C. Chapitre, Fichiers de paramètres du code FullSWOF-Transfert

, Length of the domain with respect to x (in meters) <L>:: 400 Final time <T>:: 1800 Number of times saved <nbtimes>, p.10, 2013.

. Timestep,

, Left boundary condition (1=imp.h 2=neum 3=imp.q 4=wall 5=period) <Lbound>:: 1 Imposed discharge in left bc <L_imp_q> :: 1 Imposed water height in left bc <L_imp_h>, p.1

, Right boundary condition (1=imp.h 2=neum 3=imp.q 4=wall 5=period) <Rbound>:: 1 Imposed discharge in right bc <R_imp_q> :: 1 Imposed water height in right bc <R_imp_h>, p.1

, Friction law (0=NoFriction 1=Man 2=DaW 3=lam) <fric>:: 0 Friction coefficient <friccoef>:: Numerical flux (1=Rus 2=HLL 3=HLL2 4=Kin 5=VFRoe) <flux>:: 2 Order of the scheme <order>

, 2=ENO 3=ENOmod) <rec>:: 1 AmortENO <amortENO>:: ModifENO <modifENO>:: Limiter (1=Minmod 2=VanAlbada 3=VanLeer) <lim>, p.1

, Topography (1=file 2=flat 3=Thacker 4=bump) <topo>:: 2 Name of the topography file <topo_NF>:: Initialization of h and u (1=file 2=h&u=0 3=Wet_Dam 4=Dry_Dam 5=Dressler 6=Thacker) <hu_init>:: 1 Name of the hu initialization file <hu_NF>::hu__Nx4000.txt ## condition initiale avec h=1 et u=1

, Rain (0=no rain 1=file 2=function) <rain>:: 0 Name of the rain file <rain_NF>:: Infiltration model (0=No infiltration 1=Green-Ampt) <inf>:: 0 zcrust, thickness of the crust (1=file 2=const_coef) <zcrust_init>:: zcrust coefficient <zcrustcoef>:: Name of the zcrust file <zcrust_NF>:: Ks, hydraulic conductivity (saturation) of the soil

. Kc, Kc coefficient <Kccoef>:: Name of the Kc file <Kc_NF>:: dtheta, water content (1=file 2=const_coef) <dtheta_init>:: dtheta coefficient <dthetacoef>:: Name of the dtheta file <dtheta_NF>:: Psi, load pressure (1=file 2=const_coef) (1=file 2=const_coef) <Psi_init>:: Psi coefficient <Psicoef>:: Name of the Psi file <Psi_NF>:: imax, Maximun infiltration rate (1=file 2=const_coef) <imax_init>:: imax coefficient <imaxcoef>:: Name of the imax file <imax_NF>:: Suffix for the 'Outputs' directory <suffix_o>:: classes <Nc>::1 Number of times saved <nbtimes_conc>, p.5

, Temporal concentrations saved (0=No 1=Yes) <Temp>::1 Spatial position of the temporal concentrations saved (x position) <X_temp>::200 Inflow concentrations (0=No_inflow 1=same_coef 2=file) <Cin>::0 Cin coefficient <Cincoef>:: Name of the inflow concentrations file <Cin_NF>:: Start time of inflow concentrations <Tin>:: End time of inflow concentrations <Tstop>:: Initialization of Ci and Mi (0=Ci&Mi=0 1=Ci&Mi=same_coef 2=file) <CM_init>::2 Ci coefficient <Cicoef>:: Mi coefficient <Micoef>:: Name of the Ci and Mi initialization file <CM_NF>::Laj_carree_Nx4000.txt ## fichier de bosse rectangulaire pour Mi Alpha

, Relaxation parameter Rpi (1=same_coef 2=file) <Rpi>::1 Rpi coefficient <Rpicoef>::1 Name of the Rpi file <Rpi_NF>:: Relaxation time Tsi (0=Tsi=Rpi 1=Tsi=h*Rpi 2=Tsi=chemical_time

, R0_chem, rain intensity threshold for chemical transfer <R0_chem>:: Equilibrium function g(Mi) (1=linear 2=nonlinear_plus 3=nonlinear_minus) <GMi>::1 CA, characteristic concentration <CAcoef>:: Kex, exchange type of the equilibrium function, p.0

K. , parameter of the equilibrium function (1=same_coef 2=file) <Ki>::1 Ki coefficient <Kicoef>::1 Name of the Ki file <Ki_NF>:: Second Ki, parameter of the equilibrium function (1=same_coef 2=file) <Ki2>:: Second Ki coefficient <Kicoef2>:: Name of the second Ki file <Ki_NF2>:: R0, rain intensity threshold <R0>:: q0, water flux threshold <q0>:: Distributed supply

. Ds and . &lt;dscoef&gt;, Name of the Ds file <Ds_NF>:: Start time of distributed supply <TD_start>:: Depletion time of distributed supply <TD_end>:: Rain supply, p.0

, Ad, detachability of the initial soil <Adcoef>:: B, rain exponent (0=const_coef 1=exponential_form) <B>:: B coefficient <Bcoef>:: Depletion time of rain supply <TR_end>:: Flow supply, p.0

. Fd, Je, energy of entrainment <Jecoef>:: Depletion time of flow supply <TF_end>:: Ms, mass for complete shielding <Mscoef>:: Pi, proportion of each class in the initial soil (1=same_prop 2=file) <Pi>:: Pi coefficient <Picoef>:: Name of the Pi file <Pi_NF>:: Chemical supply, p.1

C. Chapitre, Fichiers de paramètres du code FullSWOF-Transfert

, Length of the domain with respect to x (in meters) <L>:: 10 Final time <T>:: 30 Number of times saved <nbtimes>, p.10, 2000.

. Timestep,

, Left boundary condition (1=imp.h 2=neum 3=imp.q 4=wall 5=period) <Lbound>:: 5 Imposed discharge in left bc <L_imp_q> :: Imposed water height in left bc <L_imp_h> :: Right boundary condition (1=imp.h 2=neum 3=imp.q 4=wall 5=period) <Rbound>:: 5 Imposed discharge in right bc <R_imp_q> :: Imposed water height in right bc <R_imp_h> :: Friction law (0=NoFriction 1=Man 2=DaW 3=lam

, Numerical flux (1=Rus 2=HLL 3=HLL2 4=Kin 5=VFRoe) <flux>:: 2 Order of the scheme <order>

, 2=ENO 3=ENOmod) <rec>:: AmortENO <amortENO>:: ModifENO <modifENO>:: Limiter (1=Minmod 2=VanAlbada 3=VanLeer) <lim>:: Topography (1=file 2=flat 3=Thacker 4=bump) <topo>:: 1 Name of the topography file <topo_NF>::topo_2000.txt ### fichier de topo avec une pente

, Initialization of h and u (1=file 2=h&u=0 3=Wet_Dam 4=Dry_Dam 5=Dressler 6=Thacker) <hu_init>:: 1 Name of the hu initialization file <hu_NF>::hub_2000.txt ## condition initiale proche de la solution stationnaire avec

, Rain (0=no rain 1=file 2=function) <rain>:: 0 Name of the rain file <rain_NF>:: Infiltration model (0=No infiltration 1=Green-Ampt) <inf>:: 0 zcrust, thickness of the crust (1=file 2=const_coef) <zcrust_init>:: zcrust coefficient <zcrustcoef>:: Name of the zcrust file <zcrust_NF>:: Ks, hydraulic conductivity (saturation) of the soil

. Kc, Kc coefficient <Kccoef>:: Name of the Kc file <Kc_NF>:: dtheta, water content (1=file 2=const_coef) <dtheta_init>:: dtheta coefficient <dthetacoef>:: Name of the dtheta file <dtheta_NF>:: Psi, load pressure (1=file 2=const_coef) (1=file 2=const_coef) <Psi_init>:: Psi coefficient <Psicoef>:: Name of the Psi file <Psi_NF>:: imax, Maximun infiltration rate (1=file 2=const_coef) <imax_init>:: imax coefficient <imaxcoef>:: Name of the imax file <imax_NF>:: Suffix for the 'Outputs' directory <suffix_o>:: classes <Nc>::10 Number of times saved <nbtimes_conc>, p.10

, Temporal concentrations saved (0=No 1=Yes) <Temp>::1 Spatial position of the temporal concentrations saved (x position) <X_temp>::10 Inflow concentrations (0=No_inflow 1=same_coef 2=file) <Cin>::1 Cin coefficient <Cincoef>::10 Name of the inflow concentrations file <Cin_NF>:: Start time of inflow concentrations <Tin>::0 End time of inflow concentrations <Tstop>, p.500000

, Initialization of Ci and Mi (0=Ci&Mi=0 1=Ci&Mi=same_coef 2=file) <CM_init>::0 Ci coefficient <Cicoef>:: Mi coefficient <Micoef>:: Name of the Ci and Mi initialization file <CM_NF>:: Alpha, coefficient of the concentration Mi in the exchange layer <Alphacoef>, p.1

, Rpi coefficient <Rpicoef>:: Name of the Rpi file <Rpi_NF>::inv_vi.txt ## fichier contenant l'inverse des vitesses de sédimentation Relaxation time Tsi, p.1

, R0_chem, rain intensity threshold for chemical transfer <R0_chem>:: Equilibrium function g(Mi) (1=linear 2=nonlinear_plus 3=nonlinear_minus) <GMi>::1 CA, characteristic concentration <CAcoef>:: Kex, exchange type of the equilibrium function

K. , parameter of the equilibrium function (1=same_coef 2=file) <Ki>::2 Ki coefficient <Kicoef>:: Name of the Ki file <Ki_NF>::Ki_1.txt ## fichier contenant les valeurs de Ki avec Mdt* calculé à chaque pas de temps Second Ki, parameter of the equilibrium function

. Ds and . &lt;dscoef&gt;, Name of the Ds file <Ds_NF>:: Start time of distributed supply <TD_start>:: Depletion time of distributed supply <TD_end>:: Rain supply, p.0

, Ad, detachability of the initial soil <Adcoef>:: B, rain exponent (0=const_coef 1=exponential_form) <B>:: B coefficient <Bcoef>:: Depletion time of rain supply <TR_end>:: Flow supply, p.0

. Fd, Je, energy of entrainment <Jecoef>:: Depletion time of flow supply <TF_end>:: Ms, mass for complete shielding <Mscoef>:: Pi, proportion of each class in the initial soil (1=same_prop 2=file) <Pi>:: Pi coefficient <Picoef>:: Name of the Pi file <Pi_NF>:: Chemical supply, p.1

C. Chapitre, Fichiers de paramètres du code FullSWOF-Transfert

, 500 Length of the domain with respect to x (in meters) <L>:: 2 Final time <T>:: 3000 Number of times saved <nbtimes>, p.20, 2004.

. Timestep,

, Left boundary condition (1=imp.h 2=neum 3=imp.q 4=wall 5=period) <Lbound>:: 3 Imposed discharge in left bc <L_imp_q> :: 0 Imposed water height in left bc

, h 2=neum 3=imp.q 4=wall 5=period) <Rbound>:: 2 Imposed discharge in right bc <R_imp_q> :: Imposed water height in right bc <R_imp_h> :: Friction law (0=NoFriction 1=Man 2=DaW 3=lam) <fric>:: 1 Friction

, Numerical flux (1=Rus 2=HLL 3=HLL2 4=Kin 5=VFRoe) <flux>:: 2 Order of the scheme <order>

, 2=ENO 3=ENOmod) <rec>:: AmortENO <amortENO>:: ModifENO <modifENO>:: Limiter (1=Minmod 2=VanAlbada 3=VanLeer) <lim>:: Topography (1=file 2=flat 3=Thacker 4=bump) <topo>:: 1 Name of the topography file <topo_NF>::topo_500.txt ## fichier de topo avec pente

, Initialization of h and u (1=file 2=h&u=0 3=Wet_Dam 4=Dry_Dam 5=Dressler 6=Thacker) <hu_init>:: 1 Name of the hu initialization file <hu_NF>::hu2_500_5.txt ## condition initiale soit avec h=0.005 et u=0 soit avec h=0.0016 et, p.0

, Rain (0=no rain 1=file 2=function) <rain>:: 1 Name of the rain file <rain_NF>:: rain.txt ## fichier de pluie avec

, Infiltration model (0=No infiltration 1=Green-Ampt) <inf>:: 0 zcrust, thickness of the crust (1=file 2=const_coef) <zcrust_init>:: zcrust coefficient <zcrustcoef>:: Name of the zcrust file <zcrust_NF>:: Ks, hydraulic conductivity (saturation) of the soil (1=file 2=const_coef) <Ks_init_init>:: Ks coefficient <Kscoef>:: Name of the Ks, vol.<Ks_NF>

. Kc, Kc coefficient <Kccoef>:: Name of the Kc file <Kc_NF>:: dtheta, water content (1=file 2=const_coef) <dtheta_init>:: dtheta coefficient <dthetacoef>:: Name of the dtheta file <dtheta_NF>:: Psi, load pressure (1=file 2=const_coef) (1=file 2=const_coef) <Psi_init>:: Psi coefficient <Psicoef>:: Name of the Psi file <Psi_NF>:: imax, Maximun infiltration rate (1=file 2=const_coef) <imax_init>:: imax coefficient <imaxcoef>:: Name of the imax file <imax_NF>:: Suffix for the 'Outputs' directory <suffix_o>:: classes <Nc>::10 Number of times saved <nbtimes_conc>, p.51

, Temporal concentrations saved (0=No 1=Yes) <Temp>::1 Spatial position of the temporal concentrations saved (x position) <X_temp>::2 Inflow concentrations (0=No_inflow 1=same_coef 2=file) <Cin>::1 Cin coefficient <Cincoef>::0.695 Name of the inflow concentrations file <Cin_NF>:: Start time of inflow concentrations <Tin>::0 End time of inflow concentrations <Tstop>::1e+08 Initialization of Ci and Mi (0=Ci&Mi=0 1=Ci&Mi=same_coef 2=file) <CM_init>::0 Ci coefficient <Cicoef>:: Mi coefficient <Micoef>:: Name of the Ci and Mi initialization file <CM_NF>:: Alpha, p.1

, Rpi coefficient <Rpicoef>:: Name of the Rpi file <Rpi_NF>::inv_vi4.txt ## fichier contenant l'inverse des vitesses de sédimentation Relaxation time Tsi, p.1

, R0_chem, rain intensity threshold for chemical transfer <R0_chem>:: Equilibrium function g(Mi) (1=linear 2=nonlinear_plus 3=nonlinear_minus) <GMi>::1 CA, characteristic concentration <CAcoef>:: Kex, exchange type of the equilibrium function, p.1

K. , parameter of the equilibrium function (1=same_coef 2=file) <Ki>::1 Ki coefficient <Kicoef>::185000 Name of the Ki file <Ki_NF>:: Second Ki, parameter of the equilibrium function (1=same_coef 2=file) <Ki2>:: Second Ki coefficient <Kicoef2>:: Name of the second Ki file <Ki_NF2>:: R0, rain intensity threshold <R0>::0 q0, flow stream power threshold <q0>:: Distributed supply

. Ds and . &lt;dscoef&gt;, Name of the Ds file <Ds_NF>:: Start time of distributed supply <TD_start>:: Depletion time of distributed supply <TD_end>:: Rain supply, p.1

, Ad, detachability of the initial soil <Adcoef>, p.920

, B, rain exponent (0=const_coef 1=exponential_form) <B>::0 B coefficient <Bcoef>::1 Depletion time of rain supply <TR_end>::5e+06 Flow supply

, Fd, coefficient of the excess water flux <Fdcoef>:: Je, energy of entrainment <Jecoef>:: Depletion time of flow supply <TF_end>:: Ms, mass for complete shielding

. Pi, Pi coefficient <Picoef>::0.1 Name of the Pi file <Pi_NF>:: Chemical supply (0=No_supply 1=supply) <Chem>::0 J, diffusion rate from the soil <J>:: de, depth of the exchange layer <de>:: Depletion time of chemical supply <TC_end>:: rho, p.1

C. Chapitre, Fichiers de paramètres du code FullSWOF-Transfert

B. Abbott, M. B. Bathurst, J. C. Cunge, J. A. O&apos;connell, P. E. Et-rasmussen et al., An introduction to the european hydrological system-systeme hydrologique europeen, SHE. 1. History and philosophy of a physically-based, distributed modelling system, Journal of Hydrology, vol.87, pp.45-59, 1986.

M. M. Aldurrah and J. M. Bradford, The mechanism of raindrop splash on soil surfaces, Soil Science Society of America Journal, vol.46, issue.5, pp.1086-1090, 1982.

C. Amos, G. Daborn, H. Christian, A. Atkinson, and A. Robertson, In situ erosion measurements on fine-grained sediments from the bay of fundy, Mar. Geol, vol.108, issue.2, pp.175-196, 1992.

C. Ariathurai, A Finite Element Model for Sediment Transport in Estuaries, 1974.

H. Asadi, H. Ghadiri, C. W. Rose, and H. Et-rouhipour, Interrill soil erosion processes and their interaction on low slopes, Earth Surface Processes and Landforms, vol.32, pp.711-724, 2007.

D. Atlas, R. C. Srivastava, and R. S. Et-sekhon, Doppler radar characteristics of precipitation at vertical incidence, Reviews of Geophysics and Space Physics, vol.11, issue.1, pp.1-35, 1973.

P. Bagchi and S. Balachandar, Effect of turbulence on the drag and lift of a particle, Physics of Fluids, vol.15, pp.3496-3513, 2003.

R. A. Bagnold, An empirical correlation of bedload transport rates in flumes and natural rivers, In Royal Society of London Proceedings, vol.372, pp.453-473, 1980.

L. Beuselinck, G. Govers, P. B. Hairsine, G. C. Sander, and M. Breynaert, The influence of rainfall on sediment transport by overland flow over areas of net deposition, J. Hydrol, vol.257, pp.145-163, 2002.

L. Beuselinck, G. Govers, A. Steegen, and T. A. Quine, Sediment transport by overland flow over an area of net deposition, Hydrological Processes, vol.13, pp.2769-2782, 1999.

F. Bouchut, Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws, and Well-Balanced Schemes for Sources, Frontiers in Mathematics. Birkhäuser Basel, 2004.

C. J. Brandt, Simulation of the size distribution and erosivity of raindrops and throughfall drops, Earth Surface Processes and Landforms, vol.15, pp.687-698, 1990.

L. M. Bresson and C. J. Et-moran, Role of compaction versus aggregate disruption on slumping and shrinking of repacked hardsetting seedbeds, Soil Science, vol.168, issue.8, pp.585-594, 2003.
URL : https://hal.archives-ouvertes.fr/hal-02678229

I. Brodie and C. Rosewell, Theoretical relationships between rainfall intensity and kinetic energy variants associated with stormwater particle washoff, Journal of Hydrology, vol.340, issue.1-2, pp.40-47, 2007.

P. P. Brown and D. F. Lawler, Sphere drag and settling velocity revisited, Journal of Environmental Engineering-ASCE, vol.129, issue.3, pp.222-231, 2003.

A. Brucato, F. Grisafi, and G. Montante, Particle drag coefficients in turbulent fluids, Chemical Engineering Science, vol.53, pp.3295-3314, 1998.

R. B. Bryan, G. Govers, and J. Et-poesen, The concept of soil erodibility and some problems of assessment and application, Catena, vol.16, pp.393-412, 1989.

G. Chapalain, Y. Sheng, and A. Temperville, About the specification of erosion flux for soft stratified cohesive sediments, Mathematical Geology, vol.26, issue.6, pp.651-676, 1994.

N. S. Cheng, Simplified settling velocity formula for sediment particle, Journal of Hydraulic Engineering, vol.123, issue.2, pp.149-152, 1997.

W. S. Chepil, Methods of estimating apparent density of discrete soil grains and aggregates, Soil Science, vol.70, issue.5, pp.351-362, 1950.

C. Ciesiolka, K. Coughlan, C. Rose, M. Escalante, G. Hashim et al., Soil erosion and conservation methodology for a multi-country study of soil erosion management, Soil Technology, vol.8, issue.3, pp.179-192, 1995.

G. E. Cossali, A. Coghe, and M. Marengo, The impact of a single drop on a wetted solid surface, Experiments in Fluids, vol.22, issue.6, pp.463-472, 1997.

A. P. De-roo, C. G. Wesseling, and C. J. Et-ritsema, LISEM : a single-event, physically based hydrological and soil erosion model for drainage basins. I : Theory, input and output, Hydrological Processes, vol.10, pp.1107-1117, 1996.

O. Delestre, Simulation du Ruissellement d'Eau de Pluie sur des Surfaces Agricoles, 2010.
URL : https://hal.archives-ouvertes.fr/tel-00531377

O. Delestre, F. Darboux, F. James, C. Lucas, C. Laguerre et al., Fullswof : A free software package for the simulation of shallow water flows, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00932234

W. E. Dietrich, Settling velocity of natural particles, Water Resources Research, vol.18, pp.1615-1626, 1982.

T. Dunne, D. V. Malmon, and S. M. Et-mudd, A rain splash transport equation assimilating field and laboratory measurements, Journal of Geophysical Research -Earth Surface, vol.115, pp.1001-1002, 2010.

J. Eggers, M. Fontelos, C. Josserand, and S. Zaleski, Drop dynamics after impact on a solid wall : Theory and simulations, Phys. Fluids, vol.22, pp.62101-62102, 2010.

P. C. Ekern, Raindrop impact as the force initiating soil erosion, Soil Science Society of America Proceedings, vol.15, pp.7-10, 1950.

W. D. Ellison, Studies of raindrop erosion, Agricultural Engineering, vol.25, pp.181-182, 1944.

A. Environnement, L'Environnement de l'Europe -L'Evaluation de Dobris, 1995.

W. Everaert, Empirical relations for the sediment transport capacity of interrill flow, Earth Surface Processes and Landforms, vol.16, pp.513-532, 1991.

G. Feingold and Z. Levin, The lognormal fit to raindrop spectra from frontal convective clouds in Israel, Journal of Climate and Applied Meteorology, vol.25, issue.10, pp.1346-1363, 1986.

B. Fentie, B. Yu, and C. W. Rose, Comparison of seven particle settling velocity formulae for erosion modelling, ISCO 2004 -13 th International Soil Conservation Organisation Conference -Brisbane, pp.1-3, 2004.

A. G. Ferreira, B. E. Larock, and M. J. Singer, Computer-simulation of water drop impact in a 9.6-mm deep pool, Soil Science Society of America Journal, vol.49, issue.6, pp.1502-1507, 1985.

A. G. Ferreira and M. J. Singer, Energy-dissipation for water drop impact into shallow pools, Soil Science Society of America Journal, vol.49, issue.6, pp.1537-1542, 1985.

G. R. Foster, F. P. Eppert, and L. D. Meyer, A programmable rainfall simulator for field plots, Proceedings of the Rainfall Simulator Workshop, pp.45-59, 1979.

G. R. Foster and L. D. Meyer, A closed-form soil erosion equation for upland areas, pp.12-13, 1972.

B. Gao, M. T. Walter, T. S. Steenhuis, W. L. Hogarth, and J. Et-parlange, Rainfall induced chemical transport from soil to runoff : Theory and experiments, Journal of Hydrology, vol.295, pp.291-304, 2004.

B. Gao, M. T. Walter, T. S. Steenhuis, J. Y. Parlange, K. Nakano et al., Investigating ponding depth and soil detachability for a mechanistic erosion model using a simple, Journal of Hydrology, vol.277, issue.1-2, pp.116-124, 2003.

H. Ghadiri, Crater formation in soils by raindrop impact, Earth Surface Processes and Landforms, vol.29, pp.77-89, 2004.

H. Ghadiri and D. Payne, Raindrop impact stress and the breakdown of soil crumbs, Journal of Soil Science, vol.28, pp.247-258, 1977.

H. Ghadiri and D. Payne, Raindrop impact stress, Journal of Soil Science, vol.32, issue.1, pp.41-49, 1981.

H. Ghadiri and D. Payne, The risk of leaving the soil surface unprotected against falling rain, Soil & Tillage Research, vol.8, issue.1-4, pp.119-130, 1986.

H. Ghadiri and D. Payne, The formation and characteristics of splash following raindrop impact on soil, Journal of Soil Science, vol.39, issue.4, pp.563-575, 1988.

D. T. Gillespie, The stochastic coalescence model for cloud droplet growth, Journal of the Atmospheric Sciences, vol.29, pp.1496-1510, 1972.

D. T. Gillespie, Three models for the coalescence growth of cloud drops, Journal of the Atmospheric Sciences, vol.32, pp.600-607, 1975.

J. E. Gilley, D. A. Woolhiser, and D. B. Mcwhorter, Interrill soil erosion, part I : Development of model equations, Transactions of the ASAE, vol.28, pp.147-153, 1985.

R. Gimenez and G. Govers, Flow detachment by concentrated flow on smooth and irregular beds, Soil Science Society of America Journal, vol.66, pp.1475-1483, 2002.

E. Godlewski and P. Raviart, Numerical approximations of hyperbolic systems of conservation laws, Applied Mathematical Sciences, vol.118, 1996.

J. Goodman, Statistical Optics, 1985.

R. A. Gore and C. T. Crowe, Discussion of particle drag in a dilute turbulent two-phase suspension flow, Int. J. Multiphase Flow, vol.16, pp.359-361, 1990.

G. Govers, I. Takken, and K. Helming, Soil roughness and overland flow, Agronomie, vol.20, pp.131-146, 2000.
URL : https://hal.archives-ouvertes.fr/hal-00885998

T. R. Green, S. G. Beavis, C. R. Dietrich, and A. J. Et-jakeman, Relating streambank erosion to in-stream transport of suspended sediment, Hydrological Processes, vol.13, pp.777-787, 1999.

S. J. Gumiere, Y. Le-bissonnais, and D. Raclot, Soil resistance to interrill erosion : Model parameterization and sensitivity, Catena, vol.77, issue.3, pp.274-284, 2009.

P. B. Hairsine, L. Beuselinck, and G. C. Sander, Sediment transport through an area of net deposition, Water Resour. Res, vol.38, issue.6, pp.22-23, 2002.

P. B. Hairsine and C. W. Rose, Rainfall detachment and deposition : Sediment transport in the absence of flow-driven processes, Soil Science Society of America Journal, vol.55, pp.320-424, 1991.

P. B. Hairsine and C. W. Rose, Modeling water erosion due to overland flow using physical principals -1. Sheet flow, Water Resources Research, vol.28, issue.1, pp.237-243, 1992.

R. L. Hall and I. R. Calder, Drop size modification by forest canopies : Measurement using a disdrometer, Journal of Geophysical Research, vol.98, pp.18465-18470, 1993.

A. Harten, P. D. Lax, and B. Van-leer, On upstream differencing and Godunov-type schemes for hyperbolic conservation laws, SIAM Review, vol.25, issue.1, pp.35-61, 1983.

D. M. Hartley and C. V. Alonso, Numerical study of the maximum boundary shear-stress induced by raindrop impact, Water Resources Research, vol.27, issue.8, pp.1819-1826, 1991.

D. M. Hartley and P. Y. Et-julien, Boundary shear-stress induced by raindrop impact, Journal of Hydraulic Research, vol.30, issue.3, pp.341-359, 1992.

A. Heilig, D. Debruyn, M. T. Walter, C. W. Rose, J. Parlange et al., Testing a mechanistic soil erosion model with a simple experiment, Journal of Hydrology, vol.244, issue.1-2, pp.9-16, 2001.

W. Hogarth, J. Parlange, C. Rose, G. Sander, T. Steenhuis et al., Soil erosion due to rainfal impact with inflow : an analytical solution with spatial and temporal effects, Journal of Hydrology, vol.295, pp.140-148, 2004.

W. Hogarth, C. Rose, J. Parlange, G. Sander, and G. Carey, Soil erosion due to rainfall impact with no inflow : A numerical solution with spatial and temporal effects of sediment settling velocity characteristics, Journal of Hydrology, vol.294, pp.229-240, 2004.

J. G. Hosking and C. D. Stow, The arrival rate of raindrops at the ground, Journal of Climate and Applied Meteorology, vol.26, issue.4, pp.433-442, 1987.

E. J. Houwing, Determination of the critical erosion threshold of cohesive sediments on intertidal mudflats along the dutch wadden sea coast, Estuarine Coastal and Shelf Science, vol.49, issue.4, pp.545-555, 1999.

R. A. Houze, P. V. Hobbs, P. H. Herzegh, and D. B. Parsons, Size distributions of precipitation particles in frontal clouds, Journal of the Atmospheric Sciences, vol.36, issue.1, pp.156-162, 1979.

C. Huang, J. M. Bradford, and J. H. Et-cushman, A numerical study of raindrop impact phenomena -the elastic-deformation case, Soil Science Society of America Journal, vol.47, issue.5, pp.855-861, 1982.

F. James, M. Sepulveda, and P. Valentin, Statistical thermodynamics models for multicomponent isothermal diphasic equilibria, Math. Models and Methods in Applied Science, vol.7, pp.1-29, 1997.

A. R. Jameson and A. B. Kostinski, Fluctuation properties of precipitation. Part VI : Observations of hyperfine clustering and drop size distribution structures in threedimensional rain, Journal of the Atmospheric Sciences, vol.57, issue.3, pp.373-388, 2000.

A. R. Jameson and A. B. Kostinski, What is a raindrop size distribution ? Bulletin of the, vol.82, pp.1169-1177, 2001.

A. R. Jameson and A. B. Kostinski, When is rain steady ?, Journal of Applied Meteorology, vol.41, issue.1, pp.83-90, 2002.

V. Jetten, A. De-roo, and D. Favis-mortlock, Evaluation of field-scale and catchment-scale soil erosion models, Catena, vol.37, issue.3-4, pp.521-541, 1997.

S. Jomaa, D. A. Barry, A. Brovelli, G. C. Sander, J. Parlange et al., Effect of raindrop splash and transversal width on soil erosion : Laboratory flume experiments and analysis with the Hairsine-Rose model, Journal of Hydrology, vol.395, issue.1-2, pp.117-132, 2010.

J. Joss and E. Gori, Shapes of raindrop size distributions, Journal of Applied Meteorology, vol.17, pp.1054-1061, 1978.

C. Josserand and S. Zaleski, Droplet splashing on a thin liquid film, Physics of Fluids, vol.15, issue.6, pp.1650-1657, 2003.

C. G. Karydas, P. Panagos, and I. Z. Gitas, A classification of water erosion models according to their geospatial characteristics, International Journal of Digital Earth, vol.7, issue.3, pp.229-250, 2014.

P. I. Kinnell, Laboratory studies on the effect of drop size on splash erosion, Journal of Agricultural Engineering Research, vol.27, issue.5, pp.431-439, 1982.

P. I. Kinnell, éditeur : Soil Erosion -Experiments and Models, numéro 17 de Catena supplément, pp.55-66, 1990.

P. I. Kinnell, The effect of flow depth on sediment transport induced by raindrops impacting shallow flows, Transactions of the ASAE, vol.34, issue.1, pp.161-168, 1991.

P. I. Kinnell, Particle travel distances and bed and sediment compositions associated with rain-impacted flows, Earth Surface Processes and Landforms, vol.26, pp.749-758, 2001.

P. I. Kinnell, Raindrop-impact-induced erosion processes and prediction : A review, Hydrological Processes, vol.19, pp.2815-2844, 2005.

A. B. Kostinski and A. R. Jameson, Fluctuation properties of precipitation. Part III : On the ubiquity and emergence of the exponential drop size spectra, Journal of the Atmospheric Sciences, vol.56, issue.1, pp.111-121, 1999.

S. H. Kvaerno and J. Et-stolte, Effects of soil physical data sources on discharge and soil loss simulated by the lisem model, Catena, vol.97, pp.137-149, 2012.

E. Lajeunesse, O. Devauchelle, M. Houssais, and G. Seizilles, Tracer dispersion in bedload transport, Advances in Geosciences, vol.37, pp.1-6, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01500386

G. Lang, R. Schubert, M. Markofsky, H. Fanger, I. Grabemann et al., Data interpretation and numerical modeling of the mud and suspended sediment experiment 1985, Journal of Geophysical Research, vol.94, pp.14381-14393, 1989.

M. L. Larsen, A. B. Kostinski, and A. Tokay, Observations and analysis of uncorrelated rain, Journal of the Atmospheric Sciences, vol.62, issue.11, pp.4071-4083, 2005.

J. O. Lawson and D. A. Parsons, The relation of raindropsize to intensity, Transactions American Geophysical Union, vol.24, pp.452-460, 1943.

S. H. Lee, N. Hur, and S. Kang, A numerical analysis of drop impact on liquid film by using a level set method, Journal of Mechanical Science and Technology, vol.25, issue.10, pp.2567-2572, 2011.

S. Leguédois, Mécanismes de l'érosion diffuse des sols. Modélisation du transfert et de l'évolution granulométrique des fragments de terre erodés, 2003.

S. Leguédois, O. Planchon, C. Legout, and Y. L. Bissonnais, Splash projection distance for aggregated soils. theory and experiment, Soil Science Society of America Journal, vol.69, issue.1, pp.30-37, 2005.

H. Low, Effect of sediment density on bed-load transport, Journal of Hydraulic Engineering, vol.115, pp.124-138, 1989.

T. B. Low and R. List, Collision, coalescence and breakup of raindrops. Part I : Experimentally established coalescence efficiencies and fragment size distributions in breakup, Journal of the Atmospheric Sciences, vol.39, issue.7, pp.1591-1606, 1982.

J. S. Marshall and W. M. Palmer, The distribution of raindrops with size, Journal of Meteorology, vol.5, pp.165-166, 1948.

D. P. Martins, Aménagements hydroélectriques et impacts sur la dynamique des flux d'eau et de sédiments. Le cas du haut Paraná, Brésil, 2008.

S. Mclean, Theoretical modelling of deep ocean sediment transport, Marine Geology, vol.66, pp.243-265, 1985.

R. Mei, R. J. Adrian, and T. J. Hanratty, Particle dispersion in isotropic turbulence under stokes drag and basset force with gravitational settling, Journal of Fluid Mechanics, vol.225, pp.481-495, 1991.

W. S. Merritt, R. A. Letcher, and A. J. Et-jakeman, A review of erosion and sediment transport models, Environmental Modelling and Software, vol.18, pp.761-799, 2003.

R. Misra and C. Rose, Application and sensitivity analysis of process-based erosion model guest, European Journal of Soil Science, vol.47, pp.596-604, 1996.

R. P. Morgan, J. N. Quinton, R. E. Smith, G. Govers, J. W. Poesen et al., The european soil erosion model (EUROSEM) : A dynamic approach for predicting sediment transport from fields and small catchments, Earth Surface Processes and Landforms, vol.23, pp.527-544, 1998.

A. J. Moss, Effects of flow-velocity variation on rain-driven transportation and the role of rain impact in the movement of solids, Australian Journal of Soil Research, vol.26, pp.443-450, 1988.

A. J. Moss and P. Et-green, Movement of solids in air and water by raindrop impact. effects of drop-size and water-depth variations, Australian Journal of Soil Research, vol.21, pp.257-269, 1983.

A. J. Moss, P. H. Walker, and J. Hutka, Raindrop-stimulated transportation in shallow water flows : An experimental study, Sedimentary Geology, vol.22, pp.165-184, 1979.

C. K. Mutchler and R. A. Young, Soil detachment by raindrops, Present Prospective Technology for Predicting Sediment Yields and Sources. Proceedings of the Sediment-Yield Workshop, pp.114-117, 1972.

M. A. Nearing and J. M. Bradford, Single waterdrop splash detachment and mechanical-properties of soils, Soil Science Society of America Journal, vol.49, issue.3, pp.547-552, 1985.

M. A. Nearing, G. R. Foster, L. J. Lane, and S. C. Finkner, A process-based soil erosion model for usda-water erosion prediction project technology, Transactions of the ASABE, vol.32, pp.1587-1593, 1989.

G. Nord and M. Esteves, Psem 2d : A physically based model of erosion processes at the plot scale, Water Resources Research, issue.8, p.41, 2005.
URL : https://hal.archives-ouvertes.fr/insu-00385381

N. Bako, A. Darboux, F. James, F. Josserand, C. Lucas et al., Pressure and shear stress caused by raindrop impact at the soil surface : Scaling laws depending on the water depth, Earth Surface Processes and Landforms, vol.41, pp.1199-1210, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01281209

M. Ochi, Applied Probability and Stochastic Processes, 1990.

R. S. Palmer, The influence of a thin water layer on waterdrop impact forces, Assoc. Sci. Hydrol. Publ, vol.65, pp.141-148, 1963.

R. S. Palmer, Waterdrop impact forces, Transactions of the ASAE, vol.8, pp.69-70, 1965.

A. J. Parsons and A. M. Et-gadian, Uncertainty in modelling the detachment of soil by rainfall, Earth Surface Processes and Landforms, vol.25, pp.723-728, 2000.

A. J. Parsons, S. G. Stromberg, and M. Greener, Sediment-transport competence of rain-impacted interrill overland flow, Earth Surface Processes and Landforms, vol.23, pp.365-375, 1998.

O. Planchon, M. Esteves, N. Silvera, and J. Lapetite, Raindrop erosion of tillage induced microrelief : Possible use of the diffusion equation, Soil and Tillage Research, vol.56, pp.131-144, 2000.

O. Planchon and E. Mouche, A physical model for the action of raindrop erosion on soil microtopography, Soil Science Society of America Journal, vol.74, issue.4, pp.1092-1103, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02666541

O. Planchon, N. Silvera, R. Gimenez, D. Favis-mortlock, J. Wainwright et al., An automated salt-tracing gauge for flow-velocity measurement, Earth Surface Processes and Landforms, vol.30, pp.833-844, 2005.
URL : https://hal.archives-ouvertes.fr/hal-02682751

J. Poesen, Field measurements of splash erosion to validate a splash transport model, Zeitschrift Fur Geomorphologie, vol.58, pp.81-91, 1986.

S. Popinet, Gerris : a tree-based adaptive solver for the incompressible Euler equations in complex geometries, Journal of Computational Physics, vol.190, issue.2, pp.572-600, 2003.
URL : https://hal.archives-ouvertes.fr/hal-01445436

S. Popinet, Gerris flow solver, pp.7-13, 2007.

S. Popinet, An accurate adaptive solver for surface-tension-driven interfacial flows, Journal of Computational Physics, vol.228, pp.5838-5866, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01445445

A. P. Proffitt, C. W. Rose, and P. B. Et-hairsine, Rainfall detachment and deposition : Experiments with low slopes and significant water depths, Soil Science Society of America Journal, vol.55, issue.2, pp.325-332, 1991.

M. Rein, Phenomena of liquid drop impact on solid and liquid surfaces, Fluid Dynamics Research, vol.12, pp.61-93, 1993.

A. D. Roo and V. Et-jetten, Calibrating and validating the lisem model for two data sets from the Netherlands and South Africa, Catena, vol.37, pp.477-493, 1999.
URL : https://hal.archives-ouvertes.fr/hal-02684251

C. W. Rose, Developments in soil erosion and deposition models, Advances in Soil Science, vol.2, pp.1-63, 1985.

C. W. Rose, K. J. Coughlan, L. A. Ciesiolka, and B. Et-fentie, Program GUEST (Griffith University Erosion System Template), a new soil conservation methodology and application to cropping systems in tropical steeplands, ACIAR Technical Reports, vol.40, pp.34-58, 1997.

R. C. Rudolff and W. D. Bachalo, Measurement of droplet drag coefficients in polydispersed turbulent flow field, 26th AIAA Aerospace Sciences Meeting, pp.11-14, 1988.

C. Salles and J. Et-poesen, Rain properties controlling soil splash detachment, Hydrological Processes, vol.14, pp.271-282, 2000.

C. Salles, J. Poesen, and G. Govers, Statistical and physical analysis of soil detachment by raindrop impact : Rain erosivity indices and threshold energy, Water Resources Research, vol.36, issue.9, pp.2721-2729, 2000.

G. C. Sander, P. B. Hairsine, L. Beuselinck, and G. Govers, Steady state sediment transport through an area of net deposition : Multisize class solutions, Water Resources Research, vol.38, issue.6, pp.23-24, 2002.

G. C. Sander, P. B. Hairsine, C. W. Rose, D. Cassidy, J. Y. Parlange et al., Unsteady soil erosion model, analytical solutions and comparison with experimental results, Journal of Hydrology, vol.178, issue.1-4, pp.351-367, 1996.

L. P. Sanford, J. P. Maa, and .. , A unifed erosion formulation for fine sediments, Marine Geology, vol.179, pp.9-23, 2001.

S. Sankagiri and G. A. Ruff, Measurement of sphere drag in high turbulence intensity flows, Proceedings of the ASME Fluids Engineering Division, vol.244, pp.277-282, 1997.

J. P. Schultz, A. R. Jarrett, and J. R. Hoover, Detachment and splash of a cohesive soil by rainfall, Transactions of the ASAE, vol.28, issue.6, pp.1878-1884, 1985.

R. S. Sekhon and R. C. Srivastava, Doppler radar observations of drop-size distribution in a thunderstorm, Journal of the Atmospheric Sciences, vol.28, pp.983-994, 1971.

P. P. Sharma and S. C. Gupta, Sand detachment by single raindrops of varying kinetic-energy and momentum, Soil Science Society of America Journal, vol.53, issue.4, pp.1005-1010, 1989.

P. P. Sharma, S. C. Gupta, and G. R. Foster, Predicting soil detachment by raindrops, Soil Science Society of America Journal, vol.57, pp.674-680, 1993.

A. Shields, Application of similarity principles and turbulence research to bedload movement, Mitteilunger der Preussischen Versuchsanstalt für Wasserbau und Schiffbau, vol.26, pp.5-24, 1936.

D. D. Smith and W. H. Wischmeier, Factors affecting sheet and rill erosion, Transactions, vol.38, pp.889-896, 1957.

G. Stokes, Mathematical and physical papers, vol.1, 1880.

S. Thoroddsen, The ejecta sheet generated by the impact of a drop, Journal of Fluid Mechanics, vol.451, p.373, 2002.

D. Torri and M. Sfalanga, Some aspects of soil erosion modeling, Giorgini, A. et Zingales, F.,éditeurs : Agricultural nonpoint source pollution : Model selection and application, pp.161-171, 1986.

D. Torri, M. Sfalanga, and M. D. Sette, Splash detachment : Runoff depth and soil cohesion, Catena, vol.14, issue.1-3, pp.149-155, 1987.

H. J. Tromp-van-meerveld, J. Parlange, D. A. Barry, M. F. Tromp, G. C. Sander et al., Influence of sediment settling velocity on mechanistic soil erosion modeling, Water Resources Research, vol.44, issue.6, p.6401, 2008.

R. Turton and N. N. Clark, An explicit relationship to predict spherical-particle terminal velocity, Power Technology, vol.53, issue.2, pp.127-129, 1987.

P. H. Uhlherr and C. G. Sinclair, The effect of freestream turbulence on the drag coefficients of spheres, Proceedings of Chemeca 70, vol.1, pp.1-13, 1970.

R. Uijlenhoet, J. N. Stricker, P. J. Torfs, and J. D. Et-creutin, Towards a stochastic model of rainfall for radar hydrology : Testing the Poisson homogeneity hypothesis, Physics and Chemistry of the Earth. Part B-Hydrology, Oceans and Atmosphere, vol.24, issue.6, pp.747-755, 1999.

C. W. Ulbrich, Natural variations in the analytical form of the raindrop size distribution, Journal of Climate and Applied Meteorology, vol.22, issue.10, pp.1764-1775, 1983.

W. G. Uplinger, A new formula for raindrop terminal velocity, Proceedings of the 20th Conference on Radar Meteorology, pp.389-391, 1981.

E. Villermaux and B. Bossa, Single-drop fragmentation determines size distribution of raindrops, Nature Physics, vol.5, pp.697-702, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00426817

H. Wagner, Über stoss und gleitvorgänge und der oberfläshe von flüssigkeiten, Zeit. Angewandte Math. Mech, vol.12, issue.4, pp.193-215, 1932.

J. Wainwright, A. J. Parsons, E. N. Mueller, R. E. Brazier, D. M. Powel et al., A transport-distance approach to scaling erosion rates : I. Background and model development, Earth Surface Processes and Landforms, vol.33, pp.813-826, 2008.

P. H. Walker, P. I. Kinnell, and P. Green, Transport of a noncohesive sandy mixture in rainfall and runoff experiments, Soil Science Society of America Journal, vol.42, pp.793-801, 1978.

R. Walton and H. Hunter, Modelling water quality and nutrient fluxes in the johnstone river catchment, north queensland, 23 rd Hydrology and Resources Symposium, 1996.

L. P. Wang and M. R. Maxey, Settling velocity and concentration distribution of heavy particles in homogeneous isotropic turbulence, Journal of Fluid Mechanics, vol.256, pp.27-68, 1993.

R. C. Wang, G. Harry, and J. R. Wenzel, The mechanics of a drop after striking a stagnant water layer. Rapport technique 30, Water Resources Center, 1970.

W. D. Warnica, M. Renksizbulut, and A. B. Strong, Drag coefficient of spherical liquid droplets, Experiments in Fluids, vol.18, pp.265-276, 1995.

F. Watson, J. Rahman, and S. Seaton, Deploying environmental software using the Tarsier modelling framework, Proceedings of the Third Australian Stream Management Conference, pp.631-638, 2001.

W. Wischmeier and D. Smith, Predicting rainfall erosion losses : A guide to conservation planning, 1978.

D. Woolhiser, R. Smith, and D. Goodrich, Kineros, a kinematic runoff and erosion model : Documentation and user manual, In U.S. Department of Agriculture. Agricultural Research Service, p.77, 1990.

Y. Yalin, An expression for bed-load transportation, Journal of the Hydraulics Division, vol.89, pp.221-250, 1963.

N. A. Zarin and J. A. Nicholls, Sphere drag in solid rockets-non-continuum and turbulence effects, Combustion Science and Technology, vol.3, pp.273-285, 1971.

S. Zhiyao, W. Tingting, X. Fumin, and L. Et-ruijie, A simple formula for predicting settling velocity of sediment particles, Water Science and Engineering, vol.1, pp.37-43, 2008.

N. Amina and . Bako, Modélisation numérique de l'érosion diffuse des sols. Interaction gouttes-ruissellement

, Dans un premier temps, nous avons établi une loi de détachement par la pluie qui inclut l'effet des gouttes et celui de l'épaisseur de la lame d'eau qui couvre la surface du sol. Pour obtenir cette loi, une étude numérique avec le logiciel Gerris a permis de modéliser les cisaillements créés par l'impact des gouttes sur des épaisseurs de lame d'eau variables. Ces cisaillements estiment la quantité de sol détaché par chaque goutte. Nous avons montré, à travers une étude probabiliste, que les gouttes sont quasiment indépendantes lors du détachement. Les détachements de l'ensemble des gouttes sont donc sommés pour établir la loi de détachement pour la pluie. Par ailleurs, l'étude probabiliste a montré la possibilité d'une forte interaction entre les gouttes de pluie et les particules en sédimentation. Par conséquent, pour le processus de transport-sédimentation, nous avons privilégié une approche expérimentale, L'objectif de cette thèse est de proposer un modèle d'érosion diffuse qui intègre les principaux processus de ce phénomène (détachement, transport, sédimentation) et qui prend en compte l'interaction des gouttes de pluie avec ces processus

. Enfin, nous avons proposé un nouveau modèle d'érosion qui généralise plusieurs modèles d'érosion de la littérature et décrit l'évolution des concentrations en sédiments avec des effets linéaires et non-linéaires

, celui-ci peut représenter l'érosion diffuse et concentrée à l'échelle du bassin versant

, Mots clés : modélisation, érosion diffuse, gouttes de pluie, cisaillement, interaction, ruissellement, vitesse de sédimentation, modèle d'érosion