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Résumé

Dans un contexte de changement global, prédire l’évolution de la productivité
de la végétation dans le sud-ouest (SO) Sibérien reste un défi du fait d’incertitudes
fortes sur les processus régulant la disponibilité en eau et en nutriments. Nous avons
mis en évidence des relations entre cycles biogéochimiques, climat et propriétés du
sol sur six sites contrastés.

La croissance radiale des tiges de peuplier est principalement sensible au bilan
hydrique du sol en forêt de steppe, au sud du SO Sibérien, alors qu’elle est stimulée
par de hautes températures estivales en sub-taïga, dans le nord de la région.

Des mesures de terrain et des simulations du bilan hydrique du sol ont montré
que la fonte des neiges est importante pour la recharge des réserves hydriques du
sol au sud. Au nord, ces réserves sont souvent rechargées en automne. La fonte des
neiges est alors associée à du drainage. De plus, au nord, une épaisse couverture
de neige protège le sol du gel en hiver. La distribution des racines fines est plus
profonde en forêt de steppe qu’en sub-taïga, impactée par le déficit hydrique et le
gel.

L’homogénéité du statut en phosphore (P) des sols dans le SO Sibérien montre qu’il
n’est pas encore très impacté par la pédogénèse. Les stocks en P élevés, notamment
les formes disponibles pour les plantes, suggèrent que le P n’est pas et ne sera pas
limitant dans le futur.

La décomposition des litières aériennes et la libération de l’azote (N) sont plus
rapides en sub-taïga qu’en forêt de steppe. Un fort drainage pourrait expliquer un
transfert profond du N dans les sols en sub-taïga. Cependant ces sols semblent
efficaces pour retenir le N, limitant les pertes pour le système sol–plante.

Mots-Clés : Sibérie du sud-ouest, changement global, neige, température du sol,
bilan hydrique du sol, cerne, phosphore, azote, racines fines, isotopes, peuplier,
prairie
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Abstract

Predicting the evolution of vegetation productivity in SW Siberia in the context
of global change remains a challenge because of major uncertainties concerning
the biogeochemical cycling and the plant-availability of water and nutrients. We
provided insights on their relation to climate and soil properties, investigating six
contrasting sites.

Aspen stem radial growth is mainly sensitive to soil water budget in the forest-
steppe zone established in the south of SW Siberia while it is enhanced by high
summer temperatures in the sub-taiga, in the north of the region.

Field measurements and water budget simulations revealed that snow-melt is
important re-filling soil water reserves in the south. In the north, these reserves
are mostly re-filled in autumn and snow-melt is associated with drainage. A thick
snow-pack also prevents soil from freezing in winter in the sub-taiga. Water deficit
and soil freezing largely impact the distribution of fine roots within the soil profile
which is deeper in forest-steppe than in sub-taiga.

The homogeneous soil phosphorus (P) status in the region investigated revealed
this nutrient has not been yet very impacted by contrasting soil processes. High P
stocks, and in particular plant-available forms, suggest P is unlikely to be limiting
under current and future conditions.

By contrast, we found differences in nitrogen (N) status. Above-ground litter
decay and the release of N occurs faster in sub-taiga than in forest-steppe. Higher
drainage may explain deeper N transfer in sub-taiga soils. However, sub-taiga soils
also seem to be efficient in retaining N, limiting losses from the soil–plant system.

Keywords south-western Siberia, global change, snow, soil temperature, soil
water budget, tree-ring, phosphorus, nitrogen, fine roots, isotopes, aspen, grassland
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Résumé substantiel

1 Contexte

1.1 Sibérie et changement climatique
Caractéristiques générales de la Sibérie

La Sibérie couvre environ 10 millions de km2 dans le nord de l’Eurasie, soit 7 %
des terres émergées (Groisman et al. 2012a). Elle s’étend de 45 à 75 ° N de latitude,
et couvre une grande diversité de conditions naturelles, climats, sols, écosystèmes
et paysages (Shvidenko et al. 2012). De ce fait, la Sibérie a un poids prépondérant
dans la régulation des processus environnementaux à l’échelle globale, notamment
sur les cycles biogéochimiques et les rétroactions climatiques (Goetz et al. 2007 ;
Groisman et al. 2012a ; McGuire et al. 2007). Le sud-ouest de la Sibérie concentre la
plus forte densité de population. Ceci est lié aux conditions climatiques (saison de
végétation plus longue et plus chaude que dans le reste de la Sibérie) ainsi qu’à la
présence, dans une vaste plaine, de sols de type Chernozem, réputés favorables à
l’agriculture.

Le changement climatique en Sibérie

La Sibérie subit un changement climatique rapide et intense (IPCC 2013). Au
siècle dernier, la température annuelle moyenne de l’air a augmenté d’environ
1.39 ◦C en Sibérie, ce qui est plus élevé que sur l’Eurasie du Nord (1.29 ◦C), l’Arctique
(1.28 ◦C), ou l’ensemble de l’hémisphère nord (0.77 ◦C) (Groisman et al. 2012b). Une
augmentation des précipitations hivernales a également été observée sur la majeure
partie de la Sibérie (IPCC 2013). Ainsi, l’épaisseur maximale de neige, le nombre de
jours avec plus de 20 cm de neige, et l’équivalent en eau de la neige ont augmenté
au cours des dernières décennies (Bulygina et al. 2011, 2010, 2009).

Les projections climatiques indiquent une poursuite de l’augmentation des tem-
pératures atmosphériques (+2 à +9 ◦C entre décembre et février et +2 à +6.5 ◦C
entre juin et août pour la fin du xxie siècle par rapport à la moyenne de 1986–2005 ;
IPCC 2013). Les précipitations devraient également augmenter, mais il y a une plus
grande incertitude dans les projections. Les précipitations hivernales devraient être
plus fréquentes et plus intenses, ce qui augmenterait notamment l’épaisseur de la
couverture neigeuse. En été, les précipitations diminueraient légèrement.
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Résumé substantiel

Les modèles bioclimatiques prédisent, d’ici la fin du xxie siècle, concomitamment
à la redistribution et au changement de composition des communautés végétales
(Jiang et al. 2012 ; Kicklighter et al. 2014 ; Lucht et al. 2006 ; Shuman et al. 2015 ;
Soja et al. 2007 ; Tchebakova et al. 2009, 2010), une augmentation considérable
de la surface cultivable en Sibérie. Notamment, les zones favorables aux cultures
traditionnelles (blé, maïs ensilage, avoine, seigle, millet) s’étendraient vers le nord et
de nouvelles cultures (comme le maïs grain, la betterave à sucre ou les haricots) pour-
raient être développées dans certaines zones (Kicklighter et al. 2014 ; Tchebakova
et al. 2011). Cependant, ces modèles ne tiennent pas compte de la fertilité des sols —
qui résulte notamment des stocks bio-disponibles et de la dynamique de l’eau et
des nutriments dans le système sol–plante. Les sols de cette région contiennent
d’importants stocks de matières organiques et potentiellement d’importants stocks
de nutriments. Toutefois, les niveaux actuel et futur de disponibilité pour les plantes
des éléments nutritifs demeurent inconnus.

1.2 Objectifs généraux

L’objectif général du projet était de contribuer à l’évaluation de la fertilité des
écosystèmes du sud-ouest de la Sibérie, à la compréhension des mécanismes qui la
régissent ainsi qu’à son évolution possible dans le contexte du changement clima-
tique. En particulier, nous nous sommes intéressés à la disponibilité des ressources
nécessaires à la croissance de la végétation — eau et nutriments — et à son contrôle
par le climat. Nous avons porté une attention particulière au rôle de la quantité de
neige sur les régimes hydrique et thermique des sols. Nous avons ensuite étudié
comment le pédo-climat affecte la décomposition des matières organiques, et donc la
libération des éléments nutritifs contenus dans ces matières organiques, les rendant
disponibles au prélèvement par la végétation. Ces résultats ont été mis en regard
avec les stocks en éléments nutritifs présents dans les sols et l’exploration du profil
de sol par les racines fines — qui sont responsables de la majorité du prélèvement
d’eau et de nutriments par la plante. Enfin, l’impact des variations inter-annuelles
du climat sur la croissance radiale des tiges de peuplier a été étudié.

2 Démarche

2.1 Sites d’étude

Six sites ont été sélectionnés en Sibérie du sud-ouest. Ils sont positionnés le long
d’un gradient bioclimatique, depuis la sub-taïga, dans le nord de la zone d’étude, à
la zone de steppe, dans le sud.

Pour la zone d’étude, la température moyenne annuelle varie de +0.8 ◦C dans la
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2 Démarche

sub-taïga à +3 ◦C dans la zone de steppe, avec de larges amplitudes saisonnières
(−18 à −14 ◦C en moyenne l’hiver, avec des extrêmes inférieurs à −40 ◦C, contre
+17 à +20 ◦C en été, avec des extrêmes supérieurs à +30 ◦C). Les précipitations
annuelles moyennes varient de 570 à 320mm du nord au sud. Une grande partie
des précipitations se produit pendant l’hiver, favorisant le développement d’une
couverture neigeuse, qui est plus épaisse au nord. En fonction de son épaisseur,
la couverture de neige peut empêcher le sol de geler durant l’hiver — situation
habituelle dans la sub-taïga. Aussi, la durée de l’enneigement est plus longue et la
longueur de la période de végétation plus courte dans le nord que dans le sud de la
zone d’étude. Les forêts ne présentent pas les mêmes caractéristiques le long de ce
gradient climatique. De grandes forêts couvrent le nord de la région, tandis que des
bosquets, de quelques hectares tout au plus, sont disséminés dans de vastes prairies
dans le sud.

Tomsk (TOM), dans le nord de la zone étudiée, et Krasnoserskoye (KRA), dans le
sud, correspondent aux extrema du gradient bioclimatique. Chebula (CHE), Salair
Ouest (SAW), Barnaul (BAR) et Salair Est (SAE) sont caractérisés par des conditions
climatiques intermédiaires. En raison de la topographie, l’air humide venant de
l’Ouest se condense sur le versant occidental des montagnes du Salair, qui présente
par conséquent des caractéristiques typiques de la sub-taïga. Le versant oriental des
montagnes du Salair est beaucoup plus sec et correspond à une transition entre la
sub-taïga et la forêt de steppe.

Les sites étudiés sont situés au niveau de la ceinture de lœss eurasienne, une
vaste zone allant de 40 à 60 ° N de latitude nord. Les sols développés sur ce lœss
présentent une texture et une minéralogie favorable à la croissance des plantes. Ils
ont toutefois des caractéristiques différentes en raison des conditions climatiques et
de la couverture végétale qui diffèrent. À KRA, BAR, CHE et SAE, les principaux
processus de pédogenèse sont l’accumulation de matière organique et le lessivage
des carbonates ; les sols appartiennent aux groupes des Chernozems et Phaeozems.
À SAW et TOM, les sols sont soumis à des mouvements de la nappe phréatique, et
sont périodiquement saturés en eau. En conséquence, la lixiviation des carbonates
et le lessivage des argiles sont des processus importants de pédogenèse ; les sols
appartiennent au groupe des Luvisols.

À l’exception du site forestier de SAW, tous les sites présentent des parcelles sous
forêt de peuplier tremble (Populus tremula L.) avec canopée fermée, et des parcelles
en prairies.
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Résumé substantiel

2.2 Méthodes
Approche générale

Afin d’étudier l’impact de l’intensité des précipitations neigeuses sur le pédo-
climat et les processus se déroulant dans les sols, nous avons combiné : (i) des
observations sur un gradient d’enneigement, incluant six sites qui ont été instrumen-
tés au début du projet en 2012–2013, (ii) une approche dendrochronologique, (iii)
une modélisation du régime hydrique des sols et (iv) des manipulations de neige, qui
ont été effectuées au cours des hivers 2013–2014 et 2014–2015. Les manipulations
de neige ont été effectuées uniquement à BAR et TOM, en raison de la difficulté à
accéder aux autres sites pendant l’hiver.

Suivi du pédo-climat

Les sites ont été équipés de sondes de température positionnées à 5, 15, et 60 cm
de profondeur dans le sol, et également à 2m au-dessus de la surface du sol. Des
capteurs d’humidité ont été installés à 15 et 60 cm de profondeur à TOM et à BAR.

Détermination des propriétés du sol

Tous les sols ont été décrits sur fosse. Pour chaque site et sous chaque couvert de
végétation étudié, nous avons décrit et prélevé le sol sur trois fosses indépendantes.
Les principales propriétés du sol (densité, texture, pH, teneurs en nutriments majeurs,
cations échangeables, etc.) ont été déterminées sur le premier mètre de profondeur.

Caractérisation des profils de racines fines

Nous avons évalué la longueur et la masse des racines fines (diamètre < 0.8mm)
jusqu’à un mètre sous forêts et prairies. Nous avons catégorisé les racines fines
en fonction de leur diamètre. En forêt, nous avons aussi distingué les racines de
peuplier de celles de la végétation du sous-bois.

Modélisation du régime hydrique des sols

Le modèle Biljou (Granier et al. 1999) a été utilisé afin de simuler les flux d’eau
dans les sols et d’identifier les événements de sécheresse. Le modèle calcule la teneur
en eau du sol, à un pas de temps journalier, en fonction des précipitations totales, de
l’interception des précipitations, de l’évapo-transpiration du couvert végétal et du
drainage dans le sol. Il a été étalonné à TOM et BAR, où des sondes d’humidité ont
été installées. Le modèle a ensuite été utilisé afin de prédire le régime hydrique des
sols en testant divers scénarios de changement climatique (conditions plus sèches
en été, niveaux variables de neige).
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3 Résultats

Dendrochronologie

Sur chacun des six sites, 15 arbres dominants ont été carottés, à une hauteur de
1.30m, avec une tarière de Pressler de diamètre 5mm. Les largeurs des cernes ont
été mesurées et datées. Nous avons exploré les relations entre la largeur des cernes et
divers index climatiques générés à partir de l’analyse des archives météorologiques
russes.

Stocks et dynamiques des nutriments

Les stocks et dynamiques de l’azote (N) et du phosphore (P) ont été étudiés en
combinant des approches classiques avec des techniques isotopiques. La disponibilité
de P a été évaluée par cinétique de dilution isotopique (Fardeau 1996 ; Frossard et
Sinaj 1997 ; Frossard et al. 2011). La libération de N par la litière en décomposition,
son incorporation dans le profil de sol et son absorption par la végétation ont été
évaluées en appliquant in situ des litières marquées au 15N (Zeller et al. 2001). Le
devenir du traceur 15N dans l’écosystème a ensuite été suivi durant trois ans.

3 Résultats

3.1 Régimes thermique et hydrique des sols
Nous nous sommes intéressés aux questions suivantes : (1) Quels sont actuelle-

ment les régimes de température et d’humidité dans les sols de la forêt de steppe
et de la sub-taïga ? (2) Comment les variations climatiques, et en particulier de la
quantité de neige, influencent la température et l’humidité du sol dans ces situations
pédo-climatiques contrastées ? Nous avons focalisé nos travaux sur les sites de BAR
et TOM, localisés respectivement en forêt de steppe et en sub-taïga.

Caractéristiques enregistrées sur la période 1981–2010 : À TOM et à BAR,
lorsque le sol n’est pas couvert par la neige, la température du sol est étroitement liée
à la température de l’air. Habituellement, à TOM, la couverture de neige est élevée
(71 cm, en moyenne, au climax) et le sol ne gèle pas en hiver. À BAR, la couverture
de neige est plus faible (49 cm au climax) et le sol gèle pendant l’hiver. En été, la
température du sol est généralement plus élevée à BAR qu’à TOM.

Expérience demanipulation de neige : La première manipulation de la neige a
été réalisée en 2013–2014, au cours d’un hiver atypique — les chutes de neige ont eu
lieu très tard dans la saison et en faible quantité. La seconde manipulation de neige a
eu lieu en 2014–2015 — une année marquée par des chutes de neige très abondantes.
Les manipulations de neige ont en moyenne permis d’augmenter l’épaisseur de
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Résumé substantiel

neige de 25 à 50 cm (+30–100 % de l’épaisseur de neige en conditions naturelles), sur
une superficie de 500m2.

À BAR, site en forêt de steppe, la manipulation de neige a empêché le sol de geler
en forêt. En prairie, le sol a gelé malgré l’ajout de neige, probablement en raison du
vent balayant la neige apportée. À la période de la fonte des neiges, pour les deux
hivers étudiés, l’humidité et la température du sol ont augmenté 5 à 10 jours plus
tard dans le traitement avec ajout de neige par rapport au contrôle. L’humidité du
sol à la fonte des neiges était plus élevée dans le traitement avec ajout de neige que
dans le contrôle.

À TOM, site en sub-taïga, durant toute la période de suivi du pédo-climat, la
température du sol est toujours restée positive. À la fonte des neiges, l’élévation
de la température du sol a eu lieu 10–15 jours plus tôt sous le contrôle que sous le
traitement neige. En revanche, le sol a été saturé en eau dans les deux cas.

Modélisation du régime hydrique des sols : La calibration du modèle Biljou
pour les sites de TOM et BAR a d’abord été réalisée sur la période 2013–2015, période
pour laquelle nous disposions de données de terrain mesurées. Puis, en utilisant
les paramètres calibrés et les archives météorologiques, nous avons reconstitué
le régime hydrique du sol au cours des 46 dernières années. Cette modélisation a
montré que la teneur en humidité du sol est au plus faible durant la période estivale
sur les deux sites d’étude. À BAR, on observe souvent des déficits en eau et la
fonte des neiges, au printemps, est importante pour recharger la réserve en eau du
sol. À TOM, les précipitations d’automne permettent généralement une recharge
complète de la réserve en eau et le sol et ce dernier est rapidement saturé lors de la
fonte des neiges. Nos simulations indiquent alors un plus fort drainage qu’à BAR
(les observations de terrain suggèrent qu’il y a peut-être aussi du ruissellement de
surface).

Nous avons également effectué des simulations de l’évolution possible du régime
hydrique du sol sous différents scénarios climatiques (température plus élevée, été
plus sec et diverses intensités de précipitations hivernales). À BAR, des déficits
hydriques annuels longs et intenses sont susceptibles de devenir la situation habi-
tuelle. La période de stress hydrique arriverait plus tôt, serait de plus longue durée
et d’intensité plus élevée qu’actuellement. La teneur en eau du sol à BAR deviendrait
fortement dépendante de la quantité de neige tombée en hiver et de l’intensité du
déficit hydrique lors de la saison de végétation précédente. À TOM, des déficits
hydriques pourraient se produire certaines années dans le futur. Cependant, le stress
hydrique pourrait y être modulé par les propriétés du sol qui est assez argileux. Dans
les deux cas, une saison de végétation plus précoce augmenterait le prélèvement
d’eau au sein du profil du sol.

Dans les deux sites, si les niveaux de neige diminuent, le drainage diminuerait
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3 Résultats

sensiblement. Si elles augmentent de 50 %, le drainage n’augmenterait que peu.
Quel que soit le scénario, l’essentiel du drainage annuel aura lieu à la fonte des
neiges. Cette question du drainage nécessite des investigations complémentaires.
Notamment, il nous apparaît important dans l’avenir de quantifier ce drainage et
de mesurer les concentrations en nutriments exportés dans l’eau de drainage, afin
d’appréhender les éventuelles pertes de fertilité induites par la fonte de la neige.

3.2 Dendrochronologie : contrôle climatique de la croissance
radiale du peuplier le long d’un gradient de conditions
pédo-climatiques

En complément de nos résultats sur le régime hydrique du sol sur deux sites
représentatifs de la sub-taïga et de la forêt de steppe, nous avons étudié les archives
dendrochronologiques sur l’ensemble de nos sites d’étude. L’enjeu était : (1) d’iden-
tifier les déterminants climatiques sur la croissance des arbres dans la zone d’étude
et, en particulier, (2) d’évaluer l’influence de la neige sur la croissance des arbres.

Nos résultats révèlent que la croissance radiale de Populus tremula L. répond aux
variables climatiques de façon contrastée entre les sites situés dans le sud de la zone
d’étude (steppe et sud de la forêt de steppe), et ceux situés plus au nord (nord de la
forêt de steppe, sub-taïga).

Dans le sud de notre région d’étude, qui connaît des conditions climatiques
plus sèches que dans le nord, la croissance radiale est surtout sensible au régime
hydrique du sol en été. Elle augmente quand les précipitations estivales augmentent.
Elle diminue avec l’élévation des températures de l’air et du sol, et quand l’arbre
est soumis à un stress hydrique. Le régime hydrique du sol peut aussi avoir des
répercussions sur la croissance de l’année suivante. Enfin, des températures élevées
se produisant tôt et tard dans la saison de végétation ont tendance à améliorer la
croissance des arbres.

Dans le nord de la forêt-steppe et dans la sub-taïga, la croissance radiale de Populus
tremula L. est essentiellement stimulée par des températures de l’air et du sol élevées
durant l’été. Une explication possible est que ces températures estivales élevées
augmentent l’activité microbienne, la minéralisation de la matière organique, donc
la libération d’éléments nutritifs, ainsi que le débit massique et la diffusion des sèves.
En revanche, les températures élevées de l’air et du sol au début du printemps ont
un impact négatif sur la croissance des arbres. Une explication possible serait une
désynchronisation entre la période de forte disponibilité en éléments nutritifs et la
période d’absorption par les plantes.

Nos résultats indiquent, en outre, que les niveaux de croissance radiale moyenne
pour un âge donné ont tendance à être plus élevés dans la zone de forêt de steppe que
dans la zone de sub-taïga, peut-être en raison des conditions climatiques (température
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plus élevée, durée plus longue de la saison de végétation) et/ou des propriétés du
sol.

Enfin, nous avons noté une augmentation de la croissance radiale moyenne des
dans les dernières décennies. Parmi les explications possibles, encore à investiguer,
on peut citer : des températures plus chaudes, une saison de végétation plus longue, la
hausse des niveaux de CO2 dans l’atmosphère ou encore une plus grande disponibilité
des éléments nutritifs, en raison de l’augmentation des dépôts atmosphériques (N)
ou de la stimulation des processus de décomposition.

3.3 Stocks et dynamiques du N et du P dans le système
sol–plante

La disponibilité des éléments nutritifs est un régulateur clé de la productivi-
té primaire et de l’équilibre du carbone des écosystèmes (Chapin et al. 2011 ;
Fernández-Martínez et al. 2014 ; Wieder et al. 2015). La disponibilité des nutri-
ments varie à la fois dans l’espace et dans le temps, et cette variabilité peut finalement
être plus importante pour la croissance de la végétation que leurs changements
physiologiques entraînés par le climat (Lukac et al. 2010). Individuellement ou en
combinaison, l’azote (N) et de phosphore (P) sont les principaux éléments nutritifs
contraignant les processus biologiques et la productivité primaire (Elser et al. 2007 ;
Fay et al. 2015 ; Güsewell 2004 ; Harpole et al. 2011 ; LeBauer et Treseder 2008 ;
Vitousek et al. 2010). La section ci-dessous dresse un état de la disponibilité en N et
P sur les sites du projet, évaluée en faisant appel à des techniques isotopiques.

Disponibilité du P

Nous avons mesuré des concentrations, des stocks, et une structuration des ré-
servoirs de phosphore (P) relativement homogènes sur l’ensemble de nos sites.
L’âge récent des dépôts de lœss, couplé à une lente cinétique de pédogenèse, n’a
probablement pas encore mené à un éventail suffisamment large de conditions
physico-chimiques induisant différents niveaux de P.

Nous avons toutefois pu noter quelques écarts à cette relative homogénéité qui
peuvent être expliqués par les propriétés des sols. Ainsi, à TOM, les battements
périodiques de la nappe, responsables de l’accumulation relativement plus forte des
argiles et des oxydes dans les couches profondes du sol, contribuent vraisemblable-
ment à expliquer les valeurs élevées de concentrations en P et en ions phosphate
diffusifs (en particulier à −60 cm dans les prairies). À KRA, l’accumulation de CaCO3
pourrait être responsable des niveaux élevés d’ions phosphate diffusifs à −100 cm
dans les prairies (Hinsinger 2001 ; Kuo et Lotse 1972). À SAE, le matériau de
schiste sous-jacent au dépôt de lœss repéré à 80 cm de profondeur est probablement
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responsable des basses concentrations en P et des proportions extrêmement faibles
d’ions phosphate diffusifs dans les couches profondes.

Nous avons comparé les niveaux de P à la surface (0–20 cm) des sols du sud-ouest
de la Sibérie à ceux mesurés dans des contextes de végétation similaires à l’échelle
mondiale. Cette comparaison a révélé des niveaux de P total, de P organique et
inorganique très élevés dans les horizons de surface des sols du sud-ouest de la
Sibérie, mais une quantité de P disponible (estimée par les ions P diffusibles) inter-
médiaire à l’échelle mondiale. Cependant, les stocks d’ions phosphate disponibles
sont importants dans les couches profondes du sol, où l’exploration des racines fines
est actuellement faible. Ces résultats suggèrent qu’il est peu probable que le P soit
limitant pour la croissance de la végétation et pour le développement de l’agriculture
dans les conditions actuelles et dans un avenir proche.

Devenir du N libéré par les litières de feuilles en décomposition

Les litières végétales étant la principale source de N pour le sol, nous avons étudié
le devenir du N libéré lors de la décomposition de litières, sur quatre des sites d’étude
(TOM, SAW, SAE, BAR), en utilisant des litières de feuilles marquées au 15N.

La décomposition des litières et la libération du N qu’elles contiennent sont plus
rapides dans les sites de sub-taïga (TOM et SAW) que dans les sites de forêt de
steppe (BAR et SAE). L’incorporation du N dérivé des litières dans le profil de sol
est également plus profonde dans les sites de sub-taïga, peut-être en raison du
fort enneigement y occasionnant un drainage plus intense qu’en forêt de steppe. Il
est cependant probable que les exportations de N hors du système, par drainage,
soient limitées grâce aux propriétés physico-chimiques du sol dans la zone de sub-
taïga étudiée (sol riche en limons et oxydes favorisant la rétention du N) et par la
persistance d’une activité microbienne basale pendant l’hiver dans les sols non-gelés.

Nous avons pu mettre en évidence que le N dérivé des litières était transféré
plus profondément dans le profil de sol sous forêt que sous prairie. En outre, nous
avons pu mesurer un niveau élevé de traceur 15N issu des litières dans la végétation
des prairies (δ 15N≈ 200‰ lors du prélèvement effectué au printemps, 6 mois après
le dépôt des litières — litière initiale déposée en prairie à 3159‰). Le niveau de
traceur était beaucoup plus faible à la même date dans la végétation de sous-bois
des placettes forestières (δ 15N≈ 5‰ — litière initiale déposée en forêt à 528‰).
L’exploration des racines fines, plus dense en prairie qu’en forêt, a peut-être rendu
plus efficace l’absorption de N par la végétation des prairies et limité la migration
du N dans le profil de sol. Il est également possible que cette végétation prairiale soit
active plus tôt que les arbres et les espèces de sous-bois, à la période où le drainage
peut être important.
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3.4 Influence des conditions pédo-climatiques contrastées sur
la distribution des racines fines

La répartition des racines fines à travers le profil de sol est un bon indicateur pour
évaluer les contraintes environnementales affectant les plantes dans l’acquisition de
leurs ressources (eau et nutriments). Nous avons donc abordé la question suivante :
est-ce que les conditions pédo-climatiques contrastées observées sur notre gradient
de sites dans le sud-ouest de la Sibérie induisent des distributions de racines fines
distinctes ?

L’exploration des racines fines a tendance à être plus profonde en forêt qu’en
prairie. Elle est également plus profonde pour les arbres que pour la végétation de
sous-bois dans les peuplements forestiers.

Concernant l’impact du pédo-climat, nous avons pu mettre en évidence que
l’exploration des racines fines est plus profonde en forêt de steppe qu’en sub-taïga.
La longueur totale et la masse des racines y sont également plus élevées. Ceci est
observé sous forêt et sous prairie. Deux types de facteurs pourraient expliquer
ces grandes tendances : l’exploration des ressources et les contraintes physiques
de l’environnement. Nos recherches sur les dynamiques du P et du N ont révélé
que ces nutriments ne sont pas limitants pour la végétation dans les horizons
de surface. En revanche, dans la steppe–forêt de steppe, des systèmes racinaires
profonds peuvent refléter une stratégie d’acquisition de l’eau car la dessiccation
du sol est généralement importante en été, comme discuté précédemment. Dans la
sub-taïga, la régulière saturation en eau du profil du sol peut, en revanche, constituer
une contrainte physique pour le développement de racines profondes. D’autres
contraintes environnementales ont été détectés à l’échelle locale, comme la présence
du substratum rocheux à faible profondeur à SAE, sans que ces facteurs ne semblent
limitants pour la production primaire dans nos sites d’étude. En outre, le gel du
sol induit par la faible couverture neigeuse dans la steppe–forêt de steppe pourrait
également favoriser le développement profond des racines fines, en raison d’une
mortalité des racines accrue à la surface en hiver. Pour autant que nous le sachions,
l’effet du gel sur le profil racinaire n’a encore jamais été étudié et nécessiterait des
investigations plus poussées. Il est possible, finalement, que le gel du sol ne nuise
pas à la présence de racines fines en surface, et qu’il n’induise qu’un renouvellement
des racines plus fréquent (par exemple, chaque hiver).

Les diverses espèces végétales ont des traits différents, parmi lesquels différentes
biochimie et décomposabilité des racines, qui impactent les interactions plante–
sol et les cycles biogéochimiques (Bardgett et al. 2014 ; Freschet et al. 2012 ;
Guo et al. 2008 ; Kong et al. 2014 ; Prieto et al. 2016 ; Roumet et al. 2016, 2006 ;
Smith et al. 2014). Ainsi, les racines des espèces de grandes cultures sont plus
facilement dégradées que les racines des écosystèmes forestiers. Cette différence de
biodégradabilité pourrait être responsable d’une baisse du stock de carbone du sol
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lors de la mise en culture de sols forestiers (Prieto et al. 2016) comme cela pourrait
être le cas dans le futur dans le sud-ouest de la Sibérie.

Il nous apparaît important d’évaluer la dynamique de renouvellement des racines
fines dans le sud-ouest de la Sibérie, car elle est contrôlée par des facteurs variant
avec le changement global (Brunner et Godbold 2007 ; Finér et al. 2011 ; Gill
et Jackson 2000 ; McCormack et al. 2013 ; McCormack et Guo 2014) et impacte
fortement les cycles biogéochimiques du carbone et des nutriments (Clemmensen
et al. 2013 ; Ruess et al. 2003 ; Yuan et Chen 2010 ; Yuan et al. 2011).

Enfin, les racines ne sont pas actives de la même façon dans tout le profil de sol. Il
serait intéressant de connaître la profondeur de l’absorption racinaire, la variabilité
de cette profondeur au cours des saisons, et si différentes espèces ont différentes
stratégies pour l’absorption de leurs ressources dans le sud-ouest de la Sibérie. Afin
d’appréhender ces questions, des analyses des isotopes de l’eau contenue dans le
sol, dans les racines et les feuilles sont en cours sur nos sites d’étude.

4 Synthèse : fonctionnement intégré des cycles
biogéochimiques dans les écosystèmes de Sibérie
du sud-ouest et prospective dans le contexte du
changement climatique

Nos travaux ont mis en évidence que des processus biogéochimiques contrastés
opèrent actuellement dans les sols des zones bioclimatiques de forêt de steppe et de
sub-taïga dans le sud-ouest de la Sibérie.

Dans la zone de forêt de steppe, le sol gèle en hiver en raison d’une couverture
neigeuse peu épaisse. La fonte de la neige constitue la recharge principale d’eau
dans le sol. L’été est chaud et sec, ce qui conduit souvent à des déficits en eau dans
les horizons de surface, et à une exploration racinaire profonde. La libération du N et
du P organiques, qui dépend de la dégradation des matières organiques, est ralentie
durant l’hiver et l’été. Les conditions pédo-climatiques difficiles nuisent en effet à
l’activité des décomposeurs. Pour cette raison, les terres cultivées sont actuellement
souvent fertilisées en N.

Dans la zone de sub-taïga, l’épais manteau neigeux en hiver empêche le sol
de geler. La fonte des neiges induit généralement un drainage, car les réserves
en eau du sol sont presque rechargées suite aux précipitations automnales. Il n’y
a pas de sécheresse en été. Ainsi, la croissance des plantes, et le développement
de l’agriculture, sont principalement limités par la courte durée de la saison de
végétation et les températures estivales peu élevées. Comme l’eau reste disponible
dans les horizons de sol superficiels pendant l’été — et est en excès dans les couches
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profondes — les racines fines se concentrent dans les horizons supérieurs du sol.
Les conditions pédo-climatiques permettent une dégradation rapide des litières et
une incorporation rapide des résidus de ces litières dans les couches supérieures
du sol minéral. Le drainage provoqué par la fonte des neiges peut conduire à une
exportation des éléments nutritifs sous des formes solubles. Cependant, les propriétés
du sol et la persistance d’une activité microbienne basale pendant l’hiver semblent
efficacement contrer cet effet et immobiliser le N dérivé des litières dans les horizons
supérieurs du profil de sol.

Les projections climatiques indiquent un réchauffement des températures de l’air
et des variations de la saisonnalité des précipitations. Entre autres, les précipitations
hivernales ont tendance à augmenter. Dans ce contexte, nos travaux indiquent que
les processus biogéochimiques opérant dans les sols pourraient évoluer.

Dans la zone de forêt de steppe, les pénuries d’eau dans le sol deviendraient
plus fréquentes, plus intenses et plus longues, conduisant probablement à un ap-
profondissement de la distribution des racines fines. Les précipitations hivernales
deviendraient cruciales pour la recharge en eau du sol. Les nouveaux régimes de tem-
pérature et d’humidité du sol ralentiront probablement la vitesse de dégradation des
matières organiques et, en conséquence, la libération des nutriments contenus dans
ces matières organiques. Une incertitude majeure concerne le gel du sol en hiver. Si
un manteau neigeux épais apparaît au début de l’hiver, sur un sol non gelé, il devrait
être favorable au maintien de l’activité microbienne et à la libération d’éléments
nutritifs. Dans un tel cas, le grand stock de nutriments disponibles devrait permettre
le développement d’une agriculture durable, sans engrais ou avec une utilisation
limitée. Toutefois, les pratiques d’irrigation seront certainement nécessaires pour
garantir les rendements des cultures.

Dans la zone de sub-taïga, des pénuries d’eau pourraient apparaître de temps
à autre en été. L’augmentation des précipitations hivernales risque d’augmenter
le flux de drainage, sauf si la réserve en eau du sol a été épuisée durant la saison
de végétation précédente. Dans ce cas précis, la fonte des neiges rechargerait les
horizons déficitaires en eau. Il est possible que les racines fines se développent plus
profondément pour atteindre l’eau. Il est probable que l’élévation de la température
du sol et la disponibilité en eau suffisante stimuleront l’activité microbienne, la
dégradation des matières organiques et la libération de leurs éléments nutritifs. Ces
effets combinés pourraient entraîner une plus grande productivité et favoriser le
développement d’une agriculture durable et sans irrigation.
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Chapter 1

Introduction

1.1 Context

1.1.1 General features of Siberia

Siberia covers about 10 million km2 in Northern Eurasia, or about 7 % of the global
terrestrial land (Groisman et al. 2012a). As such, Siberia has a paramount influence on
the regulation of global environmental processes. In particular, Siberian ecological
features have strong feedbacks on global climate and biogeochemical cycles—i.e.
fluxes of energy and matter between abiotic and biotic compartments—(Goetz et al.
2007; Groisman et al. 2012a; McGuire et al. 2007). Ranging from 45 to 75 ° N of latitude,
Siberia ensures a large diversity of natural conditions, climate, soils, ecosystems, and
landscapes (Shvidenko et al. 2012). From south to north, several bioclimatic zones
have been defined on the basis of regional climate characteristics and vegetation
community composition: steppe, forest-steppe, sub-taiga, southern taiga, middle
taiga, northern taiga, forest tundra and tundra (Fig. 1.1). The taiga zones—different
combinations of coniferous evergreen and deciduous tree species—represent about
77 % of the total area of Siberia (Shvidenko et al. 2012). Along with this gradient
of environmental conditions, human land occupation varies. Agriculture has his-
torically developed in the south of Siberia, in the steppe and forest-steppe zones,
because the climatic conditions allow a longer and a warmer vegetation season and
because the region concentrates fertile soils such as Chernozems (Groisman et al.
2012a; Shvidenko et al. 2012). Approximately 27 % of the currently occupied arable
lands of the Russian Federation are located in the south of Siberia (Oldfield 2006).
Populations mostly settled in this area which now concentrates the main Siberian
cities and communication axes such as the Trans-Siberian Railway linking Moscow
to the Pacific coast. In the north of the forest-steppe zone are huge repositories
of natural resources: fossil fuels (natural gas, coal, oil), ore deposits, and forests
(Groisman et al. 2012a). Siberian forests represent about 65 % of the total Russian
forest area (Fomchenkov et al. 2003). They constitute a huge carbon repository and
sink on the global scale (Dolman et al. 2012; Schaphoff et al. 2013; Shvidenko et al.
2012).
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Chapter 1 Introduction

Figure 1.1: Bioclimatic zones of Western Siberia. Our study focussed on south-western
Siberia, i.e. in the transition from steppe to southern-taiga.

1.1.2 Observed and projected climate change
Northern Eurasia, and particularly Siberia, experiences fast and intense climate
change (Fig. 1.2; Groisman et al. 2012b; IPCC 2013). In the last century, mean annual
surface air temperature rose by about 1.39 ◦C in Siberia, which is higher than over
Northern Eurasia (+1.29 ◦C), the Arctic (+1.28 ◦C), or the entire northern hemisphere
(+0.77 ◦C) (Groisman et al. 2012b). The warming trend over Northern Eurasia was
particularly strong in the cold season (November to March) (IPCC 2013). Changes in
precipitation were more variable regionally, were not regular in time, and diverged
between seasons. For example, annual precipitations were higher by about 10 % in
the second than in the first half of the twentieth century, but the subsequent changes
were subtle. While precipitation amounts and the number of days with precipitation
did not change in the further decades, a significant redistribution by intensity among
the days with precipitation occurred in the warm season (Groisman et al. 2012b). For
example, prolonged no-rain episodes (30 days and above) in summer were detected
in the south of Siberia. An increase in the cold season precipitation occurred over
most of Siberia (IPCC 2013; Rawlins et al. 2010). Altogether, maximum snow depth,
the number of days with more than 20 cm snow as well as the snow water equivalent
have increased in the last decades over most of Siberia (Bulygina et al. 2011, 2010,
2009). Snow cover extent over Siberia did not appreciably change during winter
(December–March) but it significantly retreated in spring–early summer, from April
to June (Fig. 1.3; Arndt et al. 2010; Bulygina et al. 2009; Groisman et al. 1994, 2006;
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Figure 1.2: Change in average surface temperature (a) and change in average precipitation
(b) based on multi-model mean projections for 2081–2100 relative to 1986–2005 under
the RCP2.6 (left) and RCP8.5 (right) scenarii. The number of models used to calculate the
multi-model mean is indicated in the upper right corner of each panel. Stippling (i.e., dots)
shows regions where the projected change is large compared to natural internal variability
and where at least 90 % of models agree on the sign of change. Hatching (i.e., diagonal
lines) shows regions where the projected change is less than one standard deviation of
the natural internal variability. Source: IPCC 2013.
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Figure 1.3: Spatial distribution of linear trend coefficients (days/10 year; 1–5 % significance
level) showing the number of days with snow cover exceeding 20 cm for 1966–2007. Our
study area is highlighted in red. Source: Bulygina et al. 2009.

Robinson et al. 1993; Takala et al. 2009).
Climate projections for Northern Eurasia indicate a further increase of surface

air temperatures: between +2 and +9 ◦C in December–February and between +2
and +6.5 ◦C in June–August by the end of the 21st century in comparison with the
1986–2005 mean (Fig. 1.2; IPCC 2013). Annually, the largest temperature changes
are expected in the polar region because of the preponderance of winter changes.
However, in summer, the largest changes are expected to occur along a gradient
towards the south of the region (Groisman et al. 2012b). Precipitations are also
predicted to rise on the continental scale, but there is a greater uncertainty in the
projections. October–March precipitations for Northern Eurasia are predicted to rise
by 2–7% by the end of the century, in comparison with the 1986–2005 mean, and
April–September precipitations to rise by 5–15% (IPCC 2013). However, changes
in the frequency and intensity of precipitation events might be altered. Altogether,
over most parts of Siberia, winter precipitations are expected to be more frequent
and intense, hence increasing snow depth, while the precipitation rate may change
slightly in summer, but precipitation events may become less frequent and more
intense in this season (Groisman et al. 2012b).

Finally, in addition to mean value changes, the frequency and the intensity of
extreme climate and weather events are likely to be modified during the 21st cen-
tury (Groisman et al. 2012b; IPCC 2013). Overall, the number of record days with
extremely low temperature will continue to decrease while the number of days with
extremely high temperature will continue to increase (Meleshko et al. 2008).
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1.1.3 Environmental impacts of global change in Siberia

Because of global change, substantial reshaping of Siberian ecosystems are expec-
ted (Groisman and Gutman 2012). Vegetation distribution and productivity will be
modified and so land-use possibilities. Several factors control the composition of
vegetation communities and productivity among which climate, soil, and disturb-
ances.

In northern latitudes (e.g. boreal forest), it is usually assumed that vegetation
growth is limited by short growing season, low growing season temperature, low
solar radiation, and low nitrogen (N) availability (Boisvenue and Running 2006).
Regionally, water availability and the seasonality of precipitations are also regulators
of vegetation growth in Siberia (Berner et al. 2013; Boisvenue and Running 2006;
Devi et al. 2008; Kharuk et al. 2006). Observation studies have reported a wide range
of productivity variation with recent global change in Siberia (Schaphoff et al. 2016).
For instance, the productivity of Russian boreal forests was found to be enhanced
by increasing radiation (Berner et al. 2013; Ichii et al. 2013; Myneni et al. 1997),
increasing atmospheric CO2 concentrations (Ichii et al. 2013; Kharuk et al. 2011;
Kharuk et al. 2014), or lengthening of the growing season (Berner et al. 2013; Ichii
et al. 2013; Jeong et al. 2011; Myneni et al. 1997). However, it was reduced by heat
waves (Bastos et al. 2014), and drought stress (Kharuk et al. 2013; Shvidenko et al.
2012). The effects of water-availability, positive or negative, were found to be season
dependent (Berner et al. 2013; Devi et al. 2008; Kharuk et al. 2006).

In addition to climate or atmospheric factors, several abiotic and biotic disturb-
ance factors have a great importance for the functioning of Siberian ecosystems.
Among these factors, fires (e.g. forest fires, ground fires), pests (e.g. defoliator in-
sects) and diseases (e.g. fungi) are changing along with climate. In fact, warmer
and drier conditions have already increased, and are predicted to further intensify,
fire frequency and intensity in Siberia (Groisman et al. 2007; Malevskii-Malevich
et al. 2007; Mokhov and Chernokulsky 2010; Shkol’nik et al. 2008; Shvidenko et al.
2012; Soja et al. 2007). Warmer and drier weather allow larger scale insect outbreaks
and the apparition of new species. Insect outbreaks may increase in intensity and
frequency, notably in northern areas where colder and wetter conditions used to
prevent them, but also because of decreasing resilience of ecosystems and disruption
of community interactions (Shvidenko et al. 2012; Soja et al. 2007; Stireman et al.
2005).

Taken together, the recent changes in productivity were region- and tree species-
specific, which is probably explained by local combinations of factors (Schaphoff
et al. 2016). Simultaneous or sequential (on a short period) combinations of these
factors are likely to accelerate and intensify the changes in ecosystem composition
and functioning (Shvidenko et al. 2012).

As a consequence of climate change, the distribution of vegetation communities
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will be modified. Observations revealed that treelines are already moving towards
higher altitudes in many Siberian mountains (Soja et al. 2007). Projections with
bioclimatic models, indicate for the 21st century that all bioclimatic zones could
shift northwards, with a redistribution of their relative size (Fig. 1.4; Jiang et al.
2012; Kicklighter et al. 2014; Lucht et al. 2006; Shuman et al. 2015; Soja et al. 2007;
Tchebakova et al. 2009, 2010). In particular, steppe, forest-steppe, and sub-taiga zones
may spread over larger areas, at the expense of taiga zones, and tundra ecosystems
may be constrained to small and local areas in the Arctic polar circle. All the climate
scenarii tested by Tchebakova et al. (2009) indicate substantial changes from the
2020s. Overall, vegetation shifts are expected to remain moderate under 2–3 ◦C
warming but to be substantial above.

Besides vegetation redistributions, bioclimatic models predict an increase in the
area suitable for agriculture during the 21st century in Siberia. Tchebakova et al.
(2011) tested different climate scenarii from IPCC (2007) and their impact for the
growing conditions of several crops. They reported that 50–85% of Central Siberia
could become suitable for agriculture by the end of the century (Fig. 1.5). Also, de-
pending on the suitability of soils, which was not included in the bioclimatic model
they used, the traditional Siberian crops may expand as far as 500 km northwards
(50–70 kmdecade−1) and new species could be introduced in the south. However,
drier conditions, will probably require irrigation in the south or even impede agricul-
ture. In conjunction to vegetation shifts induced by climate, Kicklighter et al. (2014)
tested the effect of land-management on future land-use possibilities. They reported,
under a “business as usual” scenario (i.e. no climate-policy), that climate-induced ve-
getation shifts may allow expansion of areas devoted to food crop production (15 %)
and pastures (39 %) over the 21st century. Under a climate stabilization scenario
(i.e. with climate-policy consisting in a carbon tax applied to fossil fuel emissions),
climate-induced vegetation shifts may permit expansion of areas devoted to biofuel
production (25 %) and pastures (21 %), but reduce the expansion of areas devoted
to food crop production by 10%. In both scenarii, vegetation shifts are predicted to
further reduce the areas devoted to timber production by 6–8%.

All these environmental changes (vegetation productivity, vegetation distribution
and disturbances) are likely to impact energy, carbon and water fluxes in Siberia.
Also, because of feedback mechanisms, they are susceptible to impact on climate.
In fact, ecosystems influence surface climate through their impact on radiation,
energy, water and carbon fluxes. For example, boreal forest has a relatively low
albedo in comparison with tundra (mix of shrub and grasses) and permanently
snow-covered areas. Seasonal melting of snow-cover in Arctic and replacement of
most of tundra areas by forest may increase regional and global temperatures (Foley
et al. 2003). As stressed out by Kicklighter et al. (2014), who simulated the influence
of climate-induced vegetation shifts on future land use and associated land carbon
fluxes, consistent climate-policies are likely to be a key component for the mitigation
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of global change impacts in Northern Eurasia. Notably, their simulations indicate
that without climate-policy, ecosystem changes will be higher and Northern Eurasia
may turn into a source of atmospheric carbon. On the contrary, climate-policy would
attenuate environmental changes and maintain Northern Eurasia as a small carbon
sink.

Due to the huge size of Siberia on the global scale, ecological processes occurring
there have a global impact. Thus, understanding these processes may help improving
projections on the future status of regional ecosystems and planning alternative
and sustainable land-uses, and also to improve global change projections on the
scale of the Earth system. Even though there is an increasing interest in the study of
Siberian ecosystems, functional ecological data remain sparse in the international
literature (Gordov and Vaganov 2010; Groisman and Soja 2009).

1.1.4 Focus on south-western Siberia
Among the general objectives mentioned above, there is a particular interest in
determining the drivers of primary productivity in SW Siberia. In fact, this region
is known for its potential for agriculture but the underlying mechanisms remain
unclear, and so the evolution of this potential in the context of global change.

Focussing on south-western (SW) Siberia, our broad objective was to contrib-
ute characterizing the climate control on vegetation growth in order to improve
projections on primary productivity in the context of global change. In particular,
we were interested in the availability of resources, water and nutrients, and their
climate-driven dynamics.

SW Siberia is located on the transition between the steppe and southern-taiga
bioclimatic zones (Fig. 1.1). An obvious feature is the gradient in forest structure
and composition. From the south to the north of SW Siberia, forest patches increase
in size and number, with wider and more continuous forest areas in the north. With
the increase in forest cover, grassland areas become sparser towards the north. Also,
the distribution of vegetation species varies in SW Siberia (Fig. 1.6). This distribution
is the reflect of a gradient of climate, soil, and anthropogenic influence.

The region is characterized by a cold-temperate climate with cold winters and
relatively warm summers. Mean annual temperature ranges from about 0.8 ◦C in the
north to about 3 ◦C in the south. The mean winter temperature ranges from −18 ◦C,
in the north, to −14 ◦C, in the south, and the mean summer temperature from 17 to
20 ◦C. Temperature punctually reaches extremes below −45 ◦C, in winter, and above
30 ◦C, in summer. This gradient of temperature promotes longer vegetation season
in the south. Mean annual precipitation ranges from less than 300mm in the south
(steppe) to about 600mm in the north (southern-taiga). Winter is characterized
by a seasonally permanent snow cover lasting several months. Both snow-pack
duration and height increase in a south to north gradient: the snow-pack (> 1 cm)
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Figure 1.4: Vegetation distribution in Siberia in 2080 predicted from current climate (a),
the moderate HadCM3 B1 (b) and the harsh A2 (c) climate change projections. Our
study area is highlighted in black. Vegetation class key: (0) Water; (1) Boreal Tundra; (2)
Forest-Tundra; (3) Northern Taiga-dark; (4) Northern Taiga-light; (5) Middle Taiga-dark;
(6) Middle Taiga-light; (7) Southern Taiga-dark; (8) Southern Taiga-light; (9) Sub-taiga,
Forest-Steppe; (10) Steppe; (11) Semi-desert; (12) Temperate Broadleaf; (13) Forest-Steppe;
(14) Steppe; (15) Desert. Source: Shvidenko et al. 2012.
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Central Siberia
(study of Tchebakova et al. 2011)South-western Siberia

Figure 1.5: Potential climatic ranges (green) of traditional and new crop (italic) species in
central Siberia in the 2010 and HadCM3 B1 and A2 2080 climates. Source: Tchebakova
et al. 2011.
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lasts for about 130 days in the south and 180 days in the north and its depth between
mid-February and mid-March (climax period) reach on average 15 cm in the south
and 80 cm in the north.

Most of SW Siberian soils have developed on a common loess parent material
deposited in the Quaternary (Chlachula 2003; Muhs 2007). However, the diverging
climatic conditions, in interaction with vegetation cover features, induced diverging
soil-forming processes. In the south, typically in the forest-steppe zone, the main soil-
forming processes are the formation and accumulation of organic matter, leaching of
carbonates in the topsoil and formation of secondary carbonates in deep soil layers.
Soils belong to the groups of Chernozems and Phaeozems (Jones et al. 2009). In the
north, typically in southern and sub-taiga, there are no Chernozems, Phaeozems
are less frequent and Luvisols appear. The main soil-forming processes are related
to the periodical movements of the water table, clays are washed from the topsoil
and accumulate in the deeper layers and carbonates have disappeared from the first
metre of the soil profile.

As previously mentioned, the south of Siberia has historically been more popu-
lated than the rest of Siberia and the south-west concentrates the highest population
density. This has to be related to climatic conditions (longer and warmer vegetation
season in the south of Siberia) and the presence of rich soils (typically Chernozems),
which are more favourable for agriculture than in the rest of Siberia. As a con-
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sequence of global change, agriculture may become possible on new and wider areas
(Kicklighter et al. 2014; Tchebakova et al. 2011). However, the models developed until
now to make such projections do not consider all components of site fertility, which
integrates the dynamics of climatic conditions and resources availability (water and
nutrients) necessary for plant growth (Chapin et al. 2011; Schoenholtz et al. 2000;
Wardle 2004).

1.2 Objectives of the study and methods
Only a few ecological data are available for SW Siberia and we did not have access
to long-term experimental sites, neither to sites which would have already been
studied. Thus, the present work consisted in the selection and the characterization of
sites with the objective of identifying factors and processes involved in the control
of vegetation growth. In particular, we focussed on the relations between climate
and the availability of resources (water and nutrients) for plants.

Site fertility integrates the dynamics of climatic conditions and resources availab-
ility (water and nutrients) required for plant growth (Schoenholtz et al. 2000). In a
lot of ecosystems, nutrient limitation is rather an issue of real availability for plants
than presence (Giehl and Wiren 2014). An important ecosystem compartment in the
control of fertility is soil, which is considered as the main repository of nutrients
and water for plant uptake. Water storage and availability are mainly dependent
on soil physical properties (e.g. texture, structure) while nutrient availability is
more dependent on soil chemical and biological properties. The size of the pool of
available nutrients (soil solution and exchangeable/available pools) at a given time
is of importance, but the processes that may replenish or flush this pool over time
must also be considered (e.g. weathering, atmospheric deposition, nutrient leaching,
biological cycling) (Legout et al. 2014; Ranger and Turpault 1999).

Whenever possible, we stressed on snow effects since this variable is an important
feature of Siberian ecosystems and its levels tend to rise with global change, by
contrast with most of the other regions of the world. Snow controls winter soil
thermal regime because of its insulation properties. In cold ecosystems, such as
Siberia, the soil temperature under the snow-pack can be completely decoupled
from air temperature and the soil can be protected from freezing (Zhang 2005).
Soil freezing is known to greatly reduce biological activity (soil fauna and micro-
organisms) by physiological control, impeding movements because of changes in
the physical properties of the environment, or because it reduces water availability,
which is a pre-requisite for microbial activity (Davidson and Janssens 2006; Öquist et
al. 2009). Natural or experimentally induced snow gradients were found to influence
winter microbial and enzymatic activities, and so organic matter mineralization and,
by extension, the release of nutrients like nitrogen in a wide variety of ecosystems
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(Brooks et al. 2011; Groffman et al. 2006; Grogan and Jonasson 2005; Jusselme et al.
2016; Monson et al. 2006; Schimel et al. 2004; Shibata et al. 2013). Seasonal snow-
covers constitute a pool of water that is released to the soil at snow-melt. In SW
Siberia, depending on the soil water content before the snow season, the melt-water
may constitute an important input for the oncoming vegetation season because
the precipitation levels are relatively low. In the same time, snow-melt could be
associated with nutrient loss (for example, by leaching of nitrogen and phosphorus;
Ågren et al. 2010; Hardy et al. 2001; Sebestyen et al. 2008; Yano et al. 2015).

This PhD thesis has been organized around five axes (Chap. 3–7) which are
described below.

1.2.1 Relation between tree-growth and climate in
contrasting pedoclimatic situations

The relations between climate and tree growth can be approached through dendro-
chronological methods. Essentially, the measure of tree ring-width provides two
kinds of information: the average radial growth level of a tree and the inter-annual
variations of its growth. While the average growth level is an integration of in-
ternal (age) and environmental conditions (e.g. average climate, topography, soil,
competition, management), the inter-annual variation of tree ring-width is the res-
ult of varying climatic conditions and/or disturbances (e.g. insect outbreaks, fire,
hurricane) (Cook and Kairiukstis 1990; Fritts 1976). Climate controls tree growth
through its regulation of eco-physiological processes (which depend notably on light,
temperature, and water availability) but also through its impact on the physical,
chemical and biological processes involved in the release of plant-available nutrients
in the ecosystem.

In addition, the climate–growth relations are not well known for Populus tremula
L., a tree species commonly found in SW Siberia (Schepaschenko et al. 2011) and
which could spread in new areas of Northern Eurasia in the 21st century (Shuman
et al. 2015). Although the study of the relations between tree ring-width and air
temperature and precipitation have historically been the focus of most studies, the
relations with other parameters, and particularly snow, are less common.

We addressed the following questions: (1) How does climate regulate tree growth
in contrasting pedoclimatic conditions in SW Siberia? (2) In particular, has snow a
noticeable influence on tree growth? and (3) Has average tree growth changed in the
recent decades?

Since SW Siberia is positioned on a gradient of climate and soil processes, we
hypothesized that tree growth responds to different climatic parameters depending
on their position in the region. Concretely, high temperatures might alleviate a tree
growth limitation in the northern part of SW Siberia while it could be associated
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with water limitation in the south. Also, years with relatively high snow levels may
enhance tree growth in the southern zone, because of increased water availability.
Finally, in the last decades, it is possible that the average tree growth was enhanced if
global change (temperature, precipitation, CO2 levels, nitrogen deposition, etc.) was
sufficient to alleviate growth limitations, or reduced if global change exacerbated
existing limitations or induced new ones.

To test our hypotheses, we measured tree ring-width on six sites of SW Siberia
presenting contrasting pedoclimatic situations. Standard chronologies were built
for each site and related to local climatic parameters with dendrochronological
procedures (Chap. 3).

1.2.2 Soil temperature and moisture regimes and their
potential evolution with climate variations in two
contrasting pedoclimatic situations

Soil temperature and moisture regimes control biological activity, from the soil
fauna and micro-organisms, that are responsible for the decomposition of organic
matter and thus the release of nutrients, to the plant and its symbiotic partners,
which are taking up resources. Because of their influence on nutrient availability
(e.g. through decomposition and mineralization processes, mass flow, diffusion)
and on the physiology of uptake systems (e.g. fine roots, mycorrhizae, stomata
aperture), altered temperature and water availability, either in deficit or in excess,
impair the mineral nutrition of plants (Bassirirad 2000; Kreuzwieser and Gessler
2010; Rennenberg et al. 2009). Soil temperature and moisture regimes are the result
of climatic conditions and are thus dynamic across the seasons. In addition, they are
greatlymodulated by soil properties as well as by soil cover properties (e.g. vegetation
type and density, presence of snow). Properties of the soil cover control the fluxes
of energy (e.g. albedo) and matter (e.g. water interception, evapo-transpiration) to
and from the soil.

In the Chap. 4 of this manuscript, we address the following questions: (1) What are
the current soil temperature and moisture regimes in forest-steppe and sub-taiga? and
(2) How are climate variations, and in particular snow depth, susceptible to influence
these regimes in contrasting pedoclimatic situations?

To reach these goals, we recorded the dynamics of soil temperature and moisture
under aspen forest and grassland vegetation covers in two contrasting sites of SW
Siberia. The impact of snow cover on these dynamics was assessed by manipulating
its height in the field and also through the modelling of soil water budget with
the model Biljou (Granier et al. 1999). To assess the potential effects of climate
change on the soil water budget, we performed simulations with modified climatic
conditions. Essentially, we tested the simultaneous effects of higher temperatures,
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drier summer conditions and varying snow amounts in winter.

1.2.3 Fine root soil exploration in contrasting pedoclimatic
situations

Fine roots (usually defined by a diameter < 2mm), with or without symbiotic
partners (ecto-mycorrhizae, endo-mycorrhizae, bacteria), are responsible for most
of nutrient and water acquisition. They play a crucial role in the cycling of carbon
and nutrients in forest ecosystems (Berg 1984; Helmisaari et al. 2002; Hendrick and
Pregitzer 1993; Joslin and Henderson 1987; Leppälammi-Kujansuu et al. 2014).

On the global scale, general patterns of fine root distribution within the soil profile
have been reported in relation to the distribution of terrestrial biomes (Jackson et
al. 1997). Fine root distribution and dynamics (production, turnover, life history)
respond to environmental factors such as stand characteristics (e.g. species, age,
density), soil properties (e.g. nutrient stocks, pH) and climatic features (Finér et al.
2011; Gill and Jackson 2000; Hendricks et al. 2006; Joslin et al. 2000; Leuschner and
Hertel 2003; McCormack et al. 2014, 2013; McCormack and Guo 2014; Yuan and
Chen 2010, 2012a,b).

We aimed to identify general fine root patterns, important for plant nutrition and
thought to be sensitive to climate changes in SW Siberia. The distribution of fine
roots throughout the soil profile is a good proxy to start assessing the environmental
constraints (physical and/or chemical) for the mining of their resources (water and
nutrients) by plants. In the Chap. 5, we address the following question:Do contrasting
climate and soil conditions lead to diverging fine root distributions in SW Siberia?

To answer this question, we measured fine root length and mass down to 1m
depth, in aspen forests and grasslands, at six sites presenting different soil and
climatic conditions.

1.2.4 Assessment of nitrogen and phosphorus status

Nutrient availability is a key regulator of primary productivity and carbon balance
of ecosystems (Chapin et al. 2011; Fernández-Martínez et al. 2014; Wieder et al. 2015).
Nutrient availability varies both in space and time, and this variability can ultimately
bemore important for vegetation growth than the changes in plant physiology driven
by climate (Lukac et al. 2010; Salih et al. 2005). Eventually in interaction with other
environmental factors, such as water availability, limited nutrient availability can
counter-balance the growth enhancement by rising atmospheric CO2 concentration
(Norby et al. 2010; Oren et al. 2001; Reich et al. 2014; van Groenigen et al. 2006).

Either individually or in combination, nitrogen (N) and phosphorus (P) are the
major nutrients commonly found to constrain biological processes and primary
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productivity (Elser et al. 2007; Fay et al. 2015; Güsewell 2004; Harpole et al. 2011;
LeBauer and Treseder 2008; Vitousek et al. 2010). Nitrogen and phosphorus enter
ecosystems via geologic and atmospheric pathways. Then, they are recycled through
the plant–soil–microbe system via organic matter decomposition processes (Aerts
and Chapin 1999; Attiwill and Adams 1993; Chapin et al. 2011). The increase of
atmospheric CO2 concentration and N deposition, which are in general stronger
and faster than any P input, are modifying the CNP stoichiometry of ecosystems
(Peñuelas et al. 2013). As a consequence, a progressive shift from N limitation to P
limitation or a N-P co-limitation can occur (Ågren et al. 2012; Peñuelas et al. 2012;
Vitousek et al. 2010). These modifications of biogeochemical cycling on global and
regional scales will participate in the way ecosystem reshaping is driven, for example
through the modification of plant communities adapting to new stoichiometric
constraints (Güsewell 2004). It may also have consequences for agricultural potential
on these scales.

Soil phosphorus status in contrasting pedoclimatic situations

Most of the P that is bio-available in ecosystems originates from the weathering of
the soil mineral phase and/or by the recycling of organic matter. Along with soil
development, the mineral phase is depleted, P becomes increasingly limiting and the
recycling of organic P forms is of increasing importance for plant growth (Walker
and Syers 1976).

Phosphorus is bio-available in the soil in the form of phosphate ions (mostly
H2PO4

– and HPO4
2– ; Lindsay 1979). The availability of phosphate ions is mostly

controlled by geochemical reactions because of their poor mobility and their high
reactivity with soil components. Soil pH exerts a major control on the speciation
of phosphate ions in the soil solution, their interactions with other ligands such as
metal cations, and the precipitation–dissolution of P-containing complexes (Hin-
singer 2001). Once free in solution, phosphate ions are electrostatically attracted to
positively charged sites on clay minerals (on their edges), carbonates and organic
matter (Gérard 2016; Hinsinger 2001; Parfitt 1978). The availability of phosphate
ions can decrease when they form covalent bounds with metals, e.g. iron and alu-
minium oxides, or when they precipitate in mineral forms (Barber 1995). Through
their action on soil pH and the exudation of organic acids/anions, roots enhance
the bio-availability of P in the rhizosphere (Hinsinger 2001). The microbial biomass
can also constitute a pool of immobilized P which can be easily made available
(Bünemann et al. 2012; Oberson et al. 2001). Overall, the plant-availability of P in a
soil depends for a great part on the capacity of the soil to exchange phosphate ions
between the solid and the liquid phases.

It is often considered that P is not the main limiting nutrient in northern ecosys-
tems (Hedin 2004; Reich and Oleksyn 2004). Also, P fertilization in agriculture is
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barely, if not at all, practised in Siberia. However, a few assessments of P availability
have been conducted in Northern Eurasia, and a reconsideration of such a paradigm
might be necessary in the context of global change. We addressed the following
questions in the Chap. 6: What is the phosphorus status of SW Siberian soils? and in
particular, Which amount of phosphorus is available for plants?

At a given time, the characterization of the size of different P pools and of soil prop-
erties provide a good approximation of the potential importance of the geochemical
and biological pathways. The quantification of the pool of isotopically exchangeable
phosphate ions as function of time is a good proxy for the bio-availability of P in
the ecosystem (Fardeau 1996; Frossard et al. 2011; Morel and Plenchette 1994).

Thus, we measured the size of different P pools in the soil of six sites of SW Siberia
with contrasting climate and soil conditions: total P, inorganic P, organic P as well as,
in standard conditions, phosphate ions in the soil solution and diffusive phosphate
ions at the solid–solution interface as a function of time. Classical soil analyses were
combined with an isotopic dilution kinetics method. The size of P pools assessed at
Siberian sites were compared with a global data set compiled from 236 references.

Redistribution of the nitrogen derived from leaf litter decomposition
within ecosystem compartments in contrasting pedoclimatic situations

Contrary to P, the N which is available for plants almost exclusively derives from the
biological pathway. Atmospheric N2 is initially integrated in the living biomass by
N-fixers (bacteria and archae, eventually in symbiosis with plants), which transform
it into reactive N (Cleveland et al. 1999; Galloway et al. 2004). Most plants take up N
in the soil solution either in organic (amino-acids) or inorganic (ammonium, NH4

+;
nitrate, NO3

– ) forms (Näsholm et al. 2009; Schimel and Bennett 2004).
The N in the soil solution mainly originates from decomposition processes, which

consist in fragmentation, depolymerization and mineralization of litter and soil
organic matter (Schimel and Bennett 2004). Above- (e.g. dead leaves and branches)
and below-ground (dead roots) litter inputs are thus key components of N cycling in
terrestrial ecosystems. Aerial litter decomposition is controlled by climate, decom-
poser activity, and its inherent chemical composition (Berg and McClaugherty 2014).
During the process of litter decomposition, which is carried out by complex inter-
actions between abiotic (light, wind, temperature, precipitation, freezing, etc.) and
biotic factors (soil fauna, fungi and bacteria), litter is broken down into smaller sized
particles and soluble compounds (Berg and McClaugherty 2014). These products of
litter decomposition are incorporated to the mineral soil and become soil organic
matter (SOM). Depending on environmental conditions—such as soil properties,
soil processes, biological activity and climatic conditions—SOM follows different
pathways of mineralization and/or stabilization (Cotrufo et al. 2015; Lehmann and
Kleber 2015; Schmidt et al. 2011; von Lützow et al. 2006).
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SW Siberian soils are formed on a common loess deposit but they are submitted
to different climatic conditions. In the south, typically in steppe/forest-steppe, soil
experiences freezing over winter because of a relatively shallow snow-pack, and
water shortages are frequent in summer. In the north, typically in sub-taiga, the soil
is barely frozen in winter due a thick snow-pack and soil moisture content is not
limiting in summer.

In the respective chapter (Chap. 7), we addressed the following questions: Is the
liberation of nitrogen from the leaf-litter driven by climatic conditions? Is the fate of N
in the soil controlled by climate?

To answer these questions, we tracked leaf-derived N over time in the soil–plant
continuum using 15N labelling in four sites presenting different climate.
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Chapter 2

Site selection and characteristics

We selected six sites in SW Siberia with contrasting climate and soil conditions
(Fig. 2.1 and Tables 2.1 and 2.2). These sites were positioned in the forest-steppe and
sub-taiga bioclimatic zones. Their common characteristics were a soil developed on
loess parent material and a similar vegetation cover in terms of dominant species.
Each site presented aspen (Populus tremula L.) stands with closed canopy along with
nearby grassland areas. Study areas were set up in each of these vegetation covers.
One site (SAW) only had forest cover with aspen. So there were six sites with forest
and five with grassland in our data set for SW Siberia.

Climate change trends are shown in Fig. 2.2–2.4.
From their common origin as loess deposits, soil have undergone different forming

processes due to the action of climate and vegetation. The pedological horizons de-
scribed in the study sites are shown in Fig. 2.5.Themain physico-chemical properties
of soils are given in the Table 2.3 and Fig. 2.6 and 2.7.

There were three groups of sites corresponding to different intensity of investiga-
tion, as described in Fig. 2.8.

Selection criteria and descriptive informations of our study sites are reminded in
each chapter, as well as additional specific details.
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Chapter 2 Site selection and characteristics

S a l a i r         m
 o u n t a i n s

field site
main city
main river

0 100 200 300  km

TOM

CHE

SAE
SAW

BAR

KRA

Figure 2.1: Location of the study sites in SW Siberia. The names of the field sites are based
on the name of the closest city or of the geographical area: Barnaul (BAR), Chebula (CHE),
Krasnozerskoye (KRA), Salair East (SAE), Salair West (SAW), and Tomsk (TOM).
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Chapter 2 Site selection and characteristics

Table 2.2: Detailed climatic features of the study sites. Data averaged on the period
1981–2010. The data presented for each site come from the closest weather stations.

Variable Period BAR CHE KRA SAE SAW TOM

WMO index of the station 29838 29539 29915 29745 29736 29430
Distance site–station (km) 4 28 76 18 64 38

Air Temperature (◦C) MAT 2.7 1.3 2.9 2.3 1.2 0.9
DJF -14.1 -15.2 -15.1 -15.4 -17.6 -15.6
MAM 3.4 2.0 3.4 3.4 2.8 1.6
JJA 18.3 17.0 19.7 17.4 16.9 16.7
SON 2.8 1.2 3.2 3.0 2.2 0.8

Precipitation (mm) MAP 431.5 509.8 324.5 432.3 453.0 566.5
DJF 69.8 84.5 53.2 54.3 66.1 104.7
MAM 85.1 91.3 58.2 78.9 75.1 98.2
JJA 166.6 184.8 135.3 182.2 168.8 202.9
SON 107.7 146.4 76.1 106.1 115.9 157.2

Snow Height (cm) climax 48.8 42.5 18.8 38.0 54.3 70.6
SCD 1 cm (days) year 157.2 167.6 141.9 144.5 149.5 178.1
SCD 20 cm (days) year 108.3 118.3 25.2 88.3 116.4 145.5

Soil Temp. at 20 cm (◦C) DJF -1.5 -6.0 -0.4
MAM 4.3 4.0 2.4
JJA 18.9 20.3 16.4
SON 6.5 7.3 5.8

Soil frozen at 20 cm (days) year 86.8 130.1 44.5
Depth of soil frozen (m) DJF 20–40 40–80 0–20
WMO: World Meteorological Organization; MAT: mean annual temperature;
MAP: mean annual precipitations; SCD: snow cover duration;
D, J, F, M, A, M, J, J, A, S, O and N are the months of the year
climax: maximum snow depth, i.e. mean between mid-February and mid-March
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Figure 2.2: Seasonally and yearly averaged daily mean air temperature on four of our study
sites over the period 1966–2014. The blue lines are simple linear regressions. J, F, M, A, M,
J, J, A, S, O, N, and D are the months of the year.
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BAR CHE KRA TOM

40

80

120

160

50

100

150

100

200

300

50

100

150

200

250

200

400

600

D
J
F

M
A
M

J
J
A

S
O
N

y
e
a
r

19
70

19
80

19
90

20
00

20
10

19
70

19
80

19
90

20
00

20
10

19
70

19
80

19
90

20
00

20
10

19
70

19
80

19
90

20
00

20
10

P
re

c
ip

it
a

ti
o

n
 (

m
m

)

Figure 2.3: Seasonally and yearly summed precipitations on four of our study sites over
the period 1966–2014. The blue lines are simple linear regressions. J, F, M, A, M, J, J, A, S,
O, N, and D are the months of the year.
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Figure 2.5: Description of the soil horizons observed in three pit replicates at our study
sites under aspen forest and grassland vegetation covers.
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Figure 2.7: Profiles of soil and litter pH–H2O. Measurements on composite samples made
from 3 soil pits per site. “Litter” means all the dead plant material deposited on the soil
surface (senescing leaf litterfall, small branches and senescing understorey vegetation in
forests; senescing herbaceous vegetation in grasslands) that is to say mainly OL and OF
horizons, and eventually OH (at BAR, CHE, KRA and SAE) at the date of sampling (July
2013).
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Table 2.3: Main soil physico-chemical properties.

Depth Forest Grassland

(cm) BAR CHE KRA SAE SAW TOM BAR CHE KRA SAE TOM

Apparent density
−5 1.0 0.8 0.7 0.5 0.7 0.9 1.0 1.0 0.9 0.9 0.9
−15 1.2 1.0 1.0 0.8 1.0 1.1 1.3 1.1 1.0 1.1 1.2
−30 1.2 1.2 1.2 1.1 1.3 1.2 1.3 1.1 1.2 1.3 1.3
−60 1.3 1.4 1.4 1.3 1.5 1.5 1.7 1.4 1.4 1.3 1.5
−100 1.4 1.5 1.6 1.1 1.6 1.4 1.7 1.4 1.5 1.4 1.4
Organic C (g kg−1)

−5 39.20 53.00 54.30 113.00 52.90 37.20 35.30 40.30 68.10 51.20 32.50
−15 32.80 22.40 34.90 63.60 25.00 24.80 29.10 35.40 42.80 46.10 21.30
−30 28.60 10.70 25.00 16.90 13.10 13.90 18.20 28.50 30.80 6.79 10.70
−60 8.05 3.68 6.79 3.07 4.92 5.49 5.71 4.35 12.80 2.86 3.76
−100 2.73 2.43 3.68 1.26 2.43 2.99 2.79 2.68 3.07 1.11 2.33
Total N (g kg−1)

−5 2.91 3.48 4.10 8.53 4.22 2.92 2.83 2.80 5.32 3.90 2.65
−15 2.44 1.47 2.57 4.65 2.14 2.09 2.31 2.40 3.23 3.47 1.77
−30 2.09 0.75 1.85 1.21 1.15 1.17 1.45 1.89 2.34 0.48 0.85
−60 0.65 0.36 0.58 0.26 0.45 0.50 0.51 0.38 1.01 0.22 0.40
−100 0.26 0.25 0.31 0.09 0.29 0.36 0.21 0.27 0.24 0.10 0.29
Total P (g kg−1)

−5 1.02 0.85 0.73 1.10 1.04 0.76 0.88 0.96 0.85 0.92 0.69
−15 0.95 0.66 0.62 0.91 0.86 0.68 0.86 0.94 0.70 0.87 0.62
−30 0.96 0.63 0.54 0.42 0.77 0.56 0.76 0.90 0.63 0.56 0.53
−60 0.76 0.68 0.39 0.32 0.59 0.49 0.59 0.69 0.52 0.61 0.49
−100 0.64 0.66 0.41 0.32 0.65 0.53 0.59 0.69 0.41 0.59 0.54
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6 sites, forest & grassland
BAR, CHE, KRA, SAE, SAW, TOM

→ climate archives (Chap. 3)
→ dendrochronology (Chap. 3)
→ vegetation description (all Chap.)
→ soil description (all Chap.)
→ soil physico-chemical properties (Chap. 4–7)
→ fine root distribution (Chap. 5)
→ phosphorus status (Chap. 6)

4 sites, forest & grassland
BAR, SAE, SAW, TOM

→ temperature monitoring (Chap. 4, 7)
→ 15N-labelled litter experiment (Chap. 7)
→ litterbags (Chap. 7)

2 sites, forest & grassland
BAR, TOM

→ soil moisture monitoring (Chap. 4)
→ snow manipulation (Chap. 4) LEVEL I

LEVEL II

LEVEL III

Figure 2.8: Investigation levels at our study sites in SW Siberia. Field site names, based on
the name of the closest city or of the geographical area: Barnaul (BAR), Chebula (CHE),
Krasnozerskoye (KRA), Salair East (SAE), Salair West (SAW), and Tomsk (TOM).
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Chapter 3

A latitudinal response of aspen growth to
climate along a pedoclimatic gradient in
south-western Siberia

In collaboration with: J.-L. Dupouey, M. R. Bakker, P. A. Barsukov, D. Derrien, Z. E.
Kayler, A. Legout, P. Nikitich, O. Rusalimova, and B. Zeller.

3.1 Introduction
To understand the responses of terrestrial ecosystems to the variation in their en-
vironmental conditions is of primary importance in order to predict the ecological
impacts of global change. In particular, knowledge on tree growth control by envir-
onmental factors is needed to predict the evolution of forest productivity, community
composition and biogeography under future conditions.

Northern Eurasia experiences a particularly strong intensity of global change
(IPCC 2013). As such, substantial reshaping of ecosystems is expected (Groisman and
Gutman 2012). Longer vegetation growing seasons and frost-free periods, melt of
permafrost in northern areas and modification of soil freeze–thaw cycles in southern
areas are projected with the rising of average air temperature (Groisman et al. 2012).
Probable changes in the intensity and the distribution of precipitations could modify
fire and hydrological regimes (Shiklomanov and Lammers 2009; Shkolnik et al. 2010;
Soja et al. 2007). Covering about 10 million km2, Siberia occupies a great part of
Northern Eurasia. Along with the wide latitudinal gradient Siberia covers (from
45 to 75 ° N of latitude), several bioclimatic zones have been identified, from south
to north: steppe, forest-steppe, sub-taiga, southern taiga, middle taiga, northern
taiga, forest tundra and tundra. As a consequence of altered physical conditions, the
composition of the vegetation communities may change, as well as the positions
and the areas of the bioclimatic zones. In particular, all bioclimatic zones have been
predicted to shift northwards, steppe and forest-steppe to spread over larger areas
at the expense of taiga zones while tundra ecosystems may be constrained to small
local areas in the Arctic polar circle (Jiang et al. 2012; Shuman et al. 2015; Soja et al.
2007; Tchebakova et al. 2009, 2010). While primary productivity may be enhanced
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Chapter 3 Relations between climate and aspen radial growth

by higher air temperatures and CO2 concentrations (Mooney et al. 1991; Morgan
et al. 2004; Norby et al. 2005; Schimel 1995) along with longer vegetation growing
seasons, water shortages might appear with drier summer conditions, particularly
in the southern part of Siberia (Alcamo et al. 2007; Tchebakova et al. 2011a,b). Even
though there is an increasing interest in the study of Siberian ecosystems, functional
ecological data remain sparse in the international literature (Gordov and Vaganov
2010; Groisman and Soja 2009). In particular, few data have been published on fine
regional scales.

In this study we were interested in south-western (SW) Siberia, which is loc-
ated on the transition between steppe and southern-taiga. The south of Siberia
has historically been more populated than the rest of Siberia and the south-west
concentrates the highest population density because climatic conditions allow agri-
culture. This region is characterized by a cold-temperate climate with cold winters
and temperate summers. Daily mean temperature ranges between −17 ◦C (January)
and 19 ◦C (July), with extremes of −45 ◦C and 30 ◦C. Annual mean precipitation
ranges from about 300mm in the south (steppe) to 600mm in the north (southern-
taiga). Winter is characterized by a seasonally permanent snow cover lasting several
months. Both snow-pack duration and snow height increase on a gradient towards
the north. Along with this climate gradient, SW Siberia is positioned on a gradi-
ent of soil-forming processes. In the south, typically in the forest-steppe zone, the
main soil-forming processes are the formation and accumulation of organic matter,
leaching of carbonates in the topsoil and formation of secondary carbonates in deep
soil layers. Soils belong to the groups of Chernozems and Phaeozems (Jones et al.
2009). In the north, typically in southern and sub-taiga, there are no Chernozems,
Phaeozems are less frequent and Luvisols appear. The main soil-forming processes
are related to the periodical movements of the water table, clays are washed from
the topsoil and accumulate in the deeper layers and carbonates have disappeared
from the first metre of the soil profile. Biogeochemical processes probably vary in
nature and kinetics along the pedoclimatic gradient, as reflected notably by litter
decomposition which is faster in sub-taiga than in forest-steppe (Chap. 7).

Soil and vegetation processes are tightly coupled through numerous feedbacks,
and both are controlled by climate. The climate control on vegetation growth can
be direct—e.g. through the effects of climate on plant physiology and/or pheno-
logy (Wipf and Rixen 2010)—and/or indirect—e.g. through the effects of climate
on microbial and biogeochemical processes controlling water and nutrient avail-
ability (Brooks et al. 2011; van der Heijden et al. 2008). In SW Siberia, it can be
expected that winter processes, in relation to snow features such as height of the
snow-pack and duration of the snow season (Chap. 4), exert significant controls on
biogeochemical processes and biological activity. In fact, snow-packs have thermal
insulating properties and control soil temperature at wintertime (Brooks et al. 2011;
Zhang 2005). In SW Siberia, soils do not freeze in the northern zone (southern and
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sub-taiga), where the snow height is the highest, while in the southern part (steppe
and forest-steppe) soil freezing occurs in winter, depending on the soil status at
the date of the seasonal snow-pack installation and on its height (Chap. 4). Such
differences on winter soil temperature are known to impact microbial activity and,
by extension, biogeochemical processes and the release of plant-available nutrients
(Brooks et al. 2011; Schimel et al. 2004).The amount of snow also controls the amount
of water released at snow-melt (Brooks et al. 2011; Hardy et al. 2001; Iwata et al.
2010). In SW Siberia, the snow-melt constitutes the major input of water in the
year (Chap. 4). While the soil water reserve is almost always filled at snow-melt
in the northern part of SW Siberia, in the south the level of its recharge depends
on both the water budget in the previous summer and on the amount of snow
(Chap. 4). With climate change, an increase of the accumulation of snow has been
observed and is projected for the next decades in SW Siberia (Bulygina et al. 2011,
2010, 2009; Groisman et al. 2006; Shkolnik et al. 2010). Changes in snow regime
are known to have diverging effects on vegetation productivity (Brooks et al. 2011;
Wipf and Rixen 2010). For example, in Central Siberia, higher plant productivity
was observed after deep snow-pack and delayed snow-melt, possibly because of
soil thermal insulation and/or increased water availability (Grippa et al. 2005). On
the contrary, in sub-Arctic Eurasia, delayed snow-melt due to higher snow-pack
impacted cambial activity initiation and reduced tree-growth sensitivity to summer
temperature, possibly participating in a decrease of productivity (Kirdyanov et al.
2003; Vaganov et al. 1999). Furthermore, since the soil moisture content during
the growing season interacts with microbial and vegetation activities, snow exerts
indirect control on summer processes in regions with low summer precipitations
and where the soil moisture content depends on the input of melt-water (Chimner
and Welker 2005; Walker et al. 1999).

Aspen (Populus tremula L.) and birch (Betula pendula Roth.) are two common
tree species commonly found in SW Siberia, particularly in the forest-steppe zone
(Schepaschenko et al. 2011). If aspen and birch currently occupy about 12 % of the
total forested area of Siberia and Russian Far East (Shepashenko et al. 1998), some
bioclimatic models project a significant increase of the area they occupy at the end of
the 21st century (Shuman et al. 2015). Even outside of Siberia, literature on aspen and
birch growth control in natural ecosystems remain sparse. Trembling aspens—the
Eurasian species Populus tremula L. (European Common Aspen) and its North Amer-
ican relative Populus tremuloides Michx. (American Quaking Aspen)—are among the
most widespreadwoody species in the world (Dickmann and Kuzovkina 2008; Húlten
and Fries 1986). These two species are close (Cervera et al. 2005; Eckenwalder 1996;
Müller et al. 2012; Pakull et al. 2009), they grow under similar climatic conditions in
Europe and North America and are adapted to harsh environments. European aspen
generally grows in small stands (0.1–2 ha) most of which consist of a single clone re-
generated by suckering while quaking aspen usually grows in larger stands (a clone
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Chapter 3 Relations between climate and aspen radial growth

of 43.3 ha has been reported) (Kemperman and Barnes 1976). Aspen species play a
significant ecological role in boreal forest structure and function (Kouki et al. 2004;
Suominen et al. 2003), have an increasing value in the traditional forest industry
(Johansson 1996), and may be utilized for bio-energy production (Johansson 2002;
Karacic and Weih 2006), or even for phyto-remediation (Laureysens et al. 2005). Due
to their large genotypic and phenotypic variabilities, aspen species may achieve a
relatively high adaptability to future climatic conditions (Hajek et al. 2013; Hamrick
2004; Ingvarsson 2005; Jansson and Douglas 2007; Soolanayakanahally et al. 2015;
Yin et al. 2008). The North-American aspen has been more studied than the Eurasian
one. In particular, P. tremuloides site productivity was shown to depend mainly on
soil nutrient and moisture regimes (Chen et al. 1998, 2002; Hogg et al. 2013; Huang
et al. 2010; Leonelli et al. 2008; Messaoud and Chen 2011). Other local environmental
factors, influencing tree functioning and health, also impact quaking aspen growth,
such as insect outbreaks (Hogg et al. 2002; Hogg 1999), root diseases (Brandt et al.
2003), light availability (Hemming and Lindroth 1999) or soil temperature (Peng
and Dang 2003). P. tremuloides is sensitive to severe and prolonged warm droughts
(Hanna and Kulakowski 2012; Michaelian et al. 2011; Worrall et al. 2010).

In this study, we aimed at characterizing the main drivers of P. tremula growth in
SW Siberia. We hypothesized that both the average growth levels and the response
to the year-to-year climate variability vary along with the gradient of pedoclimatic
conditions. In particular, it is unclear whether the higher temperatures and the
longer growing seasons in the south enhance tree growth or if the latter is limited
by drier summer conditions, in comparison with the colder but moister conditions
of the north of SW Siberia. Also, we hypothesized that tree growth responds to soil
water availability and to snow cover level—since it is an important control of the
soil moisture content during the growing vegetation season—in the steppe–forest-
steppe zone (the south of SW Siberia) while it responds to early spring and summer
temperature—which control the length of the growing season and the amount of
energy available for carbon assimilation—in sub-taiga (north). Finally, it is possible
that productivity was modified in the recent decades if global change alleviated
or exacerbated, or started to do so, growth limitations in SW Siberia. To test our
hypotheses, we measured tree-ring width in 21 aspen stands of diverging age in
six sites distributed on the transition between steppe and sub-taiga in SW Siberia.
Mean ring-widths were compared between sites and between periods of growth in
the last century. Local standard chronologies were related to a selection of climate
(air temperature, precipitation, snow height), or climate-related (soil temperature,
soil water content and tree water stress index), parameters following bootstrapped
correlation/response functions procedures on monthly and 15 days time steps. We
discussed how the climate (-related) variables significantly correlated to stem radial
growth are susceptible to control either directly, through plant physiology and
phenology, or indirectly, through microbial and biogeochemical processes related to
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3.2 Materials and methods

Table 3.1: Main characteristics of the study sites.

Site ID Namea Bioclimatic zone Lat. N Long. E Elev.b Soilc

BAR Barnaul Forest-steppe 53.41 83.47 221 Haplic Phaeozem
(southern part)

CHE Chebula Forest-steppe 55.55 84.00 186 Haplic Phaeozem
(northern part)

KRA Krasno- Steppe to 53.59 79.14 141 Phaeozem
zerskoye forest-steppe

SAE Salair East Sub-taiga to 54.39 85.75 305 Leptic Phaeozem
forest-steppe

SAW Salair West “Blackish taiga” 54.18 85.17 358 Haplic Luvisol
TOM Tomsk Sub-taiga 56.30 85.43 232 Albic Luvisol
aname of the closest city or name of the local area; belevation (m above sea level)
cWRB classification (IUSS Working Group WRB 2014)

water and nutrient plant-availability, tree growth in the region. Finally, we initiated
a reflection on the potential implications of our findings in the context of global
change.

3.2 Materials and methods

3.2.1 Site description

We selected six sites in SW Siberia located on the transition from steppe to sub-taiga
and with contrasting pedoclimatic conditions (Table 3.1). Krasnozerskoye (hereafter
noted KRA) is located on the border of steppe and forest-steppe, Barnaul (BAR) in
the southern part of forest-steppe, Chebula (CHE) in the northern part of forest-
steppe, Salair East (SAE) on the transition between sub-taiga and forest-steppe in
the foothills of the Salair mountains range, Salair West (SAW) in the “Blackish”
taiga belt of Salair mountains, and Tomsk (TOM) in sub-taiga. Sites located in the
forest-steppe are expected to be drier, to have higher mean temperature and to
experience a lower height of snow during winter than sites located in the sub-taiga.
The same phenomenon is expected from the South to the North, with the exception of
SAW which is located in a low-mountain range and experiences climatic conditions
similar to TOM, our northernmost site. Detailed climate characteristics are provided
in Table 3.2.

At all the six study sites, the soil has developed on loess parent material. Over
our gradient of climatic conditions, the soils present a rather homogeneous nutrient
status but somehow diverging soil-forming processes led to differences in soil
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3.2 Materials and methods

physico-chemical conditions. Notably, pH varies between sites (5.25–6.86 in the
15 first cm and 5.70–8.52 at −100 cm), SAW and TOM (the two sites in sub-taiga)
present a periodically high water table and one site (SAE) presents a thinner loess
layer (about 80 cm laying on the top of a fractionated schist material while at all the
other sites the bedrock cannot be reached in the first 120 cm). Fine root (< 0.8mm
diameter) exploration occurs deeper in forest-steppe than in sub-taiga (Chap. 5,
Brédoire et al. 2016b).

At each site, we selected 3–4 forest stands dominated by aspen (Populus tremula
L.; Table 3.3). These three stands were spaced by 200–2000m and were defined
as containing at least 30 aspen trees. We selected on each site one stand with
diverging age (younger or older than the other two/three stands, which were more
representative for the site). All trees and shrub species were identified and individual
stems counted. We measured the circumference at 1.30m of all trees, the height
of at least 10 aspen trees per stand using a clinometer (Suunto Optical Reading
Clinometer PM-5/400 PC) and assessed diameter and estimated height of all shrubs
taller than 1.30m. Leaf area index (LAI) was estimated by collecting litterfall in
autumn 2013. Five littertraps of 1.96m2 each were installed out earlier in the season
on each site. We sorted the litterfall to keep only the leaves and oven dried them at
60 ◦C to constant weight. For each site, the surface area and the dry weight of 20
leaves was then used to compute LAI in m2 leaves m−2 ground.

Understorey vegetation cover (woody and herbaceous) was described on an area
of 100m2 in each study stand. All species were identified and their percent coverage
was visually estimated based on the Braun-Blanquet scale (Braun-Blanquet et al.
1932) consisting of a plus sign (sparse and covering a small area) and a series of
numbers from 1 to 5 (5 is covering more than 75% of the area). For each site and
each species, we calculated the mean score on the Braun-Blanquet scale (ignoring
the “+” class) and assumed species to be dominant when they were present in at
least two of the 3 replicates and with a mean score > 1 (Table A.1).

3.2.2 Climate data acquisition and processing
Climate data for the closest weather station for each site were provided by the
Russian Research Institute of Hydrometeorological Information–World Data Centre
(RIHMI-WDC) for BAR, CHE, KRA and TOM, or were collected and merged from
National Oceanic and Atmospheric Administration (NOAA) and InfoSPACE for SAE
and SAW.The weather stations were located 4–76 km from the study sites (Table 3.2).
KRA is the farthest from its weather station but, since they are both located in a plain
and in an homogeneous climatic unit, the data used are likely to be representative
for the study site. SAE is located in the foothills of the Salair mountains range while
the closest weather station is located in the adjacent plain. SAW is located in the
Salair mountains range but the closest weather station is in the foothills. Thus, the
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climate data used for these two sites might not exactly correspond to the actual
conditions of the sites. Additionally, for SAE and SAW, climate data were collected
from different sources and did not permit to construct continuous climatic series.
To fill gaps in temperature, we used linear relations with the closest stations in the
region. The relations obtained were of good quality (data not shown) and we used
the reconstructed temperature series for the dendro-climatic analyses.

Soil moisture dynamics were simulated with the daily water budget model Biljou
version 53 (Granier et al. 1999). Basically, Biljou is an iterative model where the
variations in soil water content are calculated at a daily pace as:

∆W = P − In −T − Eu+s − D (3.1)

where ∆W is the change in soil water content (W ) between two successive days, P
is the total precipitation, In is the rainfall interception by the tree vegetation cover,
T is the tree transpiration estimated by the Peinman–Monteith equation (Monteith
and Unsworth 2013), Eu+s is the sum of the transpiration from the understorey
vegetation and the evaporation from the soil, and D is the drainage at the bottom of
the soil profile explored by fine roots. The inputs of the model are daily climate data—
minimum, maximum and mean temperature, total precipitation, wind speed, global
radiation, and vapour pressure deficit—, vegetation related parameters—maximum
leaf area index (LAI), budburst and leaf fall dates, vertical root distribution in the
soil—as well as soil related parameters—water content at the field capacity (Wfc),
water content at the wilting point (i.e. at pF 4.2; Wwp), apparent and real density,
and macro- and micro-porosity. This model was calibrated at BAR and TOM where
it reproduced accurately soil moisture dynamics (Chap. 4). We employed average
values of the fitted input parameters of BAR and TOM (mostly soil porosity) for
CHE and KRA. The values of the input parameters are shown in Table A.2.

Water stress is usually assumed to occur when the relative extractable soil water
(REW), computed on the scale of the entire soil profile explored by fine roots, drops
below 40% of maximum extractable water (Wfc). Under this threshold, transpiration
is gradually reduced due to stomatal closure (Granier et al. 1999; Sadras and Milroy
1996). The REW (dimensionless) was computed daily as:

REWd =
Wd −Wwp

Wfc
(3.2)

and the soil water deficit (SWD, in mm) as:

SWDd = 0.4 ×Wfc −Wd (3.3)

Finally, we computed a stress intensity index (Is, dimensionless), cumulating the
daily differences between REW and Wfc (Granier et al. 1999) from the beginning (i)
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Chapter 3 Relations between climate and aspen radial growth

to the end (n) of the vegetation season:

Is =
n∑
d=i

SWDd

Wfc
(3.4)

3.2.3 Tree core sampling and preparation, and ring-width
measurement

On at least five dominant or co-dominant trees per stand, i.e. at least 15 trees per
site, we collected a tree core at 1.3m with a 5mm diameter Pressler corer (Suunto).
The tree cores were stored in the fridge until processing. They were mounted, cut
to get a planned sectional view of the rings and dried at 60 ◦C before measurement
of ring-width. The annual ring-widths were measured (precision 0.01mm) using a
binocular microscope fitted to a digitizing tablet coupled with a computer.

For the cores that did not reach pith, we estimated the distance to the pith from
the last measured ring with the help of a sight of concentric circles. The number
of lacking rings was computed dividing the distance to the pith by the average
ring-width of the last five rings measured.

3.2.4 Analysis of the relations between radial growth, age,
site and their variation in the last decades

For each tree core, we computed a chronology of 9 year centred rolling-mean of
ring-width. These chronologies were first averaged by site to detect potential local
effects on the regional scale of SW Siberia. They were then averaged by starting
periods (based on the cambial age of the trees) to detect potential temporal evolution
of growth levels. Three starting periods were chosen (1934–1954, 1955–1974 and
1975–2001) to achieve an optimum balance between growth category (as expected
after the examination of the site average chronologies) representation and number of
tree cores per period.This is an exploratory approachwhich aims at detecting general
broad patterns. A dedicated sampling design would be necessary to adequately
address any questions related to detecting temporal changes in growth patterns
across sites.

3.2.5 Analysis of the relations between radial growth and
climate related parameters

The individual ring-width series were crossdated using a moving graphic program
after progressive detecting of so-called “pointer years” (defined as those years when
at least 70 % of the series in a site present an absolute relative radial growth variation
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3.2 Materials and methods

Table 3.4: Description of the different analyses ran to investigate the relations between
aspen radial growth and climate, or climate-related, variables.

Run Time step Variable(s) tested

Run 1 1 month Temperature, Precipitation
Run 2 1 month Temperature, Precipitation adapteda

Run 3 15 daysb Temperature, Precipitation adapteda

Run 4 15 daysc Temperature, Precipitation adapteda

Run 5 1 month Relative extractable waterd
Run 6 1 month Stress intensityd

Run 7 1 month Snow height
Run 8 1 month Soil temperature at −20 cm
awinter precipitations set to 0mm and released at snow-melt
bfirst period starting at snow-melt
cfirst period starting in March
dcomputed with the water budget model Biljou

higher than 10% relatively to the previous year; Becker et al. 1994). Some trees were
eliminated from the analysis of the relations between radial growth and climate
because they could not be crossdated with the majority of the trees from the same
study site or because they were suppressed in their respective study stand and were
poorly crossdated (Fig. A.1).

Individual tree-ring width series were subjected to detrending in order to remove
the low frequency variability (so-called growth trend) that is due to biological
or stand effects. The growth trend was computed using cubic splines with 50 %
frequency cutoff of 0.67 × L years, where L is the length (in years) of the longest
individual chronology available for the site (Cook and Kairiukstis 1990; Cook and
Peters 1981). The standardization was done by dividing each actual growth series by
the growth trend to produce the ring-width index (RWI, dimensionless). A standard
chronology was then built for each study site, averaging the individual RWI series
using Tukey’s biweight robust meanwhichminimize the effects of outliers (Mosteller
and Tukey 1977). These standard chronologies were eventually truncated at their
extremities to remove years with less than five samples.

A similar detrending procedure was applied to climate variables (air temperature,
precipitation, snow height and soil temperature) for each site. The potential climatic
trend was removed by a cubic spline with the same parameter as for ring-width.
Climate indexes were computed by difference, for temperature, and by division, for
precipitation and snow height, between actual measurement and index.

We explored the relations between tree growth and several climate indexes (air
temperature, precipitation, snow height), or climate related indexes/variables (soil
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Chapter 3 Relations between climate and aspen radial growth

temperature, soil relative extractable water content, water stress indexes) through
several bootstrapped static correlation and response function analyses on monthly
and 15 days time steps (see the description of these runs in Table 3.4). Relations were
searched with the climate of the year of growth (year n) and from the previous year
(year n − 1). Correlation functions consist of Pearson’s linear correlation estimates
(Blasing et al. 1984). Response functions consist in indirect regression techniques
that aim at mitigating the effects of predictor multicollinearity (Cropper 1984) by
regressing the proxy record against the principal components of the climate data
(Cook and Kairiukstis 1990; Fritts 1976). Robust parameters estimates were obtained
by a bootstrap resampling procedure (Guiot 1991). We performed a stationary
bootstrap resampling procedure—which accounts for temporal autocorrelation,
resampling within blocks with a length chosen from a geometric distribution (Politis
and Romano 1994; Politis and White 2004)—with 10 000 iterations. The significance
of the bootstrap coefficients was tested at p < 0.05 by the percentile range method
(Dixon 2001).

All data management and analyses were performed with R version 3.2.3 (R Core
Team 2015). The detrending of the individual raw tree-ring width series and the
construction of standard chronologies were performed with the R package dplR
version 1.6.3 (Bunn 2008). The analyses of the relations between climate and tree
growth were performed with the R package treeclim version 1.0.11 (Zang and Biondi
2015).

3.3 Results

3.3.1 Trends of aspen radial growth with ageing

All site chronologies (9 year rolling averages) presented a similar decreasing trend
of radial growth with ageing (Fig. 3.1 A). BAR derived somehow from this trend
since it presented a very high growth level in the first years but rapidly a strong
decrease. The growth levels were different between sites, particularly in the first 30
years of growth: BAR, KRA and SAE exhibited the highest radial growth and SAW
and TOM the lowest, CHE being in between (Fig. 3.1 A).

The three chronologies averaging tree radial growth per date of pith formation ex-
hibited similar decreasing trends with ageing and different levels of growth between
starting periods. The lower the cambial age was, the higher was the radial growth
for a given age (Fig. 3.1 B). The most recent starting period (1975–2001) presented
a sharper decrease in radial growth beyond 20 years, relatively to the other two
periods.
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Figure 3.1: Aspen radial growth as a function of cambial age: site growth trends (A) and
regional growth-trend variations over time (B). The values displayed are 9 years rolling-
means of ring-width (lines) and 95 % confidence intervals (dotted ribbons) for at leastn = 5
trees. The table below provides the number of trees (n) in each category (combination of
site and starting period).
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Table 3.5: Descriptive statistics of the ring-width and ring-width index chronologies.

BAR CHE KRA SAE SAW TOM

General
First year 1979 1944 1956 1951 1964 1938
First year with > 5 trees 1984 1952 1965 1962 1967 1942
Last year with > 5 trees 2012 2011 2011 2012 2012 2011
Length of the standard chronology 29 60 47 51 46 70
Nb of trees 10 14 15 27 19 15
Average nb of trees per year 8.6 11.6 11.8 15.0 17.2 11.0
Nb of between-tree correlations 9 91 91 91 171 66

Ring-width length (RWL)
Mean RWL (mm) 3.65 2.30 2.86 2.37 2.18 1.85
Median RWL (mm) 3.41 2.22 2.68 2.01 2.00 1.49
Standard deviation RWL (mm) 1.98 1.05 1.46 1.45 1.11 1.23
Mean interseries correlation 0.74 0.66 0.45 0.59 0.69 0.63
Expressed population signal 0.96 0.96 0.91 0.96 0.97 0.95
Signal to noise ratio 24.41 22.73 9.76 21.69 37.31 18.68
Mean sensitivity 0.31 0.27 0.30 0.27 0.29 0.44
Gini coefficient 0.28 0.24 0.24 0.24 0.24 0.31
First order auto-correlation 0.71 0.61 0.49 0.57 0.61 0.58

Ring-width index (RWI)
Mean interseries correlation 0.41 0.44 0.35 0.45 0.56 0.49
Expressed population signal 0.86 0.90 0.86 0.93 0.96 0.91
Signal to noise ratio 5.93 9.21 6.36 12.43 21.45 10.68
Mean sensitivity 0.30 0.27 0.30 0.26 0.29 0.44
Gini coefficient 0.16 0.15 0.16 0.16 0.16 0.24
First order auto-correlation 0.09 0.20 0.18 0.31 0.21 0.31

3.3.2 Site growth chronologies

The age of the sampled trees in our study sites ranged from 13 to 79 years. The
subsequent selection of trees, operated mainly at crossdating, allowed to construct
standard chronologies of 29–70 years (Table 3.5 and Fig. 3.2). These chronologies
may appear short with regard to most of dendrochronological studies, which present
chronologies spanning over centuries, but they are the consequence of the life cycle
of P. tremula. Our observations indicate that this species barely reaches the age of
100 years in SW Siberia, the trees of more than 80 years often being in a declining
phase. Within each site, the sampled trees were correctly crossdated, as reflected
by the mean inter-series correlations (0.45–0.74 for RWL and 0.35–0.56 for RWI;
Table 3.5). Over the 1984–2012 common period, the sites presented no, or poor, cross-
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Figure 3.2: Ring-width index chronologies. Individual chronologies (tree by tree) are dis-
played in grey and standard chronologies (one per study site) are displayed in black.
The standard chronologies are Tukey’s biweight robust means over the longest periods
containing at least 5 trees.
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Chapter 3 Relations between climate and aspen radial growth

Table 3.6: Cross-correlation matrix of the aspen ring-width standard chronologies for the
common period 1984–2012. Pearson’s correlation coefficients. Values in boldface are
statistically significant at the p < 0.05 level.

CHE KRA SAE SAW TOM

BAR 0.21 −0.08 −0.26 −0.23 0.42
CHE 0.15 0.17 0.29 0.59
KRA 0.08 0.04 −0.03
SAE 0.58 0.08
SAW 0.25

correlations, except for TOM with BAR and CHE, and SAE with SAW (Table 3.6).
This was also reflected by the relative asynchrony of the pointer years between sites
(Fig. A.3). The important number of pointer years found for each site suggested
they respond to climate variations. Mean sensitivities and Gini coefficients of all the
sites were close (Table 3.5), indicating a similar tree-ring width (raw and detrended)
diversity (Biondi and Qeadan 2008). The ring-width detrending greatly reduced the
first-order auto-correlation for all sites, allowing the consideration of the potential
climate effects in the year previous to tree-ring formation.

3.3.3 Relations between aspen radial growth and climate

Overall, the analysis following the correlation function procedure generally gave
more significant climate regressors (Fig. 3.3) than following the response function
procedure (Fig. A.2). Nevertheless, the results from these two procedures were rather
concordant. Significant relations between radial growth and climate were found at
KRA for almost all the variables tested while fewer relations were significant for the
other sites, particularly for the year of the ring-formation (year n; Fig. 3.3).

At KRA, for the year n, aspen radial-growth responded positively to summer
precipitations (run 1) and soil relative extractable water (REW) content (run 5) but
negatively to summer water stress (run 6) and soil temperature (run 8; Fig. 3.3). Many
significant relations were also found for the year previous to the ring formation (year
n − 1). In particular, a positive correlation was found when the winter ending in the
year n − 1 had a high snow cover (run 7), when the spring had high precipitations
(run 1) and when the REW was high in spring and summer (run 5). On the contrary,
high soil temperature (run 8) and stress intensity (run 6) in n − 1 had a negative
impact on radial-growth.

At BAR, aspen growth was only responsive to August precipitation in the year
n (run 1; Fig. 3.3). Summer soil temperature tended to have a negative impact on
growth but the results were not significant (run 8). In the response function analysis,
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late summer stress had a significant negative impact on tree growth in the year n.
Autumn soil temperature of n − 1 (run 8) had negative impact while summer and
October temperatures had a positive one. The snow negatively impacted growth in
October from n − 1 and in April from n (the latter only significant in the response
function).

At CHE, tree growth was positively impacted by summer air temperature in n
(run 1; Fig. 3.3). June and September precipitations in n tended to have a positive
effect of growth but the relations were not significant (run 1). Winter precipitations
(run 1) and snow height (run 7) in the previous year (n − 1) had a positive effect on
growth.

At TOM, air (run 1) and soil (run 8) temperatures in n had a positive effect on
aspen radial-growth in summer but a negative effect in April (Fig. 3.3). Winter snow
height of the previous year also had a positive impact on growth (run 7). From June
n − 1, high precipitations (run 1) and REW (run 5) had negative impacts on tree
growth while temperature had positive ones.

At SAE and SAW,wewere only able to test relations with air temperature (Fig. A.3).
Temperature had positive effects at SAE at the beginning and the end of summer in
n. It had a negative effect in autumn in n and positive effects in the winter preceding
the growing season at SAW. High temperature in March n − 1 also had a negative
impact at SAW.

Finally, we note that the release of all winter precipitations at snow-melt (run 2),
led to the same relations as those of run 1 (results not shown). Also, the analyses on
shorter periods (15 days, runs 3 and 4) did not really improve our understanding
of the relations between aspen radial-growth and climate in SW Siberia (Fig. A.4).
But at CHE, they suggest that late June precipitations in the year n would have a
positive effect on tree growth.

3.4 Discussion

3.4.1 Site growth-potential and evolution of growth in the
recent decades

The chronologies of aspen ring-width suggest that our study sites have different
growth potentials and that growth was enhanced over time (Fig. 3.1).

Difference in growth levels may reflect a variation in site fertility on the scale of
SW Siberia. This variation would fit with the pedo-bio-climatic gradient found in this
region; higher growth levels being observed in the south, or in the forest-steppe zone,
and lower growth levels in the north, or in the sub-taiga zone. Only considering
the climatic gradient, it could be inferred that such growth levels are related to
the gradient of temperature since this factor is likely to play a major role in cold
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3.4 Discussion

or cold-temperate ecosystems. However, site fertility integrates the interactions
between climate, soil, vegetation and other living organisms (e.g. micro-organisms).

The change of productivity during the 20th century is a widely observed phe-
nomenon (Becker et al. 1995; Pretzsch et al. 2014). Several environmental factors
can enhance tree growth, among which the rising of air temperatures (Briffa et al.
2008), increasing atmospheric CO2 concentrations (Norby et al. 2005) and increasing
atmospheric nitrogen (N) deposition (Fenn et al. 2003). These factors may interact
(Baig et al. 2015; Feng et al. 2015) or be modulated by other environmental factors
such as nutrient availability (Lukac et al. 2010; Norby et al. 2010; Reich et al. 2006;
Wieder et al. 2015). The rising of temperatures and CO2 levels are well documented
for Northern Eurasia (IPCC 2013). If N deposition might occur at relatively low
levels in SW Siberia (Dentener et al. 2006; Galloway et al. 2004), it is possible that its
effects are not negligible since local ecosystem productivity is probably limited by
N or by the timing of N availability (Chap. 7 and Brédoire et al. 2016a; Hedin 2004;
Reich and Oleksyn 2004; Smurygin 1974). Finally, we were unaware of the evolution
of the social status of the measured trees during their life, whereas it is the primary
factor controlling growth level and responses to environmental conditions (Brienen
et al. 2012). It is likely that a dominant tree at a given time has been less-dominant
in earlier stages of its life (Becker et al. 1995). An exacerbation of this phenomenon
can be expected in irregular forest stands (unmanaged forest with mixed species or
mixed age classes) such as these aspen stands of SW Siberia mostly regenerating by
suckering.

To prove and disentangle the effects of global change requires more thorough
investigations. Our sampling design was not fully adapted to disentangle all the
factors that may be implied in the control of these growth trends. First, some sites
were over-represented in some birth categories and vice-versa (Fig. 3.1 table). For
example, the rather diverging growth patterns with ageing of BAR, comparatively
to the other sites, and of the most recent birth period, comparatively to the older
periods, were probably related. In fact, BAR had a relatively high weight in the
average chronology for the birth period 1975–2001 and almost all the trees from
BAR belonged to the youngest birth period (Fig. 3.1 table). Ideally, the number of
trees sampled should be much larger, the trees should be chosen in both dominant
and co-dominant categories and the sample should be balanced, notably with regard
to age classes, within and between sites (Becker et al. 1995).

3.4.2 Climate control of aspen stem radial growth
The information conveyed by the different runs we performed (Table 3.4) can be
redundant (e.g. soil temperature is closely related to air temperature in the absence
of a snow cover, REW and water stress are the result of precipitation and temperat-
ure). However, these runs were complementary, allowing the elaboration of finer
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hypotheses on the control of climate on aspen radial growth in SW Siberia. As we
expected, two groups of sites with different sensitivity to climate variables arose
from our analyses. These two groups fit with the bioclimatic zones which were
defined according to to climate and vegetation characteristics.

In steppe–forest-steppe, the driest areas of SW Siberia typically found in the
south—here represented by KRA and BAR—, aspen stem radial growth was found
to be sensitive to the climate variables controlling the soil moisture balance. Such
responses were stronger in the driest site (KRA). Overall, tree growth benefits in
such areas from summer precipitations and is impacted by the water budget of
the preceding year. Drought, or water deficit, induces short-term physiological
disorders—typically a decreased carbon and nutrient assimilation, and sometimes a
deterioration of the photosynthetic machinery—that have to be repaired before the
resume of normal processes (Bréda et al. 2006). The reduction of the carbohydrate
reserves consecutive to a drought event impacts tree maintenance, growth—carbon
allocation for growth is modified between leaf, root, branches and stem—and defence
(e.g. against insect, frost and another drought damages) possibly over several years
(Bréda et al. 2006). Also, nitrogen nutrition and cycling is likely to be modified by
drought (Geißler et al. 2004). At KRA, tree growth benefits from high (relatively to
the local averages) precipitations levels early in the season (June) which permit to
maintain a high soil water content in summer, while high air and soil temperatures
in summer, concomitant with intense and early water stress, are detrimental for
tree growth (Fig. 3.3). Such inverse relations between summer temperature and
tree growth were reported for P. tremuloides (Hanna and Kulakowski 2012; Leonelli
et al. 2008) and other species with growth responsive to soil moisture (e.g. Abrams
et al. 1998; Archambault and Bergeron 1992; Michelot et al. 2012). The soil moisture
conditions in the preceding growing season also greatly impact stem radial growth,
as reflected by the positive correlations with REW and the negative correlations with
stress intensity. Such a response to soil moisture conditions of the preceding years
has also been reported for P. tremuloides stands growing in Canada (Hogg et al. 2013;
Huang et al. 2010). The positive impact of a high snow cover in the preceding season
has probably to be related to the positive impact of high soil moisture content in the
following growing season. In fact, the yearly soil moisture balance depends for a large
part on the input of melt-water in the steppe and forest-steppe zones of SW Siberia
(Chap. 4). By insulating soil, snow also protects fine roots from the damages of winter
freezing and/or freeze–thaw cycles that occur in late winter–early spring (Cleavitt
et al. 2008; Kreyling et al. 2012; Repo et al. 2014; Tierney et al. 2001). Such positive
impacts of snow height have been reported for P. tremuloides (Hogg et al. 2002).
However, we note that neither winter precipitations nor soil temperature from the
previous year would confirm one of these mechanisms (no significant correlations
were found). At BAR, late summer precipitations are beneficial to growth suggesting
that trees are sensitive to water deficit but that this deficit usually occurs later and
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is less intensive that at KRA. As for KRA, air and soil temperatures in summer tend
to have negative impacts on aspen growth. Surprisingly, October precipitations
from the previous year negatively impacted radial growth at BAR, in contradiction
with the hypothesis developed regarding the water balance of the previous year.
However, such a negative impact of October precipitations might not reflect the
role of soil moisture content but a shortening of the vegetation season due to early
winter arrival. In fact, there was no correlation with water stress in October n − 1,
temperature had a positive impact and snow a negative one. The same phenomenon,
lengthening of the vegetation season permitted by higher temperatures, seems to
occur at KRA but would not be coupled with snow height (no correlation) because
snowfall never occurs in October in this area. Autumn months (end of September,
beginning of October) are the time of leaf senescence in this area. Early freezing
conditions and snowfall, occurring before the leaf senescence is complete, may
alter the resorption of energy and nutrients that are essential for the subsequent
leaf budding and could be detrimental to total growth during the next season, as
suggested for quaking aspen (Landhäusser and Lieffers 2003). On the contrary, high
October temperature in the previous year may avoid such phenomena and reduce
number and intensity of the freeze–thaw cycle events, potentially inducing fine root
damage and nutrient loss.

In the north of the forest-steppe (e.g. CHE) and in sub-taiga (e.g. TOM), typically
in the north of SW Siberia or in the low mountain ranges like Salair (e.g. SAW),
aspen radial growth is essentially controlled by summer air and soil temperatures
(Fig. 3.3). This finding is coherent with many studies reporting that temperature is of-
ten one of the main climate factor limiting average tree growth in boreal ecosystems
(Boisvenue and Running 2006; Seddon et al. 2016). The sub-taiga zone is positioned
on the southern border of the Eurasian boreal forests. A possible explanation is that
warmer temperatures enhance water absorption, and so nutrient absorption, due to
increased hydraulic conductivity in the roots and decreased kinematic viscosity of
water (Kramer and Kozlowski 1960). However, high April air and soil temperatures
appeared to be detrimental for aspen growth at TOM and the same trend was
found (but not significant) at CHE. A possible explanation would concern the loss
of nutrients because snow-melt would occur too early with regard to vegetation
growth initiation. Snow-melt is the main period of drainage in sub-taiga and can be
important depending on the snow-mass accumulated in winter and on the soil water
depletion in the previous year (Chap. 4). In the sites with relatively high snow-packs,
such as TOM, the soil does not freeze (Chap. 4) and microbial activity is susceptible
to continue over winter, accumulating nutrients in its biomass (Brooks and Williams
1999; Buckeridge and Grogan 2010). At melting, such microbial biomass could be
lyzed, due to sudden change in temperature and moisture conditions, inducing a
spring flush of nutrients in the soil solution (Buckeridge and Grogan 2008). In the
case where vegetation is not active and the soil not able to adsorb the nutrients, the
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nutrients might be lost from the system by drainage. Also, an early disappearance
of the snow-pack induced by high late-winter temperature may expose the soil to
several freeze–thaw cycles, also known to damage fine roots (Cleavitt et al. 2008;
Kreyling et al. 2012; Repo et al. 2014; Tierney et al. 2001) and to enhance the release
of nutrients (Brooks et al. 2010; Henry 2007) which, again, could be lost by high
levels of drainage or high spring precipitations on a water-saturated soil. However,
we note that the negative impacts of spring precipitations in the year n at TOM
and CHE were not significant. Alternatively, an early rising of soil temperature
may enhance microbial growth and thus immobilization of nutrients such as N
which would not be readily available a few weeks later, when trees initiate seasonal
activity. June precipitations from n − 1, together with REW, had negative impacts at
TOM. Such relations may reflect nutrient losses because of drainage induced by an
excess of precipitations, the negative impact of rainy (i.e. cloudy and rather cold)
weather on plant phenology at the starting of the active vegetation season, or even
detrimental impacts of excess water on fine roots experimenting anoxic conditions.
For example, Imada et al. (2008) found that fine-root growth and the whole plant
biomass production of P. alba were affected by the level of the water-table. At both
CHE and TOM, aspen radial growth responded positively to high snow cover in the
year prior to ring formation. This effect is rather difficult to explain. In fact, at least
at TOM, no significant effect (or even a trend) of winter soil temperature was found,
suggesting that the benefit would not come from a better soil thermal insulation.
Additionally, an excess of June precipitation and soil water content, the latter being
more probable after a high snow-pack, were detrimental for tree growth.

3.4.3 Potential impacts of global change
Altogether, we identified diverging responses of P. tremula stem radial growth to
climate variables along our gradient of pedoclimatic conditions in SW Siberia. These
findings have several implications for the prediction of Northern Eurasian forest
productivity and community composition in the context of global change.

Our data suggest that aspen growth was enhanced over time during the 20th
century. A possible explanation of such a phenomenon, if confirmed, concerns
the rising of temperature which is likely to constitute one of the main controls
on the average growth of aspen in SW Siberia. However, whether this increase of
temperature will continue to enhance growth in the next decades is rather uncertain.
In fact, tree growth is modulated by several other factors, such as site fertility which
integrates the temporal dynamics of climate and nutrient availability.

Concerning our study area, we can infer that the rising of temperature might
continue to enhance aspen stem radial growth in the northern areas, i.e. in the
current sub-taiga bioclimatic zone, because of longer vegetation season, alleviation of
temperature limitation during the vegetation season and since the soil watermoisture
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content would remain at a sufficient level. By contrast, in the southern areas, i.e. the
current steppe and forest-steppe bioclimatic zones, it is likely that water-shortage,
but also potentially temperature higher than the optimum for aspen physiological
functioning, would become increasingly detrimental. In such places, extreme drought
events might induce aspen forest stand declines and disappearance of the species.
Interestingly, the water budget of SW Siberia is likely to be increasingly dependant
on the amount of snowfall at wintertime. These amounts have been projected to
increase with climate change (Bulygina et al. 2011, 2010, 2009) but high uncertainty
remains on these projections (Groisman et al. 2014). In addition, some simulations
we performed suggested that the frequency of incomplete recharge of the soil water
capacity would increase even with increasing snow amounts, depending on the
intensity of the discharge in the previous summer (Chap. 4). Altered soil temperature
and moisture conditions, which are usually very contrasting between seasons in
SW Siberia, may also modify biogeochemical cycles and so nutrient availability in
directions and amplitudes difficult to predict. Altogether these changes will probably
participate tomodifications in the vegetation community composition and ecosystem
primary productivity.

Further investigations with improved sampling designs (Nehrbass-Ahles et al.
2014) and additional variables measured (Foster et al. 2015) should allow building
projections on growth and productivity of P. tremula. Finally, if changing climatic
conditionsmay allow aspen to cover new andwide areas in the next decades (Shuman
et al. 2015), a great uncertainty associated with the importance of soil characteristics
remains since the soils of the current taiga zones are intrinsically different from the
soils of SW Siberia (Jones et al. 2009).
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Chapter 4

Is snow a hot variable? The control of soil
temperature and moisture dynamics in
south-western Siberia – Snow
manipulation experiment and simulations
of soil water budget

In collaboration with: A. Legout, M. R. Bakker, P. A. Barsukov, D. Derrien, Z. E. Kayler,
P. Nikitich, O. Rusalimova, and B. Zeller.

4.1 Introduction

Siberia experiences a particularly strong climate change intensity on the global
scale, but also on the scale of Northern Eurasia (Groisman et al. 2012; IPCC 2013).
In the last century, annual mean surface air temperature raised by about 1.4 ◦C in
Siberia. The warming trend was particularly strong in the cold season (November
to March) (IPCC 2013). Mean annual precipitation was higher by about 10 % in the
second than in the first half of the twentieth century, while precipitation amounts
and the number of days with precipitation did not change in the following decades
(end of 20th–beginning of 21st century). A significant redistribution by intensity
among the days with precipitation occurred in the warm season (Groisman et al.
2012). Prolonged no-rain episodes (> 30 days) in summer were detected in the south
of Siberia. Also, an increase in the cold season precipitation occurred over most of
Siberia (IPCC 2013; Rawlins et al. 2010). Maximum snow depth, the number of days
with more than 20 cm snow as well as the snow water equivalent have increased in
the last decades over most of Siberia (Bulygina et al. 2010, 2009, 2007). Snow cover
extent over Siberia did not appreciably change during winter (December–March)
but it significantly retreated in spring–early summer, from April to June (Arndt
et al. 2010; Bulygina et al. 2009; Groisman et al. 1994, 2006; Robinson et al. 1993;
Takala et al. 2009). Climate projections indicate a further rise of temperatures and
the trends observed for precipitations should be maintained with intensification of
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Chapter 4 Dynamics of soil temperature and moisture

phenomenons.
As a consequence of global change (climate change, rising atmospheric CO2

concentration, etc.), substantial reshaping of Siberian ecosystems are expected
(Groisman and Gutman 2012; Schaphoff et al. 2016). Bioclimatic zones have already
been reported to move in space (Soja et al. 2007) and are projected to migrate
northwards (Jiang et al. 2012; Kicklighter et al. 2014; Lucht et al. 2006; Shuman et al.
2015; Tchebakova et al. 2009, 2010). Changes in vegetation productivity are likely
to occur but the direction of the change will be regional- and species-dependant
(Schaphoff et al. 2016).

Site fertility is an important driver of vegetation productivity. It integrates the
dynamics of climatic conditions and resources availability (water and nutrients)
required for plant growth (Schoenholtz et al. 2000). In many ecosystems, nutrient
limitation is a matter of availability for plants rather than total stock (Giehl and
Wiren 2014). As the main repository of nutrients and water for plant uptake, soil
is an important ecosystem compartment for the control of fertility. Water storage
and availability are mainly dependent on soil physical properties (e.g. texture, struc-
ture) while nutrient availability is more dependent on soil chemical and biological
properties. The size of the available pool of nutrients (soil solution and exchange-
able/available pools) at a given time is of importance, but the processes that may
replenish or flush this pool over time must also be considered (e.g. weathering,
atmospheric deposition, nutrient leaching, biological cycling) (Legout et al. 2014;
Ranger and Turpault 1999).

Soil temperature and moisture regimes control biological activity, that is re-
sponsible for the decomposition of organic matter, weathering of minerals, and
thus for the release of nutrients for plant nutrition. Altered temperature and water
availability, either in deficit or in excess, impair the mineral nutrition of plants by
influencing nutrient availability and the physiology of uptake systems (Bassirirad
2000; Kreuzwieser and Gessler 2010; Rennenberg et al. 2009). Soil temperature and
moisture regimes are the result of climatic conditions but are greatly modulated by
soil properties as well as by soil cover properties (e.g. vegetation type and density,
presence of snow). The latter control the fluxes of energy (e.g. albedo) and matter
(e.g. water interception, evapo-transpiration) to and from the soil.

South-western (SW) Siberia is positioned on a gradient of climate, vegetation and
soil conditions. It is the transition from the steppe (in the south) to the southern-
taiga bioclimatic zones, through forest-steppe and sub-taiga. Typically, the south
experiences warmer and drier conditions than the north (mean annual precipitation
is about 300mm in steppe against 600mm in southern-taiga). In winter, the snow-
pack is higher, it sets up earlier and stands longer in the north. SW Siberia has
historically been the most populated region of Siberia because of longer and warmer
vegetation seasons and because of the presence of rich soils (e.g. Chernozems). In
the context of global change, the fate of the agro-potential of such a region will be of
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crucial interest. In spite of growing interest in Siberian ecosystems (e.g. Kicklighter
et al. 2014; Tchebakova et al. 2011), a few functional ecological data are available
in the international literature to assess soil processes. Especially, soil thermal and
hydrological regimes are not well known.

With the global purpose to better assess nutrient availability in SW Siberia,
this study aims: (1) to characterize the soil thermal and hydrological regimes in
contrasting locations of south-western Siberia, (2) to assess which parameters are
involved in regulating these regimes, (3) to elaborate realistic hypotheses on their
evolution with global change, and (4) to discuss their potential impact on nutrient
biogeochemistry and plant growth.

To achieve our goals, we selected two sites with contrasting pedoclimatic con-
ditions. We monitored soil temperature and moisture under both aspen forest and
grassland vegetation cover at both sites over more than two years. In order to study
the impacts of the snow cover on these parameters, we artificially increased the
height of the snow-pack on experimental plots. A water budget model (Biljou;
Granier et al. 1999) was calibrated and employed to reconstruct the soil moisture
content on the period 1966–2012 and to test climate change scenarii. In particular,
we focussed on the possible changes in winter precipitation. Finally, on the basis of
our results and making simple hypotheses, we initiated a discussion on the potential
impacts of the soil thermal and hydrological regimes on nutrients biogeochemistry
and plant growth and their potential evolution.

4.2 Materials and methods

4.2.1 Site description

Two sites were selected on the basis of their climatic and soil characteristics. We
looked for places with contrasting climatic conditions, particularly in winter (dif-
ferent snow height). However, since soil and vegetation development also depend
on climate, we opted for sites where the soil developed from a similar loess deposit
and selected study plots with a similar vegetation cover in the two sites. We set up
measurements and experiments under two types of vegetation: aspen forest (Populus
tremula L.) and grassland.

The study sites were close to a weather station providing continuous, complete and
qualitative climate archives. We had the possibility to set up a minimal installation
of soil temperature and moisture monitoring. Also, these sites were rather accessible,
notably during winter.

The site “BAR” is located in the vicinity of the city of Barnaul, in the forest-steppe
zone, in the south of SW Siberia. Mean annual temperature is 2.7 ◦C (−14.1 ◦C in
winter and 18.3 ◦C in summer), mean annual precipitation is 432mm, the snow
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height reaches in average 49 cm at the climax period and the snow season (> 1 cm)
lasts in average 157 days (see Table 2.2 for more details). At BAR, the main soil
forming processes are the formation and accumulation of organic matter, leaching of
carbonates in the topsoil and formation of secondary carbonates in deep soil layers.
Soil is classified as Haplic Phaeozem in forest and as Calcic Chernozem in grassland.

The site “TOM” is located in the vicinity of the city of Tomsk, in the sub-taiga zone,
in the north of SW Siberia. Mean annual temperature is 0.9 ◦C (−15.6 ◦C in winter
and 16.7 ◦C in summer), mean annual precipitation is 567mm, the snow height
reaches in average 71 cm at the climax period and the snow season (> 1 cm) lasts in
average 178 days (see Table 2.2 for more details). At TOM, soil experiences water-
table movements, with periodical saturation. Consequently, clays are washed from
the topsoil and accumulate in the deeper layers, and carbonates have disappeared
from the first metre of the soil profile. In addition, the litter decomposes faster than
in forest-steppe and the accumulation of organic matter is lower at the soil surface.
At this site, soil is classified as Albic Luvisol in forest and in grassland.

4.2.2 Monitoring of the soil physical status

Soil temperature

From autumn 2012, both forest and grassland of BAR and TOM were equipped
with temperature data loggers (DS1921G Thermochron iButton, Maxim Integrated,
USA). The temperature data loggers were set up at three soil depths, −5, −15, and
−60 cm in holes or tranches made with the help of a soil corer or a spade. Two to
four replicates were set up per site and vegetation cover. One to two temperature
data loggers were also set up at 2m above the soil surface on each site and for each
vegetation cover. The temperature data loggers were changed regularly (usually
every 6 months).

Soil volumetric water content

At spring 2013, both forest and grassland of BAR and TOM were equipped with
soil volumetric water content (VWC) sensors (EC-5 Soil Moisture Sensor, Decagon,
USA). Two depths, −15 and −60 cm, with ten replicates distributed between four soil
pits, were set up. The soil pits were spaced by 5–20m. Within a soil pit, the sensors
were spaced by 0.5–1m. Soil VWC was recorded every two hours. To improve the
accuracy of field VWC measurements, we calibrated the EC-5 sensor with our study
soils (details in Appendix B.1).
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4.2.3 Snow manipulation on the field

In the winters 2013–2014 and 2014–2015, two snow applications were conducted
in both vegetation covers at BAR (18/01/2014 and 22/02/2014, and 12/12/2014 and
23/01/2015) and TOM (22/12/2013 and 25/02/2014, and 04/12/2014 and 18/01/2015).
The snow was moved from the surrounding area with the help of a snow blower (ST
656, Champion) and shovels.

The snow height on the experimental plots was recorded over the snow season
with the help of temperature data loggers (DS1921G Thermochron iButton, Maxim
Integrated, USA) set up on vertical sticks at 15, 30, 50, 75 and 100 cm.

4.2.4 Soil water budget modelling

On the two sites equipped with soil VWC sensors, BAR and TOM, we calibrated the
water balance model Biljou version 53 (Granier et al. 1999). We performed water
budget simulations only in our forest study plots for two reasons. Firstly, we were
interested in the effects of climate and soil properties, which vary between our
study sites but are rather similar between the two vegetation covers for a given site.
Secondly, the model was developed for forest ecosystems.

Description of the model

Basically, Biljou is an iterative model where the variations in soil water content are
calculated at a daily pace as:

∆W = P − In −T − Eu+s − D (4.1)

where ∆W is the change in soil water content (W ) between two successive days, P
is the total precipitation, In is the rainfall interception by the tree vegetation cover,
T is the tree transpiration estimated by the Peinman–Monteith equation (Monteith
and Unsworth 2013), Eu+s is the sum of the transpiration from the understorey
vegetation and the evaporation from the soil, and D is the drainage at the bottom of
the soil profile explored by fine roots. Details on the computation of each of these
parameters are given in Granier et al. (1999).

The inputs of the model are daily climate data—minimum, maximum and mean
temperature, total precipitation, wind speed, global radiation, and vapour pres-
sure deficit—, vegetation related parameters—maximum leaf area index (LAI), bud-
burst and leaf fall dates, vertical root distribution in the soil—as well as soil related
parameters—water content at the field capacity (WFC), water content at the wilting
point (i.e. at pF 4.2; WWP), apparent and real density, and macro- and micro-porosity.
Several soil layers can be implemented, for a given profile, in the model.
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The model Biljou permits to assess conditions of soil drought, which induces
water stress for plant functioning. A water stress is assumed to occur when the
relative extractable soil water (REW), computed on the scale of the entire soil profile
explored by fine roots, drops below 40% of WFC. Under this threshold, transpiration
is gradually reduced due to stomatal closure (Granier et al. 1999; Sadras and Milroy
1996). The REW (dimensionless) is computed daily (d) as:

REWd =
Wd −WWP

WFC
(4.2)

and the soil water deficit (SWD, in mm) as:

SWDd = 0.4 ×WFC −Wd (4.3)

When REW < WFC, two stress indexes are computed, which can be cumulated
over different periods: (i) the number of days of water stress, and (ii) the stress
intensity (Is , dimensionless), which cumulates the difference between REW and WFC
between the days i and n (e.g. defining a month, a season, a year, etc.):

Is =
n∑
d=i

SWDd

WFC
(4.4)

Climate data acquisition and preparation

Most of the climate data were obtained from the Russian Research Institute of
Hydrometeorological Information–World Data Centre (RIHMI-WDC) for the closest
weather station (4 and 38 km away from the study sites BAR and TOM, respectively).
The wind speed at 2m and the vapour pressure deficit were estimated from other
parameters (see Appendix B, Eq. B.1 and B.2). Daily global radiation was provided by
the World Radiation Data Centre (WRDC). This parameter is barely measured in the
weather stations of Siberia. Thus, we used the data from the station of Omsk (latitude
54.56 ° N, longitude 73.24 ° E, elevation 94m), which is located 680 and 739 km away
from the weather stations of BAR (latitude 53.40 ° N, longitude 83.50 ° E, elevation
183m) and TOM (latitude 56.50 ° N, longitude 84.92 ° E, elevation 141m), respectively.
Simple gap-filling procedures were applied when necessary (Appendix B).

In Siberia, the soil is covered every winter by a continuous snow cover. Typically,
for our study sites, a continuous and seasonally permanent snow-pack sets up in
November and disappears in March–April. This snow-pack influences soil water
dynamics and has to be taken into account when modelling soil water budgets. It is
not possible to explicitly implement snow cover effects in Biljou. To do this, we
modified the precipitation input of the model in such a way that no water could
penetrate into the soil when a continuous and seasonally permanent snow-pack
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was present on its surface until the period of snow-melt. At snow-melt, all the water
contained in the snow-pack (i.e. the sum of winter precipitations) was released
(Appendix B).

Finally, we constructed for each study site a set of complete climate series spanning
the period 1966–2015.

Soil and vegetation characteristics

On each site and under each vegetation cover, we defined four soil layers down
to 120 cm. These four layers fitted with the pedological horizons and soil physico-
chemical properties described on three replicate pits in July 2013 (see Brédoire et al.
2016a; Brédoire et al. 2016b).

The proportion of fine roots in each soil layer was derived from the β values
reported by (Brédoire et al. 2016b). Since soil physico-chemical properties were
measured on the depths −5, −15, −30, −60, and −100 cm, we estimated their values
for the four soil layers by weighted means. We estimated the water content at the
field capacity and the water content at the wilting point using the pedo-transfer
functions of the R package euptf version 1.2 (Tóth et al. 2015).

Leaf area index (LAI) was estimated by collecting litterfall in autumn 2013. Five
litter-traps of 1.96m2 each were set up earlier in the season on each site. We sorted
the litterfall to keep only the leaves and oven dried them at 60 ◦C until constant
weight. For each site, the surface area and the dry weight of 20 leaves was then used
to compute LAI in m2 leaves m−2 ground.

Calibration of the model

Biljou provides the extractable water content (W, in mm) for each of the four soil
layers implemented. We converted W to total volumetric water content (VWC, in
m3 waterm−3 soil) at the day d as following:

VWCd = 10 × Wd −Wd−1
h

+ VWCd−1 (4.5)

where h is the thickness of the layer (in cm). The value of VWC0 was empirically
determined in order to obtain the best fit with field measurements.

The calibration of the model consisted in the empirical determination of the best
values for the phenological dates (budburst and leaves abscission) as well as for
soil micro- and macro-porosity. The manipulation of the soil porosity in the model
influences preferential water flow in the soil profile, i.e. the proportions of water
refilling the water reserve and of water drained.The quality of the fit was graphically
checked (VWC simulated over time along with VWC measured). We also computed
different errors (residuals, absolute error and relative error) which had to be as low
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Table 4.1: Description of the Biljou simulations under modified climatic conditions. All
the simulations were conducted over 1966–2012.

Run Description

Control Simulation under actual site conditions
Run 1 Weather data imported from another station with drier conditions
Run 2 Same as Run 1 but keeping the winter precipitations of the Control
Run 3 Same as Run 2 but multiplying winter precipitations by 1.5
Run 4.1 Same as Run 1 but adding 15 days at the beginning and 15 days at

the end of the vegetation season
Run 4.2 Same as Run 2 but adding 15 days at the beginning and 15 days at

the end of the vegetation season
Run 4.3 Same as Run 3 but adding 15 days at the beginning and 15 days at

the end of the vegetation season

as possible. We assumed the two layers not equipped with soil moisture sensors in
the field had similar properties to adjacent layers. The calibration was done over the
period of field measurements, i.e. May 2013–October 2015.

Soil water budget under different climatic scenarii

We performed two types of simulation: (1) under actual site conditions for the whole
period of qualitative climate monitoring in SW Siberia (i.e. 1966–2015), and (2) under
modified climatic conditions.

The purpose of the first type of simulation was to characterize the soil water
dynamics of our experimental sites in the last decades. More precisely, we wanted
to identify: (1) the dynamics of soil water content over seasons, (2) the key periods
controlling these dynamics (“hot moments”), and (3) extreme or rare events, their
intensity and their frequency.

The objective of the second type of simulation was to characterize the impact
of changing temperature and precipitation on the water budget. Because we did
not have access to climate projections for SW Siberia on a daily time step and at
local spatial scale, we used, for a given site, the climate data of a weather station
with higher mean annual temperature and lower precipitation. Concretely, we used
the climate data from Barnaul (BAR) at TOM and from Slavgorod1 at BAR. Such a
switch of climatic conditions has the advantage to provide realistic combinations of
all the climate variables required for the model. In addition, simulating the water
budget over 42 years (1966–2012), we approached the natural range of variations of
these combinations.

1. Slavgorod is the weather station we used for the site KRA, see the other Chapters.
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4.3 Results

4.3.1 Monitoring of the soil temperature and moisture

The soil temperature measured in the field presented some spatial variability at
wintertime (up to about 3 ◦C difference between 2 replicates per condition at BAR
forest in the winter 2013–2014) but almost no variability in the rest of the year
(Fig. 4.1 to 4.4).

The soil volumetric water content (VWC) measured in the field varied on the
site scale—between the soil pits equipped with sensors—and somewhat on the pit
scale—between the different sensors in a soil pit—(Fig. B.3 to B.6). These variabilities
tended to be the same over seasons. In the following analysis, we averaged, for each
depth, the soil VWC measured in each pit (n = 2–3 sensors per pit) and then per
snow treatment (n = 2 pits).

At BAR, the soil VWC reported by the sensors abruptly dropped down at the
beginning of winter and was maintained at low values until the snow-melt (Fig. B.3
and B.4). This phenomenon was probably an artefact related to the range of tem-
peratures the sensors are calibrated to make accurate measurements. In fact, these
soil VWC drops were reported when the soil temperature was < 0 ◦C and were less
important and less frequent at TOM, where the soil temperature barely went below
this threshold (Fig. 4.1 to 4.4).

In all experimental plots, over the vegetation season, the soil temperature followed
the variations of the air temperature (see the “control” on Fig. 4.1 to 4.4). In winter,
the soil temperature varied only a little while air temperature experienced the
biggest amplitude of its variations.The amplitude of variation of the soil temperature
decreased with soil depth. On average, the air temperature was warmer at BAR than
at TOM. This was also the case for soil temperature, except during the winter, where
the inverse trend was observed. Except in winter, where differences were rather
small, the soil temperature was higher in grassland than in forest. Typically, the air
temperature increased from themiddle of winter (theminimum daily averages, below
−25 ◦C, were reported in January–February) to the middle of summer (maximum
daily averages, around 25 ◦C, in July) and decreased from the middle of summer
to the middle of winter. The soil temperature raised from the moment where the
snow-pack disappeared (in winter, soil temperature was maintained close to 0 ◦C)
to the middle of summer (up to about 25 ◦C at BAR grassland, and to 20 ◦C at TOM
grassland). Soil thermal inertia was illustrated by the delay of soil temperature
responses to the variations in air temperature with depth.

On average, the soil VWC was set at its maximum at the end of the snow season
and decreased over the vegetation season (Fig. 4.1 to 4.4). Punctual recharges oc-
curred at spring and summer, corresponding to precipitation episodes, which were
of greater intensity in summer. In autumn, the soil VWC was almost back to its
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maximum at TOM. The dynamics of soil VWC were very similar between forest and
grassland but differed between the two sites. Generally, the soil at BAR tended to be
drier than at TOM.

4.3.2 Snow manipulation experiment
For each site, the control plot and the increased snow plot were spatially close,
thus we assume there was no difference in weather and soil conditions. This is in
agreement with air temperature recordings (Fig. 4.1 to 4.4).

Barnaul

At BAR forest, all snow applications permitted to increase the height of the snow
cover: about +38 cm in winter 2013–2014, and +25 cm in 2014–2015 (Fig. 4.1). The
two snow conditions started to melt simultaneously but the treatment ended to melt
about 10–13 days later. At BAR grassland, the increase of snow height induced by
the treatment was not perfectly maintained in the winter 2013–2014 (approximately
+13 cm but part of the treatment plot presented similar levels as in the control),
possibly due to wind blowing (Fig. 4.2). In 2014–2015, the treatment was better
maintained and permitted an increase of 25 cm. In grassland, the end of snow-melt
occurred almost the same day in the two snow conditions in both years.

At BAR, the snow season began late in the winter 2013–2014, the snow height
remained low in natural conditions (Fig. 4.1 and 4.2). The soil was frozen, at least
until −15 cm, when the snow-pack settles and the depth of freezing continued to
increase since negative temperatures were recorded later at −60 cm in the two snow
conditions in forest and in grassland. As such, soil moisture recordings were not
accurate during this winter. In forest, soil temperature at the three depths studied
was lower in the control than in the increased snow treatment (up to 2.5 ◦C dif-
ference in winter 2013–2014; Fig. 4.1). No clear differences in soil temperature were
observed in grassland, the control tended to be slightly warmer than the treatment
(up to 1.5 ◦C difference in winter 2013–2014; Fig. 4.2). This has certainly to be related
to the relative inefficiency of the snow addition at BAR grassland in the winter
2013–2014. In the winter 2014–2015, the snow-pack settles on unfrozen soil at BAR
forest and grassland (Fig. 4.1 and 4.2). The snow treatment prevented soil freezing in
forest but not in grassland where soil slightly frost under both snow conditions. At
the period of snow-melt, for the two winters studied, the soil temperature tended to
rise 5–10 days earlier in the control than in the treatment (Fig. 4.1 and 4.2). In the
increased snow treatment, the peak of soil VWC tended to be higher and to occur a
few days later than in the control. However, we note that at BAR forest −60 cm and
BAR grassland −15 cm, the average soil VWC was often higher in the control than
in the treatment, and this before the beginning of snow manipulations (Fig. 4.1 and
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Figure 4.1: Impacts of the snow manipulation on the soil physical status at BAR aspen
forest. Soil status monitoring data (temperature and volumetric water content, VWC) are
shown along with precipitation at the weather station, and temperature and snow height
at the experimental site. The vertical lines shows the dates of snow manipulation (snow
application in the “increased” treatment). All results are daily averaged values (n = 1–2),
the dotted lines show daily averaged minimum and maximum.
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Figure 4.2: Impacts of the snow manipulation on the soil physical status at BAR grassland.
Soil status monitoring data (temperature and volumetric water content, VWC) are shown
along with precipitation at the weather station, and temperature and snow height at
the experimental site. The vertical lines shows the dates of snow manipulation (snow
application in the “increased” treatment). All results are daily averaged values (n = 1–2),
the dotted lines show daily averaged minimum and maximum.
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Figure 4.3: Impacts of the snow manipulation on the soil physical status at TOM aspen
forest. Soil status monitoring data (temperature and volumetric water content, VWC) are
shown along with precipitation at the weather station, and temperature and snow height
at the experimental site. The vertical lines shows the dates of snow manipulation (snow
application in the “increased” treatment). All results are daily averaged values (n = 1–2),
the dotted lines show daily averaged minimum and maximum.
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Figure 4.4: Impacts of the snow manipulation on the soil physical status at TOM grassland.
Soil status monitoring data (temperature and volumetric water content, VWC) are shown
along with precipitation at the weather station, and temperature and snow height at
the experimental site. The vertical lines shows the dates of snow manipulation (snow
application in the “increased” treatment). All results are daily averaged values (n = 1–2),
the dotted lines show daily averaged minimum and maximum.
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4.2). This could be attributed to spatial variability in micro-topography and/or soil
physico-chemical properties (e.g.: gentle slope, soil density/porosity, clay content).

Tomsk

At TOM forest, the snow applications increased the snow height by 25 and 10 cm
(respectively after the first and the second application) in the winter 2013–2014, and
by 25 cm in 2014–2015 (Fig. 4.3). At TOM grassland, the snow height was increased
by 25 cm the first winter (Fig. 4.4). In the second winter, the last application also
permitted to increase the snow height by 25 cm but a snowfall event, a few days later,
raised the control to 1m. Since we did not set up temperature sensors above 1m, we
were not able to know if there were different snow heights in the two treatments
for the rest of the snow season (Fig. 4.4) As for BAR, the snow-melt at TOM forest
started simultaneously in the two snow conditions but ended about 10 days later in
the increased snow treatment. In grassland, the snow-melt ended almost the same
day.

Over the period of monitoring, the seasonally permanent snow cover never settles
on frozen soil at TOM forest and grassland (Fig. 4.3 and 4.4). Temperatures as low as
−0.5 ◦C (average minimum) were sometimes recorded at −5 cm. No clear differences
in soil temperature were observed between the two snow conditions until the snow-
melt, where the temperature rise occurred about 10–15 days earlier in the control
than in the treatment in both forest and grassland.

At TOM, the soil was saturated with water at snow-melt in the control. Soil
surface runoff was observed on the experimental field site. We lost, by immersion
of electronics, many data loggers for the soil VWC sensors at this period (!). As
a consequence, we only have an accurate recording of soil VWC at the period of
snow-melt for TOM forest in 2015. For this recording, we observed a peak of soil
VWC right after the snow-melt but no difference between the two snow conditions
at −15 cm, and higher VWC under the increased snow treatment at −60 cm (Fig. 4.3).
However, we note that the average VWC at −60 cm was most of the time higher in
the area of the increased snow treatment (even before we started the experiment).

4.3.3 Calibration of the soil water budget model

The calibration of the soil water budget model Biljou was performed on the period
of available field measurements (2013–2015). The resulting values of the input
parameters are presented in Table 4.2. The best fits of soil volumetric water content
(VWC) computed with the model are presented in the Fig. 4.5, 4.6, B.7, and B.8. Due
to the short period of field monitoring, we were not able to perform an accurate
verification of our calibrations on independent time series.
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Table 4.2: Input parameters of the soil water budget model Biljou for our study sites of
BAR and TOM in aspen forest (FOR) and in grassland (GRA).

Site Veg. Input parameters

Vegetation parameters

Budburstc Fallc LAImax
ac

BAR FOR 122 288 4.94
GRA 110 288 6.00

TOM FOR 157 280 3.90
GRA 155 288 5.00

Soil parameters

Depth Rootsa WFC
b WWP

b ADa RDb ahc bhc

BAR FOR 23 39 41.68 0.16 1.13 2.4 0 1.65
49 28 44.77 0.15 1.21 2.4 0 1.65
85 21 53.05 0.15 1.28 2.5 0 1.70

120 12 41.70 0.13 1.44 2.5 0 1.70
GRA 23 59 39.79 0.15 1.20 2.4 0 1.60

47 26 40.29 0.14 1.27 2.4 0 1.65
84 13 50.05 0.11 1.66 2.5 0 1.80

120 2 41.68 0.11 1.65 2.5 0 1.80
TOM FOR 20 65 39.44 0.16 1.02 2.4 0 1.30

49 22 56.17 0.12 1.23 2.4 0 1.50
74 12 28.10 0.15 1.47 2.5 0 1.55

120 1 28.38 0.19 1.45 2.5 0 1.55
GRA 20 75 43.00 0.14 1.08 2.4 0 1.30

53 17 33.92 0.12 1.33 2.4 0 1.50
75 7 33.93 0.17 1.52 2.5 0 1.55

120 1 33.61 0.19 1.42 2.5 0 1.55
Budburst: day of leaf apparition (julian day); Fall: day of leaf abscission (julian day);
LAImax: maximum leaf area index; Depth: depth of the bottom of the soil layer (cm);
Roots: fine root proportion (%); WFC: water content at the field capacity (mm);
WWP: water content at the wilting point (gwater g−1 soil); AD: apparent density; RD: real density;
ah bh: micro- and macro-porosity (the latter controls preferential flow)
a measured; b estimated; c fitted
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Figure 4.5: Calibration of the soil water budget model Biljou at BAR forest. Volumetric
water content (VWC, in m3 waterm−3 soil) in four soil layers: simulations (red lines) and
field measurements (black lines) over the period of VWC monitoring. The black dotted
lines indicate the minimum and the maximum of the mean VWC (mean of 2–3 sensors
per depth and per pit) measured on 1–2 plots. The snow season is highlighted in grey and
the snow-melt in dark grey. In winter, when the soil temperature is close to or below 0 ◦C,
the soil moisture sensors do not always provide accurate data.

The VWC computed with the model was in good agreement with field measure-
ments at both BAR aspen forest and grassland (Fig. 4.5, B.7, and B.9). The root mean
square errors (RMSE), excluding winter and measurements at temperature < 0 ◦C,
ranged between 0.023 and 0.034.

At TOM aspen forest and grassland, the model simulated well the VWC in the
upper soil layer (RMSE, excluding winter and measurements at temperature <
0 ◦C: 0.041–0.057) but the simulation was not as good in the deeper layer (RMSE,
excluding winter and measurements at temperature < 0 ◦C: 0.024, Fig. 4.6, B.8, and
B.9). In particular, the model did not reproduce the abrupt refilling of the soil water
reserve observed at −60 cm at the end of the summer 2014 (Fig. 4.6 and B.8). This
can probably be attributed to a variation of the climatic conditions between the
experimental sites and the weather station from which we get the data. In fact,
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Figure 4.6: Calibration of the soil water budget model Biljou at TOM forest. Volumetric
water content (VWC, in m3 waterm−3 soil) in four soil layers: simulations (red lines) and
field measurements (black lines) over the period of VWC monitoring. The black dotted
lines indicate the minimum and the maximum of the mean VWC (mean of 2–3 sensors
per depth and per pit) measured on 1–2 plots. The snow season is highlighted in grey and
the snow-melt in dark grey. In winter, when the soil temperature is close to or below 0 ◦C,
the soil moisture sensors do not always provide accurate data.

adding 30mm of precipitation on 26/08/2014—i.e. simulating a local intense summer
rainfall event—permitted to better reproduce the VWC dynamics measured at this
period under both vegetation covers (data not shown).

The soil VWC measured at the period of snow-melt, or soon after, tended to be
higher than the VWC simulated. This phenomenon was due to the high input of
water at this moment, the sensors indicating a peak of VWC between the field
capacity and the saturation while the model Biljou is limited to the water content
at the field capacity.
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4.3.4 Soil water budget simulations

Soil water budget simulations over the last decades

At BAR forest, the peak of incident rainfall simulated occurred typically at the
snow-melt (about 110mm on average, distributed between the end of April and
the beginning of May) and permitted a recharge of the soil REW (see “control” on
Fig. 4.7). Over the rest of the vegetation season, the average sum of precipitations
per 15 days was about 20mm with a peak at 40mm in the second half of July. On
average, the REW simulated started to decrease from the beginning of May until the
beginning of September (0.30). It fell below the threshold of 0.4 in July. However,
due to the inter-annual variability, the average number of stress days started to be
> 0 from the beginning of May, it reached as high as 12 days of stress per 15 days
in August. This high average number of stress days indicates that stress occurs in
summer in most of the years (Fig. B.10). On average, 75 days of stress (min–max:
0–75, confidence interval at 95 %: 11) and a stress intensity (Is ) of 32 (0–74, 7) were
simulated at BAR forest. On average, the stress simulated started at the day 190
(149–251, 7). Drainage occurred almost exclusively at the period of snow-melt, at
spring. It peaked at about 16mm in the first 15 days of April and gradually decreased
until the beginning of June, from which it would not exceed 2mm per 15 days until
the following snow-melt (Fig. 4.7). The average cumulative drainage simulated over
the year at BAR forest was 56mm (13–56mm, confidence interval at 95 %: 12mm).

At TOM forest, the peak of the incident rainfall simulated also occurred at the
snow-melt, reaching about 90mm per 15 days at the beginning of April (see “control”
on Fig. 4.8). The average incident rainfall simulated then decreased to 24mm at the
beginning of May and varied between 25 and 40mm during the vegetation season.
On average, the REW simulated was set at 1 at the beginning of April (snow-melt)
and decreased to 0.65 between June and August. From the beginning of September,
the average REW started to rise until 0.9. The average REW simulated at TOM
forest never reached the threshold of 0.4 and the average number of stress days
varied from 1 to 2.5 between July and September (4.8). In fact, stress conditions did
not occur every year at this site (Fig. B.10), we simulated 0–77 days of stress per
vegetation season (mean: 6, confidence interval at 95 %: 6) and a stress intensity of
0–36 (2, 2). On average, the stress simulated started at the day 219 (200–256, 9). The
average drainage simulated peaked at 75mm in the first 15 days of April (snow-melt)
and was never above 15mm after the beginning of June (4.8). The average annual
drainage simulated was 255mm (min–max: 122–388mm, confidence interval at 95 %:
20mm).
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Figure 4.7: Water budget simulations at BAR forest averaged on a half-month time step for
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stress and drainage were summed while daily relative extractable water content (REW)
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Soil water budget simulations under modified climatic conditions

At BAR forest, the modifications of the climatic conditions (runs 1 to 3), eventually
coupled with an increase of the length of the vegetation season (runs 4.1 to 4.3; see
Table 4.1 for details on the runs), mainly impacted the amount of incident rainfall
at the period of snow-melt (+3, +27 and +68mm, as compared to the control, for
the runs 1, 2 and 3, respectively) while, over the rest of the vegetation season, all
simulations (runs 1–4.3) had the same precipitations, about −1 to −10mm per 15
days in comparison with the control (Fig. 4.7). On average, the runs 1 (and 4.1), 2
(and 4.2) and 3 (and 4.3) had an annual incident rainfall of 324, 463 and 428mm,
respectively, against 423mm for the control (Fig. 4.9). All the runs led to a mean
REW over the vegetation season lower than the control (0.27–0.40 against 0.48 for
the control), the lowest being for the run 4.1 (Fig. 4.9). The difference in the average
REW between the runs seems to be mainly attributable to a different recharge of the
soil plant extractable water (W) reserve at snow-melt (Fig. 4.7). All runs led to an
earlier apparition of stress (10–42 days earlier, on average), as well as longer (26–74
days more) and more intense stress conditions (22–60 stress intensity units more)
than the control (Fig. 4.7 and 4.9). The earlier beginning of the vegetation season
in the runs 4.1–4.3 contributed to an earlier discharge of the water reserve and an
earlier apparition of stress (13–15 days before), in comparison with the runs 1–3
(Fig. 4.7 and 4.9). The average yearly drainage simulated varied from 31 (run 4.1)
to 151 % (run 3) of the control (Fig. 4.9). Only the runs 3 and 4.3—the runs with 1.5
times the actual snow cover of the site—led to a higher annual average drainage than
in the control. The runs 2 and 4.2 did not permit a similar drainage to the control
despite the same amount of water released at snow-melt (Fig. 4.7). This has to be
related to the level of REW at the beginning of the preceding winter: since the REW
at this moment was lower in the runs 2 and 4.2 than in the control, a greater part of
the water issued from the snow-melt was captured by the soil (filling of the water
capacity) and the drainage was lower in the runs 2 and 4.2 (Fig. 4.7). For all the runs,
the average peak of drainage occurred one period (half-month) earlier than for the
control. On average, the earlier the vegetation season started, the lower the drainage
was. However, the average differences between the runs 1–3 and 4.1–4.3 were only
of 2–11mm, respectively.

At TOM forest, the modification of the climatic conditions (see the runs 1 to 3,
and 4.1 to 4.3 for a coupling with a lengthening of the vegetation season; Table 4.1)
also impacted the incident rainfall, mostly at the period of snow-melt (Fig. 4.8). All
the simulations with modified climatic conditions peaked in the 15-days period pre-
ceding the control. While the control peaked at about 90mm of incident rainfall per
15 days, the runs 1 (and 4.1), 2 (and 4.2) and 3 (and 4.3) peaked at 55, 95 and 145mm,
respectively (Fig. 4.8). From the beginning of April to the end of the vegetation
season, the incident rainfalls of the runs 1–4.3 were a few mm below the control (ex-
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Figure 4.9: Synthesis
of the water budget
simulations over the
period 1966–2012.
Daily incident rainfall,
evapo-transpiration
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over the vegetation
season. The stress
indexes were com-
puted yearly over the
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cept at the beginning of July). Consequently, the differences in the incident rainfall
levels observed at snow-melt were found back on the yearly trends (423, 507 and
613mm for the runs 1, 2 and 3, respectively, against 563 for the control; Fig. 4.9). The
REW averaged over the vegetation season was lower for all the runs than for the
control.The runs 1–3 on one hand, and 4.1–4.3 on the other hand, presented the same
patterns (Fig. 4.8 and 4.9). All simulations under modified climatic conditions led to
an earlier and a longer decrease of REW and this decrease was stronger when the
vegetation season was longer. While the average minimum REW simulated for the
control (about 0.65) was reached in the first 15 days of August, the runs 1–3 reached
0.40 and the runs 4.1–4.3 0.35, both in September (Fig. 4.8). The simulations under
modified climatic conditions induced more frequent and more intense (average stress
intensity was 13–26 against 2 for the control) stress conditions (Fig. 4.8, 4.9 and
B.10). The longer vegetation season exacerbated this phenomenon and lengthened
the period of stress: the stress started one period (15 days) before and ended one
period later in the runs 4.1–4.3 than in the runs 1–3 (Fig. 4.8). As observed at BAR,
the increase in average incident rainfall did not conducted to higher drainage levels
in the simulations. In fact, the average yearly drainage simulated were 104, 186
and 284mm for the runs 1, 2 and 3 respectively, against 255mm for the control.
The drainages of the runs 4.1–4.3 were about 25mm lower than for the runs 1–3.
Again, most of the drainage occurred at snow-melt (up to 110mm in 15 days for the
runs 3 and 4.3). All the peaks of drainage simulated at TOM forest occurred at the
beginning of April (Fig. 4.8).

4.4 Discussion

4.4.1 Characterization of the soil temperature and water
dynamics over seasons

Monitoring and simulations

On average, BAR experienced drier climatic conditions than TOM over the period
of monitoring on our field sites (2013–2015; compare the “control” on the Fig. 4.1 to
4.4). Similar trends were simulated for the period 1966–2012 (see the “control” on the
Fig. 4.7, 4.8, 4.9 and B.10). BAR had lower relative extractable water content (REW) in
the vegetation season and experienced regular (almost every year) stress conditions
(i.e. REW < 0.4) which were both longer and more intense than at TOM. At TOM,
stress conditions occurred on an irregular basis, they generally appeared late in
the vegetation season and thus stand for a relatively short period. BAR typically
experienced colder soil conditions in winter but warmer in the rest of the year than
TOM. These differences between BAR and TOM have to be related to the different
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climatic conditions of the two sites. Mainly, BAR had higher air temperature, lower
rainfall (thus lower incident rainfall), later snow-pack establishment in the season
and lower snow height than TOM. In addition to climatic conditions, differing
soil properties—such as density, porosity, particle size distribution, mineralogical
composition, organic matter composition, size of aggregates, etc.—as well as different
vegetation communities—understorey in forest and grass species in grassland—have
an impact on soil temperature and water dynamics. This was evidenced by the
simple climate switch at TOM (run 1): implementing the climate of BAR led to very
different soil water dynamics. However, the effects of soil and vegetation were not
directly tested in the framework of this study.

The simulations of the water budget under modified climatic conditions essentially
consisted in applying drier climate during the vegetation season, testing different
levels of snow in winter, and testing the effect of a lengthening of the vegetation
season (Table 4.1). The drier conditions induced a greater depletion of the REW
in both sites (Fig. 4.7, 4.8, 4.9 and B.10). Overall, the severity of the depletion was
modulated by the length of the vegetation season: the longer the season was, the
greater was the depletion. This was particularly the case at TOM since at BAR the
REW simulated was already very close to its minimum in the less severe scenario
(i.e. the run 3). The variations in snow levels only had a marginal effect on the
minimum REW at BAR and did not impact the minimum REW at TOM (compare the
runs 1–3). However, all simulations conducted to an earlier and a faster depletion
(Fig. 4.7 and 4.8). The combination of these phenomena led to earlier apparition of
stress, increased length of the stress period, and increased stress intensity. The stress
simulated could have dramatic effects on plant growth at BAR. In fact, the average
intensity more than doubled and the absence of stress became exceptional. On the
contrary, at TOM, the consequences of water stress could be limited. In fact, even
applying the weather conditions of BAR did not raise the stress up to the levels at
this site, and the absence of stress remained frequent. Again, this probably reflects
the differences in soil properties between BAR and TOM. Despite its lower WFC
(153mm on the first 120 cm of soil in forest) than BAR (181mm), TOM may have a
higher water retention capacity, possibly in relation to a higher clay content, notably
in the deep layers.

A thorough discussion of the specific impacts of the snow variations, in particular
concerning the period of the snow-melt and the drainage, is proposed in a section
below.

4.4.2 Role of the snow cover
The difference in winter soil temperature between BAR and TOM—the soil was
colder while the air temperature was warmer at BAR than at TOM (e.g. Fig. 4.1 vs
Fig. 4.3)—suggests that the height of the snow cover influenced the soil thermal
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regime, acting as an insulation material protecting, or even completely preventing,
the soil from freezing. In fact, the average snow level was lower at BAR than at TOM.
The snow manipulation confirmed this since the increase in snow height reduced
(winter 2013–2014) and prevented (winter 2014–2015) soil frost at BAR forest and
grassland (Fig. 4.1 and 4.2). At TOM, the normal snow levels were sufficient to
prevent soil freezing, explaining the absence of snow manipulation effects until
the snow-melt. Such an effect of increased snow height on soil temperature was
observed in many snow manipulation experiments (e.g. Brooks et al. 1998; Nobrega
and Grogan 2007; Schimel et al. 2004). The snow height threshold at which the snow-
pack loose its capacity to decouple air and soil temperature was not determined in
this study. However, we were probably working around this threshold at BAR. At the
period of melting, a thicker snow-pack delayed the date where the soil temperature
started to increase, as shown by the snow manipulations in both BAR and TOM (up
to 10 days at BAR forest). This was often observed under increased snow treatments
in the field (e.g. Brooks et al. 1998; Nobrega and Grogan 2007; Schimel et al. 2004).
However, it has been suggested that, due to the concurrent air warming trend,
a deeper snow-pack is likely to melt faster, and therefore snow-melt may not be
considerably delayed (Wipf and Rixen 2010). Finally, the thermal state of the soil, that
is to say frozen or not, at the establishment of a seasonally permanent snow-pack
appeared to be of importance for the rest of the winter (Groffman et al. 2001; Iwata
et al. 2010; Olsson et al. 2003). In fact, when the snow-pack develops on a frozen
soil, it seems an increase in the snow height do not permit the soil to warm up to
0 ◦C, as observed at BAR in the winter 2013–2014.

Concerning the soil water content, the snow manipulation did not yield any
clear effect of an increased snow cover. This might be related to the relatively high
spatial variability reported by the soil moisture sensors (adding thus considerable
“noise” around the signal). At TOM, the soil being already saturated with water at
snow-melt and runoff occurring at this moment over the soil surface, it is probable
that such a snow manipulation cannot modify the water input into the soil. In
addition, it is possible that the manipulation of the snow (particularly using the
snow blower) modified the physical properties of the snow-pack, notably the snow
water equivalent (amount of water contained per unit of snow, e.g. volume or mass).
Nevertheless, the results suggest that the peak of soil moisture at snow-melt could
be delayed by a few days and be higher under an increased snow height, notably at
BAR forest (Fig. 4.1).

The water budget simulations provided more informations on the importance of
snow cover and the potential impacts of its variations on soil water dynamics. First,
snow constitutes the main pool of water recharging the soil water reserve (Fig. 4.7
and 4.8). In a site like BAR, the variation in the amount of snow (thus the amount
of water issued at melting), together with the intensity of the soil water content
depletion in the previous vegetation season, directly impacts the level of the soil
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water reserve refilling. Particularly under modified climatic conditions, only the
run 3—i.e. drier climatic conditions except in winter where the snow is increased in
comparison with the current levels—permitted to set-back the REW to 1 at snow-melt
(Fig. 4.7). On the contrary, at TOM, even snow conditions similar to those of BAR
permit a complete refilling of the water reserve at snow-melt under modified climatic
conditions (Fig. 4.8). As a consequence, the number of stress days and the annual
stress intensity would directly be related to the amount of snow at BAR but not at
TOM since the beginning of the stress depends on the level of REW at the beginning
of the vegetation season. Finally, it is when snow melts that most of the drainage
occurs and, for both the sites studied, variations in the snow quantity may greatly
impact the drainage. The levels of drainage can only be understood in function
of the level of REW at the end of the preceding vegetation season. In fact, a snow
increase under overall drier climatic conditions (run 2 vs run 1) did not automatically
raise the drainage at the level of the control (Fig. 4.7 and 4.8). This is because of
the partitioning of water between the refilling of the soil water capacity and the
drainage: the lower the water content at the snow-melt is, the higher proportion
of water stored is and the lower the drainage is. As a consequence, the simulations
performed suggest that under drier climatic conditions in the vegetation season, only
an increase in winter precipitations (i.e. more snow that currently) would induce a
greater drainage than today. In addition, the peak of drainage could be translated in
time under modified climatic conditions (it was simulated earlier at BAR; Fig. 4.7).
However, the water balance model we used does not take into account the thermal
state of the soil. In particular, we implicitly made the assumption that the soil was
unfrozen during the snow-melt, allowing thus water to circulate as in unfrozen
conditions. This assumption may not always be verified at BAR, as suggested by
field monitoring (Fig. 4.1 and 4.2). Nevertheless, soil frost strongly affects snow-melt
infiltration and runoff, a thick frozen soil layer impeding infiltration and inducing
drainage (Iwata et al. 2010). That could be a bias for the drainages simulated at BAR.
More precise measurements of the depth of freezing and measurements of drainages
are required to verify this.

4.4.3 Consequences for the biogeochemical cycling of
nutrients and plant nutrition

We identified several periods in the yearwhich could play a role in the control of plant
growth, whether directly, through plant physiology, or indirectly, through impacts
on soil biogeochemistry and thus on water and nutrient availability for plants. In
the light of the results reported in the literature, we initiate a brief discussion on
the potential impacts of the soil temperature and water dynamics on both plant
physiology and biogeochemical processes at these periods. The questions which

101



Chapter 4 Dynamics of soil temperature and moisture

could be addressed here are: (i) When are the conditions of soil temperature and
moisture optimum for microbial and enzymatic activities? (ii) Do these periods fit
with the period of plant requirement for nutrients? (iii) How can climate related
events (e.g. soil frost, snow-melt, summer drought) interfere, positively or negatively,
with (i) and (ii) as well as with plant physiology? In other words, what are the “hot-
moments” in SW Siberia?

Microbes are responsible for the mineralization of organic matter in the soil and
for the release of plant nutrients when they die (cell lysis). Microbial activity requires
the presence of liquid water, depends on C substrate availability and is modulated
by temperature and moisture (Davidson and Janssens 2006). Microbial substrate
and plant nutrient movements in the soil are concomitant with water circulation.
Water circulation is controlled by climate, soil properties, vegetation effects and
temperature.

Two periods are of importance for the soil moisture content in our driest study
site (BAR): the snow-melt, which controls the filling of soil water reserves, and
the summer, where these reserves are depleted. These two periods are linked since
the same amount of melt-water would not have the same efficiency in refilling the
soil water reserve after different levels of depletion, and since the same summer
conditions could lead to different levels of depletion depending on the level of
refilling at snow-melt. Climate change is expected to modify water dynamics on
these periods and vegetation growth might be impacted by new combinations of
winter and summer precipitation levels.

In cold ecosystems, soil freezing has a great influence on biogeochemical processes.
A frozen soil impedes water circulation and so substrate and nutrient flows in
the soil matrix (Davidson and Janssens 2006). But in the same time, the water
expansion induced by freezing can induce the lysis of microbial cells (Larsen et al.
2002; Skogland et al. 1988; Yanai et al. 2004), the disruption of soil aggregates (Oztas
and Fayetorbay 2003; Six et al. 2004) and the break-up of plant material (Harris and
Safford 1996; Melick and Seppelt 1992). In subsequent thawing events, particulate
and soluble material released during freezing events are susceptible to constitute
inputs for microbial activity and plant nutrition (Jusselme et al. 2016). However, they
can also be exported from the system, and possibly lost for microbial activity and/or
plant nutrition (DeLuca et al. 1992; Fitzhugh et al. 2001; Vaz et al. 1994; Wang and
Bettany 1993). Soil freezing also affects soil micro-fauna (Dörsch et al. 2004; Sjursen
et al. 2005; Sulkava and Huhta 2003) and reduces soil compaction (Unger 1991). It
affects plant physiology, notably in early winter or lasting over winter, through the
damage of roots or root-symbionts and can increase tree mortality (Cleavitt et al.
2008; Kreyling et al. 2012; Repo et al. 2014; Tierney et al. 2001), depending on the
hydrological conditions.

Contrasting results have been reported about the overall impact of increased
freeze–thaw cycles number, frequency and intensity as well as an important spatial
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variability (Henry 2007). However, changes in the composition of soil microbial
community (Larsen et al. 2002; Lipson and Schmidt 2004; Sharma et al. 2006; Walker
et al. 2006) and in the dynamics of microbes, carbon (labile, dissolved organic C,
inorganic C) and nutrients (particularly N) (Brooks et al. 1998; DeLuca et al. 1992;
Grogan et al. 2004; Haei and Laudon 2015; Lipson et al. 2000; Schadt 2003; Schimel
and Clein 1996; Shibata et al. 2013; Six et al. 2004; Sjursen et al. 2005) were often
observed as a result of a modified freeze–thaw cycles regime. In SW Siberia, such
freeze–thaw cycle events might be exacerbated at the beginning and at the end of
winter, when there is no snow-pack or when it is too shallow to protect soil from
freezing. Severe decreases in snow-cover and/or alternation of shorter snow periods
seems to be necessary to allow such events occurring during winter, if this could
occur episodically as an extreme event at BAR, it seems to be an unlikely possibility
at TOM. In fact, climate projections rather indicate an increase in snow height in
SW Siberia (Bulygina et al. 2011, 2010, 2009; Cohen et al. 2012; Groisman et al. 2006;
Shkolnik et al. 2010).

Warmer soil temperature allowed by higher snowheightmight stimulatemicrobial
activity over winter. Enhanced respiration (carbon fluxes) and nitrogen cycling
activities were reported under experimentally increased snow cover (Nobrega and
Grogan 2007; Schimel et al. 2004; Walker et al. 1999). Increased N retention and lower
exports were also observed under deeper snow-packs (Brooks et al. 1998; Lewis and
Grant 1980; Mitchell et al. 1996; Peters and Leavesley 1995), probably due to a higher
microbial N immobilization (Brooks and Williams 1999; Buckeridge and Grogan
2010). However, there is a threshold above which the increase of snow height might
not impact anymore soil temperature. It is possible that such a threshold is already
reached in situations like TOM.

At snow-melt, soil temperature is buffered by melting snow, soil moisture is high,
and the potential for transport to surface water is the greatest. At our study sites,
almost all the yearly drainage occurs at snow-melt and climate is likely to impact
the amount (our simulations induced variations up to a factor 3) and the timing of
drainage. In Arctic ecosystems, it has been proposed that the size of the microbial
biomass and soil solution nutrient pool at the end of winter may control the quantity
of nutrients available to plants in the following spring (Buckeridge and Grogan 2008).
While the micro-organisms remain active over winter under deep snow-packs, they
might become increasingly C-limited and would not support the rapid change in soil
temperature and moisture at snow-melt (Buckeridge and Grogan 2008; Lipson et al.
2000; Schmidt and Lipson 2004). Their lysis at snow-melt would induce a spring
flush of nutrients (Buckeridge and Grogan 2008).

Whether the nutrients are lost for plants may depends on the intensity of runoff
and leaching, and on the capacity of the soil to store elements (e.g. by adsorption on
particles and/or by immobilization into the microbial biomass) in available forms in
the horizons explored by fine roots. Finally, the synchrony with the beginning of

103



Chapter 4 Dynamics of soil temperature and moisture

plant activity would be or great importance on their capacity to capture nutrients
when they are possibly released in great quantities. In a site like TOM, the relatively
deep snow-pack could be beneficial for microbial activity at wintertime but the
water-saturation of the soil at snow-melt induce relatively high levels of drainage
and/or runoff. In addition, relatively shallow root systems (Chap. 5, Brédoire et al.
2016b) would not permit to absorb the nutrients pushed down into deep soil layers
by piston flow. At BAR, soil temperature is often below 0 ◦C in winter, potentially
limiting microbial activity, the drainage is relatively low and root systems are deeper.
In such a situation, we can imagine limited nutrient losses for plants at snow-melt.
However, it is likely that drainage levels, and possibly winter soil temperature, will
be modified with climate change. Multiple possibilities were highlighted by our
simulations of the water budget, they would have different impacts on nutrient
availability.

4.5 Conclusion
Our two study sites present a similar general pattern in yearly soil temperature
and moisture dynamics: temperature is buffered around 0 ◦C in winter and peaks
at its maximum in the middle of summer, the soil water reserve is filled at spring
and depleted in summer. However, the joined effects of climate, soil properties and
vegetation modulate these dynamics. Overall, BAR experiences drier conditions than
TOM and its soil water budget is highly dependent on both intensities of refilling
and depletion of water.

Winter, and in particular the snow-cover, exerts a major influence on the dynamics
of soil temperature and moisture. The snow-pack buffers soil temperature and
eventually prevents freezing. Soil freezing depends notably on the thickness of the
snow-pack but also on the status of the soil at the settling of the seasonal snow cover.
Typically, soil does not freeze at wintertime at TOM because of a deep snow-cover
while it usually freezes at BAR where the snow cover is shallower and appears
later, when the soil can already be frozen. Depending on the level of the soil water
reserve at the end of autumn, snow-melt has a great importance for recharging this
reserve—typically at BAR where the soil is not recharged at autumn—or is associated
with drainage—typically at TOM where autumn precipitations often recharge the
soil.

Our simulations suggest an increase of water limitations in both forest-steppe
and sub-taiga with climate change. This phenomenon would be driven by warmer
temperatures and earlier vegetation seasons and be modulated by the amounts of
winter precipitations, i.e. snow. In the south, long and intense water shortages are
likely to become the usual situation. In the north, they may appear and occur at
higher frequency but, even under the current southern climatic conditions, water
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stress might be modulated by soil properties. In both cases, an earlier vegetation
season would increase the water depletion of the soil profile, and induce earlier
apparition, longer duration, and higher intensity of water-stress.

To conclude, snow appears as a “hot-variable” controlling both soil temperature
and moisture regimes in SW Siberia. Winter related processes may contribute for a
great proportion in the control of biogeochemical processes, and thus of vegetation
activity and productivity in this region.The modification of climate, and in particular
winter snowfall, is likely to impact those soil temperature and moisture regimes.
However, additional measurements (e.g. drainage, soil solution elemental compos-
ition, microbial activity, N processes) are required in our study sites to approach
mechanisms and infer on their evolution with global change. They will also help
determining the “hot-moments” for nutrient availability or loss from the soil–plant
system.
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Chapter 5

Distributions of fine root length and mass
with soil depth in natural ecosystems of
south-western Siberia

Brédoire, F., Nikitich, P., Barsukov, P. A., Derrien, D., Litvinov, A., Rieckh, H., Rus-
alimova, O., Zeller, B., and Bakker, M. R. (2016). Distributions of fine root length and
mass with soil depth in natural ecosystems of southwestern Siberia. Plant and Soil
400.1-2, 315–335. doi: 10.1007/s11104-015-2717-9

Abstract
Aims Forest-steppe and sub-taiga, two main biomes of south-western Siberia, have
been predicted to shift and spread northwards with global change. However, ecolo-
gical projections are still lacking a description of belowground processes in which
fine roots play a significant role. We characterized regional fine root patterns in
terms of length and mass comparing: (1) sites and (2) vegetation covers.

Methods We assessed fine root length and mass down to one meter in aspen
(Populus tremula) and in grassland stands on six sites located in the forest-steppe
and sub-taiga zones and presenting contrasting climate and soil conditions. We dis-
tinguished fine roots over diameter classes and also between aspen and understorey
in forest. Vertical fine root exploration, fine root densities and total length and mass
were computed for all species. Morphological parameters were computed for aspen.

Results In both forest and grassland, exploration was deeper and total length and
mass were higher in forest-steppe than in sub-taiga. Exploration tended to be deeper
in forest than in grassland and for trees than for understorey vegetation within
forest stands.

Conclusions The differences in rooting strategies are related to both pedoclimatic
conditions and vegetation cover. Further investigations on nutrient and water avail-
ability and on fine root dynamics should permit a better understanding of these
patterns and help predicting their future with global change.

Keywords: fine roots, bioclimatic zones, south-western Siberia, Populus tremula L.,
understorey vegetation, grassland
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Chapter 5 Fine root distributions with soil depth

5.1 Introduction
In the context of global change, understanding the structure and functioning of
ecosystems is of primary importance to improve predictions on their future status.
Plant growth and productivity are likely to be affected, directly or indirectly, by
changes in temperature, precipitation regime and the concentration of atmospheric
CO2. Belowground processes have not been yet well integrated in ecosystem and
global scale models. Notably, the description of root processes remains highly sim-
plified in such models (Smithwick et al. 2014; Warren et al. 2015). However, due to
the difficulty of accessing roots, factors and mechanisms controlling their dynamics
are poorly known.

Roots provide anchorage, storage, transport and uptake of nutrients and water to
plants. Within the root system, fine roots (usually defined by a diameter < 2mm),
with or without symbiotic partners (ecto-mycorrhizae, endo-mycorrhizae, bacteria),
are responsible for most of nutrient and water acquisition. They play a crucial role in
the cycling of carbon (C) and nutrients in forest ecosystems (Berg 1984; Helmisaari
et al. 2002; Hendrick and Pregitzer 1993; Joslin and Henderson 1987; Leppälammi-
Kujansuu et al. 2014). Some estimates suggest that most of the C present in the
mineral soil layers and a large amount of labile C cycling in forest derive from fine
roots (Kalyn and Rees 2006; Richter et al. 1999). They also represent about one third
of global annual net primary productivity (Jackson et al. 1997). Fine roots represent a
lower proportion than coarse roots in root biomass stock assessments. For example,
in boreal forests they represent about 16 % of the total root biomass (Yuan and
Chen 2010). However, their turnover is quicker and their decomposability easier so
they contribute substantially more to root production—73% in boreal forest—and
to annual C fluxes through the root system (Pregitzer et al. 2002; Ruess et al. 2003;
Yuan and Chen 2010).

In forests, roots originate both from trees and understorey vegetation. The lat-
ter, either woody or herbaceous, usually represents a marginal proportion of the
aboveground and total biomass (Moore et al. 2007; Shepashenko et al. 1998) but
may represent a far larger proportion belowground (Achat et al. 2008; Bakker et
al. 2006; Gonzalez et al. 2013; Hansson et al. 2013; Helmisaari et al. 2007). Thus,
the understorey vegetation may play a significant role in nutrient fluxes on the
ecosystem scale (Moore et al. 2007; Whigham 2004; Yarie 1980). Depending on
species and site specificities, competition for resources (e.g. light, water, nutrients)
or mutual facilitation (e.g. redistribution of nutrients and/or water, enhancing of
litter quality, symbiotic N fixation) could occur (Schenk 2006). It is therefore of
interest to specifically distinguish between both trees and understorey roots; this
has often been ignored in the literature (Finér et al. 2011a). Furthermore, there is
increasing evidence that functional subdivisions occur within fine roots: branching
forms, orders and diameter classes differ in term of morphology, physiology, life
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history, activity and responses to environmental factors (Guo et al. 2008; Iversen
2014; Keel et al. 2012; King et al. 2002; Kong et al. 2014; McCormack et al. 2015;
Pregitzer et al. 1998; Pregitzer 2002; Pregitzer et al. 2002, 1997; Smith et al. 2014;
Valenzuela-Estrada et al. 2008; Wells and Eissenstat 2001).

On the global scale, general fine root patterns, in terms of distribution and quantit-
ies (biomass, length) within the soil profile, have been found in relation to terrestrial
biome distribution (Jackson et al. 1997). Typically, fine root dynamics (production,
turnover, life history) respond to environmental factors such as stand characteristics
(e.g. species, age, density), soil properties (e.g. nutrient stocks, pH) and climatic
features (Finér et al. 2011b; Gill and Jackson 2000; Hendricks et al. 2006; Joslin et al.
2000; Leuschner and Hertel 2003; McCormack et al. 2014, 2013; McCormack and Guo
2014; Yuan and Chen 2010, 2012a,b). Results are not always convergent on how root
parameters respond to given environmental factors. Besides this, fine root dynamics
vary on the time scale, seasonally and from year to year (Steinaker et al. 2010; Vogt
et al. 1998).

Siberia covers several bioclimatic zones, from south to north: steppe, forest-steppe,
sub-taiga, southern taiga, middle taiga, northern taiga, forest tundra and tundra.
Due to climate change, the locations of these biomes have been predicted to shift
northwards and their relative size to change (Jiang et al. 2012; Soja et al. 2007;
Tchebakova et al. 2009, 2010). Notably, the space occupied by steppe and forest-
steppe may increase at the expense of taiga. Hydrological and fire regimes may
be reshaped on the whole territory (Shiklomanov and Lammers 2009; Shkolnik
et al. 2010; Soja et al. 2007). As an original feature of climate change in western
Siberia, the spatial distribution of the snow cover has been modified and regional
increases of snow mass accumulation during winter have occurred and are predicted
for this century (Bulygina et al. 2011, 2010, 2009; Groisman et al. 2006; Shkolnik
et al. 2010). Ecological processes are likely to be affected by these changes leading to
new potentials for land occupation (Bergen et al. 2012). In particular, the southern
parts of Western and Central Siberia may become climatically more suitable for
many crops (Tchebakova et al. 2011), creating thus a hotspot for food production for
the population of central Asia and China, and possibly attracting populations from
surrounding territories (Cabestan et al. 2008; Snegur 2006). South-western Siberia
has historically been the most populated area of Siberia due to relatively clement
climatic conditions and the occurrence of rich soils such as Chernozems allowing
agriculture. Even though there is an increasing interest in Siberian ecosystems,
fundamental knowledge is still lacking with regard to processes related to global
change, especially belowground processes (Gordov and Vaganov 2010; Groisman
and Soja 2009).

This study was set up to identify general fine rooting patterns, important for
plant nutrition and thought to be sensitive to climate changes, in south-western
Siberia. We addressed the following questions: (1) Are there different fine root
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Figure 5.1: Localization of the study sites in Russia (inset) and in south-western Siberia
(main map).

patterns, consistent across vegetation covers (here forest and grassland), on the
regional scale? In other words, can we distinguish sites or groups of sites? (2) Are
there different fine root patterns, consistent across sites, distinguishing vegetation
covers? To do this, we sampled fine roots down to 1m in aspen (Populus tremula
L.) and in grassland stands located in the transition zone from steppe to sub-taiga
and presenting contrasting climate and soil conditions. Based on length and mass
measurements, we characterized fine root soil exploration, calculated totals through-
out the profile as well as proxies for morphological traits. Finally, we discussed the
possible implication of several environmental factors in the control of these fine
root patterns and provided hypotheses on their evolution in the context of global
change.
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5.2 Materials and methods

5.2.1 Site description
We selected six sites in south-western Siberia located on the transition from steppe
to sub-taiga and with contrasting pedoclimatic conditions (Fig. 5.1 and Table 5.1).
Krasnozerskoye (hereafter noted FS3) is located on the border of steppe and forest-
steppe, Barnaul (FS1) in the southern part of forest-steppe, Chebula (FS2) in the
northern part of forest-steppe, Salair East (FS4) on the transition between sub-taiga
and forest-steppe in the foothills of the Salair mountains range, Salair West (ST1)
in the “Blackish” taiga belt of Salair mountains, and Tomsk (ST2) in sub-taiga1.
Sites located in the forest-steppe are expected to be drier, to have higher mean
temperatures and to experience a lower height of snow during winter than sites
located in the sub-taiga. The same phenomenon is expected from the South to
the North, at the exception of ST1 which is located in a low-mountain range and
experience climatic conditions close to ST2, our northernmost site.

All soil profiles described in this study have developed on a loess parent material
and vegetation cover had comparable features in terms of dominant species com-
position, stand age and low human impact (i.e. no active management for the last
decades; Tables 5.2 and 5.3). Five sites presented almost pure aspen (Populus tremula
L.; Table 5.2) forest stands and also grassland areas where we made measurements.
ST1 only presented forest. All aspen stands had closed canopy. For each site and
each vegetation cover, we delimited three study stands spaced by 200–2000m. Those
three stands were considered as replications for each site.

Forest study stands were defined as containing at least 30 Populus tremula trees. All
trees and shrub species were identified and individual stems counted. We measured
the circumference at 1.30m of all trees, the height of at least 10 trees per replicate
using a clinometer (Suunto Optical Reading Clinometer PM-5/400 PC) and estimated
diameter and height of all shrubs taller than 1.30m. On five dominant trees per stand,
so 15 per site, we took a tree core with a 5mm diameter Pressler corer (Suunto) and
used it for assessing age by counting of tree rings (Table 5.2). Leaf area index (LAI)
was estimated by collecting litterfall in autumn 2013. Five litter traps of 1.96m2 each
were setup earlier in the season on each site. We sorted the litterfall to keep only the
leaves and oven dried them at 60 ◦C to constant weight. For each site, the surface
area and the dry weight of 20 leaves was then used to compute LAI in m2 leaves
m−2 ground.

Vegetation cover was described on an area of 100m2 in each forest (woody and
herbaceous understorey vegetation) and grassland (herbaceous) stand. All species

1. In the corresponding publication, sites were abbreviated differently from the rest of this manu-
script. We keep this encoding for the present chapter as its main message is the evidence of distinct
fine root patterns between forest-steppe and sub-taiga.
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5.2 Materials and methods

were identified and their percent coverage was visually estimated based on the
Braun-Blanquet scale (Braun-Blanquet et al. 1932) consisting of a plus sign (sparse
and covering a small area) and a series of numbers from 1 to 5 (5 is covering more
than 75% of the area). On each site, we calculated for each species the mean score
on the Braun-Blanquet scale (ignoring the “+” class) and assumed species to be
dominant when they were present in at least two of the 3 replicates and with a mean
score > 1 (Table 5.3).

Climate data for the closest weather station for each site were provided by the
Russian Research Institute of Hydrometeorological Information–World Data Centre
(RIHMI-WDC) for FS1, FS2, FS3 and ST2, or were collected and merged fromNational
Oceanic and Atmospheric Administration (NOAA) and InfoSPACE for FS4 and ST1.
Available data were averaged for the period 1981–2010 (Table 5.4).

5.2.2 Fine root sampling and processing
All samplings were carried out between July 9th and July 25th 2013. On each study
stand, we dug a soil pit down to 120 cm, except in FS4 grasslands where we reached
a dense schist material around 90 cm. All soil profiles were described according to
WRB (IUSS Working Group WRB 2014) (Table 5.1). In each soil pit, bulk soil samples
were sampled horizontally with a cylinder of 5.5 cm diameter and 8.0 cm length at
the depths of 5, 15, 30, 60 and 100 cm. Litter was sampled over a surface area of
30 by 40 cm close to soil pits. Bulk soil and litter samples were stored at 4 ◦C until
processing in the lab. In order to evaluate whether rooting was much deeper than
the vertical surface included in our sampling, we also performed counts on root
segments at the bottom of each soil pit. For this we used the biggest undisturbed
zone we could delimit (0.15–1.00m2) and quantified coarse (> 2mm in diameter)
and fine roots (< 2mm diameter) separately. At each horizontal surface of inspection
we scraped a few cm deep into the undisturbed soil surface to detect and census all
the roots present. The intensity of such vertical rooting can be indicative of shallow
versus deep soil systems (Achat et al. 2008).

In the lab, all roots were extracted from bulk litter and soil samples using sieves
and tweezers. We selected only alive fine roots with a diameter < 2mm and sorted
them by diameter classes: 2–1.2mm, 1.2–0.8mm, 0.8–0.4mm, 0.4–0.2mm and <
0.2mm. However, it has been suggested that small sample volume cannot be well
representative for the biggest diameter classes of fine roots (Pierret et al. 2005; Taylor
et al. 2013). There is also increasing evidence that roots of < 1mm are the domin-
ant component of the root system (Iversen 2014; Pregitzer 2002). Thus, we present
hereafter the results for the diameter classes < 0.8mm. For forest samples, we also
distinguished between aspen and non-aspen (mainly herbaceous understorey veget-
ation) fine roots based on their visual aspect (colour, size, morphology, branching
forms, etc.) and with the help of reference samples taken carefully following aspen
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Chapter 5 Fine root distributions with soil depth

Table 5.4: Climatic features of the study sites. Data averaged on the period 1981–2010. Data
presented for each site come from the closest weather stations.

Variable Period FS1 FS2 FS3 FS4 ST1 ST2

WMO index of the station 29838 29539 29915 29745 29736 29430
Distance site-station (km) 4 28 76 18 64 38

Air Temperature (◦C) MAT 2.7 1.3 2.9 2.3 1.2 0.9
DJF -14.1 -15.2 -15.1 -15.4 -17.6 -15.6
MAM 3.4 2.0 3.4 3.4 2.8 1.6
JJA 18.3 17.0 19.7 17.4 16.9 16.7
SON 2.8 1.2 3.2 3.0 2.2 0.8

Precipitation (mm) MAP 431.5 509.8 324.5 432.3 453.0 566.5
DJF 69.8 84.5 53.2 54.3 66.1 104.7
MAM 85.1 91.3 58.2 78.9 75.1 98.2
JJA 166.6 184.8 135.3 182.2 168.8 202.9
SON 107.7 146.4 76.1 106.1 115.9 157.2

Snow Height (cm) climax* 48.8 42.5 18.8 38.0 54.3 70.6
SCD 1 cm (days) year 157.2 167.6 141.9 144.5 149.5 178.1
SCD 20 cm (days) year 108.3 118.3 25.2 88.3 116.4 145.5

Soil Temp. at 20 cm (◦C) DJF -1.5 -6.0 -0.4
MAM 4.3 4.0 2.4
JJA 18.9 20.3 16.4
SON 6.5 7.3 5.8

Soil frozen at 20 cm (days) year 86.8 130.1 44.5
Depth of soil frozen (m) DJF 20–40 40–80 0–20
WMO: World Meteorological Organization; MAT: mean annual temperature;
MAP: mean annual precipitation; SCD: snow cover duration
D, J, F, M, A, M, J, J, A, S, O and N are the months of the year
*climax: maximum snow cover depth, i.e. mean depth between mid-February and mid-March
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5.2 Materials and methods

coarse roots. Total fine root length in the sample was measured according to Tennant
(1975). We counted intersects of each set after random disposition of fine roots over
a grid of 1 by 1 cm. Fine root length density (FRLD, in cm cm−3) was calculated
according to equation 5.1:

FRLD = α × N × u

V
(5.1)

where α = 11/14 (Tennant 1975), N is the number of intersects in the sample, u the
grid unit (here 1 cm) andV the volume of the sample (here 190.07 cm3). After length
measurements, we dried roots at 60 ◦C for 48 h and measured their mass. Fine root
mass density (FRMD, in mg cm−3) was calculated following equation 5.2:

FRMD =
m

V
(5.2)

wherem is the mass (mg) of fine roots in the sample. We computed fine root mor-
phological proxies using fine root diameter classes and assuming roots as regular
cylinders: specific root length (SRL, in m g−1) and specific root area (SRA, in m2 kg−1):

SRL =
1
10

× FRLD
FRMD

(5.3)

SRA =
1
10

×
0.8∑

d=0.2

π × d × FRLDd

FRMDd
(5.4)

where d is the maximum diameter of the fine root class (in mm) and FRLDd and
FRMDd are FRLD and FRMD calculated for the diameter class d , respectively.

5.2.3 Computing of fine root profiles
Five soil layers were defined between 0 and 120 cm according to soil horizon de-
scription in each soil pit (horizons were merged or divided in order to have 5 layers
corresponding to the 5 sample depths, the profiles studied presented between 4
and 7 horizons, the mean number of horizons of the 33 profiles studied is 5.03). We
assumed root densities measured at systematic depths being representative of the
mean density for the corresponding soil layers. On this basis, we calculated the
total fine root length and the total fine root mass down to 120 cm. Cumulated root
profiles were modelled in each soil pit according to Gale and Grigal (1987):

Y = 1 − βd (5.5)

where Y is the cumulative root proportion (value between 0 and 1) from the soil
surface to depth d (cm), and β is the estimated “extinction coefficient”. β provides a
simple numerical index of the distribution of roots.
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Chapter 5 Fine root distributions with soil depth

Table 5.5: Number of roots going down per m2 at the bottom of the pit. Results are mean
of 3 replicates per site ± standard error. Depth and surface area ranges of observation
are given. Different letters denote significant differences at p < 0.05 level using a Tukey
post-hoc comparison. ANOVA results are given in Table C.1.

Depth Surface Coarse roots (nbm−2) Fine roots (nbm−2)

Veg. cover Site (m) (m2) mean se stat mean se stat

Forest FS1 120–120 0.49–0.68 2.0 0.8 ab 19.8 4.3 a
FS2 112–125 0.35–0.56 1.4 0.3 ab 4.6 0.9 a
FS3 110–128 0.35–0.51 3.6 0.6 a 17.2 8.4 a
FS4 118–130 0.25–0.36 0.3 0.2 b 2.2 0.8 a
ST1 110–120 0.42–0.80 1.3 0.7 ab 8.7 3.3 a
ST2 115–122 0.15–0.42 0.8 0.5 b 1.9 0.7 a

Grassland FS1 120–130 0.40–1.00 0.0 0.0 a 20.3 6.0 a
FS2 120–128 0.35–0.54 0.2 0.2 a 8.9 2.0 a
FS3 108–115 0.29–0.36 0.0 0.0 a 12.0 2.9 a
FS4 85–100 0.30–0.48 0.2 0.2 a 12.2 9.6 a
ST2 107–120 0.30–0.36 0.0 0.0 a 2.5 0.4 a

5.2.4 Statistical analyses and non-linear regression
Comparisons of sites were conducted for each combination of factors (vegetation
cover, diameter, species) by Tukey’s HSD (Honestly Significant Difference) test
following one-way ANOVA with a significance level of p < 0.05. ANOVA and
non-linear regression assumptions of normality and homogeneity of variance were
visually tested with residuals plots and quantile-quantile plots of residuals. All non-
linear regressions and statistical analyses were performed with R 3.1.0 (R Core Team
2014).

5.3 Results

5.3.1 Rooting depth
Fine roots were present at the bottom of all the pits from 1.9 to 17.2 roots per
m2 indicating that we did not reach the absolute maximum depth (Table 5.5). No
significant difference in the number of fine roots at the bottom of the pit permitted
to discriminate between sites. Coarse roots were found at the bottom of the pits in
all forest stands and in two grassland stands (FS2 and FS4). In forest, FS3 had the
highest number of coarse roots at the bottom of the pit whereas FS4 and ST2 had
the lowest (Table 5.5).
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5.3.2 Fine roots in the litter layer
The mean fine root length measured in the litter layer ranged from 8.2 to 38.9mm−2

in forest (overall species) and from 0 to 18.7mm−2 in grassland. Respectively, the
mean fine root mass ranged from 0.5 to 4.8 gm−2 in forest and from 0 to 0.4 gm−2

in grassland. Results were highly variable within sites so they did not appear signi-
ficantly different (Tables C.1 and C.2).

5.3.3 Cumulative fine root length and mass throughout the
profile

Significant differences occurred between sites in terms of total fine root length and
mass computed down to 120 cm except when considering non-aspen roots in forests.
In forest, FS1 exhibited the highest total fine root length and fine root mass whereas
ST1 exhibited the lowest values, the values of ST2 were close to ST1 and other sites
were in between extremes (Fig. 5.2, Table 5.6). In grassland, FS2 and FS3 exhibited
the highest total fine root length and FS4 and ST2 the lowest whereas FS1 and FS3
had the highest total fine root mass and ST2 the lowest (Fig. 5.2, Table 5.6). Total
fine root length tended to be higher in grassland (5.21 to 11.71 kmm−2) than in
forest (1.60 to 6.72 kmm−2) whereas total fine root mass was similar (0.20–0.61 and
0.16–0.55 kgm−2 in forest and grassland respectively; Table 5.6).

Species composition of total fine root length and mass computed over 120 cm
varied between forest sites. More than 50% of the total fine root length was composed
by aspen roots in FS1 and FS3, by non-aspen roots in FS2 and FS4 whereas the
proportions were close to 50 % in ST1 and ST2 (Fig. 5.2 and Table C.3). Aspen roots
represented a higher biomass than non-aspen roots in all sites except in FS2 (Fig. C.1
and Table C.4).

The biggest diameter classes of fine roots (> 0.8mm) generally represented less
than 5% of the total fine root length computed over 120 cm (Table C.3). However,
they represented 7 to 37 % of the total fine root mass (Table C.4). The smallest
diameter class of fine roots (< 0.2mm) represented the largest part of total fine
root length—up to 91 % in grassland (Table C.3)—in accordance with Pregitzer et al.
(2002).

5.3.4 Fine root exploration of the soil profile
Fine root length density (FRLD) and fine root mass density (FRMD) were decreasing
with soil depth with different rates between sites (Fig. 5.3 and 5.4). In forest, 48.4
to 83.6 % of the total fine root length and 44.2 to 81.2 % of the total fine root mass
occurred in the top 30 cm (all species; Table 5.6). FS1 had the lowest proportion
of total fine root length and fine root mass in the top 30 cm and ST1 and ST2 the
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Table 5.6: Values of the β coefficient from the model of Gale and Grigal (1987) computed
on a length basis and on a mass basis, total value of fine root length (FRL) and mass
(FRM) down to 120 cm and the percentage of fine root length and mass in the top 30 cm.
Mean and standard error of the mean of 3 replicates per site. Different letters denote
significant differences at p < 0.05 level using a Tukey post-hoc comparison and for a
given combination of vegetation cover and species. ANOVA results are given in Table
C.1.

β Total profilea Top 30 cm (%) Maxb

Species Site mean se mean se mean se (cm)

Results based on fine root length (FRL)
Forest
overall FS1 0.978 0.003 a 6.72 1.04 a 48.4 4.9 b 206.3

FS2 0.961 0.007 abc 4.80 1.44 ab 67.8 6.5 ab 117.1
FS3 0.967 0.005 ab 6.15 1.20 a 62.9 5.6 ab 136.6
FS4 0.966 0.004 ab 5.97 0.92 ab 64.1 4.3 ab 132.9
ST1 0.941 0.005 c 1.60 0.02 b 83.6 2.7 a 75.5
ST2 0.949 0.002 bc 2.47 0.22 ab 79.3 1.2 a 87.5

aspen FS1 0.979 0.002 a 5.03 0.89 a 47.2 4.0 a 214.6
FS2 0.961 0.007 a 1.50 0.38 bc 68.0 6.4 a 116.6
FS3 0.976 0.002 a 3.99 0.93 ac 50.9 3.6 a 192.9
FS4 0.968 0.010 a 2.15 0.64 abc 58.9 11.2 a 141.9
ST1 0.945 0.018 a 0.86 0.16 b 76.4 8.9 a 81.9
ST2 0.958 0.005 a 1.25 0.16 bc 71.7 4.3 a 107.5

non-aspen FS1 0.970 0.014 a 1.69 1.28 a 55.8 18.1 a 152.7
FS2 0.959 0.013 a 3.30 1.10 a 67.4 10.8 a 109.0
FS3 0.930 0.005 a 2.16 0.77 a 88.2 2.0 a 63.9
FS4 0.948 0.015 a 3.82 0.87 a 74.9 11.1 a 86.5
ST1 0.872 0.044 a 0.74 0.15 a 93.0 6.0 a 33.6
ST2 0.932 0.015 a 1.22 0.30 a 85.1 5.3 a 65.8

Grassland
overall FS1 0.968 0.003 a 7.86 0.89 ab 62.5 3.0 a 140.1

FS2 0.963 0.004 a 11.71 1.17 a 67.3 3.6 a 122.3
FS3 0.967 0.007 a 11.44 0.82 a 62.3 7.0 a 136.4
FS4 0.954 0.005 a 6.20 0.53 b 75.0 3.4 a 98.1
ST2 0.930 0.019 a 5.21 0.70 b 84.9 6.1 a 63.5

aTotal down to 120 cm: FRL is in kmm−2 and total FRM is in kgm−2; bMaximum rooting depth
as estimated with the (Gale and Grigal 1987) model and for a cumulated root proportion of 99 %
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Table 5.6: Continued

β Total profilea Top 30 cm (%) Maxb

Species Site mean se mean se mean se (cm)

Results based on fine root mass (FRM)
Forest
overall FS1 0.981 0.001 a 0.61 0.10 a 44.2 2.5 b 235.7

FS2 0.962 0.013 ab 0.33 0.05 ab 64.5 11.7 ab 117.6
FS3 0.965 0.007 ab 0.39 0.08 ab 63.9 6.7 ab 130.5
FS4 0.963 0.003 ab 0.51 0.11 ab 67.0 3.2 ab 123.4
ST1 0.948 0.005 b 0.20 0.01 b 79.4 3.6 a 86.0
ST2 0.945 0.005 b 0.22 0.04 b 81.2 3.4 a 81.3

aspen FS1 0.981 0.001 a 0.51 0.15 a 43.1 2.4 b 244.5
FS2 0.945 0.003 a 0.13 0.03 b 81.6 1.5 a 81.2
FS3 0.971 0.004 a 0.31 0.07 ab 58.0 4.8 ab 156.9
FS4 0.967 0.009 a 0.26 0.08 ab 61.2 8.8 ab 137.1
ST1 0.944 0.016 a 0.13 0.02 b 78.3 7.8 a 80.2
ST2 0.946 0.010 a 0.14 0.03 b 79.5 5.7 a 82.9

non-aspen FS1 0.972 0.011 a 0.10 0.07 a 55.4 14.9 a 160.0
FS2 0.963 0.018 a 0.20 0.02 a 58.9 15.9 a 121.6
FS3 0.932 0.016 a 0.08 0.02 a 84.8 6.3 a 65.5
FS4 0.941 0.013 a 0.25 0.09 a 81.6 6.8 a 75.1
ST1 0.884 0.045 a 0.07 0.03 a 89.8 8.5 a 37.5
ST2 0.933 0.021 a 0.07 0.02 a 82.8 7.2 a 66.0

Grassland
overall FS1 0.962 0.005 a 0.39 0.07 a 68.1 4.8 a 118.8

FS2 0.955 0.008 a 0.36 0.05 ab 73.3 6.2 a 100.2
FS3 0.957 0.014 a 0.55 0.03 a 68.3 10.4 a 105.7
FS4 0.946 0.005 a 0.37 0.03 ab 80.6 3.5 a 82.9
ST2 0.911 0.033 a 0.16 0.06 b 88.0 5.8 a 49.3

aTotal down to 120 cm: FRL is in kmm−2 and total FRM is in kgm−2; bMaximum rooting depth
as estimated with the (Gale and Grigal 1987) model and for a cumulated root proportion of 99 %
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Figure 5.2: Total fine root length over 120 cm in forest (left panel) and grassland (right
panel). Mean and standard error of the mean of 3 replicates per site. In forest, total fine
root length is detailed for aspen (dark grey) and non-aspen (light grey). Results presented
for roots with a diameter < 0.8mm. Different letters denote significant differences at
p < 0.05 level using a Tukey post-hoc comparison. ANOVA results are given in Table C.1.

highest. Significant differences between sites were only found for the overall profiles
in forests. In grasslands, a similar ranking of sites was possible based on mean values
of β but the differences between sites were not significant (Table 5.6).

The β coefficient is a proxy for vertical root distribution. High values of β (e.g.
0.98) are associated with larger proportion of roots at deeper soil depths while low
values of β (e.g. 0.92) are associated with larger proportion of roots near the soil
surface (Gale and Grigal 1987). At the site level and for each vegetation cover, β
values calculated on a length basis were close to calculated on a mass basis (Table 5.6).
Differences between sites were only significant in forests when not differentiating
for species. FS1 presented the deepest fine root distribution (highest value of β , >
0.96) whereas ST2 and ST1 exhibited the shallowest profile (lowest β , < 0.96), the
other sites being in between (Table 5.6, Fig. 5.5 and Fig. C.2). Grassland generally
exhibited shallower profiles than forest (Fig. 5.6 and Fig. C.3). In forests, aspen roots
generally had deeper profiles than non-aspen ones (Fig. 5.7 and Fig. C.4).
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Figure 5.3: Fine root length density (FRLD) profile in forest (upper panels) and grassland
(lower panels) litter and soil. Mean and standard error of the mean of 3 replicates per
site. Details on species composition are given in forest, non-aspen roots came mainly
from understorey vegetation and occasionally from other tree and shrub species. Results
presented for roots with a diameter < 0.8mm.

5.3.5 Aspen fine root morphology

Specific root areas (SRA) and specific root lengths (SRL) of aspen roots were quite
similar for the top three soil layers considered (Table 5.7). No significant differences
between sites and depths were detected, presumably as a result of a high variability
of these values.

5.4 Discussion

In our work we aimed at assessing fine root patterns in forests and grasslands in SW
Siberia. This showed differences between grasslands and forests, the latter having
deeper rooting patterns. The influence of bioclimatic zones, nutrient and water
availability will be discussed.
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Figure 5.4: Fine root mass density (FRMD) profile in forest (upper panels) and grassland
(lower panels) litter and soil. Mean and standard error of the mean of 3 replicates per
site. Details on species composition are given in forest, non-aspen roots came mainly
from understorey vegetation and occasionally from other tree and shrub species. Results
presented for roots with a diameter < 0.8mm.

5.4.1 Regional fine root patterns

Relation with bioclimatic zones

Our analysis does not allow us to clearly distinguish sites in relation to climatic
features. The climate gradient might not be contrasted enough and the variation in
other parameters such as soil does not allow disentangling factors. However, two
group of sites arose with contrasting fine root patterns. One group includes the
sites located in the forest-steppe (FS1 and FS2) and on the limits of this bioclimatic
zone (FS3 and FS4). The other group contains the site located in Blackish taiga (ST1)
and the one in sub-taiga (ST2). We further refer to these two groups as “forest-
steppe” and “sub-taiga”. Total fine root length and mass tended to be higher and soil
exploration, as reflected by the β coefficient, occurred deeper in forest-steppe than
in sub-taiga (Fig. 5.2 and 5.5).

In forests, the β coefficients of our forest-steppe sites (0.961 to 0.981 overall
species, Table 5.6) were closer to the mean β of deciduous temperate forest (0.967)
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Figure 5.5: Cumulative fine root length (cumulative proportion) as a function of soil depth
in forest (left panel) and grassland (right panel) for the six sites. The figure shows the dif-
ferences between sites. Species are not sorted, diameter < 0.8mm. The line was generated
with the mean β (of 3 pits) from Eq. 5.5: Y = 1 − βd (Gale and Grigal 1987).

calculated by Jackson et al. (1997) whereas the β of our sub-taiga sites (0.941 to
0.949 in forest, overall species) were close to the mean value of boreal forest (0.943).
Total fine root length and mass for the forest-steppe were comparable to those of
the temperate deciduous mean value (5.4 kmm−2 and 0.44 kgm−2) and those of the
sub-taiga close to boreal forest mean values (2.6 kmm−2 and 0.23 kgm−2, Jackson
et al. 1997; 0.21 kgm−2 for roots of < 1mm in boreal forest, Yuan and Chen 2010).

In grasslands, the β values found were higher than the mean one of temperate
grassland (0.943, Jackson et al. 1997) in forest-steppe (0.946 to 0.968, Table 5.6) but in
the sub-taiga our values were lower (0.911 to 0.930, Table 5.6). Total fine root length
and mass were much lower than the values available in the literature for temperate
grasslands (112 kmm−2 and 0.95 kgm−2, Jackson et al. 1997).

We note that the variation in β we found between bioclimatic zones of south-
western Siberia approached the variation between wider terrestrial biomes shown
by Jackson et al. (1997). This suggests the existence of variability among the biomes
defined by these authors. Such a variability may have an importance in the evalu-
ation of C stocks on continental or global scales since roots and their activity (e.g.

131



Chapter 5 Fine root distributions with soil depth

FS1 FS2 FS3 FS4 ST2

0.978

0.968

0.961

0.963

0.966

0.969

0.966

0.954

0.949

0.93

−125

−100

−75

−50

−25

0

0.0 0.5 1.00.0 0.5 1.00.0 0.5 1.00.0 0.5 1.00.0 0.5 1.0

Cumulative Fine Root Length (Y)

D
e
p
th

 (
c
m

)

Veg. cover

Forest

Grassland

Figure 5.6: Cumulative fine root length (cumulative proportion) as a function of soil depth
in forest and grassland for the six sites. The figure shows the differences between forest
and grassland within sites and the quality of model fitting. Species are not sorted, diameter
< 0.8mm. Points are field measurements (3 per site and depth) and line was generated
with the mean β (of 3 pits) from Eq. 5.5: Y = 1 − βd (Gale and Grigal 1987).

exudation) constitute C inputs. We discuss the possible causes of this variability
later in the discussion.

No clear difference in aspen fine root morphological parameters (SRA, SRL) arose
from the comparison of sites and zones in this study (Table 5.7). This suggests that
the species did not deploy any specific morphological adaptation—or perhaps more
simply that fine root morphology of aspen is not a very sensitive parameter—in the
range of soil and climatic conditions of our study sites.

Vegetation type features

Fine root exploration was deeper for trees than for grass and understorey (Fig. 5.6
and 5.7, Table 5.6). This was in agreement both with field (Schenk and Jackson
2002a,b) and theoretical (e.g. Guswa 2010 on water uptake strategies) findings that
herbaceous plants are more shallowly rooted than woody species. Total fine root
length tended to be greater in grasslands whereas total fine root mass tended to
be greater in forests (Fig. 5.2 and Table 5.6). This apparent contradiction can be
attributed to differences in diameter and/or root tissue density between tree and
grass roots. Our thinnest diameter class of fine roots (< 0.2mm) represented 80–91%
of the total fine root length in grasslands whereas it represented 54–82% of it in
forests (Table C.3).

In the forest sites studied, the proportion of understorey roots in total fine root
length and mass was relatively high. Understorey reached between 13 and 63% of

132



5.4 Discussion

FS1 FS2 FS3 FS4 ST1 ST2

0.979

0.97

0.961

0.959

0.977

0.934

0.968

0.948

0.945

0.872

0.958

0.932

−125

−100

−75

−50

−25

0

0.0 0.5 1.00.0 0.5 1.00.0 0.5 1.00.0 0.5 1.00.0 0.5 1.00.0 0.5 1.0

Cumulative Fine Root Length (Y)

D
e
p
th

 (
c
m

)

Species

Aspen

Non−aspen

Figure 5.7: Cumulative fine root length (cumulative proportion) as a function of soil depth
in forest for the six sites. The figure shows the differences between aspen and non-aspen
fine root systems within forest sites and the quality of model fitting. Aspen and non-aspen
(understorey vegetation) are sorted, diameter < 0.8mm. Points are field measurements
(3 per site and depth) and line was generated with the mean β (of 3 pits) from Eq. 5.5:
Y = 1 − βd (Gale and Grigal 1987).

total fine root mass (Table C.3) whereas Finér et al. (2011a) indicated values of 20
and 31% in temperate and boreal forest, respectively. On the study sites, no relation
was found between understorey fine root length, mass or beta and LAI. This could
be attributed to different species composition of the understorey strata (non-aspen
vegetation either adapted to different shade conditions and/or different pedoclimatic
conditions). Aspen tended to have more fine roots in the deeper layers than the
understorey species and differences in vertical root distributions have been described
as adaptations to reduce competition for resources (Schenk 2006). However, both
understorey and aspen had their highest fine root densities in the top 30 cm of the
soil, which is also where nutrient availability is highest. This pleads against the idea
of a vertical niche differentiation (Gale and Grigal 1987; Yuan and Chen 2010). Rather,
aspen as a tree seems able to grow deeper roots than the understorey species present
in these ecosystems. Vertical rooting distributions and relationships between species
on a given site may likely vary on different spatial and time scales (e.g. season, stand
development stage; Kulmatiski and Beard 2013) and overlap of root distributions
may not always reflect an absence of such a relationship since the uptake capacity
per unit root surface of overstory trees and understorey plants is not necessarily
similar (Göransson et al. 2007, 2008, 2006). Another potential explanation for the
differences in rooting pattern between aspen and the understorey is that the total
amounts of fine roots (length, biomass) of both aspen and understorey were quite
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Table 5.7: Root morphological parameters: specific root area (SRA) and specific root length
(SRL). Mean and standard error of the mean. Results presented for aspen fine roots with
a diameter < 0.8mm and for the first 3 layers sampled.

Depth FS1 FS2 FS3 FS4 ST1 ST2

(cm) mean se mean se mean se mean se mean se mean se

SRA (m2 kg−1)
−5 119.8 32.8 85.7 6.9 91.6 10.3 73.3 13.2 77.4 11.6 76.0 23.1
−15 110.7 10.2 93.8 6.8 197.6 72.6 92.7 7.3 78.4 22.7 95.7 15.7
−30 139.3 35.5 131.2 21.2 117.1 5.7 72.7 7.8 71.9 10.9 93.5 16.1

SRL (m g−1)
−5 14.0 5.6 9.1 1.0 9.5 1.0 7.8 1.1 6.2 0.5 7.9 2.3
−15 12.9 1.7 9.6 0.8 22.9 8.9 10.6 1.3 6.1 0.5 9.8 1.5
−30 14.7 3.5 14.3 2.2 12.0 1.0 6.3 0.8 7.5 0.6 9.9 1.7

variable between sites. More precisely, the proportion of understorey roots and their
vertical distribution vary not only because of the presence of aspen but can be partly
attributed to differences in the species composition of the understorey communities
themselves.

5.4.2 Factors controlling patterns of fine root mass and fine
root length distributions

Three types of factors are susceptible to impact fine root development in soil: the
physical constraints of the environment, the availability of resources such as nu-
trients and water, and the interactions with other living organisms. We discuss
hereafter the potential implications of physical constraints and resource availability
for the fine root patterns observed in south-western Siberia.

Physical constraints to root growth

The occurrence of bedrock, high water table and soil freezing constitute three
physical constraints that may impact fine root in the sites studied. While the first
two may impact individual sites, strength of soil freezing might be more related to
the bioclimatic zones.

We reached bedrock (a dense schist material) in FS4 around 90–100 cm. Even
if a few roots were still present at the bottom of the pit (Table 5.5) further root
development below 100 cm cannot be expected. In ST2 soil description revealed
probable hydromorphy phenomenons: notably traces of iron oxidation in the B
horizon, high water table (around 30–40 cm) observed at other sampling dates in
June and October and complete saturation of the soil profile at snow-melt. A high
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water table remaining for a long period in the year can be detrimental and reduce
root development in deep soil layers (Imada et al. 2008). However, in the context
of climate change, drier summers and earlier beginning of vegetation season could
reduce the duration of high water table in this site.

Soil freezing or freeze-thaw cycles induce direct root or root-symbionts damage
(Kreyling et al. 2012; Repo et al. 2014). In south-western Siberia the harshest part
of the winter lasts for several months and air temperatures can drop below −40 ◦C
(daily mean air temperatures are comprised between −14 and −18 ◦C in winter in our
sites, Table 5.4). In such conditions, the snow-pack plays a crucial role in modulating
the soil thermal regime (Dominé et al. 2007; Gouttevin et al. 2012; Qian et al. 2011;
Sturm et al. 1997; Zhang 2005). With lower amounts and shorter period of snow
(Table 5.4) and also probably with a snow of a higher density (Sturm et al. 1995),
soils are more likely to be frozen—deeper and for longer periods—in forest-steppe
than in sub-taiga. One hypothesis could be that plants growing in seasonally frozen
upper-soil layers develop deeper root systems. This would maintain their integrity
and lower the cost of increasing root production. Our observations fit with this
hypothesis which still has to be properly tested. With the projected increases in
snow depth over western Siberia (Bulygina et al. 2011, 2010, 2009; Groisman et al.
2006; Shkolnik et al. 2010), this constraint on root development in the upper soil
layers might be reduced or disappear. We note that, contradicting this hypothesis or
explaining why many fine roots still develop in the topsoil in forest-steppe, some
experiments of soil freezing induced by snow removal resulted in higher fine root
turnover while maintaining a similar fine root biomass over time (Cleavitt et al.
2008; Gaul et al. 2008; Tierney et al. 2001).

Impact of nutrient availability on root growth

Plant nutrient resources depend on organic and mineral stocks and on the processes
leading to their availability. Achat et al. (2013) measured P and N stocks in two of the
same study sites in south-western Siberia (FS2 and ST1). They found relatively high
total and plant available P levels in the topsoil as compared with global data sets,
and total N levels in the upper range of the boreal and cool-temperate life-zones but
in a medium range on the global scale. These authors suggested that plant growth
was more likely to be limited by N than by P in this region. While plant available
P can originate both from mineral weathering and organic matter decomposition,
N is available through the symbiotic fixation of atmospheric N (legumes) and/or
the decomposition of dead plant material and organic matter. In this sense, N plant
availability is highly dependent on microbial processes. Since organic P represented
a large proportion of total P in south-western Siberia, Achat et al. (2013) suggested
that microbial processes also play a significant role in P availability. This might
explain partly the relatively high density of fine roots observed in the topsoil since
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both organic matter and microbial decomposers are concentrated there.
Within the same geographical area, modifications of fine root densities (higher

stocks: Achat et al. 2008; Finér et al. 2007; Helmisaari et al. 2007; Keyes and Grier
1981; Vogt et al. 1996) and morphological plasticity (higher SRL and SRA: Bakker et al.
2009; Maurice et al. 2010; Ostonen et al. 2007; Ostonen et al. 1999) have been observed
in the most fertile or in fertilized sites. In south-western Siberia, nutrient availability
might be sensitive to climatic conditions since the metabolic activity of microbial
decomposers is partly controlled by temperature and precipitation (Davidson and
Janssens 2006; Pregitzer et al. 2000). With higher temperatures at wintertime, due to
higher snow cover, one may expect higher nutrient availability at the beginning of
the vegetation season in sub-taiga and no need for development of deeper fine roots
to maintain the demand. Through the same mechanism, climate change is likely to
indirectly modulate fine root profiles. Whether fine roots will invest more in the top
soil (through increased densities), in deeper horizons (exploration of new horizons)
or adapt morphologically, will depend on the needs of the plants for nutrients and
water and how nutrient and water availability are distributed in the soil profile.

Impact of water availability on root growth

Precipitation regime and soil water storage capacity are two key components for
water availability. Total precipitation has been widely correlated with fine root
densities but differences among studies were rather diverging (Finér et al. 2007;
Leuschner and Hertel 2003; Yuan and Chen 2010) suggesting other environmental
controls and seasonal dynamics of soil water content have to be taken into account.

On average, mean annual precipitation is relatively low in south-western Siberia
(Table 5.4) but is concentrated on the growing season (peak in July). We monitored
soil moisture content in FS1 and ST2 and explored data archived in the International
Soil Moisture Network (data not shown). Soil moisture dropped down at summertime
with generally much drier conditions in forest-steppe than in sub-taiga and, while
soil was regularly re-saturated at autumn in sub-taiga, the snow-melt (in April–May)
was of great importance for soil water recharge in forest-steppe. This can be related
to lower total precipitation in forest-steppe, higher evapo-transpiration in summer,
and also locally lower water storage capacities due to soil properties (for example,
FS1 is located on the top of a 80m loess plateau with a relatively high drainage
lowering the opportunities to saturate the profile).

Schenk and Jackson (2002b) reported deeper fine root profiles in drier ecosystems
on the global scale. We found a similar pattern on a regional scale since fine root
profiles were deeper in forest-steppe than in sub-taiga. In accord with Hertel et al.
(2013), our driest sites (forest-steppe) exhibited a higher total fine root mass than the
wetter ones (sub-taiga). However, other studies reported the contrary (Meier and
Leuschner 2008; Nisbet and Mullins 1986). Interestingly, both (Meier and Leuschner
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2008) and (Hertel et al. 2013) conducted their studies in similar climate contexts in
Germany but in contrasted soil conditions (bedrock, pH, base saturation, nutrients,
etc.). Hertel et al. (2013) also reported that the strength of the precipitation effects
on fine roots biomass and productivity was modulated by soil texture.

An increase in winter precipitation—thus a higher input of water into the soil
at snow-melt—may constitute an increased water reserve for the ongoing growing
season in the sites which are not currently saturated after snow-melt and/or with
a capacity to store more water in the deeper layers. Typically, we might expect
forest-steppe to benefit from such a changing regime in winter precipitation but not
sub-taiga. Of course, other seasonal dynamics would modulate this effect and since
more severe droughts are expected in forest-steppe areas it is impossible to infer
the final status given the data discussed here. Variations in soil moisture content
can also interfere with microbial activity and thus on nutrient availability.

5.5 Conclusion
This study of fine root length, mass and distribution within the soil profile in south-
western Siberia revealed patterns related to bioclimatic zones and vegetation cover
type. Length, mass and depth of fine roots were higher in forest-steppe than in
sub-taiga. Within the same site, forests had deeper roots than grasslands and trees
exhibited deeper roots than understorey in the forests. Nomorphological adaptations
occurred for aspen roots. These patterns can be related to contrasting pedoclimatic
conditions.

We discussed two types of factors that could be involved in the control of these
fine root patterns: physical constraints to root development and the availability of
resources (nutrients and water). To summarize, in forest-steppe climatic conditions
are drier and the snow-melt is of great importance for recharging soil with water,
soils are more frequently and more severely subjected to soil freezing at wintertime,
litter decomposition seems to occur more slowly suggesting the source of nutrients
could be both mineral (over the the whole soil profile) and organic (in the topsoil).
We hypothesize the combination of these factors plays for deeper fine root systems.
On the contrary, the climatic conditions of the sub-taiga are wetter, soil is frequently
saturated with water, protected from freezing in winter and litter decomposition
may be faster, suggesting the importance of mineralization for nutrient availability.
We hypothesize the combination of these factors plays for shallower fine root
profiles. However, the confrontation of additional data on soil properties (such as
pH, granulometry and nutrient content) and soil water budget dynamics are required
to better understand fine root patterns in south-western Siberia and predict their
potential evolution with global change, which is often predicted to permit higher
primary productivity (Norby et al. 2005). In particular, a deepening of root systems
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may occur with the increase of atmospheric CO2 levels (Iversen 2010) and with the
increasing length of the growing season (Majdi and Öhrvik 2004). Such a deepening
could impact C stock, especially in deep soil horizons, because root production
constitutes inputs of fresh C and may induce destabilization of old C by priming
effect.
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Chapter 6

What is the P value of Siberian soils?

A modified version of this chapter has been published with the following reference:
Brédoire, F., Bakker, M. R., Augusto, L., Barsukov, P. A., Derrien, D., Nikitich, P.,
Rusalimova, O., Zeller, B., and Achat, D. L. (2016a). What is the P value of Siberian
soils? Soil phosphorus status in south-western Siberia and comparison with a global
data set. Biogeosciences 13.8, 2493–2509. doi: 10.5194/bg-13-2493-2016

Abstract
Climate change is particularly strong in Northern Eurasia and substantial ecological
changes are expected in this extensive region. The reshaping and migration north-
wards of bioclimatic zones may offer opportunities for agricultural development in
western and central Siberia. However, the bioclimatic vegetation models currently
employed for projections still do not consider soil fertility, in spite of this being
highly critical for plant growth. In the present study, we surveyed the phosphorus
(P) status in the south-west of Siberia where soils are developed on loess parent
material. We selected six sites differing in pedoclimatic conditions and the soil was
sampled at different depths down to 1m in aspen (Populus tremula L.) forest as well
as in grassland areas. The P status was assessed by conventional methods and by
isotope dilution kinetics. We found that P concentrations and stocks, as well as
their distribution through the soil profile, were fairly homogeneous on the regional
scale studied, although there were some differences between sites (particularly in
organic P). The young age of the soils, together with slow kinetics of soil forma-
tion processes have probably not yet resulted in a sufficiently wide range of soil
physico-chemical conditions to observe a more diverging P status. The comparison
of our data set with similar vegetation contexts on the global scale revealed that the
soils of south-western Siberia and more generally of Northern Eurasia, often have
(very) high levels of total, organic and inorganic P. The amount of plant-available
P in topsoils, estimated by the isotopically exchangeable phosphate ions, was not
particularly high but was intermediate on the global scale. However, large stocks of
plant-available P are stored in subsurface layers which currently have low fine-root
exploration intensities. These results suggest that the P resource is unlikely to con-
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strain vegetation growth and agricultural development under the present conditions
or in the near future.

6.1 Introduction
Occupying about 10 million km2 (6.7 % of global terrestrial land), Siberia has a para-
mount influence because ecological processes occurring here can have an impact
on the global scale. Ranging from latitudes 45 to 75 ° N, it covers several bioclimatic
zones, from south to north: steppe, forest-steppe, sub-taiga, southern taiga, middle
taiga, northern taiga, forest tundra and tundra. As the global climate change signal
is particularly strong in Northern Eurasia (IPCC 2013), substantial reshaping of
ecosystems is ongoing in the region. The expected increase in average air temper-
atures will be responsible for longer vegetation growing seasons and frost-free
periods, for the melt of permafrost in northern areas and for the modification of
soil freeze–thaw cycles in southern areas (Groisman et al. 2012). The intensity and
distribution of precipitation may change, resulting in differences in fire and hydro-
logical regimes (Shiklomanov and Lammers 2009; Shkolnik et al. 2010; Soja et al.
2007). These altered physical conditions are expected to modify the composition of
the plant communities and the bioclimatic zones of Siberia have been predicted to
shift northwards and their relative size to change (Jiang et al. 2012; Shuman et al.
2015; Soja et al. 2007; Tchebakova et al. 2009, 2010). In particular, the area occupied
by steppe and forest-steppe would increase at the expense of taiga zones. These
modifications of ecosystem features may result in alternative land uses (Bergen et al.
2012; Kicklighter et al. 2014). Notably, under future climatic conditions, cropping of
new species will be possible, or existing species may be used in more extensive zones
than at present in the southern parts of Western and Central Siberia (Kicklighter
et al. 2014; Tchebakova et al. 2011). Primary productivity may be enhanced due to
a “fertilization” effect induced by higher CO2 levels in the air (Mooney et al. 1991;
Norby et al. 2005; Schimel 1995) along with longer periods sustaining plant growth.
However, such projections lack the consideration of other important drivers of plant
productivity such as the availability of resources like nutrients and water in soils
(Fernández-Martínez et al. 2014; He and Dijkstra 2014; Oren et al. 2001; Reich et al.
2014, 2006a,b; van Groenigen et al. 2006). Even though there is an increasing interest
in the study of Siberian ecosystems, functional ecological data remain sparse in the
international literature (Gordov and Vaganov 2010; Groisman and Soja 2009).

In the domain of biogeochemistry, knowledge about the status of the major
nutrients is lacking, and potentially misleading assumptions could be made for
Siberia. Together with nitrogen (N), phosphorus (P) is frequently a limiting resource
for primary production on the ecosystem scale (Elser et al. 2007; Harpole et al. 2011),
but it is often considered that P is not the main limiting factor in northern ecosystems
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(Hedin 2004; Reich and Oleksyn 2004). Also, P fertilization in agriculture is rarely
practised in Siberia, if at all. However, a reconsideration of such a paradigm might
be necessary in the context of global change. In fact, the increase in atmospheric
CO2 concentrations and N deposition, which is in general stronger and faster than
any P input, is modifying the CNP stoichiometry of ecosystems (Peñuelas et al.
2013). As a consequence, a progressive shift from N limitation to P limitation or
N–P co-limitation can occur (Ågren et al. 2012; Peñuelas et al. 2012; Vitousek et al.
2010). These modifications of biogeochemical cycling on global and regional scales
will participate in the way ecosystem reshaping is driven, for example through the
modification of plant communities as they adapt to new stoichiometric constraints
(Güsewell 2004). It may also have consequences for agricultural potential on these
scales.

In addition, the global resources of P that are used for mineral fertilizer produc-
tion are limited (Cooper et al. 2011; Cordell et al. 2009). Therefore, enhancing our
understanding of P cycles and managing them appropriately on the global scale is
highly relevant (Cordell et al. 2011; MacDonald et al. 2011) since modern terrestrial
P cycling is dominated by human activities (Filippelli 2008). One solution which
would help to restrict the use of primary P resources would be the development
of cropping systems in areas where the soils contain sufficient plant-available P to
prevent the (massive) use of P fertilizers. In this perspective, parts of Siberia are
expected to become climatically more suitable for agriculture. Assessing the P status
of these Siberian regions is thus of relevance, and this was the main goal of our
study.

In the present study, we aimed to identify the P status of the soils of SW Siberia, a
region characterized by different types of soil along a north–south climatic gradient.
We addressed the following questions: (1) How is the P stock structured, in terms of
pools and with depth, in the soils of SW Siberia? (2) Which environmental factors
control this P status? (3) How can we qualify this P status in comparison with a range
of contrasting pedoclimatic conditions on the global scale? To do this, we selected
six sites with contrasting pedoclimatic conditions in SW Siberia and presenting two
characteristic vegetation covers: aspen (Populus tremula) forests and grasslands. We
quantified total P, organic P, phosphate ions in solution and diffusive phosphate ions
as a function of time in the soils from these sites. Classical soil analysis methods were
combined with an isotopic dilution kinetics method. The size of P pools assessed at
Siberian sites were compared with a global data set compiled from 236 references.
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6.2 Materials and methods

6.2.1 Site description

Many soils of south-western (SW) Siberia have developed on loess deposits—the
Eurasian loess belt covers a broad latitudinal zone between 40 and 60 ° N—and present
a favourable texture and mineralogy for plant growth (Chlachula 2003; Muhs 2007).
Soil formation depends on climatic conditions, vegetation cover and can be further
shaped by anthropogenic actions. All of these—climatic conditions, vegetation cover
and human activities—differ in intensity essentially along a gradient from south
to north. Consequently, from the common origin of loess deposits, the soils in
SW Siberia have undergone different types of development and are classified as
belonging to the main groups of Chernozems, Phaeozems and Luvisols. Water-table
movements, the leaching of carbonates and organic matter accumulation or organic
matter distribution throughout the profile are the most striking features in these
soils. The soil-forming processes related to soil moisture levels and dynamics as well
as the stability of organic matter (mineralization rates in relation to temperature
and moisture regimes) and the type of vegetation are known to influence the soil P
status (Giesler et al. 2002; Miller et al. 2001; Sundqvist et al. 2014; Vincent et al. 2014).
We selected six sites in SW Siberia covering a transition including forest-steppe
and sub-taiga zones. The main site characteristics are given in Table 6.1 (see also
Tables D.1 to D.3 and Brédoire et al. 2016b, Chap. 5).

All the soil profiles studied had developed on a loess parentmaterial and vegetation
cover had comparable features in terms of dominant species composition, stand
age and low human impact (i.e. no active management for the last few decades;
Tables D.2 and D.3). The main characteristics of the initial loess material are the
predominance of coarse-silt particles and clay and the presence of CaCO3, the latter
having had different fates related to the different soil development processes. At
Barnaul (BAR), Chebula (CHE), Krasnozerskoye (KRA) and Salair East (SAE), the
main soil-forming processes are the formation and accumulation of organic matter,
leaching of carbonates in the topsoil and formation of secondary carbonates in deep
soil layers. Soils belong to the Chernozems and Phaeozems soil groups. In SalairWest
(SAW) and Tomsk (TOM), soils experience water-table movements, with periodical
saturation. Consequently, clays are washed from the topsoil and accumulate in the
deeper layers and carbonates have disappeared from the first metre of the soil profile.
In addition, the litter decomposes faster than in forest-steppe and the accumulation
of organic matter is very low at the soil surface. At these two sites, soils belong to
the Luvisols group.

Five of the sites were almost pure aspen (Populus tremula L.; Table D.2) forest
stands together with nearby grassland areas. Only one site (SAW) had forest cover
with aspen. So there were six forest sites and five with grassland in our data set for
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SW Siberia. All aspen stands had closed canopies.

6.2.2 Sampling and preparation of the samples
For each type of vegetation cover at each site, we delimited three study plots (about
300m2) about 200–2000m apart. Those three plots were considered replicates. One
sampling campaign permitted sampling at all sites within 3 weeks in July 2013. At
each plot, we dug a soil pit (with a surface area of about 2 × 1m) down to 120 cm,
except at SAE grasslands where we reached a dense schist material at around 80 cm
which prevented us from going any deeper than 100 cm. In each soil pit, about 1 kg
of soil was sampled horizontally with hand tools at depths of 5, 15, 30, 60 and 100 cm
± 5 cm. Another sample was taken with a cylinder (97 cm3) to assess soil density.

Litter was sampled over an area of 30 cm by 40 cm in the vicinity of each soil pit. In
this study we defined all the dead plant material deposited on the soil surface as “lit-
ter” (senescing leaf litterfall, small branches and senescing understorey vegetation in
forests; senescing herbaceous vegetation in grasslands). Consequently, the material
collected in July, 2013 resulted mostly from the dead material from the previous
vegetation season (2012) and the residues of older seasons, that is to say mainly OL
and OF horizons, and possibly OH (at BAR, CHE, KRA and SAE).

Bulk soil samples were air-dried to a constant weight. After drying, soil samples
from the same site and the same vegetation cover (i.e. three samples per site and
per vegetation cover) were pooled and sieved at 2mm to remove stones and coarse
roots. Such soil preparation was reported to affect biogeochemical processes only
at a low magnitude (Černohlávková et al. 2009; Chapman et al. 1997). Soil density
samples were not pooled. They were oven dried at 105 ◦C for 48 h and stones were
removed when present (i.e. only in deep horizons of SAE).

Bulk litter samples were oven dried at 60 ◦C to a constant weight. They were then
pooled by site and by vegetation cover and the composite samples (three per site and
per vegetation cover) were ground before chemical analyses except for the isotopic
dilution.

6.2.3 Physico-chemical analyses
Main soil properties

The French standard methods (Association Française de NORmalisation; AFNOR
1999) were used for most of the physico-chemical soil analyses. For soil texture,
the five size fractions for clay (<2 µm diameter), fine loam (2–20 µm), coarse loam
(20–50 µm), fine sand (50–200 µm) and coarse sand (200–2000 µm) were assessed
after decarbonation (NF X 31–107). Soil pH–H2O was determined in a water–soil
suspension with a mass-to-volume ratio of 1 g: 2.5mL (NF ISO 10390). Total organic
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C and N contents were determined by dry combustion with oxygen (NF ISO 10694
and NF ISO 13878, respectively). Total calcium carbonate contents were assessed
using a volumetric method (NF X 31–105). Poorly crystalline aluminium (Al) and
iron (Fe) oxides were extracted with an ammonium oxalate solution (McKeague and
Day 1966).

Total, organic and inorganic P

Total P concentrations (Ptot , in µg g−1 soil) were determined, after grinding, by ICP
following wet digestion with concentrated fluoric (HF) and perchloric acids after
calcination at 450 ◦C based on a normalized procedure (AFNORNF X 31–147; AFNOR
1999). Total soil organic P concentrations (Porg , in µg g−1 soil) were determined as
the difference between P extracted with H2SO4 in ignited and non-ignited soil
samples (2 g of dry soil for 70mL of 0.2N H2SO4; Saunders and Williams 1955);
concentrations were determined with a green malachite colorimetric method (van
Veldhoven and Mannaerts 1987). Total inorganic P concentrations (Pinorg , in µg g−1
soil) were subsequently calculated as the difference between Ptot and Porg .

Plant-available phosphate ions

Plants take up P as ions from the soil solution. Thus, a good way of estimating
a realistic plant-available P pool in the soil is to quantify both the concentration
of phosphate ions in solution and the capacity of the solid phase to maintain this
concentration.

To do this, we quantified the phosphate ions in the soil solution (Cp in µgmL−1
soil solution or Qw in µg g−1 soil) and the diffusive phosphate ions at the solid–
solution interface (Pr in µg g−1 soil). Pr is the quantity of phosphate ions that can
be exchanged between solid constituents (ions are adsorbed on soil particles) on a
concentration gradient. Pr results from molecular agitation; it can be considered
as a “P buffering capacity”. The sum of Pr and Qw is the isotopically exchangeable
phosphate ions (E), and it is considered a good proxy for the gross amount of plant-
available P (Fardeau 1996; Morel and Plenchette 1994). Cp and Pr were determined
by an isotopic dilution kinetics method (Fardeau 1996; Frossard and Sinaj 1997;
Frossard et al. 2011) as described below.

For each litter or mineral soil sample, five suspensions (1 g of litter or soil with
10mL of deionized water) were equilibrated for 16 h on a roller (40 cyclesmin−1) at
20 ◦C (this temperature is commonly reported in the literature and is close to the
average temperature of the soil at 20 cm in our study sites in the summer; Table D.1).
Toluene (0.1mL; M. Lineres, unpublished results) was added to the suspension at
the beginning in order to stop microbial activity. This biocide does not affect P
biochemical processes (Bünemann et al. 2007). The phosphate ions in solution of
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the pre-equilibrated suspensions were labelled by introducing carrier-free 32P ions
in negligible concentrations but with known amounts of introduced radioactivity
(R). Suspensions were then sampled with a plastic syringe after 4, 10, 40, 100 and
400min and filtered on a membrane at 0.2 µm. Then, both the Cp and radioactivity
remaining in the filtered solution at the time of sampling (r (t)) were quantified. Cp
was determined using a green malachite colorimetric method (van Veldhoven and
Mannaerts 1987) and Qw was calculated using the volume of water (V in mL) and
the mass of litter or soil (ms in g):

Qw = Cp × V

ms
(6.1)

For each sample, Cp was not impacted by the sampling time of the isotopic dilution
method (Fig. D.1). The radioactivity remaining in the filtered solution (r (t)) was
determined in a counter (Packard TR 1100) using a liquid scintillation cocktail.
In the steady-state conditions of the suspension (Cp constant), the gross transfer
of phosphate ions from the solid constituents to the solution is equal to the gross
transfer of phosphate ions from the solution onto the solid constituents. We assumed
that no isotopic discrimination occurs between the two P isotopes (31P ions and
32P ions) during the transfers between the liquid and the solid phases. The amount
of unlabelled phosphate ions newly transferred from the solid constituents to the
solution (Pr(t)) was then calculated from Qw and r (t) values following the principle
of isotopic dilution (R is diluted in E).

R

E
=
r (t)
Qw
=
R − r (t)
Pr(t) (6.2)

Rearranging Eq. 6.2 gives:

Pr(t) = Qw × (R − r (t))
r (t) = Qw

(
1

r (t)/R − 1
)

(6.3)

where r (t)
R (dimensionless) is the isotopic dilution ratio.

The theoretical Eq. 6.4, adapted from Fardeau (1993, 1996) was used to fit the
experimental values of r (t)

R closely, as a function of isotopic dilution time:

r (t)
R
=m(t +m 1

n )−n for
r (t)
R
>

r (∞)
R

(6.4)

wherem and n are fitting parameters and r (∞)
R corresponds to the maximum possible

dilution of the isotope considering that all inorganic P can take part in the isotopic
dilution. The value of r (∞)

R tends towards Qw
Pinorg

(Fardeau 1993; Frossard et al. 2011).
The parameterm, which is the fraction of radioactivity remaining in solution after
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1min (r (1min)
R ), accounts for the immediate physico-chemical reactions while the

parameter n accounts for the slow ones (Fardeau 1993; Fardeau et al. 1991). The
quality of the fit for Eq. 6.4 is shown in Fig. D.2, and the values of m and n are
provided in Table D.5.

Combining Eq. 6.3 and Eq. 6.4, we can derive the value of Pr over time, each value
corresponding to a pool of P more or less rapidly available to plants. The number
and the size of such pools can be defined considering plant functioning (Fardeau
1993). In this study, we computed the values of Pr for 1 day, 1 week and 3 months.
While 1 day is the mean duration for active root uptake, 3 months is approximately
the duration of the vegetation season in south-western Siberia and we might expect
this to fit with intense root activity.

6.2.4 Data handling and statistics
Five soil layers were defined between 0 and 120 cm according to the soil horizon
description of each soil pit (horizons were merged or divided in order to have
five layers corresponding to the five sample depths, the profiles studied presented
between four and seven horizons, the mean number of horizons of the 33 profiles
studied is five). Assuming that elemental concentrations and soil densities measured
in each of the five defined horizons were representative of the entire horizon, we
computed the stock (in Mg ha−1) of each P pool using mean soil densities and horizon
thicknesses:

stock =
1

10000
× [P] × d × h (6.5)

where [P] is the concentration of the P pool (in µg g−1), d the soil density (in g cm3)
and h the thickness of the soil horizon in cm. In litter, the P stocks were computed
(in Mg ha−1) using the mass and the surface area sampled:

stock =
1

10000
× [P] ×mlitter (6.6)

where [P] is the concentration of the P pool (in µg g−1) and mlitter the mass of litter
(in gm−2). We used the limit of −20 cm to distinguish between top- and subsoil to
fit with most agronomic studies but also with the zone where most of the fine-root
exploration occurs in SW Siberia (Brédoire et al. 2016b, Chap. 5).

In order to gain an idea of the structure of the P stocks in the soils studied, we
computed the relative proportions of the different P pools measured as a fraction of
Ptot . Ptot is the sum of Porg and Pinorg . Since a biocide was added to the suspension,
mineralization was stopped and we only measured physico-chemical processes.
Thus, all exchangeable P (the sum of Qw and Pr ) is part of Pinorg . Pr being calculated
as a function of time and the maximum time considered in this study being 3months,
the potential remaining fraction of Pinorg is considered as non-diffusive, or diffusive
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in more than 3months. We note that when considering two values of Pr computed
at different times, the pool of exchangeable P computed at the longer time includes
the one computed at a shorter time.

Relations between P parameters and soil physico-chemical properties were in-
vestigated by computing Spearman’s rank correlation coefficients, scatter plots and
(non-)linear regressions. Soil physico-chemical properties varied with soil depth
(Table D.4) as well as the P parameters investigated (Table 6.2). Thus, we looked for
correlations in each soil layer separately in order to avoid covariation and interde-
pendence issues (Table D.6). We also analysed correlations with fine-root (diameter
< 0.8mm) length density (FRLD) and fine-root mass density (FRMD) measured in the
same soil pits and at the same soil depths as for the soil physico-chemical properties
(Brédoire et al. 2016b, Chap. 5).

Since analyses were made on composite samples, we did not quantify the vari-
ability of our measurements at the site level for a given vegetation cover and soil
depth.Thus, differences between sites were not tested through formal statistical tests.
However, we calculated the coefficient of variation (ratio of the standard deviation
to the mean) for each layer and vegetation cover.

All data management, (non-)linear regressions and statistical analyses (correlation
coefficients and their significance), were performed with R 3.2.1 (R Core Team 2015).

6.2.5 Comparison on the global scale
To compare the phosphorus status of our study sites with other grassland or forest
ecosystems and with croplands, we compiled data on different P fractions in soils.
In practice, we used different requests involving keywords such as “soil”, “phosph*”,
“total content”, “isotopic dilution”, “isotopically exchangeable P”, “grassland”, “forest”,
“woodland”, etc. These requests were carried out both in Web of Science and Google
Scholar. To derive the pools of diffusive and isotopically exchangeable phosphate
ions, we selected all publications using the same isotopic dilution procedures as in the
present study (i.e. Fardeau’s procedure; Fardeau 1993, 1996). Additional publications
were selected in order to improve the geographical coverage for total and organic P.
In particular, we examined all the tables of contents of the Soviet Soil Science and
the Eurasian Soil Science journals to provide a better cover of Northern Eurasian
ecosystems. Based on all the selected references, we compiled a data set of different
P fractions (total P, organic P, phosphate ions in soil solution, diffusive phosphate
ions and isotopically exchangeable phosphate ions) in soils of grasslands, forests and
croplands. This data base contained P values for up to 373 distinct sites depending on
the P fraction, the geographical scale and the vegetation type studied, which were
collected from 236 references. This data base was representative of soils throughout
the world as shown by the geographical distribution of compiled sites (Fig. 6.1), even
though the studies using the isotopic dilution kinetics method in forest were sparse.
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P data SW Siberia (all P pools) All P pools Total P only Vegetation Cropland Forest Grassland

Figure 6.1: Location of the study sites (south-western Siberia outlined by the white box,
data points are beige) and the data points from a literature compilation. Distinction is
made between the quantity of information available for each point (colour) and between
vegetation cover (shape). “All P pools” stands for total P, organic P, inorganic P, phosphate
ions in soil solution, diffusive phosphate ions and isotopically exchangeable phosphate
ions. Winkel tripel projection; graticules 15°.

Out of the 116 forest study sites present in the compilation—with values for inorganic
P, organic P, phosphate ions in solution, diffusive phosphate ions and isotopically
exchangeable phosphate ions—, 106 are located in France. Nevertheless, France does
have very diverse soils and geology. The most represented soil types are Podzols,
Cambisols and Luvisols, but Planosols, Leptosols, Calcisols, Arenosols, Regosols
and Andosols are also present at some sites (IUSS Working Group WRB 2014). The
main parent materials are calcareous formations, eruptive and metamorphic rocks,
sandstone, and detritic and weathered formations. Of these 106 French sites, 50 are
hardwood forests (two species) and 56 are coniferous forests (five species). Therefore,
our data set was representative of forests on the global scale for total soil P, and
representative of very diverse temperate forests for isotopic P data. The references
of the data compilation are provided in the Appendix D.
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6.3 Results

6.3.1 Quantification of P pools

The concentrations of total P (Ptot ; 694–1095 µg g−1 at −5 cm, 319–694 µg g−1 at
−100 cm), organic P (Porg ; 389–774 µg g−1 at −5 cm, 37–79 µg g−1 at −100 cm) and
phosphate ions in solution (Qw; 2–22 µg g−1 at −5 cm, 0.1–0.4 µg g−1 at −100 cm)
decreased with depth in the 1m profiles at all the sites studied for both forest
and grassland (Table 6.2). The litter layer presented the highest concentrations for
these pools, Qw being 1 to 2 order(s) of magnitude more concentrated in the litter
(223–638 µg g−1) than in the upper soil layer (2–22 µg g−1 at −5 cm). No system-
atic variation with depth was found throughout the profile for inorganic P (Pinorg ;
296–626 µg g−1 at −5 cm, 282–616 µg g−1 at −100 cm) and diffusive phosphate ions
(e.g. Pr (1 day); 16–56 µg g−1 at −5 cm, 2–67 µg g−1 at −100 cm; Table 6.2). However,
Pr (1 day) decreased in the three first mineral soil layers except for the grassland at
SAE.

We computed stocks (Mg ha−1) for the different P pools (Table 6.3). With the
exception of Qw , the subsoil contributed the most to the total stocks (72–85% of Ptot ,
64–73 % of Porg excluding SAE, 82–90% of Pinorg and 67–94% of Pr (1 day)). The three
layers considered (litter, topsoil and subsoil) contributed almost equally to the total
stock of Qw (respectively, 10–56 %, 26–65% and 7–49%). All sites presented values
of the same order of magnitude for a given P pool and a given layer. The values for
forest and grassland were also close. One notable difference occurred at the site SAE,
where soil P pools were lower in forest than in grassland and where the pools in
forest were lower than in the other sites. KRA presented the highest stocks in litter
for all P pools, however, its stocks in the topsoil were the lowest (except for Qw and
Pr (1 day) in grassland) and they were also relatively low in the subsoil.

For each layer, we calculated the relative contribution of each P pool to total P
(Fig. 6.2). With the exception of one grassland site (TOM), Porg accounted for more
than 50% of Ptot in the litter layer. The concentration of phosphate ions in solution
(Qw) represented 20–38% of Ptot in the litter layer with similar values for forest and
grassland at each site. One site (TOM) presented much higher values of Qw in litter,
reaching 45 and 67% of Ptot in forest and grassland respectively. All the sites studied,
whatever the vegetation cover, exhibited the same pattern along the mineral soil
profile. The relative proportion of Porg decreased while the relative proportion of
Pinorg increased with depth. In the two upper soil layers the distribution of P pools
was very comparable. Porg accounted for 34–71% of Ptot and Pr (3months) for 3–13 %.
Qw represented up to 2 % of Ptot at −5 cm, dropped below 0.1 % at −30 cm and was
about 0.01 % at −100 cm. The proportions of Pr tended to be higher in forest than in
grassland. Below −15 cm, the proportion of Porg decreased to 6–19% at −100 cm. In
the deepest layers, the proportions of Pr tended to be higher than in the first two,
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6.3 Results

with notable exceptions: extremely low values at −100 cm at SAE, and Pr (3months)
representing 100 % of Pinorg at −60 cm at TOM grassland.

6.3.2 Relations between P pools and environmental
parameters

We tested the correlations between P parameters and the main soil physico-chemical
properties (Table D.6 and Fig. D.3). Pinorg was significantly correlated with Ptot
(Spearman’s rank correlation coefficients ranging between 0.627 and 0.989). This
was also observed between n and pH at most depths except at −15 and −100 cm
(−0.636 to −0.793). In the three top layers, Porg was significantly correlated with
organic C (0.682 to 0.843) andm with Qw (0.609 to 0.855). In the two deepest layers,
Pr and isotopically exchangeable phosphate ions (E) were significantly correlated
with the clay fraction (0.782 and 0.852). They were also negatively correlated with
CaCO3 (−0.649) at −60 cm (Table D.6) but this was driven by one point which was
very depleted in CaCO3 and with very high Pr and E (Fig. D.3). A few correlations
were found with Al and Fe oxides: with Porg at −30 cm (−0.636) and with n at −60 cm
(0.718).

A few relationships between fine-root densities and P pools were significant
(Table D.6 and Fig. D.3). At −15 cm, fine-root length density (FRLD) was significantly
and negatively correlated with Qw (−0.636),m (−0.764), Pr (1 day) (−0.691) and E
(1 day) (−0.736). At −30 cm, FRLD was significantly and negatively correlated with
n (−0.773) and fine-root mass density (FRMD) with n (−0.655), Pr (0.636) and E
(0.618).

No relationship was found between the different variables of the P status and any
of the climatic parameters presented in Table D.1 (data not shown).

6.3.3 Comparison on the global scale
Total P concentrations in topsoil (the first 20 cm of the soil) ranged on the global scale
between 62 and 2480 µg g−1 in croplands, between 19 and 3090 µg g−1 in forests and
between 32 and 3548 µg g−1 in grasslands (Fig. 6.3). Our measurements in SW Siberia
ranged between 345 and 770 µg g−1 in forests and between 481 and 741 µg g−1 in
grasslands, these values were close to and above the global upper quartile for forests
and between the global median and the upper quartile for grasslands. Compared with
global cropland values these Siberian concentrations were mostly above the upper
quartile. Restricting the domain of comparison to Northern Eurasia, SW Siberian
soils ranged between the lower and the upper quartiles for forests and between
the median and the upper quartile for grasslands, indicating that our sites are
representative of Northern Eurasia. In the subsoil (−20 to −100 cm), less points were
available at the global and on Northern Eurasian scales for comparison. However,
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Figure 6.2: Structure of total P (Ptot ) in terms of P ions in the soil solution (Qw), diffusive P
ions on different timescales (Pr ), and non-diffusive P ions or those that are diffusive in
more than 3 months (Pnon−diff ). Each fraction of P is expressed as percentage of Ptot . Note
that the diffusive fractions for the shorter times are included in the diffusive fraction for
the longer time (e.g. Pr (1 day) is included in Pr (1week) and they are both included in
Pr (3months)). Depth “1” is the litter. “Litter” means all the dead plant material deposited
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vegetation in forests; senescing herbaceous vegetation in grasslands) i.e. mainly OL and
OF horizons, and possibly OH (at BAR, CHE, KRA and SAE) at the date of sampling.
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our SW Siberian forest and grassland soils occupied wider ranges in comparison
to the corresponding vegetation types: from below the median to above the upper
quartile on the global scale, with a similar range of values to Northern Eurasia.

The concentrations of Porg , Pinorg and phosphate ions in solution (Cp) in the
topsoil of the SW Siberian forests studied were generally above the upper quartile,
in comparison essentially with French forests having contrasting species, soil and
geology (Fig. 6.4). In grassland, the SW Siberian values were mostly located between
the global median and upper quartile. Compared with global cropland ranges, our
measurements were around and above the upper quartile for Ptot and Porg , mainly
below the upper quartile for Pinorg and from the median to above the upper quartile
for Cp. Interestingly, the proportion of measured Porg (% of Ptot ) varied quite a lot
in the range reported on the comparative scales, particularly in forests where SW
Siberian values varied from below the lower quartile to above the upper quartile. In
contrast with the other P pools, the concentrations of Pr (1 day) and E (1 day) were
more moderate: they ranged between the median and the upper quartile in forests
and between the lower quartile and the median in grasslands, these values being
lower than the global cropland median.

6.4 Discussion

6.4.1 A relatively homogeneous P status

All the sites, both aspen forest and grassland, presented a similar distribution of the
P pools throughout the soil profile. Total P concentrations decreased with depth,
mainly in relation to the decrease in the concentration of organic P (Table 6.2). The
stock variation was of the same order of magnitude between and within sites and
between contrasting vegetation cover types. The concentrations and the stocks we
computed were close to those reported by Achat et al. (2013a).These authors reported
standard errors of 1–27% for the concentrations of total P, organic P, inorganic P,
phosphate ions in soil solution and diffusive phosphate ions, with three replicates per
condition at two sites of the same region. Assuming a similar spatial variability, the
concentrations and stocks we measured or computed for given soil layers appeared
relatively homogeneous (values of the same order of magnitude without notable
outliers) on the regional scale.

Despite lower concentrations of the P pools in the subsoil, this contributed the
most to the total stocks computed over 1m (Table 6.3) because of its greater thickness.
For the same reason, on the soil profile scale, inorganic P represented far more than
50% of the total P stock (Table 6.3) while organic P concentrations represented a
high proportion of total P in the litter and in the three first soil layers (Table 6.2). For
the whole profile, the P stock in the soils studied can be qualified as predominantly
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Figure 6.3: Comparison of total P concentrations in topsoils (about 0 to −20 cm) and subsoils
(−20 to −100 cm depth) of south-western Siberia (coloured dots) with similar vegetation
contexts (CRO: croplands; FOR: forests; GRA: grasslands) on the global scale and on the
Northern Eurasian scale (box and violin plots). The “n” provided indicates the number of
individual points used to build the box and the violin plots.
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mineral down to 1m.

6.4.2 Environmental factors controlling the regional P status
In spite of small variations in the current P status of the soils investigated, we found
that this status was impacted by a set of variables. At first, we observed that the
amount of P was highly dependent on the amount of inorganic P, particularly in
the subsurface layers of the sites studied (Fig. 6.2 and Table 6.3). Biogeochemical
cycling and soil development processes explain the P status with depth. In the topsoil,
organic P represented a large part of total P (Fig. 6.2) and was related to organic C
(Table D.6 and Fig. D.3). This is a direct consequence of P uptake, immobilization in
plant tissues, followed by litterfall and subsequent accumulation in the top horizons
(Barber 1995). Clay minerals (on their edges), carbonates and organic matter have
surfaces presenting positive charges that are reactive with phosphate ions (Gérard
2016; Hinsinger 2001; Parfitt 1978). In the topsoil, the preponderance of organic P
suggests that microbial processes may play an important role in the plant availability
of P through the release of phosphate ions by mineralization. Conversely, in deep
horizons P plant availability is principally explained by mineral phases such as the
clay fraction (Table D.6 and Fig. D.3). Contrary to other case studies (Achat et al.
2011; do Carmo Horta and Torrent 2007; Tran et al. 1988; Walbridge et al. 1991), we
found only a few relationships with Al and Fe oxides concentrations. These oxides
also present positive charges that are known to be reactive with phosphate ions
(Achat et al. 2011; Regelink et al. 2015).

The inspection of the correlations involving the parametersm and n provides
further insights into the drivers of phosphate ion exchange at the solid–solution
interface. Correlations with m, which is the fraction of radioactivity remaining
after 1min in the isotopic dilution, give information about rapid processes, while
correlationswithn are considered to be indicative of processes driving slow exchange
reactions. Both parameters were related to the phosphate concentration in solution
(Qw). Generallym increased with Qw while n decreased (Table D.6 and Fig. D.3),
in agreement with previous studies (Achat et al. 2013a; Achat et al. 2009; Fardeau
1993; Morel et al. 2000). The dynamics of phosphate ions (slow reactions in the
present study) were also dependent on pH, which modifies the charge of reactive
solid surfaces and the speciation of phosphate ions (Barrow 1983; Hinsinger 2001;
Strauss et al. 1997a,b; Ziadi et al. 2013). In addition, we found slight secondary effects
of Al and Fe oxides on slow phosphate ion exchange reactions: residual values of
the parameter n increased with the increase in oxide contents (data not shown). This
is in accordance with a preliminary study in SW Siberia (see more details on the
effects of Al and Fe oxides on parameter n in Achat et al. 2013a).

Nevertheless, at some sites, a few layers did not exhibit the general features of
the P status described above. Soil formation processes and soil physico-chemical
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properties also explain that we observed such “outliers”. Despite overall slight effects
only, soil content in Al and Fe oxides had some visible influence on soil P on the scale
of some soil profiles. It was the case at TOM, a site with a water table close to the
topsoil. The periodical water table movements may be responsible for the relatively
stronger accumulation of clays and oxides in deeper soil layers (Table D.4) and
contribute to the higher concentrations and proportions of diffusive phosphate ions
of the soil (especially at −60 cm in grassland; Table D.4). At KRA, the accumulation
of CaCO3 (Table D.4) could be responsible for high levels of diffusive phosphate
ions in the subsoil. In fact, in alkaline soils such as at KRA, phosphate ions tend
to precipitate with Ca cations which have an increasing solubility at pHs above 8
(Hinsinger 2001; Kuo and Lotse 1972). At SAE, the schist material underlying the
loess deposit (below −80 cm) is probably responsible for low P pool concentrations
(particularly in forest) and extremely low proportions of diffusive phosphate ions in
the deep layers compared with the other sites.

The restricted number of significant correlations—between P pools or isotopic
dilution parameters (m and n) and soil physico-chemical properties—we identified
in our study is not necessarily indicative of an absence of control of the P status. It
may simply reflect that the values of the soil variables tested and P pool fall within
a restricted range (with differences of only up to 1 order of magnitude; Table 6.2
and Table D.4). Soils of the SW part of Siberia are indeed relatively homogeneous.
They have developed on loess material deposited during the Quaternary era, mainly
during the two last glaciation periods (Chlachula 2003; Muhs 2007) and despite
some contrasting climatic conditions, they have not been sufficiently impacted by
diverging pedogenetic processes. Additionally, soil-forming processes are expected
to be relatively slow in such a dry and cold region (Jenny 1941).

6.4.3 High levels of total P fractions but moderate ones for
plant-available P

In general, the SW Siberian soils studied presented very high concentrations (above
the third quartile) for total P, organic P, inorganic P and phosphate ions in soil
solutions in forest and high concentrations (close to the third quartile) in grassland,
when compared with our compilation of data on the global scale (or diverse soil and
geological contexts mainly in France, for all P pools but total, P in forests) (Fig. 6.3
and 6.4). In addition, it might be possible to generalize the high level of total P stocks
to Northern Eurasia, at least for the soils developed in the loess belt. Of course, more
field measurements are required to verify this statement, particularly in the vast
zone currently covered by taiga and not in the loess belt. On the other hand, this
result, if confirmed, would be of primary importance in the context of global change
and of tensions related to resources of P for agriculture.
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However, we noted that these relatively high concentrations of total P in SW
Siberian soils did not automatically indicate a high P availability for plant nutrition.
In fact, an important parameter is the ability of the soil to refill a depleted soil
solution (e.g. due to root uptake) with phosphate ions. This P buffering capacity
assimilates the quantity of diffusive phosphate ions between the solid and the liquid
phases of soil. Contrary to the other measured P pools in the SW Siberian soils
studied, the concentrations of diffusive phosphate ions in the topsoil were not that
high, in comparison with global levels (although not very low; Fig. 6.4).

In French forests, the sums of Al and Fe oxides range from 4.5 to 1157.7mmol kg−1
and pHs range from 3.6 to 8.3 (data compilation of 106 sites, unpublished). In
comparison, the SW Siberian soils studied have low sums of Al and Fe oxides
(68.44–184.08mmol kg−1)—and the narrow range of values explains why we found
only a few correlations between P pools and oxides—and very high pHs (5.37–7.16;
Table D.4). This very high pH is probably partly responsible for a low reactivity
of phosphate ions, notably because the number of positive charges decreases with
increasing pH (Barrow 1983; Hinsinger 2001; Ziadi et al. 2013). Coupled with a
low amount of oxides (i.e. fixation sites), this might explain the average values of
diffusive (Pr ) and isotopically exchangeable (E) phosphate ions in the SW Siberian
soils studied while total pools were (very) high.

Following the conceptual model of (Walker and Syers 1976), which describes the
changes in the forms and amounts of P pools with time, together with the comments
we made in the sections above about the regional homogeneity of the P status,
we concluded that these SW Siberian soils are probably in the early stages of soil
development. This stage is characterized by the build-up of an appreciable organic P
stock but also by a stock of primary inorganic P which remains large and is made
available by weathering. Thus, there may still be a high potential of primary mineral
weathering in these soils. Moreover, the mineralization of organic matter is another
source of phosphate ions available to refill the soil P buffering capacity (Achat et al.
2013b; Bünemann 2015). The study of the kinetics of these mechanisms is relatively
difficult and was not carried out within the scope of this study. However, they could
be of importance, as they are likely to be impacted by global change. Organic matter
mineralization would mainly depend on temperature and moisture (Bengtson et al.
2005; Paul et al. 2002). Mineral alteration would mainly depend on temperature and
pH (Augusto et al. 2000; Drever 1994).

The absence of correlation between fine-root densities and P pools (Table D.6)
suggests that root exploration is not related to a search for P. In addition, the
relatively low N:P ratios measured in the litter layers (9–14; Table D.4) as well as
in aspen green leaves (9–12, data not shown) suggest that P is unlikely to be the
primary limiting nutrient for plant nutrition and litter decomposition and that it
could be N which may be the limiting factor (Aerts and Chapin 1999; Güsewell
and Gessner 2009; Reich and Oleksyn 2004). Thus the availability of P probably
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does not constrain plant growth in the ecosystems studied to any great extent. This
conclusion is in line with the review by (Smurygin 1974) of fertilization experiments
in the former USSR.

Will this P status be sufficient to fulfil future plant requirements in the context of
global change? In the speculative situation where topsoils are depleted by intense
biomass exports, our results suggest that the large P stocks in deeper soil layers
could sustain the demand (Table 6.3).This would imply a deepening of plant fine-root
systems, which has already been observed with ongoing global change, related to
the increase in atmospheric CO2 concentrations (Iversen 2010) or to the lengthening
of vegetation growing seasons (Lempereur et al. 2015; Majdi and Öhrvik 2004). In
SW Siberia, we suggest that deeper fine-root systems would be more likely to be
driven by other resources, in particular water, in the steppe and forest-steppe zones
(Brédoire et al. 2016b, Chap. 5).

6.5 Conclusions
This study revealed that the concentrations, the stocks of the different P pools
measured and their distribution in the soil profile were relatively homogeneous
on the scale of SW Siberia although there were some differences between sites
(mainly organic P) possibly due to varying microbial activity and slight differences
in physico-chemical soil properties. In this region, we argue that the young age of the
soils developed on loess parent material, coupled with slow kinetics of pedogenesis,
has probably not yet resulted in a sufficiently wide range of soil physico-chemical
conditions to observe more diverging P status. The comparison of these Siberian
P levels with similar types of vegetation on the global scale revealed high to very
high levels of total, organic and inorganic P in the topsoils. It would seem pos-
sible to generalize these results to Northern Eurasia, but additional measurements
are required to verify this statement. The amount of plant-available P in topsoils,
evaluated as isotopically exchangeable phosphate ions, was intermediate on the
global scale. However, large stocks of isotopically exchangeable phosphate ions are
stored in the subsurface layers where fine-root exploration is currently low. These
results suggest that the P resource is unlikely to constrain vegetation growth and
agricultural development under present conditions and in the near future.
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Chapter 7

Decomposition of 15N-labelled litter and
fate of nitrogen derived from litter in
aspen forests and grasslands of
south-western Siberia

In collaboration with: D. Derrien, M. R. Bakker, P. A. Barsukov, A. Bashuk, Z. E. Kayler,
P. Nikitich, O. Rusalimova, and B. Zeller.

7.1 Introduction
Nitrogen (N) is a major nutrient for all living organisms. It is often limiting the
primary productivity of ecosystems, either alone or in combination with other
nutrients such as phosphorus (Elser et al. 2007; Fay et al. 2015; Fernández-Martínez
et al. 2014; Güsewell 2004; Harpole et al. 2011; Vitousek et al. 2010). There are three
sources of N to ecosystems: rock N, atmospheric N, and N in organic matter. Rock N is
usually considered as a marginal source of bio-available N. Some plants, e.g. legumes,
assimilate atmospheric N through symbiosis with N-fixing micro-organisms. N
from organic matter becomes available to plants through decomposition. In most
ecosystems, organic N is the major source of bio-available N. The decomposition
process consists in fragmentation, depolymerization and mineralization in the litter–
soil organic matter continuum (Schimel and Bennett 2004). It is carried out by
complex interactions between abiotic (light, wind, precipitation, freezing, etc.) and
biotic factors (soil fauna, fungi and bacteria) which break down litter into smaller
sized particles and soluble compounds (Berg andMcClaugherty 2014).These products
of litter decomposition are incorporated to the mineral soil and become soil organic
matter (SOM). Depending on environmental conditions—such as soil properties,
soil processes, biological activity and climate—SOM follows different pathways of
mineralization and/or stabilization (Cotrufo et al. 2015; Lehmann and Kleber 2015;
Schmidt et al. 2011; von Lützow et al. 2006). The degree and depth of incorporation
of litter-derived organic matter into the soil, either as particulate organic matter
or soluble compounds, mainly depends on the activity of the fauna, the leaching
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intensity of solubles, the intensity of particle flow and the ability of the soil to retain
SOM components both in space and time. Finally, the N derived from organic matter
is taken up by plants in the soil solution either as small organic molecules (e.g. amino
acids) or inorganic forms (ammonium, NH4

+, and nitrate, NO3
– ) (Näsholm et al.

2009; Schimel and Bennett 2004).
The dynamics of N exhibit specific features in seasonally snow-covered regions

(Brooks et al. 2011). First, during winter, the snow-pack modulates soil temperature.
A thick snow-pack protects soil from freezing due to insulating properties (Zhang
2005). However, when the permanent snow cover appears late, soil can already
be frozen and remain as such over winter. In unfrozen soils, biological activity is
maintained at a basal level during winter (Monson et al. 2006b). In contrast, when
the soil freezes, microbial cells are lyzed, what drastically decreases the size of
the population and releases soluble microbial N in the soil (Henry 2007). Secondly,
the period of snow-melt and soil warming is of great importance. Most of the soil
water recharge and nutrient leaching can occur during this time (Chap. 4; Campbell
et al. 2014a; Sebestyen et al. 2008; Sickman et al. 2003). In the case where microbial
communities were impacted by soil freezing, soluble microbial N had been released
in winter and could be exported from the system at snow-melt (Brooks et al. 2011;
Henry 2007). In addition, the stimulation of microbial activity due to the rising of
soil temperature would be delayed compared with unfrozen soil, the time for the
microbial community to grow.

There is increasing interest in Siberian ecosystems in the context of global change
(Groisman and Gutman 2012). Additional insights on biogeochemical cycles are
required, especially on N cycling. In this study, we propose to investigate the fate
of N released from decaying leaf-litter in south-western (SW) Siberia. SW Siberia
is positioned on gradient of climate, soil and vegetation. In the south, typically in
steppe/forest-steppe, soil experiences freezing over winter, because of a relatively
shallow snow-pack, and water shortages are frequent in summer (Chap. 3 and 4).
In the north, typically in sub-taiga, the soil is barely frozen in winter due a thick
snow-pack and soil moisture content is not limiting in summer. From its position in
Northern Eurasia, SW Siberia is submitted to a particularly intense climate change.
In particular, temperatures are rising and winter precipitations are increasing, thus
snow height (Bulygina et al. 2011, 2010, 2009; Groisman et al. 2012; IPCC 2013).

In this study, we posit that N cycling strongly differs between the north and
the south of SW Siberia due to contrasting climatic conditions. We hypothesize
that in the north, the cycling of N in the soil–plant system is faster than in the
south. It is based on the assumption that, in the north, decomposition processes
and N release from organic matter would not be limited by summer drought, and
would increase very fast at spring when plants require nutrients because a minimal
microbial activity would have been mantained in winter.

Our experimental approach was to track leaf-derived N over time in the soil–plant
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continuum using 15N labelling. 15N-labelled litter is a valuable tool to study N cycling
in various ecosystem compartments (litter, fauna, soil, micro-organisms, plants) on
the long-term and with little disturbance of natural processes. For example, it was
employed in diverse forest ecosystems to study the redistribution and allocation
within the soil–plant system of N derived from leaf-litter (Zeller et al. 2001, 2000)
and harvest-residues (Blumfield et al. 2004; Versini et al. 2013), the acquisition of
litter-N by fauna (Caner et al. 2004) and fungi (Pena et al. 2013), and the stabilization
of litter-N in SOM (Bimüller et al. 2013; Hatton et al. 2012, 2015; Mambelli et al.
2011; Zeller and Dambrine 2011). In four sites chosen along a gradient of climate,
we applied 15N-labelled leaf litter on the soil surface and, during three years, we
monitored the redistribution of 15N within litter, soil and herbaceous vegetation. In
each site, we set up experimental plots in an aspen forest and in a grassland. 15N
derived from the decomposing labelled-litter was tracked twice a year in the organic
layers, in the first 15 cm, and in above-ground vegetation.

7.2 Materials and methods

7.2.1 Site description

We selected four sites in SW Siberia on a transition from the forest-steppe to the
sub-taiga bioclimatic zones. Barnaul (BAR) is located in the southern part of the
forest-steppe bioclimatic zone, Salair East (SAE) on the transition between sub-taiga
and forest-steppe in the foothills of the Salair mountains range, Salair West (SAW)
in the “Blackish” taiga belt of Salair mountains, and Tomsk (TOM) in sub-taiga.
Sites located in the forest-steppe are expected to be drier, to have higher mean
temperature and to experience a lower height of snow during winter than sites
located in the sub-taiga (Table 7.1).

SW Siberia is located in the northern part of the Eurasian loess belt, a broad
area ranging from 40 to 60 ° N latitude where soil present favourable texture and
mineralogy for plant growth (Chlachula 2003; Muhs 2007). Since climatic conditions
and vegetation cover differ in intensity essentially along a gradient from south to
north, the soils in SW Siberia have undergone different development from their
common origin as loess deposits. At BAR, and SAE, the main soil-forming processes
are the formation and accumulation of organic matter, leaching of carbonates in
the topsoil and formation of secondary carbonates in deep soil layers. Soils belong
to the groups of Chernozems and Phaeozems (Table 7.1). At SAW and TOM the
main soil-forming processes are related to the periodical movements of the water
table, clays are washed from the topsoil and accumulate in the deeper layers and
carbonates have disappeared from the first metre of the soil profile. In these two
sites, soils belong to the group of Luvisols (Table 7.1). Fine root (< 0.8mm diameter)
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exploration occurs deeper in forest-steppe than in sub-taiga (Brédoire et al. 2016).
All the study sites had comparable features in terms of dominant species compos-

ition, stand characteristics and low human impact (i.e. no active management for
the last decades; Tables E.2 and E.1). They had almost pure aspen (Populus tremula
L.; Table E.2) forest stands along with nearby grassland areas. SAW did not present
grassland areas. So there were four sites with forest and three with grassland in our
data set for SW Siberia. All aspen stands had closed canopy.

7.2.2 Vegetation productivity estimation
Five litter-traps were set up in July 2013 on each of the four forested study sites.
Each litter-trap was constituted by a nylon net with a mesh size of 1.5 cm.They were
disposed on the ground over a surface area of 1.96m2 after vegetation removal. Leaf
litter was collected after the fall of all leaves at the end of September–beginning of
October. We removed branches and oven-dried the fresh litter at 60 ◦C to constant
weight. Aliquots of this litter were analysed for total carbon (C) and nitrogen (N)
concentration.

We followed the same procedure to sample herbaceous green vegetation in grass-
lands and in forests (understorey vegetation) in July 2013. A transect of 20m was
randomly defined and materialized with a rope in 3 replicate plots (spaced by
200–2000m). The vegetation was cut every meter along these transects over a sur-
face area of 30 cm by 40 cm delimited by a rigid frame. All the alive aboveground
vegetation was collected without distinction between species. There were 10 samples
per transect, so 30 per site. The samples were oven dried at 60 ◦C to constant weight.

7.2.3 Topsoil physico-chemical characterization
Most physico-chemical characterization of two topsoil layers, −5 and −15 cm ± 5 cm,
was performed on composite samples established from three soil pits. Individual
samples were air dried and sieved at 2mm to remove stones and coarse roots before
being pooled in a composite sample. Soil density samples (one per soil pit and per
layer) were collected with a cylinder (97 cm3). They were oven dried at 105 ◦C for
48 h and stones were removed when present. Apparent density was measured on
each replicate (3 soils pits).

The French standard methods (Association Française de NORmalisation; AFNOR
1999) were used for most of the physico-chemical soil analyses. For soil texture,
the five-size fractions for clay (< 2 µm diameter), fine loam (2–20 µm), coarse loam
(20–50 µm), fine sand (50–200 µm), and coarse sand (200–2000 µm) were assessed
after decarbonation (NF X 31–107). Soil pH–H2O was determined in a water/soil
suspension with a mass-to volume ratio of 1 g: 2.5mL (NF ISO 10390). Total calcium
carbonate contents were assessed with a volumetric method (NF X 31–105). Poorly
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Table 7.2: Soil physico-chemical properties. Composite sample from 3 soil pits, except total
C and total N which are means of all the samples analysed for 15N isotopic composition
(n = 3 − −4).

Depth Forest Grassland

(cm) BAR SAE SAW TOM BAR SAE TOM

Apparent density 5 1.0 0.5 0.7 0.9 1.0 0.9 0.9
15 1.2 0.8 1.0 1.1 1.3 1.1 1.2

Granulo. 0–2 µma (%) 5 27.7 40.7 22.2 23.2 27.5 35.3 22.0
15 27.2 36.8 20.4 21.9 27.7 34.9 21.2

2–20 µma (%) 5 23.2 26.5 37.9 38.8 20.7 23.8 38.9
15 23.0 25.3 38.2 38.7 21.0 23.9 40.5

20–50 µma (%) 5 35.3 14.9 34.4 30.2 35.5 17.0 30.8
15 35.7 15.6 36.6 31.0 32.7 17.6 31.7

50–200 µma (%) 5 13.0 4.4 4.6 6.9 14.0 4.7 6.7
15 13.5 5.2 3.9 7.4 16.0 4.2 4.7

200–2000 µma (%) 5 0.7 13.4 0.8 0.8 2.2 19.1 1.5
15 0.5 17.0 0.8 0.9 2.5 19.3 1.8

pH H2O 5 6.10 6.17 6.07 5.37 6.50 6.47 5.45
15 6.12 5.97 5.45 5.25 7.20 6.58 5.54

Total N 0–2.5 5.51 8.76 5.83 5.70 4.81 7.78 3.77
(mgNg−1 dry soil) 2.5–5 4.25 7.41 4.41 5.02 3.07 5.47 3.01

5–7.5 3.22 5.66 3.40 4.20 2.77 4.80 2.68
7.5–10 3.02 4.72 2.67 3.73 2.70 4.59 2.35
10–15 2.75 3.86 2.48 3.36 2.71 4.57 2.06

Total C 0–2.5 73.59 115.53 78.45 76.21 56.86 95.06 49.02
(mgC g−1 dry soil) 2.5–5 53.83 93.29 55.23 64.60 33.50 65.91 36.06

5–7.5 39.66 72.95 39.13 50.91 30.64 57.67 29.37
7.5–10 37.13 60.97 28.50 43.57 29.72 54.92 24.63
10–15 33.54 53.01 26.28 38.08 29.55 54.44 21.10

Total CaCO3 5 < 1 < 1 < 1 < 1 < 1 < 1 < 1
(g kg−1) 15 < 1 < 1 < 1 < 1 < 1 < 1 < 1

Al oxides 5 63.4 101.6 77.1 86.7 58.6 101.2 90.4
(mmol kg−1) 15 64.9 126.0 88.9 95.3 59.3 104.9 91.2

Fe oxides 5 31.3 56.0 68.0 75.2 25.2 48.5 93.7
(mmol kg−1) 15 33.3 67.2 75.6 79.0 26.3 49.6 95.6

FRLDbd 5 1.44 2.16 0.92 0.77 2.35 2.82 2.79
(cm roots cm−3 soil) 15 0.77 0.94 0.37 0.82 1.30 1.03 1.06
FRMDcd 5 1.47 1.88 0.86 0.87 1.49 2.04 1.06
(mg roots cm−3 soil) 15 0.56 0.87 0.52 0.58 0.59 0.49 0.22
agranulometric fraction; bfine root length density; cfine root mass density;
dsee Brédoire et al. 2016
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Table 7.3: Characteristics of the 15N-labelled litters deposited.

BAR SAE SAW TOM

Forest
Date of deposition 26/09/2012 19/10/2012 30/09/2012 05/10/2012
Mass deposited (gm−2) 255 255 255 255
δ 15N (‰) 528 528 528 528
Abundance 15N (atom%) 0.56 0.56 0.56 0.56
Total N (mg g−1) 13.23 13.23 13.23 13.23
Total C (mg g−1) 446.64 446.64 446.64 446.64

Grassland
Date of deposition 25/09/2012 19/10/2012 06/10/2012
Mass deposited (gm−2) 204 306 357
δ 15N (‰) 3158.86 3158.86 3158.86
Abundance 15N (atom%) 1.51 1.51 1.51
Total N (mg g−1) 9.90 9.90 9.90
Total C (mg g−1) 424.13 424.13 424.13

crystalline aluminium (Al) and iron (Fe) oxides were extracted with an ammonium
oxalate solution (McKeague and Day 1966). Total C and N concentrations were
measured along with the isotopic composition on all the samples related to the 15N
experiment (see below). The soil characteristics are presented in Table 7.2.

7.2.4 Temperature recording
From autumn 2012, both forests and grasslands were equipped with temperature
data loggers (DS1921G Thermochron iButton, Maxim Integrated, USA). The data
loggers were set up at three soil depths, −5, −15, and −60 cm in holes or tranches
made with the help of a soil corer or a spade. Two to four replicates were set up
per site and vegetation cover. One to two temperature data loggers were also set
up at 2m above the soil surface on each site and for each vegetation cover. The
temperature data loggers were changed regularly (usually every 6 months).

7.2.5 Preparation and installation of 15N-labelled litters
15N-labelled aspen and grass leaf litters were produced near the village of Chebula
(Novosibirsk region, in the middle of the transect of sites). 15N-labelled urea was
spread on the foliage of aspen trees and on alive grasses in late June 2012 (Zeller et al.
1998). These labelled materials were collected at the beginning of September 2012,
in the late phase of senescence but before brown aspen leaves fall on the ground.
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The collected material was air dried to avoid decomposition before its deposition on
the experimental field sites.

In late September–beginning of October 2012, we deposited the 15N-labelled lit-
ters on six experimental plots of 1.40 by 1.40m per site and per vegetation cover
(Table 7.3).The distance between two plots was approximately 3–15m. In forest plots,
we carefully removed fresh litterfall (fresh leaf litter and a few branches) over the
area of the experimental plot and replaced it by an amount of 15N-labelled aspen litter
similar to the supposed production (500 g of dry 15N-labelled litter, Table 7.3) evenly
distributed over the plot area. In grassland plots, we cut and removed dead grasses
and deposited a similar amount of 15N-labelled grass litter (400, 600 and 700 g of dry
15N-labelled litter at BAR, SAE and TOM, respectively, Table 7.3) evenly distributed
over the plot area. The deposited labelled litters were fixed on the soil surface with
a nylon net (mesh size of 1.5 cm) to avoid wind dispersal and contamination by
non-labelled litter.

7.2.6 Samplings and analyses
From 2013 to 2015, we sampled vegetation (herbaceous species), litter and soil twice
a year, at the end of Spring and in Autumn. All vegetation and litter layers—that
is to say litter Ol above the net and, below the net, 15N-labelled litter eventually
remaining, litter Of, and litter Oh if present—were sampled over an area of 30 by
40 cm delimited by a rigid plastic frame. Five mineral soil layers were sampled on the
same area using a knife and a spoon: 0–2.5 cm, 2.5–5 cm, 5–7.5 cm, 7.5–10 cm and
10–15 cm. Vegetation and litter samples were oven-dried at 60 ◦C and soil samples
were air dried, all to constant weight. The soil was then sieved at 2mm to remove
roots (the topsoils studied do not present gravels). The samples were homogenized
and an aliquot was finely ground before isotope analyses.

Elemental and isotopic compositions (total C, total N and 15N abundance) were de-
termined with an Elemental Analyser–Isotope Ratio Mass Spectrometer (EA–IRMS,
Delta S, Thermo-Finnigan, Germany) using appropriate standards for normalization
correction, instrument linearity, and precision purposes.

The 15N natural abundance of vegetation, litter and of the five soil layers defined
from 0 to 15 cm were measured at each site on material sampled in July 2013 and
prepared following the same methods.

7.2.7 Isotopic computations
The isotopic composition of the samples was expressed in delta units (δ 15N, ‰):

δ 15N = 100 ×
(Rsample − Rstandard

Rstandard

)
× 1000 (7.1)
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where R is the mass ratio of 15N to 14N and Rstandard equals 0.0036765.
The proportion of 15N in the total amount of N measured in a sample (Ntot), the

15N abundance (A15N, in %), was computed as following:

A15N =
15N

15N + 14N
= 100 ×

(
δ 15N
1000 + 1

)
× Rstandard[ (

δ 15N
1000 + 1

)
× Rstandard

]
+ 1

(7.2)

The proportion of 15N tracer (i.e. the 15N excess, E15N, in %) in each sample was
obtained by:

E15N = A15N − A15Ncontrol (7.3)

where the control was the value measured in unlabelled samples (natural abundance).
The quantity of 15N derived from the labelled litter deposited in autumn 2012

(Q15N, in µg 15Ng−1 sample) was computed as:

Q15N = 10 × E15N × Ntot (7.4)

and the quantity of N derived from the labelled litter deposited in autumn 2012 in a
sample (N litter-derived, NLD, in µgN g−1 sample) as:

NLD = 100 × Q15N
E15Ninitial

(7.5)

where E15Ninitial is the 15N excess in the labelled litter deposited (in %).
Finally, we computed for each sampling date the proportion of N from the initial

labelled litter which was recovered. For each layer sampled, the N recovery (Nrec, in
% N deposited) was computed as:

Nrec =
NLD ×m

10 × Ndep
(7.6)

wherem is the mass of the sample (in gm−2) and Ndep is the amount of N deposited
with the labelled litter in autumn 2012 (in mgNm−2). The N recovery was computed
using mean isotopic compositions of the layers at the given sampling dates and
overall averaged or estimated masses. We only measured the mass of the two first
soil layers in forests. The mass of the samples from deeper horizons was estimated
(mest, in g) using soil density (D):

mest = S × T × D (7.7)

where S is the surface area of sampling and T is the thickness of the soil layer (in
cm). In SW Siberian aspen forests, big tree roots are numerous in the soil surface and
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their volume cannot be neglected when estimating the mass of soil. For 0 to −5 cm,
we compared these measurements (mmeas) with mest. Mass estimations with soil
density conducted to over-estimations by a factor 1.85–2.96, probably because of
the volume of coarse roots. Assuming the over-estimation would be similar among
the first 15 cm of the soil, we correctedmest dividing it by the mean over-estimation
factor of the site.

All data handling and statistics were performed with R version 3.2.2 (R Core Team
2015).

7.2.8 Measurement of litter decay in litterbags

Because of the intermingling of decomposing leaves in the experimental plots, it was
not possible to distinguish precisely the remaining 15N-labelled litter on the area
from which litter samples were collected. In autumn 2013, a litterbag experiment was
set up to better characterize the contrasting litter decay patterns between our sites.
We deposited on each site, and for each vegetation cover, 30 litterbags randomly
distributed on the border of the 15N experimental plots. Each litterbag consisted of a
150 cm2 envelope made with a nylon net with a mesh size of 1.5mm (Staaf 1980),
allowing the penetration of meso-fauna and part of the macro-fauna. Each litterbag
contained 2 g of air dried litter collected from the same site (Chebula) under the
same conditions where the 15N-labelled litter was produced. The litterbags were
deposited on the soil surface after removing the fresh litter and fixed with a nail.

At each subsequent sampling date, we collected five of these litterbags, each
from a different experimental plot. The remaining litter was carefully removed from
the litterbag and dried at 60 ◦C to constant weight. Soil particles were removed
by hand during the first year of litter decomposition. Later, the ash content was
measured in all litterbags and sample weight was corrected by taking into account
the contamination of the litterbags with soil particles.

7.3 Results

7.3.1 Temperature monitoring

Over the period of monitoring (autumn 2013–autumn 2015), the soil temperatures
at −5 and −15 cm followed the variations of air temperature, except in winter where
air and soil temperatures were decoupled (Fig. 7.1). The amplitude of temperature
variation was lower in soil than in the air and slightly lower at −15 than at −5 cm.

Except during wintertime, soil temperature was generally higher at BAR and
SAE than at SAW and TOM. While air temperature was almost the same in the two
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Figure 7.2: Rates and kinetics of decomposition in the litterbags deposited in autumn 2013.
Mean and standard error of the mean (n = 2–5).

vegetation covers, soil temperature tended to be higher under grassland than under
forest, particularly in summer.

In winter, the decoupling between air and soil temperatures was the result of
the presence of a seasonally permanent snow-pack (Chap. 4). The soil was frozen
at −5 and −15 cm at BAR and SAE but not at SAW and TOM. Also, at BAR and
SAE, temperature was lower under grassland than under forest. This was related
to the snow-pack, which was thicker at SAW and TOM than at BAR and SAE and
thicker in forests than in grasslands (Table 7.1). Particularly at BAR and SAE, soil
temperature tended to be lower during the winter 2013–2014 than during the winter
2014–2015. This is because the snow-pack was shallower (Table 7.1) and the snow
season began later, so the soil was already frozen, in the winter 2013–2014 than in
the winter 2014–2015.

7.3.2 Kinetics of litter decay
In both forest and grassland, the mass loss of litter in the litterbags was faster at
TOM and SAW than at SAE and BAR in the first year of decomposition (Fig. 7.2).
In spring 2014 (first date of sampling for the litterbags), 26–40% of the mass was
lost in forest and 23–44% in grassland. In autumn 2015 (the last sampling to date), it
was 57–79% and 57–75%, respectively.

In grassland, while the mass loss continued with the same trend over time at SAE
and BAR, it decelerated at TOM in 2014. As such, in autumn 2015, the remaining

192



7.3 Results

mass of litter in grassland was higher at TOM (43%) than in the other sites (25 % at
BAR).

7.3.3 Total N in soil samples

All topsoil profiles presented decreasing N concentrations with depth (Fig. 7.3).
This trend was not impacted by sampling date but we observed some discrepancies,
particularly at SAE forest. On average, we observed higher spatial (as indicated by
standard errors) and time (as indicated by the difference between sampling dates)
variabilities at SAE than in the other sites.The reasons for such patterns are discussed
below.

7.3.4 15N signal in the layers sampled

We were able to distinguish the remaining 15N-labelled litter deposited in autumn
2012 only at the first date of sampling (spring 2013). At this date, all the samples of
remaining 15N litter had a δ 15N lower than the initial litter (Tables 7.3 and 7.4).

Alive herbaceous vegetation was not always sampled in forests because the dates
of our samplings do not really fit with the phenology of the understorey vegetation.
The samplings occurred either too early in spring or too late in autumn. In forest,
from the first sampling date (i.e. spring 2013) at SAE and from spring 2014 at SAW,
the results available suggest that the understorey vegetation was enriched in 15N
(Table 7.4). In grassland, we observed a strong enrichment of the vegetation in 15N
in spring 2013 (155–283‰) and lower ones at the subsequent dates. The highest
enrichment was observed at BAR.

The litter collected above the protection net, resulted from wind-blown material
and/or from the vegetation growing in the seasons subsequent to deposition. Partic-
ularly in forest, the origin of such material (litter above net) can be diverse so the
results have to be considered with care. There was no consistent trend over time in
the enrichment of the litter above net in forests (Table 7.4). In fact, the enrichment
was irregular with time at BAR and SAW, increasing at SAE and decreasing at TOM.
In grasslands, due to the height and the density of grasses and because they mostly
remain encroached into the soil when dead, the origin of the litter collected above
the net is less uncertain. All the litters collected above the net in grasslands were
clearly enriched in 15N (Table 7.4). However, with the few sampling dates analysed
until now, it is difficult to infer patterns in temporal dynamics of such enrichment.

The signal was lower in the litters collected below the net (Table 7.4) than in
the labelled material (Table 7.3). Below the net protecting the 15N-labelled litter
is a mix between the 15N-labelled litter, older material and eventually fractions of
decomposing younger litter. Such dilution of the labelled litter is likely to increase
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over time. In all forests and grasslands, the litter collected below the net was clearly
enriched in 15N at all the samplings for which the analyses are available (Table 7.4).

In forest, BAR, SAW and TOM presented an enrichment of all the soil layers from
the first sampling, in spring 2013 (Fig. 7.4). At SAE forest, the enrichment of the three
upper soil layers was clearly observed from autumn 2014. In fact, no enrichment
was measured in spring 2013 and the values obtained for spring 2014 were close, or
lower than the control (natural abundance). In the four forest sites, soil enrichment
tended to increase in the upper layers until autumn 2015. The average δ 15N values
of autumn 2015 in the upper layers were generally lower than those of autumn 2014
and even of those of spring 2014 at BAR and SAW. On average, the 15N enrichment
of the upper soil layers was greater at SAW and TOM than at BAR and SAE.

In grassland, 15N enrichment did not occur as deep as in forest for the three sites
(Fig. 7.4). At BAR grassland, 15N enrichment concerned almost exclusively the two
first soil layers. It was observed from spring 2013 and increased over time (to date,
analyses for autumn 2015 are not available). At SAE grassland, enrichment was only
observed in the first soil layer in spring 2013, it increased over time both in intensity
and depth (until 7.5 cm). At TOM grassland, no enrichment was measured in the
10–15 cm soil layer but all the layers above were enriched in 15N from the first date
of sampling.

7.3.5 N recovery over time
Along with the decomposition of the labelled litter, its N was distributed among
different ecosystem compartments (Fig. 7.5).

At the first date of sampling, nine months after deposition, a substantial part of
the deposited N remained in the residues of the labelled litter deposited (Fig. 7.5). In
forest, these residues contained 86 and 35% of the deposited N at SAW and TOM,
respectively. At BAR and SAE forests, the residues of the labelled litter virtually
contained more than 100% of the N deposited. As we will discuss, these values
are probably due to over-estimations of masses. Nevertheless, the proportion of N
that was present in the litter below the protection net decreased with time and this
decrease was stronger and faster at SAW and TOM than at BAR and SAE forests.
In grassland, similar trends were observed: high proportions, > 50 %, of N were
recovered in the litter layers below the net at the first date, these proportions were
decreasing over time and the decrease was faster at TOM than at BAR and SAE.

From the first sampling date, in forest, 15 (SAE) to 43 % (TOM) of the deposited N
was found in the top 15 cm of the soil (Fig. 7.5). A consequent transfer of N from
the litter to the soil was rather immediate at TOM while it took longer in the other
sites. Due to the restricted number of samples and to relatively high uncertainties
in both the estimation of mass and isotopic composition, we can hardly compare
the sampling dates for a given layer. Nevertheless, there was a trend for increasing
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Table 7.4: Isotopic composition of the vegetation and litter layers sampled. Mean δ 15N (‰)
and standard deviation of n samples. The analyses of the samples taken in autumn 2015
are ongoing. The δ 15N of the deposited litter was 528‰ in forest and 3159‰ in grassland.

Nat. Spring 2013 Spring 2014 Autumn 2014

Ab. n mean sd n mean sd n mean sd

BAR forest
Vegetation · · · · · · · · · ·
Litter above 2.87 3 25.68 3.11 3 6.40 3.50 2 17.37 13.22
15N litter · 3 221.19 74.33 · · · · · ·
Litter below 2.03 3 4.71 0.96 2 36.71 7.59 3 30.35 7.77

SAE forest
Vegetation 0.37 6 5.19 3.95 6 8.62 2.38 2 15.74 4.68
Litter above 1.09 3 7.96 11.39 6 8.24 4.41 3 16.65 3.97
15N litter · 3 410.01 55.46 · · · · · ·
Litter Of 1.63 3 8.89 6.06 6 42.54 19.38 3 31.99 11.52
Litter Oh 1.63 2 3.27 0.03 · · · · · ·

SAW forest
Vegetation 2.04 3 3.90 2.38 3 7.77 0.81 2 5.20 1.07
Litter above 1.51 3 39.61 13.64 3 8.46 1.78 2 13.78 1.51
15N litter · 3 210.85 65.81 · · · · · ·
Litter below 2.54 3 13.15 11.97 3 36.15 12.21 3 23.16 6.75

TOM forest
Vegetation · · · · · · · · · ·
Litter above 3.79 3 72.94 61.90 3 15.58 5.07 3 9.08 6.91
15N litter · 3 321.47 180.27 · · · · · ·
Litter below 4.11 3 57.66 36.31 3 41.18 14.56 2 26.16 12.25

BAR grassland
Vegetation 3.01 6 282.65 211.70 3 73.10 41.25 3 68.44 21.34
Litter above 3.01 · · · 3 135.78 74.42 3 91.73 30.25
15N litter · 3 1667.20 567.91 · · · · · ·
Litter below 0.55 3 154.78 69.60 3 494.76 177.78 3 231.35 45.44

SAE grassland
Vegetation 2.54 6 155.37 60.93 6 76.06 16.07 2 30.91 22.98
Litter above 2.54 · · · 6 83.66 46.22 3 132.31 4.64
15N litter · 3 1633.85 268.88 · · · · · ·
Litter below · 3 389.37 130.56 6 283.79 83.91 3 405.30 118.64

TOM grassland
Vegetation 5.33 6 214.13 149.45 3 115.52 61.57 · · ·
Litter above 5.33 · · · 3 245.34 63.76 · · ·
15N litter · 3 2069.96 134.14 · · · · · ·
Litter below 3.34 3 683.33 216.86 3 759.80 102.62 · · ·

Nat. Ab.: Natural abundance · : not available
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Figure 7.4: Profiles of δ 15N (‰) in the soil layers for the different samplings. Natural
abundances are displayed in black. Mean and standard deviation (n = 1–6). The δ 15N of
the deposited litter was 528‰ in forest and 3159‰ in grassland.
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stocks of N derived from the litter of 2012 in the soil until autumn 2014. In autumn
2015, the N recovered in the soil layers was lower than a year before in all sites. In
all sites, the upper soil layer contained most of the N transferred to the soil from
the litter. With time, the second layer tended to concentrate increasing amounts of
this N.

In grasslands, similar dynamics were observed but the transfer of N to the first
soil layer was greater than in forests (Fig. 7.5). N transfers to the deeper soil layers
were very low and concerned essentially the second layer. Again, the transfer was
immediate, but after this fast transfer, the stocks increased slowly at TOM. On the
contrary, the transfer was delayed and regularly increasing at BAR and SAE.

7.4 Discussion

7.4.1 Critical analysis

At our study sites, soil 15N enrichment generally increased until autumn 2014 from
which it started to decrease (Fig. 7.4). A similar trend was reported in several exper-
iments following 15N issued from the decomposition of labelled organic material
deposited on the soil surface: for example beech leaf-litter in western Europe (Zeller
et al. 2001, 2000), eucalyptus harvest residues in Congo (Versini et al. 2013) or pine
harvest residues in Australia (Blumfield et al. 2004). However, we note that the
trend of 15N enrichment in the soil layers with time may not be perfectly detected
in our experiment. Coupled with other technical issues, this has likely altered the
precision of our N budgets (Fig. 7.5). First, the labelling of initial material was rather
low, particularly in forest (Table 7.4). As a comparison, Zeller et al. (2001) used a
beech leaf litter with 3.24 atom% 15N abundance. A low labelling necessitates high
precision both in sampling and isotopic analyses. Slight variations in the precision
of either of these two steps may produce noise in the signal and alter the results
when computing mean on a few replicates.

The total N concentrations in the soil layers sampled (Fig. 7.3) can be used as
a proxy for sampling precision. In fact, there is no reason—unless a truly high
spatial heterogeneity in litter accumulation and/or soil properties at the plot level or
important seasonal variations, for example as the result of soil freezing or moisture
content—for a strong variation in the total N soil profile between the sampling
dates. The relatively high variations observed at SAE, particularly in forest, may
indicate the samplings were not always regular at this site. It is probable that
the criteria differentiating the different litter layers (Of, Ol and Oh according to
the fragmentation level) were not always perceived the same way between dif-
ferent sampling dates and different operators. As such, 1–2 cm difference in the
sampling of litter may induce a vertical translation of the soil layers. For example, it
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is possible that, in spring 2013, mineral soil was sampled about 2 cm deeper than
in the other dates. Anyway, discrepancies between operators and sampling dates
are inherent of such experiments and we took many precautions to limit their ef-
fect. Also, some discrepancies were observed in the analyses of controls (natural
abundances) between two runs of analyses and between two laboratories. In the
current stage, we estimate the analytical precision of our isotopic analyses at about
1‰, which is rather high considering that the mean enrichment in 15N in the deepest
soil layers was of the same order of magnitude. We are currently working with the
engineers and technicians of the analytical platform to improve the precision of
our measurements (the objective is to reach about 0.3‰). Subsequent analyses may
refine our results.

Finally, the measurement and the estimation of the mass of the soil samples was
a bit tricky in our study sites. In fact, the dense net of big roots, coupled with the
small surface area of sampling (we had to preserve labelled area for subsequent
samplings), often impeded to properly sample all the soil material. As a consequence,
the amount of sampled material was very variable for a given volume. Thus, we
did not sampled all the volume we planned below 5 cm and we estimated masses
with soil densities and a factor of correction (see materials and methods). Therefore,
the quality of the N recovery might have been altered, partly explaining why we
are not able to clearly distinguish temporal dynamics in soil (Fig. 7.5). It is also
possible that the mass of the remaining labelled-litter sampled at the first date was
over-estimated, and the 15N signal over-diluted, at BAR and SAE because of mixing
with unlabelled fragments, explaining the N recovery > 100 % in spring 2013.

Incomplete N recoveries (Fig. 7.5) might result from several phenomena. Firstly,
we did not analyse the isotopic composition of all the ecosystem compartments
susceptible to contain N derived from the deposited litter. Notably, tree organs
like roots, stem and branches are likely to contain substantial amounts of 15N
(Blumfield et al. 2004; Versini et al. 2013; Zeller et al. 2001, 2000). Secondly, litter
fragments, dissolved organic N or N ions may have been exported deeper than
15 cm, particularly in forests where we measured soil enrichment only to this depth.
Soil fauna and fungi can also be responsible for lateral transfers of N, out of the
experimental plots (Caner et al. 2004).

7.4.2 Site or vegetation cover specific patterns in N dynamics

Contrasting situations

Difference between vegetation cover On the scale of one site, i.e. between
aspen forest and grassland, the major difference was the depth of N transfer into the
soil which was deeper in forest than in grassland. In a general manner, the N derived
from litter was retained in the first centimetres of the mineral soil in grassland while
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it was transferred deeper in forest.
This has certainly to be related to different plant–soil interactions and different

vegetation cover phenology. As fine root exploration is denser in grassland topsoil
than in forest topsoil, we suppose that an efficient uptake of N by grasses in the
first soil layers limits N migration down the profile. It is also possible that grasses
are active earlier in the season than trees and understorey species, when there is a
stronger potential of drainage because the soil is saturated by melt-water.

In addition, soil organic matter from grasslands was found to be inherently more
productive of ammonium (NH4

+) than SOM fromwooded sites (Booth et al. 2005) and
ammonium is known to be less mobile in soil than nitrate (NO3

– ) (Orcutt and Nilsen
2000; Tinker and Nye 2000). Also, the uptake efficiency of NH4

+ for both plants and
micro-organisms is far superior to those of NO3

– and amino acids (Kuzyakov and
Xu 2013). This may partly explain the apparently efficient N immobilization in the
very topsoil in grasslands of SW Siberia, impeding the transfer towards deep soil
layers.

Difference between sites Our results revealed contrasting situations between
sites and between the two vegetation covers. Focussing on the differences between
our study sites, it is possible to detect two groups with contrasting N dynamics.
These broad dynamics are similar in aspen forest and grassland for a given site.
These two groups fit with the bioclimatic zones forest-steppe (BAR and SAE) and
sub-taiga (TOM and SAW) and we further refer to them as such.

Litter decays in our litterbag experiment were consistent with the field observation
that litter generally does not accumulate in sub-taiga (e.g. SAW and TOM) while
it does in forest-steppe (e.g. BAR and SAE). We observed mass loss all over the
year, in particular during wintertime and summertime (Fig. 7.2). However, since our
samplings occurred only twice a year, in mid-spring and mid-autumn, we do not
know whether there is a continuous rate of mass loss (e.g. over winter) or whether
it occurs more intensively at key periods (e.g. snow-melt, summer rain-events).

At TOM grassland, we observed a sharp decrease in the decomposition rate in
litterbags after one year (Fig. 7.2). Such a phenomenon may correspond to a second
phase of decomposition, where the mass loss is very slow. It has been referred to as
the “maximum decomposition limit” and has been reported notably in Scandinavia
(Berg et al. 1996, 2009) and Canada (Trofymow et al. 2002). However, it usually
occurs in suboptimal conditions (e.g. cold northern forests; Harmon et al. 2009) and
at more advanced stages of decomposition (once 70–80% of the initial mass has been
lost). This result would be partly in contradiction with the inferences on climatic
conditions we made above. Also, it would occur at a surprisingly low mass loss
proportion (about 50 %). To date, our litterbags mass loss measurements have not
been corrected for potential soil contamination. We plan to determine ash content
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in order to improve the precision of our measurements. If the trends are confirmed,
they would indicate that other factors, additional to climate and possibly varying
on the scale of the site, may exert substantial controls on litter decomposition.

In this study, we found that leaf-litter decomposition and N transfer to soil were
slower in forest-steppe than in sub-taiga. In sub-taiga, the transfer of N occurred
deeper, the total amount of N which was transferred was higher, as well as the
amount of litter-derived N which was stored in the soil.

Potential mechanisms driving the differences between sites

Biochemistry of the litter Several abiotic and biotic factors can be responsible
for the different rates of litter decay observed in the first two years of decomposition
at our field sites. Plant traits and litter quality (i.e. chemical composition) were
found to explain a great part of the differing rates of decay observed in inter-site
comparisons (Cornwell et al. 2008; Zhang et al. 2008). However, in our study all
litterbags contained the same litter, thus differing decays were not the result of
litter quality itself, except for the differences between forest and grassland. Together
with the relative homogeneity of the C and N contents of the aspen forest leaf
litterfalls (Table E.2)—but also in other nutrients such as P, K, Ca and Mg (data not
shown)—this result suggest that other factors may explain the different litter decays
between our field sites, both in litterbags and in natural conditions, at least for aspen
leaf litter in forest.

Also, tree leaf litter is not the only constituent of forest floors. Other types of mater-
ial (e.g. tree branches, understorey vegetation), mixed with leaf material, are likely to
modulate the overall decomposition processes in forest floors. It would be interesting
to evaluate the role of the understorey vegetation community composition—diversity,
functional traits—(Hättenschwiler et al. 2005).

Climate Climate is a seducing candidate for explaining the decay patterns we
observed, notably because of contrasting winter and summer conditions between
our field sites. Climate impacts litter decomposition either directly or indirectly.
Litter fragmentation can result from light, wind, precipitation or freezing, which are
climate variables, but also from animal and plant activity, which themselves depend
on climatic conditions (Berg and McClaugherty 2014; Garcıá-Palacios et al. 2013;
Wall et al. 2008). Climate also controls decomposers (e.g. micro-organisms) and extra-
cellular enzyme activities through moisture and temperature conditions (Buée et al.
2005; Wallenstein et al. 2009). In SW Siberia, it is possible that winter temperature
at the soil surface and summer moisture conditions largely control the early stages
of litter decomposition. In fact, the generally thick snow-pack in sub-taiga insulates
soil from freezing at wintertime while a thinner snow-pack in forest-steppe does
not always avoid soil freezing (see our monitoring over 2013–2015, Fig. 7.1). Despite
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being under the threshold of 10 ◦C, under which litter decomposition is often very
low (Zhang et al. 2008), the difference in temperature and water availability between
frozen and unfrozen litters may allow the latter to continue decomposing during
winter. In fact, microbial activity continues over-winter, as it was reported in several
and diverse snow-covered environments (Brooks et al. 1996; Groffman et al. 2006;
Grogan and Jonasson 2005; Mast et al. 1998; Monson et al. 2006a; Wallenstein et al.
2009; Wang et al. 2010). The height of the snow-pack modulates microbial activity,
as shown by lower respiration rates under shallower snow-cover and colder soil
(Monson et al. 2006b). In addition, in SW Siberia, over the rest of the season and
particularly in summer, soil and soil floor are much drier in forest-steppe than in
sub-taiga (Chap. 4). Overall, it seems that climatic conditions of sub-taiga favours lit-
ter decomposition over the year, while seasonal conditions may reduce it drastically
in forest-steppe.

This hypothesis fits with field observations of forest and grassland floors. For
example, summer observations reveal that almost all non-structural parts (e.g. ex-
photosynthetic tissues) of the leaf litter have disappeared in sub-taiga (TOM and
SAW). Only structural parts of leaves, mixed with branches, remain in a thin and
not continuous layer on the top of the mineral soil. On the contrary, in forest-steppe
and particularly under forested vegetation cover, it is possible to distinguish several
litter layers with different levels of fragmentation and containing non-structural
parts.

In addition, depending on the water saturation of the soil profile, precipitation
induces drainage and thus potentially the leaching of solubles and the movement
of particles downwards. Studies in deciduous and coniferous forests have reported
higher ecosystem N retention and lower exports in years with deep snow cover
(Brooks et al. 1998; Lewis and Grant 1980; Mitchell et al. 1996; Peters and Leavesley
1995). Studies in diverse forest and tundra ecosystems reported that increased snow
cover allowed higher levels of microbial N immobilization (Brooks and Williams
1999; Buckeridge and Grogan 2010), while shallower snow-packs were associated
with higher N export (Boutin and Robitaille 1995; Brooks and Williams 1999; Brooks
et al. 1996; Callesen et al. 2007; Fitzhugh et al. 2003; Groffman et al. 2006; Groffman
et al. 2001; Lipson et al. 1999; Nielsen et al. 2001). On the scale of SW Siberia, higher
microbial activity under the deeper snow-pack of sub-taiga may allow higher SOM
processing and higher N immobilization. On the contrary, lower amounts of SOM
would be processed during winter in forest-steppe and the lysis of microbial cells
induced by freezingmay lead to higher N exports by leaching at snow-melt. However,
even if most of the yearly drainage is associated with snow-melt in SW Siberia,
the levels of drainage in forest-steppe are probably rather low and are lower than
those of sub-taiga (Chap. 4). In addition, soil freezing can affect fine roots or root-
symbionts (Cleavitt et al. 2008; Kreyling et al. 2012; Repo et al. 2014; Tierney et al.
2001) and lead to reduced N uptake by trees (Campbell et al. 2014b) which could
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potentially contribute to greater N export from forests (Brooks et al. 2011).
Finally, there is increasing evidence that the role of climate has often been overseen

in litter decomposition studies (Bradford et al. 2015; Prescott 2010). If we are tempted
to evacuate the role of litter quality in our study, the integration of other factors,
such as soil properties and processes or local environmental conditions (e.g. micro-
topography), is likely to improve our understanding of decomposition in the whole
litter–soil organic matter continuum (Bradford et al. 2015; Prescott 2010).

Soil fauna Soil fauna exerts a significant control in regulating litter decomposition
processes (Kampichler and Bruckner 2009; Osler and Sommerkorn 2007; Rouifed
et al. 2010; Wall et al. 2008). Soil fauna, affect decomposition via fragmentation, gut
processing, translocation of the litter material but also through the modification
of the structure and activity of microbial communities (Hättenschwiler and Gasser
2005; Lavelle and Spain 2001; Wolters 2000). We cannot exclude that soil micro-
and meso-fauna, but also microbial communities, are different in composition or
in density between our field sites. Because of the small mesh size of the litterbags
(1.5mm), part of the meso- and all macro-fauna were excluded from the study of
decay in litterbags (Bradford et al. 2002; St John 1980). However, these organisms
may be involved in the whole litter decomposition process at the study sites and
notably in those of the 15N-labelled litter.

Soil properties While the soils have developed from a common parent material,
differing climatic conditions induce different soil processes.The resulting contrasting
soil types certainly affect N dynamics.

Our sub-taiga soils have higher fine-silt content than forest-steppe (Table 7.2).
Fine-silts are involved in aggregate formation. Indeed, the size of micro-aggregates
ranges from silt-size (Virto et al. 2008) to finer scales (Calabi-Floody et al. 2011;
Chenu and Plante 2006; Dümig et al. 2012). Micro-aggregates constitute a physical
barrier to micro-organisms and enzymes or inhibit their activity due to local anoxic
conditions (Balesdent et al. 2000; Kemmitt et al. 2008). Turnover times of organic
matter increase with decreasing particle size and the highest turnover times were
observed in the fine-silt and the clay fractions (Balesdent 1996; Balesdent et al. 1998).
In addition, the stability of aggregates is enhanced by iron (Fe) and aluminium (Al)
oxides (Duiker et al. 2003). These oxides are also more abundant in our sub-taiga sites
than in our forest-steppe sites (but SAE is the richest site in Al oxides; Table 7.2).

Cotrufo et al. (2015) suggested two pathways of SOM formation from the decom-
position of litter. At the early stages of litter degradation, mostly non-structural
compounds are lost and are incorporated into the microbial biomass at high rates,
resulting in efficient SOM formation (“dissolved organic matter–microbial path”).
Along with this phenomenon, and until the later stages of litter decomposition, the
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physical transfer of litter fragments would contribute to the formation of coarse
particulate SOM. These two pathways are likely to result in different mechanisms
of SOM stabilization: organo–mineral association via the DOM–microbial path
and inherent chemical recalcitrance via the physical-transfer path. Physical occlu-
sion by incorporation of SOM in aggregates could occur in both pathways. On the
long-term, the fate of the SOM issued by these pathways would depend on the
stabilization potential and the climatic conditions of the soil (Cotrufo et al. 2015,
2013). In our sub-taiga sites, the faster rates of litter decomposition suggest that the
DOM–microbial pathway of the applied labelled litter is more completely realised
than in our forest-steppe sites.

Microbial products have a particularly high affinity for mineral surfaces (Kleber
et al. 2007; Mikutta et al. 2009) and microbial processing is known to enhance SOM
stabilization (Rawlins et al. 2007). Altogether these observations suggest that organic
N stabilization would be more efficient in the soils of sub-taiga (TOM and SAW)
than in the soils of forest-steppe (BAR, SAE).

Finally, depending on the competition for the N resource, variable forms of soluble
N may dominate in the soil (Schimel and Bennett 2004). If there is a production of
NH4

+, it will interact strongly with negatively charged clay particles. By contrast,
if NO3

– is produced (the competition between plant and heterotroph being low
enough to permit nitrifier to flourish), it will not interact with mineral surfaces and
can be exported out of the system (Schimel and Bennett 2004).

7.5 Conclusion
The fate of 15N derived from leaf-litter decomposition differed between forest and
grassland. In a general manner, N was retained in the first centimetres of the mineral
soil in grassland while it was transferred deeper in forest. Such a phenomenon
has certainly to be related to different plant–soil interactions and vegetation cover
phenology. As fine root exploration is denser in grassland topsoil than in forest
topsoil, we suppose that an efficient uptake of N by grasses in the first soil layers
limits N migration down the profile. It is also possible that grasses are active earlier
in the season than trees and understorey species, when there is a stronger potential
of drainage because snow-melt saturated the soil.

On the time scale of our study (three years), we observed, along with faster decay
rates, faster releases of leaf litter-N in sub-taiga than in forest-steppe. As such,
higher quantities of N were retrieved in the soil and the transfer was deeper in
sub-taiga. Deeper transfer may be related to water dynamics. Notably, the drainage
is more intense in sub-taiga because of higher snow levels and saturation of the
soil water capacity. Interestingly, these higher drainage seem to not induce a too
large loss of N from the system. As an explanation, we propose that the soils from
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sub-taiga are efficient in retaining N. Such retention could result from soil physico-
chemical properties (higher fine silt and oxides contents) enhancing soil organic
matter stabilization, and/or by the immobilization of N in microbial metabolites.
This hypothesis requires further investigations. In particular, it would be interesting
to know in which form(s) N is released and retained in the soil. For example, we
expect ammonium and microbial products to be more associated with clay mineral
surfaces than plant N.

Our results contradict our initial hypothesis that the cycling in the plant–soil
system is faster in sub-taiga than in forest-steppe. In fact, while the decomposition
is faster in the organic layer, the soil properties may explain the retention of N in
the organo–mineral layers. To better identify the processes involved in N dynamics
at our sites, it would be interesting to identify the forms of the 15N (plant residues,
microbial metabolites, ammonium, nitrate, etc.). Pursuing the monitoring in the
long-term (e.g. for a decade) will allow to gain further insights in the mechanisms
of N sequestration (Hatton et al. 2012, 2015; Zeller and Dambrine 2011).
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Chapter 8

Discussion

This study provided insights on the biogeochemical cycling and the plant-availability
of water and nutrients, and their relation to climate and soil properties, in contrast-
ing SW Siberian ecosystems. SW Siberia historically concentrated agriculture and
populations. In the context of global change, the fate of human activities in the
region will depend notably on the evolution of the conditions necessary for plant
growth. Thus, understanding the drivers of vegetation growth and their relation to
changing environmental conditions is of primary importance.

We considered the issue of the impacts of global change on primary production in
SW Siberia with a multidisciplinary approach. Our intention was to provide parts of
the answer for several broad questions. We also identified some ecological processes
that need further investigations.

8.1 Responses to the questions addressed

8.1.1 How does climate regulate tree growth in contrasting
pedoclimatic conditions in SW Siberia? In particular,
has snow a noticeable influence on tree growth? Has
average tree growth changed in the recent decades?

Our dendroclimatic analysis revealed that aspen stem radial growth responded
to different climate variables depending on the pedoclimatic context. Overall, it
was possible to distinguish two groups of sites according to the climate–growth
relationships: the sites located in steppe/southern forest-steppe, typically the south
of SW Siberia, and the sites located in northern forest-steppe/sub-taiga, typically
the north of SW Siberia.

In steppe/southern forest-steppe, which experience drier climatic conditions,
aspen stem radial growth was mostly sensitive to the soil water budget in summer:
growth was enhanced by high precipitations, and reduced by high air and soil
temperatures, and by water deficits. Water budget had persistent effects over time,
impacting growth at least in the following year. Early and late growing season high
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temperatures tended to enhance tree growth, suggesting the length of the growing
season also matters at these sites.

In the north of forest-steppe/sub-taiga, aspen stem radial growth was essentially
stimulated by high summer air and soil temperatures, possibly because they enhance
water and nutrient absorption (enhancement of mineralization, mass flow and dif-
fusion). However, high early spring air and soil temperatures negatively impacted
tree growth. A possible explanation is a de-synchronization between the moment of
high nutrient availability (spring-flush hypothesis) and the period of plant uptake.

At almost all sites, tree growth responded positively to snow height of the winter
preceding the previous growing season. Such a response may reflect the importance
of the water budget of the preceding year, but it is surprising that the effect of snow
was not observed also for the immediately following growing season. Also, our
northern sites did not exhibit any response to water budget. To date, we did not find
any convincing hypothesis that could explain such a phenomenon. However, the
negative impacts of snow cover at the beginning and the end of the snow season—yet
not clearly observed at all sites—suggest that early and late snowfalls are associated
with shorter growing season.

In addition to the questions we addressed, we found that the average stem radial
growth levels at a given age tend to be higher in the forest-steppe zone, typically
the south of SW Siberia, than in the sub-taiga zone, typically the northern part.
This suggests a higher fertility of the sites located in forest-steppe, possibly due
to climatic conditions (higher temperature, longer vegetation season) and/or soil
properties. However, this information needs to be verified with a thorough sampling
design and the checking of additional indicators. For instance, a relatively simple
indicator of site fertility is the mean tree height of dominant and co-dominant trees
at a given age and for a given period, it is often referred as “site index” (Chen et al.
1998, 2002; Leonelli et al. 2008; Skovsgaard and Vanclay 2008). Our data set was not
sufficiently robust to rely on the site indexes computed. Ideally, it is necessary to
have a balanced design (i.e. even-aged stands for a given date at all study sites) and
to measure much more trees.

Finally, all our study sites presented a trend of increasing stem radial growth in the
recent decades. Again, this information requires to be confirmed with a more robust
sampling design. Also, a major uncertainty remains, the evolution of the social status
of the sampled trees along their life, but it will be impossible to check this without
long-term monitoring sites. Despite these limitations, our results suggest that recent
global change rather had the tendency to alleviate growth limitation(s) than to
exacerbate them. Possible explanations include: warmer temperatures, longer veget-
ation season, rising atmospheric CO2 levels, enhanced nutrient availability through
atmospheric deposition (nitrogen) or stimulation of decomposition processes.
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8.1.2 What are the current soil temperature and moisture
regimes in forest-steppe and sub-taiga? How are climate
variations, and in particular snow depth, susceptible to
influence these regimes in contrasting pedoclimatic
situations?

We monitored the soil temperature and moisture regimes under ambient and ex-
perimentally increased snow height at Barnaul and Tomsk, two sites of SW Siberia
presenting different climate and soil conditions. Modelling permitted to reconstruct
the soil water budget from the last 46 years and to simulate its possible evolution
under different scenarii. Contrasting soil temperature and moisture regimes were
characterized between these two sites.

On the two sites, the soil temperature dynamics are tightly coupled with air
temperature while the soil is not covered by snow. Usually, at Tomsk (in the north
of SW Siberia, sub-taiga), the snow-cover is higher and the soil does not freeze in
winter. At Barnaul (south of SW Siberia, forest-steppe) the snow cover is lower
and the soil freezes. In summer, soil temperature is generally higher in the south.
If snow height increases with climate change, soil freezing may be attenuated in
the south of SW Siberia. However, this could be modulated by later apparition of
the seasonally permanent snow-pack. In fact, the overall winter soil thermal status
greatly depends on the thermal status at the setting of the snow-cover. Concretely,
when the snow-pack appears late, soil is likely to be already frozen due to the low air
temperature of late-autumn in Siberia. Also, if the soil moisture content decreases,
soil is more prone to freeze.

The time course of the water budget through seasons is similar between our sites.
However, processes differ essentially in intensity, modulated by the joined effects
of climate, soil properties and vegetation. In both sites, the soil moisture content is
depleted in summer. This depletion is much stronger in the south, frequently leading
to water deficits. In the north, autumn precipitation often permit a complete recharge
of the soil water reserve while, in the south, the snow-melt is important to re-fill
it. In the north, since the soil is quickly saturated at snow-melt, and since there is
more snow, our simulations indicate a greater drainage than in the south. However,
in water-saturated situations, surface runoff may also occur and the partitioning
between drainage and runoff is of major importance for biogeochemical cycling.
Drainage was not measured in our sites and remains a major uncertainty.

Our simulations suggest an increase of water limitations in both forest-steppe
and sub-taiga with climate change. This phenomenon would be driven by warmer
temperatures and earlier vegetation seasons and be modulated by the amounts of
winter precipitation, i.e. snow. In the south, long and intense water shortages are
likely to become the usual situation. In the north, they may appear and occur at
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higher frequency but, even under the current southern climatic conditions, water
stress might be modulated by soil properties. In both cases, an earlier vegetation
season would increase the water depletion of the soil profile, and induce earlier
apparition, longer duration, and higher intensity of water-stress.

Variations in snow cover may impact different components of the soil water
budget, and in different ways, between forest-steppe and sub-taiga. The soil water
content over the year would be dependent on the amount of snow in forest-steppe
while it would not be impacted in sub-taiga. In both sites, the drainage is likely
to substantially decrease if the snow levels are decreasing or maintained while
only a gentle increase is expected with a sharp increase of snow levels (current
winter precipitation ×1.5). In any case, almost all the yearly drainage will occur at
snow-melt.

The question of drainage requires further investigations in SW Siberia. Measure-
ments of drainage amounts below the soil profile explored by fine roots would help
understanding the fate of melt-water. The measurement of nutrient concentrations
in drained water would inform on the possible losses induced by snow processes.

8.1.3 Do contrasting climate and soil conditions lead to
diverging fine root distributions in SW Siberia?

Measurements of the distribution of fine root length and mass throughout the
soil profile revealed that, in general, fine root exploration was deeper and total
length and mass were higher in forest-steppe than in sub-taiga. Since these patterns
were consistent between contrasting vegetation covers, namely aspen forest and
grassland, they can be related to pedoclimatic conditions. Two types of factors could
explain these broad patterns: resources foraging and physical constraints of the
environment.

The role of nutrient availability is discussed below. In steppe/forest-steppe, deeper
fine root systems may reflect a strategy for water acquisition because soil dessica-
tion is usually important in summer. On the contrary, in sub-taiga, regular water
saturation of the soil profile, persistent over long periods in the subsurface soil, may
constitute a physical constraint to fine root development deep in the soil profile.
Other environmental constraints were detected on the local scale, such as a shallow
bedrock, however they are neither variables of global change, nor limiting factors
of primary production in our study sites. Also, we proposed that soil freezing in
steppe/forest-steppe, in relation to shallow snow cover, could also promote deeper
development of fine roots because of increased mortality in surface. As far as we
know, such effect on fine root profile has never been reported and need further
testing. Perhaps, freezing is more likely to enhance the turnover of fine roots.

We also observed patterns attributed to the vegetation types. Fine root exploration
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tended to be deeper in forest than in grassland, and for trees than for understorey
vegetation within forest stands. Additionally, species and communities have dif-
ferent traits, among which differing root quality and decomposability, that impact
plant–soil interactions and biogeochemical cycles (Bardgett et al. 2014; Freschet
et al. 2012; Guo et al. 2008; Kong et al. 2014; Prieto et al. 2016; Roumet et al. 2016,
2006; Smith et al. 2014). For example, it was suggested that land conversion from
forest to agriculture leads to changes in root functional traits that enhance root
decomposition rates and could induce soil carbon losses (Prieto et al. 2016). Further
investigations on plant root traits would thus provide insights on the ecological
consequences of land cover changes in SW Siberia.

Besides the distribution of fine roots within the soil profile, their dynamics is a key
component in the biogeochemical cycling of carbon and nutrients (Clemmensen et al.
2013; Ruess et al. 2003; Yuan and Chen 2010; Yuan et al. 2011). The investigation of
fine root production and turnover would thus be of major interest in SW Siberia since
they are greatly controlled by factors varying along with global change (Brunner
and Godbold 2007; Finér et al. 2011; Gill and Jackson 2000; McCormack et al. 2013;
McCormack and Guo 2014).

Finally, roots are not active the same way throughout the profile, depending on
water and nutrient availability and interactions among the plant communities. It
would be interesting to know the depth of active uptake across the seasons, and
if different species have different strategies for water acquisition in SW Siberia.
Water isotopy analyses (seasonal samplings of soil and below- and above-ground
vegetation parts) are ongoing in our study sites.

8.1.4 What is the phosphorus status of SW Siberian soils?
Which amount of phosphorus is available for plants?

The concentrations, the stocks, and the distribution of the different phosphorus (P)
pools we measured over the soil profile were relatively homogeneous on the scale
of SW Siberia.

The early stage of soil formation, coupled with slow kinetics of pedogenesis, have
probably not yet conducted to a sufficiently wide range of soil physico-chemical
conditions to observe more diverging P status (for example, a gradient of P status
along with the gradient of climate, fine root exploration, and soil-forming processes
that exists in SW Siberia). However, some of the variations in P pools at given
depths can be explained by soil properties (e.g. accumulation of clays, oxides and/or
carbonates) that result from soil-forming processes. This suggests that the diverging
soil-forming processes may induce differences in soil P status in the long term.

The comparison of these SW Siberian P levels to similar vegetation contexts on
the global scale revealed high to very high levels of total, organic and inorganic P in
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topsoils. These results seem to be generalizable to Northern Eurasia but additional
measurements are required to verify this statement. The amount of plant-available P
in topsoils, evaluated as isotopically exchangeable phosphate ions, was intermediate
on the global scale. However, large stocks of isotopically exchangeable phosphate
ions are stored in the subsurface layers where fine root exploration is currently low.
These results suggest that the P resource is unlikely to constrain vegetation growth
and agricultural development in the present and near future conditions.

Finally, the relative contribution of mineral weathering and organic matter de-
composition in providing exchangeable phosphate ions in the soils of SW Siberia
remains an open question.

8.1.5 Is the liberation of nitrogen from the leaf-litter driven
by climatic conditions? Is the fate of N in the soil
controlled by climate?

Our monitoring of the fate of 15N derived from leaf-litter decomposition within
different ecosystem compartments revealed contrasting patterns both between and
within sites. Between sites, the different patterns can be related to climate and soil
conditions, they are consistent for both aspen forest and grassland. We identified
two groups of sites closely related to the bioclimatic zones studied (forest-steppe
and sub-taiga). Within sites, we observed differing N dynamics between forest and
grassland, they can be related to differing chemical composition of initial litter and
plant–soil interactions.

On the time scale of our study (three years), we observed, along with faster decay
rates, faster releases of leaf litter-N in sub-taiga than in forest-steppe. As such,
higher quantities of N were retrieved in the soil and the penetration was deeper
in sub-taiga. Deeper penetration may be related to water dynamics. Notably, the
drainage is more intense in sub-taiga because of higher snow levels. Interestingly,
these higher drainage seem to not induce a too large loss of N from the system. As
an explanation, we propose that the soils from sub-taiga are efficient in retaining
N. Such retention could result from soil physico-chemical properties (higher fine
silt and oxides contents) enhancing soil organic matter stabilization, and/or by
the immobilization of N in microbial metabolites. This hypothesis requires further
investigations. In particular, it would be interesting to know in which form(s) N is
released and retained in the soil (Hatton et al. 2012, 2015; Zeller and Dambrine 2011).
For example, we expect ammonium and microbial products to be more associated
with clay mineral surfaces than plant N.

In a general manner, N was retained in the first centimetres of the mineral soil in
grassland while it was penetrating deeper in forest. Such a phenomenon has certainly
to be related to different plant–soil interactions and vegetation cover phenology. As
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fine root exploration is denser in grassland topsoil than in forest topsoil, we suppose
that an efficient uptake of N by grasses in the first soil layers limits N migration
down the profile. It is also possible that grasses are active earlier in the season than
trees and understorey species, when there is a stronger potential of drainage because
snow-melt saturated the soil.

8.2 Integrated biogeochemical functioning of SW
Siberian ecosystems and climate change
prospectives

Altogether, our investigations revealed contrasting biogeochemical processes in the
forest-steppe and the sub-taiga bioclimatic zones of SW Siberia. In forest-steppe,
winter is cold and soil freezes because of shallow snow cover. Snow melt-water
constitutes themajor input of water into the soil. Summer is warm and dry, frequently
leading to soil water deficits. Aspen stem radial growth is sensitive to this soil water
budget, and fine root distribution occurs deeper in the soil profile to mine water. The
release of organic N, and likely organic P, depend on litter and soil organic matter
decomposition. The latter are slowed down by harsh winter and summer conditions
that do not favour decomposer activities.

In the sub-taiga, thick snow-pack prevents soil from freezing. Snow melt-water
generally induces drainage because soil water reserves are almost filled by autumn
precipitation. There is no drought in summer impacting aspen stem radial growth.
Thus, it is mainly limited by the length of the vegetation season and summer tem-
perature. As water remains available in topsoil over summer, and is in excess in
deep layers, fine roots concentrate in the top layers. The pedoclimatic conditions
allow fast above-ground litter degradation and fast incorporation of litter residues
into the top mineral soil layers. Snow-melt drainage may export nutrients in soluble
forms. However soil properties and the persistence of a basal microbial activity over
winter may efficiently immobilize litter-derived N in top horizons.

Climate observations and projections indicate a warming of air temperature and
variations in the seasonality of precipitation. While summer precipitation remains
stable but occurs less regularly, winter precipitation is increasing, leading to a higher
snow-pack.

In forest-steppe, water shortages in soil will become more frequent, more in-
tense, and longer. This will probably induce a deepening of fine root distribution.
Winter precipitation will be of crucial importance for the soil water budget. These
altered soil temperature and moisture regimes are likely to slow down the turnover
of organic matter and the subsequent release of nutrients. A major uncertainty
concerns soil freezing in winter. Only a thicker snow-pack appearing early in the
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winter, on an unfrozen soil, could be favourable to microbial activity and organic
nutrient availability. The overall impact of climate change on vegetation growth and
productivity is difficult to assess because of contradictory effects on biogeochemical
processes.

In sub-taiga, water shortagemay appear from time to time in summer.The increase
in winter precipitation may increase drainage unless the soil water reserve was
depleted in the previous vegetation season. In this case, snow melt-water will
recharge the depleted horizons. Possibly, fine roots will develop deeper to get water.
It is likely that soil temperature rise and sufficient water availability will stimulate
microbial activity and fasten the turnover of organic matter and the release of its
nutrients. These combined effects will likely induce higher vegetation productivity.
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Appendix A

A latitudinal response of aspen growth to
climate along a pedoclimatic gradient in
south-western Siberia
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Figure A.1: Circumference and rank of all the aspen trees present on the study stands.
About 5 trees were sampled in each study stand (1–4), most of them were used for the
analysis between radial-growth and climate (green dots) but some were discarded at the
crossdating stage (red crosses).
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Appendix A Relations between climate and aspen radial growth

Table A.1: Composition of the understorey vegetation in forest (herbaceous, shrub and tree
species with a height < 1.3m and a diameter < 1 cm). Range of the number of species over
3 forest stands and dominant species.

Site Nb of species Dominant speciesa

BAR 14–18 Populus tremula L., Heracleum sibiricum L.
CHE 21–27 Athyrium filix-femina (L.) Roth, Betula pendula Roth
SAE 20–44 Populus tremula L., Carex pallescens L., Phlomis tuberosa L.
SAW 11–17 Populus tremula L., Athyrium filix-femina (L.) Roth,

Betula pendula Roth, Urtica dioica L.
TOM 16–29 Populus tremula L., Athyrium filix-femina (L.) Roth
awe retained species occurring in at least 2 of the 3 site replicates and with a mean score
on the Braun-Blanquet scale > 1
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Figure A.3: Plot of the bootstrapped correlation/response function analysis relating tree-
ring growth to climate-related variables of the current (n) and the previous (n-1) year for
the sites SAE and SAW. Significant coefficients, as judged by the bootstrapping procedure,
are displayed in blue while non-significant coefficients are in red. The runs are described
in Table 3.4.
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Table A.2: Input parameters to the water budget model Biljou.

Site Input parameters

Vegetation parameters
Budburst Fall LAImax

BAR 122 288 4.94
CHE 140 284 3.77
KRA 115 295 3.84
TOM 157 280 3.9

Soil parameters
Depth Roots Wfc Wwp AD RD ah bh

BAR 23 39 41.68 0.16 1.13 2.4 0 1.65
49 28 44.77 0.15 1.21 2.4 0 1.65
85 21 53.05 0.15 1.28 2.5 0 1.70

120 12 41.70 0.13 1.44 2.5 0 1.70

CHE 26 63 54.03 0.15 0.95 2.4 0 1.48
42 17 30.10 0.12 1.22 2.4 0 1.58
83 16 41.55 0.16 1.45 2.5 0 1.63

120 4 38.96 0.14 1.47 2.5 0 1.63

KRA 18 47 32.81 0.21 0.85 2.4 0 1.48
41 30 38.77 0.15 1.18 2.4 0 1.58
67 14 31.67 0.14 1.41 2.5 0 1.63

120 9 59.89 0.10 1.59 2.5 0 1.63

TOM 20 65 39.44 0.16 1.02 2.4 0 1.30
49 22 56.17 0.12 1.23 2.4 0 1.50
74 12 28.10 0.15 1.47 2.5 0 1.55

120 1 28.38 0.19 1.45 2.5 0 1.55
Budburst: day of leaf apparition (julian day)
Fall: day of leaf abscission (julian day)
LAImax: maximum leaf area index
Depth: depth of the bottom of the soil layer (cm)
Roots: fine root proportion (%)
Wfc: water content at the field capacity (mm)
Wwp: water content at the wilting point (mm)
AD: apparent density; RD: real density
ah bh: micro- and macro-porosity (the latter controls preferential flow)
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Appendix A Relations between climate and aspen radial growth

Table A.3: Pointer years: years with at least 70 % of the series presenting an absolute relative
radial growth variation higher than 10% relatively to the previous year (Becker et al.
1994). Only years with at least 5 trees available are shown.

Year BAR CHE KRA SAE SAW TOM Year BAR CHE KRA SAE SAW TOM

1942 + 1978 . . . . .
1943 . 1979 . + . − +

1944 . 1980 − . . + .
1945 . 1981 − . − − −
1946 . 1982 . . . . +

1947 − 1983 . − . . .
1948 . 1984 . . + . − .
1949 . 1985 + . . . . .
1950 + 1986 . . . . . −
1951 . 1987 . . − . . .
1952 + . 1988 . . . . . −
1953 + . 1989 . . . . . .
1954 . − 1990 . . . . . .
1955 . . 1991 . . . . . .
1956 + . 1992 . . . . . +

1957 . − 1993 . . . . . .
1958 . . 1994 . . − . . .
1959 . . 1995 . − . . . .
1960 . . 1996 − . . . − −
1961 . − 1997 + − . . − .
1962 + . + 1998 . + − . + +

1963 − − − 1999 . . . . . .
1964 + + . 2000 . − . . + −
1965 − . . . 2001 . + + + . +

1966 . . . + 2002 . + . . . .
1967 . . . . . 2003 . . − − − −
1968 − . . . − 2004 . − . . . .
1969 . . . . . 2005 . . . . + +

1970 . + . + − 2006 . . . . . .
1971 . . . − . 2007 − . . . . .
1972 + . . . + 2008 − . . . . .
1973 . . . . + 2009 + − . . − −
1974 . − . . . 2010 − + . . . .
1975 . + . − − 2011 + . . . . +

1976 . . + + + 2012 . . . . . +

1977 . − . . −
“+” positive pointer year; “−” negative pointer year;
“.” not a pointer year; “ ” data not available
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Appendix B

Is snow a hot variable? The control of soil
temperature and moisture dynamics in
south-western Siberia – Snow
manipulation experiment and simulations
of soil water budget

B.1 Calibration of the soil moisture sensors

The EC-5 Soil Moisture Sensor (Decagon, USA) determines volumetric water content
(VWC) by measuring the dielectric constant of the media using capacitance/fre-
quency domain technology. Its measurement volume is approximately 0.2 L. To
improve the accuracy of field VWC measurements, we calibrated the EC-5 sensor
with our study soils. At each site, for each vegetation cover and for each depth, we
collected vertically a soil cylinder (7 cm diameter, 10 cm height). The cylinders were
saturated with water and equipped each with an EC-5 sensor. The sensor signal was
recorded every 30min and we weighed the system (cylinder, soil and equipments)
twice a day until reaching a constant weight. At the end of this evaporation phase,
the soil was removed from the cylinder and oven-dried at 110 ◦C to constant weight.
To obtain calibration equations, we fitted polynomial and linear equations between
the VWC measured by mass difference between wet and dry soil and the VWC
reported by the sensor during the evaporation experiment. For the 8 soil layers
studied, the best fit was obtained with a polynomial equation (Fig. B.1).

The field VWC raw measurements were corrected using the polynomial equation
unless they were out of the domain of calibration (in our case, above the VWC at
saturation experimentally determined). In the latter case, raw VWC was corrected
using the linear equation in order to minimize the potential error (see the deviation
on Fig. B.1). Departures from the domain of calibration could be explained by the
spatial variability of soil properties. We also note that they generally occur at the
period of snow-melt, when important quantities of water are delivered into the soil.
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Figure B.1: Calibration of the Decagon EC-5 Soil Moisture Sensor with the soil layers
studied at BAR and TOM aspen forest (FOR) and grassland (GRA). Soil volumetric water
content (VWC) reported by the sensor is plotted against soil VWC measured weighing
the mass of water in the sample. We fitted linear (blue) and polynomial (red) equations.

B.2 Additional information on the constitution of
climate data sets

Wind speed The wind speed at 2m above the soil surface (W2m) was computed
from the wind speed measured at 10m (W10m) as following:

W2m =W10m × 4.87
ln(67.8 × 10 − 5.42) (B.1)

Vapour pressure deficit The vapour pressure deficit (VPD) was computed as
following:

VPD =
(
1 − H

100

)
× 5.999 × exp[7.062 × log(1 + 0.01063 × Tmean)] (B.2)

where H is the relative air humidity (in %) and Tmean is the daily mean temperature
(in ◦C).
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Figure B.2: Determination of the key dates of the snow-pack: date of the apparition of the
continuous and seasonally permanent snow pack (Sstart), date where the snow pack starts
to melt until its disappearance (Smelt), and date of the disappearance of the continuous
and seasonally permanent snow pack (Sstop). The figure shows the fit of the empirically
determined dates for the period 1995–2010 at BAR and TOM. The quality of the fit for the
other years of the period 1966–2015 was similar.

Global radiation The data set of global radiation for Omsk contains several gaps
of short duration (days). We filled those gaps with the average value for the same
day of the year. Global radiation were not available for the entire years 2014 and
2015 at the date of the analysis, we used the values of the year 2013.

Winter precipitations To take into account the year to year variability, we em-
pirically defined, for each winter, three characteristic dates of the snow pack on
the base of snow height measurements provided by RIHMI-WDC. The date of the
apparition of a continuous and seasonally permanent snow pack (Sstart) was defined
as the earliest day of the winter from which the snow height does not go back to
0 cm by the end of the year. The date of the disappearance of the continuous and
seasonally permanent snow pack (Sstop) was defined as the first day of the calendar
year where the snow depth is 0 cm.The date where the snow pack starts to melt until
its disappearance (Smelt) was the first day, between the date of the maximum snow
height recorded (often in March) and Sstop, for which the variation of snow height
between two consecutive days would be negative for at least five consecutive days.
Concretely, we set all the winter precipitations to 0mm and released their sum at
the period of snow-melt. That is to say: for each winter, between Sstart and Smelt daily
precipitation was set up to 0mm while between Smelt and Sstop daily precipitation
(P ) was set up to 1

Sstop−Smelt
×∑Sstop

Sstart P . The validity of these empirical definitions was
graphically verified (Fig. B.2).
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B.3 Additionnal results
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Figure B.3: Variability of the soil volumetric water content (VWC) measured at BAR aspen
forest. Daily average per sensor. Four soil pits were set up with 2–3 VWC sensors at
−15 cm and −60 cm. VWC measured under the control snow treatment are displayed in
purple while VWC measured under the increased snow treatment are displayed in orange.
The snow season is highlighted in grey and the snow-melt in dark grey.
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Figure B.4: Variability of the soil volumetric water content (VWC) measured at BAR grass-
land. Daily average per sensor. Four soil pits were set up with 2–3 VWC sensors at −15 cm
and −60 cm. VWC measured under the control snow treatment are displayed in purple
while VWC measured under the increased snow treatment are displayed in orange. The
snow season is highlighted in grey and the snow-melt in dark grey.
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Figure B.5: Variability of the soil volumetric water content (VWC) measured at TOM aspen
forest. Daily average per sensor. Four soil pits were set up with 2–3 VWC sensors at
−15 cm and −60 cm. VWC measured under the control snow treatment are displayed in
purple while VWC measured under the increased snow treatment are displayed in orange.
The snow season is highlighted in grey and the snow-melt in dark grey.
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Figure B.6: Variability of the soil volumetric water content (VWC) measured at TOM
grassland. Daily average per sensor. Four soil pits were set up with 2–3 VWC sensors at
−15 cm and −60 cm. VWC measured under the control snow treatment are displayed in
purple while VWC measured under the increased snow treatment are displayed in orange.
The snow season is highlighted in grey and the snow-melt in dark grey.
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Figure B.7: Volumetric water content (VWC, in m3 m−3) in four soil layers at BAR grassland:
simulation with the model Biljou (red line) and field measurements (black line) over
the period of VWC monitoring. The black dotted lines indicate the minimum and the
maximum of the mean VWC (mean of 2–3 sensors per depth and per pit) measured on
1–2 plots. The snow season is highlighted in grey and the snow-melt in dark grey. In
winter, when the soil temperature is close to or below 0 ◦C, the soil moisture sensors do
not always provide accurate data.
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Figure B.8:Volumetric water content (VWC, in m3 m−3) in four soil layers at TOM grassland:
simulation with the model Biljou (red line) and field measurements (black line) over
the period of VWC monitoring. The black dotted lines indicate the minimum and the
maximum of the mean VWC (mean of 2–3 sensors per depth and per pit) measured on
1–2 plots. The snow season is highlighted in grey and the snow-melt in dark grey. In
winter, when the soil temperature is close to or below 0 ◦C, the soil moisture sensors do
not always provide accurate data.
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Figure B.9: Quality of the calibration of the water budget model Biljou for BAR and
TOM aspen forest (FOR) and grassland (GRA). The soil volumetric water content (VWC)
measured is plotted against the soil VWC simulated, excluding the snow period (where
the simulation is artificially maintained to a constant value) and the VWCmeasured when
soil temperature is < 0 ◦C (measurements may not be accurate below this threshold). The
1:1 line is represented in black. The blue line is a simple linear relation between y and x
axes. The root mean square error (RMSE) and the number of points considered (n) are
displayed.
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Figure B.10: Yearly averaged chronology of water budget simulations in BAR and TOM
aspen forest. For each year, daily incident rainfall, stress and drainage were summed
while daily REW was averaged over the 15 days time step.
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south-western Siberia
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Appendix C Fine root distributions with soil depth

Table C.1: Results of all the one-way ANOVA testing a site effect.

Test on Veg. Cover Species Diameter F df p sig.a

Roots bottom pit Forest overall coarse 4.5922 5 0.01424 *
overall fine 3.5211 5 0.03435 *

Grassland overall coarse 0.7514 4 0.5793
overall fine 1.4598 4 0.2852

FRL in litter Forest overall < 0.8 1.6188 5 0.2287
aspen < 0.8 2.6003 5 0.08126 .
non-aspen < 0.8 1.915 5 0.1654

Grassland overall < 0.8 3.3321 4 0.05582 .

FRM in litter Forest overall < 0.8 1.3484 5 0.3096
aspen < 0.8 1.5792 5 0.239
non-aspen < 0.8 2.1616 5 0.1272

Grassland overall < 0.8 1.9599 4 0.1317

beta FRL Forest overall < 0.8 8.4154 5 0.001276 **
aspen < 0.8 1.8589 5 0.1757
non-aspen < 0.8 2.2469 5 0.1223

Grassland overall < 0.8 2.7179 4 0.091 .

Total FRL Forest overall < 0.8 4.8921 5 0.01135 *
aspen < 0.8 7.3919 5 0.002233 **
non-aspen < 0.8 2.0074 5 0.1497

Grassland overall < 0.8 12.21 4 0.00073 ***

FRL top 30 cm Forest overall < 0.8 7.5791 5 0.002008 **
aspen < 0.8 2.8304 5 0.06488 .
non-aspen < 0.8 2.1838 5 0.1302

Grassland overall < 0.8 3.8992 4 0.03683 *

beta FRM Forest overall < 0.8 3.5493 5 0.03351 *
aspen < 0.8 3.6112 5 0.03175 *
non-aspen < 0.8 1.4347 5 0.2864

Grassland overall < 0.8 1.5297 4 0.2663

Total FRM Forest overall < 0.8 4.7124 5 0.01299 *
aspen < 0.8 3.7766 5 0.02754 *
non-aspen < 0.8 2.3462 5 0.105

Grassland overall < 0.8 8.1198 4 0.003487 **

FRM top 30 cm Forest overall < 0.8 4.7898 5 0.01225 *
aspen < 0.8 7.0496 5 0.002725 **
non-aspen < 0.8 1.8805 5 0.1778

Grassland overall < 0.8 1.7126 4 0.2232
aSignificance levels: “***” p < 0.001; “**” p < 0.01; “*” p < 0.05; “.” p < 0.1.
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Table C.2: Length and mass of fine roots of a diameter < 0.8mm in the litter layer. Mean
of 3 replicates per site ± standard error of the mean. Different letters denote significant
differences at p < 0.05 level using a Tukey post-hoc comparison. ANOVA results are
given in C.1.

FRL (mm−2) FRM (gm−2)

Veg. Cover Species Site mean se stat mean se stat

Forest Overall FS1 17.81 5.46 a 1.04 0.34 a
FS2 38.87 19.15 a 4.80 3.40 a
FS3 31.87 3.84 a 2.85 0.54 a
FS4 23.20 9.58 a 1.12 0.72 a
ST1 11.50 3.16 a 0.49 0.16 a
ST2 8.23 2.55 a 0.63 0.33 a

Aspen FS1 1.66 1.66 a 0.18 0.18 a
FS2 21.67 11.90 a 3.29 2.42 a
FS3 2.12 1.06 a 0.39 0.22 a
FS4 4.15 3.46 a 0.35 0.30 a
ST1 0.74 0.25 a 0.23 0.11 a
ST2 0.00 0.00 a 0.00 0.00 a

Non-aspen FS1 16.15 4.62 a 0.87 0.28 a
FS2 17.20 8.74 a 1.51 1.02 a
FS3 29.75 4.60 a 2.46 0.56 a
FS4 19.05 6.58 a 0.77 0.44 a
ST1 10.76 2.95 a 0.26 0.05 a
ST2 8.23 2.55 a 0.63 0.33 a

Grassland Overall FS1 5.13 3.34 a 0.11 0.09 a
FS2 0.89 0.89 a 0.06 0.06 a
FS3 15.93 9.90 a 0.29 0.18 a
FS4 18.68 1.57 a 0.44 0.20 a
ST2 0.00 0.00 a 0.00 0.00 a
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Appendix C Fine root distributions with soil depth
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Figure C.1: Total fine root mass over 120 cm in forest (left panel) and grassland (right
panel). Mean and standard error of the mean of 3 replicates per site. In forest, total fine
root mass is detailed for aspen (dark grey) and non-aspen (light grey). Results presented
for roots with a diameter < 0.8mm. Different letters denote significant differences at
p < 0.05 level using a Tukey post-hoc comparison. ANOVA results are given in Table C.1
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Figure C.2: Cumulative fine root mass (cumulative proportion) as a function of soil depth
in forest (left panel) and grassland (right panel) for the six sites. The figure shows the dif-
ferences between sites. Species are not sorted, diameter < 0.8mm. The line was generated
with the mean β (of 3 pits) from Eq. 5.5: Y = 1 − βd (Gale and Grigal 1987).
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Figure C.3: Cumulative fine root mass (cumulative proportion) as a function of soil depth in
forest and grassland for the six sites. The figure shows the differences between forest and
grassland within sites and the quality of model fitting. Species are not sorted, diameter <
0.8mm. Points are field measurements (3 per site and depth) and line was generated with
the mean β (of 3 pits) from Eq. 5.5: Y = 1 − βd (Gale and Grigal 1987).
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Figure C.4: Cumulative fine root mass (cumulative proportion) as a function of soil depth
in forest for the six sites. The figure shows the differences between aspen and non-aspen
fine root systems within forest sites and the quality of model fitting. Aspen and non-aspen
(understorey vegetation) are sorted, diameter < 0.8mm. Points are field measurements
(3 per site and depth) and line was generated with the mean β (of 3 pits) from Eq. 5.5:
Y = 1 − βd (Gale and Grigal 1987).
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Appendix D What is the P value of Siberian soils?

Table D.1: Detailed climatic features of the study sites. Data averaged on the period
1981–2010. The data presented for each site come from the closest weather stations.

Variable Period BAR CHE KRA SAE SAW TOM

WMO index of the station 29838 29539 29915 29745 29736 29430
Distance site–station (km) 4 28 76 18 64 38

Air Temperature (◦C) MAT 2.7 1.3 2.9 2.3 1.2 0.9
DJF -14.1 -15.2 -15.1 -15.4 -17.6 -15.6
MAM 3.4 2.0 3.4 3.4 2.8 1.6
JJA 18.3 17.0 19.7 17.4 16.9 16.7
SON 2.8 1.2 3.2 3.0 2.2 0.8

Precipitation (mm) MAP 431.5 509.8 324.5 432.3 453.0 566.5
DJF 69.8 84.5 53.2 54.3 66.1 104.7
MAM 85.1 91.3 58.2 78.9 75.1 98.2
JJA 166.6 184.8 135.3 182.2 168.8 202.9
SON 107.7 146.4 76.1 106.1 115.9 157.2

Snow Height (cm) climax 48.8 42.5 18.8 38.0 54.3 70.6
SCD 1 cm (days) year 157.2 167.6 141.9 144.5 149.5 178.1
SCD 20 cm (days) year 108.3 118.3 25.2 88.3 116.4 145.5

Soil Temp. at 20 cm (◦C) DJF -1.5 -6.0 -0.4
MAM 4.3 4.0 2.4
JJA 18.9 20.3 16.4
SON 6.5 7.3 5.8

Soil frozen at 20 cm (days) year 86.8 130.1 44.5
Depth of soil frozen (m) DJF 20–40 40–80 0–20
WMO: World Meteorological Organization; MAT: mean annual temperature;
MAP: mean annual precipitations; SCD: snow cover duration;
D, J, F, M, A, M, J, J, A, S, O and N are the months of the year
climax: maximum snow depth, i.e. mean between mid-February and mid-March
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Appendix D What is the P value of Siberian soils?
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Appendix D What is the P value of Siberian soils?
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Table D.6: Spearman’s rank correlation coefficient matrix between P variables and selected
soil properties as well as fine root (diameter < 0.8mm) densities, computed separately
for each soil depth investigated. Bold coefficients are significant at p < 0.05. Depth is
in cm. Qw: phosphate ions in solution;m and n are the fitting parameters of Eq. 6.4; Pr :
diffusive phosphate ions; E: isotopically exchangeable phosphate ions; FRLD: fine root
length density; FRMD: fine root mass density.

Variable Ptot Porg Pinorg Qw m n Pr (1 day) E (1 day)

–5 cm depth
pH 0.100 0.191 -0.109 0.382 -0.300 -0.700 0.182 0.182
Clay fraction 0.282 0.500 -0.209 0.300 -0.227 -0.600 0.209 0.245
Organic C 0.300 0.682 -0.200 0.791 0.500 -0.773 0.655 0.673
CaCO3 na na na na na na na na
Al oxides 0.355 0.336 -0.091 -0.191 0.000 0.336 -0.191 -0.164
Fe oxides 0.036 0.045 -0.073 -0.209 0.373 0.509 -0.109 -0.109
Al + Fe oxides 0.064 0.173 -0.191 -0.364 0.118 0.555 -0.309 -0.291
Ptot — 0.345 0.627 0.527 0.055 -0.409 0.464 0.527
Porg 0.345 — -0.364 0.318 0.227 -0.345 0.100 0.173
Pinorg 0.627 -0.364 — 0.191 -0.055 0.009 0.364 0.336
Qw 0.527 0.318 0.191 — 0.609 -0.864 0.882 0.909
m 0.055 0.227 -0.055 0.609 — -0.318 0.709 0.709
n -0.409 -0.345 0.009 -0.864 -0.318 — -0.673 -0.736
Pr (1 day) 0.464 0.100 0.364 0.882 0.709 -0.673 — 0.982
E (1 day) 0.527 0.173 0.336 0.909 0.709 -0.736 0.982 —
FRLD -0.055 0.345 -0.364 -0.145 -0.518 0.018 -0.445 -0.418
FRMD 0.236 0.482 -0.209 0.118 -0.464 -0.364 -0.055 -0.027
–15 cm depth
pH 0.205 0.318 -0.045 -0.473 -0.755 -0.318 -0.227 -0.282
Clay fraction 0.296 0.609 -0.291 -0.055 -0.373 -0.491 0.009 0.018
Organic C 0.542 0.773 -0.100 0.109 -0.218 -0.536 0.045 0.064
CaCO3 na na na na na na na na
Al oxides 0.333 0.527 0.036 0.136 0.282 0.155 0.209 0.282
Fe oxides -0.091 0.027 0.027 0.091 0.455 0.500 0.173 0.227
Al + Fe oxides 0.150 0.336 0.009 0.155 0.409 0.245 0.145 0.227
Ptot — 0.456 0.688 0.337 0.018 -0.579 0.296 0.333
Porg 0.456 — -0.091 -0.027 -0.164 -0.118 0.045 0.073
Pinorg 0.688 -0.091 — 0.209 0.027 -0.309 0.255 0.273
Qw 0.337 -0.027 0.209 — 0.855 -0.436 0.600 0.664
m 0.018 -0.164 0.027 0.855 — -0.009 0.545 0.609
n -0.579 -0.118 -0.309 -0.436 -0.009 — 0.064 0.000
Pr (1 day) 0.296 0.045 0.255 0.600 0.545 0.064 — 0.991
E (1 day) 0.333 0.073 0.273 0.664 0.609 0.000 0.991 —
FRLD -0.091 0.264 -0.336 -0.636 -0.764 -0.145 -0.691 -0.736
FRMD 0.351 0.282 0.064 0.364 -0.018 -0.464 0.400 0.391
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Appendix D What is the P value of Siberian soils?

Table D.6: Continued.

Variable Ptot Porg Pinorg Qw m n Pr (1 day) E (1 day)

–30 cm depth
pH 0.237 0.273 0.032 0.228 -0.346 -0.793 0.533 0.551
Clay fraction -0.246 0.136 -0.464 -0.036 -0.300 -0.391 0.355 0.282
Organic C 0.400 0.843 0.009 0.474 0.328 -0.469 0.077 0.105
CaCO3 0.176 0.324 -0.040 0.027 -0.351 -0.512 0.081 0.081
Al oxides -0.410 -0.564 -0.209 -0.400 -0.355 0.318 -0.200 -0.291
Fe oxides -0.305 -0.536 0.018 -0.445 -0.127 0.600 -0.464 -0.536
Al + Fe oxides -0.465 -0.636 -0.209 -0.491 -0.245 0.500 -0.400 -0.491
Ptot — 0.656 0.870 0.825 0.565 -0.661 0.205 0.328
Porg 0.656 — 0.282 0.691 0.573 -0.336 0.009 0.100
Pinorg 0.870 0.282 — 0.573 0.391 -0.500 0.236 0.318
Qw 0.825 0.691 0.573 — 0.745 -0.545 0.445 0.555
m 0.565 0.573 0.391 0.745 — -0.036 0.018 0.109
n -0.661 -0.336 -0.500 -0.545 -0.036 — -0.473 -0.536
Pr (1 day) 0.205 0.009 0.236 0.445 0.018 -0.473 — 0.982
E (1 day) 0.328 0.100 0.318 0.555 0.109 -0.536 0.982 —
FRLD 0.387 0.518 0.073 0.336 -0.173 -0.773 0.236 0.291
FRMD 0.155 0.336 -0.118 0.427 0.018 -0.655 0.636 0.618

–60 cm depth
pH -0.045 0.073 -0.200 0.436 0.400 -0.636 -0.491 -0.491
Clay fraction -0.145 -0.055 -0.082 0.045 -0.555 0.055 0.782 0.782
Organic C 0.027 0.509 -0.073 0.273 0.209 -0.264 0.182 0.182
CaCO3 -0.312 0.069 -0.461 0.144 0.327 -0.471 -0.649 -0.649
Al oxides -0.264 -0.300 -0.127 -0.491 -0.191 0.718 0.100 0.100
Fe oxides -0.164 -0.127 -0.027 -0.482 -0.073 0.664 -0.018 -0.018
Al + Fe oxides -0.264 -0.245 -0.109 -0.564 -0.227 0.718 0.027 0.027
Ptot — 0.382 0.973 0.555 0.036 -0.427 0.291 0.291
Porg 0.382 — 0.282 0.518 0.564 -0.327 -0.091 -0.091
Pinorg 0.973 0.282 — 0.455 -0.109 -0.355 0.373 0.373
Qw 0.555 0.518 0.455 — 0.509 -0.809 0.173 0.173
m 0.036 0.564 -0.109 0.509 — -0.291 -0.509 -0.509
n -0.427 -0.327 -0.355 -0.809 -0.291 — 0.100 0.100
Pr (1 day) 0.291 -0.091 0.373 0.173 -0.509 0.100 — 1.000
E (1 day) 0.291 -0.091 0.373 0.173 -0.509 0.100 1.000 —
FRLD 0.318 0.100 0.164 0.327 0.191 -0.373 -0.145 -0.145
FRMD 0.336 0.282 0.200 0.382 0.318 -0.273 -0.100 -0.100
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Table D.6: Continued.

Variable Ptot Porg Pinorg Qw m n Pr (1 day) E (1 day)

–100 cm depth
pH -0.615 -0.518 -0.591 -0.364 0.400 -0.109 -0.391 -0.391
Clay fraction 0.308 0.515 0.251 0.451 -0.847 -0.105 0.852 0.852
Organic C -0.228 0.378 -0.237 0.679 -0.287 0.164 0.342 0.342
CaCO3 -0.673 -0.359 -0.676 -0.284 0.387 -0.019 -0.387 -0.387
Al oxides 0.041 0.073 0.009 0.018 -0.309 -0.164 0.427 0.427
Fe oxides 0.164 -0.118 0.127 -0.127 -0.073 -0.055 0.291 0.291
Al + Fe oxides 0.118 -0.009 0.073 0.000 -0.255 -0.145 0.436 0.436
Ptot — 0.260 0.989 0.132 -0.191 0.246 0.241 0.241
Porg 0.260 — 0.209 0.409 -0.709 0.227 0.500 0.500
Pinorg 0.989 0.209 — 0.091 -0.145 0.245 0.173 0.173
Qw 0.132 0.409 0.091 — -0.227 0.555 0.736 0.736
m -0.191 -0.709 -0.145 -0.227 — 0.300 -0.655 -0.655
n 0.246 0.227 0.245 0.555 0.300 — 0.291 0.291
Pr (1 day) 0.241 0.500 0.173 0.736 -0.655 0.291 — 1.000
E (1 day) 0.241 0.500 0.173 0.736 -0.655 0.291 1.000 —
FRLD -0.114 -0.009 -0.055 0.173 0.191 0.273 -0.209 -0.209
FRMD -0.210 0.073 -0.136 0.100 0.209 0.264 -0.318 -0.318
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Figure D.1: Measurements of the concentration of phosphate ions in soil solution during
the isotopic dilution. “Litter” means all the dead plant material deposited on the soil
surface (senescing leaf litterfall, small branches and senescing understorey vegetation in
forests; senescing herbaceous vegetation in grasslands) that is to say mainly OL and OF
horizons, and eventually OH (at BAR, CHE, KRA and SAE) at the date of sampling.
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Figure D.2: Fit of the model of r (t)/R (Eq. 6.4). “Litter” means all the dead plant material
deposited on the soil surface (senescing leaf litterfall, small branches and senescing
understorey vegetation in forests; senescing herbaceous vegetation in grasslands) that is
to say mainly OL and OF horizons, and eventually OH (at BAR, CHE, KRA and SAE) at
the date of sampling.
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Appendix E

Decomposition of 15N-labelled litter and
fate of nitrogen derived from litter in
aspen forests and grasslands of
south-western Siberia
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Appendix E 15N-labelled litter decomposition and fate of N derived from litter

Table E.1: Composition of the understorey vegetation in aspen forests (herbaceous, shrub
and tree species with a height < 1.3m and a diameter < 1 cm) and herbaceous vegetation
in grasslands.

Site na Dominant speciesb

Aspen forest
BAR 14–18 Populus tremula L., Heracleum sibiricum L.
SAE 20–44 Populus tremula L., Carex pallescens L., Phlomis tuberosa L.
SAW 11–17 Populus tremula L., Athyrium filix-femina (L.) Roth,

Betula pendula Roth, Urtica dioica L.
TOM 16–29 Populus tremula L., Athyrium filix-femina (L.) Roth

Grassland
BAR 13–17 Bromopsis inermis (Leys.) Holub, Cuscuta europaea L.,

Festuca pseudovina Hack. ex Wiesb.
SAE 22–60 Bromopsis inermis (Leys.) Holub, Seseli ledebourii G. Don fil.,

Filipendula vulgaris Moench
TOM 20–21 Calamagrostis epigeios (L.) Roth, Bromopsis inermis (Leys.) Holub,

Alopecurus pratensis L.
anumber of species over 3 plot replicates; bprecisions in Chap. 5 (Brédoire et al. 2016)
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Appendix E 15N-labelled litter decomposition and fate of N derived from litter

Table E.3: Isotopic composition of the soil layers sampled. Mean δ 15N (‰) and standard
deviation of n samples.

Nat. Spring 2013 Spring 2014 Autumn 2014 Autumn 2015

Soil layer Ab n mean sd n mean sd n mean sd n mean sd

BAR forest
0–2.5 cm 2.53 3 3.88 0.40 3 8.36 4.74 3 6.50 1.11 3 7.79 0.67
2.5–5 cm 3.03 3 4.72 0.71 3 5.31 0.64 3 5.70 0.31 3 6.07 0.98
5–7.5 cm 3.74 3 5.37 0.92 3 6.98 0.55 3 5.87 0.47 3 5.29 0.29
7.5–10 cm 4.37 3 5.76 0.57 3 6.04 0.39 3 6.20 0.12 3 5.44 0.24
10–15 cm 4.61 3 6.06 0.58 3 6.92 1.19 3 6.24 0.09 3 5.99 0.07

SAE forest
0–2.5 cm 3.29 3 3.89 0.37 3 4.49 1.03 3 8.03 1.65 3 5.69 1.37
2.5–5 cm 3.92 3 4.31 0.06 3 3.89 0.54 3 6.24 0.90 3 5.22 0.17
5–7.5 cm 4.62 2 5.00 0.26 3 2.22 1.97 3 6.05 0.44 3 5.78 0.12
7.5–10 cm 5.52 2 5.76 0.46 3 3.15 1.13 3 6.42 0.57 3 6.13 0.17
10–15 cm 5.59 2 6.95 0.80 3 3.00 1.33 3 6.40 0.39 3 6.32 0.04

SAW forest
0–2.5 cm 2.56 3 5.37 1.81 3 14.74 10.17 3 15.52 1.44 3 8.52 1.53
2.5–5 cm 3.15 3 5.30 0.61 3 7.45 0.86 3 9.37 1.15 3 7.89 1.49
5–7.5 cm 4.06 3 5.38 0.49 3 6.46 0.47 3 6.32 0.54 3 6.46 0.34
7.5–10 cm 4.62 3 6.19 0.37 3 4.93 0.15 3 6.38 0.33 3 7.37 1.96
10–15 cm 4.70 3 7.74 1.57 3 5.76 2.02 3 6.32 0.15 3 6.88 0.78

TOM forest
0–2.5 cm 3.12 3 8.82 1.64 3 11.35 1.00 3 15.81 1.41 3 11.67 0.89
2.5–5 cm 3.59 3 6.64 0.49 3 7.76 0.74 3 10.83 0.80 3 8.77 0.64
5–7.5 cm 3.53 3 7.88 2.58 3 6.53 0.34 3 8.05 0.22 3 7.68 0.66
7.5–10 cm 4.17 3 6.12 0.22 3 7.38 0.40 3 7.46 0.93 3 6.88 0.96
10–15 cm 5.04 3 6.53 0.76 3 7.41 0.42 3 7.20 0.76 3 6.73 0.41

BAR grassland
0–2.5 cm 2.91 3 8.95 1.42 2 27.96 24.70 3 23.31 8.13 · · ·
2.5–5 cm 4.19 3 7.34 0.15 1 5.28 NA 3 7.72 0.56 · · ·
5–7.5 cm 4.86 3 7.31 0.29 1 2.26 NA 3 6.96 0.35 · · ·
7.5–10 cm 5.06 3 6.93 0.04 1 0.77 NA 3 6.34 0.29 · · ·
10–15 cm 4.35 3 6.57 0.12 1 -0.03 NA 3 6.42 0.15 · · ·

SAE grassland
0–2.5 cm 2.94 3 13.69 1.40 3 19.08 3.64 3 68.74 29.07 3 33.59 6.58
2.5–5 cm 6.67 3 7.39 0.21 3 9.73 0.83 3 17.94 5.45 3 11.11 2.00
5–7.5 cm 7.73 3 7.11 0.26 3 8.47 1.43 3 11.01 0.84 3 7.82 0.13
7.5–10 cm 8.02 3 7.30 0.23 2 8.50 2.12 3 8.15 0.36 3 6.99 0.16
10–15 cm 8.44 3 7.11 0.11 3 7.67 1.11 3 6.77 0.20 3 6.51 0.14

TOM grassland
0–2.5 cm 4.25 3 39.64 8.56 3 44.72 26.52 3 55.33 14.45 · · ·
2.5–5 cm 5.39 3 14.62 1.45 3 21.70 10.92 3 17.65 3.01 · · ·
5–7.5 cm 6.27 3 9.67 0.81 3 15.56 5.90 3 11.38 1.74 · · ·
7.5–10 cm 7.28 3 11.15 3.70 3 12.14 1.83 3 9.18 1.79 · · ·
10–15 cm 8.22 3 9.10 1.27 3 9.80 1.54 3 8.05 0.73 · · ·

Nat. Ab.: Natural abundance · : not available
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Titre : Impacts du changement global sur les cycles biogéochimiques de l’eau et des nutriments dans le système
sol–plante et conséquences pour la croissance de la végétation en Sibérie du sud-ouest

Résumé : Dans un contexte de changement global,
prédire l’évolution de la productivité de la végétation
dans le sud-ouest (SO) Sibérien reste un défi du fait
d’incertitudes fortes sur les processus régulant la dis-
ponibilité en eau et en nutriments. Nous avons mis en
évidence des relations entre cycles biogéochimiques,
climat et propriétés du sol sur six sites contrastés.

La croissance radiale des tiges de peuplier est prin-
cipalement sensible au bilan hydrique du sol en forêt de
steppe, au sud du SO Sibérien, alors qu’elle est stimulée
par de hautes températures estivales en sub-taïga, dans
le nord de la région.

Des mesures de terrain et des simulations du bilan
hydrique du sol ont montré que la fonte des neiges est
importante pour la recharge des réserves hydriques du
sol au sud. Au nord, ces réserves sont souvent rechar-
gées en automne. La fonte des neiges est alors associée
à du drainage. De plus, au nord, une épaisse couverture
de neige protège le sol du gel en hiver. La distribution

des racines fines est plus profonde en forêt de steppe
qu’en sub-taïga, impactée par le déficit hydrique et le
gel.

L’homogénéité du statut en phosphore (P) des sols
dans le SO Sibérien montre qu’il n’est pas encore très
impacté par la pédogénèse. Les stocks en P élevés, notam-
ment les formes disponibles pour les plantes, suggèrent
que le P n’est pas et ne sera pas limitant dans le futur.

La décomposition des litières aériennes et la libéra-
tion de l’azote (N) sont plus rapides en sub-taïga qu’en
forêt de steppe. Un fort drainage pourrait expliquer un
transfert profond du N dans les sols en sub-taïga. Ce-
pendant ces sols semblent efficaces pour retenir le N,
limitant les pertes pour le système sol–plante.

Mots-Clés : Sibérie du sud-ouest, changement global,
neige, température du sol, bilan hydrique du sol, cerne,
phosphore, azote, racines fines, isotopes, peuplier, prai-
rie

Title: Impacts of Global Change on the Biogeochemical Cycling of Water and Nutrients in the Soil–Plant System
and Consequences for Vegetation Growth in South-Western Siberia

Abstract: Predicting the evolution of vegetation pro-
ductivity in SW Siberia in the context of global change
remains a challenge because of major uncertainties
concerning the biogeochemical cycling and the plant-
availability of water and nutrients. We provided insights
on their relation to climate and soil properties, investi-
gating six contrasting sites.

Aspen stem radial growth is mainly sensitive to soil
water budget in the forest-steppe zone established in
the south of SW Siberia while it is enhanced by high
summer temperatures in the sub-taiga, in the north of
the region.

Field measurements and water budget simulations
revealed that snow-melt is important re-filling soil wa-
ter reserves in the south. In the north, these reserves are
mostly re-filled in autumn and snow-melt is associated
with drainage. A thick snow-pack also prevents soil from
freezing in winter in the sub-taiga. Water deficit and
soil freezing largely impact the distribution of fine roots
within the soil profile which is deeper in forest-steppe

than in sub-taiga.
The homogeneous soil phosphorus (P) status in the

region investigated revealed this nutrient has not been
yet very impacted by contrasting soil processes. High P
stocks, and in particular plant-available forms, suggest
P is unlikely to be limiting under current and future
conditions.

By contrast, we found differences in nitrogen (N)
status. Above-ground litter decay and the release of N
occurs faster in sub-taiga than in forest-steppe. Higher
drainage may explain deeper N transfer in sub-taiga
soils. However, sub-taiga soils also seem to be efficient
in retaining N, limiting losses from the soil–plant sys-
tem.

Keywords: south-western Siberia, global change,
snow, soil temperature, soil water budget, tree-ring,
phosphorus, nitrogen, fine roots, isotopes, aspen, grass-
land
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