrocedrus are generally not 

included in the new dynamics, with strongest support on the branch leading to the remaining 

Callitroids. Similarly, the shift in P50 evolution within Taxaceae-Cephalotaxaceae is not well 

resolved, and is not well as well supported by marginal odd ratios (Fig. 2B).  
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Figure 2. Phylogenetic trees showing locations of BAMM shifts in diversification (A) and 

cavitation resistance (B) evolutionary dynamics. Branches lengths are scaled according to 

marginal odd ratios, which represent the posterior probability of a shift being present on each 

branch, adjusted by the corresponding prior probability (a longer branch has high probability 

of a shift based on length alone). Numbers above branches represent the ten highest posterior 

shift probabilities (their frequency in the BAMM output) and numbers below branches are the 

10 highest shift marginal odd ratios. Conifer families and some relevant genera are indicated 

on in each panel. As in Fig. 1, letters “a” and “b” indicate the two recent shifts within Pinus. 
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To explore the temporal patterns of trait evolution and diversification, we constructed time 

series of the average rates from both analyses, separating rates from each family across all post-

burn-in samples from the BAMM analyses (Fig. 3). The overall diversification rate in conifers 

has increased gradually through time (Fig. 3A). The increase in rates associated with the shift 

in Pinaceae is visible at around 150 Mya (Fig. 3A – blue line) whereas the other shifts happened 

more recently, i.e. about 70 Mya in Podocarpaceae and around 50 Mya in Cupressaceae. When 

we decompose diversification into speciation and extinction rates (Suppl. Fig. 5), we see that 

the gradual increase in diversification rate in Pinaceae is in fact a huge uptick in lineage turnover 

rate with high speciation and extinction rates from before 150 Mya, with speciation only slightly 

outpacing extinction – overall the Pinaceae family had the highest speciation rates until 

approximately the start of the Neogene (20 Mya). For cavitation resistance (Fig. 3B), the most 

ancient shift occurred in Podocarpaceae a little over 150 Mya, followed by the gradual 

acceleration visible in Taxaceae-Cephalotaxaceae around 110 Mya. In Cupressaceae, a gradual 

uptick in rates occurred about 75 Mya, followed by a second major shift around 35 Mya. Rates 

of P50 evolution are very low throughout the history of Pinaceae, despite the evidence of slight 

upward shifts within Pinus (Fig.1).  

The overwhelming majority of samples from the BAMM output contained at least three and 

four core shifts for the diversification and trait evolution analyses, respectively (Supplementary 

Fig. S5). We found similar results across time-tree calibration schemes and phylogeny inference 

methods (Supplementary Fig. S6 and S7). 

Trait-dependent diversification: QUASSE 

Our analyses strongly support models where conifer diversification is linked to cavitation 

resistance (Table 1). For the first analysis, trait dependent models were fit uniformly across the 

whole phylogeny, and the trait dependent models generally improved on the constant (trait-

independent) diversification model. The only exception was the model with constant speciation 

and trait dependent extinction. The best model was when both speciation and extinction were 

linear functions of P50. All models produced positive trends, i.e. speciation increased with 

increasing resistance to cavitation – either as a linear function or by rapidly increasing at a 

threshold value for the sigmoid function (see Suppl. Table S4 for details). This indicates a strong 

effect of cavitation resistance on diversification trends in conifers, with vulnerable lineages 

diversifying more slowly than resistant lineages. 
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Figure 3. Family evolutionary rates through time from the BAMM analysis. (A) Net 

diversification rate and (B) cavitation resistance rate through time for each conifer family, 

average over all post-burn-in samples from the BAMM analyses. Shaded areas show 95% 

confidence interval, line represents median value of the rate distribution for each time slice. 

Different colors represent subdivisions of the conifer phylogeny, split from the rest of the tree 

at the most recent common ancestor for each family (excluding the stem). As throughout this 

paper, Taxaceae and Cephalotaxaceae are pooled together. Global rates represent the rates over 

the whole phylogeny. 
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Table 1. Trait dependent diversification models fit using QUASSE. Simple models (top half) 

and split-models (bottom half) were fit and compared using likelihood ratio tests. All models 

where speciation was a function of P50 were a significant improvement on the neutral model 

(indicated with bold font). The best simple and split models are underlined. 

 

Splitting the phylogeny improved the model likelihood considerably, with all split models 

performing better than the global models.  The best model is where the speciation rate in 

Pinaceae is maintained constant, while it is allowed to vary with P50 for the rest of the conifers. 

In this case again, increased cavitation resistance is associated with increasing diversification 

rates, in all Conifer families except Pinaceae. We found similar results when constraining the 

BM drift parameter to zero (see Suppl. Table S4 for full model parameters). 

Discussion: 

For the first time, we analyzed conifer diversification in a phylogenetic framework explicitly 

Speciation Extinction Df Log Likelihood AIC Χ² test p 

constant constant 4 -1633.3 3274.6 - - 

linear constant 5 -1626.1 3262.2 14.426 0.0001458 

sigmoidal constant 7 -1629.4 3272.8 7.785 0.0506678 

constant linear 5 -1633.2 3276.5 0.163 0.6860005 

linear linear 6 -1625.4 3262.8 15.773 0.0003758 

sigmoidal linear 8 -1628.0 3272.0 10.638 0.0309492 

Background Foreground          

constant constant constant 8 -1546.2 3108.4 174.261 < 2.2e-16 

linear constant constant 9 -1547.9 3113.8 170.846 < 2.2e-17 

constant linear constant 9 -1531.2 3080.4 204.228 < 2.2e-18 

linear linear constant 10 -1535.2 3090.5 196.119 < 2.2e-19 
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allowing multiple dynamics. The BAMM analysis identified several independent bursts of 

diversification in Pinaceae, Podocarpaceae, and two within Cupressaceae, implying several 

underlying driving factors, especially given these clades occur in different hemispheres, and the 

timing of these shifts ranges from around 150 Mya for Pinaceae to the last 20 Mya in Callitris. 

Meanwhile, P50 evolution underwent four major upticks, early in the evolution of the 

Podocarpaceae family, deep within Cephalotaxaceae, and especially in both crown groups of 

Cupressaceae.  

These two diversification rate upticks in Cupressaceae correspond to well-recognized 

drought-adapted clades in crown Cupressoidae and Callitroidae. The first is placed confidently 

on the branch leading to the Cupressus – Juniperus clade, therefore dated to between 45 and 75 

Mya in our phylogeny. This is consistent with dates from the literature, both from phylogenetic 

dating analyses (Leslie et al., 2012) and fossil information. For example, Tetraclinis of early 

Eocene age (Stockey et al., 2005) indicate a likely pre-Eocene origin for the Juniperus-

Cupressus clade. Despite some variation in shift placement in the BAMM analysis, the second 

shift likely occurred after the split between Austrocedrus and other Callitroidae, and before the 

appearance of Callitris s.s. which places the time interval for the diversification rate change to 

anywhere between 36 and 8 Mya. There is however evidence of Fitzroya and possibly Callitris 

being present by the early Oligocene (~32-30 Mya; (Paull and Hill, 2010)), which possibly 

means an older crown age for this group than in our dating analysis. The global trend towards 

colder and drier climate started after the Eocene climatic maximum around 50 Mya, and 

culminated in permanent ice at the poles around the end of the Eocene and maintained largely 

throughout the Oligeocene to about 26 Mya (Zachos et al., 2001). Over this drier period, diverse 

conifer clades with xeric affinities arose, i.e. Juniperus and Cupressus in the Northern 

Hemisphere and their Southern Hemisphere counterparts Callitris, a finding that supports the 

drought-driven diversification hypothesis. Despite a slight increase in the rate of P50 evolution 

in Cupressaceae before the beginning of the Eocene, the most impressive explosion in rates 

seems to have unfolded in the second half of the Paleogene, from 40 Mya onwards, which again 

is consistent with this hypothesis. In the Cupressoidae clade, this trait evolutionary dynamic 

seems to have appeared before the diversification uptick (since the shift is confidently placed 

on an older branch). This is consistent with the “ecological innovation” hypothesis that implies 

that a new, innovative trait triggers an adaptive radiation by opening up new ecological niche 

space. Unfortunately, the uncertain placement of both diversification and trait evolution shifts 

in Callitroidae do not allow us to make the same inference. However, there is evidence of a time 
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lag between i) the shift in diversification rate, with high marginal odds support on branches 

within the Callitris - Actinostrobus – Neocallitropsis clade, and ii) the shift in cavitation 

resistance evolution, which most likely occurred  happened before this based on marginal 

probabilities and odds ratios on deep branches within Callitroidae. 

The results from the BAMM analyses strongly suggest a link between speciation, extinction 

and drought tolerance evolutionary dynamics, at least within Cupressaceae. By explicitly 

modelling both processes, the trait-dependent diversification analysis from QUASSE provides 

strong evidence of a link between drought and conifer diversification. Splitting the tree to 

separate processes in Pinaceae from the other families greatly improved the model likelihood, 

further backing up the hypothesis that this family is driven by different dynamics from other 

conifer clades. he BAMM results strongly suggest a link between speciation, extinction and 

drought tolerance evolutionary dynamics, at least within Cupressaceae. By explicitly modelling 

both processes, the trait-dependent diversification analysis from QUASSE provides strong 

evidence of a link between drought and conifer diversification. Splitting the tree to separate 

processes in Pinaceae from the other families greatly improved the model likelihood, further 

backing up the hypothesis that this family is driven by different dynamics from other conifer 

clades. A recent study of conifer behavior patterns facing drought discovered two contrasting 

strategies: the first “ancestral” strategy found in Pinaceae, Podocarpaceae, Araucariaceae and 

basal Cupressaceae lineages involves high levels of abscisic acid (ABA) to induce stomatal 

closure, while the second is predominantly found in derived Cupressaceae and Taxaceae that 

rely on leaf desiccation to clamp shut stomata (Brodribb et al., 2014). This more recent strategy 

implies exposure to more negative water potentials, and seems to have driven an increase in 

cavitation resistance in these clades (Brodribb and McAdam, 2013). Our results for cavitation 

resistance shifts largely confirm this strategic shift in Taxaceae, Cupressoidae and Callitroidae, 

but we find evidence that the “embolism resistance” evolutionary pathway has also been 

followed by some other clades (notably within the Podocarpaceae family). This difference is 

possibly explained by the genera-level approach in Brodribb et al. (2014), which could obscure 

finer scale transitions the shifts within Podocarpaceae and Pinaceae. 

The Pinaceae family is marked by high turn-over rates (high speciation and high extinction) 

from about 150 million years ago, which is consistent with the appearance of major extant 

Pinaceous lineages by the early Cretaceous (Gernandt et al., 2008). Since we only found slight 

evidence for a deep shift in P50 evolution in the BAMM analysis, we cannot tie this 
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diversification shift to increased resistance to drought. These results seem to refute the 

hypothesis that they were pushed back into cold, nutrient poor environments by the rise to 

dominance of flowering plants, which is widely thought to have occurred mainly during the late 

Cretaceous, i.e. from 100 Mya onwards. It is worth noting that around the Jurassic-Cretaceous 

boundary was a cool and dry period with relatively low atmospheric CO2, with possible 

seasonal polar ice (Royer, 2006). This climatic context could have led to the appearance of 

temperate to cold environments in higher altitudes and latitudes, areas with which both fossil 

and extant Pinaceae taxa have affinities. This hypothesis is reinforced by the likely 

appearance of ectomycorrhizal fungi in the early Cretaceous (Smith and Read, 2010), which 

could have favored early Pinaceae lineages that appeared at this time (LePage, 2003). Pinaceae 

almost exclusively form ectomycorrhizal symbiotic relationships, which are predominant in 

cold environments with lower biomass decomposition rates. Other work has also favoured a 

role of altitude in increased diversification of Pinaceae, and there is evidence for a major shift 

in genome size evolution in Pinus as compared to both other Pinaceae and the rest of Conifers 

(Burleigh et al., 2012). 

The rapid diversification observed in Podocarpaceae from around 75 Mya supports the 

hypothesis that Podocarpus and other “flattened-leaved” podocarps diversified in the shade of 

the Angiosperm dominated canopy that formed around this time (Biffin et al., 2012). It’s worth 

noting that the Dacrydioid clade is also included in the more rapid dynamic, despite being 

mostly composed of imbricate-leaved species. Biffin et al. (2012) highlight the tropical origin 

of these diverse genera, indicating a possible geographical signal, as opposed to the less 

speciose temperate podocarp lineages.  

Both topological uncertainty and divergence time estimation error can affect diversification 

and trait evolution models. Our phylogenies were largely consistent with previous work (Leslie 

et al., 2012; Mao et al., 2012). Within Cupressaceae, in both analyses Actinostrobus is sister to 

the Neocallitropsis-Callitris clade, with Callitris monophyletic contrary to Mao et al., (2012). 

However, in accordance with the more recent molecular phylogenetics literature, Cupressus is 

paraphyletic with the old-world cypresses (Cupressus s.s.) sister to a clade grouping the new-

world cypresses (Hesperocyparis), Juniperus, and Xanthocyparis, where relationships are 

relatively unresolved. In spite of using similar fossil calibrations, our dating analysis does not 

completely agree with previous studies where dating was implemented in a Bayesian 

framework i.e. Leslie et al. 2012. Overall, our dating analyses pulled crown group divergences 
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further back in time, resulting in a more gradual diversification pattern, with a few exceptions, 

notably genus Callitris. This contrasts with some other studies, for example Leslie et al. (2012) 

obtained broom-shaped crown clades, with long stems leading to young crown groups. This 

“stemmy and broomy” pattern is common with the lognormal relaxed clock model in crown 

groups that are not constrained with fossil information (Crisp et al., 2014). This is also possibly 

due to less extensive sampling in our phylogeny, as adding species within crown clades will 

probably lead to a broom-like pattern with more short branches close to the present. In our time-

trees, ages for Cupressaceae divergences tend to be slightly younger than in Mao et al. (2012), 

and in general agreement with ages from Biffin et al. (2012) in Podocarpaceae, which adds 

confidence to our dating analysis. Furthermore, since all clades are affected in the same way 

we do not expect an impact of these discrepancies on the overall diversification patterns. 

Finally, we ran analyses with the different topologies and calibrations, and obtained largely 

similar results. The “deep node only” calibration set yielded much younger crown ages, 

therefore impacting results somewhat negatively. Since the topologies were similar between the 

MrBayes tress and the RAxML tree, we’re not surprised that results are consistent across 

inference methods. The most notable difference in the BAMM diversification analysis is the 

regular appearance of a rate shift on the branch leading to the clade formed by orders 

Cupressales and Araucariales.  

The SSE methods (state-dependent speciation and extinction models) are vulnerable to some 

severe pitfalls (Rabosky and Goldberg, 2015; O’Meara and Beaulieu, 2016). We found evidence 

of false-positives with our phylogeny, with a number of simulated traits (29/100) resulting in 

significant trait-dependent diversification. This brings us to use caution when drawing 

conclusions from this analysis, however some elements give us hope that our result is not due 

to false positives. Firstly, compared to the simulation analyses, our model performs better than 

all but 5 outliers (as noted from both the likelihood ratio chi-squared statistic and the 

improvement in AIC scores – Suppl. Fig. S8). Second, by conducting a split model analysis, we 

remove a large part of the diversification rate heterogeneity (namely, the heterogeneity in rates 

within the Pinaceae family) which should greatly reduce the risk of type I error (Rabosky and 

Goldberg, 2015). 

Previous work using comparative phylogenetic approaches have struggled to identify traits 

driving increased lineage accumulation in conifers, with the exception of leaf morphology in 

Podocarpaceae (Biffin et al., 2012). For example investigations into conifer breeding system 
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hypothesized an advantage for either monoecious  lineages with dry cones or clades with 

“fleshy” cones and dioecy, but found no influence on diversification of these particular 

combinations (Leslie et al., 2013). Our results highlight the influence physiological traits can 

have on speciation and resistance to extinction, providing directions for future investigations.  

Conclusion: 

Conifer diversification has undergone multiple shifts throughout the long history of this 

group. Drought has evidently played a major role in the evolutionary history of conifers, with 

strong evidence of rapid diversification associated with increased cavitation resistance in crown 

groups of Cupressaceae over the last 50 MA. While we cannot tie the shifts towards increased 

drought tolerance in Pinaceae, Podocarpaceae and Taxaceae with higher rates of speciation, we 

nevertheless find a general trend across conifers linking increased diversification and increased 

resistance to hydraulic failure. Our results show that at a geological timescale, while some 

conifer lineages may have been severely limited or even driven to extinction, others have 

managed to cope, and even seem to have benefitted from these harsher conditions to radiate 

into a wide range of xeric habitats. However, it remains to be seen whether adaptation can keep 

up the pace with climate change, even in these rapidly evolving clades. 
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Supplementary material 
 

Supplementary tables: 

Table S1: GenBank accessions for the sequences used in this study. 

Table S2: Fossil calibrations used in the dating analyses. For each calibration point, names of 

the descendant clades, minimum and maximum age constraints, and the resulting inferred age 

using chronos in R. All ages are in Million years ago. “Deep nodes” refers to the calibration set 

with only the 4 deepest constraints (nodes A through D).   

Table S3: Parameters for QUASSE models across pylogenetic inference methods and 

calibration settings (RAxML and MrBayes 40 MA calibrations, and RAxML 20 MA 

calibration). We only fit models with speciation as a linear function of trait values. The 

improvement in likelihood was consistent across analyses.  

Table S4: Model comparisons and full parameters for the QUASSE analysis. The bottom half 

of the table are without the BM drift parameter. Fg. And Bg. are foreground clades specified in 

the split analysis (i.e. Taxaceae and Cupressaceae) and background (i.e. Pinaceae, 

Araucariaceae and Podocarpaceae).  
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Table S1. 

Species ITS1 PHYP MATK RBCL 

Abies alba JN177292.1   HQ619823.1 AB029652.1 

Abies amabilis EF057688.1     AB029650.1 

Abies balsamea EF057709.1     JN935605.1 

Abies bracteata EF057713.1   AF456365.1 AB029647.1 

Abies cephalonica EF057697.1     FR831931.1 

Abies cilicica EF057698.1       

Abies concolor DQ975364.1 JX560070.1   AB029648.1 

Abies fabri DQ975352.1   JF952937.1 AB029638.1 

Abies fargesii JF416974.1   JF952942.1 AB029639.1 

Abies forrestii EU196132.1   JF952950.1 JF940583.1 

Abies fraseri EF057711.1   AB029660.1 AB029644.1 

Abies grandis EF057690.1     AB029646.1 

Abies holophylla AF283015.1   AF143441.1 JQ512510.1 

Abies homolepis EF057703.1 JX560072.1 AB029662.1 JN935610.1 

Abies kawakamii EF063715.1     DQ112531.1 

Abies koreana JF499944.1   JQ512389.1 JQ512513.1 

Abies lasiocarpa EF057710.1 JX560073.1 AB029664.1 AY664855.1 

Abies mariesii EF057689.1   AB029665.1   

Abies nephrolepis EF057712.1   JQ512392.1 JQ512514.1 

Abies nordmanniana EF057699.1     AB029654.1 

Abies numidica EF057700.1     AB029655.1 

Abies pindrow EU196128.1       

Abies pinsapo EF057701.1     AB029656.1 

Abies procera EF057696.1     AB029651.1 

Abies recurvata     JF952970.1 JN935618.1 

Abies sachalinensis JF499945.1   AB029667.1 JN935619.1 

Abies spectabilis JF416978.1   JF952975.1 JF940608.1 

Abies squamata JF416982.1   JF952980.1 JF940613.1 

Abies veitchii EF063713.1   AB029669.1 JN935621.1 

Acmopyle pancheri   JX560001.1 HM593685.1 HM593587.1 

Actinostrobus acuminatus AY178417.1   AF152175.1   

Actinostrobus arenarius   JX559912.1 JF725837.1 JF725937.1 

Actinostrobus pyramidalis AY178415.1 JX559913.1 HQ245874.1 EU161450.1 

Afrocarpus falcatus JF969615.1 JX560003.1 AF457111.1 X58135.1 

Afrocarpus gracilior   JX560004.1 HM593688.1 HM593589.1 

Afrocarpus mannii   JX560005.1 HM593689.1 HM593590.1 

Afrocarpus usambarensis   JX560006.1 KF713553.1 KF714048.1 

Agathis atropurpurea     EU025977.1 AF502087.1 

Agathis australis DQ499065.1   JN627305.1 AF362993.1 

Agathis lanceolata KM459933.1 JX559977.1   U96481.1 

Agathis microstachya JN021508.1   EU025978.1 AF508920.1 

Agathis moorei KM459934.1 JX559980.1   U96480.1 

Agathis ovata   JX559981.1   U96483.1 
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Agathis robusta EU165010.1 JX559982.1 AF456371.1 EF490509.1 

Araucaria angustifolia EU165012.1 JX559984.1 EF451975.1 U96470.1 

Araucaria araucana JF829718.1 JX559985.1 AF456373.1 U96467.1 

Araucaria bernieri KM459941.1 JX559986.1 AM920138.1 U96460.1 

Araucaria bidwillii EU165011.1 JX559987.1 EU025974.1 U96472.1 

Araucaria biramulata KM459947.1 JX559988.1 AM920177.1 U96475.1 

Araucaria columnaris   JX559989.1 AM920145.1 U96461.1 

Araucaria cunninghamii EU165013.1 JX559990.1 JQ512394.1 JQ512518.1 

Araucaria heterophylla EU165014.1 JN656092.1 HQ245919.1 U96462.1 

Araucaria hunsteinii DQ499067.1 JX559992.1 AF456375.1 U96468.1 

Araucaria laubenfelsii KM459959.1 JX559993.1 AM920153.1 U96463.1 

Araucaria luxurians   JX559994.1 AM920157.1 U96464.1 

Araucaria montana KM459965.1 JX559995.1 AM920159.1 U96457.1 

Araucaria muelleri KM459968.1 JX559996.1 AM920162.1 U96465.1 

Araucaria nemorosa KM459972.1   AM920166.1 U96458.1 

Araucaria rulei KM459973.1 JX559997.1 AM920169.1 U96466.1 

Araucaria scopulorum KM459979.1   AM920175.1 U96459.1 

Araucaria subulata KM459980.1 JX559999.1 AM920178.1 U96474.1 

Athrotaxis cupressoides AF387545.1   AB030131.1 JF725921.1 

Athrotaxis laxifolia AF387543.1   AB030129.1 L25754.2 

Athrotaxis selaginoides AF387537.1 JX559914.1 AB030130.1 JF725938.1 

Austrocedrus chilensis   JX559915.1 HQ245876.1 EU161449.1 

Callitris canescens AY178411.1   JF725845.1 JF725945.1 

Callitris columellaris AY178404.1   HQ245877.1   

Callitris drummondii AY178423.1   JF725839.1 JF725939.1 

Callitris endlicheri AY178425.1   AY988331.1 JF725932.1 

Callitris glaucophylla AY178399.1       

Callitris intratropica AY178400.1       

Callitris macleayana HM116954.1 JX559916.1 HQ245878.1 JF725933.1 

Callitris muelleri AY178412.1   JF725824.1 JF725924.1 

Callitris preissii     JF725840.1 JF725940.1 

Callitris rhomboidea AY178408.1   HQ245879.1 L12537.2 

Callitris sulcata AY178422.1   JF725841.1 JF725941.1 

Callitris tuberculata AY178426.1       

Callitris verrucosa HM116955.1   AY988330.1 JF725942.1 

Callitropsis funebris AY988377.1 JX559935.1 HM023991.1 AY988245.1 

Callitropsis nootkatensis AY380858.1 JX559922.1 HM023980.1 HM024268.1 

Callitropsis vietnamensis AY380877.1 JX559923.1 HM024074.1 HM024352.1 

Calocedrus decurrens AY380854.1 JX559924.1 HM023981.1 L12569.2 

Calocedrus formosana HQ435648.1   FJ475237.1 AB715255.1 

Calocedrus macrolepis AY150686.1 JX559925.1 HM023982.1 EF053220.1 

Cedrus atlantica     AF143431.1 AF145457.1 

Cedrus deodara DQ975357.1   JQ512397.1 AF456381.1 

Cedrus libani   JX560074.1   HG765045.1 

Cephalotaxus fortunei EF660585.1 JX559893.1 JF953499.1 AY450863.1 

Cephalotaxus hainanensis EF660592.1   JX099351.1 EF660729.1 
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Cephalotaxus harringtonia EF660581.1 JX559894.1 AB030138.1 AF227461.1 

Cephalotaxus koreana EF660574.1   EF660656.1 EF660726.1 

Cephalotaxus sinensis EF660591.1 JX559896.1 HQ245920.1 JF725946.1 

Cephalotaxus wilsoniana GQ434684.1   EF660648.1 AB027312.1 

Chamaecyparis formosensis AY211258.1   HM023983.1 HM024271.1 

Chamaecyparis lawsoniana AY211254.1 JX559926.1 HM023984.1 HM024272.1 

Chamaecyparis obtusa AY211253.1 JX559927.1 HM023985.1 JQ512527.1 

Chamaecyparis pisifera DQ269982.1 FJ393260.1 HM023986.1 JQ512530.1 

Chamaecyparis thyoides AY283428.1   FJ475236.1   

Cryptomeria japonica AB023983.1 AB894549.1 AB030116.1 AJ621937.1 

Cunninghamia lanceolata AF387523.1 JX559930.1 AB030125.1 JQ512534.1 

Cunninghamia lanceolata var konis   JX559929.1 AB030126.1 JN039274.1 

Cupressus atlantica AY988367.1   HM023987.1 HM024275.1 

Cupressus duclouxiana AY380864.1 JX559933.1 HM023990.1 AY988242.1 

Cupressus dupreziana AY988375.1 JX559934.1 AY988342.1 AY988243.1 

Cupressus sempervirens FJ705221.1 JX559936.1 HM023994.1 HM024278.1 

Cupressus torulosa AY988393.1 JX559937.1 HM023995.1 AY988257.1 

Cycas micronesica   JN655925.1 EU016806.1 EU016864.1 

Dacrycarpus dacrydioides     HM593702.1 AF249597.1 

Dacrycarpus imbricatus   JX560010.1 HM593703.1 HM593603.1 

Dacrycarpus vieillardii     HM593705.1 AF249598.1 

Dacrydium araucarioides     HM593690.1 HM593591.1 

Dacrydium balansae   JX560011.1 HM593691.1 HM593592.1 

Dacrydium guillauminii   JX560012.1 HM593694.1 HM593595.1 

Diselma archeri   JX559938.1 HQ245889.1 L12572.2 

Encephalartos ferox   JN655989.1 JQ046302.1 AY335243.1 

Falcatifolium falciforme     HM593706.1 KF714072.1 

Falcatifolium taxoides     HM593707.1 AF249637.1 

Fitzroya cupressoides HQ414213.1 JX559939.1 HQ245890.1 JF725916.1 

Glyptostrobus pensilis AF387525.1 JX559941.1 AB030118.1 L25750.2 

Halocarpus bidwillii   JX560016.1 KF713609.1 HM593606.1 

Halocarpus biformis     HM593708.1 HM593607.1 

Hesperocyparis arizonica U77962.1 JX559931.1 HM023998.1 AF127430.1 

Hesperocyparis glabra U60748.1   HM024001.1 HM024282.1 

Hesperocyparis goveniana AY380865.1 JX559919.1 HM024002.1 AY380888.1 

Hesperocyparis lusitanica   JX559920.1 HM024003.1   

Hesperocyparis macrocarpa AY380868.1 JX559921.1 HM024005.1 HM024284.1 

Hesperocyparis sargentii U60749.1   HM024007.1 AY988254.1 

Juniperus chinensis FJ980279.1   HM024014.1 HM024292.1 

Juniperus communis EU277677.1 JX559944.1 AY988359.1 AY988260.1 

Juniperus coxii     HM024050.1 HM024328.1 

Juniperus deppeana EU277684.1   HM024022.1 HM024300.1 

Juniperus flaccida FJ948470.1   HM024026.1 HM024304.1 

Juniperus monticola FJ948467.1   HM024038.1 HM024316.1 

Juniperus osteosperma EU277693.1   HM024040.1 HM024318.1 

Juniperus recurva GQ118647.1       



 Part II – Chapter 4 

 

120  

  

Juniperus rigida AY836797.1   AB030136.1 JQ512551.1 

Juniperus scopulorum EF608964.1 JX559949.1 HM024059.1 HM024337.1 

Juniperus squamata GQ118644.1   HM024061.1 HM024339.1 

Juniperus virginiana EU277699.1 JX559951.1 HM024065.1 JQ512556.1 

Lagarostrobos franklinii   JX560017.1 HM593710.1 HM593609.1 

Larix decidua AF041343.1 JX560075.1   FN689379.1 

Larix gmelinii   JX560076.1 AF143433.1   

Larix kaempferi AF041344.1 JX560077.1 JQ512436.1 JQ512559.1 

Larix laricina AF041348.1 JX560078.1   AF479878.1 

Larix occidentalis AF041347.1     X63663.1 

Larix potaninii var macrocarpa     AY391402.1 AY389137.1 

Larix sibirica AF041345.1 EU441951.1     

Lepidothamnus laxifolius   JX560019.1 AF457114.1 HM593610.1 

Libocedrus bidwillii   JX559953.1 HQ245900.1 JF725927.1 

Libocedrus yateensis   JX559954.1 HQ245902.1   

Manoao colensoi   JX560020.1 HM593712.1 AF249644.1 

Metasequoia glyptostroboides AF387527.1 JX559955.1 AB030122.1 JQ512563.1 

Microbiota decussata AY380874.1 JX559956.1 HM024066.1 L12575.2 

Microcachrys tetragona   JX560021.1 HM593713.1 HM593611.1 

Nageia fleuryi JF829693.1   HM593714.1 HM593612.1 

Neocallitropsis pancheri AY178420.1 JX559957.1 HQ245905.1 AF127426.1 

Nothotsuga longibracteata DQ975351.1   AF143437.1 AF145459.1 

Papuacedrus papuana   JX559958.1 HQ245906.1 EU161451.1 

Pherosphaera fitzgeraldii   JX560022.1 HM593719.1 HM593617.1 

Pherosphaera hookeriana     HM593720.1 HM593618.1 

Phyllocladus aspleniifolius AY442167.1 JX560027.1 AY442147.1 AY442152.1 

Phyllocladus trichomanoides AY442164.1 AJ286650.1 AY442150.1 AF249654.1 

Picea abies AJ243165.1 U60264.1 AB161012.1 JQ512566.1 

Picea asperata     AY729946.1 EF440572.1 

Picea brachytyla     AY729949.1 EF440573.1 

Picea breweriana   JX560079.1 EF440496.1 EF440574.1 

Picea chihuahuana     EF440497.1 EU269030.1 

Picea crassifolia     AY729951.1 EF440576.1 

Picea engelmannii     EF440499.1 EF440577.1 

Picea glauca AF136619.1 JX560080.1 AF133926.1 EF440579.1 

Picea glehnii AY563413.1   EF440502.1 EF440580.1 

Picea jezoensis     JQ512444.1 JQ512568.1 

Picea koraiensis     AY729942.1 JQ512570.1 

Picea koyamae     EF440505.1 EF440583.1 

Picea likiangensis     EF440506.1 EF440584.1 

Picea mariana AF136614.1 JX560081.1 AF133922.1 EF440585.1 

Picea maximowiczii     EF440509.1 EF440587.1 

Picea meyeri GQ865721.1   EF440511.1 EF440589.1 

Picea morrisonicola     EF440513.1 EF440591.1 

Picea obovata     EU199800.1 EF440592.1 

Picea omorika     AY035200.1 EF440593.1 
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Picea orientalis AY563415.1   EF440516.1 EF440594.1 

Picea pungens     EF440519.1 X58136.1 

Picea purpurea     AY729950.1 EF440598.1 

Picea rubens AF136610.1   AF133918.1 EF440600.1 

Picea schrenkiana     EF440523.1 EF440601.1 

Picea sitchensis   HM198950.1 EF440525.1 X63660.1 

Picea smithiana     AY729947.1 AF145458.1 

Picea wilsonii GQ463500.1   EF440529.1 EF440606.1 

Pilgerodendron uviferum   JX559959.1 HQ245907.1 EU161452.1 

Pinus albicaulis AF036983.2   AY497261.1 AY497225.1 

Pinus aristata AF037000.2   AY115795.1 AY115758.1 

Pinus arizonica U88039.1   DQ166031.1 DQ156484.1 

Pinus armandii AF036980.1   AF143428.1 HQ849874.1 

Pinus attenuata AF037020.1   AB080933.1 DQ353724.1 

Pinus ayacahuite AF036981.1   AY497257.1 AY497221.1 

Pinus banksiana   FJ415424.1 AF143427.1 EF440595.1 

Pinus brutia EU647194.1     FR831903.1 

Pinus bungeana AF036992.1   AY729953.1 JQ512573.1 

Pinus cembra AF036987.2   AB160985.1 DQ353720.1 

Pinus contorta AF037014.1 FJ415423.1 AB080921.1 AY497230.1 

Pinus coulteri AF037013.1   AB097785.1 AY724759.1 

Pinus densata     AB097779.1 AY555713.1 

Pinus densiflora KC583360.1   JQ512453.1 JQ512577.1 

Pinus devoniana     AY497277.1 AY497241.1 

Pinus durangensis AF037010.1   AY497276.1 AY497240.1 

Pinus edulis AF343993.1   AY115765.1 X58137.1 

Pinus engelmannii     AB080927.1 AY497239.1 

Pinus flexilis AF344001.1   AY497258.1 AY497222.1 

Pinus glabra     DQ353712.1 DQ353728.1 

Pinus halepensis AF037007.1   AB081089.1 AJ271897.1 

Pinus hartwegii AF037008.1   AY497267.1 AY497231.1 

Pinus heldreichii     AB161006.1 DQ353730.1 

Pinus heldreichii var leucodermis       FR831914.1 

Pinus jeffreyi U88040.1   AB080926.1 AY497235.1 

Pinus koraiensis KC583357.1   EF440518.1 JQ512579.1 

Pinus leiophylla AF037017.1   AB081085.1 AY497243.1 

Pinus massoniana JF829705.1 KJ921381.1 AB081088.1 DQ353732.1 

Pinus mugo   KC980592.1 AB081087.1 EU269032.1 

Pinus mugo subsp uncinata   KC980603.1 AB097778.1 AB097774.1 

Pinus muricata     AB080935.1 DQ353725.1 

Pinus nigra   FJ415421.1 AB084498.1 JQ512593.1 

Pinus palustris AF305062.1   AB080937.1 JQ512582.1 

Pinus parviflora AF036984.1 KJ195157.1 JQ512462.1 JQ512586.1 

Pinus patula AF037019.1   AB080944.1 AY497248.1 

Pinus peuce AF036989.1 FJ415426.1 AY497254.1 AY497218.1 

Pinus pinaster AF037024.1 JQ970317.1 AB084493.1 FR831913.1 
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Pinus pinea X87936.1   AB084496.1 X58133.1 

Pinus ponderosa AF037011.1 FJ415425.1 AB080924.1 AY497234.1 

Pinus pseudostrobus     AY497268.1 AY497232.1 

Pinus pumila AF036986.1   AB161013.1 AB161042.1 

Pinus radiata   EU301707.1 AB080934.1 X58134.1 

Pinus resinosa AF037002.1 FJ415422.1 AB080945.1 AY497252.1 

Pinus rigida KC583358.1   JQ512465.1 JQ512589.1 

Pinus sabiniana     AY497272.1 AY497236.1 

Pinus serotina     AB080930.1 AY724761.1 

Pinus sibirica AY430077.1   AB161014.1 AY497228.1 

Pinus strobiformis   FJ415427.1 EF546726.1 AB455588.1 

Pinus strobus AF036982.1 JX560082.1 JQ512467.1 JQ512591.1 

Pinus sylvestris AF037003.1 X96738.1 AB097781.1 AB097775.1 

Pinus tabuliformis KJ474644.1   AB161015.1 AY555716.1 

Pinus taeda AF200523.1   JQ512468.1 JQ512592.1 

Pinus taiwanensis JF829712.1   AB161016.1 AB161045.1 

Pinus thunbergii AF037025.1 FJ393244.1 JQ512471.1 JQ512595.1 

Pinus virginiana AF037015.1   AB080923.1 JQ512596.1 

Pinus wallichiana AF036991.1   AY734482.1 X58131.1 

Pinus washoensis     DQ353706.1 DQ353721.1 

Pinus yunnanensis     AB161017.1 AY555695.1 

Platycladus orientalis AY380875.1 JX559960.1 HM024067.1 JQ512599.1 

Podocarpus acutifolius   JX560029.1 HM593725.1 HM593622.1 

Podocarpus coriaceus JF969584.1 JX560036.1 HM593737.1 HM593634.1 

Podocarpus cunninghamii DQ499127.1 JX560038.1 HM593740.1 HM593637.1 

Podocarpus elatus     AF457113.1 HM593641.1 

Podocarpus elongatus JF969598.1 JX560041.1 HM593746.1 HM593643.1 

Podocarpus grayae     HM593750.1 HM593647.1 

Podocarpus henkelii JF969600.1   HM593751.1 HM593648.1 

Podocarpus lambertii JF969580.1   HM593753.1 HM593650.1 

Podocarpus latifolius JF969601.1 JX560044.1 HM593754.1 AF249612.1 

Podocarpus lawrencei   JX560030.1 HM593756.1 HM593651.1 

Podocarpus longifoliolatus   JX560045.1 HM593758.1 HM593654.1 

Podocarpus lucienii   JX560046.1 HM593759.1 HM593655.1 

Podocarpus neriifolius JF829692.1 JX560049.1 HM593765.1 AF249618.1 

Podocarpus nivalis JF969574.1   HM593757.1 HM593653.1 

Podocarpus novae-caledoniae JF969603.1 JX560050.1 HM593766.1 HM593662.1 

Podocarpus nubigenus     HM593767.1 HM593663.1 

Podocarpus oleifolius JF969583.1 JX560051.1 KF713750.1 KF714168.1 

Podocarpus polystachyus     HM593771.1 HM593667.1 

Podocarpus rubens JF969608.1 JX560055.1 HM593774.1 HM593670.1 

Podocarpus salignus   JX560057.1 HM593776.1 HM593672.1 

Podocarpus spinulosus   JX560060.1 HM593780.1 HM593676.1 

Podocarpus totara   JX560062.1 JN627357.1 HM593678.1 

Prumnopitys andina   JX560063.1 HM593721.1 HM593619.1 

Prumnopitys ferruginea     AF457115.1 AF249656.1 
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Prumnopitys ladei   JX560065.1 HM593723.1 HM593620.1 

Prumnopitys taxifolia     HM593724.1 HM593621.1 

Pseudolarix amabilis DQ975355.1 JX560084.1 AF143432.1 X58782.1 

Pseudotsuga macrocarpa AF041354.1 EU866024.1     

Pseudotsuga menziesii AF041353.1 JX560085.1 AF143439.1 X52937.1 

Retrophyllum comptonii   JX560066.1 HM593785.1 HM593681.1 

Retrophyllum minus   JX560067.1 KF713811.1 AF249661.1 

Retrophyllum rospigliosii JF969612.1   HM593786.1 HM593682.1 

Saxegothaea conspicua   JX560068.1 AF457116.1 HM593684.1 

Sciadopitys verticillata AB023993.1 JX559887.1 AB023994.1 AB645804.1 

Sequoia sempervirens HQ414215.1 JX559961.1 AB030123.1 L25755.2 

Sequoiadendron giganteum AF387520.1 JX559962.1 AB030124.1 JQ512604.1 

Sundacarpus amarus   JX560069.1 HM593788.1 AF249663.1 

Taiwania cryptomerioides AY916973.1 KJ195155.1 AB030127.1 L25756.2 

Taxodium distichum AF387531.1 JX559964.1 AF152212.1 AF119185.1 

Taxodium mucronatum JF829707.1 JX559965.1 AB030119.1 JF725913.1 

Taxus baccata AF259294.1 JX559898.1 AB023996.1 AF456388.1 

Taxus brevifolia AF259295.1 JX559899.1 EU078561.1 AF249666.1 

Taxus canadensis AF259298.1 JX560092.1 EF660661.1 EF660724.1 

Taxus cuspidata HM590971.1 JX559901.1 HM591011.1 DQ478793.1 

Taxus sumatrana HM590968.1 JX559905.1 EF660646.1 EF660706.1 

Tetraclinis articulata AY380876.1 JX559966.1 HM024068.1 L12576.2 

Thuja koraiensis EU183427.1   HM024069.1 JQ512617.1 

Thuja occidentalis EU183434.1 JX559967.1 HM024070.1 JQ512620.1 

Thuja plicata HQ414209.1 JX559968.1 HM024071.1 AY237154.1 

Thuja standishii EU183441.1 JX559969.1 HM024072.1 HM024350.1 

Thujopsis dolabrata AY380853.1 JX559971.1 HM024073.1 JQ512621.1 

Torreya californica AB023997.1 JX559907.1 AB023998.1 AY664858.1 

Torreya grandis EF660590.1 JX559908.1   DQ478794.1 

Torreya nucifera EF660595.1 AJ286666.1 AB030137.1 JQ512624.1 

Torreya taxifolia EF660587.1 JX559911.1 AF457110.1 AF456389.1 

Tsuga canadensis EF395467.1 JX560086.1 AF143438.1 AY056581.1 

Tsuga caroliniana EF395474.1 JX560087.1     

Tsuga chinensis DQ975358.1 JX560088.1   AF145462.1 

Tsuga diversifolia EF395497.1 JX560089.1     

Tsuga dumosa EF395514.1     AF145460.1 

Tsuga heterophylla EF395533.1 JX560090.1   X63659.1 

Tsuga mertensiana EF395538.1   AF143434.1 AF145463.1 

Widdringtonia nodiflora AY178419.1 JX559973.1 HQ245917.1 JF725930.1 

Wollemia nobilis EU165015.1 JX560000.1 AF456377.1 AF030419.1 

Zamia furfuracea   JN656065.1 JQ770303.1 JQ770263.1 
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Table S2. 

 Calibration sets 20 MA interval 40 MA interval “Deep nodes”  

Node Calibrated divergence 
min 
age 

max 
age Inferred 

max 
age Inferred Inferred  ages References 

A Cycads - Conifers 275 350* 336,1 350 335,9 348,6 Leslie et al. 2012 

B Araucariaceae - Podocarpaceae 176 230* 177,9 230 198,8 208 Leslie et al. 2012 

C Taxaceae - Cupressaceae 197 217 205,7 237 236,9 197,9 Leslie et al. 2012 

D Pinus - Cedrus 199 219 204,2 239 228,1 230,2 Mao et al. 2012 

E Araucaria - (Agathis, Wollemia) 165 185 171 205 178,7 138,7 Leslie et al. 2012 

F Dacrycarpus - Dacrydium 51,9 71,9 60,1 91,9 61,2 26 Leslie et al. 2012 

G Phyllocladus - Lepidothamnus 48 68 64,6 88 52,2 69,3 Leslie et al. 2012 

H Podocarpus - Retrophyllum 28 60* 53,5 60 56,9 27,7 Leslie et al. 2012 

I Metasequoia - Sequoia 55 75 58,8 95 72,8 24,4 Leslie et al. 2012 

J Taxodium - Glyptostrobus 65 85 80,5 105 101 7,3 Leslie et al. 2012 

K Papuacedrus - (other Callitroidae) 51,9 71,9 64,7 91,9 72,9 11 Leslie et al. 2012 

L Thuja - Thujopsis 58 78 68,3 98 78,8 7,3 Leslie et al. 2012 

M Tetraclinis - Platycladus 28 48 36,1 68 40,8 3,9 Leslie et al. 2012 

N Juniperus - Cupressus 33 53 49,8 73 45,6 5,9 Leslie et al. 2012 

O Larix - Pseudotsuga 41 61 52,5 81 66,7 115,1 Leslie et al. 2012 

P Tsuga - Nothotsuga 41 90* 56,8 90 88,6 38,4 Leslie et al. 2012 

Q Pinus - Picea 118,5 138,5 120,8 158,5 153,3 115,1 Mao et al. 2012 
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Table S3. 

 

  RAxML tree - 40 MA calibrations 

Speciation Extinction Df Log Likelihood AIC Χ² test p 

constant constant 4 -1633.3 3274.6 - - 

linear constant 5 -1626.1 3262.2 14.426 0.0001458 

    RAxML tree - 20 MA calibrations 

    Df Log Likelihood AIC Χ² test p 

constant constant 4 -1818.5 3645.1   

linear constant 5 -1810.1 3630.2 16.855 4.034e-05 

   MrBayes tree - 40 MA calibrations 

    Df Log Likelihood AIC Χ² test p 

constant constant 4 -1878.5 3765.0   

linear constant 5 -1870.1 3750.2 16.761 4.239e-05 
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Table S4. 

 

 

 

With Drift    Speciation parameters Extinction parameters   

Sp. Ex. Df 

Log-

Lik. AIC Χ² test p 

Sig. 

inflection 

point 

Slope (Sig., 

Lin.) λ0 λ1 

Slope (Sig., 

Lin.) λ0 λ1 drift diffusion  
Cst. Cst. 4 -1633.3 3274.6 - - - - 0.069110031 - - 0.053894277 - -0.001651303 0.134197475  
Lin. Cst. 5 -1626.1 3262.2 14.426 0.0001458 - 0.006597219 0.042157740 - - 0.029637553 - 0.122451424 0.122889633  
Sig. Cst. 7 -1629.4 3272.8 7.785 0.0506678 11.64 3.09758582 0.11083970 0.37371592 - 0.10118003 - 0.08169537 0.12475447  
Cst. Lin. 5 -1633.2 3276.5 0.163 0.6860005 - - 0.10761058  -  0.01202135 0.07559986 -  0.15197416  0.21111783  
Lin. Lin. 6 -1625.4 3262.8 15.773 0.0003758 - 0.008733485 0.073258025 - 0.020740558 0.031983269 - 0.142668060 0.219963279  
Sig. Lin. 8 -1628.0 3272.0 10.638 0.0309492 10.85 3.30823872 0.10427240 0.25024867 0.01566547 0.06768928 - 0.15739591 0.20199261  

Bg. Fg.       Bg. speciation Bg. extinction Bg. drift Bg. diffusion Fg. speciation Fg. extinction Fg. drift Fg. diffusion 

Cst. Cst. Cst. 8 -1546.2 3108.4 174.261 < 2.2e-16 0.091 - 0.078540908 0.041317210 0.006173748 0.076592322 0.062984433 0.042508667 0.275660689 

Lin. Cst. Cst. 9 -1547.9 3113.8 170.846 < 2.2e-17 0.10 -0.006051724 0.068852404 0.007551018 0.005529328 0.052451547 0.033786277 0.014203964 0.259477048 

Cst. Lin. Cst. 9 -1531.2 3080.4 204.228 < 2.2e-18 0.081  0.0691856921 
-

0.0080698315 
0.0059499050 0.0006196373 0.0084972803 0.0186814044 

-
0.0460775255 

0.2318147512 

Lin. Lin. Cst. 10 -1535.2 3090.5 196.119 < 2.2e-19 0.080 0.000396673 0.068873192 0.005480166 0.005546520 0.006538050 0.007018859 0.008647325 -0.013051863 0.218535153 

 Without Drift     Speciation parameters Extinction parameters   

Sp. Ex. Df 
Log-

Lik. 
AIC Χ² test p 

Sig. 
inflection 

point 

Slope (Sig., 

Lin.) 
λ0 λ1 

Slope (Sig., 

Lin.) 
λ0 λ1 diffusion 

  

Cst. Cst. 3 -1634.3 3274.6   - - 0.07343851  - 0.05842523 - 0.12027987 
  

Lin. Cst. 4 -1631.7 3271.3 5.30 0.0213245 - 0.002358631 0.047895923  - 0.037893510 - 0.149207414   
Sig. Cst. 6 -1626.8 3265.6 15.01 0.0018080 11.67 3.08480490 0.08473772 0.37700102 - 0.07112815 - 0.13900912   
Cst. Lin. 4 -1634.0 3276.0 0.63 0.4267741 - - 0.084439272  -0.001791103 0.077217642 - 0.127558622   
Lin. Lin. 5 -1627.5 3265.0 13.64 0.0010927 - - 0.064431217 0.007457949 0.006480985 0.056805429 - 0.129521263   
Sig. Lin. 7 -1815.5 3644.9 - - 10.76 0.44174003 0.01750238 0.12321196 -0.08115655 0.10629343 - 0.13333927   

Bg. Fg. -      Bg. speciation Bg. extinction Bg. diffusion Fg. speciation Fg. extinction Fg. diffusion   
Cst. Cst. Cst. 5 -1634.0 3278.0 0.63 0.7288041 0.086 - 0.074858392 0.005635311 0.061111167 - 0.045365849 0.268833311   
Lin. Cst. Cst. 6 -1631.2 3274.3 6.30 0.0977373 0.114 -0.011557214 0.052148307 0.005790138 0.061311554 - 0.045676811 0.245484945   
Cst. Lin. Cst. 6 -1621.6 3255.2 25.40 1.273e-05 0.076 - 0.063818136 0.005319075 0.047820066 0.003502000 0.043761733 0.243547002   
Lin. Lin. Cst. 7 -1623.5 3261.1 21.54 0.0002475 0.087 -0.001972713 0.066805491 0.005696456 0.059305666 0.002303610 0.053330532 0.212346711   
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Supplementary Figures:  

Figure S1: Maximum likelihood phylogeny from the RAxML analysis. Node support is 

frequency of bi-partitions over 1000 bootstrap replicate searches. Time-tree using the 40 MA 

calibration set, with numbers A to Q as in Suppl. Table S2.  

Figure S2: Bayesian maximum clade credibility phylogeny from the MrBayes analysis. Node 

support is indicated as posterior support. Time-tree using the 40 MA calibration set, with 

numbers A to Q as in Suppl. Table S2.  

Figure S3: Overlay of different calibrations schemes for the A) MrBayes and B) RAxML 

phylogenies. The 40 MA calibrations are in red, the 20 MA calibrations in blue. The “deep 

node” analysis in black (B only). Overall, the 20 MA calibrations are slightly younger 

throughout the tree. 

Figure S4: BAMM rate through time plots for the diversification analysis, separately coloured 

by family. Shading represents confidence intervals. A. Net diversification rates. B. Speciation 

rates. C. Extinction rates. As described in main text, this analysis reveals the uptick in turn-over 

in Pinaceae around 150 Mya. 

Figure S5: Prior and posterior distributions of the number of shifts in the post-burn-in. A, B: 

RAxML phylogeny with 40 MA calibrations. C, D: RAxML phylogeny with 20 MA 

calibrations. E, F: MrBayes phylogeny with 40 MA calibrations. Left column: Diversification 

analyses; right: Trait evolution analyses.  

Figure S6: Credible shift sets from the BAMM diversification analyses (top four 

configurations). From top to bottom, for the RAxML phylogeny (40 and 20 MA calibrations) 

and the MrBayes phylogeny (40 MA calibrations).  

Figure S7: Credible shift sets from the BAMM trait evolution analyses (top four 

configurations). From top to bottom, for the RAxML phylogeny (40 and 20 MA calibrations) 

and the MrBayes phylogeny (40 MA calibrations).  

Figure S8: Boxplots of QUASSE analysis for 100 simulated “neutral” traits. A. Chi-square 

statistic of the likelihood ratio tests. Red line indicates significance at α=5% (i.e. Χ² > 3.841). 

Red dotted line shows statistic for the analysis with the P50 dataset. B. Difference in AIC 

scores between linear trait-dependent speciation models and neutral models. Red dotted line 

shows difference in AIC scores for the analysis with the P50 dataset (12.4). 
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Figure S1: Maximum likelihood phylogeny from the RAxML analysis. Node support is frequency of bi-partitions over 

1000 bootstrap replicate searches. Time-tree using the 40 MA calibration set, with numbers A to Q as in Suppl. Table 

S2. 
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Figure S2: Bayesian maximum clade credibility phylogeny from the MrBayes analysis. Node support is indicated as 

posterior support. Time-tree using the 40 MA calibration set, with numbers A to Q as in Suppl. Table S2. 
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  Figure S3. Overlay of different 

calibrations schemes for the A) 

MrBayes and B) RAxML 

phylogenies. The 40 MA 

calibrations are in red, the 20 

MA calibrations in blue. The 

“deep node” analysis in black (B 

only). Overall, the 20 MA 

calibrations are slightly younger 

throughout the tree. 
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Figure S4: BAMM rate through time 

plots for the diversification analysis, 

separately coloured by family. Shading 

represents confidence intervals. A. Net 

diversification rates. B. Speciation rates. 

C. Extinction rates. As described in main 

text, this analysis reveals the uptick in 

turn-over in Pinaceae around 150 Mya.  
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Figure S5: Prior and 

posterior distributions of the 

number of shifts in the post-

burn-in. A, B: RAxML 

phylogeny with 40 MA 

calibrations. C, D: RAxML 

phylogeny with 20 MA 

calibrations. E, F: MrBayes 

phylogeny with 40 MA 

calibrations. Left column: 

Diversification analyses; 

right: Trait evolution 

analyses.  
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Figure S6: Credible shift sets from the BAMM diversification analyses (top four configurations). From top to bottom, 

for the RAxML phylogeny (40 and 20 MA calibrations) and the MrBayes phylogeny (40 MA calibrations).  
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Figure S7: Credible shift sets from the BAMM trait evolution analyses (top four configurations). From top to bottom, 

for the RAxML phylogeny (40 and 20 MA calibrations) and the MrBayes phylogeny (40 MA calibrations).  

 

 

 

 

 

 

 

 

 

  



 Part II – Chapter 4 

 

137 
 

 

 

Figure S8: Boxplots of the QUASSE analysis for 100 simulated “neutral” traits. A. Chi-square 

statistic of the likelihood ratio tests. Red line indicates significance at α=5% (i.e. Χ² > 3.841). 

Red dotted line shows statistic for the analysis with the P50 dataset. B. Difference in AIC scores 

between linear trait-dependent speciation models and neutral models. Red dotted line shows 

difference in AIC scores for the analysis with the P50 dataset (12.4) 
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Evolutionary ecophysiology of the adaptive radiation of Callitris, the 

most drought tolerant genus of trees 

Maximilian Larter1, Sylvain Delzon1 et al. (In preparation) 

1BIOGECO, INRA, Univ. Bordeaux, 33610 Pessac, France 

Abstract 

Understanding how plants adapt and evolve when faced with prolonged drought is becoming 

urgent with the threat of climate change. The vulnerability of xylem to embolism is emerging 

as a major factor in drought-related mortality events in forests across the globe. Callitris is a 

group of around 20 conifer species distributed from wet tropical forests in New Caledonia to 

the edge of Australia’s dry deserts with records of xylem embolism resistance.  By combining 

phylogenetics with ecophysiology, we use the adaptive radiation of this group to investigate the 

evolution of xylem traits with increasing aridity. Firstly, we provide a new insight into the 

phylogeny of this group, confirming the close relationships between Callitris, Necallitropsis 

and Actinostrobus and that Callitris s.s. is paraphyletic. Our results support the hypothesis that 

the diversification of the Callitris clade is concomitant with the onset of aridity on the 

Australian continent over two successive periods around 30 Million years ago (Mya) and from 

18 Mya to the present. Accordingly, embolism resistance (P50) varies widely across the Callitris 

clade and is strongly related to water-scarcity. Conductive elements (tracheids) become wider 

with increasing rainfall, but surprisingly neither xylem specific hydraulic conductance (ks) nor 

wood density (WD) vary with climate. Although resistant species tend to have many, smaller 

tracheids, we found no evidence for a safety-efficiency trade-off which is consistent with the 

general trend in conifers. While studying this group greatly improves our knowledge of how 

plants evolve to cope with drought, some mystery remains over how some species of Callitris 

manage to maintain high flow through their tracheids while i) reducing tracheid size and ii) 

increasing resistance to embolism. Further work at the inter-tracheid pit level is needed to 

clarify these questions. 

Introduction 

For vascular plants, and trees in particular, providing a continuous stream of water to their 

photosynthetic aerial shoots is one of their most vital needs and greatest challenges. Water-

transport in plants is driven by the passive process of evaporation at the leaf-atmosphere 

interface that generates a water-potential gradient throughout the plant. Formalized by the 
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Cohesion-Tension theory, this is possible thanks to the strong bonds between water-molecules 

(cohesion) that allow liquid water to remain in a meta-stable state, i.e. under negative pressure 

(tension). The main drawback of this remarkable function is the risk of breakage of the water-

column because of cavitation (the formation of air-bubbles), which becomes ever more likely 

as evaporative demand increases (“dryness” of the air), and as soil water-potential drops during 

drought (“dryness” of the soil). Resulting emboli restrict water-transport, and high levels of 

embolism can lead to plant-death (Brodribb and Cochard, 2009; Urli et al., 2013). Various 

adaptations protect plants from these potentially catastrophic events, such as limiting water-

loss by closing stomata, or vascular tissue (xylem) that limits the formation of air-bubbles. 

Nevertheless, the breakdown of the water-transport system through embolism is thought to be 

involved in multiple mass mortality events during and after droughts across the globe in recent 

decades (Anderegg et al., 2012; Anderegg et al., 2016). This trend is worrying given that climate 

change will increase frequency and severity of droughts and heatwaves (Stocker et al., 2013), 

prompting much research in this area over the last decades. 

Recent advances have highlighted the location of cavitation events that occur at air-sap 

interfaces in pores (pits) between functional (water-filled) and embolized (air-filled) conduits. 

In gymnosperms, these structures contain a valve like structure called the torus that is deflected 

to block the pit aperture, protecting functional cells from air-leakage (Bailey, 1916). While this 

structure provides conifers with increased protection from embolism compared to Angiosperms 

(Maherali et al., 2004; Pittermann et al., 2005; Choat et al., 2012), air-leakage still occurs due 

to imperfect sealing of the pit aperture by the torus (Bouche et al., 2014).  

Plants need to balance embolism resistance (xylem safety) with optimizing rates of water 

transport (xylem efficiency) to their photosynthetic organs (Tyree and Zimmermann, 2002; 

Hacke et al., 2006). The advantages of xylem safety are evident (i.e. increased survival during 

drought), and xylem efficiency allows increased carbon allocation to growth relative to 

sapwood area, for example allowing rapid growth and optimizing photosynthesis in competitive 

settings (Santiago et al., 2004; Poorter et al., 2010). For example wide conductive elements 

(with larger lumen) are efficient for water-transport but generally more vulnerable to embolism 

(i.e. due to drought or frost) and are weak under mechanical stress (i.e. due to drought-induced 

xylem tension and the effect of gravity or wind) (Sperry et al., 2008). In conifers, higher 

embolism resistance is associated with increased mechanical strength, as measured by the 

thickness of xylem cell walls relative to lumen diameter, but is not related to lumen diameter, 

therefore having only a minor effect on xylem efficiency (Bouche et al., 2014). However, 
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embolism resistance is mostly linked to pit traits such as torus-aperture overlap in conifers 

(Bouche et al., 2014), hinting at a potential trade-off with overall tracheid conductance (Domec 

et al., 2008). Species ecology and phylogeny are major factors in determining these trade-offs 

and the final compromise reached between safety and efficiency, for example species growing 

in competitive wet environments are more likely to maximize efficiency over safety (Sperry et 

al., 2006; Choat et al., 2012). On the other hand, species with drought-adapted ancestors could 

inherit constraints on the evolution of their xylem, limiting their capacity to compete under 

higher water availability by adjusting efficiency at the expense of increased safety (Maherali et 

al., 2004). In any case, there is little evidence of a simple relationship between safety and 

efficiency at a large ecological and taxonomic scale, the trade-off only suggested by the absence 

of any resistant and efficient species (Gleason et al., 2015); there are however many 

“incompetent” species, both vulnerable to embolism and inefficient for water transport. At a 

more restricted evolutionary scale, xeric Eucalyptus species evolved many narrow vessels and 

denser wood, contrasting with fewer wide vessels and lighter wood in more mesic 

environments, reflecting this trade-off of hydraulic traits in response to climate across Australia 

(Pfautsch et al., 2015). 

While at broad evolutionary scales there is substantial variation for P50 (Maherali et al., 2004; 

Pittermann et al., 2012; Bouche et al., 2014), at finer infra-generic and intra-specific scales  

there is generally low variability (Delzon et al., 2010) and little genetic differentiation for 

embolism resistance (Lamy et al., 2011; Sáenz-Romero et al., 2013; David-Schwartz et al., 

2016). However, no studies have examined embolism resistance among closely related species 

over such a wide climatic gradient. 

Callitris is a conifer genus of shrubs and trees that underwent an ecological radiation with 

the emergence of dry environments in Australia over the last 30 Million years (Pittermann et 

al., 2012- Chapter 4 of this thesis) making it the most speciose Cupressaceae genus in the 

Southern Hemisphere (from 15 to 20 species recognized by different authors (Hill and Brodribb, 

1999; Farjon, 2005; Eckenwalder, 2009)). This clade displays a marked xeric affinity, despite 

spanning a huge rainfall gradient across Australia, Tasmania, and New-Caledonia, i.e. from 

around 200 to over 2000 mm per year. With some of the most drought-tolerant species currently 

known (Brodribb et al., 2010; Larter et al., 2015), this clade presents a unique opportunity to 

investigate plant ecophysiology from an evolutionary perspective.  
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Molecular phylogenetic work has established the affinity of Callitris with Actinostrobus 

(three species endemic to Western Australia) and Neocallitropsis (one endemic species, New-

Caledonia) (Leslie et al., 2012; Mao et al., 2012; Yang et al., 2012), even warranting their 

grouping as a single genus (Piggin and Bruhl, 2010). While recent studies have tried to 

disentangle the relationships within this clade (i.e. based on nuclear ITS sequences (Pye et al., 

2003) and a morphological database (Piggin and Bruhl, 2010)), more work is required notably 

including more genetic information (e.g. from other genomic compartments), adding missing 

species and using dating techniques to provide a time-scale for their evolution.  

Our main objective was to investigate the ecophysiological evolution of the most drought-

resistant clade of trees in the world. Firstly, we constructed an extensive physiological dataset 

of embolism resistance, xylem specific hydraulic conductance, and xylem anatomy traits. We 

hypothesized that in contrast to previous work, due to the large aridity gradient in this clade we 

should find wide variation in embolism resistance, which should track species climate. We 

investigated the role of climate in establishing vasculature and in determining any potential 

xylem level trade-offs. To this end, we used observation data to estimate climatic parameters 

of each species’ distribution, and tested the correlation of species climate with embolism 

resistance, water-transport efficiency and vascular traits. Given the reduced phylogenetic scale 

and huge climatic gradient, we expected to establish a trade-off between safety and hydraulic 

efficiency, due to large selective pressures from competition and climatic stress driving 

hydraulic traits. We expected the most xeric species to have a resistant, less efficient xylem 

with many small tracheids, and species from more mesic regions to have wider tracheids 

favoring xylem efficiency but reduced safety. Finally, we included these results in an 

evolutionary framework by constructing a fossil-calibrated phylogeny. We hypothesized 

hydraulic traits in this group evolved rapidly in response to climate, and therefore expected little 

impact of phylogeny in the investigated traits and trade-offs. We also wanted to investigate the 

hypothesis that the Callitris clade underwent an ecological radiation in response to increasing 

aridity in the Australian region since the end of the Eocene. 

 

Methods: 

Phylogenetic reconstruction 

We build on the increased availability of molecular sequences to produce a new perspective 

on the phylogeny of the Callitris (and relatives Neocallitropsis and Actinostrobus. We took a 

broad view of species delimitations, i.e. treating C. columellaris, C. intratropica, and C. 
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glaucophylla separately, as well as C. tuberculata, C. preissii, C. verrucosa and C. gracilis. 

Various treatments of these as sub-species and/or synonyms are available in the literature (Hill, 

1998; Hill and Brodribb, 1999; Farjon, 2005; Eckenwalder, 2009; Farjon, 2010), prompting the 

need for further detailed work, hopefully using wide raging sampling and molecular markers. 

We used the PHLAWD pipeline (Smith et al., 2009) to obtain sequences from Genbank (Benson 

et al., 2011) in the aim of constructing a large multi-locus dataset. We used a range of loci from 

both chloroplastic DNA (rbcL, matK, trnL, psbB, petB) and nuclear DNA (ITS, needly, leafy). 

We didn’t use any mitochondrial data due to lack of available species. Alignements were 

manually trimmed and checked, and we selected the most appropriate DNA substitution models 

using maximum likelihood implemented in MEGA (Tamura et al., 2011) (see Suppl. Table 1 

for details). To check for incongruence between the chloroplastic and nuclear datasets, we first 

analyzed both matrixes separately using maximum likelihood with RAxML and Bayesian 

Inference implemented in BEAST (Drummond and Rambaut, 2007) - see Suppl. Figure S1. 

Finally we combined the data to construct a time-calibrated phylogeny for the sub-family 

Callitroidae (Cupressaceae). We used the recognized basal position of Papuacedrus in this 

group (Leslie et al., 2012; Mao et al., 2012) to root the tree. We set a minimum constraint on 

the age of crown Callitroidae (as in (Leslie et al., 2012; Mao et al., 2012)) by using the 

Patagonian fossil Papuacedrus prechilensis (Wilf et al., 2009), based on an ovulate cone from 

the early to mid-Eocene (51.9 to 47.5 Mya). The maximum age for the appeareance of crown 

Callitroidae was conservatively set by evidence that crown Cupressaceae (i.e. subfamilies 

Callitroidae and Cupressoidae) was present by 99.6 Mya, using the fossil Widdringtonia 

americana from the Cenomanian (Mciver, 2001). We used the earliest evidence of Callitris 

(Paull and Hill, 2010) to constrain the crown of the clade containing all Callitris, 

Neocallitropsis and Actinostrobus species. Since this fossil bears characters of both Callitris 

and Actinostrobus and the phylogenetic relationships between the two genera are still 

ambiguous (Pye et al., 2003; Piggin and Bruhl, 2010). Finally, we used Fitzroya acutifolia 

(Paull and Hill, 2010) to calibrate the split between Fitzroya and Diselma. 

Physiological and anatomical traits  

We combined existing physiological data (Delzon et al. 2016 in prep.) with new 

measurements for several species collected in the wild (i.e. Actinostrobus acuminatus, 

A.arenarius, A. pyramidalis, Callitris canescens, C. drummondii, C. endlicheri, C. 

glaucophylla, C. gracilis, C. muelleri, C. roei, C. tuberculata and C. verrucosa) or in botanical 

gardens (C. baileyi, C endlicheri, C. macleayana, C. monticola - see Suppl. Table S2). All 
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hydraulic measurements were conducted using the standard protocol at the University of 

Bordeaux (for details, see methods section in Delzon et al. 2016 in prep.). Sample resistance to 

embolism was assessed with the “Cavitron” technique (Cochard et al., 2005), which allowed us 

to construct vulnerability curves and simultaneously estimate xylem specific hydraulic 

conductance ks (m
2.MPa-1.s-1). A sigmoid model was fit to each individual vulnerability curve 

(Pammenter and Vander Willigen, 1998), from which we obtained the P50 parameter (MPa), 

the xylem pressure inducing 50% loss of conductance. Values were then averaged across all 

samples for each species.  

Following embolism resistance measurements, small segments of the samples were used to 

conduct xylem anatomy measurements. Several transverse sections per individual were cut 

using a hand sliding microtome, colored using safranine at 1%, and examined using a light 

microscope (DM2500M, Leica Microsystems, Germany). We selected three individuals per 

species and took five digital images per individual, which were then analyzed using ImageJ 

(NIH, Bethesda, MD). Magnification was x400 for all samples except for Neocallitropsis 

pancheri, Callitris sulcata and C. neocaledonica, for which we used x200 magnification to 

increase the total number of tracheids visible on each image. Sample preparation and 

photography was either conducted at the University of Bordeaux or at Western Sydney 

University (Hawkesbury Institute for the Environment), using the same protocol. Images were 

manually edited to remove debris or staining obscuring tracheid lumens, prior to automatic 

image analysis. Tracheids on the edges of images were excluded from the analysis. Overall, 80 

individual samples and a total of 400 images were analyzed resulting in data for 33652 

tracheids. We extracted from each image the area of each tracheid lumen, total image area and 

number of analyzed tracheids, and pooled the data by individual for analysis. From the total 

analyzed area, total tracheid number, and area of each tracheid we derived for each individual 

mean, minimum and maximum tracheid diameter, the average number of tracheid per unit area 

(TF; cm-2), the ratio of tracheid lumen area divided by total image area (void to wood ratio; %). 

In addition, we measured tracheid length (µm) and counted bordered pits (hereafter pitting) for 

50 tracheids in a subset of 14 species.  

According to the Hagen-Poiseuille law, hydraulic conductivity of a conduit varies according 

to the fourth power of its radius, which means that larger tracheids contribute disproportionately 

to the overall hydraulic conductance (Tyree and Zimmermann, 2002). To use a hydraulically 

meaningful measure of tracheid diameter, we calculated the hydraulically weighted hydraulic 

diameter (Dh; Tyree and Zimmermann, 2002), defined as:  
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Dh = [
∑𝐷4

𝑁
]1/4  Equation 1 

where N is the total number of tracheids. Dh is the mean diameter required to achieve the same 

overall conductance with the same number of conductive elements. We then calculated the 

theoretical conductance (Kth; m
3.m-1.MPa-1.s-1) which is the theoretical rate of flow through a 

cylindrical pipe according to the Hagen-Poiseuille law: 

Kth =
𝐷ℎ
4𝜋

128∗𝜂
∗ 𝑇𝐹  Equation 2 

where η is the viscosity of water at 20°C (1.002 x 10-9 MPa.s). For appropriate units, we 

transformed Dh to meters (x 10-6) and TF to m-2 (x 105).  

Xylem water-flow efficiency depends on conductivity of both tracheid lumens (i.e. Kth) and 

bordered-pits (Hacke et al., 2005). We calculated pit conductivity Kpit as follows: 

𝐾𝑝𝑖𝑡 = (
1

𝐾𝑚𝑎𝑥
−

1

𝐾𝑡ℎ
)−1   Equation 3 

Wood density was estimated using x-ray imagery (Polge, 1966) for 3 individuals per species 

on transversal sections of approximately 1 mm thickness. Images were analysed using 

Windendro (Guay et al., 1992) to obtain two radial density profiles per section, from which we 

estimated mean wood density (g.cm3).  

Species climate 

We downloaded species occurrence points from the Global Biodiversity Information Facility 

(GBIF; Booth, 2014). After excluding data with obvious identification or GPS coordinate 

errors, we extracted climate information for each point using climate data from the WorldClim 

database (Hijmans et al., 2005) using QGIS software (Quantum, 2011), and potential 

evapotranspiration (P-ET) and aridity index (AI) from the CGIAR-CSI database (Trabucco and 

Zomer, 2009). We then extracted the mean and median values of the distributions of each 

climatic variable for each species.  

Statistical analyses 

All data manipulation and analysis was conducted in R (R Core Team, 2015) and SAS (SAS 

Institute Inc., Cary, USA). We performed linear regressions on raw data and log-transformed 

data with nearly identical results so we present only untransformed correlations to simplify 

interpretation. Phylogenetic Generalized Least Squares were conducted using caper::pgls 

(Orme, 2013). PGLS accounts for the statistical non-independence in cross-species trait 
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correlations by adjusting the residual error structure using a variance/covariance matrix derived 

from the phylogeny (Garamszegi, 2014). It explicitly allows for varying amounts of 

phylogenetic signal in the data by using Pagel’s lambda (Pagel, 1999), thus removing the risk 

of over-correcting for phylogeny when shared evolutionary history doesn’t affect trait 

relationships. We mapped the evolution of P50 onto the phylogeny using phytools::contMap 

(Revell, 2013).  

 

Results and discussion 

Phylogeny: 

Our phylogenetic analyses recover the well-recognized relationships within sub-family 

Callitroidae, with successive divergences of the Pilgerodendron-Libocedrus clade and then 

Diselma-Fitzroya clade, together with their sister lineage Widdringtonia (Figure 1). Within the 

crown Callitris clade, early divergences that are dated to between 25 and 30 Mya are not well 

resolved (Figure 1). This issue is consistent across maximum likelihood and Bayesian methods 

used, and is also present when we partition the molecular dataset into nuclear and chloroplastic 

regions.  We found five separate sub-clades formed from these early divergences (see letters in 

Figure 1): a Western Australian clade composed of Callitris drummondii (A) and the 

Actinostrobus genus (B), a tropical North Eastern clade composed of Callitris macleayana (C) 

and the New-caledonian species (Neocallitropsis pancheri and C. sulcata - B), and a well-

supported core Callitris clade with the remaining species (E). In this last group, C. canescens 

seems to occupy a solitary basal position, with the remainder consistently separated into i) an 

eastern group with C. muelleri, C. oblonga, C. rhomboidea and C. endlicheri and ii) a “preissii-

glaucophylla” clade, that groups together the species (or sub-species) C. gracilis, C. preissii, 

C. verrucosa, C. tuberculata, C. intratropica and C. columellaris. While some divergences in 

this last clade are not very well supported, it’s worth noting that our analyses recover C. preissii 

in the most basal position. Although C. columellaris and C. intratropica are always grouped 

together, their supposedly closely allied species C. glaucophylla is always closer to C. gracilis, 

C. verrucosa and C. tuberculata.  
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Figure 1: Time-tree of Callitroidae and the evolution of P50 in the Callitris clade. Branches of the 

phylogeny are coloured according to reconstructed P50 (scale bottom-right). Blue bars at node on the 

tree represent 95% HPD from the BEAST analysis, number represent posterior Bayesian support values 

(not shown if <0.9). Stars mark fossil-calibrated nodes. Letters A to E indicate the 5 sub-clades within 

crown Callitris. Red line shows the lineage-through-time plot (scale on left-hand side), with periods of 

diversification indicated by red bars next to time-axis. Bottom insert shows variation of sea-temperature 

based on oxygen isotopic composition (Zachos et al., 2001) and periods of glaciation at the poles, 

modified from (Fujioka and Chappell, 2010). 
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Our topology largely agrees with previous work (Pye et al., 2003; Piggin and Bruhl, 2010). 

Although our work is lacking some species, we believe that adding them would not change the 

results greatly. Given the close relationships between i) C. roei and C. drummondii, ii) C. 

neocaledonica and C. sulcata and iii) C. monticola and C. muelleri, the topology would likely 

remain the same, maybe even providing extra support to some nodes. However, the position of 

C. baileyi in the clade is more uncertain, probably occupying a basal position (Piggin and Bruhl, 

2010), its inclusion could be informative for the unresolved “deep” divergences in our analyses. 

The dating analysis shows a burst of speciation around 30 Mya (Figure 1; LTT plot), which 

corresponds to the first major shift away from the year-round wet climate of the end of the 

Eocene to a more seasonal-monsoonal climate, with the emergence of open woodland 

suggesting dry seasons (Martin, 2006; Fujioka and Chappell, 2010). This could have led some 

lineages to remain in the year-round wet tropical forests along Eastern Australia to the North, 

while others adapted to the appearance of more temperate and seasonal climates in South-

Eastern and Western Australia (Byrne et al., 2008). The second acceleration in rates of 

diversification corresponds to the early divergences in the core Callitris clade, from around 18 

Mya. This is synchronous with the onset of more severe aridity in mainland Australia by the 

mid-Miocene (Martin, 2006; Fujioka and Chappell, 2010). The extreme aridity over much of 

central Australia today is relatively young (c. 1-4 Mya), with formation of temporarily dry lakes 

(“playas”) and stony or sand-dune deserts, oscillating between very arid and more mesic periods 

during the glaciations of the Pleistocene (Byrne et al., 2008). This probably drove the extreme 

xylem adaptation visible in extant species such as Callitris tuberculata, C. columellaris, C. 

canescens, and Actinostrobus arenarius with P50 values more negative than -15 MPa.  

Physiology and climate 

Embolism resistance in the Callitris clade varies widely from -3.8 MPa in Callitris 

neocaledonica to -18.8 MPa in C. tuberculata (Figure 1; Suppl. Table S2). This variation is 

remarkable as it is comparable to the variation across all conifers (Delzon et al 2016 in prep), 

and it dwarfs previous estimates of intra-generic variation (e.g. in pines (Delzon et al., 2010). 

Recent work has brought to light a deep divergence in conifer water-management strategy, with 

some species using high levels of ABA to close stomata tightly shut. Other species, mostly from 

the Cupressaceae family use leaf desiccation to close their stomata, allowing them to recover 

faster at re-watering (Brodribb and McAdam, 2013; Brodribb et al., 2014). However stomata 

in these species continue to leak water long after full stomatal closure, exposing their xylem to 

more negative water potential after stomatal closure during prolonged drought - hence the need 
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for more negative P50. (Delzon et al. 2016 in prep), and therefore likely follow this strategy. 

Xylem specific hydraulic conductance was similar to that of other conifers, and varied 

approximately six-fold from 1.88 x 10-5 m².MPA-1.s-1 in C. oblonga to 1.25 x 10-4 m².MPA-1.s-

1 in C. intratropica.  

Our analysis of xylem anatomical traits uncovered huge variation across Callitris species. 

Some species had many small tracheids (e.g. C. tuberculata: mean diameter = 9.04 µm, tracheid 

frequency = 324952 cm-2) and or fewer wide tracheids (e.g. C. sulcata: 14.14 µm and 160662 

cm-2). Accordingly, theoretical hydraulic conductance also displayed a wide range of values, 

with C. sulcata’s xylem theoretically ten times more efficient than C. gracilis’s (0.0132 and 

0.00115 m3.m-1.MPa-1.s-1 respectively). Wood density was high in all species, with the lowest 

density measured in C. oblonga (0.57 g.cm3), already above the average for conifers (i.e. 0.54 

g.cm3; Delzon et al. 2016), and the maximum reaching 0.74 g.cm3 in N. pancheri. 

Across the geographical range of the Callitris clade, annual rainfall varies from around 300 

mm.y-1 for C. tuberculata in Western Australia to over 2100 mm.y-1 for N. pancheri in New 

Caledonia (median values of the species distribution range). Similar variation was found for the 

aridity index (from 0.21 to 1.78). Driest quarter precipitations vary from 7 mm for the tropical 

monsoonal C. intratropica to 315 mm for N. pancheri. 

We tested the role of water-availability in determining species’ resistance to embolism, 

xylem conductivity, tracheid dimensions and wood density. Increasingly xeric environments 

were associated with more negative P50 values (Figure 2 – a, b and c), a trend confirmed using 

PGLS, proving the adaptive role of embolism resistance in Callitris. In contrast, we found no 

evidence for a role of aridity in determining maximum xylem conductivity (Figure 1, d, e and 

f), which goes against the expectation of reduced xylem conductivity in the face of drought 

under the safety-efficiency trade-off hypothesis. However, tracheid diameter increased with 

diminishing aridity (Figure 1, g, h and i). All these relationships (or lack thereof) remained 

unchanged when using log-transformed data and when taking phylogeny into account using 

PGLS, indicating a strong influence of climate on embolism resistance and tracheid dimensions, 

but no effect on overall xylem conductivity or wood density (Suppl. Table 3).  
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Figure 2: Relationships between xylem hydraulic traits and climate in Callitris. Embolism resistance (first 

row), xylem specific hydraulic conductance (second row), hydraulically weighted tracheid diameter (third row) 

and wood density (bottom row) in relation to water availability, as measured by annual rainfall (left), driest 

quarter precipitations (center) and the aridity index (right). Linear regression lines are shown, with the adjusted 

R². “***” indicates p-values < 0.001, and “ns” indicates non-significance at α=0.05. Labels: C= Callitris, 

A=Actinostrobus, N=Neocallitropsis, followed by first two letters of species name. Error bars represent standard 

error. 
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Because increased embolism 

resistance allows for more negative 

xylem pressure under drought conditions, 

an evolutionary corollary should be 

increased mechanical strength, for 

example with thicker tracheid walls in 

proportion to tracheid lumen diameter. In 

turn, this increased proportion of wood 

should lead to reduced xylem 

conductance because of a reduction in 

total conductive area. In our dataset, we 

found a strong correlation between P50 

and tracheid diameter, and tracheid 

frequency, with resistant species having 

many more, smaller tracheids than 

vulnerable species (Figure 3, a and b). 

However, void-to-wood ratio and wood 

density were not related to P50 (Figure 3, 

c and d). In turn, ks seems disconnected to 

some extent from tracheid and wood level 

traits, with the only significant 

relationship with tracheid frequency: 

having fewer conducting elements is 

linked to a more efficient xylem (Figure 

1, f). It’s worth noting here the 

Figure 4 : Xylem safety vs. efficiency 

relationship in Callitris. Embolism 

resistance in relation to xylem specific 

hydraulic conductance (ks; a), theoretical 

conductance (Kth; b), and the derived total pit 

conductivity (Kpit; c). Linear regressions 

were conducted, with R² and significance 

reported in each panel. Note that P50 is 

positive in this figure, with higher values 

representing increased embolism resistance. 
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remarkable conductance measured for C. intratropica, which is surprisingly combined with 

relatively small tracheid diameter but not a large frequency of tracheids, high void-to-wood 

ratio or low wood density. Overall, safety and efficiency are not tightly linked to wood traits, 

yet resistant species develop smaller, more densely packed tracheids. These results confirm 

previous studies involving multiple conifer species (Pittermann et al., 2006b). Conversely, 

conducting efficiency seems to be linked to a reduction in tracheid frequency, but not lower 

wood density, which goes against the trend evidenced for all conifer taxa (Delzon et al. 2016, 

in prep.). We hypothesize that this could be a by-product of increased growth rates in species 

from higher rainfall areas. Developmental constraints restrict evolution of tracheid wall 

thickness (the main driver of resistance to implosion) while climatic conditions allow for more 

rapid growth, leading to an increase in tracheid lumen diameter (Vaganov et al., 2006). We also 

measured tracheid length and average pitting (number of pits per tracheid) on a subset of 

species.  

By increasing transport area and offering more possible locations for air-seeding, longer 

tracheids and more numerous pits should reduce overall end-wall resistance to water-flow and 

increase vulnerability to embolism (Sperry et al., 2006). Both parameters were weakly 

correlated to embolism resistance, i.e. more resistant species had shorter tracheids with fewer 

pits, however higher pitting was not associated with an increase in overall conductance (Suppl. 

Figure S2).  

Finally, we investigated the safety-efficiency trade-off hypothesis, but we found no 

significant relationship between P50 and ks (Figure 4). The theoretical maximum hydraulic 

conductance Kth is negatively correlated to embolism resistance: resistant species have a 

theoretically less efficient xylem when only considering tracheid lumen conductivity (Fig. 4; 

b), which is consistent with the trend for smaller tracheids with increasing resistance. In 

contrast, bordered-pit conductivity was unrelated to P50 (Fig. 4; c). The overall pit-resistance to 

water-flow is mainly linked to the size and distribution of pores in the pit-membrane (margo) 

and the depth/width of the pit aperture tunnel (Hacke et al., 2004; Bouche et al. in prep.). 

Embolism resistance is linked to the sealing of the pit aperture by the torus (torus-overlap) in 

conifers (Bouche et al., 2014). Increasing torus size relative to pit-aperture (i.e. increasing torus-

overlap) has been shown to be related to more negative P50, but does not reduce overall pit 

conductivity, which is mostly related to the size of pores in the margo and the pit aperture 

dimensions (Hacke et al., 2004; Pittermann et al., 2010; Bouche et al. in prep). Our results 

demonstrate that in the Callitris clade, water-flow through vascular tissue is mostly limited by 
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pit resistivity (Kpit << Kth), which is consistent with previous work (Pittermann et al., 2006a). 

Additionally, bordered-pits can be both efficient for water-transport (i.e. high values of Kpit) 

and limit air-seeding under high xylem tension (low P50) (Pittermann, 2005). A prime example 

is C. intratropica, with average tracheid diameters but by far the highest xylem conductivity in 

Callitris (ks), coupled with resistant xylem (P50 = -12.8 MPa).  

These results bring to light a path for further investigations into the evolution of drought 

tolerance in this group, by examining pit structures such as torus/pit aperture overlap and margo 

pore size. Other ongoing investigations concern the ornamentations on the inside of tracheids 

that are prominent in the Callitris clade, namely i) reinforcements surrounding the pit called 

“callitroid thickenings” (Heady and Evans, 2000) and ii) warts that cover the entire inner 

surface of tracheids (Heady et al., 1994). These structures are thought to be related to ecology 

and physiology by limiting the risk of tracheid implosion under large xylem pressures, and 

increasing the wettability of the tracheid walls somehow limiting inception of cavitation during 

drought.  

Conclusion: 

We provide new insights into the phylogeny and diversification of the Callitris clade, 

although more work is needed to untangle early divergences. Our results confirm the 

evolutionary lability of xylem resistance to embolism, with a transition towards extreme 

resistance of several species within the Callitris clade. Combined with the onset of severe 

aridity in Australia, our results detail the remarkable adaptive radiation of this group. Despite 

overwhelming evidence for the role of decreasing water-availability in shaping some xylem 

traits, we found no evidence of its effect on xylem water-transport efficiency and wood density. 

Species from more xeric areas develop smaller tracheids, but both wood traits and embolism 

resistance are totally disconnected from overall xylem conductivity, suggesting a lack of trade-

offs between construction costs and safety on the one hand and efficiency on the other. We also 

highlight a likely evolutionary role of pit-level traits in this clade, regarding safety and 

efficiency. One area of interest for future research is the coordination of this remarkable 

evolutionary of the xylem with the evolution of structures and functions at the leaf-level. 

Finally, it would be intriguing to test how much of this evolutionary lability is transferred to the 

species level, especially given the widespread ranges of some Callitris species.  
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Supplementary information 
 

Supplementary tables: 

Table S1: GenBank accessions for the sequences used in this study, and model parameters 

specified for the BEAST analysis. 

Table S2: Trait data for the 23 species studied in this paper. Abbreviations as follows: N = 

number of individuals measured for hydraulic traits; P50 = xylem pressure inducing 50% loss 

of hydraulic conductance; slope = slope of the vulnerability curve; Kmax = xylem specific 

hydraulic conductance; WD = wood density; MeanD, MinD, MaxD = mean, minimum and 

maximum tracheid diameters respectively; Ds = hydraulically weighted tracheid diameter 

calculated as D5/D4; Dh = hydraulically weighted diameter as (Tyree and Zimmermann, 2002): 

Dh = [
∑𝐷4

𝑁
]1/4; Vwr = void to wood ratio (%); TF = tracheid frequency (cm-2); Kth = theoretical 

hydraulic conductance (calculated using  the Hagen-Poiseuille law; N_tracheids = total number 

of tracheids measured for each species. PCT = frequency of callitroid thickening; CTT = 

callitroid thickening type; WT = wart type; WD = wart density; WN = wart nodularity (these 

parameters derived from Heady et al. (1994) and Heady & Evans (2000), taken from Piggin & 

Bruhl (2010); Median values over each species distribution for AI = Aridity index, Med_bio12 

= annual precipitations and Med_bio17 = driest quarter rainfall. Variables starting with SE or 

ending with e are standard error. 

Table S3. Correlation between climate variables and P50, tracheid diameter, and wood density. 

We tested means and medians of species climates, and log transformed data (on the medians), 

and correcting for phylogenetic relatedness using PGLS.  
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Table S1

Species RBCL MATK TRNL ITS1 PSBB PETB NEEDLY LEAFY 

Actinostrobus acuminatus  AF152175.1  AY178417.1     

Actinostrobus arenarius JF725937.1 JF725837.1 JF725897.1  JF725977.1 JF725790.1   

Actinostrobus pyramidalis JF725931.1 JF725831.1 JF725891.1 AY178415.1 JF725970.1 JF725783.1 HQ245712.1 HQ245806.1 

Callitris canescens JF725945.1 JF725845.1 JF725905.1 AY178411.1 JF725985.1 JF725798.1   

Callitris columellaris   AB723688.1 AY178404.1   HQ245715.1 HQ245809.1 

Callitris drummondii JF725939.1 JF725839.1 JF725899.1 AY178423.1 JF725979.1 JF725792.1   

Callitris endlicheri JF725932.1 JF725832.1 AY988417.1 AY178425.1 JF725971.1 JF725784.1   

Callitris glaucophylla KM895763.1  AB723697.1       

Callitris gracilis   AB723693.1       

Callitris intratropica   AB723690.1 AY178400.1     

Callitris macleayana JF725933.1 JF725833.1 JF725893.1 AY178421.1 JF725972.1 JF725785.1 HQ245716.1 HQ245810.1 

Callitris muelleri JF725924.1 JF725824.1 JF725884.1 AY178412.1 JF725963.1 JF725776.1   

Callitris oblonga     AY178429.1     

Callitris preissii JF725940.1 JF725840.1 JF725900.1  JF725980.1 JF725793.1   

Callitris rhomboidea JF725925.1 JF725825.1 JF725885.1 AY178406.1 JF725964.1 JF725777.1 HQ245717.1 HQ245811.1 

Callitris sulcata JF725941.1 JF725841.1 JF725901.1 AY178422.1 JF725981.1 JF725794.1   

Callitris tuberculata    AY178426.1     

Callitris verrucosa JF725942.1 JF725842.1 AB723695.1 HM116955.1 JF725982.1 JF725795.1   

Diselma archeri JF725926.1 JF725826.1 JF725886.1  JF725965.1 JF725778.1 HQ245730.1 HQ245823.1 

Fitzroya cupressoides JF725916.1 JF725816.1 JF725876.1  JF725955.1 JF725768.1 HQ245732.1 HQ245825.1 

Libocedrus bidwillii JF725927.1 JF725827.1 JF725887.1  JF725966.1 JF725779.1 HQ245746.1 HQ245838.1 

Libocedrus yateensis  HQ245902.1     HQ245748.1 HQ245840.1 

Neocallitropsis pancheri JF725934.1 JF725834.1 JF725894.1 AY178420.1 JF725974.1 JF725787.1 HQ245751.1 HQ245843.1 

Papuacedrus papuana JF725935.1 JF725835.1 JF725895.1  JF725975.1 JF725788.1 HQ245752.1 HQ245844.1 

Pilgerodendron uviferum JF725929.1 HQ245907.1 JF725889.1  JF725968.1 JF725781.1 HQ245753.1 HQ245845.1 
Widdringtonia nodiflora JF725930.1 JF725830.1 AY988418.1  JF725969.1 JF725782.1 HQ245766.1 HQ245856.1 

Alignment length (nucleotides) 1278 1551 395 1051 1344 1289 3705 2942 

Substitution model (BEAST) HKY+G HKY+G HKY HKY+G HKY+G HKY+G HKY+I TN93+G 
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Table S2 

 

Species N P50 slope Kmax WD WDe P50e slopee Kmaxe MeanD Ds MinD Max_D Dh 

Actinostrobus_acuminatus 10 -11.52 15.11 0.00044 0.68 0.012 0.75 0.66 0.000063 10.86 14.30 3.41 20.78 18.27 

Actinostrobus_arenarius 11 -15.16 11.13 0.00061 0.69 0.025 0.52 0.87 0.000030 10.26 13.37 3.09 18.86 15.17 

Actinostrobus_pyramidalis 12 -11.78 17.83 0.00051 0.58 0.021 0.36 1.29 0.000045 9.26 12.30 2.85 17.19 15.74 

Callitris_baileyi 3 -11.37 20.35 0.00062 0.56 0.004 0.44 0.58 0.000023 11.31 13.99 3.56 19.92 12.40 

Callitris_canescens 21 -16.90 9.87 0.00029 0.70 0.017 0.40 0.62 0.000024 9.08 11.39 2.93 15.89 13.68 

Callitris_columellaris 3 -15.80 15.23 0.00029 0.66 0.033 0.18 2.62 0.000099 11.27 13.16 4.46 18.34 12.03 

Callitris_drummondii 13 -13.11 18.16 0.00048 0.62 0.031 0.28 0.99 0.000033 10.15 12.30 3.24 17.17 16.47 

Callitris_endlicheri 9 -12.28 17.58 0.00076 0.66 0.008 0.63 2.01 0.000057 13.18 16.37 4.43 23.21 14.51 

Callitris_glaucophylla 13 -14.37 19.81 0.00065 0.74 0.029 0.33 1.30 0.000071 11.02 13.37 3.93 18.99 15.16 

Callitris_gracilis 8 -12.49 19.54 0.00036 0.61 0.010 0.28 1.27 0.000083 10.37 12.68 3.93 18.07 11.29 

Callitris_intratropica 5 -12.81 14.24 0.00125 0.62 0.011 0.73 1.75 0.000050 13.22 15.60 4.87 21.86 14.20 

Callitris_macleayana 3 -8.07 27.22 0.00087 0.60 0.025 0.33 3.58 0.000277 15.91 20.31 5.01 28.54 17.72 

Callitris_monticola 7 -8.84 18.52 0.00076 0.50 0.018 0.34 1.62 0.000098 13.96 16.03 6.38 22.11 14.78 

Callitris_muelleri 8 10.10 20.46 0.00057 0.47 0.001 0.49 1.45 0.000075 10.22 12.54 3.00 18.67 16.69 

Callitris_neocaledonica 11 -3.83 50.67 0.00055 0.69 0.035 0.12 7.80 0.000046 13.57 17.31 2.97 26.03 22.50 

Callitris_oblonga 4 10.88 17.09 0.00019 0.57 0.020 0.85 2.13 0.000014 12.71 14.58 5.08 19.83 13.47 

Callitris_preissii 3 14.97 15.56 0.00031 0.65 0.013 0.50 2.02 0.000062 12.56 14.78 4.65 20.44 13.48 

Callitris_rhomboidea 8 -10.32 27.46 0.00026 0.61 0.040 0.53 5.64 0.000060 13.66 15.57 5.57 21.50 14.44 

Callitris_roei 9 -12.21 12.37 0.00034 0.67 0.017 0.34 0.90 0.000020 9.73 12.90 3.39 19.96 16.35 

Callitris_sulcata 9 -8.24 17.91 0.00056 0.68 0.018 0.45 1.75 0.000043 14.14 18.82 3.82 26.61 24.12 

Callitris_tuberculata 11 -18.82 13.99 0.00039 0.72 0.021 0.56 1.16 0.000035 9.04 11.27 3.28 15.42 12.85 

Callitris_verrucosa 9 -11.92 18.30 0.00052 0.62 0.019 0.17 2.22 0.000082 9.87 12.45 3.32 17.60 16.30 

Neocallitropsis_pancheri 18 -4.14 46.58 0.00047 0.74 0.037 0.10 4.84 0.000036 13.16 18.92 3.47 26.23 23.30 
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Table S2 (continued) 

 

 

Species Vwr TF Kth meanD_SE Ds_SE MinD_SE Max_D_SE Dh_SE Vwr_SE TF_SE Kth_SE N_tracheids 

Actinostrobus_acuminatus 27.12 268577.40 0.0073 0.17 0.78 0.57 2.59 0.52 0.20 10605.75 0.0005 798.00 

Actinostrobus_arenarius 24.48 273552.97 0.0046 0.52 0.61 0.21 0.67 1.99 1.31 14040.35 0.0016 1782.00 

Actinostrobus_pyramidalis 23.00 309638.11 0.0047 0.26 0.54 0.41 0.87 0.51 0.87 13700.23 0.0005 920.00 

Callitris_baileyi 29.78 281954.98 0.0017 1.13 0.94 0.15 1.09 1.06 2.88 28767.34 0.0004 1447.00 

Callitris_canescens 23.33 345407.86 0.0032 0.53 0.54 0.28 0.57 0.98 1.14 26381.42 0.0007 3210.00 

Callitris_columellaris 25.14 240256.04 0.0012 0.20 0.11 0.42 0.92 0.11 0.96 1753.69 0.0001 822.00 

Callitris_drummondii 28.82 335216.91 0.0061 0.35 0.22 0.40 0.36 0.42 1.60 13745.63 0.0006 996.00 

Callitris_endlicheri 35.49 241814.88 0.0027 0.35 0.73 0.38 1.62 0.50 1.64 3447.33 0.0003 1241.00 

Callitris_glaucophylla 27.00 268331.28 0.0047 0.44 0.53 0.14 0.57 1.86 1.34 12087.07 0.0016 2224.00 

Callitris_gracilis 25.92 287995.48 0.0012 0.26 0.38 0.04 0.83 0.29 2.10 18056.43 0.0001 1478.00 

Callitris_intratropica 25.96 180240.74 0.0018 0.50 0.67 0.07 1.93 0.57 1.42 14051.18 0.0002 925.00 

Callitris_macleayana 29.39 137762.38 0.0034 1.16 0.95 0.64 0.58 1.13 1.88 10464.27 0.0006 707.00 

Callitris_monticola 34.11 215119.76 0.0025 0.62 0.71 0.43 1.29 0.67 1.37 12041.65 0.0003 1104.00 

Callitris_muelleri 27.72 319561.97 0.0061 0.62 0.42 0.45 0.62 0.80 1.60 28719.78 0.0008 1640.00 

Callitris_neocaledonica 25.77 165387.38 0.0106 0.87 0.99 1.26 1.76 1.38 2.57 10357.61 0.0021 1960.00 

Callitris_oblonga 38.79 293451.41 0.0024 0.22 0.37 0.18 0.64 0.27 0.36 11812.45 0.0001 1506.00 

Callitris_preissii 31.92 248439.94 0.0020 0.82 1.03 0.70 1.39 0.86 1.51 26790.24 0.0003 1275.00 

Callitris_rhomboidea 38.70 260326.09 0.0028 1.13 1.27 0.55 1.33 1.20 1.59 29906.89 0.0006 1336.00 

Callitris_roei 23.77 293819.64 0.0052 0.23 0.23 0.22 0.88 0.35 0.63 6620.98 0.0003 873.00 

Callitris_sulcata 27.67 160662.03 0.0132 0.77 0.86 0.17 1.14 1.21 1.81 17763.62 0.0017 1904.00 

Callitris_tuberculata 22.41 324951.65 0.0025 0.23 0.38 0.32 0.73 1.11 1.06 12606.13 0.0007 2082.00 

Callitris_verrucosa 24.27 304753.00 0.0052 0.75 0.91 0.91 1.27 1.20 0.98 48740.60 0.0009 1564.00 

Neocallitropsis_pancheri 24.46 156780.49 0.0116 0.70 0.95 0.14 1.65 1.18 2.27 5025.47 0.0022 1858.00 
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Table S2 (continued) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Species PCT CTT WT WD WN Med_AI Med_bio12 Med_bio17 SE_AI SE_bio12 SE_bio17 

Actinostrobus_acuminatus c b b NA NA 0.39 576.00 34.00 0.01 13.42 0.54 

Actinostrobus_arenarius c b b NA NA 0.26 408.50 32.00 0.01 10.65 0.87 

Actinostrobus_pyramidalis c b b NA NA 0.48 698.00 36.00 0.02 22.49 1.47 

Callitris_baileyi b a b b b 0.59 878.00 119.00 0.02 20.95 2.51 

Callitris_canescens c b b b c 0.28 372.00 43.00 0.00 3.87 0.40 

Callitris_columellaris b a b b b 0.22 367.00 42.00 0.02 22.92 3.23 

Callitris_drummondii c b b b b 0.37 495.00 69.00 0.01 8.14 0.71 

Callitris_endlicheri c b b b b 0.49 696.00 134.00 0.00 4.22 0.77 

Callitris_glaucophylla c b b b b 0.32 459.00 95.00 0.00 2.53 0.55 

Callitris_gracilis c b b b b 0.32 421.00 59.00 0.00 3.74 0.43 

Callitris_intratropica b a a a a 0.69 1232.50 7.00 0.00 6.78 0.41 

Callitris_macleayana a a a a a 1.32 1690.00 195.00 0.03 37.04 4.77 

Callitris_monticola b a b c b 0.94 1220.00 166.00 0.02 27.14 1.83 

Callitris_muelleri b a b c b 1.07 1233.00 193.00 0.02 14.70 2.25 

Callitris_neocaledonica a a a a a 2.03 2320.00 353.00 0.04 34.39 6.38 

Callitris_oblonga a a b c c 0.80 918.00 161.00 0.01 18.65 1.87 

Callitris_preissii c b b b b 0.26 363.00 51.00 0.01 9.41 0.80 

Callitris_rhomboidea b a b b c 0.83 924.00 165.00 0.01 15.00 2.24 

Callitris_roei c b b b b 0.29 387.00 58.00 0.00 5.24 0.71 

Callitris_sulcata a a a b a 0.98 1252.00 176.00 0.03 29.23 4.68 

Callitris_tuberculata c b b b b 0.21 304.00 50.00 0.01 6.99 0.75 

Callitris_verrucosa c b b b b 0.25 345.00 57.00 0.00 1.92 0.44 

Neocallitropsis_pancheri NA NA NA NA NA 1.79 2162.00 315.00 0.02 27.00 4.58 
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Table S3. 

  Median Mean Log transformed PGLS 

  R² p sig R² p sig R² p sig lambda R² p sig 

P50 Mean Annual Rainfall 0.7833 0.000 *** 0.761 0.000 *** 0.732 0.000 *** 0.000 0.806 0.001 *** 

  Driest Quarter Rainfall 0.7216 0.000 *** 0.711 0.000 *** 0.462 0.000 *** 0.000 0.790 0.001 *** 

  Aridity Index 0.8055 0.000 *** 0.788 0.000 *** 0.769 0.000 *** 0.000 0.929 0.000 *** 

Kmax Mean Annual Rainfall 0.0863 0.094 ns 0.065 0.127 ns 0.119 0.060 ns 0.000 -0.082 0.551 ns 

  Driest Quarter Rainfall -0.0469 0.906 ns -0.047 0.940 ns -0.037 0.648 ns 0.000 -0.036 0.423 ns 

  Aridity Index 0.0075 0.292 ns -0.009 0.378 ns 0.047 0.163 ns 0.000 -0.142 0.958 ns 

Dh Mean Annual Rainfall 0.4553 0.000 *** 0.429 0.000 *** 0.344 0.002 ** 0.000 0.739 0.002 ** 

  Driest Quarter Rainfall 0.4056 0.001 *** 0.404 0.001 *** 0.180 0.025 * 0.000 0.650 0.005 ** 

  Aridity Index 0.4761 0.000 *** 0.451 0.000 *** 0.360 0.001 ** 0.000 0.766 0.001 ** 

WD Mean Annual Rainfall -0.0418 0.7362 ns -0.0430 0.7637 ns 0.022 0.234 ns 0.000 0.140 0.114 ns 

 Driest Quarter Rainfall -0.0469 0.9081 ns -0.0471 0.9167 ns -0.026 0.516 ns 0.000 0.060 0.211 ns 

 Aridity Index -0.0426 0.7547 ns -0.0428 0.7580 ns 0.032 0.204 ns 0.000 0.197 0.072 ns 
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Supplementary Figures: 

Figure S1: Timetree from the BEAST analysis using (A) only cpDNA and (B) only nuclear 

sequences. 

Figure S2: Tracheid length and number of pits per tracheid against P50 and ks. Partial datasets 

only. Linear models fit through the data are shown. Linear regression lines are shown, with the 

adjusted R². “***” indicates p-values < 0.001, and “ns” indicates non-significance at α=0.05. 
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Figure S1 
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Figure S2. 
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1. Summary of main results: 

The aim of this project was to investigate conifer physiology and ecology from an 

evolutionary point of view.  

In Part I, we presented an unprecedented physiological database, spanning the whole range 

of conifer diversity and ecology. We uncovered huge variation in embolism resistance, 

especially within Cupressaceae, Taxaceae and Podocarpaceae, but generally little variation 

below the genus level (i.e. species from the same genera have similar trait values - but there are 

exceptions, see Part III). We highlight the adaptive nature of embolism resistance, with a 

meaningful link between species climate and P50, except for the Pinaceae family, where there 

is little variation in P50 despite broad climatic species preferences (Chapter 1). By focusing on 

extremely resistant species we have extended the range of known embolism-resistance up to 

the theoretical limit of liquid-water transport. It appears that plants’ xylem has been driven to 

this physical boundary by natural selection in some of the most xeric environments on the planet 

(Chapter 2). Finally, across over a hundred species of conifers, we found an evolutionary 

relationship between air-seeding pressure (P50) and the diameter of the torus relative to the pit 

aperture (Chapter 3). While the air-seeding mechanism leading to embolism was well-

established for angiosperms, i.e. breakage of an air-sap meniscus within the pit-membrane 

(Tyree and Zimmermann, 2002), several possible locations were hypothesized in torus-bearing 

gymnosperms (Delzon et al., 2010; Jansen et al., 2012). 

In Part II, we combined this physiological data with phylogenetics and various evolutionary 

modelling approaches. First, we constructed a time-calibrated phylogeny for over three hundred 

species of conifers, which we combined with the embolism resistance database in an 

evolutionary framework (Chapter 4). We detected multiple evolutionary dynamics, with several 

major upticks in the rate of evolution of P50, together with jumps to higher diversification rates. 

We further found a significant association between higher diversification rates and increased 

embolism resistance, making water-availability a major driver of conifer diversification.  

Finally, in Part III of this thesis, we examined in detail the evolution of the most embolism-

resistant genus, Callitris and its close relatives Actinostrobus and Neocallitropsis (Chapter 5). 

We described the remarkable adaptive radiation into dry environments of this clade, which 

occurred during a trend of increasing aridity across Australia and New Caledonia over the last 

30 million years. Additionally, we show the role of climate in determining traits pertaining to 
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resistance to embolism, but when examining other xylem traits, we found no evidence of trade-

offs between xylem safety and efficiency in this group. 

2. Conifer physiology – global variation 

a. Hydraulic traits and strategies in Conifers 

Embolism resistance is an adaptive trait directly linked to survival, and therefore it is 

somewhat evident that it should vary widely in an ancient and wide-ranging clade such as 

conifers. However, an extensive and systematic approach to sampling and employing the same 

standard procedure across species has allowed us to unearth some surprising patterns, notably 

the remarkable scale and distribution of this variation. Firstly, P50 varies approximately 10-fold 

across all conifers, yet very different patterns are observed at the family level, with very little 

variation in Pinaceae but the whole range of variability in Cupressaceae. For the most part, the 

genus to which a species belongs is a good predictor of embolism resistance, responsible for 

62% of variation of P50, yet some ecologically diverse genera offer a wide range of P50 (e.g. 

Callitris – P50 from -3.8 to -18.8 MPa). Other genera of even wider ecology and diversity have 

not attained this level of variation, e.g. Pinus with P50 varying only from -2.7 to -5 MPa. Some 

clades seem to be restricted to a narrow range of embolism resistance, while others display 

remarkable evolutionary lability. Zooming in even further to the species level, our knowledge 

so far indicates low levels of variation for this trait. For example, a comparison of populations 

spanning the broad range of Pinus pinaster planted in a common garden showed they are more 

similar for embolism resistance than expected under genetic drift (Lamy et al., 2012). This is 

interpreted as a sign of uniform selection (Lamy et al., 2011), with all populations selected 

towards an optimum value, which is not therefore climate-dependent. Similar results were 

found in common garden experiments for other pine species, i.e. Pinus hartwegii (Sáenz-

Romero et al., 2013), Pinus halepensis (David-Schwartz et al., 2016, N. Martin-StPaul, pers. 

comm.), and in beech (Fagus sylvatica; Wortemann et al., 2011; Hajek et al., 2016). We have 

also investigated intra-species variation in several Mexican conifers (Saenz-Romero et al., 

accepted; see Annex 1). We show that there are no significant differences in P50 between natural 

populations and individuals grown in a common garden in spite of marked climatic differences.  

It’s worth noting that some species show phenotypic plasticity for this trait, with a slight trend 

of increasing embolism resistance with increasing aridity in natural populations of P. 

canariensis (López et al., 2013) and in Fagus sylvatica (Aranda et al., 2014; Schuldt et al., 

2015).  
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So why is embolism resistance constrained in some groups, and labile in others? These 

different patterns reflect differences in water management strategies. Water-loss is monitored 

by opening and closure of stomata, which is governed by the turgor of the guard-cells. By 

regulating overall stomatal conductance, plants can limit water-loss during drought, at the cost 

of reduced photosynthesis. If plants kept stomata fully open during drought, leaf and xylem 

water potentials (φL and φx respectively) would rapidly decrease, to a point where permanent 

damage through embolism can occur. Plants avoid this area of dangerous water-potential by 

closing stomata, thereby both stopping water-flow to the leaves, with the consequence of 

drastically reducing photosynthesis by restricting carbon entry.  

Traditionally, we separate species into two groups, i) those strongly regulating water-

potential variation by limiting stomatal conductance relatively early in drought, and 

maintaining minimum daily (or midday) φL above -2 MPa, implementing a water-management 

strategy called isohydric. On the other hand, ii) anisohydric species follow a more reckless 

strategy, taking more time to close their stomata during drought and thereby allowing more 

variation in minimum water-potential. In fact, a broad spectrum of strategies exists between 

these two extremes with most species being anisohydric or slightly isohydric (moderate decline 

in minimum φL compared to pre-dawn φL; Martinez-Vilalta et al., 2014), and most species have 

stomata completely closed well before φL reaches -4 MPa. In conifers, the lowest φL reported 

in (Choat et al., 2012) were around -5 MPa in Cupressus sempervirens, Tetraclinis articulata 

and Actinostrobus acuminatus – which are all embolism-resistant species with P50 < -8.5 MPa. 

It seems there is convergence across species for complete stomatal closure before xylem 

cavitation starts to occur (i.e. the inflexion point of the vulnerability curves P12) (Brodribb et 

al., 2003; Domec et al., 2008). Species across all environments have similar hydraulic safety 

margins, which means that trees’ vascular system is primed to close stomata before embolism 

starts to affect their capacity to transport water (Choat et al., 2012). Based on recent work, we 

hypothesize that the driving factor behind the magnitude of the pressure drop in the xylem (i.e. 

the difference between minimum of midday φL and pre-dawn φL) and the risk that embolisms 

can form (i.e. mortality unless P50 is adapted) is the degree of “leakiness” of fully closed stomata 

in the case of prolonged drought. The important parameter is not when stomata close (since 

they are always completely closed when drought reaches potentially dangerous levels) but how 

“leaky” they are, and to which extent species limit the pressure drop once all meaningful gas 

exchange has ceased. 
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Two divergent pathways for stomatal closure have been brought to light in line with this 

dichotomy regarding water-management (Brodribb and McAdam, 2013; Brodribb et al., 2014). 

Some plants reduce guard-cell turgor with hormonal signals (using abscisic acid), while others 

use leaf desiccation to passively reduce stomatal conductance under prolonged drought 

conditions (Brodribb et al., 2014). The first strategy (called Rising or R-type) offers the 

advantage of rapid reaction to changing soil water-content by closing stomata, avoiding 

continued water-loss. However, high ABA levels make re-opening of stomata a lengthy 

process, slowing down recovery of photosynthesis with the return of well hydrated soils. For 

the anisohydric strategy (termed Peaking or P-type), since ABA levels drop as drought 

intensifies, if re-watered these species rapidly recover guard-cell turgor and normal functioning. 

While both strategies exist in low rainfall environments (Brodribb et al., 2014), conifer species 

with embolism-resistant xylem and the more “risky” strategy seem to stretch further into 

regions with regular prolonged drought (such as Callitris species in Australia).  

Since proponents of both strategies close stomata early on in drought, transpiration and 

photosynthesis always stop before damage can be done to the xylem. So when does embolism 

occur during drought? Recent work points to prolonged water-loss in some species despite 

stomata being completely closed (Brodribb et al., 2014). ABA-induced closure seems to seal 

stomata more effectively, since the R-type species reach minimum gs much more rapidly from 

90% stomatal closure (3 days vs. 20 days for P-type). Furthermore, minimum gs is higher in P-

type species, meaning leaves continue to “leak” water-vapor after full stomatal closure. This 

leakage is overwhelmingly due to the stomatal surface, pointing to inefficient sealing by the 

guard-cells (Brodribb et al., 2014).  

Both strategies have advantages, for example isohydry allows species to protect themselves 

from drops xylem tension during most mild droughts, while anisohydry allows species to 

recover leaf function more rapidly upon re-watering. Although the taxonomic resolution in 

(Brodribb et al., 2014) is insufficient to draw definite conclusions as to when and how these 

strategies evolved, it seems the ABA driven strategy is ancestral and the passive leaf-

desiccation strategy derived in Taxaceae, and crown Cupressaceae groups. These clades 

correspond to the clades having evolved increased embolism resistance we identified in Chapter 

4 of this thesis. The need for extremely resistant xylem has been at least partially explained by 

this “leaky stomata” hypothesis – although more extensive work involving both experimental 

drought and field work is needed for many species. It would be interesting for example to 

monitor trees in the field during extreme drought to examine when complete stomatal closure 
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happens in the most resistant species, to test the hypothesis that these species (P-type, 

anisohydric) can function for longer periods at the onset of drought, and how long it takes for 

them to reach minimum gs. More generally, additional research focus is needed on the stage of 

drought after complete stomatal closure, since this is when embolism starts, carbon stocks are 

depleted and ultimately plant death can occur (see (Blackman et al., 2016). 

b. Hydraulic trait interactions 

It’s worth reiterating here the remarkable coordination that exists between leaf and xylem 

hydraulics, highlighted here by these water-management strategies (Meinzer, 2002; Sperry et 

al., 2002; Mencuccini, 2003). Indeed, plant water-usage is the result of the combination of 

efficient uptake of water by the roots, safe and efficient water-transport through the xylem (in 

the roots, trunk, branches and leaves), and gas exchange in the leaves (photosynthesis, 

evaporation). 

At both short (daily) and longer term (seasonal) time scales, regulation of gs through a 

multitude of environmental cues and plant feedback signals are in part responsible for limiting 

water-loss (Nardini and Salleo, 2000; Schroeder et al., 2001; Cochard et al., 2002; Buckley, 

2005). Roots detect water-stress and signal to the leaves through ABA synthesis. VPD (Vapor 

Pressure Deficit or “dryness” of the air) induces production of ABA in the leaves across land 

plants (McAdam and Brodribb, 2016). A reduction in xylem transport efficiency (due to 

embolism) can also induce a reduction of stomatal conductance, maintaining φL and therefore 

avoiding runaway embolism (Salleo et al., 2000). At a longer time-scale, acclimation of the 

whole plant hydraulic system to drought likely results in changes of carbon allocation through 

a reduction of leaf area relative to conducting tissue (Mencuccini, 2003), either by increased 

production of conductive tissue, roots, or a reduction in leaf area per stem area. As a 

consequence of these strong functional links at shorter time scales, physiological traits both of 

the leaf and the xylem interact to define the plants overall strategy regarding drought at wider 

adaptive and evolutionary timescales (Westoby and Wright, 2006; Pivovaroff et al., 2014). For 

example, seasonal minimum φL is related to lower leaf area:sapwood area, smaller conduit 

diameters, and increased wood density across a number of species (Ackerly, 2004). Wood 

density is negatively correlated with leaf size and leaf area:shoot dry mass across species and 

climates (Wright et al., 2006). It is clear that changes in any hydraulic trait will necessarily 

dictate changes in other related physiological traits or at least limit their range of variation.  
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In this thesis, our viewpoint from species level (and above) allows us to integrate over a 

variety of selection pressures (i.e. environmental conditions) and physiological strategies, yet 

limited to a group of species with comparable structures both in the xylem (i.e. tracheids, 

bordered-pits) and leaves (i.e. limited venation) allowing meaningful comparisons across 

species. One of the goals of our work was to increase our understanding of this network of 

xylem hydraulic traits in conifers. As discussed previously, theory predicts that xylem traits are 

determined at the species level by several trade-offs. 1) Embolism-resistant species expose their 

xylem to large tensions, so their tracheids are at increased risk of implosion. Therefore, more 

negative P50 should be related to an increase in tracheid-wall width relative to lumen diameter. 

Wood density is also a measure of this increased xylem construction cost, as it measures the 

cell wall:cell lumen ratio. 2) Increased embolism-resistance could reduce hydraulic 

conductance because of this reduction in tracheid diameter and changes of the inter-tracheid pit 

structure, for example reductions in pit-aperture.  

We found some support for a relationship between xylem safety and mechanical strength 

across all conifer taxa. Although high wood density exists in both resistant and vulnerable 

species, there are no highly resistant species with soft wood and a general positive trend towards 

resistant, dense xylem. This is reinforced by the positive correlation between the thickness:span 

ratio, with a significant reduction in lumen size with increasing embolism resistance, but 

especially a strong increase in wall thickness. Previous studies found that the thickness:span 

ratio depended mostly on a decrease in tracheid diameter (Pittermann et al., 2006; Sperry et al., 

2006). While we found a similar trend of smaller tracheids in resistant Callitris species, we did 

not evidence any trend for wood density. This is simply because Callitris wood is exceptionally 

dense in all species, notably the New Caledonian, more vulnerable species, which could obscure 

any tendency related to embolism resistance. 
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Figure 1. Interaction network of the hydraulic traits studied in this thesis. Lines indicate significant 

relationships, dashes weakly supported ones, and dotted lines non-significant or not explored (indicated 

by “?”). + and – indicate relationship directions, i.e. increase in one trait is linked to increase/decrease 

in the other. Red symbols show results from the whole conifer database, black ones from the Callitris 

clade. P50 is treated as positive to facilitate interpretation (increase in P50 = increase in embolism 

resistance). Trade-offs are highlighted in green and orange dotted ellipses, when supported and not-

supported by our data, respectively. Significant link to climate aridity (or lack thereof) is shown in huge 

red arrows.  

Over all conifers, we found that xylem conductivity scales with wood density, illustrating 

the efficiency/safety from implosion trade-off. Once more, this relation is mostly a slight trend 

of decreasing density with increasing efficiency with seemingly a barrier limiting efficiency in 

species with denser wood. However, we found no link between xylem construction traits (wood 

density or tracheid diameter) and a decrease in conductivity in the Callitris clade.  

Across all conifers and at the smaller scale of the Callitris clade, we found no evidence of a 

safety-efficiency trade-off, i.e. no relation between P50 and ks. At the pit level, it seems 

increased embolism resistance comes at the price of reduced pit-conductivity (through reduce 

pit aperture), but this does not scale to total xylem conductivity. Within Callitris, there is no 
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relation between P50 and pit-conductivity. This is consistent with previous work (Maherali et 

al., 2004). Although it has been mentioned that no species attain both high safety and high 

efficiency (Gleason et al., 2015), we provide evidence to the contrary, with Callitris 

intratropica reaching P50 = -13 MPa and the fifth highest conductivity within our conifer 

dataset. Since this species does not have extremely wide tracheids, we conclude that it somehow 

manages much higher pit-level conductivity. This holds true for other species as well, with 

diminishing tracheid lumen size reducing theoretical conductivity yet they manage to maintain 

ks, e.g.  Callitris glaucophylla, Actinostrobus arenarius. These two species are also extremely 

embolism resistant (P50 = -15 MPa and -16.5 MPa respectively), so pit modifications to increase 

end-wall conductivity is not detrimental to P50. This disconnect between embolism resistance 

and conductivity is consistent with data showing that P50 in conifers is linked to torus-pit 

aperture overlap, whereas conductivity is driven only by margo pore size (Bouche, 2015 - 

Chapter 2).  

Overall our results confirm previous results of a somewhat increased construction cost of 

embolism-resistant wood (Figure 1 – green ellipse), but not at the cost of reduced transport 

efficiency (Figure 1 – orange ellipses). Furthermore, our results in the Callitris clade support 

strong climate determinism of xylem traits, but not hydraulic efficiency (Figure 1). Hydraulic 

safety is also related to species climate over all conifer species, either based on biomes (our 

dataset) or on annual rainfall (Maherali et al., 2004; Choat et al., 2012; Reich, 2014). 

Preliminary results on our data suggest the same relation across all species, but it’s worth noting 

that at a family level, Pinaceae embolism resistance shows no relation to climate aridity in 

contrast to other families (N. Gonzalez Muñoz, pers. comm.). Previous work has shown that 

conifer xylem conductivity does not scale with rainfall, in opposition to deciduous Angiosperms 

(Maherali et al., 2004). The interesting thing to note is that in spite of this disconnect between 

the need for efficiency and rainfall, Callitris species in wet climates have wider tracheids, and 

fewer tracheids per unit xylem area than species in dry environments. This once more highlights 

the lack of a safety-efficiency trade-off in Conifers, allowing wider variation in tracheid size to 

compensate for higher risk of implosion in xeric species, without affecting hydraulic efficiency. 

3. The relevance of stem P50 

Why focus on xylem traits, and hydraulic failure in particular? The driver behind much of 

our work is understanding how drought affects trees, and how it potentially leads to plant death. 

While necessarily limiting our view of whole plant function, focusing on xylem hydraulic traits 
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is a pertinent approach. While the jury is still out as to what exactly kills a plant during drought, 

hydraulic dysfunction is likely the leading culprit, since it has been linked directly to plant death 

(Brodribb and Cochard, 2009; Brodribb et al., 2010; Urli et al., 2013). Furthermore, the 

alternative suspect, death by carbon starvation (Sala et al., 2010) is strongly related to 

dysfunction of the water-transport pathway (Hartmann, 2015), since lack of carbon assimilation 

is directly caused by stomatal closure induced by whole plant responses to lack of water 

(including reductions in hydraulic conductance (Plaut et al., 2012)). Finally, recent meta-

analysis has placed P50 and the hydraulic safety margin at the forefront of plant traits predicting 

mortality (Anderegg et al., 2016a). In other words, species operating at water-potentials close 

to their embolism threshold are more vulnerable to climate-change drought induced mortality 

events. While we lack precise measurements of daily/seasonal minimum water-potentials for 

many species, others have estimated the hydraulic safety margin to be relatively constant across 

species (Choat et al., 2012). We have therefore strong confidence that our P50 database is vital 

for predicting species specific vulnerability to drought. There are no known methodological 

issues with our estimations of embolism resistance in conifers using the CAVITRON technique, 

which has been shown to be reliable in tracheid bearing species (Cochard et al., 2013; 

Pivovaroff et al., 2016).  

Furthermore, P50 appears to be relatively constant across organs within a tree (Bouche et al., 

2016) at least within Pinaceae species, reducing the risk of high measurement error through 

sampling among different branch cohorts, heights or exposition in different trees and/or species. 

It has been suggested that more vulnerable leaves could act as fuses for the vascular system 

(Tyree and Ewers, 1991; Tyree and Zimmermann, 2002). Since they are exposed to more 

negative water-potentials, they could “cavitate” first, thereby avoiding dangerous pressure 

drops in more long-lived and carbon-costly organs (branches, trunks, roots). This so-called 

“segmentation hypothesis” has been investigated recently, and it seems there are no huge 

differences between leaf and stem xylem P50 (Bouche et al., 2015). There are methodological 

issues with measuring whole leaf hydraulic conductance during drought, because of the 

difficulty to separate xylem conductance from the flow through extra-xylary pathways.  

Although no methodological innovations were necessary for this thesis, we can mention the 

special rotor that was needed to measure the more resistant species (especially in Callitris), 

which is reinforced to allow increased maximum rotor speed to 15000 rpm (up from 12000 rpm 

on the standard rotor). This has considerably stretched the range of xylem pressures at which 

we can measure water-flow down to around -21 MPa. 
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4. The evolutionary perspective 

We have shown the capacity of conifers to follow a wide variety of ecological strategies and 

evolutionary pathways. In spite of their reputation as ancient declining lineages, the physiology 

of some groups of conifers has been remarkably adaptable to climate change at geological time-

scales. We explained their current diversity and distribution by recent radiations into habitats 

where they can compete with broadleaved trees, notably in arid areas via xylem adaptations to 

low water potentials. Previous work on the evolution of conifer drought resistance combined 

graphical representations of species phylogeny with observed trait values at the tips (Maherali 

et al., 2004; Pittermann et al., 2012). While necessarily limited to descriptions of trait 

distributions across taxa, these studies highlighted the remarkable lability of embolism 

resistance, with evolutionary convergence of some conifer clades toward very negative P50. By 

placing these results in an informed timeframe, these parallel evolutionary trends were 

hypothesized i) to be linked to climate change during the Cenozoic, and ii) to correspond to 

adaptive radiations with increased speciation or reduced extinction rates in xeric clades. 

Building on our physiological database we were able to explicitly model lineage diversification 

and trait evolution, and we found strong evidence backing up these hypotheses. With four times 

more Cupressaceae species, our more extensive dataset and modelling approach allows us to 

separate trait evolution from diversification. We also found two parallel upshifts in the rate of 

evolution of drought-resistance in Cupressaceae (in crown Callitroids and Cupressoids), 

echoing the shift to drier and colder climate towards the end of the Eocene (Chapter 4). These 

shifts in trait evolution dynamics were followed by shifts in diversification rates. However, 

there are some differences between our results and previous work (i.e. Pittermann et al. 2012). 

In the Cupressoid clade, the accelerated dynamic we recover includes drought resistant clades 

such as Tetraclinis and Platycladus (P50 approximately of -13 and -9 MPa respectively) as well 

as Juniperus and Cupressus. This means we locate the transition to more resistant xylem 

slightly earlier in this clade. Additionally, Pittermann et al. (2012) report Austrocedrus with P50 

= -10 MPa, whereas we found more moderate values of around -5 MPa. Combined with the 

younger ages for this group in our phylogeny, this places the shift in this group closer to the 

present, at around 30 Mya, in our analysis. Whereas the previous study only hypothesized that 

speciose extant genera underwent more rapid diversification, we implemented specific 

modelling of speciation and extinction dynamics while accounting for missing species. The 

shift we recover for diversification corresponds well with that inferred by Pittermann et al. for 

the Cupressus/Juniperus clade, but not so much for the Callitroids, where the comparison is 
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once more rendered difficult by incongruence between phylogenies and lack of resolution in 

our analysis. In Part III of this thesis, further investigations into the diversification of Callitris 

strongly links it to increasing aridity in Australia and the related emergence of extreme xylem 

resistance to embolism. In that work, we place the start of the shift in both diversification and 

embolism resistance evolution at around 30 MA, with a subsequent shift closer to the present. 

Overall, our results don’t conflict with the conclusions of the previous study, but we find that 

the Callitroid radiation is probably more recent than in the Northern Hemisphere Cupressoids, 

and we present the hypothesis that a strategy involving increased embolism resistance started 

emerging before the shifts in diversification. A more detailed investigation into the dynamics 

in the Cupressus/Juniperus clade is warranted, as relationships within this group are not well 

resolved (see (Terry et al., 2012; Terry and Adams, 2015; Terry et al., 2016), and we lack 

physiological information for around 80% of Juniperus species, notably from North-America.  

a. Conifer phylogenetics. 

Literature on the phylogeny of conifers has been building up recently, with much efforts 

aimed at disentangling the few controversies that remain resulting in confidence in deeper 

relationships between families and genera. From early molecular studies with few species and 

low resolution in the early 2000s, recent years have produces well supported large phylogenies 

with hundreds of species and sequence data thousands of nucleotides long, and using fossil data 

to implement complex molecular clocks (Leslie et al., 2012). 

Arguably the greatest challenge of this thesis was constructing reliable, accurate, dated 

molecular phylogenies tailor made for our physiological datasets. Rather than building on 

previous work and adding species to existing trees, we chose to build new phylogenies using 

existing sequence data.  Firstly, even in the case of the most extensive phylogenies there were 

many missing species, and including these species as polytomies to their closest relatives (at 

the genera level, for example) would have introduced too much uncertainty into the phylogeny. 

Secondly, these existing trees are built on slowly evolving gene sequences, which provide 

strong support for deep nodes, but low differentiation between closely related genera. By 

incorporating sequences for faster-evolving regions (such as the intergenic spacers ITS1), we 

provided better resolution within genera – although aligning these sequences across the whole 

Order was challenging, a problem we overcame by creating family specific matrixes. As 

outlined in the introduction (Box 1), several methods exist to both construct molecular 

phylogenies and time-calibrate branch lengths using independent dating information. Perhaps 

the most commonly used, Bayesian software BEAST allows these estimation simultaneously, 
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and presents the advantages of providing probabilistic estimations of node support and age 

intervals, while implementing different relaxed-clock methods. However, given the number of 

species and alignment length in the conifer study, computation times were long prohibiting 

extensive testing of different parameters, calibration schemes and sequence sets. We chose the 

more time-efficient RAxML, which still needed several days to complete the final estimation 

of the molecular phylogeny (with 1000 bootstrap iterations). The other argument in favor of 

this method is the separation of time-calibration and molecular tree building, allowing us to 

compare different dating methods, and various set of fossil calibrations. Overall, we are 

satisfied that our dating analysis yields accurate ages (but see discussion in Chapter 4). The 

phylogeny of the Callitris clade was constructed using BEAST, because the smaller size of the 

sequence matrix allowed us to test various configurations. Also, there were fewer fossils 

available for calibration points. As stated in the discussion in Chapter 5, our phylogeny agrees 

with previous work (Pye et al., 2003; Piggin and Bruhl, 2010).  

The phylogeny created for the purpose of studying the evolution of embolism resistance in 

Conifers (Chapter 4) was also used to represent the variation of P50 across families in Chapter 

1, as well as account for phylogenetic proximity in the PGLS analyses. Additionally, the 

phylogeny was used to investigate how phylogenetic relatedness between pine species 

influenced herbivory by the pine processionary moth (see Annex 2). Finally, we have used this 

phylogeny to investigate genome size evolution in conifers using the genome size database 

from Kew Gardens (http://data.kew.org/cvalues), and the relationship between genome size and 

physiological traits. It is known that some members of genus Pinus have extremely large 

genomes (e.g. subgenus strobus), and it has been hypothesized that their physiology could be 

linked to genome size because for example larger genomes tend to produce larger cells which 

tend to be more conductive. So far, it seems there is no strong relationship between embolism 

resistance, hydraulic conductance or wood density and genome size (see Annex 3). 

b. Modelling evolution 

From accounting for phylogenetic proximity in cross-species trait relationships to simple 

evolutionary models such as Brownian motion (BM), comparative methods have had large 

success in ecology in recent years driving a growing field of research. Nowadays, multiple 

evolutionary models can be implemented both for reconstructing trait evolution, lineage 

diversification, or both at the same time. Most applications build on quantifying the probability 

of observing the data (i.e. the tree and/or the species trait values) given the evolutionary model 

chosen (for example the speciation, extinction, and rate of trait evolution) (Maddison et al., 

http://data.kew.org/cvalues
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2007; Fitzjohn, 2010). For example, given our phylogeny for conifers and our P50 database, we 

can fit a simple BM model, to estimate the optimal BM rate parameter. As described in the 

Introduction, BM is appropriate for situations where trait evolve under genetic drift (random 

changes), selection when there are fluctuations in the trait optimum or long periods of stasis 

interrupted by rapid trait evolution (punctuate change) (Hansen and Martins, 1996; O’Meara et 

al., 2006). Traits varying under directional selection towards an optimum, or traits with natural 

bounds restricting their evolution in one direction (for example, P50 is bounded by 0) are not 

well modelled by BM.  

In our case, BM can seem appropriate, because i) it seems unlikely that selection occurred 

over 300 MA in all conifer lineages towards the same optimum P50 value (e.g. obvious stasis 

or uniform selection in Pinaceae, and fluctuation of the climate driving selection), and ii) 

although P50 is limited to negative values, no conifer species likely evolved sufficiently close 

to the limit for it to pose problems (O’Meara et al., 2006). However, since different families 

have hugely different patterns regarding embolism-resistance, we investigated primarily 

models that aim to fit multiple processes across the tree. Although several implementations are 

available, the broad idea remains the same: at some point in the evolution of a clade, the 

ancestral evolutionary rates (i.e. speciation, extinction (or both) or trait rate of change) shift 

towards new dynamics. Either an increase in the speciation (or trait evolution) rate leads to 

rapid diversification (or wider trait variation), or a slowdown occurs, leading to lower diversity 

(or trait evolutionary stasis). The challenge lies in identifying, locating, and quantifying these 

rate shifts and these new evolutionary dynamics.  

Briefly, these methods can be grouped into 2 families: 

1. Stepwise likelihood comparison methods: the algorithm recursively moves through the tree, 

adding shifts in evolutionary dynamics (new speciation/extinction or trait evolutionary rates) 

for a sub-tree, recalculating the likelihood of the model, and comparing it to previous models, 

and keeping the “best” one : these are “MEDUSA” type models, i.e. for diversification analsyes 

: MEDUSA (Alfaro et al., 2009); trait evolution using BM, MOTMOT (Thomas and Freckleton, 

2012) and implementing Ornstein-Ulhenbeck, OUwie (Beaulieu et al., 2012) and Surface 

(Ingram and Mahler, 2013). 

2. Bayesian methods that implement reversible-jump Markov Chain Monte Carlo algorithms to 

explore model space, providing us with a large sets of models, sampled according to their 

posterior probabilities that can then be summarized to extract the most probable set(s) of shifts 

between differing evolutionary dynamics. Implementing BM models of trait evolution, the 
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“auteur” method (Eastman et al., 2011) and for both diversification and trait evolution using 

exponential change, BAMM (Rabosky et al., 2013; Rabosky et al., 2014; Rabosky, 2014; Shi 

and Rabosky, 2015).  

Both types have their advantages and drawbacks, however a preference for the probabilistic 

Bayesian implementations is emerging, principally because they are not restricted to a single 

“optimum” model solution, in opposition to the “MEDUSA” type models. When multiple sets 

of rate shifts are more or less equally likely (e.g. an upward shift in one clade or a slowdown in 

the related sister-clade), the output from BAMM or “auteur” will present this uncertainty, 

whereas the likelihood models will ignore one some good models, selecting the single “best” 

one. After some testing, we opted for the BAMM method, which provides both extensive 

analysis and graphical tools in R, and strong confidence that meaningful evolutionary dynamics 

and shifts can be accurately recovered. Furthermore, the specific model for evolution 

implemented in BAMM is highly flexible, because it is based on exponential rate change 

through time, allowing for accelerations or slow-downs of rates within a dynamic. We also ran 

auteur on our data (see Annex 4), and found nearly identical patterns with this method, i.e. 4 

well supported shift to higher evolutionary rates at the base of Podocarpaceae, within the 

Taxaceae-Cephalotaxaceae clade, and in crown Callitroidae and Cupressoidae. This result 

reinforces our results from the BAMM analysis. 

Finally, because we wanted to test the hypothesis that increased drought resistance is 

implicated in higher diversification rates in conifers, we used the QUASSE method (Fitzjohn, 

2010) for trait dependent speciation and extinction models. As discussed previously (see 

Discussion, Chapter 4) these methods are known to have some substantial pitfalls (O’Meara 

and Beaulieu, 2016), mainly the risk of inferring spurious statistical dependence between trait 

values and speciation. Firstly, because correlation does not imply causation, there was always 

a risk that heterogeneous speciation/extinction could be associated statistically to trait with 

some degree of overlapping variation, with no need for “real” correlation (Rabosky and 

Goldberg, 2015). The authors in this paper found increased diversification in small cetaceans 

(i.e. the dolphin clade). However, they simulated trait evolution (under BM) on the whale 

phylogeny, and recovered association between rate of speciation and simulated character state. 

This indicates the possibility of false-positives, i.e. identifying trait-dependent diversification 

when there is no such dependence. Although there are no certainties as to what causes this level 

of error in the model, some hypotheses have been advanced. For example, if distributions of 

trait values differ between a derived clade with higher diversification rates and a background 
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clade with lower “ancestral” diversification rates, the model will likely recover a link between 

the considered trait and diversification, whether a significant relationship exists or not. 

Furthermore, one assumption of the SSE models is that diversification rate heterogeneity can 

only be assigned to the characters included in the model (Rabosky and Goldberg, 2015). 

Differences in diversification could be due to an unrelated “hidden” character not included in 

the study, which could for example show some level of co-distribution with the trait of interest 

(Maddison and FitzJohn, 2015). Other potential issues are related to the “shape” of the 

phylogeny, i.e. methods used for phylogeny construction and dating analysis, and sampling 

bias.  

We tried to account for these issues at several levels, described in the discussion of Chapter 

4. 1) Firstly, given the diversification rate heterogeneity in our data based on the BAMM 

analysis, we partitioned the QUASSE model to exclude families where diversification was 

probably related to other “hidden” factors, i.e. specifying a background clade of Pinaceae, 

Podocarpaceae and Araucariaceae, and a foreground group with Taxaceae, Cephalotaxaceae 

and Cupressaceae. Using this split model, we found strong evidence of that trait-dependent 

diversification was only significant in the foreground group. 2) We conducted QUASSE 

analyses on simulated traits to verify if our phylogeny was liable to “false-positive” trait-

diversification relationships. 3) We conducted analyses using the different phylogenies we 

generated, with MrBayes and different calibration schemes. We recognize a potential sampling 

bias, with differences in sampling frequency between clades. For example, we included many 

more species from the Araucaria genus (~90%) that the Juniperus genus (~20%), but overall 

there is no strong tendency for oversampling of embolism-resistant genera.  

Overall, our data is not immune to common pitfalls of these model-based inferences. 

However, our data strongly supports the idea that drought-resistant clades have been 

diversifying more rapidly than other conifers. Although it’s difficult to unequivocally prove a 

link between increased embolism resistance and speciation/extinction, it seems highly likely 

that the evolutionary success that drought-tolerant clades in Cupressaceae have enjoyed over 

the last 50 to 30 million years is related to their ability to develop highly resistant xylem. 

 

c. Conifer diversification 

Our work is not the first to investigate the diversification dynamics of conifers. Here we 

briefly review other work on this topic. Firstly, a strong hemisphere-scale signal in 
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diversification dynamics has been found (Leslie et al., 2012), with more recent diversification 

in the Northern Hemisphere (NH) clades, and especially more species turn-over, possibly linked 

to glacial cycles in the NH. Other work has challenged the long held notion that Gymnosperms 

are ancient relicts (Crisp and Cook, 2011; Nagalingum et al., 2011), showing that crown groups 

in Conifers are of young age, and that strong extinction (mostly during the Oligocene and 

Miocene) explains their slower diversification closer to the present compared to Angiosperms. 

Attempts to point to diversification drivers have shown that Podocarps diversified under the 

spreading Angiosperm canopy by evolving flattened leaves (Biffin et al., 2012). A role of high 

altitude in driving increased speciation has been advanced for NH clades (Cardoso et al., 2015), 

and in more general “ecological dissimilarity” from their Angiosperm competitors. This 

highlights the likely strong role of the Angiosperms’ rise to dominance globally in the decline 

of Gymnosperms in most environments (Bond, 1989; Augusto et al., 2014). Finally, it seems 

there is no effect of breeding and dispersal syndromes (i.e. monecy vs. dioecy and dry vs. fleshy 

cones) on diversification (Leslie et al., 2013). This is the only other attempt to find an effect of 

species level traits on diversification rates in Conifers using large phylogeny and extensive trait 

sampling in a modelling framework.  

Our study on conifer diversification and drought-resistance evolution is of high significance, 

since it is the first to explicitly model multiple diversification dynamics across conifers, and to 

link them to a fitness related trait. Furthermore, we put drought on the map as a major driver of 

conifer diversification, although this role was already hypothesized (Pittermann et al., 2012; 

Augusto et al., 2014).  

5. Implications and perspectives 

The results presented in this thesis greatly further our understanding of conifer physiology. 

By knowing in advance which areas and species are most vulnerable to drought-induced 

mortality, we can prevent major impacts of future droughts and heatwaves. Since many conifers 

are planted or ecologically dominant notably in the Northern Hemisphere, this knowledge is 

vital for managing forest and ecosystems in the context of climate change. A need for 

physiological data has been highlighted in order to improve species distributions modelling 

beyond occurrence-environment correlative models (Kearney and Porter, 2009). The predictive 

power of climate models that include land-cover is also dependent on accurate prediction of 

vegetation changes with the risk of widespread mortality following drought. These large-scale 

catastrophic events can affect the carbon and water cycles (Anderegg et al., 2015), with 
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complex feed-back effects on the world’s climate (Bonan, 2008; Kurz et al., 2008; Zhao and 

Running, 2010) – but see (Anderegg et al., 2016b).  

We have highlighted the evolutionary role of inter-tracheid pit anatomy in determining 

species embolism-resistance. Beyond the theoretical implications, these results could provide 

tools for breeding and selection programs, as drought-tolerance become a desirable trait under 

climate change. Embolism-resistance (measured by P50) is a pertinent trait regarding drought-

tolerance but requires individuals of a certain age (ideally several years old) to be accurately 

estimated. Using good proxies at the cellular level could improve efficiency in selecting good 

breeders or clones by examining their xylem at a young age.  

The interior surface of the tracheids of some species are not regular and smooth, but can be 

covered with small globular warts and other ornamentations – see Annex 5 (Heady et al., 1994). 

While the precise role of these structures is not completely understood, it is believed that 

thickenings of the cell wall surrounding the pits, i.e. in “vestured pits” and so-called callitroid-

thickening (CT) provide additional support against implosion at high xylem tensions. Warts on 

the inside of the tracheid lumen could increase the contact surface between the cell wall and the 

sap, reducing the possibility of air-bubbles appearing. Finally, smaller air-bubbles (i.e. too small 

to kickstart the process of cavitation) could be trapped by warts with more complex shapes, 

limiting accretion into larger, more dangerous bubbles, protecting against embolism. In any 

case, both “wartiness” (Heady et al., 1994) and CT shape and frequency (Heady and Evans, 

2000) supposedly vary with species ecology in Callitris. We initially wanted to produce our 

own data for these parameters, but for lack of time, we used data from these publications, as 

summarized and coded in Piggin et al. (2010). We found that the more pronounced CT type 

was associated with increasing P50. Additionally, embolism resistance seems to be linked to the 

shape of the warts, i.e. higher frequency of complex warts with nodular branching patterns. The 

link between these structures and climate is much more evident however, with aridity and to a 

lesser extent more extreme cold correlated to more marked CTs and larger more protuberant 

warts. These preliminary results can be found in Annex 5, however since the original study 

focused only on Callitris we have no data for Neocallitropsis and Actinostrobus – adding more 

extensive sampling and maybe more precise measurements could reveal stronger roles of these 

structures, since already they are strongly related to species climate.   

We have shown the ability of conifers to respond to past episodes of climatic upheavals, 

notably by increasing their capacity to survive drought by withstanding extremely negative 
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xylem pressure. Some remarkably resistant species even seem to have reached an absolute 

physical boundary to liquid water transport in vascular tissue in plants. While this knowledge 

can provide us with some hope for the future of conifers as a whole in the long term, it’s worth 

noting several worrying facts. Firstly, driven by human activity, current climate change is 

occurring at an unprecedented rate (Stocker et al., 2013). While climate change has happened 

in the past, it is likely that current rates are several orders of magnitude faster than historical 

events  (Zachos et al., 2001; Diffenbaugh and Field, 2013). For example, climatic shifts 

described in Chapter 5 as driving the early diversification and P50 evolution in Callitris 

happened over millions of years. Species will therefore need to adapt at unprecedented rates or 

be displaced, although migration rates for long-lived plants such as conifers is also probably 

too slow to keep up with temperature shifts in many parts of the world (Delzon et al., 2013). 

Given the already vulnerable or critical status for many conifer species (IUCN, 2015), it seems 

the future does not bode well for many members of this emblematic and historic group of plants. 

In spite of all our efforts over several years, we only have estimates of embolism resistance 

for under half of all species of conifers. The “Cavitating the Conifers of the World” project still 

has some way to go before completion. Our sampling strategy however has managed to cover 

in our opinion much of the existing diversity and physiological variation that exists in Conifers. 

Two main axes of progress come to mind however. First, the ecological equivalent to Callitris 

in the Northern Hemisphere, Juniperus is arguably the most under-sampled genus in our 

dataset, with only around 20% of species sampled. With some remarkable ecological variation 

in this genus, from the highest reaches of the Himalaya to the dry deserts of North America it 

would be worth investigating in a more systematic manner. Second, there is desperate need for 

more work on intra-specific variability of embolism resistance (and other hydraulic traits). The 

current premise that there is low intra-specific variability is built on restricted results from a 

handful of un-informative genera (i.e. Pinus). A valuable addition to the existing literature on 

the subject would be to include multiple species from across different evolutionary regimes 

identified here and in other work (e.g. within Podocarpus, Cephalotaxus, Callitris, Juniperus). 

These groups are more likely to reveal some level of genetic differentiation between 

climatically contrasted populations, since P50 is an integral part of their ecophysiological 

strategy toward water-management. We are currently working on examining the link between 

species climate and P50, notably trends at the family level.  

Finally, limited from the outset to tracheid-bearing conifers by methodological constraints 

and the regional bias towards conifers (pines in particular) that exists in Bordeaux, it seems 
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logical to expand this type of work to include Angiosperms. While differences in wood and leaf 

structure make direct comparisons with gymnosperms challenging, woody flowering plants 

offer an even wider scope of strategies, evolutionary innovations and potential adaptive 

radiations worth investigating. For example, some of the most extreme environments in 

Australia are populated by drought-adapted Angiosperms trees and shrubs from genera such as 

Eucalyptus, Acacia, Banksia, Cassuarina and more. Recent work has shown great adaptation 

to climate of Eucalyptus xylem (Pfautsch et al., 2015), and further investigations including 

direct estimations of embolism vulnerability and hydraulic conductivity in these species would 

be a highly intriguing path for future investigations. In a similar vein, wet tropical forests, 

crucial both in terms of biodiversity and carbon storage, are being recognized as equally 

vulnerable to climate-change induced drought despite relatively high historic rainfall (Corlett, 

2016). Newly developed equipment (i.e. the “cavi1000”) capable of accurately measuring 

species with long vessels is enabling projects aiming at characterizing angiosperm trees’ 

resistance to embolism, and opens up new avenues for evolutionary ecophysiology research.  
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Abstract  

Recent massive die-back of forest trees due to drought stress makes more urgent to assess the 

variability of physiological traits that might be critical to predict forest response and adaptation to 

climate change. We investigated xylem vulnerability to cavitation and xylem specific hydraulic 

conductivity for three principal conifer genera (Juniperus monticola, Juniperus deppeana, Juniperus 

flaccida, Pinus pseudostrobus, Pinus leiophylla, Pinus devoniana; endangered Picea chihuahuana) of 

Mexican mountains, in order to identify the more vulnerable species to future warmer and dryer 

climates. Hydraulic traits have been examined using the in situflow centrifuge technique (Cavitron) 

on branches collected both on adult trees from natural populations and seedlings growing in 

common garden. We found evidence for significant differences in xylem safety between genera (P50: 

pressure inducing 50% loss of hydraulic conductance): the three juniper species exhibited low P50 

values (ranging from -9.9 to -10.4 MPa), in comparison to much more vulnerable pine and spruce 

species (P50 ranging between - 2.9 to - 3.3 MPa). Hydraulic traits showed also no plasticity: there 

were no significant differences in P50 values between trees assessed in situ and seedlings growing in 

common garden. We hypothesize that if climate change makes their natural habitats much warmer 

and dryer, as projected, the populations of Mexican pines and spruces will likely severely decline 

due to drought-stress induced cavitation, meanwhile juniper species will survive.  

   

Introduction   

Concerns are increasing due to the mounting evidence of forest decline related to drought 

stress apparently linked to ongoing climatic change (Breshears et al. 2005; Peñuelas et al. 

2007; Mátyás 2010; Allen et al. 2010). Hotter drought periods are inducing massive tree 

mortality (Allen et al. 2015), and by year 2050, there likely will be a substantial vegetation 

reorganization (McDowell and Allen 2015), with a plant community composition unfamiliar to 

modern civilization (Williams et al. 2013). In such context, the study of variation among and 

within forest species for cavitation resistance is very relevant to predict the potential of 

adaptation to climatic change (Choat et al. 2012). Resistance to cavitation has been shown as 

a good estimator of species tolerance to drought in vascular plants (Brodribb and Cochard 

2009; Brodribb et al. 2010). Previous studies have reported a high variability of P50 (a proxy of 

cavitation resistance, corresponding to the xylem pressure inducing 50% loss of hydraulic 

conductance) among conifer species, ranging from -3 to -19 MPa (Delzon et al. 2010, 

Pittermann et al. 2010; Larter et al. 2015).  
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There are indications that many forest tree species have a very narrow hydraulic safety 

margin (< 1 MPa) and therefore they potentially will face long-term reductions in productivity 

and survival in a drier world (Choat et al. 2012). However, large differences of hydraulic safety 

margin have been observed between species growing in the same habitat and can therefore 

favor one species over another (Breshears et al. 2005; Urli et al. 2015). Conifers of genera 

Juniperus, Picea and Pinus frequently co-occur in the highly biodiverse Mexican mountains 

(Quiñones-Perez et al. 2014; Figure 1), as they share similar climatic habitat conditions 

(although they can also occur separately).  

Indeed, previous studies of cavitation resistance in conifer forest communities of southern 

USA (Arizona, New Mexico, Utah and Colorado states, Breshears et al. 2005) have shown large 

differences in hydraulic safety (P50 values), leading to different safety margin between Pinus 

edulis and Juniperus monosperma.   

Differences among conifer genera sharing similar climatic habitats has not been explored 

for Mexico in more detail, despite the very large biodiversity for conifers in Mexico (Styles 

1993). A previous study focused on differences within Pinus hartwegii along an altitudinal 

gradient, which showed no population-level genetic differentiation for cavitation resistance 

(Saenz-Romero et al. 2013), a trend that is consistent with much broader studies that indicate 

remarkably low variation among populations within conifer species (i.e. Pinus pinaster, Lamy 

et al. 2011). At the genus level, pines and spruces seem to be moderately resistant to 

cavitation (P50: -3 to -4.7 MPa and -3.7 to -5.2 MPa, respectively; Bouche et al. 2014). This 

pattern contrasts strongly with the more cavitation-resistant genus Juniperus (Cupressaceae), 

that also shows much more variation across species, with P50‟s ranging from around 6 to -14 

MPa (Bouche et al. 2014, Willson et al. 2008).  

In the present study, we aim to assess differences in hydraulic safety (drought-induced 

cavitation resistance) and conductivity (water-transport efficiency) among seven species of 

Mexican conifer species belonging to three conifer genera: Juniperus, Pinus and Picea. 

Conifers of genera Juniperus, Pinus and Picea frequently co-occur in the highly biodiverse 

Mexican mountains (Quiñones-Perez et al. 2014; Figure 1), as they share similar climatic 

habitat conditions (although they can also occur separately). Mountain conifer forests of 

Mexico are expected to experience a drier climate with more frequent droughts, which may 

lead to a 92 % reduction of their suitable climatic habitat along the Trans-Mexican Volcanic 

Belt by the end of this century (Rehfeldt et al. 2012). Under this scenario, we hypothesize 
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highly species-specific responses, with a high risk of mortality for species with a high 

vulnerability to cavitation as a response to drought events and a competitive advantage for 

highly resistant species to cavitation.  

  

Figure 1. Distribution of the seven studied conifers in México. Sites correspond to plots recorded 

by the Mexican National Forest Inventory, for which there are climatic and aridity index data 

available, downloaded from http://www.worldclim.org/bioclim and http://www.cgiar-

csi.org/data/global-aridity-and-pet-database, respectively. Last insert zooms on Trans-Mexican 

Volcanic Belt. 
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Materials and Methods 

Study area and study species 

We focused on seven conifer species, six of them occurring along a wide altitudinal 

gradient along the central Mexican mountains (Trans-Mexican Volcanic Belt, TMVB) and one 

of them only at the Sierra Madre Occidental (Figure 1). The species were:   

(a) Three juniper species along an altitudinal gradient: Juniperus monticola (high 

elevation, cold and humid environments, including sites inside the Monarch Butterfly 

Biosphere Reserve overwintering sanctuaries), J. deppeana (intermediate elevations between 

2200-2900 m a.s.l., temperate climate, occurring at the pine-oak forest, wide distribution in 

Mexico) and J. flaccida (lower elevation, representing the lowest altitudinal distribution of the 

genus in the studied region, marked drought/rainy seasonality and savanna-like vegetation 

with frequent natural or induced fires, overlapping with the upper altitudinal limits of the 

tropical dry forest) (Carranza and Zamudio 1994).  

(b) Three pine species among the most abundant pine species of the pine-oak forest at 

the TMVB at the Michoacán state, with partially altitudinal overlapping distributions: Pinus 

pseudostrobus (intermediate to high elevations, the most abundant and economically 

important specie), P. leiophylla (intermediate altitudes, appearing on poorer sites than P. 

pseudostrobus) and P. devoniana (low altitudinal limit of the pine-oak forest, close to the 

upper altitudinal limit of the tropical dry forest). The three pine species overlaps at the middle 

altitudinal range of the pine-oak forest, approximately at 2.200 to 2.300 m of altitude 

(Castellanos-Acuña et al. 2015; Table 1)  

(c) A very rare, endangered, endemic spruce, Picea chihuahuana, with fragmented 

endogamic populations,  at high elevations cold and humid sites on Sierra Madre Occidental, 

in northwestern Mexico. Picea chihuahuana is the most abundant spruce among the only 

three of that genus existing in México (the others are Picea martinezii and P. mexicana), where 

spruces are postglacial relicts (Ledig et al. 2010; Wehenkel and Saenz-Romero et al. 2012; 

IUCN 2015).   
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Table 1. Population origin of branch samples analyzed for cavitation, either from collection of field 

samples, or from populations represented in a common garden test. Except Picea chihuahuana, 

collected in Durango State (Dgo.), northwestern México, all others come from Michoacán state (Mich.), 

center-western México. Sample size indicate number of trees were samples were collected.  

Locality and State  Elevation  Lat (N)  Lon (W)  Species Sample size (individuals) 
  (m a.s.l.)       

Field Common garden 

Santa Bárbara, Dgo.  2.725  23.66  105.44  Picea chihuahuana 15 - 

Sierra Chincua, Mich.  3.142  19.65  100.25  Juniperus monticola 8 - 

Tlalpuhahua, Mich.  2.575  19.80  100.17  Juniperus deppeana 8 - 

Tuxpan, Mich.  1.870  19.60  100.48  Juniperus flaccida 7 - 

Cerro Pario (High), Mich.  2.746  19.47  102.18  Pinus pseudostrobus 6 - 

Cerro Pario (Int.), Mich.  2.600  19.47  102.19  Pinus pseudostrobus 7 - 

Cerro Pario (Low), Mich.  2.520  19.46  102.20  Pinus pseudostrobus - 3 

La Pila (High), Mich.  2.422  19.45  102.18  Pinus pseudostrobus 
Pinus leiophylla 

7 
7 

- 
- 

La Pila (High), Mich.  2.310  19.44  102.17  Pinus pseudostrobus 
Pinus leiophylla 
Pinus devoniana 

- 
6 
- 

3 
2 
5 

El Rosario (High), Mich.  2.217  19.43  102.17  Pinus pseudostrobus 
Pinus leiophylla 
Pinus devoniana 

- 
-                   

6  

- 2 
- 

El Rosario (Int.), Mich.  2.110  19.43  102.16  Pinus leiophylla 
Pinus devoniana 

- 
6 

2 
1 

El Rosario (Low), Mich.  2.034  19.42  102.15  Pinus devoniana 7 - 

Jicalán, Mich.  1.650  19.38  102.08  Pinus devoniana 6 - 

  

Sampling procedures  

Drought-induced resistance to cavitation and hydraulic efficiency were evaluated from 

branches collected from natural populations of those seven conifer species. For each juniper 

species, we collected branches of seven to eight trees belonging to one population 

representative of the distribution range of the species, in zones with high conifer diversity. 

(Table 1). For each pine species, six to seven trees from two to four populations were 

collected, aiming to at least partially represent the altitudinal distribution range of each 

species (Table 1). Fifteen individuals were sampled from Picea chihuahuana Santa Barbara 

population (also known as Arroyo El Infierno; Ledig et al. 2000), at a high elevation (2.725 m) 

site of Sierra Madre Occidental, Durango State, northwestern México.  
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As a complementary sampling, we collected branches from the three pine species on 

individuals growing in a common garden test at Morelia, Michoacán (Lat. 19.69 N, Lon. 101.25 

W, altitude 1.900 m a.s.l.). These trees were grown from seeds obtained from some of the 

natural populations that we 127 sampled, and also from additional populations of the same 

species and region. However, due to the 128 minimum branch size requirement for xylem 

cavitation analyses (see details below), only a reduced 129 number of individuals was 

sampled: two to five seedlings (exceptionally one seedling in one case), 130 from two 

populations of each pine species (Table 1). This additional common garden sampling was not 

possible for the rest of the species studied here, as provenance tests were unavailable. The 

site of the common garden tests has a climate much warmer and dryer (mean annual 

temperature 17.0 133 ºC, mean annual precipitation 871 mm) than the sites from the studied 

natural populations (although watering was provided as needed to ensure seedling survival).   

   

Sample processing  

Branches were collected in the early morning to avoid high temperatures and all needles 

were immediately removed to prevent desiccation. The samples were then wrapped in wet 

paper towels, placed in black bags, and immediately posted to France for their analyses. 

Vulnerability to drought induced cavitation was determined at the high-throughput 

phenotyping platform for hydraulic traits (CavitPlace, University of Bordeaux, Talence, France; 

http://sylvain-delzon.com/caviplace). The samples were kept wet and cool (3°C) until 

cavitation resistance was measured within three weeks after collection. Prior to 

measurement, all branches were cut with a razor blade under water to a standard length of 

27 cm, and the bark was removed.  

Measurement of resistance to cavitation  

Xylem cavitation was assessed with the CAVITRON, a flow centrifuge technique following 

the procedure described in Cochard (2002) and Cochard et al. (2005). In the CAVITRON, a 

centrifugal force establishes a negative xylem pressure, inducing a loss of conductance by 

cavitation.  Samples are inserted into a custom-built rotor (Precis 2000, Bordeaux, France) 

mounted on a high-speed centrifuge (Sorvall RC5, USA). Xylem pressure (Pi) is first set to a 

reference pressure (-0.5 MPa) and hydraulic conductivity (ki) is determined by measuring the 
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flux through the sample. The centrifugation speed is then set to a higher value for 3 minutes 

to expose the sample to more negative pressure.   

The conductance was measured three to four times, and the average was used to compute 

the percent loss of xylem conductance (PLC in %) at that pressure (see Delzon et al. 2010 for 

details). This procedure was repeated for at least eight pressure steps with a -0.5 MPa step 

increment until PLC reached at least 90%. Rotor velocity was monitored with a 10 rpm 

resolution electronic tachymeter 160 and xylem pressure was adjusted to about -0.02 MPa. 

Conductance measurements were done with the 161 Cavisoft software (version 2.0, BIOGECO, 

University of Bordeaux).   

The percent loss of xylem conductance as a function of xylem pressure (MPa) represents 

the sample’s vulnerability curve (VC). A sigmoid function (Pammenter and Vander Willigen 

1998) was fitted to the VC from each sample using the following equation:  

   

where P50 (MPa) is the xylem pressure inducing 50% loss of conductance and S (% MPa-1) is 

the slope of the vulnerability curve at the inflexion point. The xylem specific hydraulic 

conductivity (ks, m² MPa-1s-1) was calculated by dividing the maximum hydraulic conductivity 

measured at low speed by the sapwood area of the sample. More negative P50 (xylem pressure 

inducing 50% loss of conductance) values indicate higher resistance to cavitation, while the 

slope of the vulnerability curve (S) indicates how fast cavitation progresses at P50.  

   

Statistical analysis  

Differences among species were tested for xylem pressure inducing 50% loss of 

conductance (P50), slope of the vulnerability curve at the inflexion point (S) and xylem specific 

hydraulic conductivity (ks), by conducting an analysis of variance (ANOVA), using the 

Procedure GLM of SAS (SAS Institute, 2004), followed by a multiple mean Tukey tests (α = 

0.05).   

Because we had field samples from all the species but only for the three pine species also 

samples from a common garden provenance tests, and in all cases, a relatively reduced 



Annexes – Annex 1 

 

216 
 

number of samples, we conducted a nested ANOVA to test differences among genus and 

among species within for the xylem pressure inducing 50% loss of conductance (P50), the slope 

of the vulnerability curve at the inflexion point (S) and the xylem specific hydraulic conductivity 

(ks). We used the Procedure GLM of SAS (SAS Institute, 2004).   

For the specific case of the genus Pinus, we also explored the plasticity of mentioned 

variables. To do so, we compared the P50, S and ks of field versus common garden samples by 

a factorial ANOVA.  Variance components were estimated using the Procedure VARCOMP with 

the method of restricted maximum likelihood (REML) of SAS (SAS Institute, 2004).   

In order to represent the hydraulic values in the context of the entire climatic range of the 

species, we conducted a regression analysis between the means of the hydraulic traits of each 

species (all species, only field data) against the median of three climate variables aiming to 

represent the overall species climate niche: Mean Annual Temperature (MAT), Mean Annual 

Precipitation (MAP), Annual Aridity Index (AAI: Mean Annual Precipitation/ Mean Annual 

Potential EvapoTranspiration).  We also regressed the hydraulic traits of each species against 

extreme values of those three climatic variables, calculated as the median of the 5% of highest 

MAT (MAT_max), lowest MAP (MAP_min) and more arid AAI (AAI_max) values. These climatic 

variables have been demonstrated to be in important association with means per species of 

P50 (Choat et al. 2012, Maherali et al. 2005). Climatic and aridity index values averaged per 

species were estimated from presence points covering the full distribution range of the 

species (illustrated on Figure 1 for Mexico) and obtained from 

http://www.worldclim.org/bioclim and http://www.cgiar-csi.org/data/global-aridity-and-

pet-database, respectively.  

  

Results  

Differences among genera and species   

Hydraulic traits varied widely across studied species, with P50 ranging from -2.94 MPa (Pinus 

pseudostrobus) to -10.37 MPa (Juniperus monticola). Slope of the vulnerability curve varied 

from extremely steep (87.78 % MPa-1 for Pinus leiophylla) to very flat (i.e. less than 20 % MPa-

1 for each juniper species).   
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Most of this variation is at the genus level, as for example, juniper P50 was on average about 

7 MPa more negative than for pines and spruce (see Figure 2). Similarly, we found large 

differences in the slope of the vulnerability curve at the inflexion point (S) between the juniper 

species in comparison to the pines and the spruce. The three Pinus species had S values well 

above 50, Picea chihuahuana close to it (47), whereas Juniperus species had S values between 

16 and 20. We evidenced significant differences among genera in P50 (xylem pressure inducing 

50% loss of conductance, P < 0.0001) and S (slope of the vulnerability curve at the inflexion 

point, P = 0.0013).  Differences among genera explained 98 % and 67 % of the total variation 

for P50 and S, respectively (Table 2). In contrast, differences between species within genera 

account for a marginal 0.2%, and 1.9% for P50, and S, respectively (Table 2).  

Xylem transport efficiency, ks, varied from 0.0003 m² MPa-1 s-1 for Picea chihuahuana to 

0.0021 m² MPa-1s-1 for Pinus leiophylla (17 % of the total variation is explained by the species) 

but no significant difference between genera have been found for this trait (P = 0.066).   

There is a complete lack of association between P50, S and ks with the six climatic variables 

(regression: r2 < 0.03; P > 0.20). Notice on Figure 2 that Juniperus monticola, despite growing 

in sites much less arid (more cold and humid) than all of the pines and the spruce, its P50 is 

similar to that of Juniperus deppeana and J. flaccida, that both grow in the warmest and driest 

sites in this study.  

Similar distributions are found when plotting P50 against the other five climatic variables: 

MAT, MAP, MAT_max, MAP_min and AAI_max (plots not shown).   

 Differences between field and common garden test  

There were not statistical differences between the values of the hydraulic traits obtained 

from field and common garden trees, denoting a lack of plasticity of the measured traits across 

environments (Table 2). Differences among studies account for a meaningless 0.0 %, 0.9 % and 

0.0 % of the total variation for P50, S and ks, respectively (no significant; P > 0.45; Table 2).  

Figure 3 shows how much similar are the P50 values between studies and also among pine 

species.  
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Figure 2. Xylem pressure inducing 50% loss of hydraulic conductance (P50) in MPa, against Annual 

Aridity Index median per species (larger values indicate colder and moister; smaller values indicate 

warmer and dryer environments). Vertical bars represent 95 % confidence intervals  

     

Discussion  

Large differences among genera  

We evidenced here that the three juniper species studied are much more resistant to 

cavitation than the three co-occurring pines species and the Chihuahua spruce examined: P50 

values of Juniperus monticola, J. deppeana, and J. flaccida were three time more negative than 

those of Picea chihuahuana, Pinus devoniana, P. leiophylla and P. pseudostrobus.  Similar  

differences have been reported between other juniper and pine species  growing in same or 

similar environments (Linton et al. 1998) and, more generally, for what has been previously 

reported for species of these two genera (Delzon et al. 2010; Bouche et al. 2014). Regarding 

the slope of the cavitation curve, Delzon et al. (2010) suggested that slopes > 50 % Mpa-1 

indicate a very fast rate of embolism. In our results, the three pines and Picea chihuahuana 

had S mean values much larger than the Juniperus species, confirming the larger vulnerability 

to cavitation of the pine and spruce species in comparison to the juniper species. These 
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differences can be linked to an evolutionary divergence in hydraulic strategies within conifers 

when faced with drought (Brodribb et al. 2014).   

  

  

Table 2. Analysis of variance (% of contribution to total variance and P, significance) of xylem 

cavitation resistance traits (P50, xylem pressure inducing 50% loss of conductance and S, slope of the 

vulnerability curve at the inflexion point) and xylem transport efficiency (ks, xylem specific hydraulic 

conductivity). Analysis were conducted: (a) comparing among genera from branches collected at 

natural populations (three species of Juniperus monticola, three Pinus and one Picea), and (b) 

comparing among studies (field vs. common garden) only for Pinus species. Origin of samples as in 

Table 1.  

     df  P50      S      ks    

%   P    %  P    %  P  

a) All species, only field samples 

Genus 

  

2  97.9  

 

<0.0001 67.3  0.0013    45.6  0.0661  

Species(Genus)  4  0.2    0.0483 1.9  0.1516    16.9  <0.0001  

Residual  88  1.9      30.8      37.6    

Total  

  

94  

  

100.0  

  

    

    

100.0  

  

    

    

100.0  

  

  

  

b) Only Pinus species, field vs. common garden  

Study                                               1        0.0     0.7475 0.9  0.5457    0.0  0.4524  

Species  2    0.0  0.7957    0.0  0.9145    17.0  0.2763  

Study* Species  2   21.5  0.0044    8.5  0.0207    9.2  0.1484  

Residual  70  78.5      90.5      73.8    

Total  75  100.0      100.0      100.0    
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P50 (MPa) 

Figure 3. Xylem pressure inducing 50% loss of hydraulic conductance (P50) in MPa, averaged per pine 

species for each of two studies: samples collected at natural populations (field) and collected from a 

common garden test. Horizontal bars represent 95 % confidence intervals.  

  

  

Lack of correlation with climate and conservatism within genera  

While several studies reported correlations between P50 and MAP or MAT (Maherali et al. 

2005; Choat et al. 2012) with species from low precipitation habitats having the lowest P50 

values, suggesting that the evolutionary associations between increasing cavitation resistance 

and increasing aridity occurred across functional groups of conifers, no correlations were 

found here between hydraulic safety (P50, S), efficiency traits (ks) and MAT or MAP across all 

species studied. For example, J. monticola grows at the wettest environment, and yet has 

similar P50 values thank J. flaccida, which grows at the driest one, indicating a trait 

conservatism within genera.   

 

Lack of plasticity  

For the Pinus genus, we found no difference between cavitation resistance traits between 

populations growing in situ and in common garden, even when the common garden site is 

much more warmer (1.2 ºC to 3.4 ºC of mean annual temperature difference, depending of 

which provenance is compared to the common garden test site). This limited plasticity found 

here suggests that it is unlikely that pines will be able to hydraulically acclimate to accelerated 

climate change.  

-4 -3 -2 -1 0 

Pinus devoniana common garden 

Pinus devoniana field 

Pinus leiophylla common garden 

Pinus leiophylla field 

Pinus pseudostrobus common garden 

Pinus pseudostrobus field 
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The fact that juniper species might be more dominant relative to pine species in future 

climates than are today, highlight the need of studying variability among juniper populations 

for cavitation resistant traits, which so far has being studied mostly for pine species.  

 

Implications for climate change adaptation  

These results (high vulnerability to cavitation and lack of plasticity for pines) suggest that 

likely there will be a higher drought-induced mortality of pine species with respect to that of 

Juniperus, if climatic change scenarios turn the current climatic habitats into warmer and dryer 

environments (Allen et al. 2015), as it is projected for Mexican regions where pine-oak and 

conifer forest occur (Sáenz-Romero et al. 2010; Rehfeldt et al. 2012). If such process happens 

in the extremely high biodiverse Mexican forest (Nixon 1993; Styles 1993), it will lead to a 

serious impoverishment of the forest community, where pines and spruce will suffer higher 

mortality rates than junipers, as a process at least in part controlled by the resistance to 

cavitation margins of each species. This has unfolded already in the semiarid woodland 

communities of Utah, Colorado, Arizona and New Mexico, USA, where two consecutive dry 

and warm years (2000 to 2003) induced a massive forest decline of Pinus edulis, while 

Juniperus monosperma survived (Breshears et al. 2005).   

In the particular case of Picea chihuahuana, our results indicate that at least regarding 

resistance to cavitation, it is as vulnerable to drought stress as the three pines studied. Under 

climate change, this fact  will add an additional pressure on Picea chihuahuana,  an already 

endangered species due to its narrow and fragmented distribution (Ledig et al. 2010) with 

some populations displaying  signs of genetic erosion (Wehenkel and Sáenz-Romero 2012). 

Thus, severe drought-stress events due to climatic change may cause massive mortality, as it 

has already happened in some spruce-dominated forest at Rocky Mountains, USA (Bigler et 

al. 2007) and Norway  (Solberg 2004).  However, in our case, that Picea chihuahuana as a 

whole is already endangered, a climatic change-linked massive mortality eventually might 

cause simply the species extinction.  
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Conclusions  

Our results confirm the larger vulnerability of Mexican pines and spruces to cavitation in 

comparison to species of the genus Juniperus. This is particularly worrisome in the case of 

Picea chihuahuana, an endemic and endangered species, showing a narrow and fragmented 

distribution. Our results suggest that, if predicted climatic change makes the natural habitats 

of this species much more warmer and dryer, likely populations of Mexican pines and spruces 

will severely decline, whereas juniper species might survive. The high biodiversity of the 

Mexican pine-oak and conifer forest might then be endangered by a process that would look 

like “savannization” (vegetation recomposition to a sparser tree coverage where pines species 

might die, meanwhile juniper, more resistant to drought, will remain).  

  

Acknowledgements  

Funding was provided to CSR by the joint research funds between the Mexican Council of 

Science and Technology (CONACyT), and the State of Michoacán (CONACyT-Michoacán, grant 

2009127128), a sabbatical year (at INRA-Cestas, France) fellowship from CONACyT  (grant 

232838) and the Coordinación de la Investigación Científica of the Universidad Michoacana de 

San Nicolás de Hidalgo (UMSNH), México; to CW funding were from CONACyT and the Ministry 

of Education (SEP; Project CB-2010-01-158054). This study was also supported by the program 

„Investments for the Future‟ (ANR-10-EQPX-16, XYLOFOREST) from the French National 

Agency for Research to SD. NGM was supported by the Agreenskills fellowship program, which 

has received funding from the EU's Seventh Framework Program, under grant agreement FP7-

26719 (Agreenskills contract). We thanks Roberto Lindig-Cisneros, IIES-UNAM, Morelia and 

Miriam Garza-López, DiCiFo, Universidad Autónoma Chapingo, for their help on field 

collection, and to Felipe López and Manuel Echevarria, Forestry Office of the Native Indian 

Community of Nuevo San Juan Parangaricutiro, Michoacán, for their help on seed and branch 

collection in their community forest.  

 

 

 

 



Annexes – Annex 1 

 

223 
 

References   

Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kizberger T, 

Rigling A, Breshears DD, Hogg EH, Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, 

Lim JH, Allard G, Running SW, Semerci A, Cobb N. 2010. A global overview of drought and 

heat-induced tree mortality reveals emerging climate change risks for forests. Forest 

Ecology and Management 259:660-684   

Allen CD, Breshears DD, McDowell NG. 2010. On underestimation of global vulnerability to 

tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere 6(8) 

Article 129:1-55  

Bigler C, Gavin DG, Gunning C, Veblen TT (2007) Drought induces lagged tree mortality in a 

subalpine forest in the Rocky Mountains.  Oikos 116(12): 1983-1994  

Bouche PS, Larter M, Domec JC, Burlett R, Gasson P, Jansen S, Delzon S. 2014. A broad survey 

of hydraulic and mechanical safety in the xylem of conifers. Journal of Experimental Botany 

65 (15): 4419-4431  

Breshears DD, Cobb NS, Rich PM, Price KP, Allen CD, Balice RG, Romme WH, Kastens JH, 

Floyd ML, Belnap J, Anderson JJ, Myers OB, Meyer CW. 2005. Regional vegetation die-off 

in response to global change-type drought. Proceedings of National Academy of Sciences 

102:15144-15148  

Brodribb TJ, Cochard H. 2009. Hydraulic failure defines the recovery and point of death in 

water-stressed conifers. Plant Physiology 149:575-584  

Brodribb TJ, Bowman DJMS, Nichols S, Delzon S, Burlett R. 2010. Xylem function and growth 

rate interact to determine recovery rates after exposure to extreme water deficit. New 

Phytologist 188: 533-542  

Brodribb TJ, McAdam SAM, Jordana GJ, Martins SCV. 2014. Conifer species adapt to low-

rainfall climates by following one of two divergent pathways. PNAS 111(40):14489-14493   

Carranza-González E, Zamudio S. 1994. Familia Cupressaceae. Flora del Bajío y de Regiones 

adyacentes, Fascículo 29.  



Annexes – Annex 1 

 

224 
 

Castellanos-Acuña D, Lindig-Cisneros RA, Sáenz-Romero C. 2015. Altitudinal assisted 

migration of Mexican pines as an adaptation to climate change. Ecosphere 6(1) Article 2:1-

16  

Choat B, Jansen S, Brodribb TJ, Cochard H, Delzon S, Bhaskar R, Bucci SJ, Feild TS, Gleason 

SM, Hacke UG, Jacobsen AL, Lens F, Maherali H, Martínez-Vilalta J, Mayr S, Mencuccini M, 

Mitchell PJ, Nardini A, Pittermann J, Pratt RB, Sperry JS, Westoby M, Wright IJ, Zanne AE. 

2012. Global convergence in the vulnerability of forests to drought. Nature 491:752-756  

Cochard H (2002) A technique for measuring xylem hydraulic conductance under high 

negative pressures. Plant Cell and Environment 25:815-819  

Cochard H, Damour G, Bodet C, Tharwat I, Poirier M, Ameglio T. 2005. Evaluation of a new 

centrifuge technique for rapid generation of xylem vulnerability curves. Physiologia 

Plantarum 124:410-418  

Delzon S, Douthe C, Sala A, Cochard H. 2010. Mechanism of water-stress induced cavitation 

in conifers: bordered pit structure and function support the hypothesis of seal capillary-

seeding. Plant, Cell and Environment 33(12):2101-2111   

Development Core Team R. 2014. A language and environment for statistical computing. R 

Foundation for Statistical Computing, Vienna, Austria. Available: URL http://www.R-

project.org/.  

IUCN Red List of Threatened Species. 2015. Version 2015-3. <www.iucnredlist.org>. Accessed 

23 September 2015.  

Lamy J-B, Bouffier L, Burlett R,  Plomion C, Cochard H, Delzon S. 2011. Uniform selection as 

a primary force reducing population genetic differentiation of cavitation resistance across 

a species range. PloS ONE 6(8):e23476  

Larter M,  Brodribb TJ, Pfautsch S, Burlett R,  Cochard H and Delzon S. 2015. Extreme aridity 

pushes trees to their physical limits. Plant Physiology 168(3):804-807  

Ledig FT, Mápula-Larreta M, Bermejo-Velázquez B, Reyes-Hernández V, Flores-López C, 

Capó-Arteaga MA. 2000. Locations of endangered spruce populations in México and the 

demography of Picea chihuahuana. Madroño 47:71-88  



Annexes – Annex 1 

 

225 
 

Ledig FT, Rehfeldt GE, Sáenz-Romero C, Flores-López C. 2010. Projections of suitable habitat 

for rare species under global warming scenarios. American Journal Botany 97(6): 970-987  

Linton MJ, Sperry JS, Williams DG. 1998. Limits to water transport in Juniperus osteosperma 

and Pinus edulis: implications for drought tolerance and regulation of transpiration. 

Functional Ecology 12:906-911  

Nixon KC. 1993. The genus Quercus in México. In: Ramamoorthy TP, Bye R, Lot A, Fa J (eds) 

Biological diversity of México: origins and distribution. Oxford Univ. Press, New York, pp 

447-458  

Maherali H, Pockman WT, Jackson RB. 2004. Adaptive variation in the vulnerability of woody 

plants to xylem cavitation. Ecology 85(8):2184-2199  

Mátyás C. 2010. Forecasts needed for retreating forests. Nature 464:1271   

McDowell NG, Allen CD. 2015. Darcy‟s law predicts widespread forest mortality under climate 

warming. Nature Climate Change 5:669-672  

Pammenter NW, Van der Willigen C. 1998. A mathematical and statistical analysis of the 

curves illustrating 406 vulnerability of xylem to cavitation. Tree Physiology 18:589-593  

Peñuelas J, Oyaga R, Boada M, Jump AS. 2007. Migration, invasion and decline: changes in 

recruitment and forest structure in a warming-linked shift of European beech forest in 

Catalonia (NE Spain). Ecography 30:830-838  

Pittermann J, Choat B, Jansen S, Stuart SA, Lynn L, Dawson TE. 2010. The relationships 

between xylem safety and hydraulic efficiency in the Cupressaceae: the evolution of pit 

membrane form and function. Plant 412  Physiology 153:1919-1931  

Quiñones-Perez CZ, Simental-Rodriguez SL, Saenz-Romero C, Jaramillo-Correa JP, Wehenkel 

C. 2014. Spatial genetic structure in the very rare and species-rich Picea chihuahuana tree 

community (Mexico). Silvae  Genetica 63(4):149-159  

Rehfeldt GE, Crookston NL, Warwell MV, Evans JS. 2006. Empirical analyses of plant-climate 

relationships for 417  the western United States. International Journal Plant Science 

167:1123-1150  

Rehfeldt GE, Crookston NL, Sáenz-Romero C, Campbell E. 2012. North American vegetation 

model for land use planning in a changing climate: a solution to large classification 

problems. Ecological Applications 22:119-141  



Annexes – Annex 1 

 

226 
 

Sáenz-Romero C, Rehfeldt GE, Crookston NL, Pierre D, St-Amant R, Bealieau J, Richardson B. 

2010. Spline models of contemporary, 2030, 2060, and 2090 climates for Mexico and their 

use in understanding climate423 change impacts on the vegetation. Climatic Change 

102:595-623  

Sáenz-Romero C, Lamy JP, Loya-Rebollar E, Plaza-Aguilar A, Burlett R, Lobit P and Delzon S. 

2013. Genetic 425 variation of drought-induced cavitation resistance among Pinus 

hartwegii populations from an altitudinal gradient. Acta Physiologiae Plantarum 35:2905-

2913  

SAS Institute Inc. 2004. SAS/ STAT 9.1 User’s Guide. SAS Institute Inc., Cary, North Carolina.   

Solberg S. 2004. Summer drought: a driver for crown condition and mortality of Norway 

spruce in Norway. 429 Forest Pathology 34(2):93-104  

Styles BT. 1993. The genus Pinus: a México purview.  In: Ramamoorthy TP, Bye R, Lot A, Fa J 

(eds) 431 Biological diversity of México: origins and distribution. Oxford Univ. Press, New 

York, pp 397-420  

Urli M, Lamy J-B, Sin F, Burlett R, Delzon S, Porté AJ. 2015. The high vulnerability of Quercus 

robur to 433 drought at its southern margin paves the way for Quercus ilex. Plant Ecology 

216:177-187  

Wehenkel C, Sáenz-Romero C. 2012. Estimating genetic erosion using the example of Picea 

chihuahuana Martínez. Tree Genetics and Genomes 8(5):1085-1094   

Williams AP, Allen CD, Macalady AK, Griffin D, Woodhouse CA, Meko DM, Swetnam TW, 

Rauscher SA, 437 Seager R, Grissino-Mayer HD, Dean JS, Cook ER, Gangodagamage C, Cai, 

M McDowell NG. 2013. Temperature as a potent driver of regional forest drought stress 

and tree mortality. Nature Climate Change 3:292-297  

Willson CJ, Jackson RB. 2006. Xylem cavitation caused by drought and freezing stress in four 

co-occurring Juniperus species. Physiologia Plantarum 127:374-382 

  

 



Annexes – Annex 2 

 

227 
 

Annex 2. Castagnerol et al. (accepted – major revisions Oecologia): 

Host range expansion is density dependent 
 

Running headline: Host range is density dependent 

Authors: Bastien Castagneyrol1*, Herve Jactel1, Eckehard Brockerhoff2, Nicolas Perrette3, 

Maximilien Larter1, Sylvain Delzon1, Dominique Piou4 

Affiliations: 

1 BIOGECO, INRA, Univ. Bordeaux, 33610 Cestas, France 

2 Scion (New Zealand Forest Research Institute), PO Box 29237, Christchurch 8540, New 

Zealand 

3 ONF (Office National des Forets), Arboretum national des Barres, F-45290 Nogent sur 

Vernisson, France 

4 Ministere de l'Agriculture, de l'Agroalimentaire et de la Foret, DGAL-SDQPV, 

Departement de la Sante des Forets, 252 rue de Vaugirard, F-75732 Paris, France 

* Corresponding author: Bastien Castagneyrol 

INRA UMR BIOGECO 

69 route d’Arcachon 

33612 Cestas Cedex – France 

bastien.c astagneyrol@pierroton.inra.fr 

Phone: + 335 57 12 27 30 

Fax: + 335 57 12 28 80 

Author contributions: DP, EB and HJ developed the original idea. SD and ML provided the 

phylogenetic tree. DP and NP collected data. BC analysed the data and drafted the first version 

of the MS. All authors provided comments and contributed to the final version. 

 

 

 

 

 

 



Annexes – Annex 2 

 

228 
 

ABSTRACT  
The realised host range of herbivores is expected to increase with herbivore population density. 

Theory also predicts that trait similarity and phylogenetic relatedness between native and exotic 

plants is expected to increase the susceptibility of introduced plants to feeding by native 

herbivores. Whether the ability of native herbivores to extend their host range to introduced 

species is density-dependent is still unknown. We addressed this question by monitoring pine 

processionary moth (PPM, Thaumetopoea pityocampa) attacks during nine consecutive years 

on 41 pine species (8 native and 33 introduced) planted in an arboretum. 

The survey encompassed latent and outbreak periods. A total of 28 pine species were attacked 

by PPM. There was no difference in the probability of attack between native and introduced 

pine species. Host range increased and was more phylogenetically clustered during outbreak 

than latent periods. When population density increased, PPM expanded its diet breadth by 

attacking introduced pine species that were closely related to native hosts. This study 

demonstrates the density-dependence of host range expansion in a common pine herbivore. 

Importantly, it supports the idea that the degree of phylogenetic proximity between host species 

can be a better predictor of attacks than the introduction status, which may help to predict the 

outcomes of new plant-herbivore interactions.  

Keywords: Arboretum, Density dependence, Exotic species, Forestry, Host range, Pine 

processionary moth 

 

INTRODUCTION 

Non-native plants are increasingly introduced outside of their natural range. Yet, their success 

of establishment may be hindered by damage from herbivores native to the area of introduction 

(Cappuccino and Carpenter 2005; Parker et al. 2012). For instance, a recent survey showed that 

590 European insect herbivore species successfully colonised exotic tree species introduced in 

Europe (Branco et al. 2015). Predicting the outcomes of novel plant-herbivore interactions is 

therefore of great theoretical and applied interest (Pearse et al. 2013a; Branco et al. 2014). 

However, exactly what determines the likelihood of herbivores to incorporate new hosts in their 

diet remains controversial (Harvey et al. 2010; Forister and Wilson 2013). 

Theory predicts that host range may be density dependent, increasing with consumer abundance 

(Svanback and Bolnick 2007; Araujo et al. 2011; Carrasco et al. 2015). Herbivores may be more 

likely to exploit new host plants when population densities are high, as a result of a simple 

sampling effect: intraspecific variability in host use may increase with population density 
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(Bolnick et al. 2011). Alternatively, increased population density may induce changes in the 

quality of host plants through induced resistance (Underwood 2010) making them less suitable 

to herbivores, or intra-specific competition may force herbivores to feed on less preferred or 

less suitable, but 'competitor free', hosts (White and Whitham 2000; Plath et al. 2011; Nakladal 

and Uhlikova 2015). Such density-dependent effects on host use may have profound 

consequences on population dynamics of herbivores by alleviating intra-specific competition, 

but exposing them to new inter-specific competitors (reviewed in Bolnick et al. 2011). 

Phylogenetic relationships among plants can also explain patterns of utilization by a given 

herbivore (Nakadai and Murakami 2015). Closely related plant species are more likely to share 

herbivores (Parker et al. 2012; Gilbert et al. 2015). Pearse and Hipp (2009) showed that insect 

damage on oaks introduced to the US decreased with their phylogenetic distance to native 

American oaks. This is consistent with phylogenetic niche conservatism for traits involved in 

plant-herbivore interactions (Srivastava et al. 2012; Nakadai et al. 2014). 

However, not all traits show a phylogenetic imprint (Whitfeld et al. 2012) and even closely 

related plant species may diverge in traits relevant to defence against herbivores (Desurmont et 

al. 2011). Although biologically meaningful and of practical interest, phylogenetic distance 

among host plants may not be the best predictor of novel plant-insect interactions (Bezemer et 

al. 2014). 

For a new plant to be incorporated in the diet of a given insect, its traits (e.g. phenology, 

palatability, defences) have to match those that are involved in the insect's host plant 

colonisation and exploitation behaviour, with no need for previous coevolutionary processes, 

that is ecological fitting (Agosta 2006). Only those exotic plants that display such traits 

permitting both recognition and sustained feeding by native herbivore may be used as novel 

hosts (Pearse et al. 2013b). By contrast, non-native plants may act as ecological traps 

(Schlaepfer et al. 2002) if they are more or equally attractive to native herbivore adults but are 

less palatable or more effectively defended, resulting in poorer performance of the offspring 

(e.g., D’Costa et al. 2014). In particular, the fitness cost experienced by herbivores shifting from 

one host plant to another was shown to increase with phylogenetic distance between the two 

hosts (Bertheau et al. 2010).  

So far, the consequences of biotic introduction on plant-insect interactions on the one hand and 

the effect of increased population density on insect host range expansion on the other hand have 

been studied separately (Araujo et al. 2011; Forister and Wilson 2013; Pearse et al. 2013a; 

Bezemer et al. 2014; but see Branco et al. 2014). Bridging these two frameworks can provide 
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important insights into our understanding of the ecological consequences of intentional plant 

introductions, and, more generally, plant invasions.  

Here, we explored the relationships between the population dynamics of the pine processionary 

moth (Thaumetopoea pityocampa, hereafter referred to as PPM) and change in its host range. 

PPM feeds on several species within the genus Pinus, and, occasionally on larch (Larix sp.), 

cedar (Cedrus sp.) or Douglas fir (Pseudotsuga sp.) (Jactel et al. 2015). Within the genus Pinus, 

PPM can show preferences for some species (Hodar et al. 2002; Stastny et al. 2006; Perez-

Contreras et al. 2014). However, there is no general agreement on rank order for host use, 

probably because of local adaptation of PPM populations (Zovi et al. 2008; Jactel et al. 2015) 

or because host quality may change during outbreaks (Li et al. 2015). Several tree traits have 

been suggested to drive host selection and use by PPM, including tree height, needle 

morphology or volatile organic compounds (Paiva et al. 2011; Jactel et al. 2015).  

We monitored PPM infestation on 41 pine species planted in an arboretum during nine 

consecutive years including an outbreak, i.e., covering periods with very high or very low 

population densities. We tested whether there were significant changes in host use by PPM as 

a result of population density and whether host range expansion was density dependent. 

Specifically, we tested the three following hypotheses: (i) host range increases with PPM 

population density; (ii) novel hosts are not chosen at random but preferably among species 

closely related to natives and/or exhibiting similar traits relevant to host selection or 

exploitation and (iii) native pines are more likely to be attacked than exotic pines. 

MATERIALS AND METHODS 

Monitoring PPM densities at Arboretum National des Barres 

PPM caterpillars feed at night during winter and spend the daytime in silky nests in tree crowns. 

These so-called winter nests shelter 50-100 larvae and are commonly used to monitor PPM 

infestation on trees as caterpillars are very conspicuous in tree crowns. The presence of a nest 

indicates that early instar larvae fed on and survived on the pine tree on which one female moth 

oviposited. 

PPM abundance in the Arboretum National des Barres (N. 47.838, E. 2.7596, Paris Basin, 

France) was monitored in the arboretum (N. 47.838, E. 2.7596, Paris Basin, France) between 

1999 and 2007, by counting the number of winter nests on all individual pine trees planted at 

the arboretum. Hereafter we refer to the total number of nests per year on all sampled trees as 

‘PPM population density’. 
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At the time of the survey, 2556 trees were present in the arboretum, of which 219 belonged to 

one of 46 Pinus species. Pines from hybrid species, or which died or were newly planted before 

the end of the survey were discarded from the analyses. Likewise, we did not distinguish 

between subspecies. The final dataset therefore contained 192 individual pines from 41 species 

of which eight were native to Europe, 11 introduced from Asia and 22 from North America (see 

Table S1, Supplementary Material). Although arboreta are usually not primarily designed for 

ecology studies, there were enough tree replicates of European, Asian and American pine 

species in the Arboretum National des Barres to allow testing our hypotheses.  

Tree and needle characteristics 

The height of all individual pines was measured in 2002. Tree height data were used to assess 

the effect of height on PPM attacks (Castagneyrol et al. 2014; Regolini et al. 2014). Although 

it may have changed over the time of the survey, we assumed that the rank order in tree height 

among individuals and species was maintained throughout the study, an assumption that should 

hold over a relatively short period. 

Although there is no consensus on needle traits correlated with PPM abundance on different 

pine species (Jactel et al. 2015), pine needles with a shape that allows female moths clasping 

their tarsi around and holding on to them are expected to be more suitable for oviposition 

(Demolin 1969). Mean needle length and width per pine species were retrieved from the 

literature (Richardson 2000). For the three species for which this information was missing 

(Pinus cembra, P. arizonica, P. ayacahuite), 30 needles were collected from five trees of the 

arboretum, and needle length and width values were averaged at the species level. 

Pine phylogeny 

A phylogenetic tree for the 41 pine species eventually included in this study was obtained from 

the conifer phylogeny developed by Delzon et al. (2016, in prep). This reconstruction used 

sequences for chloroplast genes rbcL and matK, nuclear gene phyP, and the ITS1 5.8SITS2 

region of ribosomal DNA, downloaded from the online database GenBank (Benson et al. 2011) 

and aligned using the pipeline PHLAWD (Smith et al. 2009). The complete dataset included 

over 300 species of conifers, and used three cycad species as outgroup. Following the so-called 

supermatrix approach (Dequeiroz and Gatesy 2007), a full likelihood search with 1000 

bootstrap replicates was conducted on the whole dataset in RAxML (Stamatakis 2006), with 

each region treated as a separate partition with a distinct GTR+CAT substitution model. 

A chronogram was then constructed on the best tree from the likelihood search, using a relaxed-

clock model and the chronos function from the ape package in R (Paradis et al. 2015), with a 

set of fifteen calibration points (derived from the fossil record) from Leslie et al. (2012). 
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Analyses 

Test of phylogenetic signal in tree height and needle traits 

We tested whether there was a phylogenetic signal in pine trait values expected to drive PPM 

preference. Among the wide array of indices developed to test for the presence of phylogenetic 

signals in traits, Pagel’s λ performs well when it is used to compare different traits within a 

single phylogeny (Munkemuller et al. 2012). Pagel’s λ can theoretically be greater than one 

(traits of related species are more similar than expected under Brownian motion) but usually 

varies between zero (no phylogenetic signal) to one (strong phylogenetic signal). Although we 

did not expect any phylogenetic signal in tree height, given differences in tree age among 

species, we used Pagel’s λ to test for phylogenetic signals in needle traits (needle length and 

needle width), but also in tree height for sake of completeness. 

Testing factors controlling for pine species use by the PPM 

We first tested if patterns of PPM attacks differed between pine trees of different introduction 

status (native vs. introduced) or from different origins (Europe, North America, Asia) using 

Generalized Linear Mixed-effect Model (GLMM) with a binomial error family. The response 

variable was presence/absence of attack (winter nest) on a given tree using tree status or origin 

as predictors. GLMM allowed accounting for repeated measurements on the same individuals. 

Random factors were calendar year, pine species identity and individual tree identity nested 

within species. Because every tree was surveyed every year, tree and year were crossed random 

factors. Variance explained by fixed effects (status or origin) and random factors were estimated 

by calculating marginal R2 values (R2m, for fixed effects) and conditional R2 values (R2c, for 

fixed plus random effects) (Nakagawa and Schielzeth 2013). 

Using GLMM with species as a random factor only partially accounts for phylogenetic non 

independence among residuals. Therefore we then used Phylogenetic Generalized Least 

Squares (PGLS) models which are extensions of ordinary least square regressions that account 

for phylogenetic non independence among individual observations (Paradis 2012). PGLS uses 

a theoretical variance-covariance matrix among species that quantifies how much species 

resemble each other (covariance), and how much they diverged from their common ancestor 

(variance). The variance-covariance matrix was estimated with Pagel’s λ (Pagel 1999) which 

improves the performances of phylogenetic regression when there is a phylogenetic signal in 

the independent variable (Revell 2010). For trait analysis, PGLS were used with data 

aggregated at the species level, using the mean number of PPM nests per year and per species 

as response variable and species introduction status, tree height, needle length and needle width 

as predictors. 
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Separate models were run for each year of the survey. Predictors were scaled and centred to 

make coefficients comparable within and between years (Schielzeth 2010). In order to confirm 

outcomes of year-specific models, we finally used a GLMM to model the probability of an 

individual tree being attacked, taking height and needle characteristics into account while 

accounting for repeated measurements (see above for model structure). 

Modelling diet breadth 

Under the null hypothesis (H0) that female PPM select pines at random for oviposition, the 

number of pine species with one or more PPM nests should increase with both PPM population 

and pine densities, simply as a result of a sampling effect: i) the more females, the more nests 

and the greater the probability of any tree being attacked and ii) the more pine individuals per 

species, the greater the probability of a particular pine species being infested. 

Taking these densities into account, we used null models adapted from Jorge et al. (2014) to 

test H0. 

We defined two potential host pools (PHP). In the first one, (PHP1) all pine species were 

considered potential hosts for PPM. In the second one (PHP2), only those species that were 

attacked at least once during the seven-year survey were included. Null models were built by 

randomly drawing N trees from the PHP, where N was the number of PPM nests observed in a 

given year. This procedure thus accounted for the unbalanced abundance of the different pine 

species in the arboretum. Trees were drawn with replacement to make it possible that the same 

tree holds several nests. Based on this random sample, we calculated the number of host species 

used by PPM under H0 (Srandom). This procedure was repeated 1000 times. We eventually 

compared observed (Sobserved) and simulated (Srandom) numbers of host species using a 

standardized coefficient (see below, Eqn 1). 

In order to test the hypothesis that the number of novel hosts increased with PPM population 

density under a non-random process according to species relatedness (i.e., phylogenetic 

clustering), we used the same null model but this time added phylogenetic information (Jorge 

et al. 2014; Parker et al. 2015). We calculated the mean phylogenetic distance between pine 

species used as hosts in a given year (MPDobserved) and compared this value to the 1000 

MPDrandom calculated from random samples generated by the null model. In order to calculate 

MPD, we first pruned the phylogenetic tree of pines to keep only species with PPM nests (for 

MPDobserved) or randomly drew from the potential host pool (MPDrandom). We then 

calculated the mean of all pairwise distances among species (Parker et al. 2015). 

Observed and simulated values were compared using a standardized coefficient k (kS for 

richness and kMPD for phylogenetic clustering) that is equivalent to a z-score (Eqn 1): 



Annexes – Annex 2 

 

234 
 

k = (xobserved – mrandom)/srandom (Eqn 1) 

Where xobserved, is either Sobserved or MPDobserved and mrandom and srandom are the 

mean and standard deviation of the 1000 random simulations of either Srandom or 

MPDrandom. For host species richness, negative and positive k values indicate that the number 

of pine species on which PPM nests were observed were lower and greater, respectively, than 

expected by chance. For MPD, k was multiplied by –1 so that positive k values indicate a greater 

phylogenetic clustering than expected by chance, while negative values are indicative of 

phylogenetic overdispersion. If | k | < 2, the observed value is approximately within the range 

expected by chance. Conversely, if | k | > 2, then the observed value is approximately in the 5% 

tail of a normal distribution. We finally tested the effect of PPM population density on k for the 

two potential host pools using linear regressions. 

Although the maximal distance between pines was 952m (Appendix 1, Supplementary 

Material), pines were distributed among two areas within the arboretum. We checked for 

independence between phylogenetic and geographic (Euclidean) distances between trees of the 

arboretum (Appendix 1). We finally re-ran previous models for each garden separately to 

confirm the robustness of the main results (Appendix 1). 

All analyses were done in R using markdown for RStudio (R Core Team 2014) (Allaire et al. 

2014, R Core Team 2014). We used the functions gls, glmer, r.squaredGLMM from packages 

nlme, lme4, and MuMIn, respectively (Bates et al. 2013; Pinheiro et al. 2014; Bartoń 2015). 

For phylogenetic analyses we used the phytools package (Revell 2012).  

RESULTS 

A total of 2,309 winter nests were counted on pine trees between 1999 and 2007. Among the 

41 pine species planted at the National Arboretum des Barres, 28 were attacked by PPM at least 

once during the survey period (i.e., 68%, Figure 1). PPM population density varied between 

years but was independent of tree age: it was maximal in 2002, in the middle of the survey, and 

minimal in 2004 (Figure 2). 

PPM attacks were concentrated on P. nigra, P. sylvestris and P. ponderosa. Despite the fact 

that, together, they represented only 39% of planted trees, they concentrated between 82 and 

85% of attacks between years of low and high PPM density (% attacks on P. nigra / 

P. ponderosa / P. sylvestris, low PPM density: 67 / 15 / 0; high PPM density: 56 / 24 / 5). 

Although P. ponderosa is non-native to the study area, there was no overall effect of the 

introduction status (native to Europe vs. introduced, GLMM: χ2 = 0.3, P = 0.582, R²m < 0.01, 

R²c = 0.67) or origin (Europe vs. Asia vs. America, GLMM: χ2 = 2.64, P = 0.267, R²m = 0.03, 
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R²c = 0.67) of pine species on PPM attack probability (Figure 1). Random factors explained 

more than 66% of the variance in PPM attack probability. 

Closely related species tended to be more similar in terms of needle traits as shown by the 

significant, though rather weak, phylogenetic signal in needle length (λ = 0.26, P = 0.013) and 

needle width (λ = 0.29, P = 0.015). As expected, pine height was independent of pine phylogeny 

(λ = 0.00, P = 1.000, Figure 1). 

Overall, needle width had a significant effect on PPM attack probability: the wider the needles, 

the greater the chance a pine species being attacked (GLMM: χ2 = 11.97, P < 0.0001, R²m = 

0.18, R²c = 0.67, Figure 3). This pattern remained after phylogenetic non-independence was 

accounted for (PGLS, Table S2). The strength of the needle width effect increased with PPM 

population density (Figure 3). Needle length had no effect on PPM attacks (except in 2007, 

Table S2). There was a tendency for taller trees being attacked more than smaller ones, but this 

effect was significant only when PPM population density was low (Figure 3). Needle length 

had no effect on PPM attacks (but in 2007, Table S2). 

The number of pine trees and pine species attacked by the PPM increased with PPM population 

density (Pearson’s correlation: rindividuals = 0.96, rspecies = 0.93, Figure 2). 

Regardless of the potential host pool (i.e., all pine species, PHP1, or only species attacked at 

least once, PHP2), PPM attacked significantly fewer species than expected by chance (all kS < 

2, Figure 4A). The realized host range departed more from randomness as PPM population 

density increased (PHP1: F1,7 = 632, P < 0.0001, R² = 0.99, PHP2: F1,7 = 179, P < 0.0001, R² 

= 0.96, Figure 4A). 

The observed phylogenetic clustering of host trees increased with PPM population density 

(Pearson’s correlation: r = 0.66). PPM’s host range was more clustered than under the null 

hypothesis (all kMPD > 2, Figure 4B) and phylogenetic clustering increased with PPM 

population density (PHP1: F1,7 = 11, P < 0.013, R² = 0.55, PHP2: F1,7 = 21, P < 0.003, R² = 

0.71, Figure 4B). When PPM population density increased, the species newly added to the 

regular host range were more closely related to regular hosts than expected by chance. 

DISCUSSION 

Our results clearly show that PPM’s host range expansion depended more on PPM population 

density and phylogenetic relationships among pine species than on introduction status of pines.  

We hypothesized that PPM’s host range should increase during outbreaks, by incorporating 

pine species closely related to hosts normally used during latent periods. Our results are 

consistent with this hypothesis and with the literature. Closely related host species are more 
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likely to share common traits and defenses against herbivores (Agrawal and Fishbein 2006; 

Rasmann and Agrawal 2011; Nakadai and Murakami 2015). It is therefore not surprising that 

the new hosts were chosen from among the close relatives of regular hosts. This result suggests 

that in years of low PPM abundance, PPM nests were found on a small set of highly suitable 

hosts compared to years of high PPM abundance. Increased intraspecific competition during 

outbreaks may have increased divergence in host use and forced PPM to exploit less preferred, 

but still suitable hosts (Araujo et al. 2011). Why these optional hosts are only used during 

outbreaks may be explained by the fitness loss of herbivores feeding on suboptimal plants 

(Bertheau et al. 2010; Rasmann and Agrawal 2011; Nakadai and Murakami 2015). 

During outbreaks, this cost may be a better option than the risk of facing starvation, due to 

either induced resistance or intra-specific competition (Svanback and Bolnick 2007; Plath et al. 

2011; Branco et al. 2014). Alternatively, as PPM abundance increased, the increase in host 

range at the population level may have simply resulted from a greater number of individuals 

being able to exploit new hosts, due to larger intra-specific variability in individual insect 

preferences (Bolnick et al. 2011). 

Contrary to our expectations, the marked preferences for some particular species did not result 

from the avoidance of introduced species: both native and introduced species were equally 

attacked by PPM. Even if they escape natural enemies from their native range (“the enemy 

release hypothesis”, Keane and Crawley 2002), non-native plant species can face novel 

herbivores in the area of introduction (Parker et al. 2012), particularly when species from the 

same genus are present in the introduction area (Branco et al. 2015). The likelihood for 

introduced plants to recruit new herbivore species was shown to increase with phylogenetic or 

trait similarity with native plant species (Ness et al. 2011), even within the same genus (Ros et 

al. 1993; Pearse et al. 2013a). Phylogenetic relatedness among pine species was therefore a 

stronger driver of host use pattern than tree origin. 

We found that needle width was a key predictor of PPM attack probability on a particular pine 

species. Demolin (1969) observed that the ability of female moth to firmly ‘hook’ pine needles 

for oviposition was greatest for needles between 1.6 and 2 mm wide, which corresponded to 

the length of PPM’s tarsi. Accordingly, we showed that the probability of attack was greatest 

for needles with a width approaching 2 mm, irrespective of species’ introduction status. Yet, 

this trait displayed a phylogenetic signal in pines. Therefore, PPM may have been ecologically 

fitted to lay eggs on non-native pines having a particular combination of needle traits (Forister 

and Wilson 2013). This confirms that phylogenetic signals can be detected when considering 

plant-insect interactions, but this needs not be the result of coevolution (Agosta 2006).  
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We showed that PPM attacked significantly fewer pine species than it would be expected by 

chance. This is consistent with previous studies reporting PPM female preferences for 

alternative host species (Stastny et al. 2006; Paiva et al. 2011), but it conflicts with the view 

that PPM females are rather unselective regarding oviposition sites (Hodar et al. 2002). In the 

present study, we counted the number of nests, and not actual oviposition events. It is common 

that offspring survive or perform better on plants that their mother preferred, and that females 

prefer plants (for oviposition) that are more suitable to the offspring (i.e., “mother knows best”; 

Gripenberg et al. 2010). Whether or not this is the case in PPM remains to be tested properly, 

using behavioral experiments. Although we interpreted host preference in terms of female 

choice, it cannot be excluded that the observed distribution of PPM nests resulted (in part or 

entirely) from differential survival of eggs or young larvae. For instance, Hodar et al. (2002) 

found that females were unselective regarding oviposition, while the survival of early instar 

larvae varied among pine species. By contrast Stastny et al. (2006) reported that host preference 

based on number of nests in the field was consistent with oviposition preference in controlled 

experiments. Such discrepancies may result from local adaptations of PPM populations (Zovi 

et al. 2008), which makes it difficult to generalize findings about host preference in PPM. 

However, the fact that a certain host trait particularly relevant to female moth behavior 

(correspondence between needle width and moth tarsi length) was found to explain host 

preference should provide confidence in our interpretation of host range expansion driven by 

female's choice. 

Our study was conducted in an arboretum at the northern edge of PPM’s geographic range 

(Battisti et al. 2005). It is possible that the hierarchy in host use by herbivores in marginal 

populations may not reflect preferences in more central populations. For instance, choice 

ehavior may be less conservative if normally preferred hosts are scarce or missing (Carrasco et 

al. 2015), which was not the case in the arboretum. However, PPM was shown to act 

conservatively regarding host preferences (Stastny et al. 2006) and despite the unbalanced 

design, no less than 41 pine species were available in the arboretum. PPM was therefore given 

the choice between different potential host species so that we can reject the possibility that the 

location of the present study biased PPM's choice towards non-native species. In addition, the 

location of the arboretum at the front edge of PPM geographical range expansion provided 

further reassurance that no coevolution processes were behind host range expansion. 

CONCLUSION 

PPM showed clear preference for particular pine species, those which have wider needles. 
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This choice was independent of pine introduction status indicating that non-native species were 

neither more nor less likely to be attacked by the PPM than native species. Importantly, the host 

range increased with PPM population density in a non-random way. Host range expansion 

occurred on pines closely related to regular hosts, the latter being ‘ecologically fitted’ to be 

attacked by the PPM as a result of needle traits that displayed a phylogenetic signal. Regardless 

of the mechanisms underlying the observed patterns, the density dependence of host use may 

have profound implications for the population dynamics not only of PPM, but also of other, co-

occurring pests on the same host trees (Bolnick et al. 2011). 

From an applied point of view, our results allow the identification of pine species that would 

be at higher risk of PPM attack, should it be accidentally introduced outside its natural 

geographic range or should exotic pines be planted in the native range of PPM (Lombardero et 

al. 2012). 
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FIGURE CAPTIONS 

Figure 1: Relationship between mean tree height, needle width, needle length and PPM 

attack rate with pine species phylogeny and origin. Pink, green and blue colours refer to pines 

species from Europe, Asia and North America, respectively. Traits values and mean number 

of nests per year and per species (PPM) were scaled from 0 to 1. The larger the dot, the bigger 

the value. Crosses indicate pine species that have never been attacked during the survey. 

 

Figure 2: Temporal pattern of total number of nests (bars) and pine species attacked (dots) 

by the pine processionary moth (PPM). 

Figure 3: Effects of needles width, needles length and tree height on PPM attack. (A) Effects 

of needle width on the probability of PPM attack. Lines represent predictions from GLMM 

for years as random intercepts. Colour palette refers to PPM population density (and 

corresponding year). (B) Standardized model parameter estimates of year-specific PGLS 

models showing the effects of tree height, needles length and needles width on the mean 

number of PPM nests per tree. Vertical bars represent standard errors. Stars indicate 

coefficients that are significantly different from zero. 

Figure 4: Effects of PPM nest density on PPM host range. (A) Results of null models 

comparing the observed (Sobs) vs. simulated (Ssim) number of species attacked by the PPM 

under the null hypothesis; k is proportional to the difference between observed and simulated 

values. Negative values indicate that the number of attacked species was lower than expected 

by chance. (B) Results of null models comparing the observed (MPDobs) vs. simulated 

(MPDsim) mean phylogenetic distance between species attacked by the PPM under the null 

hypothesis. To make it consistent with (A), k was multiplied by –1 so that positive k values 

indicate a greater phylogenetic clustering than expected by chance. Simulations were based on 
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two potential host pools (PHP, see methods). Shaded areas and horizontal dashed lines 

represent the [-2;2] interval corresponding to expectations under the null hypothesis. 

 

Figure 1 
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Figure 3 
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Annex 3. Analysis of genome size evolution and its relationship with 

hydraulic traits in conifers. 
We obtained genome size data (http://data.kew.org/cvalues/) for over 150 species of conifers for 

which we have measured P50. We tested for a simple correlation between these variables, and found 

a weak relationship (R²=0.1). It seems at least that there are limits on genome size in cavitation 

resistant clades (or that having a large genome limits cavitation resistance). Note the outlier 

Juniperus chinensis with a duplicated genome (tetraploid). We also reconstructed the evolution of 

both traits, looking for meaningful trends. Both Callitroidae and Cupressoidae crown groups have 

high cavitation resistance and small genomes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Relationship between cavitation resistance and genome size in 
conifers. Red line is the linear model, curve is the best fit log function. P50 
in MPa; genome size is 2 times C-value (or the amount of DNA in the 
diploid nucleus) in picograms.  

http://data.kew.org/cvalues
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Figure é2. Mirror plot of the evolution of genome size (left) and cavitation resistance (right). The smallest 
genomes are commonly found in Podocarpaceae, whereas the most cavitation resistant species are in crown 
groups within Cupressaceae. On the other hand, pines have undergone rapid evolution of the size of their 
genomes. 
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Annex 4. Analysis of cavitation resistance using the auteur method 

(Eastman et al., 2011). 

 

Figure 1. P50 evolution in conifers. Posterior rate shifts and branch evolutionary rates from the auteur analysis 
in R. We used the relaxed Brownian motion with shifts algorithm. We recover 4 shifts to faster evolving regimes 
that concur with the BAMM results presented in Chapter 4 of this thesis.  
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Annex 5. Examination of the relationship between warts and 

callitroid thickenings and cavitation resistance in the Callitris 

clade 
Based on data from Heady et al. (1994). 

While we did not perform extensive sampling and measurements with SEM, we recovered published 

data to investigate relationships between sculpturing within tracheids and ecology and physiology in 

Callitris. 

 

 

 

 

 

 

 

 

Figure 1. SEM views of A) “callitroid thickenings” with the two types identified: top (type 1) 
with relatively shallow bands that do not reach the tracheid walls, and bottom (type 2) deeper 
funnelling of the bands which extend across the width of the lumen to reach both radial walls; 
and B) warts from several species, either small and of simple hemispherical shape (top and 
left – wet habitat species) or large, convoluted with extending “arms” or nodules (bottom right 
two photos – drier and/or colder habitats).   
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Figure 2. Relationships between P50, Mean annual precipitations (MAP), minimum 
temperature of the coldest month and “callitroid thickening” and “wart” traits across the 
Callitris clade. P-values reported from anovas in R. Characters are coded as in Piggin et al. 
2010: Frequency of CT: a = low (<10% of tracheids with CT); b = intermediate (from 10 to 60%) 
and c = frequent (over 60%). CT type: a = type 1, b = type 2 (fully reaching both sides of the 
tracheid). Wart type: a = uniform warts, all small and hemispherical with no nodules; b = not 
uniform, some nodulated larger warts. Wart density: a = fewer than 1.5 warts per µm²; b = 
between 1.5 and 3.2 warts per µm²; and c = between 3.2 and 6 warts per µm². Finally, Wart 
nodularity: a = no nodules; b = 20-60% of warts with nodules; and c = between 60 and 90% of 
warts with nodules.  
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Annex 6 : Les conifères, une famille à évolution complexe. 

Maximilien Larter et Pauline Bouche (Jardins de France 2012 – Hors-

série Les conifères font de la résistance) 
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Les conifères, une famille à évolution complexe 

Les conifères font de la résistance par Maximilien Larter et Pauline Bouche 

Les plantes à « graines nues » que sont les gymnospermes font partie de la lignée des plantes 

à graines, au même titre que les angiospermes. Mais de nombreuses différences les 

distinguent. Souvent considérés comme des végétaux fossiles, les gymnospermes offrent 

des caractéristiques très intéressantes comme la résistance à la sécheresse. Maximilien 

Larter et Pauline Bouché nous font entrer dans les dédales de la grande famille des conifères 

ou plutôt ce groupe composé de sept familles. Mais ce n’est pas qu’un jeu ! 

  

Arbre décrivant les relations entre les groupes de plantes à graines (Spermaphytes). A 

noter que la position des Cycadophytes et des Gnétophytes (tirées ici de la littérature) 

est encore débattu entre phylogénéticiens et taxonomistes. 

Des aiguilles, des écailles, des cônes, et des trachéides 

Si  les  gymnospermes (Gingkophytes, Coniferophytes, Gnetophytes et Cycadophytes) et les 

angiospermes appartiennent à la lignée des plantes à graines (spermaphytes) ils n’en sont 

pas moins radicalement différents. 

En effet, les gymnospermes ou littéralement « plantes à graines nues » ne présentent pas 

de fleur ni de fruit comme les angiospermes, mais des cônes ouverts laissant  les ovules et 

graines qu’ils portent exposées à l’air libre (fig. 1). Si l’on s’attarde sur l’anatomie plus « 

profonde » de ces plantes on constate que leur système hydraulique, appelé xylème (tuyau 

qui transporte la sève) est constitué uniquement de trachéides contrairement aux 

angiospermes dont le xylème comprend à la fois des trachéides et des vaisseaux. 
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Bien que les critères de distinctions Angiospermes-Gymnospermes semblent clairs, il existe 

cependant une discordance à propos de l’appartenance des Gnétophytes à la lignée des 

Gymnospermes – ce sont par exemple Welwischia mirabilis (désert de Namibie),  Ephedra 

distachya (le Raisin de mer, commun sur les côtes atlantiques françaises) ou encore 

Gnetum nodiflorum (Amérique du Sud). En effet, les Gnétophytes présentent des 

ressemblances morphologiques avec les Angiospermes telles que la présence de « pseudo 

fruit ». Autre chose surprenante, le xylème des Gnétophytes est composé de trachéides et 

de vaisseaux, comme les angiospermes… Sur ces critères morphologiques, nos Gnétophytes 

seraient donc plus apparentés aux Angiospermes. Mais des analyses moléculaires (voir 

encadré 1) semblent indiquer que les Gnétophytes seraient un groupe frère des 

Conifèrophytes confirmant ainsi leur appartenance aux Gymnospermes (fig. 1). Alors d’où 

viennent ces ressemblances avec les angiospermes ? Il semble que cela résulteraient d’une 

convergence évolutive de ces deux groupes, c'est-à-dire l’apparition indépendante (dans 

différentes lignées) de caractères similaires. On cite souvent comme exemple l’évolution des 

ailes chez les oiseaux et les chauves-souris : ces lignées éloignées (respectivement au sein 

des dinosaures et des mammifères) ont développé à environ 100 millions d’années d’écart 

une capacité de vol similaire ! 

Le grand groupe des conifères 

Les relations entre les 7 familles de conifères sont désormais bien connues (fig. 2). La famille 

des Pinaceae (pin, cèdre, mélèze, sapin) occupe une position basale par rapport à toutes 

les autres familles (c’est la lignée la plus ancienne). Vient ensuite la séparation des 

Araucariaceae (Araucaria araucana, le désespoir du singe) et des Podocarpaceae 

(grande famille d’espèces tropicales de l’hémisphère sud, bien souvent à « feuilles » larges). 

A noter que certains auteurs insèrent une famille supplémentaire au sein de cette dernière 

famille, les Phyllocladaceae (contenant les 5 espèces du genre Phyllocladus – originaires 

des îles d’Asie du Sud-est). Ces espèces sont caractérisés notamment par des excroissances 

de tige ressemblant (mais d’origine différente) à des feuilles, ce qui justifie selon certains 

auteurs leur positionnement dans une famille à part. Une seule espèce appartient à la 

famille des Sciadopityaceae, Sciadopitys verticillata (le pin parasol du Japon). Les familles 

Cephalotaxaceae et Taxaceae (les ifs) sont très proches et sont parfois regroupées, et 

vient enfin la grande famille des Cupressaceae (cyprès, genévrier, thuya, séquoia), seule 

famille que l’on retrouve dans les deux hémisphères. 
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Arbre phylogénétique décrivant les relations entre les 7 familles de conifères. Pour chaque famille 

un exemple d’espèce typique est donné (en photo) ainsi que leur importance (nombre de genres | 

nombre d’espèces). 

Evolution à une échelle géologique 

L’incorporation d’informations tirées de fossiles de plantes dans les phylogénies 

moléculaires permet d’y ajouter un cadre temporel. On sait par exemple que les premiers 

fossiles de gymnospermes apparaissent vers la fin du Carbonifère, il y a entre 300 et 310 

millions d’années ; ou encore que les premiers cônes typiques de la famille des pins 

(Pinaceae) sont apparus il y a 225 millions d’années. Différentes méthodes ont été 

élaborées pour mêler ces « calibrations fossiles » et des données moléculaires pour définir 

des phylogénies dans lesquelles les branches représentent le temps (généralement en 

millions d’années). Ceci a permis récemment d’apporter de nouvelles connaissances sur 

l’évolution de différents groupes des plantes. 
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Le terme de « fossile vivant » décrit un organisme dont la lignée évolutive est ancienne 

(présence de fossiles de plusieurs dizaines voire centaines de millions d’années) et dont la 

morphologie actuelle est similaire à ses ancêtres fossilisés. Le cœlacanthe est probablement 

l’exemple le plus connu de « fossile vivant » : cette espèce de poisson était considérée 

éteinte avant d’être découverte au milieu du XXe siècle dans l’Océan Indien et sa 

morphologie n’aurait pas évolué en près de 400 millions d’années. Chez les plantes, le 

Ginkgo, les Cycas, et certains conifères (comme le Wollemia lien vers l’article sur le 

Wollemia) ont souvent été qualifiés de « fossiles vivants ». De récentes études moléculaires 

viennent toutefois contredire ces certitudes. 

La lignée des Cycadophytes est ancienne, ayant atteint un niveau maximal de diversité et de 

dominance durant le Crétacé et le Jurassique (199,6 à 65,5 M d’années). Cependant, 

Nagalingum et al. (2011) ont construit une phylogénie de 199 espèces (sur environ 300) pour 

ce groupe de plantes, et ont montré que les genres importants (Cycas, Encephalartos, 

Zamia, Macrozamia et Ceratozamia) ont subi une diversification rapide et récente, il y a 

environ 10 M d’années. Les auteurs indiquent que l’émergence des climats modernes vers 

la fin du Miocène (il y a 5 à 10 M d’années), avec de larges régions tropicales et subtropicales 

à saison des pluies très marquées pourrait expliquer cette radiation[1]. 

Des résultats similaires ont été publiés récemment chez les conifères. Leslie et al. (2012) ont 

étudié près de 500 espèces de conifères, et ont montré une diversification récente au cours 

des 20 derniers millions d’années. Leurs résultats sont d’autant plus intéressants qu’ils 

montrent que les groupes d’hémisphère nord (Pinaceae, et la sous-famille des 

Cupressoideae) seraient d’origine plus récente  (< 5 M d’années) que des groupes 

d’hémisphère Sud (Araucariaceae, Podocarpaceae, et la sous-famille des Callitroideae - 

entre 5 et 17 M d’années). Ils émettent l’hypothèse que ces différences seraient liées aux 

cycles de glaciations qui auraient marqué l’hémisphère Nord entraînant l’évolution des 

plantes pour s’adapter aux changements climatiques. 

 

[1]  Diversification plus ou moins rapide d’une lignée, avec notamment une multiplication 

du nombre d’espèces, l’apparition d’une grande diversité morphologique et l’occupation de 

nombreux habitats (par exemple la radiation des mammifères à la fin du Crétacé). 

Et en termes de résistance à la sécheresse… 

De manière générale, des études ont montré que les conifères sont plus résistants à la 

sécheresse que les angiospermes (Maherali et al. 2004). La question qui se pose alors est : 

quels sont les mécanismes anatomiques et physiologiques à la disposition des arbres pour 

résister au manque d’eau ? Lors de sécheresses intenses, des bulles d’air se propagent dans 

les éléments conducteurs du xylème empêchant ainsi le transport de l’eau des racines 

jusqu’aux feuilles de façon similaire à une embolie pulmonaire. Ce mécanisme appelé 

cavitation provoque un dysfonctionnement du transport hydrique et peut, à terme, 

conduire à la mort des organes et de l’arbre. Si l’on observe l’anatomie fine du système de 

transport de l’eau (le xylème), on constate que l’eau circule à travers des structures poreuses 
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présentes dans la paroi des éléments conducteurs du xylème appelées « ponctuations » (fig. 

3). Chez les espèces à vaisseaux, comme les angiospermes, elles sont constituées 

uniquement d’un réseau de tresses (microfibrilles) formant une membrane poreuse (fig. 3 – 

A). Celles des conifères, plus complexes, présentent un épaississement (torus) au centre de 

la membrane de microfibrilles formant une barrière plus efficace contre le passage de l’air 

(fig. 3 - B). Lorsqu’un conduit est rempli d’air, le torus agit comme une valve : il est aspiré 

par l’eau contre la paroi de la trachéide fonctionnelle, et empêche le passage de l’air (fig. 3 

– d). 

 

Figure 3 : A. Coupe longitudinale (a) et transversale (b) d’une ponctuation chez les 

angiospermes avec présence d’une membrane de microfibrilles. B. Coupe longitudinale 

(c) et transversale (d) d’une ponctuation chez les Conifères avec un torus au centre de 

la membrane de microfibrilles. 

Cette structure très sophistiquée de « sécurité hydraulique » qu’est le torus est apparue 

chez les gymnospermes modernes (Ginkgo, Gnétales et Conifères) mais est absente chez 

leurs cousins les Cycadophytes. De manière indépendante, dans des phénomènes 

d’évolution convergente, 8 genres de 5 familles éloignées d’Angiospermes ont également 

développés un torus. Des chercheurs bordelais examinent actuellement la résistance à la 

sécheresse dans des lignées avec et sans torus, pour examiner son rôle dans la protection 

contre l’embolie dans le système conducteur de la plante. 

Afin de caractériser la résistance à la cavitation d’une espèce, les chercheurs utilisent une 

courbe de vulnérabilité qui correspond à l’évolution du taux d’embolie (cavitation) avec 

l’augmentation de la sècheresse. Pour cela des branches sont laissées sur la paillasse au 

laboratoire pendant plusieurs heures pour obtenir différents niveaux de sècheresse. A 

chaque niveau, le degré d’embolie est mesuré. Ces courbes permettent de déterminer la 

pression négative[2] qui induit 50% d’embolie dans la branche, aussi appelé P50. Ce 

paramètre permet ainsi de comparer la résistance à la sécheresse des espèces. Nous savons 

par ailleurs, que ce seuil de 50% induit la mort des conifères lorsqu’il est atteint en milieu 

naturel. Pour les valeurs proches de 0 (faiblement négatives, entre -1 et -4 MPa) l’espèce est 

jugée peu résistante, et à l’inverse à partir de -7 MPa, l’espèce peut tolérer des sécheresses 

importantes. A titre d’exemple, le cyprès chauve (Taxodium) est l’une des espèces les moins 

résistantes du monde (P50 =-2,3 MPa) alors que le record absolue a été mesuré chez une 

espèce semi-désertique australienne (Callitris columellaris, P50 =-16 MPa, Delzon et al. 

2010, Brodribb et al. 2010). 
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Figure 4 : Phylogénie de la famille des Cupressaceae (tirée de Pittermann et al. 2012) décrivant 

l’évolution de la résistance à la cavitation au sein de cette famille. La couleur des branches 

représente la résistance à la cavitation (en rouge les espèces résistantes, et en vert les espèces 

vulnérables). Les expansions aux extrémités de l’arbre indiquent le nombre d’espèces dans chaque 

genre, et leur couleur correspond à l’habitat des espèces (en rouge pour les milieux arides, et en gris 

pour les milieux plus humides) et des exemples de type de feuillages de quelques espèces sont 

donnés. (Pa = Paléocène, Eo=Eocène, Ol = Oligocène, Mi = Miocène, P = Pliocène, Pe = Pléistocène). 

 

Pittermann et al. (2012) ont étudié la résistance à la cavitation chez une vingtaine d’espèces 

de conifères de la famille des Cupressaceae. L’utilisation d’une phylogénie (fig. 4) leur a 

permis de découvrir que les espèces résistantes à la cavitation sont apparues dans deux 

groupes séparés géographiquement, les Callitroideae (hémisphère Sud) et les 

Cupressoideae (hémisphère Nord), et semble coïncider avec l’apparition de milieux plus 

arides à la fin de l’Eocène (il y a environ 35 M d’années). Cette adaptation coïncide (i) avec 

l’évolution des aiguilles en écailles chez ces espèces (principalement Callitris, Cupressus 

et Juniperus) (ii) et une diversification de ces groupes avec un plus grand nombre d’espèces. 

A l’opposé, dans la famille des Pinaceae, on observe une stase évolutive, c'est-à-dire que 

toutes les lignées ont maintenu une faible résistance à la cavitation. Cela peut sembler 

surprenant puisque ce groupe couvre une large gamme climatique, allant du bassin 

méditerranéen (Cedrus libani) au cercle polaire (Larix gmelinii), et des dunes côtières 

(Pinus pinaster) aux sommets des montagnes (Pinus hartwegii, l’arbre le plus haut du 

monde, vivant à plus de 4300 m d’altitude au Mexique). De plus au sein d’une même espèce, 

comme par exemple chez le pin maritime, les populations d’environnement très sec (Maroc 

– moins de 500 mm de pluie par an) et plutôt humide (Sud Ouest de la France – jusqu’à 1200 
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mm) présentent une résistance à la sécheresse similaire (Lamy et al. 2011). D’après cette 

étude, la résistance à la cavitation chez le pin maritime serait « canalisée » : des mécanismes 

génétiques limiteraient l’effet de nouvelles mutations, maintenant ainsi une résistance 

identique chez tous les individus provenant pourtant de climats très différents. A l’échelle 

des Conifères, il semble donc que certaines lignées (notamment au sein des Cupressaceae) 

ont pu se défaire de ces contraintes évolutives. Une équipe de chercheurs européens essaie 

actuellement d’établir quelles modifications ont permis de lever ces contraintes, en 

particulier au niveau de l’anatomie du xylème. La compréhension de ces mécanismes 

évolutifs est essentielle pour prévoir par exemple, la capacité d’adaptation des espèces et 

donc l’effet du changement climatique sur les écosystèmes forestiers dans les décennies à 

venir. 

 

> Pour en savoir plus 

 

[2] « Aspirée » à partir des feuilles, l’eau dans la plante circule sous tension (pression négative - 

phénomène similaire à l'aspiration de l'eau dans un verre avec une paille) : plus le sol est sec ou 

plus le climat est chaud, plus la plante doit « aspirer » fort pour extraire de l’eau du sol, et donc 

plus la « pression » dans le xylème est négative ! 
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Annex 7 : Le Pinetum de Bedgebury : « la plus belle collection de 

conifères du monde ». Maximilien Larter (Jardins de France 2012 – 

Hors-série Les conifères font de la résistance) 
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Le Pinetum de Bedgebury : « la plus belle collection de conifères du 

monde » 

Les conifères font de la résistance par Maximilien Larter 
Petit frère des « Royal Botanical Gardens » de Kew, ce parc botanique, consacré 

exclusivement aux conifères, unique au monde vaut vraiment le détour ! Dans une forêt 

rachetée par la Couronne au début du XXe siècle, le Pinetum est né d’une collaboration 

entre la Forestry Commission (chargée de gérer les forêts britanniques) et le Jardin 

Botanique de Kew parce-que la pollution de l’air de la capitale nuisait à la santé de certains 

conifères. 

 

Le Pinetum de Bedgebury - © S. Delzon 

Sous l’aile avisée d’un expert « ès conifères » mondialement reconnu, William Dallimore, la 

plantation débute en 1925, avec une organisation taxonomique : chaque parcelle regroupe 

les espèces d’un même genre. Suite à des dégâts considérables (30% de perte) lors de la 

tempête en 1987, la stratégie bascule vers une gestion plus harmonieuse du paysage : 

l’objectif est maintenant de mélanger les essences, feuillus et conifères, et de maintenir 

environ 40% d’espace ouvert. Ceci permet à la fois de mettre en avant les caractéristiques 

des espèces (port de l’arbre, couleur du feuillage), de maintenir une biodiversité 

impressionnante (oiseaux, insectes, fleurs, champignons) et de proposer des visites 

magnifiques au public tout au long de l’année ! 
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Conservation et recherche 

L’objectif depuis la création du Pinetum est de maintenir et de développer la plus grande 

collection de conifères du monde. Environ 200 espèces de conifères (principalement 

tropicales) ne supportent pas le gel, et donc ne peuvent être plantées à Bedgebury. 

Toutefois, le parc compte plus de 60% des espèces existantes ! Des expéditions régulières à 

travers le monde pemettent de récolter des graines, et dans différentes pépinières, les 

plantes sont soigneusement élevées jusqu’à être plantées dans la zone idéale du Pinetum. 

En effet, des études très précises du sol et des micro-climats du parc sont réalisées en 

continu, pour associer chaque plante avec un environnement optimal pour son 

développement. Plus de la moitié des espèces de conifères du monde sont menacés selon 

la liste rouge de l’Union internationale pour la conservation de la nature. Les employés du 

Pinetum récoltent donc des graines d’un maximum de populations pour chaque espèce, et 

développe pour les espèces les plus menacées de véritables « banques génétiques » 

vivantes. En effet, certains des individus les plus anciens du site sont issus de populations 

qui ont maintenant disparues ! Cette ressource est très importante dans l’objectif de 

restaurer certains écosystèmes détruits par l’activité humaine. En outre, les scientifiques 

ont un accès privilégié au Pinetum : des chercheurs ont ainsi découvert une variété d’if 

conservée uniquement à Bedgebury qui contient des taux exceptionnels de taxol, composé 

chimique utilisé pour traiter les cancers ! Notre équipe d’écophysiologie à l’Université de 

Bordeaux a aussi la chance de collaborer avec l’équipe du Pinetum pour étudier la résistance 

à la sécheresse des conifères du globe. 

  

Pour le public 

Avec des chemins de randonnées pédestres ou 

cyclistes, des aires de jeux à thème pour les 

enfants, et des parcours acrobatiques au 

sommet des arbres pour les plus courageux, le 

parc propose des activités pour tous les âges et 

tous les goûts. Le Pinetum s’investit également 

dans un rôle éducatif et de sensibilisation sur le 

thème de la conservation de la biodiversité, 

notamment par le biais de sorties scolaires. 

Ouvert au public tous les jours de l’année (sauf Noël), le Pinetum de Bedgebury se situe dans le sud-

est de  l’Angleterre, à moins d’une heure de Londres et de Douvres. Amateurs de plantes et de 

nature, une visite s’impose ! 

 


