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Abstract
Voisin, S. 2016. Bioinformatic and Biostatistic Analysis of Epigenetic Data from Humans
and Mice in the Context of Obesity and its Complications. Digital Comprehensive Summaries
of Uppsala Dissertations from the Faculty of Medicine 1245. 219 pp. Uppsala: Acta
Universitatis Upsaliensis. ISBN 978-91-554-9655-5.

Worldwide obesity has more than doubled since 1980 and at least 2.8 million people die
each year as a result of being overweight or obese. An elevated body weight is the result of
the interplay between susceptibility gene variants and an obesogenic environment, and recent
evidence shows that epigenetic processes are likely involved. The growing availability of high-
throughput technologies has made it possible to assess quickly the entire epigenome of large
samples at a relatively low cost. As a result, vast amounts of data have been generated and
researchers are now confronted to both bioinformatic and biostatistic challenges to make sense
of such data in the context of obesity and its complications. In this doctoral thesis, we explored
associations between the human blood methylome and obesity-associated gene variants as
well as dietary fat quality and quantity. We used well described preprocessing techniques and
statistical methods, along with publicly available data from consortiums and other research
groups, as well as tools for pathway enrichment and chromatin state inference. We found
associations between obesityassociated SNPs and methylation levels at proximal promoters and
enhancers, and some of these associations were replicated in multiple tissues. We also found
that contrary to dietary fat quantity, dietary fat quality associates with methylation levels in
the promoter of genes involved in metabolic pathways. Then, using a gene-targeted approach,
we looked at the impact of an acute environmental stress (sleep loss) on the methylation and
transcription levels of circadian clock genes in skeletal muscle and adipose tissue of healthy
men. We found that a single night of wakefulness can alter the epigenetic and transcriptional
profile of core circadian clock genes in a tissue-specific manner. Finally, we looked at the
effects of chronic maternal obesity and subsequent weight loss on the transcription of epigenetic
machinery genes in the fetus and placenta of mice. We found that the transcription of epigenetic
machinery genes is highly sensitive to maternal weight trajectories, and particularly those of
the histone acetylation pathway. Overall, this thesis demonstrated that genetics, obesogenic
environment stimuli and maternal programming impact epigenetic marks at genomic locations
relevant in the pathogenesis of obesity.
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An apple a day will keep anyone away if thrown hard enough. 

Unknown 

If your experiment needs statistics, you ought to do a better experiment. 

Lord Ernest Rutherford 
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DMR Differentially methylated region   
DNMT DNA methyltransferase   
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MC4R Melanocortin 4 receptor    
MeDIP Methylated DNA immunoprecipitation   
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miRNA microRNA   
ncRNA non-coding RNA   



 

NEGR1 Neuronal growth regulator 1    
PC Principal component   
PCA Principal component analysis    
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Peroxisome proliferator-activated re-
ceptor gamma coactivator 1-alpha 

  

PHOSPHO1 
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PPARδ  
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SNP Single nucleotide polymorphism   
SOCS3 Suppressor of cytokine signaling 3   
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TF Transcription factor   
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TNF-α  Tumor necrosis factor alpha   
TXNIP Thioredoxin interacting protein   
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Introduction 

1. The roots of obesity and its disastrous consequences 
1.1. Obesity: a huge health and economic burden 
 Overweight and obesity are defined as an abnormal or excessive fat accumulation that 
presents a risk to health. A crude population measure of obesity is the body mass index (BMI), a per-
son’s weight (in kilograms) divided by the square of his or her height (in meters). A person with a 
BMI of 30 or more is generally considered obese, and a person with a BMI equal to or more than 25 is 
considered overweight. Overweight and obesity are major risk factors for a number of chronic dis-
eases, including type 2 diabetes (T2D) [1], cardiovascular diseases [1], certain types of cancer [1], 
osteoarthritis [2], nonalcoholic fatty liver disease [3]. Moreover, obesity is associated with physical 
conditions such as gallbladder disease [4], obstructive sleep apnoea [5] and gout [6] (Figure 1). It is 
also at odds with societal ideals of thinness, thus causing depression because of social stigmatization 
and discrimination [7], particularly in women. Despite the fact that it kills, directly or indirectly, an 
estimated 2.8 million people each year [8], it was only in 2013 that obesity was classified as a chronic 
disease by the American Medical Association [9]. Worldwide obesity has more than doubled since 
1980, and what was once considered a problem only in high income countries is now hitting low- and 
middle-income countries, particularly urban settings. In 2014, 38% of men (Figure 2A) and 40% of 
women (Figure 2B) aged 18 years and over were overweight [8]. Not only does obesity shorten life-
span and lower quality of life, but it also costs billions of dollars to health care. A couple of studies 
have tried to give a more precise estimate of this cost, but they showed great heterogeneity in terms of 
scope, data sources, data quality and methodological approaches [10]. Yet, a consistent finding was 
that direct cost make up about half of the total cost and is attributable to treating comorbidities such as 
cardiovascular disease and T2D while indirect cost is attributable to work absenteeism, early retire-
ment and disability [10]. It is therefore clear that obesity presents a huge health and economic burden, 
and we need to uncover the aetiology of this disease to implement the best prevention and treatment 
strategies. 
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Figure 1. Obesity-associated comorbidities. 

Taken from [11] 
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Figure 2. Mean body mass index by country, ages 18+, age standardized, 2014. 

(A) Male (B) Female. Reprinted from Global Health Observatory Map Gallery, Page No.1, Copyright (2015) 
[12] 

1.2. The relative contribution of genetics and the environment to obesity 
 What causes obesity? At an individual level and in most cases, a positive energy bal-
ance (i.e. higher energy intake than energy expenditure) is responsible for weight gain over time. Of 
the rare cases of early-onset, severe obesity, 7% can be explained by single point DNA mutations in 
genes that play a key role in appetite regulation, such as leptin (LEP), melanocortin 4 receptor (MC4R) 
and proopiomelanocortin (POMC) [13]. However, it is clear that genetic variation in humans has not 
changed appreciably in the past 50 years and therefore cannot account for the recent increase in obe-
sity prevalence. It is rather the dramatic change in lifestyle in high-income and developing countries 
that explains the epidemic. Since the 1960s, the daily energy consumption per capita has increased by 
31% worldwide, and the proportion of energy intake derived from fat by 7% [14]. Moreover, around 
23% of adults and an alarming 81% of adolescents were not active enough in 2010, partly due to inac-
tion during leisure time, sedentary behaviour on the job and at home [8]. Other obesogenic environ-
mental exposures have been suggested to participate in the recent obesity epidemic [15] (Figure 3). (1) 
Short sleep duration, impaired sleep quality and irregular sleep-wake patterns disturb central nervous 
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neuroendocrine pathways controlling energy homoeostasis, food intake, and adipocyte function [16]. 
(2) Endocrine disruptors present in food, plastics, cigarettes, and fossil fuels have the ability to in-
crease the number of adipocytes and/or the storage of fat in existing adipocytes, particularly if expo-
sure happened early in life [17]. (3) Increased maternal age is associated with a higher risk of obesity 
in offspring, partly because older mothers produce babies that are small or large for gestational age 
[18,19]. (4) Prenatal and early-postnatal nutrition, such as under- or over-nutrition during preg-
nancy, can alter the projected growth pattern of various organs and systems of the body, conferring to 
the offspring an increased risk of metabolic disease [20]. (5) The increase in the use of certain medica-
tions like psychotropics [21], antihypertensives [22], and antidiabetics [23] exert a small yet signifi-
cant effect on weight gain over time. Yet, it is puzzling to see that some people remain slim while 
others gain weight, despite being confronted to similar risk factors. Are some people genetically more 
susceptible to weight gain? 

 
Figure 3. The relative contribution of genetics and the environment to the variance in metabolic traits and to 
individual metabolic parameters. 

At the population level, genetics and the environment both explain ~50% of the variance in metabolic traits; at 
an individual level, genetics and some environmental factors (perinatal conditions, maternal age) act as predis-
posing agents that confer an increased or decreased risk for developing metabolic disorders. Epigenetics is the 
main mechanism (albeit not the only one) that has been proposed to explain how gene variants and the environ-
ment interact to impact the phenotype. 
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One way to answer this question is to estimate the proportion of variance in BMI or other metabolic 
traits (e.g. waist-to-hip ratio) in the population that is explained by genetics. This so-called "heritabil-
ity" of metabolic traits has been estimated by family, twin and adoption studies, by comparing the 
observed and expected resemblance between relatives [24]. A recent meta-analysis of the heritability 
of human traits based on fifty years of twin studies estimated that 58% of the variance in metabolic 
traits, 51% of the variance in endocrine, nutritional and metabolic diseases and 48% of the variance in 
general metabolic functions is explained by genetic factors [25]. However, family and adoption studies 
usually report higher heritability estimates, because twin studies assume equal shared environments in 
identical and non-identical twin pairs, and because family studies cannot discriminate between genet-
ics and shared environment [26]. Overall, these figures suggest that genetic factors account for about 
half of the natural variation in metabolic function in the general population, and environmental factors 
account for the other half. 

Unfortunately, the concept of heritability is often misunderstood by the scientific community. It is 
important to stress that the concept of “heritability” has a meaning only at a population level, but does 
not explain a trait at the individual level (Figure 3). Therefore, if metabolic traits were estimated to 
have a heritability of ~50%, this in no way means that the metabolic traits of a given individual are 
due to his genetic makeup at 50% and to his environment at 50%. A heritability of 100% for a given 
trait does not imply that the trait is 100% genetic, but that variance in the trait in the population can be 
explained at 100% by genetic variation. For example, if we were to take a (hypothetical) population of 
elite athletes whose training regime and diet have been tightly controlled to be identical since birth (for 
the sake of the example, we do not consider any perinatal effects here), the observed variations in per-
formance at a sprint test would be exclusively explained by genetic variation since their environments 
were strictly identical. That does not imply that the performance at the sprint test has no environmental 
basis: it is largely influenced by the intensity of the training regime, sleep and diet quality, etc. Con-
versely, a heritability of 0% does not mean that a trait has no genetic basis, but that variation in the 
trait in the population under study can be explained at 100% by the environment. For example, if we 
were to consider the population of Japan where everybody is dark-haired, observed variations in hair 
colour would be exclusively due to environmental factors such as sunlight exposure, use of hair dye, 
stress, etc. That does not mean that hair colour has no genetic basis! It is also important to note that 
heritability estimates change when the population under study changes. If we come back to the hair 
colour example and if we were to consider the world population instead of the Japanese population, 
heritability of hair colour would no longer be 0%, but much higher because of the added genetic diver-
sity in genes responsible for hair colour. To further illustrate that heritability is deeply population-
dependent, it is useful to note that heritability estimates can change over time because the variance in 
genetic values can change, the variation due to environmental factors can change, or the correlation 
between genes and environment can change [24]. Three questions follow on: given the high heritabil-
ity of metabolic traits, which genetic variants contribute to obesity? How do they act at the molecular 
level? How do they interact with environmental factors? 

1.3. Genome-wide association studies (GWASs) and the problem of missing 
heritability 
 The human genome is characterized by genetic variations that can happen at a small 
scale (1-50 bp), an intermediate scale (50-3000 bp), or at a large scale (>3000 bp) (Table 1). GWASs 
have been undertaken to see whether some of the ~100,000,000 single nucleotide polymorphisms 
(SNPs) present in the human genome [27] show allele frequencies that associate with metabolic traits 
and obesity risk [28–46]. Unfortunately, they have predominantly been conducted in populations of 
European ancestry, despite the fact that metabolic disorders are more prevalent in populations of Afri-
can descent [47,48] and Hispanics [48]. Nevertheless, GWASs have identified at least 160 loci, some 
of which located near genes that were already discovered in monogenic forms of obesity [13], and 
some near genes that provide support for the central nervous system such as brain-derived neurotro-
phic factor (BDNF), MC4R and neuronal growth regulator 1 (NEGR1) [45] (Figure 4). However, the 
annotation of risk variants to specific genes is not straightforward, since most of them are located in 
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non-coding and regulatory regions of the genome [49], they do not necessarily regulate the nearest 
gene, they may regulate several genes at once, and they may regulate specific genes in specific tissues 
during specific developmental windows. Fat mass and obesity associated (FTO) is an excellent text-
book case of this paradigm. SNPs in the first intron of FTO were found to associate with a variety of 
metabolic traits such as BMI, hip circumference and appetite, and they form the locus with the largest 
effect size on BMI [50]. Following these findings, FTO deletion and overexpression experiments in 
rodents suggested that FTO acts both in the brain to regulate energy balance and in other tissues to 
modify body composition, but links between the risk variants identified in GWASs and FTO expres-
sion levels have remained elusive. Recently, it has been reported that the discovered SNPs appear 
functionally connected not with FTO but with three neighbouring genes: Iroquois homeobox 3 (IRX3), 
Iroquois homeobox 5 (IRX5) and RPGRIP1-like (RPGRIP1L) [51] (Figure 5A). The first intron of 
FTO contains a binding site for the transcription factor (TF) cut like homeobox 1 (CUX1) which, 
through regulation of RPGRIP1L expression, modulates leptin receptor localization within neurons 
[51]. This intron also contains an enhancer sequence which directly binds to the promoter of IRX3 and 
IRX5 when the FTO rs1421085 risk allele is present [52], and this leads to repressed mitochondrial 
thermogenesis in preadipocytes [53] (Figure 5B). 

 
 

Scale Name Type Size Number in the hu-
man genome 

Small 

Single nucleotide 
polymorphism 
(SNP) 

Substitution 1 bp ~100,000,000 [27] 

Small insertion and 
deletion (INDEL) 

Insertion 
1-50 bp ~1000-200,000 [54] 

Deletion 

Interme-
diate 

(structural 
variation) 

Copy number 
variation (CNV) 

Deletion 
50-3,000 bp ~11,000-23,000 [55] 

Duplication ~1,100-3,200 [55] 

Microsatellites Short tandem repeats 
(STRs) 

2-9 bp repeated 
5-50 times ~3,000,000 [56] 

Minisatellites 
Variable number 
tandem repeats 
(VNTRs) 

10-60 bp re-
peated 5-50 
times 

~150,000 [57] 

Large 

Structural abnor-
mality 

Insertion 

> 3,000 bp N/A 
Deletion 
Duplication 
Substitution 
Translocation 

Numerical abnor-
mality (ane-
uploidy) 

Monosomy 
Entire chromo-
some N/A Trisomy 

Tetra-
somy/pentasomy 

Table 1. Types of genetic variations in the human genome. 
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Figure 4. Overview of the genes located in the vicinity of loci identified by GWAS. 

(A) Summary of loci found by genome-wide association studies to be associated with body mass index (BMI), 
waist circumference (waist), waist–hip ratio (WHR), extreme obesity phenotypes (extremes) or BMI-adjusted 
WHR (BMIadjWHR) with p < 5 × 10−8. Taken from [35] (B) Tissues and reconstituted gene sets significantly 
enriched for genes within BMI-associated loci. Taken from [45] 
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Figure 5. The FTO locus. 

(A) Long-range interactions at the FTO-IRX3 locus. Mouse embryo 4C-seq interactions emanating from each 
promoter are displayed as links across the circle (darker link implies greater significance). Outer plots show 
significance of interactions above background (−log(P value)). The obesity-associated interval is highlighted red. 
Taken from [52] (B) Summary of the mechanistic model of the FTO locus association with obesity, implicating a 
developmental shift favouring lipid-storing white adipocytes over energy-burning beige adipocytes. At its core 
lies a single-nucleotide T-to-C variant, rs1421085, which disrupts a conserved ARID5B repressor motif and 
activates a mesenchymal superenhancer and its targets (IRX3 and IRX5), leading to reduced heat dissipation by 
mitochondrial thermogenesis (a process that is regulated by UCP1, PGC1α, and PRDM16) and to increased lipid 
storage in white adipocytes. Taken from [53] 

Despite these well-conducted studies that show how SNPs in the first intron of FTO contribute to 
the pathogenesis of obesity, the fact remains that the effect size of these SNPs is extremely low (0.10-
0.34% of explained variance in BMI) [50]. Actually, all ~160 identified loci collectively explain less 
than 5% of variance in BMI [58], and we still do not know what the remaining ~45% of variance 
stems from, a problem that has been termed “missing heritability” [59]. Missing heritability has been 
suggested to have several potential sources that are not mutually exclusive [60]: 

(1) Copy number variations (CNVs) not investigated in most GWAS, such as deletions, insertions 
and duplications of segments of the genome. Genome-wide CNV analyses for obesity are scarce, part-
ly because CNVs are notoriously difficult to measure [61]. Only one of the 84 BMI/obesity-associated 
CNVs discovered so far was replicated in another cohort, and it explained only 0.1% of the variance in 
BMI [62], suggesting that this hypothesis is unlikely. 

(2) Rare SNPs that are not captured by the currently available commercial SNP arrays nor well 
tagged by the SNPs on the arrays and with large effect sizes. Rare variants may contribute quite sub-
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stantially to the variance in BMI, and using a new analytical framework for the design of rare variant 
association studies will certainly help [63]. 

(3) Common SNPs with such small effect sizes that they cannot be identified with the current 
sample sizes used in GWAS. Yang et al. recently performed simulations based on whole-genome se-
quencing data, and they managed to capture ~97% and ~68% of variation at common and rare variants 
by imputation. They found that the added effects of ∼17 million imputed variants explained 27% of 
the variance in BMI (25% for common variants and 2% for rare variants) [64], giving a strong case for 
this hypothesis. 

(4) Epistasis between SNPs (non-additive effects). In their recent meta-analysis of twin studies, 
Polderman et al. gave the proportion of individual studies that are compatible with a parsimonious 
model where the variance is solely due to additive genetic variation, for a large number of traits. Inter-
estingly, 60% of studies were compatible with this model for metabolic traits, 69% for endocrine and 
72% for nutritional traits. However, only 48% of studies were compatible with this model for weight 
maintenance functions [25], suggesting that this hypothesis is unlikely but impossible to rule out com-
pletely. 

(5) Parent-of-origin effects such as genomic imprinting. This hypothesis involves the ~100 genes 
in humans that are known to be imprinted [65], and they correspond to genes with monoallelic expres-
sion that depends upon whether it resided in a male or female the previous generation. Sequence vari-
ants located close to imprinted genes would then show consequences on the phenotype only if they are 
inherited from the mother of the father, but it is unclear how prevalent this phenomenon is in metabol-
ic disorders. Three loci were suggested to have parent-of-origin effects on BMI in European American 
[66], and a later study on 38167 Icelanders revealed three SNPs that exhibit parental-origin specific 
associations for T2D [67]. More recently, potential parent-of-origin effects were reported within FTO 
[68], Apolipoprotein B (APOB) [69], Solute carrier family 2 member 10 (SLC2A10) and potassium 
two pore domain channel subfamily K member 9 (KCNK9) [70]. Animal models provide a better pic-
ture of the global contribution of parent-of-origin to the heritability, since breeding is controlled and 
the genotypes of both parents and offspring can be obtained. In 2014, the heterogeneous stock mouse 
strain descended from eight inbred progenitor strains and maintained for over 50 generations allowed 
the estimation of the heritability of a wide range of complex traits [71]. Strikingly, the contribution to 
heritability attributable to alleles shared by two animals that come from parents of the same sex (i.e., 
two mothers or two fathers), was twice that attributable to shared alleles descended from parents of the 
opposite sex (one from a mother and one from a father). This experiment also showed that non-
imprinted genes can generate parent-of-origin effects by interaction with imprinted loci [71]. Whether 
and to what extent these results can be extrapolated to humans is unknown and warrants further re-
search. 

1.4. Reconciling genetics and the environment with epigenetic mechanisms 
 Considering the evidence discussed previously, it is now beyond doubt that both genet-
ics and the environment contribute to the observed variance in metabolic traits, and it is also clear that 
the environment interacts with the genome to bring the phenotype into being. Perhaps even more fas-
cinating is the highly debated concept of inheritance of susceptibility to metabolic disorders from one 
generation to the next [72–74], since the first demonstration of the inheritance of a characteristic ac-
quired in response to an environmental stimulus by Waddington in 1956 [75]. The contribution of 
genetics to variance in metabolic outcomes means that we are not all equal under the same obesogenic 
stresses, but that does not mean that we are doomed to grow belly fat simply because we inherited a 
bad combination of genetic variants. It is puzzling to see that the “nature vs. nurture” debate is still 
very present in the scientific literature, as illustrated by the “head to head” entitled Are the causes of 
obesity primarily environmental? published by the British Medical Journal in 2012 [76,77]. Perhaps a 
more relevant question would be: how do genes interact with their environment to cause metabolic 
disorders? The main mechanism that has been proposed to mediate this interaction encompasses the 
addition and removal of epigenetic marks to the DNA (e.g. DNA methylation), histone post-
translational modifications and non-coding RNAs (ncRNAs) (Figure 6). These epigenetic modifica-
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tions can change chromatin structure to cause a stable modification of gene expression or gene expres-
sion potential. 

 
 

Figure 6. The three main epigenetic mechanisms involved in the control of gene expression in mammals. 

Taken from [78] 

2. Epigenetic modifications: focus on DNA methylation 
2.1. Overview of epigenetics 
2.1.1. Epigenetic modifications are diverse and determine chromatin structure 
The gene expression pattern of a cell at a particular moment in time has to be adapted to the tissue it 
belongs and to its surrounding environment. For example, glucose must be released into the blood 
stream to answer the organs' glucose demand during fasting or exercise. When blood glucose is low, 
glucagon levels start rising while insulin levels start dropping, causing a cAMP release in hepatocytes. 
cAMP then triggers the phosphorylation of the TF cAMP response element binding protein (CREB), 
responsible for increased expression of gluconeogenic enzyme genes [79] (Figure 7A). This process 
requires DNA to be accessible to the transcription machinery, CREB and other TFs, so that 
gluconeogenic enzyme genes can be upregulated. However, DNA does not loosely float into the nu-
cleus, but is instead wrapped around nucleosomes, forming a structure called "chromatin" [80]. 
Chromatin shows variable degrees of packaging, from the relaxed primary structure akin to beads on a 
string called "euchromatin", to the more tightly packaged secondary and tertiary structures called "het-
erochromatin" that are associated with architectural proteins (Figure 8) [81]. 
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Figure 7. The three main epigenetic mechanisms involved in the control of gene expression in mammals. 

 (A) Transcriptional adaptation of the metabolism in liver cells upon low levels of glucose. A lack of insulin 
associated with increased levels of glucagon cause an increase in cAMP levels that triggers the phosphorylation 
of the transcription factor cAMP response element binding protein (CREB), responsible for increased expression 
of gluconeogenic enzyme genes. Taken from [79]. (B) Epigenetic regulation of the gluconeogenic program dur-
ing fasting and in diabetes. Increases in circulating glucagon trigger the dephosphorylation and nuclear transloca-
tion of CRTC2, which associates with and mediates the recruitment of KAT2B and WDR5 to CREB binding 
sites on gluconeogenic promoters. In turn, KAT2B and WDR5 upregulate gluconeogenic genes through a self-
reinforcing cycle in which increases in H3K9 acetylation further enhance CREB and CRTC2 occupancy. Taken 
from [82] 
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Figure 8. Primary, secondary and tertiary structure of chromatin. 

The primary structure is shown as nucleosomal arrays consisting of nucleosomes with canonical histones (shown 
in light blue and yellow) and combinations of different histone variants (shown in green, purple and light blue). 
Nucleosomes with canonical or histone variants may vary in the degree of post-translational modifications, gen-
erating the possibility for nucleosomes with a large number of different ‘colours’. Histone variants and PTMs 
may affect nucleosome structure and dynamics. The spacing between nucleosomes may vary on the basis of the 
underlying sequence, action of chromatin-remodelling enzymes and DNA binding by other factors (for example, 
transcription activators). Short-range nucleosome–nucleosome interactions result in folded chromatin fibres 
(secondary chromatin structure, lower left panel). Fibre–fibre interactions, which are defined by long-range in-
teractions between individual nucleosomes, are also affected by the primary structure of chromatin fibres, in-
cluding PTMs, histone variants and spacing of nucleosomes. Secondary and tertiary structures are stabilized by 
architectural proteins, such as linker histone H1. Transitions between the different structural states are indicated 
by double arrows; these may be regulated by changes in patterns of PTMs, binding or displacement of architec-
tural proteins, exchange of histone variants and chromatin-remodelling factors. Taken from [81] 

Chromatin can be seen as the “physiological form of our genetic information” [83]. Chromatin's 
degree of packaging and interaction with TFs depend on the combination of different covalent "epige-
netic modifications" that can occur directly on DNA or on the proteins that form the nucleosomes (his-
tones). The genome-wide pattern of epigenetic modifications (the epigenome) is highly tissue-specific 
because it reflects the function of the cell [84]. There are many epigenetic modifications known to 
date, some of which ubiquitous to all life forms while others restricted to some species, and new modi-
fications are regularly discovered or extended to more species [85]. In mammals, amino acid residues 
of histone tails can undergo acetylation, mono- di- or tri-methylation, phosphorylation, ubiquitylation, 
and biotinylation, each of these modifications being associated with either transcriptional activation, 
repression or elongation as well as DNA repair, depending on which residue they target and on the 
genomic context [86] (Table 2). The best characterized covalent modification of DNA itself is the 
methylation of cytosines (5meC) in the CG context (CpG) [87], although 5meC has also been detected 
out of the CpG context (CpH) at substantial levels in mammals [88], notably in the mouse and human 
brain [89,90] as well as human skeletal muscle [91–93]. In mammals, methylation is not restricted to 
cytosines as adenines can become methylated, and 5meC can in turn be oxidized to form 
hydroxymethylcytosines (5-hmC) [94]. ncRNAs form another epigenetic mechanism; as the name 
suggest, ncRNAs are functional RNA molecules that are transcribed from DNA but not translated into 
proteins [95]. There are two major classes of ncRNAs involved in gene silencing and chromatin struc-
ture: small ncRNAs (including small interfering RNA, microRNA (miRNA), piRNA) and long 
ncRNAs [96]. In light of the large diversity of epigenetic modifications that coexist in the cell, it is 
easy to grasp why epigenetics is such a complex yet exquisite way to regulate gene expression, espe-
cially as epigenetic modifications have been demonstrated to crosstalk with one another [97–99]. We 
have unravelled the genetic code that determines what sequence of amino acids is translated from 
mRNA: could there also be an “epigenetic code” that determines what genes are allowed to be tran-
scribed, and how cells memorize patterns of activity? 
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Histone Site Modification type Histone-modifying en-
zymes Proposed function 

H2A 

Lys 5 Acetylation Tip60, p300/CBP transcriptional activation 

Arg3 Methylation PRMT1/6, PRMT5/7 transcriptional activation, transcriptional 
repression 

Ser1 Phosphorylation MSK1 transcriptional repression 
Thr120 Phosphorylation Bub1, VprBP mitosis, transcriptional repression 
Lys119 Ubiquitylation Ring2 spermatogenesis 
Lys9 Biotinylation biotinidase unknown 
Lys13 Biotinylation biotinidase unknown 

H2A.X 
Ser139 Phosphorylation ATR, ATM, DNA-PK DNA repair 
Thr142 Phosphorylation WSTF apoptosis, DNA repair 

H2B 

Lys5 Acetylation p300, ATF2 transcriptional activation 
Lys12 Acetylation p300/CBP, ATF2 transcriptional activation 
Lys15 Acetylation p300/CBP, ATF2 transcriptional activation 
Lys20 Acetylation p300 transcriptional activation 
Ser14 Phosphorylation Mst1 apoptosis 
Ser36 Phosphorylation AMPK transcriptional activation 
Lys120 Ubiquitylation UbcH6 meiosis 

H3 

Lys9 Acetylation Gcn5, SRC-1 transcriptional activation 

Lys14 Acetylation 

Gcn5, PCAF, SRC-1, 
p300 transcriptional activation 

Esa1, Tip60 DNA repair 
Elp3, Sas3 transcriptional activation (elongation) 
Hpa2 unknown 
hTFIIIC90, TAF1 RNA polymerase III transcription 
Sas2 euchromatin 

Lys18 Acetylation 
Gcn5 transcriptional activation, DNA repair 

p300/CBP DNA replication, transcriptional activa-
tion 

Lys23 Acetylation 
Gcn5 transcriptional activation, DNA repair 
Sas3 transcriptional activation (elongation) 
p300/CBP transcriptional activation 

Lys27 Acetylation Gcn5 transcriptional activation 
Lys26 Acetylation Gcn5 transcriptional activation 
Arg2 Methylation PRMT5, PRMT6 transcriptional repression 

Arg8 Methylation PRMT5, PRMT2/6 transcriptional activation, transcriptional 
repression 

Arg17 Methylation CARM1 transcriptional activation 
Arg26 Methylation CARM1 transcriptional activation 
Arg42 Methylation CARM1 transcriptional activation 

Lys4 
Tri-methylation Set7/9 transcriptional activation 
Methylation MLL, ALL-1 transcriptional activation 
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Lys9 
Tri-methylation Suv39h, Clr4, SETDB1 transcriptional repression 

Methylation G9a transcriptional repression genomic im-
printing 

Lys27 
Methylation Ezh2, G9a transcriptional silencing 
Tri-methylation Ezh2 X inactivation 

Lys36 Methylation Set2 transcriptional activation (elongation) 

Lys79 Methylation Dot1 euchromatin, transcriptional activation 
(elongation), checkpoint response 

Ser10 Phosphorylation 
Aurora-B kinase mitosis, meiosis 
MSK1, MSK2 immediate-early gene activation 
IKK-α, Snf1 transcriptional activation 

Ser28 Phosphorylation 
Aurora-B kinase mitosis 
MSK1, MSK2 immediate-early gene activation 

Thr3 Phosphorylation Haspin/Gsg2 mitosis 
Thr11 Phosphorylation Dlk/Zip mitosis 
Tyr41 Phosphorylation JAK2 transcriptional activation 
Tyr45 Phosphorylation PKCδ apoptosis 
Lys4 Biotinylation biotinidase gene expression 
Lys9 Biotinylation biotinidase gene expression 
Lys18 Biotinylation biotinidase gene expression 

H4 

Lys5 Acetylation 

Hat1 histone deposition 
Esa1, Tip60 transcriptional activation, DNA repair 
ATF2, p300 transcriptional activation 
Hpa2 unknown 

Lys8 Acetylation 

Gcn5, PCAF, ATF2, 
p300 transcriptional activation 

Esa1, Tip60 transcriptional activation, DNA repair 
Elp3 transcriptional activation (elongation) 

Lys12 Acetylation 

Hat1 histone deposition, telomeric silencing 
Esa1, Tip60 transcriptional activation, DNA repair 
Hpa2 unknown 
p300 transcriptional activation 

Lys16 Acetylation 
Gcn15, ATF2 transcriptional activation 
Esa1, Tip60 transcriptional activation, DNA repair 
Sas2 euchromatin 

Arg3 Methylation 
PRMT1/6 transcriptional activation 
PRMT5/7 transcriptional repression 

Lys20 
Methylation PR-Set7 transcriptional silencing 
Tri-methylation Suv4-20h heterochromatin 

Ser1 Phosphorylation CK2 DNA repair 
Lys12 Biotinylation biotinidase DNA damage response 
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Table 2. Main histone modifications known in mammals. 

Adapted from [86] 

2.1.2. Mitotic heritability and maintenance of epigenetic modifications 
Epigenetic modifications have two fundamental properties that give cells the power to adapt to the 
situation while retaining a memory of their past gene expression: epigenetic modifications are sensi-
tive to environmental stimuli such as diet, smoking, physical activity, and chemical pollutants [100], 
yet stable in time and through cell divisions even after the initial stimulus is gone. As Adrian Bird 
concisely puts it, epigenetics corresponds to "the structural adaptation of chromosomal regions so as to 
register, signal or perpetuate altered activity states" [101]. The pattern of epigenetic modifications at 
specific genomic locations reflect the developmental and functional history of the genes, and it is this 
pattern that will guide their present and future activity [102]. This is achieved thanks to the dynamics 
of a large battery of proteins that can add (“writers”), remove (“erasers”) or bind (“readers”) epige-
netic modifications (Figures 9-10). DNA methyltransferases (DNMTs) are writers that add methyl 
groups to DNA [103], while the ten-eleven translocation (TET) family of enzymes are responsible for 
the oxidation of the methyl groups that can then be actively or passively removed [104] (Figure 9). 
Histone acetyltransferases (HATs), histone methyltransferases (HMTs), protein arginine 
methyltransferases (PRMTs) and kinases add covalent marks on histone tails, while histone 
deacetylases (HDACs), lysine demethylases (KDMs) and phosphorylases remove these marks [105] 
(Figure 10, Table 2). There are so many known readers of epigenetic modifications that listing them 
exhaustively would needlessly drown this chapter [105]. Readers of histone modifications contain 
domains that recognize specifically acetyllysines (e.g. bromodomain), methyllysine (e.g. 
chromodomains) or methylarginine (e.g. Tudor domain). The reading of DNA methylation involves 
proteins that specifically bind methylated CpGs (MBPs), proteins that specifically bind unmethylated 
CpGs (CXXC domain–containing complexes), and many TFs that are sensitive to the presence of 
5meC in their binding sequence [87]. However, the mitotic/meiotic heritability of epigenetic modifica-
tions has raised some debates over what truly deserves to be called “epigenetic”, since many epigenet-
ic modifications are erased at each cell division and do not generate memory [106,107], and since 
some epigenetic modifications quickly disappear once the initial stimulus is gone [108–110]. This is 
particularly true for histone marks, and Mark Ptashne has asked for the banishment of histone marks 
from the list of epigenetic modifications [111]. Nevertheless, previously expressed genes are frequent-
ly primed for reactivation [112] and histone modifications are involved in transcription per se. In the 
example of glycaemic control, the presence of glucagon triggers in hepatocytes the recruitment of 
lysine acetyltransferase 2B (KAT2B) to CREB binding sites on gluconeogenic promoters. KAT2B 
adds an acetyl group to the lysine 9 of histone H3, which further enhances CREB occupancy on DNA 
to upregulate gluconeogenic genes [113] (Figure 7B). While theoretical discussions on the definition 
of epigenetics are interesting, perhaps is it more important to keep in mind that the heritability of epi-
genetic modifications is dependent on the mark under study [114,115], and careful conclusions should 
be drawn whenever studying a specific mark. 



 
 
 

26 

 
Figure 9. Setting, erasing and recognizing cytosine methylation. 

a, Different methylation states of the CpG and the enzymatic pathways that set, maintain and erase the mark. The 
pathways leading from the oxidized forms to the unmethylated state are under debate. DNMT, DNA 
methyltransferase; TDG, thymine-DNA glycosylase. b, A subset of CXXC-domain-containing proteins are listed 
that can specifically bind to the unmethylated CpG and could potentially reinforce the unmethylated state or 
recruit regulatory proteins to unmethylated CpG islands. Methyl-CpG-binding domain (MBD) proteins specifi-
cally bind to the methylated CG with little or no further sequence sensitivity, potentially mediating transcription-
al repression, which would be strongest in methylated CpG islands. Readers of oxidized forms are not shown 
owing to ongoing debate about proposed candidates. Taken from [87] 
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Figure 10. Setting, erasing and recognizing histone modifications. 

Epigenetic regulation is a dynamic process. Epigenetic writers such as histone acetyltransferases (HATs), histone 
methyltransferases (HMTs), protein arginine methyltransferases (PRMTs) and kinases lay down epigenetic 
marks on amino acid residues on histone tails. Epigenetic readers such as proteins containing bromodomains, 
chromodomains and Tudor domains bind to these epigenetic marks. Epigenetic erasers such as histone 
deacetylases (HDACs), lysine demethylases (KDMs) and phosphatases catalyse the removal of epigenetic 
marks. Addition and removal of these post-translational modifications of histone tails leads to the addition and/or 
removal of other marks in a highly complicated histone code. Together, histone modifications regulate various 
DNA-dependent processes, including transcription, DNA replication and DNA repair. Taken from [105] 

2.2. Function and information content of DNA methylation in the CpG context 
2.2.1. Distribution of CpG sites in the mammalian genome 
 The mammalian genome contains millions of CpGs, 60-90% of which are methylated 
[116], suggesting that methylation of CpGs is actually a default state (Figure 11A). Because methylat-
ed cytosines have a high deamination rate [117], many cytosines have mutated into thymine over the 
course of evolution, despite the presence of two glycosylases that are thought to repair this mismatch 
[118]. As a consequence, CpGs occur at only 21% of the expected frequency in the human genome 
[119], and the genomic regions that are typically unmethylated show an unusually high frequency of 
CpGs. These regions, called “CpG islands” (CGIs), are ~1000 base pairs long and show an elevated 
G+C base composition [120]. In humans, 40% of CGIs are found in annotated gene promoters 
[121,122] and the remaining 60% have been termed “orphan CGIs” due to the uncertainty surrounding 
their annotation [123] (Figure 11B). However, it seems that despite not being annotated to any specific 
promoter, many orphan CGIs are actual sites of transcription initiation for nearby annotated genes or 
ncRNAs [123,124]. Conversely, 70% of annotated gene promoters are associated with a CGI [125], 
especially housekeeping genes [126]. CGIs are interspaced by long stretches of highly methylated 
CpG-poor regions that are found both within and between genes [87]. Following the marine metaphor 
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of the CpG island, one can find the “CGI shore” from 0 to 2 kb on either side of a CGI, and the “CGI 
shelf” from 2 to 4kb on either side of a CGI (Figure 11B). Any CpG site that is not located in a pro-
moter, a gene body, a CGI, a CGI shore or a CGI shelf is said to be located in the “open sea”. 

 

 
Figure 11. Distribution and organisation of 5meC in the mammalian genome. 

(A) Genomic distribution of methylated cytosine in a typical mammalian genome. The representative genomic 
region includes an example of an active and an inactive gene with proximal (promoter) and distal (enhancer) 
regulatory regions. The height of the bar indicates the relative proportion of DNA methylation (5-
methylcytosine, 5mC) that is observed in each region. CpG islands (CGIs), which often overlap with promoter 
regions, generally remain unmethylated, whereas CG-poor promoters are methylated when not active. Adapted 
from [87]. (B) Genomic distribution of CGIs. Many CGIs are found in gene promoters, but the majority are 
located in intragenic or intergenic regions and termed "orphan CGIs" due to the uncertainty surrounding their 
annotation. Following the metaphor of the CpG "island", the regions located up to 2kb away from the island is 
called "CGI shore", and the region up to 4kb termed "CGI shelf". CpG sites that are not located in a promoter, a 
gene body, an island, a shore or a shelf is said to be located in the "open sea". Adapted from [120]. 

2.2.2. DNA methylation patterns are deeply linked to the underlying chromatin state 
Interestingly, DNA methylation does not have the same effects on transcription whether it occurs in 
promoters, enhancers or gene bodies, and whether it happens in CGIs, in the regions flanking CGIs, or 
in CpG-poor regions (Figure 12). What we know best is how CGIs in the promoter context work to 
control gene expression. Promoter CGIs are usually unmethylated, but when they become methylated, 
they robustly repress transcription, as notably seen in X-chromosome inactivation [127] and genomic 
imprinting [128]. The role of DNA methylation at CpG-poor promoters is less clear. CpG-poor pro-
moters display tissue-specific methylation patterns [129], and there is an inverse correlation between 
methylation at these promoters and transcription [130]. In addition, in vitro removal of DNA methyla-
tion at CpG-poor promoters can result in their direct silencing [131]. This suggests that there may be a 
role for methylation at CpG-poor promoters in the establishment and maintenance of tissue-specific 
expression patterns. However, it has also been shown that CpG-poor promoters could still be ex-
pressed when they are methylated [132], and that it is the binding of TFs that shape DNA methylation 
profiles at CpG-poor regions [133]. Therefore, the role of methylation at CpG-poor promoters is not 
well understood, but potential effects might only apply to certain binding sites such as those with low-
er affinity, at which DNA methylation might further reduce the likelihood of binding [87]. On the 
contrary, intragenic methylation positively correlates with transcription [134], and it may well serve 
several functions at once. Like intergenic methylation [135], intragenic methylation was initially sug-
gested to silence repetitive DNA elements that would otherwise cause genomic instability [136]. How-
ever, it was discovered that when intragenic methylation occurs at a CGI, it can suppress intragenic 
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promoters [124]. Also, intragenic methylation might be involved in alternative splicing events [137], 
but evidence for this phenomenon is scarce [138]. Recent attention has been drawn to CGI shores that 
lie in close proximity of CGIs [139]. In several pathologies such as cancer [140,141], intrauterine 
growth restriction [142], and in normal conditions that compared men and women [143], monozygotic 
twins [144] or simply different cell types [145], differentially methylated CpG sites were found to be 
enriched in CGI shores. Last but not least, CpG-poor regions span many enhancers, and methylation at 
enhancers is crucial for early development [146–149]. Importantly, genome-wide patterns of DNA 
methylation are adapted to the tissue they belong to: promoters of tissue-specific genes are often 
unmethylated in the tissues in which they are expressed, and methylated in the tissues where they are 
silenced [132,150]. In the end, all these observations show that it is not merely the presence of DNA 
methylation that determines its relation to transcription, but its interpretation in the context of a partic-
ular genomic region [136]. 

 

 
Figure 12. Proposed functions of DNA methylation in different genomic contexts. 

The function of DNA methylation is well established at CGI promoters, where it stably represses transcription. 
Genes with CpG-poor promoters usually show tissue-specific methylation, and methylation in their promoter 
may repress transcription, especially at binding sites with lower affinity. Within gene bodies, CGIs are thought to 
silence intragenic promoters. Intragenic methylation positively correlates with transcription and could also si-
lence repetitive elements, or participate in alternative splicing events. Intergenic methylation has a role in silenc-
ing repetitive DNA elements, and probably in regulating certain enhancers. 

 

2.2.3. DNA methylation and transcription influence one another 
Given that the roles of DNA methylation are so context-dependent, what do we know about the mech-
anistic and causal relationship between DNA methylation and gene expression? The emerging picture 
involves the complex interaction between DNA methylation, nucleosomes, MBPs and methylation-
sensitive TFs [151] (Figure 13). DNA methylation can impair the binding of specific TFs to DNA 
[152–155], recruit transcriptionally repressive MBPs [156–159], and affect nucleosome positioning 
[160]. In their methylated state, promoter CGIs are bound by MBPs, which in turn prevent the binding 
of methyl-CpG binding TFs; in their unmethylated state, promoter CGIs are bound by CXXC domain–
containing complexes that activate transcription. This scenario does not fit well transcription of genes 
with CpG-poor promoters though, as MBPs are sensitive to the local density in CpGs [161]. At en-
hancers, methylation can prevent the binding of methyl-sensitive TFs, or attract methyl-CpG binding 
TFs, leading to either gene activation or repression. Nevertheless, while it is now acknowledged that 
DNA methylation influence TF binding, it also seems that TF binding itself as well as transcription 
shape DNA methylation patterns, a situation very reminiscent of the feedback loops often observed in 
biology (Figure 14). In cancer for example, gene silencing precedes the establishment of DNA meth-
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ylation at CGI promoters [130,162–164]. DNA methylation subsequently happens because inactive 
genes are often more susceptible to de novo methylation, providing added stability to the silent state 
[136] (Figure 15). Interestingly, while transcription of a gene harbouring a methylated CGI in its pro-
moter is unheard of, a gene containing an unmethylated CGI in its promoter is not necessarily tran-
scribed [132]. In this respect, methylation at promoter CGIs could be seen as a sort of genomic “rust” 
that accumulates when a gene is not in use [165]. Therefore, methylation at promoter CGIs is not 
the mechanism triggering silencing, but rather the mechanism allowing gene expression to become 
“locked”. At CpG-poor regions, methylation can change as a result of TF binding [166–168], and 
does not necessarily impair the binding of these TFs [166]. The current data suggest that TF binding 
is the central event that mediates concerted changes in other regulatory mechanisms determining 
chromatin states, accessibility, and conformation [169]. The issue of causality in CpG-poor regions is 
far from being solved, and it seems that DNA methylation is much more complex and context-
dependent than previously thought. 

 
Figure 13. Models of transcriptional regulation by DNA methylation. 

(a) The 'old' textbook model describing how DNA methylation regulates transcription. Left, methylated CpG-
island promoters (P) recruit transcriptionally repressive MBD proteins and prevent transcription-factor binding. 
Right, nonmethylated CpG islands are bound by transcription factors. (b) New models describing regulation of 
transcription by DNA methylation. Left, genes with methylated CpG-island promoters are repressed by repres-
sive MBD-containing complexes. In addition, methylation of an enhancer (E) can block binding of a transcrip-
tion factor. Right, most active genes with nonmethylated CpG-island promoters are bound by CXXC domain–
containing activator complexes. In addition, transcription factors bind to nonmethylated enhancers. Finally, gene 
bodies of active genes are highly methylated, and this serves to repress cryptic transcription. (c) Uncoupling 
between DNA methylation and repression of transcription initiation. In some cases, such as during early verte-
brate development, some methylated promoters with low CpG density are actively transcribed. Transcriptionally 
repressive MBD proteins do not interact with these promoters, for yet-unknown reasons. Furthermore, some 
DNA sequences with low CpG density (including enhancers and promoters) can be bound by activating tran-
scription factors. H3K4me3, trimethylated histone H3 Lys4, a promoter-associated histone mark associated with 
active transcription. Taken from [151] 
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Figure 14. Potential scenarios for the interplay between cytosine methylation (shown by level of 5-
methylcytosine) and transcription-factor binding. 

(a) A methylation-insensitive transcription factor causes reduced methylation after binding. (b) A transcription 
factor binds specifically to the methylated state of its binding site. (c) A methylation-sensitive transcription fac-
tor is blocked by 5-methylcytosine (5mC). (d) Methyl-CpG-binding domain (MBD) proteins bind to the methyl-
ated state, leading to indirect repression, which probably requires high local density of CGs (shading). (e) A 
methylation-insensitive transcription factor functions as a pioneer factor and creates a site of reduced methyla-
tion that allows a methylation-sensitive factor to bind. Taken from [87] 
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Figure 15. Silencing precedes DNA methylation. 

Active promoters and enhancers have nucleosome-depleted regions (NDRs) that are often occupied by transcrip-
tion factors and chromatin remodellers. Loss of factor binding — for example, during differentiation — leads to 
increased nucleosome occupancy of the regulatory region, providing a substrate for de novo DNA methylation. 
DNA methylation subsequently provides added stability to the silent state and is likely to be a mechanism for 
more accurate epigenetic inheritance during cell division. The example given is for the OCT4 and NANOG 
genes, and its generality is not yet known, but inactive genes are often more susceptible to de novo methylation 
than their more active counterparts. In the figure, OCT4 binding is shown and NANOG binding is not shown, 
although its expression is required. Recent experiments have demonstrated that the methylation must be removed 
by active and/or passive processes to reactivate the gene. DNMT3A, DNA methyltransferase 3A; siRNA, small 
interfering RNA. Taken from [136] 

2.2.4. Genetic influences on DNA methylation 
It is now largely documented that genetic polymorphisms located in the vicinity of TF binding sites 
impact TF binding [170,171], but since TF binding and DNA methylation are so tightly linked, can 
genetic polymorphisms impact DNA methylation patterns? Recent studies have shown that not only 
do genetic polymorphisms impact DNA methylation, but the vast majority of inter-individual varia-
tions in methylomes are caused by genetic polymorphisms [172,173]. In fact, methylome variations 
are so tightly linked to the underlying DNA sequence that Whitaker et al. developed a pipeline called 
Epigram that uses DNA motifs to predict the methylation status at tissue-specific differentially meth-
ylated regions (DMRs) from 18 human tissues [174]. The regions associated with differential methyl-
ation levels have been termed methylation QTLs (meQTLs) and have been identified in a wide varie-
ty of human tissues [175–187]. Although mostly located in cis (i.e. close to the CpG site they regu-
late), a small number of meQTLs have also been uncovered in trans [188,189]. Moreover, there is 
substantial overlap between meQTLs detected in blood and in the brain, suggesting that some meQTLs 
could exert ubiquitous effects on DNA methylation [182]. 
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How do genetic variants cause differential DNA methylation? If a mutation is located directly on a 
CpG, a methylation site is removed or added, thus allowing or preventing methylation to happen. If a 
mutation is not directly located on a CpG, the proposed model is that this mutation lies within a regu-
latory region and affects TF binding, which in turn influences DNA methylation [87,169] (Figure 16). 
An alternative explanation is that the mutation happens directly in the TF, changing its ability to bind 
DNA, which in turn influences DNA methylation [87]. However, differences in methylation caused by 
genetic variants do not necessarily result in differences in gene expression [169]. Clearly, a lot more 
research is needed in order to assess issues of causality, the order of regulatory events, and the direc-
tion of effects. 

 
Figure 16. Potential DNA sequence determinants of cytosine methylation at CpG-poor regions. 

In a simplified model, transcription-factor binding causes reduced methylation at its binding site. Loss of expres-
sion of the respective transcription factor in development or disease will cause increased methylation. Mutations 
to the transcription factor that affect its binding preference will influence genomic methylation patterns. Muta-
tion in the DNA binding site will abolish binding even in a cell expressing the transcription factor, indicating 
how genetic variation can result in methylation differences between individuals. Taken from [87] 

3. Studying DNA methylation in the context of obesity 
The past few years has seen a marked increase in the number of studies investigating the relationship 
between DNA methylation and obesity, particularly since obesity was classified as a disease by the 
American Medical Association [9]. We have gained interesting insights into the importance of DNA 
methylation in the context of obesity, but we are now aware of the biological, bioinformatical and 
statistical limitations of these studies. From observational to interventional studies, from animal mod-
els to human studies, what have we learned on the implication of DNA methylation in the pathogene-
sis of obesity? 

3.1. Measuring DNA methylation 
Before reviewing the literature on what we already know about DNA methylation in the context of 
obesity and its complications, it is important to know that the information generated by methylation 
studies is highly dependent on the technique used. More than 30 different assays have been developed 
using PCR, endonuclease digestion, affinity enrichment or bisulfite conversion to look at global 
methylation levels, region-specific methylation and genome-wide methylation (spanning the entire 
genome) [190,191] (Table 3). All of these techniques have their own advantages and caveats that are 
important to keep in mind when interpreting results (Table 4). Techniques looking at global methyla-
tion level allow to obtain information on the % of 5meC in the sample, but do not give information on 
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the % of 5meC at specific locations in the genome. On the contrary, techniques looking at genome-
wide methylation will give the % of 5meC at known locations in the genome. The genome coverage 
of these techniques varies greatly, from 8 to 100% for global methylation assays, and from 0.12% to 
100% for site-specific methylation assays (Figure 17). For instance, high performance liquid chroma-
tography ultraviolet (HPLC-UV) and whole-genome bisulfite sequencing (WGBS) have 100% ge-
nome coverage and represent the gold standards of global and region-specific DNA methylation as-
sessment, respectively. Another important aspect to keep in mind is that DNA samples are usually 
derived from a pool of different cells which may vary in their 5meC levels [191]. Many techniques can 
read the methylation level of a target sequence on individual DNA strands (e.g. reduced representation 
bisulfite sequencing (RRBS), WGBS, methylated DNA immunoprecipitation (MeDIP)-seq) (Figures 
17-18) but the more popular Infinium beadarrays read a methylation level that has been averaged over 
many DNA molecules (Figure 17). Allele-specific methylation can yield interesting information on 
the co-occurrence of 5meC on the same DNA strand, and potential insights into the function and regu-
lation of DNA methylation at the target sequence (Figure 19). Finally, it should be noted that all the 
aforementioned techniques do not allow the discrimination of 5meC from 5hmC, but there are diges-
tion- and antibody-based techniques available [190]. 

 

 
Table 3. Main principles of region-specific DNA methylation analysis. 

AIMS, amplification of inter-methylated sites; BC–seq, bisulphite conversion followed by capture and sequenc-
ing; BiMP, bisulphite methylation profiling; BS, bisulphite sequencing; BSPP, bisulphite padlock probes; 
CHARM, comprehensive high-throughput arrays for relative methylation; COBRA, combined bisulphite re-
striction analysis; DMH, differential methylation hybridization; HELP, HpaII tiny fragment enrichment by liga-
tion-mediated PCR; MCA, methylated CpG island amplification; MCAM, MCA with microarray hybridization; 
MeDIP, mDIP and mCIP, methylated DNA immunoprecipitation; MIRA, methylated CpG island recovery as-
say; MMASS, microarray-based methylation assessment of single samples; MS-AP-PCR, methylation-sensitive 
arbitrarily primed PCR;MSCC, methylation-sensitive cut counting; MSP, methylation-specific PCR; MS-
SNuPE, methylation-sensitive single nucleotide primer extension; NGS, next-generation sequencing; RLGS, 
restriction landmark genome scanning; RRBS, reduced representation bisulphite sequencing; –seq, followed by 
sequencing; WGSBS, whole-genome shotgun bisulphite sequencing. Taken from [191] 
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Table 4. Features and sources of bias for various techniques. 

‘•’ indicates that the method has this feature or potentially has this bias; ‘(•)’ indicates that the method has this 
feature to a limited extent or in some circumstances. BC–seq, bisulphite conversion followed by capture and 
sequencing; BSPP, bisulphite padlock probes; –chip, followed by microarray; MeDIP, methylated DNA 
immunoprecipitation; RRBS, reduced representation bisulphite sequencing; –seq, followed by sequencing; 
WGSBS, whole-genome shotgun bisulphite sequencing. Taken from [191] 
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Figure 17. Coverage of several global and genome-wide DNA methylation assays. 

Global DNA methylation assays do not give information on methylation at specific genomic regions. LINE-1 
(long interspersed nuclear elements) + pyrosequencing assesses methylation at repetitive elements; LUMA 
(luminometric methylation assay) assesses methylation at CCGG sites. Among the genome-wide methylation 
assays, only WGBS (whole genome bisulfite sequencing) and RRBS (reduced representation bisulfite sequenc-
ing) can discriminate the maternal and the paternal DNA strands and only they can detect methylation out of the 
CpG context (CpH). The very popular 27k, 450k and EPIC chips target 99% of Refseq gene promoters and some 
known enhancers but have very low whole genome coverage. MSCC (methylation sensitive cut counting) will 
yield information on methylation at restriction enzyme sites, such as HpaII sites. 
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Figure 18. Typical representation of the results for DNA methylation after bisulfite sequencing. 

The PCR product is cloned, and several randomly selected plasmids are sequenced. Taken from [190] 

 
Figure 19. Illustration of the information yielded by allele-specific and non allele-specific methylation assays. 

A non allele-specific methylation assay would detect a 50% methylation rate at every one of the CpG positions. 
However, a methylation assay that can discriminate between both DNA strands would reveal that in the top pan-
el, one DNA strand is entirely methylated while the other is completely unmethylated, and it would reveal that in 
the bottom panel, methylated CpGs are not located on the same strand. This can be important to understand how 
DNA methylation is regulated, how genetic variants can impact DNA methylation, and how DNA methylation 
can act on transcription. Adapted from [190] 

3.2. What we already know about DNA methylation in the context of obesity 
3.2.1. The link between energy homeostasis and DNA methylation 
Obesity is above all a long-term disturbance of energy homeostasis that involves major tissues such as 
the adipose tissue, brain, digestive tract, liver, pancreas and skeletal muscle (Figure 20). Energy ho-
meostasis relies on the balance between catabolism and anabolism, two antagonist cellular process-
es sensitive to nutrient, endocrine and neuronal inputs. At the molecular level, the presence of amino 
acids, glucose, insulin, leptin, fatty acids and cholesterol (during moments of positive energy balance), 
or the presence of glucagon and ghrelin (during moments of negative energy balance), are sensed by 
ligand-dependent or cell membrane receptor-dependent TFs that translocate to the nucleus to activate 
or repress gene expression [192] (Figure 21). Gene expression is then finely tuned by co-regulators 
that include DNA methylation writers and erasers such as DNMTs and TET proteins. Yet, surprisingly 
few studies have investigated DNA methylation changes during the normal feeding/fasting cycle and 
energy homeostasis of healthy subjects. At the organismal level, the tissue-specific conditional knock-
out of Dnmt3a in the paraventricular nucleus of the hypothalamus led to hyperphagia, decreased ener-
gy expenditure, and glucose intolerance with increased serum insulin and leptin, suggesting that 
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Dnmt3a is required for normal energy homeostasis in mice [193]. In humans, Barrès et al. were the 
first to demonstrate that skeletal muscle contraction during a single bout exercise causes rapid DNA 
demethylation followed by remethylation at promoters of candidate genes important for metabolism 
(peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1A), transcription factor 
A, mitochondrial (TFAM), peroxisome proliferator-activated receptor beta (PPARδ) and pyruvate de-
hydrogenase kinase 4 (PDK4)). Interestingly, only high-intensity (vs. low-intensity) exercise could 
cause these changes [93]. In a later well-designed study, Lindholm et al. found modest (<10%) but 
widespread DNA methylation changes in skeletal muscle after 3 months of endurance training in 
healthy men and women [194]. These methylation changes were enriched in intergenic regions and 
enhancers, and there were coordinated transcriptional changes corresponding to structural remodelling 
of the muscle and glucose metabolism, inflammatory/immunological processes and transcriptional 
regulation. A few in vitro studies also support the implication of DNA methylation in energy homeo-
stasis to some extent. The presence of glucose and insulin leads to the enhancement of DNMT activity 
and global DNA methylation measured by HPLC in the human HepG2 cell line [195]. Pancreatic islets 
treated with palmitate [196], and THP-1 monocytes treated with arachidonic or oleic acid [197] dis-
played small (<3%) and widespread methylome changes that were not significant at the genome-wide 
level. This is in line with another study suggesting that acute changes in methylation may not be a 
predominant mechanism for controlling fatty acid-induced changes in mRNA in skeletal muscle, and 
that it may apply to only a few genes such as PPARδ [198]. Still, some of the top differentially meth-
ylated genes in pancreatic islets and monocytes were accompanied by corresponding changes in gene 
expression [196,197]. However, it should be noted that these studies used the Illumina 
HumanMethylation 450k beadchip that assesses only ~2% of all CpG sites in the genome. 

 
Figure 20. Whole-body energy homeostasis. 

A simplified view of the major tissues involved in the regulation of whole-body energy homeostasis and their 
contributions to anabolic and catabolic control and hormone release is shown. AAs, amino acids; FA, fatty acid; 
FAO, fatty acid oxidation; FFAs, free fatty acids; IL, interleukin; TNF, tumour necrosis factor. Taken from [192] 
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Figure 21. Transcriptional regulatory networks in positive and negative energy balance. 

A schematic summarizing the transcriptional responses to energy status in the organism. The figure is a simplifi-
cation, as these states and transitions between them are not always mutually exclusive. Depending on the energy 
state of the organism, cells have to amplify or repress specific energy pathways to guarantee appropriate energy 
utilization. This is accomplished in part by distinct TFs that mediate the expression of genes involved in anabolic 
or catabolic pathways. TFs are activated in response to metabolite signals associated with the anabolic or cata-
bolic state, including relative concentrations of amino acids (AAs), glucose and fatty acids (FAs) present in the 
cytoplasm. In negative energy balance, AAs, glucose and FAs, which are generated from storage molecule 
breakdown (protein degradation, glycogenolysis and lipolysis, respectively), are directed primarily into energy-
yielding pathways. During positive energy balance excess metabolites are directed into pathways facilitating 
energy storage. AgRP, Agouti-related peptide; AMPK, AMP-activated protein kinase; cAMP, cyclic AMP; 
ChREBP, carbohydrate-responsive element-binding protein; CREB, cAMP-responsive element-binding protein; 
FAO, fatty acid oxidation; FOXO1, forkhead box O1; FXR, farnesoid X receptor; HNF4α, hepatocyte nuclear 
factor 4α; IRS, insulin receptor substrate; JAK, Janus kinase; LDL, low-density lipoprotein; LXR, liver X recep-
tor; mTORC1, mammalian target of rapamycin complex 1; Ox-Phos, oxidative phosphorylation; PI3K, 
phosphoinositide 3-kinase; PIP3, phosphatidylinositol-3,4,5-trisphosphate; PKA, protein kinase A; PKC, protein 
kinase C; POMC, pro-opiomelanocortin; PPAR, peroxisome proliferator-activated receptor; RXR, retinoid X 
receptor; SREBP, sterol regulatory element-binding protein; STAT, signal transducer and activator of transcrip-
tion; TG, triglyceride. Taken from [192] 
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It is worth stating that beside energy homeostasis, DNA methylation and diet are intricately re-
lated (Figure 22). For instance, curcumin [199] and green tea catechins [200] are potent DNMT in-
hibitors. DNA methylation requires the methyl donor S-adenosylmethionine (SAM) as a substrate 
which is produced from methionine and ATP in one-carbon metabolism [201]. SAM levels can be 
altered through diet [202], and there is now overwhelming evidence that dietary intake of methyl do-
nors (e.g. folate) is closely linked to levels of DNA methylation [203]. Other micronutrients such as 
vitamins B12, B6 and B2 are involved in SAM metabolism [204] and can potentially impact DNA 
methylation levels, but this has not been tested. Conversely, DNA demethylation is also related to diet. 
The removal of methyl groups by TET proteins depends on Fe(II) and α-ketoglutarate, an intermediate 
of the tricarboxylic acid cycle and catabolic metabolism of glutamine [205]. Although it is not known 
whether TET proteins can sense α-ketoglutarate levels [201], fumarate and succinate (two other inter-
mediates of the tricarboxylic acid cycle) inhibit TET, suggesting that the relative concentrations of 
these metabolites may regulate TET enzymatic activity [206]. Therefore, there is a profound link be-
tween DNA methylation and metabolism, suggesting that the long-term impairment of energy balance 
could lead to adverse DNA methylation changes themselves causally involved in the disease.  

 
Figure 22. The interface between metabolism and epigenetic regulation of transcription. 
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Metabolites from major biochemical pathways participate in chromatin regulation, leading to changes in tran-
scriptional regulation. The tricarboxylic acid (TCA) cycle and β-oxidation provide acetyl-CoA, the substrate for 
histone acetyltransferases (HATs) to acetylate histones. One-carbon metabolic pathways provide S-
adenosylmethionine (SAM), the substrate for histone methylation. β-oxidation also leads to the production of 
propionyl-CoA and butyryl-CoA, which can be further processed into crotonyl-CoA; all three coenzymes are 
substrates for the respective histone modification. AMP/ATP levels determine the activity of AMP-activated 
protein kinase (AMPK), which has been shown to phosphorylate histones. α-KG, α-ketoglutarate; β-OHB, β-
hydroxybutyric acid; ARTD1, ADP-ribosyltransferase diphtheria toxin-like 1; co-REG, co-regulator; DNMT, 
DNA methyltransferase; GlcNAc, N-acetylglucosamine; HDAC, histone deacetylase; HMT, histone 
methyltransferase; JHDM, JmjC domain-containing histone demethylase; LSD1, lysine-specific demethylase 1; 
OGT, O-linked N-acetylglucosamine transferase; p300/CBP, p300 and CREB-binding protein; Pol II, RNA 
polymerase II; SIRT, sirtuin; TF, transcription factor; TET, ten-eleven translocation methylcytosine 
dioxygenase; TSS, transcription start site. Taken from [192] 

3.2.2. DNA methylation and obesity in childhood and adulthood 
We have previously seen that epigenetic modifications can give cells a memory of their past gene ac-
tivity and potentiate their future activity. We have also seen that DNA methylation and energy homeo-
stasis are intricately intertwined. Is it possible then that repeated obesogenic exposures would cause 
shifts in DNA methylation patterns in tissues important for energy homeostasis? If so, how stable are 
these DNA methylation changes, and how relevant are they in the development of obesity? 

If DNA methylation variations in normal metabolic conditions have received little attention, DNA 
methylation patterns of obese individuals have been extensively studied in both humans and mice 
[207–210]. In humans, studies of global methylation conducted in peripheral blood leukocytes did 
not show any consistent correlation with BMI regardless of whether methylation was assessed at repet-
itive elements [211–222] or as %5meC by HPLC, Elisa or flow cytometry [223–226]. This might be 
explained by the existence of a non-linear relationship between global methylation and BMI [222], or 
by methylation changes limited to specific blood cell types [226]. Conversely, a small positive asso-
ciation between global methylation and body fat or T2D was found in muscle [227] and adipose tissue 
[228–230]. A plethora of studies have chosen a candidate-gene approach whereby methylation levels 
in the promoters of genes implicated in obesity, appetite control and/or metabolism, insulin signalling, 
immunity, growth, circadian rhythm and imprinted genes, were tested for association with a variety of 
obesity markers [209]. They have notably revealed strong hypermethylation of the PGC-1α promoter 
in pancreatic islets [231], skeletal muscle [91,227,232] and liver [233] in insulin resistant patients. In 
blood, hypermethylation was noted at POMC [234,235] and hypomethylation at TNF-α [236,237] and 
LEP [238–241]. Finally, only two studies have looked at mitochondrial methylation in leukocytes 
[242] and liver [243], but they have uncovered strong hypermethylation in obesity, T2D and nonalco-
holic steatohepatitis. Hypothesis-free epigenome-wide associations studies (EWASs) of obesity-
related traits have also flourished in the past few years, to gain insight into the tissue-specific entire 
methylomes of metabolically sick individuals. They have revealed mostly small (<10%) but wide-
spread methylation differences in blood [244–261], liver [262,263], adipose tissue [230,258,261,264–
266], and sperm [267]. The identified DMRs are usually overrepresented in open sea and underrepre-
sented in CGIs and promoters. Interestingly, some loci have been replicated across tissue types, ages 
and ethnicities, thanks to the wide use of the Illumina HumanMethylation 450k beadchip. The most 
promising locus lies within the first intron of hypoxia inducible factor 3 alpha subunit (HIF3A), where 
a positive association between methylation and adiposity phenotypes has been seen in neonates, chil-
dren, adolescents and adults, across whole blood, adipose, peripheral blood lymphocytes, umbilical 
cord blood and umbilical cords, in European Caucasians, Asians and African–Americans [268]. Also, 
sites in ATP-binding cassette sub-family G member 1 (ABCG1) and 
phosphoethanolamine/phosphocholine phosphatase (PHOSPHO1) were associated not only with T2D, 
but also with future incidence of T2D across whole bloods, adipose tissue and skeletal muscle in Eu-
ropean Caucasians, Mexican-Americans and Indian Asians [230,256–258,269,270]. Most of these 
EWAS have performed gene-enrichment analysis and have showed enrichment for pathways relevant 
for obesity and cancer. 

Interventional studies are less common than observational studies for practical reasons and they 
often involve fewer participants, but they can give better clues about causality and the sequence of 
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events leading to obesity. Short-term high-fat overfeeding of healthy young men resulted in modest 
genome-wide DNA methylation changes in adipose tissue [271] and in skeletal muscle [272]. Interest-
ingly, the methylation changes in skeletal muscle were only partly reversible after 6-8 weeks [272], 
suggesting that the methylome can keep track of obesogenic events with potential build-up over time. 
Of note, overfeeding resulted in the hypermethylation in the promoter of PGC-1α in skeletal muscle 
that was reversible [273], while 9 days of forced physical inactivity did not yield any change [274]. In 
vitro, different fatty acids were demonstrated to exert distinct effects on the methylome of monocytes 
[197], and severe obesity dampened the methylation changes induced by lipid exposure in skeletal 
muscle [198]. Weight loss interventions, either surgical or lifestyle-based, can induce important site-
specific methylation changes in several tissues. In blood, there was no consistent change in methyla-
tion at the global level [221,275], but important changes at the site-specific level [276,277] after nutri-
tional intervention. A 6 month-long exercise-based intervention lead to the remodelling of skeletal 
muscle [278] and adipose tissue [279] methylomes of men. Although the LEP promoter can be con-
trolled by methylation, weight-loss induced changes in leptin expression do not seem to be methyla-
tion-dependent [280]. In an elegant cross-species study, DMRs identified by dietary manipulation of 
mice turned out to be conserved in obesity and reversed by gastric bypass in men [210]. Dramatic 
weight loss induced by gastric bypass was reported to cause important methylation changes in blood 
[281], skeletal muscle [232], adipose tissue [282] and sperm [267]. Distinct methylation patterns were 
observed in blood, adipose and sperm from the same individuals after surgery, suggesting that changes 
are tissue-specific [267]. However, methylation aging of the liver caused by obesity is not reversed 
after bariatric surgery [283].  

Overall, these results show that DNA methylation correlates with obesity-related traits and that the 
methylome is sensitive to obesogenic events and reflects weight changes, in a site-specific and tissue-
specific manner, although a few sites have been found across several tissues. However, it is important 
to keep in mind that methylation changes observed after interventions such as lipid exposure, over-
feeding, weight loss programs or gastric bypass surgery might not be directly caused by these inter-
ventions. For instance, bariatric surgery is a drastic weight loss strategy that also strains the body on 
several other levels (e.g. nutrient deficiency [284], anaemia [285], osteoporosis [286]), so it is difficult 
to disentangle weight loss-induced methylation changes from methylation changes caused by other 
side effects. 

3.2.3. DNA methylation and predisposition to obesity: effects of risk variants and developmental 
programming 
DNA methylation is associated with obesity and is sensitive to lifestyle interventions, but can it also 
modulate the degree of response to obesogenic environments? Can DNA methylation levels exacer-
bate or dampen the effects of obesogens and weight loss interventions? Does DNA methylation ex-
plain why some people are “high responders” and others “low responders” to the same environmental 
exposures? 

One hypothesis that has gained support recently is that parental health status and early life envi-
ronment can predispose the offspring to metabolic diseases, a concept that is part of the developmen-
tal origins of health and disease (DOHaD) (Figure 23). One possible mechanism mediating these 
effects is the alteration of DNA methylation patterns. Indeed, early-life socio-economic conditions, 
nutrition, maternal smoking, alcohol consumption and gestational diabetes have been shown to affect 
DNA methylation of the offspring in a sex-specific and time-specific manner. Most of the evidence so 
far comes from animal models, human studies being more limited, extremely heterogeneous and 
somewhat inconsistent [287–290]. For instance, differential methylation at genes important for metab-
olism [291,292], including lower methylation at the imprinted IGF2/H19 locus [293] was found in 
blood of adult offspring whose mothers experienced the Dutch famine of 1944. This effect was only 
visible for mothers who experienced famine during early gestation, and the IGF2/H19 
hypomethylation was more visible in men than in women [291]. While this cohort provides a unique 
opportunity to study the effects of undernutrition in utero, stress experienced by the mothers because 
of the war and the very harsh winter are potential confounders. It should also be noted that there was a 
high perinatal mortality and only the children who survived were studied. In rural Gambia where there 
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are strong variations of food availability depending on the time of year, Waterland et al. contrasted 
global methylation levels between children conceived during the rainy season (proxy for a period of 
low intake of methyl donors) and children conceived during the dry season (proxy for a period of high 
intake of methyl donors). They found higher methylation in the blood of 8 year-old children that had 
been conceived during the rainy season, which argues towards an influence of maternal diet on the 
offspring’s methylome, but the effect was in opposite direction to what was expected (a reduction in 
methyl donors during the rainy season was expected to cause hypomethylation) [294]. Something may 
also be going on on the father’s side: it was recently shown that the sperm methylome carries signs of 
obesity [295] and that gastric bypass remodels the sperm methylome [267], but whether these modifi-
cations are effectively transmitted to the offspring is unknown. Even if all of these studies suggest an 
influence of early-life experiences on the foetal methylome, we are still far from knowing to what 
extent it is affected, to what extent it is beneficial or detrimental and which of these effects are site-
specific, tissue-specific, time-specific, sex-specific and ethnicity-specific. Heterogeneity in study de-
signs, lack of replication and control groups as well as impossibility to assess causation make it diffi-
cult to draw definitive conclusions on the matter. 

 
Figure 23. The complex metabolic networks that modulate fetal metabolic programming. 

This picture summarizes the putative molecular mechanisms linking impaired nutrient availability during the 
fetal period with adult chronic diseases such as metabolic and cardiovascular disorders, including coronary heart 
disease, T2D, and insulin resistance. The figure illustrates the concept that fetuses adapt to an impaired supply of 
nutrients (under- or overnutrition) by changing their physiology and metabolism, in particular by modulating the 
metabolic transcriptional program of target tissues. Epigenetic modifications, such as DNA methylation and 
covalent posttranslational histone modifications provide a molecular explanation of how these complex metabol-
ic networks coordinately influence fetal metabolic programming. A nutrient-restricted fetal environment may be 
more likely associated with the induction of changes in tissue structure and function, particularly in cardiovascu-
lar system, mainly regulated by growth factors. Conversely, a maternal “obesogenic” environment is more likely 
associated with metabolic reprogramming of glucose and lipid metabolism in the liver. Finally, two different 
hypotheses regarding whether fetal metabolic programming is controlled by metabolically active target tissues 
such as the liver, or is modulated by central neural pathways involved in appetite and energy balance regulation 
such as the hypothalamus are shown, and the concept of “mitochondrial programming” is introduced as operat-
ing on the modulation of metabolic function. IUFGR, intrauterine fetal growth restriction; LGA, large for gesta-
tional age; Mt, mitochondrial; SGA, small for gestational age. Adapted from [296] 

Response to obesogenic exposures and weight loss interventions may be modulated by methylation 
levels at baseline [297]. Being born with a low birth weight (LBW) is associated with an increased risk 
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of developing metabolic disorders later in life [298] (Figure 23). LBW subjects exhibit lower methyla-
tion in the promoter of PGC-1α in skeletal muscle [273] and epigenetic alterations in adipose tissue 
that potentially influence insulin resistance and risk of T2D [271]. One study showed that when chal-
lenged with high-fat overfeeding, PGC-1α mRNA levels dropped only in LBW subjects [273]. How-
ever, another study found that the entire adipose methylome of LBW and control participants respond-
ed in a similar manner to high-fat overfeeding [271]. Strong genome-wide methylation differences (up 
to 35% [276]) between high and low responders to nutritional interventions were identified at baseline 
in blood and adipose tissue [297], suggesting that DNA methylation levels can dampen or exacer-
bate responses to external stimuli. Is it possible that these differences in response are caused by the 
presence of SNPs near the methylation sites? Some SNPs have been shown to correlate with proximal 
DNA methylation levels, providing a potential link between risk variants and obesity susceptibility 
(Figure 24). For instance, a 7.7 kb region of haplotype-specific methylation was discovered at the FTO 
locus because of the presence of CpG-creating SNPs [299]. Polymorphisms in the adrenoceptor beta 3 
(ADBR3) candidate gene associated with ADBR3 methylation and with metabolic disturbances in men 
[300], and SH2B adaptor protein 1 (SH2B1) CpG-SNP associated with body weight reduction in obese 
subjects following a dietary restriction program [301]. However, at the genome-wide level, it seems 
that methylation differences observed in metabolically sick individuals [253] or in response to weight 
loss [267] are not driven by DNA sequence differences. Actually, in one large cohort study, methyla-
tion profiles predicted BMI independently of genetic profiles in an additive manner [255]. 

 
Figure 24. An approach for joint quantitative analysis of gene expression and regulatory QTLs. 
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(A) This example, using hypothetical data, shows a QTL that is associated with levels of both DNA methylation 
in an upstream CpG island (left) and gene expression (right). Though the example QTL shown here indicates 
higher DNA methylation due to a G allele (potentially in a CpG pair), SNPs associated with methylation do not 
necessarily always fall in CpG dinucleotides. (B) The observed correlation between DNA methylation and gene 
expression levels could be due to a few different underlying relationships, two of which we have highlighted 
here. The extent to which gene expression and regulatory differences are correlated through an intermediate 
variable is often tested using an approach called partial correlation analysis. This involves regressing out the 
effects of an intermediate variable—genotype in this example—from both DNA methylation and gene expres-
sion levels and then evaluating the residual correlation between the two variables (left). One possibility is that 
the QTL directly affects differences in DNA methylation, which then determine (cause) the gene expression 
level. Thus, gene expression is regulated by the genotype through the DNA methylation effects (middle), and the 
residual variance in gene expression levels will still be correlated to residual DNA methylation levels. Alterna-
tively, genotype is independently associated with both DNA methylation and gene expression levels—for in-
stance, by directly influencing changes in an upstream mechanism (such as transcription factor binding) that 
affects DNA methylation and gene expression levels. This would make DNA methylation and gene expression 
appear to be correlated, but not causally related (right), and the residual values no longer show any significant 
correlation). Taken from [169] 

 
Collectively, there is accumulating evidence that predisposition to obesity and responsiveness to 

lifestyle interventions is partly embedded in the methylome. The presence of SNPs at certain loci 
may contribute to this susceptibility through DNA methylation changes, but more research is needed 
to give a full picture of how the genome and the methylome interact in the pathogenesis of obesity. 

3.3. Challenges to face 
By nature, epigenomic studies, especially the ones performed at the genome-wide level, combine 

many of the difficulties of genetic studies, with difficulties inherent to epigenomics [302–305]. We 
will now review some of the most important biological and statistical issues that have not yet been 
fully addressed. 

3.3.1. Biological challenges 
In observational studies, it is usually impossible to determine whether the methylated regions that 
correlate with obesity-related traits are a cause or simply a consequence of the metabolic disturbance. 
In light of what we know about the sensitivity of DNA methylation to various environments and the 
establishment of obesity, it is likely that some methylation changes are slow, progressive and result 
from accumulated repetitions of metabolic stress while others, established early by risk variants or 
adverse early-life conditions, give an increased susceptibility to develop obesity. It is also conceivable 
that some of the DNA methylation changes caused by obesity would in turn confer an increased sus-
ceptibility to further develop obesity, thus fuelling a vicious cycle. However, we currently have very 
little idea of whether this is true or not and what specific genomic regions or tissues are involved. In-
terventional studies, longitudinal studies of monozygotic twins and randomized controlled trials 
are good designs to answer questions of causality, but they are extremely expensive and would need to 
be conducted over extended periods of time to truly mimic the pathogenesis of obesity and to accurate-
ly reproduce human weight trajectories. A technique called Mendelian randomization that uses 
meQTL has been recently developed to help answer causality issues [306] (Figure 25), and it was suc-
cessfully used to show that HIF3A methylation is likely a consequence of obesity [249,307], and that 
maternal hyperglycemia is part of causal pathways influencing offspring LEP epigenetic regulation in 
newborns [308]. 



 
 
 

46 

 
Figure 25. Two-step epigenetic Mendelian randomization: applying the principle of Mendelian randomization to 
DNA methylation as an intermediate phenotype. 

Genetic variants can be used as instrumental variables in a two-step framework to establish whether DNA meth-
ylation is on the causal pathway between exposure and disease. An overview of the two-step framework of this 
approach is shown. (A) First, an SNP is used to proxy for the environmentally modifiable exposure of interest 
and (B) secondly, a different SNP is used to proxy for DNA methylation levels. Taken from [306] 

This causality issue brings about another problem: how do we appropriately define individuals at 
risk? Obesity and BMI are widely considered to be appropriate proxies for metabolic risk, but as much 
as a third of individuals deemed obese are in fact metabolically healthy [309,310] (Figure 26)! And 
even if these variables may be useful at a large-scale population level, the sample sizes often used in 
the aforementioned studies are probably too small to justify the use of BMI or weight category. Using 
better proxies for metabolic risk such as waist circumference and central adiposity will likely give 
better estimates and statistical inferences. The methylomes of obese individuals are often tested at a 
single point in time, but their weight trajectories (i.e. weight gain, loss and regain) may be more im-
portant for disease susceptibility. A recent study revealed important differences in mortality between 
those who lost weight, those who remained obese and those who were never obese; strikingly, mortali-
ty was similar in individuals who remained obese and formerly obese individuals who lost weight 
[311] (Figure 27). This could be explained by the fact that obesity at a particular age may predispose 
to illness, regardless of weight at higher ages, and the fact that weight loss is often associated with 
illness such as diabetes and cardiovascular disease. Studies considering weight trajectories and weight 
maintenance will therefore yield results that are more useful from a clinical perspective. 
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Figure 26. Factors that might distinguish metabolically healthy but obese individuals from metabolically ab-
normal obese subjects despite a similar fat mass. 

Adapted from [310] 

 
Figure 27. Age-standardized mortality rates for individuals who were normal weight at survey, stratified by 
maximum BMI. 

Normal weight, 18.5–24.9 kg/m2; overweight, 25.0–29.9 kg/m2; obese, 30 kg/m2 and above. Mortality rates were 
age-standardized to the US 2000 Census, using 5-y age groups between 50 and 84 y. Estimates are weighted and 
account for complex survey design. Taken from [311] 

The temporal aspect is really a central issue in epigenomic studies. Contrary to the genome (with 
the exception of rare mutations), the methylome is flexible and sensitive to many environmental in-
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sults throughout life. And precisely because the epigenome can be modulated by so many factors (e.g. 
SNPs, early-life environment, diet, physical activity, age, smoking, sex, etc.), confounders are omni-
present and difficult to fully account for. It would help to have a better picture of what a “normal” 
epigenome looks like in different tissues, but the natural and stochastic variations of the methylome 
are poorly characterized. However, what is perhaps more important than trying to account for all po-
tential confounders is to know the effect sizes of these confounders, and to what extent they can bias 
the results of a given study. In particular, given the high sexual dimorphism often seen in animal 
models of early-life exposures, differences between sexes as well as ethnicities need to be better con-
sidered. 

Perhaps the thorniest and most recurrent problem in epigenomics is tissue-specificity. DNA methyla-
tion patterns are highly tissue-specific [84], to the point where intra-individual between-tissue varia-
tion in DNA methylation greatly exceeds inter-individual differences [176]. For instance, the associa-
tion between BMI and HIF3A methylation was seen in blood but not in skin [249]. However, there is 
often limited availability of metabolically relevant tissues in humans so many studies are performed in 
blood. Some methylation changes associated with metabolic traits may be found both in blood and 
other tissues [176], but as methylation changes reflect tissue-specific responses to environmental stim-
uli, this will likely concern only a limited number of methylation sites. Depending on the goal of the 
study, it is important to replicate changes seen in blood in the relevant tissue: studies that seek to better 
understand the mechanistic link between the epigenome and the pathogenesis of obesity need to rep-
licate their findings in their tissue of interest; however, studies that only aim at finding biomarkers for 
specific outcomes (e.g. obesity risk, weight loss response to T2D susceptibility) do not need to repli-
cate their findings in other tissues, as it is blood that will be used to assess risk in patients [312]. 
Moreover, cell-type heterogeneity within a given tissue poses an additional problem, as observed 
methylation differences may actually be only due to differences in cell type composition. This is par-
ticularly true in blood, a tissue made of widely heterogeneous cells such as monocytes, granulocytes, 
T-cells and B-cells [313]. This is a huge concern in obesity, since obesity itself results in an inflamma-
tory state in metabolic tissue and a change of blood cell type composition [314] (Figure 28). When 
flow cytometry is possible, cell counts can be used to adjust for cell type composition [315], but recent 
bioinformatical techniques have been developed to infer this cell type composition by relying only on 
DNA methylation patterns [313,316]. However, these adjustments may not be sufficient if cell type 
compositions are too heterogeneous, so studying the methylomes of specific cell types may be neces-
sary yet difficult to achieve. 
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Figure 28. Phenotypic modulation of adipose tissue. 

Adipose tissue can be described by at least three structural and functional classifications: lean with normal meta-
bolic function, obese with mild metabolic dysfunction and obese with full metabolic dysfunction. As obesity 
develops, adipocytes undergo hypertrophy owing to increased triglyceride storage. With limited obesity, it is 
likely that the tissue retains relatively normal metabolic function and has low levels of immune cell activation 
and sufficient vascular function. However, qualitative changes in the expanding adipose tissue can promote the 
transition to a metabolically dysfunctional phenotype. Macrophages in lean adipose tissue express markers of an 
M2 or alternatively activated state, whereas obesity leads to the recruitment and accumulation of M1 or classical-
ly activated macrophages, as well as T cells, in adipose tissue. Anti-inflammatory adipokines, including 
adiponectin and secreted frizzled-related protein 5 (SFRP5), are preferentially produced by lean adipose tissue. 
In states of obesity, adipose tissue generates large amounts of pro-inflammatory factors, including leptin, 
resistin, retinol-binding protein 4 (RBP4), lipocalin 2, angiopoietin-like protein 2 (ANGPTL2), tumour necrosis 
factor (TNF), interleukin-6 (IL-6), IL-18, CC-chemokine ligand 2 (CCL2), CXC-chemokine ligand 5 (CXCL5) 
and nicotinamide phosphoribosyltransferase (NAMPT). Obese individuals with adipose tissue in a metabolically 
intermediate state have improved metabolic parameters, diminished inflammatory marker expression and better 
vascular function compared with individuals that have metabolically dysfunctional adipose tissue. Metabolically 
dysfunctional adipose tissue can be associated with higher levels of adipocyte necrosis, and M1 macrophages are 
arranged around these dead cells in crown-like structures. Taken from [317] 

3.3.2. Statistical and bioinformatical challenges 
The bioinformatic and biostatistic treatment of DNA methylation data is a field in rapid expansion, 
especially for DNA methylation data generated with no gold standard defined so far. 

Where in the genome should we look to find relevant DMRs in relation to obesity? Given our lim-
ited knowledge on the function of DNA methylation outside of promoters, most candidate-gene stud-
ies have focused on gene promoters, and the first genome-wide DNA methylation chip developed by 
Illumina (HumanMethylation 27k beadchip) also targeted gene promoters. While these regions are 
known to be involved in the regulation of developmentally expressed housekeeping genes and have an 
important role in the pathogenesis of cancer [303], we do not know whether they are prominent ge-
nomic loci in the pathogenesis of obesity. The development of the HumanMethylation 450k 
beadchip by Illumina has extended the interrogation of methylation sites within gene bodies, CpG-
poor promoters and between genes. Interestingly, most of the EWASs previously mentioned found an 
enrichment of DMRs in the open sea and enhancers, suggesting that regulatory regions and not pro-
moters may be the prominent targets in the pathogenesis of obesity. However, is the annotation of 
CpGs to certain genes and regulatory regions as straightforward as often mentioned in papers? A CpG 
that falls into the promoter of a gene or within a gene body is often automatically annotated to the gene 
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in question, but we can very well imagine that a region would serve as an enhancer in a tissue and as a 
promoter in another tissue. We need more information on the underlying chromatin state of specific 
tissues to appropriately assign CpGs to certain genes, and some international consortia (ENCODE, 
Roadmap Epigenomics, FANTOM5) have generated data that should help with that. Moreover, non-
CpG methylation deserves more attention since it was associated with T2D [91], markers of obesity 
[318], and it was shown to be sensitive to acute exercise [93] and gastric bypass surgery [318]. Finally, 
many studies have used gene enrichment tools to find significant enrichment in certain pathways. 
However, the gene enrichment tools that were initially developed for transcription microarray data 
may not be appropriate for methylation data. For instance, using gene set enrichment analysis on 
methylation data yields biased results because of differences in the numbers of CpG sites associated 
with different classes of genes and gene promoters [319]. 

Even if it covers 99% of RefSeq genes, the HumanMethylation 450k beadchip interrogates less than 
2% of all CpG sites in the human genome, so human methylome changes with obesity remain largely 
unknown. And what if obesity actually causes methylome changes that are very small but that target a 
very high number of genes and pathways, leading to big effects? Now that techniques like WGBS 
have been developed and become increasingly cheaper, we have the ability to assess the entire 
methylome. The question is: do we have the appropriate statistical tools to analyse it (Figure 29)? 
Studies have already had to deal with the multiple testing problem and often report only a couple of 
significant DMRs to keep the false positive rate at a certain level. To circumvent this issue, it is possi-
ble to restrict the analysis to certain regions, but then the global picture of the methylome is lost. It is 
also possible to average the methylation levels of proximal CpG sites since they are often correlated, 
but if only a single CpG site is important for the regulation of gene transcription, its variations with 
obesity would be diluted and go unnoticed. A recently developed R package called DMRcate makes 
use of methylation differences at single sites to find DMRs without loss of information, and it should 
be very useful in future EWASs [320]. Moreover, the reported effect sizes of most studies are ex-
tremely small and often close to the technical variability of the Illumina HumanMethylation beadchip 
(<5% methylation difference). Can a sample of only a few hundred individuals suffice to find robust 
methylation differences between groups that are that small? More importantly, what do these methyla-
tion differences actually mean? Are they biologically active? 
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Figure 29. Effective identification of differentially methylated regions in a highly annotated genome. 

a | An illustrative example of differences in DNA methylation within the promoter region of a gene and at an 
upstream enhancer. For easier visualization, DNA methylation data are shown for only three cases and three 
controls (a realistic number would be hundreds of samples) and for ten CpGs in total (dozens to hundreds of 
CpGs are realistic numbers for a typical promoter region). b | When DNA methylation levels between cases and 
controls are compared at the resolution of single CpGs, all multiple-testing-corrected q values > 0.05 and are 
therefore considered to be insignificant. c | When combining statistical evidence from neighbouring CpGs over a 
fixed distance (tiling regions highlighted in green), one region is identified as being significantly more methylat-
ed in cases than in controls (q value = 0.048). d | When combining statistical evidence across all CpGs that can 
be assigned to the same functional element on the basis of external genome annotation data, two DMRs are iden-
tified: the upstream enhancer (highlighted in purple) is significantly more methylated in cases (q value = 0.024), 
and the promoter region (in orange) is significantly more methylated in controls (q value = 0.045). The figure is 
based on the following statistical methods. Differences in DNA methylation at single CpGs (in b) are identified 
by unpaired, one-sided t tests, which assess whether or not the DNA methylation levels at the specific CpG are 
significantly higher in cases than in controls, and vice versa. The reason for using two separate one-sided tests 
lies in the ability to combine their results as described below; nevertheless, one two-sided test works equally well 
if no combination of P values is intended. For the tiling region analysis (in c), the locus is segmented into equally 
spaced regions, and the statistical significance for each of these regions is assessed using a generalization of 
Fisher’s method. This method combines the P values of all single CpGs that fall into the region while accounting 
for linear correlations between neighbouring CpGs (which are estimated to be ≤ 0.8 on the basis of empirical 
observations for genome-wide bisulphite-sequencing data). The annotated genome analysis (in d) uses external 
genome annotation data to focus the statistical analysis on those combinations of CpGs that are likely to work 
together as an epigenetic switch: for example, by deactivating a known promoter or enhancer element. In all 
three cases, q values are calculated as estimates of the multiple testing- corrected false discovery rate, and a q 
value of 0.05 is used as the significance threshold for each direction of the comparison. Note that in this example 
the analysis of tiling regions increases statistical power because neighbouring CpGs exhibit correlated changes in 
DNA methylation, and the incorporation of genome annotation data leads to further improvements, because the 
CpGs in the enhancer as well as those in the promoter exhibit a coordinated switch of their DNA methylation 
levels. Adapted from [321] 
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Clearly, many biological and bioinformatical issues need to be solved if we want to under-
stand how the methylome is modulated in the pathogenesis of obesity. How do obesity-associated 
gene variants act at the molecular level to cause an increased susceptibility to metabolic disorders? Are 
the obesogenic effects of environmental factors such as sleep deprivation and diet mediated by chang-
es in the epigenome? Do weight trajectories of mothers impact their offspring’s phenotype, and if so, 
is the epigenome involved? The following four papers are the result of three years of intense research, 
with the constant wish to keep updated with the latest development in the field and they give some 
new interesting insights into the interplay between our methylome and obesity. 
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Aims 

The overall aim of this thesis was to investigate epigenetic changes associated with genetic and en-
vironmental obesogenic exposures. We particularly focused on DNA methylation in relation to genetic 
risk variants, nutrition, sleep and developmental programming. 

More specifically, the aim of each paper was as follows: 
x In paper I, the aim was to see whether SNPs discovered in GWASs for obesity-related traits 

associated with proximal DNA methylation in blood. Furthermore, we wanted to function-
ally characterize the methylated CpGs associated with SNPs. 

x In paper II, the aim was to see whether dietary measures of fat intake associated with DNA 
methylation levels in blood. We specifically wanted to compare results obtained for 
measures of dietary fat quantity and dietary fat quality. 

x In paper III, the aim was to see whether one night of complete sleep deprivation could im-
pact the transcription and DNA methylation of four core circadian genes (CLOCK, BMAL1, 
PER1, CRY1) in adipose tissue and skeletal muscle of young healthy men. 

x In paper IV, the aim was to see whether chronic maternal obesity impacts foeto-placental 
growth and the expression of 60 epigenetic machinery genes and 32 metabolic genes in foe-
tal liver and placenta, using a mouse model. 
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Results 

Paper I 
In this first study, we tested associations between 52 SNPs that were previously identified in GWASs 
or meta-analyses to be associated with obesity traits, and proximal DNA methylation in whole blood 
of 355 healthy young individuals. The rationale for only testing methylation sites that were within 
500kb of each SNP was based on previous studies in various tissues that showed the presence of 
meQTLs essentially within 500kb of CpGs. Using a linear model adjusted for age, sex, weight catego-
ry and proxy for blood cell counts, we found that alleles at 28 of the 52 obesity-associated SNPs asso-
ciate with methylation levels at 107 proximal CpG sites. This suggests that carriers of obesity-
associated risk alleles display complex alterations of the gene regulatory landscape. 

To link these methylation differences to the pathogenesis of obesity, we then annotated these CpG 
sites to genes and chromatin states. Out of 107 CpG sites, 38 are located in gene promoters, including 
genes strongly implicated in obesity (MIR148A, BDNF, PTPMT1, NR1H3, POMC, LGR4, TUFM, 
SULT1A1, SULT1A2, APOBR, CLN3, SH2B1). We applied the chromHMM software to seven ge-
nome-wide patterns of histone modifications shared by the Roadmap Epigenomics project, in order to 
infer chromatin states in eleven metabolically relevant tissues. Interestingly, the 107 CpG sites were 
enriched in enhancers in PBMCs, and we sought to identify genes putatively regulated in cis or in 
trans by these CpGs. Using data from the FANTOM5 project and ChIA-PET libraries, we also found 
that the CpG sites were located in regions showing putative long-range interactions with nearby pro-
moters, including genes for which the corresponding SNPs are known eQTLs (C1QTNF4, CELF1, 
NUP160 and ADCY3). These results suggest that carriers of obesity-associated risk alleles display 
complex alterations of the gene regulatory landscape. We finally tested some of our initial findings in 
other tissues (skin fibroblasts, brain and adipose tissue), and some SNP-CpG associations were indeed 
replicated in skin fibroblasts. 

Our results strongly suggest that many obesity-associated SNPs are associated with proximal gene 
regulation, which was reflected by association of obesity risk allele genotypes with differential DNA 
methylation. This study highlights the importance of DNA methylation and other chromatin marks as 
a way to understand the molecular basis of genetic variants associated with human diseases and traits. 

Paper II 
In this second study, we tested associations between genome-wide blood methylation levels at gene 
promoters and dietary fat intake variables in a cohort of 69 Greek preadolescents. Not only did we 
investigate quantitative measures of dietary fat intake (proportion of energy intake derived from fat, 
cholesterol intake), but also qualitative measures of dietary fat intake (ratios between different fatty 
acids: MUFA/SFA, PUFA/SFA, (MUFA+PUFA)/SFA). Using a robust linear model adjusted for sex, 
weight category, Tanner stage and white blood cell count, we found that quantitative measures of fat 
intake associate with very few DMRs while qualitative measures of fat intake associate with many 
DMRs. This suggests that specific dietary fat profiles might cause physiological responses under-
pinned by DNA methylation changes. 

To link these DNA methylation associations to metabolic pathways, we looked more closely at the 
genes containing the DMRs. One of the five DMRs identified for the proportion of energy intake de-
rived from fat lied in the promoter of TXNIP, a gene known to play a role in inflammation, insulin 
secretion and sensitivity, glucose uptake and gluconeogenesis, and a gene that was found to be 
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upregulated by a high-fat diet in rodents. We performed gene enrichment analysis on the DMRs found 
for qualitative measures of fat intake, using two different online-based tools (CPDB and g:profiler): 
while no enrichment was found for MUFA/SFA, (MUFA+PUFA)/SFA showed enrichment in 5 path-
ways and PUFA/SFA showed enrichment in 34 pathways, including mechanism of gene regulation by 
peroxisome proliferators via PPARα, adipogenesis, the leptin pathway and IL6. 

Despite some limitations (small sample size, replication not tested in other tissues, impossibility to 
determine causality), this work was the first of its kind conducted in children and it led to the conclu-
sion that fat quality may influence DNA methylation on a large genomic scale. DNA methylation 
could be one of the molecular underpinnings of the different cell and physiological responses associat-
ed with different types of dietary fatty acids. 

Paper III 
In this third study, we tested whether one night of complete sleep deprivation could impact the tran-
scription and DNA methylation of four core circadian genes (CLOCK, BMAL1, PER1, CRY1) in adi-
pose tissue (AT) and skeletal muscle (SM) of young healthy men. We set a randomized controlled trial 
in which subjects were put under two conditions in random order: one full night of sleep and one full 
night of wakefulness. Tissue samples were taken in the morning at a set time, and transcription was 
assessed by qPCR while DNA methylation was assessed with the Illumina HumanMethylation 450k 
beadchip. This methylation array contains CpGs that are spread over the entire genome, and we need-
ed to select CpG sites that were putatively involved in the regulation of the four investigated genes. 
First, we selected all CpG sites located within 1500bp of the TSS of each gene and likely directly in-
volved in the regulation of transcription. Then, we made use of publicly available epigenetic infor-
mation from the Roadmap Epigenomics Project to infer chromatin states in AT and SM, and open-
access ChIA-PET long-range interactions to identify putative enhancers for the four genes under in-
vestigation. We also made use of the presence of technical replicates to make sure that the observed 
methylation changes were not purely due to the technical variability of the chip. 

We identified transcription changes in SM, and methylation changes in AT. In SM, BMAL1 and 
CRY1 were downregulated by ~20%; in AT, one CpG site in the promoter of CRY1 and two CpG sites 
located in a PER1 enhancer were hypermethylated by ~0.5%. The methylation effect size may seem 
extremely small, but we had four pairs of technical replicates at our disposal and we ensured that at 
least half of our samples showed a methylation difference between conditions greater than the mean 
methylation difference in technical replicates. These results show that a single night of wakefulness 
can alter the epigenetic and transcriptional profile of core circadian clock genes in key metabolic tis-
sues. Tissue-specific clock alterations could explain why shift work may disrupt metabolic integrity. 

Paper IV 
In this fourth study, we used a mouse model to test the effects of chronic maternal obesity on foeto-
placental growth and on the expression of 60 epigenetic machinery genes and 32 metabolic genes in 
foetal liver and placenta. This is of fundamental importance to understand the molecular basis of the 
developmental origins of health and disease. We also tested whether preconceptional weight loss could 
alleviate the effects seen in the offspring of the obese mothers, to explore whether weight loss prior to 
pregnancy is actually beneficial for the offspring.  

Female mice were fed either a control diet (CTRL group), a high-fat diet (obese (OB) group), or a 
high-fat diet switched to a control diet two months before conception (weight loss (WL) group). Foe-
tuses from OB mothers showed foetal growth restriction, and 28% of the foetuses were small for ges-
tational age, but foetuses from WL mothers were comparable to foetuses from CTRL mothers. Foetal 
liver and placental labyrinth were more responsive to maternal obesity than junctional zone in terms of 
transcriptional response. No less than 30% of the 60 epigenetic machinery genes and 16% of the 32 
metabolic genes showed transcription difference between at least two groups, in at least one of the 
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three investigated tissues. Genes involved in the histone acetylation pathway were particularly impact-
ed by maternal weight trajectories. In foetuses from OB mothers, lysine acetyltransferases and 
Bromodomain-containing protein 2 were upregulated, while most histone deacetylases were 
downregulated. Importantly, the expression of only a subset of these genes was normalized in foetuses 
from WL mothers. 

This study showed the high sensitivity of the epigenetic machinery genes to maternal weight trajec-
tories, especially in foetal liver and placental labyrinth. A difference in expression of these genes may 
lead to epigenetic alteration of these tissues, leading to foetal growth restriction. Preconceptional 
weight loss seemed to have beneficial effects on foetal growth restriction, but normalization of gene 
expression did not happen for all genes, showing a putative “memory” of weight trajectories at the 
level of gene transcription. 
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Discussion 

1. What this thesis has made possible and improved 
1.1. An increased knowledge on the relationship between obesity and the epigenome 
Before this thesis started, some important issues in the field had not been addressed or were only 
started to be investigated: how do obesity-associated gene variants act at the molecular level to cause 
an increased susceptibility to metabolic disorders? Are the obesogenic effects of environmental factors 
such as sleep deprivation and diet mediated by changes in the epigenome? Do weight trajectories of 
mothers impact their offspring’s phenotype, and if so, is the epigenome involved? 

While we are far from having addressed these issues exhaustively, we have slightly lifted the veil 
on these important questions. We have shown that obesity-associated gene variants are associated with 
differential DNA methylation in cis, and the impacted methylation sites are located in promoters as 
well as functional regions of the genome relevant for the pathogenesis of obesity. We observed ex-
tremely diverse effect sizes, ranging from 0.5 to 57% of variance in methylation explained by geno-
types, which is consistent with results obtained in other genome-wide meQTLs explorations [173] 
(Table 5). We did not test whether these DNA methylation differences between genotypes are actively 
and causatively implicated in modifications of chromatin activity at genes implicated in metabolism, 
or whether they simply reflect complex alterations of the gene regulatory landscape. Nevertheless, 
these results resonate strongly with the recently discovered mechanism that explains the association 
between FTO risk variants and metabolic traits and that involves disruption of long-range interactions 
between a super enhancer and its targets [52,53] (Figure 5). Interestingly, a genome-wide study inte-
grating genetic, epigenetic, transcriptomic and phenotypic data in 119 men demonstrated that some 
genetic variants mediate their effects on metabolic traits via altered DNA methylation in human adi-
pose tissue [322]. In our study, no less than half of the 52 obesity-associated SNPs we tested showed 
associations with proximal DNA methylation levels, indicating that a disturbed chromatin activity and 
long-range interactions may indeed be common in the presence of risk alleles. It is however important 
to stress that these associations were essentially found in blood, and we still do not know whether the 
very same associations exist in other tissues that are more relevant for metabolism (e.g. brain, adipose 
tissue, pancreas, liver). 
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Table 5. Overview of genetics studies of population DNA methylation variation in humans. 

Studies were selected if they included more than 10 individuals, used genome-wide methods for measuring 
epigenomic variation and applied mapping approaches to identify cis- and/or trans-acting genetic variant. Assoc., 
association; CRBLM, cerebellum; FCTX, frontal cortex; FDR, false discovery rate; FIB, fibroblasts; GWA, 
genome-wide association mapping; GWA-cis, genome-wide association mapping that tests only for associations 
in cis; HPI, human pancreatic islets; ind., individuals; LC, lymphoblastoid cells; LCL, lymphoblastoid cell lines; 
NA, not available; NR, not reported; NT, not tested; TCTX, temporal cortex; WB, whole blood; var., variation. 

§Data contains individuals from diverse populations. 

§§Percent of variance explained by cis and trans loci combined. 

||||Reported numbers refer to a conditional analysis in which variable probes were pre-selected. 

¶¶Numbers are based on within-population analysis. 

##Average estimate. 

Taken from [173] 

 
We have also revealed DNA methylation differences with measures of dietary fat quality and after 

sleep deprivation. Contrary to dietary fat quantity, the ratios of different fatty acids were associated 
with many DMRs at gene promoters. The DMRs were in promoters of genes showing enrichment for a 
group of pathways related to adipogenesis and mechanism of gene regulation by peroxisome prolifera-
tors via PPARa and another group of pathways related to leptin and IL6. This is particularly interesting 
given that a recent review on the effect of diets on morbid tissues concluded: "the type of the lipid 
provided in diets appears to be more important than its quantity, especially when considering body fat 
accumulation and distribution, and metabolic influences" [323]. Our study was the first to use a single 
measure that includes all three fatty acids as a proxy for the overall quality of fat intake. Unfortu-
nately, our data did not allow to discriminate PUFA from trans fatty acids that show the strongest 
association with all-cause mortality [324] (Figure 30). Nevertheless, MUFA and PUFA induce greater 
diet-induced thermogenesis, energy expenditure, and fat oxidation than SFA [325]. We do not know 
whether the observed associations are indeed caused by the fat intake profile, whether the observed 
DNA methylation differences play a role in metabolic risk, or whether these associations are also 
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found in other tissues. Only a couple of studies have tested associations between blood DNA methyla-
tion and intake of PUFA [326,327] or MUFA [327], and although they found suggestive associations, 
they did not show any causal relationship. Using an interventional design, we were able to show that 
one night of total sleep deprivation impacts the methylation and transcription of four key circadian 
genes in a tissue-specific manner. The observed methylation differences were extremely small (~0.5% 
methylation difference after sleep deprivation), but above the technical variability observed at these 
probes. Could there be a "build-up" of DNA methylation over time if sleep deprivation is repeated? 
And if so, would these DNA methylation differences be functionally important for metabolic risk? 

 

 
Figure 30. Summary most adjusted relative risks of total trans fat, industrial trans fat, and ruminant trans fat and 
all cause mortality, CHD mortality, total CHD, ischemic stroke, and type 2 diabetes. 

For total trans fats effect estimate for is fixed effect analysis; all others random effects analyses. P value is for Z 
test of no overall association between exposure and outcome; Phet is for test of no differences in association 
measure among studies; I2 is proportion of total variation in study estimates from heterogeneity rather than sam-
pling error. Taken from [324] 

Last but not least, we have used a mouse model to circumvent the ethical and technical difficulties 
of studying the influence of parental health on the offspring susceptibility to metabolic diseases in 
humans. We have shown that transcription of epigenetic machinery genes in the offspring is sensitive 
to maternal weight trajectories. Enzymes of the histone acetylation pathway were particularly im-
pacted by maternal obesity, and preconceptional weight loss restored the expression of only a subset of 
these genes in liver and placenta. This study strengthens the probable involvement of epigenetics in 
the DOHaD paradigm, but there is still some way to go before we prove that the same mechanisms 
exist in humans.  

1.2. A variety of models and study designs 
This thesis has looked at the involvement of epigenetics in obesity from different angles, which has 
shed light on the strengths, difficulties and weaknesses of each approach. We have directly looked at 
the expression of epigenetic machinery genes in our mouse model (paper IV), but we have mostly 
studied DNA methylation in the CpG context using Illumina HumanMethylation beadchips (paper I, II 
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and III). The HumanMethylation beadchips come with inherent preprocessing difficulties for which 
there is no gold standard, so we chose widely-used and well-described methods (e.g. adjustment for 
type I and type II probes, batch correction, quantile normalization). We have performed one genome-
wide, hypothesis-free investigation (paper II), as well as targeted approaches (paper I, III and IV). For 
practical reasons, human methylation profiles were derived from blood (paper I and II) but as this the-
sis aimed at understanding molecular mechanisms taking place in metabolically relevant tissues, we 
looked for extra data in brain and adipose tissue (paper I), and we directly investigated skeletal muscle 
and adipose tissue (paper III), as well as liver and placenta (paper IV). The observational designs of 
paper I and II allowed us to test more subjects (n=69 and n=355), but there are numerous potential 
confounders and uncertainty surrounding dietary reports that are inherent to such designs. In the inter-
ventional designs of paper III and IV the same individuals were assessed at several time points, thus 
greatly reducing uncontrolled, external influences that could bias our results. Finally we worked on 
preadolescents (paper II), adolescents (paper I), adults (paper I and III) and mice (paper IV) as this 
thesis aimed for a general understanding of the link between epigenetics and obesity in the general 
population. 

1.3. Enriching the annotation of DNA methylation using open-access data 
One major challenge in this thesis was the interpretation of differences in DNA methylation profiles 
[321]. As we highlighted in the introduction, the function of DNA methylation is highly context-
dependent: when 5meC has a role in gene regulation, it does not necessarily regulate the closest gene, 
and the regulated gene(s) can differ depending on the tissue and the developmental window. Once we 
find differences in methylation between genotypes (paper I), how do we identify the putatively im-
pacted gene(s)? How can we identify CpG sites that are indeed involved in the regulation of the four 
core circadian genes we are interested in (paper III)? This can be inferred if we know the underlying 
chromatin state, transcription factor binding and long-range chromatin interactions at the precise loca-
tion of our CpGs of interest (Figure 29). Performing the actual experiments to obtain that information 
(e.g. ChIP-seq of histone modifications, chromosome conformation capture or chromatin interaction 
analysis by paired-end tag sequencing) would have definitely been preferred but extremely time-
consuming and costly. Instead, we chose to make use of recent data generated by large consortia such 
as the GTEx consortium (2013), the FANTOM5 Project (2014) and the Roadmap Epigenomics Project 
(2015), as well as older data generated by the Genome Institute of Singapore (2011). By cross-
checking chromatin states, active enhancers, eQTLs in important tissues and long-range interaction 
information, we found that the CpGs showing differential methylation between genotypes at obesity-
associated SNPs were enriched in enhancers in blood, and we could pinpoint the putatively impacted 
genes. We could also identify which CpGs are located in probable enhancers for the four core cir-
cadian genes (paper III), and it proved useful since two of these CpGs showed consistent hypermethy-
lation after sleep deprivation. Finally, we obtained replication datasets in other tissues thanks to the 
shared data that is regularly uploaded on open-access platforms such as Gene Expression Omnibus, 
ArrayExpress and dbGAP. 

While the use of data generated by big consortia definitely helped to make sense of the differential 
methylation signal, there are limitations that are important to consider. It is now acknowledged that the 
epigenome is under strong genetic control [173]. Moreover, males and females show marked differ-
ences in their epigenome and they respond differently to environmental stimuli such as social behav-
iour, nutrition and chemical compounds [328–331]. The reference epigenomes generated by the 
Roadmap Epigenomics Project [332] and the active enhancers detected by the FANTOM5 Project 
[333] are often derived from pools of individuals or single individuals with various ethnicities and 
sexes, and there is no available information on their lifelong environmental exposures. It is therefore 
possible that the reference chromatin states and active enhancers we used in paper I and III did not 
accurately reflect the chromatin states and active enhancers present in our samples. Nevertheless, the 
inter-individual variability in DNA methylation for a given tissue is typically much smaller than the 
inter-tissue variability for a given individual [303,312]. Moreover, differential DNA methylation at 
enhancer elements, with concurrent changes in histone modifications and transcription factor binding, 
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is common at the cell, tissue, and individual levels, whereas promoter methylation is more prominent 
in reinforcing fundamental tissue identities [334]. Therefore, using reference epigenomes and refer-
ence chromatin activities in different tissues is likely useful to have a general idea of chromatin activ-
ity in a tissue of interest, especially at promoters. 

2. The difficulties of studying the epigenome in the context of human 
obesity 
2.1. Time: a crucial and underestimated factor 
2.1.1. The power of longitudinal and prospective epigenetic studies 
Metabolic disorders are chronic diseases that develop progressively over several months to several 
years, and they are not permanent as individuals can lose weight and show improvements in their 
metabolic parameters. However, the body remembers the hardships it goes through. Indeed, individual 
weight trajectories are important when considering mortality risk, as mortality was similar in indi-
viduals who remained obese and formerly obese individuals who lost weight [311] (Figure 27). That is 
because obesity at a particular age may predispose to illness, regardless of weight at higher ages, and 
weight loss is often associated with illness such as diabetes and cardiovascular disease. Therefore, 
longitudinal studies, particularly in twins (Figure 31), have the ability to capture the dynamics of the 
epigenome during individual weight trajectories, to disentangle causality issues between the epige-
nome and metabolic disorders or mortality risk, and understand whether and how the body can memo-
rize past metabolic disturbances [49]. To our knowledge, no study has taken such an approach yet. 
From a more clinical standpoint, prospective studies can identify epigenetic markers of individuals 
at higher risk of developing metabolic diseases. A recent prospective EWAS performed in ~25,000 
Indian Asians and Europeans identified several CpG sites whose methylation levels in blood associ-
ated with future incidence of T2D [257]. Two of these sites were recently confirmed in the blood of 
another independent prospective cohort of T2D [269], showing the potential for such approaches and 
their therapeutic applications. 
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Figure 31. Longitudinal analysis of epigenetic changes in a population cohort of monozygotic twins. 

The longitudinal analysis of epigenetic changes in a population cohort of monozygotic (MZ) twins is a strategy 
that can be particularly informative for understanding epigenetic variation and its links to disease. MZ twins 
share their DNA sequence, parents, birth date and sex, and are likely to have experienced a very similar prenatal 
environment. The figure highlights tissue-specific epigenetic marks (green) being established during gestation, 
which are stably maintained through life in both twins. Some stochastic epigenetic drift (orange) occurs during 
development, resulting in some epigenetic discordance between the two twins, but this is not necessarily related 
to the phenotype of interest. Non-shared environmental risk factors (lightning symbol) can induce exposure-
specific alterations (red), which may be present across cell types but induce pathogenic changes only in tissues in 
which the disease-associated gene (blue bar) is expressed. The longitudinal sampling from these twins would 
highlight high phenotypic and epigenetic concordance at time A, with some stochastic epigenetic drift. After 
exposure (time B), the twins might become discordant for disease and show epigenetic differences at the disease-
associated locus. Further sampling at time C might identify changes caused by the disease itself or perhaps a 
tissue-specific effect of medication. Taken from [303] 

Interventional studies that look at the epigenetic basis of individual sensitivity to weight gain or 
weight loss can help identify individuals at highest risk of developing metabolic diseases and indi-
viduals most likely to benefit from weight loss interventions [297]. To date, few markers have been 
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consistently found across studies, but TNF-α is a promising candidate since it was found hypomethy-
lated in both blood and adipose tissue of the high responders to weight loss interventions [335,336]. 
Nevertheless, considering the health risks associated with past obesity, more studies investigating per-
sonal sensitivity to weight gain would be welcome. Such interventional studies can also help answer 
questions such as: how plastic and resilient is the epigenome after exposure to an obesogenic stress? 
Is there a “build-up” of epigenetic changes over time, and if so, how long does it take to reach a build-
up with significant effects on the phenotype? Are there environmentally-induced epigenetic changes 
that are irreversible? Short-term experiments have demonstrated the potential of high-fat overfeeding 
to induce genome-wide DNA methylation changes in adipose tissue [271] and skeletal muscle [272]. 
Interestingly, the methylation changes in skeletal muscle were only partly reversible after 6-8 weeks 
[272], suggesting that the methylome can keep track of obesogenic events with potential build-up over 
time. Paper III in this thesis also showed that acute sleep deprivation can induce methylation changes 
in core circadian genes in adipose tissue, and it would be extremely interesting to investigate a poten-
tial "build-up" of methylation changes with chronic sleep deprivation. 

2.1.2. Discrepancy between DNA methylation and gene transcription: a time lag problem, an 
annotation problem, or not a problem at all? 
A recurrent problem in the field is the apparent lack of correlation between DNA methylation and 
transcription. Most observational and interventional studies investigating the link between metabolic 
disorders and DNA methylation have looked for DNA methylation changes that are concomitant with 
transcriptional changes [91,194,278–280,337]. While this is a perfectly valid approach that can give 
information on the function of DNA methylation at the detected sites, it must be interpreted with cau-
tion. As we mentioned in the introduction, the relationship between transcription and DNA methyla-
tion is complex and context-dependent; transcription relies heavily on the presence or absence of 
other factors such as the transcription machinery and activating TFs. Therefore, while DNA methyla-
tion changes concomitant with transcriptional changes are indicative of a probable causal relationship 
between DNA methylation and transcription, a lack of significant correlation between DNA methyla-
tion and transcription cannot be interpreted as a lack of causal relationship. Indeed, if DNA methyla-
tion reflects past chromatin activity and can "prime" genes to be activated or repressed, in many cases 
there would be the need for an environmental stress or stimulus to reveal the effects that DNA methy-
lation has on transcription (Figure 32). The relevant question to understand the role of DNA methyla-
tion in metabolic disorders then becomes: can baseline methylation differences induce a difference 
in transcriptional response to a specific environmental stimulus, and if so, is this response related 
to metabolic disorders? One study has taken such an approach by comparing the transcriptional re-
sponse of lean and obese women after exposure of their skeletal muscle to lipids [198]. They found 
that obese women had an impaired ability to upregulate global transcriptional regulators of fatty acid 
oxidation in response to lipid exposure, but these differences were not mediated by a difference in 
baseline methylation at PPARδ [198]. In addition, the speed at which DNA methylation and gene tran-
scription change may explain why methylation and transcription often do not correlate. In a study 
looking at the influence of acute exercise on DNA methylation and transcription, promoters of TFAM 
and PPARδ were hypomethylated and transcribed at the same time, while promoters of PGC-1α and 
PDK4 were hypomethylated immediately after exercise but transcribed only 3h after [93] (Figure 33). 
Therefore, there seems to be variability in the timing of DNA hypo- or hyper-methylation induced by 
environmental stimuli and the corresponding gene transcription [338]. 
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Figure 32. Potential effect of environmentally induced epigenetic changes on gene expression. 

In this hypothetical model, gene A is hypomethylated, while gene B is hypermethylated in response to environ-
mental cues. Gene expression changes might not occur until a secondary environmental stress or specific physio-
logical state is altered, thereby enabling specific transcription factors to bind to the hypomethylated gene A, but 
not to hypermethylated gene B, which results in transcription of gene A. This model also explains the often ob-
served discrepancy between DNA methylation and transcriptional changes. In this model, the same epigenetic 
modification in multiple tissues might only be functionally relevant in a given tissue if a specific transcription 
factor is also activated. Taken from [339] 
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Figure 33. Exercise-induced promoter hypomethylation is intensity-dependent (A and B) 

Promoter methylation (A) and respective mRNA level of genes (B) involved in fuel utilization and mitochondrial 
biogenesis as measured by MeDIP-qPCR at REST, 0 hr, or 3 hr after low- or high-intensity acute exercise (light 
or dark bars, respectively); n = 8 subjects. Results are mean ± SEM. ∗p < 0.05 versus REST, ¥p < 0.05 versus 
low-intensity exercise. Taken from [93]. 

 
Another hypothesis that can explain the apparent lack of correlation between DNA methylation and 

transcription has to do with the annotation of 5meC. As mentioned in the introduction, chromatin 
states at given positions vary between tissues, so 5meC may regulate different genes depending on the 
tissue. For instance, elements called cis-regulatory elements with dynamic signatures show a strong 
promoter signature in one tissue but an enhancer signature other tissues [332,340,341]. Therefore, a 
given 5meC can be located in the promoter of gene G1 and regulate gene G1 in tissue T1, but if that 
genomic location also corresponds to an enhancer for gene G2, the 5meC would then regulate gene G2 
in tissue T2. Unfortunately, little effort has been made to annotate 5meC with accuracy: when 5meC 
falls inside a gene promoter or a gene body, it is often annotated to that gene, without consideration for 
the underlying chromatin state. 5meC located in open sea is either annotated to the closest gene or left 
without annotation. We suggest that this annotation problem is actually quite important. We tried to 
annotate the ~450,000 CpGs of the widely-used Illumina HumanMethylation 450k beadchip to spe-
cific genes in female skeletal muscle. The 450k beadchip mostly targets CpG islands and gene pro-
moters, but also gene bodies and open seas. We downloaded the extended chromatin state annotation 
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of female skeletal muscle built with 6 histone marks (H3K4me3, H3K4me1, H3K36me3, H3K27me3, 
H3K9me3 and H3K27ac) and released by the Roadmap Epigenomics Project [342]. Then, we calcu-
lated the proportion of these ~450,000 CpGs that are located in genomic regions matching the underly-
ing chromatin state in female skeletal muscle (e.g. if a CpG falls inside a gene body and corresponds 
to an "active transcription" state, the genomic location (gene body) matches the chromatin state (active 
transcription). However, if this CpG falls inside a gene body and corresponds to an "active enhancer" 
state, the genomic location does not match the chromatin state). Only 44% of the CpGs from the chip 
were located in a genomic region matching the underlying chromatin state in female skeletal muscle. 
This problem is not limited to the HumanMethylation 450k beadchip, but can also arise with any other 
methylation assessment technique (e.g. MeDIP-seq, RRBS, WGBS). 

2.1.3. Are natural circadian (and circannual) variations in the epigenome confounding studies? 
Circadian variations of the epigenome were discovered in the human brain [343–346] and mouse liver 
[347–349] (Figure 34), meaning that some of our epigenome is highly flexible and can change 
within just a few hours as part of our natural daily cycle. However, no study has established the 
exhaustive natural circadian variations of the epigenome in tissues important for metabolism, or in 
tissues often used in human studies (e.g. blood). One study claimed to have detected sine-like oscilla-
tions in DNA methylation over a whole day in blood of healthy subjects, but they did not adjust their 
analysis for possible changes in blood cell-type composition during this 24h period [350]. However, 
changes in blood cell-type composition was recently found to occur after a the ingestion of a single 
meal, and explained >99% of all the methylation differences detected 160 min after the meal [351] 
(Figure 35). Besides, individuals do not necessarily have circadian rhythms that have similar phases or 
periods, which is reflected by their chronotype, also called morningness–eveningness (i.e., the ten-
dency to be an early “lark” or a late “owl”) [352]. Chronotype can change with age: older people tend 
to be more skewed towards morningness than younger individuals, and it is still debated whether 
chronotypes differ between sexes and ethnicities [352,353]. This issue is particularly relevant when 
considering metabolic disorders, since the evening chronotype is associated with metabolic traits such 
as obesity, diabetes and sarcopenia [354–356]. Finally, it was recently discovered that 4,000 protein-
coding mRNAs in white blood cells and subcutaneous adipose tissue have seasonal expression pro-
files in humans, with inverted patterns observed between Europe and Oceania [357] (Figure 36). Im-
portantly, in adipose tissue, as in blood, metabolic pathways were among the most associated seasonal 
pathways [357]. The authors observed seasonal variations in blood cell-type composition that probably 
explain part of the seasonal variations in mRNA, but it is also possible that the epigenome shows sea-
sonal variations and contributes to this seasonality. Therefore, studies comparing individuals at a sin-
gle time point, or comparing the same individuals over time need to ensure that the epigenetic differ-
ences they observe are not due to natural daily or yearly oscillations. Nevertheless, even if epigenetic 
differences are observed at CpG sites known to follow circadian or circannual oscillations, these oscil-
lations would not confound the results as long as the magnitude of the epigenetic differences exceeds 
by far the effect sizes of the oscillations. 
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Figure 34. Transcriptional architecture and chromatin landscape of the core circadian clock in mammals. 

Circadian landscape of the cistrome and epigenome of the murine liver. Taken from [349] 

 

 
Figure 35. Changes in fractions of WBC after food intake. 

WBC fractions were inferred from methylation data. Paired t-tests were used to test for differences in WBC 
fractions in participants (n = 25) between the fasted and postprandial states. *P , 0.001. Gran, granulocyte; 
Mono, monocyte; NK, natural killer; WBC, white blood cell. Taken from [351]. 
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Figure 36. Seasonal gene expression in geographically distinct cohorts. 

(a) Seasonality was also observed in PBMCs collected from T1D patients in the United Kingdom (n=236 indi-
viduals). A total of 1,697 genes were seasonal in this data set. (b) The previously defined summer and winter 
genes from the BABYDIET data set maintained their seasonal expression patterns in the T1D samples. (c) 
PBMCs from asthmatic patients collected from different countries also showed seasonal gene expression. In the 
United Kingdom/Ireland (n=26 asthmatic individuals; 85 PBMC samples), 791 genes were seasonal, while 1,257 
and 409 genes were seasonal in Australia (n=26 individuals; 85 samples) and United States (n=37 individuals; 
123 samples), respectively. (d) Summer and winter BABYDIET genes maintained their seasonal expression 
patterns in the asthmatic PBMC samples, with their patterns inverted in Australia. Taken from [357]. 
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2.2. Tissue-specificity of DNA methylation 
2.2.1. Choosing the right tissue to study 
The methylome is notoriously tissue-specific, and this tissue specificity is believed to be responsible 
for establishing and maintaining cell-type identity [358,359]. Even different blood cell types (T-cells, 
B-cells, NK-cells, granulocytes and monocytes) show marked methylation differences [360,361]. 
Therefore, it seems only natural to investigate DNA methylation in tissues implicated in metabolism, 
but these tissues are unfortunately difficult to collect in humans. The hardest to access is the brain 
since it can only be sampled post-mortem. The digestive tract, liver, visceral fat and pancreas may be 
sampled during surgery, but diseased individuals are typically overrepresented and participants remain 
scarce. Subcutaneous adipose tissue and skeletal muscle biopsies are feasible without resorting to sur-
gery, but they can only be performed a limited number of times per day because of the discomfort they 
cause. Saliva and blood are undeniably the easiest tissues to sample in a non-invasive manner and that 
is the reason why most methylation studies to date were performed in blood. But what is the point of 
studying a tissue that is not directly related to metabolism? It all depends on the aim of the study. First 
of all, obesity is characterized by low-grade, chronic inflammation [314,362] whereby white blood 
cells are more abundant in the circulation [363–365] and they infiltrate the adipose tissue [366] (Figure 
28). As such, studying epigenetic changes with obesity in blood cells can yield interesting insights into 
this inflammatory process. Second, studies whose aim is to identify biomarkers that can be useful in a 
clinical setting do not need to worry about the possible function of their biomarker at the molecular 
level: as long as the biomarker shows good sensitivity and specificity for patients at risk, it has ful-
filled its purpose. However, when the focus of a study is the brain, does it make any sense to investi-
gate blood? When methylation changes associated with obesity are observed in blood, how should we 
interpret them and what information on other organs do they truly give? 

M. Szyf proposed three hypotheses that could explain the association between DNA methylation in 
blood and behaviour or brain-related phenotypes [367], and these hypotheses can also apply to the 
case when DNA methylation changes in blood associate with metabolic disorders. First of all, it is 
possible that the DNA methylation changes observed in blood do not reflect what is happening in 
other tissues because these changes are the consequence of the blood-specific response to the envi-
ronmental insult, and other tissues would show DNA methylation changes of their own. Second, if 
DNA methylation changes are studied in the DOHaD context, we can very well imagine that an envi-
ronmental insult that took place early in life impacted common precursor cells to blood and other 
tissues, and has therefore caused the same methylation changes in blood and other tissues. Third, cir-
culating molecules such as hormones, leptin, adipokines, insulin, and perhaps even miRNAs that are 
released in response to an experience or an exposure will cause similar methylation changes in 
blood and other tissues. For instance, the leptin receptor is abundant on the membrane of hypothala-
mus cells, but it is also present on the membrane of blood cells [368], so circulating leptin might cause 
similar methylation changes in both the hypothalamus and the blood. Interestingly, in abdominal 
skeletal muscle of women with T2D (manuscript under preparation), we have detected DNA methyla-
tion changes at one CpG in thioredoxin interacting protein (TXNIP) and at one CpG in Suppressor of 
cytokine signaling 3 (SOCS3) that are similar in direction and magnitude to DNA methylation changes 
observed in blood in other independent T2D cohorts [253,256,257,369,370]. To summarise, it is likely 
that the DNA methylation changes observed in blood are a combination of at least the three aforemen-
tioned hypotheses to varying degrees, but these changes cannot be extrapolated to other tissues without 
investigating them directly. 

2.2.2. Adjusting for cell-type composition: a major issue 
The human body is made of highly specialized tissues, and these tissues are themselves made of a 
variety of highly specialized cells. Importantly, environmental stimuli can change the relative pro-
portion of these different cell types at various rates depending on the tissue. For instance, skeletal 
muscle is made of ~90-100% muscle cells and ~1-10% satellite cells that have a role in muscle repair 
[371] (Figure 37). Satellite cell content increases with long-term endurance and strength training 
[371,372] and declines after two weeks of bed rest [373]. Another tissue that undergoes drastic 
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changes in cell type proportions is blood. It was recently shown that the estimated leukocyte popula-
tion in whole blood changes just 160 min after a meal (Figure 35), and these changes in blood cell type 
proportion explained >99% of the detected methylation changes [351]. Moreover, as we mentioned 
earlier, obesity is characterized by low-grade, chronic inflammation [314,362] whereby white blood 
cells are more abundant in the circulation [363–365] and they infiltrate the adipose tissue [366] (Figure 
28). The issue of cell-type composition of tissues is particularly worrying given the fact that reported 
DNA methylation changes with obesity are often <10% methylation difference, in blood [244–
261], liver [262,263], adipose tissue [230,258,261,264–266], and sperm [267]. How can we unsure 
that these methylation changes are not an artefact and do not reflect a simple change in cell type com-
position? 

 
Figure 37. Muscle structure and the satellite cell niche. 

(A) The structure and ultra-structure of skeletal muscle. The satellite cell niche is on the surface of the myofibre, 
beneath the surrounding basal lamina, as indicated. Taken from [374] 

Depending on the tissue under study, it may be directly possible to estimate the relative cell-type 
proportions with histological techniques or flow cytometry. For instance, the relative proportions of 
pancreatic α and β cells can be estimated with histologic analysis [375] and the relative proportions of 
blood cell types with flow cytometry [376]. However, flow cytometry requires a large amount of fresh 
blood and laborious antibody tagging [313]. Several bioinformatical techniques have been developed 
to capture and account for differences in cell type composition without having to resort to these labo-
rious techniques: a method implemented in the minfi R package [377], a method similar to regression 
calibration developed by Houseman et al. [313], FaST-LMM-EWASher [378], RefFreeEWAS [316] 
and one method called surrogate variable analysis (SVA) [379]. Some of these techniques rely on ref-
erence methylomes of purified cells while others are reference-free, and they offer the scientific com-
munity a fast and easy way to detect true methylation differences with high sensitivity and specificity 
[380]. In particular, SVA outperforms all other reference-free techniques [380] (Table 6) and can ac-
count for other sources of heterogeneity between groups, such as genetic, environmental, demo-
graphic, and technical factors [379]. A last method consists in using a set of CpGs that are known to 
vary considerably between cell types and to perform a principal component analysis (PCA) on them; 
the top principal components (PCs) can then be included as covariates in the analysis to account for 
the cell type profile of individual samples [188,381]. Therefore, we believe that given the immense 
amount of possible confounders in human EWAS, one of the aforementioned techniques should be 
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routinely used regardless of the study design and investigated tissue, in order to increase the biological 
accuracy and reproducibility of analyses. 

 

Table 6. Sensitivity and specificity with respect to truly identified variables using 100 simulated data 

CI: confidence interval. Taken from [380] 

2.3. Genetic influences on the methylome 
2.3.1. Heritability of the methylome 
The strong associations between obesity-associated SNPs and proximal DNA methylation we detected 
in paper I are not restricted to disease variants (Figure 38). Twin studies have found a relatively low 
mean heritability across tissues (12-19%), but heritability was extremely variable at different sites 
(ranging 0-100%) [178,180,382]. In what is probably the largest and least biased human meQTL study 
to date, McClay et al. used methyl-CpG-binding domain protein-enriched genome sequencing (MBD-
seq) to uncover meQTLs genome-wide [189]. They found that 15% of all the ~3.2 million CpGs they 
assessed were associated with meQTLs in cis. Array-based meQTL studies typically reported a 
smaller fraction of the surveyed CpG to be associated with meQTLs in cis (0.12-15%) 
[172,177,178,181,184,187,383–388]. MeQTLs are enriched in heterochromatin and quiescent regions 
of the genome, and 75% of them are caused by the presence of SNPs inside CpGs that impair their 
methylation potential [189]. Thus, although the majority of the meQTLs may not be functional, a sub-
stantial proportion of them are present in active chromatin states such as active/weak enhancers and 
active TSSs [189]. Interestingly, disease variants detected in GWASs are enriched within 200 bp of 
these meQTLs [189], and it is likely that they are also associated with other epigenetic marks such as 
histone modifications [383] (Figure 39). Only two studies have had the statistical power to test the 
presence of meQTLs in trans using two different techniques (one next-generation sequencing method 
and one array-based method), and they both found the same proportion of the tested CpGs to be asso-
ciated with trans-meQTLs (0.5% and 0.6%) [188,189]. In summary, the overall proportion of CpGs 
that are under genetic control may seem low, but there is a high heterogeneity in heritability at 
different CpGs. For further reading, we recommend an excellent review on the topic that was pub-
lished in May 2016 [173]. 
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Figure 38. Sources of population epigenomic variation. 

Epigenomic variation at a locus can be treated as a quantitative trait. Heritability estimates can be obtained using 
classical variance components analysis using pedigree data (for example, parent–offspring, twins, and so on). In 
the absence of epigenetic inheritance, a non-zero heritability estimate (h2 > 0) implies that epigenomic variation 
at the locus is under genetic control by cis- or trans-acting sequence variants. When epigenomic variation is not 
heritable (h2 = 0), variation could be the result of differential exposures to past or current environmental factors. 
Systematic identification of such environmental factors should be possible and is one goal of epigenome-wide 
association studies. In the absence of causative environmental factors, epigenomic variation may be the outcome 
of stochastic somatic epimutations that lead to intra-individual tissue heterogeneity and inter-individual ‘epige-
netic drift’. Detection of such somatic epimutations will require advances in single-cell epigenomic sequencing 
technologies. The often stated conclusion that epigenomic variation is under genetic control whenever cis-SNP 
associations are detected, or non-zero heritability estimates are found, is strictly only valid if epigenetic inher-
itance can be assumed absent. This assumption should always be checked against emerging experimental data. 
Adapted from [173] 
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Figure 39. Main steps in population epigenomic analysis. 

a | DNA is tightly packaged in cells and is functionally modified by a variety of epigenetic marks, such as cyto-
sine methylation (5mC) or post-translational changes in histone proteins. The co-occurrence of specific epigenet-
ic marks in a genomic region defines its functional state. Of note, histones in closed chromatin also contain re-
pressive marks (not shown). b | The genome-wide distribution of different epigenetic marks can be measured 
using next-generation sequencing (NGS) technologies. Shown are the read-tracks from NGS measurements of N 
different epigenetic marks along the genome. c | The computational challenge is to infer distinct chromatin states 
for each genomic position. These chromatin states are defined by the joint presence and absence patterns of the 
different epigenetic marks. With N marks there can be 2N possible combinatorial states. The colour code on the 
bottom denotes each unique state. This analysis leads to the construction of chromatin state maps. d | Shown are 
the chromatin state maps of M diploid individuals. Individuals differ in their chromatin states in three genomic 
regions. These differential chromatin states (DCSs) can originate from DNA sequence polymorphisms, environ-
mental factors or from stochastic changes. DCS2 is caused by a single-nucleotide polymorphism (SNP2), DCS3 
is caused by exposure to environmental factor E4 and DCS1 is the result of stochastic processes in the mitotic 
maintenance of the chromatin state at that locus. The statistical challenge is to try to identify these causal factors 
from millions of measured SNPs and a large number of environmental factors. Taken from [173] 

2.3.2. Accounting for population stratification in epigenetic studies 
Why does this all matter when studying epigenetics in the context of obesity and its complications? If 
not properly accounted for, genetic differences can be a major confounder in epigenetic studies, 
especially when sample sizes are low. If the allele frequency at a meQTL is unbalanced between the 
groups being compared, a DMR will be detected between the groups, despite the fact that it is only due 
to the presence of the SNP and not the condition of interest. There are several ways to unsure that 
SNPs are not confounding the DNA methylation analysis: the first method consists in sequencing the 
region surrounding the DMR and see if any SNP in the sequence correlates with the DMR. However, 
depending on the population under study, the effects of SNPs can span several thousand bp [389,390] 
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and it is often not possible to sequence such a large region for all detected DMRs. Another method has 
been used in GWAS and consists in performing a PCA on genome-wide genetic data for all individu-
als. The top PCs of the PCA can then be used in the association tests as a proxy for ancestry [391]. 
However, genome-wide genetic data is often not available in EWAS, so it has been proposed to use 
genome-wide DNA methylation data as a proxy for ancestry, given that some 5meC are under strong 
genetic control [173]. Unfortunately, this technique poses problem, as DNA methylation levels are 
associated with many more factors than genetic variants: age, sex, and plethora of environmental fac-
tors. Therefore, the use of PCs based on genome-wide methylation data may remove important sources 
of variability, a problem that Barfield et al. addressed by computing the PCs of sets of CpG sites near 
SNPs to compute PCs that are better proxies for ancestry [392]. They have made available their lists of 
CpG sites from the Illumina 450K that are located within 0-100bp of 1000 Genomes Project variants 
with minor allele frequency >.01, along with R code to compute the PCs 
(http://genetics.emory.edu/research/conneely/) [392]. 

3. Unanswered questions and future research directions 
3.1. The biological meaning of DNA methylation changes: (effect) size matters 
The direction of an effect is just as important as the magnitude of this effect, but this magnitude can-
not be inferred simply by looking at the most common statistic reported in papers: the p-value. Typi-
cal DNA methylation changes detected in cross-sectional or prospective studies of obesity and related 
comorbidities have consistently found widespread but small DNA methylation changes (< 10% methy-
lation change) between groups. This means that only a tiny proportion of cells have a methylation 
status that differs between groups at a given location (Figure 40). What does this biologically mean? It 
may mean that obesity and related comorbidities impact plethora of genes at a low level, which re-
sults in large disturbances of pathways important for metabolism. But can a difference of methyla-
tion in only a few cells cause a significant change in transcription and eventually, in phenotype? Sur-
prisingly few papers have addressed that question, but it is an important one [393]. Murphy et al. ex-
amined the correlation between IGF2 transcription and the methylation level of the IGF2 DMR, and 
they suggested that a change in methylation as little as 1% at this DMR can lead to either a doubling or 
halving of transcription, depending on the direction of methylation [394]. However, these estimations 
were based on pyrosequencing whose technical variability can go up to 5% methylation difference 
between technical replicates [395], and using a very small sample size (n=41) [394]. Not only do small 
effect sizes pose biological questions, but they also raise an important statistical problem. If effect 
sizes are that small, wouldn’t we need very large sample sizes to detect methylation differences that 
are significant at the genome-wide level? Tsai & Bell performed simulations to estimate power under 
the case-control and discordant MZ twin EWAS study designs, under a range of epigenetic risk effect 
sizes and conditions [396]. They found that to detect a mean methylation difference of 7% at genome-
wide significance with 80% power, 178 pairs of twins or 211 cases and 211 controls would be needed 
[396] (Figure 41). In addition, a high variance in methylation in cases or controls, as well as genetic 
and environmental variables influencing DNA methylation levels are likely to inflate these numbers 
[396]. The rapid development of targeted epigenome editing, via an adaptation of the clustered regu-
latory interspaced short palindromic repeat (CRISPR)-Cas system [397–399] (Figure 42) or the tran-
scription activator-like effector (TALE) protein [400] will allow researchers to cause site-specific 
DNA methylation and answer both questions of causality and effect sizes. Effect size may also be 
important on the clinical side, since we need biomarkers that can identify individuals at risk with high 
sensitivity and specificity. If DNA methylation differences between diseased individuals and controls 
are extremely small, it will be difficult to find a reliable biomarker, and we may need to use a combi-
nation of several biomarkers to increase sensitivity and specificity. Zeevi et al. took a brilliant ma-
chine-learning approach to identify individuals at high risk of showing high glucose peaks after certain 
foods and paved the way to personalized nutrition [401]. It would be extremely interesting to see re-

http://genetics.emory.edu/research/conneely/
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search teams take a similar approach to test the reliability of the few epigenetic biomarkers identified 
to date (e.g. CpGs in PHOSPHO1 and ABCG1 as predictors of T2D). 

 
Figure 40. DNA methylation patterns at the cellular and individual levels. 

We assume that a cell can have two methylated alleles (ei = 1), one methylated allele (ei = 0.5) or two 
unmethylated alleles (ei = 0), and one sample from an individual contains different frequencies of these cells 
(upper panel). The methylated allele is shown as a dagger symbol, and the colour of each cell represents its 
methylation status: un-methylated (white), hemi-methylated (grey) and methylated (black) (upper panel). The 
methylation in each sample is represented as the summary of the methylated epi-allele, denoted here as beta 
(middle panel) which can range from 0 to 1 (lower panel). We assume that cases have greater mean methylation 
levels compared with controls, and we propose one control and eight case distributions. Taken from [396] 
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Figure 41. Power of case-control EWAS. 

Estimates are obtained for a range of sample sizes, using (A) mean difference and (B) methOR effects, at nomi-
nal (upper panel) and genome-wide (lower panel) significance thresholds. Each line represents the power curve 
under different case-control sample sizes from 10 to 500 pairs of cases and controls. Taken from [402] 
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Figure 42. Schematic representation of a dCas9-DNMT3A fusion protein in complex with sgRNA and its target 
DNA sequence. 

The sgRNA is bound in a cleft between the recognition lobe (RecI, II and III domains) and the nuclease lobe 
(HNH, RuvC and PI domains) of Cas9 protein. The C–terminus of Cas9 is located on the PAM–interacting (PI) 
domain and faces the side where the bound genomic DNA protrudes with its 3′ end relative to the sgRNA se-
quence. The sgRNA is a synthetic fusion between bacterial crRNA and tracrRNA, with guide sequence and 
tracrRNA part shown in different colours. The catalytic domain of DNMT3A recruits its partner for dimerization 
and DNMT3L proteins in vivo (dashed lightened symbols). NLS, nuclear localization signal; GS, Gly4Ser pep-
tide linker. (B) Domain structure of the dCas9–DNMT3A fusion protein. The nuclease-inactivating mutations 
D10A and H840A of Streptococcus pyogenes Cas9 are indicated. Deactivated Cas9 was fused to the catalytic 
domain of the human de novo DNA methyltransferase 3A (DNMT3A CD) using a short Gly4Ser peptide (GS). 
The dCas9–DNMT3A is expressed as a bicistronic mRNA, along with puromycin resistance gene (PuroR, 
shown) or EGFP gene, thus enabling selection of transfected cells. The PuroR (or EGFP) moiety is separated 
during translation by action of the T2A self-cleaving peptide. The inactive fusion methyltransferase (dCas9-
DNMT3A-ANV) for use as a negative control contains an additional substitution (E155A*) in the active site of 
DNMT3A. 3x FLAG, epitope tag; NLS, nuclear localization signal. Adapted from [397] 

3.2. The developmental origins of leanness and obesity 
As we highlighted in the introduction, the obesity epidemic has happened over just a few decades, 
which means that it is mainly driven by environmental factors such as excess caloric intake, reduced 
physical activity, poor sleep and endocrine disruptors. Interestingly, Daalgard et al. observed that in 
contrast to the popularized notion that the population as a whole is significantly gaining weight, the 
calculated mean BMI of the major (lean) population increased by only +0.4% from 1963–1994 to 
1999–2012, while the heavy sub-population, with a mean BMI 4–5 points above ‘‘normal,’’ more than 
tripled, from 12% to 38% of all individuals [403] (Figure 43). Does that mean that obesity is fuelling 
itself in a vicious cycle, whereby obese parents can transmit to their offspring a susceptibility to meta-
bolic disorders (Figure 44)? And if so, does this transmission occur via a biological programming of 
organs, or through cultural and behavioural transmission? Do moms and dads play an equally large 
role in this transmission? How many generations does it last, and can it be reversed? These ques-
tions are among the most heavily debated at the moment, since we have little data in humans so far 
[404,405]. Indeed, the obesity epidemic is relatively recent, we need extensive epidemiological and 
longitudinal data to appreciate this phenomenon, and human studies are limited by ethical issues and 
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many confounders. However, a starting point is the observation that overnutrition in utero gives the 
offspring a higher risk of being born large for gestational age (LGA) [406,407]. Or, being born LGA is 
associated with an increased risk of obesity and diabetes in later life [408]. During the developmental 
period, rapidly growing foetuses and neonates are vulnerable to perturbations of the maternal nutri-
tional and non-nutritional milieu, resulting in programmed changes in organ structure, cellular re-
sponses and gene expression that impact metabolism and physiology of the offspring [290]. Does this 
programming involve the epigenome? While this hasn’t directly been tested in humans, work in pri-
mates suggest that this is likely the case: maternal high-fat feeding causes site-specific alterations in 
foetal hepatic H3 acetylation [409], and this is likely due to a downregulation of lysine deacetylase 
SIRT1 [410]. Although there were some indications of DNA methylation changes associated with 
maternal obesity in humans, investigated tissues were limited to cord blood [411–413] and placenta 
[412], which does not necessarily reflect the soma. However, a longitudinal study has found that me-
thylation at a specific site in the retinoid X receptor alpha gene was both inversely correlated with 
maternal carbohydrate intake in early pregnancy and positively correlated with the children's adiposity 
at age 9, and results were replicated in an independent cohort [414]. The emphasis has undeniably and 
understandably been put on the mother as she carries the baby during its most vulnerable developmen-
tal windows, but what about the father? Recent epigenetic analyses of human sperm have shown that 
obese men carry a distinct epigenetic signature compared to lean men, in particular at genes control-
ling brain development and function, concomitant with an altered expression of small ncRNAs [267]. 
Whether these alterations are effectively transmitted to the offspring, whether they are persistent and 
whether they pose a risk for the offspring remain unknown. 

 
Figure 43. Comparison of similar fitting of childhood data from continuous NHANES 1999–2012 (CDC, 2012) 
and prior NHANES/NHES surveys (1963–1994) (CDC, 1994). 

This shows a marked shift in recent decades where the heavy sub-population triples in size (pie charts). Adapted 
from [403] 
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Figure 44. Transgenerational and intergenerational epigenetic effects. 

Epigenetic changes in mammals can arise sporadically or can be induced by the environment (toxins, nutrition, 
and stress). In the case of an exposed female mouse, if she is pregnant, the foetus can be affected in utero (F1), 
as can the germline of the fetus (the future F2). These are considered to be parental effects, leading to intergener-
ational epigenetic inheritance. Only F3 individuals can be considered as true transgenerational inheritance in the 
absence of exposure. In the case of males in which an epigenetic change is induced, the individual (F0) and his 
germline (future F1) are exposed; the F1 is thus considered as intergenerational. Only F2 and subsequent genera-
tions can be considered for evidence of transgenerational inheritance. Taken from [405] 

Until we have more data in humans, hypotheses on the mechanisms mediating a possible transmis-
sion of metabolic risk from parents to offspring via the epigenome have to face a thorny problem: the 
efficient epigenetic reprogramming that takes place both in the germline and in the early embryo and 
that erases nearly all epigenetic marks acquired during development or imposed by the environment 
[405] (Figure 45). Could there be regions important for metabolism that escape this reprogramming in 
humans, as was discovered in mice [415]? 
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Figure 45. Germline Reprogramming of DNA methylation in mice. 

In mice, there are at least two rounds of genome-wide DNA methylation reprogramming. The first occurs just 
after fertilization, in the zygote and early cleavage stages, to erase gametic (sperm and oocyte) epigenomic 
marks. During this phase of reprogramming, genomic imprints are maintained. The other major reprogramming 
process occurs in the germline, where the paternal and maternal somatic programs are erased, together with im-
prints, and the inactive X is reactivated. Subsequent to this, parent-specific imprints are laid down in the 
germline. In each reprogramming window, a specific set of mechanisms regulates erasure and re-establishment 
of DNA methylation. Recent studies have uncovered roles for the TET3 hydroxylase and passive demethylation, 
together with base excision repair (BER) and the elongator complex, in methylation erasure from the zygote. In 
the germline, deamination by AID, BER, and passive demethylation has been implicated in reprogramming, but 
the processes are still poorly understood. Taken from [405] 

4. Conclusion and future perspectives 
Through the use of large datasets and complex bioinformatical analyses, this thesis has contributed to 
extend our knowledge on epigenetics in the context of obesity and its complications. Genetic variants 
associated with metabolic risk are likely causing a local deregulation of chromatin states that could 
translate into large and complex modulation of gene transcription. Dietary fat quality was associated 
with blood DNA methylation changes at genes involved in metabolic pathways, and sleep restriction 
caused tissue-specific methylation and transcriptional changes at core circadian genes. In mice, mater-
nal obesity was associated with an alteration of histone deacetylases in foetal liver and placenta, thus 
reinforcing the potential involvement of the epigenome in the DOHaD paradigm. 

As I went through this thesis, I got increasingly convinced that the bioinformatical and biostatistical 
tools to analyse the gargantuan amount of data being generated in the field of epigenomics are pain-
fully lagging behind. "Acquiring data is the easy part. What is direly needed are innovative approaches 
for mining multiple levels of "omics" and other data to discern patterns of data-disease relationships 
that may be used for decision-making in clinical treatment. Although the statistical approaches lag 
behind the technology and our ability to gather data, the potential is great to make substantial progress 
in this area." [49]  
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I would like to end by saying that as I was writing this thesis, I stumbled upon a Nature news article 
entitled “What’s the point of the PhD thesis?” [416]. I read the article apprehensively, although I do 
not really know why (maybe I was afraid to read something like “There is no point. You wrote your 
thesis for nothing.”). But before I finished reading the article, I realized that this thesis had taught me 
numerous things that are both science- and human-related. I realized that like John Snow, I know noth-
ing (or very little); I am definitely no longer impressed when I get p-value<0.05; finally, imagination 
and ability to teach are on my top 10 skills that make a good scientist. The Nature news article ended 
with the following: “In the end, the only way you can assess [the PhD thesis] is whether the graduates 
of the programme become successful scientists. If they do, you've done a good job. If they haven't, you 
haven't.” [416]. Only the future will tell if that is true for me. 
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Abstract en français 

Analyse biostatistique et bioinformatique de données épigénétiques chez 
l'homme et la souris en lien avec l'obésité et ses complications  
 
 L'obésité dans le monde a plus que doublé depuis 1980 et au moins 2,8 millions de per-
sonnes meurent chaque année des conséquences directes du surpoids ou de l'obésité. Un poids corporel 
élevé est la résultante de l'interaction entre des variants génétiques à risque et un environnement obé-
sogène, et des données récentes montrent que des processus épigénétiques sont probablement impli-
qués. La disponibilité croissante des technologies à haut débit a permis d'évaluer rapidement l'épigé-
nome de nombreux échantillons à un coût relativement faible. En conséquence, de vastes quantités de 
données ont été générées et les chercheurs sont maintenant confrontés à des défis bioinformatiques et 
biostatistiques pour extraire de ces données de l'information en lien avec l'obésité et ses complications. 

Dans cette thèse de doctorat, nous avons exploré des associations entre le méthylome sanguin hu-
main et des polymorphismes nucléotidiques (SNPs) liés à l'obésité, ainsi que des mesures qualitatives 
et quantitatives de l'apport journalier en acides gras. Nous avons utilisé des techniques de prétraite-
ment des données et des méthodes statistiques bien décrites, une large batterie de données en libre 
accès générées par des consortia et d'autres groupes de recherche, ainsi que des outils pour l'enrichis-
sement de pathways et l'inférence d'états de la chromatine. Nous avons trouvé des associations entre 
des SNPs liés à l'obésité et la méthylation de promoteurs et enhancers proximaux, et certaines de ces 
associations ont été répliquées dans plusieurs autres tissus. Nous avons également constaté que, con-
trairement à la quantité d'apport journalier en acides gras, la qualité de l'apport journalier en acides 
gras est associée à une méthylation différentielle de promoteurs de gènes impliqués dans des voies 
métaboliques. Puis, en utilisant une approche ciblée, nous avons examiné l'impact d'un stress environ-
nemental aigu (une nuit blanche) sur la méthylation et la transcription de gènes du rythme circadien 
dans le muscle squelettique et le tissu adipeux d'hommes sains. Nous avons constaté qu'une seule nuit 
blanche peut modifier le profil épigénétique et transcriptionnel de gènes clés du rythme circadien, et ce 
de manière tissu-spécifique. Enfin, nous avons examiné les effets de l'obésité maternelle chronique et 
de la perte de poids ultérieure sur la transcription de gènes de la machinerie épigénétique dans le fœtus 
et le placenta de souris. Nous avons constaté que la transcription de ces gènes est très sensible aux 
trajectoires pondérales maternelles, et en particulier ceux de la voie d'acétylation des histones. Dans 
l'ensemble, cette thèse a démontré que la génétique, des stimuli environnementaux obésogènes et l'en-
vironnement maternel agissent sur les marques épigénétiques à des endroits génomiques pertinents 
dans la pathogenèse de l'obésité. 

Mots clés : obésité, génétique, épigénétique, méthylation de l'ADN, sommeil, origines développemen-
tales de la santé et des maladies, polymorphisme nucléotidique, étude d'association pangénomique 
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Abstract

Background: The mechanisms by which genetic variants, such as single nucleotide polymorphisms (SNPs), identified
in genome-wide association studies act to influence body mass remain unknown for most of these SNPs, which
continue to puzzle the scientific community. Recent evidence points to the epigenetic and chromatin states of the
genome as having important roles.

Methods: We genotyped 355 healthy young individuals for 52 known obesity-associated SNPs and obtained DNA
methylation levels in their blood using the Illumina 450 K BeadChip. Associations between alleles and methylation at
proximal cytosine residues were tested using a linear model adjusted for age, sex, weight category, and a proxy for
blood cell type counts. For replication in other tissues, we used two open-access datasets (skin fibroblasts, n = 62; four
brain regions, n = 121–133) and an additional dataset in subcutaneous and visceral fat (n = 149).

Results: We found that alleles at 28 of these obesity-associated SNPs associate with methylation levels at 107 proximal
CpG sites. Out of 107 CpG sites, 38 are located in gene promoters, including genes strongly implicated in obesity
(MIR148A, BDNF, PTPMT1, NR1H3, MGAT1, SCGB3A1, HOXC12, PMAIP1, PSIP1, RPS10-NUDT3, RPS10, SKOR1, MAP2K5, SIX5,
AGRN, IMMP1L, ELP4, ITIH4, SEMA3G, POMC, ADCY3, SSPN, LGR4, TUFM, MIR4721, SULT1A1, SULT1A2, APOBR, CLN3, SPNS1,
SH2B1, ATXN2L, and IL27). Interestingly, the associated SNPs are in known eQTLs for some of these genes. We also
found that the 107 CpGs are enriched in enhancers in peripheral blood mononuclear cells. Finally, our results indicate
that some of these associations are not blood-specific as we successfully replicated four associations in skin fibroblasts.

Conclusions: Our results strongly suggest that many obesity-associated SNPs are associated with proximal
gene regulation, which was reflected by association of obesity risk allele genotypes with differential DNA
methylation. This study highlights the importance of DNA methylation and other chromatin marks as a way
to understand the molecular basis of genetic variants associated with human diseases and traits.

Background
Genome-wide association studies (GWASs) have identi-
fied a plethora of common genetic variants that are asso-
ciated with obesity-associated traits (e.g., body mass
index (BMI) [1–11], fat mass [12, 13], low lean body
mass [14], blood lipid levels [15], waist circumference
[13, 16], BMI-adjusted waist-to-hip ratio [17, 18]). Some

of these single nucleotide polymorphisms (SNPs) are
located near genes whose role in obesity is well estab-
lished, such as MC4R [19]. However, most of these SNPs
are located near genes whose role in obesity is still
unclear, and the mechanisms through which they act
remain unknown. Part of this lack of understanding may
be due to a focus on the genes in closest proximity to
these SNPs. Actually, these SNPs may regulate genes that
are located quite far away, as recently demonstrated for
genetic variants within FTO. In human brains, obesity-
associated SNPs in FTO were found to be associated with
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expression of IRX3, a gene located more than half a mil-
lion base pairs downstream of the body mass-associated
genetic locus [20]. Another instance is the rs4537545 SNP
previously associated with coronary heart disease [21] and
located within IL6R: this SNP was recently found to be
associated with blood mRNA levels of ATP8B2, a gene
located 115 kb away [22]. Thus, obesity-associated SNPs
might act through long-range interactions (for example,
by disrupting enhancers) and potentially through epigen-
etic mechanisms.
The epigenome represents the pattern of chemical and

structural modifications to DNA that are heritable
through mitosis and/or meiosis, but that do not entail
changes in DNA sequence. Epigenetic mechanisms en-
compass DNA methylation, histone modifications, and
non-coding RNAs, and have the potential to modify
gene expression. Recent attention has been drawn to the
possible role of epigenetics in the pathogenesis of obesity
[23, 24]. Moreover, while the epigenome is known to be
modulated by the environment, this modulation can also
be affected by genetic variants. Studies in brain [25–28],
adipose tissue [29, 30], blood [26, 31, 32], lung [33],
fibroblasts [34, 35], T cells [35], leukocytes [36], and lym-
phoblastoid cells [35, 37] have shown that the genome
contains quantitative trait loci (QTLs) for DNA methyla-
tion, also called methylation QTLs (meQTLs). DNA
methylation levels correlate with the presence of specific
alleles at nearby SNPs, and meQTLs tend to locate out-
side of promoters, especially in intergenic regions. In a
study conducted in adipose tissue [29], meQTLs over-
lapping metabolic disease loci were enriched in histone
marks predictive of genetic enhancers. Interestingly, top
associations from a GWAS of bipolar disorder were
enriched in meQTLs [38], suggesting that this could be
a powerful approach to better understand the molecular
basis of candidate SNPs from GWASs.
In the present study, we tested associations between 52

SNPs that were previously identified in GWASs or meta-
analyses to be associated with obesity traits, and proximal
DNA methylation in whole blood of 355 healthy young
individuals. We then tested the tissue specificity of the
majority of these associations in four brain regions (n =

121–133), visceral adipose tissue (VAT; n = 149), subcuta-
neous adipose tissue (SAT; n = 149) and fibroblasts (n =
62). Finally, the genomic context of associated CpG sites
was explored, using chromatin segmentation on publicly
available histone marks from 11 tissues and long-range
interactions from five cell lines.

Methods
Discovery study group
Ethics, consent and permissions
The discovery study group comprised two sub-groups of
healthy young Caucasians from two different age ranges
(Table 1). All participants and their guardians gave in-
formed written consent and the study was approved by
the local ethics committee in Uppsala, EPN, diary num-
ber 2011/446; this study was conducted in accordance
with the principles of the Declaration of Helsinki. The
first sub-group comprised 130 individuals aged 14–16
years who were recruited by visiting schools in Uppsala
county and by post. Two 6-ml blood samples were
drawn for genotyping and DNA methylation measure-
ment, at any time during the day. The other sub-group
comprised 225 individuals of white European descent
aged 18–34 years, also recruited in Uppsala. Subjects
were fasting (at least 10 h) when blood samples were
taken for genotyping and DNA methylation measure-
ment. For individuals aged under 18 years, we used Cole
et al.’s definition to determine weight category [39]. For
individuals aged 18 years and older, the following cutoffs
were used: lean, BMI < 25; overweight, 25 ≤ BMI < 30;
obese, BMI ≥ 30. We chose to use weight category in-
stead of BMI since our cohort includes individuals aged
under 18 years whose BMI scales differ from the BMI
scales of individuals aged over 18 years.

Genotyping
We selected 52 SNPs that have been associated by
GWASs or meta-analyses of GWASs with obesity-associ-
ated traits (BMI [1–10], BMI-adjusted waist-to-hip ratio
[18], fat mass [12], low lean body mass [14], blood lipid
levels [15] and waist circumference [16]) and the
discovery study group was genotyped for these SNPs

Table 1 Description of the discovery samples
Sub-group 1 Sub-group 2 Total

n 130 225 355

nmales 37 (29 %) 177 (79 %) 214 (60 %)

Age (years)a 15.3 ± 0.64 23.6 ± 3.3 20.6 ± 1.2

Weight (kg)a 72.9 ± 11.4 76.6 ± 12.4 71.6 ± 13.7

Height (m)a 1.70 ± 0.081 1.79 ± 0.078 1.76 ± 0.092

Weight categoryb 77 % lean, 18 % overweight, 5 % obese 74 % lean, 21 % overweight, 5 % obese 76 % lean, 20 % overweight, 4 % obese
aMean ± standard deviation. bFor individuals aged under 18 years, we used Cole et al.’s definition to determine weight category [39]. For individuals aged 18 years
and older, the following cutoffs were used: lean, BMI < 25; overweight, 25 ≤ BMI < 30; obese, BMI ≥ 30
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(Additional file 1). Genotyping of the 52 SNPs was carried
out at the SNP technology platform at Uppsala University
[40] using an Illumina Golden Gate Assay (Illumina Inc.,
San Diego, CA, USA). There were missing genotypes for 8
of the 52 tested SNPs, ranging from one individual to 52
individuals with missing genotypes (Additional file 1).
Individuals with missing genotypes were removed from
the analysis.

DNA methylation profiling
The genome-wide Illumina Infinium HumanMethyla-
tion450 BeadChip (Illumina), which allows interrogation
of 485,512 CpG dinucleotides covering 25,953 genes,
was applied to determine the methylation profile of gen-
omic DNA isolated and purified from the peripheral
whole blood. This chip has been shown to give a reliable
and reproducible estimation of the methylation profile
on a genomic scale [15]. First, bisulfite conversion of
genomic DNA was performed using the EZ DNA
Methylation-Gold™ Kit (Zymo Research) according to
the manufacturer’s protocol. Briefly, 500 ng of DNA was
sodium bisulfite-treated, denatured at 98 °C for 10 min,
and bisulfite converted at 64 °C for 2.5 h. After conver-
sion, samples were desulfonated and purified using
column preparation. Approximately 200 ng of bisulfate-
converted DNA was processed according to the Illumina
Infinium Methylation Assay protocol. This assay is based
on the conversion of unmethylated cytosine (C) nucleotides
into uracil/thymine (T) nucleotides by the bisulfite treat-
ment. The DNA was whole-genome amplified, enzymati-
cally fragmented, precipitated, resuspended, and hybridized
overnight at 48 °C to locus-specific oligonucleotide primers
on the BeadChip. After hybridization, the C or T nucleo-
tides were detected by single-base primer extension. The
fluorescence signals corresponding to the C or T nucleo-
tides were measured from the BeadChips using the
Illumina iScan scanner. Phenotypes, genotypes, raw data,
and processed DNA methylation data are available through
the Gene Expression Omnibus (GEO) database [41] with
accession number [GEO:GSE73103].

DNA methylation processing
All downstream data processing and statistical analyses
were performed with the statistical software R [42]
together with the minfi [43], ChAMP [44], sva [45], and
MethylAid [46] packages of the Bioconductor project.

Background correction and adjustment of type I and type II
probes
Fluorescence data were preprocessed using the GenomeS-
tudio 2009.2 (Illumina) software. First, we background
corrected the data using NOOB [47]. In the Illumina Infi-
nium HumanMethylation450 BeadChip array, the probes
come in two different designs, characterized by widely

different DNA methylation distributions and dynamic
range, which may bias downstream analyses. Therefore,
we applied the BMIQ algorithm to adjust for the two
different probe designs [48].

Removal of batch effects
The plates on which samples are run introduce a known
batch effect that is important to correct for. We used
the ComBat function to adjust directly for this batch
effect [45].

Principal component analysis
We performed a principal component analysis (PCA)
using the PCA function of the FactoMineR package [49],
first calculating the covariance matrix between all sam-
ples using only the most variable autosomal CpG sites,
measured in terms of their 95 % reference range: the
range of methylation values observed in the central 95 %
of the samples or, more precisely, the difference between
the 97.5 and 2.5 % percentiles. Using a 95 % reference
range of at least 0.20, 103,408 CpG sites were used in
the covariance matrix calculation. Together, the two first
principal components explain over 39 % of the total vari-
ance. Each subsequent vector does not add substantially
to the variance explained: 285 vectors would be neces-
sary to explain 95 % of the total variance.

Sample exclusion
We excluded from association analyses: (1) samples that
were outliers in any one of the quality control plots gen-
erated by MethylAid [46] (rotated M versus U plot, over-
all sample-dependent control plot, bisulfite conversion
control plot, overall sample-independent control plot
and detection p value plot) using the default thresholds
(0 samples); (2) samples that were outliers with respect
to any one of the first eight principal components (cor-
responding to the approximate location of the elbow of
the eigenvalue scree plot; six samples). After exclusion
of samples, we were left with 349 samples: 128 from
the first sub-group (29 % males; mean age ± standard
deviation 15.3 ± 0.64 years) and 221 from the second
sub-group (78 % males; mean age ± standard deviation
23.6 ± 3.3 years).

Probe exclusion
We removed probes with missing β values, probes hav-
ing less than 75 % of samples with detection p value <
0.01, and probes located on the sex chromosomes. Using
the annotation generated by Chen et al. [50], we also
removed cross-reactive probes and probes containing
SNPs with minor allele frequency > 1 % in European
populations. In total, 397,615 probes were included in
the analysis.
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Choice of investigated CpGs
We selected the probes within 500 kb of each SNP. A
total of 8485 probes were analyzed, with an average of
163 CpGs per SNP (Additional file 1).

Cell-type proportions
Because differences in cell-type proportions between
DNA samples can confound association results [51], we
adjusted our analyses using a surrogate for cell-type pro-
portions derived from 43 differentially methylated CpG
sites present on the HumanMethylation450 array that
have the ability to discriminate between blood cell types
[52]. As a surrogate for cell-type proportions, and to
reduce the number of variables, we used the first two
principal components associated with these 43 sites that
together explain over 70 % of the total variance in
methylation at these 43 CpG sites.
To verify that the first two principal components that

we derived from the list of 43 differentially methylated
CpG sites [52] can indeed serve as a surrogate for blood
cell proportions, we tested for associations between the
principal components and the methylation levels at all of
our sites, adjusting our analyses for sex, age, weight cat-
egory, and batch. We selected the top 10 % of the sites
that showed the strongest associations (49,035 sites, all
associated at levels p < 10−8) and extracted these sites in
data sets of purified human leukocyte subtypes [53]
[GEO:GSE39981]; 2564 sites were overlapping. A den-
drogram representation of our top sites in this data set
[53] reveals clear clustering of samples according to cell
type, indicating a good ability for principal components
to discriminate between samples with different cell com-
positions (Additional file 2).

Validation of methylation with bisulfite sequencing
The methylation levels of two of the associated CpG sites
(cg15576492 and cg2204028, at position chr1:1015257–
1015540) were validated using bisulfite sequencing. The
sequences including target CpG sites were obtained from
the University of California, Santa Cruz (UCSC) Genome
Browser database. The sequences (bisulfite-converted
DNA template) for the primers were forward (biotin
labeled)-5′-ATGGATGTTGGTGTGAGTATT-3′ and re-
verse 5′-CCCTCTACACATCTAAACCCT-3′. Bisulfite se-
quencing primers were designed with Methyl Primer
Express® v.1.0 (Applied Biosystems) so that the amplicons
covered target CpG sites. These regions were PCR ampli-
fied in duplicate from bisulfite-treated DNA. Similar
efficiency in PCR amplification for unmethylated and
methylated fragments was controlled for using Human
Methylated & Non-methylated DNA Set (Zymo Research).
PCR reactions were performed in a final volume of 25 μl
and contained 2.5 μl of bisulfite-treated DNA (10–15 ng/
μl), 0.05 μl of each primer (100 pmol/μl), 1 μl DMSO, 0.5

μl of SYBR Green I (1:50,000; Invitrogen, Sweden) in TE
buffer (pH 7.8), 0.25 μl of 25 mM dNTP mix (Fermentas),
2.5 μl 10× buffer, 4 μl of 25 mM MgCl2, 1 U of Hot Start
Taq DNA polymerase (Thermo Scientific). Cycling condi-
tions were as follows: 10-min initial denaturation step at
95 °C, followed by 45 cycles of 95 °C for 20 s, 30 s at opti-
mal annealing temperature of primers, 20–45 s at 72 °C, 5
min of final elongation at 72 °C. Fluorescence was mea-
sured after the elongation phase. Melting curve analysis
consisted of 81 cycles of 10 s at 55 °C with increasing
increments of 0.5 °C per cycle. Bio-Rad iQ5 version 2.0
software (Bio-Rad Laboratories) was used to process real-
time PCR data.
Amplicons were purified using GeneJET PCR Purifica-

tion Kit (Thermo Scientific).
DNA sequencing was performed using BigDye® Ter-

minator v.3.1 Cycle Sequencing Kit (Applied Biosystems)
on an ABI3730XL DNA Analyzer (Applied Biosystems)
at Uppsala Genome Center. Cycle sequencing was as
follows: 30 s initial denaturation step at 94 °C, followed
by 35 cycles of 94 °C for 25 s, 50 °C for 15 s, 60 °C for
120 s. Each sample was sequenced twice and the two
methylation levels were averaged. Amplification primers
were used for sequencing. All samples were analyzed in
duplicates on different plates and the mean methylation
levels in percentage per sample were used for further
analyses. Methylation levels of CpG sites for all ampli-
cons were quantified using Epigenetic Sequencing
Methylation analysis software [54]. The software was
repeatedly used to determine the methylation profile of
several genes [55, 56]. The software algorithm analyzes
the methylation percentage of each CpG site in an
amplicon without cloning stage.

Replication study groups
VAT and SAT
VAT and SAT samples were used to test specifically the
association between alleles at rs1011731 and methylation
at cg13446689. Paired samples of VAT and SAT from
149 Caucasian subjects (35 % male) who underwent
open abdominal surgery were included in the study. This
subset is part of a study group that had already been
genotyped for rs1011731, described in detail elsewhere
[57]. Thirty-two individuals were lean (aged 63 ± 11
years, BMI 22.1 ± 2.5 kg/m2), 22 were overweight (67 ±
12 years, BMI 27.1 ± 1.4 kg/m2) and 94 were obese (age
47 ± 13 years, BMI 48.1 ± 9.7 kg/m2); BMI was missing
for one individual and 46 subjects had diabetes type 2.
Patients with severe conditions, including generalized
inflammation or end-stage malignant diseases, were ex-
cluded from the study. Samples of VAT and SAT were
immediately frozen in liquid nitrogen after explantation.
The study was approved by the ethics committee of the
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University of Leipzig and all subjects gave written
informed consent.
Genomic DNA was extracted from frozen adipose tissue

samples using GenElute™ Mammalian Genomic DNA
Miniprep Kit (SIGMA-ALDRICH, USA). All samples were
bisulfite converted using Qiagen Epitect Bisulfite Kit
(Qiagen, Hilden, Germany) according to the manufac-
turer’s protocol and applied to whole bisulfitome amplifi-
cation (EpiTect Whole Bisulfitome Kit, Qiagen, Hilden,
Germany). Finally, all samples were purified using GenE-
lute PCR Clean-up Kit (Sigma-Aldrich, USA). Methylation
levels of cg13446689 were determined using a custom de-
signed PyroMark CpG assay (Qiagen, Hilden, Germany).
The sequences (bisulfite-converted DNA template) for the
primers were forward (biotin labeled)-5′-AAGTGATGG
GAGTTGTTGG-3′ and reverse 5′- ACCCCAAAACAAT
TCAAACAAACCATA-′3. Using the sequencing primer
5′-ACAATTCAAACAAACCATACTTA-3′ the following
sequence was analyzed (5′- CACAAC[R]ACTAACTAA
TCTATAC[R]ACCTCAAACCAAAAACAACAACCAAC
AACTCC-3′). The pyrosequencing was run on a Pyro-
Mark Q24 (Qiagen, Hilden, Germany). All samples were
analyzed in duplicates on different plates and the mean
methylation levels in percentage per sample were used for
further analyses. Water was used as a non-template con-
trol using the same PCR conditions.

Fibroblasts
Methylation, SNP genotyping, and gene expression data
from primary skin fibroblasts from Caucasian individuals
(n = 62) [34] were obtained from GEO (accession num-
ber [GEO:GSE53261]).

Brain regions (cerebellum, frontal cortex, caudal pons, and
temporal cortex)
SNP genotyping data from four different brain regions
(n = 121–133) [58] were obtained from dbGAP (acces-
sion number phs000249.v1.p1). All individuals were of
Caucasian descent, but two individuals from the cerebel-
lum study samples were of African and Asian descent,
respectively. We removed these two individuals from
our analysis. Methylation data were obtained from GEO
(accession number [GEO:GSE15745]).

Annotation
Genes
The genomic positions of RefSeq genes were down-
loaded from the UCSC genome browser, and the loca-
tion of each CpG site was determined as promoter
(within 1500 bp of the transcription start site (TSS)),
gene body, intergenic, or ambiguous (overlapping a pro-
moter and a gene body).

Linkage disequilibrium
Linkage disequilibrium (LD) data were obtained from
SNAP Proxy, using CEU as the “population panel” and
the 1000 Genomes Pilot 1 as “SNP dataset” [59].

Chromatin states
ChromHMM [60] was applied for seven publicly available
histone modifications (H3K4me1, H3K4me3, H3K9ac,
H3K9me3, H3K27ac, H3K27me3, and H3K36me3) from
11 tissues: adipose nuclei (AN), pancreatic islets (PI), per-
ipheral blood mononuclear primary cells (PBMC), skeletal
muscle (SM), liver, brain angular gyrus (BrainAG), brain an-
terior caudate (BrainAC), brain cingulate gyrus (BrainCG),
brain hippocampus (BrainHIPPO), brain inferior temporal
lobe (BrainITL), and brain substantia nigra (BrainSN). Data
were downloaded from NIH Roadmap Epigenomics Project
Data Listings. An 18-state model was learned from all
binarized data and was used to produce segmentations
based on the most likely state assignment of the model.
Then, each state was assigned to one of the following seven
categories: enhancer, active TSS/poised TSS/flanking TSS,
active transcription, quiescent, heterochromatin, Polycomb-
repressed, ZNF genes/repeats.

Ubiquitous, tissue-specific, and cell-specific in vivo
transcribed enhancers
Ubiquitous, tissue-specific (adipose tissue, blood, brain,
liver, pancreas, and skeletal muscle) and cell type-
specific (preadipocytes, fat cells, hepatocytes, and skel-
etal muscle cells) enhancers, as well as TSS–enhancer
associations, as defined by CAGE tags in the FANTOM5
project, were downloaded from the Transcribed Enhan-
cer Atlas website [61, 62].

Long-range interactions
We used publicly available chromatin interaction ana-
lysis by paired-end tag sequencing (ChIA-PET) libraries
to map long-range interactions in five different cell lines,
with three different transcription factors [63] (Additional
file 3). Data were downloaded from the WashU Epige-
nome Browser.

Expression QTLs
We used the following publicly available expression
QTL (eQTL) browsers to see whether any of the associ-
ated SNPs or SNPs in strong linkage with them (r2 > 0.8)
were eQTLs for our genes of interest: the eQTL browser
of the Genotype-Tissue Expression (GTEx) project [64],
the eQTL Browser of the National Center for Biotech-
nology Information, the eQTL resources from the Gilad/
Pritchard group [65], and the blood eQTL browser
developed by Westra et al. [66].
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Statistics
For statistical analysis, we used the log2 ratio of the in-
tensities of methylated probe and unmethylated probe,
also called M value, which is more statistically valid for
the differential analysis of methylation levels [67].

Linear model
We developed the following linear model for each CpG
site k:

Mk ¼ ak þ bkSS þ bkAAþ bkWW þ bkGG

þ bkPC1PC1þ bkPC2PC2þ εk

where Mk is the M value of CpG site k, S is the dichoto-
mized sex (female = 1 and male = 0), A is the age, W is
the weight category (normal weight = 0, overweight = 1,
obese = 2), G is the genotype at the investigated SNP
(homozygotes for non-risk allele = 0, heterozygotes = 1,
homozygotes for risk allele = 2), PC1 and PC2 are the
first two principal components derived from the list of
43 differentially methylated CpG sites in blood cell
types, and εk is the unexplained variability. We chose to
use weight category instead of BMI since our study sam-
ples include individuals aged under 18 years whose BMI
scales differ from the BMI scales of individuals aged over
18 years. Rare homozygous genotypes (count of less than
10) were combined with heterozygotes.
The coefficients bkx summarize the association be-

tween methylation levels and the variables of interest.
The p value for the SNP was determined using a likeli-
hood ratio test, using the lrtest function of the lmtest
package [68], and we report the effect size as the propor-
tion R2 of the CpG methylation variance that is
explained by the SNP, among the variance not already
explained by the covariates. To control the proportion of
false positives, q values were calculated using the qvalue
function of the qvalue package [69]. A SNP was consid-
ered significant if its q value was < 0.05.

Enrichment of associated CpGs in genomic regions, in vivo
transcribed enhancers, and chromatin states
To test whether associated CpGs were enriched or un-
derrepresented in different genomic regions (promoter,
gene body, etc.), chromatin states (enhancer, TSS, het-
erochromatin, etc.) and in vivo transcribed enhancers,
we used Fisher’s exact test. To control the proportion of
false positives, q values were calculated using the qvalue
function of the qvalue package [69]. Significance was
considered at a q value < 0.05.

Number of long-range interactions
The distributions of the numbers of long-range interac-
tions per CpG were skewed. Thus, to see whether

associated CpGs had a higher or lower number of long-
range interactions, we used Mann–Whitney U-test.

Power calculations
We used the pwr.f2.test function of the pwr package in
R to determine the statistical power in the replication
datasets (fibroblasts, brain and SAT/VAT).

Results
Obesity-associated SNPs associate with methylation at
proximal CpGs in whole blood samples from healthy
individuals
We tested associations between 52 obesity-associated
SNPs and M values of all CpG sites 500 kb upstream
and 500 kb downstream of each SNP in the blood of 355
individuals (Table 1), using a linear regression model ad-
justed for age, sex, blood cell type surrogate, and weight
category (i.e., lean, overweight, or obese) instead of BMI
since our study samples include individuals aged under
18 years whose BMI scales differ from the BMI scales of
individuals aged over 18 years. In total, 8485 probes
were tested, with an average of 163 probes per SNP
(Additional file 1). Methylation levels at 107 CpGs asso-
ciated with genotypes at 28 SNPs (likelihood ratio test, q
value < 0.05; Additional file 4) and most of the associa-
tions were between SNPs and CpGs that are close to
each other (50 % of the associations are between SNPs
and CpGs that are within 40 kb of each other; Fig. 1).
Also, the closer the SNP and CpG are, the stronger the
statistical significance is (Fig. 1). One example of these
SNP–CpG associations is depicted in Fig. 2. The
rs713586 SNP explains 53.8 % of the total variance in
methylation at cg01884057, with carriers of the risk
allele (C) at rs713586 having higher methylation.
The two sub-groups that were pooled for the discovery

analysis were of two different age ranges (see “Methods”),
but they did not significantly differ in terms of global
DNA methylation patterns, as shown by PCA (Additional
file 5). To make sure that the two sub-groups were com-
parable and could effectively be combined for the discov-
ery analysis, we tested the significance of the 107 CpGs
separately in each. SNP effects were in the same directions
for all 107 CpGs in the two separate sub-groups; 105
of the 107 CpGs were significant (raw p value < 0.05)
in the first, while 86 of the 107 CpGs were significant
(raw p value < 0.05) in the second. This suggests that
our results are not driven by a specificity of one of
the two sub-groups and that it was reasonable to pool
them for the discovery analysis.

Genomic context of CpGs associated with
obesity-associated SNPs
To understand the functional significance of the CpGs
associated with alleles at obesity-associated SNPs, we
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analyzed their genomic location in relation to genes,
chromatin states in 11 tissues, ubiquitous, tissue-
specific, or cell-specific in vivo transcribed enhancers,
and long-range interactions in five cell lines.

CpGs associated with obesity-associated SNPs are depleted
in promoters and enriched in intergenic regions
Thirty-eight of the associated CpGs were located in gene
promoters (MIR148A, BDNF, PTPMT1, NR1H3, MGAT1,
SCGB3A1, HOXC12, PMAIP1, PSIP1, RPS10-NUDT3,
RPS10, SKOR1, MAP2K5, SIX5, AGRN, IMMP1L, ELP4,

ITIH4, SEMA3G, POMC, ADCY3, SSPN, LGR4, TUFM,
MIR4721, SULT1A1, SULT1A2, APOBR, CLN3, SPNS1,
SH2B1, ATXN2L, and IL27), including eight also located
in a gene body (Additional file 4). Thus, associated
CpGs were underrepresented in promoters (28 % of
CpGs, Fisher’s exact test p value = 0.0097). In
contrast, 31 associated CpGs were located in inter-
genic regions, which is more than expected by chance
(30 % of CpGs, Fisher’s exact test p value = 0.0087;
Fig. 3). This is consistent with previous studies on
meQTLs [27, 30].

Fig. 2 Associations between genotypes at rs713586 and methylation at cg01884057. Distribution of methylation levels at cg01884057 is displayed
for individuals carrying zero (C/C), one (T/C), or two (T/T) risk alleles at rs713586

Fig. 1 Raw p value as a function of distance between SNP and CpG. Each point represents an associated SNP–CpG pair (107 pairs). Most associated
SNP–CpG pairs are close to each other, as illustrated by the box plot of the distance between SNP and CpG (bottom of the plot). The closer the
associated SNP–CpG pairs are, the lower the p value
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CpGs associated with obesity-associated SNPs are enriched
in enhancers in PBMCs
The activity of functional genomic elements is associated
with the state of the chromatin at these sites, such as his-
tone modification patterns and access of transcription fac-
tors to DNA. The recently developed chromHMM tool
allows interpreting chromatin states in a particular tissue
or cell type by integrating histone marks and transcription
factor binding data [60]. Using seven publicly available
histone marks in 11 tissues relevant in the pathogenesis of
obesity (AN, six brain regions, liver, PBMCs, PIs, and SM),
we interpreted the chromatin states of all regions contain-
ing the tested CpGs (Additional file 6). Consistent with
the enrichment of associated CpGs in intergenic regions
(Fig. 3), associated CpGs were enriched in enhancers in
PBMCs (Fisher’s exact test, q value = 0.0019) (Fig. 4).

Only one CpG associated with obesity-associated SNPs is
located in in vivo transcribed enhancers
The enrichment of associated CpGs in enhancers is a
prediction by chromHMM that relies on histone marks,
but we wanted to test whether associated CpGs were
also found in active enhancers, as defined by cap-
analysis of gene expression (CAGE) in the FANTOM5
project [61]. cg04588972, whose methylation was lower
in carriers of the risk allele at rs1878047, was in a ubi-
quitous enhancer showing long-range interactions with
the TSS of KLK14, IGLON5, LRRC4B, and SYT3.

However, associated CpGs were not underrepresented in
ubiquitous, tissue-specific, or cell-specific enhancers
(Fisher’s exact tests, all p values > 0.05). FANTOM5 uses
very stringent criteria to detect active enhancers using
whole transcriptome sequencing [61], thus possibly
explaining why none of the associated CpGs were in ac-
tive enhancers as defined by CAGE in the FANTOM5
project. Indeed, chromHMM predicted 33–266 times
more active enhancers from the FANTOM5 project
depending on the tissue, and there was little overlap
between the two.

CpGs associated with obesity-associated SNPs show
long-range interactions with promoters and other
genomic regions
Following the enrichment of associated CpGs at en-
hancers, we mapped all tested CpGs to long-range inter-
actions as defined by ChIA-PET libraries from five cell
lines and three transcription factors (Additional file 3)
[63]. Of the 107 associated CpGs, 103 (96 %) were
located in regions with at least one long-range inter-
action with another genomic region, and 73 of the
107 associated CpGs (68 %) were located in regions
with at least one long-range interaction with a gene
promoter (Additional file 4). For instance, five CpGs
negatively associated with rs2444217 and located in
enhancers in brain, PBMCs, liver, PIs, and SM
showed long-range interactions with the same five

Fig. 3 Distribution of associated versus all tested CpGs in promoters, gene bodies, and intergenic regions. A CpG was classified as “promoter” if
located within 1500 bp of the TSS of a gene, and as “ambiguous” if it was both in a promoter and within a gene body. Associated CpGs (top)
were underrepresented in promoters, and overrepresented in intergenic regions (Fisher’s exact test). *q value < 0.05
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gene promoters (Additional file 4; Fig. 5). Also, 6 of
the 15 CpGs associated with alleles at rs3934834
were found to interact with no less than 11 pro-
moters, and were in enhancers in PIs (Additional
files 4 and 6; Fig. 6). The graphic results for all sig-
nificant SNPs can be found in Additional file 7.
Associated CpGs were not enriched in long-range in-
teractions across all five cell lines and three target

transcription factors (Mann–Whitney U-test p value >
0.05; Fig. 7).

Associated CpGs are located in or show long-range
interactions with the promoters of genes for which
the corresponding SNPs are known eQTLs
We showed that some of the associated CpGs are
located in gene promoters, and some are in regions

Fig. 4 Distribution of associated versus all tested CpGs in seven chromatin states in 11 tissues. Associated CpGs were overrepresented in enhancers in
PBMCs (Fisher’s exact test). **q value < 0.01

Fig. 5 Genomic context of the CpGs associated with rs2444217. Genomic positions of RefSeq genes and rs2444217 are displayed in the top panel.
Within the two vertical red dotted lines, the LD r2 > 0.8. The positions of the tested CpGs are displayed. Long-range interactions as defined by ChIA-PET
libraries from five cell lines using chromatin immunoprecipitation with antibodies targeting three transcription factors (Additional file 5) are displayed
as arcs. For clarity of visualization, we chose to display only the long-range interactions of genomic regions containing associated CpGs.
Two interacting genomic regions are represented by an arc that links them, and the thickness of the arc line is proportional to the strength of this
interaction. The color of the arc corresponds to the target transcription factor and the shade of the color corresponds to the cell line: red for RNA
polymerase II, blue for ERα, and green for CTCF. In the bottom panel, chromatin states in 11 tissues are displayed. Chromatin states were
obtained using chromHMM prediction using data on seven histone marks (see “Methods”). The color of each band corresponds to a
particular state. AN adipose nuclei, BrainAC brain anterior caudate, BrainAG brain angular gyrus, BrainCG brain cingulate gyrus, BrainHIPPO
brain hippocampus, BrainITL brain inferior temporal lobe, BrainSN brain substantia nigra, PBMC peripheral blood mononuclear primary cells,
PI pancreatic islets, SM skeletal muscle
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Fig. 6 Genomic context of the CpGs associated with rs3934834. a The entire investigated region. b Zoom on the region surrounding rs3934834.
Genomic positions of RefSeq genes and rs3934834 are displayed in the top panel. Within the two vertical red dotted lines, the LD r2 > 0.8. The positions
of the tested CpGs are displayed. Long-range interactions as defined by ChIA-PET libraries from five cell lines using chromatin immunoprecipitation
with antibodies targeting three transcription factors (Additional file 5) are displayed as arcs. For clarity of visualization, we chose to display only the
long-range interactions of genomic regions containing associated CpGs. Two interacting genomic regions are represented by an arc that links them,
and the thickness of the arc line is proportional to the strength of this interaction. The color of the arc corresponds to the target transcription factor
and the shade of the color corresponds to the cell line: red for RNA polymerase II, blue for ERα, and green for CTCF. In the bottom panel, chromatin
states in 11 tissues are displayed. Chromatin states were obtained using chromHMM prediction using data on seven histone marks (see “Methods”).
The color of each band corresponds to a particular state. AN adipose nuclei, BrainAC brain anterior caudate, BrainAG brain angular gyrus, BrainCG
brain cingulate gyrus, BrainHIPPO brain hippocampus, BrainITL brain inferior temporal lobe, BrainSN brain substantia nigra, PBMC peripheral blood
mononuclear primary cells, PI pancreatic islets, SM skeletal muscle
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showing putative long-range interactions with gene pro-
moters. In order to make the link between SNP, methy-
lation, and mRNA expression, we searched four eQTL
databases (see “Methods”); we browsed all associated
SNPs and SNPs in strong LD with them (with r2 > 0.8),
and retrieved the genes for which they were eQTLs
(Additional file 8). We found that associated CpGs are
located in or show long-range interactions with the pro-
moters of genes for which the corresponding SNPs are
known eQTLs. For instance, rs10838738 is a known eQTL
for several genes in blood, including C1QTNF4, CELF1,
and NUP160. Interestingly, rs10838738 associated with
three CpGs showing long-range interactions with
C1QTNF4 (Additional file 4), four CpGs showing long-
range interactions with CELF1 (Additional file 4), including
three in enhancers in PBMCs (Additional file 6), and one
CpG showing long-range interactions with NUP160
(Additional file 4) that was in an enhancer in PBMCs
(Additional file 4). Another example is rs713586, a known
eQTL for ADCY3 in blood and monocytes. rs713586 asso-
ciated with a CpG located in the promoter of ADCY3
(Additional file 4) that was also promoter-associated in
PBMCs (Additional file 6).

Genome-scale measurements are validated by bisulfite
sequencing
We validated one of the tested CpGs (cg15576492) by
bisulfite sequencing, using DNA from 17 individuals
from the discovery study group who were homozygous
for rs3934834 (six A/A and 11 G/G). Our criteria for
choosing this site were the following: 1) significant asso-
ciation with risk alleles; 2) strongest association with risk
alleles; 3) located in a gene promoter and/or having
long-range interactions with a gene promoter. The cor-
relation between methylation assessed by Illumina and
bisulfite sequencing was good (Pearson’s correlation
coefficient r = 0.68, p value = 0.0025; Additional file 9).
Methylation in A/A was higher than methylation in G/G,
but the methylation difference did not reach statistical
significance (p value > 0.05), which could be explained
by reduced statistical power (17 individuals).

SNP–CpG associations might not be blood-specific
Four of the initial SNP–CpG associations in blood are
replicated in skin fibroblasts
The open-access dataset of skin fibroblasts consists of
DNA methylation data assessed with the Illumina
HumanMethylation450 BeadChip and genotype data
assessed with the Illumina Human1M-Duov3 DNA
Analysis BeadChip. Thus, we had data to test 65 of
the 107 significant SNP–CpG associations in skin
fibroblasts (n = 62). Fourteen SNP–CpG associations
had a raw p value < 0.05, and seven had a q value <
0.05, including four having a concordant effect sign
with results obtained in blood (Additional file 10).
Notably, genotypes at rs1011731 associated with
methylation at cg13446689 (regression coefficient =
0.254, q value = 0.012).

The single SNP–methylation association tested in SAT and
VAT was not significant
The SAT and VAT study group of 149 individuals
(mostly overweight/obese) was used to test specifically
the association between genotypes at rs1011731 and
methylation at cg13446689, which was assessed by bisul-
fite sequencing. We chose to test this SNP–CpG pair
because there was an association between cg13446689
and rs1011731 in both blood and fibroblasts, and
because this study group had already been genotyped for
rs1011731. There was no association between methyla-
tion at cg13446689 in VAT or SAT and genotypes at
rs1011731 (p value > 0.05; Additional file 10).

The two SNP–methylation associations tested in cerebellum,
frontal cortex, caudal pons, and temporal cortex were not
significant
The open-access dataset of four brain regions con-
sists of DNA methylation assayed using the Illumina

Fig. 7 Distribution of the number of long-range interactions for
associated versus all tested CpGs. For each associated and tested
CpG, we counted the number of genomic regions containing the CpG
that interacted with another genomic region. For clarity and because
the number of interactions was skewed, we chose to display the
log10(number of interactions)
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HumanMethylation27 BeadChip, and genotype data
assessed with the Illumina Human1M-Duov3 DNA Ana-
lysis BeadChip. Thus, we had data to test two of the 107
associated CpGs (cg05585544 and cg11385473). There
was no association between genotypes at rs10838738 and
methylation at cg05585544 in any of the four brain
regions; there was no association between genotypes at
rs652722 and methylation at cg11385473 in any of the
four brain regions (p values > 0.05; Additional file 10).

Discussion
Our findings suggest that carriers of obesity-associated
risk alleles display complex alterations of the gene regu-
latory landscape. We find that obesity-associated SNPs
can be linked to DNA methylation levels in several prox-
imal locations, which implies that they may affect mul-
tiple genes. These SNPs associated with proximal DNA
methylation levels in whole blood of healthy individuals,
but these associations might not be blood-specific. Inter-
estingly, several obesity-associated SNPs associated with
CpGs that were in the promoters of genes known to par-
ticipate in the pathogenesis of obesity, or were located in
regions that interact with such genes. In addition, associ-
ated CpGs were enriched in enhancers in blood, which
highlights their potential in gene regulation.
It is well established that DNA methylation levels cor-

relate with the presence of specific alleles at nearby
SNPs [25–37], such as Grundberg et al. [29], who found
that 28 % of CpGs were associated with SNPs within 100
kb in adipose tissue. If we restrict our analysis to 100 kb,
we find 103 SNP–CpG associations at a q value < 0.05,
corresponding to 27 unique SNPs (52 % of tested SNPs).
It would be difficult to assess whether this percentage is
particularly high, but the present study shows that
obesity-associated SNPs discovered in GWASs may me-
diate their effect through alterations of the regulation of
transcription. Indeed, the global results for each signifi-
cant SNP display fascinating patterns. Several obesity-
associated SNPs may affect “transcription factories”,
clusters of gene promoters and their enhancers that
interact in three-dimensional space and are brought to-
gether by DNA-binding proteins such as CTCF [70].
The most striking example is rs7498665 since the 12
CpGs associated with this SNP are located in ten distinct
gene promoters. rs3888190, one of the top loci of the
most recent BMI GWAS [11], is in perfect LD with
rs7498665 (r2 = 1) and is known to be an eQTL for five
of these ten gene promoters (APOBR [71], SH2B1 [71],
SULT1A2 [72], ATXN2L [11], and TUFM [11]). Another
interesting example is rs10838738, which associated with
three CpGs showing long-range interactions with
C1QTNF4, four CpGs showing long-range interactions
with CELF1, and one CpG showing long-range interac-
tions with NUP160. rs10838738 is a known eQTL for

these three genes in blood [64, 66]. Thus, our results
suggest that the effect of obesity-associated SNPs may
be mediated by multiple and quite distant genes, as illus-
trated by three of our investigated SNPs (rs3934834,
rs2287019, and rs7498665) that associated with CpGs
interacting with no less than 15 promoters (Additional
files 4 and 7). This underlines the importance for a
rational and inclusive selection process for candidate
genes for GWAS hits rather than the common practice
of only focusing on the closest gene.
At a more detailed level, patterns of DNA methylation

at specific CpGs between carriers and non-carriers of risk
alleles were consistent with previous studies. Alleles at
rs713586 explained 54 % of the variance in methylation at
cg01884057, with an increase of almost 10 % methylation
for each risk allele. The very same pattern was also found
in adipose tissue in another study [29]. More interestingly,
some patterns of DNA methylation between carriers and
non-carriers of risk alleles was consistent with what is
known about these genes and obesity. For instance,
MIR148A is upregulated during normal adipogenesis but
downregulated in obese adipocytes [73], and its expression
is regulated by DNA methylation at its CpG island [74].
Consistently, carriers of the risk allele at rs1055144 had
higher methylation levels in the promoter of MIR148A.
Also, carriers of the risk allele at rs10838738 had lower
methylation in the promoter of PTPMT1, a gene that
codes for a mitochondrial phosphatase whose inhibition
lowers glucose concentration [75] and a suggested drug
target for treatment of type II diabetes [76]. Last but not
least, three of the associated CpGs were located within
two of the numerous promoters of BDNF, which encodes
a neurotrophin that plays several roles in regulating en-
ergy homeostasis [77]. It is suggested that BDNF is finely
regulated by DNA methylation and histone modifications
[78, 79], and differential BDNF transcripts are expressed
at different time points and in different cellular compart-
ments [79]. Carriers of the risk allele at rs10767664 had
higher methylation in the pII promoter of BDNF, and
lower methylation in the pVI promoter of BDNF. How-
ever, the roles of specific BDNF promoters in obesity
remain unexplored. Also, the SNPs may affect other genes
linked to obesity: NR1H3, a member of the liver X recep-
tors that regulate cholesterol catabolism [80] and
expressed during adipose tissue remodeling [81]; PAC-
SIN3, a kinase that induces glucose uptake by adipocytes
[82]; LGR4, a G protein-coupled receptor whose ablation
potentiates the white-to-brown fat transition [83]; POMC,
a peptide that decreases food intake and increases energy
expenditure [84]; CLN3 and ITH4, two proteins positively
associated with obesity [85, 86]; and the developmental
genes HOTAIR and HOXC11, responsible for differential
fat accumulation between upper and lower body, and
under epigenetic control [85, 87].
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Our study aimed at unraveling the molecular effects of
body mass-associated genetic variants on chromatin
structure, with a special focus on DNA methylation. We
benefited from a large sample size for the discovery ana-
lysis (n = 355) and from the use of a large battery of
open access datasets to map associated CpGs to mean-
ingful genomic annotations, such as promoters, pre-
dicted and in vivo transcribed enhancers, and long-range
interactions. In addition, we tested the tissue-specificity
of 65 of the initial associations in skin fibroblasts, two of
the initial associations in four brain regions, and one in
SAT and VAT. It is possible that some of the associa-
tions discovered in blood are limited to this tissue, or
that unmeasured environmental factors such as smok-
ing, diet, physical activity, and tissue-specific molecular
factors impacted DNA methylation at the measured
CpG sites and confounded our results. It should be
noted, however, that we could not test all of the 107
initial associations in the replication samples, and the
sample sizes of the replication samples were smaller
than the discovery study group. Analysis of statistical
power (probability of detecting a “true” effect when it
exists) suggests that we have a high probability of repli-
cating our results in the VAT and SAT replication sam-
ples, where power was 95 %. In contrast, power was only
23–25 % for cg11385473 and 42–47 % for cg05585544
for the brain replication samples and 39 % on average
for the skin fibroblast replication samples, which implies
that we are likely unable to replicate our results due to
too small sample groups for these conditions. Besides,
pan-tissue SNP–CpG associations are consistent with a
genome-wide study where genotype-dependent methyla-
tion differences between blood and brain were associ-
ated, making genetic influence on DNA methylation in
blood relevant for other tissues [26]. Finally, it should be
kept in mind that the probes of the methylation array
used in this study (Illumina 450 k) are enriched in CpG
islands, gene promoters, and gene regions; it is thus
possible that we missed important CpGs linked to
obesity-associated SNPs.
In the paradigm of genetics–epigenetics–environment

relationships, it is still unknown whether obesity-
associated SNPs directly cause differential DNA methy-
lation at genes and enhancers that contribute to the
pathogenesis of obesity, or if the observed differential
methylation levels are merely a consequence of a modi-
fied gene regulation caused by the presence of risk
alleles at obesity-associated SNPs. In a recent review on
the function and information content of DNA methyla-
tion, DNA methylation is thought to have both an active
and passive role in gene regulation, and it seems to be
highly contextual [88]. In particular, it has been pro-
posed that mutations within regulatory regions affect
binding of transcription factors, which in turn influence

DNA methylation [88]. If DNA methylation does not ne-
cessarily actively impact on gene regulation, it is at least
an informative marker of the underlying regulatory ac-
tivity. Therefore, the differential methylation observed in
carriers of risk alleles at obesity-associated SNPs in our
study likely reflects allele-specific effects on gene regula-
tory mechanisms.

Conclusions
In this study we report strong associations between
obesity-associated SNPs discovered in GWASs and
methylation levels at proximal CpG sites. The methyla-
tion sites associated with alleles at obesity-associated
SNPs were enriched in enhancers in PBMCs, and some
of these sites were located in the promoters of genes, or
were located in regions showing long-range interactions
with established roles in appetite regulation as well as
regulation of body mass. We also found indications that
some of these genotype–methylation associations exist
in different tissues. This study has implications for un-
derstanding how obesity-associated variants mediate
their effects. Further studies are needed to unravel the
mechanisms that govern the interplay between genetic
variants and the activity of functional DNA elements.

Additional files
The following additional data are available with the online
version of this paper. Additional file 1 is a is a table de-
scribing the 52 investigated SNPs. Additional file 2 is a
heatmap showing the top CpG sites associated with blood
cell type surrogates (principal components), evaluated in
purified human leukocyte subtype methylation data sets.
Additional file 3 is a table listing the cell lines and target
transcription factors of the ChIA-PET libraries. Additional
file 4 is a table describing the 107 associated CpGs found
in blood and their annotation. Additional file 5 is a PCA
showing the two discovery study samples on the first three
principal components, using only the most variable auto-
somal CpG sites. Additional file 6 is a table showing the
chromatin state at the genomic position of the 107 associ-
ated CpG, in 11 tissues. Additional file 7 is a figure show-
ing the genomic context of the CpGs associated with the
28 significant SNPs. Additional file 8 is a table showing
the eQTLs found in four eQTL databases for each of the
28 significant SNPs. Additional file 9 is a figure showing
the correlations between Illumina 450 K and pyrose-
quence analysis of cg15576492. Additional file 10 is a table
summarizing the replication of the 107 SNP-CpG associa-
tions found in blood.

Additional file 1: Description of the 52 investigated SNPs. SNPs in
bold are SNPs for which significant associations with DNA methylation
were found. *Number in parenthesis = number of individuals with
missing genotypes. (DOCX 108 kb)
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Additional file 2: Top CpG sites associated with blood cell type
surrogates (principal components), evaluated in purified human
leukocyte subtype methylation data sets. (TIFF 26367 kb)

Additional file 3: Cell lines and target transcription factors of the
ChIA-PET libraries. #Cell types are described in ENCODE project [89].
*Target transcription factors and their corresponding antibodies are
described in the ENCODE project [90]. (DOCX 11 kb)

Additional file 4: Description of the 107 associated CpGs found in
blood and their annotation. *Coefficient of the linear model associated
with the obesity-associated SNP: positive for increased methylation
with presence of risk allele; coefficients are calculated using M values.
(DOCX 38 kb)

Additional file 5: Principal component analysis of the two study
groups (n = 355) on the first three principal components, using only
the most variable autosomal CpG sites. Red dots are individuals from
study sub-group 1 (n = 130), black dots are individuals from study
sub-group 2 (n = 225). (TIFF 26367 kb)

Additional file 6: Chromatin states at the genomic position of the
107 CpGs, in the 11 investigated tissues. AN adipose nuclei, BrainAC
brain anterior caudate, BrainAG brain angular gyrus, BrainCG brain
cingulate gyrus, BrainHIPPO brain hippocampus, BrainITL brain inferior
temporal lobe, BrainSN brain substantia nigra, PBMC peripheral blood
mononuclear primary cells, PI pancreatic islets, SM skeletal muscle.
(DOCX 36 kb)

Additional file 7: Genomic context of the CpGs associated with the
significant SNPs. Each plot corresponds to a SNP for which associations
with DNA methylation were found (28 plots in total). Genomic positions
of RefSeq genes and the obesity-related SNP are displayed in the top panel.
Within the two vertical red dotted lines, the linkage disequilibrium r2 > 0.8.
The positions of the tested CpGs are displayed. Long-range interactions
as defined by ChIA-PET libraries from five cell lines using chromatin
immunoprecipitation with antibodies targeting three transcription
factors (Additional file 4) are displayed as arcs. For clarity of
visualization, we chose to display only the long-range interactions
of genomic regions containing associated CpGs. Two interacting
genomic regions are represented by an arc that links them, and
the thickness of the arc line is proportional to the strength of this interaction.
The color of the arc corresponds to the target transcription factor and the
shade of the color corresponds to the cell line: red for RNA polymerase II, blue
for ERα, and green for CTCF. In the bottom panel, chromatin states in 11
tissues are displayed. Chromatin states were obtained using chromHMM
prediction using data on seven histone marks (see “Methods”). The color of
each band corresponds to a particular state. AN adipose nuclei,
BrainAC brain anterior caudate, BrainAG brain angular gyrus, BrainCG
brain cingulate gyrus, BrainHIPPO brain hippocampus, BrainITL brain
inferior temporal lobe, BrainSN brain substantia nigra, PBMC peripheral
blood mononuclear primary cells, PI pancreatic islets, SM skeletal
muscle. (TIFF 9613 kb)

Additional file 8: eQTLs found in four eQTL databases for each of
the significant 28 SNPs. 1Investigated tissues: subcutaneous adipose
tissue, aorta artery, tibial artery, esophagus mucosa, esophagus muscularis,
heart left ventricle, lung, skeletal muscle, tibial nerve, sun-exposed skin,
lower leg, stomach, thyroid, whole blood. 2Investigated tissues/cell lines:
lymphoblastoid cell line (LCL), liver, monocytes, fibroblasts, T cells, brain
cortex. 3Investigated tissues/cell lines: lymphoblastoid cell line (LCL), liver,
brain cerebellum, brain frontal cortex, brain temporal cortex, brain pons.
(DOCX 25 kb)

Additional file 9: Correlations between Illumina 450 K and
pyrosequence analysis of cg15576492. Methylation at cg15576492,
as determined by the Illumina 450 k Chip and expressed as β value,
is plotted against methylation at cg15576492, as determined by
pyrosequencing and expressed as β value (n = 17). (TIFF 12920 kb)

Additional file 10: Replication of the 107 SNP-CpG associations
found in blood. *Coefficient of the linear model associated with the
obesity-associated SNP: positive for increased methylation with presence of
risk allele; coefficients are calculated using M values. Coefficients with a hash
symbol correspond to associations with raw p value < 0.05 and coefficients
in bold correspond to associations with q value < 0.05. (DOCX 31 kb)

Abbreviations
AN: adipose nuclei; BMI: body mass index; BrainAC: brain anterior caudate;
BrainAG: brain angular gyrus; BrainCG: brain cingulate gyrus;
BrainHIPPO: brain hippocampus; BrainITL: brain inferior temporal lobe;
BrainSN: brain substantia nigra; CAGE: cap-analysis of gene expression;
ChIA-PET: chromatin interaction analysis by paired-end tag sequencing;
eQTL: expression quantitative trait locus; GEO: Gene Expression Omnibus;
GWAS: genome-wide association study; LD: linkage disequilibrium;
meQTL: methylation quantitative trait locus; PBMC: peripheral blood
mononuclear primary cell; PCA: principal component analysis;
PCR: polymerase chain reaction; PI: pancreatic islet; QTL: quantitative trait
locus; SAT: subcutaneous adipose tissue; SM: skeletal muscle; SNP: single
nucleotide polymorphism; TSS: transcription start site; UCSC: University of
California, Santa Cruz; VAT: visceral adipose tissue.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
SV participated in the design of the study, performed the statistical analysis
and drafted the manuscript. MSA participated in the design of the study and
helped to draft the manuscript. GYZ carried out the confirmative bisulfite
sequencing analysis in blood. LL, SZ, SC, and FE recruited participants and
collected blood samples. EN and JK carried out DNA preparation and
contributed to genotyping. MRA participated in the design of the study. PK,
MB, and YB carried out the genotyping and pyrosequencing in adipose
tissue. HBS conceived the study, participated in its design and coordination,
and helped to draft the manuscript. All authors read and approved the final
manuscript.

Acknowledgements
The methylation array was performed at the Genotyping Technology
Platform, (http://www.genotyping.se), the sequencing was performed at the
Uppsala Genome Center (http://www.igp.uu.se/facilities/genome_center),
Uppsala, Sweden with support from Uppsala University and the Knut and
Alice Wallenberg foundation and at the Uppsala Genome Centre. The studies
were supported by the Swedish Research Council (VR, medicine) and the
Novo Nordisk Foundation. M.R.A. is supported by the Swedish Brain Research
foundation, the Fredrik O. Ingrid Thuring foundation and the Lars Hierta
Memorial Foundation. The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.
This project was supported by grants from the Boehringer Ingelheim
Foundation to P.K., from the IFB AdiposityDiseases (ADI-K50D; ADI-K7-39 and
ADI-K7-45 to Y.B. and ADI-K60E to P.K.). IFB AdiposityDiseases is supported by
the Federal Ministry of Education and Research (BMBF), Germany, FKZ:
01EO1001. This work was further supported by grants from the DDG and
DDS to Y.B. and from the Collaborative Research Center funded by the
German Research Foundation (CRC 1052; B01 and B03 to M.B. and P.K.,
respectively) and by the Kompetenznetz Adipositas (Competence network
for Obesity) funded by the German Federal Ministry of Education and
Research (German Obesity Biomaterial Bank; FKZ 01GI1128).

Author details
1Department of Neuroscience, Functional Pharmacology, Uppsala University,
Uppsala, Sweden. 2Department of Medical Biochemistry and Microbiology,
Uppsala University, SE-751 23 Uppsala, Sweden. 3Medical Faculty, IFB
Adiposity Diseases, University of Leipzig, Liebigstrasse 21, 04103 Leipzig,
Germany. 4Latvian Biomedical Research and Study Center, Ratsupites 1, Riga
LV-1067, Latvia.

Received: 22 July 2015 Accepted: 21 September 2015

References
1. Willer CJ, Speliotes EK, Loos RJF, Li S, Lindgren CM, Heid IM, et al. Six new

loci associated with body mass index highlight a neuronal influence on
body weight regulation. Nat Genet. 2009;41:25–34.

2. Speliotes EK, Willer CJ, Berndt SI, Monda KL, Thorleifsson G, Jackson AU,
et al. Association analyses of 249,796 individuals reveal eighteen new loci
associated with body mass index. Nat Genet. 2011;42:937–48.

Voisin et al. Genome Medicine  (2015) 7:103 Page 14 of 16

http://genomemedicine.com/content/supplementary/s13073-015-0225-4-s2.tif
http://genomemedicine.com/content/supplementary/s13073-015-0225-4-s3.docx
http://genomemedicine.com/content/supplementary/s13073-015-0225-4-s4.docx
http://genomemedicine.com/content/supplementary/s13073-015-0225-4-s5.tif
http://genomemedicine.com/content/supplementary/s13073-015-0225-4-s6.docx
http://genomemedicine.com/content/supplementary/s13073-015-0225-4-s7.tif
http://genomemedicine.com/content/supplementary/s13073-015-0225-4-s8.docx
http://genomemedicine.com/content/supplementary/s13073-015-0225-4-s9.tif
http://genomemedicine.com/content/supplementary/s13073-015-0225-4-s10.docx
http://www.genotyping.se
http://www.igp.uu.se/facilities/genome_center


3. Okada Y, Kubo M, Ohmiya H, Takahashi A, Kumasaka N, Hosono N, et al.
Common variants at CDKAL1 and KLF9 are associated with body mass
index in east Asian populations. Nat Genet. 2012;44:302–6.

4. Thorleifsson G, Walters GB, Gudbjartsson DF, Steinthorsdottir V, Sulem P,
Helgadottir A, et al. Genome-wide association yields new sequence
variants at seven loci that associate with measures of obesity.
Nat Genet. 2009;41:18–24.

5. Liu JZ, Medland SE, Wright MJ, Henders AK, Heath AC, Madden PAF, et al.
Genome-wide association study of height and body mass index in
Australian twin families. Twin Res Hum Genet. 2010;13:179–93.

6. Johansson A, Marroni F, Hayward C, Franklin CS, Kirichenko AV, Jonasson I,
et al. Linkage and genome-wide association analysis of obesity-related
phenotypes: association of weight with the MGAT1 gene. Obesity (Silver
Spring). 2010;18:803–8.

7. Cotsapas C, Speliotes EK, Hatoum IJ, Greenawalt DM, Dobrin R, Lum PY,
et al. Common body mass index-associated variants confer risk of extreme
obesity. Hum Mol Genet. 2009;18:3502–7.

8. Wen W, Cho Y-S, Zheng W, Dorajoo R, Kato N, Qi L, et al. Meta-analysis
identifies common variants associated with body mass index in east Asians.
Nat Genet. 2012;44:307–11.

9. Ng MCY, Hester JM, Wing MR, Li J, Xu J, Hicks PJ, et al. Genome-wide
association of BMI in African Americans. Obesity. 2012;20:622–7.

10. Field SF, Howson JMM, Walker NM, Dunger DB, Todd JA. Analysis of the
obesity gene FTO in 14,803 type 1 diabetes cases and controls.
Diabetologia. 2007;50:2218–20.

11. Locke AE, Kahali B, Berndt SI, Justice AE, Pers TH, Day FR, et al. Genetic
studies of body mass index yield new insights for obesity biology. Nature.
2015;518:197–206.

12. Loos RJF, Lindgren CM, Li S, Wheeler E, Zhao JH, Prokopenko I, et al.
Common variants near MC4R are associated with fat mass, weight and risk
of obesity. Nat Genet. 2008;40:768–75.

13. Jamshidi Y, Snieder H, Ge D, Spector TD, O’Dell SD. The SH2B gene is
associated with serum leptin and body fat in normal female twins. Obesity
(Silver Spring). 2007;15:5–9.

14. Liu XG, Tan LJ, Lei SF, Liu YJ, Shen H, Wang L, et al. Genome-wide association
and replication studies identified TRHR as an important gene for lean body
mass. Am J Hum Genet. 2009;84:418–23.

15. Teslovich TM, Musunuru K, Smith AV, Edmondson AC, Stylianou IM, Koseki
M, et al. Biological, clinical and population relevance of 95 loci for blood
lipids. Nature. 2010;466:707–13.

16. Heard-Costa NL, Zillikens MC, Monda KL, Johansson A, Harris TB, Fu M, et al.
NRXN3 is a novel locus for waist circumference: a genome-wide association
study from the CHARGE Consortium. PLoS Genet. 2009;5, e1000539.

17. Shungin D, Winkler TW, Croteau-Chonka DC, Ferreira T, Locke AE, Magi R,
et al. New genetic loci link adipose and insulin biology to body fat
distribution. Nature. 2015;518:187–96.

18. Heid IIM, Jackson AUA, Randall J, Winkler T. Meta-analysis identifies 13 new
loci associated with waist-hip ratio and reveals sexual dimorphism in the
genetic basis of fat distribution. Nat Genet. 2010;42:950.

19. Hinney A, Vogel CIG, Hebebrand J. From monogenic to polygenic obesity:
Recent advances. Eur Child Adolesc Psychiatry. 2010;19:297–310.

20. Smemo S, Tena JJ, Kim KH, Gamazon ER, Sakabe NJ, Gomez-Marin C, et al.
Obesity-associated variants within FTO form long-range functional
connections with IRX3. Nature. 2014;507:371–5.

21. Elliott P, Chambers JC, Zhang W, Clarke R, Hopewell JC, Peden JF, et al.
Genetic Loci associated with C-reactive protein levels and risk of coronary
heart disease. JAMA. 2009;302:37–48.

22. Mansego ML, Milagro FI, Zulet MA, Martinez JA. SH2B1 CpG-SNP is
associated with body weight reduction in obese subjects following a
dietary restriction program. Ann Nutr Metab. 2014;66:1–9.

23. Dick KJ, Nelson CP, Tsaprouni L, Sandling JK, Aïssi D, Wahl S, et al. DNA
methylation and body-mass index: a genome-wide analysis. Lancet.
2014;6736:1–9.

24. Almén MS, Nilsson EK, Jacobsson JA, Kalnina I, Klovins J, Fredriksson R, et al.
Genome-wide analysis reveals DNA methylation markers that vary with
both age and obesity. Gene. 2014;548:61–7.

25. Quon G, Lippert C, Heckerman D, Listgarten J. Patterns of methylation
heritability in a genome-wide analysis of four brain regions. Nucleic Acids
Res. 2013;41:2095–104.

26. Davies MN, Volta M, Pidsley R, Lunnon K, Dixit A, Lovestone S, et al.
Functional annotation of the human brain methylome identifies tissue-

specific epigenetic variation across brain and blood. Genome Biol.
2012;13:R43.

27. Gibbs JR, van der Brug MP, Hernandez DG, Traynor BJ, Nalls MA, Lai SL,
et al. Abundant quantitative trait loci exist for DNA methylation and gene
expression in Human Brain. PLoS Genet. 2010;6:29.

28. Zhang D, Cheng L, Badner JA, Chen C, Chen Q, Luo W, et al. Genetic
control of individual differences in gene-specific methylation in human
brain. Am J Hum Genet. 2010;86:411–9.

29. Grundberg E, Meduri E, Sandling JK, Hedman AK, Keildson S, Buil A, et al.
Global analysis of dna methylation variation in adipose tissue from twins
reveals links to disease-associated variants in distal regulatory elements.
Am J Hum Genet. 2013;93:876–90.

30. Drong AW, Nicholson G, Hedman AK, Meduri E, Grundberg E, Small KS, et al.
The presence of methylation quantitative trait loci indicates a direct genetic
influence on the level of DNA methylation in adipose tissue. PLoS One.
2013;8, e55923.

31. Smith AK, Kilaru V, Kocak M, Almli LM, Mercer KB, Ressler KJ, et al. Methylation
quantitative trait loci (meQTLs) are consistently detected across ancestry,
developmental stage, and tissue type. BMC Genomics. 2014;15:145.

32. Van Eijk K, de Jong S, Boks M, Langeveld T, Colas F, Veldink J, et al. Genetic
analysis of DNA methylation and gene expression levels in whole blood of
healthy human subjects. BMC Genomics. 2012;13:636.

33. Shi J, Marconett CN, Duan J, Hyland PL, Li P, Wang Z, et al. Characterizing
the genetic basis of methylome diversity in histologically normal human
lung tissue. Nat Commun. 2014;5:3365.

34. Wagner JR, Busche S, Ge B, Kwan T, Pastinen T, Blanchette M. The relationship
between DNA methylation, genetic and expression inter-individual variation in
untransformed human fibroblasts. Genome Biol. 2014;15:R37.

35. Gutierrez-Arcelus M, Lappalainen T, Montgomery SB, Buil A, Ongen H,
Yurovsky A, et al. Passive and active DNA methylation and the interplay
with genetic variation in gene regulation. Elife. 2013;2, e00523.

36. Gertz J, Varley KE, Reddy TE, Bowling KM, Pauli F, Parker SL, et al.
Analysis of DNA methylation in a three-generation family reveals
widespread genetic influence on epigenetic regulation. PLoS Genet.
2011;7:e1002228.

37. Bell J, Pai A, Pickrell J, Gaffney D, Pique-Regi R, Degner J, et al. DNA
methylation patterns associate with genetic and gene expression variation
in HapMap cell lines. Genome Biol. 2011;12:R10.

38. Gamazon ER, Badner JA, Cheng L, Zhang C, Zhang D, Cox NJ, et al.
Enrichment of cis-regulatory gene expression SNPs and methylation
quantitative trait loci among bipolar disorder susceptibility variants. Mol
Psychiatry. 2012;18:340–6.

39. Cole TJ, Bellizzi MC, Flegal KM, Dietz WH. Establishing a standard definition
for child overweight and obesity worldwide: international survey. BMJ.
2000;320:1240–3.

40. SNP&SEQ Technology Platform. http://molmed.medsci.uu.se/SNP+SEQ
+Technology+Platform/.

41. Gene Expression Omnibus. http://www.ncbi.nlm.nih.gov/geo/.
42. The R Project for Statistical Computing. https://www.r-project.org/.
43. Aryee MJ, Jaffe AE, Corrada-Bravo H, Ladd-Acosta C, Feinberg AP, Hansen

KD, et al. Minfi: A flexible and comprehensive Bioconductor package for
the analysis of Infinium DNA Methylation microarrays. Bioinformatics.
2014;10:1363–9.

44. Morris TJ, Butcher LM, Feber A, Teschendorff AE, Chakravarthy AR, Wojdacz
TK, et al. ChAMP: 450 k chip analysis methylation pipeline. Bioinformatics.
2014;30:428–30.

45. Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD. The SVA package for
removing batch effects and other unwanted variation in high-throughput
experiments. Bioinformatics. 2012;28:882–3.

46. Van Iterson M, Tobi EW, Slieker RC, den Hollander W, Luijk R, Slagboom PE,
et al. MethylAid: Visual and interactive quality control of large Illumina 450 k
data sets. Bioinformatics. 2014;30:3435–7.

47. Triche TJ, Weisenberger DJ, Van Den Berg D, Laird PW, Siegmund KD. Low-
level processing of Illumina Infinium DNA Methylation BeadArrays. Nucleic
Acids Res. 2013;41:e90.

48. Teschendorff AE, Marabita F, Lechner M, Bartlett T, Tegner J, Gomez-Cabrero
D, et al. A beta-mixture quantile normalization method for correcting probe
design bias in Illumina Infinium 450 k DNA methylation data. Bioinformatics.
2013;29:189–96.

49. Lê S, Josse J, Husson F. FactoMineR: An R package for multivariate analysis.
J Stat Softw. 2008;25:1–18.

Voisin et al. Genome Medicine  (2015) 7:103 Page 15 of 16

http://molmed.medsci.uu.se/SNP+SEQ+Technology+Platform/
http://molmed.medsci.uu.se/SNP+SEQ+Technology+Platform/
http://www.ncbi.nlm.nih.gov/geo/
https://www.r-project.org/


50. Chen YA, Lemire M, Choufani S, Butcher DT, Grafodatskaya D, Zanke BW,
et al. Discovery of cross-reactive probes and polymorphic CpGs in the
Illumina Infinium HumanMethylation450 microarray. Epigenetics.
2013;8:203–9.

51. Liu Y, Aryee MJ, Padyukov L, Fallin MD, Hesselberg E, Runarsson A, et al.
Epigenome-wide association data implicate DNA methylation as an
intermediary of genetic risk in rheumatoid arthritis. Nat Biotechnol.
2013;31:142–7.

52. Koestler DC, Marsit CJ, Christensen BC, Accomando W, Langevin SM,
Houseman EA, et al. Peripheral blood immune cell methylation profiles are
associated with nonhematopoietic cancers. Cancer Epidemiol Biomarkers
Prev. 2012;21:1293–302.

53. Accomando WP, Wiencke JK, Houseman EA, Butler RA, Zheng S, Nelson HH,
et al. Decreased NK cells in patients with head and neck cancer determined
in archival DNA. Clin Cancer Res. 2012;18:6147–54.

54. Lewin J, Schmitt AO, Adorján P, Hildmann T, Piepenbrock C. Quantitative
DNA methylation analysis based on four-dye trace data from direct
sequencing of PCR amplificates. Bioinformatics. 2004;20:3005–12.

55. Heberlein A, Muschler M, Frieling H, Behr M, Eberlein C, Wilhelm J, et al.
Epigenetic down regulation of nerve growth factor during alcohol
withdrawal. Addict Biol. 2013;18:508–10.

56. Domschke K, Tidow N, Schrempf M, Schwarte K, Klauke B, Reif A, et al.
Epigenetic signature of panic disorder: A role of glutamate decarboxylase 1
(GAD1) DNA hypomethylation? Prog Neuropsychopharmacol Biol Psychiatry.
2013;46:189–96.

57. Schleinitz D, Klöting N, Lindgren CM, Breitfeld J, Dietrich A, Schön MR, et al.
Fat depot-specific mRNA expression of novel loci associated with waist-hip
ratio. Int J Obes (Lond). 2014;1:120–5.

58. Gibbs JR, van der Brug MP, Hernandez DG, Traynor BJ, Nalls MA, Lai SL,
et al. Abundant quantitative trait Loci exist for DNA methylation and gene
expression in human brain. PLoS Genet. 2010;6:e1000952.

59. Johnson AD, Handsaker RE, Pulit SL, Nizzari MM, O’Donnell CJ, De Bakker
PIW. SNAP: a web-based tool for identification and annotation of proxy
SNPs using HapMap. Bioinformatics. 2008;24:2938–9.

60. Ernst J, Kellis M. ChromHMM: automating chromatin-state discovery and
characterization. Nat Methods. 2012;9:215–6.

61. Andersson R, Gebhard C, Miguel-Escalada I, Hoof I, Bornholdt J, Boyd M,
et al. An atlas of active enhancers across human cell types and tissues.
Nature. 2014;507:455–61.

62. Forrest ARR, Kawaji H, Rehli M, Baillie JK, de Hoon MJL, Lassmann T, et al.
A promoter-level mammalian expression atlas. Nature. 2014;507:462–70.

63. Hillmer AM, Yao F, Inaki K, Lee WH, Ariyaratne PN, Teo ASM, et al.
Comprehensive long-span paired-end-tag mapping reveals characteristic
patterns of structural variations in epithelial cancer genomes. Genome Res.
2011;21:665–75.

64. Consortium TG. The Genotype-Tissue Expression (GTEx) project. Nat Genet.
2013;45:580–5.

65. Veyrieras JB, Kudaravalli S, Kim SY, Dermitzakis ET, Gilad Y, Stephens M, et al.
High-resolution mapping of expression-QTLs yields insight into human
gene regulation. PLoS Genet. 2008;4:e1000214.

66. Westra HJ, Peters MJ, Esko T, Yaghootkar H, Schurmann C, Kettunen J, et al.
Systematic identification of trans eQTLs as putative drivers of known disease
associations. Nat Genet. 2013;45:1238–43.

67. Du P, Zhang X, Huang C-C, Jafari N, Kibbe WA, Hou L, et al. Comparison of
Beta-value and M-value methods for quantifying methylation levels by
microarray analysis. BMC Bioinformatics. 2010;11:587.

68. Zeileis A, Hothorn T. Diagnostic checking in regression relationships. R
news. 2002;2:7–10.

69. storey j: qvalue: q-value estimation for false discovery rate control. 2015:r
package version 2.0.0.https://www.bioconductor.org/packages/release/bioc/
html/qvalue.html.

70. Ong C-T, Corces VG. CTCF: an architectural protein bridging genome
topology and function. Nat Rev Genet. 2014;15:234–46.

71. Emilsson V, Thorleifsson G, Zhang B, Leonardson AS, Zink F, Zhu J,
et al. Genetics of gene expression and its effect on disease. Nature.
2008;452:423–8.

72. Zhong H, Yang X, Kaplan LM, Molony C, Schadt EE. Integrating pathway
analysis and genetics of gene expression for genome-wide association
studies. Am J Hum Genet. 2010;86:581–91.

73. Xie H, Lim B, Lodish HF. MicroRNAs induced during adipogenesis that
accelerate fat cell development are downregulated in obesity. Diabetes.
2009;58:1050–7.

74. Long XR, He Y, Huang C, Li J. MicroRNA-148a is silenced by
hypermethylation and interacts with DNA methyltransferase 1 in
hepatocellular carcinogenesis. Int J Oncol. 2014;45:1915–22.

75. Nath AK, Ryu JH, Jin YN, Roberts LD, Dejam A, Gerszten RE, et al. PTPMT1
inhibition lowers glucose through succinate dehydrogenase
phosphorylation. Cell Rep. 2015;10:694–701.

76. Boisclair Y, Tremblay ML. Firing up mitochondrial activities with PTPMT1.
Mol Cell. 2005;19:291–2.

77. Marosi K, Mattson MP. BDNF mediates adaptive brain and body responses
to energetic challenges. Trends Endocrinol Metab. 2014;25:89–98.

78. Martínez-Levy G, Cruz-Fuentes CS. Genetic and epigenetic regulation of the
brain-derived neurotrophic factor in the central nervous system. Yale J Biol
Med. 2014;87:173–86.

79. Karpova NN. Role of BDNF epigenetics in activity-dependent neuronal
plasticity. Neuropharmacology. 2014;76:709–18.

80. Cruz-Garcia L, Schlegel A. Lxr-driven enterocyte lipid droplet formation
delays transport of ingested lipids. J Lipid Res. 2014;55:1944–58.

81. Laurencikiene J, Rydén M. Liver X receptors and fat cell metabolism. Int J
Obes (Lond). 2012;36:1494–502.

82. Roach W, Plomann M. PACSIN3 overexpression increases adipocyte glucose
transport through GLUT1. Biochem Biophys Res Commun. 2007;355:745–50.

83. Wang J, Liu R, Wang F, Hong J, Li X, Chen M, et al. Ablation of LGR4
promotes energy expenditure by driving white-to-brown fat switch. Nat Cell
Biol. 2013;15:1455–63.

84. Kim JD, Leyva S, Diano S. Hormonal regulation of the hypothalamic
melanocortin system. Front Physiol. 2014;5:480.

85. Pinnick KE, Nicholson G, Manolopoulos KN, McQuaid SE, Valet P, Frayn KN,
et al. Distinct developmental profile of lower-body adipose tissue defines
resistance against obesity-associated metabolic complications. Diabetes.
2014;11:3785–97.

86. Choi J-W, Liu H, Choi DK, Oh TS, Mukherjee R, Yun JW. Profiling of gender-
specific rat plasma proteins associated with susceptibility or resistance to
diet-induced obesity. J Proteomics. 2012;4:1386–400.

87. Karpe F, Pinnick KE. Biology of upper-body and lower-body adipose
tissue[mdash]link to whole-body phenotypes. Nat Rev Endocrinol.
2015;11:90–100.

88. Schubeler D. Function and information content of DNA methylation.
Nature. 2015;517:321–6.

89. ENCODE target transcription factors and their corresponding
antibodies.http://genome.ucsc.edu/ENCODE/antibodies.html.

90. http://genome.ucsc.edu/ENCODE/antibodies.html.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Voisin et al. Genome Medicine  (2015) 7:103 Page 16 of 16

https://www.bioconductor.org/packages/release/bioc/html/qvalue.html
https://www.bioconductor.org/packages/release/bioc/html/qvalue.html
http://genome.ucsc.edu/ENCODE/antibodies.html
http://genome.ucsc.edu/ENCODE/antibodies.html


Paper II



 



ARTICLE

Dietary fat quality impacts genome-wide DNA
methylation patterns in a cross-sectional study
of Greek preadolescents

Sarah Voisin*,1,4, Markus S Almén1,4, George Moschonis2, George P Chrousos3, Yannis Manios2

and Helgi B Schiöth1

The type and the amount of dietary fat have a significant influence on the metabolic pathways involved in the development
of obesity, metabolic syndrome, diabetes type 2 and cardiovascular diseases. However, it is unknown to what extent this
modulation is achieved through DNA methylation. We assessed the effects of cholesterol intake, the proportion of energy intake
derived from fat, the ratio of polyunsaturated fatty acids (PUFA) to saturated fatty acids (SFA), the ratio of monounsaturated
fatty acids (MUFA) to SFA, and the ratio of MUFAþPUFA to SFA on genome-wide DNA methylation patterns in normal-weight
and obese children. We determined the genome-wide methylation profile in the blood of 69 Greek preadolescents (B10 years
old) as well as their dietary intake for two consecutive weekdays and one weekend day. The methylation levels of one CpG
island shore and four sites were significantly correlated with total fat intake. The methylation levels of 2 islands, 11 island
shores and 16 sites were significantly correlated with PUFA/SFA; of 9 islands, 26 island shores and 158 sites with MUFA/SFA;
and of 10 islands, 40 island shores and 130 sites with (MUFAþPUFA)/SFA. We found significant gene enrichment in 34
pathways for PUFA/SFA, including the leptin pathway, and a significant enrichment in 5 pathways for (MUFAþPUFA)/SFA.
Our results suggest that specific changes in DNA methylation may have an important role in the mechanisms involved in the
physiological responses to different types of dietary fat.
European Journal of Human Genetics (2015) 23, 654–662; doi:10.1038/ejhg.2014.139; published online 30 July 2014

INTRODUCTION
According to the World Health Organization1, worldwide obesity has
nearly doubled since 1980, resulting in an increase in cardiovascular
diseases and diabetes type 2. One of the possible causes to this
negative development is the increase of consumption of energy-dense
foods that are high in fat. Dietary guidelines do not only recommend
to eat a moderate amount of fat, but they also recommend to
consume the right type of fat.2 Fatty acids include saturated
fatty acids (SFA), monounsaturated fatty acids (MUFA) or
polyunsaturated fatty acids (PUFA), and their structural differences
explain why they have different biological effects.3 Consuming PUFA
or MUFA instead of SFA is known to improve the blood lipid profile.4

Moreover, consumption of SFA in place of MUFA may worsen
glucose-insulin homeostasis.5 Finally, replacing SFA with PUFA has
been reported to lower coronary heart disease risk.6

Some of the effects of the qualitative and quantitative aspects
of fat intake have been imputed to a modification of the transcription
of key genes involved in pathways related to lipid and glucose
metabolism, and/or inflammation.7 The regulation of gene
expression can be achieved by mechanisms other than changes in
the nucleotide sequence, namely epigenetic processes. Such processes
are responsible for the establishment, maintenance, and reversal
of metastable transcriptional states.8 One major example of such
processes is the methylation of cytosine, usually at CpG dinucleotides,

called DNA methylation. Regions rich in CpGs are called ‘CpG
islands’ and are mostly unmethylated when located in the promoter
of active genes. Conversely, methylated promoters are associated with
reduced gene expression.9

Five studies have investigated the link between DNA methylation
and fat intake in humans, but the methylation assays in those studies
were limited to only few key genes. One study found a significantly
higher methylation in the peroxisome proliferator-activated receptor
coactivator-1 gene (PPARGC1A) in high-fat overfed men.10 Another
study found that the clock circadian regulator gene (CLOCK)
methylation was negatively associated with MUFA intake, but
positively associated with PUFA intake.11 A third study showed that
higher n-6 PUFA intake was associated with lower methylation in the
promoter of tumor necrosis factor-a (TNFa).12 A fourth study found
no significant correlation between a diet rich in fat and sucrose, and
methylation of hydroxyacyl-coenzyme A dehydrogenase (HADH) and
glucokinase (GCK) genes.13 The fifth paper reported a lack of
correlation between four diets enriched in different types of fat and
the methylation levels of leptin (LEP), leptin receptor (LEPR), and
pro-opiomelanocortin (POMC) genes.14

Here we explore the genome-wide DNA methylation profiles of
Greek preadolescents with respect to parameters related to dietary fat
quantity, and dietary fat quality. To our knowledge, this is the first
time that parameters related to both quantitative and qualitative
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aspects of fat intake with respect to DNA methylation are investigated
at a genome-wide scale. Moreover, no such studies have been
performed in children.

MATERIALS AND METHODS
Genome-wide changes of DNA methylation pattern associated with parameters
related to fat intake were assessed. Two variables related to dietary fat quantity
(proportion of energy intake derived from fat, cholesterol intake) and three
related to dietary fat quality (MUFA/SFA, PUFA/SFA and (MUFAþPUFA)/
SFA) were analyzed. A linear model that explains the methylation level for
each CpG site/island corrected for gender, weight category, Tanner stage
(an estimation of physical development), and white blood cell count was
utilized. The ratios between the unsaturated and saturated fatty acid intakes
were preferred to their individual values, as they have been reported to have
antagonistic effects. A higher fatty acids ratio would account for a ‘healthier’
fatty acid intake profile, while a lower ratio would account for an ‘unhealthier’
fatty acid intake profile.

Ethics
All participants and their guardians gave informed written consent and the
study was approved by the Greek Ministry of National Education (7055/C7-
Athens, 19-01-2007) and the Ethical Committee of Harokopio University
(16/ Athens, 19-12-2006).

Subjects
The ‘Healthy Growth Study’ was a cross-sectional epidemiological study
initiated in May 2007. Approval to conduct the study was granted by the
Greek Ministry of National Education (7055/C7-Athens, 19-01-2007) and the

Ethics Committee of Harokopio University of Athens (16/Athens, 19-12-2006).
The study population comprised school children attending the fifth and sixth
grades of primary schools located in the regions of Attica, Etoloakarnania,
Thessaloniki and Heraklion. The sampling procedure is fully described
elsewhere.15 For the purpose of the current analysis, a subsample of
24 obese and 23 normal-weight preadolescent girls, as well as 11 obese and
11 normal-weight preadolescent boys (Table 1) was selected. This subsample
was initially used to investigate the effect of polymorphism in the FTO gene on
genome-wide DNA methylation patterns.16

Dietary assessment
Dietary intake data was obtained for two consecutive weekdays and one
weekend day, via morning interviews with the children at the school site using
the 24-h recall technique. More specifically, all study participants were asked to
describe the type and amount of foods and beverages consumed during the
previous day, provided that it was a usual day according to the participant’s
perception. To improve the accuracy of food descriptions, standard household
measures (cups, tablespoons, etc) and food models were used to define
amounts. At the end of each interview, the interviewers, who were dietitians
rigorously trained to minimize interviewer’s effect, reviewed the collected food
intake data with the respondent to clarify entries, servings and possible
forgotten foods. Food intake data were analyzed using the Nutritionist V diet
analysis software (version 2.1, 1999, First Databank, San Bruno, CA, USA),
which was extensively amended to include traditional Greek recipes, as
described in Food Composition Tables of Greek Cooked Foods and Dishes.
Furthermore, the database was updated with nutritional information of
processed foods provided by independent research institutes, food companies
and fast-food chains.

Table 1 Demographic data stratified for weight category and gender

Gender Normal-weight Obese P-valuea

Male

N 11 11

Age (years) 10.34±0.25 10.82±0.56 0.03

Height (z-score)b "1.0±0.20 0.44±0.21 o0.001

Weight (z-score)b "0.94±0.093 1.5±0.15 o0.001

BMI (z-score)b "0.71±0.11 1.6±0.19 o0.001

White blood cell count (103/mm3) 8.56±3.85 6.93±1.27 n.s.

Tanner stagec (z-score)b "1.5±0.27 "1.5±0.32 n.s.

Total fat intake (% of total energy intake) 39.92±8.96 45.82±9.54 n.s.

MUFA intake (% of total energy intake) 19.00±5.97 21.74±5.91 n.s.

PUFA intake (% of total energy intake) 7.83±7.99 4.77±0.92 n.s.

SFA intake (% of total energy intake) 13.32±3.62 16.29±3.54 n.s.

Cholesterol (g/day) 188.90±101.84 304.49±137.54 n.s.

Female

N 23 24

Age (years) 10.54±0.46 10.94±0.71 0.05

Height (z-score)b "0.76±0.16 0.30±0.24 0.001

Weight (z-score)b "0.86±0.088 1.5±0.19 o0.001

BMI (z-score)b "0.72±0.079 1.8±0.13 o0.001

White blood cell count (103/mm3) 7.26±2.07 7.28±1.70 n.s.

Tanner stagec (z-score)b "1.45±0.14 "0.70±0.21 n.s.

Total fat intake (% of total energy intake) 42.22±6.59 38.42±7.66 n.s.

MUFA intake (% of total energy intake) 18.83±4.85 17.96±±5.15 n.s.

PUFA intake (% of total energy intake) 7.56±11.42 4.30±2.13 0.04

SFA intake (% of total energy intake) 15.55±2.98 13.67±4.28 0.04

Cholesterol (g/day) 216.25±89.86 211.04±125.58 n.s.

Abbreviations: BMI, body mass index; MUFA, monounsaturated fatty acid; n.s., nonsignificant; PUFA, polyunsaturated fatty acid; SFA, saturated fatty acid.
aIndicates P-value for significant or n.s. differences between obese and normal-weight individuals. All values are means±SEs.
bz-Scores were calculated using all samples from the Healthy Growth Study as a reference population.
cDescribes pubertal development.
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DNA methylation profiling
The genome-wide Illumina Infinium HumanMethylation27 BeadChip
(Illumina, San Diego, CA, USA), which allows interrogation of 27 578 CpG
dinucleotides covering 14 495 genes was applied to determine the methylation
profile of genomic DNA isolated and purified from the peripheral whole
blood. This chip has been shown to give a reliable and reproducible estimation
of the methylation profile on a genomic scale.17 First, bisulfite conversion of
genomic DNA was performed using the EZ DNA Methylation-Gold Kit (Zymo
Research, Irvine, CA, USA) according to the manufacturer’s protocol. Briefly,
500 ng of DNA was sodium bisulfite-treated, denatured at 98 1C for 10 min,
and bisulfite converted at 64 1C for 2.5 h. After conversion, samples were
desulfonated and purified using column preparation. Approximately 200 ng of
bisulfate-converted DNA was processed according to the Illumina Infinium
Methylation Assay protocol. This assay is based on the conversion of
unmethylated cytosine (C) nucleotides into uracil/thymine (T) nucleotides
by the bisulfite treatment. The DNA was whole-genome amplified,
enzymatically fragmented, precipitated, resuspended, and hybridized
overnight at 48 1C to locus-specific oligonucleotide primers on the
BeadChip. After hybridization, the C or T nucleotides were detected by
single-base primer extension. The fluorescence signals corresponding to the
C or T nucleotides were measured from the BeadChips using the Illumina
iScan scanner. Phenotypes, raw data and background-corrected normalized
DNA methylation data are available through the GEO database (http://www.
ncbi.nlm.nih.gov/geo/) with accession numbers GSE27860 for the girls and
GSE57484 for the boys.

Data processing
All downstream data processing and statistical analyses were performed with
the statistical software R (www.r-project.org) together with the lumi,18 limma19

and IMA20 packages of the Bioconductor project.

Data preprocessing. The fluorescence data were preprocessed using the
GenomeStudio 2009.2 (Illumina) software. We used the log2 ratio of the
intensities of methylated probe versus unmethylated probe, also called M-value,
which is more statistically valid for the differential analysis of methylation
levels.21

Quality control. The data were imported and submitted to quality control
using a modified version of the IMA.methy450PP function of the IMA package.
The following CpG sites and samples were removed: the sites with missing
b-values, the sites with detection P-value40.05, the sites having o75% of
samples with detection P-valueo10"5, the samples with missing b-values, the
samples with detection P-value410"5 and the samples having o75% of sites
with detection P-valueo10"5. A total of 26 168 probes were included in the
analysis, after discarding 328 probes that did not reach the quality control
together with 1082 probes from the sex chromosomes.

Normalization. Quantile normalization was performed on the M-values of all
the 26 168 CpG sites using the lumiMethyN function of the lumi package.

Annotation. For better interpretation of the genome-wide methylation
patterns, we chose to use the expanded annotation table for the Illumina
Infinium HumanMethylation450 BeadChip array generated by Price et al.22

There are a total of 27 578 loci for 27k array, and 1600 of them are not mapped
to 450k array. For those unmapped loci, we kept their original annotation from
the 27k array. The expanded annotation file was used to determine the average
methylation value of CpG sites belonging to the same island or island shores
(all sites with the same name in the ‘HIL_CpG_Island_Name’ column of the
annotation file were averaged). We obtained the average methylation value of
5980 islands/island shores, which reduced the number of interrogated locations
to 19 437 sites/islands. The CpG island classification developed by Price et al22

provides good enrichment discrimination of CpG islands. This classification is
a combination of Weber et al’s classification23 where CpG islands are defined
according to the GC content, the Obs/Exp CpG ratio and the island length,
and Illumina’s classification, where CpG islands are defined according to their
physical position (islands, island shores, and shelves). The location within a
CpG island or shore are suggested to be relevant,24 and Price et al’s definition

of CpG islands allowed to distinguish different methylation distribution
between probes, which remained undetectable with the Illumina CpG island
classification.22 Besides, their classification demonstrated a more extreme DNA
methylation profile and a larger proportion of differentially methylated regions
between different tissues.

The expanded annotation file was also used to determine which gene each
interrogated CpG site/island may be associated with (‘Closest_TSS_
gene_name’ column of the annotation file), the distance of each interrogated
CpG site/island to the closest TSS (transcription start site) (‘Distance_
closest_TSS’ column of the annotation file) and the CpG density surrounding
each interrogated CpG site/island (‘HIL_CpG_class’ column of the annotation
file). Each site can either be located in a high-density CpG island, an
intermediate-density CpG island, a region of intermediate-density CpG island
that borders HCs, or a non-island. Indeed, the local CpG density has been
shown to influence the role of methylated cytosines, with methylation having
more transcriptional effect in high-density CpG island and less at non-
islands.25

The Illumina-provided MAPINFO GenomeStudio column was used to
determine the genomic location of each interrogated CpG site. For CpG
islands, the name of the island was used to determine its genomic location
(eg the island ‘chr19_IC:17905037-17906698’ would be a CpG island of
intermediate density located on chromosome 19, between 17 905 037 and
17 906 698).

Statistics
Linear model. We developed the following linear model for each CpG site k,
using limma’s robust regression method, with a maximum number of iteration
equal to 10 000:

Mk ¼ ak þ bkGGþ bkTTþ bkWW þ bkBBþ bkVV þ ek

where Mk is the M-value of CpG site/island k, G is the dichotomized gender
(female¼ 1 and male¼ 0), T is the Tanner stage, B is the white blood cell
count, W is the dichotomized weight category (normal-weight¼ 0 and
obese¼ 1), ek is the unexplained variability, and V is one of the following
variables: proportion of energy intake derived from total fat intake, cholesterol
intake (g/day), MUFA/SFA, PUFA/SFA, or (MUFAþPUFA)/SFA.

The coefficients bkx summarize the correlation between the methylation
level and the variables of interest. Moderated t-statistics for each contrast and
CpG site/island were created using an empirical Bayes model, to rank genes in
order of evidence for differential methylation.19 To control the proportion of
false positives, P-values were adjusted for multiple comparisons as proposed by
Benjamini and Hochberg (BH).26 An adjusted P-value40.05 was considered
nonsignificant.

Three children from the cohort had a MUFA/SFA, a PUFA/SFA, and a
(MUFAþPUFA)/SFA higher than the mean±3$ SD. Thus, they were
excluded from the linear models developed for MUFA/SFA, PUFA/SFA, and
(MUFAþPUFA)/SFA.

Functional enrichment analysis. The unique Entrez Gene ID associated with
each significant gene-based site/island was identified. Three gene lists were
generated for MUFA/SFA, PUFA/SFA, and (MUFAþPUFA)/SFA, respectively.

We used the web-based ConsensusPathDB-human (CPDB)27,28 to
determine the significant pathways each gene list may be involved in.
On the basis of the reference gene set (all Entrez Gene IDs from the 27k
BeadChip annotation file were used as a background), the expected number of
genes in each pathway of the CPDB database is compared with the actual
number of genes found for this pathway. For each pathway, a P-value and a
q-value are calculated according to the hypergeometric test. The pathways with
a raw P-valueo0.05 together with a q-valueo0.05 were selected. As CPDB
includes information from 30 databases, the pathways often overlap with each
other to some extent. Thus, to show the relationships between the different
pathways, we constructed a heatmap of the proportion of shared input genes
between the significant pathways. For instance, if P1 is a given pathway
containing genes A, B, and C from the input gene list, and P2 is a given
pathway containing genes B, C, D, and E from the input gene list, the
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proportion of shared genes between P1 and P2 is:

P1\P2j j
P1[P2j j

¼ 2

5
¼ 40%

We also used the web-based g:Profiler29,30 as an alternative method for
pathway analysis, to confirm the significant results obtained with CPDB. The
g:GOSt tool was used for enrichment analysis, with the same background gene
list, and the g:GOSt native method g:SCS for multiple testing correction.
The pathways with an adjusted P-valueo0.05 were selected. It is important to
note that g:Profiler only includes pathways from two databases: KEGG and
Reactome.

RESULTS
Four CpG sites and one CpG island were found to be significantly
associated with the proportion of overall fat intake (Figure 1a), while
no significance was found for cholesterol intake. The methylation
levels of 2 islands, 11 island shores, and 16 sites were significantly
correlated with PUFA/SFA; 9 islands, 26 island shores, and 158 sites
for MUFA/SFA; 10 islands, 40 island shores, and 130 sites for
(MUFAþPUFA)/SFA (Figure 1b and Supplementary Tables 1–3).

What genes are associated with the significant CpG sites/islands?
To determine which gene may be regulated by each CpG site and
island, we identified the gene whose TSS is closest to each CpG site
and island. Each significant site, island or island shore can show either

Figure 1 Volcano plots for proportion of total energy intake derived from fat (a) and (MUFAþPUFA)/SFA (b). The regression coefficient refers to the
coefficient of the linear model and each point represents a CpG site or a CpG island. The red horizontal line is the significance threshold (P-value¼0.05)
and all points above this line are significant. (a) proportion of total energy intake derived from fat (positive coefficients refer to an increased methylation in
children for whom fat represents a higher proportion of total energy intake). (b) (MUFAþPUFA)/SFA (positive coefficients refer to an increased methylation
in children having a higher (MUFAþPUFA)/SFA).
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Table 2 Information on the significant CpG sites/island found for proportion of energy intake derived from fat and the top 10 most significant
CpG sites/islands found for MUFA/SFA, PUFA/SFA, and (MUFAþPUFA)/SFA

Gene

Entrez

Gene ID Genomic location of the probe/island (hg19)

HIL

classa

Genomic location

of the closest

TSS (hg19) Coefficientb

Adjusted

P-valuec

Proportion of energy intake derived from fat

GPS1 2873 chr17:80009807 HC 80009 762 "0.0135 0.00612

TAMM41 13 2001 chr3_HCshore:11887600_11888782;

chr3_ICshore:11887684_11888691

HC 11888 351 0.00987 0.00621

TAS2R13 50838 chr12:11061985 LC 11062 160 "0.0118 0.0121

MZB1 51237 chr5:138725350 LC 138 725 604 0.0145 0.023

TXNIP 10628 chr1:145438031 IC 145 438 461 0.0148 0.043

MUFA/SFA

ALDH3A2 224 chr17:19552343 HC 19552 063 "0.289 0.00097

MYLK3 91807 chr16:46782176 LC 46782 220 "0.238 0.00363

LOC642852 257 103 chr21:46716835 LC 46707 966 "0.317 0.00364

TPPP2 122 664 chr14:21498837 IC 21498 344 "0.309 0.00364

RXFP2 122 042 chr13:32313824 NA 32313 679 "0.262 0.00364

TMEM80 283 232 chr11_HCshore:694282_696564;

chr11_ICshore:694282_697179

HC 695 615 "0.245 0.00364

SEMA3G 56920 chr3:52478874 HC 52479 042 0.28 0.00388

VCAM1 7412 chr1:101185020 LC 101 185 195 "0.259 0.00482

KRT73 319 101 chr12:53013281 LC 53012 342 "0.245 0.00496

KRTCAP2 200 185 chr1:155145737 HC 155 145 803 "0.301 0.0051

PUFA/SFA

CBR1 873 chr21_HCshore:37441920_37443032;

chr21_ICshore:37442016_37442892

HC 37442 284 1.28 4.02e–06

RBCK1 10616 chr20:388351 HC 388 708 0.687 2.3e–05

ABHD16A 7920 chr6_HCshore:31670422_31671462;

chr6_ICshore:31670279_31671902

HC 31671 136 "0.302 7.18e–05

KRT23 25984 chr17:39095141 LC 39093 835 "0.326 0.00536

PDE3A 5139 chr12_HCshore:20521268_20523183;

chr12_ICshore:20520944_20523341

HC 20522 178 "0.274 0.0066

NCOA1 8648 chr2:24806720 LC 24807 344 "0.42 0.00722

PCED1A 64773 chr20:2822804 LC 2 821 796 "0.412 0.00914

MRPL13 27085 chr8:121457500 HC 121 457 646 0.308 0.0193

AKR7A2 54896 chr1_HCshore:19638013_19639253;

chr1_ICshore:19637904_19639606;

HC 19638 639 0.237 0.0193

FAM154A 158 297 chr9_IC:19032509_19033364 IC 19033 255 "0.357 0.0193

(MUFAþPUFA)/SFA

MRPL13 27085 chr8:121457500 HC 121 457 646 0.186 0.000952

NCOA1 8648 chr2:24806720 LC 24807 344 "0.233 0.00308

PCED1A 64773 chr20:2822804 LC 2821796 "0.213 0.00308

CCNA2 890 chr4_HCshore:122744257_122745486;

chr4_ICshore:122744093_122745437

HC 122 745 087 "0.126 0.00308

LCE1B 353 132 chr1:152783674 LC 152 784 446 "0.254 0.00352

ALDH3A2 224 chr17:19552343 HC 19552 063 "0.176 0.00352

MYLK3 91807 chr16:46782176 LC 46782 220 "0.166 0.00352

GBP7 388 646 chr1:89641121 LC 89641 722 "0.175 0.00352

DGKI 9162 chr7_HCshore:137530917_137532628;

chr7_ICshore:137530976_137532560

HC 137 531 608 "0.178 0.00352

DNTTIP1 140 686 chr20:44421526 LC 44420 575 0.148 0.00561

Abbreviations: HC, high-density CpG island; IC, intermediate-density CpG island; LC, non-island; MUFA, monounsaturated fatty acid; PUFA, polyunsaturated fatty acid; SFA, saturated fatty acid.
aCpG density surrounding each interrogated CpG site/island.
bValue of the coefficient of the linear model associated with (MUFAþPUFA)/SFA.
cP-value calculated by moderated t-statistics and adjusted for multiple comparisons according to Benjamini and Hochberg.
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a positive fold change if its methylation is higher in children having
an elevated dietary variable (eg, a higher cholesterol intake), or a
negative fold change if its methylation is lower in children having an
elevated dietary variable.

Regarding the proportion of fat intake, one CpG site associated
with taste receptor, type 2, member 13 (TAS2R13) that may have a
role in the perception of bitterness, while another site associated with
thioredoxin interacting protein (TXNIP), a regulator of cellular
oxidative stress downregulated by SFA uptake31 (Table 2).

The 10 most significant sites/islands/island shores found for
MUFA/SFA included one CpG site associated with aldehyde dehy-
drogenase 3 family, member A2 (ALDH3A2) (P¼ 0.00097), whose
expression is reduced in insulin-resistant murine models.32 It also
included a CpG site associated with sema domain, immunoglobulin
domain (Ig), short basic domain, secreted, (semaphorin) 3G
(SEMA3G) (P¼ 0.0039), whose expression increases during
adipogenesis.33 Among the top 10 found for PUFA/SFA, there was
1 CpG site associated with nuclear receptor coactivator 1 (NCOA1)
(P¼ 0.0072) and another 1 associated with PC-esterase domain
containing 1A (PCED1A) (P¼ 0.0091), as well as an island shore
associated with phosphodiesterase 3A, cGMP-inhibited (PDE3A)
(P¼ 0.0066; Table 2).

There were only 4 sites and 1 island shore found significant for all
fatty acid ratios, but 86 sites/islands/island shores in common
between MUFA/SFA and (MUFAþPUFA)/SFA, and 7 in common
between PUFA/SFA and (MUFAþPUFA)/SFA (Figure 2). Notably,
the four sites found significant for all fatty acid ratios contained some
of previously mentioned sites (Table 2), for example, the ones
associated with NCOA1 (P¼ 0.0031) (Figure 3a) and PCED1A
(P¼ 0.0031) (Figure 3b). It also included an island shore associated
with CCNA2 (Figure 3c), a gene recently shown to be associated with
serum phosphatidylcholine concentration in mice.34

In which pathways are the significant genes involved?
Instead of going through all the genes associated with the significant
sites found for MUFA/SFA, PUFA/SFA, and (MUFAþPUFA)/SFA, it
was preferred to perform a gene enrichment analysis. Using CPDP,27

we identified the significant pathways for each of the fatty acid ratios.
We considered a pathway significant if the significant CpG sites/
island/island shores were associated with a high proportion of genes
involved in this particular pathway.

Figure 2 Venn diagram of the significant CpG sites and islands found for
MUFA/SFA, PUFA/SFA, and (MUFAþPUFA)/SFA.

Figure 3 Correlation between methylation of three sites associated with
NCOA1 (a), PCED1A (b), CCNA2 (c), and (MUFAþPUFA)/SFA. Coeff
(coefficient) of the linear model associated with (MUFAþPUFA)/SFA; full
triangles, obese girls (n¼23); full circles, obese boys (n¼11); empty
triangles, normal-weight girls (n¼22); empty circles, normal-weight boys
(n¼10).
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Neither CPDB nor g:Profiler identified significant pathways for
MUFA/SFA, but CPDB found 34 significant pathways for PUFA/SFA
(Supplementary Table 4), including 1 group of pathways related to
adipogenesis and mechanism of gene regulation by peroxisome
proliferators via PPARa (Group 1, Figure 4a), and another group of
pathways related to leptin and IL6 (Group 2, Figure 4a). Five
significant pathways were identified for (MUFAþ PUFA)/SFA
using CPDB (Supplementary Table 4), including one group of
pathways linked to NF-kB (Group 1, Figure 4b). g:Profiler identified
only one significant pathway for (MUFAþPUFA)/SFA, also linked
to NF-kB (IKKb phosphorylates IkB causing NF-kB to dissociate,
P-value¼ 0.041).

DISCUSSION
In the present study of Greek preadolescents, we found a large
number of CpG sites and regions significantly associated with
variables related to the quality of fat intake and few sites significantly
associated with variables related to the quantity of fat intake.

Our findings suggest that fat quality is likely to influence DNA
methylation on a large genomic scale. NCOA1, one of the most
significant gene found for all fatty acids ratios, is involved in the
mechanism of gene regulation by peroxisome proliferators via PPARa,
a master gene whose regulation is altered in obesity.35 NCOA1 is a
transcriptional coactivator whose ablation confers susceptibility to
diet-induced obesity.36 Interestingly, various fatty acids, but especially
PUFAs, act as ligands for PPARa. Moreover, along with PDE3A, the
fifth most significant gene found for PUFA/SFA, NCOA1, is part of
the leptin pathway. Leptin is an adipokine that has a key role in
regulating energy intake by inhibiting the sensation of hunger.37 Fish
oil has been reported to increase plasma leptin concentrations,38 and

leptin induces the expression of NCOA1 in human cells.39 Besides,
PDE3A’s expression is enhanced in cows fed with a diet enriched in
fish oil or in SFA.40 Interestingly, an island shore located near the TSS
of PDE3A was less methylated in children with a higher PUFA/SFA.
All this information is consistent with the negative fold change
observed for NCOA1 in our cohort.

There was substantial overlap between the significant sites/islands/
island shores found for the different fatty acid ratios, but little overlap
between all fatty acid ratios. This may reflect how MUFA and PUFA
affect DNA methylation in a different way. Interestingly, the site
associated with NCOA1 was more significant for (MUFAþPUFA)/
SFA than for PUFA/SFA or MUFA/SFA, suggesting that PUFA and
MUFA affect the methylation of this gene in an identical way.
A similar observation can be made for PCED1A and CCNA2 that
were more significant for (MUFAþPUFA)/SFA than for PUFA/SFA
or MUFA/SFA. However, this may also be due to differences in power
to detect significant correlations, as the fatty acids ratios distributions
were quite different (Supplementary Figure 1).

It should be noted that two of the four individual CpG sites found
to be significantly associated with the proportion of energy intake
derived from fat might be relevant to obesity. It has been hypothesized
that individuals with increased bitter taste sensitivity avoid antiox-
idant-rich vegetables because of their perceived bitterness, consuming
instead sweet, fatty foods.41 The site associated with TAS2R13 was
more methylated in children for whom fat represents a higher
proportion of the total energy intake. In addition, children with a
higher proportion of energy intake derived from fat had a higher
methylation at a site located in an island shore near TXNIP, which is
consistent with the observed downregulation of TXNIP by SFA
uptake.31 None of these genes were previously reported to be

Figure 4 Heatmap representation of the proportion of shared genes between the significant pathways found for PUFA/SFA (a) and (MUFAþPUFA)/SFA (b).
Each significant pathway retrieved from CPDB (P-valueo0.05 and q-valueo0.05) is represented on the graph, along with the database it comes from.
A stronger color indicates a higher proportion of shared genes between two pathways. (a) Red rectangle 1: group of pathways related to adipogenesis and
mechanism of gene regulation by peroxisome proliferators via PPARa; red rectangle 2: group of pathways related to leptin and IL6. (b) Red rectangle 1:
group of pathways related to NF-kB. The full colour version of this figure is available at European Journal of Human Genetics online.
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differentially methylated depending on fat intake, probably because
the methylation assays of previous studies were limited in scope only
addressing key genes.

The present work was not devoid of limitations. First of all, our
sample size is limited (n¼ 69) and therefore replication is needed to
confirm our findings and to allow generalization to larger populations.
Second, the fatty acid ratios investigated herein are among the most
interesting to compare with respect to health, as their roles are heavily
debated and researched. However, other fatty acids not examined in
this study may reflect other aspects of the quality of fat intake. For
example, unsaturated fatty acids includes trans unsaturated fatty acids,
which have been demonstrated to have adverse effects on health.42 In
addition, we did not separate n-3 and n-6 PUFA in our study, but
these two fatty acids do not have the same effects; while both n-3 and
n-6 PUFA have beneficial effects, an excess of n-6 PUFA can cause
health disorders.43 DNA methylation was assessed in whole peripheral
blood, which is the case for most epigenetic studies focused on
nutrition, as peripheral changes may occur in relation to overall
energy balance.44 However, the methylation pattern observed in blood
may not always reflect the pattern in other tissues.45 The other
weakness of this approach is that DNA methylation can vary by blood
cell type, and thus the methylation changes associated with the
variables investigated in this study may represent an alteration in
blood cell composition, rather than a change in methylation. However,
no correlation was found between any of the investigated variables and
the relative proportions of granulocytes, lymphocytes, or mid cells
(P-value40.05 on Spearman’s correlation test). Finally, an increasing
number of human studies suggest that parental BMI impacts DNA
methylation in the offspring, especially at imprinted genes.46–48

However, evidences in humans are still scarce and limited to two
available tissues at birth: umbilical cord and/or placenta; thus, we did
not take parental BMI into account in our analysis.

In conclusion, this study is the first to demonstrate the roles of fat
quantity and quality in DNA methylation patterns at a genome-wide
scale. Our results suggest that specific changes in DNA methylation
may have an important role in the mechanisms involved in the
physiological responses to different types of dietary fat. Future studies
could reveal other potential impacts of dietary fat quality on DNA
methylation in controlled, randomized designs, and perhaps investi-
gate further the downstream effects of this process.
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Acute Sleep Loss Induces Tissue-Specific Epigenetic
and Transcriptional Alterations to Circadian Clock
Genes in Men
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Context: Shift workers are at increased risk of metabolic morbidities. Clock genes are known to
regulate metabolic processes in peripheral tissues, eg, glucose oxidation.

Objective: This study aimed to investigate how clock genes are affected at the epigenetic and
transcriptional level in peripheral human tissues following acute total sleep deprivation (TSD),
mimicking shift work with extended wakefulness.

Intervention: In a randomized, two-period, two-condition, crossover clinical study, 15 healthy men
underwent two experimental sessions: x sleep (2230–0700 h) and overnight wakefulness. On the
subsequent morning, serum cortisol was measured, followed by skeletal muscle and subcutaneous
adipose tissue biopsies for DNA methylation and gene expression analyses of core clock genes
(BMAL1, CLOCK, CRY1, PER1). Finally, baseline and 2-h post-oral glucose load plasma glucose
concentrations were determined.

Main Outcome Measures: In adipose tissue, acute sleep deprivation vs sleep increased methylation
in the promoter of CRY1 (!4%; P " .026) and in two promoter-interacting enhancer regions of
PER1 (!15%; P " .036; !9%; P " .026). In skeletal muscle, TSD vs sleep decreased gene expression
of BMAL1 (#18%; P " .033) and CRY1 (#22%; P " .047). Concentrations of serum cortisol, which
can reset peripheral tissue clocks, were decreased (2449 $ 932 vs 3178 $ 723 nmol/L; P " .039),
whereas postprandial plasma glucose concentrations were elevated after TSD (7.77 $ 1.63 vs 6.59
$ 1.32 mmol/L; P " .011).

Conclusions: Our findings demonstrate that a single night of wakefulness can alter the epigenetic
and transcriptional profile of core circadian clock genes in key metabolic tissues. Tissue-specific
clock alterations could explain why shift work may disrupt metabolic integrity as observed herein.
(J Clin Endocrinol Metab 100: E1255–E1261, 2015)

Animals studies have convincingly demonstrated that
the circadian clock allows gene expression to coin-

cide with anticipated metabolic requirements throughout

day/night variations via CLOCK and BMAL1 as positive
transcriptional regulators and PERIOD and CRYPTO-
CHROME as negative transcriptional regulators (1). The
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lack of clock genes, even when ablated only in skeletal
muscle or adipose tissue (2, 3), results in systemic meta-
bolic perturbations in animal models (4). These metabolic
responses include hyperglycemia and insulin resistance,
and can also result in obesity and type 2 diabetes in ani-
mals (3–5). As reviewed in Cedernaes et al (6) and Schmid
et al (7), similar metabolic phenotypes have been observed
in humans subjected to experimental paradigms mimick-
ing night shift work, comprising reduced energy expendi-
ture, impaired systemic glucose disposal, and increased
food intake. Over time, these conditions may thus result in
metabolic dysregulation and weight gain (6, 7). Although
shortened sleep leads to genome-wide changes in the leu-
kocyte transcriptome comprising clock genes (8), the in-
fluence of overnight wakefulness, as occurs in night shift
work, on the circadian machinery in tissues critically in-
volved in whole-body energy homeostasis is, however, un-
known. The importance of this research is highlighted by
the fact that today, at least 15% of the workforce—num-
bering 15 million in the United States alone—carry out
shift work, with job activities scheduled during the bio-
logical night.

With this background, we characterized the effects of
one night of sleep deprivation on gene expression and
DNA methylation of core circadian clock genes in periph-
eral tissues. DNA methylation of gene promoters and pro-
moter-interacting enhancers is one epigenetic mechanism
involved in the control of gene expression (9) and is a
malleable process following acute lifestyle interventions
(10). We obtained subcutaneous adipose tissue and skel-
etal muscle biopsies from fasted healthy young men fol-
lowing both acute sleep deprivation and normal sleep. In
addition, fasting serum cortisol and plasma glucose were
measured, the latter before and 120 minutes after an oral
glucose tolerance test (OGTT).

Materials and Methods

Study design
This randomized crossover within-subject trial was conducted

from March through September 2013 at Uppsala Biomedical Cen-
tre,UppsalaUniversity, Sweden.Thesessionswere relatively evenly
distributed across the study period. Study procedures and written
consentformswereapprovedbytheRegionalEthicalReviewBoard
in Uppsala (EPN 2012/477). The study was conducted in accor-
dance with the Helsinki Declaration. Each enrolled participant vol-
untarily signed the consent form.

Participants
Sixteen of 17 enrolled subjects participated in two sessions of

this study. Participants were of self-reported good health, free
from chronic medical conditions or chronic medication, non-
smokers, and had normal sleeping habits (7–9 h of sleep/night;

Pittsburgh Sleep Quality Index score ! 5) (extended screening
protocol in Supplement Part 1).

Study protocol and interventions
All 16 participants engaged in two conditions (acute sleep

deprivation vs sleep), in which each condition was separated by
at least 4 weeks. Participants came in a semifasted state (fasted
since 1500 h) to the laboratory two evenings before each ses-
sion’s final experimental morning, and remained in the labora-
tory under constant supervision until the end of the experimental
session (ie, approximately a 42-h laboratory stay).

Participants were provided with breakfast, lunch, and dinner
during their 24-hour baseline period (each meal providing one
third of the participants’ individually calculated energy require-
ments; based on the Harris-Benedict equation factored 1.2 for
light physical activity), and had an 8.5-hour sleep opportunity
during the first night (2230–0700 h). During the first baseline
day, participants were provided with two standardized and su-
pervised 15-minute walks. During nonexperimental time peri-
ods, participants were confined to their rooms but were free to
engage in sedentary-level activities.

Randomization to the first experimental condition (sleep or
acute sleep deprivation) was generated by drawing lots, with a
fixed block size of 2 and allocation ratio of 1:1. Participants were
randomly assigned after having been screened by J.C. as eligible,
and were scheduled in pairs for the next available session slot.
The allocation sequence was only known by one of the research-
ers (C.B.) but was concealed from the participants, with the ex-
perimenters only notified 2 weeks in advance of each new session
for experimental preparation. Participants were blinded to the
experimental condition (sleep or acute sleep deprivation) until 90
minutes in advance of onset of the nighttime intervention, which
took place during the second night (2230–0700 h). During this
period in the sleep condition, room lights were kept off and sleep
was monitored. In contrast, in the sleep deprivation condition,
participants were under constant supervision 2230–0700 h to
ensure wakefulness, remaining bed-restricted and fasted.

Blood sampling, biopsy collection, and OGTT
After fasting, blood samples were obtained at 0730 h. Tissue

biopsies were also obtained in the fasted state, 2–3 hours after
subject wake-up time, with the collection of the adipose tissue
preceding that of the skeletal muscle. Following the biopsy col-
lection, participants completed a 75g OGTT (further details pro-
vided in the Supplement).

DNA extraction and epigenetic analyses
DNA extraction and epigenetic analysis with Illumina’s Hu-

manMethylation450 BeadChip are further described in Supple-
ment Part 1.

DNA methylation preprocessing consisted of probe filtering
(removal of probes with missing "-values; probes with less than
75% of samples with detection P % .01; or nonspecific or single
nucleotide polymorphism–coinciding probes), followed by ad-
justment of type I and type II probes using BMIQ (11), and
removal of batch effects using ComBat (12). We ran four pairs of
technical replicates, including at least one from each experimen-
tal condition (sleep and acute sleep deprivation), to estimate the
inner variability of each probe. We only considered for further
analysis the probes for which at least half of the subjects showed
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a methylation difference between conditions greater than the
mean difference in technical replicates.

CpG sites within 1500 bp of the transcription start site of
CLOCK, ARNTL, CRY1, and PER1 were analyzed (15 CpG
sites for adipose tissue and 9 nine for skeletal muscle). The pro-
moter is a key part of a gene, but enhancers also prominently
contribute to the regulation of gene expression (13). To identify
putative enhancers of CLOCK, ARNTL, CRY1, and PER1, we
inferred chromatin states in adipose nuclei and skeletal muscle,
and mapped long-range interactions in five different cells lines,
with three different transcription factors (14). CpG sites located
in chromatin states indicative of enhancers in adipose nuclei and
skeletal muscle and in regions having long-range interactions
with the promoters of CLOCK, ARNTL, CRY1, and PER1,
were also analyzed (six CpG sites for adipose tissue and four for
skeletal muscle).

Methylation levels are presented as "-values (ranging from
zero to one, corresponding to zero and 100% methylation, re-
spectively). P-values were adjusted for multiple testing according
to the Benjamini-Hochberg method within each tissue (15).

RNA extraction and qPCR analysis of gene
expression

Methods used for RNA extraction and qPCR analysis of gene
expression are described in further detail in Supplement Part 1.
The gene expression of CLOCK, ARNTL, CRY1, and PER1 was
analyzed with qPCR in adipose tissue and skeletal muscle. All
analyses were run in duplicates (primer information in Supple-
ment Part 2). The &Ct method was used to normalize data (16).

Statistics
Normal-distribution criteria of analyzed data were assessed

with Kolmogorov-Smirnov’s test of normality. Normally dis-
tributed data was analyzed with paired Student t tests, whereas
nonnormally distributed variables were analyzed with Wilcoxon
signed-rank test. Methylation data was analyzed using the soft-
ware package R (version 3.1); we used the log2 ratio of the in-
tensities of methylated probe vs unmethylated probe, also called
M-value, which is more statistically valid for the differential
analysis of methylation levels (17). All other data was analyzed
using the software SPSS (version 21; SPSS Inc.) and are presented
as means $ SD. Two-sided P % .05 were considered significant.
For the adipose tissue, one individual was excluded for all gene
expression analyses (expression values greater than mean ! 2 SD
for several genes). The significance values were, however, not
changed when the analysis was run with or without this subject
(data not shown). For PER1 in skeletal muscle, an outlier was
excluded from both conditions (expression values in the sleep
deprivation condition greater than mean ! 2 SD), but signifi-
cance values were not altered when the analysis was run with or
without this subject (data not shown).

Results

Of 17 enrolled subjects, 16 completed participation in
both sessions (sleep and acute sleep deprivation). One par-
ticipant was excluded from later analysis due to insuffi-
cient sleep (% 7 h) in the sleep condition. Fifteen partici-
pants were therefore included in the final analysis (age,

22.3 $ 1.9 y; body mass index, 22.6 $ 1.8 kg/m2). Sleep
data are presented in Supplement Part 3.

Effect of acute sleep deprivation on methylation
and expression of circadian genes in adipose
tissue and skeletal muscle

Methylation levels at cg04674060 (!15%; adjusted
P " .036) and cg19308989 (!9%; adjusted P " .026;
both CpG sites located in enhancers interacting with the
promoter of PER1), and at cg20193872 (located in the
promoter of CRY1; !4%; adjusted P " .026), increased
after acute sleep deprivation, compared with the sleep con-
dition, in adipose tissue (shown in Figure 1). In skeletal
muscle, the investigated CpG sites were not altered (de-
tailed probe results in Supplement Part 4).

In skeletal muscle, mRNA expression of BMAL1 and
CRY1 was decreased following acute sleep deprivation
(#18 and #22% compared with expression levels found
after sleep; P " .033 and P " .047, respectively; see Figure
2 and Supplement Part 4). Skeletal muscle CLOCK or
PER1 gene expression was unaltered. Moreover, the ad-
ipose tissue genes were unaltered following acute sleep
deprivation.

Effect of acute sleep deprivation on fasting
cortisol and glucose tolerance

Following acute sleep deprivation, fasting serum cortisol
concentrations were decreased at 0730 h (2449 $ 932 vs
3178 $ 723 nmol/L; P " .039), compared with after sleep.
Plasma glucose concentrations at 120 minutes post-OGTT
were higher following acute sleep deprivation, compared
with the values obtained after sleep (pre-OGTT: 5.36 $0.30
vs 5.38 $ 0.36 mmol/l; P " .705; post-OGTT: 7.77 $ 1.63
vs 6.59 $ 1.32 mmol/l; P " .011).

Discussion

We determined the effect of one night of wakefulness, as
occurs during night shift work, on DNA methylation and
mRNA expression of key circadian genes (ie, BMAL1,
CLOCK, CRY1, and PER1) in human skeletal muscle and
adipose tissue. We provide evidence that acute sleep de-
privation increases promoter methylation and reduces
transcription of circadian genes in a tissue-specific man-
ner. Our analysis reveals increased methylation of tran-
scription-regulating regions of PER1 and CRY1 in adi-
pose tissue and reduced gene expression of CRY1 and
BMAL1 in skeletal muscle. We also observed an impaired
glucose response following an OGTT after acute sleep de-
privation. Our results suggest that acute sleep loss alters
clock gene regulation, concomitant with deleterious met-
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abolic effects, which are differential, rather than uniform
across key peripheral metabolic tissues in healthy humans.

Our results of altered DNA methylation for promoter
and promoter-interacting enhancer regions of core clock
genes in adipose tissue suggest that acute sleep deprivation
can cause acute epigenetic remodeling of the circadian
clock. Similar acute epigenetic changes occur following
other types of physiological or metabolic interventions,
including acute high-intensity exercise (10). We provide
additional evidence that challenges the conventional view
that epigenetic regulation is largely a mitotically stable
process resistant to the effect of environmental factors.

Hypermethylation of core clock
genes in humans is linked to insulin
resistance in humans (18), and this
has also partially been observed in
blood of people who chronically
work shifts (19). Given that the cir-
cadian clock affects key metabolic
processes (1), our results suggest that
sleep loss–induced hypermethyl-
ation of PER1 and CRY1 in adipose
tissue may contribute to glucose in-
tolerance as measured by the 120-
minute post-OGTT glucose value.

We found that mRNA expression
of the core clock genes BMAL1 and
CRY1 was decreased in skeletal mus-
cle following acute sleep depriva-
tion. Similar changes occur in circu-
lating leukocytes following longer
periods of shortened sleep in humans
(8). Skeletal muscle–specific deletion
of Bmal1, or global deficiency of
Cry1, impairs insulin sensitivity and
glucose metabolism in mouse models
(2, 20). Moreover, clock gene ex-
pression is altered in peripheral
blood cells from type 2 diabetic vs
nondiabetic patients (21), with an in-
verse correlation between clock gene
expression (BMAL1, PER1, and
PER3) and glycosylated protein
(HbA1c) level noted. Thus, our ob-
served transcriptional changes in cir-
cadian clock genes in skeletal muscle
in response to acute sleep depriva-
tion may impair glucose tolerance.

Although the design of our study
did not allow us to ascertain the mo-
lecular cause of the observed epige-
netic and transcriptional changes in
skeletal muscle and adipose tissue fol-

lowingsleep loss, severalputativecandidatemechanismscan
be implicated. For instance, whereas glucocorticoid levels
may be slightly elevated during nocturnal wakefulness (22),
glucocorticoids—as also shown in our study—are reduced
during typical awakening hours (eg, between 0700 and
0800 h) (23). Glucocorticoids reset circadian rhythms of pe-
ripheral circadian clocks (24). Thus, resetting of peripheral
circadian clocks may be hampered by a blunted cortisol
awakening response after acute sleep deprivation.

At both the epigenetic and transcriptional level, we
demonstrate tissue-specific alterations in core clock genes
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Figure 1. Methylation levels after sleep and acute sleep deprivation in adipose tissue and
skeletal muscle. Methylation levels in two putative enhancers interacting with the promoter of
PER1 (probes cg04674060 and cg19308989) were increased following overnight wakefulness
(ie, acute sleep deprivation), in adipose tissue (SCAT) compared with after sleep. Methylation
levels in the promoter of CRY1 (probe cg20193872) were also increased following overnight
wakefulness (acute sleep deprivation) compared with after sleep, in adipose tissue (SCAT). No
differences were seen, however, between the two conditions in skeletal muscle (VLM).
Methylation levels are shown as beta values ("-value; ranging from zero to one, corresponding to
zero and 100% methylation, respectively). Horizontal line represents median, box interquartile
range, whiskers represent spread of remaining values. Two points that are linked by a line show
the difference in methylation levels in overnight wakefulness vs sleep conditions for each
individual. *, P % .05; n " 15 for all analyses. Abbreviations: SCAT, sc adipose tissue; VLM,
vastus lateralis muscle.
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under conditions of acute sleep deprivation, consistent
with animal studies, in which the circadian machinery ex-
hibits tissue-specific changes in rhythm following shift-
work-mimicking sleep-wake paradigms (25). Such inter-
nal desynchrony has been hypothesized to underlie
metabolic effects of shift work (26–28). The physiological

relevance of tissue-specific circadian
clocks is further supported by afore-
mentioned and other animal studies
in which core clock genes have been
ablated or rescued in a tissue-specific
manner (3, 29), (eg, an adipose tis-
sue–targeting Bmal1 deletion in mice
resulting in an obese phenotype) (3).
Furthermore, insulin-dependent pe-
ripheral tissues, ie, adipose tissue
and skeletal muscle, shift toward a
diabetes-like phenotype following
sleep loss (30, 31). Our tissue-differ-
ential effects further reinforce the
notion that acute circadian misalign-
ment can produce desynchrony of
peripheral circadian clocks, with
possibly tissue-specific downstream
metabolic effects.

Limitations
Several limitations should be kept

in mind when interpreting our re-
sults. Lights were on in the TSD con-
dition but not in the sleep condition
('300 lux vs darkness). Given that
light can entrain the human circa-
dian clock (32), our experimental de-
sign does not allow us to disentangle
if the observed effects of overnight
wakefulness on core circadian genes
were either driven by loss of sleep,
light exposure, or both. However, it
is important to note that our exper-
iment aimed at mimicking night shift
work, which is typically performed
under ambient light exposure. An-
other limitation of our study is that
expression and methylation of clock
genes was measured only at a single
time point, ie, under fasting condi-
tions in the morning following each
sleep intervention. Thus, our study
does not allow firm conclusions on
how the circadian pattern of expres-
sion and methylation pattern of
clock genes is influenced by over-

night wakefulness. This would, however, have required
repeated tissue sampling, which is much more feasible us-
ing animal models; models that can also be maintained
longer in a fasted state to avoid the entraining effect of
meals on clock genes. Finally, hypermethylation of tran-
scription-regulatory regions of core circadian genes in the
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adipose tissue were not paralleled by concomitant reduced
expression of these genes. Given that we only sampled
biopsies at one time point, a possible explanation might be
that acute promoter hypermethylation altered circadian
gene mRNA expression at subsequent points in the sleep
deprivation condition, (ie, following biopsy collection).
Supporting this assumption are results from a separate
study examined the effects of an acute bout of exercise on
skeletal muscle promoter methylation and corresponding
gene expression (10). There, remodeling of promoter
methylation of PGC-1#, a gene involved in the circadian
machinery of the skeletal muscle (33), was accompanied
by a delayed (ie, 3 h later), but not concomitant change in
gene expression (10).

Conclusions

One night of sleep loss results in hypermethylation of reg-
ulatory regions of key clock genes. These effects are tissue
specific, and occur in adipose tissue, but not in skeletal
muscle. Gene expression differences were observed for the
investigated clock genes in skeletal muscle, but not in ad-
ipose tissue. Shift work is associated with many of the
same phenotypes observed in transgenic animal models in
which the circadian clock is disrupted, (eg, glucose intol-
erance) (34–36). This suggests that our findings of altered
peripheral clocks at the epigenetic and transcriptional
level, with ensuing glucose intolerance, following acute
sleep loss may contribute to metabolic disruptions typi-
cally observed in humans with activities regularly sched-
uled during times that produce chronic desynchrony be-
tween tissue-specific clocks.

Perspectives
Given that recurrent partial sleep deprivation decreases

insulin sensitivity at the systemic and adipose tissue level
in humans (30, 37), future studies to examine whether
similar changes occur under conditions of recurrent par-
tial sleep deprivation are of interest. Using repeated biopsy
collection, eg, also under insulin-stimulated conditions,
may decipher the time-dependent dynamics of peripheral
circadian misalignment and how this might relate to met-
abolic perturbations, including impaired glucose toler-
ance. Whether our findings can be extrapolated to females
or older participants is currently unknown and warrants
investigation. Large interindividual differences were ob-
served in our data for how sleep deprivation altered
peripheral tissues’ clock-gene methylation and gene expres-
sion. Contributing factors may be subjects’ chronotype—
linkedtodifferential responses’ to sleepdeprivation—orsea-
sonality; with recent studies demonstrating seasonal

circadian clock gene variability in animals as well as hu-
mans (38), supported by summer-winter variation in hu-
man adipose tissue. Ambient light can influence circadian
rhythms (39). Thus, light can also resynchronize periph-
eral circadian rhythms in the absence of a functioning cen-
tral pacemaker (40); and enhance the cortisol awakening
response (41). The mechanism by which different ambient
light exposures influences the peripheral clock under con-
ditions of extended wakefulness remains to be investi-
gated. Finally, although the absence of nighttime meals in
our sleep deprivation condition precludes the synchroniz-
ing influence from such a zeitgeber on peripheral clocks
(42), nighttime meal intake is common in shift workers
and may thereby modulate effects on tissue-specific circa-
dian clocks.
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Acute Sleep Loss Induces Tissue-Specific Epigenetic
and Transcriptional Alterations to Circadian Clock
Genes in Men

Jonathan Cedernaes, Megan E. Osler, Sarah Voisin, Jan-Erik Broman,
Heike Vogel, Suzanne L. Dickson, Juleen R. Zierath, Helgi B. Schiöth,
and Christian Benedict
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Nutrition Potsdam-Rehbruecke, 14558 Nuthetal, Germany; and Department of Physiology, Institute of
Neuroscience and Physiology (H.V., S.L.D.), The Sahlgrenska Academy at the University of Gothenburg,
411 37 Gothenburg, Sweden

Context: Shift workers are at increased risk of metabolic morbidities. Clock genes are known to
regulate metabolic processes in peripheral tissues, eg, glucose oxidation.

Objective: This study aimed to investigate how clock genes are affected at the epigenetic and
transcriptional level in peripheral human tissues following acute total sleep deprivation (TSD),
mimicking shift work with extended wakefulness.

Intervention: In a randomized, two-period, two-condition, crossover clinical study, 15 healthy men
underwent two experimental sessions: x sleep (2230–0700 h) and overnight wakefulness. On the
subsequent morning, serum cortisol was measured, followed by skeletal muscle and subcutaneous
adipose tissue biopsies for DNA methylation and gene expression analyses of core clock genes
(BMAL1, CLOCK, CRY1, PER1). Finally, baseline and 2-h post-oral glucose load plasma glucose
concentrations were determined.

Main Outcome Measures: In adipose tissue, acute sleep deprivation vs sleep increased methylation
in the promoter of CRY1 (!4%; P " .026) and in two promoter-interacting enhancer regions of
PER1 (!15%; P " .036; !9%; P " .026). In skeletal muscle, TSD vs sleep decreased gene expression
of BMAL1 (#18%; P " .033) and CRY1 (#22%; P " .047). Concentrations of serum cortisol, which
can reset peripheral tissue clocks, were decreased (2449 $ 932 vs 3178 $ 723 nmol/L; P " .039),
whereas postprandial plasma glucose concentrations were elevated after TSD (7.77 $ 1.63 vs 6.59
$ 1.32 mmol/L; P " .011).

Conclusions: Our findings demonstrate that a single night of wakefulness can alter the epigenetic
and transcriptional profile of core circadian clock genes in key metabolic tissues. Tissue-specific
clock alterations could explain why shift work may disrupt metabolic integrity as observed herein.
(J Clin Endocrinol Metab 100: E1255–E1261, 2015)

Animals studies have convincingly demonstrated that
the circadian clock allows gene expression to coin-

cide with anticipated metabolic requirements throughout

day/night variations via CLOCK and BMAL1 as positive
transcriptional regulators and PERIOD and CRYPTO-
CHROME as negative transcriptional regulators (1). The
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lack of clock genes, even when ablated only in skeletal
muscle or adipose tissue (2, 3), results in systemic meta-
bolic perturbations in animal models (4). These metabolic
responses include hyperglycemia and insulin resistance,
and can also result in obesity and type 2 diabetes in ani-
mals (3–5). As reviewed in Cedernaes et al (6) and Schmid
et al (7), similar metabolic phenotypes have been observed
in humans subjected to experimental paradigms mimick-
ing night shift work, comprising reduced energy expendi-
ture, impaired systemic glucose disposal, and increased
food intake. Over time, these conditions may thus result in
metabolic dysregulation and weight gain (6, 7). Although
shortened sleep leads to genome-wide changes in the leu-
kocyte transcriptome comprising clock genes (8), the in-
fluence of overnight wakefulness, as occurs in night shift
work, on the circadian machinery in tissues critically in-
volved in whole-body energy homeostasis is, however, un-
known. The importance of this research is highlighted by
the fact that today, at least 15% of the workforce—num-
bering 15 million in the United States alone—carry out
shift work, with job activities scheduled during the bio-
logical night.

With this background, we characterized the effects of
one night of sleep deprivation on gene expression and
DNA methylation of core circadian clock genes in periph-
eral tissues. DNA methylation of gene promoters and pro-
moter-interacting enhancers is one epigenetic mechanism
involved in the control of gene expression (9) and is a
malleable process following acute lifestyle interventions
(10). We obtained subcutaneous adipose tissue and skel-
etal muscle biopsies from fasted healthy young men fol-
lowing both acute sleep deprivation and normal sleep. In
addition, fasting serum cortisol and plasma glucose were
measured, the latter before and 120 minutes after an oral
glucose tolerance test (OGTT).

Materials and Methods

Study design
This randomized crossover within-subject trial was conducted

from March through September 2013 at Uppsala Biomedical Cen-
tre,UppsalaUniversity, Sweden.Thesessionswere relatively evenly
distributed across the study period. Study procedures and written
consentformswereapprovedbytheRegionalEthicalReviewBoard
in Uppsala (EPN 2012/477). The study was conducted in accor-
dance with the Helsinki Declaration. Each enrolled participant vol-
untarily signed the consent form.

Participants
Sixteen of 17 enrolled subjects participated in two sessions of

this study. Participants were of self-reported good health, free
from chronic medical conditions or chronic medication, non-
smokers, and had normal sleeping habits (7–9 h of sleep/night;

Pittsburgh Sleep Quality Index score ! 5) (extended screening
protocol in Supplement Part 1).

Study protocol and interventions
All 16 participants engaged in two conditions (acute sleep

deprivation vs sleep), in which each condition was separated by
at least 4 weeks. Participants came in a semifasted state (fasted
since 1500 h) to the laboratory two evenings before each ses-
sion’s final experimental morning, and remained in the labora-
tory under constant supervision until the end of the experimental
session (ie, approximately a 42-h laboratory stay).

Participants were provided with breakfast, lunch, and dinner
during their 24-hour baseline period (each meal providing one
third of the participants’ individually calculated energy require-
ments; based on the Harris-Benedict equation factored 1.2 for
light physical activity), and had an 8.5-hour sleep opportunity
during the first night (2230–0700 h). During the first baseline
day, participants were provided with two standardized and su-
pervised 15-minute walks. During nonexperimental time peri-
ods, participants were confined to their rooms but were free to
engage in sedentary-level activities.

Randomization to the first experimental condition (sleep or
acute sleep deprivation) was generated by drawing lots, with a
fixed block size of 2 and allocation ratio of 1:1. Participants were
randomly assigned after having been screened by J.C. as eligible,
and were scheduled in pairs for the next available session slot.
The allocation sequence was only known by one of the research-
ers (C.B.) but was concealed from the participants, with the ex-
perimenters only notified 2 weeks in advance of each new session
for experimental preparation. Participants were blinded to the
experimental condition (sleep or acute sleep deprivation) until 90
minutes in advance of onset of the nighttime intervention, which
took place during the second night (2230–0700 h). During this
period in the sleep condition, room lights were kept off and sleep
was monitored. In contrast, in the sleep deprivation condition,
participants were under constant supervision 2230–0700 h to
ensure wakefulness, remaining bed-restricted and fasted.

Blood sampling, biopsy collection, and OGTT
After fasting, blood samples were obtained at 0730 h. Tissue

biopsies were also obtained in the fasted state, 2–3 hours after
subject wake-up time, with the collection of the adipose tissue
preceding that of the skeletal muscle. Following the biopsy col-
lection, participants completed a 75g OGTT (further details pro-
vided in the Supplement).

DNA extraction and epigenetic analyses
DNA extraction and epigenetic analysis with Illumina’s Hu-

manMethylation450 BeadChip are further described in Supple-
ment Part 1.

DNA methylation preprocessing consisted of probe filtering
(removal of probes with missing "-values; probes with less than
75% of samples with detection P % .01; or nonspecific or single
nucleotide polymorphism–coinciding probes), followed by ad-
justment of type I and type II probes using BMIQ (11), and
removal of batch effects using ComBat (12). We ran four pairs of
technical replicates, including at least one from each experimen-
tal condition (sleep and acute sleep deprivation), to estimate the
inner variability of each probe. We only considered for further
analysis the probes for which at least half of the subjects showed
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a methylation difference between conditions greater than the
mean difference in technical replicates.

CpG sites within 1500 bp of the transcription start site of
CLOCK, ARNTL, CRY1, and PER1 were analyzed (15 CpG
sites for adipose tissue and 9 nine for skeletal muscle). The pro-
moter is a key part of a gene, but enhancers also prominently
contribute to the regulation of gene expression (13). To identify
putative enhancers of CLOCK, ARNTL, CRY1, and PER1, we
inferred chromatin states in adipose nuclei and skeletal muscle,
and mapped long-range interactions in five different cells lines,
with three different transcription factors (14). CpG sites located
in chromatin states indicative of enhancers in adipose nuclei and
skeletal muscle and in regions having long-range interactions
with the promoters of CLOCK, ARNTL, CRY1, and PER1,
were also analyzed (six CpG sites for adipose tissue and four for
skeletal muscle).

Methylation levels are presented as "-values (ranging from
zero to one, corresponding to zero and 100% methylation, re-
spectively). P-values were adjusted for multiple testing according
to the Benjamini-Hochberg method within each tissue (15).

RNA extraction and qPCR analysis of gene
expression

Methods used for RNA extraction and qPCR analysis of gene
expression are described in further detail in Supplement Part 1.
The gene expression of CLOCK, ARNTL, CRY1, and PER1 was
analyzed with qPCR in adipose tissue and skeletal muscle. All
analyses were run in duplicates (primer information in Supple-
ment Part 2). The &Ct method was used to normalize data (16).

Statistics
Normal-distribution criteria of analyzed data were assessed

with Kolmogorov-Smirnov’s test of normality. Normally dis-
tributed data was analyzed with paired Student t tests, whereas
nonnormally distributed variables were analyzed with Wilcoxon
signed-rank test. Methylation data was analyzed using the soft-
ware package R (version 3.1); we used the log2 ratio of the in-
tensities of methylated probe vs unmethylated probe, also called
M-value, which is more statistically valid for the differential
analysis of methylation levels (17). All other data was analyzed
using the software SPSS (version 21; SPSS Inc.) and are presented
as means $ SD. Two-sided P % .05 were considered significant.
For the adipose tissue, one individual was excluded for all gene
expression analyses (expression values greater than mean ! 2 SD
for several genes). The significance values were, however, not
changed when the analysis was run with or without this subject
(data not shown). For PER1 in skeletal muscle, an outlier was
excluded from both conditions (expression values in the sleep
deprivation condition greater than mean ! 2 SD), but signifi-
cance values were not altered when the analysis was run with or
without this subject (data not shown).

Results

Of 17 enrolled subjects, 16 completed participation in
both sessions (sleep and acute sleep deprivation). One par-
ticipant was excluded from later analysis due to insuffi-
cient sleep (% 7 h) in the sleep condition. Fifteen partici-
pants were therefore included in the final analysis (age,

22.3 $ 1.9 y; body mass index, 22.6 $ 1.8 kg/m2). Sleep
data are presented in Supplement Part 3.

Effect of acute sleep deprivation on methylation
and expression of circadian genes in adipose
tissue and skeletal muscle

Methylation levels at cg04674060 (!15%; adjusted
P " .036) and cg19308989 (!9%; adjusted P " .026;
both CpG sites located in enhancers interacting with the
promoter of PER1), and at cg20193872 (located in the
promoter of CRY1; !4%; adjusted P " .026), increased
after acute sleep deprivation, compared with the sleep con-
dition, in adipose tissue (shown in Figure 1). In skeletal
muscle, the investigated CpG sites were not altered (de-
tailed probe results in Supplement Part 4).

In skeletal muscle, mRNA expression of BMAL1 and
CRY1 was decreased following acute sleep deprivation
(#18 and #22% compared with expression levels found
after sleep; P " .033 and P " .047, respectively; see Figure
2 and Supplement Part 4). Skeletal muscle CLOCK or
PER1 gene expression was unaltered. Moreover, the ad-
ipose tissue genes were unaltered following acute sleep
deprivation.

Effect of acute sleep deprivation on fasting
cortisol and glucose tolerance

Following acute sleep deprivation, fasting serum cortisol
concentrations were decreased at 0730 h (2449 $ 932 vs
3178 $ 723 nmol/L; P " .039), compared with after sleep.
Plasma glucose concentrations at 120 minutes post-OGTT
were higher following acute sleep deprivation, compared
with the values obtained after sleep (pre-OGTT: 5.36 $0.30
vs 5.38 $ 0.36 mmol/l; P " .705; post-OGTT: 7.77 $ 1.63
vs 6.59 $ 1.32 mmol/l; P " .011).

Discussion

We determined the effect of one night of wakefulness, as
occurs during night shift work, on DNA methylation and
mRNA expression of key circadian genes (ie, BMAL1,
CLOCK, CRY1, and PER1) in human skeletal muscle and
adipose tissue. We provide evidence that acute sleep de-
privation increases promoter methylation and reduces
transcription of circadian genes in a tissue-specific man-
ner. Our analysis reveals increased methylation of tran-
scription-regulating regions of PER1 and CRY1 in adi-
pose tissue and reduced gene expression of CRY1 and
BMAL1 in skeletal muscle. We also observed an impaired
glucose response following an OGTT after acute sleep de-
privation. Our results suggest that acute sleep loss alters
clock gene regulation, concomitant with deleterious met-
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abolic effects, which are differential, rather than uniform
across key peripheral metabolic tissues in healthy humans.

Our results of altered DNA methylation for promoter
and promoter-interacting enhancer regions of core clock
genes in adipose tissue suggest that acute sleep deprivation
can cause acute epigenetic remodeling of the circadian
clock. Similar acute epigenetic changes occur following
other types of physiological or metabolic interventions,
including acute high-intensity exercise (10). We provide
additional evidence that challenges the conventional view
that epigenetic regulation is largely a mitotically stable
process resistant to the effect of environmental factors.

Hypermethylation of core clock
genes in humans is linked to insulin
resistance in humans (18), and this
has also partially been observed in
blood of people who chronically
work shifts (19). Given that the cir-
cadian clock affects key metabolic
processes (1), our results suggest that
sleep loss–induced hypermethyl-
ation of PER1 and CRY1 in adipose
tissue may contribute to glucose in-
tolerance as measured by the 120-
minute post-OGTT glucose value.

We found that mRNA expression
of the core clock genes BMAL1 and
CRY1 was decreased in skeletal mus-
cle following acute sleep depriva-
tion. Similar changes occur in circu-
lating leukocytes following longer
periods of shortened sleep in humans
(8). Skeletal muscle–specific deletion
of Bmal1, or global deficiency of
Cry1, impairs insulin sensitivity and
glucose metabolism in mouse models
(2, 20). Moreover, clock gene ex-
pression is altered in peripheral
blood cells from type 2 diabetic vs
nondiabetic patients (21), with an in-
verse correlation between clock gene
expression (BMAL1, PER1, and
PER3) and glycosylated protein
(HbA1c) level noted. Thus, our ob-
served transcriptional changes in cir-
cadian clock genes in skeletal muscle
in response to acute sleep depriva-
tion may impair glucose tolerance.

Although the design of our study
did not allow us to ascertain the mo-
lecular cause of the observed epige-
netic and transcriptional changes in
skeletal muscle and adipose tissue fol-

lowingsleep loss, severalputativecandidatemechanismscan
be implicated. For instance, whereas glucocorticoid levels
may be slightly elevated during nocturnal wakefulness (22),
glucocorticoids—as also shown in our study—are reduced
during typical awakening hours (eg, between 0700 and
0800 h) (23). Glucocorticoids reset circadian rhythms of pe-
ripheral circadian clocks (24). Thus, resetting of peripheral
circadian clocks may be hampered by a blunted cortisol
awakening response after acute sleep deprivation.

At both the epigenetic and transcriptional level, we
demonstrate tissue-specific alterations in core clock genes
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Figure 1. Methylation levels after sleep and acute sleep deprivation in adipose tissue and
skeletal muscle. Methylation levels in two putative enhancers interacting with the promoter of
PER1 (probes cg04674060 and cg19308989) were increased following overnight wakefulness
(ie, acute sleep deprivation), in adipose tissue (SCAT) compared with after sleep. Methylation
levels in the promoter of CRY1 (probe cg20193872) were also increased following overnight
wakefulness (acute sleep deprivation) compared with after sleep, in adipose tissue (SCAT). No
differences were seen, however, between the two conditions in skeletal muscle (VLM).
Methylation levels are shown as beta values ("-value; ranging from zero to one, corresponding to
zero and 100% methylation, respectively). Horizontal line represents median, box interquartile
range, whiskers represent spread of remaining values. Two points that are linked by a line show
the difference in methylation levels in overnight wakefulness vs sleep conditions for each
individual. *, P % .05; n " 15 for all analyses. Abbreviations: SCAT, sc adipose tissue; VLM,
vastus lateralis muscle.

E1258 Cedernaes et al Sleep Loss and Circadian Genes J Clin Endocrinol Metab, September 2015, 100(9):E1255–E1261

The Endocrine Society. Downloaded from press.endocrine.org by [${individualUser.displayName}] on 12 September 2016. at 06:02 For personal use only. No other uses without permission. . All rights reserved.



under conditions of acute sleep deprivation, consistent
with animal studies, in which the circadian machinery ex-
hibits tissue-specific changes in rhythm following shift-
work-mimicking sleep-wake paradigms (25). Such inter-
nal desynchrony has been hypothesized to underlie
metabolic effects of shift work (26–28). The physiological

relevance of tissue-specific circadian
clocks is further supported by afore-
mentioned and other animal studies
in which core clock genes have been
ablated or rescued in a tissue-specific
manner (3, 29), (eg, an adipose tis-
sue–targeting Bmal1 deletion in mice
resulting in an obese phenotype) (3).
Furthermore, insulin-dependent pe-
ripheral tissues, ie, adipose tissue
and skeletal muscle, shift toward a
diabetes-like phenotype following
sleep loss (30, 31). Our tissue-differ-
ential effects further reinforce the
notion that acute circadian misalign-
ment can produce desynchrony of
peripheral circadian clocks, with
possibly tissue-specific downstream
metabolic effects.

Limitations
Several limitations should be kept

in mind when interpreting our re-
sults. Lights were on in the TSD con-
dition but not in the sleep condition
('300 lux vs darkness). Given that
light can entrain the human circa-
dian clock (32), our experimental de-
sign does not allow us to disentangle
if the observed effects of overnight
wakefulness on core circadian genes
were either driven by loss of sleep,
light exposure, or both. However, it
is important to note that our exper-
iment aimed at mimicking night shift
work, which is typically performed
under ambient light exposure. An-
other limitation of our study is that
expression and methylation of clock
genes was measured only at a single
time point, ie, under fasting condi-
tions in the morning following each
sleep intervention. Thus, our study
does not allow firm conclusions on
how the circadian pattern of expres-
sion and methylation pattern of
clock genes is influenced by over-

night wakefulness. This would, however, have required
repeated tissue sampling, which is much more feasible us-
ing animal models; models that can also be maintained
longer in a fasted state to avoid the entraining effect of
meals on clock genes. Finally, hypermethylation of tran-
scription-regulatory regions of core circadian genes in the
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Figure 2. mRNA expression of core clock genes after sleep and acute sleep deprivation in
adipose tissue and skeletal muscle. mRNA expression of BMAL1 and CRY1 was down-regulated
in skeletal muscle (VLM) from humans following overnight wakefulness (ie, acute sleep
deprivation) compared with after sleep. No differences between the two conditions were found
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adipose tissue were not paralleled by concomitant reduced
expression of these genes. Given that we only sampled
biopsies at one time point, a possible explanation might be
that acute promoter hypermethylation altered circadian
gene mRNA expression at subsequent points in the sleep
deprivation condition, (ie, following biopsy collection).
Supporting this assumption are results from a separate
study examined the effects of an acute bout of exercise on
skeletal muscle promoter methylation and corresponding
gene expression (10). There, remodeling of promoter
methylation of PGC-1#, a gene involved in the circadian
machinery of the skeletal muscle (33), was accompanied
by a delayed (ie, 3 h later), but not concomitant change in
gene expression (10).

Conclusions

One night of sleep loss results in hypermethylation of reg-
ulatory regions of key clock genes. These effects are tissue
specific, and occur in adipose tissue, but not in skeletal
muscle. Gene expression differences were observed for the
investigated clock genes in skeletal muscle, but not in ad-
ipose tissue. Shift work is associated with many of the
same phenotypes observed in transgenic animal models in
which the circadian clock is disrupted, (eg, glucose intol-
erance) (34–36). This suggests that our findings of altered
peripheral clocks at the epigenetic and transcriptional
level, with ensuing glucose intolerance, following acute
sleep loss may contribute to metabolic disruptions typi-
cally observed in humans with activities regularly sched-
uled during times that produce chronic desynchrony be-
tween tissue-specific clocks.

Perspectives
Given that recurrent partial sleep deprivation decreases

insulin sensitivity at the systemic and adipose tissue level
in humans (30, 37), future studies to examine whether
similar changes occur under conditions of recurrent par-
tial sleep deprivation are of interest. Using repeated biopsy
collection, eg, also under insulin-stimulated conditions,
may decipher the time-dependent dynamics of peripheral
circadian misalignment and how this might relate to met-
abolic perturbations, including impaired glucose toler-
ance. Whether our findings can be extrapolated to females
or older participants is currently unknown and warrants
investigation. Large interindividual differences were ob-
served in our data for how sleep deprivation altered
peripheral tissues’ clock-gene methylation and gene expres-
sion. Contributing factors may be subjects’ chronotype—
linkedtodifferential responses’ to sleepdeprivation—orsea-
sonality; with recent studies demonstrating seasonal

circadian clock gene variability in animals as well as hu-
mans (38), supported by summer-winter variation in hu-
man adipose tissue. Ambient light can influence circadian
rhythms (39). Thus, light can also resynchronize periph-
eral circadian rhythms in the absence of a functioning cen-
tral pacemaker (40); and enhance the cortisol awakening
response (41). The mechanism by which different ambient
light exposures influences the peripheral clock under con-
ditions of extended wakefulness remains to be investi-
gated. Finally, although the absence of nighttime meals in
our sleep deprivation condition precludes the synchroniz-
ing influence from such a zeitgeber on peripheral clocks
(42), nighttime meal intake is common in shift workers
and may thereby modulate effects on tissue-specific circa-
dian clocks.
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Expression of epigenetic machinery genes
is sensitive to maternal obesity and weight
loss in relation to fetal growth in mice
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Abstract

Background: Maternal obesity impacts fetal growth and pregnancy outcomes. To counteract the deleterious
effects of obesity on fertility and pregnancy issue, preconceptional weight loss is recommended to obese women.
Whether this weight loss is beneficial/detrimental for offspring remains poorly explored. Epigenetic mechanisms could
be affected by maternal weight changes, perturbing expression of key developmental genes in the placenta or fetus.
Our aim was to investigate the effects of chronic maternal obesity on feto-placental growth along with the underlying
epigenetic mechanisms. We also tested whether preconceptional weight loss could alleviate these effects.

Results: Female mice were fed either a control diet (CTRL group), a high-fat diet (obese (OB) group), or a high-fat diet
switched to a control diet 2 months before conception (weight loss (WL) group). At mating, OB females presented an
obese phenotype while WL females normalized metabolic parameters. At embryonic day 18.5 (E18.5), fetuses from OB
females presented fetal growth restriction (FGR; −13 %) and 28 % of the fetuses were small for gestational age (SGA).
Fetuses from WL females normalized this phenotype. The expression of 60 epigenetic machinery genes and 32
metabolic genes was measured in the fetal liver, placental labyrinth, and junctional zone. We revealed 23 genes altered
by maternal weight trajectories in at least one of three tissues. The fetal liver and placental labyrinth were more
responsive to maternal obesity than junctional zone. One third (18/60) of the epigenetic machinery genes were
differentially expressed between at least two maternal groups. Interestingly, genes involved in the histone acetylation
pathway were particularly altered (13/18). In OB group, lysine acetyltransferases and Bromodomain-containing protein 2
were upregulated, while most histone deacetylases were downregulated. In WL group, the expression of only a subset
of these genes was normalized.

Conclusions: This study highlights the high sensitivity of the epigenetic machinery gene expression, and particularly
the histone acetylation pathway, to maternal obesity. These obesity-induced transcriptional changes could alter the
placental and the hepatic epigenome, leading to FGR. Preconceptional weight loss appears beneficial to fetal growth,
but some effects of previous obesity were retained in offspring phenotype.
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Background
The worldwide prevalence of obesity in women was
38 % in 2013 [1]. Obesity during pregnancy comprises
increased risks for metabolic and obstetrical complica-
tions (e.g., gestational hypertension and diabetes, and
preeclampsia) but also stillbirth, prematurity, and con-
genital malformations [2]. Fetal growth could be particu-
larly impacted by maternal obesity. Maternal obesity is
associated with macrosomia or, on the contrary, with
fetal growth restriction (FGR) [3–6]. FGR is associated
with a high incidence of metabolic diseases in adulthood
[7, 8], which is consistent with the developmental origins
of health and disease (DOHaD) concept. This concept,
also named “developmental programming” or “condi-
tioning,” states that environmental factors during early
development could predispose an individual to chronic
diseases [9].
Despite the high incidence of FGR in obese women,

little is known about the underlying mechanisms. FGR
could result from insufficient oxygen supply due to dis-
turbed vascularization, increased lipid accumulation, and
macronutrients transport in the placenta, crucial organ
regulating appropriate fetal development [10–12]. Im-
portantly, different placental parts have different func-
tions and cellular populations [13]. The labyrinth is a
zone of active exchange between maternal and fetal
blood, while the junctional zone provides hormone pro-
duction and storage of nutrients that are necessary for
fetal development [13]. The structure and the function
of several organs could be affected in the offspring of
obese mothers. In utero alterations of hepatic develop-
ment and function by maternal obesity could disturb
metabolic homeostasis [14, 15]. The effect of obesity on
organogenesis and gene expression in growth-restricted
fetuses needs further investigation; the current efforts
are indeed focused on FGR induced by poor maternal
nutrition [16].
Modulation of offspring phenotype in response to ma-

ternal environment could be mediated by epigenetic
mechanisms. Epigenetic marks (e.g., DNA methylation,
histone posttranslational modifications) are stable but
reversible covalent modifications that are regulated by a
complex epigenetic machinery. Its actors “write,” “erase”
or “read” epigenetic marks, establishing the epigenome of
the cell in conjunction with environmental factors. This
epigenetic landscape is dynamic during development and
controls gene expression patterns in a tissue-specific man-
ner. Alterations of DNA methylation, histone modifica-
tions and, to a lesser extent, of their regulators were
observed in relation to FGR caused by different factors
[17–22]. Epigenetic disturbances in growth-restricted fe-
tuses in the context of maternal diet-induced obesity need
further investigation. Maternal unbalanced nutrition and
metabolic state could impact certain epigenetic enzymes

in the developing organs of the offspring, affecting the epi-
genome [23, 24]. As epigenetic marks can be transmitted
through generations of cell divisions, epigenetics has
emerged as a plausible mechanism for long-term memory
of environmental insults [23, 25].
To counteract the negative effects of obesity on preg-

nancy outcomes, preconceptional weight loss is cur-
rently recommended to women with high body mass
index [26]. Nevertheless, very few studies have assessed
the consequences of maternal weight loss on fetal
growth [27]. In humans, weight loss between two preg-
nancies reduces the risk of macrosomia [28]. However,
in another cohort, weight loss between the age of
20 years and conception had a negative impact on birth
weight [29]. Thus, the impact of maternal preconcep-
tional weight changes on fetal growth and underlying
epigenetic processes needs to be clarified. Currently,
there is no relevant mouse model to study this import-
ant issue for public health.
Based on the observations that maternal obesity im-

pairs feto-placental development, our aim was to exam-
ine the impact of maternal weight trajectories (obesity or
weight loss) on the expression of epigenetic and meta-
bolic genes in the fetal liver and in the placental laby-
rinth and junctional zone. We showed that maternal
obesity induced FGR, which was associated with an al-
tered expression of histone acetylation modifiers in the
fetal liver and labyrinth, but not in the junctional zone.
In contrast, correction of obesity during the preconcep-
tional period by nutritional intervention normalized fetal
weight and induced an adaptation at the transcriptional
level. This study provides a novel mouse model for investi-
gating the molecular mechanisms of obesity-induced FGR
and highlights the sensitivity of the epigenetic machinery
to maternal nutrition and metabolism.

Results
High-fat diet (HFD) induced severe obesity in female
mice; switching to a control diet (CD) induced weight loss
and normalization of metabolic parameters
Female mice were fed either a CD (control females
(CTRL)) or a HFD (obese females (OB)) for 4 months
during the preconceptional period (Fig. 1). From the
start of the diet and up to mating, OB females put on
weight faster (β = 0.52, P < 0.001) and were heavier than
CTRL females on a CD (P < 0.001, Fig. 2a). OB females
weighed 27 and 36 % more than CTRL females after 2
and 4 months of diet, respectively. After 2 months on a
HFD, we replaced HFD by CD for a subset of the OB fe-
males to induce weight loss (WL females) (Fig. 1). The
weight of WL females was lower than the weight of OB
females as early as 3 days after CD initiation and after-
wards (P < 0.05 at all time points, Fig. 2a). WL females
tended to normalize their weight (P = 0.105, week 19.5,
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P = 0.062, week 21, P = 0.051, week 21.5, P = 0.031, week
22, WL vs. CTRL). However, they remained 5 % heavier
than CTRL females before mating.
The caloric intake of OB females was higher than the

caloric intake of CTRL females during 4 months of pre-
conceptional diet (P < 0.001, Fig. 2b) but OB and CTRL
females had a similar food intake to body weight ratio
(kcal/kg/day) (Additional file 1: Figure S1). WL females
drastically decreased their caloric intake right after the nu-
tritional intervention (P < 0.001, WL vs. CTRL/OB; Fig. 2b)
and normalized this parameter 1 week later (P = 0.15, week
15, WL vs. CTRL; P < 0.05, WL vs. OB) and thereafter.
Metabolic parameters were assessed after 2 and 4 months
of diet (Fig. 1). OB females were hypercholesterolemic,
hyperglycemic, and glucose intolerant compared to CTRL
females (P < 0.001, P < 0.05, and P < 0.001 at each time
point, respectively, Fig. 2c–f). The nutritional intervention
normalized these parameters in WL females.
In summary, OB females were obese and had an im-

paired glucose metabolism and hypercholesterolemia.
Switching to a CD allowed complete restoration of all
these parameters although WL females remained 5 %
heavier than CTRL females before mating.

Obese dams on a HFD gained less weight at term of
pregnancy
To determine the potential effects of maternal obesity
and preconceptional weight loss on fetal outcomes, we
mated CTRL, OB, and WL females after 4 months of
preconceptional diet with males on a standard labora-
tory diet (Fig. 1). Preconceptional diet was maintained
during pregnancy. OB dams had reduced total pregnant

body weight gain and carcass weight compared with CTRL
and WL dams at embryonic day 18.5 (E18.5) (P < 0.001,
Fig. 3a, b). There were no differences between WL and
CTRL dams (P = 0.83 for total weight gain; P = 0.56 for
carcass weight). The maternal group explained 29 % of the
variance in total body weight gain and 37 % of the variance
in carcass weight at E18.5. OB and WL dams had increased
litter size vs. CTRL dams at E18.5 (P < 0.001; CTRL
5.5 ± 2.18, n = 14 litters; OB 6.8 ± 1.99, n = 11 litters;
WL 7.0 ± 2.26, n = 17 litters). There was no difference
in litter size between OB and WL dams (P = 0.13).

Maternal obesity induced fetal growth restriction, while
preconceptional weight loss allowed restoration of fetal
weight
As several studies identified sex-specific effects of mater-
nal obesity on fetuses and placentas, we tested the effect
of sex on fetal and placental weights [12, 30–32]. Sex did
not affect fetal weight (P = 0.17) but affected placental
weight and fetal-weight-to-placental-weight ratio index
(FPI). Male placentas were heavier than female placentas
(P < 0.001; difference in CTRL 11 %, OB 10 %, and WL
7 %), and FPI was lower in males than in females for all
maternal groups (P < 0.001). We therefore adjusted for sex
in the placental weight and FPI analysis only. Moreover,
litter size affected fetal and placental weights (P < 0.001),
and even if it explained only 4.6 and 7.7 % of the variance,
respectively (Additional file 1: Figure S2 and S3), we
adjusted all analyses for this parameter. There were no
differences in the mother’s age at mating between the
three investigated groups (CTRL 26.1 ± 1.94 weeks; OB
25.6 ± 1.83 weeks; WL 25.6 ± 1.71 weeks). Maternal age/

Fig. 1 Experimental design. C57BL/6j females were fed a control diet (CD) or a high-fat diet (HFD) throughout the study. After 2 months of diet,
HFD was switched to CD for the weight loss group. After 2 and 4 months of diet, females’ metabolic parameters (cholesterol, fasting glucose
levels, and glucose tolerance) were measured. Females were mated with males on a standard diet and sacrificed at E18.5, then fetuses and
placentas were weighed and collected
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diet duration correlated with fetal weight and FPI but not
with placental weight (Pearson’s correlation test, r = 0.39,
P < 0.001, r = 0.40, P < 0.001, r = −0.08, P = 0.17, respect-
ively, Additional file 1: Figure S4). All studies were there-
fore adjusted for maternal age, which was also equivalent
to diet duration in our experimental protocol.
We then examined the effect of maternal metabolism

on fetal and placental weights at E18.5. We observed a
13 % reduction of the weight in fetuses of OB dams
compared with CTRL dams (P < 0.001, Fig. 3c). Fetuses
of WL dams had similar weight to fetuses of CTRL dams
(P = 0.17, Fig. 3c) but heavier than fetuses of OB dams
(P < 0.001). Overall, maternal group and age explained
15 and 14 % of the variance in fetal weight, respectively.
We determined the proportion of small for gestational
age (SGA) fetuses, defined as fetal weight <10th percent-
ile of CTRL population. There were 28.4 % of SGA

fetuses in OB dams and 11.8 % in the WL dams (Fig. 3d).
The odds of being SGA was increased in OB group by a
factor of 3.2 (logistic regression, 95 % CI 1.19–9.76,
P = 0.028). In WL group, the odds of being SGA was
not altered compared to CTRL group (P = 0.48). Increase
in maternal age/diet duration for 1 week decreased the
odds by a factor of 0.61 (P < 0.001). Gaussian distributions
of fetal weight in the three maternal groups are available
in Additional file 1: Figure S5.
There was no effect of maternal group on placental

weight at E18.5 (P = 0.42, Fig. 3e). FPI, which represents
placental efficiency, was reduced in the fetuses of OB dams
compared with those of CTRL and WL dams (P < 0.001,
Fig. 3f ). However, WL and CTRL dams had similar
FPI (P = 0.16). Maternal group explained 12 % of the
variance in FPI. In female fetuses, there was a correlation
between fetal and placental weight in all maternal groups

Fig. 2 Body weight and metabolic parameters of OB and WL females during the preconceptional period. a Body weight. (a) P < 0.05 OB vs. CTRL,
(b) P < 0.05 WL vs. CTRL, (c) P < 0.05 WL vs. OB. n = 20 CTRL, 23 OB, 19 WL. b Caloric intake. (a) P < 0.001 OB vs. CTRL, (b) P < 0.001 WL vs. CTRL, (c)
P < 0.05 WL vs. OB. n = 18–20 CTRL, 23 OB, 17–19 WL. c Plasma cholesterol levels after 2 and 4 months of preconceptional diet. NS nonsignificant.
(a) P < 0.001 OB vs. CTRL, (b) P < 0.001 WL vs. CTRL, (c) P < 0.001 WL vs. OB. n = 17–19 CTRL, 22–23 OB, 19 WL. d Fasting glucose level after 2 and
4 months of preconceptional diet. NS nonsignificant. (a) P < 0.05 OB vs. CTRL, (b) P < 0.05 WL vs. CTRL, (c) P < 0.05 WL vs. OB. n = 17–19 CTRL, 23
OB, 19 WL. e Plasma glucose levels during oral glucose tolerance test (OGTT) after 2 months of diet. (a) P < 0.001 OB vs. CTRL, (b) P < 0.001 WL vs.
CTRL, 11–12 females per group. f Plasma glucose levels during OGTT after 4 months of diet. (a) P < 0.001 OB vs. CTRL, (c) P < 0.001 WL vs. OB, 12
females per group. Data are expressed as mean ± St. Dev (a, b, e, f) or as Tukey’s boxplot (c, d)
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(Pearson’s correlation test, adjusting for factor
“mother”: CTRL r = 0.50, Padj = 0.006; OB r = 0.49;
Padj = 0.006; WL r = 0.36, Padj = 0.0063; Additional file
1: Figure S5). In male fetuses, we observed a correl-
ation in WL (r = 0.45, Padj = 0.002), but not in CTRL and
OB groups (r = 0.28, Padj = 0.097 and r = 0.1, Padj = 0.54,
respectively).
Thus, maternal chronic obesity caused FGR in both

sexes and impaired placental efficiency. Preconceptional
weight loss induced by nutritional intervention abolished
this FGR and restored placental efficiency.

Maternal obesity altered gene expression in the fetal liver
and placental labyrinth, but not in junctional zone
To unravel the molecular mechanisms of the impact of
maternal obesity and preconceptional weight loss in

growth-restricted offspring, we assessed the gene expres-
sion at E18.5 using custom TaqMan low-density arrays
(TLDAs). We tested the expression of 60 epigenetic ma-
chinery genes and 32 genes involved in metabolism or in
development (Additional file 2: Table S1). Based on the
literature and our previous studies, these epigenetic
genes were selected because of their implication in
metabolic processes and obesity or type 2 diabetes [30,
33]. Some of the metabolic genes assessed in our study
are known targets of developmental conditioning, and
for a subset of these genes, the epigenetic alterations are
documented in this context. A description of the selec-
tion criteria of genes for the custom TLDA design is
available in Additional file 3.
The vast majority of expression studies are performed in

whole placentas, but epigenetic and metabolic processes

Fig. 3 Body weight and fetal and placental weights in OB and WL dams at E18.5. a Dams pregnant body weight gain (percentage of initial
weight). NS nonsignificant. (a) P < 0.001 OB vs. CTRL. (c) P < 0.001 WL vs. OB. n = 13 CTRL, 11 OB, 17 WL. b Dams carcass weight (percentage of
initial weight) at sacrifice. NS nonsignificant. (a) P < 0.001 OB vs. CTRL, (c) P < 0.001 WL vs. OB. n = 13 CTRL, 10 OB, 16 WL. c Fetal weight. NS
nonsignificant. (a) P < 0.001 OB vs. CTRL. (c) P < 0.001 WL vs. OB. Data from males and females were combined as there was no effect of sex on fetal
weight. n = 75 CTRL, 74 OB, 119 WL. d Proportion of small for gestational age (SGA) fetuses. Data from males and females were combined as there
was no effect of sex on fetal weight. CTRL (n = 7 SGA/75 fetuses), OB (n = 21/74), WL (n = 14/119). Maternal obesity: odds ratio (OR) of being SGA = 3.2
(95 % CI 1.19–9.76, P = 0.028). e Placental weight. (s) P < 0.001 males vs. females. n = 36 CTRL F, 39 CTRL M, 35 OB F, 39 OB M, 61 WL F, 58 WL M.
f Fetal-weight-to-placental weight ratio index. (a) P = 0.001 OB vs. CTRL. (c) P < 0.001 WL vs. OB. (s) P = 0.001 males vs. females. n = 36 CTRL F, 39
CTRL M, 35 OB F, 39 OB M, 61 WL F, 58 WL M
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may not be the same in different placental layers
since they have different functions and cell popula-
tions [30, 34, 35]. The liver is a major organ regulating
the metabolic processes and it is particularly affected
by obesity [14, 15]. Thus, the expression study was
performed in placental labyrinth and junctional zone
separately, as well as in the fetal liver, as we also aimed
to evaluate the impact of maternal nutrition on fetal
tissues.
Hierarchical clustering based on mean gene expression

revealed that gene expression was affected by maternal
diet in the liver and labyrinth: the OB group clustered
away from the CTRL and WL groups (Fig. 4a, b). The
effect of obesity was weaker in the junctional zone as
OB males and females clustered with WL and CTRL
males (Fig. 4c). In the liver, groups clustered according
to maternal diet while in placental layers, CTRL and WL
groups clustered according to fetal sex. Thus, maternal
obesity affected the mean expression of all tested genes
in the fetal liver and labyrinth, while maternal weight
loss restored it.
We showed that 23 genes were significantly altered by

maternal weight trajectories in at least one of three tis-
sues (Table 1). The full list of mean expression level per
gene and per group and adjusted p values are presented
in Additional file 4: Table S2.
The expression of Kdm5d (Jarid1d) and Uty genes,

which are localized on the Y chromosome, was restricted
to male samples. Their paralogs located on the X
chromosome (Kdm5c/Jarid1c and Kdm6a/Utx), and
which partially escape X inactivation, were not differen-
tially expressed between males and females, except for
Kdm6a in the junctional zone (p = 0.003). Two other
genes showed sex differences in this tissue independent
of maternal dietary group: Bdnf and Lpl were also more
expressed in female (P = 0.039 and 0.033, respectively).
We then pooled male and female data from the same
maternal group to assess the effect of maternal diet on
gene expression. Maternal age did not correlate with
gene expression in any of the three investigated tissues
(Pearson’s correlation test; P > 0.05 for all genes).

Maternal obesity and weight loss altered the expression
of epigenetic machinery genes in the fetal liver
Maternal weight trajectories affected the transcription of
nine epigenetic genes in the liver (Fig. 5, Table 1). Ex-
pression of the histone deacetylase Hdac2 was reduced
in OB fetuses compared to CTRL fetuses (Table 1, Fig.
5e). On the contrary, expression of the lysine acetyl-
transferases Kat2a (Gcn5), Kat3a (Creb binding protein),
Kat6b (Myst4) and Kat13d (Clock), the arginine methyl-
transferases Prmt1 and Prmt7, the histone deacetylase
Hdac6, and the bromodomain protein Brd2 was in-
creased in fetuses from OB dams. Maternal weight loss

Fig. 4 Hierarchical clustering of gene expression in the fetal liver,
placental labyrinth, and junctional zone. The clustering is based on
the expression of 80 genes in the liver (a), 86 genes in the labyrinth
(b), and 89 genes in the junctional zone (c) in CTRL, OB, and WL
females. Data are represented as Pearson’s correlation distance.
Non-amplified genes were removed from analysis. F females, M males
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induced various transcriptional responses of epigenetic
machinery genes. On the one hand, Brd2 expression
remained increased in WL compared to CTRL fetuses,
showing no normalization of its expression (Fig. 5g).
Expression of Hdac2 and Kat3a tended to remain al-
tered in the liver of WL fetuses (Padj = 0.065 and Padj =
0.055, respectively, WL vs. CTRL). On the other hand,
expression of Kat2a, Kat6b, Kat13d, Hdac6, Prmt1,
and Prmt7 was similar in WL and CTRL fetuses.
Therefore, maternal weight loss restored the expres-
sion of some of the genes that were altered by mater-
nal obesity, but not of all.
Among the investigated metabolic genes, only glucoki-

nase (Gck) was affected. Its expression was reduced in
the liver of OB fetuses compared to that of CTRL and
normalized in WL fetuses (Table 1, Fig. 6a).

Maternal obesity and weight loss altered the expression
of epigenetic machinery and metabolic genes in the
placenta
Maternal obesity and weight loss altered the expression of
12 epigenetic genes in the placental labyrinth and one gene
in junctional zone (Fig. 7, Table 1). Expression of the lysine
acetyltransferases Kat1 (Hat1), Kat3b (Ep300), and Kat13b
(Ncoa3) was higher in the labyrinth of OB dams compared
to that of CTRL dams (Fig. 7a, c, e). Expression of the ly-
sine methyltransferase Kmt1d (Ehmt1) and the histone dea-
cetylases Hdac3 and Hdac10 was reduced in the labyrinth
of OB dams (Table 1, Fig. 7g, h). In WL dams, responses in
the placenta highly differed between the genes. There was
no restoration of expression for Kat1, Kat3b, and Kat13b.
On the contrary, Kmt1d, Hdac3, and Hdac10 expression
was restored.

Table 1 Differentially expressed genes in the fetal liver, placental labyrinth, and junctional zone at E18.5
Tissue Gene CTRL group OB group WL group P value

OB vs. CTRL WL vs. CTRL WL vs. OB

Fetal liver Kat2a (Gcn5) 2.92 ± 0.90 4.77 ± 1.48 4.14 ± 1.51 ↗ 0.004 0.118 0.622

Kat3a (Crebbp) 0.71 ± 0.19 1.14 ± 0.34 1.04 ± 0.37 ↗ 0.008 0.055 0.745

Kat6b (Myst4) 0.97 ± 0.29 1.65 ± 0.48 1.26 ± 0.41 ↗ 0.004 0.209 0.209

Kat13d (Clock) 2.19 ± 0.59 3.67 ± 0.89 3.16 ± 1.23 ↗ <0.001 0.307 0.445

Hdac2 0.43 ± 0.17 0.20 ± 0.07 0.26 ± 0.13 ↘ 0.004 0.065 0.496

Hdac6 1.44 ± 0.43 2.29 ± 0.71 1.78 ± 0.74 ↗ 0.012 0.445 0.339

Brd2 0.25 ± 0.07 0.34 ± 0.07 0.37 ± 0.10 ↗ 0.039 0.024 0.731

Prmt1 0.50 ± 0.15 0.78 ± 0.21 0.61 ± 0.23 ↗ 0.008 0.431 0.279

Prmt7 7.1 ± 2.6 11.6 ± 3.9 8.5 ± 3.0 ↗ 0.016 0.496 0.166

Gck 0.81 ± 0.56 0.26 ± 0.24 0.76 ± 0.61 ↘ 0.031 0.940 0.088

Lepr 0.22 ± 0.09 0.25 ± 0.07 0.17 ± 0.05 0.637 0.377 ↘ 0.039

Labyrinth Kat1 (Hat1) 0.024 ± 0.011 0.041 ± 0.013 0.037 ± 0.010 ↗ 0.012 ↗ 0.029 0.463

Kat3a (Crebbp) 1.22 ± 0.42 1.49 ± 0.43 1.84 ± 0.60 0.215 ↗ 0.029 0.192

Kat3b (Ep300) 0.012 ± 0.006 0.030 ± 0.014 0.029 ± 0.014 ↗ 0.003 ↗ 0.006 0.907

Kat13b (Ncoa3) 0.045 ± 0.022 0.084 ± 0.033 0.087 ± 0.028 ↗ 0.017 ↗ 0.003 0.871

Hdac2 0.35 ± 0.15 0.23 ± 0.15 0.18 ± 0.08 0.124 ↘ 0.014 0.448

Hdac3 4.03 ± 1.41 2.60 ± 0.62 3.81 ± 1.43 ↘ 0.021 0.797 0.053

Hdac10 0.22 ± 0.08 0.10 ± 0.05 0.22 ± 0.10 ↘ 0.003 0.978 ↗ 0.003

Sirt4 0.32 ± 0.14 0.23 ± 0.07 0.37 ± 0.16 0.124 0.478 ↗ 0.046

Brd2 0.73 ± 0.26 0.91 ± 0.18 1.06 ± 0.31 0.124 ↗ 0.036 0.266

Kmt1d (Ehmt1) 2.09 ± 0.74 1.34 ± 0.37 2.50 ± 1.15 ↘ 0.029 0.402 ↗ 0.017

Mbd5 0.031 ± 0.010 0.022 ± 0.007 0.035 ± 0.013 0.053 0.480 ↗ 0.021

Mecp2 0.035 ± 0.012 0.029 ± 0.010 0.045 ± 0.012 0.247 0.112 ↗ 0.007

Hsd11β1 49.7 ± 25.5 26.1 ± 13.8 52.1 ± 32.0 ↘ 0.046 0.892 0.065

Irs1 0.71 ± 0.36 0.38 ± 0.19 0.65 ± 0.41 ↘ 0.043 0.777 0.124

Tph1 0.021 ± 0.010 0.012 ± 0.006 0.021 ± 0.009 ↘ 0.033 0.978 ↗ 0.04951

Junctional zone Kat3b (Ep300) 0.029 ± 0.008 0.042 ± 0.012 0.045 ± 0.012 0.101 ↗ 0.040 0.743

Data are represented as mean expression levels ± St.Dev. When the p value was significant, an arrow showing the sense of variation was added
(↘ downregulation, ↗ upregulation)
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Expression of Sirtuin 4, Mecp2, and Mbd5 was higher
in WL than in OB labyrinth, but similar to CTRL
(Table 1, Fig. 7i). Finally, some genes were not altered by
maternal obesity but by maternal weight loss: Kat3a and
Brd2 were upregulated and Hdac2 was downregulated in
the labyrinth; Kat3b was upregulated in the junctional
zone (Fig. 7b, d, f, j). For these four genes, the medians
and the distributions in OB group were intermediate be-
tween CTRL and WL groups.
We showed that the expression of hydroxysteroid 11-

beta dehydrogenase 1 (Hsd11β1), insulin receptor sub-
strate 1 (Irs1), and tryptophan hydroxylase 1 (Tph1) was
downregulated in the placental labyrinth of OB dams

(Table 1, Fig. 6b–d). There was no difference between
WL and CTRL for these metabolic genes. None of the
investigated metabolic or developmental genes were af-
fected in the junctional zone.
Thus, the expression of 30 % of epigenetic machinery

genes (18 out of 60 studied) was altered by maternal
weight trajectories in three tissues. Fifteen percent of
genes (9/60) was differentially expressed in the fetal liver,
20 % (12/60) in the labyrinth, and 1.7 % (1/60) in the junc-
tional zone. The histone acetylation pathway (KATs,
HDACs, and BRDs) was particularly altered: 78 % of dif-
ferentially expressed genes in the liver (7/9), 75 % in the
labyrinth (9/12), and the only gene in the junctional zone.

Fig. 5 Genes implicated in histone acetylation are differentially expressed in the fetal liver at E18.5. We assessed the expression level of 60 genes
of the epigenetic machinery using TaqMan low-density arrays. The expression of Kat2a (a), Kat3a (b), Kat6b (c), Kat13d (d), Hdac2 (e), Hdac6 (f),
and Brd2 (g) was affected by maternal obesity. (a) Padj < 0.05 OB vs. CTRL, (b) Padj < 0.05 WL vs. CTRL. CTRL (n = 16), OB (n = 14), WL (n = 16)
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Maternal obesity had an important effect on the ex-
pression of metabolic and epigenetic genes in the fetal
liver and placental labyrinth, but not in the junctional
zone. Maternal preconceptional weight loss allowed a
global restoration of transcription to CTRL levels. How-
ever, the expression of certain genes (for example, Kat1,
Kat3b, and Kat13b in the labyrinth and Brd2 in the
liver) was not restored.

Discussion
In the present study, we showed that maternal chronic
obesity lead to FGR at E18.5, while the weight loss in-
duced by a nutritional intervention performed in precon-
ceptional period allowed a partial fetal weight restoration.
These phenotypic changes were associated with a tran-
scriptional response in the fetal liver and placental laby-
rinth: we showed that 23 genes were significantly altered
by maternal weight trajectories in at least one of three tis-
sues between two maternal groups (Fig. 8). Our results
identified that epigenetic machinery gene expression is
clearly sensitive to maternal weight trajectories, especially
for genes involved in histone acetylation.

Maternal obesity-induced FGR is associated with altered
expression of epigenetic modifiers in the fetal liver and
placental labyrinth
In our model, OB mice were severely obese and presented
the characteristics of metabolic syndrome after 4 months
of HFD. This resulted in FGR at E18.5, which is consistent
with the previous studies in mice [11, 15, 36, 37].

However, in some mouse models, fetuses from OB dams
displayed an overgrowth, and it associated with altered
placental transport [34, 38]. These discrepancies could be
explained by differences in diet composition, especially by
high-sugar content. In humans and rats, maternal obesity
also associates with an elevated fetal weight [3, 4, 39]. As
maternal obesity associates also with FGR in humans, our
study provides a mouse model for investigation of the mo-
lecular mechanisms of this pathology, which remain un-
known [6].
Maternal HFD alters hepatic function and structure in

the fetus [14, 15]. In OB dams, we report reduced tran-
scription of Gck, the enzyme controlling the synthesis of
hepatic glycogen and implicated in type 2 diabetes. Gck
expression could remain reduced after birth and lead to
impaired glucose metabolism [40, 41]. Placental function
is also affected by obesity or HFD [11, 12, 34, 38, 42,
43]. In our study, Hsd11β1, Irs1, and Tph1 were down-
regulated in the labyrinth of OB dams, suggesting that
alterations of placental function could contribute to
FGR. Hydroxysteroid dehydrogenases 11β control the
passage of glucocorticoids from the mother to the fetus.
In humans, placental expression of HSD11β1 is associ-
ated with birth weight [44]; placental HSD11βs expres-
sion is reduced in SGA neonates [45]. Impaired
placental insulin signaling is associated with obesity, ges-
tational diabetes mellitus, or intrauterine growth restric-
tion (IUGR) [46, 47]. Insulin regulates placental growth,
vascularization, glycogen, and lipid storage [48]. Reduced
expression of Irs1 in OB dams could lead to insulin

Fig. 6 Maternal weight trajectories affect the expression of genes implicated in metabolism. We assessed the expression level of 32 genes
implicated in metabolism or development using TaqMan low-density arrays. The expression of glucokinase (a) in the fetal liver and hydroxysteroid
11-β dehydrogenase 1 (b), insulin receptor substrate 1 (c), and tryptophan hydroxylase 1 (d) in the placental labyrinth was affected by maternal
obesity or weight loss at E18.5. (a) Padj < 0.05 OB vs. CTRL, (c) Padj < 0.05 WL vs. OB. CTRL (n = 16), OB (n = 14), WL (n = 16)
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Fig. 7 Genes implicated in histone acetylation are differentially expressed in the placenta at E18.5. We assessed the expression level of 60
epigenetic machinery genes using TaqMan low-density arrays. The expression of Kat1 (a), Kat3a (b), Kat3b (c), Kat13b (e), Hdac2 (f), Hdac3 (g),
Hdac10 (h), Sirt4 (i), and Brd2 (j) was affected by maternal obesity and weight loss in the labyrinth. Only Kat3b (d) was differentially expressed in
the junctional zone. (a) Padj < 0.05 OB vs. CTRL, (b) Padj < 0.05 WL vs. CTRL, (c) Padj < 0.05 WL vs. OB. CTRL (n = 16), OB (n = 14), WL (n = 16)
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resistance in placental labyrinth and affect these processes.
Finally, downregulation of Tph1 could impair the trans-
formation of maternal tryptophan to serotonin, a process
that is necessary for proper fetal brain development [49, 50].
Metabolic diseases are associated with alteration of

epigenetic marks [51]. A key finding in this study is that
maternal obesity has a major impact on the expression
of epigenetic regulators in the fetal liver and placental
labyrinth at term. The actors of the histone acetylation
pathway were particularly affected. Some families of epi-
genetic modifiers were not affected by obesity in our
study: DNA methyltransferases, TET methylcytosine
dioxygenase (TET) proteins, methyl-binding proteins,
and lysine demethylases. But this does not preclude
changes at previous developmental stages.
Transcript levels of arginine methyltransferases Prmt1

and Prmt7 were upregulated in the liver of OB fetuses.
Prmts, which catalyze the methylation of arginine his-
tone residues, are implicated in hepatic gluconeogenesis
[52]. Prmt1 dimethylates the arginines on forkhead box
protein O1 (FOXO1), inducing the translocation of this
transcription factor into the nucleus and activation of its
target metabolic genes [53]. No implication of Prmt7 in
hepatic metabolism or development is known. Implica-
tions of the histone arginine methyltransferase activity in
FGR or in response to maternal nutritional environment
remain to be determined. Only one of the seven studied
lysine methyltransferases was differentially expressed in
our study: Kmt1d was downregulated in the labyrinth of
OB dams. No implication of this lysine methyltransferase
in placental biology has yet been reported.

Preconceptional weight loss is beneficial to fetal growth
and induces an adaptation at the transcriptional level
To our knowledge, it is the first mouse model to study
the effects of preconceptional weight loss induced by

nutritional intervention on fetal growth and on the tran-
scriptional response in fetal and placental tissues. Despite
the normalization of maternal phenotype at conception
(Fig. 2), fetuses of WL dams presented transcription differ-
ences compared with fetuses of CTRL dams.
The nutritional intervention and preconceptional

weight loss restored the FGR observed in OB fetuses.
Interestingly, the proportion of SGA fetuses was com-
parable to the proportion of SGA fetuses from CTRL
dams. The first human cohort studies point at rather
beneficial effects of maternal weight loss on fetal out-
comes, namely a lower risk of large for gestational age
(LGA) infants compared to obese patients [27, 28, 54].
In sheep, maternal obesity induced macrosomia and ele-
vated heart, liver, and perirenal adipose tissue weights. A
nutritional intervention normalized the fetal and organ
weights [55]. In rat studies, there was no effect of mater-
nal obesity or weight loss on fetal weight [56, 57]. Taking
into account our results, preconceptional weight loss ap-
pears beneficial for fetal growth, counteracting the ad-
verse effects of maternal obesity.
In our expression study, we observed different profiles

of transcriptional response to maternal weight loss:
mRNA levels of a subset of genes were completely or
partially normalized, while other genes remained altered.
Overall, the placenta and fetal liver in WL group pre-
sented an adaptation in gene expression with high indi-
vidual variability for some genes.
Finally, some genes were differentially expressed only

in WL group: the methyl-DNA binding proteins Mecp2
and Mbd5 were upregulated in the labyrinth of WL
compared with CTRL and OB. These DNA methylation
“readers” are implicated in obesity (MeCP2) and glucose
homeostasis regulation (MBD5) [58–60]. In the placenta
of calorie-restricted mice, MeCP2 binding to hyper-
methylated CpG island of Glut3 was enhanced [61].
We observed a restoration of Gck mRNA levels in the

fetal liver of WL offspring, and a restoration of Hsd11β1,
Irs1, and Tph1 levels in the placental labyrinth. Similar
results were obtained for Hsd11β1 in a sheep model of
maternal obesity and nutritional preconceptional inter-
vention [62]. The normalization of expression of these
genes involved in glucose, glucocorticoid and serotonin
metabolism, and insulin signaling by maternal weight
loss could abolish the negative effects induced by mater-
nal obesity.
In this study, maternal obesity, despite the nutritional

intervention prior to conception, was retained in the gene
expression pattern. WL females were severely obese
throughout their puberty, when HFD consumption and
high adiposity could have affected their gonads. Obesity
causes lipid accumulation, mitochondrial dysfunction, and
chromosomal abnormalities in oocytes, as well as a modi-
fication of follicular liquid content [63, 64]. This can

Fig. 8 Differentially expressed genes in the fetal liver, placental
labyrinth, and junctional zone. Venn diagram shows the names of
the genes altered by maternal weight trajectories in the three tissues.
Metabolic genes are represented in black, methyl CpG-binding proteins
in violet, arginine methyltransferases and lysine methyltransferases in
blue, histone deacetylases in green, lysine acetyltransferases in red, and
bromodomain-containing proteins in pink
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induce FGR and developmental defects [65]. The negative
consequences of maternal obesity could be transmitted, at
least in part, via alteration of oocyte function and epige-
nome. Methylation levels of genes involved in the lipid
metabolism could be transmitted to the blastocyst and to
adult progeny in mice [66]. In another study, maternal
HFD and obesity induces hypermethylation of Lep and hy-
pomethylation of Pparα in the oocytes and in the liver of
adult offspring [67]. The oocyte epigenetic machinery and
acetylation levels are sensitive to maternal diabetes [68].
Therefore, in our study, despite the normalization of me-
tabolism by nutritional intervention, some epigenetic
marks affected by obesity could be retained in the
WL group. Weight loss could also trigger the addition
of novel epigenetic marks in oocytes. These epigenetic
alterations could provide a mechanism that explains
the “memorization” of an obesogenic environment.

The balance between “writers” and “erasers” of histone
acetylation could play a role in obesity-induced FGR
In our expression profiling, we studied the transcription
of 29 genes involved in histone acetylation (KATs,
HDACs, and BRDs), out of 60 epigenetic genes (48 %).
Remarkably, 78 % of differentially expressed epigenetic
genes in the fetal liver (7 out of 9) and 75 % in the laby-
rinth (9 out of 12) are involved in histone acetylation.
The only differentially expressed gene in the junctional
zone (Kat3b) is also involved in acetylation pathway.
The three genes in common between the liver and laby-
rinth and the gene differentially expressed in the two
placental layers are involved in histone acetylation.
Seven members of KAT family, “writers” of lysine acetyl-
ation, were upregulated in the fetal liver and placental
labyrinth of OB dams. Interestingly, their expression was
restored in the fetal liver (Kat2a, Kat3a, Kat6b, and
Kat13d) of WL dams, but there was clearly no restor-
ation in the labyrinth (Kat1, Kat3a, Kat3b, and Kat13b).
Moreover, the expression of the majority of HDACs
(Hdac2, Hdac3, and Hdac10) that mediate the opposite
reaction was reduced in the fetal liver and placental
labyrinth of OB dams.
Therefore, we observed a disruption in the balance be-

tween the expression of “writers” and “erasers” of lysine
acetylation in offspring from obese mother at term of
gestation (Table 2). This could lead to an increased level

of histone acetylation in FGR offspring of OB dams. In
primates, global levels of histone 3 (H3)K14ac were up-
regulated in the liver at term and after birth in the case
of chronic maternal HFD consumption [69]. This hyper-
acetylation is consistent with reduced expression and en-
zymatic activity of Hdac1 and Sirt1 [70]. In mice,
maternal HFD increased the level of H3K14ac in the
fetal liver at E18.5, and this effect persisted after birth
[71]. Interestingly, expression of Hdac1, Hdac3, and
Sirt1 was unaltered at the same stage. In rats, the Pepck
gene implicated in gluconeogenesis is enriched in H4ac
in the liver of fetuses from dams on a HFD, which is
consistent with its high expression and fetal hypergly-
caemia [39]. In diabetic mice, the expression of KATs
was upregulated in oocytes, while the expression of
HDACs was downregulated, as in our study, and the dy-
namics of acetylation at different lysine residues was dis-
turbed during oocyte maturation [68].
These studies mainly tested the expression of

acetylation-related genes. One purpose of our study was
to analyze the expression of different families of epigen-
etic modifiers. The only other extensive report focused
on 67 epigenetic modifiers in transcriptomic data from
fetal lung, liver, kidney, heart, and placenta of IUGR fe-
tuses, induced by low-protein maternal diet in rats [72].
Histone acetylation modifiers were unchanged while
DNA methyltransferases (DNMTs) were differentially
expressed in the fetal liver and HDACs in the lung.
Therefore, maternal undernutrition or overnutrition
could affect different biological processes yet both result-
ing in FGR.
Some of the differentially expressed KATs or HDACs

revealed in our study are implicated in metabolic pro-
cesses and associated with metabolic diseases, according
to different studies in mice and humans. Hdac2 and
Hdac6 are involved in adipogenesis [73]. HDAC3 is an
important regulator of hepatic lipid metabolism in a circa-
dian manner and invalidation of its gene induces hepatic
steatosis [74]. Single nucleotide polymorphisms in
KAT13D (CLOCK) gene are associated with obesity and
weight loss success in humans [75, 76]. CLOCK is a major
circadian regulator: in mice, its mutation disrupts the cir-
cadian rhythms and induces a metabolic syndrome [77].
Kat13b is involved in energy expenditure and therefore
obesity [78]. Kat3a is implicated in diabetes by acting on

Table 2 Maternal weight trajectories affect the expression of genes involved in histone acetylation
Writers: KATs Erasers: HDACs Readers: Brd2

OB WL OB WL OB WL

Fetal liver ↑ Restoration ↑ or ↓ No restoration (trend)/restoration ↑ No restoration

Labyrinth ↑ No restoration ↓ No restoration/restoration = ↑

Junctional zone = ↑ - - - -

↑ upregulation, ↓ downregulation, = no significant difference, - no differential expression in this tissue, KAT lysine acetyltransferases, HDAC histone deacetylases,
BRD bromodomain-containing proteins

Panchenko et al. Clinical Epigenetics  (2016) 8:22 Page 12 of 19



the transcription of gluconeogenetic genes [79]. Kat3b
regulates the expression of genes involved in lipogenesis
and gluconeogenesis in the liver [80]. Thus, KATs and
HDACs have important roles in metabolism and their al-
teration in obese offspring could indicate major changes
in placental and hepatic function.
Bromodomain proteins recognize acetylated lysines

and recruit other enzymes to form a multiprotein com-
plex that further enhances transcriptional activity [81].
Brd2 is a negative regulator of adipogenesis via tran-
scriptional repression of Pparγ. Heterozygous mice inva-
lidated for Brd2 are obese and have surprisingly better
glucose tolerance [82]. The meaning for the increased
Brd2 expression in OB group observed in our study
(Table 2, Fig. 5) remains to be determined.
Overall, our results show that epigenetic machinery

genes are sensitive to maternal environment and that his-
tone acetylation pathway is particularly affected. Epigen-
etic modifiers should be considered when studying the
offspring’s response to maternal metabolic disturbances.

Limitations and strength of the study
In this study, we used a mouse model of obesity-induced
FGR, relevant for the investigation of epigenetic mecha-
nisms underlying this pathology, in relation to feto-
placental development. This is also the first report of the ef-
fects of preconceptional maternal weight loss induced by
nutritional intervention on feto-placental growth and gene
expression at term. This important contribution highlights
the consequences of maternal body weight changes on fetal
outcomes and molecular processes, providing evidence to
the elaboration the preconceptional counseling for obese
women. In our nutritional protocol, we used well-
controlled purified HFD containing 59.9 % calories from
lipids (mainly saturated and monounsaturated fatty acids).
This diet is largely used in metabolic studies in rodents and
is different from the “Western diet” characterized by a
high-lipid and high-sucrose content [36, 38]. Dietary lipids
can have a direct impact on gene transcription by regula-
tion of transcription factors and epigenetic enzymes [24,
83]. However, it is not possible to distinguish the proper ef-
fects of maternal obesity (hormonal and inflammatory fac-
tors, insulin resistance, and hyperglycemia) and that of
dietary lipids in our study. Others tried to address this issue
showing differential effects of maternal adiposity and HFD
on offspring phenotype, but the effects of lipids on epigen-
etic processes during early development need further inves-
tigation [84, 85]. Another important point to notice is that
in our model, 7 weeks of mating were necessary to obtain a
large enough sample size. We therefore included maternal
age/diet duration (indistinguishable according to our proto-
col) in our statistical model. Interestingly, the proportion of
variance in fetal weight and FPI explained by the maternal
age are comparable to the proportion of variance explained

by group. This highlights the relevance of maternal age/diet
duration for fetal weight and the importance to include it
as a covariate.
In our expressional screening, we used a high-output re-

verse transcription (RT)-real-time polymerase chain reac-
tion (qPCR) technique that simultaneously assessed 96
transcripts. We have studied 60 epigenetic machinery
genes, which gives a large overview of the maternal impact
on epigenetic regulation processes. These genes were
chosen based on their implication in metabolic processes
or on our previous study where the effect of maternal
HFD during pregnancy showed an altered expression of
seven epigenetic genes [30]. Our goal was to study differ-
ent families of epigenetic modifiers (DNMTs, TETs, lysine
methyltransferases (KMTs), lysine-specific demethylases
(KDMs), KATs, HDACs, BRDs) because the literature was
particularly focused on histone acetylation and DNA
methylation. However, some interesting epigenetic fam-
ilies were not taken into account, like the gene-encoding
proteins from the polycomb or tritorax families, or
nucleosome remodelers, such as switch/sucrose non-
fermentable (SWI/SNF). The expression of these genes
has never been studied in the context of obesity. More-
over, the expression changes reported here are transcript
levels. There may be differences between mRNA levels
and proteins level or enzymatic activity. In other studies,
Hdac1 and Sirt1 mRNA and protein levels were both af-
fected in the same direction in the context of maternal
obesity or HFD [69, 70].
The originality of our study was to compare different

parts of the placenta—labyrinth and junctional zone—-
which have different structures, cellular content, and
function. Indeed, we observed a striking difference in
terms of gene expression in these two placental layers,
highlighting that obesity could have plausible different
impacts on them. We observed a smaller transcriptional
response in junctional zone in comparison with laby-
rinth. A plausible explanation could be that the laby-
rinth, due to its intimate contact with maternal blood, is
more reactive at the transcriptional level, in order to
adapt to a dynamic environment. Interestingly, the only
affected gene in the junctional zone (Kat3b) is differen-
tially expressed in a similar pattern in the labyrinth.
KAT3b is implicated in preeclampsia, a disease associ-
ated with placental insufficient vascularization, and with
the regulation of placental Hsd11β2 expression via ele-
vated H3K9ac and H3K27ac in humans [86, 87]. Our
study highlights a potential important role of KAT3b in
the placenta in response to maternal metabolism. Its epi-
genetic targets need further investigation.

Conclusions
In our mouse model, maternal obesity induced FGR and
reduced placental efficiency at term. These phenotypic
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changes were associated with alterations of the expres-
sion of genes involved in epigenetic processes in the fetal
liver and placenta. Nutritional intervention during the
preconceptional period allowed maternal weight loss
and the normalization of metabolic parameters at mat-
ing. In the offspring of WL mothers, fetal growth was
partially restored and the transcription was normalized
only for a subset of genes affected by maternal obesity.
Thus, the history of maternal obesity has an impact on
fetal growth and transcriptional activity. The epigenetic
machinery is highly sensitive to maternal weight trajec-
tories, which could lead to an altered epigenome in the
offspring. Histone acetylation modifiers represented a
major part of the differentially expressed genes in OB
and WL groups that could account for reminiscence of
the obese status.
This study highlights the importance of investigating

the mechanisms of regulation of histone marks in re-
sponse to environmental insults. The link between his-
tone modifiers, histone acetylation levels, and placental
and hepatic function should be established. Alteration of
the epigenome early during ontogenesis, could be a
mechanism of “memorization” of the environment in
utero, contributing to particular gene expression pat-
terns and thus to adult phenotype establishment. It
could be an underlying mechanism explaining the condi-
tioning of the offspring health later in life [9, 88]. Ad-
vances in this direction should help to unravel the
molecular mechanisms of developmental conditioning
induced by maternal weight trajectories.

Methods
Animal experiments
The COMETHEA ethical committee (Comité d’éthique
pour l’expérimentation animale), registered with the na-
tional Comité National de Réflexion Ethique sur l’Expér-
imentation Animale under the no. 45 approved this
protocol (visa 12/062). Four-week-old female and 7-
week-old male C57Bl/6J OlaHsd mice were received
from Harlan Laboratory (Venray, Netherlands) and
housed in Unité d'Infectologie Expérimentale des Ron-
geurs et Poissons (IERP; INRA, Jouy-en-Josas, France).
After 1 week of adaptation, the mice were placed in indi-
vidual cages at controlled temperature (22 ± 2 °C) with a
12-h-light/12-h-dark cycle. Mice had ad libitum access
to water and food, and paper towel was provided for
nest building.
Five-week-old control females (CTRL) were fed a con-

trol diet (CD, 10 % from fat, 70 % from carbohydrates,
20 % from protein; #D12450K) and obese females (OB)
were fed a high-fat diet (HFD, 59.9 % from fat, 20.1 %
from carbohydrates, 20 % from protein; #D12492) during
4 months before conception and throughout gestation
(Fig. 1). Diets were purchased in pellet form from

Research Diets (New Brunswick, NJ, USA). After 2 months
of HFD (at 14 weeks of age), a subset of the OB females
was placed on a CD in order to induce a weight loss (WL
group) for the remaining 2 months before conception.
Overall, 20 CTRL, 23 OB, and 19 WL females followed
nutritional protocol. Females and food on the grid were
weighed twice a week. Food intake (FI) was calculated as
(food day n (g) − food day 0 (g))/n days, with 3.85 kcal/g
for CD and 5.24 kcal/g for HFD. FI-to-body-weight ratio
(kcal/kg of body weight/day) was calculated for each
mouse. Measurement of fasting cholesterolemia, gly-
caemia, and oral glucose tolerance test (OGTT) were per-
formed at age 13 and 22 weeks (following 2 and 4 months
of diet).
Females were mated individually with randomly

assigned, chow-fed (Special Diets Services, Witham, Essex,
England; #801030 RM3A) 8–9-week-old males (n = 12).
The presence of vaginal plug represented embryonic day
0.5 (E0.5). If no plug was observed, females were mated
with another male according to their oestrus cycle. All
females were mated between 23 and 30 weeks of age and
respective diets were maintained throughout mating
period and gestation. Body weight of pregnant females
was recorded at E0.5 and E18.5. Gestational weight gain
was calculated as (body weight at E18.5 (g) − body weight
at E0.5 (g))/body weight at E0.5 (g). Pregnant CTRL
(n = 14), OB (n = 11), and WL (n = 17) females were
weighed and sacrificed by cervical dislocation at E18.5.
Tissue sampling was performed on a table maintained at
4 °C. Fetuses and placentas were removed from the uter-
ine horn and placed in a solution of PBS 1×. Maternal car-
casses (bodies without the uterus, fetuses, and placentas)
were weighed, and proper maternal body weight gain was
calculated as (carcass weight at sacrifice (g) − body weight
at E0.5 (g))/body weight at E0.5 (g). Fetal development
stage was in accordance with the “Theiler Staging Criteria
for Mouse Embryo Development” (TS 26). One CTRL
fetus and one OB fetus were removed from analysis and
tissue collection because of placental necrosis associated
with weak fetal weight. Fetal sex was determined by visual
examination of the gonads. Fetuses and placentas were
weighed (36 CTRL females (F) and 39 CTRL males (M);
35 OB F and 39 OB M; 61 WL F and 58 WL M). Maternal
group did not alter the sex ratios of the litters (proportion
test: p = 0.81; CTRL 48 % F, 52 % M; OB 47 % F, 53 % M;
WL 51 % F, 49 % M). The placental labyrinth and junc-
tional zone were separated and collected, along with the
fetal liver. Tissue samples were snap-frozen in liquid ni-
trogen and stored at −80 °C.

Experimental procedures
Fasting blood glucose levels were measured in all fe-
males (20 CTRL, 23 OB, 19 WL). OGTTs were per-
formed in a subset of females on a HFD, which showed
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a maximal body weight and weight gain (n = 11–12 per
group) and in CTRL females within an average range of
weight. After 6 h of fasting (8:00 a.m. to 2:00 p.m.), a
bolus of glucose (2 g/kg of body weight) was delivered
into the stomach of conscious mice with a gavage nee-
dle. Tail vein blood glycaemia was measured in dupli-
cates using an Accu-Chek Performa blood glucose meter
(Roche diagnostics GmbH, Germany) at time 0, 20, 40,
60, 90, and 120 min. This protocol was described as the
best discriminating glucose tolerance between HFD vs.
CD mice [89].
Submandibular vein blood (300 μl) from conscious

mice was collected in heparinized tubes (Choay heparin,
Sanofi-aventis, Paris, France) after 6 h of fasting. Blood
samples were centrifuged for 10 min at 1500g at 20 °C.
Plasma was collected and stored at −20 °C. Total choles-
terol plasma levels were measured by colorimetric dos-
age on Vitros system in Ambroise Paré Hospital
(Boulogne-Billancourt, France).

Statistical analysis of physiological data
All analyses were performed with the R statistical soft-
ware. For the entire preconceptional period, analyses
were performed on all mice (20 CTRL, 23 OB, 19 WL).
After mating, analyses were restricted to pregnant fe-
males (14 CTRL, 11 OB, 17 WL) and their litters. Linear
mixed models were used to model the evolution of pa-
rameters such as weight, food intake, and food efficiency
with time, using the lmer function of the lme4 package
in R [90]. Estimates of the slopes for each parameter
were reported as “β.” Reported p values were obtained
with a likelihood ratio test, thanks to the lrtest function
of the lmtest package [91]. ANOVA was used to test dif-
ferences at each time point, thanks to the aov function.
Reported p values were obtained with a likelihood ratio
test, thanks to the lrtest function of the lmtest package
[91]. We performed complete case analyses (i.e., we re-
moved all missing data for each individual, none were im-
puted). All p values were adjusted for multiple comparisons
using the p.adjust function with BH correction [92]. If sig-
nificance was found, Tukey’s post hoc test was used to de-
termine which groups differ from one another. Effect size
was reported as the proportion R2 of the variance in the
variable of interest (e.g., body weight, cholesterol, fetal
weight) that is explained by maternal group, among the
variance not already explained by the covariates. For most
variables of interest, groups showed unequal variances.
Therefore, investigated parameters were Box-Cox trans-
formed, using the powerTransform and bcPower functions
of the car package [93]. This function estimates a trans-
formation for the variable z from the family of transforma-
tions indexed by the parameter lambda that makes the
residuals from the regression of the transformed z on the
predictors as close to normally distributed as possible. We

used Pearson’s product moment correlation coefficient to
test a correlation between fetal weight and placental weight.
To adjust for factor “mother,” we conducted a regression of
fetal weight on mother and a regression of placental weight
on mother. The correlation test was performed on the re-
siduals of both models. We used a proportion test to deter-
mine differences in sex ratios in the offspring. We
calculated a proportion of SGA fetuses as described previ-
ously, using Z-score of 1.28 [94]. Logistic regression was
used to see the impact of maternal group on the odds of
being SGA, using the SGA status of the fetus as the re-
sponse variable (0 = not SGA and 1 = SGA) and age, sex,
and litter size as explanatory variables. Data are represented
as Tukey’s boxplots indicating the median, 25th, and 75th
percentiles. Whiskers indicate the 5th and 95th percentiles.
Outliers are shown as dots.

Expression analysis
RNA extraction and DNAse treatment
Only litters with 6–9 fetuses were included in the ex-
pression analysis. For each fetus, total RNA was ex-
tracted from 20 to 50 mg of the placental labyrinth,
junctional zone, or fetal liver. Tissue was reduced to a
powder in liquid nitrogen and homogenized in 500 μl of
TRIZOL reagent in Mixer Mill MM300 (Qiagen) with
one tungsten ball for 2 min at 20 Hz twice. Then, RNA
was extracted according to the manufacturer’s instructions
for RNA isolation (Life Technologies). The aqueous phase
containing RNA was collected using Phase Lock Gel Heavy
tubes (5 Prime, Hamburg, Germany). The extracted RNA
was resuspended in 100 μl of RNase-free water and stored
at −20 °C. RNA concentration and purity (A260/A280) was
measured using NanoDrop spectrophotometer (NanoDrop
Technologies), and a DNase treatment was performed
(DNA-free kit, AM1906, Ambion, Life Technologies). The
quality of RNA samples was assessed using Bio-Analyzer
Agilent 2100 (Agilent Technologies). The RNA integrity
number (RIN) of all samples was between the range of 8.8
and 10. For each tissue, 2.5 μg of RNA per fetal sample was
pooled according to litter, sex, and maternal diet (n = 8
CTRL F, 8 CTRL M, 7 OB F, 7 OB M, 8 WL F, 8 WL M).

Reverse transcription
Six hundred nanograms of RNA was converted into
cDNA using the High Capacity cDNA Reverse Tran-
scription Kit with RNase Inhibitor (Applied Biosystems)
according to the manufacturer’s recommendations. Re-
verse transcription were performed in duplicates that
were pooled and stored at +4 °C.

Quantitative real-time PCR
Gene expression was quantified using custom TaqMan
low-density arrays (TLDAs) (Applied Biosystems). Each
array consisted of a 384-well microfluidic card preloaded
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with primer sets and 6-FAM-labeled TaqMan probes.
The format we chose (96a; Cat. No. 4342261) contained
four samples per card; for each sample, the expression of
96 genes was measured, including four control assays.
The first set of 60 target genes included genes implicated
in epigenetic processes and the second set of 32 target
genes included genes implicated in placental/hepatic de-
velopment or energetic metabolism (Additional file 3).
We studied the expression of five DNA methyltransfer-
ases (DNMTs), 18 histone deacetylases (HDACs), seven
KMTs, seven KDMs, nine lysine acetyltransferases
(KATs), five methyl-binding domain proteins (MBDs),
two bromodomain proteins (BRDs), four protein argin-
ine N-methyltransferases (PRMTs), and three enzymes
of DNA hydroxymethylation (TETs). All assays and their
assay ID numbers are listed in Additional file 2: Table
S1. All probes spanned a gene, an exon-exon junction,
except for the following assays: Actb (Mm00607939_s1),
Mrpl32 (Mm00777741_sH), Bdnf (Mm04230607_s1),
Cebpα (Mm00514283_s1), and Cebpβ (Mm00843434_s1),
where primers and probes mapped within a single exon.
In addition, the following assays may detect genomic DNA:
18S (Hs99999901_s1), Hdac1 (Mm02391771_g1), Hdac10
(Mm01308118_g1), and Mecp2 (Mm01193537_g1). Thus,
all samples were treated with DNase. The experiment was
performed on the BRIDGE-ICE platform (INRA, Jouy-en-
Josas, France) according to the manufacturer’s instruc-
tions. Four samples were run on each TLDA card in
simplicates. Each sample reservoir on the card was loaded
with 100 μl of the reaction mix: cDNA template (600 ng)
mixed with TaqMan Gene Expression Master Mix (Ap-
plied Biosystems). After centrifugation (twice 1 min at
1200 rpm, Heraeus Multifuge 3S Centrifuge), the wells
were sealed with a TLDA Sealer (Applied Biosystems).
Real-time PCR amplification was performed on the
7900HT Real-Time PCR System (Applied Biosystems)
using SDS 2.4 software with standard conditions: 2 min
50 °C, 10 min 94.5 °C, 30 s 97 °C (40 cycles), 1 min
59.7 °C.

Normalization of expression level
Six potential reference genes were tested on the fetal
liver and placental tissue samples: Eif4a2 (eukaryotic
translation initiation factor 4A2), ActB (Actin beta), Tbp
(TATA box-binding protein), Gapdh (glyceraldehyde-3-
phosphate dehydrogenase), Mrpl32 (mitochondrial ribo-
somal protein L32), and Sdha (succinate dehydrogenase
complex, subunit A, flavoprotein). Using the GeNorm
software, ActB, Sdha, and Mrpl32 were chosen for
normalization of expression levels [95]. Threshold cycle
(Ct) values were calculated with the ExpressionSuite
v1.0.3 software (Applied Biosystems). The detection
threshold was set manually for all genes and was the
same for each assay in all tissues. Ct = 39 was used as

the cutoff: above this value, expression level was set to 0.
Genes were assigned as non-amplified (NA) if more than
15 % of samples were NA. All NA genes (Additional file 4:
Table S2; 12 in the fetal liver, 6 in the placental labyrinth,
and 3 in the junctional zone) were removed from the ana-
lysis. Normalization was performed independently for
same-sex samples within each maternal group (CTRL F,
CTRL M, OB F, OB M, WL F, WL M). For each of these
groups, Ct[ref] was the mean of the three Ct values of the
reference genes. Then, expression level of target genes
was calculated as 2−(Ct[target gene] −Ct[ref]), as previously de-
scribed [96].

Hierarchical clustering
For each tissue, transcription values of each target gene
were averaged across same-sex samples within each ma-
ternal group (CTRL F, CTRL M, OB F, OB M, WL F,
WL M). Only genes with expression >0 were taken into
account (80 in the liver, 86 in the labyrinth, and 89 in
the junctional zone). Missing Ct values were imputed (7
in the liver, 7 in the labyrinth, and 4 in the junctional
zone out of 4416 values per tissue), assigning the mean
Ct value of the samples with similar sex and maternal
diet. Then, hierarchical clustering was performed using
Pearson’s correlation coefficient as distance function and
Ward as linkage method.

Statistical analysis of TLDA expression study
Analysis was performed with the R statistical software.
For each gene, we compared the expression values be-
tween males and females within each maternal group.
As we did not detect an effect of sex on the expression
for any of the studied genes (except for Kdm5d and Uty,
both located on Y chromosome), we pooled males and fe-
males within each maternal group. Pairwise comparisons
of maternal groups were conducted using a permutation
test, as implemented in the oneway_test function of the
coin package in R [97]. For each set of tests (i.e., all tested
genes for a given pair of maternal groups), p values were
adjusted for multiple testing as proposed by Benjamini
and Hochberg [92]. Differences were considered signifi-
cant when Padj < 0.05. Data are shown as means ± St. Dev
or as Tukey’s boxplots.

Additional files

Additional file 1: Supplementary Figures S1 to S6. Food intake (FI) to
body weight (BW) ratio in females during the preconceptional period. (a)
P < 0.05 OB vs. CTRL, (b) P < 0.05 WL vs. CTRL, (c) P < 0.05 WL vs. OB.
n = 18–20 CTRL, 23 OB, 17–19 WL. Figure S2. Fetal weight as a function
of litter size in dams at E18.5. Both sexes were combined as there was no
effect of sex on fetal weight. Figure S3. Placental weight as a function of
litter size and sex at E18.5. Figure S4. Effect of maternal age on fetal
parameters. (A) Relationship between maternal age and fetal weight. (B)
Relationship between maternal age and fetal-weight-to-placental-weight
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ratio index (FPI). For statistical analysis, see text. Figure S5. Distribution of
fetal weight in CTRL, OB, and WL dams at E18.5. CTRL dams are represented
in black, WL dams in brown, and OB dams in blue. The red line represents
the 10th percentile of CTRL population. Figure S6. Relationship between
fetal and placental weight in female and male offspring at E18.5. For
statistical analysis, see text and “Methods” section. M: males, F: females.

Additional file 2: List of the gene symbol and name, and the
design strand and TaqMan® Gene Expression Assay IDentification
reference for the 96 genes studied on the Custom TLDA.

Additional file 3: Description of the selection criteria of genes for
the custom TLDA design and related bibliographic references.

Additional file 4: Expression level and adjusted P values of 92
genes in the fetal liver, placental labyrinth, and junctional zone. We
assessed the expression level of 60 epigenetic machinery genes and 32
genes implicated in metabolism or development in CTRL, OB, and WL
females at E18.5 using TaqMan low-density arrays. Data are represented as
mean expression levels ± St.Dev. *—differentially expressed genes.
NA—non-amplified. Significant differences (Padj < 0.05) are indicated in red.

Abbreviations
BRDs: bromodomain proteins; CD: control diet; CTRL: control group;
DNMTs: DNA methyltransferases; DOHaD: developmental origins of health
and disease; E18.5: embryonic day 18.5; FGR: fetal growth restriction; FPI: fetal-
weight-to-placental-weight ratio index; H3: histone 3; HDACs: histone
deacetylases; HFD: high-fat diet; KATs: lysine acetyltransferases;
IUGR: intrauterine growth restriction; KDMs: lysine-specific demethylases;
KMTs: lysine methyltransferases; LGA: large for gestational age; MBDs: methyl-
binding domain proteins; NA: non-amplified; OB: obese group; OGTT: oral
glucose tolerance test; PRMTs: protein arginine N-methyltransferases;
Padj: adjusted p value; qPCR: real-time polymerase chain reaction; RT: reverse
transcription; SGA: small for gestational age; TETs: TET methylcytosine
dioxygenases; TLDA: TaqMan low-density array; WL: weight loss group.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
AG and CJ conceived, designed, and supervised the project. PEP, MJ, AP, and
AG performed the experiments. PEP, SV, LJ, and AG performed the analysis
of the data. PEP, AG, HJ, SL, CB, CJ, and AG analyzed and discussed the data.
PEP and AG wrote the draft manuscript. HJ, CB, and CJ critically reviewed the
manuscript for important intellectual content. All authors read and approved
the final manuscript.

Acknowledgements
The help of Marion Lemaire with the expression study is greatly acknowledged.
We are grateful to Dr. Amanda Sferruzzi-Perri for sharing with us her expertise
in placental layers sampling. We thank the members of the Infectiologie
Expérimentale des Rongeurs et Poissons Unit (UE 0907) of the INRA (Jouy-en-
Josas) for their professionalism and help with animal experiments. We thank
Bénédicte Langelier (Micalis), Nicolas Crapart, and Claudia Bevilacqua (BRIDGE-
ICE Platform) of the INRA (Jouy-en-Josas) for technical assistance with TLDA
expression study. We wish to thank the members of Neurobiologie de l’Olfaction
Unity (UR1197) of INRA for help with tissue sampling. This study was supported
by the Fondation Cœur et Artères (FCA 13T1) and the Institut Benjamin Delessert.
PEP and SV were supported by the Ministère de la Recherche.
The data sets supporting the results of this article are included within the
article and its additional files, available at the Clin Epigenetic’s website.

Author details
1UMR BDR, INRA, ENVA, Université Paris Saclay, 78350 Jouy en Josas, France.
2Ecole Doctorale 394 “Physiologie, physiopathologie et thérapeutique”,
Université Pierre et Marie Curie, 75252 Paris, France. 3Univ. Lille, EA4489,
Équipe Malnutrition Maternelle et Programmation des Maladies
Métaboliques, F59000 Lille, France. 4Université Versailles Saint-Quentin en
Yvelines (UVSQ), Guyancourt, France.

Received: 24 November 2015 Accepted: 12 February 2016

References
1. Ng M. Global, regional, and national prevalence of overweight and obesity

in children and adults during 1980–2013: a systematic analysis for the
Global Burden of Disease Study 2013. Lancet. 384: ed. 2014 May 29;766–81.

2. Lee CYW, Koren G. Maternal obesity: effects on pregnancy and the role of
pre-conception counselling. J Obstet Gynaecol. 2010;30:101–6.

3. Acosta O, Ramirez VI, Lager S, Gaccioli F, Dudley DJ, Powell TL, et al.
Increased glucose and placental GLUT-1 in large infants of obese
nondiabetic mothers. Am J Obstet Gynecol. 2015;212:227. e1–227.e7.

4. Gaudet L, Ferraro ZM, Wen SW, Walker M. Maternal obesity and occurrence
of fetal macrosomia: a systematic review and meta-analysis. BioMed Res Int.
2014;2014:1–22.

5. Liu L, Hong Z, Zhang L. Associations of prepregnancy body mass index and
gestational weight gain with pregnancy outcomes in nulliparous women
delivering single live babies. Sci Rep. 2015;5:12863.

6. Rajasingam D, Seed PT, Briley AL, Shennan AH, Poston L. A prospective
study of pregnancy outcome and biomarkers of oxidative stress in
nulliparous obese women. Am J Obstet Gynecol. 2009;200:395. e1–395.e9.

7. Hales CN, Barker DJ, Clark PM, Cox LJ, Fall C, Osmond C, et al. Fetal and
infant growth and impaired glucose tolerance at age 64. BMJ. 1991;303:
1019–22.

8. Fernandez-Twinn DS, Ozanne SE. Mechanisms by which poor early growth
programs type-2 diabetes, obesity and the metabolic syndrome. Physiol
Behav. 2006;88:234–43.

9. Hanson MA, Gluckman PD. Early developmental conditioning of later health
and disease: physiology or pathophysiology? Physiol Rev. 2014;94:1027–76.

10. Hayes EK, Lechowicz A, Petrik JJ, Storozhuk Y, Paez-Parent S, Dai Q, et al.
Adverse fetal and neonatal outcomes associated with a life-long high fat
diet: role of altered development of the placental casculature. Reiss I, editor.
PLoS ONE. 2012;7:e33370.

11. Sferruzzi-Perri AN, Vaughan OR, Haro M, Cooper WN, Musial B,
Charalambous M, et al. An obesogenic diet during mouse pregnancy
modifies maternal nutrient partitioning and the fetal growth trajectory.
FASEB J. 2013;27:3928–37.

12. Tarrade A, Rousseau-Ralliard D, Aubrière M-C, Peynot N, Dahirel M, Bertrand-
Michel J, et al. Sexual dimorphism of the feto-placental phenotype in
response to a high fat and control maternal diets in a rabbit model.
Zenclussen AC, editor. PLoS ONE. 2013;8:e83458.

13. Georgiades P, Ferguson-Smith AC, Burton GJ. Comparative
developmental anatomy of the murine and human definitive
placentae. Placenta. 2002;23:3–19.

14. McCurdy CE, Bishop JM, Williams SM, Grayson BE, Smith MS, Friedman JE,
et al. Maternal high-fat diet triggers lipotoxicity in the fetal livers of
nonhuman primates. J Clin Invest. 2009;119(2):323–35.

15. Plata M del M, Williams L, Seki Y, Hartil K, Kaur H, Lin C-L, et al. Critical
periods of increased fetal vulnerability to a maternal high fat diet. Reprod
Biol Endocrinol RBE. 2014;12:80.

16. Swanson AM, David AL. Animal models of fetal growth restriction:
considerations for translational medicine. Placenta. 2015;36:623–30.

17. Attig L, Gabory A, Junien C. Early nutrition and epigenetic programming:
chasing shadows. Curr Opin Clin Nutr Metab Care. 2010;13:284–93.

18. Delahaye F, Wijetunga NA, Heo HJ, Tozour JN, Zhao YM, Greally JM, et al.
Sexual dimorphism in epigenomic responses of stem cells to extreme fetal
growth. Nat Commun. 2014;5:5187.

19. Fu Q. Uteroplacental insufficiency induces site-specific changes in histone
H3 covalent modifications and affects DNA-histone H3 positioning in day 0
IUGR rat liver. Physiol Genomics. 2004;20:108–16.

20. MacLennan NK. Uteroplacental insufficiency alters DNA methylation, one-
carbon metabolism, and histone acetylation in IUGR rats. Physiol Genomics.
2004;18:43–50.

21. Park JH, Stoffers DA, Nicholls RD, Simmons RA. Development of type 2
diabetes following intrauterine growth retardation in rats is associated with
progressive epigenetic silencing of Pdx1. J Clin Invest. 2008;118:2316–24.

22. Raychaudhuri N, Raychaudhuri S, Thamotharan M, Devaskar SU. Histone
code modifications repress glucose transporter 4 expression in the
intrauterine growth-restricted offspring. J Biol Chem. 2008;283:13611–26.

23. Gabory A, Attig L, Junien C. Developmental programming and epigenetics.
Am J Clin Nutr. 2011;94:1943S–52S.

24. Donohoe DR, Bultman SJ. Metaboloepigenetics: interrelationships between
energy metabolism and epigenetic control of gene expression. J Cell
Physiol. 2012;227:3169–77.

Panchenko et al. Clinical Epigenetics  (2016) 8:22 Page 17 of 19

dx.doi.org/10.1186/s13148-016-0188-3
dx.doi.org/10.1186/s13148-016-0188-3
dx.doi.org/10.1186/s13148-016-0188-3


25. Waterland RA, Michels KB. Epigenetic epidemiology of the developmental
origins hypothesis. Annu Rev Nutr. 2007;27:363–88.

26. Paden MM, Avery DM. Preconception counseling to prevent the
complications of obesity during pregnancy. Am J Clin Med. 2012;9:30–5.

27. Forsum E, Brantsæter AL, Olafsdottir A-S, Olsen SF, Thorsdottir I. Weight loss
before conception: a systematic literature review. Food Nutr Res. 2013;57.

28. Villamor E, Cnattingius S. Interpregnancy weight change and risk of adverse
pregnancy outcomes: a population-based study. The Lancet. 2006;368:1164–70.

29. Diouf I, Charles MA, Thiebaugeorges O, Forhan A, Kaminski M, Heude B,
et al. Maternal weight change before pregnancy in relation to birthweight
and risks of adverse pregnancy outcomes. Eur J Epidemiol. 2011;26:789–96.

30. Gabory A, Ferry L, Fajardy I, Jouneau L, Gothié J-D, Vigé A, et al. Maternal diets
trigger sex-specific divergent trajectories of gene expression and epigenetic
systems in mouse placenta. Aguila MB, editor. PLoS ONE. 2012;7:e47986.

31. Mao J, Zhang X, Sieli PT, Falduto MT, Torres KE, Rosenfeld CS. Contrasting
effects of different maternal diets on sexually dimorphic gene expression in
the murine placenta. Proc Natl Acad Sci. 2010;107:5557–62.

32. Clifton VL. Review: sex and the human placenta: mediating differential
strategies of fetal growth and survival. Placenta. 2010;31:S33–9.

33. Attig L, Vigé A, Gabory A, Karimi M, Beauger A, Gross M-S, et al. Dietary alleviation
of maternal obesity and diabetes: increased resistance to diet-induced obesity
transcriptional and epigenetic signatures. PloS One. 2013;8, e66816.

34. Rosario FJ, Kanai Y, Powell TL, Jansson T. Increased placental nutrient transport
in a novel mouse model of maternal obesity with fetal overgrowth: maternal
obesity and placental nutrient transport. Obesity. 2015;23:1663–70.

35. Gheorghe CP, Goyal R, Mittal A, Longo LD. Gene expression in the placenta:
maternal stress and epigenetic responses. Int J Dev Biol. 2010;54:507–23.

36. King V, Hibbert N, Seckl JR, Norman JE, Drake AJ. The effects of an
obesogenic diet during pregnancy on fetal growth and placental gene
expression are gestation dependent. Placenta. 2013;34:1087–90.

37. Sasson IE, Vitins AP, Mainigi MA, Moley KH, Simmons RA. Pre-gestational vs
gestational exposure to maternal obesity differentially programs the
offspring in mice. Diabetologia. 2015;58:615–24.

38. Jones HN, Woollett LA, Barbour N, Prasad PD, Powell TL, Jansson T. High-fat diet
before and during pregnancy causes marked up-regulation of placental nutrient
transport and fetal overgrowth in C57/BL6 mice. FASEB J. 2009;23:271–8.

39. Strakovsky RS, Zhang X, Zhou D, Pan Y-X. Gestational high fat diet programs
hepatic phosphoenolpyruvate carboxykinase gene expression and histone
modification in neonatal offspring rats: programming gluconeogenesis by
gestational high fat diet. J Physiol. 2011;589:2707–17.

40. Lane RH, MacLennan NK, Hsu JL, Janke SM, Pham TD. Increased hepatic
peroxisome proliferator-activated receptor- � coactivator-1 gene expression
in a rat model of intrauterine growth retardation and subsequent insulin
resistance. Endocrinology. 2002;143:2486–90.

41. Postic C, Shiota M, Niswender KD, Jetton TL, Chen Y, Moates JM, et al. Dual
roles for glucokinase in glucose homeostasis as determined by liver and
pancreatic β cell-specific gene knock-outs using Cre recombinase. J Biol
Chem. 1999;274:305–15.

42. Mele J, Muralimanoharan S, Maloyan A, Myatt L. Impaired mitochondrial
function in human placenta with increased maternal adiposity. AJP
Endocrinol Metab. 2014;307:E419–25.

43. Dube E, Gravel A, Martin C, Desparois G, Moussa I, Ethier-Chiasson M, et al.
Modulation of fatty acid transport and metabolism by maternal obesity in
the human full-term placenta. Biol Reprod. 2012;87:14–4.

44. Muramatsu-Kato K, Itoh H, Kobayashi-Kohmura Y, Murakami H, Uchida T, Suzuki
K, et al. Comparison between placental gene expression of 11β-hydroxysteroid
dehydrogenases and infantile growth at 10 months of age: placental 11βHSD
and infantile growth. J Obstet Gynaecol Res. 2014;40:465–72.

45. Struwe E, Berzl GM, Schild RL, Beckmann MW, Dörr HG, Rascher W, et al.
Simultaneously reduced gene expression of cortisol-activating and cortisol-
inactivating enzymes in placentas of small-for-gestational-age neonates. Am
J Obstet Gynecol. 2007;197:43. e1–43.e6.

46. Street ME, Viani I, Ziveri MA, Volta C, Smerieri A, Bernasconi S. Impairment of
insulin receptor signal transduction in placentas of intra-uterine growth-
restricted newborns and its relationship with fetal growth. Eur J Endocrinol
Eur Fed Endocr Soc. 2011;164:45–52.

47. Colomiere M, Permezel M, Riley C, Desoye G, Lappas M. Defective insulin
signaling in placenta from pregnancies complicated by gestational diabetes
mellitus. Eur J Endocrinol. 2009;160:567–78.

48. Hiden U, Glitzner E, Hartmann M, Desoye G. Insulin and the IGF system in the
human placenta of normal and diabetic pregnancies. J Anat. 2009;215:60–8.

49. Bonnin A, Goeden N, Chen K, Wilson ML, King J, Shih JC, et al. A transient
placental source of serotonin for the fetal forebrain. Nature. 2011;472:347–50.

50. Goeden N, Velasquez JC, Bonnin A. Placental tryptophan metabolism as a
potential novel pathway for the developmental origins of mental diseases.
Transl Dev Psychiatry. 2013;1:20593.

51. Martinez JA, Milagro FI, Claycombe KJ, Schalinske KL. Epigenetics in adipose
tissue, obesity, weight loss, and diabetes. Adv Nutr Int Rev J. 2014;5:71–81.

52. Han H-S, Choi D, Choi S, Koo S-H. Roles of protein arginine
methyltransferases in the control of glucose metabolism. Endocrinol Metab.
2014;29:435.

53. Yamagata K, Daitoku H, Takahashi Y, Namiki K, Hisatake K, Kako K, et al.
Arginine methylation of FOXO transcription factors inhibits their
phosphorylation by Akt. Mol Cell. 2008;32:221–31.

54. Bogaerts A, Ameye L, Martens E, Devlieger R. Weight loss in obese
pregnant women and risk for adverse perinatal outcomes. Obstet Gynecol.
2015;125:566–75.

55. Tuersunjiang N, Odhiambo JF, Long NM, Shasa DR, Nathanielsz PW,
Ford SP. Diet reduction to requirements in obese/overfed ewes from
early gestation prevents glucose/insulin dysregulation and returns fetal
adiposity and organ development to control levels. Am J Physiol
Endocrinol Metab. 2013;305:E868–78.

56. Srinivasan M. Maternal hyperinsulinemia predisposes rat fetuses for
hyperinsulinemia, and adult-onset obesity and maternal mild food restriction
reverses this phenotype. AJP Endocrinol Metab. 2005;290:E129–34.

57. Zambrano E, Martínez-Samayoa PM, Rodríguez-González GL, Nathanielsz PW.
RAPID REPORT: dietary intervention prior to pregnancy reverses metabolic
programming in male offspring of obese rats: dietary intervention to reverse
metabolic programming outcomes. J. Physiol. 2010;588:1791–9.

58. Du Y, Liu B, Guo F, Xu G, Ding Y, Liu Y, et al. The essential role of Mbd5 in
the regulation of somatic growth and glucose homeostasis in mice.
Chowen JA, editor. PLoS ONE. 2012;7:e47358.

59. Wang X, Lacza Z, Sun YE, Han W. Leptin resistance and obesity in mice with
deletion of methyl-CpG-binding protein 2 (MeCP2) in hypothalamic pro-
opiomelanocortin (POMC) neurons. Diabetologia. 2014;57:236–45.

60. Fyffe SL, Neul JL, Samaco RC, Chao H-T, Ben-Shachar S, Moretti P, et al. Deletion
of Mecp2 in Sim1-expressing neurons reveals a critical role for MeCP2 in feeding
behavior, aggression, and the response to stress. Neuron. 2008;59:947–58.

61. Ganguly A, Chen Y, Shin B-C, Devaskar SU. Prenatal caloric restriction enhances
DNA methylation and MeCP2 recruitment with reduced murine placental
glucose transporter isoform 3 expression. J Nutr Biochem. 2014;25:259–66.

62. Nicholas LM, Rattanatray L, MacLaughlin SM, Ozanne SE, Kleemann DO,
Walker SK, et al. Differential effects of maternal obesity and weight loss in
the periconceptional period on the epigenetic regulation of hepatic insulin-
signaling pathways in the offspring. FASEB J. 2013;27:3786–96.

63. Wu LL-Y, Dunning KR, Yang X, Russell DL, Lane M, Norman RJ, et al. High-fat
diet causes lipotoxicity responses in cumulus–oocyte complexes and
decreased fertilization rates. Endocrinology. 2010;151:5438–45.

64. Robker RL, Akison LK, Bennett BD, Thrupp PN, Chura LR, Russell DL, et al.
Obese women exhibit differences in ovarian metabolites, hormones, and
gene expression compared with moderate-weight women. J Clin
Endocrinol Metab. 2009;94:1533–40.

65. Luzzo KM, Wang Q, Purcell SH, Chi M, Jimenez PT, Grindler N, et al. High fat
diet induced developmental defects in the mouse: oocyte meiotic
aneuploidy and fetal growth retardation/brain defects. Clarke H, editor.
PLoS ONE. 2012;7:e49217.

66. Wei Y, Yang C-R, Wei Y-P, Ge Z-J, Zhao Z-A, Zhang B, et al. Enriched
environment-induced maternal weight loss reprograms metabolic gene
expression in mouse offspring. J Biol Chem. 2015;290:4604–19.

67. Ge Z-J, Luo S-M, Lin F, Liang Q-X, Huang L, Wei Y-C, et al. DNA methylation
in oocytes and liver of female mice and their offspring: effects of high-fat-
diet-induced obesity. Environ Health Perspect. 2014;122:159–64.

68. Ding L, Pan R, Huang X, Wang J-X, Shen Y-T, Xu L, et al. Changes in histone
acetylation during oocyte meiotic maturation in the diabetic mouse.
Theriogenology. 2012;78:784–92.

69. Aagaard-Tillery KM, Grove K, Bishop J, Ke X, Fu Q, McKnight R, et al.
Developmental origins of disease and determinants of chromatin structure:
maternal diet modifies the primate fetal epigenome. J Mol Endocrinol.
2008;41:91–102.

70. Suter MA, Chen A, Burdine MS, Choudhury M, Harris RA, Lane RH, et al. A
maternal high-fat diet modulates fetal SIRT1 histone and protein
deacetylase activity in nonhuman primates. FASEB J. 2012;26:5106–14.

Panchenko et al. Clinical Epigenetics  (2016) 8:22 Page 18 of 19



71. Suter MA, Ma J, Vuguin PM, Hartil K, Fiallo A, Harris RA, et al. In utero
exposure to a maternal high-fat diet alters the epigenetic histone code in a
murine model. Am J Obstet Gynecol. 2014;210:463. e1–463.e11.

72. Vaiman D, Gascoin-Lachambre G, Boubred F, Mondon F, Feuerstein J-M, Ligi
I, et al. The intensity of IUGR-induced transcriptome deregulations is
inversely correlated with the onset of organ function in a rat model. Baud
O, editor. PLoS ONE. 2011;6:e21222.

73. Yoo EJ, Chung J-J, Choe SS, Kim KH, Kim JB. Down-regulation of histone
deacetylases stimulates adipocyte differentiation. J Biol Chem. 2006;281:
6608–15.

74. Feng D, Liu T, Sun Z, Bugge A, Mullican SE, Alenghat T, et al. A circadian
rhythm orchestrated by histone deacetylase 3 controls hepatic lipid
metabolism. Science. 2011;331:1315–9.

75. Sookoian S, Gemma C, Gianotti TF, Burgueño A, Castaño G, Pirola CJ.
Genetic variants of Clock transcription factor are associated with individual
susceptibility to obesity. Am J Clin Nutr. 2008;87:1606–15.

76. Garaulet M, Corbalan MD, Madrid JA, Morales E, Baraza JC, Lee Y-C, et al.
CLOCK gene is implicated in weight reduction in obese patients
participating in a dietary programme based on the Mediterranean diet.
Int J Obes. 2010;34:516–23.

77. Turek FW. Obesity and metabolic syndrome in circadian Clock mutant mice.
Science. 2005;308:1043–5.

78. Coste A, Louet J-F, Lagouge M, Lerin C, Antal MC, Meziane H, et al. The
genetic ablation of SRC-3 protects against obesity and improves insulin
sensitivity by reducing the acetylation of PGC-1α. Proc Natl Acad Sci.
2008;105:17187–92.

79. Zhou XY, Shibusawa N, Naik K, Porras D, Temple K, Ou H, et al. Insulin
regulation of hepatic gluconeogenesis through phosphorylation of CREB-
binding protein. Nat Med. 2004;10:633–7.

80. Bricambert J, Miranda J, Benhamed F, Girard J, Postic C, Dentin R. Salt-
inducible kinase 2 links transcriptional coactivator p300 phosphorylation to
the prevention of ChREBP-dependent hepatic steatosis in mice. J Clin
Invest. 2010;120:4316–31.

81. Marmorstein R, Zhou M-M. Writers and readers of histone acetylation:
structure, mechanism, and inhibition. Cold Spring Harb Perspect Biol.
2014;6:a018762–2.

82. Wang F, Liu H, Blanton WP, Belkina A, Lebrasseur NK, Denis GV. Brd2
disruption in mice causes severe obesity without type 2 diabetes. Biochem
J. 2010;425:71–83.

83. Jump DB, Tripathy S, Depner CM. Fatty acid-regulated transcription factors
in the liver. Annu Rev Nutr. 2013;33:249–69.

84. White CL, Purpera MN, Morrison CD. Maternal obesity is necessary for
programming effect of high-fat diet on offspring. AJP Regul Integr Comp
Physiol. 2009;296:R1464–72.

85. Howie GJ, Sloboda DM, Kamal T, Vickers MH. Maternal nutritional
history predicts obesity in adult offspring independent of postnatal
diet: maternal high fat nutrition and obesity in offspring. J Physiol.
2009;587:905–15.

86. Li J, Wang W, Liu C, Wang W, Li W, Shu Q, et al. Critical role of histone
acetylation by p300 in human placental 11β-HSD2 expression. J Clin
Endocrinol Metab. 2013;98:E1189–97.

87. Vaiman D, Calicchio R, Miralles F. Landscape of transcriptional deregulations
in the preeclamptic placenta. PLoS ONE. 2013;8(6), e65498.

88. Portha B, Fournier A, Ah Kioon MD, Mezger V, Movassat J. Early
environmental factors, alteration of epigenetic marks and metabolic disease
susceptibility. Biochimie. 2014;97:1–15.

89. Andrikopoulos S, Blair AR, Deluca N, Fam BC, Proietto J. Evaluating the
glucose tolerance test in mice. AJP Endocrinol Metab. 2008;295:E1323–32.

90. Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models
using lme4. J Stat Softw. 2015;67.

91. Zeileis A, Hothorn T. Diagnostic checking in regression relationships. R
News. 2002;2:7–10.

92. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical
and powerful approach to multiple testing. J R Stat Soc Ser B Methodol.
1995;57:289–300.

93. Fox J, Sanford W. An {R} companion to applied regression. second.
Thousand Oaks {CA}: Sage; 2011.

94. Dilworth MR, Kusinski LC, Baker BC, Renshall LJ, Greenwood SL, Sibley CP,
et al. Defining fetal growth restriction in mice: a standardized and clinically
relevant approach. Placenta. 2011;32:914–6.

95. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A,
et al. Accurate normalization of real-time quantitative RT-PCR data by
geometric averaging of multiple internal control genes. Genome Biol.
2002;3:research0034.

96. Gabory A, Ripoche M-A, Le Digarcher A, Watrin F, Ziyyat A, Forné T, et al.
H19 acts as a trans regulator of the imprinted gene network controlling
growth in mice. Dev Camb Engl. 2009;136:3413–21.

97. Zeileis A, Wiel MA, Hornik K, Hothorn T. Implementing a class of
permutation tests: the coin package. J Stat Softw. 2008;28:1–23.

•  We accept pre-submission inquiries 
•  Our selector tool helps you to find the most relevant journal
•  We provide round the clock customer support 
•  Convenient online submission
•  Thorough peer review
•  Inclusion in PubMed and all major indexing services 
•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

Panchenko et al. Clinical Epigenetics  (2016) 8:22 Page 19 of 19


	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Discovery study group
	Ethics, consent and permissions
	Genotyping
	DNA methylation profiling
	DNA methylation processing
	Background correction and adjustment of type I and type II probes
	Removal of batch effects
	Principal component analysis
	Sample exclusion
	Probe exclusion
	Choice of investigated CpGs
	Cell-type proportions
	Validation of methylation with bisulfite sequencing

	Replication study groups
	VAT and SAT
	Fibroblasts
	Brain regions (cerebellum, frontal cortex, caudal pons, and temporal cortex)

	Annotation
	Genes
	Linkage disequilibrium
	Chromatin states
	Ubiquitous, tissue-specific, and cell-specific in vivo �transcribed enhancers
	Long-range interactions
	Expression QTLs

	Statistics
	Linear model
	Enrichment of associated CpGs in genomic regions, in vivo transcribed enhancers, and chromatin states
	Number of long-range interactions
	Power calculations


	Results
	Obesity-associated SNPs associate with methylation at proximal CpGs in whole blood samples from healthy individuals
	Genomic context of CpGs associated with �obesity-associated SNPs
	CpGs associated with obesity-associated SNPs are depleted in promoters and enriched in intergenic regions
	CpGs associated with obesity-associated SNPs are enriched in enhancers in PBMCs
	Only one CpG associated with obesity-associated SNPs is �located in in vivo transcribed enhancers
	CpGs associated with obesity-associated SNPs show �long-range interactions with promoters and other �genomic regions

	Associated CpGs are located in or show long-range �interactions with the promoters of genes for which �the corresponding SNPs are known eQTLs
	Genome-scale measurements are validated by bisulfite sequencing
	SNP–CpG associations might not be blood-specific
	Four of the initial SNP–CpG associations in blood are replicated in skin fibroblasts
	The single SNP–methylation association tested in SAT and VAT was not significant
	The two SNP–methylation associations tested in cerebellum, frontal cortex, caudal pons, and temporal cortex were not significant


	Discussion
	Conclusions
	Additional files
	Abbreviations
	Competing interests
	Authors’ contributions
	Acknowledgements
	Author details
	References
	Dietary fat quality impacts genome-wide DNA methylation patterns in a cross-sectional study of Greek preadolescents
	Introduction
	Materials and Methods
	Ethics
	Subjects
	Dietary assessment

	Table 1 
	DNA methylation profiling
	Data processing
	Data preprocessing
	Quality control
	Normalization
	Annotation

	Statistics
	Linear model
	Functional enrichment analysis


	Results
	What genes are associated with the significant CpG sitessolislands?

	Figure™1Volcano plots for proportion of total energy intake derived from fat (a) and (MUFA+PUFA)solSFA (b). The regression coefficient refers to the coefficient of the linear model and each point represents a CpG site or a CpG island. The red horizontal l
	Table 2 
	In which pathways are the significant genes involved?

	Figure™2Venn diagram of the significant CpG sites and islands found for MUFAsolSFA, PUFAsolSFA, and (MUFA+PUFA)solSFA
	Figure™3Correlation between methylation of three sites associated with NCOA1 (a), PCED1A (b), CCNA2 (c), and (MUFA+PUFA)solSFA. Coeff (coefficient) of the linear model associated with (MUFA+PUFA)solSFA; full triangles, obese girls (n=23); full circles, ob
	Discussion
	Figure™4Heatmap representation of the proportion of shared genes between the significant pathways found for PUFAsolSFA (a) and (MUFA+PUFA)solSFA (b). Each significant pathway retrieved from CPDB (P-valuelt0.05 and q-valuelt0.05) is represented on the grap
	A5
	ACKNOWLEDGEMENTS

	Background (1)
	Results (1)
	High-fat diet (HFD) induced severe obesity in female mice; switching to a control diet (CD) induced weight loss and normalization of metabolic parameters
	Obese dams on a HFD gained less weight at term of pregnancy
	Maternal obesity induced fetal growth restriction, while preconceptional weight loss allowed restoration of fetal weight
	Maternal obesity altered gene expression in the fetal liver and placental labyrinth, but not in junctional zone
	Maternal obesity and weight loss altered the expression of epigenetic machinery genes in the fetal liver
	Maternal obesity and weight loss altered the expression of epigenetic machinery and metabolic genes in the placenta

	Discussion (1)
	Maternal obesity-induced FGR is associated with altered expression of epigenetic modifiers in the fetal liver and placental labyrinth
	Preconceptional weight loss is beneficial to fetal growth and induces an adaptation at the transcriptional level
	The balance between “writers” and “erasers” of histone acetylation could play a role in obesity-induced FGR
	Limitations and strength of the study

	Conclusions (1)
	Methods (1)
	Animal experiments
	Experimental procedures
	Statistical analysis of physiological data
	Expression analysis
	RNA extraction and DNAse treatment
	Reverse transcription
	Quantitative real-time PCR
	Normalization of expression level
	Hierarchical clustering
	Statistical analysis of TLDA expression study


	Additional files (1)
	Abbreviations (1)
	Competing interests (1)
	Authors’ contributions (1)
	Acknowledgements (1)
	Author details (1)
	References (1)

