A. Rida, A. , and M. Bouché, The eradication of an earthworm genus by heavy metals in southern France, Applied Soil Ecology, vol.2, issue.1, pp.45-52, 1995.
URL : https://hal.archives-ouvertes.fr/hal-02712045

P. W. Albro, J. L. Schroeder, and J. T. Corbett, Lipids of the earthworm Lumbricus terrestris, Lipids 27, vol.2, pp.136-143, 1992.

B. J. Alloway, . Alloway, . Blackie, . Glasgow, F. Amery et al., The UV-absorbance of dissolved organic matter predicts the fivefold variation in its affinity for mobilizing Cu in an agricultural soil horizon, European journal of soil science, vol.59, pp.1087-1095, 1995.

M. J. Amorim, S. I. Gomes, A. M. Soares, and J. J. Scott-fordsmand, Energy basal levels and allocation among lipids, proteins, and carbohydrates in Enchytraeus albidus: Changes related to exposure to Cu salt and Cu nanoparticles, Water, Air, & Soil Pollution, vol.223, pp.477-482, 2012.

C. L. Andersen, J. L. Jensen, and T. F. Ørntoft, Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets, Cancer research 64, vol.15, pp.5245-5250, 2004.

J. Andre, J. Charnock, S. R. Sturzenbaum, P. Kille, A. J. Morgan et al., Accumulated metal speciation in earthworm populations with multigenerational exposure to metalliferous soils: cell fractionation and high-energy synchrotron analyses, Environmental science & technology 43, vol.17, pp.6822-6829, 2009.

S. Antunes, B. Castro, R. Nunes, F. Pereira, and . Gonçalves, In situ bioassay with Eisenia andrei to assess soil toxicity in an abandoned uranium mine, Ecotoxicology and environmental safety, vol.71, pp.620-631, 2008.

C. Arnaud, J. Saint-denis, . Narbonne, D. Soler, and . Ribera, Influences of different standardised test methods on biochemical responses in the earthworm Eisenia fetida andrei, Soil Biology and Biochemistry, vol.32, pp.67-73, 2000.

B. E. Arnold, M. E. Hodson, J. Charnock, and W. J. Peijnenburg, Comparison of subcellular partitioning, distribution, and internal speciation of Cu between Cu-tolerant and Naive populations of Dendrodrilus rubidus Savigny, Environmental science & technology 42, vol.10, pp.3900-3905, 2008.

R. E. Arnold, M. E. Hodson, S. Black, and N. A. Davies, The influence of mineral solubility and soil solution concentration on the toxicity of copper to Eisenia fetida Savigny: The 7th international symposium on earthworm ecology, Pedobiologia 47.5, pp.622-632, 2002.

V. Asensio, A. Rodríguez-ruiz, L. Garmendia, J. Andre, P. Kille et al., Towards an integrative soil health assessment strategy: A three tier (integrative biomarker response) approach with Eisenia fetida applied to soils subjected to chronic metal pollution, Science of the Total Environment, vol.442, pp.344-365, 2013.

B. ,

D. Bates, M. Maechler, and B. Bolker, lme4: Linear mixed-effects models using S4 classes, 2012.

L. Beaumelle, I. Lamy, N. Cheviron, and M. Hedde, Is there a relationship between earthworm energy reserves and metal availability after exposure to field-contaminated soils?, pp.182-189, 2014.

T. Becquer, J. Dai, C. Quantin, and P. Lavelle, Sources of bioavailable trace metals for earthworms from a Zn-, Pb-and Cd-contaminated soil, In: Soil Biology and Biochemistry, vol.37, pp.1564-1568, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00378512

A. J. Bednarska, I. Stachowicz, and L. Kuria?ska, Energy reserves and accumulation of metals in the ground beetle Pterostichus oblongopunctatus from two metal-polluted gradients, pp.390-398, 2013.

M. A. Beketov and M. Liess, Ecotoxicology and macroecology-Time for integration, Environmental Pollution, vol.162, pp.247-254, 2012.

Y. Berthelot, É. Valton, A. Auroy, B. Trottier, and P. Y. Robidoux, Integration of toxicological and chemical tools to assess the bioavailability of metals and energetic compounds in contaminated soils, pp.166-177, 2008.

Y. Berthelot, B. Trottier, and P. Y. Robidoux, Assessment of soil quality using bioaccessibility-based models and a biomarker index, Environment international 35.1, pp.83-90, 2009.

A. Bindesbøl, M. Holmstrup, C. Damgaard, and M. Bayley, Stress synergy between environmentally realistic levels of copper and frost in the earthworm Dendrobaena octaedra, Environmental toxicology and chemistry, vol.24, pp.1462-1467, 2005.

M. Blouin, M. E. Hodson, E. A. Delgado, L. Baker, K. R. Brussaard et al., A review of earthworm impact on soil function and ecosystem services, European journal of soil science, vol.64, pp.161-182, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00818329

B. M. Bolker, M. E. Brooks, C. J. Clark, S. W. Geange, J. R. Poulsen et al., Generalized linear mixed models: a practical guide for ecology and evolution, Trends in ecology & evolution, vol.24, pp.127-135, 2009.

L. T. Bonten, J. E. Groenenberg, L. Weng, and W. H. Van-riemsdijk, Use of speciation and complexation models to estimate heavy metal sorption in soils, Geoderma 146.1, pp.303-310, 2008.

E. T. Borer, E. W. Seabloom, and D. Tilman, Plant diversity controls arthropod biomass and temporal stability, Ecology letters 15, vol.12, pp.1457-1464, 2012.

K. Broeg and K. K. Lehtonen, Indices for the assessment of environmental pollution of the Baltic Sea coasts: integrated assessment of a multi-biomarker approach, Marine Pollution Bulletin, vol.53, pp.508-522, 2006.

F. Brulle, C. Mitta, . Cocquerelle, . Vieau, . Lemiere et al., Cloning and real-time PCR testing of 14 potential biomarkers in Eisenia fetida following cadmium exposure, Environmental science & technology 40, vol.8, pp.2844-2850, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00105039

F. Brulle, . Mitta, S. Leroux, . Lemière, F. Leprêtre et al., The strong induction of metallothionein gene following cadmium exposure transiently affects the expression of many genes in Eisenia fetida: A trade-off mechanism?, In: Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, vol.144, pp.334-341, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00170656

F. Brulle, F. Bernard, F. Vandenbulcke, D. Cuny, and S. Dumez, Identification of suitable qPCR reference genes in leaves of Brassica oleracea under abiotic stresses, pp.459-471, 2014.

K. P. Burnham and D. R. Anderson, Model selection and multimodel inference: a practical information-theoretic approach, 2002.

M. Button, G. R. Jenkin, K. J. Bowman, C. F. Harrington, T. S. Brewer et al., DNA damage in earthworms from highly contaminated soils: Assessing resistance to arsenic toxicity by use of the Comet assay, Mutation Research/Genetic Toxicology and Environmental Mutagenesis, vol.696, pp.95-100, 2010.

E. J. Calabrese, Hormesis: why it is important to toxicology and toxicologists, Environmental Toxicology and Chemistry 27, vol.7, pp.1451-1474, 2008.

B. Cancès, . Ponthieu, . Castrec-rouelle, M. Aubry, and . Benedetti, Metal ions speciation in a soil and its solution: experimental data and model results, Geoderma 113.3, pp.341-355, 2003.

J. Castresana, Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis, Molecular biology and evolution 17, vol.4, pp.540-552, 2000.

P. M. Chapman, Integrating toxicology and ecology: putting the "eco" into ecotoxicology, Marine Pollution Bulletin, vol.44, pp.7-15, 2002.

J. Cherif, C. Mediouni, W. B. Ammar, and F. , Interactions of zinc and cadmium toxicity in their effects on growth and in antioxidative systems in tomato plants (Solarium lycopersicum), Journal of Environmental Sciences, vol.23, issue.5, pp.837-844, 2011.

A. Claiborne, Catalase activity, CRC handbook of methods for oxygen radical research 1, pp.283-284, 1985.

A. Colacevich, M. J. Sierra, F. Borghini, R. Millán, and J. C. Sanchez-hernandez, Oxidative stress in earthworms short-and long-term exposed to highly Hg-contaminated soils, Journal of hazardous materials, vol.194, pp.135-143, 2011.

J. M. Conder, L. D. Seals, and R. P. Lanno, Method for determining toxicologically relevant cadmium residues in the earthworm Eisenia fetida, Chemosphere 49.1, pp.1-7, 2002.

J. Cornu, K. Schneider, L. Jezequel, and . Denaix, Modelling the complexation of Cd in soil solution at different temperatures using the UV-absorbance of dissolved organic matter, Geoderma 162.1, pp.65-70, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02652513

P. Criel, K. Lock, H. Van-eeckhout, K. Oorts, E. Smolders et al., Influence of soil properties on copper toxicity for two soil invertebrates, Environmental Toxicology and Chemistry, vol.27, pp.1748-1755, 2008.

M. Currie, M. E. Hodson, R. E. Arnold, and C. J. Langdon, Single versus multiple occupancy-effects on toxcityp parameters measured on Eisenia fetida in lead nitratetreated soil, Environmental toxicology and chemistry, vol.24, pp.110-116, 2005.

J. P. Curry, Factors affecting the abundance of earthworms in soils, Earthworm ecology, pp.91-113, 2004.

C. Life and . For-the-barcode-of, Barcode of Life: Identifying Species with DNA Barcoding, 2009.

J. Dai, T. Becquer, J. H. Rouiller, G. Reversat, F. Bernhard-reversat et al., Heavy metal accumulation by two earthworm species and its relationship to total and DTPA-extractable metals in soils, Soil Biology and Biochemistry, vol.36, issue.1, pp.91-98, 2004.

C. M. Daoust, C. Bastien, and L. Deschênes, Influence of soil properties and aging on the toxicity of copper on compost worm and barley, Journal of environmental quality, vol.35, pp.558-567, 2006.

C. Darwin, The Formation of Vegetable Mould through the Action of Worms, with Observations of their Habits, John Albermarle street, 1881.

W. M. De-coen and C. R. Janssen, The missing biomarker link: Relationships between effects on the cellular energy allocation biomarker of toxicant-stressed Daphnia magna and corresponding population characteristics, Environmental toxicology and chemistry 22, vol.7, pp.1632-1641, 2003.

A. Dereeper, V. Guignon, G. Blanc, S. Audic, S. Buffet et al., Phylogeny. fr: robust phylogenetic analysis for the non-specialist, Nucleic acids research, vol.36, issue.2, pp.465-469, 2008.
URL : https://hal.archives-ouvertes.fr/lirmm-00324099

D. Toro, D. M. , H. E. Allen, H. L. Bergman, J. S. Meyer et al., Biotic ligand model of the acute toxicity of metals. 1. Technical basis, Environmental Toxicology and Chemistry, vol.20, pp.2383-2396, 2001.

J. J. Dijkstra, J. C. Meeussen, and R. N. Comans, Leaching of heavy metals from contaminated soils: an experimental and modeling study, Environmental science & technology 38, vol.16, pp.4390-4395, 2004.

D. Dzombak and F. Morel, Surface complexation modeling: Hydrous ferric oxide, 1990.

C. Eason and K. O'halloran, Biomarkers in toxicology versus ecological risk assessment, Toxicology 181, pp.517-521, 2002.

R. C. Edgar, MUSCLE: multiple sequence alignment with high accuracy and high throughput, Nucleic acids research, vol.32, pp.1792-1797, 2004.

N. S. Eriksen-hamel and J. K. Whalen, Growth rates of Aporrectodea caliginosa (Oligochaetae: Lumbricidae) as influenced by soil temperature and moisture in disturbed and undisturbed soil columns, Pedobiologia 50.3, pp.207-215, 2006.

G. Ernst, S. Zimmermann, P. Christie, and B. Frey, Mercury, cadmium and lead concentrations in different ecophysiological groups of earthworms in forest soils, pp.1304-1313, 2008.

J. Folch, M. Lees, and G. Sloane-stanley, A simple method for the isolation and purification of total lipids from animal tissues, Journal of Biological chemistry, vol.226, pp.497-509, 1957.

V. E. Forbes, A. Palmqvist, and L. Bach, The use and misuse of biomarkers in ecotoxicology, Environmental Toxicology and Chemistry, vol.25, pp.272-280, 2006.

F. Fourie, S. Reinecke, and A. Reinecke, The determination of earthworm species sensitivity differences to cadmium genotoxicity using the comet assay, Ecotoxicology and Environmental Safety, vol.67, pp.361-368, 2007.

C. Fritsch, M. Coeurdassier, P. Giraudoux, F. Raoul, F. Douay et al., Spatially explicit analysis of metal transfer to biota: influence of soil contamination and landscape, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00670291

M. Galay-burgos, C. Winters, S. R. Stürzenbaum, P. F. Randerson, P. Kille et al., Cu and Cd effects on the earthworm Lumbricus rubellus in the laboratory: multivariate statistical analysis of relationships between exposure, biomarkers, and ecologically relevant parameters, pp.1757-1763, 2005.

S. Gaw, G. Northcott, N. Kim, A. Wilkins, and J. Jensen, Comparison of earthworm and chemical assays of the bioavailability of aged 1, 1-dichloro-2, 2-bis (p-chlorophenyl) ethylene, 1, 1, 1-trichloro-2, 2-bis (p-chlorophenyl) ethane, and heavy metals in orchard soils, Environmental Toxicology and Chemistry, vol.31, pp.1306-1316, 2012.

Y. Ge, D. Macdonald, S. Sauvé, and W. Hendershot, Modeling of Cd and Pb speciation in soil solutions by WinHumicV and NICA-Donnan model, pp.353-359, 2005.

F. Gimbert, M. G. Vijver, M. Coeurdassier, R. Scheifler, W. J. Peijnenburg et al., How subcellular partitioning can help to understand heavy metal accumulation and elimination kinetics in snails, Environmental Toxicology and Chemistry, vol.27, pp.1284-1292, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00344460

I. Giska, C. A. Van-gestel, B. Skip, and R. Laskowski, Toxicokinetics of metals in the earthworm Lumbricus rubellus exposed to natural polluted soils-relevance of laboratory tests to the field situation, pp.123-132, 2014.

J. B. Grace and K. A. Bollen, Representing general theoretical concepts in structural equation models: the role of composite variables, In: U. S. Geological Survey Open-File Report, vol.15, pp.191-213, 2006.

J. B. Grace, A. Youngblood, S. M. Scheiner, ;. S. Miao, S. Carstenn et al., Structural Equation Modeling and Ecological Experiments, Real world ecology: large-scale and long-term case studies and methods, 2008.

J. B. Grace, T. M. Anderson, H. Olff, and S. M. Scheiner, On the specification of structural equation models for ecological systems, Ecological Monographs, vol.80, pp.67-87, 2010.

J. B. Grace, D. R. Schoolmaster, G. R. Guntenspergen, A. M. Little, B. R. Mitchell et al., Guidelines for a graph-theoretic implementation of structural equation modeling, 2012.

J. Groenenberg, Evaluation of models for metal partitioning and speciation in soils and their use in risk assessment (Thesis, 2011.

S. Guindon, J. Dufayard, V. Lefort, M. Anisimova, W. Hordijk et al., New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0, Systematic biology 59, vol.3, pp.307-321, 2010.
URL : https://hal.archives-ouvertes.fr/lirmm-00511784

H. ,

W. H. Habig, M. J. Pabst, and W. B. Jakoby, Glutathione S-transferases the first enzymatic step in mercapturic acid formation, Journal of biological Chemistry, vol.249, pp.7130-7139, 1974.

M. Haenlein and A. M. Kaplan, A beginner's guide to partial least squares analysis, Understanding statistics 3.4, pp.283-297, 2004.

P. K. Hankard, C. Svendsen, J. Wright, C. Wienberg, S. K. Fishwick et al., Biological assessment of contaminated land using earthworm biomarkers in support of chemical analysis, Science of the total environment, vol.330, pp.9-20, 2004.

J. Harmsen, Measuring bioavailability: from a scientific approach to standard methods, Journal of Environmental Quality, vol.36, issue.5, pp.1420-1428, 2007.

M. Hedde, . Bureau, . Delporte, T. Cécillon, and . Decaëns, The effects of earthworm species on soil behaviour depend on land use, Soil Biology and Biochemistry, vol.65, pp.264-273, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01687890

A. Hendriks, W. Ma, J. D. Brouns, E. De-ruiter-dijkman, and R. Gast, Modelling and monitoring organochlorine and heavy metal accumulation in soils, earthworms, and shrews in Rhine-delta floodplains, Archives of Environmental Contamination and Toxicology, vol.29, pp.115-127, 1995.

S. Hershberger, G. Marcoulides, and M. Parramore, HershbergerStructural equation modeling: an introduction3Structural equation modeling: applications in ecological and evolutionary biology, pp.3-41, 2003.

P. Hobbelen, J. Koolhaas, and C. Van-gestel, Bioaccumulation of heavy metals in the earthworms Lumbricus rubellus and Aporrectodea caliginosa in relation to total and available metal concentrations in field soils, pp.639-646, 2006.

M. Holmstrup and J. Overgaard, Freeze tolerance in Aporrectodea caliginosa and other earthworms from Finland, Cryobiology 55.1, pp.80-86, 2007.

M. Holmstrup, J. G. Sørensen, J. Overgaard, M. Bayley, A. Bindesbøl et al., Body metal concentrations and glycogen reserves in earthworms (Dendrobaena octaedra) from contaminated and uncontaminated forest soil, pp.190-197, 2011.

K. M. Holtzclaw, G. Sposito, and G. R. Bradford, Analytical properties of the soluble, metal-complexing fractions in sludge-soil mixtures: I. extraction and purification of fulvic acid, America Journal, vol.40, pp.254-258, 1976.

J. Homa, M. Niklinska, and B. Plytycz, Effect of heavy metals on coelomocytes of the earthworm Allolobophora chlorotica: The 7th international symposium on earthworm ecology, vol.5, pp.640-645, 2002.

P. S. Hooda, Trace elements in soils, 2010.

V. Houba, T. M. Novozamsky, J. Lexmond, and . Van-der-lee, , 1990.

, M CaCl2 as a single extraction solution for the assessment of the nutrient status of soils and other diagnostic purposes, Communications in Soil Science & Plant Analysis, vol.21, pp.2281-2290, 1920.

S. Houot, . Clergeot, C. Michelin, . Francou, G. Bourgeois et al., Agronomic value and environmental impacts of urban composts used in agriculture, Microbiology of Composting, pp.457-472, 2002.
URL : https://hal.archives-ouvertes.fr/hal-02830718

R. Huang, B. Wen, Z. Pei, X. Shan, S. Zhang et al., Accumulation, subcellular distribution and toxicity of copper in earthworm (Eisenia fetida) in the presence of ciprofloxacin, Environmental science & technology 43, vol.10, pp.3688-3693, 2009.

M. Ireland and K. S. Richards, The occurrence and localisation of heavy metals and glycogen in the earthworms Lumbricus rubellus and Dendrobaena rubida from a heavy metal site, Histochemistry 51, pp.153-166, 1977.

A. Irizar, M. Rodríguez, . Izquierdo, . Cancio, M. Marigómez et al., Effects of Soil Organic Matter Content on Cadmium Toxicity in Eisenia fetida: Implications for the Use of Biomarkers and Standard Toxicity Tests, Archives of environmental contamination and toxicology, pp.1-12, 2014.

, Soil Quality. Guidance for the Selection and Application of Methods for the Assessment of Bioavailability of Contaminants in Soil and Soil Materials, ISO 17402, 2008.

Y. Iwasaki, P. Cadmus, and W. H. Clements, Comparison of different predictors of exposure for modeling impacts of metal mixtures on macroinvertebrates in stream microcosms, Aquatic Toxicology, vol.132, pp.151-156, 2013.

R. Janssen, L. Posthuma, R. Baerselman, H. A. Hollander, R. P. Van-veen et al., Equilibrium partitioning of heavy metals in Dutch field soils, 1997.

, Prediction of metal accumulation in earthworms, Environmental Toxicology and Chemistry 16, vol.12, pp.2479-2488

R. P. Jones, A. J. Bednar, and L. S. Inouye, Subcellular compartmentalization of lead in the earthworm, Eisenia fetida: Relationship to survival and reproduction, Ecotoxicology and environmental safety, vol.72, pp.1045-1052, 2009.

M. J. Jonker, C. Svendsen, J. J. Bedaux, M. Bongers, and J. E. Kammenga, Significance testing of synergistic/antagonistic, dose level-dependent, or dose ratio-dependent effects in mixture dose-response analysis, Environmental toxicology and chemistry, vol.24, pp.2701-2713, 2005.

J. H. Kägi, Overview of metallothionein, Methods in enzymology 205, pp.613-626, 1991.

M. A. Khalil, H. M. Abdel-lateif, B. M. Bayoumi, and N. M. Van-straalen, Analysis of separate and combined effects of heavy metals on the growth of Aporrectodea caliginosa(Oligochaeta; Annelida), using the toxic unit approach, Applied Soil Ecology, vol.4, pp.213-219, 1996.

D. G. Kinniburgh, W. H. Van-riemsdijk, L. K. Koopal, M. Borkovec, M. F. Benedetti et al., Ion binding to natural organic matter: competition, heterogeneity, stoichiometry and thermodynamic consistency, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol.151, pp.147-166, 1999.

G. I. Klobu?ar, A. ?tambuk, M. ?rut, I. Husnjak, M. Merka? et al., Aporrectodea caliginosa, a suitable earthworm species for field based genotoxicity assessment?, pp.841-849, 2011.

J. A. Knight, S. Anderson, and J. M. Rawle, Chemical basis of the sulfo-phosphovanillin reaction for estimating total serum lipids, Clinical chemistry 18, vol.3, pp.199-202, 1972.

F. Labrot, M. S. Ribera, J. Denis, and . Narbonne, In vitro and in vivo studies of potential biomarkers of lead and uranium contamination: lipid peroxidation, acetylcholinesterase, catalase and glutathione peroxidase activities in three non-mammalian species, pp.21-28, 1996.

L. Lagadic, T. Caquet, and F. Ramade, The role of biomarkers in environmental assessment (5). Invertebrate populations and communities, pp.193-208, 1994.

I. Lamy, F. Van-oort, C. Dère, and D. Baize, Use of major-and trace-element correlations to assess metal migration in sandy Luvisols irrigated with wastewater, European journal of soil science, vol.57, pp.731-740, 2006.
URL : https://hal.archives-ouvertes.fr/hal-02665521

C. J. Langdon, T. G. Piearce, A. A. Meharg, and K. T. Semple, Survival and behaviour of the earthworms Lumbricus rubellus and Dendrodrilus rubidus from arsenatecontaminated and non-contaminated sites, Soil biology and biochemistry 33, vol.9, pp.1239-1244, 2001.

C. J. Langdon, M. E. Hodson, R. E. Arnold, and S. Black, Survival, Pb-uptake and behaviour of three species of earthworm in Pb treated soils determined using an OECD-style toxicity test and a soil avoidance test, pp.368-375, 2005.

R. Lanno, . Wells, . Conder, N. Bradham, and . Basta, The bioavailability of chemicals in soil for earthworms, Ecotoxicology and Environmental Safety, vol.57, pp.39-47, 2004.

P. Lavelle, Earthworm activities and the soil system, Biology and fertility of Soils, vol.6, pp.237-251, 1988.

P. Lavelle and A. V. Spain, Soil ecology, vol.711, 2001.

K. E. Lee, Earthworms: their ecology and relationships with soils and land use, 1985.

S. Lee, E. Kim, S. Hyun, and J. Kim, Metal availability in heavy metalcontaminated open burning and open detonation soil: Assessment using soil enzymes, earthworms, and chemical extractions, Journal of hazardous materials, vol.170, pp.382-388, 2009.

T. Leveque, Y. Capowiez, E. Schreck, C. Mazzia, M. Auffan et al., Assessing ecotoxicity and uptake of metals and metalloids in relation to two different earthworm species (Eiseina hortensis and Lumbricus terrestris), pp.232-241, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01326829

H. Levesque, T. Moon, P. Campbell, and A. Hontela, Seasonal variation in carbohydrate and lipid metabolism of yellow perch (Perca flavescens) chronically exposed to metals in the field, Aquatic Toxicology, vol.60, pp.257-267, 2002.

L. Li, D. Zhou, P. Wang, and X. Luo, Subcellular distribution of Cd and Pb in earthworm Eisenia fetida as affected by Ca2+ ions and Cd-Pb interaction, Ecotoxicology and Environmental Safety, vol.71, pp.632-637, 2008.

L. Li, D. Zhou, W. J. Peijnenburg, P. Wang, C. A. Van-gestel et al., Uptake pathways and toxicity of Cd and Zn in the earthworm Eisenia fetida, Soil Biology and Biochemistry 42, vol.7, pp.1045-1050, 2010.

L. Li, D. Zhou, P. Wang, and W. J. Peijnenburg, Kinetics of cadmium uptake and subcellular partitioning in the earthworm Eisenia fetida exposed to cadmium-contaminated soil, Archives of environmental contamination and toxicology, vol.57, pp.718-724, 2009.

M. G. Lionetto, A. Calisi, and T. Schettino, Earthworm biomarkers as tools for soil pollution assessment, Soil Health and Land Use and Management, pp.305-332, 2012.

K. Lock and C. Janssen, Mixture Toxicity of Zinc, Cadmium, Copper, and Lead to the Potworm Enchytraeus albidus, Ecotoxicology and environmental safety, vol.52, pp.1-7, 2002.

K. Lock, N. Waegeneers, E. Smolders, P. Criel, H. Van-eeckhout et al., Effect of leaching and aging on the bioavailability of lead to the springtail Folsomia candida, 2006.

T. Lukkari, M. Taavitsainen, M. Soimasuo, A. Oikari, and J. Haimi, Biomarker responses of the earthworm Aporrectodea tuberculata to copper and zinc exposure: differences between populations with and without earlier metal exposure, pp.377-386, 2004.

D. Lumsdon, Partitioning of organic carbon, aluminium and cadmium between solid and solution in soils: application of a mineral-humic particle additivity model, European journal of soil science, vol.55, pp.271-285, 2004.

S. N. Luoma and P. S. Rainbow, Why is metal bioaccumulation so variable? Biodynamics as a unifying concept, Environmental Science & Technology 39, vol.7, pp.1921-1931, 2005.

M. Jarzabeck, Les vers de terre, cibles et acteurs de la biodisponibilité du Cd et du Zn dans les sols contaminés, 2012.

W. K. Ma, B. A. Smith, G. L. Stephenson, and S. D. Siciliano, Development of a simulated earthworm gut for determining bioaccessible arsenic, copper, and zinc from soil, Environmental Toxicology and Chemistry 28, vol.7, pp.1439-1446, 2009.

W. W. Ma, Critical body residues (CBRs) for ecotoxicological soil quality assessment: copper in earthworms, Soil Biology and Biochemistry, vol.37, pp.561-568, 2005.

S. Maity, S. Roy, S. Chaudhury, and S. Bhattacharya, Antioxidant responses of the earthworm Lampito mauritii exposed to Pb and Zn contaminated soil, pp.1-7, 2008.

S. A. Mansour and A. H. Mossa, Lipid peroxidation and oxidative stress in rat erythrocytes induced by chlorpyrifos and the protective effect of zinc, Pesticide Biochemistry and Physiology, vol.93, pp.34-39, 2009.

F. Marino and A. Morgan, The time-course of metal (Ca, Cd, Cu, Pb, Zn) accumulation from a contaminated soil by three populations of the earthworm, Lumbricus rubellus, Applied Soil Ecology, vol.12, pp.169-177, 1999.

A. Meharg, D. Osborn, D. Pain, M. Sánchez, and . Naveso, Contamination of Doñana food-chains after the Aznalcóllar mine disaster, pp.387-390, 1999.

O. Mehra and M. Jackson, Iron oxide removal from soils and clays by a dithionitecitrate system buffered with sodium bicarbonate, Proc. 7th nat. Conf. Clays, vol.5, pp.317-327, 1960.

C. J. Milne, D. G. Kinniburgh, and E. Tipping, Generic NICA-Donnan model parameters for proton binding by humic substances, Environmental science & technology 35, vol.10, pp.2049-2059, 2001.

C. J. Milne, D. G. Kinniburgh, W. H. Van-riemsdijk, and E. Tipping, Generic NICA-Donnan model parameters for metal-ion binding by humic substances, Environmental Science & Technology, vol.37, pp.958-971, 2003.

H. Ming, W. He, D. T. Lamb, M. Megharaj, and R. Naidu, Bioavailability of lead in contaminated soil depends on the nature of bioreceptor, Ecotoxicology and environmental safety 78, pp.344-350, 2012.

L. Moolman, J. Van-vuren, and V. Wepener, Comparative studies on the uptake and effects of cadmium and zinc on the cellular energy allocation of two freshwater gastropods, Ecotoxicology and environmental safety, vol.68, pp.443-450, 2007.

A. Morgan and . Morris, The accumulation and intracellular compartmentation of cadmium, lead, zinc and calcium in two earthworm species (Dendrobaena rubida and Lumbricus rubellus) living in highly contaminated soil, Histochemistry 75, vol.2, pp.269-285, 1982.

A. Morgan, S. Stürzenbaum, G. Winters, N. A. Grime, P. Aziz et al., Differential metallothionein expression in earthworm (Lumbricus rubellus) tissues, Ecotoxicology and environmental safety, vol.57, pp.11-19, 2004.

J. Morgan and A. Morgan, The accumulation of metals (Cd, Cu, Pb, Zn and Ca) by two ecologically contrasting earthworm species (Lumbricus rubellus and Aporrectodea caliginosa): implications for ecotoxicological testing, Applied Soil Ecology, vol.13, pp.9-20, 1999.

J. E. Morgan and A. Morgan, The distribution and intracellular compartmentation of metals in the endogeic earthworm Aporrectodea caliginosa sampled from an unpolluted and a metal-contaminated site, pp.167-175, 1998.

J. Nahmani and P. Lavelle, Effects of heavy metal pollution on soil macrofauna in a grassland of Northern France, European Journal of Soil Biology, vol.38, pp.297-300, 2002.

J. Nahmani, M. E. Hodson, and S. Black, A review of studies performed to assess metal uptake by earthworms, pp.402-424, 2007.

, Effects of metals on life cycle parameters of the earthworm Eisenia fetida exposed to field-contaminated, metal-polluted soils, pp.44-58, 2007.

J. Nahmani, M. E. Hodson, S. Devin, and M. G. Vijver, Uptake kinetics of metals by the earthworm Eisenia fetida exposed to field-contaminated soils, Environmental pollution 157, vol.10, pp.2622-2628, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01726675

F. Nannoni, G. Protano, and F. Riccobono, Uptake and bioaccumulation of heavy elements by two earthworm species from a smelter contaminated area in northern Kosovo, Soil Biology and Biochemistry 43, vol.12, pp.2359-2367, 2011.

. Nf-iso-10390, Qualité du sol -Détermination du pH, 2005.

. Nf-iso-10694, Qualité du sol -Dosage du carbone organique et du carbone total après combustion sèche (analyseélémentaire), 1995.

. Nf-iso-13878, Qualité du sol -Détermination de la teneur totale en azote par combustion sèche, 1998.

. Nf-t90-, Qualité de l'eau -Protocole d'évaluation initiale des performances d'une méthode dans un laboratoire, p.210, 2009.

, Qualité du sol -Détermination de la distribution granulométrique des particules du sol -Méthodeà la pipette, pp.31-107, 2003.

, Qualité des sols -Méthodes chimiques -Détermination de la capacité d'échange cationique (CEC) et des cations extractibles, 1999.

, Qualité des sols -Sols, sédiments -Mise en solution totale par attaque acide, pp.31-147, 1996.

L. A. Oste, J. Dolfing, W. Ma, and T. M. Lexmond, Cadmium uptake by earthworms as related to the availability in the soil and the intestine, Environmental toxicology and chemistry 20, vol.8, pp.1785-1791, 2001.

J. Overgaard, M. Tollarova, K. Hedlund, S. O. Petersen, and M. Holmstrup, Seasonal changes in lipid composition and glycogen storage associated with freeze-tolerance of the earthworm, Dendrobaena octaedra, Journal of Comparative Physiology B, vol.179, pp.569-577, 2009.

O. J. Owojori, A. J. Reinecke, and A. B. Rozanov, Influence of clay content on bioavailability of copper in the earthworm Eisenia fetida, In: Ecotoxicology and Environmental Safety, vol.73, pp.407-414, 2010.

P. R. Paquin, J. W. Gorsuch, S. Apte, G. E. Batley, K. C. Bowles et al., The biotic ligand model: a historical overview, Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, vol.133, pp.3-35, 2002.

B. Pauget, . Gimbert, M. Scheifler, A. Coeurdassier, and . Vaufleury, Soil parameters are key factors to predict metal bioavailability to snails based on chemical extractant data, Science of the Total Environment, vol.431, pp.413-425, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01114682

J. Pearl, Causal inference in statistics: An overview, Statistics Surveys, vol.3, pp.96-146, 2009.

W. J. Peijnenburg, R. Baerselman, A. C. De-groot, T. Jager, L. Posthuma et al., Relating Environmental Availability to Bioavailability: Soil-Type-Dependent Metal Accumulation in the Oligochaete Eisenia andrei, Ecotoxicology and environmental safety, vol.44, pp.294-310, 1999.

W. J. Peijnenburg, M. Zablotskaja, and M. G. Vijver, Monitoring metals in terrestrial environments within a bioavailability framework and a focus on soil extraction, Ecotoxicology and environmental safety, vol.67, pp.163-179, 2007.

W. Peijnenburg and . Jager, Monitoring approaches to assess bioaccessibility and bioavailability of metals: matrix issues, Ecotoxicology and environmental safety, vol.56, pp.63-77, 2003.

W. Peijnenburg, H. Posthuma, H. Eijsackers, and . Allen, A conceptual framework for implementation of bioavailability of metals for environmental management purposes, Ecotoxicology and Environmental Safety, vol.37, pp.163-172, 1997.

C. Pelosi, . Toutous, . Chiron, M. Dubs, . Hedde et al., Reduction of pesticide use can increase earthworm populations in wheat crops in a European temperate region, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00904152

C. Pelosi, S. Joimel, and D. Makowski, Searching for a more sensitive earthworm species to be used in pesticide homologation tests-A meta-analysis, Chemosphere 90.3, pp.895-900, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01000346

G. Pérès, F. Vandenbulcke, M. Guernion, M. Hedde, T. Beguiristain et al., Earthworm indicators as tools for soil monitoring, characterization and risk assessment. An example from the national Bioindicator programme (France), Pedobiologia, vol.54, pp.77-87, 2011.

M. Pérez-losada, M. Ricoy, J. C. Marshall, and J. Domínguez, Phylogenetic assessment of the earthworm Aporrectodea caliginosa species complex (Oligochaeta: Lumbricidae) based on mitochondrial and nuclear DNA sequences, Molecular phylogenetics and evolution 52, vol.2, pp.293-302, 2009.

L. Posthuma and N. M. Van-straalen, Heavy-metal adaptation in terrestrial invertebrates: a review of occurrence, genetics, physiology and ecological consequences, Comparative Biochemistry and Physiology Part C: Pharmacology, Toxicology and Endocrinology 106.1, pp.11-38, 1993.

R. Prasanthi, C. B. Devi, D. C. Basha, N. S. Reddy, and G. R. Reddy, Calcium and zinc supplementation protects lead-induced perturbations in antioxidant enzymes and lipid peroxidation in developing mouse brain, International Journal of Developmental Neuroscience, vol.28, pp.161-167, 2010.

D. W. Pribyl, A critical review of the conventional SOC to SOM conversion factor, Geoderma 156.3, pp.75-83, 2010.

B. H. Pugesek and A. Tomer, Structural equation modeling: applications in ecological and evolutionary biology, 2003.

. R-core-team, R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, 2014.

M. Rault, C. Mazzia, and Y. Capowiez, Tissue distribution and characterization of cholinesterase activity in six earthworm species, Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, issue.2, pp.340-346, 2007.
URL : https://hal.archives-ouvertes.fr/hal-02664646

M. Rault, B. Collange, C. Mazzia, and Y. Capowiez, Dynamics of acetylcholinesterase activity recovery in two earthworm species following exposure to ethyl-parathion, Soil Biology and Biochemistry 40, vol.12, pp.3086-3091, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02663564

G. Rauret, Extraction procedures for the determination of heavy metals in contaminated soil and sediment, Talanta 46.3, pp.449-455, 1998.

S. Reinecke and A. Reinecke, The comet assay as biomarker of heavy metal genotoxicity in earthworms, Archives of Environmental Contamination and Toxicology, vol.46, pp.208-215, 2004.

Y. Rosseel, lavaan: An R package for structural equation modeling, Journal of Statistical Software, vol.48, pp.1-36, 2012.

S. Rodriguez, Les vers de terre acteurs et cibles de la biodisponibilité du Cd et du Zn dans les sols contaminés, 2011.

M. Saint-denis, J. Labrot, D. Narbonne, and . Ribera, Glutathione, glutathionerelated enzymes, and catalase activities in the earthworm Eisenia fetida andrei, Archives of Environmental contamination and Toxicology, vol.35, pp.602-614, 1998.

M. Saint-denis, J. Narbonne, D. Arnaud, and . Ribera, Biochemical responses of the earthworm Eisenia fetida andrei exposed to contaminated artificial soil: effects of lead acetate, Soil Biology and Biochemistry, vol.33, pp.395-404, 2001.

A. Satorra and P. M. Bentler, A scaled difference chi-square test statistic for moment structure analysis, Psychometrika 66, vol.4, pp.507-514, 2001.

S. Sauvé, Speciation of metals in soils, Bioavailability of Metals in Terrestrial Ecosystems: Importance of Partitioning for Bioavailability to Invertebrates, Microbes, and Plants. SETAC, pp.7-37, 2002.

S. Sauvé, W. Hendershot, and H. E. Allen, Solid-solution partitioning of metals in contaminated soils: dependence on pH, total metal burden, and organic matter, Environmental Science & Technology, vol.34, pp.1125-1131, 2000.

J. K. Saxe, C. A. Impellitteri, W. J. Peijnenburg, and H. E. Allen, Novel model describing trace metal concentrations in the earthworm, Eisenia andrei, Environmental science & technology 35, vol.22, pp.4522-4529, 2001.

R. O. Schill and H. Köhler, Energy reserves and metal-storage granules in the hepatopancreas of Oniscus asellus and Porcellio scaber (Isopoda) from a metal gradient at Avonmouth, UK, Ecotoxicology 13, vol.8, pp.787-796, 2004.

E. Schreck, . Geret, M. Gontier, and . Treilhou, Neurotoxic effect and metabolic responses induced by a mixture of six pesticides on the earthworm Aporrectodea caliginosa nocturna, Chemosphere 71, vol.10, pp.1832-1839, 2008.

T. J. Schröder, T. Hiemstra, J. P. Vink, and S. E. Van-der-zee, Modeling of the solid-solution partitioning of heavy metals and arsenic in embanked flood plain soils of the rivers Rhine and Meuse, Environmental science & technology 39, vol.18, pp.7176-7184, 2005.

U. Schwertmann, Differenzierung der Eisenoxide des Bodens durch Extraktion mit Ammoniumoxalat-Lösung, Zeitschrift für Pflanzenernährung, Düngung, Bodenkunde 105.3, pp.194-202, 1964.

J. J. Scott-fordsmand and J. M. Weeks, Biomarkers in earthworms". In: Rev. Environ. Contam. Toxicol, vol.165, pp.117-159, 2000.

J. J. Scott-fordsmand, D. Stevens, and M. Mclaughlin, Do earthworms mobilize fixed zinc from ingested soil?, pp.3036-3039, 2004.

B. Shipley, Cause and correlation in biology: a user's guide to path analysis, structural equations and causal inference, 2002.

V. Simonsen and J. J. Scott-fordsmand, Genetic variation in the enzyme esterase, bioaccumulation and life history traits in the earthworm Lumbricus rubellus from a metal contaminated area, Ecotoxicology 13, vol.8, pp.773-786, 2004.

B. A. Smith, B. Greenberg, and G. L. Stephenson, Comparison of biological and chemical measures of metal bioavailability in field soils: Test of a novel simulated earthworm gut extraction, pp.755-766, 2010.

P. Smith, R. I. Krohn, G. Hermanson, A. Mallia, F. Gartner et al., Measurement of protein using bicinchoninic acid, Analytical biochemistry 150.1, pp.76-85, 1985.

E. Smolders, K. Oorts, P. Van-sprang, I. Schoeters, C. R. Janssen et al., Toxicity of trace metals in soil as affected by soil type and aging after contamination: using calibrated bioavailability models to set ecological soil standards, Environmental Toxicology and Chemistry, vol.28, pp.1633-1642, 2009.

R. Smolders, G. D. Boeck, and R. Blust, Changes in cellular energy budget as a measure of whole effluent toxicity in zebrafish (Danio rerio), pp.890-899, 2003.

D. J. Spurgeon and S. Hopkin, Extrapolation of the laboratory-based OECD earthworm toxicity test to metal-contaminated field sites, pp.190-205, 1995.

D. J. Spurgeon and S. P. Hopkin, Effects of Metal-Contaminated Soils on the Growth, Sexual Development, and Early Cocoon Production of the Earthworm Eisenia fetida, with Particular Reference to Zinc, Ecotoxicology and environmental safety, vol.35, pp.86-95, 1996.

, The effects of metal contamination on earthworm populations around a smelting works: quantifying species effects, Applied Soil Ecology, vol.4, pp.147-160, 1996.

D. J. Spurgeon, C. Svendsen, V. R. Rimmer, S. P. Hopkin, and J. M. Weeks, Relative sensitivity of life-cycle and biomarker responses in four earthworm species exposed to zinc, Environmental toxicology and chemistry 19, vol.7, pp.1800-1808, 2000.

D. J. Spurgeon, S. R. Stürzenbaum, C. Svendsen, P. K. Hankard, A. J. Morgan et al., Toxicological, cellular and gene expression responses in earthworms exposed to copper and cadmium, Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, vol.138, pp.11-21, 2004.

D. J. Spurgeon, H. Ricketts, C. Svendsen, A. J. Morgan, and P. Kille, Hierarchical responses of soil invertebrates (earthworms) to toxic metal stress, pp.5327-5334, 2005.

D. J. Spurgeon, S. Lofts, P. K. Hankard, M. Toal, D. Mclellan et al., Effect of pH on metal speciation and resulting metal uptake and toxicity for earthworms, Environmental Toxicology and chemistry, vol.25, pp.788-796, 2006.

D. Spurgeon and S. Hopkin, Comparisons of metal accumulation and excretion kinetics in earthworms (Eisenia fetida) exposed to contaminated field and laboratory soils, Applied Soil Ecology, vol.11, issue.2, pp.227-243, 1999.

N. T. Steenbergen, F. Iaccino, M. De-winkel, L. Reijnders, and W. J. Peijnenburg, Development of a biotic ligand model and a regression model predicting acute copper toxicity to the earthworm Aporrectodea caliginosa, pp.5694-5702, 2005.

S. R. Stürzenbaum, O. Georgiev, A. J. Morgan, and P. Kille, Cadmium detoxification in earthworms: from genes to cells, Environmental science & technology 38, vol.23, pp.6283-6289, 2004.

S. Suthar, S. Singh, and S. Dhawan, Pb and Cd) in soils: is metal bioaccumulation affected by their ecological category?, In: Ecological Engineering, vol.32, pp.99-107, 2008.

C. Svendsen, D. Spurgeon, P. Hankard, and J. Weeks, A review of lysosomal membrane stability measured by neutral red retention: is it a workable earthworm biomarker?, In: Ecotoxicology and Environmental Safety, vol.57, pp.20-29, 2004.

C. Svendsen and J. M. Weeks, Relevance and Applicability of a Simple Earthworm Biomarker of Copper Exposure. I. Links to Ecological Effects in a Laboratory Study with Eisenia andrei, Ecotoxicology and environmental safety, vol.36, issue.1, pp.72-79, 1997.

S. Thakali, H. E. Allen, D. M. Di-toro, A. A. Ponizovsky, C. P. Rooney et al., Terrestrial biotic ligand model. 2. Application to Ni and Cu toxicities to plants, invertebrates, and microbes in soil, pp.7094-7100, 2006.

J. W. Tonkin, L. S. Balistrieri, and J. W. Murray, Modeling sorption of divalent metal cations on hydrous manganese oxide using the diffuse double layer model, Applied Geochemistry, vol.19, pp.29-53, 2004.

M. Valko, M. Morris, and . Cronin, Metals, toxicity and oxidative stress, vol.12, pp.1161-1208, 2005.

N. Van-straalen, M. Donker, M. Vijver, and C. Van-gestel, Bioavailability of contaminants estimated from uptake rates into soil invertebrates, pp.409-417, 2005.

P. Van-vliet, S. Van-der-zee, and W. Ma, Heavy metal concentrations in soil and earthworms in a floodplain grassland, pp.505-516, 2005.

B. Vandecasteele, J. Samyn, P. Quataert, B. Muys, and F. M. Tack, Earthworm biomass as additional information for risk assessment of heavy metal biomagnification: a case study for dredged sediment-derived soils and polluted floodplain soils, pp.363-375, 2004.

J. Vandesompele, K. De, F. Preter, B. Pattyn, N. Poppe et al., Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes, Genome biology 3.7, research0034, 2002.

K. Veltman, M. A. Huijbregts, M. G. Vijver, W. J. Peijnenburg, P. H. Hobbelen et al., Metal accumulation in the earthworm Lumbricus rubellus. Model predictions compared to field data, pp.428-436, 2007.

M. G. Vijver, J. P. Vink, C. J. Miermans, and C. A. Van-gestel, Oral sealing using glue: a new method to distinguish between intestinal and dermal uptake of metals in earthworms, Soil Biology and Biochemistry, vol.35, pp.125-132, 2003.

M. G. Vijver, C. A. Van-gestel, R. P. Lanno, N. M. Van-straalen, and W. J. Peijnenburg, Internal metal sequestration and its ecotoxicological relevance: a review, Environmental science & technology 38, vol.18, pp.4705-4712, 2004.

M. G. Vijver, J. P. Vink, T. Jager, H. T. Wolterbeek, N. M. Van-straalen et al., Biphasic elimination and uptake kinetics of Zn and Cd in the earthworm Lumbricus rubellus exposed to contaminated floodplain soil, Soil Biology and Biochemistry, vol.37, pp.1843-1851, 2005.

M. G. Vijver, C. A. Van-gestel, N. M. Van-straalen, R. P. Lanno, and W. J. Peijnenburg, Biological significance of metals partitioned to subcellular fractions within earthworms (Aporrectodea caliginosa, Environmental Toxicology and Chemistry, vol.25, pp.807-814, 2006.

M. G. Vijver, M. Koster, and W. J. Peijnenburg, Impact of pH on Cu accumulation kinetics in earthworm cytosol, Environmental science & technology 41, vol.7, pp.2255-2260, 2007.

W. ,

W. G. Wallace and G. R. Lopez, Relationship between subcellular cadmium distribution in prey and cadmium trophic transfer to a predator, pp.923-930, 1996.

W. G. Wallace, G. R. Lopez, and J. S. Levinton, Cadmium resistance in an oligochaete and its effect on cadmium trophic transfer to an omnivorous shrimp, Marine Ecology Progress Series, vol.172, pp.225-237, 1998.

W. G. Wallace, B. Lee, and S. N. Luoma, Subcellular compartmentalization of Cd and Zn in two bivalves. I. Significance of metal-sensitive fractions (MSF) and biologically detoxified metal (BDM), Marine Ecology Progress Series, vol.249, pp.183-197, 2003.

J. M. Weeks, D. J. Spurgeon, C. Svendsen, P. K. Hankard, J. E. Kammenga et al., Critical analysis of soil invertebrate biomarkers: a field case study in Avonmouth, UK, pp.817-822, 2004.

L. Weng, E. J. Temminghoff, and W. H. Van-riemsdijk, Contribution of individual sorbents to the control of heavy metal activity in sandy soil, Environmental science & technology 35, vol.22, pp.4436-4443, 2001.

Y. Zhang, G. Shen, Y. Yu, and H. Zhu, The hormetic effect of cadmium on the activity of antioxidant enzymes in the earthworm Eisenia fetida, pp.3064-3068, 2009.

. Moolman, Pour la bibliographie et les méthodes détaillées nous renvoyons aux sections dédiées du manuscrit de thèse. Résumé ont montré que les réservesénergétiques pourraient répondreà la contamination métallique, Les pages qui suivent constituent un résuméétendu de la thèse en français, 2007.

, Modèle biologique

, De plus, il est possible de les utiliser dans le cadre d'expériences en conditions contrôlées, approche qui á eté retenue dans ce travail de thèse, Enfin, biodisponibilité et impact sur les vers de terre sont bien documentés dans la littérature scientifique notamment du fait de l'importance fonctionnelle de ces ingénieurs desécosystèmes, 1995.

. Ernst, Certaines espèces sont plus résistantesà la contamination métallique que d'autres. Par exemple, le modèle courant et standardisé enécotoxicologie des sols, Eisenia fetida, serait moins sensible que d'autres vers de terre (Spurgeon and Hopkin 1996). L'espèce Aporrectodea caliginosa (Savigny 1826) est apparue la plus intéressante car elle, L'exposition, la bioaccumulation et la sensibilité aux ETM varient en fonction de l'espècé etudiée (Spurgeon and Hopkin, 1996.

. Au-début-de-la-thèse, En revanche, les espèces modèles enécotoxicologie (notamment E. andrei ) peuvent présenter des différences par rapportà A. caliginosa. La figure 6.6 montre les résultats de cette analyse bibliographique obtenus pour le Zn. Les pentes des relations entre concentrations dans les animaux et dans les sols sont similaires pour l'ensemble des espèces (modèle ANCOVA), une analyse bibliographique aété menée sur la bioaccumulation des ETM dans différentes espèces de vers de terre. Les données issues de 39 articles ont eté récoltées