. Matériel and . .. De-culture,

. Stimulation and . .. Serre,

G. Stimulation and . .. Isotrope,

. Extraction-adng, . Arntx, and . .. Des-adnc,

. Pcr, . En, and . .. Réel,

. .. Pcr-quantitative-À-haut-débit,

. Construction-et-expression-d'une, . Protéine, and . .. Glutathion-s-transférase,

. Extraction, . De, and . .. Végétales,

. Electrophorèse, . Et, . Sur, and . .. De-nitrocellulose,

. Analyse-par and . .. Blot,

. Prélèvements, . Inclusion, and . .. Paraffine, Potri.017G008700 Potri.015G045200 Potri.001G040500 Potri.T132900 Potri.017G034700 Potri.017G035500 Potri.009G154100 Potri.001G040000 Potri.017G118400 Potri

. Potri and . Potri, 017G035400 Potri.012G003000 Potri.017G117500 Potri

. Potri and . Potri, 012G003500 Potri.007G126200 Potri.004G191400 Potri.017G009200 Potri.014G038600 Potri.T064100 Potri.008G059900 Potri

R. Azaiez, A. Boyle, B. Levée, V. Séguin, and A. , Transcriptome profiling in hybrid poplar following interactions with Melampsora rust fungi, Mol Plant Microbe Interact, vol.22, pp.190-200, 2009.

T. L. Bailey, M. Boden, F. A. Buske, M. Frith, C. E. Grant et al., MEME Suite: tools for motif discovery and searching, Nucleic Acids Res, vol.37, pp.202-208, 2009.

F. Balu?ka, J. ?amaj, P. Wojtaszek, D. Volkmann, and D. Menzel, Cytoskeleton-plasma membrane-cell wall continuum in plants. Emerging links revisited, Plant Physiol, vol.133, pp.482-491, 2003.

B. Bâaziz, K. Lopez, D. Rabot, A. Combes, D. Gousset et al., Light-mediated K leaf induction and contribution of both the PIP1s and PIP2s aquaporins in five tree species: walnut (Juglans regia) case study, Tree Physiol, vol.32, pp.423-434, 2012.

A. Brutus, F. Sicilia, A. Macone, F. Cervone, D. Lorenzo et al., A domain swap approach reveals a role of the plant wall-associated kinase 1 (WAK1) as a receptor of oligogalacturonides, Proc Natl Acad Sci U S A, vol.107, pp.9452-9457, 2010.

F. Calendini and J. F. Martin, , 2005.

D. Cohen, M. B. Bogeat-triboulot, and E. Tisserant, Comparative transcriptomics of drought responses in Populus: a meta-analysis of genome-wide expression profiling in mature leaves and root apices across two genotypes, BMC Genomics, vol.11, p.630, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-00663875

A. Decreux and J. Messiaen, Wall-associated kinase WAK1 interacts with cell wall pectins in a calcium-induced conformation, Plant Cell Physiol, vol.46, pp.268-278, 2005.

A. Decreux, A. Thomas, B. Spies, R. Brasseur, P. Van-cutsem et al., In vitro characterization of the homogalacturonan-binding domain of the wall-associated kinase WAK1 using site-directed mutagenesis, Phytochemistry, vol.67, pp.1068-1079, 2006.

D. A. Dougherty, The cation-? interaction, Acc Chem Res, vol.46, pp.885-893, 2012.

R. C. Edgar, MUSCLE: multiple sequence alignment with high accuracy and high throughput, Nucleic Acids Res, vol.32, pp.1792-1797, 2004.

E. Freisinger, Structural features specific to plant metallothioneins, J Biol Inorg Chem, vol.16, pp.1035-1045, 2011.

D. M. Goodstein, S. Shu, and R. Howson, Phytozome: a comparative platform for green plant genomics, Nucleic Acids Res, vol.40, pp.1178-1186, 2012.

N. Grisel, S. Zoller, M. Künzli-gontarczyk, T. Lampart, M. Münsterkötter et al., Transcriptome responses to aluminum stress in roots of aspen, 2010.

, BMC Plant Biol, vol.10, p.185

E. T. Hamanishi, S. Raj, O. Wilkins, B. R. Thomas, S. D. Mansfield et al., Intraspecific variation in the Populus balsamifera drought transcriptome, Plant Cell Environ, vol.33, pp.1742-1755, 2010.

K. Hanada, C. Zou, M. D. Lehti-shiu, K. Shinozaki, and S. H. Shiu, Importance of lineage-specific expansion of plant tandem duplicates in the adaptive response to environmental stimuli, Plant Physiol, vol.148, pp.993-1003, 2008.

Z. H. He, M. Fujiki, and B. D. Kohorn, A cell wall-associated, receptor-like protein kinase, J Biol Chem, vol.271, pp.19789-19793, 1996.

Z. H. He, D. He, and B. D. Kohorn, Requirement for the induced expression of a cell wall associated receptor kinase for survival during the pathogen response, Plant J, vol.14, pp.55-63, 1998.

Z. H. He, I. Cheeseman, D. He, and B. D. Kohorn, A cluster of five cell wall-associated receptor kinase genes, Wak1-5, are expressed in specific organs of Arabidopsis, Plant Mol Biol, vol.39, pp.1189-1196, 1999.

X. Hou, H. Tong, J. Selby, J. Dewitt, X. Peng et al., Involvement of a cell wall-associated kinase, WAKL4, in Arabidopsis mineral responses, Plant Physiol, vol.139, pp.1704-1716, 2005.

T. V. Humphrey, D. T. Bonetta, and D. R. Goring, Sentinels at the wall: cell wall receptors and sensors, New Phytol, vol.176, pp.7-21, 2007.

W. E. Johnson, C. Li, and A. Rabinovic, Adjusting batch effects in microarray expression data using empirical Bayes methods, Biostatistics, vol.8, pp.118-127, 2007.

J. Jones and J. L. Dangl, The plant immune system, Nature, vol.444, pp.323-329, 2006.

B. Jourez, A. Riboux, and A. Leclercq, Anatomical characteristics of tension wood and opposite wood in young inclined stems of poplar (Populus euramericana cv 'ghoy'), IAWA J, vol.22, pp.133-157, 2001.

H. Kishino and M. Hasegawa, Evaluation of the maximum likelihood estimate of the evolutionnary tree topologies from DNA sequences data, and the branching order in Hmonoidea, J Mol Evol, vol.29, pp.170-179, 1989.

A. Kohler, C. Rinaldi, S. Duplessis, M. Baucher, D. Geelen et al., Genome-wide identification of NBS resistance genes in Populus trichocarpa, Plant Mol Biol, vol.66, pp.619-636, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02669184

B. D. Kohorn, M. Kobayashi, S. Johansen, H. P. Friedman, A. Fischer et al., Wall-associated kinase 1 (WAK1) is crosslinked in endomembranes, and transport to the cell surface requires correct cell-wall synthesis, J Cell Sci, vol.119, pp.2282-2290, 2006.

B. D. Kohorn, S. Johansen, A. Shishido, T. Todorova, R. Martinez et al., Pectin activation of MAP kinase and gene expression is WAK2 dependent, Plant J, vol.60, pp.974-982, 2009.

B. D. Kohorn, S. L. Kohorn, T. Todorova, G. Baptiste, K. Stansky et al., A dominant allele of Arabidopsis pectinbinding wall-associated kinase induces a stress response suppressed by MPK6 but not MPK3 mutations, Mol Plant, vol.5, pp.841-851, 2012.

D. Lally, P. Ingmire, H. Y. Tong, and Z. H. He, Antisense expression of a cell wall-associated protein kinase, WAK4, inhibits cell elongation and alters morphology, Plant Cell, vol.13, pp.1317-1331, 2001.

T. Lan, Z. L. Yang, X. Yang, Y. J. Liu, X. R. Wang et al., Extensive functional diversification of the Populus glutathione S-transferase supergene family, Plant Cell, vol.21, pp.3749-3766, 2009.

M. D. Lehti-shiu, C. Zou, K. Hanada, and S. H. Shiu, Evolutionary history and stress regulation of plant Receptor-Like Kinase/Pelle genes, Plant Physiol, vol.150, pp.12-26, 2009.

I. Letunic and P. Bork, Interactive Tree Of Life v2: online annotation and display of phylogenetic trees made easy, Nucleic Acids Res, vol.39, pp.475-478, 2011.

V. Levée, I. Major, C. Levasseur, L. Tremblay, J. Mackay et al., Expression profiling and functional analysis of Populus WRKY23 reveals a regulatory role in defense, New Phytol, vol.184, pp.48-70, 2009.

H. Li, S. Y. Zhou, W. S. Zhao, S. C. Su, and Y. L. Peng, A novel wallassociated receptor-like protein kinase gene, OsWAK1, plays important roles in rice blast disease resistance, Plant Mol Biol, vol.69, pp.337-346, 2009.

D. Lopez, G. Bronner, and N. Brunel, Insights into Populus XIP aquaporins: evolutionary expansion, protein functionality, and environmental regulation, J Exp Bot, vol.63, pp.2217-2230, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00777008

A. Marchler-bauer, S. Lu, and J. B. Anderson, CDD: a Conserved Domain Database for the functional annotation of proteins, Nucleic Acids Res, vol.39, pp.225-229, 2011.

S. Meier, O. Ruzvidzo, M. Morse, L. Donaldson, L. Kwezi et al., The Arabidopsis wall associated kinase-like 10 gene encodes a functional guanylyl cyclase and is co-expressed with pathogen defense related genes, PLoS One, vol.5, p.8904, 2010.

R. C. Moore and M. D. Purugganan, The evolutionary dynamics of plant duplicate genes, Curr Opin Plant Biol, vol.8, pp.122-128, 2005.

W. D. Morgan, B. Birdsall, T. A. Frenkiel, M. G. Gradwell, P. A. Burghaus et al., Solution structure of an EGF module pair from the Plasmodium falciparum merozoite surface protein 1, J Mol Biol, vol.289, pp.113-122, 1999.

A. H. Paterson, M. Freeling, H. Tang, and X. Wang, Insights from the comparison of plant genome sequences, Annu Rev Plant Biol, vol.61, pp.349-372, 2010.

B. Petre, I. Major, N. Rouhier, and S. Duplessis, Genome-wide analysis of eukaryote thaumatin-like proteins (TLPs) with an emphasis on poplar, BMC Plant Biol, vol.11, p.33, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02548481

M. Punta, P. C. Coggill, and R. Y. Eberhardt, The Pfam protein families database, Nucleic Acids Res, vol.40, pp.290-301, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01294685

, R: a language and environment for statistical computing. R Foundation for Statistical Computing, 2008.

Z. Rao, P. Handford, M. Mayhew, V. Knott, G. G. Brownlee et al., The structure of a Ca 2+ -binding epidermal growth factor-like domain: its role in protein-protein interactions, Cell, vol.82, pp.131-141, 1995.

A. Saeed, V. Sharov, and J. White, TM4: A free, open-source system for microarray data management and analysis, Biotechniques, vol.34, pp.374-378, 2003.

J. Schug, W. P. Schuller, C. Kappen, J. M. Salbaum, M. Bucan et al., Promoter features related to tissue specificity as measured by Shannon entropy, Genome Biol, vol.6, p.33, 2005.

S. H. Shiu and A. B. Bleecker, Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases, Proc Natl Acad Sci U S A, vol.98, pp.10763-10768, 2001.

S. H. Shiu and A. B. Bleecker, Expansion of the Receptor-Like Kinase/ Pelle gene family and Receptor-Like Proteins in Arabidopsis, Plant Physiol, vol.132, pp.530-543, 2003.

M. Sivaguru, B. Ezaki, Z. H. He, H. Tong, H. Osawa et al., Aluminum-induced gene expression and protein localization of a cell wall-associated receptor kinase in Arabidopsis, Plant Physiol, vol.132, pp.2256-2266, 2003.

A. Sjödin, N. R. Street, G. Sandberg, P. Gustafsson, and S. Jansson, The Populus Genome Integrative Explorer (PopGenIE): a new resource for exploring the Populus genome, New Phytol, vol.182, pp.1013-1025, 2009.

J. Stenflo, Y. Stenberg, and A. Muranyi, Calcium-binding EGF-like modules in coagulation proteinases: function of the calcium ion in module interactions, Biochim Biophys Acta, vol.1477, pp.51-63, 2000.

D. L. Swofford, PAUP*: phylogenetic Analysis Using Parsimony (and Other Methods) Version 4, 2000.

K. Tamura, D. Peterson, N. Peterson, G. Stecher, M. Nei et al., MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods, Mol Biol Evol, vol.28, pp.2731-2739, 2011.

F. W. Telewski, A unified hypothesis of mechanoperception in plants?, Am J Bot, vol.93, pp.1466-1476, 2006.

K. Tocquard, D. Lopez, M. Decourteix, B. Thibaut, J. L. Julien et al., The molecular mechanisms of reaction wood induction, Biol. React. Wood, pp.107-138, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01135267

G. A. Tuskan, S. Difazio, and S. Jansson, The genome of black cottonwood, Populus trichocarpa (Torr. & Gray), Science, vol.313, pp.1596-1604, 2006.
URL : https://hal.archives-ouvertes.fr/hal-02669155

J. A. Verica and Z. H. He, The cell Wall-Associated Kinase (WAK) and WAK-Like kinase gene family, Plant Physiol, vol.129, pp.455-459, 2002.

J. A. Verica, C. L. Tong, H. Ingmire, P. He, and Z. H. , Tissue-specific and developmentally regulated expression of a cluster of tandemly arrayed cell wall-associated kinase-like kinase genes in Arabidopsis, Plant Physiol, vol.133, pp.1732-1746, 2003.

T. A. Wagner and B. D. Kohorn, Wall-associated kinases are expressed throughout plant development and are required for cell expansion, Plant Cell, vol.13, pp.303-318, 2001.

O. Wilkins, H. Nahal, J. Foong, N. J. Provart, and M. M. Campbell, Expansion and diversification of the R2R3-MYB family of transcription factors, Plant Physiol, vol.149, pp.981-993, 2009.

O. Wilkins, L. Waldron, H. Nahal, N. J. Provart, and M. M. Campbell, Genotype and time of day shape the Populus drought response, Plant J, vol.60, pp.703-715, 2009.

S. Wolf, K. Hématy, and H. Höfte, Growth control and cell wall signaling in plants, Annu Rev Plant Biol, vol.63, pp.381-407, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01053127

M. A. Wouters, I. Rigoutsos, C. K. Chu, L. L. Feng, D. B. Sparrow et al., Evolution of distinct EGF domains with specific functions, Protein Sci, vol.14, pp.1091-1103, 2005.

M. Wrzaczek, M. Brosché, J. Salojärvi, S. Kangasjärvi, N. Idänheimo et al., Transcriptional regulation of the CRK/DUF26 group of receptor-like protein kinases by ozone and plant hormones in Arabidopsis, BMC Plant Biol, vol.10, p.95, 2010.

X. Yang, U. C. Kalluri, S. P. Difazio, S. D. Wullschleger, T. J. Tschaplinski et al., Poplar genomics: state of the science, Crit Rev Plant Sci, vol.28, pp.285-308, 2009.

S. Zhang, C. Chen, L. Li, L. Meng, J. Singh et al., Evolutionary expansion, gene structure, and expression of the rice wall-associated kinase gene family, Plant Physiol, vol.139, pp.1107-1124, 2005.

. Pt and . Potri,

, eugene3.00010157 POPTR_0001s07650 GubWAK-WAK-EGFca-TM-Kinase Pt WAK17 Potri.002G075900 Potri.002G075900.1 Chr02: 5242804 -5246124 eugene3.00061997 POPTR_0002s07650 GubWAK-EGFca-TM-Kinase Pt WAK18 Potri.002G076000 Potri.002G076000.1 Chr02: 5250099 -5253709 eugene3.00061998 POPTR_0002s07660 GubWAK-EGFca-TM-Kinase Pt WAK19 Potri.002G076100 Potri.002G076100.1 Chr02: 5265363 -5268752 POPTR_0002s07670 GubWAK-EGFca-TM-Kinase, vol.01, pp.2991802-2994397

. Potri, , vol.1, pp.9801086-9804205

-. Gubwak,

, GubWAK-EGF3-TM-Kinase Pt WAK21 Potri.003G185700 Potri.003G185700.1 Chr03, pp.19159504-19162343

, POPTR_0003s18440 GubWAK-EGFca-TM-Kinase Pt WAK22 Potri.003G185800 Potri.003G185800.1 Chr03: 19172767 -19177083 Chr03: 19172767 -19175543 POPTR_0075s00210 GubWAK-WAK-TM-Kinase Pt WAK23 Potri.003G185900 Potri.003G185900.1 Chr03: 19179435 -19179981 Chr03: 19176189 -19179981 POPTR_0075s00230 GubWAK-WAK Pt WAK24 Potri.003G186000 Potri.003G186000.1 Chr03, pp.19186929-19190924

-. Gubwak, . Pt, and . Potri, 003G186100 Potri.003G186100.1 Chr03, pp.19228668-19231510

T. Poptr_0003s18490, TM-Kinase Pt WAK26 Potri.003G186200 Potri.003G186200.1 Chr03, pp.19237820-19241505

P. Gubwak, -. Pt, and . Potri, 004G076100 Potri.004G076100.1 Chr04: 6350243 -6353142 TM-GubWAK-WAKassoc-TM-Kinase Pt WAK28 Potri

, TM-GubWAK-WAKassoc-TM-Kinase Pt WAK29 Potri.004G096500 Potri.004G096500.1 Chr04: 8322539 -8325652 Chr04: 8322539 -8323373 TM-WAKassoc Pt WAK30 Potri.004G096600 Potri.004G096600.1 Chr04: 8326783 -8328270 Chr04: 8324791 -8328270 TM-GubWAK-WAKassoc-TM-Kinase Pt WAK31 Potri, vol.04, pp.6364110-6367167

, POPTR_0004s09590 POPTR_0004s09600 TM-WAKassoc-TM-Kinase Pt WAK32 Potri.004G096900 Potri.004G096900.1 Chr04, vol.04, pp.8341471-8345071

T. Poptr_0004s09610, . Pt, and . Potri, 004G097000 Potri.004G097000.1 Chr04: 8348899 -8353983 POPTR_0004s09620 POPTR_0004s09630 TM-WAKassoc-TM-Kinase Pt WAK34 Potri.004G097100 Potri.004G097100.1 Chr04, pp.8360765-8364004

T. Poptr_0004s09640, . Pt, and . Potri, Potri.004G191400.1 Chr04: 20582525 -20585192 POPTR_0004s20290 cEGF-EGFca-TM-Kinase Pt WAK36 Potri.004G191500 Potri.004G191500.1 Chr04, vol.04, pp.20590945-20593586, 4191400.

T. Poptr_0004s20300, . Pt, and . Potri, , vol.04, pp.20596354-20597809

, GubWAK Pt WAK38 Potri.004G191800 Potri.004G191800.1 Chr04, pp.20600098-20603242

T. Poptr_0004s20330, . Pt, and . Potri, , vol.04, pp.20608562-20612217

, POPTR_0004s20340 GubWAK-EGFca-TM-Kinase Pt WAK40 Potri.004G192000 Potri.004G192000.1 Chr04, pp.20625677-20629168

T. Poptr_0004s20350, . Pt, and . Potri, 004G192100 Potri.004G192100.1 Chr04: 20635946 -20640018 POPTR 0004s20360 GubWAK-cEGF-EGFca-TM-Kinase Pt WAK42 Potri.004G192300 Potri.004G192300.1 Chr04, pp.20666753-20668076

, POPTR_0004s20360 TM-Kinase Pt WAK43 Potri.004G192400 Potri.004G192400.1 Chr04: 20670661 -20675637 POPTR_0004s20390 POPTR_0004s20380 GubWAK-cEGF-EGFca-TM-Kinase

. Potri, , vol.1, pp.20700628-20704962

. Gubwak-egfca-tm-kinase, , vol.04, pp.20700628-20704962

-. Gubwak, Kinase Pt WAK45 Potri.004G192700 Potri.004G192700.1 Chr04, pp.20718034-20721714

, POPTR_0004s20400 GubWAK-EGFca-TM-Kinase Pt WAK46 Potri.004G192900 Potri.004G192900.1 Chr04, pp.20740483-20743972

, POPTR_0004s20410 GubWAK-EGFca-TM-Kinase Pt WAK47 Potri.004G193000 Potri.004G193000.1 Chr04, pp.20757190-20763226

, Kinase Pt WAK48 Potri.004G193100 Potri.004G193100.1 Chr04: 20781351 -20785121 POPTR_0273s00200 GubWAK-EGFca-TM-Kinase Pt

. Potri, , vol.1, pp.20793595-20802379

, Kinase Pt WAK49.2 Potri.004G193300.2 Chr04, pp.20793595-20802379

K. Pt and W. ,

. Potri, , vol.3, pp.20793595-20802379

K. Potri, , pp.4-193300

. Potri,

. Potri,

, Potri.005G130900.1 Chr05: 10522883 -10527222 TM-GubWAK-EGF3-TM-Kinase Pt WAK50.2 Potri.005G130900.2 Chr05: 10522883 -10527222 TM-GubWAK-EGF3-TM-Kinase Pt

, Potri.005G130900.3 Chr05: 10522891 -10527079 TM-GubWAK-EGF3-TM-Kinase Pt

, Potri.005G203300.1 Chr05: 21807551 -21811975 TM-Kinase 1 DT482185

, Pt WAK51.2 Potri.005G203300.2 Chr05: 21807551 -21811975 TM-Kinase Pt WAK52 Potri.005G203400 Potri.005G203400.1 Chr05, pp.21817924-21822460

, POPTR_0005s22500 GubWAK-TM-Kinase Pt WAK53 Potri.006G090200 Potri.006G090200.1 Chr06, pp.6920833-6923155

T. Poptr_0006s09120, . Pt, and . Potri, , vol.06, pp.9364041-9365978

T. Poptr_0006s12000 and W. Pt,

, Potri.007G034500.1 Chr07: 2660850 -2666270 TM-GubWAK-TM-Kinase Pt WAK55.2 Potri.007G034500.2 Chr07: 2660850 -2665989 TM-GubWAK-TM-Kinase Pt WAK56 Potri

. Pt and . Potri, 007G125000 Potri.007G125000.1 Chr07: 14202458 -14205003 TM-GubWAK-TM-Kinase Pt

, Potri.007G125100.1 Chr07: 14205667 -14207557 TM-Kinase Pt WAK58.2 Potri.007G125100.2 Chr07, pp.14205444-14207557

, Kinase Pt WAK59 Potri.007G125200 Potri.007G125200.1 Chr07, vol.07, pp.14208713-14212062

-. Gubwak, . Pt, and . Potri, , vol.07, pp.14223508-14225515

T. Pt and . Potri, , vol.07, pp.14229770-14232627

P. Gubwak, -. Pt, and W. ,

. Potri, , vol.1, pp.14233165-14235060

-. Gubwak, , vol.07, pp.14233382-14234328

, GubWAK Pt WAK64 Potri.007G126100 Potri.007G126100.1 Chr07, pp.14240070-14242795

T. Poptr_0007s02210, . Pt, and . Potri, , vol.07, pp.14244432-14247044

T. Poptr_0007s02200, . Pt, and . Potri,

W. Pt,

-. Gubwak,

, Pt WAK67.2 Potri.007G141100.1_Potri.007G141000.2 Chr07, vol.07, pp.15168567-15175599

-. Gubwak, . Pt, and . Potri, , vol.07, pp.15178810-15179124

, POPTR_0007s00800 GubWAK Pt WAK69 Potri

T. Poptr_0007s00780, . Pt, and . Potri, , vol.08, pp.3608119-3611960

T. Poptr_0008s06030 and W. Pt,

, Potri.008G125500.1 Chr08: 8181763 -8184630 TM-GubWAK-TM-Kinase 1 DT487676

, Pt WAK71.2 Potri.008G125500.2 Chr08: 8181763 -8184630 TM-GubWAK-TM-Kinase Pt WAK72 Potri.009G154100 Potri.009G154100.1 Chr09, pp.12046073-12049280

T. Poptr_0009s15610, . Pt, and . Potri,

, Chr09: 12058476 -12059442 Chr09: 12054133 -12059442 TM-GubWAK-TM-Kinase Pt WAK74 Potri.009G154600 Potri.009G154600.1 Chr09, pp.12064847-12067713

, POPTR_0009s15650 TM-GubWAK-cEGF-EGFca-TM-Kinase Pt WAK75 Potri.009G155000 Potri.009G155000.1 Chr09, pp.12082726-12085781

T. Poptr_0009s15690, . Pt, and . Potri, 009G157200 Potri.009G157200.1 Chr09: 12206347 -12210001 TM-GubWAK-cEGF-EGFca-TM-Kinase Pt WAK77 Potri.010G118300 Potri.010G118300.1 Chr10, pp.13583197-13585950

, POPTR_0010s12830 GubWAK-TM-Kinase Pt WAK78 Potri.010G120800 Potri.010G120800.1 Chr10: 13764470 -13771997 TM-GubWAK-WAKassoc-TM-Kinase 1 DT487783

. Pt and . Potri,

, Chr10: 13775546 -13776533 Chr10: 13775546 -13783710 POPTR_0188s00230 POPTR_0188s00220 TM-GubWAK-WAKassoc-TM-Kinase Pt WAK80 Potri.010G121100 Potri.010G121100.1 Chr10, pp.13786576-13789431

T. Poptr_0188s00210, , 2001.

. Pt and . Potri, 010G121200 Potri.010G121200.1 Chr10: 13793338 -13796081 TM-Kinase Pt WAK82 Potri.012G002800 Potri.012G002800.1 Chr12, pp.251913-254266

, POPTR_0012s01750 GubWAK-TM-Kinase Pt WAK83 Potri.012G002900 Potri.012G002900.1 Chr12, pp.256145-257327

, POPTR_0012s01755 No domain Pt WAK84 Potri.012G003000 Potri.012G003000.1 Chr12, vol.12, pp.259027-261452

T. Poptr_0012s01760,

. Pt and . Potri, 012G003100 Potri.012G003100.1 Chr12, vol.12, pp.262107-267682

, POPTR_0012s01770 GubWAK-TM-Kinase Pt WAK86 Potri.012G003200 Potri.012G003200.1 Chr12, pp.274497-275360

, POPTR_0197s00240 Kinase Pt WAK87 Potri.012G003300 Potri.012G003300.1 Chr12, pp.295539-295919

, POPTR_0197s00230 GubWAK Pt WAK88 Potri.012G003400 Potri.012G003400.1 Chr12, pp.297398-307378

, Kinase Pt WAK89 Potri.012G003500 Potri.012G003500.1 Chr12, pp.309074-311809

. Potri, , vol.1, pp.312350-318650

, Kinase Pt WAK91 Potri.012G054500 Potri.012G054500.1 Chr12, pp.5514161-5515072

, WAKassoc Pt WAK92 Potri.012G054600 Potri.012G054600.1 Chr12, pp.5520929-5522030

, POPTR_0014s03810 TM-GubWAK-EGF3-TM-Kinase Pt WAK95 Potri.015G017900 Potri.015G017900.1 Chr15, pp.1291204-1291464

, Kinase Pt WAK96 Potri.015G018000 Potri.015G018000.1 Chr15: 1294560 -1297744 TM-GubWAK-TM-Kinase Pt WAK97 Potri.015G018100 Potri.015G018100.1 Chr15, pp.1298954-1306566

, POPTR_0015s00220 TM-Kinase Pt WAK98 Potri.015G018200 Potri.015G018200.1 Chr15, pp.1308298-1311369

-. Gubwak, . Pt, and . Potri, Potri.015G018500.1 Chr15: 1320519 -1321614 fgenesh4_pg.C_LG_XV000179 POPTR_0015s02030 Kinase Pt WAK100 Potri.015G018600 Potri.015G018600.1 Chr15, pp.1322434-1325524, 15018500.

T. Poptr_0015s02040, . Pt, and . Potri,

. Potri, , vol.1, pp.4428271-4433595

, Kinase Pt WAK102.2 Potri.015G044900.2 Chr15, pp.4428274-4433595

, Kinase Pt WAK103 Potri.015G045000 Potri.015G045000.1 Chr15, pp.4443074-4443803

. Chr15, TM-Kinase Pt WAK105 Potri.015G045200 Potri.015G045200.1 Chr15, pp.4451929-4455571

T. Poptr_0015s03870, . Pt, and . Potri,

. Chr15, , vol.15, pp.13604850-13605497

. Potri,

. Potri,

. Potri,

. Potri,

. Potri,

. Potri,

. Potri,

. Potri,

, Potri.005G203300 fgenesh4_pg.C_LG_VII000984 POPTR_0007s11990

. Potri and . Potri, 017G007900.1, vol.17, pp.549615-552670

T. Poptr_0017s04130, . Pt, and . Potri, 017G008000 Potri.017G008000.1 Chr17: 566720 -570079 TM-GubWAK-TM-Kinase Pt WAK109 Potri.017G008100 Potri.017G008100.1 Chr17, pp.583179-584266

, Kinase Pt WAK110 Potri.017G008200 Potri.017G008200.1 Chr17: 594495 -597429 Chr17: 594270 -597429 TM-GubWAK-TM-Kinase Pt WAK111 Potri.017G008400 Potri.017G008400.1 Chr17, pp.644640-647961

-. Gubwak, . Pt, and . Potri, 017G008600 Potri.017G008600.1 Chr17: 672303 -676389 TM-GubWAK-TM-Kinase Pt WAK113 Potri.017G008700 Potri.017G008700.1 Chr17: 680330 -683701 POPTR_0017s04120 GubWAK-TM-Kinase Pt WAK114 Potri.017G008800 Potri.017G008800.1 Chr17: 709834 -712800 TM-GubWAK-TM-Kinase Pt WAK115 Potri.017G008900 Potri.017G008900.1 Chr17, pp.725990-726994

, Kinase Pt WAK116 Potri.017G009000 Potri.017G009000.1 Chr17, pp.731715-732821

, POPTR_0247s00220 Kinase Pt WAK117 Potri.017G009100 Potri.017G009100.1 Chr17, pp.736318-739867

T. Poptr_0247s00230, . Pt, and . Potri, 017G009200 Potri.017G009200.1 Chr17, vol.17, pp.781505-785049

. Potri, , vol.17, pp.790440-796277

. Potri, , vol.3, pp.792120-794018

, Kinase Pt WAK120 Potri.017G009500 Potri.017G009500.1 Chr17: 804971 -809233 TM-GubWAK-TM-Kinase Pt WAK121 Potri.017G009600 Potri.017G009600.1 Chr17: 816820 -825478 TM-GubWAK-TM-Kinase Pt WAK122 Potri

-. Gubwak and W. Pt,

, Potri.017G034700.1 Chr17: 2931282 -2933607 TM-GubWAK-TM-Kinase Pt WAK123.2 Potri.017G034700.2 Chr17: 2931268 -2933607 TM-GubWAK-TM

. Pt and . Potri, 017G035400 Potri.017G035400.1 Chr17: 2980522 -2983787 POPTR_0017s06310 GubWAK-TM-Kinase Pt

, Potri.017G035500.1 Chr17: 3000793 -3003187 TM-Kinase Pt WAK125.2 Potri.017G035500.2 Chr17: 3000793 -3003187 TM-Kinase Pt

. Potri, , vol.3, pp.3000793-3003187

, Potri.017G116900.1 Chr17: 13176769 -13179690 TM-GubWAK-WAKassoc-TM-Kinase Pt WAK126.2 Potri.017G116900.2 Chr17: 13176769 -13180151 TM-GubWAK-WAKassoc-TM-Kinase Pt

, Potri.017G116900.3 Chr17: 13176769 -13179690 TM-GubWAK-WAKassoc-TM-Kinase Pt WAK127 Potri

, Chr17: 13189007 -13190005 Chr17: 13185919 -13190005 POPTR_0005s15380 POPTR_0005s15390 TM-GubWAK-WAKassoc-TM-Kinase Pt WAK128 Potri.017G117300 Potri.017G117300.1 Chr17: 13194262 -13197702 TM-WAKassoc-TM-Kinase Pt WAK129 Potri.017G117400 Potri.017G117400.1 Chr17: 13198458 -13201095 TM-GubWAK-WAKassoc Pt WAK130 Potri.017G117500 Potri.017G117500.1 Chr17, pp.13216663-13219746

, POPTR_0005s15340 TM-Kinase Pt WAK131 Potri.017G117600 Potri.017G117600.1 Chr17, pp.13221475-13222498

, POPTR_0418s00200 TM-WAKassoc Pt WAK132 Potri.017G117700 Potri.017G117700.1 Chr17: 13229876 -13231256 Chr17: 13229876 -13235322 POPTR_0418s00210 GubWAK-TM-Kinase Pt WAK133 Potri.017G117800 Potri.017G117800.1 Chr17: 13234204 -13236269 Chr17: 13235498 -13236269 POPTR_0418s00230 POPTR_0418s00220 TM-GubWAK-WAKassoc Pt WAK134 Potri.017G118100 Potri.017G118100.1 Chr17, pp.13250298-13254031

. Pt and . Potri, 017G118200 Potri.017G118200.1 Chr17: 13257522 -13264037 TM-GubWAK-WAKassoc-TM-GubWAK-WAKassoc Pt WAK136 Potri.017G118400 Potri.017G118400.1 Chr17, pp.13275737-13280133

T. Poptr_0005s15240, TM-Kinase Pt WAK137 Potri.017G118500 Potri.017G118500.1 Chr17, pp.13283276-13284109

, POPTR_0005s15230 TM-WAKassoc, vol.2

. Pt and . Potri, 018G000200 Potri.018G000200.1 Chr18, vol.18, pp.12615-13629

, POPTR_0018s04270 Kinase Pt WAK139 Potri.018G000300 Potri.018G000300.1 Chr18, vol.18, pp.14416-16547

, POPTR_0018s04260 TM-Kinase Pt WAK140 Potri.018G148300 Potri.018G148300.1 Chr18: 16680448 -16684315 POPTR_0126s00200 GubWAK-WAK-TM-Kinase Pt WAK141 Potri.018G148400 Potri.018G148400.1 Chr18, vol.18, pp.16687259-16688707

. Potri,

. Potri,

. Potri,

. 0. Potri and . Potri, , p.126500

. Potri, . Potri, and . Potri, , pp.4-191400

. 0. Potri and . Potri, , p.64100

. Potri,

. Potri and . Potri, , 7125100.

. Potri,

. Potri and . Potri, , pp.15-018100

C. Anderson, T. Wagner, M. Perret, Z. He, D. He et al., WAKs: cell wallassociated kinases linking the cytoplasm to the extracellular matrix, Plant Mol Biol, vol.47, pp.197-206, 2001.

P. Artimo, M. Jonnalagedda, K. Arnold, D. Baratin, G. Csardi et al.,

A. Fortier and E. Gasteiger, ExPASy: SIB bioinformatics resource portal, Nucleic Acids Research, vol.40, pp.597-603, 2012.

W. Azri, C. Chambon, S. Herbette, N. Brunel, C. Coutand et al.,

J. Julien and P. Drevet, Proteome analysis of apical and basal regions of poplar stems under gravitropic stimulation, Physiologia Plantarum, vol.136, pp.193-208, 2009.

F. Balu?ka, J. ?amaj, P. Wojtaszek, D. Volkmann, and D. Menzel, Cytoskeleton-Plasma Membrane-Cell Wall Continuum in Plants. Emerging Links Revisited, Plant Physiology, vol.133, pp.482-491, 2003.

F. Balu?ka and D. Volkmann, Mechanical Aspects of Gravity-Controlled Growth, Development and Morphogenesis, Mechanical Integration of Plant Cells and Plants, P. Wojtaszek, pp.195-223, 2011.

D. Bartels and F. Salamini, Desiccation Tolerance in the Resurrection PlantCraterostigma plantagineum. A Contribution to the Study of Drought Tolerance at the Molecular Level, Plant Physiology, vol.127, pp.1346-1353, 2001.

A. Bilska-kos, D. Solecka, A. Dziewulska, P. Ochodzki, M. Jo?czyk et al., , 2016.

, Protoplasma, pp.1-12

E. B. Blancaflor, Regulation of plant gravity sensing and signaling by the actin cytoskeleton, 2013.

, American Journal of Botany, vol.100, pp.143-152

K. Boonsirichai, J. C. Sedbrook, R. Chen, S. Gilroy, and P. H. Masson, ALTERED RESPONSE TO GRAVITY Is a Peripheral Membrane Protein That Modulates Gravity-Induced Cytoplasmic Alkalinization and Lateral Auxin Transport in Plant Statocytes, The Plant Cell, vol.15, pp.2612-2625, 2003.

A. Brutus, F. Sicilia, A. Macone, F. Cervone, D. Lorenzo et al., , 2010.

K. H. Caffall and D. Mohnen, The structure, function, and biosynthesis of plant cell wall pectic polysaccharides, Références bibliographiques -59, vol.344, pp.1879-1900, 2009.

L. Chae, S. Sudat, S. Dudoit, T. Zhu, and S. Luan, Diverse Transcriptional Programs Associated with Environmental Stress and Hormones in the Arabidopsis Receptor-Like Kinase Gene Family, Molecular Plant, vol.2, pp.84-107, 2009.

S. Chang, J. Puryear, and J. Cairney, A simple and efficient method for isolating RNA from pine trees, Plant Mol Biol Rep, vol.11, pp.113-116, 1993.

J. M. Cock, V. Vanoosthuyse, and T. Gaude, Receptor kinase signalling in plants and animals: distinct molecular systems with mechanistic similarities, Current Opinion in Cell Biology, vol.14, pp.230-236, 2002.

M. Correll, T. Pyle, K. L. Millar, Y. Sun, J. Yao et al., Transcriptome analyses of Arabidopsis thaliana seedlings grown in space: implications for gravity-responsive genes, 2013.

, Planta, vol.238, pp.519-533

C. Coutand, B. Adam, S. Ploquin, D. Lopez, and B. Moulia, Quantification and comparison of phototropic and gravitropic sensitivities of three hardwood species by original isotropic light devices and model-assisted phenotyping, 8th Plant Biomechanics International Conference, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01269526

C. Coutand, M. Fournier, and B. Moulia, The Gravitropic Response of Poplar Trunks: Key Roles of Prestressed Wood Regulation and the Relative Kinetics of Cambial Growth versus Wood Maturation, Plant Physiology, vol.144, pp.1166-1180, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01080861

C. Coutand, G. Pot, and E. Badel, Mechanosensing is involved in the regulation of autostress levels in tension wood, Trees, vol.28, pp.687-697, 2014.

F. Czapek, Weitere beiträge zur kenntniss der geotropischen reizbewegungen, Jahrbücher für Wissenschaftliche Botanik, vol.32, pp.175-308, 1898.

L. F. De-oliveira, A. P. Christoff, J. C. De-lima, B. C. De-ross, G. Sachetto-martins et al., The Wall-associated Kinase gene family in rice genomes, Plant Science, vol.229, pp.181-192, 2014.

A. Decreux and J. Messiaen, Wall-associated Kinase WAK1 Interacts with Cell Wall Pectins in a Calcium-induced Conformation, Plant and Cell Physiology, vol.46, pp.268-278, 2005.

A. Decreux, A. Thomas, B. Spies, R. Brasseur, P. V. Cutsem et al., In vitro characterization of the homogalacturonan-binding domain of the wall-associated kinase WAK1 using site-directed mutagenesis, Phytochemistry, vol.67, pp.1068-1079, 2006.

A. Déjardin, F. Laurans, D. Arnaud, C. Breton, G. Pilate et al., Wood formation in Angiosperms, Comptes Rendus Biologies, vol.333, pp.325-334, 2010.

A. C. Diener and F. M. Ausubel, RESISTANCE TO FUSARIUM OXYSPORUM 1, a Dominant Arabidopsis Disease-Resistance Gene, Is Not Race Specific, Genetics, vol.171, pp.305-321, 2005.

L. Feiz, M. Irshad, R. Pont-lezica, H. Canut, and E. Jamet, , 2006.

H. Fukaki, J. Wysocka-diller, T. Kato, H. Fujisawa, P. N. Benfey et al., Genetic evidence that the endodermis is essential for shoot gravitropism in Arabidopsis thaliana, The Plant Journal, vol.14, pp.425-430, 1998.

L. Gao and H. Xue, Global Analysis of Expression Profiles of Rice Receptor-Like Kinase Genes, Molecular Plant, vol.5, pp.143-153, 2012.

C. A. Gehring, D. A. Williams, S. H. Cody, and R. W. Parish, Phototropism and geotropism in maize coleoptiles are spatially correlated with increases in cytosolic free calcium, Nature, vol.345, pp.528-530, 1990.

S. Gerttula, M. Zinkgraf, G. K. Muday, D. R. Lewis, F. M. Ibatullin et al., Transcriptional and Hormonal Regulation of Gravitropism of Woody Stems in Populus, The Plant Cell, vol.27, pp.2800-2813, 2015.

V. Giarola, S. Krey, B. Driesch, and D. Bartels, The Craterostigma plantagineum glycine-rich, 2016.

C. Grignon and H. Sentenac, pH and ionic conditions in the apoplast, Annual Review of Plant Biology, vol.42, pp.103-128, 1991.
URL : https://hal.archives-ouvertes.fr/hal-02716036

H. Guo, L. Li, M. Aluru, S. Aluru, Y. et al., Mechanisms and networks for brassinosteroid regulated gene expression, Current Opinion in Plant Biology, vol.16, pp.545-553, 2013.

J. Harholt, A. Suttangkakul, V. Scheller, and H. , Biosynthesis of Pectin, Plant Physiology, 2010.

E. S. Haswell, R. Phillips, and D. C. Rees, Mechanosensitive Channels: What Can They Do and How Do They Do It?, Structure, vol.19, pp.1356-1369, 2011.

E. S. Haswell and P. E. Verslues, The ongoing search for the molecular basis of plant osmosensing, The Journal of General Physiology, vol.145, pp.389-394, 2015.

Z. He, I. Cheeseman, D. He, and B. Kohorn, A cluster of five cell wall-associated receptor kinase genes, Wak1-5, are expressed in specific organs of Arabidopsis, Plant Mol Biol, vol.39, pp.1189-1196, 1999.

Z. He, M. Fujiki, and B. D. Kohorn, A Cell Wall-associated, Receptor-like Protein Kinase, Journal of Biological Chemistry, vol.271, pp.19789-19793, 1996.

Z. He, D. He, and B. D. Kohorn, Plant Journal, vol.14, pp.55-63, 1998.

X. Hou, H. Tong, J. Selby, J. Dewitt, X. Peng et al., Involvement of a Cell Wall-Associated Kinase, WAKL4, in Arabidopsis Mineral Responses, Plant Physiology, vol.139, pp.1704-1716, 2005.

W. Hu, Y. Lv, W. Lei, X. Li, Y. Chen et al., Cloning and characterization of the Oryza sativa wall-associated kinase gene OsWAK11 and its transcriptional response to abiotic stresses, Plant Soil, vol.384, pp.335-346, 2014.

X. Hu, S. J. Neill, Z. Tang, and W. Cai, Nitric Oxide Mediates Gravitropic Bending in Soybean Roots, Plant Physiology, vol.137, pp.663-670, 2005.

S. Hurni, D. Scheuermann, S. G. Krattinger, B. Kessel, T. Wicker et al., , 2015.

S. Jeong, A. E. Trotochaud, and S. E. Clark, The Arabidopsis CLAVATA2 Gene Encodes a Receptor-like Protein Required for the Stability of the CLAVATA1 Receptor-like Kinase, The Plant Cell, vol.11, pp.1925-1933, 1999.

B. Jourez, A. Riboux, and A. Leclercq, Anatomical characteristics of tension wood and opposite wood in young inclined stems of poplar (Populus euramericana cv 'Ghoy'), IAWA Journal, vol.22, 2001.

V. Kanneganti and A. Gupta, RNAi mediated silencing of a wall associated kinase, p.1, 2011.

A. Kasprowicz, M. Smolarkiewicz, M. Wierzchowiecka, M. Michalak, and P. Wojtaszek, , 2011.

, Introduction: Tensegral World of Plants, Mechanical Integration of Plant Cells and Plants

E. Wojtaszek, , pp.1-25

R. Kaur, K. Singh, and J. Singh, A root-specific wall-associated kinase gene, HvWAK1, regulates root growth and is highly divergent in barley and other cereals, Funct Integr Genomics, vol.13, pp.167-177, 2013.

B. D. Kohorn, Cell wall-associated kinases and pectin perception, Journal of Experimental Botany, vol.67, pp.489-494, 2016.

B. D. Kohorn, S. Johansen, A. Shishido, T. Todorova, R. Martinez et al., , 2009.

, Pectin activation of MAP kinase and gene expression is WAK2 dependent, The Plant Journal, vol.60, pp.974-982

B. D. Kohorn, M. Kobayashi, S. Johansen, H. P. Friedman, A. Fischer et al., Wallassociated kinase 1 (WAK1) is crosslinked in endomembranes, and transport to the cell surface requires correct cell-wall synthesis, Journal of Cell Science, vol.119, pp.2282-2290, 2006.

B. D. Kohorn, M. Kobayashi, S. Johansen, J. Riese, L. Huang et al.,

N. Byers, An Arabidopsis cell wall-associated kinase required for invertase activity and cell growth, The Plant Journal, vol.46, pp.307-316, 2006.

B. D. Kohorn and S. L. Kohorn, The Cell Wall Associated Kinases, WAKs, As Pectin Receptors, Frontiers in Plant Science, vol.3, p.88, 2012.

B. D. Kohorn, S. L. Kohorn, N. J. Saba, and V. M. Martinez, Requirement for Pectin Methyl Esterase and Preference for Fragmented over Native Pectins for Wall, 2014.

, EDS1/PAD4-dependent Stress Response in Arabidopsis, Journal of Biological Chemistry, vol.289, pp.18978-18986

B. D. Kohorn, S. L. Kohorn, T. Todorova, G. Baptiste, K. Stansky et al., , 2012.

, Dominant Allele of Arabidopsis Pectin-Binding Wall-Associated Kinase Induces a Stress Response

B. D. Kohorn, S. Lane, and T. A. Smith, of the National Academy of Sciences, vol.89, pp.10989-10992, 1992.

S. Kojika and J. D. Griffin, Notch receptors and hematopoiesis, Experimental Hematology, vol.29, pp.1041-1052, 2001.

S. Konlasuk, Y. Xing, N. Zhang, W. Zuo, B. Zhang et al., ZmWAK, a quantitative resistance gene to head smut in maize, improves yield performance by reducing the endophytic pathogen Sporisorium reiliana, Mol Breeding, vol.35, pp.1-10, 2015.

D. Lally, P. Ingmire, H. Tong, and Z. He, Antisense Expression of a Cell Wall-Associated Protein Kinase, WAK4, Inhibits Cell Elongation and Alters Morphology, The Plant Cell, vol.13, pp.1317-1332, 2001.

M. D. Lehti-shiu and S. Shiu, Diversity, classification and function of the plant protein kinase superfamily, Philosophical Transactions of the Royal Society of, vol.367, pp.2619-2639, 2012.

M. D. Lehti-shiu, C. Zou, K. Hanada, and S. Shiu, Evolutionary History and Stress Regulation of Plant Receptor-Like Kinase/Pelle Genes, Plant Physiology, vol.150, pp.12-26, 2009.

H. Li, S. Zhou, W. Zhao, S. Su, and Y. Peng, A novel wall-associated receptor-like protein kinase gene, OsWAK1, plays important roles in rice blast disease resistance, Plant Mol Biol, vol.69, pp.337-346, 2009.

K. J. Livak and T. D. Schmittgen, Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2???CT Method, Methods, vol.25, pp.402-408, 2001.

D. Lopez, G. Bronner, N. Brunel, D. Auguin, S. Bourgerie et al., Insights into Populus XIP aquaporins: evolutionary expansion, protein functionality, and environmental regulation, Journal of Experimental Botany, vol.63, pp.2217-2230, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00777008

D. Lopez, K. Tocquard, J. Venisse, V. Legué, and P. Drevet, Gravity sensing, a largely misunderstood trigger of plant orientated growth, Frontiers in Plant Science, vol.5, p.610, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01218304

U. Mayer, R. Nischt, E. Pöschl, K. Mann, K. Fukuda et al., A single EGF-like motif of laminin is responsible for high affinity nidogen binding, The EMBO Journal, vol.12, 1993.

S. Meier, O. Ruzvidzo, M. Morse, L. Donaldson, L. Kwezi et al., The Arabidopsis <italic>Wall Associated Kinase-Like 10</italic> Gene Encodes a Functional Guanylyl Cyclase and Is Co-Expressed with Pathogen Defense Related Genes, PLoS ONE, vol.5, p.8904, 2010.

G. B. Monshausen and S. Gilroy, Feeling green: mechanosensing in plants, Trends in Cell Biology, vol.19, pp.228-235, 2009.

G. B. Monshausen and E. S. Haswell, A force of nature: molecular mechanisms of mechanoperception in plants, Journal of Experimental Botany, vol.64, pp.4663-4680, 2013.

M. T. Morita, Directional Gravity Sensing in Gravitropism, Annual Review of Plant Biology, vol.61, pp.705-720, 2010.

M. T. Morita, T. Kato, K. Nagafusa, C. Saito, T. Ueda et al., , 2002.

, Arabidopsis. The Plant Cell, vol.14, pp.47-56

J. Morizet and M. Mingeau, Influence des facteurs de milieu sur l'absorption hydrique. Etude effectuee sur tomate decapitee en exsudation. i. facteurs nutritionnels, 1976.

J. L. Mullen, H. Ishikawa, and M. L. Evans, Analysis of changes in relative elemental growth rate patterns in the elongation zone of Arabidopsis roots upon gravistimulation, Planta, vol.206, pp.598-603, 1998.

T. Murashige and F. Skoog, A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures, Physiologia Plantarum, vol.15, pp.473-497, 1962.

R. Novaes, J. Rodrigues, and M. Lovato, An efficient protocol for tissue sampling and DNA isolation from the stem bark of Leguminosae trees, Genet Mol Res, vol.8, pp.86-96, 2009.

A. R. Park, S. K. Cho, U. J. Yun, M. Y. Jin, S. H. Lee et al., , 2001.

, Interaction of the Arabidopsis Receptor Protein Kinase Wak1 with a Glycine-rich Protein, AtGRP-3, Journal of Biological Chemistry, vol.276, pp.26688-26693

O. Pechanova, C. Hsu, J. P. Adams, T. Pechan, L. Vandervelde et al.,

J. C. Suttle and A. M. Lawrence, , 2010.

G. Perbal and D. Driss-ecole, Mechanotransduction in gravisensing cells, Trends in Plant Science, vol.8, pp.498-504, 2003.

I. Y. Perera, I. Heilmann, and W. F. Boss, Transient and sustained increases in inositol 1,4,5-trisphosphate precede the differential growth response in gravistimulated maize pulvini, Proceedings of the National Academy of Sciences of the United States of America, vol.96, pp.5838-5843, 1999.

I. Y. Perera, I. Heilmann, S. C. Chang, W. F. Boss, and P. B. Kaufman, A Role for Inositol 1,4,5-Trisphosphate in Gravitropic Signaling and the Retention of Cold-Perceived Gravistimulation of Oat Shoot Pulvini, Plant Physiology, vol.125, pp.1499-1507, 2001.

M. W. Pfaffl, A new mathematical model for relative quantification in real-time RT-PCR, 2001.

, Nucleic Acids Research, vol.29

W. Pfeffer, Geotropic Sensitiveness of the Root-tip, Annals of Botany os, vol.8, pp.317-320, 1894.

B. Pickard and J. Ding, The Mechanosensory Calcium-Selective Ion Channel: Key Component of a Plasmalemmal Control Centre?, Functional Plant Biology, vol.20, pp.439-459, 1993.

B. G. Pickard, Delivering Force and Amplifying Signals in Plant Mechanosensing, Current Topics in Membranes, pp.361-392, 2007.

G. Pilate, A. Déjardin, F. Laurans, and J. Leplé, Tension wood as a model for functional genomics of wood formation, New Phytologist, vol.164, pp.63-72, 2004.
URL : https://hal.archives-ouvertes.fr/hal-02682383

C. Plieth and A. J. Trewavas, Reorientation of Seedlings in the Earth's Gravitational Field Induces Cytosolic Calcium Transients, Plant Physiology, vol.129, pp.786-796, 2002.

C. Plomion, G. Leprovost, and A. Stokes, Wood Formation in Trees, Plant Physiology, vol.127, pp.1513-1523, 2001.
URL : https://hal.archives-ouvertes.fr/hal-01204210

. R-core-team, R: A language and environment for statistical computing, R Foundation for Statistical Computing), 2015.

H. Rosli, Y. Zheng, M. Pombo, S. Zhong, A. Bombarely et al., , 2013.

, Genome Biology, vol.14, p.139

F. D. Sack, Plastids and gravitropic sensing, S63-S68. Références bibliographiques -66, vol.203, 1997.

M. Sasaki, H. K. Kleinman, H. Huber, R. Deutzmann, and Y. Yamada, Laminin, a multidomain protein. The A chain has a unique globular domain and homology with the basement membrane proteoglycan and the laminin B chains, Journal of Biological Chemistry, vol.263, pp.16536-16544, 1988.

S. Scacco, R. Vergari, R. C. Scarpulla, Z. Technikova-dobrova, A. Sardanelli et al., cAMP-dependent Phosphorylation of the Nuclear Encoded 18-kDa (IP) Subunit of Respiratory Complex I and Activation of the Complex in Serum-starved Mouse Fibroblast Cultures, Journal of Biological Chemistry, vol.275, pp.17578-17582, 2000.

J. C. Sedbrook, R. Chen, and P. H. Masson, ARG1 (Altered Response to Gravity) encodes a, 1999.

, DnaJ-like protein that potentially interacts with the cytoskeleton, Proceedings of the National Academy of Sciences of the United States of America, vol.96, pp.1140-1145

S. Shiu and A. B. Bleecker, Plant Receptor-Like Kinase Gene Family: Diversity, Function, and Signaling, Science Signaling, pp.22-22, 2001.

M. Sivaguru, B. Ezaki, Z. He, H. Tong, H. Osawa et al.,

, Aluminum-Induced Gene Expression and Protein Localization of a Cell Wall-Associated Receptor Kinase in Arabidopsis, Plant Physiology, vol.132, pp.2256-2266

J. P. Stanga, K. Boonsirichai, J. C. Sedbrook, M. S. Otegui, and P. H. Masson, A Role for the TOC Complex in Arabidopsis Root Gravitropism, Plant Physiology, vol.149, pp.1896-1905, 2009.

J. Stenflo, Y. Stenberg, and A. Muranyi, Calcium-binding EGF-like modules in coagulation proteinases: function of the calcium ion in module interactions, Biochimica et Biophysica Acta (BBA) -Protein Structure and Molecular Enzymology, vol.1477, pp.51-63, 2000.

A. K. Strohm, G. A. Barrett-wilt, and P. H. Masson, A functional TOC complex contributes to gravity signal transduction in Arabidopsis, Frontiers in Plant Science, vol.5, p.148, 2014.

F. W. Telewski, A unified hypothesis of mechanoperception in plants, American Journal of Botany, vol.93, pp.1466-1476, 2006.

C. A. Ten-hove, Z. Bochdanovits, V. M. Jansweijer, F. G. Koning, L. Berke et al., Probing the roles of LRR RLK genes in Arabidopsis thaliana roots using a custom T-DNA insertion set, Plant Mol Biol, vol.76, pp.69-83, 2011.

C. Thisse and B. Thisse, High-resolution in situ hybridization to whole-mount zebrafish embryos, Nature protocols, vol.3, pp.59-69, 2008.

K. Tocquard, C. Lafon-placette, D. Auguin, B. Muries, G. Bronner et al., In silico study of wall-associated kinase family reveals largescale genomic expansion potentially connected with functional diversification in Populus, Tree Genetics & Genomes, vol.10, pp.1135-1147, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01114446

K. Tocquard, D. Lopez, M. Decourteix, B. Thibaut, J. Julien et al., The Molecular Mechanisms of Reaction Wood Induction, The Biology of Reaction Wood, pp.107-138, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01135267

M. Toyota, T. Furuichi, H. Tatsumi, and M. Sokabe, Cytoplasmic Calcium Increases in Response to Changes in the Gravity Vector in Hypocotyls and Petioles of Arabidopsis Seedlings, Plant Physiology, vol.146, pp.505-514, 2008.

M. Toyota and S. Gilroy, Gravitropism and mechanical signaling in plants, American Journal of Botany, vol.100, pp.111-125, 2013.

A. E. Trotochaud, T. Hao, G. Wu, Z. Yang, and S. E. Clark, The CLAVATA1 Receptor-like Kinase Requires CLAVATA3 for Its Assembly into a Signaling Complex That Includes KAPP and a Rho-Related Protein, The Plant Cell, vol.11, pp.393-405, 1999.

R. Tsugeki and N. V. Fedoroff, Genetic ablation of root cap cells in Arabidopsis, Proceedings of the National Academy of Sciences, vol.96, pp.12941-12946, 1999.

G. A. Tuskan, S. Difazio, S. Jansson, J. Bohlmann, I. Grigoriev et al., The Genome of Black Cottonwood, Populus trichocarpa (Torr. & Gray), Science, vol.313, pp.1596-1604, 2006.
URL : https://hal.archives-ouvertes.fr/hal-02669155

J. A. Verica, L. Chae, H. Tong, P. Ingmire, and Z. He, Tissue-Specific and Developmentally Regulated Expression of a Cluster of Tandemly Arrayed Cell Wall-Associated Kinase-Like Kinase Genes in Arabidopsis, Plant Physiology, vol.133, pp.1732-1746, 2003.

J. A. Verica and Z. He, The Cell Wall-Associated Kinase (WAK) and WAK-Like Kinase Gene Family, Plant Physiology, vol.129, pp.455-459, 2002.

T. A. Wagner and B. D. Kohorn, Wall-Associated Kinases Are Expressed throughout Plant Development and Are Required for Cell Expansion, The Plant Cell, vol.13, pp.303-318, 2001.

Z. Wang, S. Du, S. Dayanandan, D. Wang, Y. Zeng et al., Phylogeny Reconstruction and Hybrid Analysis of <italic>Populus</italic> (Salicaceae) Based on Nucleotide Sequences of Multiple Single-Copy Nuclear Genes and Plastid Fragments, PLoS ONE, vol.9, 2014.

I. Wittig, H. Braun, and H. Schagger, Blue native PAGE, Nat Protocols, vol.1, pp.418-428, 2006.

M. A. Wouters, I. Rigoutsos, C. K. Chu, L. L. Feng, D. B. Sparrow et al., , 2005.

, Evolution of distinct EGF domains with specific functions, Protein Science, vol.14, pp.1091-1103

E. J. Yang, Y. A. Oh, E. S. Lee, A. R. Park, S. K. Cho et al., Oxygen-evolving, 2003.

, Arabidopsis. Biochemical and Biophysical Research Communications, vol.305, pp.862-868

K. Yang, L. Qi, and Z. Zhang, Isolation and characterization of a novel wall-associated kinase gene TaWAK5 in wheat (Triticum aestivum), The Crop Journal, vol.2, pp.255-266, 2014.

S. Zhang, C. Chen, L. Li, L. Meng, J. Singh et al., , 2005.

, Evolutionary Expansion, Gene Structure, and Expression of the Rice Wall-Associated Kinase Gene Family, Plant Physiology, vol.139, pp.1107-1124

S. Zhou, W. Zhao, H. Li, Z. Guo, and Y. Peng, Characterization of a Novel RING Finger Gene OsRFP1, which is Induced by Ethylene, Salicylic Acid and Blast Fungus Infection in Rice, Journal of Phytopathology, vol.156, pp.396-402, 2008.

W. Zuo, Q. Chao, N. Zhang, J. Ye, G. Tan et al.,

. Bastien, Proc. Natl. Acad. Sci. U.S.A, vol.1, issue.0, pp.755-760, 2013.

. Sack, S63-S68 8th Plant Biomechanics International Conference (PBM2015), vol.203, 1997.

K. Tocquard, N. Brunel-michac, J. Franchel, N. Fournier-leblanc, J. Venisse et al., Roeckel-Drevet P the interface of this continuum, wall associated kinases (WAKs) could be good candidates as sensors and/or actors of the cell mechanical deformation. Indeed, WAKs have an extracellular part that can bind to the pectins of the cell wall, a single transmembrane region and an intracellular kinase domain which could signal deformations between membrane and wall to the cytoplasm, the starch-statolith hypothesis (Sack, 1997) References Balu?ka F, pp.195-223, 2011.

F. D. Sack, Plastids and gravitropic sensing, Planta, vol.203, pp.63-68, 1997.

K. Tocquard, C. Lafon-placette, D. Auguin, B. Muries, G. Bronner et al., In silico study of wall-associated kinase family reveals large-scale genomic expansion potentially connected with functional diversification in Populus, Tree genetic and genomes, vol.10, pp.1135-1147, 2014.

, Pour les parties aériennes le gravitropisme est négatif, c'est-à-dire que les plantes vont adapter leur croissance dans la direction opposée à la gravité. Chez les arbres, le redressement est assuré par à la formation asymétrique d'un bois aux propriétés physico-chimiques particulières appelé le bois de réaction. Des récepteurs kinases pourraient participer à la perception et à la réponse précoce au stimulus gravitropique qu'est l'inclinaison. Parmi ces familles protéiques, les kinases associées à la paroi (WAK) sont des candidats intéressants. La liaison de ces protéines à la paroi permettrait de percevoir les déformations qui sont supposées se produire par l'inclinaison de la tige. Nous avons alors identifié et caractérisé pour la première fois la famille WAKs chez une espèce ligneuse, le peuplier, qui est composée de 175 membres. L'étude d'accumulation des transcrits WAKs a permis d'identifier les gènes WAKs qui s, Résumé Les plantes adaptent leur croissance en fonction des facteurs environnementaux dont la gravité qui est un facteur constant