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Pour finir, je tiens à remercier chaleureusement toutes les personnes, familles, amis, qui m'ont accompagnée et soutenue, de près ou de loin, pendant ces trois années. vii RÉSUMÉ Le contexte agricole actuel vise à réduire l'utilisation des produits phytosanitaires sur les parcelles. Dans ce cadre, la gestion des adventices consommant de grandes quantités d'herbicides est devenue une problématique majeure.

Afin de mettre en place un outil de gestion localisée des adventices par drone, cette thèse étudie l'adaptation du système d'acquisition (drone + dispositif multispectral) actuellement proposé par AIRINOV à la détection des adventices sur des cultures sarclées.

La chaîne d'acquisition a été modélisée afin d'évaluer l'impact de différents paramètres du modèle (filtres optiques et résolution spatiale) sur la qualité de la détection des adventices. Des orthophotographies et images ortho-rectifiées ont été acquises à l'aide d'un capteur multispectral (4 et 8 filtres) à des résolutions spatiales de 6 mm et 6 cm. Plusieurs méthodes de localisation des adventices adaptées à l'étude de ces images ont été développées. Elles reposent sur 1) l'analyse de la distribution spatiale de la végétation (détection de rang par la transformée de Hough et analyse de forme), 2) la classification spectrale des pixels (méthodes supervisées : LDA, QDA, distance de Mahalanobis, SVM). Enfin, une classification spectrale basée sur un apprentissage issu des informations spatiales été proposée, améliorant ainsi la détection des adventices.

Des cartes d'infestation des parcelles et de préconisation en pulvérisation localisée ont alors été créées.

LISTE DES TABLEAUX

I N T R O D U C T I O N

Dès la naissance de l'agriculture, l'Homme a été confronté à diverses difficultés pour entretenir ses cultures. La gestion des adventices constitue notamment un problème majeur. En effet, les adventices entrant en compétition avec la culture, entraînent des baisses de rendement et altèrent la qualité de la récolte. Dans la seconde moitié du XX ème siècle, le développement des machines agricoles, des engrais de synthèse et des produits phytosanitaires, tels que les herbicides, a permis d'intensifier l'agriculture en Europe, augmentant très fortement les rendements et assurant la sécurité alimentaire des pays européens. Cependant l'intensification de l'agriculture s'est accompagnée de pollutions environnementales. L'utilisation massive de produits phytosanitaires a notamment eu pour conséquences de dégrader les sols et la qualité de l'eau, et de représenter un risque sanitaire pour l'Homme.

Durant ces dernières décennies, une prise de conscience de la population a conduit l'Union Européenne à prendre des mesures visant à réduire les quantités de produits phytosanitaires utilisés sur les parcelles agricoles. Pour y parvenir, de nouvelles approches de gestion des parcelles doivent être mises en place. Actuellement, l'application d'intrants sur les grandes cultures se fait majoritairement de façon uniforme, c'est-à-dire à dose constante sur la surface de la parcelle. Malgré les nombreuses recherches autour de la gestion des adventices, peu de solutions sont réellement proposées aux agriculteurs pour réduire l'utilisation des produits phytosanitaires. Il devient donc nécessaire de mettre en place de nouveaux outils pour améliorer cette gestion. Le premier consiste en l'observation de la parcelle. En effet, il est important de pouvoir obtenir un « état des lieux », par exemple en localisant les adventices présentes, en les quantifiant et éventuellement en identifiant leur espèce, afin d'adapter les pratiques de contrôle. Cependant, cet « état des lieux » ne peut se faire visuellement par l'agriculteur sur des centaines d'hectares et nécessite donc la mise en place d'outils performants.

Au niveau de l'équipement, divers matériels agricoles proposés sur le marché, tels que les pulvérisateurs de précision, pourraient être appliqués au contrôle des adventices. Sur ces pulvérisateurs, les tronçons de la rampe de pulvérisation sont contrôlés séparément et de façon automatique grâce aux systèmes de positionnement par satellites. Dans certains cas, le contrôle « buse par buse » est possible. La pulvérisation localisée étant réalisable techniquement, son déploiement chez les agriculteurs permettrait une réduction des herbicides utilisés sur la parcelle. En effet, Carroll et Holden (2012) ont montré que la mise en place d'une pulvérisation localisée par coupure de tronçons, réalisée à partir de cartes d'infestation, peut réduire de 50% l'application d'herbicides. Ceci peut aussi représenter un intérêt économique pour l'agriculteur d'autant plus que les nouvelles technologies, telles que les drones, deviennent maintenant accessibles pour le monde agricole. Cependant, aucun outil ou service ne permet actuellement aux agriculteurs de localiser les adventices sur leurs parcelles, les obligeant à gérer chaque parcelle de façon globale. Proposer des cartes d'infestation les aiderait à adapter leurs pratiques culturales en fonction de la variabilité intra-parcellaire et à optimiser techniquement et économiquement la gestion des adventices.

Cette thèse, financée par AIRINOV (société spécialisée dans la cartographie agronomique par drone), a pour objectif de développer une méthode de localisation d'adventices sur les parcelles agricoles par imagerie aérienne. Grâce à l'acquisition d'images multispectrales de parcelles agricoles et la mise en oeuvre de traitements adaptés, AIRINOV produit des cartes d'estimation de différents paramètres agronomiques (cartes de biomasse, surfaces foliaires, taux de chlorophylle…). Actuellement, le principal service proposé par AIRINOV aux agriculteurs en grandes cultures consiste en un conseil en fertilisation azotée (sur colza et blé). Dans le but d'étendre ses services, AIRINOV souhaite proposer un conseil en gestion des adventices en fournissant des cartes d'infestation aux agriculteurs.

Le système d'acquisition d'images proposé par AIRINOV a été spécialement conçu pour l'étude des cultures. Composé d'une aile volante et d'un capteur multispectral, ce système couvre rapidement l'ensemble d'une parcelle et en acquiert des images à haute résolution spatiale (à l'échelle centimétrique). C'est pourquoi, celui-ci a été utilisé pour cette étude. L'étude porte sur l'adaptation du système d'acquisition à la détection des adventices et au développement d'une méthode de localisation des adventices.

Ce manuscrit est structuré en six chapitres.

Le premier chapitre présente le contexte agricole, dans lequel se situe l'étude. Les enjeux de la gestion des adventices y seront détaillés, ainsi que les moyens de lutte actuellement mis en place. Les avancées liées à l'agriculture de précision y sont décrites, et en particulier les évolutions autour du développement de nouveaux capteurs utilisés en télé-et proxi-détection pour la localisation des adventices.

Le deuxième chapitre consiste en un état de l'art sur les travaux déjà réalisés autour de la détection des adventices par imagerie. En particulier, les méthodes de localisation basées sur l'analyse spatiale et l'analyse spectrale sont étudiées afin d'identifier les méthodes applicables à la détection d'adventices par drone. Ce chapitre permettra de dégager la problématique de la thèse.

Les travaux réalisés pendant cette thèse reposent sur de nombreuses données expérimentales acquises à différentes échelles et avec divers matériels. C'est pourquoi, le troisième chapitre décrit l'ensemble des protocoles d'acquisition et de prétraitements mis en place, ainsi que les données obtenues. D'une part, des données multispectrales ont été acquises par drone et manuellement au sol, afin d'obtenir des images à différentes résolutions spatiales. Ces images ont servi à développer les différents algorithmes de localisation d'adventices ainsi qu'à créer une vérité terrain. D'autre part, des acquisitions en laboratoire et au champ ont permis d'obtenir des données hyperspectrales. Une base de données de spectres de réflectance1 de plantes a été constituée en laboratoire pour servir de support aux algorithmes développés par la suite. De plus des spectres de réflectance ont été acquis en extérieur afin de valider en conditions réelles les algorithmes développés.

Le quatrième chapitre évalue le potentiel de détection des adventices du système d'acquisition actuel. Pour cela, la chaîne d'acquisition des images multispectrales a été modélisée à partir de la base de données spectrales décrite dans le troisième chapitre. En faisant varier certains paramètres du modèle (résolution spatiale et filtres optiques), leur impact sur la détection des adventices est évalué. En particulier, cette modélisation est appliquée à la sélection de filtres optiques afin de déterminer quels sont ceux les plus adaptés à la discrimination entre cultures et adventices. De même, l'impact de la résolution spatiale sur la détection d'adventices de tailles variables est étudiée. Les travaux décrits dans ce chapitre visent à définir les paramètres d'acquisition optimaux pour la détection d'adventices par drone. Suite à l'étude de l'impact de paramètres de la chaîne d'acquisition sur le potentiel de détection des adventices, le cinquième chapitre présente les méthodes de discrimination entre cultures et adventices développées. Plusieurs méthodes spatiales et spectrales, adaptées à la détection d'adventices par drone, sont décrites et comparées dans ce chapitre. Des cartes d'infestation des parcelles sont alors créées à partir des algorithmes développés.

Le sixième chapitre propose des perspectives d'application de ce travail. Une analyse des besoins décrit les attentes des agriculteurs envers un service de gestion des adventices, et les premiers résultats d'une phase pilote de création d'un service sont présentés.

Une conclusion synthétise l'ensemble de ces travaux ainsi que les perspectives d'applications liées à la production de cartes de localisations d'adventices et au développement d'un service de gestion localisé par drone.

C H A P I T R E 1 : L ' A G R I C U L T U R E D E P R É C I S I O N A P P L I Q U É E À L A G E S T I O N D E S A D V E N T I C E S 1. LES ENJEUX DE LA GESTION DES ADVENTICES EN GRANDE CULTURE 1.1. LES ADVENTICES EN GRANDE CULTURE

En agronomie, une adventice, plus communément appelée « mauvaise herbe », correspond à toute plante poussant dans une parcelle cultivée sans y avoir été semée. Les adventices peuvent donc être aussi bien des espèces sauvages non cultivées, que des repousses des cultures précédentes.

La gestion des adventices constitue une problématique majeure pour les agriculteurs. Les adventices présentes sur les parcelles agricoles peuvent entrer en compétition avec la culture. En effet, celles-ci risquent d'absorber les différents éléments présents dans le sol indispensables pour la croissance de la plante, tels que l'eau ou divers nutriments (e.g. N, P, K…). De même, en poussant plus rapidement que la culture, les adventices sont susceptibles de limiter l'accès de la culture à la lumière indispensable à sa photosynthèse. Dans ces conditions non optimales pour la croissance de la culture, le rendement et la qualité de la récolte (e.g. teneur en protéines) risquent de diminuer, causant de réelles pertes économiques.

En 2009, la FAO2 (2009) a estimé que les baisses de rendement et de qualité dues aux adventices ont causé une perte de 95 milliards de dollars pour la production vivrière mondiale dont 70 milliards dans les pays pauvres. De même, [START_REF] Friesen | Economic losses caused by weed competition in Manitoba grain fields. I. Weed species, their relative abundance and their effect on crop yields[END_REF] ont pu observer des baisses de rendement de plus de 60% sur des parcelles fortement infestées d'adventices. De plus, la présence de graines adventices dans la récolte, comme les graines de moutarde dans le colza [START_REF] Frick | Weeds -when are they a problem?[END_REF], peut donner un mauvais goût au produit et engendrer une dépréciation lors de la vente. Dans d'autres cas, certaines adventices, telles que le datura, contiennent des toxines dangereuses pour le bétail ou pour l'homme. La présence de ces toxines dans la récolte la rend impropre à la consommation et engendre une perte économique. Enfin, la mise en oeuvre de la récolte peut être plus compliquée en présence d'adventices, aussi bien pour le tri des graines que pour le risque de bourrage des machines agricoles.

La gestion des adventices joue donc un rôle central dans la production agricole. Les principaux moyens de lutte contre les adventices utilisés en France peuvent être regroupés en plusieurs types :

-La lutte mécanique est principalement basée sur le travail du sol. Cette méthode consiste à détruire les plantules en les arrachant, en sectionnant les racines ou en recouvrant la plantule à l'aide d'outils auxiliaires du tracteur tels qu'une houe rotative, une herse ou une bineuse [START_REF] Pottier | Désherbage mécanique : adapter l'outil au contexte de l'exploitation[END_REF]. La lutte mécanique est dans certains cas combinée à la lutte chimique, comme pour le désherbinage qui associe un binage dans l'inter-rang et une pulvérisation localisée sur le rang. -La lutte chimique consiste à pulvériser des produits phytosanitaires (i.e. herbicides) sur la parcelle en pré-ou post-émergence de la culture [START_REF] Schaub | Mieux connaître les mauvaises herbes pour mieux maîtriser le désherbage[END_REF]. Selon leur mode d'action, les herbicides pénètrent dans la plante par les organes souterrains (graine en germination, racine, jeune tige avant émergence) ou aériens (feuilles, pétioles, tiges) : ils sont définis comme « racinaires » ou « foliaires ». Les molécules actives des herbicides éliminent alors les plantules en bloquant certains mécanismes biologiques de la plante, soit dans un organe précis (photosynthèse dans les feuilles, division cellulaire et élongation cellulaire dans les méristèmes), soit dans toute la plante (synthèse des acides aminés ou des lipides, perméabilisation des membranes cellulaires...) [START_REF] Gauvrit | Efficacité et sélectivité des herbicides[END_REF]. Les herbicides migrant dans la plante jusqu'au site d'action sont dits « systémiques », tandis que ceux agissant directement avec les surfaces en contact sont appelés herbicides « de contact ». Enfin, les herbicides employés sont soit sélectifs, c'est-à-dire spécifiques à certaines grandes familles (monocotylédones ou dicotylédones) soit totaux, (c'est-à-dire agissant sur l'ensemble des adventices voire des cultures présentes). -La lutte agronomique met en application les connaissances de la biologie et de l'écologie des plantes sur les pratiques culturales. Une des techniques largement utilisée en France, est la rotation des cultures sur une même parcelle, permettant de rompre le cycle de certaines adventices. De même, le décalage des dates de semis rend la parcelle moins propice à la levée de certaines adventices. D'autres techniques agronomiques consistent à augmenter la densité de semis ou à utiliser des cultures associées, ce qui favorise un recouvrement important de la parcelle et permet « d'étouffer » les adventices en augmentant la concurrence autour d'elles [START_REF] Valantin-Morison | Comment maîtriser la flore adventice des grandes cultures à travers les éléments de l'itinéraire technique ?[END_REF]TerresInovia, 2015).

Quel que soit le moyen de lutte utilisé, le désherbage doit être effectué à un stade jeune de la culture, stade pendant lequel celle-ci est plus sensible aux agressions extérieures.

En France, et dans la plupart des systèmes agricoles industrialisés, le moyen de lutte le plus répandu chez les agriculteurs est la lutte chimique. Ce moyen de lutte s'est largement répandu lors de la seconde moitié du XX ème siècle et a permis d'augmenter très fortement les rendements des cultures. Cependant, l'utilisation d'herbicides s'est accompagnée de divers problèmes liés au coût de leur utilisation, à leur impact sur l'environnement ou au développement de résistances. [START_REF] Caussanel | Nuisibilité et seuils de nuisibilité des mauvaises herbes dans une culture annuelle : situation de concurrence bispécifique[END_REF]. Les calculs tiennent compte du coût du traitement et de la valeur de la récolte.

Pour être rentable pour l'agriculteur, le traitement chimique des adventices est donc traditionnellement raisonné en fonction des espèces présentes, de leur stade de croissance et de leur densité sur la parcelle. De plus, les pesticides lessivés se retrouvent dans les cours d'eau, ce qui représente un enjeu à la fois écologique et économique pour la production d'eau potable. D'après les relevés de l'agence de l'eau, plus de 90% des eaux superficielles et plus de 60% des eaux souterraines échantillonnées en France présentent au moins un résidu de pesticide [START_REF] Trégouët | Bilan de présence des micropolluants dans les milieux aquatiques continentaux[END_REF].

Par ailleurs, lors de la pulvérisation, des gouttelettes ou des vapeurs de pesticides sont transportées par l'air. Ce phénomène de dérive est plus ou moins important en fonction de la taille des gouttelettes et des conditions météorologiques (e.g. présence de vent). Une partie des pesticides est alors transportée dans l'atmosphère et les eaux de pluies et se retrouve potentiellement en contact avec la population humaine, la faune et la flore avoisinantes [START_REF] Hilz | Spray drift review: The extent to which a formulation can contribute to spray drift reduction[END_REF].

Au niveau sanitaire, l'exposition de l'homme aux produits phytosanitaires peut engendrer le développement de maladies. Les récentes études de l'Institut National de la Santé et de la Recherche Médicale (INSERM, 2013) suggèrent un lien entre l'exposition aux pesticides (même à faible intensité) et certaines maladies (cancers, maladie de Parkinson) ainsi qu'un risque pour le développement du foetus ou de l'enfant.

DÉVELOPPEMENT DES RÉSISTANCES

Avec l'utilisation massive de certains herbicides, les phénomènes de résistance se répandent chez plusieurs espèces d'adventices. Les mécanismes de résistance sont dus à l'apparition naturelle de mutations. Lorsque la mutation confère à l'individu un avantage compétitif sur les autres, celui-ci se reproduira en plus grand nombre, transmettant son patrimoine génétique à ses descendants. Ainsi, l'utilisation intensive des mêmes herbicides sélectionnera les adventices ayant une mutation leur permettant de survivre. Par la suite, l'application du même herbicide sera inefficace sur ces adventices résistantes et sur leurs descendants ayant hérité de la mutation.

En France, Arvalis (2012) a répertorié 28 espèces d'adventices ayant développé des résistances à divers groupes d'herbicides (triazine, inhibiteurs de l'ALS, glyphosate…). Le nombre de cas de résistances augmente d'année en année, rendant le contrôle des adventices de plus en plus compliqué (cf. Figure 1). En effet, le nombre de modes d'action des herbicides disponibles étant relativement limité, l'utilisation de certaines familles d'herbicides risquerait de devenir inefficace pour lutter contre des espèces spécifiques d'adventices. [START_REF] Thornton | Spatial weed distribution and economic thresholds for weed control[END_REF][START_REF] Clay | Sampling Weed Spatial Variability on a Fieldwide Scale[END_REF]. En adaptant les pratiques culturales selon la variabilité intra-parcellaire, l'agriculture de précision permet alors d'optimiser les performances de l'exploitation à plusieurs niveaux (Tisseyre, 2012) :

-agronomique, en optimisant les rendements et la qualité de la récolte, -environnemental, en réduisant l'impact de l'agriculture sur l'environnement (en limitant le lessivage, la dégradation des sols…), -économique, en diminuant les coûts liés aux intrants, tout en gardant un bon rendement. L'agriculture de précision s'inscrit donc dans une logique d'agriculture durable, favorisant la pérennité de l'exploitation et limitant ses impacts négatifs sur l'environnement. C'est pourquoi, les pratiques de l'agriculture de précision se répandent de plus en plus en France, et d'autant plus rapidement que les technologies se perfectionnent. De nombreux outils sont actuellement proposés, permettant à l'agriculteur d'identifier et de visualiser les besoins de la parcelle facilement, à un coût abordable.

LES NOUVELLES TECHNOLOGIES DE L'AGRICULTURE DE PRÉCISION

Les nouvelles technologies occupent une place fondamentale dans l'ensemble des étapes de la gestion des parcelles en agriculture de précision. Le cycle de gestion localisée des parcelles (Figure 2) se compose de différentes étapes [START_REF] Taylor | A General Introduction to Precision Agriculture[END_REF] :

-La surveillance des parcelles où de nombreuses données sont collectées -Le traitement et l'analyse des données -La prise de décision, le choix d'une stratégie -L'application au champ Ces étapes sont reliées entre elles grâce au géoréférencement (ou géolocalisation) de l'ensemble des données. Ce procédé consiste à attribuer des coordonnées géographiques aux objets étudiés, ce qui permet de les situer sur une carte. Le géoréférencement est effectué à l'aide d'un Système de Positionnement par Satellites 4 (GPS, GLONASS…) pour obtenir la localisation relative ou absolue de la zone à étudier et à traiter. Les capteurs disponibles permettent d'étudier de nombreux paramètres sur la parcelle, allant de la mesure des caractéristiques du sol [START_REF] Adamchuk | On-the-go soil sensors for precision agriculture[END_REF]) à l'aide de capteurs électriques, électrochimiques ou mécaniques, à la mesure du rendement à l'aide de capteurs massiques et volumétriques embarqués sur les machines de récolte [START_REF] Zwaenepoel | L'agriculture de précision[END_REF].

Pour le suivi de la croissance et de l'état sanitaire des cultures, les capteurs optiques et radiométriques sont principalement utilisés aussi bien dans les machines agricoles que dans les drones ou les satellites. Ceux-ci mesurent l'énergie lumineuse renvoyée par la plante et permettent de déduire certaines informations (activité chlorophyllienne, état sanitaire, etc.) sur la plante. En fonction des caractéristiques des capteurs, les résolutions spatiales et spectrales (Définition : cf. Chapitre 3, Partie 2.1.2.1) des données acquises seront plus ou moins adaptées à la détection d'objets de petites tailles ou à la discrimination d'éléments proches spectralement [START_REF] Brown | Site-specific weed management: sensing requirementswhat do we need to see?[END_REF].

Actuellement, dans le domaine de la gestion des adventices, quelques capteurs commerciaux pouvant être embarqués sur les machines agricoles sont proposés pour détecter les adventices sur du sol, tels que le WeedSeeker® (société Trimble) et le DetectSpray [START_REF] Felton | Spot spraying[END_REF]. Cependant, dû à leurs faibles résolutions spatiales et spectrales, ces outils présentent certaines limites : détection impossible des adventices dans le rang, mauvaise détection des adventices de petite taille [START_REF] Blackshaw | Factors Affecting the Operation of the Weed-Sensing Detectspray System[END_REF]. De plus, le champ de vision de ces capteurs étant faible, plusieurs d'entre eux doivent être positionnés sur une même machine agricole afin de visualiser une surface suffisamment grande, ce qui représente un coût important pour une surface donnée. C'est pourquoi, des travaux de recherche se sont intéressés à l'imagerie aérienne pour détecter les adventices à l'aide de capteurs multi-ou hyperspectraux embarqués dans les drones et les satellites, afin d'obtenir des images de meilleures résolutions spatiale et/ou spectrale.

Avec le développement de ces nombreux capteurs, l'agriculteur peut avoir accès à de très nombreuses données. Cependant, ces données ne sont généralement pas directement exploitables par l'agriculteur. C'est pourquoi, afin d'aboutir à une réelle application au champ, les données doivent être en premier lieu traitées et analysées.

TRAITEMENT DES DONNÉES

Les données brutes sont rarement utilisées en l'état. En effet, elles sont le plus souvent traitées pour être transformées en une information agronomique, telle que la surface foliaire, la quantité de biomasse, le taux de chlorophylle, la présence de maladie, etc. Les données brutes peuvent être traitées simplement (e.g. calcul d'indices) ou grâce à des modèles complexes (e.g. estimation de taux de chlorophylle).

Les données acquises étant géoréférencées, elles peuvent être représentées sous forme de cartes. Pour les images aériennes, des logiciels disponibles sur le marché permettent aujourd'hui de réaliser les procédures de prétraitement, de corrections radiométriques et géométriques. Néanmoins, en gestion des adventices, aucun outil ne permet à ce jour de traiter les images aériennes pour dresser une carte d'infestation. Toutefois, des méthodes de traitement d'images aériennes sont proposées dans la littérature (cf. Chapitre 2, Partie 2). Afin de faciliter le traitement et l'analyse des données, des Systèmes d'Information Géographique (SIG) peuvent être utilisés. Ces outils permettent de stocker, d'analyser et de visualiser les données de différents types (e.g. images aériennes, localisation d'objets, relief, cartes…). 2013) ont réalisé des cartes de préconisation en pulvérisation localisée (cf. Figure 3). Différentes stratégies ont été testées en proposant des seuils d'infestation à partir desquels la pulvérisation devait être déclenchée. Ces travaux ont montré qu'avec des cartes de préconisation en pulvérisation localisée, la quantité d'herbicides pulvérisée peut être réduite, sans diminuer significativement le rendement de la récolte.

PRÉCONISATION

Pour mettre en oeuvre ces préconisations, les machines agricoles embarquent diverses technologies permettant d'adapter les applications au champ.

APPLICATION AU CHAMP

Selon la préconisation qu'il reçoit et selon son équipement, l'agriculteur agira sur sa parcelle de façon plus ou moins localisée. De nombreuses machines agricoles étant équipées de GPS, l'agriculteur peut contrôler (manuellement ou automatiquement) les apports selon la localisation de la machine. Par exemple, pour l'application de pesticides, les boitiers électroniques peuvent lire les cartes de contours de la parcelle et la position de la machine puis envoyer les consignes d'ouverture et de fermeture des tronçons de la rampe de pulvérisation afin de limiter le recouvrement entre les passages du pulvérisateur. Bien que ces pulvérisateurs de précision ne soient pas encore utilisés pour la gestion des adventices, des travaux de recherche ont mis en application la pulvérisation localisée à partir de cartes d'infestations [START_REF] Stafford | Spatially selective application of herbicide to cereal crops[END_REF][START_REF] Nordmeyer | Patchy weed distribution and site-specific weed control in winter cereals[END_REF]. Ainsi, Lorsqu'un rayonnement énergétique atteint un objet (e.g. une feuille de la plante), l'énergie incidente est réfléchie, absorbée ou transmise dans différentes proportions (cf. Figure 4). 

𝜌 = Φ 𝑟 Φ 𝑖 (1) 
La réflectance est la grandeur la plus largement étudiée en télédétection.
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 Spectre et bande spectrale

Le spectre électromagnétique est l'ensemble continu des longueurs d'onde des rayonnements électromagnétiques [START_REF] Tempfli | Principles of Remote Sensing[END_REF]. Conventionnellement, nous séparons ce spectre en différentes portions : les rayons gamma, les rayons-X, les Ultra-Violets, le visible, l'infrarouge, les micro-ondes et les ondes radios (cf. Figure 5). En télédétection, les portions du visible et de l'infra-rouge sont très majoritairement étudiées pour l'étude de la végétation. D'autres capteurs sont embarqués sur des satellites ou des machines au sol, comme les imageurs hyperspectraux. Ces outils acquièrent des images dans lesquelles chaque pixel est un vecteur représentant un spectre renvoyé par la zone représentée par le pixel. Ce spectre est acquis sous forme de centaines de bandes spectrales contigües, le plus souvent du visible à l'infrarouge moyen [START_REF] Chang | Hyperspectral Data Exploitation: Theory and Applications[END_REF].

Les caméras multispectrales sont des capteurs composés de quelques bandes spectrales comprises dans le visible et le proche infrarouge (de 400 à 1000 nm). Ces caméras acquièrent des images où la valeur de chaque pixel correspond à l'énergie lumineuse renvoyée par la zone projetée dans le pixel pour chaque bande spectrale. Ces capteurs plus légers sont embarqués aussi bien dans les satellites, les machines au sol que dans les drones.

SIGNATURE SPECTRALE DES PLANTES

Quelle que soit l'espèce, les plantes présentent un spectre de réflectance dont l'allure générale est similaire (cf. Figure 6). Les valeurs du spectre de réflectance pour les différentes longueurs d'onde varient néanmoins en fonction de la structure cellulaire des feuilles ou de leur 700 nm composition (eau, pigments). La structure et la composition des feuilles évoluent en fonction du stade physiologique de la plante, de son état sanitaire, de l'espèce ou de la réponse à différents stress.  Le proche infrarouge (700 à 1300 nm) :

Dans le proche infrarouge, le spectre présente un plateau avec une réflectance élevée. Ce plateau est dû à la structure cellulaire de la feuille (arrangement des cellules, parois cellulaires, espaces intercellulaires…). Cette structure est différente chez les monocotylédones et les dicotylédones, ce qui impacte la réflectance du plateau du proche infrarouge. Chez les monocotylédones, le mésophylle est uniforme et compact alors que chez les dicotylédones, il est divisé en un parenchyme palissadique constitué de cellules allongées et jointives et un parenchyme lacuneux, présentant de nombreux espaces intercellulaires. Ces espaces d'air et l'hétérogénéité des cellules entrainent une plus forte réflectance des feuilles [START_REF] Bousquet | Mesure et modélisation des propriétés optiques spectrales et directionnelles des feuilles[END_REF]. Ainsi, [START_REF] Gausman | Plant leaf optical properties in visible and near-infrared light[END_REF] a pu détecter une différence de réflectance au niveau du plateau de l'infrarouge entre monocotylédones et dicotylédones. La zone de transition entre les faibles valeurs de réflectance et le plateau est appelée la zone du « red-edge ». Ce red-edge, situé autour de 740 nm, permet de caractériser l'état physiologique de la plante [START_REF] Boochs | Shape of the red edge as vitality indicator for plants[END_REF][START_REF] Smith | Use of hyperspectral derivative ratios in the rededge region to identify plant stress responses to gas leaks[END_REF]. L'allure spécifique du spectre de réflectance de la végétation permet de différencier facilement la végétation d'autres objets (sol, bâtiments, eau…) par télédétection. De plus, les variations de spectre dues à la différence d'espèces, de stades ou des conditions de stress permettent de caractériser cette végétation. Dans le cadre de la gestion des adventices, des travaux de recherche s'intéressent à l'identification d'espèces ou à la différenciation des cultures et des adventices par télédétection (cf. Chapitre 2)

COMPARAISON DES OUTILS DE TÉLÉ-ET PROXI-DÉTECTION

De nombreuses études proposent des moyens de détection des adventices à partir du traitement d'images. Ces dernières peuvent être prises par des systèmes d'acquisition embarqués sur différents vecteurs : machines agricoles, drones, avions, satellites. Les images étudiées ont alors des résolutions spatiales très différentes (du millimètre à plusieurs mètres par pixel), permettant de détecter des objets de tailles variables. Les dispositifs varient également en termes de résolution spectrale (du nanomètre à plusieurs dizaines de nanomètres) et de nombre de bandes spectrales étudiées (une à plusieurs centaines). Selon les cas, les méthodes de traitement et les types de résultats liés à ces images ne seront donc pas les mêmes.

OUTILS D'ACQUISITION D'IMAGES

 Dispositifs à faible résolution spatiale L'application de la télédétection à la localisation des adventices a débuté dans les années 90. Les premiers travaux de recherche se basaient sur des images acquises dans 3 canaux RGB6 et d'autres acquises dans l'infrarouge par satellite ou par avion. La résolution spatiale était alors relativement faible, de l'ordre du mètre.

Les premiers travaux montrant le potentiel de la télédétection pour la gestion des adventices ont consisté à comparer des images aériennes de micro-parcelles homogènes de cultures et d'adventices plantées spécifiquement pour l'étude [START_REF] Menges | Light Reflectance and Remote Sensing of Weeds in Agronomic and Horticultural Crops[END_REF]. Les microparcelles de cultures et d'adventices étant spectralement très différentes, celles-ci ont pu être discriminées à partir de leur réflectance. D'autres travaux, en conditions réelles, ont pu localiser des espèces invasives dans des prairies. Certaines espèces en fleurs ou ayant des couleurs distinctives dans le visible ont pu être détectées par photographie aérienne [START_REF] Everitt | Using Remote Sensing to Distinguish Common (Isocoma coronopifolia) and Drummond Goldenweed (Isocoma drummondii)[END_REF][START_REF] Everitt | Use of Remote Sensing for Detecting and Mapping Leafy Spurge (Euphorbia esula)[END_REF][START_REF] Lass | Detection of Yellow Starthistle (Centaurea solstitialis) and Common St. Johnswort (Hypericum perforatum) with Multispectral Digital Imagery[END_REF].

La végétation ayant une réflectance bien plus grande dans l'infrarouge que dans le visible, les caméras multispectrales ont ensuite été largement utilisées pour les études agronomiques et pour la détection des adventices. Ces caméras prennent le plus souvent des images dans plusieurs canaux du visible et de l'infrarouge. Ainsi, [START_REF] Lamb | Evaluating the accuracy of mapping weeds in seedling crops using airborne digital imaging: Avena spp. in seedling triticale[END_REF] ont pu détecter des amas de folle avoine dans des champs de triticale à l'aide d'une caméra multispectrale embarquée dans un avion. Les images résultantes, de résolution spatiale comprise entre 50 cm et 2 m, permettaient de détecter la folle avoine lorsque sa densité était supérieure à une vingtaine de pieds.m -². À plus faible échelle, ces capteurs ont aussi été utilisés dans des satellites. Les images résultantes ont des résolutions spatiales faibles (de plusieurs mètres pour les images multispectrales), ne permettant pas de localiser des adventices isolées. Toutefois, [START_REF] Backes | Classification of weed patches in Quickbird images: verification by ground truth data[END_REF] ainsi que [START_REF] Castro | Broad-scale cruciferous weed patch classification in winter wheat using QuickBird imagery for in-season site-specific control[END_REF] ont montré que les amas d'adventices pouvaient être détectés sur les images satellitaires de Quickbird7 . Par exemple, à partir des images multispectrales de résolution spatiale de 2,8 m, [START_REF] Backes | Classification of weed patches in Quickbird images: verification by ground truth data[END_REF] ont pu détecter les amas de dicotylédones dont le diamètre était supérieur à 0,7 m.

Les bandes spectrales des capteurs multispectraux étant limitées en nombre et en résolution spectrale (plusieurs dizaines de nanomètres), des caméras hyperspectrales sont utilisées [START_REF] Varner | Detection of cockleburs (Xanthium Strumarium L.) in soybeans using hyperspectral imagery[END_REF]. Les images hyperspectrales résultantes combinent une information spectrale très détaillée avec l'information spatiale. Par exemple, [START_REF] Goel | Classification of hyperspectral data by decision trees and artificial neural networks to identify weed stress and nitrogen status of corn[END_REF] ont embarqué une caméra hyperspectrale dans un avion pour détecter les zones infestées d'adventices d'un champ de maïs. Les images hyperspectrales avaient une résolution spatiale de 2 m. L'ensemble de ces travaux montre qu'il est possible de détecter les adventices par avion ou satellite. Cependant, les images résultantes ont des résolutions spatiales d'un ou plusieurs mètres, ce qui ne permet pas de détecter des adventices isolées ou de petites tailles.

 Dispositifs à haute résolution spatiale Afin d'avoir une résolution plus élevée (de l'ordre du centimètre), les capteurs multispectraux sont embarqués dans des drones à ailes fixes ou multirotors. Les images résultantes sont des images à haute résolution sur une grande surface, adaptée à l'échelle d'un champ. Avec cette meilleure résolution spatiale, les adventices de petites tailles ont pu être détectées dans des cultures sarclées, telles que le maïs [START_REF] Vioix | Aerial detection and localization of weed by using multispectral and spatial approaches[END_REF][START_REF] López-Granados | Early season weed mapping in sunflower using UAV technology: variability of herbicide treatment maps against weed thresholds[END_REF].

Pour avoir une résolution encore plus élevée, des machines au sol, comme les tracteurs, peuvent servir de supports aux capteurs multispectraux et hyperspectraux. Plusieurs travaux de recherche ont pu détecter les adventices à partir du traitement d'images multispectrales (Burgos-Artizzu et al., 2011) afin de mettre en place des systèmes de pulvérisation en temps-réel (Lopez-Granados, 2011). Les images résultantes présentent l'avantage d'avoir une très haute résolution spatiale (jusqu'au millimètre) permettant d'aller jusqu'à de l'analyse de forme et une reconnaissance des espèces [START_REF] Weis | An Image Analysis and Classification System for Automatic Weed Species Identification in Different Crops for Precision Weed Management[END_REF][START_REF] Ahmed | Classification of crops and weeds from digital images: A support vector machine approach[END_REF]. Dans d'autres cas, l'utilisation de caméras hyperspectrales permet de combiner haute résolution spatiale et haute résolution spectrale, ce qui rend possible l'identification d'adventices de petites tailles [START_REF] Okamoto | Plant classification for weed detection using hyperspectral imaging with wavelet analysis[END_REF][START_REF] Piron | Selection of the most efficient wavelength bands for discriminating weeds from crop[END_REF][START_REF] Zhang | Hyperspectral species mapping for automatic weed control in tomato under thermal environmental stress[END_REF][START_REF] Hadoux | Weeds-wheat discrimination using hyperspectral imagery[END_REF]. Cependant, les données acquises sont très volumineuses, ce qui augmente fortement les temps de calcul et potentiellement les coûts de traitement et de stockage de ces données. Par ailleurs, l'acquisition d'images peut s'avérer complexe à mettre en place avec certaines caméras hyperspectrales. Par exemple, l'utilisation de caméras hyperspectrales à une dimension spatiale nécessite de l'associer à un système motorisé balayant la scène pour reconstruire une image à deux dimensions [START_REF] Hadoux | Weeds-wheat discrimination using hyperspectral imagery[END_REF]. Pour ces raisons, les imageurs hyperspectraux ne peuvent être embarqués que dans des satellites ou dans des machines au sol. Dans le premier cas, les images acquises couvriront une grande surface avec une résolution spatiale faible, rendant difficile l'identification de petits objets ; dans le deuxième cas, les images couvriront une petite surface avec une très haute résolution, rendant l'utilisation compliquée à l'échelle d'une parcelle.

OUTILS D'ACQUISITION PONCTUELS

 Dispositifs à faible résolution spectrale Actuellement, de nombreux capteurs à embarquer sur les machines agricoles sont commercialisés. Gebbers (2014) présente un état de l'art des capteurs disponibles pour l'agriculture de précision. Plusieurs capteurs sont proposés aux agriculteurs pour détecter les adventices dans l'inter-rang. Les capteurs utilisent majoritairement une ou deux bandes spectrales permettant de détecter la végétation sur un sol nu [START_REF] Baillie | Evaluating commercially available precision weed spraying technology for detecting weeds in sugarcane farming systems[END_REF]. Par exemple, le Weedit® (société Rometron) exploite des mesures dans l'infrarouge, zone où le sol et la végétation sont spectralement différents. De même, le WeedSeeker® (société Trimble) et prend des mesures dans le rouge et l'infrarouge, lui permettant de calculer des indices de végétation. Cependant ces outils ne permettent pas de détecter la présence de petites adventices si celles-ci ne sont pas en densité suffisante [START_REF] Robert | Factors Affecting the Operation of the Weed-Sensing Detectspray System[END_REF].

 Dispositifs à haute résolution spectrale D'autres capteurs plus précis spectralement peuvent être embarqués sur les machines, tels que le spectromètre. Cet outil mesure l'ensemble des variations du spectre sur une surface donnée pouvant refléter diverses caractéristiques de la plante. En recherche, le spectromètre est très utilisé pour définir les caractéristiques spectrales des plantes afin d'identifier ou de discriminer certaines plantes. La réflectance des principales grandes cultures et de plusieurs adventices associées a ainsi été étudiée pour en extraire les bandes spectrales les plus discriminantes [START_REF] Feyaerts | Multi-spectral vision system for weed detection[END_REF][START_REF] Vrindts | Weed Detection Using Canopy Reflection[END_REF].

Le nombre de variables à traiter (i.e. le nombre de longueurs d'onde) est très grand, ce qui peut impliquer des problématiques de réduction de données sans perte d'information. De plus, un spectromètre effectue une mesure pour un point (ou une surface) seulement, ce qui induit un temps long d'acquisition des données pour obtenir de nombreux points de mesure. La mesure sur une seule surface ne permet pas non plus de rendre compte de l'aspect spatial de la zone étudiée.

Le coût et les contraintes d'utilisation du spectromètre font que son utilisation se fait principalement dans le cadre de travaux de recherche, et très peu dans un but commercial.

De nombreux vecteurs et capteurs radiométriques sont donc disponibles pour discriminer cultures et adventices. Selon la combinaison capteur/vecteur, les résolutions spatiale et spectrale seront plus ou moins adaptées à la détection des adventices. En effet, de faibles résolutions spatiales (e.g. caméras embarquées sur les satellites) ne permettent pas de détecter les adventices en faible densité ou de petite taille, et de faibles résolutions spectrales (e.g. capteurs monobandes embarqués sur les machines agricoles) rendront impossible la distinction des cultures et des adventices sur le seul critère spectral. De plus, les dispositifs plus ou moins complexes à mettre en place seront adaptés à une utilisation commerciale (e.g. le WeedSeeker) ou pour la recherche (e.g. les spectromètres). Dans le cadre de la localisation d'adventices, le système d'acquisition doit donc combiner simplicité de mise en oeuvre et résolutions spatiale et spectrale suffisantes pour détecter de petits objets spectralement différents (i.e. culture, adventices, sol).

LE DRONE, UN VECTEUR ADAPTÉ À LA DÉTECTION D'ADVENTICES

La détection des adventices par imagerie est un sujet qui est traité depuis plusieurs décennies dans la littérature. Jusqu'à ces dernières années, les capteurs utilisés étaient embarqués sur des machines au champ ou sur des satellites. Avec le développement croissant des technologies, les drones sont venus compléter les supports à disposition. En effet, ce nouveau vecteur présente une solution intermédiaire entre la proxidétection et la télédétection et montre un réel potentiel pour des applications agronomiques telles que la localisation d'adventices [START_REF] Vioix | Aerial detection and localization of weed by using multispectral and spatial approaches[END_REF][START_REF] Rasmussen | Potential uses of small unmanned aircraft systems (UAS) in weed research[END_REF].

Dans le cadre de la création d'un service de gestion localisée des adventices, le système d'acquisition permettant de détecter ces dernières doit répondre à plusieurs contraintes. Tout d'abord, le système d'acquisition doit pouvoir détecter des adventices de petites tailles puisque la gestion localisée des adventices se fait à des stades très jeunes de la plante. Il est en effet très souvent conseillé aux agriculteurs de pulvériser dès l'émergence des adventices. Les ailes volantes, dont la hauteur de vol varie entre 50 m et 150 m en France, permettent d'acquérir des images dont la résolution spatiale est bien plus élevée que celle des images satellite ou des avions. Selon l'utilisation d'une aile volante ou d'un drone multirotor, dont la hauteur de vol peut atteindre une dizaine de mètres, la résolution spatiale des images varie entre environ 1 cm et 15 cm. La résolution semble donc suffisante pour détecter de petites adventices [START_REF] Peña | Quantifying Efficacy and Limits of Unmanned Aerial Vehicle (UAV) Technology for Weed Seedling Detection as Affected by Sensor Resolution[END_REF].

Ensuite, au niveau pratique, la gestion des adventices nécessite de la réactivité. En effet, dès la levée des adventices, leur détection doit être effectuée pour décider rapidement d'une intervention. Les délais de passages des satellites étant longs [START_REF] Pinter | Remote Sensing for Crop Management[END_REF] et l'acquisition des images dépendant beaucoup des conditions météorologiques (couverture nuageuse), l'utilisation du satellite ne permet pas d'être réactif pour une bonne gestion des adventices. Au contraire, le drone peut voler malgré la présence de nuages et son vol, simple à réaliser, peut être programmé très rapidement. L'acquisition dure relativement peu de temps : en une heure une aile volante peut photographier jusqu'à une centaine d'hectares (selon la résolution choisie). Cette méthode rapide à mettre en oeuvre, représente donc une alternative intéressante [START_REF] Vigneau | Imagerie aérienne par drone : exploitation des données pour l'agriculture de précision[END_REF].

Le drone permet de cartographier entièrement les parcelles avec une vitesse de couverture supérieure à celles des machines agricoles. Cette cartographie globale et rapide permet de réaliser des prévisions sur les applications à réaliser par la suite. À l'inverse, l'acquisition d'images par des machines agricoles est très souvent réalisée lors du passage de la machine pour un traitement spécifique ; l'application se fait donc en temps réel sans réelle possibilité d'ajuster la pratique en fonction des informations générales sur la parcelle. Par exemple, en connaissant le type d'adventices et les surfaces infestées avant le traitement, l'agriculteur pourrait sélectionner le produit à utiliser et ajuster les quantités dans la cuve de son pulvérisateur afin de réduire les volumes des fonds de cuve à gérer. De plus, la cartographie de la parcelle peut être utile pour comparer d'années en années l'évolution de divers paramètres, comme les surfaces infestées par les adventices.

Le drone est donc un outil adapté à la détection de petits objets (i.e. des adventices) sur des surfaces relativement étendues (i.e. des parcelles). Sa facilité de mise en oeuvre permet de faire une analyse de la parcelle de manière rapide, enjeu important dans le cadre de la gestion des adventices. C'est pourquoi, de plus en plus de travaux de recherche se basent sur cet outil [START_REF] Lan | Development of an airborne remote sensing system for crop pest management: system integration and verification[END_REF] 

CONCLUSION

La gestion des adventices est un enjeu majeur pour l'agriculture. L'utilisation massive des herbicides entrainant divers risques pour l'environnement et la santé humaine, des mesures environnementales ont été prises par l'Union Européenne visant à réduire les quantités d'herbicide pulvérisées sur les parcelles agricoles. De nouvelles solutions de gestion des adventices doivent donc être proposées aux agriculteurs. Avec le développement des nouvelles technologies, les techniques de l'agriculture de précision apporteraient une solution innovante pour l'agriculteur. Les adventices se développant non uniformément sur les parcelles, une gestion localisée des adventices est envisageable. Actuellement, des modèles de préconisation sont proposés, ainsi que des systèmes opérationnels d'application au champ, tels que les pulvérisateurs de précision. Cependant, aucun service ne permet d'obtenir une carte de localisation des adventices de la parcelle, permettant de réaliser les préconisations. Des travaux de recherche ont démontré le potentiel de la télédétection pour la détection des adventices. En effet, les plantes ayant des caractéristiques spectrales spécifiques, la mesure de leur réflectance par imagerie permettrait de les identifier. En particulier, l'acquisition d'images multispectrales par drone permet d'obtenir des images à haute résolution, sur des surfaces suffisamment grandes telles que les parcelles agricoles. Afin de proposer une méthode de localisation d'adventices adaptée aux images acquises par drone, un état de l'art de l'ensemble des méthodes d'analyse d'images développées pour la détection des adventices doit être réalisé. 7). À l'inverse, les adventices sont le plus souvent disposées ponctuellement sur la parcelle sous forme d'amas [START_REF] Clay | Sampling Weed Spatial Variability on a Fieldwide Scale[END_REF]. Les caractéristiques de cette distribution spatiale sont exploitées dans les méthodes de détection d'adventices. En effet, de nombreux travaux proposent des méthodes consistant à séparer le sol de la végétation dans un premier temps, puis à identifier les rangs de culture grâce à leur distribution spatiale. À partir de l'identification des rangs, la végétation présente dans l'inter-rang est considérée comme adventice. Afin de localiser les rangs de culture, de nombreux travaux utilisent des algorithmes de détection de lignes sur les images [START_REF] Slaughter | Autonomous robotic weed control systems: A review[END_REF], tels que la transformée de Hough [START_REF] Hough | Method and means for recognizing complex patterns[END_REF]. Cette méthode se base sur un changement de l'espace de représentation, par Les détections basées sur l'analyse de forme montrent de bons résultats, particulièrement pour différencier des monocotylédones de dicotylédones, dont les formes sont bien distinctes (cf. Figure 8). Cependant les résultats restent sensibles à l'orientation des feuilles et à leur occlusion [START_REF] Brown | Site-specific weed management: sensing requirementswhat do we need to see?[END_REF]. Ces méthodes nécessitent aussi de mesurer les caractéristiques géométriques des nombreuses espèces afin de créer un large échantillon de référence, ce qui peut être contraignant. De plus, les méthodes basées sur l'analyse morphologique demandent des ordinateurs puissants et sont souvent coûteuses en temps de calcul rendant délicate des actions de pulvérisation en temps réel. Par ailleurs, dans la plupart des cas, les images analysées doivent atteindre une résolution spatiale suffisante (de l'ordre du millimètre) pour discerner la forme de chaque adventice.

C H A P I T R E 2 : T É L É D É T E C T I O N D E S A D V E N T I C E S : ÉT

A T D E L ' A R T E T P R O B L É M A T I Q U E

ANALYSE DE TEXTURE

L'analyse de texture correspond à l'étude de l'organisation spatiale des niveaux de luminosité sur l'image. Elle consiste à rechercher un motif de base se répétant dans les différentes directions de l'image. Un descripteur très utilisé en analyse de texture est la matrice de cooccurrence (Torres-Sánchez et al., 2014b). Ces matrices mesurent la fréquence à laquelle un couple de pixels avec un certain niveau de gris se répète dans l'image, pour une distance et une orientation données [START_REF] Haralick | Computer and Robot Vision[END_REF]. Les coordonnées de la matrice de cooccurrence représentent les indices des niveaux de gris de la texture étudiée. Les valeurs de la matrice correspondent au nombre de fois où la combinaison des deux niveaux de gris se retrouve sur l'image (cf. Figure 9). 

LES RÉSEAUX DE NEURONES

Les réseaux de neurones sont des systèmes composés de plusieurs couches : une couche d'entrée, une couche de sortie et de une à plusieurs couches cachées. La couche d'entrée comporte autant de neurones que de données à classer, et la couche de sortie comporte autant de neurones que de classes. Les couches cachées sont composées de neurones transformant les entrées en une sortie selon une fonction de combinaison et une fonction de transfert (cf. Figure 13). La fonction de combinaison réalise une combinaison linéaire des entrées, et la fonction de transfert transforme la combinaison selon une fonction prédéfinie. Chaque couche prend ses entrées sur les sorties de la précédente. 15 Classification And Regression Tree 2012) ont comparé deux types de réseaux de neurones pour discriminer des données spectrales de blé, de pois et de crucifères. Les crucifères étant en fleur présentaient une couleur jaune. La discrimination a d'abord été testée sur des spectres de réflectance de 400 à 900 nm, avec une résolution spectrale de 5 nm. Une seconde classification a été réalisée sur des données multispectrales, simulées à partir des spectres, et d'indices de végétation associés. Les quatre bandes spectrales sélectionnées pour la simulation correspondent à celles de QuickBird. Les deux réseaux de neurones comprenaient trois couches. Le premier était un perceptron multicouches, dont la fonction de combinaison calcule une combinaison linéaire des entrées. Le deuxième était un réseau à fonction de base radiale, qui calcule une distance entre les entrées. Les deux méthodes testées ont obtenu de bons résultats. Le réseau multicouche a permis de discriminer correctement plus de 98,7 % des spectres de réflectance et plus de 98,1 % des données multispectrales combinées aux indices de végétation. Le réseau à base radiale a discriminé 80 % à 100 % des spectres de réflectance, selon l'année d'acquisition des données, et plus de 92,1 % des données multispectrales couplées aux indices. De Les réseaux de neurones présentent donc de bons résultats. Cependant, l'entraînement du classifieur nécessite de nombreuses données d'entrées, et ce d'autant plus que la classification est complexe [START_REF] Burks | Evaluation of neural-network classifiers for weed species discrimination[END_REF]. Enfin, dans les études comparant les différents types de réseaux, les perceptrons semblent plus simples à mettre en place et ont des temps de calcul plus courts.

LES MACHINES À VECTEURS SUPPORTS OU SVM

Les SVM 16 sont des méthodes de classification binaires basées sur la recherche d'un hyperplan optimal, maximisant la distance entre les deux classes. L'hyperplan est dit optimal lorsque la marge, distance entre l'hyperplan et les échantillons les plus proches, est maximale (cf.

Figure 14). Les points les plus proches construisant cette marge sont appelés « vecteurs supports ». 

COMBINAISON DES MÉTHODES SPATIALES ET SPECTRALES

Dans son état de l'art sur la discrimination entre cultures et adventices, Zwiggelaar (1998) a montré que l'information spectrale seule ne peut suffire à discriminer culture et adventices avec robustesse. Il propose donc de combiner cette information avec l'information spatiale, telle que la distribution des rangs de culture.

L'ANALYSE D'IMAGES ORIENTÉE OBJET

Afin de combiner l'information spatiale et spectrale, [START_REF] Peña | Weed Mapping in Early-Season Maize Fields Using Object-Based Analysis of Unmanned Aerial Vehicle (UAV) Images[END_REF] ont mis en place une analyse d'image orientée objet pour détecter les adventices sur des images multispectrales acquises par drone (6 bandes spectrales dans le vert, rouge et infra-rouge) d'une parcelle de maïs. La résolution spatiale était de 2 cm. La première étape de cette analyse consiste à segmenter l'image en « objets » constitués de plusieurs pixels voisins homogènes. Plusieurs paramètres sont définis par l'opérateur pour caractériser le critère d'homogénéité des régions : couleur, forme, compaction, poids des bandes spectrales. Par la suite, l'algorithme se base sur l'analyse des objets plutôt que des pixels. Les méthodes de détection des adventices appliquées aux objets sont similaires à celles décrites dans les chapitres précédents. Les objets sont d'abord classés en sol et en végétation à l'aide d'un seuillage sur le NDVI. Les rangs de culture sont ensuite identifiés en cherchant des objets allongés déjà classés en végétation : ces objets sont fusionnés lorsque leur ratio longueur/largeur augmente après la fusion. Les adventices sont ensuite identifiées comme étant les objets de végétation en dehors du rang. Afin d'évaluer l'algorithme, la surface recouverte par des adventices a été mesurée sur plusieurs zones d'un mètre par un mètre. La fraction recouverte d'adventices a été comparée à celle calculée à partir des résultats de classification des images multispectrales. Le coefficient de détermination R² entre la fraction infestée réelle et celle issue des images est de 0,89. Ces bons résultats sont confirmés par 86 % de bonnes classifications des zones dans les catégories « peu infestée » (taux d'infestation inférieur à 5 %), « modérément infestée » (taux compris entre 5 et 20 %) ou « fortement infestée » (taux supérieur à 20 %).

Cette méthode a ensuite été testée sur les images multispectrales d'une parcelle infestée de tournesol (López-Granados et al., 2015). La résolution spatiale n'est pas précisée. Dans les zones fortement infestées (avec plus de 10 % de l'inter-rang recouvert d'adventices), l'algorithme développé détectait plus de 85 % des adventices. À l'inverse, dans les zones peu infestées (moins de 2,5 % de l'inter-rang recouvert d'adventices), l'algorithme détecte seulement 50 à 60 % des adventices. La méthode proposée semble donc surtout adaptée à la détection d'amas ou d'adventices développées. De plus, les paramètres de segmentation ont été réajustés par rapport à l'étude précédente afin d'être mieux adaptés à l'analyse de cette nouvelle parcelle. La méthode risque donc d'être difficilement généralisable.

Pérez-Ortiz et al. (2015a) ont également comparé une méthode d'analyse orientée objet, combinant information spatiale et spectrale à une méthode d'analyse spectrale, afin de détecter les adventices sur des images RGB d'une parcelle de tournesol. L'analyse spectrale consiste à réaliser une classification supervisée sur l'ensemble des pixels, avec une SVM. L'analyse orientée objet consiste en une première segmentation en objets homogènes et exploitait les histogrammes des valeurs des bandes spectrales pour chaque objet, la valeur de leur indice de végétation et certaines caractéristiques de forme (nombre de pixels dans l'objet, longueur et largeur de l'objet). Chaque objet est ensuite classé à l'aide d'une SVM. Les deux méthodes testées ont montré de bons résultats (taux de bonnes classifications supérieurs à 90 %), la méthode orientée objet présentant le meilleur taux de bonnes classifications (96,33 %). L'ensemble des méthodes orientées objet présente de très bons résultats. Cependant, les paramètres de segmentation ont été définis manuellement par l'opérateur et sont fixes. Ceux-ci sont donc adaptés à l'analyse de l'image testée, mais doivent être réajustés pour l'analyse d'autres images, acquises dans différentes conditions (stades, espèces, types de sol différents). Une telle méthode risque d'être difficilement généralisable pour un traitement entièrement automatique, adapté au développement d'un service pour les agriculteurs.

FUSION DES DONNÉES

La fusion de données consiste à exploiter simultanément l'information spatiale et spectrale afin de proposer une discrimination entre cultures et adventices. Les principales méthodes de fusion de données proposées dans la littérature consistent à créer un classifieur basé à la fois sur l'information spatiale et spectrale ou à réaliser une analyse probabiliste à partir des deux types d'information. [START_REF] Vioix | Conception et réalisation d'un dispositif d'imagerie multispectrale embarqué : du capteur aux traitements pour la détection d'adventices[END_REF] a mis en place un classifieur basé sur l'information spatiale et spectrale afin de discriminer cultures et adventices sur des images multispectrales acquises par drone. Pour cela, une dimension a été ajoutée au vecteur représentant chaque pixel. Cette nouvelle dimension correspond à la valeur du pixel après l'application du filtre de Gabor (cf. Chapitre 2, Partie 2.1.1) et représente donc l'information spatiale. Cette méthode présentant des résultats peu satisfaisants, elle a été comparée à une approche probabiliste, basée sur la théorie de Bayes, combinant les résultats de la méthode spatiale et de la méthode spectrale. Ce procédé a montré de bons résultats sur la discrimination de cultures monocotylédones et d'adventices en classant correctement toutes les adventices.

De façon similaire, Pérez-Ortiz et al. (2015b) ont réalisé une classification à partir de variables issues de l'information spatiale et spectrale, afin de discriminer cultures et adventices sur des images multispectrales six bandes de parcelles de tournesol. Leur méthode consiste d'abord à calculer l'indice de végétation NDVI des images et d'en extraire la végétation. Les rangs sont ensuite détectés à l'aide de la transformée de Hough (cf. Chapitre 2, Partie 2.1.1). Pour chaque pixel, la distance au rang le plus proche est calculée. Un pixel est donc représenté par ses valeurs de réflectance dans les différents canaux, une valeur de NDVI et une distance à un rang. Plusieurs méthodes de classification ont alors été testées sur l'ensemble de ces variables : la méthode des k-means, une SVM linéaire, une SVM à noyau et la méthode des k plus proches voisins. Ces mêmes méthodes ont aussi été testées sur l'information de réflectance seule des pixels et sur l'information de réflectance combinée à l'indice de végétation. La performance de l'algorithme a été mesurée en calculant la moyenne absolue des écarts entre le pourcentage de pixels classés en sol, culture et adventices, et les pourcentages correspondant à la vérité terrain. Pour l'ensemble des cas, la combinaison des informations « réflectance », « indice de végétation », « distance au rang » montrait de meilleurs résultats que lorsque les informations étaient prises séparément. D'après les quelques travaux décrits, la combinaison de l'information spatiale et spectrale présente une solution intéressante pour compenser les insuffisances de chacune des méthodes. Bien que les méthodes de classifications testées ne soient pas entièrement automatiques, ces études démontrent l'intérêt de fusionner l'information spatiale et spectrale pour une meilleure détection des adventices.

COMPARAISON DES MÉTHODES

Les méthodes de discrimination entre cultures et adventices proposées dans la littérature exploitent à la fois l'information spatiale et spectrale. Au niveau spectral, les nombreuses méthodes supervisées mises en place montrent de bons résultats. À l'inverse, très peu de méthodes non supervisées ont été proposées. Ceci peut s'expliquer par la complexité des données à discriminer.

La comparaison de l'ensemble des résultats reste délicate, puisque les méthodes de discrimination sont proposées pour des images acquises dans des conditions différentes et les méthodes de validation des résultats utilisées sont très variées. En effet, certaines validations calculent des taux de pixels correctement classés en culture ou adventice, d'autres calculent des pourcentages de pieds correctement classés, ou des taux d'erreur… Actuellement aucune méthode de discrimination ne semble être clairement plus performante que les autres. En effet, certaines études ont comparé différentes méthodes de classification sur les mêmes images (Feyaerts et Divers paramètres sont susceptibles de modifier les résultats de détection des adventices et leur robustesse. C'est pourquoi, l'impact des paramètres de l'acquisition sur la qualité de la discrimination doit être étudié. En particulier, ces paramètres doivent être confrontés au cas spécifique de l'acquisition d'images par drone. optique dont la bande spectrale est centrée dans le vert (550 nm), le rouge (660 nm), la zone du red-edge (735 nm) et le proche infrarouge (790 nm) (cf. Figure 16). Les capteurs CMOS transforment l'énergie reçue, celle des photons, en charge électrique, les électrons, avec différentes sensibilités selon la longueur d'onde (cf. Figure 16). Cette sensibilité, appelée efficacité quantique, est le ratio entre le nombre d'électrons émis et le nombre de photons incidents sur une surface photosensible. 

IMPACT DES PARAMÈTRES D'ACQUISITION SUR LA DÉTECTION DES ADVENTICES

𝜌(𝑖) = 𝑝(𝑖) × 𝜌 𝑟𝑒𝑓 (𝑖) 𝑝 𝑟𝑒𝑓 (𝑖) (6) 
Où :

-𝑖 est le numéro de la bande spectrale mesurée, -𝜌(𝑖) et 𝜌 𝑟𝑒𝑓 (𝑖) sont les valeurs de réflectance du pixel de l'image étudiée et l'image de la surface de référence respectivement, -𝑝(𝑖) et 𝑝 𝑟𝑒𝑓 (𝑖) sont les valeurs de sortie du capteur correspondant à l'énergie lumineuse mesurée pour le pixel de l'image étudiée et de l'image de la surface de référence.

Afin de compenser les variations de luminosité lors de l'acquisition, la réflectance est multipliée par un facteur de correction correspondant au ratio entre l'énergie lumineuse mesurée par le luxmètre au moment de la mesure de la référence et celle mesurée par le luxmètre pendant le vol :

𝜌(𝑖) = 𝑝(𝑖) × 𝜌 𝑟𝑒𝑓 (𝑖) 𝑝 𝑟𝑒𝑓 (𝑖) × 𝐿𝑢𝑥 𝑟𝑒𝑓 𝐿𝑢𝑥 (7) Où : 
-𝑖 est le numéro de la bande spectrale mesurée, -𝜌(𝑖) et 𝜌 𝑟𝑒𝑓 (𝑖) sont les valeurs de réflectance du pixel de l'image étudiée et l'image de la surface de référence respectivement, -𝑝(𝑖) et 𝑝 𝑟𝑒𝑓 (𝑖) sont les valeurs de sortie du capteur correspondant à l'énergie lumineuse mesurée pour le pixel de l'image étudiée et de l'image de la surface de référence -𝐿𝑢𝑥 et 𝐿𝑢𝑥 𝑟𝑒𝑓 sont les valeurs mesurées par le luxmètre pendant l'acquisition et au moment de la mesure de référence respectivement. 

ACQUISITIONS AU SOL

Les acquisitions au sol ont été mises en place afin d'obtenir des images avec une très haute résolution spatiale. En effet, les images obtenues présentent peu de mélanges spectraux, ce qui facilite le développement d'algorithmes complexes de détection des adventices, tels que ceux basés sur l'analyse spectrale. Par ailleurs, ces images ont servi de support à l'étude de l'impact de la résolution spatiale sur le potentiel de détection des adventices. Enfin, ces images ont été couplées à des données terrain afin de construire une vérité terrain pour valider les algorithmes de détection des adventices.

MATÉRIEL

Pour obtenir des images à très haute résolution spatiale, le dispositif multispectral a été monté sur une perche, de manière à être à 3 m de hauteur du sol (cf. Figure 17). La perche est tenue à la main et un niveau placé sur la perche permet de la maintenir à la verticale pendant l'acquisition. Avec ce dispositif, le dispositif multispectral acquiert des images d'environ 4x3 m, et d'une résolution spatiale de 6 mm/pixel. Suite au vol, l'acquisition au sol des images est réalisée. La personne tenant la perche équipée du dispositif multispectral, se déplace parallèlement aux rangs, sur cinq lignes espacées d'1,5 m, et ce à une vitesse régulière de 30 cm par seconde. Les images multispectrales sont acquises automatiquement, toutes les deux secondes. Avec cet espacement et cette vitesse d'avancement, le recouvrement entre les images est de 80 % le long des lignes et de 60 % entre les lignes, ce qui permet de recréer par la suite une orthophotographie à très haute résolution de la zone de 5x5 m.

Ainsi, pour chaque parcelle étudiée, un vol est effectué, suivi de trois acquisitions au sol réalisées sur trois zones différentes de 5x5 m.

TRAITEMENT DES IMAGES

Les images acquises au sol sont traitées radiométriquement et géométriquement et corrigées en réflectance, de la même manière que les images acquises par drone (cf. Chapitre 3, Partie 1.1.3.1). Après ces corrections, deux types d'images ont été produits. Tout d'abord, pour chaque zone, une orthophotographie (cf. Figure 19 b.) a été créée en regroupant l'ensemble des images multispectrales en une seule (cf. Chapitre 3, Partie 1.1.3.2). Ensuite, afin de comparer la qualité de détection des adventices avant et après la fusion des données réalisée lors de la création de l'orthophotographie, des images « brutes » ont été générées. Ces dernières ont simplement été reprojetées sur le MNS après les traitements radiométriques et géométriques, sans fusionner les différentes images afin de ne pas « lisser » l'information suite au moyennage des images. Dans ce manuscrit, ces images seront qualifiées d'orthoimagettes (cf. Figure 19 c.). Ces deux types d'images ont une résolution spatiale de 6 mm/pixel. Ces images sont ensuite recalées sur l'orthophotographie de la parcelle à 6 cm de résolution spatiale (cf. Figure 19 a.), à l'aide du logiciel PhotoScan, en faisant correspondre les bâches visibles sur les images acquises à la perche et par drone.

Une fois les orthophotographies des zones de 5x5 m créées, une vérité terrain a été réalisée en combinant ces images à un relevé terrain. L'estimation des taux de végétation a été réalisée pour les images multispectrales acquises au sol à une résolution spatiale de 6 mm/pixel. Après observation de ces images, un taux de végétation a été établi arbitrairement pour chaque pixel, en fonction de sa position par rapport à la composante de végétation. Les composantes de végétation ont été délimitées en réalisant un seuillage automatique des images NDVI, avec la méthode d'Otsu (cf. Chapitre 2, Partie 2.2.3). Le taux de végétation a ensuite été fixé à 1 pour les pixels au centre de la composante (pixel pur de végétation), 0 pour les pixels de sol (absence de végétation), et un gradient a été fixé pour les trois premières couches de pixels en bordure de la plante à des taux de végétation de 0,25 -0,5 -0,75 (cf. Figure 20). La parcelle de soja, d'une surface de 10,07 ha est située dans les Deux-Sèvre. Le soja est au stade premier noeud. Les adventices sont des chénopodes, des renouées liserons à un stade très développé, et des repousses de tournesol au stade cotylédon.

Pour chacune de ces parcelles, une orthophotographie de toute la parcelle a été créée à 6 cm de résolution spatiale, ainsi que trois orthophotographies des trois zones de 5x5 m, d'une résolution spatiale de 6 mm/pixels (cf. Figure 19). De plus des orthoimagettes ont été produites dans ces différentes zones de 5x5m. Pour chaque zone, une vérité terrain, localisant et identifiant les adventices a été produite, ainsi qu'une estimation des taux de végétation des pixels des images à 6 mm de résolution spatiale.

DONNÉES HYPERSPECTRALES : ACQUISITIONS ET PRÉTRAITEMENTS

Des spectres de réflectance ont été acquis dans des conditions de laboratoire et sur des parcelles d'essai en extérieur. Les premières acquisitions, en laboratoire, ont été mises en oeuvre afin de constituer une base de spectres de réflectance de plantes cultivées et d'adventices. Ces spectres ont pour but de servir de support à la modélisation de la chaîne d'acquisition visant à évaluer le potentiel de détection du système d'acquisition. Ensuite, afin de valider le modèle proposé, d'autres acquisitions ont été réalisées dans des conditions d'acquisition se rapprochant de celles par drone, sur des parcelles. Les spectres de réflectance acquis au champ ont alors été comparés à des images acquises par drone.

ACQUISITIONS EN LABORATOIRE

Les acquisitions réalisées en laboratoire ont pour but de constituer une base de données de spectres de réflectance. Elles ont donc été faites pour différentes espèces de cultures et d'adventices. Celles-ci présentant des caractéristiques (port, feuilles) variées, plusieurs protocoles ont été mis en oeuvre de manière à obtenir des spectres purs. Les conditions d'acquisition étant différentes pour certaines espèces, un prétraitement des spectres a été proposé, afin de rendre les spectres comparables entre eux. L'acquisition des spectres de réflectance a été faite à l'aide d'un spectromètre ASD 24 FieldSpec® 3 (cf. Figure 22). 

CULTURES

Maïs Tournesol Betterave Blé Colza

ADVENTICES DICOTYLEDONES

Chénopode

X X X Renouée liseron X X X Gaillet X X X ADVENTICES MONOCOTYLEDONES Panic X X Vulpin X X X Ray Grass X X REPOUSSES Blé X Colza X Tournesol X
Composé de trois capteurs spécifiques à différentes zones spectrales, ce spectromètre acquiert des spectres d'une étendue allant de 350 nm à 2500 nm. La résolution spectrale et l'intervalle d'échantillonnage varient en fonction de ces trois capteurs (cf. Tableau 4), la résolution spectrale étant la largeur à mi-hauteur de la réponse de l'instrument 25 , et l'intervalle d'échantillonnage étant la distance entre chaque point du spectre, ou chaque centre des bandes spectrales acquises (cf. Figure 23). Lors des acquisitions, le spectromètre peut être utilisé avec la fibre optique seule ou en ajoutant divers embouts (cf. Figure 22), tels qu'une sonde de contact équipée d'une source lumineuse interne ou des embouts composés de lentilles permettant de réduire l'angle du champ de vision et donc la surface d'acquisition. La surface foliaire des adventices à un stade jeune étant très réduite, l'utilisation de la sonde par contact, d'un diamètre de 3 cm, n'est pas envisageable pour acquérir des spectres purs. De plus l'acquisition sur la plantule à distance permet d'obtenir une réflectance prenant en compte le port de la plante, et donc l'orientation des feuilles, comme le ferait un drone. Afin de limiter le champ de vision du spectromètre à la seule zone de la plantule, un embout réduisant l'angle du champ de vision à 1° a été ajouté à la fibre optique.

Lors des premiers essais d'utilisation du spectromètre et de l'analyse des spectres résultants, des variations brutales de réflectance ont été remarquées à l'intersection des plages de mesure des trois capteurs, c'est-à-dire vers 1000 nm et 1800 nm (cf. Figure 25 ). En effet, celle-ci est composée de 57 fibres, réparties aléatoirement au sein de la fibre optique avec 19 fibres reliées à chacun des trois capteurs VNIR, SWIR 1 et SWIR 2 (cf. Annexe 1). Les trois capteurs ne voient donc pas exactement la même surface (cf. Figure 24). Pour pallier ce problème, un mélangeur optique peut être ajouté devant la fibre afin d'homogénéiser spatialement les radiations arrivant au mélangeur (cf. Figure 24). Ensuite, afin de s'assurer de l'efficacité de la paroi en U, dont le but est de rendre l'éclairage plus diffus, des acquisitions ont été réalisées sur une surface uniforme positionnée à différentes hauteurs. En l'absence de variation de luminosité en fonction du temps, les spectres ont été mesurés directement en radiance. Cinq hauteurs ont été testées à 4 cm, 6,5 cm, 8 cm, 17,5 cm et 22,5 cm. En l'absence de paroi, l'énergie lumineuse renvoyée par la surface homogène diminue quand la hauteur augmente. Avec la paroi en U, l'énergie lumineuse renvoyée par la surface est restée inchangée pour toutes les hauteurs sauf celle à 22,5 cm, pour laquelle la radiance a légèrement baissé. Ce test rapide a permis de valider l'utilisation de la paroi en U, qui assure une lumière homogène pour les éléments situés à une hauteur inférieure à 17,5 cm. Les acquisitions ont donc été réalisées pour des plantules dont la hauteur était inférieure à cette limite.

Enfin, un fond uniforme à placer au pied de la plante a été sélectionné. En effet, la surface de la plantule risquant d'être plus petite que la surface acquise par le spectromètre, la réflectance finale sera impactée par l'arrière-plan. Un moyen de supprimer l'effet de ce fond est de placer un fond dont le spectre de réflectance est constant pour l'ensemble des longueurs d'onde, et de normaliser les données par la suite (cf. Chapitre 3, Partie 2.1.4). Un fond noir de réflectance constante égale à 0,04 a donc été sélectionné. De plus, la réflectance quasi-nulle de ce fond permet de limiter les interactions avec la plante, tels que les effets de transmittance (cf. Annexe 2). À partir de ce dispositif expérimental, un protocole d'acquisition a été mis en place pour acquérir des spectres de réflectance de cultures ou d'adventices de petites tailles. De plus, pour les plantes dont la taille des feuilles est suffisante, un second protocole a été proposé pour acquérir des spectres de réflectance par contact.

PROTOCOLE D'ACQUISITION

Les acquisitions à distance et par contact suivent une même procédure pour obtenir des spectres de réflectance.

Avant de démarrer les acquisitions, le spectromètre est optimisé. L'optimisation consiste à mesurer deux paramètres : le Dark Current (DC) et l'énergie lumineuse incidente. Le Dark Current correspond au courant généré par les composants électriques de l'appareil et vient s'ajouter au signal extérieur mesuré. Ce courant varie principalement selon la température de l'appareil, c'est pourquoi il doit être mesuré plus souvent lorsque l'appareil chauffe. Lors de l'acquisition du DC, un obturateur est utilisé pour couvrir la fente du spectromètre, empêchant la lumière de passer. Le signal mesuré est alors celui interne au spectromètre. Le DC est automatiquement soustrait aux spectres acquis par la suite, jusqu'à l'acquisition d'un nouveau DC. L'énergie incidente est mesurée en positionnant une surface blanche de référence, le spectralon, au niveau de la zone d'acquisition. Cette surface est lambertienne et a une réflectance proche de 1 sur toute la plage spectrale étudiée. L'énergie mesurée par le spectromètre correspond alors à celle incidente.

Après cette optimisation, le spectromètre calcule automatiquement la réflectance des objets lors des mesures, en faisant le ratio entre le spectre mesuré et le spectre acquis pour le spectralon. Pendant l'acquisition des spectres, des mesures de référence doivent être effectuées régulièrement afin de prendre en compte les possibles perturbations des mesures, par exemple liées à la variation de température de l'appareil ou de la variation de la luminosité extérieure.

L'acquisition des spectres se fait sur trois objets différents : du sol, de la culture et des adventices. Ces objets, ayant des structures différentes, ils nécessitent d'avoir des protocoles adaptés. Dans les bacs, le sol étant facilement caché par la végétation, l'acquisition est réalisée par contact, afin de s'assurer de l'absence de végétation au niveau de la zone d'acquisition. Pour les plantes, deux protocoles sont proposés. Le premier, non destructif, est une acquisition par contact. Il permet d'acquérir un spectre de réflectance en un point de la plante étudiée. Le second, destructif, est réalisé à distance en déterrant la plantule et en la positionnant dans une encoche sous le spectromètre. Il permet d'acquérir le spectre de la plante entière. 

-𝒙 𝒎𝒆𝒍,𝒏𝒐𝒓𝒎 est le spectre de mélange normalisé, -𝒙 𝒗𝒆𝒈 est le spectre de végétation, -𝜇 𝑣𝑒𝑔 est la moyenne du spectre 𝒙 𝒗𝒆𝒈 , -𝜎 𝑣𝑒𝑔 est l'écart-type du spectre 𝒙 𝒗𝒆𝒈 , -𝒙 𝒗𝒆𝒈,𝒏𝒐𝒓𝒎 le spectre de végétation normalisé.

Cependant, le spectre de réflectance du fond noir « quasi-constant », s'avère être très légèrement décroissant, passant d'une valeur de 0,042 à 0,038 sur l'intervalle [400 1000] nm. Bien que cette baisse soit très faible, un test a été mis en place pour s'assurer de la similarité entre les spectres de mélanges normalisés et les spectres purs de végétation normalisés. À partir de ce tableau, les spectres de monocotylédones et de dicotylédones ont été traités séparément :

-Pour les dicotylédones, les spectres acquis sur fond noir utilisés doivent avoir un plateau dans l'infrarouge supérieur à 0,33 (moyenne des résultats obtenus sur les spectres de dicotylédones).

-Pour les monocotylédones, les spectres acquis sur fond noir utilisés doivent avoir un plateau dans l'infrarouge supérieur à 0,28.

Cependant, avec ces seuils, le nombre de spectres acquis à distance exploitables devient faible : les spectres de dicotylédones acquis sur fond noir, dont le plateau dans l'infrarouge est supérieur à 0,32. -les spectres de monocotylédones acquis sur fond noir, dont le plateau dans l'infrarouge est supérieur à 0,23 -les spectres acquis par contact.

Ces spectres ont alors servi de base pour modéliser la chaîne d'acquisition d'images par drone dans le cadre de l'évaluation du potentiel de discrimination du système d'acquisition. D'autres spectres de réflectance ont été acquis au champ afin de valider ce modèle.

ACQUISITIONS AU CHAMP

Ces acquisitions avaient pour but de valider le modèle de la chaine d'acquisition réalisé à partir de spectres de réflectance. Un protocole visant à acquérir des spectres de réflectance au sol et des images multispectrales par drone de mêmes zones a été mis en place, afin de comparer par la suite ces données.

PARCELLE D'ESSAIS

Les acquisitions ont été réalisées sur une parcelle d'essais composée de 60 micro-parcelles homogènes de blé réparties entre 10 variétés et ayant eu 6 niveaux de fertilisation différents (cf. Figure 28). Chaque micro-parcelle fait 7,5 m de large et 10 m de long. Le blé est à un stade épiaison.

De plus, 4 mires d'1x1 m, dont la surface est uniforme, ont été placées à proximité de la parcelle d'essais, afin d'être visible sur l'image acquise par drone.

ACQUISITIONS AU SPECTROMÈTRE

Sur 17 des micro-parcelles et sur les 4 mires, des acquisitions au spectromètre ont été réalisées. Le spectromètre utilisé pour ces acquisitions est un spectromètre CCS200 produit par Thorlabs. L'étendue des spectres acquis est de 200 à 1000 nm, avec une résolution spectrale de 2 nm. Pour acquérir les spectres, la fibre optique du spectromètre a été fixée sur une perche, de manière à positionner la fibre optique à la verticale, à 1 m au-dessus du blé. L'angle du champ de vision du spectromètre étant de 12°, la surface mesurée est un disque d'environ 20 cm de rayon.

Pour chaque micro-parcelle, dix spectres ont été acquis sur dix zones prises aléatoirement sur celle-ci, résultant sur une base composée de 170 spectres. Les mires ayant des surfaces bien plus petites, seulement deux spectres ont été acquis dessus. Les spectres ont ensuite été moyennés par micro-parcelle et par mire afin de comparer les données avec les images acquises par drone (cf. Figure 28).

ACQUISITION PAR DRONE

Un vol par drone a été effectué au-dessus de la parcelle d'essais, pour acquérir des images multispectrales à 6 cm de résolution spatiale. Une orthophotographie de la parcelle a alors été créée (cf. Chapitre 3, Partie 1.1.3.2).

Afin de comparer l'image avec les spectres de réflectance acquis au champ, les 17 microparcelles et les 4 mires ont été détourées manuellement sous QGIS. Pour chaque zone délimitée, la moyenne de la réflectance des pixels la composant a été calculée.

Ainsi, chacune des 17 micro-parcelles et des 4 mires est associée à un spectre moyen de réflectance et à une réflectance moyenne pour les 4 bandes spectrales de l'image. 

C H A P I T R E 4 : P O T E N T I E L D E D É T E C T I O N D U S Y S T È M E D ' A C Q U I S I T I O N

Cette partie a pour but d'évaluer le potentiel de détection des adventices en fonction du système d'acquisition. Afin de mesurer l'impact de ses différents éléments constitutifs, une chaîne d'acquisition simplifiée a été modélisée. La modélisation consiste à transformer des spectres de réflectance acquis en conditions de laboratoire, selon les différentes étapes de formation d'images multispectrales par drone, en valeurs de réflectance rendant compte des caractéristiques des éléments de la chaîne d'acquisition. Afin de valider le modèle, des données modélisées ont été confrontées à des données multispectrales acquises par drone sur des parcelles d'essais.

À partir de ce modèle simplifié, l'impact de différents paramètres d'acquisition sur la qualité de la détection des adventices peut être évalué, afin de les optimiser par la suite. Dans cette étude, deux paramètres ont été testés.

Tout d'abord, l'impact des bandes spectrales du capteur sur le potentiel de discrimination en culture et adventices a été évalué afin de proposer de nouveaux filtres optiques optimaux.

Ensuite, l'impact des mélanges spectraux des pixels sur le potentiel de détection a été évalué pour proposer par la suite une résolution spatiale adaptée à la détection d'adventices d'une taille donnée. 

MODÉLISATION DE LA CHAÎNE D'ACQUISITION

𝐼(𝜃) = 𝑑Φ 𝑑Ω (12) 

 Radiance

La radiance ou luminance énergétique L d'une source est l'intensité de la source par unité de surface apparente 𝑑𝑆 dans une direction donnée. La radiance se mesure en W.m -2 .sr -1 .

𝐿(𝜃) = 𝑑𝐼(𝜃) 𝑑𝑆𝑐𝑜𝑠𝜃 (13)

Soit :

𝐿(𝜃) = 𝑑²Φ 𝑑Ω𝑑𝑆𝑐𝑜𝑠𝜃 ( 14 
)
où 𝜃 est l'angle entre la normale à la surface 𝑑𝑆 et la direction considérée. 

PRÉSENTATION DU MODÈLE SIMPLIFIÉ

Le modèle a pour but de transformer les spectres acquis dans des conditions de laboratoire (cf. Chapitre 3, Partie 2.1.) en valeurs de réflectance correspondant aux pixels des images de parcelles acquises par drone. Dans ce modèle (cf. Figure 30), une surface au sol, composée de plusieurs objets (culture, adventice, sol) est projetée sur la surface d'un pixel. Le spectre de réflexion renvoyé par cette surface est alors transformé en un vecteur de 4 valeurs (une pour chaque filtre optique) constituant l'intensité du pixel. Plusieurs paramètres influençant ces valeurs, tels que l'illuminant, les caractéristiques du capteur ou les objets présents sur la scène, sont modélisés. Une partie de cette lumière incidente est réfléchie par la plante, puis reçue par le capteur du drone. Les acquisitions de spectres réalisées en laboratoire mesurant une réflectance, la partie réfléchie par l'objet, 𝒙 𝒐𝒃𝒋 , peut en être déduite comme étant le produit de la réflectance de la plante, 𝝆 𝒗𝒆𝒈 , par l'éclairement incident 𝑬 dans un demi espace en faisant l'approximation d'une surface lambertienne :

𝒙 𝒐𝒃𝒋 = 𝝆 𝒗𝒆𝒈 × 𝑬 𝜋 (16) 
Nous obtenons ainsi la radiance renvoyée vers le capteur du drone. Le capteur transforme alors ce signal lumineux en signal électrique qui varie en fonction de la longueur d'onde.

PRISE EN COMPTE DES CARACTÉRISTIQUES DU DISPOSITIF MULTISPECTRAL

Lors de l'acquisition, chacun des quatre capteurs CMOS du dispositif multiSPEC, enregistre une image dans une bande spectrale dont la largeur varie entre 10 et 40 nm, selon le filtre optique (cf. Chapitre 3, Partie 1.1.1). Pour un pixel de l'image, le spectre continu (en radiance) arrivant au niveau du dispositif multispectral est alors transformé en un vecteur de quatre valeurs (une pour chaque bande spectrale). 

𝝓 = 𝑆 × 𝜋 × 𝒙 𝒐𝒃𝒋 × 𝑠𝑖𝑛 2 (𝜃) = 𝑆 𝜋 × 𝑅² 𝑅² + 𝑑² 𝒙 𝒐𝒃𝒋 (17) Où : 
- Ainsi, à une micro-parcelle ou une mire correspond un vecteur moyen composé de 4 valeurs de réflectance modélisées (une pour chaque bande spectrale). De même, à ces différentes zones correspond un vecteur moyen de 4 valeurs de réflectance des pixels extraits de l'orthophotographie.

Les données modélisées et acquises par drone ont ensuite été comparées en affichant, pour chaque bande spectrale, les valeurs de réflectance modélisées en fonction des valeurs provenant de l'orthophotographie (cf. Figure 33). Le fort coefficient de détermination permet de valider l'utilisation de ce modèle dans un cadre de comparaison de valeurs de réflectance pour une même orthophotographie. Cependant, le biais apparaissant pour les différentes bandes spectrales montre que les données de réflectance ne peuvent être utilisées en absolu. transmittance des filtres optiques dans la chaîne d'acquisition, plusieurs filtres ont par la suite été comparés afin de sélectionner les mieux adaptés à la discrimination entre cultures et adventices. De même, en utilisant des spectres représentant des mélanges de sol et de végétation, l'impact de la résolution spatiale des images sur la détection des adventices a été évalué.

APPLICATION À LA SÉLECTION DE FILTRES

Les capteurs embarqués dans les drones sont le plus souvent composés d'un nombre limité de filtres optiques (généralement de 4 à 6) et ne permettent donc pas d'acquérir le spectre de réflectance complet des plantes au sol. Les filtres du dispositif multiSPEC ont été sélectionnés spécifiquement pour l'étude de la végétation, en particulier pour l'étude des besoins en azote des cultures, et non pour la discrimination entre cultures et adventices. Afin d'obtenir une détection idéale des adventices, les conditions d'acquisition doivent être optimisées. En particulier, la sélection de filtres permettrait d'obtenir des images adaptées à une discrimination spectrale entre cultures et adventices.

Les principales méthodes de sélection de bandes spectrales ou de longueurs d'onde rencontrées dans la littérature sont basées sur la construction de variables latentes dans un nouveau système de représentation, par exemple en appliquant une analyse discriminante ou une régression par les moindres carrés (cf. Chapitre 2 Partie 3.2). D'autres méthodes, basées sur une mesure de séparabilité (Feyaerts et Ces trois types de méthodes de sélection de bandes spectrales ont été testés et les résultats ont été comparés afin de sélectionner les bandes spectrales optimales à la discrimination entre cultures et adventices.

SÉLECTION DE VARIABLES PAR PROJECTIONS ORTHOGONALES

Parmi les méthodes de sélection de variables, Roger et al. (2011) ont développé une méthode adaptée aux données spectrales de grandes dimensions dont les variables sont fortement corrélées : la méthode CovSel.

Cette méthode sélectionne les variables (i.e. longueurs d'onde ou bandes spectrales) séparant au mieux différentes classes, dans l'ordre décroissant de leur intérêt. La méthode CovSel réalise une optimisation similaire aux combinaisons linéaires de la régression par les moindres carrés. Cependant, afin de sélectionner des variables, leurs combinaisons linéaires se font sous forme binaire c'est-à-dire de la forme : [0, 1, …, 0, 0…, 1]. La procédure de sélection répète deux étapes. D'abord, la variable maximisant la covariance avec les classes auxquelles appartiennent les spectres est sélectionnée :

𝐼 1 = 𝐴𝑟𝑔𝑀𝑎𝑥 𝑖 (𝒙 𝒊 𝑻 𝒀𝒀 𝑻 𝒙 𝒊 ) (28) 
Où :

- 

𝑑 𝑥→𝐶 𝑘 = √(𝒙 -𝝁 𝒌 ) 𝑇 𝚺 𝑘 -1 (𝒙 -𝝁 𝒌 ) (29) 
Où :

-𝒙 est vecteur de n bandes spectrales à classer -𝝁 𝒌 = (𝜇 𝑘,1 , 𝜇 𝑘,2 , … , 𝜇 𝑘,𝑛 ) est la valeur moyenne de la réflectance de chacune des n bandes. -𝚺 𝒌 la matrice de covariance de la classe k.

Les points sont alors rattachés à la classe la plus proche, c'est-à-dire avec la distance de Mahalanobis la plus faible (cf. Figure 37).

Pour cette méthode, la séparation des spectres de référence et des spectres à tester s'est faite de deux manières différentes. La première séparation proposée est le Leave-One-Out, où le nombre de spectres de référence est n-1, et où la validation se fait sur le n-ième spectre. Cette opération est répétée n fois en changeant de spectre de manière à faire la validation sur les n spectres. La seconde séparation a consisté à sélectionner aléatoirement trois quarts des spectres comme référence et de valider sur le dernier quart. Cette opération est répétée 10 fois. La méthode de sélection de bandes spectrales a donc été testée selon ces deux types de validation.

MESURE DE LA SÉPARABILITÉ DES LONGUEURS D'ONDE

Afin de prendre en compte les variabilités inter-et intra-classe lors de la sélection des longueurs d'onde, Feyaerts et van Gool (2001) proposent une mesure de « séparabilité », basée sur ces deux mesures de variabilité :

𝐹 1 2 (𝜆) = |𝜇 1 (𝜆) -𝜇 2 (𝜆)| √𝜎 1 2 (𝜆) + 𝜎 2 2 (𝜆) (30) 
Où :

-𝐹 1 2 (𝜆) est la mesure de séparabilité entre les classes 1 et 2 pour la longueur d'onde 𝜆 -𝜇 1 (𝜆) et 𝜇 2 (𝜆) sont les moyennes des classes 1 et 2 pour la longueur d'onde 𝜆 -𝜎 1 (𝜆) et 𝜎 2 (𝜆) sont les écart-types des classes 1 et 2 pour la longueur d'onde 𝜆 Les longueurs d'onde présentant la séparabilité la plus élevée sont alors sélectionnées. En effet, plus la séparabilité est élevée, plus la variabilité inter-classe (i.e. distance entre les moyennes) est élevée et plus la variabilité intra-classe (i.e. écarts-types des classes) est faible (cf. Figure 35).

PROCÉDURE DE SÉLECTION

COMPARAISON DES MÉTHODES

À partir de la modélisation de la chaîne d'acquisition, les spectres de réflectance sont transformés en des valeurs de réflectance correspondant aux bandes spectrales souhaitées. Après avoir simulé différents filtres, les trois méthodes de sélection de bandes spectrales présentées précédemment (CovSel, Mahalanobis, Séparabilité) sont appliquées aux données pour extraire les bandes spectrales les plus discriminantes entre cultures et adventices (cf. Figure 34 à Figure 37). Les résultats obtenus par les trois méthodes sont ensuite comparés pour sélectionner une nouvelle combinaison de filtres. Cette présélection pourra être par la suite affinée grâce à l'étude d'images multispectrales. Légende : L'énergie reçue par le capteur a alors été modélisée pour des largeurs de bandes spectrales allant de 5 nm à 60 nm. Les centres des bandes ont été sélectionnés en échantillonnant les spectres, tous les tiers de largeur de filtre. Par exemple, pour une bande spectrale de 40 nm, les centres seront : 413, 427, 440, 453, 467… Pour chaque largeur de filtre envisagée, la bande passante du filtre est modélisée et centrée sur toute la zone de sensibilité du capteur, c'est-à-dire entre 400 et 1100 nm.

L'intégrale sous la courbe de l'énergie mesurée par le capteur est alors calculée pour chaque bande spectrale, et la valeur obtenue est comparée à la valeur limite. Les filtres dont les valeurs obtenues sont inférieures à la valeur limite ne seront pas testés dans l'algorithme de sélection de bandes spectrales. à moins de 500 nm : la largeur doit être supérieure à 35 nm, -entre 500 et 600 nm : la largeur doit être supérieure à 15 nm, -entre 600 et 700 nm : la largeur doit être supérieure à 30 nm, -entre 700 et 800 nm : la largeur doit être supérieure à 10 nm entre 800 et 900 nm : la largeur doit être supérieure à 15 nm au-delà de 900 nm : la largeur doit être supérieure à 40 nm.

Ainsi, afin de proposer des bandes spectrales adaptées aux conditions d'acquisitions par drone, et de limiter le nombre de bandes à tester, trois largeurs de filtre ont été modélisées pour la sélection de bandes spectrales : 10 nm, 20 nm et 40 nm.

ESPÈCES À DISCRIMINER

Visant d'abord une application sur les cultures sarclées, la sélection de bandes spectrales a été réalisée pour la discrimination de ces cultures et des principales adventices associées :

-Tournesol vs. renouée, panic, ray-grass et chénopode -Betterave vs. renouée, vulpin, ray-grass et chénopode -Maïs vs. chénopode renouée, panic et ray-grass

De plus, la discrimination entre monocotylédones et dicotylédones semblant être la plus réalisable d'après l'état de l'art (cf. Chapitre 1, Partie 3.1.2 ), la sélection de bandes spectrales a aussi été faite sur ces deux groupes.

RÉSULTATS

Les résultats (cf. Figure 40 et Figure 41) sont affichés sous forme de 2 graphes présentant les six premières bandes spectrales sélectionnées comme étant les plus discriminantes. Le premier regroupe les résultats triés par espèces discriminées (cf. Figure 40), et le second par méthode de sélection (cf. Figure 41). Les filtres actuels sont figurés en gris. Pour les méthodes de CovSel et de mesure de séparabilité, les chiffres associés aux bandes spectrales correspondent à leur ordre de sélection. Les méthodes basées sur la sélection de combinaison affichent seulement 4 bandes 42).

𝑅 = 𝑐𝑜𝑣(𝜌 𝑖 , 𝜌 𝑖 ) 𝑉𝑎𝑟(𝜌 𝑖 )𝑉𝑎𝑟(𝜌 𝑗 ) (31)

Où :

-R est le coefficient de corrélation -𝜌 𝑖 et 𝜌 𝑗 sont respectivement les variables correspondant aux valeurs de réflectance des bandes spectrales 𝑖 et 𝑗 Les quatre bandes spectrales restantes sont :

-Centre : 420 nm ; largeur de bande : 40 nm -Centre : 510 nm ; largeur de bande : 20 nm -Centre : 700 nm ; largeur de bande : 10 nm -Centre : 720 nm ; largeur de bande : 10 nm Ces quatre bandes ont alors été sélectionnées et les filtres optiques correspondant ont été montés sur un nouveau dispositif multispectral. Filtres du dispositif multiSPEC Filtres complémentaires

APPLICATION À L'ÉTUDE DE LA RÉSOLUTION SPATIALE

Afin d'étudier le lien entre la résolution spatiale des images et le potentiel de détection des petites adventices, des pixels présentant différents niveaux de mélanges spectraux entre sol et végétation ont été modélisés. Pour cela, des spectres représentant un mélange de sol et de végétation ont été utilisés en entrée du modèle. En effet, sur la surface au sol projetée dans un pixel, le spectre de réflectance de cette surface est une combinaison linéaire des spectres des éléments présents. Les taux de mélange des différents objets sont impactés à la fois par la résolution spatiale des images et par la taille de ces objets. Ainsi, mélanger les spectres de plante et de sol en différentes proportions permet de modéliser plusieurs résolutions spatiales.

Une fois ces pixels de mélange modélisés, une classification visant à séparer le sol de la végétation, ainsi que les monocotylédones des dicotylédones a été mise en place. Les résultats ont été ensuite analysés en fonction des proportions de mélange entre le sol et la végétation dans les pixels.

Cette étude a été réalisée en considérant les 4 bandes spectrales du dispositif multiSPEC.

MÉLANGES SPECTRAUX DES OBJETS

Sur la surface au sol projetée dans un pixel, plusieurs objets peuvent être présents, comme de la végétation ou du sol. Le pixel aura alors une valeur correspondant à un mélange spectral de ces classes. Dans notre étude, un pixel représentant un mélange de sol et de végétation est nommé « pixel mixte », par opposition à un « pixel pur », qui correspond à un pixel présentant seulement du sol ou seulement de la végétation. Chaque spectre a été calculé en sélectionnant aléatoirement un spectre de végétation et un spectre de sol de la base de spectres acquis en laboratoire (cf. Chapitre 3, Partie 2.1). Parmi cette base, seuls les spectres acquis par contact ont été utilisés, afin de s'assurer de modéliser les mélanges à partir de spectres purs (cf. Équation 32). Le taux de végétation est pris aléatoirement selon la fonction de répartition du taux de végétation (cf. Chapitre 4, Partie 3.1.2).

MODÉLISATION DES PIXELS MIXTES

ESTIMATION DE LA FONCTION DE RÉPARTITION DES TAUX DE VÉGÉTATION

Sur les images multispectrales acquises à 6 mm de résolution spatiale, les taux de végétation avaient été estimés pour chaque pixel (cf. Chapitre 3, Partie 1.2.5.2). Les images des taux de végétation (cf. Figure 21 c), ont été dégradées à des résolutions spatiales plus faibles, jusqu'à 6 cm. Pour cela, les taux de végétation sur la surface correspondant au nouveau pixel ont été moyennés (cf. Figure 44). À partir des spectres mélangés, des pixels représentant des mélanges de sol et de végétation ont été modélisés. Ces pixels ont alors été classés afin d'étudier l'impact du taux de végétation sur la qualité de la classification. Pour la première classification entre sol et végétation, une procédure a été proposée pour des éléments correspondant à un mélange de deux classes, avec des taux de mélange variés. Cette procédure est composée de trois étapes :

- Les résultats de la classification sont alors représentés sous forme d'histogramme, où la proportion de pixels correctement classés est affichée en fonction du taux de végétation dans les pixels modélisés.

COMPARAISON AVEC LES IMAGES MULTISPECTRALES

Afin de confronter ces résultats à la réalité, la procédure précédente a été appliquée sur des pixels modélisés ainsi que sur des pixels issus des images multispectrales à 4 bandes spectrales, dégradés à 6 cm de résolution spatiale. Les taux de mélange de sol et de végétation ont été estimés à partir de la vérité terrain (cf. Chapitre 3, Partie 1.2.5.2).

Les valeurs des pixels ont été extraites des images multispectrales et chaque pixel a d'abord été classé entre sol et végétation selon la procédure décrite précédemment. Les pixels de végétation ont alors été séparés entre monocotylédones et dicotylédones.

Les résultats de classification ont été présentés en fonction des taux de végétation estimés dans les pixels. Les graphes de résultats issus de la modélisation et des images multispectrales ont alors été comparés. La classification a ensuite été testée en modélisant les pixels mixtes par tirage au sort du taux de végétation selon la fonction de répartition de la Figure 45. Les taux de mélanges et la fonction de répartition associée ont été estimés à partir de l'orthophotographie de maïs à 6 cm de résolution spatiale. Les résultats sont présentés sur un histogramme où la proportion de pixels détectés comme de la végétation est affichée en fonction du taux de végétation dans le mélange (cf. Figure 46). un plateau proche de 100 % de classification en végétation pour les pixels avec de forts taux de végétation.

Dans les deux cas, les pixels sont classés en végétation dans plus de 80 % des cas dés que le taux de végétation est supérieur à 0,5. Cependant, la phase de transition entre ces deux histogrammes est légèrement décalée. Ceci peut être expliqué par l'approximation des taux de végétation sur l'image de vérité terrain. Cette même classification a ensuite été testée en ajoutant les pixels de végétation mélangés avec du sol, selon la fonction de répartition des taux de mélange (cf. Chapitre 4, Partie 3.1.2). Les résultats sont présentés dans deux histogrammes où les pourcentages de pixels de monocotylédones et de dicotylédones correctement classés sont affichés en fonction du taux de végétation dans les pixels mixtes (cf. Figure 48). classification, le taux de végétation dans les pixels doit être maximal : pour les pixels purs (taux de végétation de 1), le pourcentage de bonnes classifications s'élève à 80 % pour les monocotylédones et les dicotylédones.

Ainsi, cette modélisation montre que les pixels doivent présenter un fort taux de végétation, ce qui est favorisé par une résolution spatiale élevée, pour pouvoir discriminer les dicotylédones des monocotylédones.

Par ailleurs, dans cette modélisation, les pixels avec de faibles taux de végétation sont majoritairement classés en « Monocotylédones ». Une explication possible serait que les mélanges des pixels de dicotylédones avec du sol pourraient abaisser les valeurs du plateau dans l'infra-rouge, censé être supérieur pour les dicotylédones, et les rapprocher de la classe « Monocotylédones ». La méthode de classification utilisée étant relativement simple, l'algorithme semble ne pas réussir à discerner deux classes complexes. résultats issus de la modélisation ne se retrouve pas aussi clairement dans ceux issus de l'image multispectrale.

DISCUSSIONS

Les histogrammes obtenus à partir des pixels modélisés et des images multispectrales ont une forme similaire. Par ailleurs, ces résultats représentant des probabilités de bonnes classifications pour des taux de végétation donnés dans des pixels, doivent être reliés à une information moins abstraite, telle qu'une taille d'adventice détectable.

APPLICATIONS À LA DÉTECTION DES ADVENTICES PAR DRONE

Afin de quantifier la faisabilité de détecter les petites adventices sur des images acquises par drone, les résultats précédents ont été reliés à une résolution spatiale des images et à une taille d'adventice détectable. En effet, les taux de végétation dans les pixels sont proportionnels à la couverture par la végétation de l'aire projetée dans le pixel ; la couverture par la végétation étant directement liée à la taille des adventices présentes, et l'aire projetée dans le pixel, à la résolution spatiale de l'image.

En représentant les plantes par des formes simples (un disque), les taux de végétation minimaux et maximaux pouvant être rencontrés dans les pixels, ont été calculés pour une résolution spatiale et une taille d'adventice donnée (cf. Annexe 5).

Lors de la localisation des adventices sur les images, la détection d'un seul pixel présent dans l'adventice suffirait à la localiser. C'est pourquoi, les intervalles de taux de végétation potentiels (cf. Tableau 13) sont calculés pour le pixel présentant la plus grande proportion de végétation parmi les pixels représentant une même plante (cf. Figure 50). En modélisant des pixels présentant plusieurs niveaux de mélanges entre sol et végétation, l'impact de la résolution spatiale sur la détection des adventices a été évalué. Tout d'abord, la faisabilité de détecter les adventices dans l'inter-rang (i.e. de la végétation sur du sol nu) a été considérée en classant les pixels mixtes en sol ou en végétation. Les résultats issus de la modélisation et comparés aux images multispectrales ont montré le fort potentiel de détection des adventices sur du sol nu. Pour la discrimination entre monocotylédones et dicotylédones, les résultats soulignent l'importance d'avoir peu de mélanges spectraux dans les pixels et donc une résolution spatiale élevée pour pouvoir séparer correctement ces deux classes.

Ces résultats de classification en fonction des taux de végétation dans les pixels font le lien entre la résolution spatiale des images et la taille des adventices détectables. Ce lien représente une information importante dans le cadre de la mise en place d'un service de gestion des adventices. En effet, la possibilité de détecter ou non les adventices de petites tailles doit être connue afin de mesurer le risque encouru pour le développement de la culture, et ce d'autant plus que la gestion des adventices est principalement réalisée à des stades jeunes des plantes.

CONCLUSION

À partir de la modélisation de l'ensemble de la chaîne d'acquisition, des spectres de réflectance acquis en conditions de laboratoire ont été transformés en valeurs à 4 dimensions, représentant les pixels des images multispectrales acquises par drone, dans des conditions d'acquisition en extérieur.

En faisant varier certains paramètres de ce modèle (bandes spectrales et résolution spatiale), leur impact sur la qualité des données multispectrales et sur le potentiel de détection des adventices a été étudié. En particulier, en modélisant diverses bandes spectrales dans la chaîne d'acquisition et en comparant les données de sortie selon plusieurs méthodes de sélection de longueurs d'onde, 4 filtres optiques ont été choisis comme étant les plus adaptés à la discrimination entre cultures et adventices. Ces nouveaux filtres ont été montés sur un second capteur multispectral et des vols ont été effectués par la suite avec ce nouveau dispositif et le dispositif multiSPEC, déjà utilisé.

Le second paramètre étudié est le mélange spectral dans les pixels et son impact sur la détection des adventices. Les mélanges spectraux étant directement liés à la résolution spatiale des images et à la taille des adventices présentes sur la parcelle, cette évaluation permettrait de préconiser une hauteur de vol pour la détection d'adventices données. Cette étude a montré le fort potentiel de détection d'adventices situées dans l'inter-rang et ce, malgré de faibles résolutions spatiales. En effet, ceci consiste principalement à détecter de la végétation sur du sol nu, c'est-à-dire à séparer deux classes bien distinctes spectralement. À l'inverse, la discrimination entre cultures et adventices nécessite une résolution spatiale élevée pour obtenir de bons résultats.

C'est pourquoi, la discrimination des adventices dans l'inter-rang montre le plus de potentiel, et semble la plus facilement applicable pour des résolutions spatiales de drone (entre 1 et 10 cm). Une méthode de détection des adventices a donc d'abord été développée à partir de la détection de rangs et en identifiant la végétation dans l'inter-rang comme des adventices. Afin de compléter cette première méthode, une classification spectrale a été mise en place sur les images acquises avec le dispositif multiSPEC et le dispositif complémentaire, c'est-à-dire sur des images à 8 bandes spectrales.

Cette partie 5 présente les méthodes mises en oeuvre pour localiser les adventices sur les images multispectrales de cultures sarclées.

Deux types de méthodes complémentaires ont été proposées.

Tout d'abord, une méthode dite «spatiale » a été développée, et consiste à détecter les rangs de cultures sur les images selon les caractéristiques géométriques du semis, puis à identifier les adventices comme étant la végétation hors de ces rangs. Cette méthode, relativement simple à mettre en place et applicable à des résolutions spatiales de quelques centimètres, permet de détecter les adventices situées dans l'inter-rang, et non celles dans le rang.

C'est pourquoi, afin de compenser les limites de la détection spatiale, une autre méthode dite « spectrale » a été testée. Celle-ci vise à classer en culture ou en adventices les pixels des images selon leurs valeurs de réflectance dans les différentes bandes spectrales. Les méthodes de classification spectrale étant très variées, plusieurs méthodes ont été comparées avant de mettre en place une procédure de discrimination entre cultures et adventices.

Enfin, une combinaison de la méthode spatiale et de la méthode spectrale a été développée afin de rendre la procédure de discrimination plus robuste, et capable de détecter les adventices sur l'ensemble de la parcelle.

MÉTHODE DE DISCRIMINATION SPATIALE

La partie 4 a montré un meilleur potentiel de détection par drone des adventices lorsqu'elles sont simplement détectées en tant que végétation. C'est pourquoi, la première méthode de discrimination entre cultures et adventices proposée est basée sur l'analyse spatiale des images de végétation.

En effet, les cultures sarclées étant semées en rangs parallèles avec un inter-rang constant, elles peuvent être identifiées sur des images acquises par drone en exploitant ces caractéristiques géométriques du semis (cf. Figure 7).

La végétation étant correctement détectée sur les images, l'analyse de sa distribution spatiale permettra d'identifier les adventices situées dans l'inter-rang.

La méthode de discrimination spatiale a été développée pour des images multispectrales acquises par drone, d'une résolution spatiale variant de 1,5 cm à 6 cm. Dans cet espace fréquentiel, l'orientation des rangs est d'abord calculée en mesurant l'angle entre l'axe des abscisses et la droite où figurent les pics et leurs harmoniques (cf. Figure 52).

Ensuite, l'image est segmentée selon les différentes orientations des rangs en appliquant un filtre gaussien au niveau des pics d'amplitude. La fonction gaussienne à deux dimensions est la suivante :

𝐺(𝑥, 𝑦) = 1 2𝜋𝜎² 𝑒 𝑥²+𝑦² 2𝜎² (34) 
Le filtre est déterminé automatiquement selon deux paramètres : la taille de la fenêtre d'observation et la valeur de l'écart-type σ de la gaussienne. La sélectivité de ce filtre, contrôlée par σ, doit être adaptée à la fréquence des rangs étudiés. Moins le filtre est sélectif (i.e. plus σ est élevé), moins la délimitation de la zone sera précise. À l'inverse, plus le filtre est sélectif (i.e. plus σ est faible), moins la localisation de chaque rang sera précise. Afin de calculer la taille de la fenêtre et l'écart-type, le paramètre d'entrée correspondant à l'inter-rang est utilisé. Les interrangs minimum et maximum de l'image sont alors approximés et leur fréquence correspondante est calculée. La taille de la fenêtre est ensuite déduite en supposant que le filtre ne couvrira que ces fréquences. Puis, σ est calculé de façon à obtenir une gaussienne correspondant à la largeur du filtre.

Une fois l'image fréquentielle filtrée, la transformée de Fourier inverse est calculée. Les zones correspondant aux différentes orientations sur l'image initiale apparaissent séparément. Une segmentation région est alors réalisée (cf. Figure 53). Cependant, le seuillage d'Otsu présente comme limite de séparer les données en deux classes dans tous les cas, ce qui fausse les résultats lorsque l'image ne présente qu'une seule classe. Par exemple, dans certains cas l'image peut ne présenter que du sol, sans présence de végétation, ou à l'inverse, un couvert de végétation ne laissant pas apparaitre de sol. Afin d'éviter un seuillage aberrant pour la séparation entre sol et végétation, le seuil NDVI est borné par les valeurs 0,1 et 0,4, définies empiriquement.

DÉTECTION DES RANGS DE CULTURE

Parmi les méthodes de détection des rangs, les méthodes basées sur la transformée de Hough (1962) se montrent robustes et rapides à mettre en oeuvre sur des images de parcelles (cf. Chapitre 2, Partie 2.1.1). La transformée de Hough appliquée à la détection de droites sur une image, permet de localiser les rangs de culture, semés en lignes droites. 3), l'échantillonnage de l'angle θ est borné à l'orientation calculée, plus ou moins 2 degrés. De plus, les pas de discrétisation pour ρ et θ, ont été déterminés afin d'être adaptés au mieux aux images. En effet, des pas trop élevés manqueraient de précision et risqueraient de créer un décalage entre les droites détectées et les rangs réels, risquant de confondre plusieurs droites. À l'inverse des pas trop faibles augmenteraient le nombre de calculs et ralentiraient le processus de traitement de l'image. Le pas a été déterminé de façon empirique. Le pas retenu pour θ est de 0,2 degrés et celui pour ρ est de 1 pixel.

Le tableau d'accumulateurs comptabilisant le nombre de sinusoïdes passant par chaque couple (ρ, θ) est alors créé puis normalisé. En effet, comme le tableau d'accumulateurs compte le nombre de pixels visibles sur une même droite, les zones de l'image où le nombre de pixels est le plus important (i.e. les diagonales) sont surreprésentées (cf. Figure 56 Afin de rendre l'algorithme plus robuste, la distance entre les rangs détectés est calculée. Cette distance est comparée à la largeur d'inter-rang théorique, indiquée en entrée de l'algorithme pour déterminer si certains rangs ont été oubliés ou ajoutés. Dans le cas d'oubli, une vérification est faite sur l'image. Si de la végétation est présente le long de la droite représentant le rang manquant, celui-ci est ajouté au niveau du maximum de végétation. À l'inverse, quand un rang est en trop, celui-ci est retiré : lorsqu'un inter-rang calculé est inférieur à celui théorique, les deux rangs de part et d'autre de l'inter-rang sont comparés. Celui avec le plus de pixels de végétation est conservé et l'autre est supprimé.

Une fois les couples (ρ, θ) sélectionnés et vérifiés, les droites correspondantes sont reportées sur l'image (cf. Pour chaque composante connexe traversant un rang, son aire, son orientation et la longueur de son axe minimum sont calculés. À partir de ces trois paramètres, les composantes sont classées en (cf. Figure 59) :

-« Culture » si l'aire est inférieure au carré de la largeur du rang : cas d'une plante isolée, sur le rang -« Indécis» si l'orientation correspond à celle des rangs, à plus ou moins 5 degrés, et si l'aire est supérieure au carré de la largeur du rang : cas de plusieurs plantes se recouvrant le long du rang -« Adventice » pour les autres cas, ou si l'axe minimum de la composante est supérieur à la largeur de l'inter-rang : cas d'une ou plusieurs plantes traversant plusieurs rangs Ces paramètres de classification ont été choisis empiriquement après observation d'images de betteraves et de maïs, afin de s'assurer de classer correctement « cultures » et « adventices ». En combinant l'analyse de forme à la détection des rangs, la surdétection des adventices liée à la délimitation des bords est fortement réduite, en particulier pour les images à résolution spatiale élevée (cf. Figure 61). La procédure de détection des adventices proposée a été développée spécifiquement par l'analyse d'images multispectrales acquises par drone, afin de localiser les adventices sur des parcelles de cultures sarclées. La méthode spatiale mise en place est basée sur l'étude de la distribution spatiale de la végétation. Celle-ci exploite à la fois la localisation des rangs et la forme des composantes de végétation. Cette méthode spatiale est adaptée à l'étude des parcelles agricoles, qui s'étendent sur de grandes surfaces où diverses variations peuvent apparaitre.

Cependant cette méthode présente quelques limites. Notamment, elle ne permet pas de détecter les adventices situées dans le rang. En effet, la première étape de la procédure consiste à séparer le sol de la végétation mais ne permet pas de distinguer différentes espèces. Ainsi, lorsqu'une adventice est présente dans le rang, parmi les pieds de culture, elle sera détectée comme culture par la méthode spatiale. D'autre part, cette méthode de classification fonctionne bien pour les cultures sarclées. En revanche, elle ne peut pas être appliquée aux cultures pour lesquelles les rangs ne sont pas distincts (e.g. blé, colza). C'est pourquoi, afin de compléter cette méthode, une analyse spectrale a été mise en place à partir des images multispectrales acquises avec les deux dispositifs multispectraux, c'est-à-dire à partir d'images à 8 bandes spectrales.

MÉTHODE DE DISCRIMINATION SPECTRALE

La méthode de discrimination spectrale entre cultures et adventices consiste à séparer ces deux classes selon les valeurs de réflectance des pixels de l'image. Suite aux résultats de la partie 4, de nouvelles bandes spectrales ont été sélectionnées pour acquérir des images adaptées à la discrimination entre cultures et adventices. De plus, la classification non supervisée ne permettant pas d'obtenir des résultats de classification satisfaisants pour la détection d'adventices par drone, de nouvelles méthodes supervisées ont été testées. Une nouvelle procédure de discrimination spectrale a donc été appliquée aux orthophotographies composées de huit bandes spectrales (cf. Chapitre 3, Partie 1.1). Ensuite, l'analyse du lien entre la résolution spatiale et le potentiel de détection des adventices a montré la nécessité de travailler sur des images d'une résolution spatiale fine. La procédure de discrimination spectrale a donc d'abord été mise en place sur des orthophotographies à 6 mm de résolution spatiale (cf. Chapitre 3, Partie 1.2). Par ailleurs, afin de mesurer l'impact de la fusion des images lors de la création de l'orthophotographie, sur la classification de ces images, la discrimination a aussi été réalisée sur les orthoimagettes (cf. Chapitre 3, Partie 1.2.4).

Cette procédure a pour but de comparer différentes méthodes de classification supervisée et le choix de données de référence servant de base d'apprentissage, pour mettre en place une discrimination spectrale entre cultures et adventices robuste et adaptée aux images multispectrales.

PROCÉDURE DE DISCRIMINATION SPECTRALE

La procédure mise en place dans un premier temps (cf. Figure 62) vise à comparer les méthodes de classification supervisées appliquées aux images composées de huit bandes spectrales.

Tout d'abord, le sol et la végétation ont été séparés en seuillant automatiquement les valeurs NDVI de l'image (cf. Chapitre 5, Partie 1.4). Plusieurs méthodes de classification ont alors été testées sur les pixels de végétation. Les méthodes sélectionnées sont les classifications supervisées principalement rencontrées dans la littérature (cf. Chapitre 2, Partie 2.2.2.1). En effet, la classification spectrale étant une étape délicate, l'utilisation de méthodes supervisées permettra d'obtenir de meilleurs résultats dans un premier temps. Afin de servir de référence, des pixels de l'image ont été sélectionnés à partir de la vérité terrain (cf. Chapitre 3, Partie 1.2.5.1) et chaque pixel de l'image a ensuite été classé. Pour chaque classification, les résultats ont été regroupés par composante de végétation permettant de reconstituer une carte de localisation des adventices. 

SÉLECTION DES PIXELS DE RÉFÉRENCE

Les méthodes de classification étant supervisées, des pixels de référence sont sélectionnés automatiquement à partir de l'image de vérité terrain. Chaque pixel de cette image appartient à l'une des 3 classes : culture, adventice, mélange de culture et d'adventice. Lors de la sélection, seuls les pixels de culture ou d'adventice sont intégrés à la base de données d'apprentissage.

CHOIX DES PIXELS DE RÉFÉRENCE

Afin d'optimiser la classification, les pixels de référence sont sélectionnés avec le moins de mélanges spectraux entre sol et végétation possibles. En effet, les résultats de l'étude de l'impact des mélanges spectraux ont montré de meilleurs résultats lorsque les pixels présentaient un taux de végétation maximum (cf. Chapitre 4, Partie 3.4). Pour procéder à cette sélection automatique, deux méthodes ont été utilisées afin d'éliminer les pixels avec des taux de végétation trop faibles.

La première méthode consiste à réaliser une érosion sur les composantes connexes de végétation, et à prendre aléatoirement les pixels de référence au centre de ces composantes. En effet, théoriquement, les pixels représentant le centre d'un pied de culture ou d'adventice devraient présenter très peu de mélange avec le sol. 

NOMBRE DE PIXELS DE RÉFÉRENCE

Le nombre de pixels de référence pouvant influencer la qualité de la classification, plusieurs effectifs de l'échantillon de référence ont été considérés pour réaliser des comparaisons.

Les effectifs ont été fixés arbitrairement à 50, 100 et 200 pixels pour des images d'environ 600x400 pixels, dont 15000 à 30000 pixels de végétation à classer selon les images.

Pour les deux méthodes de sélection de pixels de référence, les classifications sont testées pour ces trois effectifs différents de l'échantillon de référence. 

CLASSIFICATION DES PIXELS

CLASSIFICATION PAR RÉGIONS

Pour chaque méthode de classification, les pixels de végétation sont classés en culture ou en adventice à partir de l'échantillon de référence sélectionné automatiquement (cf. Chapitre 5, Partie 2.2.1). Une fois les pixels classés, les résultats sont regroupés par composante connexe de végétation. En effet, suite à l'observation des résultats de classification, les pixels en bordure de composante (i.e. présentant un fort taux de mélange entre le sol et la végétation) semblent être classés aléatoirement (cf. Figure 63). De plus, dans certaines composantes de végétation, quelques pixels peuvent apparaître mal classés. En regroupant les résultats par composante, ce « bruit » dû aux quelques pixels classés aléatoirement est supprimé.

Pour fusionner les résultats, un critère d'appartenance aux deux classes est calculé (cf. Équation 36). Les résultats de l'évaluation de l'impact du taux de mélange des pixels sur les résultats de classification (cf. Chapitre 4, Partie 3.4) ont montré que plus le taux de végétation était élevé, plus le pixel avait de chance d'être correctement classé. C'est pourquoi, le calcul du critère d'appartenance aux deux classes s'est fait en pondérant les résultats de classification par le taux de végétation estimé pour chaque pixel (cf. Chapitre 3, Partie 1.2.5.2) :

𝐶 𝑘 = ∑ (𝑡𝑥 𝑣𝑒𝑔,𝑖 × 𝑐𝑙𝑎𝑠𝑠𝑒 𝑖 (𝑘)) 𝑛 𝑖=1 ∑ 𝑡𝑥 𝑣𝑒𝑔,𝑖 𝑛 𝑖=1 (36) 
𝑎𝑣𝑒𝑐 𝑐𝑙𝑎𝑠𝑠𝑒 𝑖 (𝑘) = { 1, 𝑠𝑖 𝑙𝑒 𝑝𝑖𝑥𝑒𝑙 𝑖 𝑒𝑠𝑡 𝑐𝑙𝑎𝑠𝑠é 𝑑𝑎𝑛𝑠 𝑙𝑎 𝑐𝑙𝑎𝑠𝑠𝑒 𝑘 0, 𝑠𝑖𝑛𝑜𝑛 Où :

-𝐶 𝑘 est le critère d'appartenance à la classe 𝑘 pour la composante de végétation -𝑛 est le nombre de pixels dans la composante de végétation -𝑡𝑥 𝑣𝑒𝑔,𝑖 , est le taux de végétation estimé du pixel 𝑖 Si 𝐶 𝑘 est supérieur à 0,5, alors la composante de végétation est classée dans la classe 𝑘.

Chaque composante connexe de végétation est donc classée en culture ou en adventice selon les résultats de classification des pixels qui en font partie (cf. Figure 63). 

COMPARAISON DES MÉTHODES DE CLASSIFICATION

À partir de la procédure de discrimination décrite précédemment, trois comparaisons sont effectuées afin de proposer une procédure adaptée à la discrimination entre culture et adventice :

-2 méthodes de sélection des points de référence : selon la valeur NDVI du pixel ou selon sa position dans la composante connexe ; -3 effectifs d'échantillons de référence : 50, 100 et 200 pixels ; -6 méthodes de classification : Mahalanobis, analyse discriminante linéaire, analyse discriminante quadratique, SVM polynomiale, SVM à fonction à base radiale (RBF), SVM sigmoïde.

Ces comparaisons ont été effectuées sur les orthoimagettes de maïs et de betterave acquises à 6 mm de résolution spatiale (cf. Chapitre 3, Partie 1.2.4). Pour chaque image traitée, toutes les combinaisons « méthode de classification -effectifs de référence -méthode de sélection des points de référence » sont testées, ce qui représente 36 modalités différentes pour la procédure de discrimination appliquée à chaque image. Par ailleurs, les pixels de référence étant sélectionnés en partie aléatoirement, 10 répétitions sont effectuées pour chaque modalité en sélectionnant de nouveaux pixels de référence. La modalité permettant de discriminer au mieux la classe « culture » de celle « adventice » est sélectionnée à partir de cette comparaison.

COMBINAISON DE L'INFORMATION SPATIALE ET SPECTRALE

Après avoir sélectionné la méthode spectrale à mettre en place pour discriminer cultures et adventices, celle-ci est combinée à la méthode spatiale. En effet, les méthodes spectrales proposées sont supervisées. Elles nécessitent donc de sélectionner des points de référence avant de classer les données. Cependant, il n'est pas envisageable de sélectionner manuellement des adventices sur l'orthophotographie dans le cadre de la mise en place d'un service commercial. Rendre automatique la sélection des données d'apprentissage grâce à l'information spatiale, permet de régler la principale contrainte de sélection de points de référence nécessaires à la classification supervisée.

La méthode spatiale étant appliquée à des orthophotographies, les résultats obtenus doivent d'abord être reportés sur les orthoimagettes utilisées pour la classification spectrale. Les pixels de référence pourront alors être sélectionnés afin de classer l'orthoimagette.

EXTRACTION DE L'INFORMATION SPATIALE

L'algorithme de détection des adventices par analyse spatiale (cf. Chapitre 5, Partie 1) a été appliqué sur les orthophotographies de 5x5 m acquises à 6 mm de résolution spatiale (cf. Chapitre 3, Partie 1.2), résolution pour laquelle l'algorithme spectral a d'abord été testé.

Trois images de résultats issus de l'analyse spatiale ont été extraites :

-La localisation des adventices -La position des rangs de cultures -La classification des composantes connexes Ces résultats sont sous forme d'images géoréférencées, superposables à l'orthophotographie à 6 mm de résolution spatiale. C'est pourquoi, afin d'intégrer ces informations à l'analyse spectrale, celles-ci doivent être « découpées » de manière à être superposables aux orthoimagettes et de même dimension. Le découpage a été effectué manuellement, sous QGIS, en utilisant le même masque ayant servi à détourer les orthoimagettes. Ainsi, à chaque orthoimagette correspond trois images de résultats superposables (cf. Figure 64). 

UTILISATION DE L'INFORMATION SPATIALE POUR SÉLECTIONNER LES PIXELS DE RÉFÉRENCE

Pour chaque orthoimagette, les résultats de localisation des adventices et de classification des composantes connexes, issus de l'algorithme spatial, ont servi à présélectionner les pixels de référence.

Tout d'abord, si la classification des composantes connexes présente un nombre de pixels classés en « culture » supérieur au nombre de pixels de référence requis, la sélection des pixels de référence de culture se fait parmi ceux-ci (cf. composantes connexes présente un nombre de pixels classés en « culture » inférieur au nombre de pixels de référence nécessaires à la classification, les pixels de référence sont sélectionnés parmi les pixels localisés dans le rang sur l'image de localisation des adventices. La sélection des pixels de référence des adventices se fait parmi les pixels classés en « adventice » par la classification des composantes connexes ou en « adventice » parmi ceux situés hors du rang par les résultats de localisation des adventices (cf. Figure 62). Valider les méthodes en comptabilisant le nombre de pixels correctement classés permet de rendre compte de la qualité de la classification en termes de surfaces infestées ou non, ce qui peut être une information intéressante pour l'agriculteur puisque la pulvérisation localisée se fait pour des surfaces données. La validation par pixels est relativement simple à mettre en place puisqu'elle consiste à superposer l'image de vérité terrain à celle des résultats et à comptabiliser le nombre de pixels correctement classés.

C'est pourquoi, pour ces travaux, la validation des résultats est faite en comparant les données pixel à pixel.

Adventice correctement détectée Adventice non détectée

Un autre aspect à prendre en compte lors de la validation des résultats est le biais engendré par le détourage des plantes dans l'image de vérité terrain. En effet, celle-ci étant réalisée manuellement, certaines zones détourées peuvent être décalées par rapport à la réalité. En particulier, les pixels en bordure d'une composante de végétation peuvent être pris dans le détourage de la plante, alors qu'ils représentent du sol. Ces pixels risquent par la suite d'être considérés comme mal classés alors que l'erreur vient de la vérité terrain. Pour pallier ce problème, la validation n'est effectuée que sur les pixels déjà classés en végétation, évitant de comptabiliser les pixels de sol en bordure de plante. Cependant, cette méthode de validation ne permettra pas d'évaluer l'impact de la séparation entre sol et végétation sur les petites adventices, relativement à la résolution spatiale. Plusieurs indices peuvent être calculés à partir de cette matrice, afin de décrire la répartition des taux de bonnes ou mauvaises classifications, en fonction de chaque cas : La procédure de classification est répétée 10 fois afin de faire varier la sélection des pixels de référence (cf. Chapitre 5, Partie 2.5). Pour chaque répétition, le résultat de la classification est reporté dans ce graphe. La courbe reliant les 10 points est alors calculée, ainsi que l'aire sous cette courbe. Plus les points de la courbe seront proches des coordonnées (0, 1), meilleure est la classification et plus l'aire sous la courbe sera grande.

Classes estimées

Culture Adventices

Classes réelles

Culture

Afin de comparer les résultats pour les différentes procédures de discrimination, trois indices ont donc été calculés pour chaque série de 10 répétitions :

-Le taux de bonnes classifications des pixels de cultures (TVC) -Le taux de bonnes classifications des pixels d'adventices (TVA) -L'aire sous la courbe ROC calculée à partir de la matrice de confusion Ces indices sont calculés pour les pixels déjà classés en végétation.

De plus, afin de comparer la robustesse des méthodes de classification et leur répétabilité, les écarts-types de ces indices ont été calculés pour les séries de 10 répétitions. Comme attendu, l'algorithme basé sur l'analyse spatiale des images montre de meilleurs résultats de classification lorsque la résolution spatiale des images est plus élevée : sur les images acquises à 6 mm de résolution spatiale, les taux de bonnes classifications des cultures et des adventices s'élèvent à 0,88 et 0,78 respectivement, contre 0,47 et 0,76 pour les images acquises à 6 cm/pixel. Toutefois, le taux de bonnes classifications des adventices baisse peu avec la diminution de la résolution. Ceci s'explique par la présence, sur certaines images, d'une couverture dense de petites adventices (e.g. chénopodes au stade cotylédon), rendant leur détection plus simple à une résolution spatiale plus faible (i.e. 6 cm/pixel). En effet, les pixels à 6 cm de résolution spatiale représentant une surface avec de nombreuses petites adventices ont alors un taux de végétation élevé et sont plus facilement détectables en végétation (cf. Figure 70). Cette couverture dense est alors représentée par un amas de végétation, automatiquement classé en adventice par l'algorithme spatial. La détection de petites adventices (e.g. au stade cotylédon) est donc réalisable sur des images acquises par drone à 6 cm de résolution spatiale lorsque ces adventices sont disposées en amas. À l'inverse, quand les adventices de petites tailles sont isolées, leur détection devient plus complexe. En effet, celles-ci sont représentées par des pixels avec un faible taux de végétation et sont difficilement détectables, soit parce qu'elles sont confondues avec le rang lorsqu'elles sont accolées à celui-ci, soit parce qu'elles ne sont pas détectées en végétation. Ainsi, sur certaines Ainsi, selon la taille des adventices et la distribution spatiale de celles-ci sur la parcelle, la qualité de leur détection est variable sur les images acquises par drone à 6 cm de résolution spatiale (taux de bonnes classifications variant de 0,48 à 0,99 selon les zones étudiées). Cette variabilité est confirmée par l'écart-type élevé (0,29) du taux de bonnes classifications des adventices.

L'algorithme de détection spatiale développé permet donc de détecter les adventices sur des images acquises par drone dans certaines conditions. En effet, pour une résolution spatiale à 6 cm/pixel, les petites adventices disposées en amas ou les adventices suffisamment grandes (d'un diamètre supérieur à 10 cm) sont détectées. Dans cet algorithme, la qualité de la détection des adventices dépend grandement de la qualité de la détection de la végétation. C'est pourquoi, pour améliorer la détection des adventices, il serait intéressant de proposer une nouvelle méthode de séparation du sol et de la végétation afin de mieux détecter de faibles taux de végétation dans les pixels. Une autre solution serait d'augmenter la résolution spatiale des images, permettant d'augmenter les taux de végétation dans les pixels. La moyenne des TVC et TVA est supérieure pour la méthode de sélection basée sur la valeur NDVI, avec un taux moyen de 0,8153 contre 0,7953 pour la sélection basée sur l'érosion des composantes de végétation. De même, l'aire ROC moyenne est plus grande pour la première méthode avec une valeur de 0,8551 contre 0,8366. De plus, les résultats obtenus sur les images de maïs sont particulièrement meilleurs lorsque les points de référence sont sélectionnés sur la valeur NDVI, avec une moyenne des TVA égale à 0,7984 contre 0,6681 pour la sélection à partir de l'érosion des composantes de végétation.

COMPARAISON DES MÉTHODES SPECTRALES

La méthode de sélection des pixels de référence réalisée à partir des valeurs NDVI des images a donc été choisie pour la procédure de discrimination entre cultures et adventices. Toutefois, les écarts-types calculés pour les 10 répétitions, variant entre 0,04 et 0,09, la différence entre ces moyennes n'est pas significative. De plus, les moyennes globales de TVC et TVA et de l'aire ROC étant très proches (± 2 %), la méthode de sélection basée sur l'érosion des composantes de végétation pourrait être utilisée, par exemple dans des cas où les images à analyser ne présentent pas les bandes spectrales nécessaires au calcul de la valeur NDVI.

COMPARAISON DES EFFECTIFS DES ÉCHANTILLONS DE RÉFÉRENCE

Pour chaque méthode de classification proposée, trois effectifs d'échantillons de référence ont été testés à 50, 100 et 200 points de référence, correspondant à 0,5 % à 2 % des effectifs de chaque classe.

Dans le Tableau 17, plus l'effectif augmente et plus les taux de bonnes classifications sont élevés avec une moyenne de TVA et TVC passant de 0,7974 à 0,8282 et une aire ROC moyenne allant de 0,8494 à 0,8561. De même, dans le Tableau 18, la moyenne des TVA et TVC passe de 0,7867 à 0,8037. Cependant, l'aire ROC moyenne reste stable autour de 0,83.

De plus, sur le Tableau 18, les écarts-types des TVA et TVC obtenus sur les différentes orthoimagettes diminuent quand l'effectif de référence augmente, allant de 0,0799 à 0,0351 et de 0,0854 à 0,0418 pour les TVC et TVA sur maïs et de 0,0595 à 0,0306 et 0,1127 à 0,0652 pour les TVC et TVA sur betterave. Ces écarts-types diminuent donc de moitié lorsque l'effectif de référence double, abaissant l'écart-type entre 0,0351 et 0,0652. La même évolution des résultats est observable dans le Tableau 18.

Ainsi, même si les taux de bonnes classifications augmentent relativement peu avec le nombre de points de référence, les écarts-types diminuent assez fortement, mettant en valeur une discrimination plus robuste quand l'effectif de référence augmente. Afin d'avoir la meilleure classification possible, un nombre maximal de pixels de référence doit être pris. Cependant, dans les cas où peu de pixels de référence sont disponibles, la classification peut être réalisée. L'algorithme spatial est automatisé. En effet, seule la largeur de l'inter-rang est nécessaire en entrée de l'algorithme, celle-ci étant connue par l'agriculteur et très souvent la même pour une culture donnée (e.g. 75 cm pour le maïs, 45 cm pour la betterave). Lors de la commande d'un vol sur une parcelle, sa localisation doit être envoyée à AIRINOV par une plateforme de commandes. Pendant cet envoi, la largeur de l'inter-rang pourrait être renseignée par l'agriculteur.

Concernant l'algorithme combinant information spatiale et spectrale, il peut être automatisé grâce à la sélection des pixels de référence pour la classification spectrale à partir des résultats issus de l'algorithme spatial. Toutefois, si la classification spectrale est réalisée sur les orthoimagettes plutôt que sur l'orthophotographie (cf. Chapitre 5, Partie 4.5), un algorithme automatique devra être développé afin de faire le lien entre les résultats de la détection spatiale obtenus sur l'orthophotographie et les orthoimagettes à traiter (étape faite manuellement pour l'instant).

Enfin, pour poursuivre les travaux sur l'algorithme spectral seul, avec l'idée d'être appliqué à des cultures non sarclées, une réflexion sur la méthode de sélection automatique des pixels de référence devra être conduite prioritairement. En effet, une sélection manuelle des pixels de référence serait trop complexe à mettre en place car elle nécessiterait de localiser sur le terrain les zones avec ou sans adventices puis de les reporter sur les orthophotographies. Une première piste à envisager pour la sélection de pixels de référence sur les cultures non sarclées serait de travailler sur des images à très haute résolution (de l'ordre du centimètre) à des stades jeunes de la culture, afin de voir si les rangs sont discernables pour faire une première sélection. A partir de ces entretiens, un service de préconisation en pulvérisation localisée a été créé afin de mettre en place de premiers tests à grande échelle dans le cadre d'une phase pilote.

PHASE PILOTE

Un premier service de préconisation en pulvérisation localisée a été réalisé à partir de la méthode spatiale de localisation des adventices (cf. Chapitre 5, Partie 1). Pendant deux années consécutives (printemps 2015 et 2016), des phases pilotes ont permis de tester cette méthode et l'opérationnalité du service. Le service a été proposé sur des parcelles de maïs et de betterave.

CRÉATION DE CARTES DE PRÉCONISATION

Pendant les campagnes de test, des vols ont été réalisés chez des agriculteurs avec le système standard d'acquisition d'AIRINOV (eBee + multiSPEC : cf. Chapitre 3, Partie 1.1). Des orthophotographies multispectrales ont ensuite été produites à une résolution spatiale de 6 cm/pixel. L'algorithme spatial de détection des adventices a été appliqué sur ces orthophotographies.

À partir des cartes de localisation des adventices, des cartes de préconisation en pulvérisation ont été créées (cf. Figure 72). Par ailleurs, le temps de latence entre l'envoi de la commande d'ouverture et l'ouverture réelle des buses des rampes du pulvérisateur n'est pas forcement prise en compte par le boitier électronique. Pendant ce temps de latence, qui peut monter jusqu'à 2 secondes, la machine continue d'avancer, ce qui risque de créer un décalage entre la zone à traiter et la zone réellement pulvérisée. C'est pourquoi, la deuxième année de tests, l'erreur possible liée à la réactivité et à la vitesse d'avancement de la machine a été ajoutée, agrandissant la zone tampon à un rayon de 5 m. Enfin, l'aspect logistique doit être pris en compte. Les adventices devant être traitées au plus vite, le service devra être réactif. Les vols devront être programmés dans un temps court (quelques jours). De même l'ensemble de la chaîne de traitement (création de l'orthophotographie, détection des adventices, production de la carte de préconisation) devra être automatisée et rapide afin de fournir les cartes de préconisation au plus tôt.

Le contexte agricole actuel incite les agriculteurs à réduire l'utilisation des produits phytosanitaires sur leurs parcelles. En effet, dans un souci de protection de l'environnement et de la santé humaine, des directives européennes ont été adoptées pour limiter les produits et les quantités utilisés. De plus, les produits phytosanitaires constituent un coût non négligeable pour l'agriculteur. Parmi ces produits, les herbicides représentent plus de 45 % du NODU agricole. Il devient donc important de proposer des solutions autour de la gestion des adventices pour aider les agriculteurs à réduire l'utilisation d'intrants sur la parcelle. Avec le développement des nouvelles technologies, des solutions innovantes basées sur l'utilisation de capteurs permettent à l'agriculteur d'identifier et de mieux comprendre les variabilités intra-parcellaires, et ainsi de mettre en place une gestion de la parcelle adaptée à cette variabilité. En particulier, les drones équipés de caméras se répandent de plus en plus en agriculture de précision pour analyser les parcelles. En effet, le drone est un outil volant à une altitude suffisamment basse pour acquérir des images à haute résolution (de l'ordre du centimètre) et sur de grandes surfaces, telles que les parcelles agricoles. Les adventices étant réparties de façon non uniforme sur les parcelles, leur localisation par drone permettrait de mettre en place une gestion localisée de celles-ci afin d'optimiser techniquement et économiquement la gestion de la parcelle. Par exemple, une pulvérisation localisée pourrait être réalisée par l'agriculteur, les systèmes d'applications (e.g. pulvérisateur de précision équipé de coupure de tronçon) existant déjà sur le marché.

Ces travaux ont été initiés en collaboration avec AIRINOV dans le but de proposer une méthode de localisation des adventices à partir de l'analyse d'images acquises par drone, afin de mettre en place un service de gestion des adventices.

Dans ce cadre, un état de l'art a permis d'identifier diverses méthodes de détection d'adventices par drone appliquées sur des images acquises dans différentes conditions et sur des cultures différentes. La plupart des méthodes spatiales et spectrales proposées dans la littérature aboutissaient sur de bons résultats de détection. Cependant, relativement peu de travaux se sont intéressés à l'impact des conditions d'acquisition sur la qualité de la détection des adventices. Une partie des travaux menés pendant cette thèse a donc consisté à évaluer le potentiel de détection des adventices du système d'acquisition d'AIRINOV. L'originalité de ces travaux réside dans la modélisation de l'ensemble de la chaîne d'acquisition, pour laquelle différents paramètres peuvent être modifiés afin de mesurer leur impact sur la qualité de la détection des adventices. À la suite de ces travaux, les conditions d'acquisition adaptées à la détection d'adventices par drone ont pu être définies. La seconde partie des travaux menés pendant cette thèse visait à développer une procédure de localisation des adventices adaptée aux images acquises par drone. Diverses méthodes rencontrées dans la littérature ont été comparées afin de proposer une procédure de localisation des adventices applicable dans le cadre de la création d'un service de gestion des adventices. En effet, de nombreuses méthodes ayant déjà été proposées, cette partie s'intéresse à la manière de les appliquer de façon robuste à diverses cultures.

Les travaux menés pendant cette thèse se sont appuyés sur plusieurs types d'acquisitions. Une base de données de spectres de réflectance de cultures et d'adventices a tout d'abord été constituée afin de servir de support à la modélisation de la chaîne d'acquisition. Pour ce faire, des spectres de réflectance ont été acquis dans des conditions contrôlées en laboratoire à l'aide d'un spectromètre. Les espèces étudiées ont des ports variés et des feuilles de différentes tailles. C'est pourquoi, plusieurs protocoles ont été mis en place pour obtenir des spectres de réflectance purs. Une partie des spectres a donc été acquise par contact avec une sonde spécifique, et une autre partie a été acquise à distance, sur un fond noir dont le spectre de réflectance est uniforme. Les spectres ayant été acquis dans des conditions différentes, un prétraitement a été proposé afin de les rendre comparables les uns aux autres. D'autres acquisitions de spectres ont été réalisées au champ, sur des micro-parcelles, pour être comparées à des images multispectrales obtenues sur les mêmes zones et valider le modèle de la chaîne d'acquisition. D'autre part, des images multispectrales ont été acquises par drone dans le but de servir de support au développement des algorithmes de localisation des adventices. À la suite de chaque vol, ces images multispectrales d'une résolution spatiale de 6 cm/pixel sont traitées radiométriquement et géométriquement puis regroupées en une orthophotographie. D'autres images multispectrales ont été acquises à une plus haute résolution afin d'étudier l'impact de la résolution spatiale sur le potentiel de détection des adventices. Un dispositif au sol a donc été construit. Un traitement similaire aux images acquises par drone a alors été appliqué aux images à une résolution plus fine, résultant en de nouvelles orthophotographies d'une résolution spatiale de 6 mm/pixel. De plus, ces images présentant des pixels avec peu de mélanges spectraux, elles ont servi à mettre en place une procédure de discrimination spectrale entre cultures et adventices. Pour finir, une vérité terrain a été créée pour les images multispectrales afin de valider les algorithmes de détection. Les localisations des adventices sur les zones étudiées ont donc été identifiées sur le terrain puis reportées sur les images multispectrales à l'aide de logiciels SIG. Ces acquisitions ont servi de support aux algorithmes développés pendant cette thèse.

Les premiers travaux présentés dans ce manuscrit visent à évaluer le potentiel de détection des adventices du système d'acquisition proposé par AIRINOV. L'ensemble de la chaîne d'acquisition (illuminant, filtres optiques, capteurs, etc.) a été modélisé et se nourrit de la base de spectres de réflectance acquis en laboratoire. Le modèle transforme chaque spectre de réflectance en valeurs à 4 dimensions, correspondant aux valeurs des pixels des images multispectrales acquises par drone. Avec ce modèle, l'impact de certains paramètres de la chaîne d'acquisition sur le potentiel de détection des adventices a été étudié. Après avoir modélisé différentes bandes spectrales, les valeurs en sortie du modèle représentant des pixels ont été comparées à l'aide de plusieurs méthodes de sélection de longueurs d'onde. Quatre nouveaux filtres optimaux pour la discrimination spectrale entre cultures et adventices ont alors été sélectionnés. Ces filtres ont ensuite été associés à un dispositif multispectral complémentaire pour réaliser de nouveaux vols et acquérir des images à huit bandes spectrales afin de mettre en place une procédure de discrimination spectrale. Ensuite, afin d'étudier l'impact de la résolution spatiale des images sur la qualité de détection des adventices, des mélanges spectraux entre le sol et la végétation ont été modélisés. Les pixels mixtes modélisés ont d'abord été classés en sol ou végétation puis en monocotylédones ou dicotylédones afin de faire le lien entre le taux de végétation et le pourcentage de bonnes classifications. Le taux de végétation dépendant de la résolution spatiale des images et de la taille des plantes à détecter, une probabilité de bonne détection peut donc être définie pour une résolution spatiale et une taille d'adventice données. Cette étude a mis en avant le fort potentiel de détection des adventices situées dans l'inter-rang, et la nécessité d'avoir une résolution spatiale maximale pour discriminer correctement cultures et adventices au moyen de l'information spectrale.

Suite à cette étude, plusieurs méthodes de détection des adventices ont été développées et comparées afin de proposer une procédure de localisation des adventices adaptée à l'analyse d'images acquises par drone. Les méthodes spatiales, spectrales et la combinaison des deux méthodes ont été étudiées. La méthode spatiale, basée sur l'analyse de la distribution spatiale de la végétation, est adaptée à la détection des adventices sur des orthophotographies de cultures sarclées, c'est-à-dire sur des images représentant de grandes surfaces pouvant présenter une forte variabilité. L'algorithme spatial est principalement basé sur la détection des rangs de culture grâce à la transformée de Hough appliquée à la détection de lignes. Sur des orthophotographies de parcelles de maïs et de betterave à 6 cm de résolution spatiale, près de 75 % des adventices sont correctement détectées, les adventices non détectées étant principalement isolées et de petite taille. En effet, les petites adventices distribuées en amas et celles isolées de plus de 10 cm de diamètre étaient correctement détectées. La méthode spatiale ne permettant de détecter que les adventices dans l'inter-rang et n'étant applicable qu'aux cultures sarclées, une procédure de discrimination spectrale entre cultures et adventices a été mise en place. Dans cette procédure, six méthodes spectrales supervisées ont été comparées, ainsi que deux méthodes de sélection des pixels de références et trois effectifs d'échantillons de référence. La procédure proposée a été testée sur les images multispectrales d'une résolution spatiale de à 6 mm/pixel présentant moins de mélanges spectraux. Celle-ci a montré le potentiel de l'analyse spectrale pour discriminer cultures et adventices avec des taux de bonnes classifications autour de 80 %. Suite à cette comparaison, les méthodes de classification d'analyse discriminante quadratique et la SVM RBF se sont montrées les plus robustes et avec les meilleurs taux de bonnes classifications. De plus, la sélection des pixels de référence à partir des valeurs NDVI des pixels et en prenant un effectif maximal permet de classer au mieux les pixels. À partir de ces résultats, une procédure de discrimination entre cultures et adventices combinant analyse spatiale et analyse spectrale a été développée. Après avoir réalisé l'analyse spatiale sur les images, les pixels de référence pour la classification spectrale sont sélectionnés selon ces premiers résultats. Les pixels sont alors discriminés spectralement entre cultures et adventices puis les résultats sont fusionnés avec ceux de l'algorithme spatial. Les résultats obtenus sur les différentes méthodes sont meilleurs lorsque les informations spatiale et spectrale sont combinées, avec des taux de bonnes classifications des adventices de 93 %. Cette procédure présente l'avantage d'améliorer la détection des adventices dans le rang. De plus, cette étude a mis en valeur l'intérêt de travailler directement sur les orthoimagettes plutôt que sur les orthophotographies pour améliorer les résultats de classification.

Afin de développer un outil opérationnel pour les agriculteurs, la faisabilité de la mise en place des méthodes proposées a été évaluée. En l'état actuel du matériel, le nombre de filtres optiques sélectionnés doit être réduit à 4, afin de ne faire qu'un seul vol dans le cadre d'un service. Une sélection plus fine de ces filtres devra alors être réalisée à partir des orthophotographies à 8 bandes spectrales. De plus, pour un service réalisé à partir d'images acquises à une résolution spatiale de 6 cm/pixel, la détection devrait être garantie pour les adventices d'une taille supérieure à 10 cm de diamètre, ou pour les adventices disposées en amas. Pour les autres cas, il serait intéressant de limiter les mélanges spectraux dans les pixels, soit en augmentant la résolution spatiale en utilisant d'autres capteurs ou des drones volants à plus basse altitude, soit en travaillant sur les orthoimagettes plutôt que sur les orthophotographies. Au niveau des algorithmes, ceux-ci doivent être automatisés, ce qui est le cas pour l'algorithme spatial. Concernant l'algorithme combinant informations spatiale et spectrale, si celui-ci est basé sur les orthoimagettes, une méthode devra être proposée pour reporter sur les orthoimagettes (sur lesquelles se fait la classification spectrale), les résultats de l'algorithme spatial obtenu à partir de l'orthophotographie. De plus, une réflexion a été menée afin d'identifier les applications potentielles adaptées aux besoins des agriculteurs. Il en est ressorti que la première application à mettre en place est un service de pulvérisation localisée pour un traitement de rattrapage, la culture prioritaire étant le maïs. Des phases pilotes ont donc été réalisées autour d'un tel service. Des cartes de préconisation en pulvérisation localisée ont donc été proposées en prenant des zones tampons autour des adventices localisées sur les cartes. Des améliorations ont été proposées afin de réduire ces zones tampons, comme l'utilisation de GPS plus précis ou la prise en compte du sens d'avancement des machines agricoles sur la parcelle.

Pour conclure, les travaux menés pendant cette thèse ont permis de développer un modèle de la chaîne d'acquisition visant à évaluer l'impact des différents paramètres la composant sur la qualité des données multispectrales de sortie et donc sur leur capacité à discriminer correctement les cultures des adventices. De plus, plusieurs procédures de discrimination entre cultures et adventices basées sur des méthodes spatiales et spectrales ont été développées. La procédure spatiale, adaptée aux images acquises par drone, peut être appliquée à diverses cultures sarclées. La classification spectrale appliquée à des images à très haute résolution a montré son potentiel pour la détection des adventices. Une procédure combinant ces deux méthodes a alors été développée, montrant de forts taux de bonnes classifications. À partir des algorithmes proposés, la création d'un service de gestion localisée des adventices a été initiée.

Pour poursuivre ces travaux, plusieurs perspectives scientifiques sont à explorer. En premier lieu, il serait intéressant de pouvoir discriminer différentes familles de plantes, voire d'identifier les espèces présentes sur la parcelle afin d'améliorer le suivi de la parcelle et les préconisations en terme de gestion des adventices (e.g. choix du produit). Pour cela, une des pistes envisagée est de combiner une analyse morphologique et une classification spectrale. Toutefois, la résolution spatiale des images devra être bien plus élevée (de l'ordre du millimètre) afin de permettre la reconnaissance des formes des feuilles et de limiter les mélanges spectraux. Dans ce cadre, une base de données conséquente sur les caractéristiques morphologiques des adventices rencontrées en grandes cultures devrait être créée. En second lieu, une réflexion pourrait être menée autour de méthodes de détection des adventices sur les cultures non sarclées comme le blé et le colza. Des méthodes de discrimination spectrale non supervisées pourraient alors être étudiées afin de se passer de la sélection de points de référence. Les caractéristiques spectrales des différentes espèces étant proches spectralement, une classification non supervisée seule risque de ne pas suffire à la détection des adventices. Il serait donc intéressant de la compléter, par exemple, par une segmentation par régions, qui consiste à découper l'image en régions homogènes (selon des critères de texture, d'intensité lumineuse etc.).

R É F É R E N C E S

Pour l'embout d'angle de prise de vue à 1°, le diamètre de la lentille vaut 1,77 cm. Le diamètre de la surface de prise de vue a été calculé pour différentes hauteurs d'acquisition :

X (cm) A (°)

A (rad) Y (cm) 0,1 1 0,0175  Mesure de transmittance Lors de premiers tests d'acquisitions de plantes faites sur un fond blanc, la réflectance de la plante est apparue très élevée (e.g. proche de 1 dans l'infra-rouge). Il a donc été supposé que la plante transmettait une grande partie de l'énergie lumineuse renvoyée par le fond blanc (fond ayant une forte réflectance). Un test a alors été proposé afin de mesurer quelle proportion du spectre était transmise par la plante.
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FIGURE 1 :

 1 FIGURE 1 : DÉVELOPPEMENT DES RÉSISTANCES EN FRANCE, EXEMPLE DU COQUELICOT (COISNE, 2014)Afin de limiter la prolifération des phénomènes de résistance, la plupart des organismes de recherche et instituts de conseils agronomiques encouragent les agriculteurs à arrêter l'utilisation massive des herbicides en développant des moyens de lutte agronomique[START_REF] Gasquez | Résistance à des herbicides[END_REF]. De plus, lors de l'utilisation d'herbicides, ces organismes préconisent de diversifier les types d'herbicides utilisés tout en maximisant leur efficacité, par exemple en ciblant spatialement les adventices et en adaptant le produit à l'espèce[START_REF] Aubertot | Pesticides, agriculture et environnement. Réduire l'utilisation des pesticides et limiter leurs impacts environnementaux[END_REF][START_REF] Bonin | Des actions à diversifier pour limiter les résistances[END_REF].

FIGURE 2 :

 2 FIGURE 2 : CYCLE DE LA GESTION LOCALISÉE DES CULTURES

À

  partir des indicateurs créés lors du traitement des données, une préconisation est réalisée à partir de connaissances expertes (conseils techniques) ou d'Outils d'Aide à la Décision 5 (modèles de préconisation). Par exemple, après le traitement d'images aériennes, il est possible de préconiser des doses d'azote à épandre sur les différentes zones d'une parcelle agricole, voire de fournir des cartes de modulation. Pour la gestion des adventices, les méthodes de traitement de données et de préconisation sont à l'état de recherche. Des modèles de préconisation sont proposés à partir de cartes d'infestation réalisées manuellement ou à partir de données simulées (Thornton et al., 1990; Timmermann et al., 2003). En fonction des espèces d'adventices présentes et de leur densité, des seuils économiques sont calculés, à partir desquels une faible baisse de rendement est moins coûteuse que le déclenchement d'une pulvérisation. De même, à partir de cartes d'infestation réalisées manuellement, Andújar et al. (2013) et Hamouz et al. (

FIGURE 3 :

 3 FIGURE 3 : CARTE DE PRÉCONISATION POUR LA PULVÉRISATION D'HERBICIDES DANS UNE PARCELLE DE BLÉ (HAMOUZ ET AL., 2013)

FIGURE 4 :

 4 FIGURE 4 : SCHÉMA SIMPLIFIÉ DE L'INTERACTION DE LA LUMIÈRE AVEC UNE FEUILLE DE PLANTE L'énergie ayant interagi avec l'objet peut être mesurée afin de déduire certaines caractéristiques de l'objet en question. De plus, la quantité d'énergie renvoyée par l'objet dépend de la quantité d'énergie incidente. C'est pourquoi, un ratio est utilisé pour quantifier l'énergie renvoyée par l'objet étudié : la réflectance ρ. Cette grandeur, très largement étudiée en télédétection, est le rapport entre le rayonnement réfléchi Φ 𝑟 et le rayonnement incident Φ 𝑖 :

FIGURE 5 :

 5 FIGURE 5 : SPECTRE ÉLECTROMAGNÉTIQUE (CAMPS-VALLS ET BRUZZONE, 2009) Au sein du spectre, nous pouvons définir une bande spectrale comme étant une partie de ce spectre pour un intervalle de longueurs d'onde donné, pour lequel la radiance moyenne peut être mesurée. La mesure peut être faite en laboratoire ou sur le terrain avec un spectromètre. Le spectromètre mesure l'énergie lumineuse provenant d'une surface pour chacune des longueurs d'onde du spectre. En effectuant une mesure indirecte de l'énergie incidente à l'aide d'une surface de référence (i.e. dont la réflectance est connue), le spectre de réflectance de la surface étudiée peut être déduit. La plupart des spectromètres utilisés mesurent le spectre de réflectance pour les longueurs d'onde allant du visible à l'infrarouge moyen, c'est-à-dire d'environ 400 à 2500 nm.

FIGURE 6 :

 6 FIGURE 6 : EXEMPLE D'UN SPECTRE DE RÉFLECTANCE DE PLANTE Le spectre caractéristique d'une plante peut être décomposé en trois zones principales, influencées par des caractéristiques différentes de la plante (Guyot, 1989; Girard et Girard, 2010) :  Le « visible » (400 à 700 nm) :Cette zone est caractérisée par une faible réflectance de la plante, avec un maximum dans le vert autour de 550 nm, et deux zones de faible réflectance dans le bleu à 450 nm et dans le rouge à 660 nm. La faible réflectance est due à l'absorption des rayonnements par les pigments, principalement les chlorophylles a et b. D'autres pigments, tels que les carotènes et xanthophylles absorbent également les rayonnements et influent sur le comportement spectral de la plante aux stades jeunes, sénescents ou lors de stress.



  L'infrarouge moyen (1300 à 2500 nm) : Le moyen infrarouge présente trois pics d'absorption à 1450, 1950 et 2500 nm. Ces pics sont dus à l'absorption de l'eau présente dans les feuilles. De plus, la lignine et la cellulose peuvent Longueur d'onde (nm) Réflectance Proche infrarouge Infrarouge moyen Visible influencer la réflectance dans l'infrarouge moyen. Ces composants s'exprimeront mieux dans des feuilles à faible teneur en eau.

FIGURE 7 :

 7 FIGURE 7 : IMAGE MULTISPECTRALE AÉRIENNE D'UNE PARCELLE DE MAÏS PRODUITE PAR AIRINOV (RÉSOLUTION 6 CM/PIXEL)

FIGURE 9 :

 9 FIGURE 9 : MATRICE DE COOCURENCE (À DROITE) D'UNE IMAGE À 4 NIVEAUX DE GRIS (À GAUCHE) À partir d'images de plusieurs espèces adventices, d'une résolution spatiale de 0,6 mm, Burks et al. (2000) ont calculé les matrices de cooccurrence pour chaque composante HSI 11 de l'image. À partir d'un modèle de classification réalisé sur les matrices de cooccurrence, 93 à 98 % des images présentant des adventices ont été correctement identifiées. De plus, cette méthode semble être robuste face aux variations de luminosité.

FIGURE 10 :

 10 FIGURE 10 : EXEMPLES DE MESURES DE DISTANCES EUCLIDIENNE, À GAUCHE, ET DE MAHALANOBIS, À DROITE Afin de discriminer des spectres de réflectance de blé, et d'adventices (brome et ray-grass), Girma et al. (2005) ont utilisé la distance de Mahalanobis. Les spectres, acquis en laboratoire, avaient une étendue de 350 à 1000 nm et une résolution spectrale de 1 nm. La classification a été réalisée pour deux stades de croissance différents. Après avoir sélectionné les variables les plus adaptées à la séparation entre cultures et adventices à l'aide d'une analyse discriminante, la distance de Mahalanobis entre les données à classer et les classes de référence a été calculée. La méthode mise en place a ainsi permis de classer correctement 94 % et 66,7 % des spectres de cultures et adventices, pour les stades 1 et 2.Une autre méthode utilisée est celle des k plus proches voisins. Cette méthode consiste à classer chaque pixel en fonction des classes des k pixels les plus proches spectralement (cf. Figure11).

FIGURE 11 :

 11 FIGURE 11 : EXEMPLE DE CLASSIFICATION PAR LES K PLUS PROCHES VOISINS Dans leur étude, Feyaerts et van Gool (2001) ont aussi testé les k plus proches voisins, avec comme distance utilisée, la distance euclidienne. Le nombre de voisins k a été testé entre 2 et 15. Les taux de bonnes classifications étaient relativement proches de la méthode précédente avec 65,9 % des betteraves et 97 % des adventices correctement classées.

FIGURE 12 :

 12 FIGURE 12 : EXEMPLE SIMPLIFIE D'ARBRE DE DÉCISION En plus des méthodes basées sur les calculs de distance, Feyaerts et van Gool (2001) ont créé un arbre de classification à partir des données multispectrales de betterave et d'adventices. Après avoir développé l'arbre à partir des données de référence, 70,7 % et 83,7 % des betteraves et adventices respectivement ont été correctement classées, ce qui représente un résultat relativement similaire à ceux issus des autres classifications évaluées par les auteurs. Goel et al. (2003) ont développé un arbre de classification pour discriminer du maïs et des adventices monocotylédones et dicotylédones associées sur des images hyperspectrales acquises par avion. L'étendue spectrale des images allait de 407 à 949 nm, leur résolution spectrale était de 7,5 nm et la résolution spatiale de 2 m. L'arbre développé est un arbre CART 15 (Frick et Johnson, 2012) dont chaque noeud est divisé en seulement 2 branches, à partir d'une seule variable. Le critère de segmentation est basé sur l'indice de Gini (Frick et Johnson, 2012), écart moyen relatif mesurant la dispersion de la distribution des données. L'arbre présentant les meilleurs résultats de classification est un arbre à 5 niveaux. Sur les trois vols testés, les taux d'erreurs s'élevaient à 32 %, 43 % et 40 % des pixels. D'après ces travaux, l'arbre de classification présente l'avantage d'être rapide, simple à mettre en place, et d'avoir des règles de classification compréhensibles permettant d'interpréter le rôle des variables physiques utilisées, contrairement à d'autres méthodes plus complexes, telles que les réseaux de neurones.

4 FIGURE 13 :

 413 FIGURE 13 : SCHÉMA SIMPLIFIÉ D'UN RÉSEAU DE NEURONES Feyaerts et van Gool (2001) ont aussi testé le réseau de neurones multicouches à rétropropagation (Rumelhart et al., 1986) sur les données de betterave et d'adventices décrites précédemment. Ce réseau rétropropage les erreurs commises par les neurones, permettant de les corriger en fonction de leur ordre d'importance. Le réseau de neurones développé est constitué de trois couches (une d'entrée, une cachée et une de sortie) composées de 5, 8 et 2 neurones respectivement, la couche sortie correspondant aux classes culture et adventices. Après l'entraînement du réseau avec les échantillons de référence, 80,1 % des betteraves et 91,4 % des adventices ont été correctement classées, ce qui représente le meilleur résultats des classifieurs comparés par Feyaerts et van Gool (2001). Goel et al. (2003) ont aussi développé un réseau de neurones à rétropropagation pour classer leurs images hyperspectrales de maïs et d'adventices, acquises par avion (cf. Chapitre 2, Partie 2.2.2.1.4). Les réseaux testés avaient une ou deux couches cachées et ont classé les données avec un taux d'erreur de 30 %, 37 % et 42 % pour les trois vols effectués, ce qui est légèrement plus élevé que les résultats obtenus avec un arbre de décision. De Castro et al. (2012) ont comparé deux types de réseaux de neurones pour discriminer des données spectrales de blé, de pois et de crucifères. Les crucifères étant en fleur présentaient une couleur jaune. La discrimination a d'abord été testée sur des spectres de réflectance de 400 à 900 nm, avec une résolution spectrale de 5 nm. Une seconde classification a été réalisée sur des données multispectrales, simulées à partir des spectres, et d'indices de végétation associés. Les quatre bandes spectrales sélectionnées pour la simulation correspondent à celles de QuickBird. Les deux réseaux de neurones comprenaient trois couches. Le premier était un perceptron multicouches, dont la fonction de combinaison calcule une combinaison linéaire des entrées. Le deuxième était un réseau à fonction de base radiale, qui calcule une distance entre les entrées. Les deux méthodes testées ont obtenu de bons résultats. Le réseau multicouche a permis de discriminer correctement plus de 98,7 % des spectres de réflectance et plus de 98,1 % des données multispectrales combinées aux indices de végétation. Le réseau à base radiale a discriminé 80 % à 100 % des spectres de réflectance, selon l'année d'acquisition des données, et plus de 92,1 % des données multispectrales couplées aux indices.[START_REF] De Castro | Applying Neural Networks to Hyperspectral and Multispectral Field Data for Discrimination of CruciferousWeeds inWinter Crops[END_REF] concluent que l'utilisation de fonctions discriminantes basées sur des combinaisons linéaires des variables permet de meilleures classifications.

  Castro et al. (2012) concluent que l'utilisation de fonctions discriminantes basées sur des combinaisons linéaires des variables permet de meilleures classifications. Dans une autre mesure, Burks et al. (2005) ont discriminé plusieurs espèces d'adventices en classant les matrices de cooccurrence d'images HSI (cf. Chapitre 2, Partie 2.1.3) avec les réseaux de neurones. Trois types de réseaux ont été testés : un réseau de Kohonen couplé à une couche de Grossberg, un réseau perceptron multicouche et un réseau à fonction à base radiale. Les meilleurs résultats obtenus ont été réalisés avec le réseau perceptron avec 96,7 % de bonnes Entrée s Couche cachée Sortie s classifications, les deux autres types de réseaux ayant des résultats proches avec 91,7 % de bonnes classifications.

FIGURE 14 :

 14 FIGURE 14 : HYPERPLAN OPTIMAL POUR LA SÉPARATION DE DEUX CLASSES La recherche de l'hyperplan peut être ramenée à la résolution d'un problème d'optimisation sous contraintes, et est applicable à des données linéairement séparables. Les données non linéairement séparables sont projetées dans un nouvel espace de dimension différente, de manière à rendre les données linéairement séparables. Le changement d'espace est réalisé à l'aide d'une fonction noyau (polynomiale, gaussienne, sigmoïde…).Pérez-Ortiz et al. (2015b) ont testé l'application de SVM linéaires et non linéaires sur des images multispectrales acquises par drone d'une parcelle de tournesol infestée. La classification a été réalisée sur des images acquises pour trois hauteurs de vol : 30 m, 60 m et 100 m. À partir d'un échantillon de référence de l'image, labellisé manuellement, les paramètres des SVM ont été optimisés. La classification a été réalisée à partir des valeurs spectrales des pixels et du calcul de l'indice de végétation. Les SVM ont alors été testées sur les pixels de l'image. La performance de l'algorithme a été mesurée en calculant la Moyenne Absolue des Erreurs (MAE) entre les taux de pixels classés en sol, culture et adventices, et les taux correspondant à la vérité terrain. Les deux SVM testées ont présenté de bons résultats, la SVM linéaire présentant les meilleurs résultats. Par exemple, pour une hauteur de vol à 30 m, la SVM linéaire et la SVM non linéaire ont obtenu une MAE de 0,0833 et 0,0927 respectivement.

  van Gool, 2001; Moshou et al., 2001; Goel et al., 2003; Vioix, 2004; Castillejo-González et al., 2014; Pérez-Ortiz et al., 2015b), et ont obtenu relativement peu de différences entre les résultats. L'ensemble de ces méthodes semblent donc adaptée à la discrimination entre cultures et adventices. Cependant, la plupart ont été testées sur très peu d'images et risquent donc d'être adaptées spécifiquement à une image acquise dans des conditions particulières. Dans ce cas, les méthodes proposées pourraient ne pas être applicables à d'autres images acquises par drone, pour lesquelles les conditions d'acquisition sont très variées.

  Figure15). Ce drone très léger (700 g, charge comprise) est équipé de capteurs de position tels qu'une centrale inertielle et un GPS, permettant de géoréférencer les données acquises lors du vol. Grâce à ce système, les vols sont effectués automatiquement à une hauteur de vol comprise entre 50 et 150 m.

FIGURE 15 :

 15 FIGURE 15 : DRONE (À GAUCHE) ET DISPOSITIF MULTISIPECTRAL (À DROITE) Afin d'acquérir des images, un dispositif multispectral, le multiSPEC 4C® (cf. Figure 15) est embarqué dans le drone. Ce dispositif, conçu et développé par AIRINOV, est composé de quatre capteurs CMOS 20 , chacun étant équipé d'une lentille de distance focale de 3,6 mm et d'un filtre

FIGURE 16 :

 16 FIGURE 16 : TRANSMITTANCE DES FILTRES OPTIQUES (GAUCHE) ET ÉFFICACITÉ QUANTIQUE DES CAPTEURS CMOS (DROITE)

FIGURE 17 :

 17 FIGURE 17 : DISPOSITIF EXPÉRIMENTAL POUR L'ACQUISITION D'IMAGES À TRÈS HAUTE RÉSOLUTION (6 MM/PIXEL)

FIGURE 18 :

 18 FIGURE 18 : POSITIONNEMENT DE LA ZONE D'ÉTUDE

FIGURE 19 :

 19 FIGURE 19 : SYNTHÈSE DES ACQUISITIONS D'IMAGES MULTISPECTRALES RÉALISÉES À 6 CM (A) ET 6 MM (B ET C) DE RÉSOLUTION SPATIALE SUR UNE PARCELLE DE MAÏS

FIGURE 20 :

 20 FIGURE 20 : ESTIMATION DES TAUX DE VÉGÉTATION (C) À PARTIR D'UNE IMAGE MULTISPECTRALE À 6 MM DE RÉSOLUTION SPATIALE (A)Ainsi, en se basant sur les images multispectrales acquises à 6 mm de résolution spatiale, deux types de vérité terrain ont été réalisés (cf. Figure21). D'une part une carte de localisation des cultures et des adventices a été créée pour chaque zone d'intérêt. Ensuite, une image des taux de végétation a été estimée à 6 mm de résolution spatiale.

FIGURE 22 :

 22 FIGURE 22 : SPECTROMÈTRE ASD, SONDE DE CONTACT ET EMBOUT 1°

FIGURE 23 :TABLEAU 4 :

 234 FIGURE 23 : RÉSOLUTION SPECTRALE ET INTERVALLE D'ÉCHANTILLONNAGE D'UN SPECTRE

  a.). D'après la littérature,25 Aussi appelée FWMH (Full Width Middle Height) en anglais26 Visible and Near InfraRed 27 Short-Wave InfraRed Longueur d'onde (nm) lié à la construction de la fibre optique (Mac[START_REF] Arthur | The Fields of View and Directional Response Functions of Two Field Spectroradiometers[END_REF]

FIGURE 24 :

 24 FIGURE 24 : CHAMP DE VISION DES FIBRES OPTIQUES DES 3 CAPTEURS À GAUCHE ET CHAMP DE VISION D'UN DES CAPTEURS AVEC AJOUT DU MÉLANGEUR OPTIQUE À DROITE (MALTHUS ET MACLELLAN, 2010) Ce mélangeur a donc été ajouté à la fibre optique, en plus de l'embout d'angle de champ de vision de 1°, réduisant ainsi les variations brutales de réflectance à 1000 et 1800 nm (cf. Figure 25 b.).

FIGURE 25 :

 25 FIGURE 25 : EXEMPLES DE SPECTRES DE RÉFLECTANCE DE COLZA, ACQUIS AVEC ET SANS MÉLANGEUR 2.1.2.2. DISPOSITIF EXPÉRIMENTAL Le dispositif d'acquisition a été monté de manière à acquérir des spectres de réflectance purs des différentes plantules, et dans des conditions identiques. Tout d'abord la sonde a été placée à une hauteur fixe de 40 cm du support, afin de faire les acquisitions sur des plantes de hauteurs variées. Le champ de vision de la sonde est alors un disque de diamètre d'environ 2,5 cm (cf. Annexe 1).Un paramètre important à gérer est la luminosité. Afin d'éviter des variations de luminosité trop importantes dues à l'orientation des feuilles et afin de minimiser les problèmes d'ombrage, une structure a été conçue pour éclairer la plantule de façon diffuse (cf. Figure26). Des lampes ont été positionnées autour de la zone d'acquisition et une pyramide aux parois blanches a été placée au-dessus de cette zone pour renvoyer la lumière vers la plante indirectement. De même, une paroi blanche en U de 10 cm de hauteur a été placée entre la plantule et les lampes pour éviter un éclairement direct.

FIGURE 28 :

 28 FIGURE 28 : ACQUISITIONS SUR LA PARCELLE D'ESSAIS COMPOSÉE DE 60 MICRO-PARCELLES DE BLÉDes spectres de réflectance ont donc été acquis dans des conditions de laboratoire et en extérieur sur des parcelles. Le protocole d'acquisition en laboratoire a été mis en place afin d'acquérir des spectres purs de plantules de petites tailles. Un prétraitement a été réalisé afin de rendre l'ensemble des spectres, acquis dans des conditions différentes, comparables entre eux. La base de données de spectres de réflectance ainsi créée a servi, par la suite, de support à la modélisation de la chaîne d'acquisition d'images par drone. Le second protocole permet d'acquérir des spectres de réflectance au champ. Comparés à des données acquises par drone, ces spectres vont permettre de valider la modélisation de la chaîne d'acquisition.

FIGURE 29 :

 29 FIGURE 29 : SCHÉMA DÉFINISSANT LES PARAMÈTRES PERMETTANT DE CALCULER LA LUMINANCE  Irradiance L'irradiance ou éclairement énergétique E correspond au flux énergétique Φ reçu par unité de surface 𝑑𝑆. Il s'exprime en W.m -2 . 𝐸 = 𝑑Φ 𝑑𝑆 (15)

FIGURE 30 : 1 .

 301 FIGURE 30 : PRINCIPE DU MODÈLE DE LA CHAÎNE D'ACQUISITION

FIGURE 31 :

 31 FIGURE 31 : IRRADIANCE STANDARDISÉE DU SOLEIL, REÇUE AU NIVEAU DE LA MER, ASTM G173 (ASTM, 2012)

1. 2

 2 .2.1. FLUX LUMINEUX ET OBJECTIF DU CAPTEUR Afin de déterminer le flux énergétique 𝜙' reçu par un pixel, les flux énergétiques traversant l'objectif ont été schématisés sur la Figure 32. Ce schéma représente le flux énergétique 𝜙 émis ou renvoyé par la surface S, pour un angle θ, vers l'objectif du capteur, de rayon R et situé à une distance d de la surface. Le flux énergétique 𝜙', sortant de l'objectif, est reçu sur la surface image S', à une distance d' de l'objectif.

FIGURE 32 :

 32 FIGURE 32 : CONFIGURATION DU CAPTEUR Le flux énergétique 𝜙 (W) entrant dans l'objectif dépend des caractéristiques du capteur et de la radiance de l'objet :

  FIGURE 33 : COMPARAISON DES VALEURS DE RÉFLECTANCE MODÉLISÉES ET ISSUES DES IMAGES ACQUISES PAR DRONE SUR LA PARCELLE D'ESSAI DE BLÉ, POUR LES 4 BANDES SPECTRALES DU DISPOSITIF MULTISPEC (○ : MIRE ; + : BLÉ)

FIGURE 34 :

 34 FIGURE 34 : PROCÉDURE DE SÉLECTION DES BANDES SPECTRALES

FIGURE 38 :

 38 FIGURE 38 : MESURE DE LA RÉFLECTANCE D'UNE PLANTE PAR LE CAPTEUR Une largeur de bande minimale est alors calculée, à partir de laquelle la sensibilité du capteur n'est pas suffisante pour mesurer avec qualité la faible radiance de la plante, pour un temps maximal d'exposition. Pour cela une valeur limite proportionnelle au signal de sortie a été définie à partir des valeurs issues du filtre rouge (limite à ne pas dépasser d'après l'expérience de l'équipe technique d'AIRINOV). Cette valeur correspond au signal de sortie du capteur pour une mesure sur de la végétation avec le filtre rouge, et vaut 1,5.

  FIGURE 39 : ÉNERGIE MESURÉE PAR LE CAPTEUR POUR DIFFÉRENTES BANDES SPECTRALES D'après la Figure 39, pour les filtres centrés de 400 à 1100 nm :

  sélection a été faite pour un nombre de bandes donné, sans ordre d'importance entre les bandes spectrales.

FIGURE 40 :

 40 FIGURE 40 : RÉSULTATS DES BANDES SPECTRALES SÉLECTIONNÉES, REGROUPÉS PAR ESPÈCES DISCRIMINÉES ; EN GRIS : LES 4 FILTRES DU DISPOSITIF MULTISPEC

FIGURE 42 :

 42 FIGURE 42 : COEFFICIENTS DE CORRÉLATION ENTRE LES BANDES SPECTRALES SÉLECTIONNÉES Parmi les huit premières bandes spectrales sélectionnées par les algorithmes, les bandes centrées à 670 nm, 750 nm et 945 nm présentent une corrélation de 1 avec les bandes centrées à

FIGURE 43 :

 43 FIGURE 43 : BANDES SPECTRALES DU CAPTEUR MULTISPEC 4C ET NOUVELLES BANDES SÉLECTIONNÉES Des acquisitions ont été réalisées avec ce nouveau dispositif et avec le dispositif multiSPEC 4C. Ainsi, de nouvelles orthophotographies composées de huit bandes spectrales ont été créées. Les images ont été acquises à 6 mm de résolution spatiale avec une perche et à 6 cm de résolution spatiale par drone (cf. Chapitre 3, Partie 1). Dans la suite de l'étude le nouveau dispositif est appelé dispositif « complémentaire ».

FIGURE 44 :

 44 FIGURE 44 : DÉGRADATION DE L'IMAGE DES TAUX DE VÉGÉTATION DE 6 MM À 6 CM DE RÉSOLUTION SPATIALE La fonction de répartition du taux de végétation a été calculée à partir d'une orthophotographie de maïs avec une résolution spatiale de 6 cm/pixel (cf. Chapitre 3, Partie 1.3). Cette fonction de répartition 𝐹 𝛼 (𝑥) du taux de végétation représente la probabilité que ce taux 𝑡𝑥 𝑣𝑒𝑔 prenne une valeur inférieure à 𝑥: 𝐹 𝑡𝑥 𝑣𝑒𝑔 (𝑥) = 𝑃(𝑡𝑥 𝑣𝑒𝑔 ≤ 𝑥) (33) Cette fonction (cf. Figure 45) a été calculée à partir des taux de végétation évalués pour les pixels d'une des orthophotographies de maïs de 5x5 m dégradée à une résolution spatiale de 6 cm/pixel (cf. Chapitre 3, Partie 1.2).

FIGURE 45 :

 45 FIGURE 45 : FONCTION DE RÉPARTITION DES TAUX DE VÉGÉTATION POUR UNE IMAGE DE MAÏS ACQUISE PAR DRONE À 6 CM DE RÉSOLUTION SPATIALE Ainsi, ce graphe montre que pour une image de maïs à 6 cm de résolution spatiale, 70 % des pixels représentent du sol nu et qu'environ 30 % pixels de l'image représentent un mélange

Étape 1 :- 1 :

 11 Classification des pixels en trois classes à partir de l'algorithme basé sur la méthode des K-means combinée à la distance de Mahalanobis. -Étape 2 : Calcul du NDVI pour chacune des trois classes et identification des classes « Sol » et « Végétation » comme ayant la valeur NDVI (cf. Équation 3) la plus faible et la plus élevée respectivement. Les pixels restants (mélanges de sol et de végétation) sont alors rattachés à la classe « Indéterminée ». -Étape 3 : Classification des pixels « Indéterminés » dans la classe « Sol » ou « Végétation » en calculant la distance de Mahalanobis entre ces pixels et les deux classes. Une fois l'ensemble des pixels séparés entre la classe « Sol » et « Végétation », une seconde classification est réalisée afin de discriminer les monocotylédones des dicotylédones. Seuls les pixels classés en « Végétation » par les trois étapes précédentes ont été sélectionnés pour la discrimination, elle aussi composée de trois étapes : Étape Classification des pixels de végétation en trois nouvelles classes à partir de l'algorithme basé sur la méthode des K-means combiné à la distance de Mahalanobis. -Étape 2 : Identification de la classe « Dicotylédones » comme étant celle avec les valeurs les plus élevées dans l'infra-rouge et de la classe « Indéterminée » (pixels de mélanges sol/végétation) comme étant celle avec les plus faibles valeurs dans l'infra-rouge. La classe « Monocotylédones » est celle avec les valeurs infra-rouge entre les deux classes précédentes (cf. Chapitre 1, Partie 3.1.2). -Étape 3 : Classification des pixels « Indéterminés » dans la classe « Monocotylédones » ou « Dicotylédones » en calculant la distance de Mahalanobis entre ces pixels et les deux classes.

  d'abord testée sur les pixels modélisés sans mélange. Pour cela, l'ensemble des spectres de végétation et de sol ont été transformés en valeurs d'intensité de pixels à partir du modèle. Les deux classes ont alors été séparées selon la procédure décrite précédemment, et 100 % des pixels purs modélisés ont été correctement classés.

FIGURE 46 :

 46 FIGURE 46 : DISTRIBUTION DES RÉSULTATS DE CLASSIFICATION EN VEGETATION DES PIXELS MODÉLISÉS Ces résultats montrent que pour cette classification non supervisée, un pixel est classé comme végétation avec une probabilité supérieure à 80 %, lorsque le taux de végétation dans le pixel est supérieur à 0,5. Les pixels avec un taux de végétation inférieur à 0,4 seront classés comme végétation avec une probabilité inférieure à 50 %. 3.4.1.2. SUR LES IMAGES MULTISPECTRALES Cette même classification a été testée sur une orthophotographie d'une parcelle de maïs infestée d'adventices dicotylédones, dégradée à 6 cm de résolution spatiale (cf. Chapitre 3, Partie 1.2) et ayant servi à estimer la fonction de répartition des taux de végétation. Les résultats ont été tracés sur un histogramme où le pourcentage de pixels de l'image détectés comme végétation est affiché en fonction du taux de végétation estimé à partir de la vérité terrain (cf. Chapitre 3, Partie 1.2.5.2).

FIGURE 47 :

 47 FIGURE 47 : DISTRIBUTION DES RÉSULTATS DE CLASSIFICATION EN VÉGÉTATION DES IMAGES MULTISPECTRALES Les résultats de classification des images multispectrales sont d'allure similaire à ceux issus de la modélisation. En effet, ces deux histogrammes présentent une allure de sigmoïde avec :un pourcentage de classification en végétation proche de 0 % pour les pixels avec de faibles taux de végétation, -une phase de transition où le pourcentage de classification en végétation passe de 10 % à 90 % pour pixels avec un taux de végétation croissant,

  La classification a d'abord été testée sur ces pixels sans mélange. L'algorithme a d'abord séparé les pixels en deux classes « Sol » et « Végétation ». Ces deux classes sont facilement distinguables puisque 100 % des pixels ont été correctement classés. Ensuite, les pixels détectés comme « Végétation » ont été classés en « Monocotylédones » ou « Dicotylédones » : 95 % des pixels de monocotylédones et 90 % des pixels de dicotylédones ont été correctement classés. La séparation entre ces deux classes présente donc de bons résultats pour les pixels purs de végétation.

FIGURE 48 :

 48 FIGURE 48 : DISTRIBUTION DES RÉSULTATS DE CLASSIFICATION DES PIXELS MODÉLISÉS DE MONOCOTYLÉDONES (À GAUCHE) ET DE DICOTYLÉDONES (À DROITE) Ces histogrammes montrent que la probabilité de classer les pixels dont le taux de végétation est inférieur à 0,5, en « Monocotylédones » ou « Dicotylédones » est inférieure à 60 % et 10 % respectivement : les classes sont difficilement séparables. Pour avoir une meilleure

3. 4

 4 .2.2. SUR LES IMAGES MULTISPECTRALES Sur l'image multispectrale, les pixels détectés en « Végétation » ont été classés entre « Monocotylédones » et « Dicotylédones ». Sur cette image, les monocotylédones sont représentées par du maïs, et les dicotylédones par du chardon et des chénopodes. Les résultats ont été affichés sur deux histogrammes en fonction des taux de végétation estimés à partir de la vérité terrain (cf. Figure 49).

FIGURE 49 :

 49 FIGURE 49 : DISTRIBUTION DES RÉSULTATS DE CLASSIFICATION DES IMAGES MULTISPECTRALES EN MONOCOTYLÉDONES (À GAUCHE) ET DICOTYLÉDONES (À DROITE) La classification pour les dicotylédones présente une forme similaire aux résultats issus de la modélisation. En effet, sur les deux graphes, le pourcentage de bonnes classifications augmente de 0 % à 80 % lorsque les taux de végétation dans les pixels passent de 0 à 1. Pour les monocotylédones, les résultats semblent différents entre les données simulées et les images multispectrales. Tout d'abord, les taux de végétation estimés pour les pixels de monocotylédones ne dépassent pas 0,85. En effet, les monocotylédones étant à des stades jeunes (2-3 feuilles) avec un port à la verticale (contrairement aux dicotylédones), elles ne recouvraient pas suffisamment le sol pour avoir des pixels purs avec une résolution spatiale de 6 cm. De plus, les résultats de classification semblent bruités, ce qui peut être expliqué par le faible effectif de pixels de monocotylédones dont les taux de végétation sont élevés. En effet, pour de faibles effectifs, lorsqu'un pixel est mal classé, le résultat ne pourra pas être suffisamment compensé par la classification des autres pixels. Pour ces deux raisons, le plateau identifié dans les

FIGURE 50 :

 50 FIGURE 50 : PIXEL REPRÉSENTANT LE PLUS FORT TAUX DE VÉGÉTATION Ces taux de végétation minimaux et maximaux ont été synthétisés dans le Tableau 13 pour des plantes représentées par une forme circulaire.

FIGURE 51 :

 51 FIGURE 51 : PROCÉDURE DE LOCALISATION DES ADVENTICES

FIGURE 53 :

 53 FIGURE 53 : DÉTOURAGE DES ZONES DE L'IMAGE APRÈS SÉLECTION DES FRÉQUENCES DES DEUX PICS Suite à la segmentation, chaque zone est délimitée automatiquement sur l'image et l'orientation des rangs présents lui est assignée. La détection des rangs de culture est ensuite mise en place pour chaque zone.

1. 5 . 1 .

 51 PRINCIPE GÉNÉRAL DE LA TRANSFORMÉE DE HOUGH La transformée de Hough consiste à changer l'espace de représentation de l'image en un espace dont les paramètres sont les mieux adaptés à la détection de la forme d'intérêt. Elle permet ainsi de détecter des formes particulières, comme des droites, des cercles ou des ellipses. Dans le cas de la détection de droites, Duda et Hart (1972) ont adapté la transformée de Hough pour transformer l'image, vers une représentation polaire de paramètres (ρ, θ), où θ est l'angle compris entre la droite perpendiculaire à la droite d'intérêt et l'axe des abscisses, et ρ est la distance entre la droite et l'origine (cf. Figure 54).

FIGURE 54 :ρ d θ x 1 . 5 . 2 .

 54152 FIGURE 54 : REPRÉSENTATION POLAIRE D'UNE DROITE En coordonnées polaires, l'équation de la droite est alors : 𝜌 = 𝑥. 𝑐𝑜𝑠(𝜃) + 𝑦. 𝑠𝑖𝑛(𝜃) (35) Dans l'espace de Hough polaire, chaque droite est définie par un couple (ρ, θ), tandis que dans l'espace image, une droite est représentée par une infinité de points. Par ailleurs, cette nouvelle représentation présente l'intérêt de travailler avec des valeurs bornées (contrairement à la

  a.). Par exemple, sur le tableau d'accumulateurs d'une image blanche (ou chaque pixel a pour valeur 1), des maxima sont visibles au niveau des diagonales de l'image source. Pour éviter cette surestimation, le tableau d'accumulateurs de l'image à analyser a donc été normalisé en divisant par celui représentant une image blanche de même taille (cf. Figure 56 b. et c.).

FIGURE 56 :

 56 FIGURE 56 : ZOOM SUR LES TABLEAUX D'ACCUMULATEURS CORRESPONDANT À UNE IMAGE DE MAÏS ACQUISE À 6 CM DE RÉSOLUTION SPATIALE Ainsi, les rangs présents au niveau des coins de l'image sont représentés avec la même intensité sur le tableau d'accumulateur normalisé. La recherche des maxima se fait en seuillant le tableau d'accumulateurs normalisé et borné (cf. Figure 57 a.) avec la méthode d'Otsu (1979). Les composantes connexes de la zone sont ensuite calculées et, pour chacune d'elles le maximum est recherché. Les coordonnées (ρ, θ) retenues correspondent alors aux droites les plus représentatives de chaque rang.

  FIGURE 57 : LOCALISATION DES RANGS À PARTIR DU TABLEAU D'ACCUMULATEURS Les rangs de cultures sont ensuite délimités à partir de la localisation de ces droites.

FIGURE 58 :

 58 FIGURE 58 : DÉLIMITATION DES RANGS D'UNE IMAGE DE MAÏS ACQUISE À 6 CM DE RÉSOLUTION SPATIALE

FIGURE 59 :

 59 FIGURE 59 : EXEMPLE DE CLASSIFICATION DES COMPOSANTES DE VÉGÉTATION SELON LEUR FORME, POUR UNE IMAGE DE MAÏS ACQUISES À 6 MM DE RÉSOLUTION SPATIALE Les résultats obtenus à partir de l'analyse de forme des composantes de végétation et à partir de la détection des rangs sont ensuite combinés pour finaliser la discrimination entre cultures et adventices (cf. Figure 60):les composantes de végétation situées en dehors du rang sont classées en adventice les composantes de végétation situées dans le rang et classées en culture ou en adventice par l'analyse de forme restent dans ces mêmes classes les composantes de végétation traversant un rang et classées en « indécis » par l'analyse de forme sont classées selon les résultats de la délimitation de rangs : en dehors des bords du rang, les pixels sont classés en adventice, et dans le rang, les pixels sont classés en culture.

FIGURE 61 :

 61 FIGURE 61 : DISCRIMINATION ENTRE CULTURES ET ADVENTICES À PARTIR DE LA FORME DES COMPOSANTES DE VÉGÉTATION SUR DES IMAGES DE MAÏS, À 6 MM DE RÉSOLUTION SPATIALE

FIGURE 62 :

 62 FIGURE 62 : PROCÉDURE DE DISCRIMINATION SPECTRALE ENTRE CULTURES ET ADVENTICES

FIGURE 63 :

 63 FIGURE 63 : EXEMPLE DE FUSION DES RÉSULTATS DE CLASSIFICATION SUR UNE IMAGE DE MAÏS ACQUISE À 6 MM DE RÉSOLUTION SPATIALE

  a. Résultat de classification des pixels b. Regroupement des résultats par composante connexe Culture Adventice

0FIGURE 64 :

 64 FIGURE 64 : IMAGES RÉSULTANT DE L'ALGORITHME SPATIAL, UTILISÉES POUR CLASSER SPECTRALEMENT UNE ORTHOIMAGETTE DE BETTERAVE À 6 MM DE RÉSOLUTION SPATIALE

  Figure65). En effet, lorsqu'une composante a été initialement classée dans l'une des deux classes « culture » ou « adventice », il est quasicertain que la composante soit correctement classée. Ensuite, si la classification des

FIGURE 65 :

 65 FIGURE 65 : DIAGRAMME DES RÈGLES DE SÉLECTION DES PIXELS DE RÉFÉRENCE POUR LA CLASSE CULTURE

FIGURE 67 : 1 .

 671 FIGURE 67 : PROCÉDURE DE LOCALISATION DES ADVENTICES EN COMBINANT INFORMATION SPATIALE ET SPECTRALE Par ailleurs, afin de comparer la qualité de la classification en fonction des images utilisées, cette procédure de localisation des adventices combinant information spatiale et spectrale a été testée sur les orthoimagettes et sur les orthophotographies de 5x5 m (cf. Chapitre 3, Partie 1.2.4).

FIGURE 68 :

 68 FIGURE 68 : EXEMPLE DE RÉSULTATS DE CLASSIFICATION D'ADVENTICES DE DIFFÉRENTES TAILLES Valider les méthodes en comptabilisant le nombre de pieds correctement classés représente une information concrète pour l'agriculteur. Cependant la mise en place de cette validation nécessite d'avoir une vérité terrain où chaque pied d'adventice est séparé, ce qui est délicat à réaliser lorsque les adventices sont distribués en amas. Par ailleurs, pour cette validation, une règle de validation doit être proposée, indiquant à partir de quand un pied est considéré comme correctement classé : quand au moins un pixel du pied est détecté, quand tous les pixels sont détectés ?

----

  Le taux de bonnes classifications des pixels en culture : Taux de Vraies Cultures, Le taux de bonnes classifications des pixels en adventice : Taux de Vraies Adventices, Le taux de pixels de cultures classés en adventice : Taux de Fausses Adventices, Le taux de pixels d'adventices classés en culture : Taux de Fausses Cultures, Plusieurs de ces indices sont reportés dans un graphique ROC 32[START_REF] Provost | The Case against Accuracy Estimation for Comparing Induction Algorithms[END_REF]) où les taux de vrais adventices sont affichés en fonction du taux de fausses adventices (cf. Figure69).

FIGURE 69 :

 69 FIGURE 69 : EXEMPLE DE GRAPHIQUE ROC OBTENU POUR LA CLASSIFICATION D'UNE ORTHOIMAGETTE DE MAÏS ACQUISE À 6 MM DE RÉSOLUTION SPATIALE

FIGURE 70 :

 70 FIGURE 70 : RÉSULTATS DE CLASSIFICATION ENTRE CULTURES ET ADVENTICES PAR L'ALGORITHME SPATIAL, APPLIQUÉ À DES IMAGES ACQUISES À 6 MM ET 6 CM DE RÉSOLUTION SPATIALE. EXEMPLE D'UNE ZONE DE MAÏS INFESTÉE DE CHARDONS ET DE CHÉNOPODES AU STADE COTYLÉDON. Ainsi, une image telle que celle présentée sur la Figure 70 c. voit le taux de bonnes classifications des adventices s'élever à 0,99. Cependant le taux de bonnes classifications des cultures associé à cette image est très faible, à 0,02. Dans ce cas précis, la mauvaise classification de la culture n'est pas gênante pour la mise en place d'un service de gestion des adventices puisque cette culture est située parmi des amas d'adventices.

  NDVI à 6 mm de résolution spatiale b. Résultat de l'algorithme spatial sur l'image à 6 mm de résolution spatiale c. Image NDVI à 6 cm de résolution spatiale d. Résultat de l'algorithme spatial sur l'image à 6 cm de résolution spatiale zones de betterave infestées de plants de chardon isolés à un stade cotylédon (cf. Figure71), le taux de bonnes classifications des adventices descend à 0,48.

FIGURE 71 :

 71 FIGURE 71 : RÉSULTATS DE CLASSIFICATION ENTRE CULTURES ET ADVENTICES PAR L'ALGORITHME SPATIAL, APPLIQUÉ À DES IMAGES ACQUISES À 6 MM ET 6 CM DE RÉSOLUTION SPATIALE. EXEMPLE D'UNE ZONE DE BETTERAVE INFESTÉE DE CHARDON À DES STADES COTYLÉDON À ROSETTE

FIGURE 72 :

 72 FIGURE 72 : ORTHOPHOTOGRAPHIE EN NDVI (À GAUCHE) ET CARTE DE PRÉCONISATION DE PULVÉRISATION (À DROITE) Les boitiers électroniques des machines agricoles sont capables d'interpréter une carte où figurent les zones à pulvériser en commande d'ouverture ou de fermeture des tronçons de la rampe de pulvérisation. Une carte de zonage représentant les surfaces à traiter ainsi qu'un fichier de type shape lisible par le boitier sont donc suffisants pour le service de préconisation en pulvérisation. Toutefois, certaines caractéristiques du matériel doivent être prises en compte lors de la création de la carte de préconisation. Parmi celles-ci, le décalage GPS entre la carte de préconisation et le positionnement GPS du pulvérisateur doit être compensé. En effet, l'orthophotographie créée à partir de l'acquisition faite par le drone peut avoir un décalage maximum de 2 m en absolu avec les coordonnées réelles de la parcelle, ce qui est dû aux caractéristiques du GPS embarqué dans le drone. De même, un décalage d'environ 50 cm est à prévoir entre les coordonnées de la machine agricole et les coordonnées réelles. Afin de prendre en compte ce décalage, une zone « tampon » a été délimitée autour de chaque adventice détectée. Pour la première année de tests, cette zone a été fixée à un disque de 2,5 m de rayon,

ANNEXE 2 :

 2 TESTS PRÉLIMINAIRES DU DISPOSITIF ÉXPÉRIMENTAL D'ACQUISITION DE SPECTRES DE RÉFLECTANCEAvant d'utiliser le spectromètre pour l'acquisition de spectres de réflectance de plantes, des tests préliminaires ont été mis en place. Ces tests ont pour but de définir les conditions d'acquisition et de vérifier que ces conditions restent inchangées pendant les acquisitions. Variations de luminositéLe premier paramètre testé est la variation de l'intensité lumineuse dans le temps. En effet, le spectromètre étant équipée d'une source interne, celle-ci peut varier après avoir été allumée, par exemple le temps qu'elle chauffe. Plusieurs acquisitions ont donc été réalisées sur le spectralon pendant 30 minutes. Chaque acquisition a été réalisée pour un même temps d'acquisition de 272 ms (temps défini suite à l'optimisation automatique du spectromètre).

FIGURE 76 : 2 FIGURE 77 :

 76277 FIGURE 76 : VARIATIONS LE LUMINOSITÉ DE LA SOURCE INTERNE DU SPECTROMÈTRE Pendant ces 30 minutes, l'intensité lumineuse reste constante pour les capteurs VNIR et SWIR-1.Pour le capteur SWIR-2, des plateaux apparaissent vers 1800-1900 nm, ce qui est dû à une saturation du capteur lors de l'acquisition. Pour régler ce problème, le spectromètre doit être réoptimisé pendant son temps de chauffe. Variations de hauteurs d'acquisitionLes acquisitions étant réalisées sur des plantes de hauteurs différentes, des tests ont été mis en place pour vérifier que l'éclairage est suffisamment diffus pour l'objet mesuré renvoie la même quantité d'énergie lumineuse quelle que soit sa hauteur. Le spectralon a donc été placé à des hauteurs variant de 4 à 22,5 cm du sol, le spectromètre étant placé à 40 cm de hauteur. Deux séries d'acquisitions ont été effectuées : l'une avec les lampes disposées régulièrement autour de la zone d'acquisition ; l'autre avec ces mêmes lampes et une paroi blanche en U placée entre les lampes et la zone d'acquisition.

FIGURE 79 : 2

 792 FIGURE 79 : SPECTRES DE RÉFLECTANCE MESURÉS PAR LE SPECTROMÈTRE AVEC ET SANS TRANSMITTANCEUne partie importante de la lumière reçue par le spectromètre provient donc de la transmittance des feuilles, lorsque le fond blanc est utilisé. Une partie importante de la lumière est donc transmise par la plante. Afin de pallier ce problème, le fond sélectionné pour les autres acquisitions est un fond noir de réflectance quasi-nulle.

TABLEAU 28 :

 28 AIRE SOUS LA COURBE ROC DES RÉSULTATS DE CLASSIFICATION EN SÉLECTIONNANT LES POINTS DE RÉFÉRENCE SELON LEURS VALEURS NDVI

  

  

  

  

  

  

  1.2.2. ASPECTS ENVIRONNEMENTAL ET SANITAIRELors de l'application d'herbicides sur une parcelle agricole, une partie du produit est transféré dans les sols et les eaux de surface engendrant divers problèmes environnementaux.

Du fait de leur toxicité, les herbicides représentent un risque pour la biodiversité, principalement en réduisant la diversité floristique à proximité des parcelles et détruisant la faune s'en nourrissant ou s'en servant comme habitat naturel. De même, les molécules actives des herbicides risquent d'altérer le sol en détruisant certains micro-organismes qui en améliorent sa qualité. Leur effet est d'autant plus amplifié lorsque ces molécules ont un temps de dégradation élevé, favorisant leur accumulation dans les sols

[START_REF] Aubertot | Pesticides, agriculture et environnement. Réduire l'utilisation des pesticides et limiter leurs impacts environnementaux[END_REF]

.

  Pour atteindre cet objectif, de nouveaux outils doivent être proposés aux agriculteurs pour améliorer la gestion des adventices. En effet, parmi les pesticides (fongicides, insecticides et herbicides), les herbicides représentent 45 % du NODU 3 agricole (Ministère de l'agriculture, 2013). C'est pourquoi, une réduction globale des produits phytosanitaires nécessitera de mieux contrôler les quantités d'herbicides utilisées par les agriculteurs.Actuellement, de nombreux sujets de recherche s'intéressent à la gestion des adventices, tentant de proposer des solutions pour mieux gérer les parcelles en limitant les intrants. Divers axes de recherches sont explorés, basés sur les connaissances agronomiques, écologiques, génétiques et technologiques. Parmi les axes étudiés, l'agriculture de précision se développe largement ces dernières années.

	En France, à la suite du Grenelle de l'environnement de 2007, le plan Ecophyto a été mis en
	place. Ce plan visait à réduire « si possible » de 50 % l'usage des pesticides en France d'ici 2018
	et à retirer du marché les substances jugées les plus toxiques (Butault et al., 2011). Le « paquet
	pesticides », adopté par l'Europe en 2009, est plus contraignant et vise à mieux contrôler les
	produits phytosanitaires mis sur le marché (CE, 2009).

1.2.4. VERS UNE RÉDUCTION DES PESTICIDES

L'utilisation massive des herbicides en France causant divers problèmes environnementaux, sanitaires ou de phénomènes de résistances, a poussé l'État à prendre des mesures visant à réduire l'utilisation des produits phytosanitaires sur les parcelles agricoles.

Avec ces nouvelles réglementations, une cinquantaine de substances actives ont été retirées du marché. Au niveau de la réduction des quantités de produits phytosanitaires utilisés, les objectifs du plan Ecophyto semblent difficilement atteignables d'ici 2018. En effet, les quantités de pesticides vendues en France stagnent depuis 2009. C'est pourquoi l'objectif de réduction de 50 % de l'usage des produits phytosanitaires a été reporté à 2025 (Ministère de l'agriculture, 2015).

  En effet, les machines agricoles se sont répandues en Europe, ainsi que l'utilisation massive de fertilisants et de produits phytosanitaires, tels que les herbicides. Les parcelles agricoles sont alors devenues de plus en plus grandes et les exploitations se sont spécialisées : les exploitations familiales sont devenues de réelles entreprises agricoles. Grâce à cette intensification, le volume de la production agricole totale de la France a doublé en 50 ans[START_REF] Desriers | L'agriculture française depuis cinquante ans : des petites exploitations familiales aux droits à paiement unique[END_REF].

	2. L'AGRICULTURE DE PRÉCISION POUR MIEUX GÉRER LES
	ADVENTICES
	2.1. L'AGRICULTURE DE PRÉCISION : VERS UNE AGRICULTURE DURABLE
	À la suite de la seconde guerre mondiale, l'agriculture européenne s'est intensifiée afin d'assurer
	la sécurité alimentaire de l'Europe. La Politique Agricole Commune (PAC), mise en place en
	1962, a permis de moderniser les exploitations agricoles et d'augmenter grandement leur
	productivité.

Toutefois, en s'intensifiant, l'agriculture a fortement impacté l'environnement causant une dégradation des sols, une pollution des eaux (nitrates et pesticides) et une baisse de la biodiversité. C'est pourquoi, vers la fin du XX ème siècle, la PAC a arrêté de promouvoir cette agriculture productiviste et a évolué en incluant des mesures environnementales pour s'orienter vers une agriculture plus durable. De nouvelles réglementations autour de l'homologation et l'utilisation des produits ont alors été mises en place afin de réduire leur utilisation. Pour accompagner ces restrictions croissantes tout en garantissant une production suffisante et de qualité, des méthodes alternatives ont pu voir le jour, telle que l'agriculture de précision.

Le concept d'agriculture de précision est né dans les années 80 aux États-Unis, lorsque l'épandage des engrais a été modulé en fonction de la variabilité intra-parcellaire

[START_REF] Robert | Precision agriculture: a challenge for crop nutrition management[END_REF] 

afin de mieux répondre aux réels besoins des plantes. Taylor et Whelan (2005) définissent le concept d'agriculture de précision comme la mise en place d'une stratégie de gestion de l'ensemble de l'exploitation s'appuyant sur les technologies de l'information dans le but d'améliorer la production agricole tout en limitant l'impact environnemental. Pour ce faire, l'agriculture de précision se base sur l'étude de la variabilité intra-parcellaire, que ce soit au niveau spatial ou temporel

[START_REF] Pierce | Aspects of Precision Agriculture[END_REF]

. En effet, les différents facteurs influençant la croissance des plantes (compaction du sol, humidité, présence d'adventices, quantité d'azote…) varient au sein d'une même parcelle. En particulier, le concept d'agriculture de précision peut être appliqué à la gestion des adventices puisque leur distribution spatiale sur les parcelles est le plus souvent hétérogène

  De plus, avec le développement de l'ISOBUS, protocole standardisé de communication tracteuroutil, le terminal embarqué dans le tracteur peut interpréter automatiquement les informations

d'une carte d'application d'herbicides et envoyer automatiquement les commandes à n'importe quel outil tracté (i.e. le pulvérisateur).

  3. TÉLÉ-ET PROXI-DÉTECTION DES ADVENTIC ESLa télédétection regroupe les techniques d'acquisition d'information sur un objet à partir de mesures réalisées sans contact avec l'objet[START_REF] Elachi | Introduction to the physics & techniques of remote sensing[END_REF]. La télédétection est caractérisée par l'acquisition de données, le plus souvent de nature électromagnétique, à l'aide de capteurs embarqués dans des satellites ou dans des avions. Avec le développement des technologies embarquées et l'arrivée de nouveaux vecteurs d'acquisition au sol, à proximité de l'objet observé, le terme de proxidétection a vu son apparition.En télédétection, deux types de capteurs sont utilisés : les capteurs actifs et les capteurs passifs. Ces capteurs mesurent l'énergie provenant d'un objet pour une ou plusieurs bande(s) spectrale(s) (ou bande de longueurs d'onde)[START_REF] Girard | Traitement des données de télédétection[END_REF]. Les capteurs actifs envoient de l'énergie et mesurent la partie réfléchie par l'objet étudié. Parmi ces capteurs se trouvent le radar, le lidar, le laser ou le fluoromètre. Les capteurs passifs tirent parti d'une source naturelle d'énergie et mesurent la proportion émise ou réfléchie par l'objet. En agriculture, pour la plupart des capteurs passifs, la source lumineuse éclairant les objets est le soleil. Ces capteurs sont les radiomètres, les caméras multi-ou hyper-spectrales et les spectromètres. La végétation ayant des caractéristiques spectrales particulières, elle peut être identifiée à l'aide de ces capteurs.

3.1. MESURE DES CARACTÉRISTIQUES SPECTRALES DES PLANTES

3.1.1. MESURE DU RAYONNEMENT

 Réflectance

  ; Torres-Sánchez et al., 2013; López-Granados et al., 2015).

  Ahmed et al. (2012) ont acquis des images RGB de culture de piment et de plusieurs espèces adventices. La résolution des images variait entre 0,25 et 0,4 mm/pixel. Différentes caractéristiques de forme ont été calculées, telles que le ratio aire/périmètre, l'élongation, la convexité, la solidité... En mettant en place une classification basée sur ces paramètres, 97,3 % des plantes ont été correctement identifiées. Sur des images à plus faible résolution spatiale, Peña et al. (2013) ont calculé le ratio entre la longueur et la largeur des objets de végétation, ainsi que leur orientation, pour détecter les rangs de culture puis pour en déduire les zones d'adventices comme étant la végétation hors du rang. Avec ces caractéristiques, l'ensemble des rangs et 86 % des adventices ont été correctement détectés.

	exemple, en passant de l'espace cartésien de l'image vers un espace de représentation polaire,
	où chaque point du plan est défini par un angle θ et une distance ρ (Duda et Hart, 1972). Dans
	notre cas, le passage d'une représentation cartésienne à une représentation polaire est adapté à
	la recherche de droites sur une image. En effet, dans un espace cartésien, une droite est
	représentée par une infinité de points, tandis que dans un espace polaire, cette même droite est
	représentée par un unique point de coordonnées (θ, ρ), ce qui est plus simple à rechercher. Les
	algorithmes s'appuyant sur la transformée de Hough ont montré une détection d'adventices
	robuste et relativement rapide sur des images de parcelles (Leemans et Destain, 2006; Jones et
	al., 2009; Pérez-Ortiz et al., 2015b). Par ailleurs le temps de traitement avec cette méthode peut
	être accéléré en bornant l'étude à une orientation de rangs prédéfinie (Jones, 2009).
	Les rangs de culture pouvant être identifiés grâce à leur périodicité, des méthodes fréquentielles
	ont été étudiées. En analyse d'image, la transformée de Fourier, permettant de passer du
	domaine spatial au domaine fréquentiel est très utilisée. Vioix et al. (2002) ont pu définir les
	fréquences et l'orientation des rangs de culture en appliquant la transformée de Fourier sur des
	images de maïs acquises par drone. Les rangs de culture ont ensuite été extraits en filtrant ces
	images dans le domaine fréquentiel par un filtre de Gabor 10 .	
	Bossu (2007) a comparé les deux méthodes précédentes à la transformée en ondelettes pour
	détecter les rangs sur des images de parcelles, prises en perspective. La transformée en
	ondelettes décompose le signal, dans le domaine fréquentiel, par un ensemble de translations et
	de dilatations d'une même fonction ou ondelette. Cette technique nécessite de déterminer quel
	type d'ondelette est le plus adapté aux images à analyser et implique une adaptation en fonction
	de la culture étudiée. D'après les résultats de Bossu (2007), les trois méthodes permettent de
	détecter correctement les rangs de culture. Cependant, la transformée de Fourier semble
	entraîner une mauvaise classification des adventices, et la transformée en ondelettes les
	surdétecte légèrement.	
	2.1.2. ANALYSE DE FORMES
	L'analyse de formes consiste à mesurer les caractéristiques géométriques des objets présents
	sur l'image, tels que l'aire, le périmètre, la longueur, la largeur, l'élongation, la convexité, la Indice de solidité, le squelette... L'analyse de forme appliquée à la détection des adventices est le plus végétation souvent réalisée sur des images à très haute résolution spatiale, de l'ordre du millimètre/pixel, 0,7 afin d'extraire les caractéristiques géométriques des feuilles de différentes plantes (Weis, 2010;
	Meyer, 2011; Ahmed et al., 2012)	
	Les caractéristiques de formes de chaque objet détecté sont mesurées et comparées à une base 0 de données préétablie. Ainsi, Gerhards et Oebel (2006) ont mesuré l'aire, la compaction, le
	diamètre minimum et maximum des feuilles d'adventices présentes sur des images
	hyperspectrales prises dans l'infrarouge et le rouge. Ces caractéristiques ont permis d'identifier
	différentes espèces de dicotylédones et de monocotylédones dans un champ de blé d'hiver et un
	champ d'orge de printemps, respectivement avec 73 % et 86 % des individus de chaque espèce
	correctement identifiés.	2 m
	De même, Pérez et al. (2000) ont proposé plusieurs indices de forme, tels que les ratios entre la
	longueur et l'aire de l'objet, la largeur et l'aire, le périmètre et l'aire, pour identifier les
	adventices dans un champ de céréales. 89 % des pieds de culture et 79 % des pieds d'adventices
	ont alors été correctement détectés.	

FIGURE 8 : EXEMPLES DE MONOCOTYLÉDONE (À GAUCHE) ET DE DICOTYLÉDONE (À DROITE)

  Pour la discrimination betteraves/adventices, 60 % et 67 % des pixels ont été correctement classés respectivement par les analyses discriminantes linéaire et quadratique. Pour la discrimination pomme de terres/adventices, 66 % et 71 % des pixels ont été correctement classés respectivement par les analyses discriminantes linéaire et quadratique.De même, Okamoto et al. (2007) ont testé l'analyse discriminante pas à pas sur des images hyperspectrales de betteraves et de plusieurs espèces d'adventices. L'étendue spectrale des images allait de 400 à 1000 nm, avec une résolution spectrale de 10 nm. Avec cette méthode, 81,3 % des pixels de betterave et 74,7 à 97,3% des différentes espèces d'adventices ont été correctement classées. D'autres méthodes, telles que la régression des moindres carrés partiels, ou PLS 12 , sont adaptées à l'analyse discriminante décisionnelle. La PLS crée des modèles prédictifs adaptés à des données composées de variables nombreuses et corrélées. Cette méthode consiste à réduire le nombre de variables prédictives en les représentant par des variables latentes, non corrélées, permettant de prédire au mieux les valeurs de sortie (e.g. les classes) en fonction des variables méthode, 90,2% des spectres de betterave et 95,5% des spectres de chardon ont été correctement classés. De plus, à partir de l'analyse PLS, quatre bandes spectrales ont été extraites comme étant les plus discriminantes. Cette méthode a alors été testée sur des images multispectrales acquises par drone (6 bandes centrées à 488, 550, 610, 780, 675 et 940 nm), d'une résolution spatiale variant de 1,4 à 2 mm. Cependant, les données multispectrales étant plus bruitées que les données hyperspectrales, les classifications se sont révélées moins performantes. Ainsi, à partir d'une PLS-DA appliquée sur certaines images, Garcia-Ruiz et al. (2015) ont vu le taux de bonnes classifications de betterave et de chardon baisser à 52 % et 72 % respectivement.2.2.2.1.2. LES MÉTHODES PROBABILISTIQUESLes méthodes probabilistes reposent sur une hypothèse sur la distribution des individus à classer. Les pixels mal classés semblent être dus à la présence de mélanges spectraux. En effet, avec une résolution spatiale faible, les amas d'adventices de moins d'un mètre carré sont mélangés avec le sol au niveau des pixels de l'image, et sont donc plus difficiles à détecter.De la même manière,[START_REF] Castro | Broad-scale cruciferous weed patch classification in winter wheat using QuickBird imagery for in-season site-specific control[END_REF] ont classé les pixels d'images de parcelles de blés infestées par des crucifères par maximum de vraisemblance. Les images, acquises par le satellite QuickBird, avaient une résolution spatiale de 2,4 m et était composées de quatre bandes spectrales dans le bleu, vert, rouge et proche infrarouge. Les zones infestées ayant été identifiées sur le terrain, des zones de blé et des zones infestées de crucifères ont pu être prédéfinies sur les images. À partir de ces deux classes, la probabilité de chaque pixel d'appartenir à chacune des deux classes est calculée. Le pixel est alors affecté à la classe ayant obtenu la plus grande probabilité. Les crucifères étant en fleur, elles présentaient une couleur jaune distincte du blé vert à un stade jeune. Cette méthode a donc classé correctement 91,3 % des pixels testés en blé ou en zone infestée. Cependant, les images ayant une résolution spatiale faible, les zones infestées ont été définies pour des surfaces de 12 m². La classification n'a donc pas été testée sur des zones de surfaces plus petites. La distance euclidienne correspond simplement à la norme entre le point à classer et le barycentre de la classe. La distance de Mahalanobis la complète en prenant en compte la variance et la corrélation des variables de la classe (cf. Figure10). Sur les données testées, la classification par la distance de Mahalanobis montre de meilleurs résultats : 77,2 % des betteraves et 94,1% des adventices ont été correctement classées contre 68,7 % et 87,3 % avec la distance euclidienne.

	Matrice calculée pour : -Distance = 1 pixel -Orientation = 0° (horizontale) Pour différencier le sol de végétation sur des images RGB, Woebbecke et al. (1995) ont proposé 2 1 0 par avion. Cependant, ces indices ne permettaient pas de détecter de faibles densités -les méthodes statistiques, 0 1 2 1 1 0 1 0 0 0 1 0 2 2 4 l'indice « Excess Green Index » : d'adventices (inférieurs à 17 pieds par m²). -les méthodes probabilistiques, 4 2 2 𝐸𝑥𝐺 = 2𝑔 -𝑟 -𝑏 (1) -les mesures de distances, 2.2.3. LES MÉTHODES DE SÉPARATION -les arbres de décision 3 1 1 2 avec : 𝑟 = 𝑅 * 𝑅 + 𝐺 + 𝐵 , 𝑔 = 𝐺 * 𝑅 + 𝐺 + 𝐵 , 𝑏 = -les réseaux de neurones, Les valeurs de ces indices de végétation étant très différentes pour le sol et la végétation, les -les Machines à Vecteurs Supports (SVM). méthodes de séparation à partir de ces indices sont relativement simples. La plupart du temps, 𝐵 * 𝑅 + 𝐺 + 𝐵 un seuillage est utilisé, où une valeur seuil est définie arbitrairement ou calculée. L'image (2) résultante est une image binaire où apparaîssent deux classes : le sol et la végétation. 2.2.2.1.1. LES MÉTHODES STATISTIQUES
	où 𝑅 * , 𝐺 * , 𝐵 * sont les valeurs RGB normalisées (0 à 1), définies par : 𝑅 * = 𝑅 𝑅 𝑚 , 𝐺 * = 𝐺 𝐺 𝑚 , 𝐵 * = 𝐵 𝐵 𝑚 𝑅, 𝐺 et 𝐵, étant les valeurs du pixel dans le rouge, le vert et le bleu, respectivement et 𝑅 𝑚 , 𝐺 𝑚 et 𝐵 𝑚 , sont les valeurs maximales que peuvent prendre les pixels dans le rouge, le vert et le bleu respectivement. L'analyse discriminante est une technique permettant de créer un modèle de manière à Ainsi, sur une parcelle de chaume de colza, Lamb et Weedon (1998) ont pu séparer le sol et les prédire les classes, connues a priori, de différents individus. L'analyse discriminante se distingue résidus de végétation, des adventices à partir d'images multispectrales acquises avec une selon deux aspects : l'analyse descriptive qui recherche les combinaisons linéaires des variables résolution spatiale de 1 m. Le seuil fixe a été défini après analyse des images NDVI obtenues, et a permettant au mieux de discriminer les différentes classes ; et l'analyse décisionnelle, ou permis de classer correctement 87,2 % de la surface en zone infestée ou non. De même, après prédictive, construisant des règles d'affectation des individus aux différentes classes à partir des analyse d'images multispectrales de blé et de maïs acquises par drone, Peña et al. (2013) et variables (Celeux et Nakache, 1994). L'analyse décisionnelle, dans laquelle les variables Torres-Sánchez et al. (2014b) ont séparé le sol de la végétation en réalisant un seuillage sur le quantitatives (ou prédictives) permettent de prédire une variable qualitative (une classe), NDVI, dont la valeur seuil était fixée à 0,2. semble donc bien adaptée au cadre de la discrimination entre culture et adventices à partir de
	Pour conclure, les méthodes de traitement principalement basées sur l'analyse spatiale montrent leur capacité à détecter les adventices sur des images de parcelles. Ces techniques s'appliquent principalement à des cultures sarclées, dans le cas de détection des rangs, ou à des images à très haute résolution, pour détecter les formes des feuilles. Parmi les méthodes proposées, celles basées sur la détection de rangs se montrent robustes et simples à mettre en Cependant, l'utilisation d'un seuil fixe manque de robustesse. En effet, la réflectance des plantes données spectrales. Torres-Sánchez et al. (2014a) ont comparé six indices de végétation applicables aux images RGB et ont montré que l'Excess Green Index permet de séparer le sol de la végétation au mieux. Cet indice est donc largement utilisé pour différencier le sol de la végétation sur les images RGB (Søgaard et Heisel, 2003; Meyer et Neto, 2008; Montalvo et al., 2012; Rasmussen et al., 2013; et du sol peut varier selon leur composition respective, le type de plante ou de sol, l'humidité, Au niveau décisionnel, les analyses discriminantes linéaire et quadratique sont très utilisées. Ces etc. Un seuil fixe risque donc de ne pas être adapté à toutes les images étudiées. C'est pourquoi, deux méthodes proposent un modèle de classification à partir du développement de fonctions de des méthodes de seuillage automatique sont proposées dans la littérature. classement, respectivement linéaire et quadratique, appliquées aux variables. L'analyse Pérez-Ortiz et al., 2015a). discriminante linéaire se base sur l'hypothèse d'égalité des matrices de variances covariances Parmi les méthodes de seuillage automatique, la méthode d'Otsu (Otsu, 1979) est la plus place. De plus, l'analyse spatiale des images dépend d'une première étape séparant le sol de la végétation. Cette étape est basée essentiellement sur l'analyse spectrale. De même, afin d'améliorer la détection des adventices, l'information spectrale doit être exploitée, d'une part pour compléter la détection sur les cultures sarclées, d'autre part pour détecter les adventices dans des cultures non sarclées (e.g. blé, colza). 2.2. MÉTHODES SPECTRALES répandue (Burgos-Artizzu et al., 2011; Montalvo et al., 2012; López-Granados et al., 2015; pour les différentes classes (Nakache et Confais, 2003), contrairement à l'analyse discriminante D'autres indices peuvent être utilisés pour les images multispectrales. Le « Normalized Torres-Sánchez et al., 2015). Ce seuillage consiste à minimiser la variance intra-classe. Cette quadratique considérant les matrices de covariances distinctes. Difference Vegetation Index » (NDVI) (Rouse et al., 1973; Tucker, 1979) est largement décrit dans la littérature (Lamb et Weedon, 1998; Feyaerts et van Gool, 2001; Backes et Jacobi, 2006; Peña et al., 2013). 𝑁𝐷𝑉𝐼 = méthode permet l'application d'un seuil propre à chaque image traitée. Appliqué sur les valeurs Une analyse discriminante quadratique a été réalisée par Vrindts et al. (2002) sur des données d'un indice comme le NDVI, il différencie le sol et la végétation quelles que soient les variations spectrales de maïs, betteraves et d'adventices associées. Tout d'abord des spectres acquis en d'intensité lumineuse entre les images. laboratoire, d'une étendue de 400 à 2000 nm, ont été classés. Une première classification a été 𝜌 𝐼𝑅 -𝜌 𝑅 𝜌 𝐼𝑅 + 𝜌 𝑅 (3) réalisée sur les spectres de réflectance. Les spectres de maïs et d'adventices ont alors été classés 2.2.2. DISCRIMINATION ENTRE CULTURES ET ADVENTICES avec moins de 1% d'erreurs, et ceux de betteraves avec moins de 2 % d'erreurs. La même
	2.2.1. SÉPARATION SOL -VÉGÉTATION Le sol et la végétation ayant des signatures spectrales très différentes, ces deux classes peuvent avec 𝜌 𝐼𝑅 et 𝜌 𝑅 , la réflectance dans l'infrarouge et le rouge respectivement. Contrairement à l'Excess Green Index, le NDVI est un indice normalisé, ce qui lui permet de compenser les variations de luminosité sur l'image. classification a été réalisée sur des images hyperspectrales, d'une étendue de 400 à 900 nm, Les spectres de réflectance des cultures et des adventices étant très proches, des méthodes de acquises sur le terrain. Dans ce cas, 93 % des pixels de betterave et 84 % des adventices classification plus complexes que celles employées pour la discrimination sol/végétation doivent associées ont été correctement classés, tandis que seulement 15 % des pixels de maïs et 97 % être mises en place. Les méthodes de classification peuvent être séparées en deux groupes des pixels d'adventices ont été bien classés. distincts : les méthodes supervisées et les méthodes non supervisées. La classification être séparées relativement facilement sur des images de télédétection à l'aide d'indices De même, le « Soil Adjusted Vegetation Index » (SAVI) (Huete, 1988) est utilisé pour séparer le supervisée consiste à proposer un modèle de classification à partir d'un échantillon dont les Piron et al. (2008) ont aussi mis en place une analyse discriminante quadratique pour la spécifiques. sol de la végétation, tout en compensant les variations de luminosité du sol (liées à sa classes sont connues. La classification non-supervisée réalise une classification sans discrimination de carottes et des adventices associées sur des images hyperspectrales,
	2.2.2. LES INDICES DE VÉGÉTATION composition, la présence d'eau…) : connaissance a priori des classes des individus. composées de 22 bandes spectrales d'une résolution spectrale variant de 40 à 100 nm. L'analyse
	Les indices de végétation sont calculés par une opération mathématique entre les valeurs de réflectance dans plusieurs bandes spectrales. De nombreux indices sont proposés dans la 𝑆𝐴𝑉𝐼 = (1 + 𝐿) × 𝜌 𝐼𝑅 -𝜌 𝑅 ( 4) 2.2.2.1. discriminante quadratique a été préférée à l'approche linéaire car la classe adventice était LES MÉTHODES DE CLASSIFICATION SUPERVISÉES composée de différentes espèces, entrainant des covariances distinctes entre les deux groupes. 𝜌 𝐼𝑅 + 𝜌 𝑅 + 𝐿 Diverses méthodes de classification supervisées ont été proposées dans la littérature. Ces Cette méthode a permis de sélectionner la combinaison de bandes spectrales la plus adaptée à la littérature. Ces indices sont principalement basés sur les bandes du visible (Rouge, Vert, Bleu) et du proche infrarouge, car les principaux outils de télédétection sont composés de ces bandes spectrales. L'ensemble des indices de végétation développés pour l'étude des cultures est résumé par Bannari et al. (1995). Nous ne présentons ici, que les indices les plus souvent utilisés. méthodes se composent de trois étapes principales : discrimination des carottes et des adventices. À partir des images composées de trois bandes avec 𝜌 𝐼𝑅 et 𝜌 𝑅 , la réflectance dans l'infrarouge et le rouge respectivement et L, un facteur spectrales centrées à 450, 550 et 700 nm, 72 % des pixels ont été correctement classés. d'ajustement. Ce facteur prend des valeurs proches de 0 pour de très fortes densités de -sélection d'un échantillon de référence (cette étape est le plus souvent manuelle), végétation et 1 pour de très faibles densités. Le plus généralement, ce facteur prend la valeur 0,5, -création d'un modèle de classification à partir de l'échantillon, Borregaard et al. (2000) ont comparé les analyses discriminantes pas à pas linéaire et valeur correspondant à une densité intermédiaire. C'est pourquoi, pour que le SAVI soit -application du modèle sur l'ensemble des données à classer. quadratique, sur des images hyperspectrales de betteraves, de pommes de terre et de plusieurs correctement adapté aux images étudiées, la densité de végétation présente sur les images doit espèces d'adventices. Les images avaient une résolution spectrale de 2 à 5 nm pour une étendue être connue. Les méthodes supervisées prenant en compte des données de référence montrent globalement de 400 à 1060 nm, et une résolution spatiale de 6 mm/pixel. L'analyse discriminante pas à pas
	de bons résultats, et ce quelle que soit la complexité de la méthode utilisée. C'est pourquoi, les construit un modèle en y introduisant à chaque étape la variable discriminant le mieux les Lamb et al. (1999) ont montré l'existence d'une corrélation entre la densité de folle avoine dans méthodes supervisées sont largement étudiées dans la littérature, et très variées. Parmi celles classes (analyse ascendante), ou en partant d'un modèle incluant toutes les variables au départ des champs de triticale et les valeurs de NDVI et SAVI issues d'images multispectrales acquises appliquées à la localisation d'adventices se trouvent : puis en éliminant à
	11 Hue, Saturation and Intensity (Teinte, Saturation et Intensité)

chaque étape la variable la moins discriminante (analyse descendante). Les modèles ont été construits à partir de pixels sélectionnés manuellement pour représenter chaque espèce à discriminer. d'entrée (e.g. les spectres de réflectance). La recherche des variables latentes se fait de manière à maximiser la covariance entre les données d'entrée et de sortie. Schématiquement, la régression par les moindres carrés crée itérativement des variables latentes orthogonales les unes avec les autres. Cette méthode est adaptée à l'analyse de données de grandes dimensions dont les variables présentent de fortes corrélations. C'est pourquoi, elle est largement appliquée à l'étude de spectres de réflectance ou d'images hyperspectrales. Cette méthode s'adapte bien à la classification supervisée où les variables à prédire sont qualitatives. La combinaison de l'analyse discriminante et de la PLS s'appelle alors la PLS-DA
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. cette Parmi les méthodes utilisées, la classification bayésienne est basée sur les probabilités conditionnelles. D'après le théorème de Bayes, pour deux événements A et B quelconques, la probabilité de A sachant B peut être calculée 𝑃(𝐴|𝐵) = 𝑃(𝐵|𝐴)𝑃(𝐴) 𝑃(𝐵) (5) avec 𝑃(𝐴), la probabilité a priori de A, 𝑃(𝐵), la probabilité de B et 𝑃(𝐵|𝐴), la probabilité de B sachant A. La règle de décision de Bayes permet de classer l'individu dans la classe dont la probabilité a posteriori est la plus grande. Cette décision minimise le risque d'erreur de classification (Duda et al., 2001). Zhang et al. (2012) ont acquis des images hyperspectrales, au sol, de tomate et des adventices associées à différentes saisons. La résolution spatiale des images était de 0,31 mm, la résolution spectrale de 1,64 nm et l'étendue spectrale de 384 à 810 nm. Après avoir réalisé une analyse discriminante multivariée, pour définir les variables latentes, un classifieur de Bayes a été mis en place. Plusieurs classifieurs ont été proposés, spécifiquement à chaque saison, ainsi qu'un classifieur global. La classification de Bayes a montré de bons résultats lorsqu'elle a été développée spécifiquement pour chaque saison, avec 92 % de bonnes classifications. Avec le classifieur global, le taux de bonnes classifications s'est abaissé à 85 %, ce qui est dû à la variabilité des données entre les différentes saisons. Une autre méthode probabiliste utilisée est la classification par maximum de vraisemblance. La vraisemblance est une fonction permettant de mesurer l'adéquation entre une distribution observée sur un échantillon et une loi de probabilité connue. La fonction de vraisemblance est le produit des densités de probabilité de cette loi correspondant aux données observées. Plus les probabilités d'obtenir les données observées sont élevées, plus la vraisemblance est élevée. Ainsi, en calculant la vraisemblance de différentes lois de probabilités, leur correspondance avec les données observées peut être comparée. La loi ayant une vraisemblance maximale sera celle concordant le mieux avec les données observées. À partir d'images multispectrales acquises par avion, Lamb et Weedon (1998) ont pu discriminer les chaumes de colza des adventices par maximum de vraisemblance. Les images, d'un mètre de résolution spatiale, étaient composées de quatre bandes spectrales de 25 nm de large, centrées à 440, 550, 650 et 770 nm. Après avoir sélectionné les pixels de référence manuellement, la classification a pu discriminer correctement 85,8 % des pixels de chaume de colza et d'adventices. 2.2.2.1.3. LES MESURES DE DISTANCE Parmi les méthodes basées sur les mesures de distance, deux types de classification sont principalement utilisées. La première, la classification par distance minimale, mesure une distance entre une classe de référence et le point à classer. La seconde, la classification par les k plus proches voisins, identifie les classes des points situés à moins d'une distance donnée. La classification par distance minimale suppose les variables des différentes classes comme normales, caractérisées par une moyenne et une variance. Pour chaque pixel à classer, une distance (euclidienne ou autre) est calculée entre celui-ci et chacune des classes. Le pixel est alors affecté à la classe la plus proche de lui. Avant de tester l'analyse discriminante, Okamoto et al. (2007) ont tenté de discriminer betteraves et adventices sur leurs images hyperspectrales à partir du calcul de la distance euclidienne entre les classes de référence et les pixels à classer. Les données semblaient trop complexes pour obtenir de bons résultats : seulement 29,3 % des pixels de betterave et 57,3 % à 76 % des pixels d'adventices ont été correctement classés. Pour obtenir de meilleures classifications, des distances plus sophistiquées peuvent être utilisées, comme la distance de Mahalanobis intégrant la covariance des différentes variables. Feyaerts et van Gool (2001) ont testé la classification par distance minimale sur des images composées de 6 bandes spectrales acquises sur des parcelles de betterave infestées de différentes adventices. Les classes étant identifiées par avance, la moyenne et variance de chaque classe ont été calculées à partir d'un échantillon de référence. Les distances euclidienne et de Mahalanobis ont été comparées pour la classification des pixels.

  quadratique et linéaire, et ce pour les images acquises pour une hauteur de vol de 30 m.Dans la littérature, les méthodes non supervisées sont très peu utilisées pour la discrimination cultures adventices. En effet, les classes « culture » et « adventice » sont des classes de végétation très similaires, et donc difficilement séparables. C'est pourquoi, après avoir comparé une méthode des centres mobiles à des méthodes supervisées, Vioix (2004) a indiqué la complexité à classer cultures et adventices de manière non supervisée. Ces deux classes semblent être difficilement séparables automatiquement, sans information a priori pour orienter la classification.Pour conclure, de nombreuses méthodes ont été proposées dans la littérature afin de détecter les adventices par imagerie. Ces méthodes se basent aussi bien sur l'analyse spatiale des images, en recherchant les rangs de culture ou en analysant la forme des plantes, que sur l'analyse spectrale, en développant des classifieurs basés sur la réflectance des pixels (cf. Tableau 1). Dans la plupart des algorithmes développés, la procédure de détection des adventices consiste à d'abord séparer le sol de la végétation puis à discriminer la végétation entre culture et adventices.

	Séparation	Base	Type de méthode	Méthode de traitement	Intérêt	Contraintes
	Sol -Végétation	Seuillage sur un indice de végétation	Spectral	Seuillage fixe Seuillage automatique (Otsu)	Très simple à mettre en oeuvre Seuil calculé automatiquement pour chaque image	À redéfinir manuellement pour chaque image Séparation systématique en 2 classes
				Transformée de Hough	Méthodes robustes et rapides.	Applicables sur des images où les
		Détection des rangs	Spatial	Transformée de Fourier	Applicables aux images RGB, multispectrales et	rangs sont distincts. Pas de détection possible dans le
				Transformée en Ondelettes	hyperspectrales	rang
						Applicables principalement aux
		Analyse de forme	Spatial	Calculs d'indices géométriques	Possibilité d'identifier les espèces	images à très haute résolution. Mesures sur un échantillon de
						référence important
		Analyse de texture	Spatial	Matrice de cooccurrence (sur des images HSI)	Robuste face aux variations de luminosité	Applicable seulement aux images RGB
	Culture -Adventices	Classification supervisée	Spectral	Analyse discriminante (linéaire, quadratique, PLS-DA) Classification bayésienne Maximum de vraisemblance Distance minimale K-plus proches voisins	Possibilité de détecter les adventices dans et hors du rang. Applicables sur des images à	Nécessitent de sélectionner un échantillon de référence. Applicables sur des images multi ou hyperspectrales (classification
				Arbre de décision	faible et haute dimension	plus difficile sur les images RGB)
				Réseau de neurones		
				SVM		
		Classification non supervisée	Spectral	Centres mobiles Classification hiérarchique	Pas d'échantillon de référence à sélectionner	Méthodes peu robustes (cultures et adventices trop semblables spectralement)
		TABLEAU 1 : SYNTHÈSE DES MÉTHODES SPATIALES ET SPECTRALES UTILISÉES POUR LA DÉTECTION DES ADVENTICES

2.2.2.2. LES MÉTHODES DE CLASSIFICATION NON SUPERVISÉES Les méthodes de classification non supervisées visent à partitionner les individus en plusieurs classes, les plus homogènes possibles et les plus distinctes entre elles, sans connaissance a priori des classes des individus. Les méthodes non supervisées peuvent être divisées en deux groupes : les méthodes de classification hiérarchique et les méthodes de classification par centres mobiles. La classification hiérarchique consiste à regrouper ou diviser de façon itérative des groupes d'individus. Parmi les méthodes de classification hiérarchique, les méthodes ascendantes regroupent des individus qui se ressemblent selon des caractéristiques définies, tandis que les méthodes descendantes divisent un groupe d'individus. Appliquées à l'analyse d'image, les méthodes ascendantes partent donc des pixels séparés et les agrègent successivement pour aboutir à l'image totale. Les méthodes descendantes partent de l'ensemble de l'image, pour la diviser en groupes de plus en plus petits (Girard et Girard, 2010). La classification par centres mobiles se base sur des itérations recalculant de nouvelles classes. La méthode est initialisée en attribuant aléatoirement le centre de gravité de chaque classe. La distance de chaque individu aux centres est alors calculée afin d'attribuer la classe de chaque individu. À partir de ces nouvelles classes, les centres de gravité sont de nouveau calculés et les classes réattribuées. Cette étape est ensuite répétée jusqu'à ce qu'il y ait convergence des centres de gravité. La méthode la plus connue des centres mobiles est la méthode des k-means 17 . Après avoir initialisé les k positions moyennes des k classes, la distance euclidienne entre chaque point et chaque classe est calculée pour redéfinir les classes. La moyenne de chaque classe est alors de nouveau calculée. Les classes sont redéfinies jusqu'à ce qu'il y ait convergence ou pour un nombre limité d'itérations. La méthode des k-means a été testée sur les images multispectrales acquises par drone de parcelles de tournesol infestées d'adventices (Pérez-Ortiz et al., 2015b). Appliquée aux données multispectrales, la méthode discrimine plus difficilement cultures et adventices que les autres méthodes supervisées testées, avec une MAE de 0,1370 contre une MAE de 0,0937 et 0,0830 pour les SVM

  La qualité des images acquises par drone résulte de nombreux paramètres d'acquisition : caractéristiques du capteur, hauteur de vol, luminosité… Ces paramètres vont donc influencer les résultats de classification des images. De même, les prétraitements des images inhérents à la création d'orthophotographies18 , impacteront les résultats de classification, ainsi que la sélection de l'échantillon de référence. Les principaux paramètres influençant la classification qui ont été relevés dans la littérature sont la résolution spatiale, les bandes spectrales, les variations de luminosité et les prétraitements liés à la création d'orthophotographies. Pour toutes les dates, le taux d'adventices correctement détectées augmente avec la résolution spatiale des images. Par exemple, pour les vols effectués à la première date, lorsque les cultures et adventices avaient un stade 4 feuilles, 71 %, 62 %, 57 % et 43 % des adventices ont été correctement détectées pour les images acquises à 40 m, 60 m, 80 m et 100 m respectivement. Les mauvaises détections pour les résolutions les plus faibles sont dues aux mélanges spectraux du sol et de la végétation. Au-delà d'un certain taux de mélange, l'algorithme n'est plus capable de discriminer les différents objets présents. Ainsi, lorsque le stade des plantes est plus avancé, le taux de bonnes détections augmente, pour les mêmes hauteurs de vol. Par exemple, pour les vols à 40 m, le vol réalisé au stade 5-6 feuilles permet de détecter correctement 91 % des adventices, contre 71 % au stade 4 feuilles. Cette étude montre donc l'importance du choix de la résolution spatiale en fonction de la taille des adventices présentes sur la parcelle pour pouvoir les détecter correctement. De la même manière, Pérez-Ortiz et al. (2015b) ont comparé plusieurs méthodes de classification sur des images multispectrales de tournesol acquises par drone et avec le capteur précédent, pour trois hauteurs de vol à 30 m, 60 m et 100 m. Quelle que soit la méthode testée, plus la résolution des images était élevée, meilleurs étaient les résultats. Par exemple, en réalisant une analyse discriminante sur les spectres de réflectance, un nombre limité de longueurs d'onde peut être sélectionné pour séparer plusieurs espèces de cultures et d'adventices (Borregaard et al., 2000; Vrindts et al., 2002; Girma et al., 2005; Piron et al., 2008; Gray et al., 2009; De Castro et al., 2012).De même, Feyaerts et van Gool (2001) ont sélectionné plusieurs bandes spectrales grâce à une mesure de séparabilité maximisant l'écart entre les classes et minimisant la variabilité au sein de chaque classe. À partir de spectres de betterave et d'adventices, la séparabilité a été calculée pour chaque bande spectrale, dont la résolution spectrale est de 35 nm. Cette méthode a permis d'extraire six bandes spectrales centrées à 441 nm, 446 nm, 459 nm, 883 nm, 924 nm et 988 nm.Ces méthodes sélectionnent les longueurs d'onde ou bandes spectrales une à une. Cependant, la combinaison globale de ces bandes peut ne pas être optimale. C'est pourquoi, afin de sélectionner l'ensemble de bandes spectrales discriminant au mieux carottes et adventices,[START_REF] Piron | Selection of the most efficient wavelength bands for discriminating weeds from crop[END_REF] ont testé chaque combinaison de bandes spectrales possible en réalisant une analyse discriminante quadratique sur chacune de ces combinaisons[START_REF] Kleynen | Selection of the most efficient wavelength bands for 'Jonagold' apple sorting[END_REF]. La combinaison avec le meilleur taux de bonnes classifications a alors été sélectionnée. Trois bandes spectrales centrées à 450 nm, 550 nm et 700 nm ont été sélectionnées. Afin de gérer la variation de luminosité lors des acquisitions sur le terrain, Feyaerts et van Gool (2001) ont positionné des surfaces de référence, dont la réflectance est connue, de manière à avoir au moins une des zones visible sur chaque image. Les images ont ensuite été corrigées à partir de la valeur mesurée sur la zone de référence.Un autre problème lié à la position de l'illuminant, est la présence d'ombre. En effet, les ombres sur la parcelle engendreront des modifications sur les valeurs de réflectance de l'image, pouvant entraîner de mauvaises classifications. Par exemple, pour les mêmes résolutions, Peña et al. .4. CRÉATION DES ORTHOPHOTOGRAPHIESLors de la création de l'orthophotographie, deux étapes principales vont influencer la qualité de l'image. Tout d'abord, les images correspondant à chaque bande spectrale doivent être recalées. En effet, un capteur multispectral étant composé de plusieurs caméras avec des filtres optiques distincts, il existe un décalage entre les images correspondant à chaque bande spectrale. La procédure de recalage de ces bandes spectrales s'appelle la co-registration.Torres-Sánchez et al. (2013) ont comparé deux méthodes de recalage sur des images multispectrales de tournesol acquises par drone. Les méthodes comparées sont celles proposées par le logiciel (Tetracam PixelWrench 2) fourni avec le capteur multispectral utilisé. La comparaison de l'alignement des images a été réalisée en affichant graphiquement les valeurs spectrales de chaque bande le long d'une ligne de 45 pixels traversant un spectralon19 . Les graphiques mettent en valeur un décalage allant jusqu'à 5 pixels entre certaines bandes spectrales pour des images non recalées, et montrent donc l'importance de recaler les images. . CONCLUSION ET PROBLÉMATIQUE Avec la nécessité croissante de proposer des outils innovants de gestion des adventices pour les agriculteurs, de nombreux travaux de recherche se sont intéressés à la détection des adventices dans les parcelles agricoles. Actuellement, diverses méthodes de détection des adventices ont déjà été proposées dans la littérature, montrant toutes des résultats encourageants. Cependant, peu de ces travaux se sont intéressés à l'impact des conditions d'acquisition et de prétraitements sur la qualité des images et sur les résultats de discrimination cultures/adventices en découlant. En effet, la plupart des méthodes ont été testées sur une parcelle unique, ou sur des parcelles très similaires, avec une culture et quelques adventices particulières, dans des conditions de luminosité optimales. Quelques études ont commencé à évaluer la robustesse et l'applicabilité de certaines méthodes à la mise en place d'un service, par exemple en comparant différentes hauteurs de vols. Or, pour pouvoir proposer une méthode robuste de détection des adventices, l'impact du système d'acquisition et des conditions d'acquisition sur les résultats de détection des adventices doit être évalué.Cette partie présente l'ensemble des expérimentations mises en oeuvre pendant cette thèse, ainsi que les données à partir desquelles les travaux ont été réalisés. 'objectif global de cette thèse étant de développer une méthode de localisation des adventices par imagerie aérienne, des images multispectrales ont été acquises par drone, avec le système d'acquisition d'AIRINOV. Après divers traitements radiométriques et géométriques, ces images ont servi à mettre en place différents algorithmes de localisation d'adventices et à les tester. Dans un premier temps, ces images ont permis de développer un algorithme de localisation d'adventices basé sur une analyse spatiale. Ensuite, un algorithme spectral plus complexe a été testé sur ces images. En effet, en modifiant les filtres optiques dans le modèle, une sélection de filtres optiques optimaux pour la discrimination entre culture et adventices pourra être mise en place. De même, en modifiant la résolution spatiale, une préconisation sur le choix de résolution, ou sur la taille des adventices détectables pourra être proposée.Enfin, des spectres de réflectance ont été acquis au champ afin de valider le modèle de la chaîne d'acquisition. Pour cela, des images multispectrales ont été acquises par drone en même temps que l'acquisition de ces spectres. Après avoir été transformés par le modèle de la chaîne d'acquisition, les spectres modélisés ont été comparés aux images.1. IMAGES MULTISPECTRALES : ACQUISITIONS ET PRÉTRAITEMENTSDes images multispectrales ont été acquises à deux résolutions spatiales différentes sur des parcelles de cultures sarclées. Tout d'abord, des images des parcelles ont été acquises par drone, avec une résolution spatiale de 6 cm. Cette résolution est celle atteignable avec le drone utilisé par AIRINOV pour ses services en grandes cultures. Les images aériennes ont donc servi à développer les algorithmes de détection des adventices, et en particulier l'algorithme spatial (cf. Chapitre 5, Partie 1). Sur les mêmes parcelles, d'autres images ont été acquises au sol, avec une résolution spatiale plus fine, à 6 mm/pixel. Ces images ont été utilisées pour plusieurs travaux. D'une part, elles ont été utilisées pour étudier l'impact de la résolution spatiale des images sur le potentiel de détection des adventices par le système d'acquisition. D'autre part, présentant moins de mélanges spectraux, ces images ont servi à développer le futur algorithme spectral, plus complexe à mettre en place que l'algorithme spatial. Par ailleurs, combinées à des relevés effectués sur le terrain, ces images acquises au sol ont servi de support à la création d'une vérité terrain.

	Deux types de données ont été acquis :
	-des images multispectrales, c'est-à-dire des images composées d'un nombre limité de
	bandes spectrales (généralement de 3 à 10), à partir desquelles différents algorithmes
	spatiaux et spectraux de détection d'adventices ont été développés et testés,
	-des données hyperspectrales (des spectres de réflectance), composées d'un nombre
	élevé de bandes spectrales étroites et contiguës (généralement plusieurs centaines),
	ayant servi de support à l'évaluation du potentiel de détection des adventices du système
	d'acquisition.
	3.1. RÉSOLUTION SPATIALE
	La résolution spatiale des images dépend à la fois de la hauteur de vol et des caractéristiques du
	système d'acquisition d'images.
	Afin d'évaluer l'impact de la résolution spatiale sur la classification d'images de parcelles de
	maïs, Peña et al. (2015) ont utilisé une caméra multispectrale composée de six capteurs de 1280x1024 pixels avec une focale de 9,6 mm. Les vols de drone ont été réalisés à 40 m, 60 m, 80 m et 100 m permettant d'obtenir des images de résolutions spatiales de 2,16 cm, 3,27 cm, 4,33 cm et 5,41 cm respectivement. Ces vols ont été répétés à trois dates différentes. La procédure de classification orientée objet (cf. Chapitre 2, Partie 2.3.1) a alors été appliquée à ces montre bien plus performant que d'autres indices et permet de détecter avec précision la végétation sur les images. discriminant au mieux cultures et adventices. Pour ce faire, des spectres de réflectance de L'ensemble de ces travaux aboutira à la création de cartes d'infestation des parcelles agricoles, et permettra par la suite une réflexion sur le choix d'une préconisation dans le cadre d'un service images. se D'autres études, ont comparé plusieurs bandes spectrales afin de sélectionner celles de gestion des adventices.
	diverses espèces de cultures et d'adventices sont d'abord acquis avec un spectromètre en

[START_REF] Lamb | Evaluating the accuracy of mapping weeds in seedling crops using airborne digital imaging: Avena spp. in seedling triticale[END_REF] 

ont comparé des images multispectrales de parcelles de triticale infestées de folle avoine avec quatre résolutions spatiales différentes. Ces images ont été acquises avec une caméra multispectrale composée de 4 capteurs de 740 x 576 pixels et munie d'un objectif dont la distance focale est de 12 mm. Plusieurs acquisitions ont été réalisées par avion pour quatre hauteurs de vols : 3048 m, 2286 m, 1524 m et 762 m, fournissant des images de résolution spatiale de 2 m, 1,5 m, 1 m et 0,5 m respectivement. Comme supposé, les taux de bonnes classifications augmentaient avec la résolution des images, atteignant une détection d'adventices pour des densités de 17 pieds par m 2 avec la résolution à 0,5 m. Cependant, l'augmentation de la résolution en diminuant la hauteur de vol entraîne une acquisition sur une surface au sol plus petite. Ainsi, pour les quatre hauteurs de vol précédentes, les images ont été acquises sur des surfaces de 197 ha, 111 ha, 49 ha et 12 ha. Afin d'avoir des hauteurs de vols plus basses, Rasmussen et al. (2013) ont réalisé des acquisitions d'images par drone sur une parcelle d'orge au stade 2-3 feuilles, avec un capteur RGB de 3648x2736 pixels avec une lentille de distance focale variant entre 28 et 140 mm. Les vols ont été réalisés à des hauteurs de 5 m, 15 m, 25 m et 45 m correspondant à des résolutions spatiales de 1,7 mm, 5,1 mm, 8,5 mm et 13,6 mm. Pour chaque image, la couverture végétale a été calculée afin de mesurer l'impact de plusieurs niveaux de désherbage sur l'estimation du couvert. D'après cette étude, les images acquises en RGB à plus de 15 m d'altitude, soit pour une résolution spatiale à 5 mm ou une résolution plus dégradée, ne permettent pas d'estimer de façon fiable le couvert végétal. En effet, au-delà de cette hauteur de vol, les mélanges spectraux entre la végétation et le sol, rendait le seuillage des pixels peu robuste. De plus, un compromis doit être trouvé entre la résolution spatiale souhaitée et la surface acquise par les images en un temps donné. Par exemple, pour un même capteur multispectral, l'acquisition d'une surface d'environ un hectare peut passer de 6 min avec un drone volant à 100 m d'altitude, à 27 min avec un drone volant à 30 m d'altitude (Torres-Sánchez et al., 2013). De même, les images acquises à 2,16 cm, 3,27 cm, 4,33 cm et 5,41 cm par Peña et al. (2015) couvrent des surfaces de 0,06 ha, 0,14 ha, 0,25 ha et 0,38 ha. Pour une même parcelle, le temps d'acquisition et de traitement sera donc beaucoup plus long pour des images à haute résolution. Afin d'améliorer la qualité des images, et donc la détection des adventices sur celles-ci, la résolution spatiale doit être la plus fine possible. Cependant, une meilleure résolution spatiale implique la création d'images de plus grandes tailles, et donc un temps d'acquisition et de traitement plus grand. Un autre moyen d'améliorer la qualité des images est de choisir des bandes spectrales plus adaptées à la détection d'adventices, par exemple en utilisant des capteurs multispectraux plutôt que des capteurs RGB.

3.2. BANDES SPECTRALES

Les méthodes de classification s'appuyant le plus souvent sur la valeur de réflectance des pixels, les bandes spectrales du système d'acquisition risquent d'impacter fortement la qualité de la détection des adventices. Plusieurs études ont comparé l'utilisation d'un capteur RGB à celle d'un capteur multispectral pour la détection des adventices (Torres-Sánchez et al., 2013; Peña et al., 2015; Pérez-Ortiz et al., 2015b). Toutes ces études ont montré que les images multispectrales réalisaient de meilleures classifications. En effet, de nombreuses méthodes réalisent d'abord une détection de la végétation à l'aide du calcul d'indices de végétation. Or, le NDVI, issu d'images multispectrales, laboratoire ou sur une parcelle. Ces spectres sont alors analysés et comparés afin d'en extraire les longueurs d'onde ou les bandes spectrales les plus discriminantes.

L'utilisation d'un capteur multispectral, plutôt que RGB, semble donc plus pertinente pour la détection de la végétation. De plus, sélectionner des bandes spectrales spécifiques permettrait d'améliorer la détection. Toutefois, les bandes spectrales proposées dans la littérature sont variables, car sélectionnées pour discriminer des espèces différentes, et à partir de méthodes diverses.

3.3. VARIATION DE LA LUMINOSITÉ

Les acquisitions étant réalisées en extérieur, l'éclairement de la scène est le plus souvent naturel, c'est à dire par le soleil. Cet éclairement est donc non contrôlé : le soleil change de position, des nuages peuvent passer etc. Afin de pouvoir comparer les images acquises avec un éclairement différent, une correction doit être apportée. Vrindts et al. (2002) ont acquis des images hyperspectrales de maïs en conditions extérieures. Les images étaient corrigées en réflectance, grâce à la présence d'une surface de référence, de réflectance connue, sur les images acquises. Lors de la classification des images, seulement 15 % du maïs et 94 % des adventices ont été correctement classés. Ces faibles taux de bonnes classifications sont principalement expliqués par les variations de luminosité remarquées lors de l'acquisition des images. Vrindts et al. (2002) concluent sur la nécessité de corriger ces variations de luminosité. (2015) ont vu leur taux de détection d'adventices baisser lorsque les tournesols atteignaient le stade 7-8 feuilles. En effet, ceux-ci créaient de l'ombre dans l'inter-rang, rendant plus délicate la détection des adventices à l'ombre. Cependant, aucune solution n'est actuellement proposée pour gérer ces problèmes d'ombre.
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L'autre étape importante lors de la création de l'orthophoto est le mosaïquage des images. Cette étape consiste en la fusion de plusieurs images en une seule couvrant l'ensemble de la zone d'étude. Avant de pouvoir relier les images les unes aux autres, celles-ci sont ortho-rectifiées, c'est-à-dire corrigées géométriquement de manière à ce que chaque pixel soit représenté comme s'il avait été acquis depuis la verticale. Lors de l'assemblage des images, plusieurs méthodes peuvent être utilisées. Par exemple, les pixels de l'orthophotographie peuvent prendre comme valeur celle du pixel étant le plus à la verticale parmi les images correspondantes, ou une valeur moyenne issue de ces images ou une moyenne pondérée. La plupart des études utilisent les logiciels fournis avec le capteur pour faire ce traitement de façon automatique et ne permettent pas de rendre compte de l'impact de ce traitement sur la qualité des images

[START_REF] Rasmussen | Potential uses of small unmanned aircraft systems (UAS) in weed research[END_REF][START_REF] Torres-Sánchez | Configuration and Specifications of an Unmanned Aerial Vehicle (UAV) for Early Site Specific Weed Management[END_REF][START_REF] Rabatel | A fully automatized processing chain for high-resolution multispectral image acquisition of crop parcels by UAV[END_REF]

.

Le système et l'ensemble des conditions d'acquisition influencent fortement la qualité de la discrimination entre cultures et adventices. Quelques travaux ont évalué séparément l'impact de la résolution spatiale ou du choix des filtres sur la classification. De même, des travaux ont mis en valeurs certains problèmes liés aux variations de luminosité et à la création des orthophotos. Cependant, le lien entre les différents paramètres d'acquisition et le potentiel de détection des adventices reste encore mal apprécié, et est très peu pris en compte lors de la proposition de méthodes de localisation d'adventices. Ce lien est pourtant un point important à étudier dans le cadre de la création d'un service de gestion des adventices. En effet, connaître les risques de non détection de certaines adventices n'est pas négligeable pour l'agriculteur.
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Afin de déterminer les conditions d'acquisition optimales pour la détection des adventices par drone, le premier travail de cette étude visera à mesurer le potentiel de détection du système d'acquisition proposé par Airinov. Pour cela, l'ensemble de la chaîne d'acquisition devra d'abord être modélisé. Ainsi, en faisant varier les différents paramètres du modèle, leur impact sur la détection des adventices pourra être évalué. Cette étude s'intéressera en particulier à deux paramètres : l'impact du choix des filtres optiques installés sur le capteur et l'impact de la résolution spatiale des images sur le potentiel de détection des adventices.

Ces travaux permettront de sélectionner les filtres optiques optimaux pour la détection des adventices, et serviront à définir une résolution spatiale des images adaptée à cette détection d'adventices.

Une fois ces conditions d'acquisition optimales définies, une méthode de localisation des adventices, adaptée aux images acquises par drone, devra être proposée. D'après l'état de l'art réalisé précédemment, les méthodes basées sur l'analyse spatiale des images et la détection des rangs de culture se montrent robustes et simples à mettre en place. C'est pourquoi, une première méthode de détection des adventices basée sur l'analyse spatiale sera développée, de manière à être applicable à différentes cultures sarclées, et pour des taux d'infestation variés. De plus, les méthodes de classification, tirant parti des valeurs de réflectance de pixels permettraient de compléter les lacunes des méthodes spatiales. La méthode spatiale sera donc combinée à une analyse spectrale. Les méthodes de classification non supervisées montrant peu de bons résultats, et les méthodes supervisées nécessitant la sélection manuelle d'un échantillon de référence, trop fastidieuse à mettre en place dans le cadre de la création d'un service, une méthode semi-supervisée sera réalisée. Cette méthode consistera à sélectionner automatiquement un échantillon de référence à partir des données spatiales afin de construire un modèle de classification adapté à l'image étudiée. LAfin d'étudier l'impact de la résolution spatiale des images sur le potentiel de détection des adventices, des images multispectrales d'une résolution spatiale plus fine ont été acquises. Pour cela, un dispositif au sol d'acquisition d'images multispectrales a été créé. Ces nouvelles images ont permis de modéliser différents niveaux de mélanges spectraux liés à la diminution de la résolution spatiale. Par ailleurs, ces images ont servi de support au développement des algorithmes spectraux de détection des adventices. En effet, ces images, acquises à très haute résolution spatiale, présentaient peu de mélanges spectraux, facilitant la discrimination spectrale entre cultures et adventices. Enfin, une vérité terrain, localisant les adventices sur les parcelles, a été créée à partir de ces images, pour valider, par la suite, les algorithmes de localisation des adventices développés pendant ces travaux.

Concernant les données hyperspectrales, des spectres de réflectance de plantes cultivées et d'adventices ont d'abord été acquis avec un spectromètre en laboratoire. Une base de spectres a alors été créée, pour servir de support à la modélisation de la chaîne d'acquisition d'images par drone. Cette modélisation vise à évaluer l'impact de divers paramètres d'acquisition (i.e. la résolution spatiale des images, le choix des filtres optiques du capteur) sur le potentiel de détection des adventices par drone. 1.1. ACQUISITIONS AÉRIENNES 1.1.1. MATÉRIEL : DRONE ET CAPTEUR MULTISPECTRAL Le drone utilisé par AIRINOV est une aile volante d'un mètre d'envergure : l'eBee de senseFly® (cf.

  De plus, afin de connaître les conditions de luminosité, une mesure est effectuée avant le vol, sur une surface de référence dont la réflectance est connue. Pendant toute l'acquisition, le luxmètre embarqué sur le capteur enregistre les variations de luminosité, afin de les compenser par la suite sur les images acquises. caractéristiques du capteur et de l'optique utilisée, les images présentent un vignettage, c'est-à-dire un assombrissement des bords et des angles de l'image. Ce vignettage est mesuré en laboratoire pour chaque capteur afin de créer une carte de dévignettage. Chaque pixel de l'image initiale est alors divisé par le coefficient correspondant sur la carte de dévignettage.De même, une distorsion géométrique apparaît sur les images. Celle-ci est modélisée à partir des caractéristiques du capteur et de l'objectif, et corrigée en appliquant la déformation inverse sur les images brutes.Ensuite, les images sont corrigées en réflectance. La réflectance étant le rapport entre l'énergie réfléchie par l'objet (i.e. l'énergie mesurée par le capteur) et l'énergie incidente, cette dernière doit être calculée. À partir de la mesure réalisée sur la surface de référence avant le vol, l'énergie lumineuse incidente est connue au moment de la mesure. La réflectance au niveau d'un pixel de l'image peut donc se calculer simplement :

	1.1.3.1.	TRAITEMENT RADIOMÉTRIQUE ET GÉOMÉTRIQUE
	À cause des	
		quantique
		Efficacité
		1.1.3. TRAITEMENTS DES IMAGES

1.1.2. ACQUISITION DES IMAGES

Les acquisitions ont été réalisées sur des parcelles de maïs, betterave, et soja décrites dans le Chapitre 3, Partie 1.3.

Avant de démarrer le vol, les coordonnées géographiques de la zone à survoler (la parcelle) sont enregistrées dans le logiciel autopilote eMotion de senseFly. Grâce à l'autopilote, la trajectoire du drone est calculée et le vol est entièrement automatique. Le drone vole à une vitesse de 60 km/h et la batterie électrique embarquée lui accorde une autonomie de 45 min. Pendant l'acquisition, le drone parcourt des lignes parallèles de manière à acquérir des images avec un recouvrement de 60 % entre les différentes lignes et de 80 % le long de chaque ligne. Ce fort recouvrement permet une reconstruction automatique de l'orthophotographie (cf. Chapitre 3, Partie 1.1.3.2).

Pendant le vol, chaque image est enregistrée sur une carte SD en temps réel, ainsi que les coordonnées GPS du drone au moment de l'acquisition. Pour une hauteur de vol de 50 m, les images multispectrales acquises ont une résolution spatiale de 6 cm/pixel. Les images brutes obtenues après le vol ne peuvent être utilisées directement pour localiser les adventices. En effet, ces images présentent plusieurs déformations radiométriques et géométriques à corriger. De plus, l'ensemble des images doit être regroupé en une seule image finale, l'orthophotographie, afin de visualiser toute la parcelle. Le traitement des images a été développé et est réalisé par AIRINOV. Longueur d'onde (nm) Transmittance Longueur d'onde (nm)

  Afin de recréer une orthophotographie, une étape de mosaïquage est nécessaire. Cette étape consiste à recréer l'ensemble de la géométrie de la scène en regroupant les images. Les images acquises par drone présentant un recouvrement entre elles, les points homologues sont recherchés automatiquement par des algorithmes à l'aide du logiciel Agisoft PhotoScan. Après avoir fait correspondre ces points entre les différentes images, le Modèle Numérique de Surface 21 est créé[START_REF] Hartley | Multiple view geometry in computer vision[END_REF]. Les images sont alors reprojetées sur ce modèle. Les valeurs des pixels de l'orthophotographie sont calculées en faisant une moyenne des pixels projetés au même endroit, pondérée par la distance entre ces pixels et celui correspondant sur l'orthophotographie. Ce procédé présente l'avantage de créer une seule image plane de toute la parcelle, mais lisse les valeurs de réflectance lors du moyennage des valeurs issues des différentes images.De plus, le dispositif multispectral étant composé de quatre capteurs différents, les images acquises sont légèrement décalées entre elles. Une procédure de recalage est donc nécessaire : la « co-registration ». L'algorithme développé par AIRINOV permet de superposer les différentes bandes spectrales à la bande verte, et ce avec une précision d'un demi pixel.Le système d'acquisition proposé par AIRINOV (i.e. drone et dispositif multispectral) acquiert donc des images multispectrales d'une résolution spatiale de 6 cm/pixel. Ces images sont traitées radiométriquement et géométriquement puis corrigées en réflectance avant d'être regroupées en une orthophotographie. Les orthophotographies de parcelles produites par AIRINOV ont servi à développer les algorithmes de détection d'adventices. Afin de compléter ces acquisitions aériennes, des images d'une résolution spatiale plus fine (6 mm/pixel) ont été acquises au sol à l'aide d'une perche, dans la même journée et sur les mêmes parcelles.

	1.1.3.2.	CRÉATION DE L'ORTHOPHOTOGRAPHIE

  1.2.5. MESURES ET VÉRITÉS TERRAINLes cartes de vérité terrain ont été réalisées pour chaque zone de 5x5 m. Cette vérité terrain consiste à localiser et identifier les adventices sur les images, pour valider les algorithmes de localisation d'adventices par la suite. De plus, la proportion de végétation présente dans chaque pixel a été estimée pour valider l'impact de la résolution spatiale sur le potentiel de détection des adventices. obtenir une carte de vérité terrain, les zones de 5x5 m ont été parcourues à pied et chaque plante (culture et adventice) a été identifiée et localisée. Ces informations ont ensuite été reportées sur les orthophotographies et sur les orthoimagettes des zones à l'aide du logiciel QGIS. Pour cela, chaque pied d'adventice ou de culture a été détouré manuellement sur un fichier shape22 , superposé aux orthophotographies de 6 mm de résolution spatiale. Ce fichier shape est relié à une table d'attributs (cf. Tableau 2) où les caractéristiques de chaque objet (i.e. chaque pied détouré) sont référencées : la colonne « culture/adventice » prend la valeur 1 si la plante est une culture et 2 si c'est une adventice, la colonne « espèce » référence le nom de l'espèce et la colonne « monocotylédone/dicotylédone » prend la valeur 1 si la plante est une monocotylédone et 2 si c'est une dicotylédone.

	1.2.5.1.	LOCALISATION DES ADVENTICES
	Afin d'Identifiant	Culture / Adventice	Espèce	Monocotylédone / dicotylédone
	1		2	Chardon	2
	2		1	Maïs	1
	3		2	Chénopode	2
	…		…	…	…

TABLEAU 2 : EXEMPLE DE TABLE D'ATTRIBUTS DU FICHIER SHAPE DE VÉRITÉ TERRAIN Le fichier shape est ensuite converti en fichier raster 23 , c'est-à-dire sous un format image, pour pouvoir comparer la vérité terrain avec l'image multispectrale pixel à pixel. Une image « culture/adventice » est créée, ainsi qu'une image « monocotylédone/dicotylédone » (cf. Figure 21 b.). La résolution spatiale de ces nouvelles images est fixée à 6 mm/pixel, de même que les images à très haute résolution. 1.2.5.2. ESTIMATION DES TAUX DE VÉGÉTATION Dans ces travaux, le « taux de végétation » d'un pixel définit la proportion de végétation recouvrant la surface au sol correspondant au pixel.

  Les cultures non sarclées (blé et colza), pour lesquelles un algorithme spatial est difficilement réalisable. En effet, dès les stades jeunes, les rangs de culture ne sont plus discernables à cause d'un fort recouvrement des plantes. La discrimination entre cultures et adventices, sera alors plus complexe car elle ne fera appel qu'à l'analyse spectrale.Six espèces d'adventices ont été sélectionnées afin de pouvoir associer au moins trois espèces à chaque culture (cf. Tableau 3) : chénopode blanc (Chenopodium album), renouée liseron (Fallopia convolvulus), gaillet gratteron (Galium aparine), panic pied-de-coq (Echinochloa crusgalli), vulpin (Alopecurus myosuroides) et ray-grass (Lolium multiflorum). Ces adventices sont largement rencontrées en France pour les cultures sélectionnées[START_REF] Lieven | INFLOWEB : un site pédagogique sur les adventices pour aider à leur gestion intégrée[END_REF]. Certaines études[START_REF] Rabatel | Hyperspectral imagery to discriminate weeds in wheat[END_REF] ayant montré la faisabilité de distinguer les monocotylédones des dicotylédones par analyse spectrale, les adventices ont été choisies de manière à représenter ces deux classes. Par ailleurs, les repousses de colza, de blé ou de tournesol sont considérées comme des adventices pour certaines cultures. TABLEAU 3 : ADVENTICES ASSOCIÉES AUX CULTURES ÉTUDIÉESLes stades étudiés sont ceux correspondant à la période de désherbage. Les cultures étant traitées à des stades jeunes, dès l'émergence des adventices, les acquisitions de spectres de réflectance ont été réalisées pour ces mêmes stades, c'est-à-dire du stade cotylédon au stade 6 feuilles pour les dicotylédones, et tallage pour les monocotylédones.

2.1.1. CULTURES ET ADVENTICES ÉTUDIÉES

Afin d'avoir une base de spectres suffisamment large et variée, cinq espèces ont été sélectionnées parmi les grandes cultures cultivées sur les parcelles agricoles en France et rencontrant des problématiques de gestion des adventices

[START_REF] Lieven | INFLOWEB : un site pédagogique sur les adventices pour aider à leur gestion intégrée[END_REF]

. Elles peuvent être séparées en deux groupes :  Les cultures sarclées (maïs, tournesol et betterave), semées en rangs bien distincts, pour lesquelles un algorithme de localisation des adventices basé sur la détection des rangs est applicable. Le développement d'un algorithme spatial est envisagé dans un premier temps. Il sera ensuite complété par une analyse spectrale. Le développement d'un service de gestion des adventices par AIRINOV vise prioritairement ces cultures.  Pour cultiver ces différentes espèces, des graines ont été semées dans des bacs de terre. Le protocole d'acquisition de spectres étant en partie destructif, et afin de pouvoir faire suffisamment d'acquisitions pour trois stades différents, 200 graines ont été semées pour chaque espèce. Afin de favoriser la levée des graines et la croissance des plantes, les bacs ont été placés sous serre non chauffée. Une fois les plantes germées, les bacs ont été placés en extérieur afin de se rapprocher des conditions de croissance des adventices sur les parcelles. Toutes les cultures et adventices ont germé, sauf le gaillet. Seulement cinq espèces d'adventices ont donc été analysées par la suite. 2.1.2. MATÉRIEL 2.1.2.1. LE SPECTROMÈTRE

  par contact de spectres se fait en accolant la sonde du spectromètre au sol ou à une feuille de la plante, sans besoin de la déterrer. Cette méthode présente l'avantage d'être rapide et non destructive. Cependant, elle ne peut être réalisée que sur des plantes dont les feuilles présentent une largeur supérieure à 3 cm (cf. Chapitre 3, 2.1.2). C'est pourquoi, cette méthode a été mise en place pour les plantes dont la surface des feuilles est suffisante.Les spectres obtenus sont des mélanges des spectres de la plantule et du fond noir. La proportion de surface de plantule et de fond dans le champ de vision du spectromètre est inconnue. Afin d'extraire le spectre pur de la plantule, un prétraitement spécifique est proposé dans la Chapitre 3, Partie 2.1.4.Ce protocole est plus contraignant que le précédent car il nécessite plus de manipulations et est destructif (les plantules sont déterrées). De plus, ce protocole ne peut être appliqué sur des plantes trop grandes. Toutefois, il a pour objectif d'obtenir des spectres purs de la plantule, même si cette dernière est très fine. De plus, l'acquisition du spectre de la plantule entière permet d'englober l'ensemble des variations liées à son port général (feuille, angle de la feuille, tige, nervures).Ces deux protocoles ont été appliqués sur les cultures, les adventices et le sol. Le nombre de spectres acquis pour les différentes espèces varie en fonction du nombre de plantes ayant levé et de leur taille : prétraitement des spectres de réflectance acquis par contact et sur fond noir doit répondre à deux objectifs. D'abord, pour les spectres acquis sur fond noir, les spectres purs de végétation doivent être extraits des mélanges. En effet, la réflectance de la zone mesurée par le spectromètre est une combinaison linéaire de la réflectance du fond noir et de la plante. Ensuite, le prétraitement doit rendre comparable les spectres acquis dans les deux conditions d'acquisition, ces dernières pouvant influencer la réflectance mesurée.[START_REF] Barnes | Standard Normal Variate Transformation and De-trending of Near-Infrared Diffuse Reflectance Spectra[END_REF] est une technique de normalisation qui consiste à centrer les données et ramener leur écart-type à 1 : 𝒙 𝒏𝒐𝒓𝒎,𝑺𝑵𝑽 est le spectre de réflectance normalisé par SNV, -𝒙 est le spectre de réflectance initial, -𝑥 𝑖 est la ième composante du spectre représenté par le vecteur 𝒙, -𝜇 est la moyenne du spectre 𝒙, -𝜎 est l'écart-type du spectre 𝒙.

		2.1.4.1.	NORMALISATION SNV
	La correction SNV 28 (𝒙 𝒏𝒐𝒓𝒎,𝑺𝑵𝑽 =	𝒙 -𝜇 𝜎	(8)
	Avec :			
	𝜇 =	∑ 𝑥 𝑖 𝑚 𝑖=1 𝑚	et	∑ (𝑥 𝑖 -𝜇) 2 𝑚 𝑖=1 𝜎 = √ 𝑚
	Où :			
	Espèce Maïs Tournesol Betterave Colza Blé Chénopode Ray-grass Vulpin -𝒙 𝒎𝒆𝒍,𝒏𝒐𝒓𝒎 = spectres acquis Nombre de par contact 47 84 94 85 / / / / 𝒙 𝒗𝒆𝒈 -𝜇 𝑣𝑒𝑔 𝜎 𝑣𝑒𝑔 = 𝒙 𝒗𝒆𝒈,𝒏𝒐𝒓𝒎 Nombre de spectres acquis sur fond noir / 150 / 148 150 100 118 125
	Panic		/		40
	Renouée		30		/
	2.1.3.1.	ACQUISITIONS PAR CONTACT
	L'acquisition 2.1.3.2.	ACQUISITIONS À DISTANCE
	Les acquisitions à distance sont réalisées sur les plantules.

La plantule est prélevée du bac et plantée sur un support recouvert du fond noir, placé au centre du dispositif expérimental (cf. Figure

26

). TABLEAU 5 : EFFECTIFS DES SPECTRES DE RÉFLECTANCE ACQUIS EN LABORATOIRE

Certains spectres ayant été acquis dans des conditions différentes, un prétraitement a été réalisé afin de rendre comparables l'ensemble de ces spectres.

2.1.4. PRÉTRAITEMENT Le

Cette correction permet de supprimer les composantes constantes d'un spectre de réflectance.

En considérant le spectre de réflectance du fond noir comme étant constant, normaliser par SNV un spectre de mélange de végétation et de fond noir permettrait d'en extraire le spectre de végétation pur normalisé (cf. Erreur ! Source du renvoi introuvable.) :

Espèce Student : Proportions de mélanges où 𝒎 𝒎𝒆𝒍 = 𝒎 𝒑𝒖𝒓 Limite basse de valeur de réflectance pour l'intervalle 𝑰

  2.1.4.2. COMPARAISON DES SPECTRES MÉLANGÉS ET DES SPECTRES PURSAfin de vérifier que les spectres de réflectance, acquis dans différentes conditions, sont comparables les uns les autres, des tests de comparaison ont été réalisés. Pour cela, des spectres de réflectance représentant des mélanges de végétation et de fond noir ont été modélisés, avec différentes proportions de mélange, puis comparés à des spectres purs de végétation acquis par contact. 2.1.4.2.1. MODÉLISATION DE SPECTRES MÉLANGÉS Des spectres de mélange avec différentes proportions de végétation ont été modélisés à partir des spectres purs acquis par contact et des spectres acquis sur fond noir (cf. Figure 27). En effet, lorsque deux éléments sont présents sur une même surface, le spectre de cette surface est une combinaison linéaire des spectres de réflectance des objets présents : 𝒙 𝒎𝒆𝒍 = 𝑡𝑥 𝑣𝑒𝑔 𝒙 𝒗𝒆𝒈 + (1 -𝑡𝑥 𝑣𝑒𝑔 )𝒙 𝒇𝒐𝒏𝒅 (10) Où 𝒙 𝒎𝒆𝒍 est le spectre mélangé, 𝑡𝑥 𝑣𝑒𝑔 est le taux de végétation dans le spectre, 𝒙 𝒗𝒆𝒈 est le spectre de végétation et 𝒙 𝒇𝒐𝒏𝒅 est le spectre du fond. Dix taux de mélange ont été considérés, variant entre 0,1 et 1 : . L'hypothèse d'égalité des variances est rejetée avec un risque d'erreur de 2 % lorsque la valeur observée 𝐹 𝑜𝑏𝑠 est supérieure à la valeur seuil 𝐹 0.99 (cf. Annexe 4). Le second test, le test de Student, vérifie l'égalité des moyennes, avec pour hypothèse nulle : 𝜇 𝑚𝑒𝑙𝑎𝑛𝑔𝑒 = 𝜇 𝑝𝑢𝑟 . Ce test est réalisé pour les longueurs d'onde pour lesquelles les variances sont considérées égales suite au test précédent. L'hypothèse d'égalité des moyennes est rejetée avec un risque d'erreur de 2 % lorsque la valeur observée 𝑡 𝑜𝑏𝑠 est supérieure à la valeur seuil 𝑡 0.99 (cf. Annexe 4). Pour chaque longueur d'onde, un taux de végétation minimal est alors défini comme étant le taux de végétation à partir duquel le 𝑡 𝑜𝑏𝑠 est inférieur à 𝑡 0.99 , c'est-à-dire à partir duquel l'hypothèse d'égalité des moyennes n'est pas rejetée. .4.2.3. INTERVALLES D'ÉTUDE ET TAUX DE MÉLANGES Avec ces premiers tests, un taux de végétation minimal dans les mélanges est défini pour chacune des longueurs d'onde. Cependant, les taux de mélange des spectres acquis sur fond noir en laboratoire ne sont pas connus. Les valeurs de réflectance ont donc été étudiées pour les différents taux de végétation modélisés. Ainsi, les spectres modélisés sur fond noir, dont le taux de végétation est supérieur aux taux minimaux précédemment calculés, sont conservés et l'intervalle de dispersion comprenant 95% des valeurs de réflectance est calculé pour chaque longueur d'onde comme suit : 𝐼 𝜆 = [𝜇 𝑚𝑒𝑙,𝜆 -2𝜎 𝑚𝑒𝑙,𝜆 ; 𝜇 𝑚𝑒𝑙,𝜆 + 2𝜎 𝑚𝑒𝑙,𝜆 ](11)Cet intervalle a été calculé sur le plateau dans l'infrarouge, c'est-à-dire sur [800-900] nm.Les spectres dont les valeurs n'appartiennent pas à cet intervalle sont alors considérés comme trop biaisés pour être comparés et donc utilisés dans les algorithmes développés par la suite (e.g. pour l'évaluation du potentiel de discrimination du système d'acquisition).

	Le premier test, le test de Fisher, permet de vérifier l'égalité des variances, l'hypothèse nulle étant : 𝜎 𝑚𝑒𝑙𝑎𝑛𝑔𝑒 2 1 0,9 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0,1 Réflectance Longueur d'onde (nm) 2.1[𝟖𝟎𝟎-𝟗𝟎𝟎]𝒏𝒎 et 2 𝑡𝑥 𝑣𝑒𝑔 : pour 𝒕𝒙 𝒗𝒆𝒈 = 𝜎 𝑝𝑢𝑟 Betterave 𝑡𝑥 𝑣𝑒𝑔 > 0,665 0,33
	Colza	𝑡𝑥 𝑣𝑒𝑔 > 0,74	0,35
	Tournesol	𝑡𝑥 𝑣𝑒𝑔 > 0,79	0,32
	Maïs	𝑡𝑥 𝑣𝑒𝑔 > 0,71	0,28
	TABLEAU 6 : RÉSULTATS DES TESTS DE STUDENT APPLIQUÉS AUX SPECTRES ACQUIS PAR CONTACT ET
		MODÉLISÉS SUR FOND NOIR	

FIGURE 27 : SPECTRES DE RÉFLECTANCE DE MÉLANGE DE VÉGÉTATION ET DE FOND NOIR MODÉLISÉS À PARTIR DE SPECTRES DE RÉFLECTANCE PURS DE MAÏS

2.1.4.2.2. TESTS STATISTIQUES Ces spectres modélisés sont ensuite normalisés par SNV et comparés aux spectres acquis par contact normalisé. La comparaison a été réalisée à l'aide de tests statistiques. 2.1.4.2.4. RÉSULTATS Ces tests ont été réalisés sur les spectres purs acquis à l'aide de la sonde par contact. Ces spectres représentent trois espèces de dicotylédones (betterave, colza et tournesol), et une espèce de monocotylédone (maïs). La faible surface des feuilles des autres monocotylédones ne permettaient pas de réaliser des acquisitions par contact. Pour ces espèces étudiées, tous les 𝐹 𝑜𝑏𝑠 sont inférieurs à 𝐹 0,99 . Statistiquement, pour toutes les longueurs d'onde, les variances ne sont donc pas différentes, avec un taux d'erreur de 2%. Pour le test de Student, les 𝑡 𝑜𝑏𝑠 sont inférieurs à 𝑡 0,99 pour toutes les longueurs d'onde lorsque le taux de végétation dans le mélange est supérieur à 0,66. Pour les mélanges avec plus de 66 % de végétation, les moyennes ne sont donc pas significativement différentes. L'intervalle comprenant 95% des réflectances est ensuite calculé. Les résultats sont synthétisés dans le tableau suivant en prenant 𝑡 0,99 :

  TABLEAU 7 : NOMBRE DE SPECTRES ACQUIS À DISTANCE, EXPLOITABLES PAR ESPÈCE Afin de pouvoir utiliser plus de spectres, le test de Student est appliqué une nouvelle fois, sur les spectres mélangés simulés avec des taux de végétation plus faibles. Les longueurs d'onde pour lesquelles l'hypothèse d'égalité des moyennes est rejetée sont alors relevées (cf. Tableau 8). Par la suite, afin d'abaisser le seuil de mélange, ces longueurs d'onde seront exclues de l'étude. Le nombre de spectres de monocotylédones à comparer est alors beaucoup plus élevé. Le seuil infrarouge des monocotylédones peut alors être abaissé à 0,23 lorsque les longueurs d'onde comprises dans les intervalles [634 648] nm et [690 694] nm ne sont pas traitées. 2.1.5. BASE DE SPECTRES DE RÉFLECTANCE À partir du montage expérimental et du protocole d'acquisition, des spectres de réflectance de cultures, d'adventices et de sols ont été acquis par contact et à distance. Les prétraitements proposés permettent de comparer les spectres de réflectance sur les intervalles [400-634], [648-690] et [694 -1000] nm pour :

	Espèce	Seuil IR	Nombre de spectres initiaux	Nombre de spectres exploitables	Total
	Tournesol	0,33		150		98
	Colza	0,33		148		85	197
	Chénopode	0,33		100		14
	Blé	0,28		150		4
	Ray-grass Vulpin	0,28 0,28		118 125		8 19	49
	Panic	0,28		32		18
	Espèce	Student : Proportions de mélanges où 𝒎 𝒎𝒆𝒍 = 𝒎 𝒑𝒖𝒓	Intervalle où tobs>t0,99 Hypothèse rejetée	Limite basse de valeur de réflectance pour l'intervalle 𝑰 [𝟖𝟎𝟎-𝟗𝟎𝟎]𝒏𝒎 et pour 𝒕𝒙 𝒗𝒆𝒈
	Betterave	𝑡𝑥 𝑣𝑒𝑔 > 0,58		[639 650]	0,31
	Colza	𝑡𝑥 𝑣𝑒𝑔 > 0,73		[634 639] ; [689 694]	0,34
	Tournesol	𝑡𝑥 𝑣𝑒𝑔 > 0,74		[630 645]	0,30
	Maïs	𝑡𝑥 𝑣𝑒𝑔 > 0,58		[634 648] ; [690 694]	0,23
				Nombre de
		Espèce	Seuil IR	spectres	Total
				exploitables
	Tournesol	0,32		101
		Colza	0,32		88	209
	Chénopode	0,32		20
		Blé	0,23		56
	Ray-grass Vulpin	0,23 0,23		45 56	193
		Panic	0,23		

TABLEAU 8 : NOUVEAUX RÉSULTATS DES TESTS DE STUDENT APPLIQUÉS AUX SPECTRES ACQUIS PAR CONTACT ET MODÉLISÉS SUR FOND NOIR Les valeurs seuils obtenues sur les spectres purs sont appliquées à l'ensemble de la base de spectres de cultures et d'adventices. Le nombre de spectres pouvant être analysés correspondant est alors : TABLEAU 9 : NOMBRE DE SPECTRES ACQUIS À DISTANCE EXPLOITABLES PAR ESPÈCE

  3. CONCLUSIONPendant ces travaux de thèse, de nombreuses données ont été acquises sous différentes formes et à échelles variables. Celles-ci sont regroupées dans le Tableau 10.Des acquisitions aériennes et au sol ont été réalisées afin d'obtenir des images multispectrales à 6 cm et 6 mm de résolution spatiale respectivement. Après divers traitements, les images acquises par drone ont été regroupées en orthophotographies représentant des parcelles agricoles dans leur ensemble. Les différents algorithmes de détection des adventices développés pendant ces travaux ont été mis en place à partir de ces orthophotographies. Les images acquises au sol ont été traitées de la même manière que les images aériennes, produisant des orthophotographies de zones de 5x5 m. Des orthoimagettes ont aussi été produites, avant regroupement des images en orthophotographies. Les images acquises au sol ayant une résolution spatiale plus fine que celles acquises par drone, elles ont été utilisées pour tester des algorithmes spectraux de détection d'adventices, sensibles aux mélanges spectraux présents dans les images. De plus ces images à 6 mm de résolution spatiale ont servi de support à l'étude de l'impact de la résolution spatiale sur le potentiel de détection des adventices. Enfin, en couplant ces images à des relevés terrain, des vérités terrain ont été créées afin de valider les algorithmes de localisation d'adventices.

	Type de données	Type d'acquisition	Résolution spatiale	Caractéristiques spectrales	Effectifs	Utilisation
						Développement de
		Aérienne	6 cm		4 orthophotographies	l'algorithme de détection
						des adventices
	Images multispectrales			4 bandes spectrales centrées à 550 nm, 660 nm, 735 nm et 790 nm		Développement de l'algorithme spectral de
		Au sol	6 mm		9 orthophotographies 18 orthoimagettes	détection des adventices Évaluation de l'impact de la résolution spatiale sur le
						potentiel de détection
						Support à la vérité terrain
				≈ 600 bandes spectrales		
	hyperspectrales Données	En laboratoire	/	690] et [694 -1000] nm Résolution : 3 nm Étendue acquisition : [350-2500] nm Étendue travail : [400-634], [648-	≈ 400 spectres	Support à la modélisation de la chaine d'acquisition
		Au champ	/	600 bandes spectrales Résolution : 2 nm Étendue acquisition : [200-1000] nm	170 spectres	Validation des algorithmes et modèles
			TABLEAU 10 : SYNTHÈSE DES DONNÉES ACQUISES POUR L'ÉTUDE	

D'autres données hyperspectrales ont été acquises en laboratoire et au champ. Une base de spectres de réflectance a été créée dans des conditions d'acquisition contrôlées, en laboratoire. Après prétraitements et après avoir borné l'intervalle d'étude, cette base servira de support à la modélisation de la chaîne d'acquisition pour évaluer le potentiel de détection du système actuel. En particulier cette base servira à étudier l'impact de la résolution spatiale sur la détection d'adventices et à sélectionner les filtres optiques adaptés à la discrimination entre cultures et adventices. D'autres spectres de réflectance ont été acquis sur des parcelles, pour être comparés à des images acquises par drone et ainsi valider la modélisation simplifiée de la chaîne d'acquisition.

  Le flux énergétique Φ correspond au débit d'énergie transportée par un rayonnement optique par unité de temps. Ce flux est exprimé en Watt (W).L'intensité énergétique 𝐼 est le flux énergétique Φ émis par une source, par unité d'angle solide Ω, dans la direction considérée θ. Cette intensité s'exprime en Watt par Stéradian (W.sr -1 ) :

	1.1. DÉFINITIONS DES GRANDEURS RADIOMÉTRIQUES
	Dans la suite de cette partie, plusieurs grandeurs radiométriques seront manipulées, en voici
	quelques définitions (Meyzonnette, 1992):
	 Flux et intensité énergétique

  En combinant l'ensemble des caractéristiques du dispositif multispectral, ce modèle simplifié de la chaîne d'acquisition transforme un spectre de réflexion en un signal de sorti à 4 dimensions (une valeur pour chaque filtre optique).

	𝝓 𝒑𝒊𝒙 ′	=	𝑆 𝑝𝑖𝑥 𝑆′	× 𝝓 ′ =	𝑆 𝑝𝑖𝑥 𝑆′	× 𝝉 × 𝝓 =	𝑆 𝑝𝑖𝑥 𝛾² × 𝑆	× 𝝉 × 𝝓	(19)
	𝝓 ′ Ainsi, au niveau du dispositif multispectral, les quatre capteurs équipés de quatre filtres 𝒋 = 𝝉 𝒋 × 𝝓 (18) optiques différents recevront quatre flux énergétiques différents. 1.2.2.3. FLUX REÇU PAR UN PIXEL S S' θ R d Objectif 𝜙 𝜙' d' Où : -𝜙 et 𝜙′ sont respectivement les flux énergétiques entrant et sortant de l'objectif -𝑆(m²) est la surface d'où provient le flux énergique 𝜙 -𝑆′ (m²) est la surface image recevant le flux énergétique 𝜙' sortant de l'objectif -𝑆 𝑝𝑖𝑥 (m²) est la surface d'un pixel -𝛾 est le grandissement tel que 𝛾² = 𝑆′ 𝑆 1.2.2.4. SENSIBILITÉ DU CAPTEUR La sensibilité spectrale 𝑠 d'un capteur est le rapport entre l'intensité du courant produit et le flux énergétique reçu par le pixel. Cette sensibilité dépend du rendement quantique du capteur (cf. Figure 16) et varie en fonction de la longueur d'onde : 𝑠(𝜆) = 𝜂(𝜆) 𝑞𝜆 ℎ𝑐 (20) Où : 𝑝 = 𝐾 ∫ 𝑠(𝜆) × 𝜆 2 𝜆 1 𝜙 𝑝𝑖𝑥 ′ (𝜆) × 𝑡 𝑖𝑛𝑡 × 𝑑𝜆 (21) Où : -𝑝 est le signal de sortie du pixel -𝜆 (m) est la longueur d'onde -𝑠(𝜆) est la sensibilité spectrale du capteur pour la longueur d'onde 𝜆 -𝜙 𝑝𝑖𝑥 ′ (W) est le flux énergétique reçu par un pixel -𝑡 𝑖𝑛𝑡 est le temps d'intégration -𝐾 est un coefficient de proportionnalité En combinant les équations 17 à 21, le signal de sortie du pixel 𝑝 pour la bande spectrale 𝑗 est calculé selon l'équation suivante : 𝑝(𝑗) = 𝐾 ′ ∫ 𝜂(𝜆) 𝜆 1,24 × 𝜆 2 𝜆 1 𝜏 𝑗 (𝜆) × 𝑥 𝑜𝑏𝑗 (𝜆) × 𝑡 𝑖𝑛𝑡 × 𝑑𝜆 (22) 1.2.3. MESURE DE RÉFLECTANCE Afin d'intégrer la correction en réflectance au modèle, la mesure par le capteur de la surface de référence 𝑝 𝑟𝑒𝑓 a été intégrée. En effet, la réflectance étant le rapport entre l'énergie réfléchie par l'objet étudié et l'énergie incidente, une mesure est effectuée sur une surface de référence, en début d'acquisition (cf. Chapitre 3, Partie 1.1.2). Connaissant l'illuminant et la réflectance de la surface de référence, l'énergie réfléchie par la surface de référence a été modélisée pour un pixel à partir de l'équation 16. Le spectre réfléchi a alors été transformé en signal de sortie du capteur avec l'équation 22. Cependant, les temps d'intégration des capteurs varient en fonction des variations de luminosité. Les temps d'intégration sont donc différents pour la mesure de la surface de référence et pour celle de l'objet étudié. Pour calculer la réflectance (cf. Équation 7) les signaux de sortie du capteur sont donc divisés par le temps d'intégration correspondant, afin de comparer des valeurs acquises pour un même temps : 𝜌(𝑗) = 𝑝(𝑗) 𝑡 𝑖𝑛𝑡 × 𝑡 𝑖𝑛𝑡,𝑟𝑒𝑓 𝑝 𝑟𝑒𝑓 (𝑗) × 𝜌 𝑟𝑒𝑓 (𝑗) (23) 𝜌(𝑗) = 𝑝(𝑗) 𝑡 𝑖𝑛𝑡 × 𝑡 𝑖𝑛𝑡,𝑟𝑒𝑓 𝑝 𝑟𝑒𝑓 (𝑗) × 𝜌 𝑟𝑒𝑓 (𝑗) × 𝑓 + 𝛿 (24) où : -𝑝 𝑟𝑒𝑓 est la valeur d'intensité du pixel pour la surface de référence -𝜌 𝑟𝑒𝑓 est la réflectance connue de la surface de référence -𝑝 est la valeur d'intensité du pixel pour l'objet mesuré multispectrales. 1.3. VALIDATION DU MODÈLE 1.3.1. COMPARAISON DES DONNÉES MODÉLISÉES ET ACQUISES PAR DRONE Afin de valider la modélisation de la chaîne d'acquisition, des données issues de la modélisation et obtenues par drone ont été comparées. Pour cela, des spectres de réflectance ont été acquis au spectromètre sur 17 micro-parcelles et 4 mires de réflectance connues (cf. Chapitre 3, Partie 2.2). Sur ces mêmes zones, des images multispectrales ont été acquises par drone, pour reconstituer ensuite une orthophotographie en réflectance de la parcelle d'essai (cf. Chapitre 3, -𝑡 Le bruit a été fixé arbitrairement avec un écart-type de 0,03, après observation des images Partie 2.2.3).

𝑆 (m²) est la surface d'où provient le flux énergique -𝑥 𝑜𝑏𝑗 (W.m -2 .sr -1 ) est la radiance de l'objet étudié -𝜃 est l'angle du faisceau conique correspondant au flux énergétique 𝜙 -𝑅 (m) est le rayon de l'objectif -𝑑 (m) est la distance entre la surface S et l'objectif -𝑑′ (m) est la distance focale 1.2.2.2. FILTRES OPTIQUES Les filtres optiques laissent passer l'énergie lumineuse en différentes proportions selon les longueurs d'onde. Le flux énergétique reçu au niveau du capteur, sur la surface S' est donc modifié en fonction du filtre optique associé au capteur. Pour calculer ce nouveau flux énergétique 𝜙′ arrivant sur la surface S', le flux énergétique 𝜙 est multiplié par la transmission optique 𝜏 𝑗 du filtre j (cf. Figure 16) : Après avoir traversé l'objectif et le filtre optique, le flux énergétique arrive sur la surface image S', potentiellement composée de plusieurs pixels. À partir de l'équation 18, le flux reçu pour un pixel 𝜙 𝑝𝑖𝑥 ′ est calculé comme suit : -𝜆 (m) est la longueur d'onde -𝜂(𝜆) est le rendement quantique du capteur pour la longueur d'onde 𝜆 -𝑞 (A.s) est la charge d'un électron ℎ (J.s) est la constante de Planck -𝑐 (m.s -1 ) est la célérité de la lumière dans le vide Le flux énergétique arrivant au niveau du pixel pendant un temps donné est donc transformé en signal électrique selon la sensibilité spectrale du capteur. Pour un capteur donné et un gain d'amplitude fixé, le signal photoélectrique de sortie est donc (étape de quantification non prise en compte) : Où 𝐾 ′ est un coefficient de proportionnalité intégrant les caractéristiques de l'optique. où : -𝑝 𝑟𝑒𝑓 est la valeur d'intensité du pixel pour la surface de référence -𝜌 𝑟𝑒𝑓 est la réflectance connue de la surface de référence -𝑝 est la valeur d'intensité du pixel pour l'objet mesuré j est la j ème composante du pixel -𝑡 𝑖𝑛𝑡 est le temps d'intégration du capteur lors de la mesure de l'objet étudié -𝑡 𝑖𝑛𝑡,𝑟𝑒𝑓 est le temps d'intégration du capteur lors de la mesure de la surface de référence Ensuite, afin de compenser les variations de luminosité pendant l'acquisition (cf. Chapitre 3, Partie 1.1.3.1), la réflectance est multipliée par un facteur de correction 𝑓 (ratio entre l'énergie lumineuse mesurée par le luxmètre au moment de la mesure de la référence et celle mesurée par le luxmètre pendant le vol). De plus, lors de l'acquisition de l'image, un bruit interne dû à l'appareil (bruit de photons, bruit thermique, bruit de quantification…) et un bruit dû à la création de l'orthophotographie viennent s'ajouter à la valeur du pixel. Ce phénomène a été modélisé par un bruit additif gaussien à chacune des valeurs du pixel : 𝑖𝑛𝑡 est le temps d'intégration du capteur lors de la mesure de l'objet étudié -𝑡 𝑖𝑛𝑡,𝑟𝑒𝑓 est le temps d'intégration du capteur lors de la mesure de la surface de référence -𝑓 est le facteur de correction -𝛿 est le bruit additif gaussien -j est la j ème composante du pixel Pour chacune des 17 micro-parcelles, 10 spectres de réflectance ont été acquis au spectromètre. De même, pour chaque mire, 2 spectres de réflectance ont été acquis. Chacun de ces spectres a alors été introduit dans le modèle pour être transformé en un vecteur à 4 dimensions, correspondant aux valeurs de réflectances modélisées pour les 4 bandes spectrales du dispositif multiSPEC (vert, rouge, zone du red-edge, infrarouge). Les différentes zones étant supposées homogènes, les répétitions ont été moyennées pour chaque micro-parcelle et mire, afin de faire correspondre un vecteur moyen de réflectance pour chacune de ces zones. Suite à l'acquisition par drone, une orthophotographie de la parcelle d'essai a été construite. Sur cette orthophotographie, les micro-parcelles et mires ont été détourées manuellement avec le logiciel QGIS (cf. Chapitre 3, Partie 2.2.3). La moyenne des valeurs de réflectance des pixels a alors été calculée pour les 4 bandes spectrales sur chaque zone.

  𝜌 𝑚𝑜𝑑𝑒𝑙𝑒 (𝑖) est la valeur de réflectance modélisée pour la bande spectrale 𝑖 -𝜌 𝑖𝑚𝑎𝑔𝑒 (𝑖) est la valeur de réflectance issue de l'orthophotographie pour la bande spectrale 𝑖 -𝜎 𝑚𝑜𝑑𝑒𝑙𝑒 (𝑖) est l'écart-type des valeurs de réflectance modélisées pour la bande spectrale 𝑖 -𝜎 𝑖𝑚𝑎𝑔𝑒 (𝑖) est l'écart-type des valeurs de réflectance issues des orthophotographies pour la bande spectrale 𝑖. chaque bande spectrale, le coefficient de détermination, la RMSE et la NRMSE sont calculés entre les données modélisées à partir des spectres acquis sur la parcelle d'essai et les images acquises par drone, afin d'évaluer la qualité de la modélisation de la chaîne d'acquisition (cf. Tableau 11). ) montrent une forte corrélation entre les données modélisées et les données réelles acquises par drone. Cependant, les valeurs de RMSE et NRMSE sont élevées pour les bandes du red-edge et infra-rouge (entre 0,15 et 0,32), traduisant un biais entre les valeurs modélisées et les valeurs réelles. Les différents graphes de la Figure33confirment ce biais et montrent une sous-estimation des valeurs de réflectance par le modèle.

		1.3.2. RÉSULTATS
	Le coefficient de détermination, est un indicateur rendant compte de la qualité d'une relation Indicateur Bande Bande Bande du red-Bande infra-
	affine entre les valeurs modélisées et celles extraites des images. Plus R² est proche de 1, plus les verte rouge edge rouge
	données sont corrélées. Cependant, ce coefficient ne rend pas compte des écarts, et donc d'un R² 0,9564 0,9901 0,9424 0,9613
	possible biais, entre les données modélisées et réelles. RMSE 0,0076 0,0027	0,0552	0,1402
	Afin de compléter les informations apportées par le coefficient de détermination, la RMSE 30 est NRMSE 0,1244 0,0350 0,2598 0,2808
	calculée : TABLEAU 11 : RÉSULTATS DE LA COMPARAISON DES DONNÉES MODÉLISÉES ET DES DONNÉES
		ACQUISES PAR DRONE
	𝑅𝑀𝑆𝐸 = √ ∑ (𝑥 𝑚𝑜𝑑𝑒𝑙𝑒,𝑖 -𝑥 𝑖𝑚𝑎𝑔𝑒,𝑖 ) 𝑛 𝑖=1 𝑛 Les valeurs élevées des coefficients de détermination des quatre bandes spectrales (supérieures 2 (26) à 0,93
	Où :		
	𝑁𝑅𝑀𝑆𝐸 =	𝑅𝑀𝑆𝐸 MAX(𝒙 𝒊𝒎𝒂𝒈𝒆 ) -MIN (𝒙 𝒊𝒎𝒂𝒈𝒆 )	(27)
	Où :		
	-MAX(𝒙 𝒊𝒎𝒂𝒈𝒆 ) est la valeur maximale du vecteur des réflectances mesurées sur les
	différentes zones de l'image	
	-MIN(𝒙 𝒊𝒎𝒂𝒈𝒆 ) est la valeur minimale du vecteur des réflectances mesurées sur les
	différentes zones de l'image	
	Afin de mesurer l'adéquation entre les données modélisées et celles issues de l'image, le
	coefficient de détermination R² est calculé pour les 4 bandes spectrales. Ce coefficient est le La RMSE et la NRMSE permettent de mesurer les écarts entre les valeurs modélisées et les
	carré du coefficient de corrélation : valeurs des images. Ces deux indicateurs reflètent la précision des valeurs mesurées et
	𝑅²(𝑖) = ( permettent de mettre en valeur un biais entre les données. Plus la RMSE ou la NRMSE est faible, 𝜎 𝑚𝑜𝑑è𝑙𝑒 (𝑖)𝜎 𝑖𝑚𝑎𝑔𝑒 (𝑖) ) (25) 𝑐𝑜𝑣 (𝜌 𝑚𝑜𝑑è𝑙𝑒 (𝑖), 𝜌 𝑖𝑚𝑎𝑔𝑒 (𝑖)) 2 moins il y a d'écarts entre les données.
	Où :		

-𝑅²(𝑖) est le coefficient de détermination entre les données modélisées et celles issues de l'image, pour la bandes spectrale 𝑖 -𝑖 est le numéro de la bande spectrale (𝑖 ∈ [1 4]) --𝑥 𝑚𝑜𝑑𝑒𝑙𝑒,𝑖 est la valeur de réflectance modélisée pour la 𝑖 è𝑚𝑒 zone mesurée -𝑥 𝑖𝑚𝑎𝑔𝑒,𝑖 est la valeur de réflectance issue de l'image pour la 𝑖 è𝑚𝑒 zone mesurée -𝑛 est le nombre de zones mesurées Cependant la RMSE seule rend délicate la comparaison de données de différentes échelles. En effet, la RMSE est un indicateur d'écart, qui doit être comparé à l'étendue de la plage de données pour être analysé. Pour faciliter la comparaison des données de différentes échelles, la RMSE a été normalisée par l'étendue des données. Ce nouvel indicateur relatif est la NRMSE 31 : Pour

  [START_REF] Feyaerts | Multi-spectral vision system for weed detection[END_REF]) ou sur l'évaluation de chaque combinaison de bandes spectrales[START_REF] Kleynen | Selection of the most efficient wavelength bands for 'Jonagold' apple sorting[END_REF][START_REF] Piron | Selection of the most efficient wavelength bands for discriminating weeds from crop[END_REF] ont été proposées. Ces méthodes de sélection ayant été testées sur des espèces différentes et pour des conditions d'acquisition variées, les résultats sont difficilement comparables, débouchant sur des sélections de bandes spectrales ou de longueurs d'onde très diverses.

  𝐼 1 est l'indice correspondant à la variable sélectionnée -𝒙 𝒊 est le vecteur colonne des réflectances à la i ème longueur d'onde -𝒀 est la matrice des réponses à prédire (les classes) Ces deux étapes sont alors répétées afin de sélectionner les autres variables 𝐼 2 , 𝐼 3 , 𝐼 4 ... (cf.

	Figure 36)
	2.2. CLASSIFICATION DE COMBINAISONS DE BANDES SPECTRALES
	Plutôt que de tester individuellement chaque bande spectrale, Kleynen et al. (2003) et Piron et
	al. (2008) ont testé chaque combinaison de bandes afin d'évaluer leur potentialité à séparer
	correctement les deux classes cultures et adventices.
	Pour chaque combinaison, les spectres de réflectance sont filtrés de manière à obtenir la
	réflectance correspondant aux différentes bandes spectrales. Une classification supervisée est
	alors effectuée sur les nouvelles réflectances. Afin de sélectionner la combinaison optimale de
	bandes spectrales, c'est-à-dire discriminant au mieux les deux classes, les pourcentages de
	bonnes classifications sont comparés. La combinaison avec le meilleur taux de bonnes
	classifications est conservée.

-𝒙 𝒊 𝑻 est la transposée du vecteur colonne des réflectances à la i ème longueur d'onde -𝒀 𝑻 est la transposée la matrice des réponses à prédire (les classes) Ensuite les données sont projetées orthogonalement à la variable sélectionnée 𝐼 afin de supprimer les informations corrélées à cette variable. Kleynen et al. (2003) classifient les données à partir de la distance de Mahalanobis. Cette méthode présente l'avantage de tenir compte de la covariance entre les données et d'être simple et rapide. De plus, la classification se faisant sur la combinaison de bandes spectrales, celles-ci sont évaluées conjointement plutôt qu'une à une. La méthode de classification consiste à sélectionner un échantillon de référence, dont les classes sont connues et à calculer les moyennes et les matrices de covariances des classes. Ensuite, la distance de Mahalanobis 𝑑 𝑥→𝐶 𝑘 est calculée entre chaque point à classer et les différentes classes :

  -𝒙 𝒗𝒆𝒈 (𝜆 𝑖 ) est le l'énergie lumineuse réfléchie par la plante pour la i ème longueur d'onde, -𝒙 𝒔𝒐𝒍 (𝜆 𝑖 ) est l'énergie lumineuse réfléchie par le sol pour la i ème longueur d'onde, -𝒙 𝒎𝒆𝒍 (𝜆 𝑖 ) est la valeur modélisée du flux lumineux réfléchi par l'aire composée de sol et de plante, pour la i ème longueur d'onde.

	𝒙 𝒎𝒆𝒍 (𝜆 𝑖 ) = 𝑡𝑥 𝑣𝑒𝑔 𝒙 𝒗𝒆𝒈 (𝜆 𝑖 ) + (1 -𝑡𝑥 𝑣𝑒𝑔 )𝒙 𝒔𝒐𝒍 (𝜆 𝑖 )	(32)
	où :	
	-𝑡𝑥 𝑣𝑒𝑔 ∈ [0; 1] est le taux de végétation dans le pixel,	

Afin de modéliser des pixels mixtes, des spectres mixtes, représentant un mélange spectral entre le sol et la végétation, ont été modélisés pour être utilisés en entrée du modèle. Le spectre réfléchi par l'aire projetée dans le pixel est une combinaison linéaire des spectres purs des objets situés sur cette même surface :

  de réaliser une classification des objets présents dans des images acquises dans des conditions variées, une méthode de classification non supervisée a été développée. En effet, l'utilisation d'une classification supervisée nécessiterait une base de données de très grande taille (avec différents illuminants, types de sols, espèces, stades de croissance….), ce qui est difficilement réalisable. Melnykov et Melnykov (2014) ont développé une méthode basée sur l'algorithme des K-means (cf. Chapitre 2, Partie 2.2.2.2) avec comme mesure de distance, celle de Mahalanobis (cf. Equation18) plutôt que la distance euclidienne. Cette méthode diffère des Kmeans par son initialisation. En effet, la sélection aléatoire des centres des classes est pondérée par la densité des points à proximité. La matrice de covariance et la moyenne de chaque classe sont alors calculées à partir des points les plus proches des centres. En calculant les distances de Mahalanobis entre les points et les différentes classes, chaque point est alors réaffecté à une des classes et les nouvelles moyennes et matrices de covariances sont recalculées. Cette procédure est répétée jusqu'à convergence des centres.

	3.2. CLASSIFICATION DES DONNÉES
	3.2.1. MÉTHODE DE CLASSIFICATION

Afin

3.2.2. PROCÉDURE DE CLASSIFICATION DES DONNÉES

Cette méthode de classification a d'abord été testée sur la séparation entre sol et végétation, pouvant être rattachée à de la détection d'adventices sur du sol nu, dans un inter-rang. Cette même classification a ensuite été appliquée à la séparation entre monocotylédones et dicotylédones, pouvant être assimilée à une discrimination entre cultures et adventices parmi la végétation, dans le rang. En effet, d'après l'état de l'art, la discrimination entre monocotylédones et dicotylédones semble être la plus réalisable pour séparer cultures et adventices en utilisant l'information spectrale (cf. Chapitre 1, Partie 3.1.2). Par ailleurs, dans un cas pratique cette discrimination pourrait être mise en place dans le cadre d'une pulvérisation de produits antidicotylédones ou anti-monocotylédones sur les cultures.

  Pour cette classification, seuls des spectres acquis par contact (Chapitre 3, Partie 2.1.3.1) ont été utilisés pour modéliser des pixels mixtes. En effet, les spectres acquis sur fond noir étant normalisés pour supprimer l'effet du fond, ceux-ci ne peuvent être mélangés au risque d'introduire un biais non contrôlé. Ainsi, les 47 spectres de maïs et 84 spectres de tournesol acquis par contact ont été utilisés et transformés en pixels pour représenter la classe « Monocotylédones » et « Dicotylédones ».

	3.4.2. CLASSIFICATION ENTRE MONOCOTYLÉDONES ET DICOTYLÉDONES
	3.4.2.1.	SUR LES PIXELS MODÉLISÉS

  Toutefois les histogrammes issus des images réelles semblent plus étendus que ceux provenant des données modélisées. Ceci peut être dû à une estimation biaisée des taux de végétation dans les pixels des images. En effet, cette estimation a été faite de façon empirique et est la même pour les plantes monocotylédones et dicotylédones, ne prenant pas en compte le port de la plante. Ainsi, les taux de végétation des pixels calculés pour les monocotylédones risquent d'être surestimés. Par ailleurs, la fonction de répartition a été calculée pour l'ensemble des pixels de végétation, et ne distingue pas les monocotylédones de dicotylédones. De plus, l'estimation prend comme hypothèse qu'un pixel au centre d'une plante comporte 100 % de végétation. Or, du sol peut apparaître dans certains cas au centre d'amas de végétation. C'est pourquoi, globalement les taux de végétation risquent d'être surestimés. Les graphes provenant de la simulation et des images multispectrales ont une allure similaire, bien qu'un biais dû à l'estimation des taux de végétation apparaisse. Ce modèle peut donc être utilisé pour évaluer l'impact des mélanges spectraux, et donc de la résolution spatiale, sur le potentiel de détection des adventices.

La classification entre monocotylédones et dicotylédones montre de bons résultats pour des pixels avec de forts taux de végétation mais est difficilement atteignable pour des taux faibles. Ainsi, avec ce système d'acquisition, les images doivent présenter des pixels purs de plante, et donc une résolution spatiale très élevée.

Les résultats de la classification en sol et végétation peuvent être utilisés pour évaluer la détection d'un pixel de végétation sur du sol nu, ce qui représenterait une détection d'adventices dans l'inter-rang. Actuellement, la plupart des algorithmes de détection des adventices se basent sur une détection des adventices dans l'inter-rang. Les résultats de la classification en monocotylédones et dicotylédones peuvent être utilisés pour évaluer la détection des adventices dans le rang. Pour poursuivre ce travail, les mélanges entre monocotylédones et dicotylédones pourraient être ajoutés à la modélisation.

Le modèle présenté dans cette étude est basé sur la transformation de spectres de réflectance en pixels modélisés correspondant à ceux d'une image multispectrale acquise par drone. Dans l'évaluation du potentiel de détection, les dicotylédones sont représentées par du tournesol et les monocotylédones par du maïs, ce qui n'est pas représentatif de la réalité. Ces résultats devraient être complétés avec des données acquises sur plus d'espèces.

  Pour avoir de meilleures chances de séparer correctement les monocotylédones et dicotylédones, la résolution spatiale doit être de meilleure qualité ou la taille des adventices doit être plus élevée. Par exemple, en cherchant à détecter des adventices de plus de 5 cm², les probabilités de classer correctement les monocotylédones et dicotylédones augmentent à plus de 80 % et 70 % respectivement (cf. Figure48). Dans le cas appliqué à un service de gestion des adventices par drone, la résolution spatiale des images serait à 6 cm/pixel. Une adventice dont la taille est inférieure à 15 cm² (disque de rayon d'environ 2,2 cm) peut ne pas être détectée : sur la Figure46, les pixels dont le taux de végétation est compris entre 0,10 et 0,42 auront une probabilité d'être détectés en végétation inférieure à 50 %. Pour être correctement classée en végétation, la taille de l'adventice doit être plus grande. Avec une surface de 100 cm² (disque de rayon de 5,6 cm), au moins un des pixels représentant l'adventice comprendra entre 69 et 100 % de végétation, et sera donc détecté comme végétation avec une probabilité supérieure à 90 %. Cependant la discrimination entre monocotylédone et dicotylédone sera plus compliquée, avec une probabilité de bonne classification variant entre 30 et 80 %. Ainsi, une adventice d'un rayon de 5,6 cm, devrait être correctement détectée en végétation, et donc détectée par des algorithmes spatiaux (basés sur la détection de végétation dans l'inter-rang) sur des images acquises à 6 cm de résolution spatiale. Cependant une classification non supervisée semble délicate à mettre en place pour de telles résolutions.

	végétation de 1).						
				Pixel				
				Plantes				
				Pixels présentant le plus fort taux de	
				végétation pour une plante donnée	
		Résolution spatiale					
				Surface de la plantule		
			1 cm²	2 cm²	5 cm²	15 cm²	50 cm²	100 cm²
		0,6 cm	[69-100]	[99-100]	100	100	100	100
		1 cm	[25-92]	[50-100]	[98-100]	100	100	100
	Résolution spatiale	1,5 cm 3 cm 6 cm	[11-44] [3-11] [1-3]	[22-88] [6-22] [1-6]	[56-100] [14-67] [3-14]	100 [53-100] [10-42]	100 100 [35-100]	100 100 [69-100]
		10 cm	[0-1]	[1-2]	[1-5]	[4-15]	[13-50]	[25-92]
		15 cm	0	[0-1]	[1-2]	[2-7]	[6-22]	[11-44]
	TABLEAU 13 : PROPORTIONS DE VÉGÉTATION (EN %) MINIMALES ET MAXIMALES PRÉSENTES DANS LE
	PIXEL AYANT LE PLUS GRAND TAUX DE VÉGÉTATION EN FONCTION DE LA RÉSOLUTION SPATIALE DE
			L'IMAGE ET DE LA TAILLE DE L'ADVENTICE		
	Ce type de tableau peut alors être relié aux résultats de classification obtenus dans le chapitre 4,
	partie 3.4. Par exemple (cf. Tableau 13), avec une résolution spatiale de 1 cm et une adventice
	circulaire de 2 cm² (disque d'un rayon de 8 mm), le pixel présentera 100 % de végétation dans le
	meilleur des cas et 50 % dans le pire des cas (i.e. quand l'adventice est à l'intersection de 4
	pixels). Ainsi, selon les histogrammes présentés en Figure 46, la probabilité de détecter cette

adventice sur un sol nu (i.e. faire une séparation entre sol et végétation) varie entre 80 % (pour un taux de végétation de 0,5) et 100 % (pour un taux de végétation de 1). Pour ces mêmes résolution et taille d'adventice, la probabilité de classer correctement les monocotylédones et les dicotylédones varie entre 10 % (pour un taux de végétation de 0,5) et 80 % (pour un taux de

  La seconde méthode se base sur les valeurs NDVI des pixels. Plus cet indice est élevé, plus le pixel présentera de végétation. Pour les classes « culture » et « adventice », le NDVI moyen est calculé. Pour chaque classe, les pixels de référence sont alors sélectionnés aléatoirement parmi ceux dont la valeur NDVI est supérieure à la moyenne de la classe.

			Orthoimagette
			multispectrale
			Séparation sol/végétation
			(Seuillage NDVI)
	Vérité terrain	Pixels de référence	Classification des pixels
			Regroupement des
			résultats par composantes
			connexes
			Carte de
			localisation des
			adventices
	Entrées / sorties	Opérations	Données intermédiaires

  D'après l'état de l'art, diverses méthodes de classification sont utilisées pour séparer spectralement cultures et adventices (cf. Chapitre 2, Partie 2.2.2). Ces méthodes ayant été appliquées à des espèces différentes, et sur des données variables (e.g. spectres de réflectance, images multispectrales), les résultats obtenus sont difficilement comparables.

C'est pourquoi, les principales méthodes rencontrées dans la bibliographie ont été intégrées dans la procédure de discrimination entre cultures et adventices afin d'être comparées et de sélectionner les plus performantes.

Au final, six méthodes de classification supervisées ont été testées sur les images : l'analyse discriminante linéaire, l'analyse discriminante quadratique, la distance de Mahalanobis, la méthode SVM à noyau polynomial, la méthode SVM à noyau à fonction de base radiale et la méthode SVM à noyau sigmoïde. Ces méthodes de classification sont détaillées dans les livres de Camps-Valls et Bruzzone (2009) et

Dougherty (2012) 

  4.1.2. INDICES DE QUALITÉ DE LA CLASSIFICATIONLa matrice de confusion[START_REF] Provost | The Case against Accuracy Estimation for Comparing Induction Algorithms[END_REF] est un outil permettant d'évaluer la qualité d'une classification, en prenant en compte les différentes sorties possibles. Considérons les éléments de deux classes à déterminer : A, cas positif et B, cas négatif:-Si un élément de la classe réelle A est classé comme tel, il est considéré comme « Vrai positif » -Si un élément de la classe réelle A est classé en B, il est considéré comme « Faux négatif » -Si un élément de la classe réelle B est classé comme tel, il est considéré comme « Vrai négatif » -Si un élément de la classe réelle B est classé en A, il est considéré en « Faux positif » À partir des résultats de la classification, l'ensemble des éléments appartenant à chacun des quatre cas décrits est comptabilisé dans la matrice de confusion suivante :

			Classes estimées
			A	B
	Classes	A	Vrais positifs	Faux négatifs
	réelles	B	Faux positifs	Vrais négatifs
		TABLEAU 14 : MATRICE DE CONFUSION
	Dans le cas de discrimination entre cultures et adventices, la matrice de confusion est alors la
	suivante :			
	TABLEAU 15 : MATRICE DE CONFUSION POUR LA CLASSIFICATION ENTRE CULTURES ET ADVENTICES

  La procédure de discrimination spectrale entre cultures et adventices a été testée sur les orthoimagettes acquises à 6 mm de résolution spatiale (cf. Chapitre 3, Partie 1.2), afin de travailler sur des pixels présentant peu de mélanges spectraux. Dans le cadre d'une comparaison des méthodes, les pixels de référence ont été sélectionnés à partir de la vérité terrain (cf. Chapitre 5, Partie 2.2).Dans la procédure de discrimination proposée, trois étapes varient afin d'être comparées (cf. Chapitre 5, Parties 2.2 et 2.5) :la méthode de sélection des points de référence : selon la valeur NDVI du pixel ou selon sa position dans la composante connexe ; -les effectifs des échantillons de référence : 50, 100 et 200 pixels ; -la méthode de classification : Mahalanobis, analyse discriminante linéaire, analyse discriminante quadratique, SVM polynomiale, SVM à base radiale, SVM sigmoïde. Les résultats de classification sont synthétisés dans deux tableaux. Le premier (cf. Tableau 17) correspond aux résultats obtenus en sélectionnant les pixels de référence selon leur valeur NDVI. Le second (cf. Tableau 18) présente les résultats où la sélection des pixels de référence est faite après érosion des composantes de végétation. Les résultats figurant dans ces tableaux sont les moyennes faites sur les résultats obtenus sur l'ensemble des images testées (19 orthoimagettes). Dans ces deux tableaux, chaque ligne correspond aux résultats de discrimination pour les différentes méthodes de classification testées et pour différents effectifs de l'échantillon de référence. Les résultats présentent les taux de bonnes classifications moyens (𝜇 𝑇𝑉𝐶 et 𝜇 𝑇𝑉𝐴 ) calculés pour les différentes orthoimagettes, les écarts-types correspondant (𝜎 𝑇𝑉𝐶 et 𝜎 𝑇𝑉𝐴 ) et l'aire sous le graphique ROC construit à partir des dix répétitions (Aire ROC). COMPARAISON DES MÉTHODES DE SÉLECTION DES POINTS DE RÉFÉRENCE Afin de comparer les résultats de discrimination selon la méthode de sélection des points de référence, les moyennes totales (i.e. dernière ligne de chaque tableau) des taux de bonnes classifications, des aires des graphes ROC et des écarts-types ont été analysées.

	4. Résultats							
	*LDA = Analyse Discriminante Linéaire ; QDA = Analyse Discriminante Quadratique Maïs Méthodes Effectif pixels de référence 𝛍 𝐓𝐕𝐂 𝛍 𝐓𝐕𝐀 𝛔 ̅ 𝐓𝐕𝐂 𝛔 ̅ 𝐓𝐕𝐀 Aire ROC LDA* 50 0,7343 0,8018 0,0708 0,0704 0,8139 QDA* 0,7556 0,7994 0,0585 0,0655 0,8185 Mahalanobis 0,7264 0,7886 0,0671 0,0922 0,8127 SVM, noyau polynomial 0,6964 0,7798 0,1216 0,1298 0,7979 SVM, noyau RBF 0,7316 0,7832 0,0920 0,0797 0,8040 SVM, noyau sigmoïde 0,7289 0,7754 0,0692 0,0747 0,7858 Moyenne 0,7289 0,7880 0,0799 0,0854 0,8055 LDA* 100 0,7454 0,8177 0,0429 0,0369 0,8099 QDA* 0,7777 0,7946 0,0438 0,0481 0,8229 Mahalanobis 0,7322 0,7904 0,0607 0,0808 0,8116 SVM, noyau polynomial 0,7450 0,8084 0,0754 0,0711 0,8187 SVM, noyau RBF 0,7768 0,8052 0,0467 0,0514 0,8140 SVM, noyau sigmoïde 0,7508 0,7959 0,0548 0,0523 0,7991 Moyenne 0,7546 0,8020 0,0540 0,0567 0,8127 LDA* 200 0,7471 0,8244 0,0285 0,0282 0,8023 QDA* 0,7836 0,7966 0,0252 0,0261 0,8104 Mahalanobis 0,7364 0,7946 0,0381 0,0509 0,7964 SVM, noyau polynomial 0,7732 0,8081 0,0470 0,0532 0,8199 SVM, noyau RBF 0,7902 0,7994 0,0307 0,0510 0,8211 SVM, noyau sigmoïde 0,7478 0,8153 0,0407 0,0413 0,8051 Moyenne 0,7631 0,8064 0,0351 0,0418 0,8092 Moyenne totale 0,7481 0,7984 0,0574 0,0623 0,8091 *LDA = Analyse Discriminante Linéaire ; QDA = Analyse Discriminante Quadratique Moyenne totale 0,7953 0,6681 0,0572 0,0880 0,7741 Moyenne 0,8094 0,6620 0,0380 0,0658 0,7663 SVM, noyau sigmoïde 0,8067 0,7088 0,0388 0,0663 0,7855 SVM, noyau RBF 0,8318 0,6651 0,0343 0,0622 0,7864 SVM, noyau polynomial 0,7955 0,6825 0,0423 0,0806 0,7737 200 Mahalanobis 0,8033 0,5392 0,0442 0,0792 0,7061 QDA* 0,8291 0,6462 0,0278 0,0445 0,7572 LDA* 0,7903 0,7305 0,0408 0,0621 0,7890 Moyenne 0,7970 0,6681 0,0526 0,0851 0,7762 SVM, noyau sigmoïde 0,7913 0,7016 0,0516 0,0778 0,7892 SVM, noyau RBF 0,8182 0,6826 0,0431 0,0711 0,7841 SVM, noyau polynomial 0,7550 0,7221 0,0712 0,0972 0,7865 100 Mahalanobis 0,8053 0,5458 0,0663 0,1276 0,7453 QDA* 0,8214 0,6407 0,0367 0,0658 0,7695 LDA* 0,7910 0,7160 0,0468 0,0712 0,7827 Moyenne 0,7814 0,6733 0,0781 0,1098 0,7787 SVM, noyau sigmoïde 0,7756 0,7105 0,0799 0,1050 0,7800 SVM, noyau RBF 0,7867 0,7201 0,0738 0,1019 0,7957 SVM, noyau polynomial 0,7523 0,6873 0,1114 0,1357 0,7719 50 Mahalanobis 0,7975 0,5351 0,0850 0,1465 0,7584 QDA* 0,7986 0,6564 0,0513 0,0802 0,7631 LDA* 0,7776 0,7304 0,0670 0,0895 0,8034 Méthodes Effectifs pixels de référence 𝝁 𝑻𝑽𝑪 𝝁 𝑻𝑽𝑨 𝝈 ̅ 𝑻𝑽𝑪 𝝈 ̅ 𝑻𝑽𝑨 Aire ROC Maïs 4.3.1.	𝛍 𝐓𝐕𝐂 0,8949 0,9078 0,8270 0,9084 0,8959 0,8870 0,8868 0,9055 0,9219 0,8702 0,9123 0,9130 0,8989 0,9036 0,9140 0,9366 0,8813 0,9116 0,9277 0,9063 0,9129 0,9005 0,8663 0,8731 0,8734 0,8959 0,8816 0,8047 0,9003 0,8824 0,8694 0,8751 0,8824 0,8592 0,8298 0,8982 0,8716 0,8573 0,8654 0,8703 0,8657 0,7846 0,8782 0,8794 𝝁 𝑻𝑽𝑪	𝛍 𝐓𝐕𝐀 0,7915 0,8151 0,8496 0,7211 0,7776 0,7602 0,7859 0,7882 0,8519 0,8772 0,7859 0,8451 0,7824 0,8218 0,7918 0,8169 0,8775 0,8602 0,8447 0,7869 0,8297 0,8116 0,8501 0,8703 0,8394 0,8897 0,8544 0,9286 0,8662 0,8435 0,8480 0,8050 0,8618 0,8496 0,8847 0,8537 0,8332 0,8348 0,7889 0,8386 0,8057 0,8883 0,8514 0,8360 𝝁 𝑻𝑽𝑨	𝛔 ̅ 𝐓𝐕𝐂 0,0450 0,0458 0,1066 0,0590 0,0507 0,0497 0,0595 0,0318 0,0302 0,0658 0,0556 0,0365 0,0379 0,0430 0,0193 0,0173 0,0509 0,0398 0,0277 0,0289 0,0306 0,0450 0,0567 0,0403 0,0350 0,0298 0,0540 0,0605 0,0316 0,0307 0,0562 0,0387 0,0509 0,0693 0,0922 0,0438 0,0423 0,0713 0,0591 0,0542 0,0842 0,1329 0,0528 0,0448 𝝈 ̅ 𝑻𝑽𝑪 Betterave Betterave	𝛔 ̅ 𝐓𝐕𝐀 0,0775 0,0708 0,1064 0,1681 0,1320 0,1212 0,1127 0,0873 0,0424 0,0664 0,1363 0,0593 0,0848 0,0794 0,0712 0,0420 0,0562 0,0859 0,0475 0,0882 0,0652 0,0868 0,0713 0,0477 0,0461 0,0380 0,0871 0,0402 0,0430 0,0320 0,0729 0,0794 0,0552 0,1077 0,0951 0,0573 0,0424 0,0898 0,1211 0,0806 0,1434 0,0791 0,0640 0,0506 𝝈 ̅ 𝑻𝑽𝑨	Aire ROC 0,8783 0,9069 0,9207 0,8947 0,8840 0,8753 0,8933 0,8821 0,9149 0,9300 0,9135 0,9135 0,8885 0,9071 0,8818 0,9009 0,9246 0,9279 0,9097 0,8729 0,9030 0,9010 0,8992 0,9040 0,8853 0,9098 0,9267 0,9111 0,9080 0,8829 0,9011 0,8711 0,9043 0,9076 0,9309 0,9072 0,8851 0,8933 0,8683 0,8937 0,8992 0,9160 0,8943 0,8884 ROC Aire	Moyenne TVC et TVA 0,8056 0,8195 0,7979 0,7764 0,7971 0,7879 0,7974 0,8142 0,8365 0,8175 0,8129 0,8350 0,8070 0,8205 0,8193 0,8334 0,8224 0,8383 0,8405 0,8141 0,8280 0,8153 0,7953 0,8037 0,8071 0,8206 0,8035 0,7689 0,8104 0,8117 0,7956 0,7933 0,8113 0,7965 0,7664 0,8035 0,8029 0,7867 0,7851 0,8039 0,7778 0,7514 0,7962 0,8058 TVA TVC et Moyenne	Moyenne Aire 0,8667 0,8708 0,8605 0,8551 0,8366 0,8561 0,8351 0,8390 0,8354 0,8654 0,8481 0,8739 0,8502 0,8086 0,8556 0,8326 0,8420 0,8360 0,8599 0,8386 0,8438 0,8302 0,8638 0,8442 0,8661 0,8471 0,8381 0,8689 0,8383 0,8460 0,8339 0,8494 0,8360 0,8306 0,8241 0,8440 0,8447 0,8463 0,8355 0,8372 0,8627 0,8287 0,8461 0,8459 ROC ROC Aire Moyenne
	TABLEAU 18 : SYNTHÈSE DES RÉSULTATS DE DISCRIMINATION ENTRE CULTURES ET ADVENTICES SUR LES ORTHOIMAGETTES DE MAÏS ET BETTERAVES, OÙ TABLEAU 17 : SYNTHÈSE DES RÉSULTATS DE DISCRIMINATION ENTRE CULTURES ET ADVENTICES SUR LES ORTHOIMAGETTES DE MAÏS ET DE BETTERAVE, OÙ LES PIXELS DE RÉFÉRENCE SONT SÉLECTIONNÉS SELON LEURS VALEURS NDVI LES PIXLES DE RÉFÉRENCE SONT SÉLECTIONNÉS APRÈS ÉROSION DES COMPOSANTES DE VÉGÉTATION
								161
	Un exemple de tableau détaillé par orthoimagette traitée est présenté en Annexe 6.							

  4.3.3. COMPARAISON DES MÉTHODES DE CLASSIFICATIONLes six méthodes comparées montrent des résultats très proches les uns des autres. Par exemple, avec un échantillon de référence de 200 pixels sélectionné à partir des valeurs NDVI, la moyenne des taux de bonnes classifications varie entre 0,81 et 0,84. Les écarts-types obtenus sur les 10 répétitions pour toutes les orthoimagettes et pour les différentes méthodes varient entre 0,04 et 0,12, rendant la différence des taux de bonnes classifications non significative.Toutefois, deux méthodes de classification ont été sélectionnées : l'analyse discriminante quadratique et la SVM à noyau RBF. En effet, ces méthodes présentent la plupart du temps les meilleurs résultats, avec des écarts-types les plus faibles, et ce dans les deux tableaux.4.4. COMBINAISON DE L'INFORMATION SPATIALE ET SPECTRALELa combinaison de l'information spatiale et spectrale consiste, en partie, à utiliser les résultats de la détection spatiale des adventices pour sélectionner les pixels servant de référence à la classification spectrale (cf. Chapitre 5, Partie 3.2). Une première pré-sélection est donc réalisée à partir de la position du pixel par rapport au rang. Ensuite, la méthode de sélection des pixels de référence retenue pour la classification spectrale est celle basée sur les valeurs NDVI des pixels (cf. Chapitre 5, Partie 4.3.1). C'est pourquoi, cette nouvelle sélection est effectuée parmi les pixels présélectionnés selon leur position.Une fois, l'échantillon de référence sélectionné, l'analyse discriminante quadratique et la SVM à noyau RBF sont mises en place sur les images (cf. Chapitre 5, Partie 2.3). Les résultats des classifications sont ensuite fusionnés avec les résultats de la détection spatiale (cf. Chapitre 5, Partie 3.3). Afin de mesurer l'apport de la combinaison de l'information spatiale et spectrale, trois procédures de discrimination ont été testées. D'abord la classification spectrale a été testée seule (cf. Tableau 19), avec une sélection des points de référence réalisée à partir des résultats de la détection spatiale (cf. Chapitre 5, Partie 3.2). Ensuite, cette classification a été combinée à l'information spatiale, en classant la végétation dans l'inter-rang en adventices (cf. Tableau 20). Enfin, ces résultats ont été comparés à ceux obtenus par l'algorithme spatial seul (cf. Tableau 21). Partie 4.3). Lorsque le nombre de points de référence augmente, le taux de bonnes classifications augmente légèrement, et les écarts-types obtenus sur les répétitions diminuent. Les taux de bonnes classifications sont toutefois plus faibles que ceux obtenus avec la vérité terrain. Ceci peut être expliqué par la sélection de pixels à partir des résultats de l'algorithme spatial, ce qui peut induire des erreurs parmi les pixels de référence et donc sur la classification. Par ailleurs, en intégrant l'information spatiale dans la procédure de discrimination, les taux de bonnes classifications des adventices et les écarts-types associés se stabilisent malgré des effectifs de l'échantillon de référence différents. En effet, les résultats de la discrimination dans l'inter-rang sont les mêmes pour toutes les répétitions, et varient seulement dans le rang, ce qui rend l'algorithme plus robuste. Toutefois, la combinaison de la méthode spatiale et spectrale montre de meilleurs taux de bonnes classifications pour les adventices, avec un taux s'élevant à 0,9320 contre 0,8290 pour la méthode spatiale seule, soit près de 10 % des pixels d'adventices détectés en plus. La combinaison de la méthode spatiale et spectrale montre donc un réel intérêt, permettant de mieux détecter les adventices que ces méthodes seules, bien qu'elle crée une légère surdétection des adventices par rapport à la méthode spatiale. Dans le cadre d'un service de gestion des adventices ne prenant aucun risque, toutes les adventices doivent être détectées. Il est donc préférable de surdétecter les adventices plutôt que de ne pas en détecter. Afin de mesurer l'intérêt de réaliser la classification sur les orthoimagettes plutôt que sur les orthophotographies de 5x5 m, la procédure de localisation des adventices combinant les analyses spatiale et spectrale a été réalisée sur les orthophotographies de 5x5 m (cf. Chapitre 3, Partie 1.2.4). Les orthophotographies présentant approximativement quatre fois plus de pixels de végétation que les orthoimagettes, le nombre de pixels de référence a été multiplié par 4.Les résultats de classification sont présentés dans le Tableau 22.En comparant ces résultats avec ceux obtenus sur les orthoimagettes (cf. Tableau 20), une même tendance est constatée : les taux de bonnes classifications et les écarts-types restent stables malgré l'augmentation du nombre de pixels de référence. De même, les résultats obtenus par l'analyse discriminante quadratique et par la SVM à noyau RBF restent très proches (moyenne globale variant entre 0,77 et 0,79).Cependant, les taux de bonnes classifications diminuent lorsque la classification est appliquée aux orthophotographies, passant d'une moyenne globale proche de 0,85 pour les orthoimagettes à 0,77. Notamment, les taux moyens de bonnes classifications des adventices diminuent de près de 8 %, ce qui peut être particulièrement gênant dans le cadre d'un service de gestion des adventices, où une bonne classification des adventices est privilégiée par rapport à une bonne classification des cultures. L'utilisation d'orthoimagettes plutôt que l'utilisation d'orthophotographies présente donc un réel intérêt dans le cadre de la mise en place d'une procédure de détection des adventices combinant analyse spatiale et analyse spectrale. En effet, le taux de bonnes classifications des adventices se voit amélioré de près de 8 %. Cette amélioration peut être expliquée par la qualité des images à traiter. Les orthophotographies, résultant d'une fusion des orthoimagettes (cf. Chapitre 3, Partie 1.2.4), sont composées de pixels pouvant présenter plus de mélanges spectraux puisque les valeurs de ces pixels sont calculées en moyennant les pixels provenant de plusieurs orthoimagettes obtenues avec différents angles de vue. L'orthoimagette présentant plus de pixels purs que l'orthophotographie aura donc plus de chance d'être correctement classée, comme observé dans le Chapitre 4, Partie 3.4.5. CONCLUSION ET PERSPECTIVESDans ce chapitre, trois procédures de discrimination entre cultures et adventices ont été comparées : la détection spatiale des adventices, la discrimination spectrale, et la combinaison de ces deux méthodes.En effet, le chapitre 4 ayant montré que la détection des adventices dans l'inter-rang (i.e. détection de végétation sur du sol nu) semblait être la méthode la plus facilement applicable à des images acquises par drone, l'algorithme spatial a d'abord été mis en place. Celui-ci a été développé dans le but d'obtenir une méthode de détection des adventices adaptée aux images de cultures sarclées (maïs, betterave) acquises par drone, c'est-à-dire à des images représentant de grandes surfaces, où les caractéristiques des cultures peuvent varier, ainsi que l'intensité lumineuse des images. L'algorithme spatial proposé a montré sa capacité à détecter correctement les adventices sur des orthophotographies multispectrales d'une résolution spatiale de 6 cm/pixel, avec environ 75 % des pixels d'adventices correctement détectés. Les adventices non détectées par l'algorithme sont principalement des adventices isolées et de petite taille. En effet, au-delà de 10 cm de diamètre, les adventices semblent être correctement détectées. De même, disposées en amas denses, les petites adventices restent détectables. Dans le cadre de la création d'un service de gestion des adventices, la méthode spatiale devrait donc d'abord être proposée pour une taille donnée des adventices, ou pour des adventices se développant en amas. Afin d'améliorer la détection, deux solutions peuvent être envisagées. La première, matérielle, consiste à utiliser un capteur avec une résolution spatiale plus élevée, réduisant ainsi les mélanges spectraux dans les pixels. La seconde, vise à utiliser une autre méthode de séparation du sol et de la végétation, par exemple en mettant en place une classification spectrale. De plus, cet algorithme est principalement basé sur une première détection de la végétation, puis sur la localisation des rangs de cultures. Il s'appuie fortement sur l'hypothèse que les rangs sont assimilables à des droites parallèles discernables. Cette méthode spatiale n'est donc pas applicable sur des cultures présentant des rangs avec de fortes courbures. De plus, l'application de l'algorithme peut devenir problématique lorsque les rangs présentent un recouvrement important (e.g. la betterave à un stade avancé). Par ailleurs, la localisation spatiale ne permet pas de détecter les adventices situées dans le rang.Afin de palier ces limites, une analyse spectrale a été mise en place. Les résultats obtenus pour les différentes classifications testées démontrent le potentiel de l'analyse spectrale pour détecter les adventices. En effet, la procédure de discrimination entre cultures et adventices a montré de fort taux de bonnes classifications (avoisinant 80 % de pixels correctement classés) et s'est montrée robuste, avec de faibles écarts-types pour les différentes répétitions, et ce, pour la plupart des méthodes de classification spectrale utilisées. L'analyse spectrale pourrait donc être envisagée pour détecter les adventices sur des cultures sarclées ou non, telles que le blé ou le colza, cultures pour lesquelles les rangs ne sont pas distincts et donc pour lesquelles l'algorithme spatial ne peut fonctionner. Toutefois, les classifications proposées étant supervisées, une étude doit être mise en place afin de proposer un moyen de sélectionner des pixels de référence, ou bien afin de développer de nouvelles méthodes de classification non supervisées. Pour les cultures sarclées, la sélection des pixels de référence peut être effectuée à partir des résultats de l'analyse spatiale.Une combinaison des informations spatiale et spectrale a donc été développée. D'une part cette nouvelle procédure consiste à sélectionner les pixels de référence pour la classification spectrale à partir des résultats de la détection spatiale. D'autre part, les résultats de la classification spectrale et de la classification spatiale sont fusionnés afin de produire une carte finale de localisation des adventices. La combinaison des méthodes spatiale et spectrale obtient de meilleurs résultats que l'exploitation de chacune de ces informations seules. En effet, la procédure mise en place permet de détecter les adventices dans l'inter-rang et dans les rangs, débouchant sur un taux de bonnes classifications des adventices à 0,93, contre 0,83 et 0,72 pour les méthodes spatiale et spectrale séparées. Par ailleurs, afin d'obtenir une discrimination optimale entre culture et adventices, la classification doit être réalisée sur les orthoimagettes plutôt que sur les orthophotographies, pour lesquelles les taux de bonnes classifications des adventices est nettement plus faible que pour les orthoimagettes. Toutefois, le développement complet d'un algorithme de discrimination nécessite une réflexion sur la fusion des résultats des différentes orthoimagettes (qui se superposent) en une unique orthophotographie de résultat final : Doit-on moyenner les résultats ? Faut-il prendre le résultat issu de l'image prise à l'azimut ? Une solution envisagée serait de faire une moyenne des résultats pondérée par la distance entre l'azimut du pixel à classer et les coordonnées du centre de l'image considérée.La combinaison de l'information spatiale et spectrale présente l'intérêt de détecter les adventices dans le rang. Cette détection peut être particulièrement intéressante lorsqu'elle est réalisée sur des parcelles où le désherbinage est pratiqué. En effet, les adventices y seront principalement présentes dans le rang. Dans ce cas, l'algorithme devra être testé sur des images avec peu d'adventices dans l'inter-rang (et donc très peu de pixels de référence pour la classification spectrale).Les travaux de recherche présentés dans cette thèse ont été initiés dans un contexte agricole visant à réduire l'utilisation des herbicides sur les parcelles. Ils ont démontré la capacité de détection des adventices du système d'acquisition développé par AIRINOV. Cependant, ces travaux d'analyse et de traitement d'images ne sont qu'une étape vers la création d'un outil opérationnel de gestion des adventices. En effet, une simple carte de localisation des adventices risque de ne pas être exploitable par un agriculteur. C'est pourquoi, une réflexion globale doit être menée autour de la mise en oeuvre d'un outil de gestion des adventices, applicable à des parcelles agricoles et adapté aux besoins réels des agriculteurs. Dans ce cadre, un bilan doit être fait sur ce qui est concrètement réalisable autour de la détection des adventices par drone. De plus des applications potentielles sont envisagées afin de proposer un service de gestion adapté aux besoins des agriculteurs. 1. BILAN : FAISABILITÉ DE LA DÉTECTION DES ADVENTICES PAR DRONE 1.1. MATÉRIEL OPTIMAL POUR LA DÉTECTION DES ADVENTICES Le système d'acquisition utilisé pour ces travaux (i.e. drone et dispositif multispectral) a été conçu par AIRINOV dans le cadre de la création d'un service en fertilisation azotée. Il peut donc nécessiter certaines modifications afin d'être adapté au mieux à la création d'un service de gestion des adventices. Pour le développement d'un tel service, le matériel doit à la fois permettre une bonne détection des adventices, et être utilisable de façon simple et rapide sur le terrain afin d'être rentable. Le chapitre 4, deux caractéristiques matérielles ont montré un impact important sur la qualité de la détection des adventices : le choix des filtres optiques et la résolution spatiale des images. Quatre nouveaux filtres ont alors été proposés et des algorithmes de détection des adventices ont été développés et testés à partir de ces nouvelles images multispectrales (cf. Chapitre 5). 'analyse spatiale développée pour les images acquises avec le système d'acquisition conçu par AIRINOV permet de détecter les adventices dans les inter-rangs de cultures sarclées. Cette méthode nécessite seulement l'utilisation des bandes spectrales rouge et infra-rouge pour détecter la végétation puis pour analyser sa distribution spatiale. Avec la méthode spatiale appliquée aux orthophotographies multispectrales acquises à 6 cm de résolution spatiale, environ 76 % des pixels d'adventices sont correctement détectées, les adventices non détectées étant principalement de petites adventices isolées. Un premier service en gestion des adventices peut donc être envisagé avec le dispositif multispectral actuel. Afin d'améliorer ces résultats, d'autres méthodes spectrales, basées sur des images avec davantage de bandes spectrales ont été étudiées. Dans le chapitre 3, la modélisation de l'ensemble de la chaîne d'acquisition a permis de sélectionner 4 filtres optiques complémentaires à ceux du dispositif multiSPEC 4C. Ces filtres ont été sélectionnés de manière à être optimaux pour la discrimination spectrale entre cultures et adventices. Ces 4 nouveaux filtres ont été montés sur un dispositif multispectral complémentaire pour réaliser de nouvelles acquisitions et obtenir ainsi de nouvelles orthophotographies à 8 bandes spectrales. Les algorithmes développés pour discriminer cultures et adventices à partir de ces images ont montré de meilleurs résultats de classifications qu'en utilisant l'algorithme spatial seul et donc l'intérêt d'acquérir des images multispectrales dont les bandes spectrales sont spécifiques à la détection des adventices. Cependant, l'acquisition d'images multispectrales à 8 bandes est plus contraignant à mettre en place. Faire deux vols avec les deux dispositifs multispectraux complémentaires soit réalisable techniquement, le coût d'un service nécessitant ces deux vols serait trop élevé pour être rentable. En effet, en dehors des coûts matériels supplémentaires (liés au fait d'avoir deux dispositifs multispectraux et des batteries supplémentaires pour les vols), le temps passé par le pilote sur la parcelle sera deux fois plus long. Il paraît donc important de réduire le nombre de filtres optiques à 4, afin de ne faire qu'un seul vol (le drone ne pouvant pas supporter la charge de deux capteurs). Pour cela, la sélection devra être affinée. La procédure de discrimination entre cultures et adventices proposée dans le Chapitre 5, Partie 3, pourrait être testée sur les orthophotographies composées des différentes combinaisons possibles de 4 bandes spectrales parmi les 8. Toutefois, lors de cette sélection des filtres optiques, la qualité de la séparation entre le sol et la végétation devra aussi être évaluée. En effet, la première étape des algorithmes (spatiaux et spectraux) de détection des adventices se base sur cette séparation. Il sera donc nécessaire, soit de conserver les filtres rouge et infrarouge, permettant de calculer le NDVI pour la séparation entre sol et végétation, soit de proposer une autre méthode de discrimination spectrale entre le sol et la végétation, adaptée à la nouvelle combinaison de filtres optiques. résolution spatiale des images joue un rôle important dans la qualité de la détection des adventices. En effet, celle-ci impacte directement les mélanges spectraux des pixels et donc la séparation entre le sol et la végétation ou entre les cultures et les adventices (cf. Chapitre 4, Partie 3). Le lien entre la taille des adventices détectables et la résolution spatiale des images a été traité dans le Chapitre 4, Partie 3.6. Cette information est importante dans le cadre de la mise en place d'un service de gestion des adventices, afin de mesurer le risque de ne pas détecter une adventice. Par ailleurs, avec une connaissance a priori du type d'adventices à détecter, une résolution spatiale adaptée pourrait être préconisée. Actuellement, sur des orthophotographies à 6 cm de résolution spatiale, l'algorithme spatial permet de détecter correctement les adventices isolées d'un diamètre supérieur à 10 cm ainsi que les petites adventices disposées en amas (cf. Chapitre 5, Partie 4.2). Cependant, la gestion des adventices étant réalisée à des stades jeunes, dès leur émergence, il est important de pouvoir détecter de petites adventices même isolées. Pour y parvenir les mélanges spectraux des pixels doivent être réduits. Les comparaisons menées dans le Chapitre 5, Partie 4.5 ont montré que travailler directement sur les orthoimagettes plutôt que sur les orthophotographies permet de limiter les mélanges spectraux. Cependant, une réflexion doit être menée sur la manière de fusionner les résultats des classifications issus de plusieurs orthoimagettes (cf. Chapitre 5, Partie 5). Par ailleurs le traitement des orthoimagettes séparément prendra beaucoup plus de temps que celui d'une seule orthophotographie. Par exemple, une orthophotographie à 6 cm de résolution spatiale acquise sur une parcelle de 8 ha représente un volume de données à traiter de 780 Mo. Les orthoimagettes correspondant à cette même orthophotographie représentent un volume de 10 Go, soit près de 13 fois plus de volume de données à traiter et à stocker. L'augmentation du temps de traitement est particulièrement à prendre en compte puisque le service doit être réactif (cf. Chapitre 6, Partie 1.2.2) D'autres solutions, matérielles, permettraient d'augmenter la résolution spatiale et donc de diminuer les mélanges spectraux des pixels. Tout d'abord, les vols pourraient être effectués à une hauteur de vol plus basse. Cependant, voler plus bas nécessiterait d'utiliser un drone multirotor plutôt que l'aile volante. En effet, l'aile volante ne peut voler en dessous d'une vitesse limite, provoquant des effets de filée sur les images acquises lorsque la hauteur de vol est trop basse (le temps d'exposition étant lui aussi limité). Un drone multirotor, plus stable permettrait de voler plus lentement et plus bas mais impliquerait un temps d'acquisition bien plus long. Par exemple avec le dispositif multispectral actuellement utilisé, un multirotor volant à 30 m permettrait d'acquérir des images à une résolution spatiale de 3 cm/pixel. Pour augmenter la résolution spatiale des images, une seconde solution matérielle consisterait à utiliser des capteurs d'une résolution spatiale plus grande. Dans ces deux cas, l'augmentation de la résolution spatiale obligera l'algorithme de détection des adventices à traiter plus de données, ce qui peut être gênant lorsque la carte de détection doit être fournie dans un délai court. Toutefois, l'algorithme spatial, basé sur la transformée de Hough peut être appliqué à des images de grandes dimensions avec des temps de calculs convenables.

	Nombre de Nombre de	Moyenne Moyenne
	Méthodes Analyse discriminante quadratique SVM à noyau RBF TABLEAU 19 : RÉSULTATS DE CLASSIFICATION SUR TOUTES LES ORTHOIMAGETTES DE MAÏS ET DE Nombre de pixels de référence 𝝁 𝑻𝑽𝑪 𝝁 𝑻𝑽𝑨 𝝈 ̅ 𝑻𝑽𝑪 𝝈 ̅ 𝑻𝑽𝑨 Moyenne 𝝁 𝑻𝑽𝑪 et 𝝁 𝑻𝑽𝑪 50 0,7777 0,7089 0,0425 0,0692 0,7433 100 0,7842 0,7244 0,0348 0,0573 0,7543 200 0,7976 0,7152 0,0166 0,0419 0,7564 50 0,7666 0,7528 0,0478 0,0786 0,7597 100 0,7764 0,7709 0,0384 0,0590 0,7737 200 0,7793 0,7677 0,0265 0,0310 0,7735 BETTERAVES, OÙ LES POINTS DE RÉFÉRENCE SONT SÉLECTIONNÉS À PARTIR DES RÉSULTATS DE LA DÉTECTION SPATIALE : MOYENNES ET ÉCARTS-TYPES SUR 10 RÉPÉTITIONS La classification spectrale réalisée à partir des pixels de référence issus de la détection spatiale (cf. Tableau 19) obtient des résultats similaires à ceux obtenus en prenant les pixels de référence pixels de référence 𝝁 𝑻𝑽𝑪 𝝁 𝑻𝑽𝑨 𝝈 ̅ 𝑻𝑽𝑪 𝝈 ̅ 𝑻𝑽𝑨 𝝁 𝑻𝑽𝑪 et 𝝁 𝑻𝑽𝑪 Analyse discriminante quadratique 50 0,7589 0,9315 0,0439 0,0194 0,8452 100 0,7677 0,9372 0,0282 0,0135 0,8525 200 0,7814 0,9320 0,0185 0,0141 0,8567 SVM à noyau RBF 50 0,7483 0,9333 0,0524 0,0149 0,8408 100 0,7612 0,9341 0,0303 0,0128 0,8476 200 0,7703 0,9322 0,0284 0,0128 0,8513 TABLEAU 20 : RÉSULTATS DE LA COMBINAISON DE LA DÉTECTION SPATIALE ET DE LA CLASSIFICATION SPECTRALE SUR TOUTES LES ORTHOIMAGETTES DE MAÏS ET DE BETTERAVE : MOYENNES ET ÉCARTS-TYPES SUR 10 RÉPÉTITIONS En combinant la classification spectrale à la détection spatiale, les résultats sont nettement améliorés (cf. Tableau 20), avec un taux de bonnes classifications passant d'environ 0,75 à 0,85. Méthodes 𝝁 𝑻𝑽𝑪 𝝁 𝑻𝑽𝑨 Moyenne Spatiale 0,9590 0,8290 0,8940 Spectrale 0,7976 0,7152 0,7564 Combinaison spatiale et spectrale 0,7814 0,9320 0,8567 TABLEAU 21 : COMPARAISON DES RÉSULTATS DE L'ALGORITHME SPATIAL, DE LA CLASSIFICATION SPECTRALE (MÉTHODE : QDA ; NOMBRE DE POINTS DE RÉFÉRENCE : 200) ET DE LA COMBINAISON DES DEUX INFORMATIONS SUR LES ORTHOIMAGETTES DE MAÏS ET DE BETTERAVE Dans la comparaison des différentes procédures de discrimination (cf. Tableau 21), le meilleur taux moyen de bonnes classifications est obtenu avec la détection spatiale pour un taux de 0,8940 contre 0,7564 pour la méthode spatiale et 0,8567 pour la combinaison des deux méthodes. 4.5. CLASSIFICATION SUR LES ORTHOPHOTOGRAPHIES DE 5X5 M Méthodes pixels de référence 𝝁 𝑻𝑽𝑪 𝝁 𝑻𝑽𝑨 𝝈 𝑻𝑽𝑪 𝝈 𝑻𝑽𝑨 𝝁 𝑻𝑽𝑪 et 𝝁 𝑻𝑽𝑪 Analyse discriminante quadratique 200 0,7025 0,8476 0,0257 0,0164 0,7751 400 0,7150 0,8410 0,0201 0,0171 0,7780 800 0,7033 0,8450 0,0135 0,0151 0,7742 SVM à noyau RBF 200 0,6792 0,8671 0,0285 0,0198 0,7731 400 0,7041 0,8592 0,0365 0,0213 0,7817 800 0,7129 0,8567 0,0295 0,0168 0,7848 TABLEAU 22 : RÉSULTATS DE LA COMBINAISON DE LA DÉTECTION SPATIALE ET DE LA CLASSIFICATION SPECTRALE SUR LES ORTHOPHOTOGRAHIES DE 5X5M DE MAÏS ET DE BETTERAVES : MOYENNES ET ÉCARTS-TYPES SUR 10 RÉPÉTITIONS 1.1.1. FILTRES OPTIQUES Par ailleurs, avec la miniaturisation des capteurs, de nouveaux dispositifs multispectraux composés de 8 bandes spectrales pourraient voir leur apparition, ce qui permettrait de ne réaliser qu'un seul vol. 1.1.2. RÉSOLUTION SPATIALE 1.2. DÉVELOPPEMENT D'ALGORITHMES ADAPTÉS À LA CRÉATION D'UN SERVICE DE GESTION DE LOCALISATION DES ADVENTICES Les algorithmes spatiaux et spectraux développés dans le chapitre 5 ont montré leur capacité à discriminer cultures et adventices. En particulier, l'algorithme spatial est actuellement opérationnel sur des orthophotographies multispectrales à 6 cm de résolution spatiale. Cependant, dans le cadre de la mise en place d'un service de gestion des adventices, les algorithmes proposés doivent répondre à d'autres critères qu'une « bonne » détection des adventices. 1.2.1. AUTOMATISATION DES ALGORITHMES Pour pouvoir traiter un nombre important d'orthophotographies, l'algorithme de localisation des adventices doit être automatisé. En effet, l'intervention d'une personne dans la procédure de détection des adventices engendre un coût supplémentaire et peut rallonger le temps de à partir de la vérité terrain (cf. Chapitre 5, Méthodes traitement des images.
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  1.2.2. CONTRAINTE DE TEMPSLes adventices devant être traitées le plus tôt possible, le service doit être réactif et fournir une carte de localisation rapidement (i.e. en 3-4 jours par exemple, délai actuel d'AIRINOV pour fournir les cartes de fertilisation azotée) afin que l'agriculteur puisse traiter sa parcelle au plus tôt. Pour cela, les algorithmes développés doivent être rapides. L'algorithme spatial basé sur la transformée de Hough répond à cette contrainte en bornant la recherche des rangs à un intervalle d'angle donné (cf. Chapitre 5, Partie 1.5.2).La procédure de discrimination spectrale proposée est plus longue à mettre en place pour certaines méthodes de classification. Par exemple, parmi les deux méthodes sélectionnées, la SVM RBF nécessite beaucoup plus de temps pour classer les cultures et les adventices que l'analyse discriminante quadratique. Les deux méthodes obtenant des résultats très proches (cf. Chapitre 5, Partie 4.3), il serait préférable d'utiliser la plus rapide (i.e. analyse discriminante quadratique) pour proposer un service de localisation des adventices basé sur l'analyse spectrale. De plus, le Chapitre 5 conclut sur l'intérêt de réaliser les classifications spectrales sur les orthoimagettes, qui représentent un volume de données à traiter beaucoup plus grand que l'orthophotographie correspondante (cf. Chapitre 6, Partie 1.1.2). Le temps de traitement de l'ensemble des orthoimagettes sera donc bien plus long que celui de l'orthophotographie. Afin de réduire ce temps de traitement, le nombre orthoimagettes à traiter pourrait être réduit, par exemple, en ne traitant qu'une orthoimagette sur deux (le taux de recouvrement initial entre les images étant de 80 % le long des lignes et 60 % entre chaque ligne). Une autre solution serait de limiter les temps de traitement en ne faisant la classification que sur la partie centrale de chaque orthoimagette. De plus, les adventices non traitées produiront des semences, ce qui augmentera leur présence sur la parcelle l'année suivante. Par ailleurs, si le service de localisation des adventices est utilisé pour faire de la pulvérisation localisée, le fait de pulvériser partiellement un herbicide sur certaines adventices (car non détectées et à proximité des zones traitées) pourrait présenter un risque de développement de résistance, ce qui compliquerait les traitements futurs. Le Chapitre 4, Partie 3, faisant le lien entre les pourcentages de bonnes classifications et le taux de mélange spectral des pixels, il serait intéressant de proposer un service pour des adventices d'une taille suffisante et garantissant la détection de toutes les adventices au-delà de cette taille. Par exemple, l'algorithme spatial, permettant de détecter de façon certaine toutes les adventices hors du rang d'un diamètre supérieur à 10 cm, le premier service pourrait être appliqué à la détection d'adventices de grandes tailles, telles que le chardon. En effet, certaines de ces adventices sont souvent traitées avec un herbicide spécifique, ce qui justifierait de mettre en place une pulvérisation localisée. cartes de localisation des adventices produites dans le cadre de ces travaux, ne peuvent être directement utilisées par l'agriculteur. En effet, ces cartes donnent principalement une information sur la densité et la répartition des adventices sur la parcelle. Afin d'être exploitables par l'agriculteur, ces cartes de localisation doivent être transformées en une information agronomique compréhensible par l'agriculteur et lui permettant d'agir sur la parcelle. Différentes applications ont donc été envisagées à partir des cartes de localisation des adventices produites avec les algorithmes proposés dans cette thèse.En produisant des cartes de localisation d'adventices pour une même parcelle à des dates successives, un suivi temporel pourrait être mis en place. Par exemple, l'évolution de la répartition des adventices pourrait être analysée afin de prédire les zones où pousseront majoritairement les adventices. En particulier, cette application est intéressante pour les adventices vivaces, revenant souvent sur les parcelles d'une année sur l'autre. L'agriculteur pourrait alors adapter ses pratiques, par exemple en ciblant la pulvérisation en prélevée, ou dans le cas d'un retour régulier des mêmes adventices, en adaptant le type de culture aux adventices présentes.Des cartes de préconisation en pulvérisation peuvent aussi être proposées. En effet, lorsque les adventices ne sont pas réparties de façon uniforme sur la parcelle, l'agriculteur pourrait traiter seulement les zones infestées. En ayant connaissance des surfaces à traiter, l'agriculteur pourrait ajuster le volume d'herbicide dans la cuve du pulvérisateur en fonction des besoins et réels et ainsi limiter les fonds de cuve et donc la gestion des effluents phytosanitaires. De plus, une pulvérisation localisée permettrait à l'agriculteur de réduire les quantités d'herbicides utilisés et donc les coûts associés et les risques de pollution. Actuellement, certains agriculteurs possèdent des pulvérisateurs équipés de la coupure de tronçon (manuelle ou automatique) et permettant une pulvérisation localisée sur la parcelle. Avec la sophistication du matériel agricole, les pulvérisateurs avec un contrôle indépendant des buses devraient se répandre dans les exploitations, permettant une pulvérisation encore plus précise et des gains plus importants. De plus, dans le cadre d'une préconisation en pulvérisation, il faudra s'interroger sur la condition à remplir pour traiter : à partir d'une seule adventice ? au-delà d'une certaine densité d'infestation ? etc.Pour laisser le choix des conditions d'application, des cartes d'infestation peuvent être créées. Sur ces cartes, figureraient les zones avec différents niveaux d'infestation, par exemple en indiquant une densité d'adventices ou un taux de surface recouverte d'adventices. Dans les deux cas, il serait intéressant de proposer des seuils afin de séparer ces taux d'infestation en niveau de dangerosité pour la culture (e.g. infestation faible, moyenne, importante), laissant le choix de traiter à l'agriculteur. Si des seuils sont proposés, ceux-ci devront être adaptés au type d'adventice, et choisis conjointement avec le technicien gérant la parcelle.3. MISE EN PLACE D'UN SERVICE DE GESTION DES ADVENTICESAvant de mettre en place un service de gestion des adventices, différentes applications adaptées aux besoins des agriculteurs et réalisables sur le terrain doivent être envisagées. Pour cela, une analyse des besoins autour de ce service a été effectuée auprès de techniciens de coopératives. Des phases pilotes testant un nouveau service ont alors été initiées chez des agriculteurs afin d'en évaluer sa faisabilité.3.1. ANALYSE DES BESOINSDes entretiens ont été réalisés auprès de techniciens de coopératives collaborant avec AIRINOV afin d'identifier les attentes des agriculteurs et dans quel contexte ce service serait utilisé. Les caractéristiques d'un premier service proposé par AIRINOV pourront alors être définies. Suite à ces entretiens, il ressort que le service de gestion des adventices serait utilisé dans un premier temps pour faire un rattrapage en pulvérisation localisée. En effet, lors du premier passage de pulvérisation, la parcelle risque d'être infestée sur presque toute sa surface. La localisation des adventices serait alors inutile puisque l'agriculteur pulvériserait l'ensemble de sa parcelle. La principale culture visée est le maïs et pour certaines régions le service pourrait être étendu à la betterave ou au tournesol. Pour mettre en place une pulvérisation localisée, une simple carte de localisation des adventices n'est pas suffisante. Une carte de préconisation en pulvérisation doit être proposée. Celle-ci correspond à une carte binaire présentant les zones d'ouverture et de fermeture des buses de la rampe du pulvérisateur. La carte doit être lisible par le boitier électronique du pulvérisateur afin d'envoyer les consignes au niveau de la rampe. La carte de pulvérisation doit aussi prendre en compte les caractéristiques du matériel agricole, comme la rapidité d'ouverture des buses et la vitesse d'avancement du pulvérisateur. Par ailleurs, un point important soulevé lors des entretiens est de proposer des cartes où chaque adventice doit être traitée afin de ne prendre aucun risque. Afin de valoriser ce service, les cartes de préconisation devraient être associées à un tableau récapitulatif indiquant les surfaces à pulvériser ou non, les quantités de produits à utiliser et les quantités économisées par rapport à une pulvérisation sur toute la surface de la parcelle. Dans un second temps, certaines options pourraient être associées à ce service de préconisation en pulvérisation localisée. Par exemple, des cartes d'infestation présentant les zones avec différents taux d'infestation pourraient être envisagées. L'agriculteur déciderait de traiter ou non les zones selon les espèces présentes et leur niveau de dangerosité pour la culture (cf. Chapitre 1, Partie 1.2.1). Pour cette option, un travail en amont devra être réalisé avec les techniciens de coopératives afin de déterminer les différents niveaux de seuil d'infestation en fonction des adventices considérées. Pour finir, un point important a été soulevé pendant ces entretiens : le risque de ne pas détecter certaines adventices. En effet, pour un premier service, les techniciens ne souhaitent prendre aucun risque et s'assurer que toutes les adventices sont bien détectées. Il parait donc important pour AIRINOV de définir le cadre d'application de ce premier service (e.g. détection d'adventices volumineuses), afin de garantir la détection de celles-ci.

	2. LES APPLICATIONS POTENTIELLES
	Dans le second cas, surdétecter des adventices n'est pas préjudiciable pour la culture.
	Cependant, une surdétection trop élevée fera perdre l'intérêt du service. En effet, celui-ci étant
	destiné à la mise en oeuvre d'une pulvérisation localisée, une surdétection ne permettra pas à
	l'agriculteur de limiter suffisamment les herbicides utilisés sur sa parcelle, rendant l'opération
	non rentable pour l'agriculteur.

1.2.3. EVALUATION DES RISQUES D'ERREURS

Les procédures de localisation d'adventices développées ne permettent pas de détecter toutes les adventices sur la parcelle. Hors, ne pas traiter certaines adventices sur la parcelle peut être fortement préjudiciable pour la croissance de la culture par la suite. Le risque d'erreurs doit donc être évalué dans le cadre de la mise en place d'un service. Deux types d'erreurs sont à considérer : la sous-détection et la surdétection des adventices.

Dans le premier cas, manquer des adventices peut présenter un risque pour l'agriculteur. D'une part, les adventices non détectées vont se développer, ce qui peut provoquer une baisse de rendement et altérer la qualité de la récolte (cf. Chapitre 1, Partie 1.1).

Les

  3.2.2. RETOUR SUR LES PHASES PILOTESSuite aux deux campagnes de tests du service de préconisation en pulvérisation, les retours d'expérience des techniciens ont été récoltés. Tout d'abord, la méthode de détection spatiale utilisée semble adaptée à l'analyse d'orthophotographies de parcelles et permet de fournir des cartes de préconisation en pulvérisation dans un délai court (quelques jours après le vol).Toutefois, certaines limites ou points à améliorer ont été identifiés. En effet, il est apparu que l'algorithme de détection des adventices appliqué à des orthophotographies de betteraves trop développées (e.g. au-delà du stade rosette) a tendance à surdétecter les adventices. En effet, les feuilles de betterave recouvrent rapidement l'inter-rang. Ainsi, lorsque les betteraves se développent plus vite sur certaines zones de la parcelle, les rangs deviennent difficilement discernables sur l'orthophotographie. Ces zones seront alors classées en adventices, créant une surdétection. Pour pallier ce problème, le service devrait être proposé pour des betteraves à un stade de développement maximal donné, par exemple, au stade 4 feuilles.De plus, afin de proposer un service adapté aux besoins des agriculteurs, une réflexion doit être menée pour réduire la zone tampon autour des adventices localisées. En effet, dès qu'une adventice est détectée, un disque de 5 m de rayon est à pulvériser autour de celle-ci (cf. Figure73 b.). Les cartes de préconisation résultantes sont alors composées de peu de zones à ne pas pulvériser, faisant perdre son intérêt économique et environnemental au service. Ce phénomène est particulièrement amplifié lorsque les adventices sont réparties de façon uniforme (e.g. une adventice tous les 10 m) sur l'ensemble de la parcelle. Dans ce cas, la présence, même faible, de ces adventices résultera en une préconisation de pulvérisation de toute la parcelle. Pour réduire cette zone tampon, plusieurs solutions sont envisagées. D'une part, l'incertitude sur les coordonnées GPS de l'orthophotographie pourrait être réduite à quelques centimètres (contre 2 m) en équipant le drone d'un GPS plus précis, tel qu'un GPS RTK 33 (technologie déjà commercialisée pour les drones, telle que le eBee RTK). D'autre part, l'incertitude liée à la vitesse d'avancement du pulvérisateur pourrait être réduite en appliquant la zone tampon seulement dans le sens d'avancement de la machine. En effet, l'orientation des rangs (identique au sens d'avancement de la machine) est connue grâce à l'algorithme spatial. La zone tampon serait alors réduite à un ovale de 2,5 m orientée dans le sens du rang (cf. Figure73 c.). Enfin, des tests pourraient être mis en place sur les parcelles afin de mesurer l'écart entre les zones à pulvériser identifiées sur la carte et les zones réellement traitées lors de l'application. Par exemple, Pérez-Ruiz et al. (2015) ont positionné des bandes de papier sur et autour de zones à traiter sur la parcelle afin de visualiser si l'application du pulvérisateur correspond à la carte. Tout d'abord, pour garantir une bonne détection des adventices, les limites de l'application du service doivent être définies. Par exemple, le service pourrait être applicable sur du maïs ou de la betterave avant le stade 4 feuilles, dans le cadre d'un rattrapage et pour détecter des adventices telles que le chardon.Ensuite, des travaux devront être mis en place conjointement avec les constructeurs afin d'évaluer la précision des applications par les pulvérisateurs de précision. En effet, actuellement, les pulvérisateurs équipés de la coupure de tronçons ne sont pas utilisés dans le cadre d'une tronçon est à traiter, dès qu'un bout du tronçon est au-dessus de la zone etc. Dans ce cadre, des protocoles permettant de comparer les cartes de préconisation et les cartes d'applications devront être mis en place. À partir de ces information, la délimitation des zones tampons pourrait être améliorée.

FIGURE 73 : EXEMPLES DE ZONAGE POUR LA PRÉCONISATION EN PULVÉRISATION LOCALISÉE, RÉALISÉS À PARTIR DE LA LOCALISATION DES ADVENTICES SUR UNE IMAGE DE MAÏS ACQUISE À 6 CM DE RÉSOLUTION SPATIALE 3.3. RÉALISATION D'UN OUTIL OPÉRATIONNEL Afin de proposer un service entièrement opérationnel, plusieurs aspects doivent être considérés. pulvérisation localisée. Leur réponse suite à la lecture d'un fichier indiquant des zones précises à traiter doit donc être testée. Par exemple, le décalage lié à la vitesse d'avancement et le temps de réponse pourrait être mesuré. De même, il serait intéressant d'identifier à partir de quel moment la commande d'ouverture du tronçon (ou de la buse) est lancée : lorsque toute la Cultures Adventices Zone à traiter a. Localisation des adventices par l'algorithme spatial b. Zones à traiter en prenant comme zone tampon, un disque de 5 m de rayon c. Zones à traiter en prenant comme zone tampon un ovale de 2,5 m de long largeur du

  LDA = Analyse Discriminante Linéaire ; QDA = Analyse Discriminante Quadratique TABLEAU 24 : MOYENNES DES TAUX DE BONNES CLASSIFICATIONS EN SÉLECTIONNANT LES POINTS DE RÉFÉRENCE SELON LEURS VALEURS NDVI LDA = Analyse Discriminante Linéaire ; QDA = Analyse Discriminante Quadratique TABLEAU 25 : MOYENNES DES TAUX DE BONNES CLASSIFICATIONS EN SÉLECTIONNANT LES POINTS DE RÉFÉRENCE AU CENTRE DES COMPOSANTES DE VÉGÉTATION

	Méthodes LDA* Méthodes LDA*	Effectifs pixels de référence Effectifs pixels de référence Méthodes 271 𝝁 𝑻𝑽𝑪 𝝁 𝑻𝑽𝑨 0,81 0,88 271 𝝁 𝑻𝑽𝑪 𝝁 𝑻𝑽𝑨 0,78 0,91 LDA*	273 𝝁 𝑻𝑽𝑪 𝝁 𝑻𝑽𝑨 0,83 0,78 273 Effectifs pixels de 𝝁 𝑻𝑽𝑪 𝝁 𝑻𝑽𝑨 référence 0,81 0,80	N° image 276 𝝁 𝑻𝑽𝑪 𝝁 𝑻𝑽𝑨 0,66 0,71 N° image 276 N° image 𝝁 𝑻𝑽𝑪 𝝁 𝑻𝑽𝑨 273 274 276 314 317 319 274 314 𝝁 𝑻𝑽𝑪 𝝁 𝑻𝑽𝑨 𝝁 𝑻𝑽𝑪 𝝁 𝑻𝑽𝑨 0,75 0,60 0,61 0,88 274 314 𝝁 𝑻𝑽𝑪 𝝁 𝑻𝑽𝑨 𝝁 𝑻𝑽𝑪 𝝁 𝑻𝑽𝑨 271 0,76 0,60 0,85 0,47 0,70 0,62 0,87	317 𝝁 𝑻𝑽𝑪 𝝁 𝑻𝑽𝑨 0,71 0,90 317 𝝁 𝑻𝑽𝑪 𝝁 𝑻𝑽𝑨 Moyenne 0,71 0,91	319 𝝁 𝑻𝑽𝑪 𝝁 𝑻𝑽𝑨 0,76 0,85 319 Moyenne par 𝝁 𝑻𝑽𝑪 effectif 𝝁 𝑻𝑽𝑨 0,83 0,81	Moyenne 0,77 Moyenne 0,75	Moyenne par effectif Moyenne par effectif
	QDA* QDA*		0,87 0,91	0,80 0,61	0,84 0,80		0,78 0,79	0,76 0,75	0,68 0,63	0,68 0,84	0,76 0,52	0,65 0,78	0,86 0,48	0,71 0,70	0,89 0,86	0,78 0,81	0,83 0,72	0,78 0,73	
	Mahalanobis SVM, noyau polynomial Mahalanobis SVM, noyau polynomial	50 50	0,90 0,81 0,98 0,79	0,69 0,87 0,12 0,89	0,76 0,80 0,81 0,77	50	0,84 0,75 0,77 0,75	0,41 0,73 0,38 0,81	0,93 0,60 0,88 0,47	0,77 0,57 0,80 0,80	0,65 0,69 0,58 0,44	0,75 0,50 0,96 0,60	0,73 0,91 0,13 0,76	0,71 0,72 0,80 0,73	0,88 0,83 0,69 0,76	0,80 0,75 0,86 0,76	0,81 0,82 0,57 0,74	0,76 0,74 0,67 0,72	0,76 0,73
	SVM, noyau RBF SVM, noyau RBF		0,81 0,82	0,89 0,86	0,85 0,82		0,75 0,79	0,78 0,81	0,59 0,54	0,63 0,86	0,67 0,45	0,59 0,65	0,86 0,75	0,70 0,72	0,89 0,89	0,76 0,82	0,82 0,76	0,76 0,75	
	SVM, noyau sigmoïde SVM, noyau sigmoïde		0,82 0,80	0,87 0,87	0,84 0,83		0,76 0,77	0,76 0,78	0,55 0,56	0,65 0,78	0,65 0,47	0,60 0,69	0,88 0,64	0,68 0,71	0,90 0,90	0,75 0,84	0,83 0,76	0,75 0,74	
	LDA* LDA*		0,81 0,79	0,90 0,91	0,80 0,78		0,83 0,81	0,70 0,83	0,67 0,53	0,75 0,86	0,72 0,47	0,66 0,70	0,87 0,61	0,72 0,75	0,91 0,87	0,79 0,83	0,84 0,81	0,78 0,75	
	QDA* QDA*		0,85 0,91	0,81 0,65	0,84 0,82		0,81 0,81	0,81 0,84	0,63 0,54	0,74 0,85	0,75 0,50	0,69 0,76	0,83 0,47	0,72 0,76	0,89 0,77	0,79 0,81	0,83 0,73	0,79 0,73	
	Mahalanobis SVM, noyau polynomial Mahalanobis SVM, noyau polynomial	100 100	0,90 0,81 0,98 0,78	0,71 0,89 0,11 0,89	0,73 0,78 0,80 0,74		0,89 0,82 0,82 0,82	0,38 0,74 0,47 0,80	0,96 0,65 0,86 0,53	0,80 0,74 0,78 0,79	0,68 0,72 0,61 0,58	0,78 0,62 0,94 0,63	0,61 0,87 0,18 0,72	0,73 0,74 0,81 0,75	0,88 0,88 0,65 0,77	0,81 0,79 0,85 0,80	0,80 0,83 0,60 0,73	0,76 0,78 0,68 0,74	0,78 0,73
	SVM, noyau RBF SVM, noyau RBF		0,81 0,82	0,89 0,84	0,85 0,87		0,78 0,75	0,77 0,86	0,67 0,50	0,77 0,90	0,73 0,43	0,69 0,70	0,84 0,62	0,74 0,74	0,90 0,86	0,80 0,84	0,82 0,77	0,79 0,75	
	SVM, noyau sigmoïde SVM, noyau sigmoïde		0,82 0,79	0,89 0,89	0,81 0,80		0,81 0,79	0,72 0,85	0,63 0,47	0,75 0,86	0,66 0,41	0,65 0,67	0,85 0,69	0,71 0,72	0,91 0,87	0,79 0,84	0,83 0,78	0,77 0,75	
	LDA* LDA*		0,81 0,78	0,90 0,91	0,79 0,77		0,84 0,84	0,70 0,77	0,69 0,57	0,73 0,90	0,74 0,42	0,67 0,73	0,86 0,68	0,72 0,74	0,91 0,89	0,81 0,84	0,84 0,81	0,79 0,76	
	QDA* QDA*		0,84 0,91	0,81 0,64	0,82 0,82		0,82 0,81	0,83 0,86	0,61 0,54	0,75 0,87	0,78 0,49	0,69 0,79	0,83 0,48	0,73 0,74	0,89 0,84	0,82 0,82	0,84 0,73	0,79 0,74	
	Mahalanobis SVM, noyau polynomial Mahalanobis SVM, noyau polynomial	200 200	0,91 0,82 1,00 0,82	0,68 0,90 0,00 0,85	0,73 0,82 0,78 0,73		0,89 0,82 0,84 0,85	0,35 0,79 0,44 0,85	0,97 0,64 0,90 0,50	0,83 0,78 0,78 0,89	0,64 0,72 0,64 0,48	0,77 0,64 0,96 0,71	0,69 0,87 0,16 0,58	0,73 0,76 0,82 0,74	0,88 0,87 0,66 0,85	0,83 0,81 0,84 0,83	0,81 0,84 0,57 0,67	0,77 0,79 0,67 0,74	0,78 0,74
	SVM, noyau RBF SVM, noyau RBF		0,82 0,82	0,89 0,85	0,85 0,83		0,80 0,80	0,76 0,86	0,69 0,51	0,81 0,91	0,70 0,44	0,71 0,80	0,80 0,49	0,76 0,75	0,89 0,87	0,83 0,85	0,82 0,69	0,79 0,75	
	SVM, noyau sigmoïde SVM, noyau sigmoïde		0,81 0,80	0,90 0,89	0,80 0,82		0,82 0,80	0,72 0,82	0,66 0,52	0,73 0,91	0,73 0,38	0,65 0,71	0,86 0,71	0,71 0,74	0,90 0,88	0,81 0,85	0,84 0,77	0,78 0,76	
	Moyennes totales 0,84 Moyennes totales 0,85	0,84 0,71	0,81 0,80		0,81 0,80	0,69 0,75	0,69 0,59	0,73 0,85	0,70 0,49	0,66 0,75	0,83 0,54	0,72 0,75	0,89 0,82	0,79 0,83	0,83 0,72	0,77 0,73	
							Moyennes par méthode Moyennes par méthode									
	LDA* LDA*		0,81 0,78	0,89 0,91	0,81 0,79		0,82 0,82	0,72 0,79	0,65 0,57	0,71 0,87	0,72 0,45	0,65 0,71	0,87 0,64	0,71 0,74	0,91 0,89	0,79 0,83	0,84 0,81	0,78 0,76	
	QDA* QDA*		0,85 0,91	0,81 0,63	0,83 0,81		0,80 0,80	0,80 0,82	0,64 0,57	0,72 0,85	0,76 0,50	0,68 0,77	0,84 0,48	0,72 0,73	0,89 0,82	0,80 0,81	0,83 0,73	0,78 0,73	
	Mahalanobis Mahalanobis		0,90 0,99	0,69 0,07	0,74 0,80		0,87 0,81	0,38 0,43	0,95 0,88	0,80 0,79	0,66 0,61	0,77 0,95	0,67 0,16	0,72 0,81	0,88 0,67	0,81 0,85	0,81 0,58	0,76 0,67	
	SVM, noyau polynomial SVM, noyau polynomial	0,81 0,80	0,89 0,88	0,80 0,75		0,79 0,81	0,75 0,82	0,63 0,50	0,70 0,83	0,71 0,50	0,58 0,65	0,89 0,69	0,74 0,74	0,86 0,79	0,79 0,80	0,83 0,71	0,77 0,73	
	SVM, noyau RBF SVM, noyau RBF		0,82 0,82	0,89 0,85	0,85 0,84		0,78 0,78	0,77 0,84	0,65 0,52	0,74 0,89	0,70 0,44	0,66 0,71	0,84 0,62	0,73 0,74	0,90 0,87	0,80 0,84	0,82 0,74	0,78 0,75	
	SVM, noyau sigmoïde SVM, noyau sigmoïde	0,82 0,80	0,89 0,89	0,82 0,82		0,80 0,79	0,73 0,82	0,61 0,52	0,71 0,85	0,68 0,42	0,63 0,69	0,86 0,68	0,70 0,73	0,90 0,89	0,79 0,84	0,83 0,77	0,77 0,75	

**

85 Moyennes totales 0,78 0,98 0,85 0,78 0,67 0,94 0,74 0,97 0,64 0,96 0,75 0,98 0,91 0,92 0,85

  TABLEAU 29 : AIRE SOUS LA COURBE ROC DES RÉSULTATS DE CLASSIFICATION EN SÉLECTIONNANT LES POINTS DE RÉFÉRENCE AU CENTRE DES COMPOSANTES DE VÉGÉTATION 𝝁 𝑻𝑽𝑪 𝝁 𝑻𝑽𝑨 𝝁 𝑻𝑽𝑪 𝝁 𝑻𝑽𝑨 𝝁 𝑻𝑽𝑪 𝝁 𝑻𝑽𝑨 𝝁 𝑻𝑽𝑪 𝝁 𝑻𝑽𝑨 𝝁 𝑻𝑽𝑪 𝝁 𝑻𝑽𝑨 𝝁 𝑻𝑽𝑪 𝝁 𝑻𝑽𝑨 𝝁 𝑻𝑽𝑪 𝝁 𝑻𝑽𝑨 QDA = Analyse Discriminante Quadratique TABLEAU 30 : MOYENNES DES TAUX DE BONNES CLASSIFICATIONS EN SÉLECTIONNANT LES POINTS DE RÉFÉRENCES SELON LES RÉSULTATS DE LA DÉTECTION SPATIALE 𝝁 𝑻𝑽𝑪 𝝁 𝑻𝑽𝑨 𝝁 𝑻𝑽𝑪 𝝁 𝑻𝑽𝑨 𝝁 𝑻𝑽𝑪 𝝁 𝑻𝑽𝑨 𝝁 𝑻𝑽𝑪 𝝁 𝑻𝑽𝑨 𝝁 𝑻𝑽𝑪 𝝁 𝑻𝑽𝑨 𝝁 𝑻𝑽𝑪 𝝁 𝑻𝑽𝑨 𝝁 𝑻𝑽𝑪 𝝁 𝑻𝑽𝑨 QDA = Analyse Discriminante Quadratique TABLEAU 31 : MOYENNES DES TAUX DE BONNES CLASSIFICATIONS EN SÉLECTIONNANT LES POINTS DE RÉFÉRENCE SELON LES RÉSULTATS DE LA DÉTECTION SPATIALE ET EN INTÉGRANT LA POSITION DES COMPOSANTES DE VÉGÉTATION PAR RAPPORT AU RANG

		Effectifs							N° image								
		pixels de	271	273	274	276	314	317	319		Moyenne
	Méthodes	référence															Moyenne	par effectif
		50	0,90	0,69	0,88	0,61	0,78	0,55	0,69	0,79	0,66	0,46	0,86	0,53	0,83	0,64	0,70	
	QDA*	100	0,91	0,69	0,90	0,55	0,85	0,50	0,77	0,74	0,62	0,49	0,82	0,63	0,84	0,71	0,71	0,71
		200	0,91	0,69	0,94	0,52	0,85	0,46	0,78	0,79	0,62	0,51	0,85	0,63	0,86	0,70	0,72	
		50	0,84	0,80	0,89	0,53	0,80	0,46	0,77	0,69	0,62	0,54	0,77	0,66	0,85	0,64	0,70	
	SVM, noyau RBF	100	0,86	0,77	0,89	0,55	0,83	0,49	0,78	0,74	0,67	0,49	0,84	0,59	0,87	0,64	0,72	0,71
		200	0,85	0,79	0,92	0,57	0,83	0,55	0,80	0,77	0,68	0,48	0,86	0,58	0,88	0,59	0,72	
	Moyennes totales 0,88 0,74 0,90 0,55 0,82 0,50 0,76 0,75 0,65 0,49 0,83 0,61 0,85 0,65	0,71	
		Effectifs							N° image								
	Méthodes	pixels de référence	271	273	274	276	314	317	319	Moyenne	par effectif Moyenne
		50	0,78	0,97	0,85	0,79	0,61	0,96	0,74	0,97	0,65	0,95	0,74	0,98	0,93	0,90	0,85	
	QDA*	100	0,79	0,97	0,84	0,81	0,63	0,96	0,75	0,98	0,67	0,95	0,76	0,98	0,92	0,91	0,85	0,85
		200	0,79	0,97	0,86	0,79	0,69	0,95	0,76	0,98	0,69	0,95	0,76	0,98	0,92	0,91	0,86	
		50	0,77	0,98	0,83	0,77	0,71	0,92	0,70	0,98	0,61	0,97	0,75	0,98	0,86	0,94	0,84	
	SVM, noyau RBF	100	0,78	0,98	0,85	0,76	0,67	0,95	0,75	0,97	0,60	0,98	0,76	0,98	0,92	0,92	0,85	0,85
		200	0,78	0,98	0,86	0,77	0,71	0,92	0,75	0,97	0,63	0,98	0,75	0,98	0,92	0,92	0,	

* *

Quantité d'énergie lumineuse renvoyée par la plante par rapport à la quantité d'énergie reçue par longueur d'onde du spectre visible et infrarouge

CONCLUSION ............................................................................................................................................................. 26

Food and Agriculture Organization of the united nations. En français : Organisation des nations unies pour l'alimentation et l'agriculture

Nombre de Doses Unités : nombre moyen de traitements appliqués annuellement sur l'ensemble des cultures en France. Pour chaque substance, la quantité appliquée est rapportée à une dose unité (DU) qui lui est propre.

Red Green Blue. En français : Rouge Vert Bleu

Satellite commercial d'observation de la Terre collectant des images panchromatiques et multispectrales avec des résolutions spatiales de 61 cm et 2,44 à 1,63 m respectivement.

Cultures semées en rangs

Traitement chimique supplémentaire suite à une première intervention n'ayant pas permis de contrôler suffisamment une infestation

La PLS-DA s'adapte donc bien à la classification de données à grandes dimensions et a été testée pour discriminer cultures et adventices. Ainsi,[START_REF] Hadoux | Weeds-wheat discrimination using hyperspectral imagery[END_REF] ont appliqué cette méthode sur des images hyperspectrales à très haute résolution acquises sur des parcelles de blé infestées d'adventices dicotylédones. La résolution spectrale des images étudiées est de 3,7 nm et l'étendue va de 400 à 1000 nm. Chaque pixel est donc représenté par un spectre de 160 valeurs. La résolution spatiale est de 2 mm. Avant de classer les pixels des images, chaque pixel est normalisé par SNV 14 , ce qui consiste à centrer le spectre et mettre son écart type à 1. La classe de chaque pixel étant connue, une partie de ces pixels a été sélectionnée manuellement pour représenter les trois classes : blé, adventices dicotylédones et sol. À partir de cet échantillon, le modèle de PLS-DA a été développé puis appliqué aux pixels des images et a permis de classer correctement 91,6 % des pixels de blé, 85,4 % des pixels d'adventices et 99,6% des pixels de sol. Le modèle permet donc une classification robuste sur différentes images. Cependant, la méthode utilisée nécessite des données de référence, dont la classe est connue, ce qui reste contraignant techniquement. De plus, le nombre important de variables latentes (7) sélectionnées dans le modèle indique que la discrimination se fait sur des variations très fines des spectres testés. C'est pourquoi, l'application de cette méthode sur des images à plus faible résolution spatiale et/ou spectrale risque de rendre la discrimination plus compliquée. De même, Garcia-Ruiz et al. (2015) ont comparé les spectres de réflectance de betterave et de chardon acquis sur des parcelles. Les spectres étudiés, d'une étendue de 400 à 740 nm et acquis sur une surface de 12x12 mm, ont été classés avec une PLS-DA après avoir été normalisés. Avec 12 Partial Least Square 13 Partial Least Square -Discriminant Analysis

Surface blanche ayant une réflectance proche de 1, soit renvoyant près de 100 % de la lumière reçue, et lambertienne, c'est-à-dire dont la réflectance ne dépend pas de la direction de visée ni de l'angle d'incidence de la lumière.

Complementary Metal-Oxide-Semiconductor

MNS : Modèle Numérique de Surface, modèle de points en 3D représentant le relief du terrain et des éléments présents(végétation, bâti…) 

Format de fichier stockant les données liées à la géométrie des objets sous forme vectorielle (points, lignes, polygones).

Format de fichier stockant les données sous forme matricielle où chaque cellule de la matrice (pixel) est représentée par une ou plusieurs valeur(s) numérique(s).

Root Mean Square Error = Racine de la moyenne des carrés des écarts

1.1. DESCRIPTION DE LA PROCÉDURE DE DÉTECTION SPATIALELa méthode spatiale a été développée afin de localiser les adventices sur les orthophotographies de cultures sarclées, produites suite à l'acquisition d'images multispectrales par drone (cf. Chapitre 3, Partie 1.1). La méthode doit donc être applicable à des images de grandes tailles représentant de grandes surfaces, sur lesquelles divers paramètres peuvent varier. La méthode spatiale doit donc être capable de s'adapter à de possibles variations d'intensité lumineuse, à différentes caractéristiques spatiales du semis des cultures, à des stades de croissance des cultures et des adventices évoluant d'un bout à l'autre de la parcelle.Pour répondre à ces contraintes, la procédure de détection spatiale des adventices est composée de plusieurs étapes. L'ensemble de la procédure est présentée sur la Figure51.La première étape consiste à découper l'orthophotographie en sous-images. Ce découpage permet, d'une part, de limiter les variations d'intensité induites par le changement de luminosité, de composition du sol etc. D'autre part, les rangs présentant de légères courbures sur l'ensemble de la parcelle deviennent assimilables à des lignes droites sur les sous-images.Ensuite, chaque sous-image est segmentée en régions homogènes en matière d'orientation des rangs de culture. Cette étape permet de traiter séparément les zones dont les rangs sont orientés différemment et d'accélérer l'étape de localisation des rangs.Le sol et la végétation sont alors séparés par un seuillage automatique sur les valeurs NDVI adapté à chaque sous-image, produisant une image binaire de végétation. Sur l'image de végétation, les rangs sont ensuite détectés en exploitant leurs caractéristiques géométriques, grâce à une transformée de Hough. La végétation hors du rang est alors classée en adventices.Une fois toutes les sous-images traitées, l'orthophotographie finale est reconstituée afin de produire une carte de localisation des adventices.

La dimension des sous-images a été définie arbitrairement après observation des orthophotographies de parcelles. Les sous-images doivent présenter suffisamment de rangs de cultures de manière à être détectés malgré la présence d'imposants amas d'adventices. La taille des images a été fixée à un carré dont la longueur d'un côté vaut 15 fois la largeur de l'inter-rang, donnée en entrée de l'algorithme. La taille des images varie donc selon les résolutions spatiales des images à traiter et selon les cultures étudiées.1.3. SEGMENTATION EN ZONES HOMOGÈNES D'ORIENTATION DES RANGSSur les parcelles agricoles, les rangs de culture peuvent être semés selon plusieurs orientations, en particulier près des bords de parcelles (cf. Figure52). De plus, dans certains cas, les bordures de parcelle apparaîssent sur les images, ce qui devient gênant lorsqu'elles sont enherbées. En effet, la présence trop importante de végétation risque de perturber l'étape de détection automatique de la végétation ainsi que l'étape de délimitation des rangs.Ainsi, pour faciliter la détection des rangs, une première étape consiste à segmenter l'image en régions homogènes selon l'orientation des rangs. Pour cela, une analyse fréquentielle de l'image est mise en place afin de détecter les objets avec une texture périodique et orientée[START_REF] Delenne | Extraction et caractérisation de vignes à partir de données de télédétection à très haute résolution spatiale[END_REF].En appliquant la transformée de Fourier, l'image est représentée dans un espace fréquentiel. Les rangs de même orientation sont alors représentés par un pic d'amplitude.

Real Time Kinematic ; en français = Cinématique en Temps Réel. Système GPS connecté à une station de référence fournissant des corrections en temps réel.

Conclusion & perspectives

Avec :

-D, le diamètre de la lentille associée à la fibre optique (en m) -A, l'angle de prise de vue (en radian) -X, la distance entre la sonde et la surface d'acquisition (en m) -Y, le diamètre du champ de vision (en m)

Le diamètre du champ de vision du spectromètre se calcule comme suit :

Fibre optique Champ de vision 

ANNEXE 5 : CALCULS DES TAUX DE VÉGÉTATION

Cette annexe présente les calculs des taux de végétation minimaux et maximaux pouvant être rencontrés dans un pixel, en fonction de la taille de l'adventice et de la résolution spatiale de l'image. Pour simplifier ces calculs, la forme de l'adventice est représentée par un disque, de rayon 𝑟.

Le taux de végétation dans le pixel se calcule comme suit :

où 𝑆 est la surface de l'adventice présente dans le pixel et 𝑥 est la résolution spatiale de l'image.

Tout d'abord, le taux minimal de végétation présente dans le pixel comportant la plus grande surface de l'adventice est calculé. Ce taux minimal se présente lorsque la surface représentant l'adventice est située à l'intersection de quatre pixels.

Trois cas sont considérés :

Dans ce cas, la surface S de l'adventice présente dans le pixel vaut :

Le taux de végétation est donc : 𝝁 𝑻𝑽𝑨 LDA* 50 0,016 0,041 0,067 0,081 0,125 0,154 0,131 0,151 0,056 0,018 0,038 0,016 0,063 0,033 0,071 0,083 QDA* 0,035 0,069 0,065 0,082 0,054 0,084 0,121 0,116 0,054 0,031 0,035 0,035 0,045 0,041 0,062 Mahalanobis 0,033 0,109 0,080 0,101 0,102 0,041 0,105 0,132 0,067 0,157 0,048 0,059 0,034 0,046 0,080 SVM, noyau polynomial 0,033 0,093 0,130 0,151 0,178 0,238 0,197 0,167 0,105 0,028 0,109 0,163 0,100 0,068 0,126 SVM, noyau RBF 0,018 0,024 0,074 0,100 0,124 0,159 0,178 0,170 0,078 0,036 0,079 0,029 0,093 0,041 0,086 SVM, noyau sigmoïde 0,006 0,032 0,067 0,067 0,100 0,122 0,102 0,193 0,066 0,030 0,061 0,020 0,082 0,059 0,072 LDA* 100 0,010 0,019 0,068 0,049 0,074 0,093 0,039 0,055 0,038 0,017 0,026 0,014 0,045 0,013 0,040 0,055 QDA* 0,031 0,049 0,047 0,048 0,056 0,104 0,059 0,062 0,032 0,023 0,023 0,030 0,060 0,021 0,046 Mahalanobis 0,022 0,075 0,068 0,043 0,135 0,043 0,038 0,080 0,089 0,220 0,031 0,056 0,041 0,048 0,071 SVM, noyau polynomial 0,018 0,025 0,091 0,090 0,130 0,140 0,114 0,133 0,080 0,046 0,037 0,030 0,058 0,034 0,073 SVM, noyau RBF 0,010 0,020 0,053 0,064 0,086 0,110 0,070 0,102 0,027 0,024 0,024 0,017 0,055 0,024 0,049 SVM, noyau sigmoïde 0,006 0,017 0,071 0,057 0,117 0,127 0,051 0,106 0,056 0,020 0,030 0,016 0,053 0,024 0,054 LDA* 200 0,010 0,012 0,046 0,028 0,041 0,058 0,046 0,066 0,025 0,016 0,015 0,008 0,017 0,010 0,028 0,038 QDA* 0,010 0,026 0,039 0,035 0,028 0,039 0,059 0,042 0,015 0,012 0,013 0,012 0,014 0,017 0,026 Mahalanobis 0,007 0,049 0,055 0,042 0,095 0,020 0,033 0,076 0,035 0,105 0,029 0,030 0,012 0,034 0,045 SVM, noyau polynomial 0,010 0,017 0,065 0,053 0,062 0,112 0,098 0,129 0,034 0,021 0,017 0,025 0,043 0,015 0,050 SVM, noyau RBF 0,014 0,023 0,047 0,039 0,035 0,044 0,064 0,117 0,033 0,103 0,009 0,016 0,013 0,015 0,041 SVM, noyau sigmoïde 0,011 0,020 0,046 0,036 0,076 0,095 0,059 0,092 0,039 0,020 0,037 0,013 0,016 0,014 0,041 Moyennes totales 0,017 0,040 0,066 0,065 0,090 0,099 0,087 0,110 0,052 0,051 0,037 0,033 0,047 0,031 0,059 Moyennes par méthode LDA* 0,012 0,024 0,061 0,052 0,080 0,102 0,072 0,090 0,040 0,017 0,026 0,013 0,041 0,018 0,046 QDA* 0,025 0,048 0,050 0,055 0,046 0,075 0,080 0,073 0,034 0,022 0,024 0,025 0,039 0,026 0,045 Mahalanobis 0,021 0,078 0,068 0,062 0,111 0,035 0,059 0,096 0,064 0,161 0,036 0,049 0,029 0,043 0,065 SVM, noyau polynomial 0,020 0,045 0,096 0,098 0,123 0,164 0,136 0,143 0,073 0,031 0,054 0,073 0,067 0,039 0,083 SVM, noyau RBF 0,014 0,022 0,058 0,068 0,082 0,104 0,104 0,130 0,046 0,054 0,037 0,020 0,054 0,027 0,059 SVM, noyau sigmoïde 0,008 0,023 0,061 0,053 0,097 0,115 0,071 0,130 0,054 0,023 0,043 0,016 0,051 0,032 0,055 *LDA = Analyse Discriminante Linéaire ; QDA = Analyse Discriminante Quadratique 𝝁 𝑻𝑽𝑨 LDA* 50 0,045 0,027 0,068 0,049 0,114 0,142 0,076 0,174 0,112 0,169 0,040 0,034 0,014 0,031 0,078 0,094 QDA* 0,026 0,081 0,081 0,066 0,060 0,066 0,061 0,132 0,065 0,115 0,048 0,049 0,018 0,054 0,066 Mahalanobis 0,032 0,239 0,115 0,098 0,181 0,097 0,077 0,107 0,061 0,123 0,096 0,245 0,033 0,116 0,116 SVM, noyau polynomial 0,033 0,032 0,113 0,122 0,106 0,114 0,173 0,219 0,136 0,195 0,104 0,169 0,115 0,099 0,124 SVM, noyau RBF 0,014 0,044 0,077 0,077 0,066 0,093 0,121 0,201 0,156 0,172 0,041 0,059 0,041 0,067 0,088 SVM, noyau sigmoïde 0,023 0,042 0,050 0,042 0,118 0,166 0,157 0,224 0,144 0,203 0,043 0,037 0,024 0,021 0,092 LDA* 100 0,020 0,010 0,083 0,047 0,078 0,098 0,076 0,160 0,026 0,142 0,027 0,025 0,018 0,017 0,059 0,069 QDA* 0,010 0,034 0,052 0,056 0,037 0,051 0,070 0,128 0,042 0,023 0,033 0,136 0,014 0,032 0,051 Mahalanobis 0,026 0,216 0,069 0,075 0,130 0,069 0,086 0,113 0,051 0,101 0,090 0,268 0,010 0,051 0,097 SVM, noyau polynomial 0,019 0,017 0,065 0,045 0,111 0,094 0,106 0,165 0,097 0,180 0,059 0,134 0,043 0,045 0,084 SVM, noyau RBF 0,030 0,051 0,047 0,060 0,033 0,043 0,064 0,125 0,077 0,165 0,043 0,029 0,009 0,024 0,057 SVM, noyau sigmoïde 0,021 0,012 0,076 0,047 0,068 0,120 0,070 0,152 0,057 0,156 0,048 0,027 0,022 0,031 0,065 LDA* 200 0,027 0,014 0,054 0,041 0,071 0,086 0,063 0,096 0,037 0,164 0,026 0,015 0,007 0,018 0,051 0,052 QDA* 0,010 0,064 0,037 0,047 0,034 0,039 0,054 0,075 0,016 0,012 0,024 0,028 0,021 0,045 0,036 Mahalanobis 0,001 0,001 0,054 0,074 0,112 0,072 0,059 0,091 0,047 0,110 0,028 0,143 0,008 0,063 0,062 SVM, noyau polynomial 0,036 0,070 0,043 0,032 0,050 0,060 0,061 0,110 0,062 0,141 0,028 0,084 0,016 0,067 0,061 SVM, noyau RBF 0,006 0,040 0,053 0,038 0,053 0,053 0,058 0,120 0,041 0,115 0,016 0,018 0,012 0,051 0,048 SVM, noyau sigmoïde 0,016 0,010 0,049 0,040 0,056 0,074 0,071 0,112 0,038 0,159 0,031 0,031 0,010 0,038 0,053 Moyennes totales 0,022 0,056 0,066 0,059 0,082 0,085 0,084 0,139 0,070 0,136 0,046 0,085 0,024 0,048 0,072 Moyennes par méthode LDA* 0,030 0,017 0,068 0,046 0,088 0,109 0,072 0,144 0,058 0,158 0,031 0,025 0,013 0,022 0,063 QDA* 0,015 0,060 0,057 0,056 0,044 0,052 0,062 0,112 0,041 0,050 0,035 0,071 0,017 0,043 0,051 Mahalanobis 0,020 0,152 0,080 0,082 0,141 0,079 0,074 0,104 0,053 0,111 0,071 0,219 0,017 0,077 0,091 SVM, noyau polynomial 0,029 0,040 0,074 0,066 0,089 0,089 0,113 0,165 0,098 0,172 0,063 0,129 0,058 0,071 0,090 SVM, noyau RBF 0,016 0,045 0,059 0,058 0,051 0,063 0,081 0,149 0,091 0,151 0,033 0,035 0,021 0,048 0,064 SVM, noyau sigmoïde 0,020 0,021 0,058 0,043 0,081 0,120 0,099 0,163 0,080 0,173 0,041 0,032 0,018 0,030 0,070 *LDA = Analyse Discriminante Linéaire ; QDA = Analyse Discriminante Quadratique