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FOREWORD

‘‘Oh�, I’�m� �n�o�t �a� 	p�e�r�c�u	s�	s��i�o�n�i	s��t, I 	j�u	s��t �l�i�k�e �t�o �h�i�t �th�i�n�g
s.’’

�T�o�m� W�a�i�t
s

IWould like to start this thesis by a brief overview of my scientific career
path.

My main background is inapplied mathematics: I graduated from theUniversité de
Technologie de Compiègne in 2003. There, I obtained a degree in computer engineering
with a specialty in data mining and an MSc. in computational science. My educational
background hence provided me with basics in statistical learning, mathematical mod-
eling and numerical analysis.

From 2003 to 2007 came my first years as a novice researcher. They dealt with
themes that I will not cover in this document since I consider that my PhD (obtained
in 2007) and the associated scientific production do a reasonable job of summarizing
this activity. Let me be a little more specific though: this time period corresponds to
my MSc. internship and my PhD thesis, during which I worked under the supervision
of Nikolaos LIMNIOS . Nikolaos is an expert in stochastic processes – especially of
the semi-Markov kind. During this period, I acquired a reasonable understanding of
Markov chains and processes, which are a fundamental toolbox in applied mathemat-
ics and statistics. I made some contributions in probabilistic modeling and developed
skills linked to the implementation of such methods. I also acquired skills for answer-
ing research questions with strong practical interests. Above all, I developed a taste for
projects with multidisciplinary aspects. This continued during my MSc. internship, I
worked atGaz de France Research and Innovation (GDF) to develop models based upon
heterogeneous Markov chains to predict daily temperatures throughout the year in
order to optimize pipelines for natural gas transportation (see my MSc. thesis[TS2]).
This was also the first time that I encountered a computer language and environment
that I found rather weird at this time as a student freshly graduated from computer
science school: I was asked by my GDF supervisor Karine VERNIER to translate all
my Matlab code into anR-package for a more convenient use by GDF’s statisticians.
Taking the Rpath probably led my potential developer career to a dead-end. . . yet I
guess it was for me a new start regarding my approach to modeling, where everything
starts from the data themselves. I then continued on the same themes during my PhD
[TS1] supported by the French Nuclear Agency (CEA). The point was to develop a
stochastic approach to describe the level of degradation of a structure operating in a
possibly hazardous environment across time. The random evolution of this so-called
degradation process was described by a differential system with a (semi)-Markovian
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environment. Such a process is a particular case of a special process known as a
piecewise deterministic Markov process. With Nikolaos and Mohamed EID , my two
supervisors, we set forth our probabilistic framework and the associated inference
methods in two journal papers[JP10, JP14] ; then, we developed in[JP12] a numerical
method to compute the exact reliability function associated with our framework,
while another paper dealt mostly with an application in structural reliability[JP13] ,
namely the modeling of fatigue-crack propagation; two book chapters, one summariz-
ing the whole PhD work [BC3] , and another extending the model to semi-Markovian
fluctuations[BC2] were published.

The second part of my career began when I started to look for an academic position
in 2007: the research covered in this manuscript goes from this point to the present.

Immediately after my PhD defense during summer 2007, I got a one-year position
as a Research and Teaching assistant in Bernard PRUM ’s Lab “Statistique et Génome”,
at theUniversité d’Évry-Val-d’Essonne. There I found in genomics an extremely stim-
ulating research area: the biological questioning and the nature of the data themselves
raise new challenges regarding statistical modeling, not to mention the potential for
applications in fields as diverse as agronomy or cancer care. Motivated by the recent
craze for network modeling in biology, I started to work on Gaussian graphical models
and sparse methods with Christophe AMBROISE and Catherine MATIAS , which was
quite a change in terms of research theme. Fortunately, I was reasonably equipped with
the appropriate background in statistical learning. More importantly, I was greatly in-
troduced to the subject by Christophe and Catherine and their complementary points
of view.

After one year, I luckily obtained a tenured position during autumn 2008 as an
Assistant Professor in the same lab. I pursued these themes and co-supervised sev-
eral MSc. internships and the PhD theses of Camille CHARBONNIER and Jonathan
PLASSAISwith Christophe. I also had (and still have) the good fortune to work with
Yves GRANDVALET , who shares his experience in statistical learning, regularization
and optimization algorithms, the latter being omnipresent in modern computational
statistics. I naturally came across a large variety of problems in genomics that could ad-
vantageously be tackled with such tools. I thus chose to focus on regularization, sparse
methods and related statistical learning techniques.

From late 2012 to autumn 2015, I received an invited position as an INRA1 re-
searcher in Stéphane ROBIN ’s Lab, at AgroParisTech. I have further diversified my
fields of application to genetics and agronomy by elaborating more involved regular-
ized methods to a broader class of problems. I have collaborated with Stéphane and
am now co-supervizing David BAKER ’s Post-doctorate with Tristan MARY-HUARD ,
about regularization methods for genomic selection. I am also working with Marie-
Laure MARTIN -MAGNIETTE and Guillem RIGAILL on network inference in plants,
and we are co-supervizing Trung HA ’s PhD about multivariate method for high-
dimensional data. I have also had other very prolific collaboration with Guillem,
notably at the occasion of Pierre GUTIERREZ ’s MSc. More generally I have forged
tight connections with many members of the lab, for both friendly and professional
relationships, which will undoubtedly yield interesting work and much fun!

Finally, I would like to say a word about my direct collaborations with biologists,
1“Institut National de La recherche Agronomique”, the French Institute for Research in Agronomy
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which I will not detail in this document since the associated publications do not involve
any significantly new statistical methodology. Still, they are a great opportunity to stay
close to the data by following the biologists in their questioning, which quickly evolves
according to the technology itself. This work is thus a great source of inspiration for
more methodological research and remains essential to me. In such a context, I have
had fruitful collaborations with Boulos CHALOUB on polyploïd organisms like colza
and wheat in the last couple of years: in[JP5, JP4] , I helped for the statistical anal-
ysis of transcriptomic data to answer questions specific to polyploidy and have been
participating in the co-supervision of Smahane CHALABI ’s PhD thesis and Edith LE
FLOCH ’s post-doctoral fellowship.

Manuscript outline. This document is organized around three chapters. The
first chapter depicts the motivations for my research orientations and the related
methodological choices. I wish to demonstrate that these choices are pragmatic and
“data oriented”. The second chapter presents my contributions to GGM and sparse
network inference. The third chapter describes my contributions to regularization
methods, in an attempt to account for some data features in the manner by which we
shape the regularization – or the penalty term – in the models.

Remark. I use a different numbering for reference to my contributions, which are quasi
exhaustively listed for completeness in a separate bibliography at the beginning of this
document: I hope this will ease the reading.

I also provide an academic Curriculum Vitæ in the appendix. Its main role is to
cite every colleague and student I have worked with, to whom a large part of this work
is due.

�J�u�l�i�e�n� Ch�i�q��u�e�t, N�o�v�e�m�b�e�r� 27, 2015
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T HIS introductory chapter provides motivations for my research work. I first depict
informally the kind of data statisticians have to deal with in recent application

problems. I build on the example of genomics, with which I am familiar, in order to
extract the most striking characteristics of modern data that strongly jeopardize the
common way of doing statistics. I exhibit important statistical challenges associated
with such data and motivate the use of particular tools at the heart of my research
preoccupations, which are at the edge of statistics, optimization and machine learning.
I then briefly present the main themes of my research and set them in the landscape of
the statistical learning community.
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1.1 A TYPOLOGY OF COMPLEX DATA

It is now a commonplace to emphasize the irrational way data is gathered about any
possible aspect of our world. The collected data sets concern both our surrounding en-
vironment (such as astrophysics, plant genomics, or telecommunication network) and
ourselves (such as customer data, genomics data, social network data, or any “fancy”
smart phone apps that collect information about any of our movements), with a grow-
ing contribution of personal data. It has been made possible – or caused? – by the
advent of digital technologies: increasing computational and storage capacities offered
the possibility of measuring new phenomena and storing the associated data in a new
manner. We may think of purely digital phenomena, such as flows of information over
the Internet or consumer data collected straight from the cash registers. But the new
computer capacities also allow room for new technologies of acquisition and measure-
ments, such as high-throughput technology in biology. In a way, the digital revolution
creates the need for these new technologies of measurement.

In these various contexts, the common motivation for collecting more data – be-
yond the “because we can” – is a hope for a better understanding of the underlying
processes that rule the observed systems. This hope comes from the strong faith we
place in modern statistics to extract relevant information from massive data: by mon-
itoring a huge number of features in a given context, we hope for capturing the ones
truly related to the process of interest. Based on the old saying “the more data, the
better”, we trust statistical learning methods for this task. But the systematic gather-
ing of data at large scales in a very exploratory fashion induces data sets with complex
structures: growing databases do not necessarily simplify the statistical analysis, as the
collected data endow characteristics which are hardly captured by common intuition
or by classical statistical methods.

In this section, I want to enumerate the most striking characteristics of modern
complex data that induce new challenges in statistical learning. To this end, I rely on
the canonical example of genomics. Indeed, data that have arisen in this context are
quite diverse and bring together many of the characteristics shared by modern data.

1.1.1 Genomics data, an archetype for complex data

Genomics is the field of genetics that tries to characterize and analyze the structures and
the functions of the genome. This recent discipline is quickly evolving thanks to the
advent of biotechnologies and high-throughput techniques. Genomics research was ini-
tially motivated mainly by some fundamental questioning related to the understanding
of the underlying biological processes. Nowadays it is involved in “real world” applica-
tions such as public health (with cancer prevention and classification or computer-aided
diagnosis) or agronomy (with plant genomics or marker-assisted selection for breeding
enhancement) and is thus partially driven by economic stakes. Hence, there are strong
expectations for scientific progress based upon genomics analyses, inducing even more
data with continuously renewed technologies.

Genomics was primarily concerned with the characterization of DNA sequences –
especially the human DNA sequence –. However, once whole genome-sequencing had
been made possible and routinely performed for various organisms, the scope of the
discipline considerably broadened:structural genomics, studying the three-dimensional
representation of proteins encoded by the genomes, has been facilitated. More impor-
tantly, access to the full genomic material of an individual allowed the possibility of
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going beyond the static characterization of the genome, notably via the emergence of
functional genomics: the objective is to study the dynamic of the cell and to under-
stand the complex regulations at stake in molecular biology, from gene and RNA tran-
scription (the “transcriptome”) to protein translation (the “proteome”). It is also con-
cerned by the way this dynamic – especially gene expression – is altered under various
conditions (stress, tumor cell, gene duplication, etc.). In turn, research in functional
genomics revealed that gene expression may be altered by reversible phenomena like
DNA methylation which do not induce modification of the DNA sequence: this is
the scope ofepigenomics. Another important emerging research area ismetagenomics,
simultaneously studying genomes of interdependent organisms living in the same en-
vironment.

In short, genomics is interested in a growing number of biological features and
evolves jointly with the biotechnologies designed to unravel the processes involving
these features in the cell. New discoveries raise new questions urging for omics exper-
iments based on refined technologies and so on. In this evolving context, there is an
increasing number of protocols for acquiring data at various levels of the cell, from
next-generation sequencers to a large collection of array-style technologies. The cou-
ple of examples that follow aim to illustrate the range of data sets that the statistician
typically has to deal with in genomics.

Example 1.1. Differential gene expression analysis
With transcriptomic experiments, it is possible to evaluate the activity of the genes
within a cell by measuring the quantity of mRNA produced, which we call “gene ex-
pression”. Next-generation sequencing techniques can be used to measure this activity
by counting the sequences of a given size – or short reads – present in a sample at a
given time. These reads are then matched to a catalog of known mRNA sequences
(called the transcripts) to assess their expression levels. As an example, Figure 1.1 pro-
vides the preprocessed output of an mRNA-Seq experiment on colza[JP4] observed
in two tissues from the same biological sample, either from the plant leaf or its root:
we plot the counts (resp. the negative counts) associated with the 199,047 transcripts
in blue for the root (resp. in red for the leaf).

Based on several replicates of such experiments (generally just a couple!), the ques-
tion addressed by differential analysis is to determine a set of transcripts the activity of
which is different in two tissues, or discriminates one tissue from another.

co
un
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transcript number

Figure 1.1 –Gene expression data (Illumina mRNA Sequencing)
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Example 1.2. Detecting genetic aberrations
When a DNA sequence is suspected of being severely altered (as in tumor cells for
instance), a major question is to known whether any coding regions have been affected,
in which case important functions may be lost in the organism. A quick strategy is to
detect gains or losses of regions along the chromosomes by comparing the ploidy level
along the sequence between the suspected DNA sample and a reference sample.

To this end, array comparative genomic hybridization (aCGH) measures the copy
number variations (CNV) between two genomes at a low resolution. In Figure 1.2, we
represent the copy number logarithmic ratio between five DNA samples from breast
cancer cell lines and a control sample from the NCI-60 dataset[144] . The signal associ-
ated with each cell line is composed of approximately 44,000 points corresponding to
ordered features dispatched along the genome. We use a different color for each sample.

A statistical question naturally arising is to automatically segment those signals, in
order to help find the regions of the genome that are altered. This task can be performed
on each single cell line independently or jointly, if those lines share some similarities
(here, the kind of cancer of origin).
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Figure 1.2 –Chromosomal copy number changes (aCGH Agilent 44K Human array)

Example 1.3. Genome-wide association study and marker-assisted selection
Small genetic variations between individuals of the same species are common and often
without any effect on the phenotype, either because those variations occur on non cod-
ing parts of the genome, or because they do not affect the translation process. However,
some genetic variants may be associated with some phenotypic alterations in various
ways: in plant genomics for instance, these variants are exploited to select lines show-
ing the best yields, a field known as marker-assisted selection, or genomic selection. In
medical research, association studies are performed to detect variants that induce dif-
ferences in a particular disease development, or alter the efficiency of some treatments.

These small variations can be assayed at the nucleotide level with SNP (single-
nucleotide polymorphism) arrays, that monitor millions of genetic variants at once on
predefined loci of the genome. For instance, in the GWAS (Genome-wide association
study) presented in[36] , SNP-genotyping has been performed on 605 HIV-infected pa-
tients in order to evaluate the influence of genetic variants on the disease progression.
The latter is measured either by the HIV-DNA level or the HIV-RNA level, the distri-
butions of which are represented on the left panel of Figure 1.3a. The objective here
is to find a set of features among the 317,000 SNP which jointly explain the response
variables measuring the disease progression. The right panel of Figure 1.3a represents a
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small block of the empirical correlation matrix of the SNP values in the cohort, which
shows interesting patterns that should be taken into account in the statistical modeling.

2

4

6

HIV−DNA level HIV−RNA level

(a)Indicators of disease progression (b) Correlation pattern restricted to the first 200
SNPs

Figure 1.3 –SNP-genotyping (Illumina HapMap300 array) in GWAS

Example 1.4. Regulatory motif discovery
Within the cell, the gene expression is initiated by transcription factors that bind to the
DNA upstream from the coding regions, calledregulatory regions. This binding occurs
when a given factor recognizes a certain (small) sequence called aregulatory motif. As
the binding relies on chemical affinity, some degeneracy can be tolerated in the motif
definition, and motifs similar but for small variations may share the same functional
properties. Hence, genes hosting similar regulatory motifs will be jointly expressed
under certain conditions.

In order to detect such regulatory motifs, we aim to relate the expression level of
all genes across a series of conditions with the content of their respective regulatory
regions in terms of motifs. Figure 1.4 provides insights into the data available to per-
form such a task forPlasmodium falciparum, a parasite infamous for causing malaria:
on the left panel of Figure 1.4a, we represent gene expression profiling gathered in[19]
for the approximately four thousand genes ofP. falciparum measured across 46 con-
ditions. A simple hierarchical clustering shows strong patterns both along the genes
and the conditions. Concerning the motifs, the data are obtained by counting the oc-
currences of a set of candidate motifs in the regulatory regions of each gene (publicy
available athttp://plasmodb.org/ ). An example of motif counts data is illustrated
on the right panel of Figure 1.4b: we plot the empirical correlation matrix between
the motif counts when the set of candidates consists of 4-size motifs composed with
the letter f A,C ,G,T gand classified by lexicographical order. Strong patterns appear,
supporting the assumption that similar motifs have similar effects. The question is then
to select motifs showing strong relationships with the expression data. However, for
real application purposes, one must consider motifs with a considerably larger size (at
least 11), meaning to deal with a huge number of candidates (411).

http://plasmodb.org/
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(a)Clustering of gene expression
(row: genes; column: conditions)

(b) Correlation pattern between motifs counts

Figure 1.4 –Linking regulatory region sequences to expression data (Affymetrix GeneChip array)

Example 1.5. Gene Regulatory Network Inference
A synthetic view of the regulations at play between a set of genes within the cell is
conveniently represented through a graph. The nodes stand for fixed genes while the
edges represent interactions due to the genes and their products. The most striking
interactions occur between genes encoding for particular proteins, called transcription
factors, that are specifically designed in the cell to regulate other genes by binding onto
their promoters.

Reconstruction of such networks is extremely informative on the gene expression
machinery and has many applications: if one has at one’s disposal a general scheme on
how a cell operates in a given condition, we may target a given gene in the network
to induce a given behavior at the cell level. In medical research, this could be a better
response to a drug treatment. In plant breeding, people may target a gene resulting
in a better yield or a better resistance of the plant. Hence, automatic reconstruction
– or inference – of gene regulatory networks (GRN) from genomics data has been an
important research theme in computational biology. To achieve this task, one would
naturally rely on gene expression assays like the ones in Figures 1.1 and 1.4a. However,
transcriptomic data is unable to capture the numerous regulations that may operate at
various other stages of cell development: complex regulations may occur due to pro-
teins binding together; epigenomic phenomena like DNA methylation are known to
alter gene expression; and genetic alterations in certain tissues certainly have profound
impact on gene expression and regulation. GRN inference is thus a challenging prob-
lem, and state-of-the art methods in statistics try to strengthen the inference process
by integrating various types of data together and/ or by introducing external biological
information.

§

These few examples do not claim to provide a comprehensive view of genomics
data. Yet, they hopefully illustrate the complexity of their typology, due to differ-
ent observation scales, various technologies, continuous/ discrete signals, plurality and
complexity of the biological processes in place, etc.
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1.1.2 Data characteristics

From the statistical point of view, the challenges arising with the analysis of genomics
data are mostly the consequences of the following data characteristics.

Large databases. The most obvious feature is the size of the data: as sequencing tech-
nologies are widely evolving, the base units in ’omic’ studies are getting smaller, mean-
ing larger data-sets to cope with. In the most dreadful cases – typically metagenomics
nowadays –, the preprocessed data-sets concern catalogs of transcripts of hundreds of
thousands of species weighing several Terabytes. We thus have to deal with samples
where the number of features ranges from a few hundred to a few billion.

More variables than individuals. A more challenging and fundamental trait of ge-
nomics data is that the sample size remains of the same order as it used to be, while the
number of features per sample keeps on increasing with technological improvements.
Drawing a sample (like performing a biopsy, growing a plant or breeding an animal)
cannot be performed in the same systematic way as many features are measured at once
with high-throughput technologies. Thus, statistics are doomed to adapt to the new
paradigm of “high-dimensional data”, where the number of variables may exceed the
sample size by several orders of magnitude: in the couple of examples depicted above,
we typically observe thousands to millions of features to be compared with only dozens
to hundreds (sometimes thousands) of individuals.

Multiple sources of heterogeneity. The genomics databases are made up of data sets
which are largely heterogeneous. First, we observe diversity in the types of data: in the
examples above we encountered continuous variables, counts or categorical data (e.g.
from SNP array); moreover some signals are originally available as images or charac-
ter strings; we may also think of external biological information encoded as graphs or
tree structures. Second, we observe different kinds of dependencies within the data
sets depending on the relationships between the features at stake: CNV or SNP data
in Examples 1.2 and 1.3 are intrinsically longitudinal because of some spatial relation-
ships. Time dependency can also be at stake if a biological process like gene expression
levels is measured across the cell cycle. Third, data may live in quite different spaces
and at quite different scales due to the fundamental nature of the underlying biological
processes, which operate at multiple places and times of the cell, and involving various
actors. Many experimental protocols and technologies have been adapted to measure
the activity of these biological actors. A consequence is that we have to cope with mul-
tiscale data. Last but not least, a larger level of noise can be observed within a given
technology, especially the oldest array technique, and incoherence across platforms is
likely to occur: transcriptomic experiments can be performed with sequencing tech-
nologies as in Example 1.1 or with hybridization arrays as in 1.4. While measuring the
same phenomenon, multiple data sets using these two distinct technologies will not
share exactly the same features, nor the same precision, nor the same resolution.

Highly structured data. The characteristics mentioned up to this point (large data
size, high dimensional feature space and heterogeneity) all sound like drawbacks for sta-
tistical analysis, which may seem almost hopeless at this stage. Fortunately, genomics
data – and most data arising in life science – are deeply structured: hopefully, taking
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this structure into account in the statistical modeling may be sufficient to overcome
the other difficulties.

This high level of structure has various sources, some being due to the underlying
biological mechanisms and the relationships between the biological actors, and some
being due to the sampling scheme and the way data-sets are collected. Most of the time
however, the structure is only very partially known and must be guessed from the data
themselves. The series of examples above illustrates this fact:

� In Example 1.1 (differential analysis of mRNAseq colza samples), an obvious
structure is due to the tissue where expression is measured (either root or leaf of
the plant). With a deeper biological knowledge of the problem, however, one
would know that colza is a polyploid organism. This means that some genes
called homoeoalleles, sharing very similar sequences, will mostly exhibit highly
correlated expression levels. This grouping defines another level of structure in
the data.

� In Example 1.2 (chromosomal copy number changes in breast cancer), the pre-
dictors have a natural spatial structure, that is to say, their ordering along the
genome. This structure is intrinsic to the segmentation problem. Another less
obvious form of structure arises between the samples: some changes in the ploidy
level occur simultaneously in several cell lines (e.g. on chromosome 6), in which
case the segmentation would be enhanced if performed jointly.

� Example 1.3 (genomic selection for colza) illustrates the existence of a complex
pattern of correlation between the genetic markers. This phenomenon is known
as linkage disequilibrium in population genetics, which basically states that the
allelic status are not independent between two loci. The most obvious reason is
due to the spatial organization of the genome: close loci with given allele variants
are likely to be jointly inherited. Still, other factors (population structure, mu-
tation rate or preferential mating) influence the level of linkage disequilibrium.
This explains that the correlation matrix is not defined purely block-wise but
through a complex hierarchy.

� In Example 1.4 (regulatory motif discovery), a simple heatmap on the gene ex-
pression profiles shows a block structure both at the gene and condition levels.
Structure on the conditions is likely to be connected with the nature of the con-
sidered conditions (heat stress, light stress, cell cycle, etc.). The origin of the
gene structure is less clear since it is related to complex direct and/ or indirect
regulatory relationships between the genes. Finally, a strong correlation pattern
arises between the predictors, measured by the occurrence of the motifs in the
promoters of all genes. A part of this correlation can be explained by the sim-
ilarity between the motifs, when they are equal up to a couple of letters and
sorted in the lexicographical order. The correlation that remains may be due to
more complex biological features, e.g. a couple of motifs related to a set of genes
associated with the same biological pathway.

§

Though motivated by genomics, these characteristics are shared by many complex
data sets encountered in application fields beyond biological sciences, like astronomy,
imaging, signal processing or finance to cite but a few. The next section shows how
these characteristics change our way of doing statistics.
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1.2 RECENT APPROACHES IN STATISTICAL LEARNING

The previous section illustrates how data gathering is deeply evolving and is induc-
ing new data characteristics to deal with. An important – though straightforward –
remark is to note that most of the traditional goals of statistical learning remain basi-
cally unchanged, either in supervised learning (the goal is prediction, via classification
or regression) or unsupervised learning (the goal is to unravel interesting patterns via
clustering or feature extraction). Indeed, the questions we aim to answer by analyzing
modern data sets as in the examples above can be cast as a classical task of statistical
learning such as regression, classification, clustering, dimensionality reduction and so
on. However, we cannot directly rely on the most favorite and standard methods avail-
able since they are not designed to fit data sets with the aforementioned characteristics.

This section starts by showing why traditional approaches are challenged and what
their most dramatic limitations towards modern data analysis are. Then, I present
the ingredients composing the methods that I develop and work with in my research,
designed to answer these challenges. This path follows the recent popular trend in
statistical learning which tends to marry tools from statistics and optimization.

1.2.1 New challenges in statistical learning

Various angles are possible to categorize the challenges that jeopardize the traditional
way of doing statistics. Hereafter, I successively discuss the computational, the statis-
tical and the interpretability issues. This ordering does not reflect the importance of
each point; it rather mirrors how they come to the applied statistician’s mind: when
dealing with modern data, computational challenges come first, as in the most dramatic
cases traditional methods do not even numerically apply. Even when the fit is possible,
statistical issues may occur as the assumptions coming with the traditional theoretical
guarantees are not fulfilled in this setting. Finally, the fits should be interpreted with
caution as standard approaches are not tailored to cope with data heterogeneity nor
designed to embed the structure of the problems appropriately.

Meanwhile, an important threat of modern data which connects computational,
statistical and interpretability issues together is the problem of high-dimensional fea-
ture spaces. In computational biology, the couple of examples given in Section 1.1.1
illustrate that the new standard is to deal with many featuresp for a moderate sample
sizen, such thatn < p – or evenn � p –. We commonly speak of ahigh-dimensional
problem when analyzing data entering this setting. In many other fields (e.g. signal
processing, medical imaging, internet, finance) the new standard isn � p with both n
and p large, which corresponds to a class of so-called “big-data” problems. In both situ-
ations, one must deal with a large number of features at once, which has many impacts
that I shall use as a common thread throughout the statements that follow.

Computational issues.

With the increasing number of features and more generally the advent of large data
bases, the computational aspect is now a central question in statistics. First, the al-
gorithms used to fit a model must show a rather low complexity regarding the num-
ber of featuresp. This means that many classical methods showing high statistical
performance are completely out of reach due to an overly large intrinsic complexity.
And second, new statistical methods should be designed to use efficiently the available
computer resources (e.g., by allowing parallel computing). However, this latter point
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should not overcome the former, in the sense that algorithms with low complexity in
p are mandatory in order to deal with high-dimensional feature spaces.

To get better insight on the computational problems at stake, I found it interesting
to adopt an optimization point of view. Indeed, most of the statistical methods can
be cast as one or a series of optimization problems. Thus, studying the complexity
of various classes of problems from the optimization viewpoint undoubtedly provides
insights on the limitations of the statistical methods that build on them. To this in-
tent, the classification given by Nesterov in[128] is particularly illustrative. It is repro-
duced with slight modifications in Table 1.1 that shows the typical operations that we
can afford for a given problem size, accompanied with the memory requirement and
the range of computational cost (the latter depending on a particular structure of the
problem, e.g., sparsity). I added instances from omics that match the various problem
scales and the learning tasks typically expected.

class of dimension conceivable computational memory example in expected
problem (# featuresp ) operations cost requirement omics task
small 100 � 102 All p3 � p4 103 (Kb) – –
medium 103 � 104 A� 1 p2 � p3 106 (Mb) transcriptomics network inference
large 105 � 107 Ax p � p2 109 (Gb) association studies variable selection
huge 108 � 1012 x + y log(p) � p 1012 (Tb) metagenomics clustering

Table 1.1 –Typical matrix algebra operations with their computational cost and memory require-
ment for various problem scales. A is a p � p matrix and x,y are vectors in R p (source: [128] ).
Corresponding data regime for some problems in genomics with the desired learning tasks.

This table suggests several comments. First, it gives clues as to the methods that
can be applied depending on the situation. Consider for instance the extreme case
of metagenomics where one aims to cluster billions of sequences: general agglomera-
tive clustering algorithms inO(n3) are completely out of reach in this case. It means
that some popular procedures such as UPGMA (Unweighted Pair Group Method with
Arithmetic Mean) for average linkage clustering should be banned for some problem
scales as it exhibits a quadratic complexity. Second, this table shows that, when possi-
ble, we must adapt the optimization procedures used to fit a given statistical method
to the problem size. In the case of UPGMA, the method is defined in itself by an algo-
rithm and there is no way to change the underlying complexity. In contrast, when
a statistical model is adjusted by minimizing for instance a negative log-likelihood,
many optimization procedures are available for this purpose. For instance, we may
use a second-order method like Newton-Raphson which relies on the first and second
derivatives of the log-likelihood. This method converges quadratically to the solution
but requires the inversion of ap � p matrix at each iteration. Another possibility is
to use first order methods, such as the steepest gradient descent method, which only
relies on the first derivative of the log-likelihood. Such gradient methods typically have
a linear convergence rate, requiring more iterations than Newton’s method to meet the
same precision, but only require operations likeAx in Table1.1. Thus, statistical meth-
ods originally designed for a medium scale situation can still be applied to larger scale
situations1 if adapting the underlying fitting algorithms is possible: trading some speed
of convergence, meaning more iterations, is the price to pay to scale the dimension by
relying on simpler operations at each iteration of the optimization procedure.

1Related to this question, Nesterov’s paper[128] reviews subgradient methods for huge-scale problems
in Table 1.1, requiring many iterations to converge but extremely simple operations.
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As discussed in the next section, other sources of motivation for using simple and
highly-efficient procedures come from the statistical side. Indeed, a major concern in
high-dimensional spaces is overfitting, in which case resampling and ensemble methods
may be a solution, despite their additional computational cost. This again advocates for
highly efficient algorithms designed to use all the computational resources available.

To conclude with this part, the computational aspect turns out to be so important
in statistical learning that several authors[15, 90] advocate for criteria that take into
account both statistical and numerical performance to compare statistical methods.

Statistical issues.

In general, considering large feature spaces is cumbersome since most of our intuition
breaks down, especially our geometrical intuition. This is basically due to the fact that
the volume of high-dimensional spaces increases exponentially fast compared to the
amount of data points available, which are extremely sparse in those spaces. Thus, the
sample sizen of the data does not have to be smaller than the dimensionp for prob-
lems to occur. This phenomenon and its various implications are often referred to as
the curse of dimensionality. Several illustrations can be found for instance in Chapters 2
and 18 of the classical book[70] of Hastie, Tibshirani and Friedman. In a more recent
effort [63] , Giraud also gives many instances of this phenomenon that provide inter-
esting insights from various points of view (geometrical, probabilistic, statistical and
computational). Although I do not aim to investigate exhaustively the numerous man-
ifestations of the curse of dimensionality, I underline here two major related problems,
namelydata scarcity andoverfitting.

Data scarcity. In high-dimensional spaces, data points – even whenn � p – are very
isolated and are all at a similar distance from one another: points are so sparsely dis-
seminated that the notion of neighborhood is hardly relevant. To illustrate this point,
we revisit a small numerical experiment inspired by Figure 1.3 of Giraud’s book[63] ,
which is designed to show that local methods such as local regression ork-nearest-
neighbor are doomed to fail in high-dimensional spaces. We consider a random vec-
tor X 2 R p with a normal distribution N (0p , I p ) and draw a size-n random sample
(X 1, . . . ,X n) with n = 500 and for various values ofp 2 f 2,10,100,1000g. Elementary
computations show that, for all 1� i < i0� n,

E
 X i � X i0


2

2
= 2p, Var

 X i � X i0


2

2
= 8p.

As for Giraud in his example with uniform random variables, we also meet in the
Gaussian case a pairwise square distance the mean of which grows linearly inp while
its standard deviation only grows inp p. Thus, in high-dimensional spaces whenp is
large, all pairs of points are at a similar distance and thus indistinguishable. Local meth-
ods, based upon the notion of neighborhood which is not relevant whenp is large, will
thus perform poorly. This phenomenon is illustrated on Figure 1.5, where we repre-
sent in red the (scaled) histograms of the scaled pairwise distances

 X i � X i0


2
=
p

2p

for all 1 � i < i0� n and p 2 f 2,10,100,1000g.
At first glance, the most straightforward conclusion drawn from this simple exper-

iment – and from other manifestations of the curse of dimensionality – is that separat-
ing the noise from the signal looks extremely challenging, if not impossible, in high-
dimensional spaces. Hopefully, the hypothetical situation where thep features are
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Figure 1.5 –Empirical distributions of scaled pairwise distances between vectors in R p sam-
pled from N (0p , I p ) or from the breast cancer expression data set [67] . Values of p vary in
f 2,10,100,1000gto illustrate the concentration of the distance in high-dimensional spaces for the in-
dependent Gaussian case. Pairwise distances sampled from expression data are more spread around
their mean, meaning more structured data.

independent does not fit the reality and the true underlying space where the data lie is
most probably low-dimensional. To support this point, we also report in Figure 1.5 the
scaled histograms (in blue) of the scaled distance whenX is sampled from the breast can-
cer gene expression data studied in[67] , where p � 44,000 transcripts are monitored
for n � 500 patients. For random subsets of genes with sizep 2 f 2,10,100,1000g, the
histograms look more spread out than the theoretical one, meaning that we might be
able to separate those points according to their pairwise distances. This gives some
hope if one has a clue about the shape of the underlying space or of some structure in
the data, in other words,if we account for the structure of the problem.

Overfitting. Overfitting affects models which are too complex with low bias but
large variance. The consequence is a poor capability for generalization, meaning a
large test error. This problem is greatly exacerbated in high-dimensional spaces where
distinguishing noise from signal is especially challenging. Moreover, data is so scarce
that adjusting a fit with the model that truly generated the observations may lead to
poorer results than applying simpler models, with high bias but low variance. Let
us consider a simple idealistic example in linear regression to illustrate this point: we
draw f (xi ,yi )gi= 1,...,n with xi sampled in the interval[ � � , � ] and we choose the “true”
relationship such thatyi = sin(2xi ) + N (0,� 2). We choose� to meet a coefficient of
determination R2 � 0.8. Now, suppose that we do not know the nature of the true
relationship. We fit the data using polynomial regression with orderp, that is

yi = � 0 +
pX

j= 1
x j

i � j + " i , " i � N (0,� 2). (1.1)
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This toy example allows us to show on a two-dimensional fit the effect of an excessively
complex model with too many features, that is, living in a high-dimensional space. The
order p of the polynomial is used to control the dimensionp of the feature space, mean-
ing the model complexity. We study cases wherep 2 f 1, . . . ,50g, i.e. models as simple
as a regression line and as complex as a polynomial with degree 50. We consider three
regimes for the training, with sample sizen 2 f 10,50,200g. Whenever possible, Model
(1.1) is fitted with ordinary least squares (OLS). In cases whenn < p, (which occurs
only when p > 10 andn = 10), we use ridge regression with a tiny regularization pa-
rameter in order to encounter as little bias as possible and thus stick close to an “OLS
fit”. Results from this experiment are summarized in Figure 1.6. The three columns
correspond to the three possible regimes for the sample size. The first row shows ex-
amples of fits withp in f 1,5,20g, for a single data set. Data points used for the training
set are plotted in plain black, while a set of 1,000 points composing the (unreachable)
test set appears shaded black. The second row shows the estimated generalization error
with a hundred replications of the experiment conducted in the first row, using the test
set for evaluating the generalization error.
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Figure 1.6 –Overfitting is especially at play with high-dimensional data.

What conclusion can be drawn from this experiment? First, we obviously do not
need to be in then < p setup to overfit: considering large feature spaces is enough.
Second, we see that this phenomenon is exacerbated whenn gets smaller compared to
p. More precisely, consider the case whenn = 10: from the estimated test error (bot-
tom left), the model which generalizes the best is the simple regression line, which is
far from the one that truly generates the data (see the test set in the first row, showing
a sinusoidal relationship). But there are so few data points that models lying in feature
spaces with moderate dimension (e.g.p = 5) – thus close to the true underlying gen-
erative model – already overfit and show large variance, causing a poor generalization.
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This example supports the use of simple models, with potentially high bias but well
controlled variance, as they seem to be sufficient to capture the main tendency of data
sets that lie in high-dimensional feature spaces.

Modeling and interpretability issues.

The vast number of features is again at play regarding the modeling side of statistics,
and consequently the way we interpret the fits. Typically, models involving many or
ill-assorted features conflict strongly with our common sense; even if they show good
predictive performance or summarize the data well, there are many application fields,
notably in genomics and biology, where the interpretation of the fitted model is as
important as its performance. In supervised problems, the features sought are those
having a strong relationship (ideally causal) with the target response. In unsupervised
problems, the objective is to unravel the underlying structure between the features
themselves, which structure rules the observed system. To this end, the statistician
should rely on the tools available in statistical learning for feature selection or feature
extraction, the utility of which becomes even more important when the number of
features grows. But again, traditional tools have to be rethought since they are not
always calibrated to extract relevant information from data that live in large spaces.

To support this statement, we bring together the observations made on our two
preceding numerical experiments: in Figure 1.5, we assess that, in most computational
biology experiments, the dimension of the feature space that rules the underlying pro-
cess is much lower than the number of features considered. The question is thus to
find this underlying space, which may be done by means of feature selection or feature
extraction techniques. However, in high-dimensional problems, the model which is
the closest to the generative model – or to the biological process underneath – might
not be the one that generalizes the best, due to the scarcity of data. This has been il-
lustrated in Figure 1.6, where the straight line shows the smallest generalization error
but is far from the true underlying model. Hence, one must be extremely careful when
interpreting models fitted in a high-dimensional setup. This should especially be kept
in mind in genomics where we often deal with medical data and where the temptation
to interpret the inferred relationships as causal is huge.

A possible way to remedy the risk of incorrect interpretation is to adapt feature
selection and extraction methods to only explore subspaces that are plausible according
to the underlying biological process. In other words, we should add some constraints
to the models by means of structural information that expresses our prior knowledge.
This remark advocates for using statistical models that impose special structures on the
features. Indeed, structure integration in the model should lead to moreinterpretable
models, which is mandatory when dealing with millions of features.

§

This part has provided insights on the limitations of the traditional methods to-
wards analyzing modern complex data. We thus hopefully have a good idea of the
requirements of modern statistical methods. The next section basically justifies the
general strategy constituting the backbone of all the research works presented in this
thesis, in an effort to provide the community with methods fulfilling these require-
ments.
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1.2.2 Marrying statistics and optimization

This section starts by summarizing the most desirable requirements of modern statis-
tical methods regarding the challenges discussed so far. Then, I describe how, by bring-
ing together tools from statistics and optimization, efficient strategies have emerged to
tackle these challenges. In particular, I detail a typical strategy involving regularization
and convex sparse methods, which are a central building block of my contributions.

What do we need?

Regarding the computational, statistical and interpretability issues mentioned in Sec-
tion 1.2.1, an ideal method would be one fulfilling the following principles, which
apply whatever the learning task (regression, classification, clustering).

1. Favor simple models. The use of simple models is mandatory in order to avoid
overfitting, especially at stake in high-dimensional spaces. In other words, we
should ban overly complex models which generalize badly when data is scarce,
or at least strongly control their variance. Moreover, the use of simple models
typically limits the computational burden.

2. Favor models involving interpretable structures. Models fitted in high-dimensional
spaces should be cautiously interpreted. A possible way to limit the risk of bad
interpretations is to rely on statistical models involving strong relationships be-
tween the variables, with easily absorbed representations (such as hierarchies,
orderings or conditional dependencies).

3. Perform dimension reduction. Even when using simple models and interpretable
structures of representation, the number of variables associated with the many
features at hand should be controlled. Hence, we look for methods that reduce
the original feature space, by performing feature extraction or feature selection
jointly with the original task (prediction, classification or clustering). On top of
favoring interpretability, this also controls the complexity of the models.

4. Account for prior knowledge. The methods should be flexible enough to allow the
integration of prior information related to the underlying feature space. Hence,
by biasing the feature extraction or selection processes, we hope to enhance both
the interpretability of the model and the predictive performance.

5. Favor algorithms with low/ controllable complexity. The algorithms must show a
globally low complexity regarding the dimension of the feature space. On top of
this, we should favor methods the optimization of which can adapt to the prob-
lem size, achieving a tradeoff between accuracy and complexity that depends on
the problem dimension (see Section 1.2.1).

Sparsity, regularization and convex optimization

In order to develop procedures that meet these prerequisites, popular methods have
recently emerged in closely related fields such as statistics, machine learning and com-
press sensing. They all aim at revisiting standard statistical approaches from the angle
of optimization, by changing the original problem from this renewed point of view.
Let us attempt an outline of the strategy commonly followed by these proposals:
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1. Basic model choice: among the possible statistical models answering a given ques-
tion, favor one fulfilling the simplicity and interpretability principles.

2. Formulation as an optimization problem: make the criterion optimized by the
method explicit, typically as a negative (log)-likelihood or a loss function.

3. Problem modification: alter the problem by adding/ removing constraints or by
modifying the fitting term (e.g., by convex relaxation). Such a modification is
calledregularization.

The objective of regularization is plural: by modifying the problem, we hope toi )
get a better control of the computational cost;i i ) account for prior knowledge,i i i )
perform dimension reduction, andi v) control the model complexity; that is, most of
the principles argued in the preceding enumeration.

§

We now review three examples of application of this strategy in different contexts
(regression analysis, multivariate analysis and clustering analysis) that have given birth
to a wide number of papers in the past decade.

Example 1.6. Variable selection in linear regression
Consider the canonical regression problem with possibly many features: we aim at
predicting the vector of outcomesy = ( y1, . . . ,yn) from the n � p data matrixX , the
j th column of which contains measurements related to thej th feature. The simplest
– and highly-interpretable – conceivable model in the regression setup is the Gaussian
linear model: we assume a linear relationship between the features and the outcome
with an iid Gaussian vector of noise" and we estimate the coefficients� and� ? in

y = � 1n + X � ? + " , E" = 0p , Var" = � 2I p .

If not assuming any special structure for the feature space – and thus for� ? –, the most
standard estimation strategies are ordinary least square or maximum likelihood, which
both solve the same optimization problem by minimizing the residual sum of squares
(RSS). Whenp is large, a natural assumption is to consider that only a few features
explain the outcome, that is, that many entries of� ? are zero. In other words,� ?

is sparse. Variable selection can be performed by solving the following optimization
problem2, which minimizes the RSS under the constraint that the number of non null
entries in� equals an integers :

minimize
� 2R p

ky � X � k2
2 , such that

pX

j= 1
1f � j 6= 0g= s , s 2 f 0, . . . ,pg.

This is a non-convex constraint optimization problem which can be solved by fitting
the 2s models such that� contains s non null entries. Efficient branch-and-bound
algorithms allow us to avoid testing all possible models, but this combinatorial problem
is intractable even for moderates (say,> 30). A widely-spread popular idea for reducing

2We omit the intercept for clarity.
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the computational burden for large values ofp is to replace the pseudo non-convex‘ 0-
norm by its closest convex surrogate, the‘ 1-norm:

minimize
� 2R p

ky � X � k2
2 , such that

pX

j= 1

���� j

��� � s , s > 0.

This is known as the “Lasso” in statistics[164, 20] or “basis-pursuit” in compress-
sensing[28] . Note that when the sample sizen < p, there is an infinite number of
solutions to this problem, which can be further regularized by adding a second con-
straint based on the‘ 2� norm [77, 198] :

minimize
� 2R p

ky � X � k2
2 , such that

pX

j= 1

���� j

��� � s1,
pX

j= 1
� 2

j � s2, s1, s2 > 0.

There are plenty of ways to modify this problem, especially to account for more com-
plex structures of the underlying true feature space (a small sample is[166, 72, 190, 81,
87]). These ideas are developed further in Chapter 3, especially to account for some
underlying structures that rule the process observed on the fitted data.

Example 1.7. Feature extraction in high-dimensional space
ConsiderX an n � p data matrix of features where thep features live in a possibly
high-dimensional space and are typically correlated. In other words, the rankk of X is
much smaller thanp. We would like to find a small subspace with sizek which is more
informative than the original space, hoping for a better interpretation. This is the ob-
jective of feature extraction. The most basic – yet still fundamental and powerful – tool
from multivariate analysis to perform this task is principal component analysis (PCA),
which mapsX to a new subspace spanned byk orthogonal (meaning uncorrelated)
features while minimizing the reconstruction error ofX .

More precisely, denote byT (n � k) the coordinates in the new space and� (p �
k) the orthogonal linear map (a rotation) transforming the original variables into the
new variables. We haveT = X � , � > � = I k and the corresponding reconstructedX
is X̂ (k) = T� > . Hence, the PCA findsT and � by solving the following constraint
optimization problem:

minimize
� 2R pk ,T2Rnk

 X � T� >


2

F
, such that � > � = I , (1.2)

wherek �kF stands for the Frobenius norm. The solution is well known: it is obtained
by performing the singular value decomposition ofX and truncating the factorization
to the first k largest singular values. More precisely, the SVD decomposition ofX is

X = U � V> ,

where � is a diagonal matrix,U andV are orthogonal matrices with respective sizes
m � m, n � m and m� where m = min(n, p). The rank-k approximation X̂ (k) is
obtained by restrictingU andV to their first k columns and� to its first k � k block.
The respective sizes of the restricted matricesŨ , Ṽ and �̃ aren � k, p � k andk � k,
and the solution to (1.2) is

X̂ (k) = T� , with T = Ũ �̃ , � = Ṽ.
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Now, consider that the initial number of featuresp is very large: PCA basically
loses its appealing interpretability property, since the map� performs a linear combi-
nation of all the p features: in the same vein as in the sparse regression example 1.6,
selecting among the set of features during the operation of feature extraction would
produce a highly interpretable model, by performing the feature extraction only on a
small set of variables. A possibility is to modify the optimization problem by directly
working on the matrix decomposition as follows:

minimize
U2Rnk ,V pk ,diag(� )2Rk

 X � U � V>


2

F
, s. t. V> V = I k , U> U = I k , kv j k1 � c j ,

where v j is the j th column of V and k � k1 stands for the‘ 1� norm. Resolution of
this problem – and some variants – continues further in many papers related tosparse
principal component analysis [88, 199, 38, 184] .

Example 1.8. Clustering analysis in high-dimensional space
Our last example concerns the ubiquitous problem of clustering. A popular strategy
is agglomerative clustering: starting from one data point per cluster, it successively
merges clusters that are the closest according to a given distance, until all clusters merge
together. This procedure is extremely appealing from the interpretation viewpoint
since it produces a dendrogram, that is, a tree defining a hierarchy on the data points.

Concretely, suppose we are given ann � p data matrixX where we want to cluster
the n points when p remains small butn is (possibly very) large3. In this case, clas-
sical agglomerative methods will fail due to an excessive algorithmic complexity. The
question is, how can we regularize this problem in order to scale the dimension?

Contrary to the problems treated in the two preceding examples, hierarchical clus-
tering is not defined by a statistical model, but by a heuristic (“merging close clusters”).
Thus, in order to apply our strategy consisting in modifying the optimization problem
at hand, we must find what criterion HCA tries to optimize. The answer to this ques-
tion was given by[75] : for a given level in the hierarchy, tuned by a real parameterc ,
HCA tries to minimize the reconstruction error between the dataX and the coefficient
matrix � which encodes the clustering. To merge the coefficients – and thus cluster
individuals–, the total number of different rows in� is constrained,i.e.,

minimize
� 2Rn p

kX � � k2
F , such that

X

i> j

1f � j 6= � ig� c .

Hence, forc = n(n � 1)=2, all rows are different,� = X and we are at the very bottom
of the hierarchy. With c < n(n � 1)=2� 1, we force two rows to merge, thus performing
the first step of HCA and so on. This optimization problem is combinatorial but[75]
proposed a series of relaxed versions, in which cases the problem turns out to be convex:

minimizekX � � k2
F , such that

X

i> j

 � i � � j
 � c ,

wherek � k can be any‘ p norm. Several recent extensions to this work have been pro-
posed ever since[31, 138, 30] . In particular, I have been working[JP2] on a weighted
version of this problem that ensures good statistical properties, along with ann logn
algorithm that scales to huge-dimensional spaces.

3Such problems occur when many features are observed for a small number of individuals, and when
the features are to be clustered. In this case, the features become the observation. We “invert” the notation
n and p compared to what was said up to now to remain coherent with classical notation in clustering.
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These examples hopefully demonstrate that marrying statistics and optimization
can lead to successful approaches in statistical learning tailored to analyzing modern
data sets. At first glance, this framework is powerful because it combines the good
properties of well-known statistical models and the computational power of (convex)
optimization. Still, it is more than a mere reformulation of a statistical problem into an
optimization problem. It also provides methods with great flexibility for modeling the
problem at hand. Specifically, I think that the most sensitive point in the aforemen-
tioned strategy lies in the third point,i.e., Problem modification: indeed, one should
modify the problem in order to find a good balance between computational and sta-
tistical performance, but also to achieve a better modeling of the problem. This latter
point is especially important in application fields such as genomics, where integrating
the structure of the problem can have dramatic effects on the performance and on the
interpretability of the fit. The next paragraph illustrates this point, as accounting for
the structure of the data within the framework of regularization and sparse methods
characterizes most of my contributions.

Sparse and regularization approaches to account for complex data structure

Regularized problems that we consider can be cast as the following general constraint
optimization problem

minimize
� 2S

f (� ;data), such that 
 (� ) � c , (1.3)

where� is the set of parameters of interest living in the spaceS . The set
 describes
the feasible-set, forcing the parameters for living in a subspace that we deem “adequate”.
If we choosef a convex function and
 andS some (possibly non-smooth) convex sets,
things get easier both on the computational and statistical sides, as we have many tools
from the optimization literature [18] at our disposal. Thus, “convexification” is the
typical modification done to the original problem in order to perform regularization.
Still, as argued in the previous paragraph, computational and statistical motivations
should not minimize the interest towards a better modeling of the problem at hand. We
illustrate this on the idealistic Picture 1.7: we have a two-dimensional set of parameters
� , a convex functionf to minimize and a feasible set
 . Of course, the choice of
 is

Ω(θ)

f(
�

;d
at

a)

� 2
� 1

Figure 1.7 –Idealistic two-dimensional constrained convex problem

very important: it may be chosen in order to simply regularize the problem, meaning
giving the problem a solution – as in the original motivation of ridge regression –. But
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it can also be used to integrate structural information. Often, this information can
be recovered from the data themselves. Most of my research in genomics has been
driven by such motivation, that is, developing regularization techniques or statistical
methods that account for an underlying structure of the data in the fit. The simple,
basic example that follows advocates for such a choice.

A toy example advocating for structured regularization. This numeric illustra-
tion builds on the beginning of Chapter 18 ofthe Elements of Statistical Learning (sec-
ond edition) [70] , dedicated to high-dimensional problems. The authors design a nu-
merical example to show that “simple” regularization (exemplified by ridge regression)
fails to recover the true interesting parameters in the model when the number of fea-
tures p gets too large compared to the sample sizen: though more regularization helps
in improving predictive performance, lack of information may mislead the method
in finding the relevant features. The idea to improve these methods is to find the ap-
propriate shape of the regularization,i.e. of 
 in Figure 1.7, by relying on contextual
knowledge. In the following, I revisit their example by introducing the presence of
structure between the predictors and show how to simply build a regularizer that im-
proves both interpretability and predictive performance.

We choose a simple block diagonal setting as a structure between the predictors
that mimics the correlation structure typically found between SNP, just as in the right
panel of Figure 1.3b, Example 1.3. We split thep features into five groups with respec-
tive sizesf p=4, p=8, p=4, p=8, p=4g. We may represent this structure by an undirected
graphG on the features the adjacency matrix of which is block diagonal with zeros
on its diagonal. Under this assumption, we generate dataf (xi ,yi )g

n
i= 1 with the linear

model
y = X � ? + " , " � N (0n, I n � 2)

such that the true underlying relationship between the response and the predictors
follows the previously mentioned grouping pattern:

� ? =

0

@0.25, . . . ,0.25| {z }
p=4 times

, 1, . . . ,1| {z }
p=8 times

, � 0.25, . . . ,� 0.25| {z }
p=4 times

, � 1, . . . ,� 1| {z }
p=8 times

,0.25, . . . ,0.25| {z }
p=4 times

1

A . (1.4)

We sample the predictors from a Gaussian multivariate distribution fromxi �
N (0p , � ) where� is defined blockwise with the same pattern as� ?, with inner group
correlations such that

� = with � i j =

8
>>>><

>>>>:

1 i = j ,
.25 i , j 2 blocks{1,3,5} , i 6= j ,
.75 i , j 2 blocks{2,4} , i 6= j ,
0 otherwise.

We investigate cases wherep = 16,192,2048 withn = 200 for the learning set and 1000
points in the test set that we keep to estimate the prediction error. We set the value of
� in order to meet a coefficient of determinationR2 � 0.8.

The regularized method that we consider is a “structured” version of ridge regres-
sion, fitted by solving the optimization problem

minimize
� 2R p

ky � X � k2
2 , such that � > L� � c , (1.5)
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whereL is chosen to account for our knowledge on the features. This is a special case
of Problem 1.3, such that changingL typically changes the shape of
 in Figure 1.7.

WhenL is positive semi-definite, the problem is convex and is equivalently stated in
its Lagrangian form, which we also call the “penalized version” of the problem. Indeed,
the regularization term is often called a penalty term in this case. Here the solution is
derived analytically and we have

�̂
ridge
� = arg min

� 2R p

ƒ
ky � X � k2

2 + � � > L�
'

=
�
X> X + � L

� � 1
X> y. (1.6)

This analytic expression gives insight into how this simple structured regularizer biases
the estimator, by performing a mixture between the empirical covarianceX> X and
our prior knowledge � L, like in Bayesian regression with the posterior mean[118] .
ChoosingL = I leads to the usual ridge estimator. More generally, assume that the
contextual knowledge about the relationships between the features can be described
through a weighted graph encoded in a weighted adjacency matrixW = ( wi j )i , j= 1,...,p ,
with wi j � 0. This prior information can be integrated by means of the combinato-
rial graph Laplacian (see[32]). Denoting by degi =

P
k wi k the degree of nodei , the

Laplacian matrixL = ( li j )i , j= 1,...,p is defined by

li j =
¤

degi if i = j ,
� wi j otherwise.

Expanding the penalty term, we see that we encourage regression coefficients corre-
sponding to connected features to be the same:

� T L� =
X

i , j

wi j (� i � � j )
2.

Regarding the fitting cost, ridge regression is also appealing since it can be computed
at the cost of a single singular value decomposition. In the structured version, we also
have to factorizeL, but it is straightforward to show that

�̂
ridge
� =

�
X> X + � L

� � 1
X> y = L� 1=2V(D2 + � I )� 1DU > y (1.7)

where XL � 1=2 = UDV > and L� 1=2 is understood in the matrix sense4. Of course,
(D2 + � I )� 1D is diagonal and can be computed for a series of� > 0.

Finally, we may compute the effective degrees of freedom of the generalized ridge
fit, in the sense proposed by Efron and Hastie for regression. Effective degrees of free-
dom is a far more interpretable quantity for evaluating model complexity than is the
� parameter. For a linear smoother (as in ridge regression), it can be computed as the
trace of the “hat” matrix, the computation of which further simplifies thanks to the
SVD:

df(ŷridge
� ) = Tr

�
X

�
X> X + � L

� � 1
X>

�
=

pX

i= 1

d 2
i i

d 2
i i + �

. (1.8)

Let us now comment the numerical results displayed in Figure 1.8. We investigate
for the three values ofp (p � n, p � n, p � n) the behavior of three ridge estimators

4For some special graphs,L � 1=2 can be computed analytically. Otherwise, a Cholesky decompostion
may be used.
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on 100 replicated simulations where we evaluate the prediction error with the test set,
on a large grid of� values. Error has been normalized according to the Bayes error� 2 so
that the minimum achievable is always 1. The three ridge variants are:i ) the standard
one (with no structure),i i ) the one embedding the perfect structure (provided by the
graph with the exact block diagonal pattern) and finallyi i i ) one which integrates a
structure inferred on the data set. To this end, we perform a hierarchical clustering
(complete linkage) on a distance based on the empirical correlation matrix (1 minus
the absolute value of the empirical correlation). We cut the dendrogram in order to
obtain 5 groups, which is the correct number of groups in the simulated block diagonal
structure. We use these blocks to build the graph and the associated graph Laplacian
to integrate the structural information inferred from the data.

16 192 2048

1.0

1.1

1.2

1.3

1.4

1.5

051015 050100150200 050100150200

ridge classical (no structure) generalized (oracle structure) generalized (inferred structure)

Figure 1.8 –Toy example: structuring ridge regression leads to efficient regularization (correct
model, lower generalization error).

Several comments can be made: first, the standard ridge regression outperforms
the OLS even in thep � n and p � n cases, because it takes into account the strong
correlations between the features. Still, the optimal model in terms of prediction error
never corresponds to the true model, that is, the one having 5 degrees of freedom (cor-
responding to the 5 groups of features), and standard ridge regression overestimates
the model complexity, because it requires many coefficients to maintain a relatively
low error. Conversely, when the regularization is guided by structural information,
not only do we lower the prediction error, but we also find an optimal model close
to the true complexity. This holds true even when the structure is inferred with a
straightforward method from the data themselves. Though somewhat ideal, this sim-
ple numerical example advocates for integrating the structure within the regularization
process as soon as possible when dealing with high-dimensional data. This can be done
within a framework where statistics meet constraint optimization, which offers great
facilities for enhancing computational and modeling aspects of the standard statistical
procedures.
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1.3 RESEARCH OVERVIEW

To conclude this introductory chapter, let me bring together a series of research themes
I am concerned with. Of course, the research questions addressed there are motivated
by issues related to the modern data setting depicted in Section 1.1 and by the method-
ological tools mentioned in Section 1.2. There is a large and growing literature on these
themes and many brilliant research teams are working on these topics. At this stage of
the manuscript, I only provide references to my own papers as my goal is to set my con-
tributions in the present landscape of statistical learning. References to related works
come in the next chapters where my contributions are detailed.

1.3.1 Themes

Interpretable models. Due to the combinatorial explosion of the possible relation-
ships between variables in high-dimensional spaces, I work with simple and highly
interpretable models to represent links between variables.

(Gaussian) Graphical models (GGM) are among them: they depict the conditional
dependency structure of a random vector by means of a graph. As conditional de-
pendence is a good statistical modeling of direct relationships between variables, and
graphs are convenient for interpretation, GGM are extremely popular. I worked with
such models in both unsupervised and supervised frameworks. In the unsupervised
setting, I used them to describe strong interactions between biological actors in the
cell, e.g. in regulatory networks[JP7, JP8, JP9] , and more generally to infer (partial)
covariance structures in high-dimensional spaces. In the supervised setting, I used a
conditional form of GGM to revisit multivariate regression and distinguish weak from
strong interactions between responses and predictive variables in various application
fields[PP2] .

Hierarchies (or trees) are another convenient tool to depict interpretable structures
between variables, because they summarize well the relationships between the variables
and exhibit potential clusters. They are especially attractive when the number of vari-
ables is large. However, their reconstruction may be cumbersome in situations where
the number of variables is very large. I worked on such an issue in a recent work[JP2] .

In short, I favor models involving structures of relationships simple enough to ex-
hibit the most important trends governing the data.

Modeling data heterogeneity. Accounting for the heterogeneity of data in modeling
is another side of my research.

In the context of unsupervised learning and GGM inference, I included in[JP9,
JP8] a latent modeling of the target GGM by assuming a stochastic block model on the
unobserved conditional graph to enhance the inference of its structure. In the same
framework, I proposed in[JP7] a method for inferring multiple GGM by accounting
for similarities and differences between several samples, in order to account for their
heterogeneity.

In supervised learning, natural tools to account for data heterogeneity are multi-
variate regression and its mixed model counterpart, where we typically describe the
structure of the sample and of the signalvia a complex covariance structure. The mul-
tivariate regularization scheme that I proposed in[PP2] , motivated by applications in
genetics, fits in such a framework by including population heterogeneity.
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A more complicated question occurs when one considers heterogeneous data in the
sense of data collected from multiple platforms, in order to performhorizontal data in-
tegration. An unpublished proposal is made in Section 2.2.4 in the GGM setting again,
by introducing a multi-attribute framework along with some inference procedures.

Finally, I have recently been working on a model to better understand some of the
heterogenenity at stake in cancer data and tumor cells. To this end, we develop in[JP3]
a statistical methodology to identify the misregulated genes given a reference network
and gene expression data. The objective is then to characterize cancer subtypes accord-
ing to these misregulations, some of which are out-of-reach of classical techniques such
as differential analysis.

Structured and sparse methods, prior integration. To perform inference and se-
lection of the important links between variables in order to estimate and reconstruct
the target structures in the models (hierarchies, graphical models, and so on), I rely
on sparse and regularization methods, which are ubiquitous in the statistical learning
community.

I proposed some new regularization schemes in the regression framework when
the set of parameters is endowed with a group structure, in the same vein as the group-
Lasso[JP6, JP7] . I also worked on sparse methods for network inference that bias
the reconstructed graph toward an underlying topology[JP9, JP7] . I more recently
worked on regularized methods for multivariate regression allowing prior integration
for various problems in genomics[PP2] . In an ongoing work[JP1] , I am working on
a formulation at the edge of Bayesian regression and frequentist formalism for variable
selection.

In my opinion, structured sparsity and methods for prior integration are the nat-
ural inference tools coming with the interpretable statistical models adapted to high-
dimensional data, which explains that they are at the heart of my research.

Convex methods and efficient algorithms. Closely related to sparse and regular-
ization methods is the development of efficient algorithms. Statisticians working with
modern data sets cannot be unaware of the state-of-the-art optimization procedures.

A natural way to achieve low complexity is to rely on convex methods. This frame-
work is adopted in most of my works. There are two options to achieve convexity
when designing a new (sparse) inference procedure: the first possibility is to directly
choose a statistical model with a convex loss and then “craft” the regularization ac-
cordingly, as I did in[JP6, JP7, PP2] . A second option is to rely on a classical esti-
mator defined by a non-convex criterion and find an appropriate convex surrogate.
By convexifying an optimization problem, we hope for both a drastic decrease in the
computational cost and an indirect regularization which provides the model with finer
interpretation and better performance than does the original criterion. I explore this
option for convex clustering and (M)ANOVA in [JP2] .

Even in the convex case, dedicated implementations are often needed since effi-
ciency of an optimization procedure strongly depends on the data regime or on the
structure of the estimator. I address these questions by discussing trade-offs between
accuracy and performance in[PP3] . Recently I have also been working on a fast im-
plementation of the LARS for detecting change-points in two-dimensional data[PP1] .

Of course, the need for efficiency is ubiquitous, beyond convex methods. In this
perspective, I am involved in a research project that aims at developing efficient re-
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sampling procedures for high-dimensional data, by deriving for instance closed-form
formula for cross-validation. A preliminary work has been presented in[CN1] .

As a more general comment about the computational side of my work, I try to
maintain implementations by providing the community withR/C++packages[SW5,
SW4, SW3, SW1, SW2] . This is also a manner to promote reproducible research.

Statistical analysis. With sparse models, sparse/ regularized learning methods and
new data settings, new tools for relevant statistical analysis are needed.

The first question is to characterize the estimators arising from regularized and con-
vex methods, and to provide statistical guarantees in the high-dimensional setup. Many
authors at the edge of the statistical community and of the machine learning commu-
nity tried to tackle these issues, working on prediction performance, estimation per-
formance and support recovery for sparse estimation. I studied such properties for the
newly-defined penalized method for linear regression known as “cooperative-Lasso” in
[JP6] . More recently, I worked in[JP2] on a penalized version of the ANOVA where
support recovery is at stake, and where good statistical and computational properties
are exhibited with techniques from high-dimensional statistics and convex analysis.

Another question is to develop measures of performance that bring all indicators
together to simultaneously characterize numerical performance and statistical accu-
racy. I humbly and partially explored such questions in[PP3] .

1.3.2 Organization of the manuscript

This series of research themes is disseminated in the contributions composing this the-
sis. I chose to organize them into two chapters that can be read almost independently.

The first one is dedicated to my work on Gaussian graphical models and network
reconstruction: I develop several inference procedures to reconstruct the conditional
structure associated with these models, motivated by the characteristics of genomics
data.

The second chapter presents a series of sparse and regularization methods that em-
bed in various possible ways the structural information related to fields of application,
which are diverse but where life science has a place of choice.

As sparse methods are at the heart of my preoccupation and since I work on amend-
ing those regularizing/ penalizing terms according to the data themselves, I chose to
entitle this manuscriptContributions to Sparse Methods for Complex data analysis.
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T HIS chapter proposes an overview of my contributions to Gaussian Graphical Mod-
els (GGM), in terms of modeling and more importantly in terms of inference of

the conditional structure associated with such models. After a quick outline of the ex-
isting literature and an introduction to the most popular methods in the community,
I present my contribution to this field. These contributions were motivated by the
need to account for some special features characterizing genomics data and biological
networks.
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2.1 BACKGROUND

Gaussian Graphical Models (GGMs)[101, 180] are a very convenient tool for describ-
ing the patterns at play in complex data sets. Indeed, through the notion of partial
correlation, they provide a well-studied framework for spotting direct relationships
between variables, and thus reveal the latent structure in a way that can be easily inter-
preted. Application areas are very broad and include for instance gene regulatory net-
work inference in biology (using gene expression data) as well as spectroscopy, climate
studies, functional magnetic resonance imaging, etc. Estimation of GGMs in a sparse,
high-dimensional setting has thus received much attention recently. This section pro-
vides an overview of this hot and competitive research field of statistical learning. I
mainly focus on the state-of-the-art‘ 1-regularization methods and their most recent
striking variants, insisting on their computational and statistical properties. This pro-
vides the reader with the necessary material to approach the second section of this
chapter dedicated to my personal contributions to this field.

2.1.1 Basics on Gaussian graphical models

Let P = f 1, . . . ,pg be a set of fixed vertices andX = ( X1, . . . ,Xp )ü a random vector
describing a signal over this set. The vectorX 2 R p is assumed to be multivariate
Gaussian with unknown mean and unknown covariance matrix� = ( � i j )(i , j )2P 2. No
loss of generality is involved when centeringX , so we may assume thatX � N (0p , � ).
The covariance matrix� , equal toE(X X ü ) under the assumption thatX is centered,
belongs to the setS +

p of positive definite symmetric matrices of sizep � p.

Graph of conditional dependencies. GGMs endow Gaussian random vectors with
a graphical representationG of their conditional dependency structure: two variablesi
and j are linked by an undirected edge(i , j ) if, conditional on all other variables in-
dexed byP nf i , jg, random variablesXi andX j remain or become dependent. Thanks
to the Gaussian assumption, conditional independence actually boils down to a zero
conditional covariance cov(Xi ,X j jXP nf i , jg), or equivalently to a zero partial correla-
tion which we denote by� i j , the latter being a normalized expression of the former.

Concretely, the inference of a GGM is based upon a classical result originally em-
phasized in[42] stating that partial correlations� i j are actually proportional to the
corresponding entries in theinverse of the covariance matrix� � 1 = � , also known as
the concentration matrix. More precisely, we have

� i j = � � i j =
˘

� i i � j j , � i i = Var(Xi jXP n i )
� 1; (2.1)

thus � directly describes the conditional dependency structure ofX . Indeed, after
a simple rescaling,� can be interpreted as the adjacency matrix of an undirected
weighted graph representing the partial covariance (or correlation) structure between
variablesX1, . . . ,Xp . Formally, we denote byG = ( P ,E) this graph, the edges of
which are characterized by

(i , j ) 2 E , � i j 6= 0, 8(i , j ) 2 P 2 such thati 6= j .

In words, G has no self-loop and contains all edges(i , j ) such that � i j is nonzero.
Therefore recovering nonzero entries of� is equivalent to inferring the graph of con-
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ditional dependenciesG, and the correct identification of nonzero entries is the main
issue in this framework.

Maximum Likelihood inference. GGMs fall into the family of exponential models
for which the whole range of classical statistical tools applies. As soon as the sample
sizen is greater than the numberp of variables, the likelihood admits a unique maxi-
mum overS +

p , defining a maximum likelihood estimator (MLE): suppose we observe
a sample

�
X 1, . . . ,X n 	

composed ofn i.i.d. copies ofX , stored row-wise once centered
in a matrix X 2 Rn� p such that(X i )> is the i th row of X . The empirical covariance
matrix is denoted bySn = X ü X=n. Maximizing the likelihood is equivalent to

b�
mle

= arg max
� 2S +

p

logdet(� ) � Tr (� Sn). (2.2)

Whenn > p, Problem (2.2) admits a unique solution equal toSn. The scaled empirical
covariance matrixSn follows a Wishart distribution while its inverseS� 1

n follows an
inverse Wishart distribution with computable parameters.

There are two major limitations with the MLE regarding the objective of graph
reconstruction by recovering the pattern of zeroes in� . First, it provides an estimate
of the saturated graph: all variables are connected to each other; second, we needn
to be larger thanp to be able to even define this estimator, which is rarely the case
in genomics. In any case, the need for regularization and feature selection is huge.
A natural assumption is that the true set of direct relationships between the variables
remains small, that is, the true underlying graph is sparse (say, of the order ofp rather
than the order ofp2). Sparsity makes estimation feasible in the case wheren < p since
we can concentrate on sparse or shrinkage estimators with fewer degrees of freedom
than in the original problem. Henceforth, the question of selecting the correct set of
edges in the graph is treated as a question of variable selection.

High-dimensional inference of GGM. The different methods for the inference of
sparse GGMs in high-dimensional settings fall into roughly three categories. The first
contains constraint-based methods, performing statistical tests[24, 45, 46, 93, 181] .
However, they either suffer from the excessive computational burden[24, 181] or
strong assumptions[45, 46] that correspond to regimes never attained in real situations.
The second of these categories is composed of Bayesian approaches, see for instance
[43, 89, 141, 151] . However, constructing priors on the set of concentration matrices
is not a trivial task and the use of MCMC procedures limits the range of applications to
moderate-sized networks. The third category contains regularized estimators, which
add a penalty term to the likelihood in order to reduce the complexity or degrees of
freedom of the estimator and more generally regularize the problem: throughout this
chapter, I focus on methods of this kind. More precisely, I focus on‘ 1-regularized pro-
cedures, which are freed from any test procedure – and thus multiple testing issues –
since they directly perform estimation and selection of the most significant edges by
zeroing entries in the estimator of� . The remainder of this section is dedicated to a
quick review of the state-of-the-art methods of this kind.

2.1.2 Sparse methods for GGM inference

The idea underlying sparse methods for GGM is the same as for the Lasso in linear re-
gression (see Example 1.6, Section 1.2.2): it basically uses‘ 1-regularization as a convex
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surrogate of the ideal but computationally intensive‘ 0-regularized problem:

arg max
� 2S +

p

logdet(� ) � Tr (� Sn) � � k� k‘ 0
. (2.3)

Problem (2.3) achieves a trade-off between the maximization of the likelihood and
the sparsity of the graph within a single optimization problem. The penalty term can
also be interpreted as a log prior on the coefficients in a Bayesian perspective. BIC or
AIC criteria are special cases of such‘ 0 regularized problems, except that the maxi-
mization is made upon a restricted subset of candidatesf �̃ 1, . . . ,�̃ mgand the choice of
� is fixed (log(n) for BIC and 1=2 for AIC). Actually solving (2.3) would require the
exploration of all possible 2p graphs. On the contrary, by preserving the convexity of
the optimization problem, ‘ 1-regularization paves the way to fast algorithms. For the
price of a little bias on all the coefficients, we get to shrink some coefficients to exactly
0, operating selection and estimation in one single step as hoped in Problem (2.3).

Graphical-Lasso. The criterion optimized by the graphical-Lasso was simultane-
ously proposed in[191] and [7] . It corresponds to the estimator obtained by fitting
the ‘ 1-penalized Gaussian log-likelihood,i.e. the tightest convex relaxation of (2.3):

b�
glasso
� = arg max

� 2S +
p

logdet(� ) � Tr (� Sn) � � k� k‘ 1
. (2.4)

In this regularized problem, the‘ 1-norm drives some coefficients of� to zero. The
non-negative parameter� tunes the global amount of sparsity: the larger the� , the
fewer edges in the graph. A large enough penalty level produces an empty graph. As
� decreases towards zero, the estimated graph tends towards the saturated graph and
the estimated concentration matrix tends towards the usual MLE (2.2). By construc-
tion, this approach guarantees a well-behaved estimator of the concentration matrix
i.e. sparse, symmetric and positive-definite, which is a great advantage of this method.

Ever since Criterion (2.4) was proposed, many efforts have been dedicated to de-
veloping efficient algorithms for its optimization. In the original proposal of[7] , it is
shown that solving for one row of matrix� in (2.4) while keeping other rows fixed
boils down to a Lasso problem. The global problem is solved by cycling over the ma-
trix rows until convergence. Thus, if one considers thatL passes over the whole matrix
are needed to reach convergence, a rough estimation of the overall cost is of the order
of L p � (cost for solving for one row). With a block-coordinate update each iteration
over a row hasO(p3) complexity and their implementation isO(L p4) for L sweeps
over the whole matrixb� . In [7] again, a rigorous analysis is conducted in Nesterov’s
framework [129] showing that the complexity for a single� reachesO(p4.5=") where
" is the desired accuracy of the final estimate.

The Graphical-Lasso algorithm of [57] follows the same line but builds on a coor-
dinate descent algorithm to solve each underlying Lasso problem. While no precise
complexity analysis is possible with these methods, empirical results tend to show that
this algorithm is faster than the original proposal of[7] . Additional insights on the
convergence of the graphical-Lasso are provided in[120] , simultaneously with[182] ,
showing how to take advantage of the problem sparsity by decomposing (2.4) into
block diagonal problems depending on� : this considerably reduces the computational
burden in practice. Implementations of the graphical-Lasso algorithm are available in
the R-packagesglasso, huge [196] , or simone [SW5, JP11] . The most recent notable
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efforts related to the optimization of (2.4) are due to[78, 79] and the QUIC (then
BIG&QUIC) algorithm, a quadratic approximation which allows (2.4) to be solved up
to p = 1,000,000 with a super-linear rate of convergence and with bounded memory.
The R-packagequic implements the first version of this algorithm.

On the statistical side, the most striking results are due to[142] : they show that
selection consistency of the estimator defined by (2.4) – that is, recovery of the true
underlying graphical structure –, is met in the sub-Gaussian case when, for an appro-
priate choice of� , the sample sizen is of the same order asO(d 2 log(p)), whered is the
highest degree in the target graph. Additional conditions on the empirical covariance
between relevant and irrelevant features are required, known as the “irrepresentability
conditions” in the Lasso case. Such statistical results are important since they provide
insights on the “data” situations where such methods may either be successful or com-
pletely hopeless. More on this is discussed in[172] . For instance, this should prevent
blindly applying the graphical-Lasso in situations where the sample sizen is too small
compared top. Similarly, when the presence of hub nodes with high degree is sus-
pected, the estimated graph should be interpreted with care.

Neighborhood selection. This approach, proposed in[122] , determines the graph
of conditional dependencies by solving a series ofp independent Lasso problems, suc-
cessively estimating the neighborhoods of each variable and then applying a final recon-
ciliation step as post-treatment to recover a symmetric adjacency matrix. Concretely,
a given columnX j of the data matrix is “explained” by the remaining columnsXnj
corresponding to the remaining variables: the set ne( j ) of neighbors of variablej in
the graphG is estimated by the support of the vector solving

�̂ j = arg min
� 2R p� 1

1
2n

 X j � Xnj �


2

‘ 2
+ � k� k‘ 1

. (2.5)

Indeed, if each row ofX is drawn from a multivariate GaussianN (0, � � 1), then the
best linear approximation ofX j by Xnj is given by

X j =
X

k2ne(j)

� j kXk = �
X

k2ne(j)

� j k

� j j
Xk , (2.6)

thus coefficients� j and column� j – once its diagonal elements are removed – share the
same support. By support, we mean the set of nonzero coefficients. Adjusting (2.5) for
eachj = 1, . . . ,p allow us to reconstruct the full graphG. Because the neighborhoods
of the p variable are selected separately, a post symmetrization must be applied to
manage inconsistencies between edge selections;[122] suggests AND or OR rules.

Let us fill the gap with Criterion (2.4). First, note that thep regression problem can
be rewritten as a unique matrix problem, whereB containsp vectors� j , j = 1, . . . ,p:

B̂ns = arg min
B2R p� p ,diag(B)= 0p

1
2

Tr (B> SnB) � Tr (B> Sn) + � kBk‘ 1
. (2.7)

In fact, it can be shown[145, JP9, 143] that the optimization problem (2.7) corresponds
to the minimization of a penalized, negativepseudo-likelihood: the joint distribution of
X is approximated by the product of thep distributions of the p variables conditional
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on the other ones, that is

logP(X ; � ) =
pX

j= 1

nX

i= 1
logP(X i

j jX i
nj ; � j ).

This pseudo-likelihood is based upon the (false) assumption that conditional distribu-
tions are independent. Moreover, all variables are assumed to share the same variance
in this formulation. Building on these remarks,[145] amend criterion (2.7) by the ad-
junction of an additional symmetry constraint, and introduce additional parameters
to account for different variances between the variables.

Concerning the computational aspect, this approach has very efficient implemen-
tation as it basically boils down to solvingp Lasso problems. Suppose for instance
that the target neighborhood size isk per variable: fitting the whole solution path of a
Lasso problem using the Lars algorithm can be done inO(n pk) complexity [5] . This
must be multiplied by p for the whole network, yet we underline that a parallel imple-
mentation is straightforward in this case. This makes this approach quite competitive,
especially when coupled with additional bootstrap or resampling techniques[123] .

On the statistical side, neighborhood selection has been reported to be some-
times empirically more accurate in terms of edge detection than is the graphical-Lasso
[174, 145] on certain types of data. This is somewhat supported by the statistical anal-
ysis of [142] , who show that under the classical irrepresentability conditions for the
Lasso[195, 122] and for an appropriate choice of� , neighborhood selection achieves
selection consistency with high probability when the sample sizen is of the order of
O(d log(p)) with d the maximal degree of the target graphG. This is to be compared
with the O(d 2 log(p)) required by the graphical-Lasso (even if the corresponding “ir-
representability conditions” are not strictly comparable). A rough explanation for this
difference on the asymptotic is that the graphical-Lasso intends to estimate the concen-
tration matrix on top of selecting the nonzero entries, while neighborhood selection
focuses on the selection problem.

Constrained ‘ 1-minimization for inverse matrix estimation (CLIME). The
CLIME estimator has been proposed by[22] and is designed to avoid the cumbersome
“irrepresentability conditions” required for the Graphical-Lasso and the neighborhood
selection approaches, while providing statistical guarantees on the support recovery.

The definition of CLIME builds on the remark that the solution to (2.4) must verify
the following first order optimality condition – or subgradient equations:

�
b�

glasso
� � 1

� Sn = � � , with � i j

¤
= sign(b�

glasso
i j ) if b�

glasso
i j 6= 0,

2 [ � 1,1] otherwise.

This suggests the optimization problem

minimize
� 2S +

p

k� k‘ 1
, s.c. k� � 1 � Snk1 � � ,

which is too hard to solve. Removing the positive-definite requirement and multiplying
the constraint by� , we encounter the problem solved by CLIME:

b�
clime
� = arg min

� 2M p p

k� k‘ 1
, s.c. kI p � � Snk1 � � . (2.8)
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This estimator is not necessarily symmetric and a post-treatment is required as for
neighborhood selection. But it can also be easily distributed for each column of
� j , which requires the resolution of a linear program of complexityO(p2k), with
k the targeted number of neighbors per variable.This is slightly more demanding than
neighborhood-selection but remains extremely competitive.

On the statistical side, the CLIME estimator achieves selection consistency at a rate
comparable to that of the Graphical-Lasso[22] , and is better in its adaptive (weighted)
version. Its great advantage is that no particular assumption like a irrepresentability
condition – which can never be established in practice – is required for the data matrix
X . This method is distributed via theR-packagefastclime, and an implementation
[177] is reported to solve for problems with millions of features.

Sparse PArtial Correlation Estimation (SPACE). In [136] , the gap is completely
filled between linear regression, Gaussian graphical model and neighborhood selection
with a method that directly penalizes the partial correlations within the linear model.
Indeed, by combining firstly Relationship 2.1 between the partial correlations and the
concentration matrix, and secondly, Relationship 2.6 between the coefficients in linear
regression and concentration matrix, one has

X j =
X

k2ne(j)

� j kXk + " =
X

k2ne(j)

� j k

vut � kk

� j j
Xk + " ,

which suggests the following optimization problem

�
b� space

� ,diag(� )
�

= arg min
� 2R p(p � 1),diag(� )

1
2

pX

j= 1
! j

 X j �
pX

k= 1

� j k

vut � kk

� j j
Xk



2

‘ 2

+ � k� k‘ 1
,

(2.9)
where � is a vector containing all the pairwise partial correlations, diag(� ) contains
the diagonal elements of� , that is to say, the partial covariances of all the variables,
and finally ! j are some positive (given) weights.

Although the optimization of (2.9) is more demanding than is neighborhood selec-
tion, the problem is jointly convex in(diag(� ), � ). When diag(� ) is fixed, the problem
has the same complexity as does neighborhood selection, and the authors claim that
only a couple of iterations alternating over each of the two parameters(diag(� ), � ) are
needed for convergence. It thus remains a lot more efficient than the graphical-Lasso.
On top of that, the method intrinsically imposes symmetry over the partial correla-
tions � . In short, it embeds the computational advantage of neighborhood selection
while estimating the conditional variance as in the graphical-Lasso. It is available in
the R-packagespace. Further refinements and statistical analyses have been recently
proposed in[92] .

Model selection issues. Up to this point, we have completely avoided the funda-
mental model selection issue, that is, the choice of the tuning parameter� , which is
at play in all the sparse methods mentioned thus far. The first possibility is to rely on
information criteria of the form

IC � = � 2loglik(b� � ;X) + pen(df(b� � )),

where “pen” is a function penalizing the model complexity, described by df, the de-
grees of freedom of the current estimator. We meet the AIC by choosing pen(x) = 2x
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and the BIC by choosing pen(x) = log(n)x. However, AIC and BIC are based upon as-
sumptions which are not suited to high-dimensional settings (see[65]). Moreover, the
notion of degrees of freedom for sparse methods has to be specified, not to mention
that one has to adapt these criteria to the case of GGMs. An example of a criterion
meeting these prerequisites is the extended BIC for sparse GGMs[53] :

EBIC (b� � ) = � 2loglik(b� � ;X) + jE� j(log(n) + 4 log(p)), (2.10)

where the function df is equal tojE j, the total number of edges in the inferred graph.
The parameter 2 [0,1] is used to adjust the tendency of the usual BIC – recovered
for  = 0 – to choose overly dense graphs in the high-dimensional setting. Further
justification can be found in[53] . A competing approach, designed to compare a family
of GGM – possibly inferred with different methods –, is GGMSelect[64, 62] .

Another possibility is to rely on resampling/ subsampling procedures to select a set
of edges which are robust to small variations of the sample. The most popular approach
is theStability Selection procedure proposed in[123] , also related to the bootstrapped
procedure of[3] . A similar approach, called StaRS (Stability approach to Regulariza-
tion Selection) is developed specifically in the context of GGM in[109] . The basic
idea is as follows: for a given range of the tuning parameter� = [ � min, � max] , the same
method is fitted on many subsamples (with or without replacement) with size, sayn=2.
The idea is then to construct a score indexed on� that measures stability – or insta-
bility – of the selected variables. The selected edges are those matching a given score,
for which the probability of false discovery is controlled. This requires an additional
threshold in place of a choice of� , but the authors in[123, 109] claim that such a thresh-
old is typically much less sensitive than is the tuning parameter� . An application of
such resampling techniques to the inference of biological networks has been pursued
with success in[71] , advocating for the use of stability methods on real problems.

A final possibility — that remains somewhat confidential while writing these lines
— is to rely on sparse procedures which are less sensitive to� : among these, we may
cite the “scaled-Lasso”[159] for linear regression, adapted to the context of network
inference in a neighborhood-selection-like fashion in[160] .

Extensions towards non Gaussian settings. As hopefully illustrated throughout
this section, sparse GGM is a mature and well controlled framework, with solid con-
tributions both on the statistical and the computational sides. There is also expand-
ing innovative literature tending to broaden the applicability of GGMs, especially to
overcome the Gaussian assumption. Indeed, particularly in genomics, there is a grow-
ing interest for the multivariate modeling of discrete random vectors, as sequencing
techniques provide us with count data. In this perspective, some attempts were made
for a Poisson version of the above techniques: in[1] for instance, the neighborhood
selection approach is extended to a sparse generalized linear model setup; still, inter-
pretability of the inferred network is questionable, as a null partial correlation does not
mean conditional dependency in the non-Gaussian case. In a recent paper[188] , a re-
view of existing Poisson graphical models is provided, where the notion of conditional
dependency is more carefully specified.

Finally, there is much interest for pretreatment methods which change the original
data into more “Gaussian” data via simple transformations. Hence, we can still take
advantage of the well-controlled sparse GGM framework. A successful work based on
Gaussian copulas is the nonparanormal distribution developed in[108] . It is imple-
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mented within theR-packagehuge, at a negligible cost compared to that of the infer-
ence process itself.

2.2 CONTRIBUTIONS

This section proposes an overview of my contributions to the framework of sparse
GGM for network inference. Although these extensions apply to a broad class of ap-
plication fields where sparse covariance estimation is involved, I readily acknowledge
that I have mainly drawn inspiration from genomics problems to motivate those ex-
tensions. The main guideline for these contributions is to account for some kind of
structure or characteristics possessed by genomics data as discussed in Chapter 1.

The first contribution is developed in Section 2.2.1. It corresponds to the jour-
nal paper[JP9] written with Catherine Matias and Christophe Ambroise, and imple-
mented in anR-package initially described in[JP11] . It addresses the introduction of a
possible special organization of the network itself to drive the reconstruction process.
Indeed, while sparsity is necessary to solve the problem when few observations are
available, biasing the estimation of the network towards a given topology can help us
find the correct graph in a more robust way, by preventing the algorithm from looking
for solutions in regions where the correct graph is less likely to reside.

The second contribution (Section 2.2.2) emerged from a collaboration with Yves
Grandvalet and Christophe Ambroise[JP7] . It addresses the problem of sample het-
erogeneity which typically occurs when several assays are performed in different exper-
imental conditions that potentially affect the regulations, but are still merged together
to perform network inference as data is very scarce. We remedy heterogeneity among
sample experiments by estimating multiple GGMs, each of which matches different
modalities of the same set of variables, which correspond here to the different exper-
imental conditions. This idea, coupled with the integration of biological knowledge,
was further explored for application in cancer with Marine Jeanmougin and Camille
Charbonnier [BC1] .

In Section 2.2.3, I describe adaptations of the two preceding GGM extensions to
time-course data, relying on a VAR(1) modeling. This corresponds to the first part of
Camille Charbonnier’s PhD thesis published in the journal paper[JP8] .

Finally, a deeper generalization of GGM comes by integrating multiple types of
data measured from diverse platforms, what is sometimes referred to ashorizontal in-
tegration: not only does this means a better treatment of the heterogeneity of the data,
but it also makes the network reconstruction more robust. An option is proposed in
Section 2.2.4 which corresponds to an unpublished work started with Eric Kolazcyk
that unfortunately remains unfinished as a similar proposal scooped our own work.
Remark. The choice of not overly detailing neither the technical side of the algorithm
nor the statistical properties of the corresponding penalty-based approaches is deliber-
ate, as this chapter is more intended to illustrate how biological data motivated modi-
fication of the criteria at hand with sparse GGM. Computational and statistical prop-
erties of the original sparse methods used for GGM inference are addressed in more
detail and in a broader context in Chapter 3.

2.2.1 Accounting for latent organization of networks

The major originality of the method developed in this work lies in the fact that it
searches for a latent modular representation of the GGM to drive the sparse inference of
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(a) Community (or affiliation) (b) Star (or hub) (c) Mixed community and star

Figure 2.1 –Examples of typical network structures.

its conditional structure. Indeed, modularity and more generally heterogeneity are an
important property of gene regulatory networks, see[82] . Typical network structures
which can be expected in biological networks are illustrated in Figure 2.1. For instance,
the so-called “hubs” in Figure b) are highly connected biological features, showing a dif-
ferent behavior from that of the rest of the graph.

Providing the network with a latent structure. To describe network heterogene-
ity, we adopt the Stochastic Block Model (SBM) framework which provides mixture
models for random graphs. This model has been reinvented many times in the litera-
ture and a non exhaustive bibliography should include[55, 157, 39] . An SBM can be
stated as follows: vertices ofP are distributed among a setQ = f 1, . . . ,Qgof hidden
clusters that model the latent structure of the graphG. For any vertexi , the indicator
variableZi q is equal to 1 ifi 2 q and 0 otherwise, hence describing which cluster the
vertexi belongs to. A vertex is assumed to belong to one cluster only, thus the random
vectorZ i = ( Zi1, . . . ,ZiQ ) follows a multinomial distribution such thatZ i � M (1,� ),
where � = ( � 1, . . . ,� Q ) is a vector of cluster proportions, such that

P
q � q = 1. The

connectivity matrix � = ( � q ‘ )q,‘ 2Q , describesP(i � j ji 2 q, j 2 ‘ ), that is, how vari-
ables from each cluster connect to each other. If working with a valuated network – as
will be the case in the following – we shall use a density function in place of the matrix
� to define the distribution of the value of the edge according to the class to which the
node belongs, that is, a set of density functionfq ‘ (�). Various choices are possible, as
depicted in[117] .

This framework embraces a large variety of network topologies. In that respect,
Figure 2.1 illustrates only a small subset of all possible structures. In the context of
gene regulatory networks, the SBM is able to capture functional modules in the spirit
of community structures but also other main topological properties of biological net-
works like star-shaped models isolating transcription factors. The set of parameters
(� , � ) describing the latent structureZ could either be considered as prior knowledge,
motivated by biological expert knowledge or bibliographical references, or inferred
directly from the data. We will see how to deal with the second option in the follow-
ing, but we first considerZ as known, to show how it can be easily integrated into the
network reconstruction process with sparse methods.

High-dimensional inference driven by latent network structure. The idea devel-
oped in our work [JP9] is to refine the regularization in penalized criteria such as (2.4),
(2.7), (2.8) or (2.9) by adding entrywisestructure adaptive penalty parameters. Consider
for instance the penalized likelihood framework (2.4): the different level of the penalty
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parameters for each entry� i j should be driven by the latent structureZ, leading to

b� � ,Z = arg max
� 2S +

p

logdet(� ) � Tr (� bS) � � kPZ ? � k‘ 1
, (2.11)

wherePZ is a p � p matrix of penalty terms the entries of which depend onZ and
? denotes the term-by-term product. The penalty term decomposes into a common
part � tuning the overall amount of sparsity of the graph and a new structured partPZ

used to tune the strength of prior information, which will encourage the edge structure
to adopt more or less strongly the prior structureZ. Indeed, we wish to penalize the
elements of the concentration matrix according to the clusters to which the variables
belong. For instance, let us imagine a graph endowed with a community structure as
in Figure 2.1 a): if two variables belong to the same community, we wish to lower the
penalty acting on the corresponding entry in the concentration matrix. Conversely,
we want to increase the penalty on entries corresponding to variables belonging to
different communities with low connectivity probability, in order to shrink the esti-
mated partial correlation to zero. WhenZ and the associated parameters are known,
various penalty values can be defined as decreasing functions of the connectivity matrix
� . Suppose variablesi and j are assigned to clustersq and ‘ , then an efficient penalty
weight for edge� i j isPZ

i j = 1� � q ‘ . We explored in[BC1] such an option for analyz-
ing breast cancer data, where prior knowledge based upon existing cancer signatures
and pathway analysis have been integrated inPZ to drive the network reconstruction.

However, a fully integrated statistical model is desirable to recover bothZ and �
simultaneously: an option that we explored in[JP9] is to rely on an EM-like strategy.
The main lines of this approach are depicted in the following.

A global EM-strategy for sparse GGM with latent structure. Our idea is to reach
an EM strategy such that the E-step corresponds to the inference of the latent structure
Z, while the M-step corresponds to the resolution of (2.11), that is to say, inference of
the network G.

To this end, we must put a probabilistic model on� in order to write the complete
likelihood of the model. We thus extend the clustering of verticesP to the concentra-
tion matrix � . Accordingly, both the existence and the weight of the edges, described
by the off-diagonal elements of� , will depend on the cluster to which each vertex be-
longs. Conditional on the eventsi 2 q and j 2 ‘ whereq, ‘ are clusters chosen from
Q , we provide each� i j with a prior Laplace distribution denoted for alli 6= j by fq ‘
and identified by its scaling parameter� q ‘ > 0, that is1

� i j j
ƒ

Zi q Z j ‘ = 1
'

� fq ‘ (�; � q ‘ ) with fq ‘ (� ; � q ‘ ) =
1

2� q ‘
exp�

j� j
� q ‘

.

It will be noticed that in this formulation the variables� i j are assumed to be indepen-
dent, conditional on the clusters to which the vertices belong to. Moreover, we are
considering only undirected graphs, so we may assume that� q ‘ = � ‘ q .

The reason for choosing a Laplace distribution is that‘ 1 penalties may be inter-
preted as Laplace priors on the parameters: this interpretation enables us to embed the
sparse‘ 1-procedure into an EM-algorithm. Indeed, under the modeling specified, we
have the following result:

1For technical reasons, we also assume a distribution on diagonal elements of� , namely� i i � f0(�; � 0).
where the parameter� 0 is fixed and not estimated.
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Proposition. The complete likelihood can be written as

logP(X , � ,Z) =
n
2

(logdet(� ) � Tr (Sn � )) �
 PZ ? �


‘ 1

�
X

i , j2P ,i6= j
q,‘ 2Q

Zi q Z j ‘ log(2� q ‘ ) +
X

i2P ,q2Q
Zi q log� q + c , (2.12)

where c is a constant term and PZ is defined by

PZ
i j =

�
1=� q ‘ , if i 6= j , i 2 q, j 2 ‘
1=� 0, otherwise.

(2.13)

In the classicalEM framework developed by[41] inferring the parameters� spread
over a latent structureZ would make use of the conditional expectation:

Q
�
� j� (m)

�
= E

ƒ
logP(X , � ,Z)

��X ; � (m)
'

=
X

Z2Z
P

�
Z

��� (m)
�

logP(X , � ,Z), (2.14)

where� (m) is the estimation of� from the previous step of the algorithm.

E-step. The usualEM strategy would be to alternate anE-step computing the con-
ditional expectation (2.14) with anM-step maximizing this quantity over the parameter
of interest � . Unfortunately, no closed form ofQ

�
� j� (m)� can be formulated in the

present case. The technical difficulty lies in the complex dependency structure con-
tained in the model. Indeed,P(Zj� ) cannot be factorized, as argued in[39] . This
makes the direct calculation ofQ

�
� j� (m)� impossible. To tackle this problem we use a

variational approach[83] , which has been further investigated for SBM in[117] . In this
framework, the conditional distribution of the latent variablesP(Zj� (m)) is approxi-
mated by a more convenient distribution denoted byRm(Z), which is chosen carefully
in order to be tractable. Hence, ourEM-like algorithm deals with the following ap-
proximation of the conditional expectation (2.14)

ERm
f logP(X , � ,Z)g=

X

Z2Z
Rm(Z) logP(X , � ,Z). (2.15)

Though not detailed here (see more in our original paper[JP9]), this variational ap-
proach enables us to compute the conditional expectation (2.15) by providing an esti-
mation ÒQ� , where � i q = P̂(i 2 q), defined for alli 2 P ,q 2 Q , are the variational
parameters estimating the latent structureZ. Note that we can derive analytic expres-
sions for estimating the parameters� and� q ‘ , though details are omitted here.

M-step. Now, we wish to infer the concentration matrix� , assuming� is known.
This is the aim of theM-step of ourEM–like strategy, that deals with the maximization
problem argmax� � 0

ÒQ� (� ). Conditional on the estimated structure� , we can com-
pute the maximuma posteriori estimate of� defined as follows

b� = arg max
� � 0

logP(� jX , � ) = arg max
� � 0

logP(� ,X j� ). (2.16)

Using Expression 2.12 of the complete likelihood and the equalityER�
(Zi q Z j ‘ ) =

� i q � j ‘ , it is a simple matter to rewrite the problem as the‘ 1-penalized optimization
problem

b� = arg max
� � 0

ƒ
logdet(� ) � Tr (S� ) � � kP� ? � k‘ 1

'
. (2.17)
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There are various algorithms to optimize (2.17). In[JP9, JP11] , we rely on the approach
originally developed in[57] for the Graphical-Lasso, briefly depicted in Section 2.1.2.
The main bottleneck here is to efficiently solve a weighted-Lasso Problem. We used a
modified coordinate descent approach[59, 56] to optimize the latter. More details on
such computational tools are provided in paper[JP9] and in Chapter 3, Section 3.1.2.

Finally, note that we start our EM algorithm by choosing initial values of� and�
using a classification algorithm such as spectral clustering[130] . The number of classQ
is chosen using the ICL (integrated complete likelihood) criterion of[11] and remains
fixed throughout the EM steps. The� q ‘ is a user parameter, which may typically be
cross-validated.

Illustrative example on a breast cancer data set. We tested our procedure on a gene
expression data set provided by[73] and concerning 133 patients with stageI � I I I
breast cancer. The patients were treated with chemotherapy prior to surgery. Patient
response to the treatment is classified as either a pathologic complete response (pCR)
or a residual disease (not-pCR). A multigene predictor for treatment response is devel-
oped in [126] on this data set, consisting in a set of 26 genes having a high predictive
value. We show on Figure 2.2 the network reconstructed with our method, exhibiting
a modular structure in 3 classes, and a number of edges of the same order asp = 26
after cross-validation of� .
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Figure 2.2 –Breast cancer data set of [73] : inferred graphs on the signature proposed by [126] . Red
(respectively blue) edges correspond to positive (respective negative) partial correlations.

Some final comments on structured GGM inference. This method has been im-
plemented in theR-packagesimone, of which I am the principal developer. In the
full length paper[JP9] , a simulation study characterizes the situations where our pro-
posal outperforms its competitors. We also propose an alternative choice for the� q ‘ to
bound the probability of misclassifying a couple of nodes from classesq, ‘ . Following
our work, a Bayesian algorithm[119] was proposed for implementing such a model; a
paper very close to our work but that does not seem to be aware of it is[186] . Recent
works sharing similar ideas on an underlying network organization are[25, 163, 66] .
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2.2.2 Accounting for sample heterogeneity

In order to deal with the data scarcity in genomics, it is a common practice in GGM-
based inference methods to merge different experimental conditions from wetlab data
as in[149, 169] . This process increases the number of observations available for infer-
ring interactions. However, GGMs assume that the observed data form an independent
and identically distributed sample. In the aforementioned paradigm, assuming that the
merged data are drawn from a single Gaussian component is obviously wrong and is
likely to have detrimental effects on the estimation process. In the journal paper[JP7] ,
I present with my co-authors a series of sparse inference methods that propose to rem-
edy this problem by estimating multiple GGMs.

GGM inference in a multi-task framework. From a statistical viewpoint, we have
n observations belonging toC different sub-populations (or “tasks”), hence with differ-
ent distributions. Assuming that each sample was drawn independently from a Gaus-
sian distribution, we set

X (c) � N (0p , � (c)),

where theC samples may be processed separately, following any approach described
in Section 2.1.2: denote byL (� (c);S(c)

n ) the data-fitting term in conditionc with the
corresponding concentration matrix and empirical covariance matrix;L can be the
multivariate Gaussian log-likelihood as in (2.4), the pseudo-likelihood as in (2.7) or
the losses arising in CLIME (2.8) or SPACE (2.9). In the case of the graphical-Lasso,
optimizing the C problems separately can be expressed as the unique optimization
problem

arg max
f � (c)

i j :i6= jgC
c= 1

CX

c= 1

�
L (� (c);S(c)

n ) � � k� (c)k‘ 1

�
. (2.18)

Note that it is sensible to apply the same penalty parameter� for all samples, provided
that the C samples have similar sizes and originate from similar distributions, in par-
ticular regarding scaling and sparseness.

experiment 1 experiment 2 experiment 3

(X(1)
1 , . . . , X(1)

n1 ) (X(2)
1 , . . . , X(2)

n2 ) (X(3)
1 , . . . , X(3)

n3 )

inference inference inference

Figure 2.3 –Multi-task learning framework
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Problem (2.18) ignores the relationships between regulation networks. When sub-
population networks are assumed to share a large common core of edges and only differ
by a small subset of edges, the multi-task learning framework presented in Figure 2.3
is well adapted, especially for small sample sizes. First, sharing information may con-
siderably improve estimation accuracy. Second, keeping the opportunity to identify
differences between the networks is the key to understanding the regulatory system up
to its sub-population variations. Starting from problem (2.18), coupling the estimation
of � (1), . . . ,� (C ) may be achieved by either modifying the data-fitting term or the pe-
nalizer. These two options result respectively in the graphical intertwined-Lasso and
the graphical cooperative-Lasso presented below.

Intertwined inference. In the maximum a posteriori framework, the estimation of
a concentration matrix can be biased towards a specific value, say(S0

n)� 1. From a prac-
tical viewpoint, this is usually done by considering a conjugate prior on� , that is, a
Wishart distribution W ((S0

n)� 1,n). The MAP estimate is then computed as if we had
observed additional observations of empirical covariance matrixS0

n.
Here, we would like to bias each estimation problem towards the same concentra-

tion matrix, the value of which is unknown. An empirical Bayes solution would be to
setS0

n = S̄n, whereS̄n is the weighted average of theC empirical covariance matrices.
As in the maximum likelihood framework, this approach would lead to a full concen-
tration matrix. Hence, we consider here a penalized criterion, which does not exactly
fit the penalized maximum likelihood nor the MAP frameworks, but which will per-
form the desired coupling between the estimates of� (1), . . . ,� (C ) while pursuing the
original sparseness goal.

Formally, let n1, . . . ,nC be the sizes of the respective samples, the empirical co-
variance matrices of which are denoted byS(1)

n , . . . ,S(C )
n . Also denotingn =

P
nc , we

consider the following problem:

max
f � (c)

i j :i6= jgC
c= 1

CX

c= 1

�
L (� (c); S̃(c)

n ) � � k� (c)k1

�
, (2.19)

where S̃(c)
n = � S(c)

n + ( 1 � � )S̄n and S̄n = n� 1P C
c= 1 nt S

(c)
n . As this criterion amounts

to considering that we observed a blend of the actual data for taskc and data from the
other tasks, we will refer to this approach as intertwined estimation.

The idea is reminiscent of the compromise between linear discriminant analysis and
its quadratic counterpart performed by the regularized discriminant analysis of[58] .
Although the tools are similar, the primary goals differ:[58] aims at getting control
on the number of effective parameters, while we want to bias empirical distributions
towards a common model. The additional tuning parameter� can typically be chosen
by cross-validation.

Cooperative inference. The second approach consists in devising penalties that en-
courage similar sparsity patterns across tasks.

This kind of setting has received much attention in the statistics and machine
learning communities, mainly on variants and applications of the Group-Lasso pro-
posed in[190] , which has already inspired some multi-task learning strategies as in
[121, 2, 4, 112] , but had never been considered for learning graph models when we pro-
posed this work. We briefly describe how group-Lasso may be used for inferring mul-
tiple graphs before introducing a slightly more complex penalty, thecooperative-Lasso,
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which was inspired by the application to biological interactions, but which should be
relevant in many other applications.

As in the single task case, sparsity of the concentration matrices is obtainedvia an
‘ 1-norm. An additional constraint imposes the similarity between the two concentra-
tion matrices. Each interaction is considered as a group.

The group-Lasso penalty is based upon a mixed norm (see Section 3.1.1) which
encourages sparse solutions with respect to groups, where groups form a pre-defined
partition of variables. The partition acts at the edge level, by grouping each partial
correlation coefficient across theC conditions. It is therefore useful to define vectors
f � i j gi6= j 2 RC containing all partial correlations between genesi and j across theC
conditions. Such a penalty will favor graphsG (1), . . . ,G (C ) with common regulations,
not necessarily with the same strength but present or absent together across the condi-
tions. The graphical group-Lasso learning problem designed to infer multiple GGMs
is then

arg max
f � (c)

i j :i6= jgC
c= 1

CX

c= 1
L (� (c);S(c)

n ) � �
X

i6= j

k� i j k‘ 2
. (2.20)

Although this formalization expresses some of our expectations regarding the com-
monalities between tasks, it is not really satisfying here since we aim at inferring the
support of the solution (that is, the set of non-zero entries of� (c)). To enable the
inference of different networks(c , c0), we must have some(i , j ) such that� (c)

i j = 0

and � (c0)
i j 6= 0. This event occurs with probability zero with the group-Lasso, where

variables enter or leave the support group-wise. However, we may cure this problem
by considering a regularization term that better suits our needs. Namely, when the
graphs represent the regulation networks of the same set of molecules across experi-
mental conditions, we expect a stronger similarity pattern than the one expressed in
(2.20). Specifically, the co-regulation encompasses up-regulation and down-regulation
and the type of regulation is not likely to be inverted across assays: in terms of partial
correlations, sign swaps are very unlikely. This additional constraint is formalized in
the following cooperative-Lasso learning problem (2.21):

arg max
f � (c)

i j :i6= jgC
c= 1

CX

c= 1
L (� (c);S(c)

n ) � �
X

i6= j

�
k� +

i j k‘ 2
+ k� �

i j k‘ 2

�
, (2.21)

whereu+ = max(0,u) andu � = max(0,� u).
Figure 2.4 illustrates the construction of the two grouped penalties. The group-

Lasso switches on or off all edges between variablesi and j across all conditions while
the cooperative-Lasso disconnects the activations of up- and down-regulations. In this
way, the cooperative-Lasso allows for instance the activation of an up-regulation in
a subset of conditions while this regulation disappears in the remaining conditions.
More insights come on the cooperative-Lasso in Section 3.2.1 of Chapter 3, where we
present our work [JP6] about its statistical properties in the linear regression frame-
work as well as an efficient optimization strategy.

Illustrative example on a breast cancer data set. We now revisit the breast cancer
data set of[73, 126] analyzed previously in Section 2.2.1. This time, we would like
to account for heterogeneity of the samples by splitting then = 133 patients into the
two subsamples “pCR” and “not-pCR” with respective sizes 34 and 99, to produce
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Figure 2.4 –Grouping edges without or with sign-effect for C = 4 conditions

two graphs – one per each type of patient. We learn the two networks jointly with our
cooperative-Lasso procedure. We couple this multiple network learning approach with
the procedure presented in Section 2.2.1 that accounts for the network heterogeneity,
where the latent structure that drives the inference is estimated on the intersection of
the two networks. For comparison purposes, we fix the penalty level so that we obtain
the same number of edges as in Figure 2.2, where the samples are all merged together.
Results of the inference are in Figure 2.5, where we highlight the differences between
the networks by pointing out three edges which may distinguish one condition from
another.
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Figure 2.5 –Breast cancer data set of [73] : multiple networks inferred on the signature proposed
by [126] by splitting the samples into pCR/ not-pCR: gray edges are common to the two conditions,
while black edges are specific to no-pCR case.
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Some final comments on multiple GGM inference. We omit in this part the op-
timization of problems (2.19),(2.20) and (2.21). More details are given in Chapter 3,
Sections 3.1.2 and 3.2.1. Basically, they decouple such that the major technical part is
to solve a non-smooth convex regularized problem. The original paper[JP7] also in-
cludes an application to the inference of the T-cell signaling pathway, and a numerical
study comparing the intertwined, the coop- and the group-Lasso for multiple network
inference with the baselines that either merge all the data together or treat each condi-
tion independently. This shows the range of applicability of the proposals.

Also note that the small numerical example depicted above is purely illustrative: in
a book chapter[BC1] , I develop with co-authors a complete application to a large co-
hort of patients with breast cancer. There, we infer jointly two networks correspond-
ing to the patients’ ER status (“ER+ ” or “ER-”). Indeed, ER is a hormone receptor the
activity of which is highly correlated to the efficiency of chemotherapy: we identified
interesting differences in the network characterizing each condition. In the continu-
ity of this work, a chapter of Camille Charbonnier’s PhD thesis is dedicated to the
design of test procedures for comparing two networks, in order to decipher whether
the edges identified by our procedure as different between tasks are statistically sig-
nificant: more is developed in a paper in revision at this stage, written by Camille in
collaboration with N. Verzelen and F. Villers[26] . Finally, note that all the multiple
GGM inference methods described in this section were integrated by myself into the
R-packagesimone.

In the literature, related works[68, 37] followed and proposed approaches close to
ours. A recent paper[173] builds on our multi-task framework in order to construct
a consensus network between multiple conditions.

2.2.3 Accounting for time-course data

In this section, we briefly show how the statistical model underlying the preceding
sparse GGM methods can be simply amended when observations are gathered over
time, which can be seen as another source of heterogeneity or structure in the data.

The problem of network inference from data gathered over time is typically mo-
tivated by applications in genomics, where it is common to perform time course ex-
periments for expression data. In this case, most learning strategies rely on first-order
vector auto-regressive (VAR1) models[137] , the inference of which should be amended
to deal with the high-dimensional setting:[132] depicts a shrinkage estimate while in
[102] statistical tests on limited-order partial correlations are performed to select signif-
icant edges. In[154] , the VAR(1) setup is dealt with by combining ideas from two ma-
jor developments of the Lasso, thus defining the Recursive elastic-net. During Camille
Charbonnier’s Master Thesis, we extended our work on sparse GGM with latent struc-
ture (Section 2.2.1) to the VAR(1) setup. The multi-task framework of Section 2.2.2 also
straightforwardly follows. An application with this setup was published in a journal
paper[JP8] . It also gave us the opportunity for a collaboration with a medical lab on
Parkinson disease[CI6] . We found it interesting to quickly review this VAR(1) setting
as the conditional graph has a different status in this case, and interpretation of the
network inferred differs as well.

Graph of conditional dependencies in the VAR(1) modeling. Suppose that the
dynamics of(X 0, . . . ,X T ) at regular time points are represented by a first order vector
autoregressive model VAR(1) as in equation (2.22). Each measurementX t 2 R p is a
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vector containing the observations of thep variables at timet .

X t = X t � 1A + " t , for all t � 1, (2.22)

whereA = ( A i j )i , j2P is a p � p matrix governing the dynamics of the observation
over time. Variations from these dynamics are captured by the white Gaussian process
f " t gt= 1,...,T , namely," t � N (0,D ) whereD is a diagonal matrix such thatD i i = � 2

i
and Cov(" t ," s ) = 1f s= tgD for all s , t > 0. Moreover,X 0 � N (0, � 0). Also assume
that Cov(X t ," s ) = 0 for all s > t : hence,X t is obviously a first-order Markov process
homogeneous in time, which means that the regulatory structure is assumed constant
over time.

In this setting, matrix A plays the role of the concentration matrix� in the
i.i.d. framework presented in the previous sections. Indeed, we haveX t jX t � 1 �
N (X t � 1A ,D ) and each entryA i j is proportional to the partial correlation coefficient
between variablesX t

i andX t � 1
j , that is to say between the observation of variablei at

time t and the observation ofj at the previous time point, with respect to all other
variables at timet � 1, as expressed in

A i j =
Cov

�
X t

i ,X
t � 1
j jX t � 1

nj

�

Var
�
X t � 1

j jX t � 1
nj

� .

Compared to the i.i.d. setting, nonzero entries ofA code for a directed graph describ-
ing the conditional dependencies between the elements ofP . An edge fromi to j
is added to the graph if, conditional on all variables except variablej at time t � 1,
the covariance betweenX t

i and X t � 1
j is nonzero. InferringA is again equivalent to

reconstructing the graph of conditional dependencies. However, there are two main
differences between this dynamic version of partial correlation and the notion of par-
tial correlation expressed in the previous section. First, the conditioning is made upon
all observations from the previous time-point, therefore self-loops are allowed. Second,
the correlation considered between two variables is asymmetric: we consider the cor-
relation between the past ofi and the present ofj , leading naturally to an asymmetric
matrix of partial correlations and a directed graph of conditional dependencies.

The Penalized Likelihood. Similarly to (2.11) in the i.i.d. settings, our aim is to
induce a structure adaptive penalty forA . For a fixed structureZ, if bV = X ü

n0XnT =n
denotes the across time empirical covariance matrix, the the estimate ofA in a weighted
penalized likelihood framework is the solution of

bAZ,� = arg max
A2R p� p

= Tr (AV > ) �
1
2

Tr (A> SnA) � � kPZ ?Ak‘ 1
. (2.23)

The structure adaptive penalty matrixPZ can be adjusted as in the i.i.d. setting either
by statistical inference of the latent structure or prior knowledge. Since the network
is now directed, this structure needs to take the direction of edges into account. Note
that the generalization of (2.23) to the multi-task criteria like (2.19),(2.20) and (2.21) is
straightforward. All of them have been implemented in thesimoneR-package.
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Some comments on the VAR(1) modeling. In this model, regulations are assumed
to be constant over time. Therefore, it is suited to drawing a picture of short-term
regulation dynamics based upon measurements taken at close time points and over a
short period of time. Models taking into account possible evolutions of the network
over time and better suited for life cycle data sets were for instance developed in[103]
with a Bayesian viewpoint, or with a fused-Lasso like penalty in[97] .

2.2.4 Accounting for multiscale data: multi-attribute GGM

We now place ourselves in the situation where, for our collection of featuresP , we
observe not one but several attributes. The question at hand remains the same, that
is to say, unraveling strong interactions between these features according to the obser-
vation of their attributes. Such networks are known as “association networks”, which
are systems of interacting elements, where a link between two different elements in-
dicates a sufficient level of similarity between element attributes. In this section, we
are interested in reconstructing such networks based uponn observations of a set of
K attributes of thep elements composing the vertices of the network. To this end, we
propose a natural generalization of sparse GGM to sparsemulti-attribute GGMs.

Remark. This work was planned for submission as a research paper with Christophe
Ambroise and Eric Kolazyck when we came across an independent work[96] on the
arXiv that proposes nearly the same approach. We somewhat gave up this project in
its original form, which I choose to include in this manuscript as it brings interesting
and renewed questions on GGMs.
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TF

Enz.

genestranscription translation

replication

regulates

regulates

Figure 2.6 –Basic example of a multi-attribute network in genomics: activity of a gene can be
measured at the transcriptomic and proteomic levels, and gene regulation affected accordingly

Why multi-attribute networks? The need for multi-attribute networks is relevant
in many application fields, but seems particularly applicable in genomics. Indeed,
with the plurality of emerging technologies and sequencing techniques, it is possible
to record many signals related to the same set of biological features at various scales
or locations of the cell. Consider for instance the simplifying – still hopefully didac-
tic – central dogma of molecular biology, sketched in Figure 2.6: basically, expression
of a gene encoding for a protein can be measured either at the transcriptome level, in
terms of its quantity of mRNA, or at the protein level, in terms of the concentration
of the associated protein. Still, different technologies are used to measure either the
transcriptome or the proteome, typically, microarray or sequencing technology for
gene expression levels and cytometric or spectrometric experiments for protein con-
centrations. Although these signals are very heterogeneous (different levels of noise,
count vs. continuous data, etc.), they do share commonality as they undergo common
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biological processes. We then put an edge in the network if it is supported in both
spaces (gene and protein spaces). Our hope is that molecular profiles combined on the
same set of biological samples can besynergistic, in order to identify a “consensus” and
hopefully more robust network.

Multi-attribute GGM. Let P = f 1, . . . ,pg be a set of variables of interest, each of
them having someK attributes. Consider the random vectorX = ( X1, . . . ,Xp )ü such
asXi = ( Xi1, . . . ,XiK )ü 2 RK for i 2 P . The vectorX 2 R pK describes theK recorded
signals for thep features. We assume thatX is a multivariate centered Gaussian vector,
that is,X � N (0, � ), with covariance and concentration matrices defined block-wise

� =

2

64

� 11 � 1p
...

� p1 � p p

3

75 , � =

2

64

� 11 � 1p
...

� p1 � p p

3

75 , � i j , � i j 2 M K ,K , 8(i , j ) 2 P 2,

whereM a,b is the set of real-valued matrices witha rows, b columns. Such a multi-
attribute framework has been studied in[91] with a reconstruction method based upon
canonical correlations in order to test dependencies between pairs(i , j ) at the attribute
level using covariance. Here, we propose to rely on partial correlations in a multivari-
ate framework rather than (canonical) correlations to describe relationships between
the features, and thus extend GGM to a multi-attribute framework. The objective is to
define a “canonical” version of partial correlations. In our setting, the target network
G = ( P ,E) is defined as the multivariate analog of the conditional graph for univariate
GGM, that is

(i , j ) 2 E , � i j 6= 0KK , 8 i 6= j . (2.24)

In words, there is no edge between two variablesi and j when their attributes are all
conditionally independent.

A multivariate version of neighborhood selection. Our idea for performing sparse
multi-attribute GGM inference is to define a multivariate analog of the neighborhood
selection approach[122] (see Section 2.1.2, Equations (2.5) and (2.7)). Indeed, it seems
to be the most natural and convenient setup toward multivariate generalization. Nev-
ertheless, we think that the graphical-Lasso (2.4), CLIME (2.8) or SPACE (2.9) settings
may have a close equivalent multi-attribute version.

To this end, we look at the multivariate analog of equation (2.6): in a multivariate
linear regression setup, it is a matter of straightforward algebra to see that the condi-
tional distribution of X j 2 RK on the other variables is

X j j Xnj = x � N (� � � 1
j j � jnj x, � � 1

j j ) .

Equivalently, lettingBT
j = � � � 1

j j � jnj , one has

X j j Xnj = BT
j Xnj + " j " j � N (0, � � 1

j j ), " j ? X ,

whereB j 2 M (p � 1)K ,K is defined block-wise

B j =

2

664

B(1)
j
...

B(p � 1)
j

3

775 = � � 1
j j �

2

664

� (1)
j
...

� (p � 1)
j

3

775 ,
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and where eachB(i )
j is aK � K matrix which links attributes of variables(i , j ). We

see that recovering the support ofB j block-wise is equivalent to reconstructing the
network defined in (2.24). Estimation ofB j is thus typically achieved through sparse
methods. To this end, we consider an i.i.d. samplef X ‘ gn

‘ = 1 of X such that each at-
tribute is observedn times for the p variable, eachX n being a pK-size row vector
staked in aM n,pK data matrixX , so thatX j 2 M n,K is a real-value,n � K block
matrix containing the data related to thej th variable:

X =

2

64

x1

...
xN

3

75 =
�
X1 . . . X p �

=

2

664

X 11
1 X 1K

1 . . . X p1
1 . . . X pK

1
...

... . . .
X 11

n X 1K
n . . . X 1K

n . . . X pK
n

3

775 .

Using these notations, a direct generalization of the neighborhood selection is to
predict for eachj = 1, . . . ,p the data blockX j by regressing onXnj . In matrix form,
this can be written as the optimization problem

arg min
B j 2R

J (Bj), J (B j ) =
1

2n

 X j � Xnj B j


2

F
+ � 
 (B j ), (2.25)

wherekAkF =
q P

i , j A2
i j is the Frobenius norm of matrixA and
 is a penalty which

constrainsB j block-wise.

Choosing a penalizer. Various choices for
 in (2.25) seem relevant: by simply set-
ting 
 0(A) =

P
i , j jAi , j j, we just encourage sparsity among theBi and thus do not

couple the attributes. A clever choice would be to activate a set of attributes all to-
gether: hence, the group is defined by all theK attributes between variablesi and j ,
therefore the penalizer turns to a group-Lasso like penalty


 1(B j ) =
X

i2P n j

kB(i )
j kF , (2.26)

in which case convex analysis and subdifferential calculus (see[18]) can be used to show
that aBi is optimal for Problem (2.25) if and only if

8
><

>:

8 i : B(i )
j 6= 0,

�
Si j + �

kB(i )
j kF

I
� � 1

Si j = B(i )
j

8 i : B(i )
j = 0KK , kSi j kF � �

, (2.27)

whereSi j 2 M KK is aK � K block in the empirical covariance matrixSn = n� 1X> X ,
which shows the same block-wise decomposition as� or � . This paves the way for
an optimization algorithm like block-coordinate descent which we implemented, al-
though we omit details here.

At the time we were working on this model, another idea that we had in mind —
although we did not push too far — was to propose a penalty based upon the nuclear
norm kAk? =

P
j � j , where(�1, . . . ,� p ) is the vector of singular values ofA . This some-

what penalizes the rank of a matrix, which would be desirable for matrix� i j when
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many attributes are shared between(i , j ). We thus might define a penalty on� in
place ofB j , with something like


 1(B j ) =
X

i2P n j

k� i j k?. (2.28)

However, this idea remains only at the feasible stage for now.

Numerical study. We propose a simple simulation to illustrate the interest of using
multi-attribute networks and the efficiency of our proposal. The simulations are set
up as follows:

1. Draw a random undirected network withp nodes from the Erdös-Renyi model;

2. Expand the associated adjacency matrix to multivariate space with

A = ( A + I ) 
 I K � K ;

3. Compute� a positive definite approximation ofA by replacing null and negative
eigenvalues by a small constant;

4. Control the difficulty of the problem with  > 0 such that� = � +  I ;

5. Draw an i.i.d. sampleX of X � N
�
0,� � 1� .

We choose small networks withp = 20, with 20 edges on average and varyn from p=2
to 2p. We consider cases where the number of attributes isK = 2 or K = 4. We either
apply the usual neighborhood selection procedure on each dimension separately, or its
multi-attribute counterpart with group-like penalty (2.26) on the multivariate data. We
compute the AUC for each method and replicate the experiment 50 times. On Figure
2.7, it is clear that aggregation improves upon single-attribute methods.
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Figure 2.7 –Simple simulation study for the multi-attribute network inference problem: the mul-
tivariate procedure improves over the univariate procedures in every situation when networks are
close for each attribute.
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Illustration: Gene / Protein regulatory network inference. As an illustration, we
applied our sparse multi-attribute GGM approach to the NCI-60 cancer line data set.
This data set consists in molecular profiles on a panel of 60 diverse human cancer cell
lines. We use both protein and gene profiling experiments. For the former, we have
samples for 92 antibodies from reverse-phase lysate arrays (RPLA); for the latter, ex-
pression is measured for 9,000 RNA with Human Genome U95 affymetrix. Aconsen-
sus set composed of 91 protein and the corresponding gene profiles is retained for the
n = 60 samples.

We infer a sparse GGM on each attribute (gene and protein), separately to start
with, and then on its multi-attribute version. We do this on a large grid of the tun-
ing parameter and thus have three families of networks indexed by their number of
edges. Figure 2.8 demonstrates that our sparse multi-attribute method capture the
characteristics of both univariate networks, as the Jaccard similarity index is high be-
tween each uni-attribute network and the multi-attribute network, while it remains
low when comparing uni-attribute networks together. This tends to prove that this
multi-attribute version proposes a consensus version of the interactions at hand in the
cell, and one which is hopefully more robust to noise and small misregulations.
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2.3 PERSPECTIVES

Network inference based upon sparse methods has been a hot topic in statistical learn-
ing since the middle of the 2000s. We have seen that the original baseline methods
published between 2006 and 2011 have a well-controlled statistical framework and are
supported by good computational tools. However, they do have some limitations, es-
pecially regarding the treatment of heterogeneous data. This motivated the emergence
of a second wave of works the common objective of which is to overcome this restric-
tion. A typical example that has received much attention recently is the multiple net-
work inference framework. My contributions belong to this second wave and I think
that I have brought some significant proposals for accounting for various sources of
heterogeneity and structures that characterize modern complex data, where genomics
data hold a place of choice. Several important issues remain to be addressed, however.
Among these, an emblematic and recurring question, which is typical in unsupervised
problems, is the difficulty for evaluating the level of trust that we have in the recon-
structed network, with the exception of some idealistic cases that do not fit any real
data situations. This suggests questions concerning both statistical and application per-
spectives.

On the statistical side, we naturally ask for tools to evaluate thesignificance of the
inferred network. In other words, we would like to be able to test the significance of
an edge, or to provide it with ap-value: statistical inference for sparse methods is an
important matter and several works recently tried to tackle this issue[110, 86, 12] .
A related question is the comparison of two networks, which can be stated as a test
problem, either at the global level (are these two networks different?) or the local
level (is this edge significantly different between these two networks?). This question is
partially addressed in[26] . Another statistical issue is the question of characterizing the
robustness of the proposed estimators, which seems especially challenging for sparse
estimators and high dimensional data, where the notion of outlier is hardly relevant.
In the sparse GGM framework, interesting preliminary work on influential function
is proposed in[8] and seems promising.

Several questions also arise on the application side, as sparse GGM fail to re-
construct real regulatory networks at a low false positive rate, when only based
upon transcriptomic data, even in a data regime supported by the theory. More
disturbingly, recent results from the DREAM challenge[115] show that no method
among (Dynamic) Bayesian Network, GGM, Random forest or Mutual Information
based methods clearly dominates the others. It really questions the utility of such
models, since typically the reconstructed network represents statistical interactions
which probably do not have the same meaning as the biological interactions expected
by the biologist.

In my opinion, even if the reconstructed networks are not straightforwardly in-
terpretable in terms of biological mechanisms and interactions, they still potentially
capture some important statistical features which can be used to strengthen the discov-
ery of other biological processes that rule the cell. In this perspective, I am continuing
to work on sparse GGM approaches in genomics with two guidelines:

1. perform more data integration and handle various sources of heterogeneity,

2. couple network inference with the estimation of other biological features, with
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the hope of enhancing the estimation of the latter, and maybe of the former as
well.

I briefly depict some on-going works and ideas in this vein in the following couple
of paragraphs.

Enhancing network reconstruction by embedded transcription factor elucidation.
Transcription factors (TF) are proteins which regulate gene expression. Keeping a good
knowledge of TF is crucial in order to decode complex biological mechanisms which
control gene expression. It could help to robustly drive the reconstruction of regula-
tory networks, that is, infer direct inhibition and activation relationships between a set
of genes. This is already done in the most successful sparse network inference meth-
ods[71] , where the candidate edges are only considered from TF to target genes. Still,
this information is not always available, or very partial: a sound approach would be
to jointly recover the candidate genes for TF and their potential links (or edges) with
respect to other target genes. In[PP2] , I am developing with Stéphane Robin and Tris-
tan Mary-Huard a general purpose sparse multivariate procedure integrating various
kinds of prior. We illustrate, among other applications, how to unravelregulatory mo-
tifs associated with the genes encoding those TF, which could provide weights to drive
the network inference in a second step.

I am also working with Marie-Laure Martin-Magniette on validating such meth-
ods on well-controlled data for the model plantArabidopsis thaliana, for which many
sources of data and prior biological knowledge are available. By these means, we hope
to evaluate the relevance of GGM for modeling different kinds of biological processes
and interactions.

Coupling differential analysis and network inference. The topic of Trung Ha’s
PhD. thesis, which I am co-supervising, concerns the multiple network learning frame-
work of Section 2.2.2, but with an additional assumption on the means of the Gaus-
sian vectors: we consider several related Gaussian vectorsX c � N (� (c), � (c)), for
c = 1, . . . ,C ; our objective is to estimate both� (c) and � (c), assuming that the means
and the covariance matrices respectively share some commonalities across tasks. To
this end, we rely on a sparse multivariate convex criterion, where we encourage similar-
ities between the vectors of meansvia a fused-Lasso penalty and the penalties described
in Section 2.2.2 to encourage similarity at the covariance level.

On the application side in genomics, the goal of this project is to take advantage
of the unobserved correlations between genes (described by the covariance matrices
� (c)) to enhance differential analysis (performed on the vectors of means� (c)): ex-
isting works proposed to rely on known gene networks (e.g. via pathways) to drive
the classification, either by including such information by means of the graph Lapla-
cian[140] , or by including the graph structure directly within the testing procedure to
gain power[84] . On the other hand, knowing which genes are differentially expressed
could be precious information for network inference purpose. For instance, the genes
the expression of which are strongly correlated could be co-regulated and are hence
more likely to belong to the same cluster in the inferred graph, as shown in[JP9] .

Enumeration of Perturbation Scenarios in Biological Networks. This following
path of research corresponds to a project submitted during early 2015 for an INSERM
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grant with Étienne Birmelé, Pierre Neuvial, Mohamed Elati, Sophie Lèbre and collab-
orators from the Curie Institute. In the methodological part of this project, our idea is
to explore near-optimal solutions of a network inference procedure to check whether
those solutions are more relevant from the biological point of view. In a way, it by-
passes the inference problem by instead questioning two antagonist goals which are
often interchanged: biological interpretability and prediction accuracy.

The goal is to study from a mathematical viewpoint a perturbation model that
integrates an inferred normal regulatory network with heterogeneous data from tu-
mor cells to elucidate:i ) How a small number of changes to the network alters the
function of the network; i i ) which regulators explain the observed alterations with
respect to the normal behavior, and which processes are influenced by these driver
regulators. As an application, through an established collaboration with the team of
molecular Oncology of the Curie Institute, we will study two types of data for regula-
tory network alterations in tumorous bladder cells: (1) transcriptional gene regulation
networks, with alterations taking into account expression and copy number variation
data; (2) alternative splicing regulation networks, with alterations on exon array data.
These applications should lead to the identification of new putative oncogenes and tu-
mor suppressor genes associated with pathways specifically altered in tumors.

At this stage, we develop in a preliminary work[JP3] a statistical methodology to
identify misregulated genes given a reference network and gene expression data. The
learning relies on a message-passing algorithm coupled to a sparse GGM method tai-
lored to account for groups of co-activators and co-inhibitors in the reference network.
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T HIS chapter is dedicated to my works on structured sparse methods. After a brief
overview of the basic computational and statistical tools related to sparse regu-

larization, I present four of my contributions to this field. I wish to demonstrate the
diversity of these contributions, some being related to algorithmic and computational
considerations, while some others are focused on the statistical properties of the meth-
ods. All emerged from motivations anchored in applications.
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3.1 BACKGROUND

Section 1.2.2 of Chapter 1 detailed various motivations for relying on sparse and reg-
ularization approaches to analyze modern complex data. One of the most important
features of these methods is their capability to provide structured estimators. By forc-
ing the estimator to be endowed with a particular structure through regularization, we
hope for a model that shows better statistical performance and that is more suitable
for interpretation. Ever since such regularization methods have gained in popularity, a
tremendous number of variants have emerged, “crafted” to account for various kinds of
structures in the targeted set of parameters. This structure depends on the prior knowl-
edge at our disposal (such as a natural grouping of the features, information about their
spatial organization, or more simply sparsity). This section provides the reader with
a brief overview of penalty-based approaches for structured regularization, using con-
vex norms and for different kinds of structures. It also gives the basic pointers to the
bibliographical references detailing the associated computational and statistical issues.
Section 3.2 then presents my contributions to this field.

3.1.1 Structured regularization with penalized methods

Recall the framework presented in Section 1.2.2, that is, convex constrained optimiza-
tion problems with the form

minimize
� 2S

f (� ;data), such that 
 (� ) � c , (3.1)

where � is the set of parameters of interest living in spaceS ; f is a convex function
describing how well the model indexed by� fits the data;
 is a convex set describing
the constraint imposed on the parameters. Problem (3.1) can be equivalently1 stated
in an unconstrained Lagrangian form[18]

minimize
� 2S

f (� ;data) + � 
 (� ). (3.2)

In this latter form, we typically refer to 
 (�) as the “penalty” or “regularization term”2,
the amount of which is controlled by the positive tuning parameter� . Technically
speaking, regularization has various virtues: it generally aims ati ) guaranteeing the
existence of a solution;i i ) guaranteeing the uniqueness of the solution (in the case of
a strongly convex problem),i i i ) preventing lack of stability of the solution. In other
words, it typically turns an ill-posed problem into a well-posed problem. In a statistical
modeling perspective, the choice of
 also controls the behavior of our estimator, that
is, of the solution to (3.2). Such a strategy typically reduces the variance by introducing
a little bias.

§

In this section, I present regularization approaches where
 are convex sets ob-
tained with a combination of‘  -norms. We show how one may “play” with norms
to obtain various structural behaviors for the estimated coefficients, such as control-
ling their size, performing selection, unraveling grouping structures or accounting for
spatial organization, thus providing the estimator with some special structure.

1Problems are equivalent in the sense that there is a couple(� , c) such that the two solutions coincide.
2Strictly speaking, regularization can also be achieved by modifying the fitting termf (e.g., by replac-

ing f by a surrogate function facilitating the optimization).
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The bridge family and ‘  norms: Ridge, Lasso and others. We start by recalling
the basic regularization effects induced by the use of standard norms. We illustrate our
point by considering the case where the set� of parameters is described by a vector
� with p real entries,i.e., � 2 R p . A simple way to regularize� is by controlling its
‘  -norm, defined by

k� k =

 
pX

j= 1
j� 

j j

! 1=

.

This idea is pursued in the linear regression framework withbridge regression [54, 59] .
The range of‘  -norms for  > 0 defines the family of bridge estimators, obtained by
regularization of ordinary least squares:

�̂ � , = arg min
� 2R p

f (� ;X ,y) + � k� k
 , with f (� ;X ,y) =

1
2

ky � X � k2
2, (3.3)

wherey 2 Rn is a vector of outcomes predicted by a linear combination of the columns
of the n � p matrix of predictorsX . Although such a penalization is applicable to other
loss functions beyond the quadratic loss, we rely on this important example to illustrate
the structural nature of the regularization induced by‘  -norm penalizations.

Regularization paths are a common visualization tool to gain insight into the effect
of the parameters� and  . Figure 3.1 represents such paths for the bridge estimator,
i.e., f �̂ � , , � > 0g for a couple of striking values of , with data drawn as in Example
(1.4) of Chapter 1.

 = 1 (Lasso)  = 2 (Ridge)  = 1

�̂
�,



small  � regularization level� (log-scale) �! large

Figure 3.1 –Regularization paths for the bridge estimators fitted with R-package quadrupen

From this figure, the most obvious effect of‘  -regularization is to control the size

of the coefficients: a sufficiently large value of� zeroes all the coefficients, whilê� � ,
tends to the OLS estimate when� ! 0. However, control of the size is achieved in
various way depending on : with  = 1 , all coefficients lie in a given convex envelop
with a given magnitude; Ridge regression[77] ( = 2) tends to group correlated features
together along the paths, while the Lasso ( = 1) has the great capability of activating
the most relevant coefficients one after the other. More insights into the effect of on
the induced regularization is gained thanks to simple geometrical arguments, and by
considering the constrained formulation of (3.3), as follows:

�̂ � , = arg min
� 2R p

f (� ;X ,y) such that k� k
 � c . (3.4)
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In this equivalent formulation of bridge regression, the constraint induced by the‘  -
norm defines a feasible set which is nothing more than the corresponding ball of radius
c1= in R p wherec constrains the volume of the set. Figure 3.2 represents such sets for
various values of when � 2 R2 andc = 1.

‘ 0 ‘ 1=3 ‘ 1=2

‘ 1

‘ 2 ‘ 3 ‘ 1

β1

β 2

Figure 3.2 –Contour of the feasible sets defined by k� k � 1 for various values of  when � 2 R2.

How does singularity induce sparsity? A simple argument from constrained opti-
mization shows that a solution to Problem (3.4) is necessarily on the boundary of the
sets drawn in Figure 3.2, as long as the unconstrained OLS solution does not belong to
these feasible sets. In other words, the solution to (3.4) corresponds to the projection
of the OLS solution onto the ball of radiusc1= . With this geometrical viewpoint in
mind, we better understand how the various natures of the feasible sets in Figure 3.2
affect the regularization induced on the coefficients: in a variable selection perspective,
the ‘ 0 pseudo-normk� k0 = card

ƒ
j : � j 6= 0

'
defines the set of models over which we

would like to optimize, that is, all models with a given number of nonzero entries,
corresponding to as many predictors involved. However, the resolution of this combi-
natorial problem is prohibitive even for moderate values ofp, (say, 30). The same com-
putational argument applies for non-convex norms (i.e. quasi-norms), that is,‘  -norms
in the range 0<  < 1: the presence of singularities at the boundary induces variable
selection by exactly zeroing some coefficients; still, non-convexity means problems
which are hard to optimize. On the contrary, convex norms in the range of 1<  < 1
smoothly control the size of the coefficients, but absence of singularity prevents them
from achieving variable selection. At the interface of pseudo-norms ( � 1, perform-
ing variable selection) and norms ( � 1, enjoying convexity), the only candidate that
remains is the‘ 1-norm, a.k.a. the Lasso[164] in the linear regression framework.

The ability of the ‘ 1-norm to promote sparsity is clearly stated by considering the
first-order optimality conditions for (3.4), stating that a point̂� 2 R p is optimal if and
only if the least square derivative�r f (�̂ ;y,X) = � X> (y � X �̂ ) defines a supporting
hyperplane to the feasible set at̂� . In other words, the opposite of the least square
derivative must belong to the normal coneNB to the feasible set at̂� , where the nor-
mal cone to a convex setC at point x0 is defined byf y 2 R p ,hy, x � x0i � 0,8 x 2 C g.
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Thereby, for every� in the feasible set, the least square derivative must satisfy

hX ü y � X �̂ , �̂ � � i � 0.

Figure 1.3 pictures unit ballsR2 for ‘ 1 and ‘ 2 balls, along with their normal cones at
(1,0). If we think of the least square derivative as a continuous random variable (as a
function of " ), then it will almost never fall into the normal cone to the‘ 2 ball at(1,0),
which is degenerated into a single half-line of zero Lebesgue mass. On the contrary,
there is a non negligeable probability for it to fall into the normal cone to the‘ 1 ball
at (1,0), thanks to the singularity. In other words, contrary to the‘ 2-norm which is
differentiable onR p , the ‘ 1-norm favors the selection of its points of singularity, which
are interestingly located on the axis, shrinking some coefficients to 0.

B

NB(β̂)β̂

(a)Optimal point (1,0) on the ‘ 2 ball

B
NB(β̂)

β̂

(b) Optimal point (1,0) on the ‘ 1 ball

Figure 3.3 –Geometry of sparsity and optimality

Accounting for prior knowledge with group-norms and mixed-norms. Being
now equipped with the basic norms, we would like to blend them in order to intro-
duce a wide variety of structures depicting different types of prior information that
can be extracted from external sources of knowledge. This paragraph addresses the
case where such information can be described by a group structure on the variables
P = f 1, . . . ,pgthat we denote byG in general. We assume thatG containsK elements
such thatG = f G1, . . . ,GKg. Each groupGk is non empty, that is, it contains at least
one element fromP . Depending on additional assumptions onG and its elements,
this structure corresponds to a partition, a hierarchy or an ordering onP .

Now that the set of variables is endowed with a known group structure, the idea
is to impose a regularization scheme which is faithful to this structure. A natural way
to achieve this goal is to control the coefficients at the group level. This can be done
by measuring the volume of the coefficients� by means of norms decomposing at the
group level, ormixed-norms, which are defined in general as follows:

k� k
 ,� =

KX

k= 1

! k

 
X

j2Gk

j� j j
�

! =�

=
KX

k= 1

! kk� Gk
k

� , (3.5)

where � Gk
= ( � j , j 2 Gk ) 2 RjGk j is the vector of coefficients restricted to the ele-

ments ofGk . The weightsf ! k ,k = 1. . . ,Kg are used to adjust the regularization to
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each group, typically by accounting for the number of elements that belong to it. In
(3.5), groups are penalized according to an‘  -norm, while elements within a group
are penalized according to an‘ � -norm. Choices of and � for a particular problem
should be guided by the same kind of consideration as in the bridge case treated above,
depending on the desired behavior at the group or at the coefficient level.

We can find many instances of (3.5) in the literature. We only provide quick com-
ments and important references as a starting point for the interested reader. In this
perspective, Figure 3.4 represents the feasible sets inR3 for a series of couples( , � ),
when the grouping structure splitsf 1,2,3g into a partition such thatG = ff 1,2g, f 3gg.

‘ (1,1) ‘ (2,2) ‘ (1,4=3) ‘ (1,2) ‘ (2=3,1)

(Lasso) (Ridge) (Group-Lasso)

β
1

β
2

β
1

β
2

β
1

β
2

β
1

β
2

β
1

β
2

Figure 3.4 –Feasible sets defined by the mix norms k� k ,� � 1 for various couples ( , � ), with two
groups G1 = f 1,2g(first plane) and G2 = f 3g(vertical axis). (source: [161] , thanks to M. Szafranski).

Choosing = � masks any grouping effect and we recover the corresponding‘  -
norm, as exemplified for Lasso and Ridge regularization. On the right, we represent
an example of( , � ) leading to a non convex set. The two remaining examples where
 = 1 are instances of the popular “group-Lasso”, imposing sparsity at the group-level:

k� k1,� =
KX

k= 1

! k

 
X

j2Gk

� �
j

! 1=�

=
KX

k= 1

! kk� Gk
k� . (3.6)

The original group-Lasso[6, 190] corresponds to the case where� = 2. A complete
study for varying values of� can be found in[175] . Group-Lasso is the first instance of
“structured” sparsity. It gave birth to a number of works trying to generalize to a wider
class of structures. In particular, working with a structureG which is a partition is too
restrictive to integrate the vast sources of prior information that we can find in fields
of application such as signal processing, imaging, genomics, etc. In this perspective, an
overlapping group-Lasso was developed in[85] . Some analyses of penalties where the
grouping structureG defines a hierarchy on the variables is proposed in[161, 162, 87] .
The popular sparse group-Lasso[155] is just one instance of these. Structures more
general than hierarchies,i.e. orderings , depicted by a direct acyclic graph, are used
in the composite absolute penalties of[194] . For a general study about sparsity with
mixed-norms, the reader may refer to[99] .
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Accounting for prior knowledge with fusion and graph penalties. In the previ-
ous paragraph, we have seen how to introduce information about a known grouping
structure between variables. However, such accurate knowledge is not always avail-
able, and we may have only partial or “smooth” information on the potential relation-
ships. A typical example is prior spatial information: in a segmentation problem, we
expect the successive points composing the signal to be mostly the same except for a
few points, showing brutal changes corresponding to jumps in the signal. This idea
is exploited in[69] by means of the total variation (TV) penalty, which penalizes the
differences between the successive entries of a vector by TV(� ) =

P p � 1
j= 1 j� j+ 1 � � j j.

This idea generalizes to more complex relationships as follows: suppose that proxim-
ity between the variables can be depicted by a weighted graphG = ( V ,E,W ) with
verticesV = f 1, . . . ,pg and edgesE weighted by valuesW ) =

ƒ
! i j , (i , j ) 2 E

'
. The

generalized TV penalty on the graphG is defined by
X

(i , j )2E

! i j j� i � � j j = kD � k1, (3.7)

with D a jE j � p matrix encoding the pairwise differences between the variables. In
the standard TV-penalty encouraging similarity between neighbors,G is a chain graph
with edgesE = f (1,2), (2,3), . . . ,(p � 1, p)gandD a(p � 1) � p bidiagonal matrix such
that D i i = 1 andD i (i+ 1) = � 1. Penalty (3.7) has also been referred to as the generalized
Lasso[167] . We call it a “fusion” penalty, as it fuses pairs of coefficients inE to the
same value. When a smoother effect is desired, one may rely on an‘ 2 version of this
approach: X

(i , j )2E

! i j (� i � � j )
2 = � > DT D � = � > L� = k� k2

L . (3.8)

Penalty (3.8) can be seen as a generalized version of Ridge regression: when no prior
on the relationships between the variables is available, we setL = I and encounter the
usual ridge penalty. Meanwhile,L has a nice interpretation in spectral graph theory
[32] , as it is the combinatorial Laplacian ofG. This penalty has been used for instance
in [140] to integrate prior information in classification problems for genomics.

These two kinds of fusion penalties are convenient for encoding a wide range of
structural information. They have been especially popular when coupled with an ad-
ditional norm to induce, for instance, sparsity on top of the structural prior defined by
G. The corresponding regularization terms are written as a mixture of two penalties:

� k� k + ( 1 � � )k� k2
L (3.9a)

� k� k + ( 1 � � )kD � k1, (3.9b)

with � 2 [0,1] . Figure 3.5 represents possible options derived from (3.9a), (3.9b).
Consider the case where = 1, i.e. where sparsity is promoted on top of structured

regularization of the parameters. First, in (3.9a),‘ 1 and ‘ 2-norms are mixed, which is
known as the Elastic-net[198] . In its standard version, no structure is introduced, that
is, L = I . Still, the ‘ 2 norm tends to group correlated variables, thus the Elastic-net is
less sparse than is the Lasso, the latter tending to select a single candidate among a set
of correlated variables. Note that the “structured” version of the Elastic-net, defined
for generalL, has been rediscovered many times in the literature. Possible references
are[105, 156, 80] .



3.1. Background 71

‘ 1 + ‘ 2
2 ‘ 1 + ‘ 2

2 ‘ 1 + TV ‘ 1 + ‘ 2 � TV ‘ 1 + ‘ 2 � TV
elastic-net fused-Lasso structured enet

Figure 3.5 –Some mixtures of penalties promoting diverse structures between the variables

Second, with (3.9b), we couple two‘ 1 penalties: when the structuring regular-
ization boils down to the TV-penalty, we encounter the popular Fused-Lasso[166]
which promotes piecewise-constant coefficients while zeroing most of the segments
of the signal. The generalized version was studied in[76] . To my knowledge, cases
where  6= 1 are absent from the literature. I implemented cases where = 1 in the
R-packagequadrupen, as the‘ 1 has the nice property of being dual to the‘ 1-norm
and may be used in future work on its own.

In order to illustrate how including structural information can have a dramatic
effect on interpretability, let us consider a couple of regularization paths for some mix-
tures of penalties. To this end, we rely on the same linear regression problem (1.4)
as for the bridge regularization paths from Figure 3.1. Figure 3.6 represents the paths
obtained by mixing the‘ 2-fusion penalty (3.8) with a simple chain graph (encouraging
a smooth similarity between neighbors) to other norms: on the left panel, this norm
is used by itself; on the middle panel, it is mixed with the‘ 1-norm, thus performing
structured sparsity with a generalized form of the elastic-net; on the right panel, it is
mixed with an ‘ 1 -norm. Each color corresponds to a group in the simulation setup.
While the groups are unknown to the regularization procedure, they are recovered
with the three variants. These results have to be compared with paths from Figure 3.1,
where no special structure is encouraged by the regularization, and where the groups
are completely lost.

‘ 2–TV (Laplacian) ‘ 1 + ‘ 2–TV ‘ 1 + ‘ 2–TV

�̂
�,



small  � regularization level� (log-scale) �! large

Figure 3.6 –Regularization paths for the structured estimator fitted with the R-package quadrupen
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3.1.2 Computational consideration

The great success of penalized approaches comes from various reasons addressed in
Section 1.2.2. Among these reasons, the existence of computationally efficient fitting
procedures, largely due to tools from convex optimization, plays a central role. The lit-
erature developing new optimization tools to improve on the existent computational
methods is thus extremely abundant. Although I do not target exhaustiveness, this
section aims at insisting on the most important principles to solve structured regular-
ization problems like (3.2), in cases whenf is a convex differentiable function and

a convex norm with singularities. In such a situation, various general purpose convex
optimization solvers could be used (see[18]). However, they do not exploit the struc-
ture of the regularization problem – especially sparsity – and thus are sub-optimal in
terms of computational efficiency.

When 
 is convex and smooth, the techniques are relatively standard and in some
cases, analytic solutions are available. This is the case for the generalized ridge regres-
sion, i.e. when f (� ,X ,y) = ky � X � k2

2 and 
 is given by (3.8). The whole regular-
ization path can be obtained at the cost of a single SVD decomposition, as stated in
Equation (1.7), Section 1.2.2. Note that computing the SVD of ann � p matrix can be
prohibitive when the problem dimensions increase. But in a high-dimensional setup
when p � n, one only needs the truncated version of the SVD up ton singular val-
ues. When bothn and p become large, approximate versions can be used by randomly
sampling the columns ofX (see e.g.[185]).

More demanding techniques are required when
 is convex but non smooth, that
is, when it involves singularities due to‘ 1 or ‘ 1 -norms. As my contributions and
applications in genomics almost always concern variable or feature selection at some
point, I mainly rely on algorithms and optimization procedures taking advantage of the
sparsity of the problem. The next couple of paragraphs are thus concerned with general
strategies that can be adopted to dramatically improve the computational efficiency in
situations involving sparsity.

For a more detailed introduction to optimization methods suited for convex prob-
lems involving sparsity,[5] is of great help to the statistician as it covers many tools
known from the optimization literature (general convex solver, proximal methods, co-
ordinate descent, basics on duality, etc.). Since[5] was published, other techniques
known from the optimization community like stochastic gradient methods[125] , the
Frank-Wolfe algorithm [100] or ADMM (Alternating Direction Method of Multipli-
ers)[17] have gained in popularity and have been adapted to the resolution of sparse
problems. In my opinion, a researcher working in the field of computational statistics
should be aware of such techniques.

Active-set algorithms. These algorithms take advantage of the sparsity of the so-
lution by solving a series of small linear systems, the size of which is incrementally
increased/ decreased. This approach was originally developed in[134] for the Lasso in
a linear regression framework. The same idea was then pursued for the group-Lasso in
[147] . A more general description of working set algorithms – a close variant where
the set of “active” variables can only grow – is provided in[5] . We present here similar
ideas for the active set framework. A general active set method for solving Problem
(3.2) in the presence of sparsity-inducing norms is sketched in Algorithm 1.
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Algorithm 1: General purpose active-set algorithm
S0 Initialization

�  � 0 // Start with a feasible �
A  

ƒ
j : � 0

j 6= 0
'

// Recover the active-set

S1 Update active variables� A
� A c = 0jA c j
� A  arg min� ,� 2RjA j fA (� ) + � 
 (� ) // (Small) subproblem resolution

S2 Update active setA by monitoring the optimality conditions

if 
 ?(r f (� )) � � and 9 j 2 A : � j = 0 then
A  A nf jg // Downgrade j

else if 
 ?(r f (� )) > � then

find j ? : 
 ?(r f (� )) � � , A  A [ f j ?g // Upgrade j ?

else
Stop and return� // Optimality is reached

In words, this algorithm starts from a feasible sparse initial guess� 0 and then basi-
cally iterates over two steps:

1. Step 1 solves Problem (3.2) with respect to� A , the subset of “active” variables,
currently identified as being nonzero. At this stage the current feasible set is
restricted to the orthants where the gradient of
 (� ) has no discontinuities: the
problem is smooth and can be solved with any convex optimization procedure.

2. Step 2 assesses the validity of the setA , by checking the optimality conditions.
They are monitored thanks to
 ?(r f (� )), where
 ? is the dual norm3 of 
 . For
the general‘ � group-Lasso (3.6) (including the Lasso), the dual norm is


 ?(� ) = max
k= 1,...,K

k� kk� 0, where� ’ is such that
1
�

+
1
� 0

= 1.

There are two possibilities: if elements from� A have been zeroed during step
1 and optimality conditions are met, the corresponding variables are removed
from A . Otherwise, if optimality conditions are violated, we add an elementj
to A (it can be a group of variables), by picking the one that most violates these
conditions. This simple strategy has been observed to require few changes in the
active-set. When no such violation exists, the current solution is optimal.

In the first step, only small convex problems need to be solved. In a high-
dimensional setup wheren � p and where the underlying feature space is typically
sparse, only a few activations/ deactivations are required. Anyway, high-dimensional
statistics[63] tells us that few guarantees can be obtained for estimators lying in large
spaces whenn � p – and even whenn � p –. Thus, activating too many variables in
such procedures would only produce estimators that do not make any statistical sense.

3See Proposition 1.6 in[5] to see how dual norms are related to the duality gap, and thus helps in
monitoring the optimality conditions.
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To solve each small problem, we can rely on various optimization methods (see
the review[150] for the Lasso). In my personal implementation (packagesquadrupen
[SW3] or scoop[SW4]), I rely either on versatile and robust first order methods like
proximal [129, 9] and coordinate descent[56, 59, 171] methods, or on more involved
second order methods like BFGS methods with box constraints. The final choice de-
pends on the problem size and on the level of accuracy required. I discuss this point in
detail in Section 3.2.3, which summarizes the working paper[PP3] .

Finally, note that to compute a series of solutions along the regularization path for
convex problem (3.2), we simply choose a series of penalties� 1 = � max > � � � > � ‘ >
� � � > � L = � min � 0 such that�̂ (� max) = 0 and then use the usual warm start strategy,
where the feasible initial guess for̂� (� ‘ ) is initialized with �̂ (� ‘ � 1).

Homotopy algorithms and piecewise linear regularization paths. In some situ-
ations, active-set algorithms can be made even more efficient when computed on a
series of� values. This is due to a special property of the associated regularization path
f � (� ) : � > 0g, namely, when this function is a piecewise linear function of� . In this
case, we can detect events corresponding to the activation or deactivation of a variable
and compute the exact values of� associated with these events. The procedure follow-
ing the whole path of solutions along these values is called a homotopy algorithm.

The homotopy algorithm associated with the Lasso for linear regression was first
proposed in[133] . Then, more insight was gained in the famous LARS paper[48] ,
which put forward stagewise regression and the Lasso all together in a unifying frame-
work. More generally,[146] gives sufficient and necessary conditions for the existence
of such a property for the family of penalized Problems (3.2). Basically, the functionf
must be a piecewise quadratic function of� , and the regularization term
 must build
on the ‘ 1 and/ or the ‘ 1 norms. Relying on these ideas, a path algorithm for the gen-
eralized fused-Lasso problem is proposed in[76] . The OSCAR penalty defined in[14]
could also theoretically come with an accompanying homotopy algorithm, although
it has never been implemented to my knowledge.

Finally, note that there is in general no guarantee for the number of steps to be
small in a homotopy algorithm. In fact,[114] exhibits pathological cases for the LARS
algorithm where the number of kinks in the piecewise linear path grows exponentially
with the number of variables. Such cases are extremely unlikely on real data, however.
Note that for a version of the fused-Lasso, we show in Section 3.2.4 of this chapter that
choosing appropriate weights in the penalty brings guarantees on the number of steps.

Screening rules. Another possibility to gain speed and scalability is to discard some
features which are guaranteed to never enter the model, by means of simple rules. In
the linear regression framework, these rules are typically based on the marginal corre-
lations between the response variable and the predictor variables. In then � p setup,
the goal would be to reduce the initial number of predictorsp to an order similar ton
by a fast and efficient method. Such methods, when they are guaranteed to keep all the
important variables, have been referred to as “sure screening” in[51] . More generally,
one refers to them as a “screening rule”.

To my knowledge,[49] was the first to bring a proposal for the Lasso in the linear
regression setup. Their “Safe rule” discards thej variable if

jxü
j yj < � � k xk2kyk2

� max � �
� max

,
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where� max is the smallest value of the tuning parameter discarding all variables, while
� < � max is the current value for�̂ � . Of course, this simple rule is more likely to be
violated when� gets smaller. To overcome this limitation,[165] proposes a “recursive”
variant of this rule called the “Strong rule”:

jxü
j (y � X �̂ � k� 1

)j < 2� k � � k � 1.

Such a recursive approach can be typically used to maintain a subset of “potentially
active” variables, when fitting a regularization path over a grid. However, the strong
rule is not safe and a relevant variable may be discarded.

These rules generalize to other loss functions (for instance, logistic regression) and
other Lasso-type penalties (e.g., group-Lasso, Elastic-net and so on). Other approaches
coming from optimization consider dual problems to build screening rules for the
Lasso family[178] . Then, it is almost straightforward to adapt these rules to a penalty
based upon‘ 1 regularization. When the initial number of features is very large, such
a rule could really save time by limiting the computational work requiring storage of
objects with large size in the RAM.

3.1.3 Statistical analysis

Theoretical analysis of sparse and shrinkage estimators in a high-dimensional setting is
a relatively new field in statistics. A consequence is that a huge number of works has
been published in the past decade and many statistical tools have emerged to assess the
properties of sparse estimators. In penalized problems like (3.2), the desired proper-
ties can be measured in terms ofi ) prediction capability,i i ) quality of the parameter
estimation, andi i i ) capability of unraveling the true non-null model (i.e., support re-
covery of the true parameters in case of sparse methods). Although we look for an esti-
mator showing good performance on these criteria both in low and high-dimensional
settings, support recovery is more typical of sparse estimators and high-dimensional
statistics. These questions have been addressed by researchers from different commu-
nities (e.g. statistics, machine learning, signal processing), with closely related tools,
and this is not the place to provide an exhaustive bibliography. A sound statistical syn-
thesis of these tools is the book[21] . The recent piece of work[63] provides a slightly
different point of view, at the interface of machine learning and statistics.

In this part, I present a couple of fundamental notions on these questions to helping
the understanding of the upcoming contribution section 3.2. The discussion leans on
Camille Charbonnier’s PhD thesis, which I co-supervised between 2009 and 2012.

Basic statistical assumptions for sparse estimators: the Lasso-case.Although most
of the principles developed in this part apply to many sparse estimators, the discussion
focuses for illustrative purposes on the estimator defined by the Lasso:

arg min
� 2R p

1
n

ky � X � k2
2 + � nk� k1,

where the dependency on the sample sizen is explicitly stated for the purpose of
asymptotic analysis. The true underlying model isY = X T � ?+ " , with " � N (0,� 2).

An exhaustive summary of the various assumptions required to guarantee estima-
tion and selection properties of the Lasso is given by[21] . Figure 3.7 provides a simpli-
fied version. It highlights the distinction betweenirrepresentability conditions required
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Restricted Isometry Property

(S, 2s) Restricted Eigenvalue (S, s) Restricted Eigenvalue

S Compatibility(S, s) Uniform Irrepresentability

if β?
min not too small

No false positive Perfect selection Oracle inequalities for prediction and estimation

Figure 3.7 –Summary of causal links between main assumptions required to prove estimation and
selection properties of the Lasso (thanks to Camille Charbonnier; source: [21] ).

for selection consistency and milderrestricted eigenvalue assumptions required for esti-
mation and prediction oracle inequalities4. The former has notably been proved nec-
essary for selection properties, and the latter, in its “compatibility” formulation, is the
weaker assumption required to obtain at least estimation and prediction consistencies.

Irrepresentability condition. The irrepresentable condition, also known as mu-
tual incoherence condition in the community of signal processing, appears simulta-
neously in a large body of work as a sufficient and necessary condition for selection
properties of‘ 1 regularized least squares ([195] in statistics,[44] and[170] in the field
of signal processing, while[122] defines the equivalent assumption of neighborhood
stability for sparse GGM inference). The main assumption remains the same in both
its deterministic and Gaussian random design forms. We recall the former here, where
A is the subset of relevant covariates andA c its complementary subset.

Definition (Irrepresentable condition for the Lasso under deterministic design). Con-
sider a fixed design stored in an n � p matrix X . There exists � > 0 such that:

kX ü
A c XA (X ü

A XA )� 1sign(� ?
A )k1 � 1 � � .

Parameter� is referred to as the incoherence parameter of exact recovery coeffi-
cient. This condition stems from the primal-dual witness construction clearly formu-
lated in [176] and guarantees that no irrelevant covariate can be included in the model
on top of relevant covariates. Intuitively, these conditions measure in terms of cor-
relation how close irrelevant covariates are to relevant covariates in such a way that
least squares could be misguided into including those irrelevant covariates, hence the
regression term of irrelevant covariates onto relevant ones(X ü

A XA )� 1X ü
A XA c cou-

pled with the sign of� A . Indeed, a high-correlation between relevant and irrelevant
covariates only presents a risk if it is of the same sign as the true coefficient.

Earliest works based upon the irrepresentable condition required an asymptotic
framework. A probabilistic approach was introduced in[176] to work at fixed n.

4The restricted isometry property (introduced by[23] in the field of compress-sensing) is one of the
main assumptions usually used to prove consistency results, but we will not dwell on that one since both
previous assumptions are weaker.
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Restricted Eigenvalue assumption. Relaxing the objective of perfect support
recovery, other good properties can be demonstrated for the Lasso under weaker con-
ditions. In fact, it can adapt itself to the true sparsity level in order to perform at
minimax rates up to a logarithmic factor in terms of estimation and prediction, under
weaker conditions called restricted eigenvalue conditions.

Definition (Restricted Eigenvalue assumption). Consider a given amount of sparsity
s � p. There exists � (s ) > 0 such that:

min
S �f 1,...,pg,jS j� s

min
� 6= 0,k� Sc k1� 3k� S k1

kX � k2p
nk� Sk2

> � (s ). (3.10)

The basic intuition is as follows: in classical statistical terms, sharp estimation and
prediction properties are met when the Fisher information is large enough so that an
estimation gap� = � ?� �̂ induces a difference in likelihood of at least� k� k2. Analyt-
ically, we derive a second-order Taylor series expansion near� ? in the direction � , to
observe that this strong convexity assumption amounts to uniformly lower bounding
the eigenvalues of the Hessian matrix in the neighborhood of the true parameter� ?:

ky � X �̂ k2
n � k y � X � ?k2

n = �
2
n

hX ü (y � X � ?), � i + kX � k2
n + o(k� k2

2).

Of course, a uniform lower bound is too strong in high-dimensional settings. Therefore
on top of considering reduced size matrices, we focus on a restricted neighborhood,
which is the conef � 2 R p ,k� S c k1 � 3k� Sk1g, where we know the Lasso error term
� = � ? � �̂ to reside, hence the denominationrestricted eigenvalue.

The consequence of the restriction to the cone is that there is no guarantee that the
solution will be unique. However, with large probability, all solutions are concentrated
within the same‘ 2 or ‘ 1 ball around� ?. Moreover, under supplementary assumptions
on the miminal nonzero value, estimation or prediction bounds can be completed by
thresholding steps in order to provide model selection guarantees.

This assumption is the weakest assumption possible except for a slight modifica-
tion which consists in changing thek� Sk2 at the denominator into ak� Sk1 (we hence
obtain the “compatibility assumption”). However, we lose the eigenvalue interpreta-
tion. We refer to [127] for a generalization of this assumption to address regularized
M-estimators under a larger spectrum of sparsity assumptions on� ?, and to[33] for a
non-parametric setup.

Other notable results. Statistical results relying on these two assumptions are
very important in order to understand the behavior of sparse estimators in a high-
dimensional setting. However, we can never verify them on real data. To avoid such
assumptions on the design matrix (in particular the strong irrepresentability condition
for support recovery),adaptive versions of sparse estimators, notably for the Lasso
[197] were introduced. They basically weight the penalty related to each covariate
according to a previous estimator supposedly asymptotically consistent, like the OLS.
Although consistent estimators are not available, two-step procedures which build the
weights in the first step and scale the penalty associated to each covariate accordingly
in the second step show very good performance: they are state-of-the-art versions of
the Lasso and widely used in practice.

More practically, recent works[179, 135] try to “precondition” the data in order
to be more in agreement with the above conditions and enhance Lasso performance.
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Finally, we underline that much effort has recently been put into providing sparse
methods with a complete framework for statistical inference, that is, into performing
statistical tests in a high-dimension setting (see e.g.[124] and[110]).

Model selection and parameter tuning. We close this section by addressing the
most important issue of penalized problems, both from the theoretical and applied
viewpoint, namely, the choice of an appropriate amount of regularization: although
many solutions are available, none is universally better than the others.

In the two preceding paragraphs,� n was purposely considered as given. Actually,
the questions related to correct estimation or support recovery are conditioned by an
“appropriate” choice of� , which typically determines the size of the model in the case
of sparsity-inducing norms. Hence model selection, which amounts here to choosing
the tuning parameters, is a recurrent issue for sparse methods.

Trial values� = f � min, . . . ,� maxgdefine the set of models we have to choose from
along the regularization path5. We aim at picking either the model with minimum
prediction error, or the one closest to the true model. These two perspectives gen-
erally do not lead to the same model choice: when looking for the model minimizing
the prediction error,K-fold cross-validation is the recommended option[74] despite its
additional computational cost. As an alternative, the penalized criterion developed in
[65] addresses the problem of selecting the estimator with the smallest Euclidean risk
among any family of estimators in the linear regression setup. In particular, this cri-
terion is valid under high-dimensional settings and is proved to satisfy non-asymptotic
risk bounds under no assumptions on the true model. Still, it requires the resolution
of a convex problem, the cost of which may be similar to cross-validation.

For a choice of the tuning parameters more suited to the selection of the true model,
information criteria provide a fast way to perform model selection, as an alternative to
Breiman’s “1-SE” rule for CV, which picks the sparsest model within one standard error
of the minimum. For penalized methods, the general form of an information criterion
is expressed as a function of the log-likelihood and the effective degrees of freedom
of the fit. However, we have to give some sense to the notion of degrees of freedom
associated with regularized estimators. This question is resolved in[70] for estimators
defining a smoother, like ridge regression, in which case the degrees of freedom equal
the trace of the hat matrix (see Expression (1.8) in Section 1.2.2 and example therein).
With sparse methods however, the problem is different as the estimator does not have
a closed form. This question is relatively well treated for Lasso-style problems:[200]
introduces degrees of freedom, coming with AIC, BIC and Mallows’s Cp criteria for
the Lasso. Then, works on the generalized-Lasso[167, 168] provide degrees of freedom
for a wider class of Lasso problems, in light of constrained optimization.

Rather than applying BIC or AIC, new information criteria have been proposed
more suited to the high-dimensional setup. A notable example is theextended-
BIC[27] that we already mentioned in the sparse GGM framework (2.10):

EBIC(� ) = � log‘ (�̂ � ,X ,y) + jA � j
� logn

2
+ log p

�
,

with A � the current support of�̂ � . This criterion comes from the addition of a uni-
form prior on the set of models tested along the regularization path: starting withp
variables, each model with sizes is given a prior probability of(p + 1)� 1(C s

p )� 1.

5If several regularization parameters are at stake, we work on multi-dimensional grids.
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3.2 CONTRIBUTIONS

The reader is now equipped with the standard background to discuss my contributions
to penalty-based approaches. These contributions are driven by two main guidelines:
first, shape the regularization to account for a particular feature of the data or the prob-
lem at hand; second, focus and develop methods suited to high-dimensional problems.

Section 3.2.1 presents the paper[JP6] written with Yves Grandvalet and Camille
Charbonnier. This work thoroughly studies the cooperative-Lasso in the linear re-
gression framework, a penalty that we initially introduced for multiple network re-
construction [JP7] . The coop-Lasso is a refinement of the group-Lasso that promotes
sign-coherence within groups. It also allows for sparsity within groups while not suf-
fering from an additional tuning parameter as does the sparse group-Lasso. Algorithms
for the coop-Lasso and related methods are distributed in thescoopR-package[SW4] .

Section 3.2.2 corresponds to a contribution that saw the light of day during the
beginning of my stay in Stéphane Robin’s lab in late 2012. With Stéphane and Tris-
tan Mary-Huard, we wanted a general regularized multivariate regression framework
suitable for various applications in genomics and genetics. At the end of the day, our
method accounts for unknown correlation between the responses and allows the inte-
gration of smooth prior information to drive the selection of the most relevant predic-
tors. At this stage, this work was published in proceedings[CI3] ; the journal version
[PP2] is still under review. TheR-packagespring [SW1] implements our proposal.

In Section 3.2.3, the third contribution focuses on computational and optimization
aspects of sparse methods. We propose a unifying view of a large family of methods
mixing the ‘ 2-norm and either the‘ 1 or the ‘ 1 norm, by representing the correspond-
ing feasible sets as the intersection of quadratic sets. This has a connection with ho-
motopy algorithms. At this stage, a tech report[PP3] is available and the method is
implemented for the generalized Elastic-net and what we called “bounded regression”
(‘ 2 + ‘ 1 ) in the R/C++-packagequadrupen [SW3] .

In Section 3.2.4, we present a work that arose from a collaboration with Guillem
Rigaill and Pierre Gutierrez[JP2] . It studies a version of the (M)ANOVA regularized
by means of weighted fusion penalties. When using the‘ 1-norm for fusing the param-
eters, this method can be used to reconstruct hierarchies at very large scales. More
technically, we introduce weights ensuring a piecewise-linear regularization path, with
no split events, and an estimator that asymptotically enjoys oracle properties for sup-
port recovery. It is implemented inR/C++-packagefusedanova[SW2] .

3.2.1 The cooperative-Lasso and sign coherent groups

This work addresses the problems of estimation and inference of parameters when a
group structure among parameters is known. Compared to the group-Lasso, we as-
sume a stronger assumption: groups should not only reveal the sparsity pattern, but
should also be relevant for sign patterns: all coefficients within a group should besign-
coherent, that is, should either be null, non-positive or non-negative. This desideratum
often arises when the groups gather redundant or consonant variables (a usual out-
come when groups are defined from clusters of correlated variables). To perform this
sign-coherent grouped variable selection, we propose a novel penalty that we call the
cooperative-Lasso, in short thecoop-Lasso. The coop-Lasso is amenable to the selection
of patterns that cannot be achieved with the group-Lasso. This ability, which can be
observed for finite samples, also leads to consistency results under mildest assumptions.
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Cooperative-Lasso: definition and optimality conditions. In our original paper
[JP6] , the coop-Lasso was defined as an analogue of the‘ 1=‘ 2 group-Lasso, when the
group structureG defines a partition of the setP = f 1, . . . ,pgand when these groups
are sign-coherent. However, we may relax this assumption and generalize to a broader
class of structure, like a hierarchy, and define the coop-Lasso as an analogue to the‘ 1=‘ �
group-Lasso (3.6). The corresponding family of regularization norms is as follows.

Definition (Cooperative norms). Let v = ( v1, . . . ,vp )ü 2 R p and pk denote the cardi-
nality of group k. We define vG 2 R pk as the vector (v j ) j2G . The ‘  ,� coop-norm of v is
defined as a sign-adaptive mixed ‘  ,� norm by

kvkcoop, ,� =
� KX

k= 1

! k

�
kv+

Gk
k

� + kv�
Gk

k
�

� � 1=�

,

where ! k > 0 are fixed weights used to adapt the penalty to each group. In particular,

kvkcoop,1,2 =
KX

k= 1

! k

�
kv+

Gk
k2 + kv�

Gk
k2

�
‹ kvkcoop,

kvkcoop,1 ,2 = max
k= 1,...K

! k

�
max

�
kv+

Gk
k2,kv�

Gk
k2

��
‹ kvkcoop?,

where k � kcoop? is the dual norm of k � kcoop that is, for v,w 2 R p with grouping G , one has

jvü wj � k vkcoopkwkcoop?.

With the definition of the cooperative-norms clarified, we turn to the associated
optimization problem, in the particular case of linear-regression:

�̂
coop

= arg min
� 2R p

f (� ,X ,y) + � k� kcoop, with f (� ,X ,y) =
1
2

ky � X � k2 . (3.11)

Coop-Lasso sparsity patterns. We now illustrate the sparsity patterns with
which this estimator is able to deal with. Problem (3.11) is a combination of a con-
vex and differentiable function and a convex but non differentiable norm. Thus,� is a
global minimum if and only if �r f (� ;X ,y) belongs to the subdifferential ofk � kcoop
at � :

� r f (� ;X ,y) 2 @� k� kcoop. (3.12)

As discussed in Section 3.1, points with singularities have a non-zero probability of be-
ing selected as optimal: if singularities are placed at particular points of interest, there is
an increased probability for this support to be selected. We illustrate this phenomenon
by rephrasing 3.11 in terms of constrained least squares, minimizing the sum of squares
under the constraint thatk� kcoop < c . Under this formulation, � is optimal iif

� r f (� ;X ,y) 2 NB (� ), (3.13)

that is to say, the score vector needs to belong to the normal cone to the feasible set
B = f � 2 R p ,k� kcoop � cgat the optimum. In more “geometrical” words, Equation
(3.13) implies that the solution to 3.11 corresponds to the orthogonal projection of the
OLS estimate onto a coop norm ball of a certain radiusc . Coefficients are set at zero
when level curves of the loss hit the ball at singularities, as illustrated in Figure 3.8.
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β̂

−∇f(β̂,X,y)

β̂OLS

β1

β 2

β̂
β̂OLS

−∇f(β̂,X,y)

Figure 3.8 –Projection of the OLS estimate on the coop norm ball of radius s in 2D, with one group
of size 2 f � 1, � 2g. On the left panel, projection hits on the R+ � R+ quadrant: all variables are
included. On the right panel, projection hits on the R+ � R� quadrant: �̂ 2 can be set at 0. Normal
cones NB are represented in color (figures by Camille Charbonnier).

Now, how does the coop-Lasso compare to its closest cousins, the group- and sparse
group-Lasso? Illustrations of the three regularization norms are given in Figure 3.9 for
a vector� = ( � 1, � 2, � 3, � 4)

ü with two groups G1 = f 1,2g andG2 = f 3,4g. Several
views of the unit ball are given for each norm, which represents the sets of feasible
solutions in the constrained formulation equivalent to (3.11),

First, consider the group-Lasso: the first row illustrates that when� 4 is null its
group companion� 3 may also be exactly zero (corners on the boundary at� 3 = 0);
the second row shows that this event is improbable when� 4 differs from zero (smooth
boundary at� 3 = 0). The second and third columns display the same type of relation-
ships within G1 between� 2 and � 1, due to the symmetries of the unit ball. The last
column displays‘ 2 balls, showing that once a group is activated, so are all its members.

Now, consider the sparse group-norm: the combination of the group and Lasso
penalties has uniformly shrunk the feasible set towards the‘ 1 unit ball, creating new
edges that provide a chance to zero any parameter in any situation, with an elastic-
net-like penalty within and between groups. The comparison of the last two columns
illustrates that the differentiation between the within-group and between-group penal-
ties is less marked than for the group-Lasso.

Finally, consider the coop-norm: compared to the group-norm, there are additional
discontinuities resulting in new edges on the 3-D plots. While the sparse group-Lasso
edges were created by a uniform shrinkage towards the‘ 1 ball, the coop-Lasso new
edges result from slicing the group-Lasso unit ball, depriving sign-incoherent orthants
of some of the group-Lasso feasible solutions (k� kcoop > k� kgroup in these regions).
In general, there are fewer new edges than with the sparse group-Lasso, since the new
opportunities to zero some coefficients are limited to the case where the group-Lasso
would have allowed a solution with opposite signs within a group. The crucial differ-
ence is the loss of the axial symmetry when some variables are non-zero: decoupling
the positive and negative parts of the regression coefficients favors solutions where
signs match within a group. Slicing of the unit group-norm ball does not affect the
positive and negative orthants, but large areas corresponding to sign mismatches have
been peeled off, as best seen on the last column, which also illustrates the strong differ-
entiation between within-group and between-group penalties.
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Figure 3.9 –Feasible sets for the coop-Lasso, group-Lasso and sparse group-Lasso penalties. First
column: cuts through (� 1, � 2, � 3) at � 4 = 0 and � 4 = 0.3: (� 1, � 2) span the horizontal plane
and � 3 is on the vertical axis; second and third columns: cuts through (� 1, � 3) at various values
of (� 2, � 4); last column: cuts through (� 1, � 2) at various values of (� 3, � 4).
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Optimality conditions. We now state explicitly the optimality conditions for
(3.12). They directly result from subdifferential calculus, combined with Equation
(3.12) and the definition of the dual coop norm. They are an essential building block
of the algorithm we propose to compute the coop-Lasso estimate and provide an im-
portant basis for showing the consistency results. Note that we provide the optimality
conditions in a different (though equivalent) form than in the original paper[JP6] .

Theorem 1 (Optimality conditions for the cooperative-Lasso). The vector � is optimal
for Problem (3.11)if and only if z = � X ü (y � X � )=� ! belongs to the subdifferential of
the coop-norm associated with groups fGkgK

k= 1 at �̂ , characterized by indicator function
of the coop-dual norm k �kcoop?. The vector � is optimal if and only if, for every group Gk ,

max(kz+
Gk

k2,kz �
Gk

k2) � 1.

In particular,

z j = � j k’ j (� Gk
)k� 1, 8 j 2 Gk 6= ; , 8k 2 f 1, . . . ,Kg,

where f ’ j g
p
j= 1, returns the componentwise positive or negative part of a vector according

to the sign of its j th element, that is, 8k 2 f 1, . . . ,Kg, 8 j 2 Gk , 8v 2 R pk ,

’ j (v) = ( sign(v j )v)+ . (3.14)

Note here an important distinction compared to the group-Lasso, where the opti-
mality conditions are expressed solely according to the groups[147] . Indeed, a strong
consequence of Theorem 1 is that if both positive and negative coefficients are activated
within the same group, then no other coefficients can be shrunk to zero in that group.
Hence, while the sparsity pattern of the solution is strongly constrained by the pre-
defined group structure in the group-Lasso, deviations from this structure are possible
for the coop-Lasso. The asymptotic analysis that follows confirms that exact support
recovery is possible even when the support of� ? cannot be expressed as a simple union
of groups, provided that the groups intersecting the true support are sign-coherent.

Consistency analysis. We provide two types of results, based upon best achievable
results for the Lasso. First, we derive selection properties in an asymptotic linear re-
gression framework, with an irrepresentable condition. Second, we prove estimation
and prediction sparsity oracle inequalities, valid non-asymptotically, based upon a re-
stricted eigenvalue assumption. While the former asymptotic results belong to paper
[JP6] , the latter is unpublished work belonging to Camille Charbonnier’s PhD thesis.

Asymptotic properties for support recovery. Here we concentrate on the esti-
mation of the support of � ?. Our proof technique is drawn from the works on the
Lasso[192] and the group-Lasso[4] . In this type of analysis, some assumptions on
the joint distribution of (X ,Y ) are required to guarantee the convergence of empirical
covariances. For the sake of simplicity, we keep assuming that data are centered so that
we have zero mean random variables and	 = E [X X ü ] is the covariance matrix ofX .

(A1) X andY have finite 4th order momentsE
�
kX k4� < 1 , E

�
Y 4� < 1 .

(A2) The covariance matrix	 = E [X X ü ] 2 R p � p is invertible.
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In addition to these standard technical assumptions, we need a more specific one, sub-
stantially avoiding situations where the coop-Lasso will almost never recover the true
support A . In the sequel,A denotes the true support of� ?, while A k denotes the
intersection between the support and groupGk .

(A3) All sign-incoherent groups are included in the true support:8k 2 f 1, . . . ,Kg, if
k(� ?

Gk
)+ k > 0 andk(� ?

Gk
)� k > 0, then8 j 2 Gk , � ?

j 6= 0.

This latter assumption is less stringent than the one required for the group-Lasso since
it does not require that each group of variables be either included in or excluded from
the support. For the coop-Lasso, sign-coherent groups may intersect the support.

The suitable variants of the irrepresentable conditions for the coop-Lasso result in
two assumptions: a general one, on the magnitude of correlations between relevant and
irrelevant variables, and a more specific one for groups which intersect the support, on
the sign of correlations. These conditions will be expressed in a compact vectorial form
using the diagonal weighting matrixD (� ) such that,

8k 2 f 1, . . . ,Kg, 8 j 2 A k (� ), (D (� )) j j = ! kk’ j (� Gk
)k� 1 . (3.15)

(A4) For every groupGk including at least one null coefficient (that is, such that� ?
j =

0 for somej 2 Gk or equivalentlyA c
k 6= ; ), there exists� > 0 such that

1
! k

k(	 A c
k

A 	 � 1
A A D (� ?

A )� ?
A )kcoop? � 1 � � . (3.16)

(A5) For every groupGk intersecting the support and including either positive or
negative coefficients, let� k be the sign of these coefficients (� k = 1 if k(� ?

Gk
)+ k >

0 and� k = � 1 if k(� ?
Gk

)� k > 0), the following inequalities should hold:

� k 	 A c
k

A 	 � 1
A A D (� ?

A )� ?
A � 0 , (3.17)

where� denotes componentwise inequality.

Theorem 2. If assumptions (A1-5) are satisfied, the coop-Lasso estimator is asymptoti-
cally unbiased and has the property of exact support recovery:

�̂
coop
n

P�! � ? and P
�
A (�̂

coop
n ) = A

�
! 1 , (3.18)

for every sequence � n such that � n = � 0n�  ,  2 (0,1=2) .

Compared to the group-Lasso, the consistency of support recovery for the coop-
Lasso primarily differs regarding possible intersection (besides inclusion and exclu-
sion) between groups and support. This additional flexibility applies to every sign-
coherent group. Even if the support is the union of groups, when all groups are sign-
coherent, the coop-Lasso still has an edge on group-Lasso since the irrepresentable
condition (3.16) is weaker. Indeed, the norm in (3.16) is dominated by the‘ 2-norm
used for the group-Lasso. This difference can have remarkable outcomes, as illus-
trated on the following numerical example: we generate data from an ordinary re-
gression model with� ? = ( 1,1,� 1,� 1,0,0,0,0), equipped with the group structure
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fG g4
k= 1 = ff 1,2g, f 3,4g, f 5,6g, f 7,8gg. The vectorX is generated as a centered Gaus-

sian random vector with a covariance matrix	 chosen so that the irrepresentable con-
ditions hold for the coop-Lasso, but not for group-Lasso, which, we recall, are more
demanding for the current situation, with sign-coherent groups. The random error"
follows a centered Gaussian distribution with standard deviation� = 0.1, inducing a
very high signal to noise ratio (R2 = 0.99 on average), so that asymptotics provide a
realistic view of the finite sample situation. We generated 1000 samples of sizen = 20
from the described model, computed the corresponding 1000 regularization paths for
the group-Lasso, sparse group-Lasso, and coop-Lasso. Figure 3.10 reports the 50% cov-
erage intervals (lower and upper quartiles) along the regularization paths. In this setup,
the sparse group-Lasso behaves like the group-Lasso, leading to nearly identical graphs.
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Figure 3.10 –50% coverage intervals for the group (left), sparse group (center), and (right) Lasso
estimated coefficients along regularization paths: coefficients from the support of � ? are marked by
colored horizontal stripes and the other ones by gray vertical stripes.

Estimation is difficult in this small sample problem: the two versions of the group-
Lasso, which first select the wrong covariates, never reach the situation where they
would have a decisive advantage over OLS, while the coop-Lasso immediately selects
the right covariates, the coefficients of which steadily dominate the irrelevant ones.

Remark. In order to adapt Theorem 2 to the high-dimensional setting, one would need
to add technical assumptions guaranteeing the existence of concentration inequalities,
however assumptions required on the design to obtain exact support recovery would
remain the same as in (A4) and (A5). Since the latter are the only assumptions that
would differ between[131] and the coop-Lasso, there is no major interest in rewriting
Theorem 2 according to those new developments.

Non-asymptotic properties for estimation and prediction. We now derive
non-asymptotic oracle inequalities based upon restricted eigenvalue assumptions,
which is roughly the same as for the Lasso (3.10), except that the cone on which the
assumption relies is defined by the cooperative-norm, and the sparsity considered is a
group sparsity.

Assumption 3.1 (Restricted eigenvalue). There exists � (s ) > 0 such that:

min
�

kX uk2p
nkuA k2

: jA j � s , u 2 R p ,kuA c kcoop � 3kuA kcoop

�
� � (s ).
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In order to explicit the bounds and order of probability in our oracle inequalities,
we restrict ourselves to the case where all groups share the same sizem.

Theorem 3 (Oracle inequalities with groups of equal sizes). Under Assumption 3.1 and
considering that the data matrix has been scaled so that all diagonal elements of X ü X=n

are equal to 1, for a choice of � n equal to �
p

m+
p

logK
p

n , then with probability larger than

1� 2=K2, any solution to Problem 3.11 with groups of equal sizes m satisfies the following
prediction and estimation oracle inequalities:

kX (� ? � �̂
coop

)k2
n �

32
� (s )2

s (m + logK + 2
p

m logK)
n

, (3.19)

k� ? � �̂
coop

kcoop �
32

� (s )2

s (
p

m +
p

logK)
p

n
, (3.20)

k� ? � �̂
coop

k2 �
32

� (s )2

s (
p

m +
p

logK)
p

n
. (3.21)

Remark. We need to restrict ourselves to groups of equal size because the upper bound
on the probability of the eventf � n � 2kX ü "=nkgrelies on tail bounds of the maximum
of K � 2 distributions. If all groups share the same size, we can use a union bound on
the tails ofK independent� 2 with similar degrees of freedom. Otherwise, each of the
K � 2 distributions has its own degree of freedom, which makes it impossible to bound
explicitly the probability of the intersection, unless we use a very raw upper bound.

Besides, there is no improvement compared to the group-Lasso oracle inequalities
because we cannot exploit the advantages of the cooperative-norm on two fronts: first,
the probability of eventA uses an upper bound of the dual cooperative-norm by the
dual group-norm, because the dual coop-norm leads to� 2 distributions of unknown
degrees of freedom which we cannot control explicitly; second, what appears is actually
a rate of 2s , twice the group-sparsity: we cannot count the number of activated signed-
groups instead. Indeed, following the terms of[127] the cooperative-norm is only
decomposable to group-sparse subsets, not to signed quadrants: we can writek� +
� kcoop = k� kcoop + k� kcoop for every � 2 M and � 2 M ? for subsetsM = f x 2
R p ,8k 2 S c , xG = 0g defined by the activation of a subset of groups, but not by the
activation of a subset ofsigned subgroups. Recent developments in[113] could help
improve the results, by allowing us to work with group-specific penalties� j .

Application to monotonicity of responses to ordinal covariates. This section
illustrates the applicability of the coop-Lasso on categorical and continuous covariates,
which may be widely applied to ordered categorical variables6 When not treated as
numerical, ordinal variables are often coded by a set of variables that code differences
between levels. Several types of coding have been developed in the ANOVA setting,
with relatively little impact in the regression setting, where the so-called dummy
coding is intensively used. Indeed, least squares fits are not sensitive to coding choices
provided there is a one-to-one mapping from one to the other, so that coding only
matters regarding the direct interpretation of regression coefficients. However, coding
evidently affects the solution in penalized regression, and we will here use specific cod-
ing to penalize targeted variations. In order to build a monotonicity-based penalty, we

6An application specific to microarray data appears in the original paper but omitted here, as our point
is to demonstrate the versatility of regularized methods to a wide class of problems beyond genomics.
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simply use contrasts that compare two adjacent levels. An example of these contrasts is
displayed in Table 3.1, with the corresponding coding, known as backward difference
coding, which is simply obtained by solving a linear system[152] . Irrespective of the

Table 3.1 –Contrasts and coding for comparing the adjacent levels of a covariate with 4 levels.

Level Contrasts Codings
0 -1 0 0 -3/ 4 -1/ 2 -1/ 4
1 1 -1 0 1/ 4 -1/ 2 -1/ 4
2 0 1 -1 1/ 4 1/ 2 -1/ 4
3 0 0 1 1/ 4 1/ 2 3/ 4

coding, group penalties act as a selection tool for factors, at variable levels[190] . On
top of this, the sparse group penalty presents the ability to discard a level. With differ-
ence coding, some increments between adjacent levels may be set at zero, that is, levels
may be fused[61] . With the coop-Lasso, increments are urged to be sign-coherent,
thereby favoring monotonicity. As a side effect, level fusion may also be obtained.

Experimental setup. We illustrate the approach on the Statlog “German Credit” data
set (available at the UCI repository) which gathers information about people classified
as low or high credit risks. This binary response requires an appropriate model, such
as logistic regression. We adapt (3.11) and the accompanying optimization methods
in this perspective. All quantitative variables are used for the analysis, but we focus
here on the regression coefficients of four variables, encoded as integers or nominal
in the Statlog project, which seem better interpreted as ordered nominal, namely:
history , with 4 levels describing the ability to pay back credit in the past and now;
savings , with 4 levels giving the balance of the savings account in currency intervals;
employment, with 5 levels reporting the duration of the present employment in year
intervals; andjob , with 4 levels representing an employment qualification scale.

Results. The performance of the three methods are identical, either in terms of deviance
or classification error and omitted here. The regression coefficients differ however, as
shown in Figure 3.11, displaying the paths of sparse group- and coop-Lasso. Recall that
we only represent the ordinal covariateshistory , savings , employmentandjob . Each
coefficient represents the increment between two adjacent levels, with positive and
negative values resulting in an increase and decrease respectively. Monotonicity with
respect to all levels is reached if all the values corresponding to a factor are nonnegative
or nonpositive. We also provide an alternative view of the coop-Lasso path, with the
overall effects corresponding to levels, obtained by summing up the increments.

The solutions differ regarding monotonicity, which is never observed along the
group-Lasso regularization path (not shown here). The sparse group-Lasso paths have
long sign-coherent sections. These sections extend further with the coop-Lasso. The
sparse group and the coop-Lasso set some increments to zero, leading to the fusion of
adjacent levels that should be welcomed regarding interpretation. The solutions tend
to agree on these fusions on long sections of the paths, with some additional fusions
of the sparse group-Lasso when slight monotonic solutions are provided by the coop-
Lasso (seeemployment, levels 2 and 3, andsavings levels 1 and 2). These fusions are
perceived more directly on the coop-Lasso path of effects, displayed in the bottom right
of Figure 3.11, where the effect of each level is displayed directly.
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Figure 3.11 –Regularization paths for 4 ordinal covariates (history, savings, job and employment)
for the coop and sparse group Lasso on the contrast coefficients obtained from backward difference
coding. The transcription of contrasts to levels is also displayed for the coop-Lasso. The vertical
lines mark the model selected by CV on the validation set, for different criteria: deviance (plain),
misclassification rate (dashed), and weighted misclassification error (dotted).

Some final comments on the cooperative-Lasso. We did not detail the implemen-
tation here, as it roughly follows the active-set strategy 1 of Section 3.1.2, where op-
timality conditions a group activation are handled with the dual coop-norm. In the
R-packagescoop[SW4] , the cooperative Lasso is implemented for linear and logistic
regressions, when the structureG defines either a partition or a hierarchy.

In the full-length paper[JP6] , a thorough simulation study is conducted compar-
ing the performance of the coop-Lasso to that of the competing methods. We derive
an estimator of the degrees of freedom for a coop-Lasso fit for linear regression, which
paves the way for using penalized criteria for model selection. An application in ge-
nomics for sign-coherent groups of genes is thoroughly explored, and I supervised two
MSc. in this direction. I am also currently working on the hierarchical version of the
coop-Lasso in a sparse biological network inference perspective, when the predictors
are spread in groups of co-activators or co-inhibitors regulating other genes[JP3] .

Finally, the cooperative-Lasso has been used by other researchers in[10] for enforc-
ing monotonicity in regression with splines.

3.2.2 Structured regularization for conditional GGM

This contribution is at the crossroads of Chapters 2 and 3: first, it entails tools from
GGM in order to describe direct relationships between predictors and responses in
multivariate regression, in an effort to propose more interpretable models. Second, we
rely on a sparse method where variable selection is driven by structural information
thanks to a graph Laplacian penalty suited to the multivariate framework. At the end
of the day, our structured sparse estimator of the regression coefficients is able to dis-
criminate coefficients having direct effects on the responses from those being induced
by spurious correlation between the responses themselves.

Model setup. Compared to its univariate counterpart, the multivariate linear regres-
sion model aims to predict someq responses from a set ofp predictors, relying on a
training data setf (xi ,yi )gi= 1,...,n:

yi = BT xi + " i , " i � N (0,R), 8 i = 1, . . . ,n. (3.22)
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The p � q matrix of regression coefficientsB and theq � q covariance matrixR of
the Gaussian noise" i are unknown. Model (3.22) has been studied by[116] in the
low dimensional case where both ordinary and generalized least squares estimators of
B coincide and do not depend onR. These approaches boil down to performingq
independent regressions, each columnB j describing the weights associating thep pre-
dictors with the j th response. In then < p setup however, these estimators are not
defined and we need to regularize the problem in some way. To this end, we aim a gen-
eral multivariate regression framework with three purposes:i ) We want to account for
the dependency structure between the outputs, if it exists. That is to say, we want to
integrate the estimation ofR in the inference process.i i ) We want to have the pos-
sibility of integrating some prior information about the predictors.i i i ) In order to
improve interpretability, we pay prior attention to the direct links between predictors
and responses. We reach these three goals by relying onconditional Gaussian graph-
ical models (cGGM), a recent proposal that has emerged in the literature[158, 193] .
It extends to the multivariate case the links existing between the linear model, par-
tial correlations and GGM, existing between the linear model, partial correlations and
GGM, as depicted for instance by[122] , [136] and then [183] . We then propose a
multivariate regularization scheme for this model that draws inspiration from exist-
ing works for penalized multivariate regression with known[94, 95] and unknown
[148, 189, 104] residual varianceR. Our sparse Laplacian penalty draw inspiration
from [139, 106, 156, 72, 111] .

Conditional Gaussian graphical model. The statistical framework of cGGM
arises from a different parametrization of (3.22). To the best of our knowledge, this was
first underlined by[158] . It amounts to investigating the joint probability distribution
of (xi ,yi ) in the Gaussian case, with the following block-wise decomposition of the
covariance matrix� and its inverse
 = � � 1:

� =
�

� xx � xy
� yx � yy

�
, 
 =

�

 xx 
 xy

 yx 
 yy

�
. (3.23)

Back to the distribution ofyi conditional onxi , multivariate Gaussian analysis shows
that, for centeredxi and yi , yi jxi � N

�
� 
 � 1

yy 
 yxxi , 

� 1
yy

�
. This model, associated

with the full sample f (xi ,yi )gi= 1,...,n, can be written in a matrix form by stacking in
rows first the observations of the responses, and then the observations of the predictors,
in two data matricesY andX with respective sizesn � q andn � p:

Y = � X 
 xy 
 � 1
yy + " , vec(" ) � N

�
0nq , I n 
 
 � 1

yy

�
, (3.24)

where vec(A) = ( AT
1 . . .AT

p )T . Introducing the empirical matrices of covarianceSyy =
n� 1P n

i= 1yi y
T
i , Sxx = n� 1P n

i= 1xi x
T
i , andSyx = n� 1P n

i= 1yi x
T
i , the log-likelihood of

(3.24) – a conditional likelihood regarding (3.23) – is written

�
2
n

logL(
 xy, 
 yy) = � log
���
 yy

��� + Tr
�
Syy
 yy

�

+ 2Tr
�
Sxy 
 yx

�
+ Tr (
 yxSxx 
 xy 
 � 1

yy ) + cst. (3.25)

We notice by comparing the cGGM (3.24) to the multivariate regression model (3.22)
that 
 � 1

yy = R andB = � 
 xy 
 � 1
yy . This alternative parametrization shows two impor-

tant differences. First, the negative log-likelihood (3.25) is jointly convex in(
 xy, 
 yy)
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(see[193]). Minimization problems involving (3.25) are thus amenable to a global so-
lution, which facilitates both optimization and theoretical analysis. Second, it unveils
new interpretations for the relationships between input and output variables:
 xy de-
scribes thedirect relationships between predictors and responses, the support of which
we are seeking in order to select relevant interactions. On the other hand,B entails
both direct and indirect influences, possibly due to some strong correlations between
the responses, described by the covariance matrixR (or equivalently its inverse
 yy).
To provide insights on cGGM, Figure 3.12 illustrates the relationships betweenB, 
 xy
andR in two simple scenarios wherep = 40 andq = 5. Scenariosa) and b ) are dis-
criminated by the presence of a strong structure among the predictors. The important
point to grasp at this stage is how strong correlations between outcomes can completely
“mask” the direct links in the regression coefficients: the stronger the correlation inR,
the less possible it is to distinguish inB the non-zero coefficients of
 xy.

Rlow Rmed Rhigh


 xy Blow Bmed Bhigh

Rlow Rmed Rhigh


 xy Blow Bmed Bhigh

(a) (b)

Figure 3.12 –Toy examples to illustrate the relationships between B, 
 xy and R: on panel a), a
situation with no structure among the predictors; on panel b ), a strong neighborhood structure. For
each panel, we see the effect of stronger correlations in R on masking the direct links in B.

Structured regularization with underlying sparsity. Our regularization
scheme starts by considering some structural prior information about the relation-
ships between the coefficients. We are typically thinking of a situation where similar
inputs are expected to have similar direct relationships with the outputs. The right
panel of Figure 3.12 represents an illustration of such a situation, where there exists an
extreme neighborhood structure between the predictors. This depicts a pattern that
acts along the rows ofB or 
 xy as substantiated by the following Bayesian point of view.

Bayesian interpretation. Suppose that the similarities can be encoded into a matrix
L. Our aim is to account for this information when learning the coefficients. The
Bayesian framework provides a convenient setup for defining how structural informa-
tion should be accounted for. In the single output case[118] , a conjugate prior for�
would beN (0,L� 1). Combined with the covariance between the outputs, this gives

vec(B) � N (0,R 
 L� 1),
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where
 is the Kronecker product. By properties of the vec operator, it is stated as

vec(
 xy) � N (0,R� 1 
 L� 1)

for the direct links. Choosing such a prior results in

logP(
 xy jL,R) =
1
2

Tr
�

 T

xyL
 xyR
�

+ cst.

Criterion. Through this argument, we propose a criterion with two terms to regularize
the conditional negative log-likelihood (3.25): first, a smooth trace term relying on the
available structural informationL; and second, an‘ 1 norm that encourages sparsity
among the direct links. We write the criterion as a function of(
 xy, 
 yy) rather than
(
 xy,R), although equivalent in terms of estimation, since the former leads to a convex
formulation. The optimization problem turns to the minimization of

J (
 xy, 
 yy) = �
1
n

logL(
 xy, 
 yy) +
� 2

2
Tr

�

 yxL
 xy 
 � 1

yy

�
+ � 1k
 xyk1.

Optimization. In the classical framework of parametrization (3.22), alternate strate-
gies where optimization is successively performed over
 xy and 
 yy have been pro-
posed[148, 189] . These strategies come with no guarantee of convergence to the global
optimum since the objective is only bi-convex. In the cGGM framework of[158, 193] ,
the optimized criterion is jointly convex yet no convergence result is provided regard-
ing the optimization procedure proposed by the authors. Here we also consider the
alternate strategy for which theoretical guarantees are provided by the following theo-
rem:

Theorem 4. Let n � q. Criterion (3.2.2)is jointly convex in (
 xy, 
 yy). Moreover,
the alternate optimization


̂
(k+ 1)
yy = arg min


 yy � 0
J� 1� 2

(
̂
(k)
xy , 
 yy), (3.26a)


̂
(k+ 1)
xy = arg min


 xy

J� 1� 2
(
 xy, 
̂

(k+ 1)
yy ). (3.26b)

leads to the optimal solution.

We skip the proof, which relies on the fact that efficient procedures exist to solve
the two sub-problems (3.26a) and (3.26b): we derive an analytic form for the former,
requiring a single SVD. The latter problem can be recast to a generalized Elastic-net
problem. Details are given in the original version of the paper[PP2] .

Because our procedure relies on alternating optimization, it is difficult to give either
a global rate of convergence or a complexity bound. Nevertheless, the complexity of
each iteration is easy to derive, since it amounts to two well-known problems: the main
computational cost in (3.26a) is due to the SVD of aq � q matrix, which costsO(q3).
Concerning (3.26b), it amounts to the resolution of an Elastic-net problem withp � q
variables andn � q samples. If the final number of nonzero entries in̂
 xy is k, a good
implementation with Cholesky update/ downdate is roughly inO(n pq2k) (see, e.g.
[5]). Since we typically assume thatp � n � q, the global cost of a single iteration of
the alternating scheme is thusO(n pq2k), and we can theoretically treat problems with
largep when k remains moderate.
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Model selection. When looking for the best model in terms of variable selection,
penalized criteria provide a credible alternative to cross-validation. A general form is
expressed as a function of the likelihood (3.25) and the effective degrees of freedom:

� 2 logL(
̂
� 1,� 2
xy , 
̂

� 1,� 2
yy ) + pen� df� 1,� 2

. (3.27)

Setting pen= 2 or log(n) leads to AIC or BIC. For the practical evaluation of (3.27),
we use the definition of[47] for the degrees of freedom and rely on the work of[168]
to derive the following Proposition, the proof of which is detailed in our paper[PP2] .

Proposition. An unbiased estimator of df� 1,� 2
for our fitting procedure is

d̂f� 1,� 2
= card(A ) � � 2tr

�
(R̂ 
 L)A A

�
(R̂ 
 (Sxx + � 2L))A A

� � 1�
,

where A =
n

j : vec
�

̂

� 1,� 2
xy

�
6= 0

o
is the set of nonzero entries in 
̂

� 1,� 2
xy .

Application Studies. In this section the flexibility of our proposal is illustrated by
investigating two multivariate problems in genetics and genomics corresponding to
Examples 1.3 and 1.4. We insist on the construction of the structuring matrixL.

Multi-trait Genomic Selection in Brassica napus. Genomic selection is aimed
at predicting one or several phenotypes based on the information of genetic markers
(see Example 1.3, Chapter One). To this end, regularization methods such as ridge or
Lasso regression or their Bayesian counterparts have been proposed ([40]). Still, in
most studies only single trait genomic selection is performed, neglecting correlations
between phenotypes. Moreover, little attention has been devoted to the development
of regularization methods including prior genetic knowledge. We consider theBrassica
napus dataset described in[52] and[98] . Data consists inn = 103 double-haploid lines
derived from 2 parent cultivars, “Stellar” and “Major”, on whichp = 300 genetic
markers andq = 8 traits (responses) were recorded. Each marker is a 0/ 1 covariate
with x j

i = 0 if line i has the Stellar allele at markerj , andx j
i = 1 otherwise. Traits in-

cluded are percent winter survival for 1992, 1993, 1994, 1997 and 1999 (surv92, surv93,
surv94, surv97, surv99, respectively), and days to flowering after no vernalization
(flower0), 4 weeks vernalization (flower4) or 8 weeks vernalization (flower8).

Structure specification. In a biparental line population, correlation between 2 markers
depends on their genetic distance defined in terms of recombination fraction. As a
consequence, one expects adjacent markers on the sequence to be correlated, yielding
similar direct relationships with the phenotypic traits. Notingd12 the genetic distance
between markersM1 andM2, one has cor(M1,M2) = � d12, where� = .987. The covari-
ance matrixL� 1 can hence be defined asL� 1

i j = � di j . Moreover, assuming recombina-
tion events are independent betweenM1 andM2 on the one hand, andM2 andM3 on
the other hand, one hasd13 = d12 + d23 and matrix L� 1 exhibits an inhomogeneous
AR(1) profile. As a consequence,L is tridiagonal with general elements

wi ,i =
1 � � 2di � 1,i + 2di ,i+ 1

(1 � � 2di � 1,i )(1 � � 2di ,i+ 1)
, wi ,i+ 1 =

� � di ,i+ 1

1 � � 2di ,i+ 1
, wi , j = 0 if ji � j j > 1.

7This value directly arises from the definition of the genetic distance itself.
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For the first (resp. last) marker, the distancedi � 1,i (resp.di ,i+ 1) is infinite.

Results. In the full-length paper[PP2] , predictive performance is estimated by repeti-
tive splits of the data into test/ training sets, in which case SPRING provides the small-
est error for half of the traits compared with state-of-the-art penalized multivariate
regression procedures. Here, we want to insist on model parameter interpretation.
Hence, a picture of the between-response covariance matrix estimated with SPRING
is given in Figure 3.13. It reflects the correlation between the traits, which are either ex-
plained by an unexplored part of the genotype, by the environment or by some interac-
tion between the two. The residuals of the flowering times exhibit strong correlations,
whereas correlations between the survival rates are weak. It also shows that the survival
traits have a larger residual variability than do the flowering traits, suggesting a higher
sensitivity to environmental conditions. We then turn to the effects of each marker on

flower0

flower4

flower8

surv92

surv93

surv94

surv97

surv99

flower0 flower4 flower8 surv92 surv93 surv94 surv97 surv99

−1.0

−0.5

0.0

0.5

1.0
correlation

Figure 3.13 –Brassica study: residual covariance estimation

the different traits. The left panels of Figure 3.14 give both the regression coefficients
(top) and the direct effects (bottom). The gray zones correspond to chromosomes 2, 8
and 10, respectively. The exact location of the markers within these chromosomes is
displayed in the right panels, where the size of the dots reflects the absolute value of the
regression coefficients (top) and of the direct effects (bottom). The interest of consid-
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Figure 3.14 –Brassica Study: direct and indirect genetic effects of the markers on the traits estimated
by SPRING (better seen in color).
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ering direct effects rather than regression coefficients appears clearly here, if one looks
for example at chromosome 2. Three large overlapping regions are observed in the
coefficient plot, for each flowering trait. A straightforward interpretation would sug-
gest that the corresponding region controls the general flowering process. The direct
effect plot allows one to go deeper and shows that these three responses are actually
controlled by three separate sub-regions within this chromosome. The confusion in
the coefficient plot only results from the strong correlations observed among the three
flowering traits.

Selecting regulatory motifs from multiple microarrays. We are interested in the
detection of regulatory motifs (see Example 1.4), the presence of which controls the
gene expression profile. To this aim we try to establish a relationship between the
expression level of all genes across a series of conditions with the content of their re-
spective regulatory regions in terms of motifs. In this context, we expecti ) the set of
influential motifs to be small for each condition,i i ) the influential motifs for a given
condition to be degenerate versions of each other, andi i i ) the expression under similar
conditions to be controlled by the same motifs.

We rely on the series of microarray experiments conducted on yeast cells (Saccha-
romyces cerevisae) in [60] . Among these assays, we consider 12 time-course experiments
profiling n = 5883 genes under various environmental changes as listed in Table 3.2.
These expression sets form 12 potential response matricesY, the column number of
which corresponds to the number of time points.

Experiment # time point # motifs selected
k = 7 k = 8 k = 9

Heat shock 8 30 68 43
Shift from 37̊ to 25 ˚C 5 3 11 33
Mild heat shock 4 24 13 23
Response to H2O2 10 15 10 21
Menadione exposure 9 16 1 7
DDT exposure 1 8 15 10 30
DDT exposure 2 7 11 33 21
Diamide treatment 8 45 25 35
Hyperosmotic shock 7 36 24 15
Hypo-osmotic shock 5 20 8 29
Amino-acid starvation 5 47 30 39
Diauxic shift 7 16 14 20

total number of unique motifs inferred 87 82 72

Table 3.2 –Time-course data from [60] considered for regulatory motif discovery

For the predictors, we consider all motifs with lengthk formed with the four
nucleotides, that isM k = f A,C ,G,T gk . There arep = jM k j = 4k such motifs.
Unless otherwise stated, the motifs inM are lined up in lexicographical orderi.e.
when k = 2, AA,AC ,AG,AT ,C A,C C , . . . and so on. Then � p matrix of predictors
X is filled such thatXi j equals the occurrence count of motifj in the regulatory region
of genei .

Structure specification. As we expect influential motifs for a given condition to be de-
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generate versions of each other, we first measure the similarity between any two motifs
from M k with the Hamming defined as dist(a, b ) = cardf i : ai 6= bi g, for all a, b 2 M k .
For a fixed value of interest 0� ‘ � k, we define the‘ -distance matrix

D k ,‘ = ( d k ,‘
ab

)a,b2M k
, d k ,‘

ab
=

�
1 if dist(a, b ) � ‘
0 otherwise.

D k ,‘ can be viewed as the adjacency matrix of a graph where the nodes are the motifs
and where an edge is present when the 2 motifs are at a Hamming distance less or equal
to ‘ . We finally use the Laplacian of this graph in place of the structuring matrixL.

Results. We apply our methodology for candidate motifs fromM 7,M 8 andM 9, which
results in three lists of putative motifs having a direct effect on gene expression. Due
to the very large number of potential predictors that comes with a sparser matrixX
whenk increases, we first perform a screening step that keeps the 5,000 motifs with the
highest marginal correlations withY. Second, SPRING is applied to each of the twelve
time-course experiments described in Table 3.2. The selection of(� 1, � 2) is performed
on a grid using the BIC (3.27). At the end of the day, the three lists corresponding to
k = 7,8,9 include respectively 87, 82 and 72 motifs, for which at least one coefficient
in the associated rowb
 xy( j , �) was found non-null for some of the twelve experiments.

To assess the relevance of the selected motifs, we compared them with theMotifDB
patterns available in Bioconductor[153] , where known transcription factor binding
sites are recorded. There are 453 such reference motifs with size varying from 5 to 23
nucleotides. Consider the case ofk = 7 for instance: among the 87 SPRING motifs,
62 match oneMotifDB pattern each and 25 are clustered into 11MotifDB patterns as
depicted in Table 3.3.

CTAAGCCAC
TAGCCCC
GCGCCCC

GCATGTGAA

CCATATG
TTGTGAG

CATGTAATT

TGTAAAT
TGTATAT

TGAAACA

TTAGACC
TAAAAAG

TGATCGGCGCCGCACGACGA

GTATAAC
GCGCCGT

TGCTGGTT

GCTGGTT
GCTGGTG

GATCGTATGATA

ATCATAT
TTGGTAT

ACGCGAAAA

AACGAAA
ACGAAAA

CCATACATCAC

CATAGAC
ATATCAC

ATTGACCTGGTC

TCGACTT
CGACTTG

CCAGCTT

GACTAGATATATATATTCGAT

ATATATT
CATATAT

ATATATG
ATATATA

Table 3.3 –Comparison of SPRING-selected motifs with MotifDB patterns. Each cell corresponds
to a MotifDB pattern (top) compared to a set of aligned SPRING motifs with size 7 (down).

As seen in this table, the clusters of motifs selected correspond to sets of variants
of the same pattern. In this example, the ability of SPRING to use domain-specific
definitions of the structure between the predictors oriented the regression problem to
account for motif degeneracy and helped in selecting motifs that are consistent, known
binding sites.
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3.2.3 A quadratic view of sparsity

In this work, we propose a unifying view of a wide family of regularized linear regres-
sion problems that includes the Lasso, the (generalized) Elastic-net, the‘ 1=‘ 1 group-
lasso and the fused Lasso signal approximator, among others. The main idea is to rep-
resent the feasible set associated with these regularization schemes as the intersection
of simple quadratic sets. On top of providing a new viewpoint on the aforementioned
penalization methods, our approach results in a unified optimization strategy. A de-
scription of a general-purpose active-set algorithm derived from this formalism is given.
We also demonstrate that our solver is highly efficient compared to existing algorithms
and popular implementations.

Rationale. We consider the usual linear model where the response variableY is re-
lated to thep predictor variablesX = ( X1, . . . ,Xp ): Y = X T � ?+ " , where� ? is asparse
vector of unknown parameter, and" is a perturbation variable. The estimation of� ?

is based on training data consisting in ann � p matrix X and a response vectory 2 Rn.
Our rationale follows a general robust regularized regression approach:

min
� 2R p

�
max
 2D 

jjX � � yjj22 + � jj� �  jj22

�
, (3.28)

where D describes an uncertainty set for the regression parameters and acts as a
spuriousadversary over the true� ?. This problem could be fully motivated in a ro-
bust regression framework (just as we showed in[PP3]), where the spurious vector of
coefficients is interpreted as an adversarial noise. Here, we rely instead on a simpler
– though equivalent – geometrical point of view. By considering sound definitions of
the apposite uncertainty setD , we use Problem (3.28) as a starting point to recover
known sparse penalties. Such an approach provides an original interpretation of these
existing penalties and may also inspire new ones specifically tailored for a given pur-
pose. Indeed, it is sometimes easier to formalize spurious effects through the definition
of D , than beneficial ones through the direct definition of a penalty on� .

Assumptions on the spurious regression coefficients. We now proceed by propos-
ing several options forD , each one entailing an equivalence with a well-known sparse
regression method. All our examples follow the same pattern: assuming a given regu-
larity on the regression coefficients� ?, we consider the adversarial dual assumption on
the spurious coefficients . When the initial regularity conditions on� ? are expressed
by ‘ 1 or ‘ 1 norms, this process results in uncertainty setsD which are very easy to
manage when solving Problem (3.28) since they can be defined as the convex hulls of a
finite number of possible perturbations.

Elastic-net. As a first option, let us consider the regularity assumption stating
that the ‘ 1-norm of � ? should be small:

H Lasso
� ? =

ƒ
� 2 R p : jj� jj1 � � �

'
.

The dual assumption is that the‘ 1 -norm of  should be controlled, say:

D ‘ 1
 =

8
<

:
 2 R p : sup

� 2H ‘ 1
� ?

 ü � � 1

9
=

;
=

ƒ
 2 R p : jj jj1 � � 

'
= conv

� ƒ
� �  , � 

' p 	
,
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where�  = 1=� � andconv denotes convex hull, so that Problem (3.28) becomes

min
� 2R p

�
max
 2D 

jjX � � yjj22 + � jj� �  jj22

�

= min
� 2R p

(

jjX � � yjj22 + � jj� jj22 + � max
 2f � �  ,�  g

p

�
 ü � + jj jj22

	
)

= min
� 2R p

ƒ
jjX � � yjj22 + � jj� jj22 + ��  k� k1 + c

'

, min
� 2R p

�
1
2

jjX � � yjj22 + � 1k� k1 +
� 2

2
jj� jj22

�
. (3.29)

which is recognized as an Elastic-net problem. When�  is null, we recover Ridge
regression, and when the magnitude of�  grows, the problem approaches the Lasso.
A 2D pictorial illustration of this evolution is given in Figure 3.15, where the shape of
the uncertainty setD is the convex hull of the points located at(� �  , � �  )ü , which
are identified by the cross markers. Then, the sublevel setf � : max 2D 

jj� �  jj22 � tg

is simply defined as the intersection of the four sublevel setsf � : jj� �  jj22 � tg for
 = ( � �  , � �  )ü , which are Euclidean balls centered at these values.

� 1

�
2

� 1

�
2

� 1

�
2

� 1

�
2

Figure 3.15 –Sublevel sets for Elastic-net (darker colored patches). Each set is defined as the inter-
section of the Euclidean balls (lighter color patches) the centers of which are represented by crosses.

‘ 1=‘ 1 group-Lasso. For this option, we first consider the one-group situation,
in which case the‘ 1=‘ 1 group-Lasso boils down to‘ 1 regularization. The regularity
assumption now states that the‘ 1 -norm of � ? should be small:

H ‘ 1
� ? =

ƒ
� 2 R p : jj� jj1 � � �

'
.

The dual assumption is that the‘ 1-norm of  should be controlled:

D ‘ 1
 =

8
<

:
 2 R p : sup

� 2H ‘ 1
� ?

 ü � � 1

9
=

;

=
ƒ
 2 R p : jj jj1 � � 

'
= conv

ƒ
�  ep

1 , . . . ,�  ep
p , � �  ep

1 , . . . ,� �  ep
p

'
,

where�  = 1=� � andep
j is the j th element of the canonical basis ofR p , that ise j j 0 = 1

if j = j 0ande j j 0 = 0 otherwise. Then, Problem (3.28) becomes:

min
� 2R p

max
 2D ‘ 1



n
jjX � � yjj22 + � jj� �  jj22

o
, min

� 2R p
jjX � � yjj22 + 2��  jj� jj1 + � jj� jj22 .
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Now, consider the more general situation where a group structureG = f GgK
k= 1 is given

with cardinality pk for group k. We examine the regularity assumption stating that the
‘ 1,1 mixed-norm of � ? (that is, its groupwise‘ 1 -norm) should be small:

H ‘ 1,1

� � =
¤

� 2 R p :
KX

k= 1

jj� G jj1 � � �

«
.

The dual assumption is that the groupwise‘ 1-norm of  should be controlled:

D ‘ 1,1
 =

8
><

>:
 2 R p : sup

� 2H
‘ 1,1

� �

 ü � � 1

9
>=

>;
=

�
 2 R p : max

k2f 1,...,Kg
jj G jj1 � � 

�

= conv
� ƒ

�  ep1
1 , . . . ,�  ep1

p1
, � �  ep1

1 , . . . ,� �  ep1
p1

'
� . . .

�
ƒ
�  epK

1 , . . . ,�  epK
pK

, � �  epK
1 , . . . ,� �  epK

pK

' 	
,

so that Problem (3.28) becomes:

min
� 2R p

jjX � � yjj22 + 2�� 

KX

k= 1

jj� G jj1 + � jj� jj22 .

Notice that the limiting cases of this penalty are two classical problems: ridge regres-
sion and the‘ 1,1 group-Lasso. A 2D pictorial illustration of this evolution is given in
Figure 3.16, where the shape of the uncertainty setD is the convex hull of the points
located on the axes at� �  , which are identified by the cross markers. Then, the sub-
level setf � : max 2D 

jj� �  jj22 � tg is simply defined as the intersection of the four

sublevel setsf � : jj� �  jj22 � tg for  = � �  e2
1 and  = � �  e2

1, which are Euclidean
balls centered at these values.

� 1

�
2

� 1

�
2

� 1

�
2

� 1

�
2

Figure 3.16 –Sublevel sets for the ‘ 1,1 group-Lasso (darker colored patches). Each set is defined as
the intersection of the Euclidean balls (lighter color patches) the centers of which are represented by
crosses.

Remark (Other problems entering this framework). Though we omit the details, the
assumptions on andD can be written for a series of other penalized problems the
feasible sets of which are represented in Figure 3.17 with their quadratic representation.
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structured e.-n. fused-lasso+ ‘ 2 OSCAR + ‘ 2

Figure 3.17 –Additional penalty shapes built from quadratic functions.

Algorithm. Our derivation for the above problems suggests a unified processing
based on the iterative resolution of quadratic problems. This algorithm enters the gen-
eral active set strategy 1 depicted in Section 3.1.2. We state it more specifically in light
of the adversarial formulation in Algorithm 2.

Algorithm 2: Active set algorithm under the angle of adversarial formulation
S0 Initialization

�  � 0,A  
ƒ

j : � 0
j 6= 0

'
// Start with a feasible � , recover A

 = arg max
g2D 

jj� � gjj22 // Pick a worst admissible 

S1 Update active variables� A

� A  
�
X ü

�A X �A + � I jA j

� � 1 �
X ü

�A y + �  A
�

// Solve quadratic problem

S2 Verify coherence of A with the updated� A
if jj� A �  A jj22 < max

g2D 

jj� A � gA jj22 then // if  A is not worst-case

� A  � old
A + � (� A � � old

A ) // Find  A -coherent solution

S3 Update active setA
g j  min

 2D 

���xü
j (X �A � A � y) + � (� j �  j )

��� j = 1, . . . ,p // worst gradient

if 9 j 2 A : � j = 0 and g j = 0 then
A  A nf jg // Downgrade j

else ifmaxj2A c g j 6= 0 then

find j ?  arg max
j2A c

g j , A  A [ f j ?g // Upgrade j ?

else
Stop and return� // Optimality is reached

Starting from a sparse initial guess, Algorithm 2 iterates the following three steps:

1. the first step solves Problem (3.28) considering thatA , the set of “active” vari-
ables, is correct. This penalized least squares problem is defined fromX �A ,
which is the submatrix ofX comprising all rows and the columns indexed by
A and A , which is set at its current most adversarial values.8

2. the second step updates� A (and A ) if necessary, so that A is indeed (one of)
the most adversarial values of the current� A . This is checked for the penalized

8When several A are equally unfavorable to� A , we use gradient information to pick the worst one
among those when� A moves along the steepest descent direction.
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problems considered above, whereD is a convex polytope the vertices of which
(that is, extreme -values) are associated with a cone of coherent� -values.

3. the last step updates the active setA . It relies on the “worst-case gradient” with
respect to� , where is chosen so as to minimize infinitesimal improvements of
the current solution. Picking the right is easy for the problems we considered.
When no violation of the optimality conditions exists, the solution is optimal,
since, at this stage, the problem is solved exactly within the active setA .

Note that the structure is essentially identical to that of the homotopy algorithm
of [134] or the Lars[48] for the Lasso, but that it applies to any penalty that can be
decomposed as in Problem (3.28). Our viewpoint is also radically different, as the
global non-smooth problem is dealt with via subdifferentials by[134] , whereas we rely
on the maximum of smooth functions.

Numerical experiments. This section compares the performance of our algorithm
to its state-of-the-art competitors from an optimization viewpoint, where efficiency
is assessed by accuracy and speed: accuracy is the difference between the optimum of
the objective function and its value at the solution returned by the algorithm; speed is
the computing time required for returning this solution. Obviously, the timing of two
algorithms/ packages has to be compared at similar precision requirements, which are
rather crude in machine learning, far from machine precision[16] .

Comparing optimization strategies. We compare here the performance of
three state-of-the-art optimization strategies implemented in our own computational
framework: accelerated proximal method[9] , coordinate descent[56] , and our algo-
rithm, that will respectively be named hereafterproximal , coordinate andquadratic .
Our implementations estimate the solution to Elastic-net problem

J enet
� 1,� 2

(� ) =
1
2

jjX � � yjj22 + � 1 jj� jj1 +
� 2

2
jj� jj22 , (3.30)

which is strictly convex when� 2 > 0 and thus admits a unique solution even ifn < p.
The three implementations are embedded in the same active set routine, which

approximately solves the optimization problem with respect to a limited number of
variables as in Algorithm 2. They only differ regarding the inner optimization prob-
lem with respect to the current active variables, which is performed by an accelerated
proximal gradient method forproximal , by coordinate descent forcoordinate , and by
the resolution of the worst-case quadratic problem forquadratic . We followed the
practical recommendations of[5] for accelerating the proximal and coordinate descent
implementations, and we used the same halting condition for the three implementa-
tions, based on the approximate satisfaction of the first-order optimality conditions:

max
j f2 1...pg

����x
ü
j

�
y � X �̂

�
+ � 2�̂

���� < � 1 + � , (3.31)

where the threshold� was set at� = 10� 2 in our simulations.9 Finally, the active set
algorithm is itself wrapped in a warm-start routine, where the approximate solution to
J enet
� 1,� 2

is used as the starting point for the resolution ofJ enet
� 0

1,� 2
for � 0

1 < � 1.

9The rather loose threshold is favorable tocoordinate andproximal , which reach the threshold,
while quadratic ends up with a much smaller value, due to the exact resolution, up to machine preci-
sion, of the inner quadratic problem.
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Our benchmark considers small-scale linear regression problems, with sizep =
100, and the nine situations stemming from the choice of following three parameters:
i ) low, medium and high levels of correlation between predictors (� 2 f 0.1,0.4,0.8g),
i i ) low, medium and high-dimensional setting (p=n 2 f 2,1,0.5g), i i i ) low, medium
and high levels of sparsity (s=p 2 f 10%,30%,60%g). Each solver computes the elas-
tic net for the tuning parameters� 1 and � 2 on a 2D-grid of 50� 50 values, and their
running times have been averaged over 100 runs. All results are qualitatively similar re-
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Figure 3.18 –Log-ratio of computation times for coordinate (top) and proximal (bottom) versus
quadratic , for high, medium and low variable correlation (left, center and right respectively).

garding the dimension and sparsity settings. Figure 3.18 displays the high-dimensional
case (p = 2n) with a medium level of sparsity (s = 30) for the three levels of correlation.
Each map represents the log-ratio between the timing of eithercoordinate or proximal
versusquadratic , according to(� 1, � 2) for a given correlation level. Dark regions with
a value of 1 indicate identical running times while lighter regions with a value of 10
indicate thatquadratic is 10 times faster. Figure 3.18 illustrates thatquadratic out-
performs bothcoordinate andproximal , by running much faster in most cases, even
reaching 300-fold speed increases. The largest gains are observed for small(� 1, � 2) for
which the problem is ill-conditioned, including many active variables, resulting in a
huge slowdown of the first-order methods. As the penalty parameters increase, smaller
gains are observed, especially when� 2, attached to the quadratic penalty, reaches high
values for which all problems are well-conditioned, and where the elastic net is leaning
towards univariate soft thresholding, in which case all algorithms behave similarly.

Link between accuracy and prediction performance. When the “irrepre-
sentable condition” holds, the Lasso should select the true model consistently. How-
ever, even when this rather restrictive condition is fulfilled, perfect support recovery
obviously requires numerical accuracy: rough estimates may speed up the procedure,
but whatever optimization strategy is used, stopping an algorithm is likely to prevent
either the removal of all irrelevant coefficients or the insertion of all relevant ones. The
support of the solution may then be far from the optimal one.
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We advocate here that our solver is competitive in computation time when sup-
port recovery matters, that is, when a high level of accuracy is needed, in small (a few
hundred variables) and medium sized problems (a few thousand). As an illustration,
we generate 100 data sets under the linear model with a coefficient of determination
R2 � 0.8, a high level of correlation between predictors (� = 0.8) and a medium level
of sparsity (s=p = 30%). The number of variables is kept low (p = 100) and the dif-
ficulty is tuned by then=p ratio. For each data set, we generate a large test set (say,
10n) to evaluate the quality of the prediction without depending on any sampling fluc-
tuation. We compare the Lasso solutions computed by our solver to the ones returned
by glmnet with various levels of accuracy10. Figure 3.19 reports performance. As ex-
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Figure 3.19 –Test performance according to the penalty parameter for the Lasso returned by
quadrupenand glmnet for various levels of accuracy and sample sizes (n=p 2 f 1=2,12g).

pected, the curves show that selecting variables and searching for the best prediction are
two different problems. The selection problem (bottom of Figure 3.19) always requires
a sparser model. But despite this obvious difference, the more accurate the solution re-
turned by the algorithm, the better the performance for any level of penalty and for
both performance measures. Now focusing onglmnet performance, the better the ac-

methods quadrupen glmnet (low) glmnet (med) glmnet (high)
timing (ms) 8 7 8 64
accuracy (dist. to opt.) 5.9� 10� 14 7.2� 100 6.04� 100 1.47� 10� 2

Table 3.4 –Median timings and solution accuracies

curacy, the smaller the MSE and the support error rate, but the slower the algorithm
becomes. With high precision, the performance differences become negligible between
our approach andglmnet running. However, Table 3.4 illustrates that high accuracy is
achieved at a high computational cost: to be at par withquadrupen with respect to test
performance,glmnet is about ten times slower.

10This is done via thethresh argument of theglmnet procedure. In our experiments,low, medand
high level of accuracy forglmnet respectively correspond tothresh set to1e-1 , 1e-4 , and1e-9 .
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3.2.4 Tree reconstruction with fusion penalties

Given a data set with many features observed in a large number of conditions, it is desir-
able to fuse and aggregate conditions which are similar to ease the interpretation and
extract the main characteristics of the data. We present in[JP2] a multidimensional
weighted fusion penalty to address this question when the number of conditions is
large. If the fusion penalty is encoded by a mixed‘ 1=‘ q norm, uniform weights lead to a
path of solutions which is a tree, very suitable for interpretability. Moreover, when the
‘ q is the‘ 1 norm, the path is piecewise linear and we derive a homotopy algorithm to
uncover exactly the whole tree structure. For weighted‘ 1-fusion penalties, we demon-
strate that distance-decreasing weights lead to balanced tree structures. For a subclass
of these weights that we call “exponentially adaptive”, we derive anO(n log(n)) homo-
topy algorithm and we prove an asymptotic oracle property.

Model setup. Consider yi j the observation of a continuous random variable that
describes the intensity of thej th feature in condition i , with i 2 f 1, . . . ,ng and j 2
f 1, . . . ,pg. The p-dimensional vectoryi = ( yi1, . . . ,yi p ) encompasses the data related
to condition i across thep features. We are given a partition withK groups as prior
knowledge that is depicted by the indexing function� : f 1, . . . ,ng ! f 1, . . . ,Kg. In
words, � indicates the group to which conditioni is allocateda priori. The number of
elements in groupk is denoted bynk = cardf i : � (i ) = kg, such that

P
k nk = n.

We consider the convexified Lagrangian formulation of hierarchical clustering sug-
gested by[75] , which we adapt to the (M)ANOVA framework:

arg min
� 2RK p

1
2

nX

i= 1

 yi � � � (i )


2

2
+ �

X

k ,‘ :k6= ‘

! k ‘ k� k � � ‘ k‘ q
. (3.32)

In general,! k ‘ are positive, symmetric weights over all pairs of groups. The penalty
is a weighted‘ 1=‘ q mixed-norm as in the‘ 1=‘ q group-Lasso (3.6), acting on the pair-
wise differences between vectorsf � kgK

k= 1. It is designed to encourage elements of� to
“fuse” group-wise, as done element-wise in the fused-Lasso signal approximator[56] .
The level of fusion is tuned by two parameters: the global level of penalty� and the
group specific weightswk ‘ , the choice of which is of the highest importance. It condi-
tions i ) the ability of the method to infer an interpretable structure between the con-
ditions, i i ) the existence of fast algorithms to fit the parameters� for various values of
� and i i i ) the existence of statistical guarantees for the estimator. The main objective
of this paper is to study classes of weights that reach these three goals simultaneously.

Although a part of our full-length paper[JP2] provides results for general‘ 1=‘ q
norms, here we stick to the case where the fusion penalty,i.e. the ‘ q -norm, is the
‘ 1-norm. Hence, the problem decouples across thep dimensions, in which case our
contributions are the following:

� We introduce distance-decreasing weights for which we prove that the path is a
tree. From an interpretation point of view, this family of weights is particularly
interesting as it leads tobalanced tree structures.

� we introduce exponentially adaptive weights that enter the family of distance-
decreasing weights. They enjoy asymptotic oracle properties that guarantee se-
lection of the true underlying structure for a large scale of possible� .
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� We provide a general homotopy algorithm for (3.32)‘ q � ‘ 1, whatever the
choice ofwk ‘ . On a single feature, the initialization for unspecified weights is in
O(K2) and the homotopy itself is inO(K log(K)). However, we propose a faster
initialization procedure for exponentially adaptive weights such that the whole
complexity for p features is inO(pK log(K)) – or O(pn log(n)) in the clustering
framework.

� When the numberK of prior groups is smaller thann (e.g., in the ANOVA set-
tings, when there are replicates per condition/ group), a natural cross-validation
(CV) error can be defined. In this case, we develop a fast procedure that takes
advantage of the DAG (directed acyclic graph) structure of the path of solutions
along� . This approach has a lower complexity than does the standard CV.

Motivating example in phylogeny. As a simple motivating example, we consider a
univariate problem in phylogeny. We want to reconstruct a tree between many species
based on some simple features (like the height, or the weight of individuals). Ideally,
this tree should resemble the known phylogeny. We illustrate this task on the “An-
imal Ageing Longevity Database”11, which provides various features for many ani-
mal species. Here, we consider classifying bird species based on their birth weight.
The known phylogeny groups thesen = 184 individuals into 40 bird families, them-
selves grouped into 15 orders. We reconstruct the tree based on the weights and check
whether it matches the orders and the family classification. Recovered solution paths
of (3.32) are plotted in Figure 3.20 fora) the Cas-ANOVA weights[13] ; b ) the “de-
fault” Clusterpath weights[75] ; andc) our own weights that we call “fused-ANOVA”
weights. On the left panel, the Cas-ANOVA path includes many splits which make
interpretation rather difficult. On the middle panel, default Clusterpath weights, as
expected, provide a tree structure. Still, the structure of this tree is unbalanced and
thus not fully satisfactory in the sense that small groups often fuse with very large
ones. Specifically, the Clusterpath tree does not capture the simple fact that there are
visibly three groups corresponding to light, medium or heavy birds. Conversely, the
fused-ANOVA tree in the right panel is more balanced and clearly exhibits these three
groups. Furthermore, it is in better agreement with the known phylogenetic classifi-
cation, improving the rand index by 5% compared to ClusterPath.
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11publicly available athttp://genomics.senescence.info/species/

http://genomics.senescence.info/species/
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Distance-decreasing weights guaranteeing no split for‘ 1 fusion penalties. By
choosing the‘ q -norm to be the‘ 1-norm in (3.32), thep-dimensional problem splits
into p univariate problems. We then recover a consensus, multidimensional classifi-
cation by first inferring p independent trees (one per dimension) and then aggregate
thosep trees by considering the same penalty value� . Thus, without loss of generality,
we restrict the discussion to the following‘ 1 univariate problem:

minimize
� 2RK

1
2

KX

k= 1

nk (ȳk � � k )2 + �
X

k ,‘ :k6= ‘

! k ‘ j� k � � ‘ j. (3.33)

Although the choice! k ‘ = nk n‘ can be shown to prevent splits (see the full-length
paper[JP2]), it will typically lead to fusion events occurring very late (that is, for large
� ), even between groups having close empirical means. This corresponds to an unbal-
anced tree structure between the condition, which is hardly interpretable. Intuitively,
distance-decreasing weights should ensure that close neighbors fuse quickly. Here, we
indeed demonstrate that for such weights there is no split.

Theorem 5. The path of solutions of (3.33)does not contain splits with weights

! k ‘ = nk n‘ f (jȳk � ȳ‘ j),

where f (�) is a decreasing positive function.

Schematically, the proof (detailed in[JP2]) is based on two ingredients:

1. Using geometrical arguments, we show that absence of splits is equivalent to
preservation of the order along the path,i.e., ȳk � ȳ‘ , ˆ� k (� ) � ˆ� ‘ (� );

2. By considering a problem that is dual to (3.33) as in[167] for the generalized
Lasso, we show that distance-decreasing weights preserve the order.

Fast homotopy algorithm for ‘ 1 weighted penalties. In this paragraph, we con-
sider algorithmic issues when‘ q is the ‘ 1-norm. As in the previous paragraph, we
restrict the discussion to univariate Problem (3.33) and thus give the numerical com-
plexity in the casep = 1. For a p-dimensional problem, we aggregate thep univariate
trees by considering the same values of� for all trees.

An algorithm for general weights and its limitations. Problem (3.33) can be
solved for general weightswk ‘ by the homotopy algorithm proposed in[76] for the
generalized fused-Lasso. This is also the solution retained in the clustering framework
by [75] . A schematic view of this algorithm adapted to (3.33) is depicted in 3.

Algorithm 3: Homotopy algorithm for the generalized fused-Lasso
Input : data, weights and initial groupsf yi , ! k ‘ , � g
Initialization for � = 0
Initialize � k parameters (equal to the empirical meansȳk )
Initialize the list of possible next events (only fusion at this stage)
while all groups are not fused do

Find the next event (having the smallest� ), it can be a split or a fusion
Update� k parameters accordingly
Update the list of possible next events (fusion and split)

Output : DAG of fusion and split events and associated values of the parameters
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This procedure for general weights has two major flaws that may have detrimental
effects on its computational performance:

� By piecewise-linearity of the solution path, the total number of iterations (that
is, the total number of events before all the groups have fused) is bounded. How-
ever, by rewriting (3.33) as a Lasso problem – which only requires straightfor-
ward algebra – we may exhibit pathological cases where there are(3K + 1)=2 lin-
ear segments in the path of solutions[114] , a complexity that we cannot afford
even for a moderate number of conditionK .

� While detecting fusion events in Algorithm 3 may be cheap since it roughly only
requires calculation of the slopes@ �k (� )=@ �, checking for the possibility of
split events boils down to maximum-flow problems, the resolution of which may
clearly be a bottleneck at large scale[76] .

To circumvent these limitations, we consider using the family of distance-
decreasing weights introduced above to prevent splits and lead to a balanced tree.
In this case the total number of events is exactlyK � 1, which is the number of itera-
tions required to fuseK groups into 1, assuming that there cannot be a fusion of more
than two groups at once. Regarding the maximum-flow problems, they are completely
absent from the algorithm. Still, we have to take into account the cost of detecting
successive fusion events and for updating the coefficients� k (� ) along theK � 1 steps.
In the next paragraph, we propose a solution inducing a global complexity ofK log(K)
for a given choice of weights belonging to the family of distance-decreasing weights.

Weights with an O(K log(K)) implementation. First we need to define the next
time a fusion event is going to happen. We proceed mainly as in[76] for the one-
dimensional fused-Lasso, except that the initial ordering is not defined by the neigh-
borhood between the coefficients, but by the ordering of the empirical meansȳk . And
thanks to the property of the distance-decreasing weights, this ordering remains the
same throughout the algorithm, which allows us to compute the path inK logK op-
erations. Here are some details. At the initialization step� 0 = 0 and the next fusion
time is

t (� ) = arg min
tk ‘ (� )>� 0

tk ‘ , tk ‘ (� ) = � 0� (� k (� 0)� � ‘ (� 0))
�

@ �k
@ �

(� 0) �
@ �‘
@ �

(� 0)
� � 1

. (3.34)

In words, it is the smallest value of� among all the values such that two coefficients
fuse. The main cost in (3.34) is due to the calculation of the slopes@ �k=@ �at � 0 = 0.
Note that � k (0) = ȳk , and by means of the subdifferential equations for the fused-Lasso
we can show that

@ �k
@ �

(0) = �
1

nk

X

‘ 6= k

! k ‘ signs(ȳk � ȳ‘ ). (3.35)

For general weights! k ‘ , computing these slopes for allk requiresO(K2) operations
and is the limiting factor of the algorithm. However, we provide aO(K log(K)) pro-
cedure for a special case of our distance-decreasing weights that we call “exponentially
adaptive weights” because of their statistical properties (as will be seen below):

! k ‘ = nk n‘ expf� �
p

njȳk � ȳ‘ jg, � > 0, (3.36)
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for � a positive constant. The key idea to achieveK log(K) complexity with these
weights is that each slope can be computed as the sum of two terms, for which there
exist simple recurrence formulas: first, we order thēyk in decreasing order, which can
be done inK log(K) operations. Assuming this is done, we get

@ �k
@ �

(0) = �
X

‘ 6= k

n‘ signs(ȳk � ȳ‘ ) exp
�
� �

p
njȳk � ȳ‘ j

	

=
X

‘< k

n‘ exp
�
� �

p
n(ȳ‘ � ȳk )

	
�

X

‘> k

n‘ exp
�
� �

p
n(ȳk � ȳ‘ )

	

= exp
�
�

p
nȳk

	 X

‘< k

n‘ exp
�
� �

p
nȳ‘

	

| {z }
Lk

� exp
�
� �

p
nȳk

	 X

‘> k
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�
�

p
nȳ‘

	

| {z }
Rk

.

The recurrence formulas areRk+ 1 = Rk + nk expf � � ȳkgandLk � 1 = Lk + nk expf � ȳkg.
Thus, the initial slopes (3.35) and the first fusion time can be computed inO(K log(K)).

Then, for each of theK � 1 steps of the algorithm, we only need to update the
two slopes and the two coefficients which are currently fusing: this requires a constant
number of operations. Concerning the next fusion time however, the new minimum
among the updatedtk ‘ (� +

0 ) is found in log(K) if stored in an appropriate structure.
This way we can reachO(K log(K)) for the global complexity.

As a final remark, note that we use the same storage solution – namely a binary
tree – as did[76] for the one-dimensional fused-Lasso. By this means, we maintain the
memory requirement at a low level that only grows linearly inK .

An embedded cross-validation procedure. When the numberK of prior groups
is smaller thann (e.g., in the ANOVA settings), a natural cross-validation (CV) error can
be defined, in order to choose an appropriate value of� and thus provide the user with
a fixed classification between the initial conditions. Although CV is often incriminated
for being time-consuming, it is possible in this case to rely on the tree structure of the
solution – or DAG in the case where split is allowed in the algorithm – to enhance the
performance. Indeed, we can first build a tree using a training set (in which all prior
groups are present) and then assess its performance by measuring its ability to predict
the remaining individuals of the test set for any given value of� . Here, we perform
the CV on a predefined grid ofL values of� because the fusion times will be different
for every new training set and it would be memory-intensive to store the CV-error for
every one of those fusion times. More details are provided in[JP2] .

It is difficult to assess exactly the gain brought by using the tree structure for com-
puting the CV error in general. Indeed, it depends on the tree itself, the length of its
branches, its height and so on. Assuming a binary balanced tree of height log(K), with
branches of equal length and an equally spaced grid of� , we can show that the com-
plexity is in O(LK=log(K)). If some groups fused rapidly (as with the fused-ANOVA
weights), the gain could be even greater. In practice (see Figure 3.21.c), we often see a
ten-fold difference between our CV procedure and a naive implementation.

Timing. We implemented both the general and the without-split version of Al-
gorithm 3 in C++embedded in anR-package calledfusedanova distributed onR-forge.
It contains a wide family of weights which are not mentioned in this paper due to space
requirements. Figure 3.21 illustrates the rather good performance of our algorithm and
implementation through three numerical experiments:
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a) In the left panel, we illustrate the capability of our method to treat large scale prob-
lems extremely fast: we generate a size-n vectory such thatyi � N (0,1) and assume
n = K , meaning one condition per group12. We varyn from 102 to 108 and record
the corresponding timing in seconds. We apply our method with the exponentially
adaptive weights and average over 10 trials. As can be seen, we can reconstruct a
tree onn = 106 observations in about 10 seconds.

b ) The middle panel illustrates the gain in run-time due to the fact that we no longer
have to check for splits in the homotopy algorithm using a maximum-flow solver.
We generate data as in the preceding experiment but withK conditions each con-
taining nk = 20 replicates. WhenK = 103, the gain in seconds brought by not
checking for the possibility of splits is of almost 2 orders of magnitude.

c) The right panel shows the performance of our embedded CV procedure compared
to the naive implementation, with the same settings as in the previous experiment.
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Figure 3.21 –timing experiments: a) time in seconds as a function of the number of condi-
tions K; b ) timing comparison for general/ without-split algorithm; and c) timing comparison for
naive/ embedded cross-validation.

Statistical guarantees. To discuss the asymptotic properties of our exponentially
adaptive weights (3.36), we shall consider the following univariate13 ANOVA model

yi = � ?
� (i ) + " i , s.t. E(" i ) = 0, Var(" i ) = � 2, i = 1, . . . ,n, (3.37)

where� ? = ( � ?
1, . . . ,�

?
K ) is the true vector of parameters and" i are iid residuals. The

correct structure between the coefficients – or classification – in� ? is denoted byA ? =�
(k , l ) : � ?

k = � ?
‘

	
. A usual technical assumption is to consider designs the associated

gram matrices of which converge to positive definite matrices. In the one-way ANOVA
settings, we just need to assume that whenn ! 1 , then nk=n ! � k < 1 for all
k = 1, . . . ,K . We denote byD the corresponding asymptotic covariance matrix which
is aK-diagonal matrix with diagonal entries equal to� 1, . . . ,� K . For the purpose of
asymptotic analysis, we consider the problem

�̂
(n)

= arg min
� 2RK

1
2

KX

k= 1

nk (ȳk � � k )2 + � n

X

k6= ‘

! k ‘ j� k � � ‘ j, (3.38)

12There is no underlying clustering in this setting since our point is to compare run-times here.
13We numerically study the multidimensional case at the end of this section.
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which is just a rewriting of (3.33) where the dependency onn is stated explicitly for
the estimator and the tuning parameter. Similarly,̂A n =

n
(k , ‘ ) : ˆ� (n)

k
= ˆ� (n)

‘

o
.

Exponentially adaptive weights and the fused-ANOVA. In this paragraph,
we study the exponentially adaptive weights (3.36). In the context of the penalized
ANOVA problem (3.38), we denote these weights by! FA

k ‘ and call the associated es-
timator the fused-ANOVA. We show that they enjoy some “oracle properties” in the
sense of[50] , that is, both i ) correct model identification (recovering the true classifi-
cation A ?) and i i ) optimal estimation rate

p
n. These weights are adaptive as in the

adaptive-Lasso of[197] : it is known that raw ‘ 1 methods like the Lasso do not en-
joy the aforementioned oracle properties, yet this can be fixed by choosing judicious
weights that depend on an estimator of� ? which is asymptotically

p
n-consistent –

like the ordinary least squares, which equals(ȳ1, . . . ,ȳK ) in the case at hand. Here we
are interested in the differences between the entries of�̂ ; thus the quantity

p
njȳk � ȳ‘ j

seems quite natural in (3.36).
Another possible choice for those weights is given by[13] , who consider Prob-

lem (3.38) with additional constraints on the� k ’s – that must sum to zero – and the
following weights, that we refer to as theCas-ANOVA weights:

! CA
k ‘ =

p
nk + n‘

jȳk � ȳ‘ j
. (3.39)

We now proceed to the Theorem stating the required conditions on� n for the
fused-ANOVA to enjoy the oracle properties.

Theorem 6 (Oracle properties). Suppose that � n n3=2exp
�
� �

p
n

	
! 0 and � n n3=2 !

1 when n ! 1 . Then the fused-ANOVA enjoys asymptotic normality and consistency
for recovering the true classification, i.e.,

p
n

�
�̂

(n)
� � ?

�
! d N (0, � 2D � 1) and P( ˆA n = A ?) ! 1 when n ! 1 .

Remark (On the exponentially adaptive weights). The key idea behind this theorem is
that when n goes to infinity, thenwFA

k ‘ =
p

n goes to infinity if (k , ‘ ) 2 A ? and to zero
exponentially fast if(k , ‘ ) =2 A ?. This is due to the joint effect of the

p
n-consistency

of the ȳk and of the exponential. This is to be compared with Cas-ANOVA weights,
where, whenn ! 1 , wCA

k ‘ =
p

n goes to infinity if (k , ‘ ) 2 A ?, but only to a constant
if (k , ‘ ) =2 A ?.

Remark (On the range of� n). Theorem 6 is true for a large range of� n values. In
particular it is true for a constant� n. Asymptotically all groups belonging to the same
class fuse almost immediately (i.e., for small values of� of the ordern3=2exp

�
� �

p
n

	
)

and the groups belonging to different classes fuse for very large� , i.e., of the ordern3=2.

Numerical illustration in the univariate case. We generate data from model
(3.37) as follows, forK the number of prior groups andn being fixed: the true vector� ?

is composed ofK entries drawn randomly fromf 1,2,3g, such that the correct structure
A ? is always composed of 3 groups. Then, the initial group sizesnk are drawn from
a multinomial M (n, (p1, . . . , pK )) with pk = 1=K for all k = 1, . . . ,K , such that thenk
are approximately balanced. Finally, we let" i � N (0,1).



110 Chapter 3. Structuring Penalties to Account for Complex Data Features

We compare the capability of three weighting schemes to recover the true grouping
A ?, namely the fused-ANOVA weights, the Cas-ANOVA weights, and the so-called
default weights corresponding towk ‘ = nk n‘ , which are not adaptive but produce a path
of solutions that contains no split. Such weights correspond to the Clusterpath weights
adapted to the ANOVA setup. We use our own code for each method. Typically, the
computational burden required by Cas-ANOVA is huge, compared to that of the other
two procedures as the path of solutions may contain splits. Qualitatively, the difference
would be as in Figure 3.21, middle panel. Thus, we typically force the algorithm not
to split when using the Cas-ANOVA weights.

We generate data as specified below, and for each procedure we check whether there
exists at least one� for which the correct structure is identified along the path of solu-
tions. The probability of true support recovery is evaluated by replicating this experi-
ment a large number of times . To investigate the asymptotic behavior of each method,
we varyn from 50 to 1,000 and consider two scenarios for the initial number of groups
K . First, K is fixed at 10 such that the number of elements in each group grows with
n. In the second scenario,K grows with n through the relationshipK = 2.5� log(n).
The results are reported on Figure 3.22, with the first (resp. the second) scenario on
the left (resp. the right) panel. The results confirm Theorem 6. The two adaptive
procedures, Cas-ANOVA, and to a greater extent, fused-ANOVA, dominate the non-
adaptive weights. As expected, fused-ANOVA always dominate Cas-ANOVA, as ex-
perienced in other scenarios (e.g., K = C �

p
n) not reported here to save space.

a) K = cst. b ) K = C log(n)

P̂(
ˆ

A
n

=
A
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Figure 3.22 –Univariate case: estimated probability of consistency as a function of the sample size
n, for various weights and in two scenarios: the number of initial groups K is either a) fixed to a
constant (10) or b ) increases in C log(n) with C = 2.5. The true number of groups in A ? is 3.

Numerical illustration in the bivariate case. Theorem 6 characterizes the
asymptotic of the fused-ANOVA estimators when considering one dimension at a
time. Concerning the multidimensional setting, there are two situations. In the first
one, there exists a dimension such that all the true groups are different,i.e � ?

k j 6= � ?
‘ j .

In this case, our theorem guarantees that, using this particular dimension, the recov-
ered classification will converge to the true one. In the second situation, there exists
no dimension such that the true groups are all different. In that case, we have no the-
oretical guarantee to support the fused-ANOVA weights. It is nonetheless possible to
aggregate the classification obtained in each dimension to a consensus classification.
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For a given� , two individualsk and‘ are in the same multidimensional cluster if they
have been fused on every dimension.

In order to evaluate empirically the performance of the aggregation step, we con-
sider a two-dimensional classification problem with three classes and two scenarios.
Eachprior group is drawn from one of three classes. In the first scenario, the three
classes have different means on the first dimension and the same mean on the second
dimension. The mean vectors are(1,1.5); (2,1.5); (3,1.5), as in the top left panel of Fig-
ure 3.23. In the second scenario, both dimensions are informative: the first dimension
separates classesf 1,2gfrom f 3gwhile the second dimension separates classesf 1,3gfrom
f 2g. The mean vectors are(1,1); (1,2); (2,1), as in the top right panel of Figure 3.23).
We increase the difficulty in each scenario by adding a Gaussian noise with increasing
standard deviation� . Results in Figure 3.23 correspond to the estimated probability
of true classification recovery along the path, averaged over 2,000 runs.
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Figure 3.23 –Bivariate example: estimated probability of consistency as a function of the noise
standard deviation � , for various clustering methods. The initial number of groups K fixed to a
constant (10). The true number of groups in A ? is 3.

In both scenarios, the fused-ANOVA weights with aggregation outperform the
multidimensional ‘ 2-Clusterpath as well as the single linkage hierarchical clustering.
The Ward hierarchical clustering shows better performance but at a much higher com-
putational cost.

Some final comments. Our full-length paper[JP2] contains more thorough appli-
cation in phylogeny where it is shown that our method outperforms Ward hierarchical
clustering, in the sense that it reconstructs a tree structure in better adequacy with the
true phylogeny.

At the moment, we are developing an efficient algorithm for performing the aggre-
gation of the many trees reconstructed independently for the multidimensional case
in order to apply fused-ANOVA to metagenomics, where one needs to reconstruct
hierarchy for billions of features.
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3.3 PERSPECTIVES

Since I have been working on genomic data, I have almost always been relying on
embedded sparse methods, the most famous and emblematic of which is the Lasso. In
the past decade, it has become our best ally for performing simultaneously estimation
and variable selection in a high-dimensional setting. This success is undoubtedly also
due to the powerful computational methods that fit the Lasso such as the LARS and
other homotopy algorithms, coordinate-wise descent strategies or proximal methods.
As a consequence, ever since the Lasso was published in 1996, an outstanding number
of variations around sparse methods have been published: ten years ago, we could have
spoken of the Lasso “zoo”; now, it has turned out to be a jungle.

However, sparse methods still remain perfectible. Their most important limitation
is probably their lack of stability when used as a variable selection operator. Such an
instability is due to several points, two of which retain my attention: first, there is
no universal method for calibrating the amount of regularization. And second, sparse
methods are highly sensitive to small changes in the data, as they are mostly applied in
a high-dimensional setting.

Instability and lack of robustness are exacerbated in genomics and other complex
data, due to diverse reasons that we have discussed in this manuscript such as high-
dimensional feature spaces, high level of noise or multiple levels of heterogeneity.
Also, the presence of structure in the data, which can be a precious ally when it is well
characterized and integrated as prior information, can have detrimental effects since
strong correlations are known to mislead sparse methods from selecting the relevant
features. And finally, a great source of confusion comes from the fact that these meth-
ods are often used to perform variable selection, hoping for biological interpretability
of the selected predictors, while they are mostly designed to select variables doing a
good job for prediction purposes.

To alleviate these limitations, possible research paths that I wish to follow are:

1. to keep on introducing priors/ constraintsvia structured sparsity. However, this
does not imply the design of a new method for each problem considered! I rather
think that ‘ 1 has become an intrinsic part of what is now “mainstream” statistics.
It is thus natural to integrate regularization in most of the statistical methods that
we know.

2. to address the question of statistical inference in order to properly endow sparse
estimators with the notion of statistical significance. Several works have recently
tried to tackle this issue[110, 86, 12] but remain largely imperfect.

3. to revisit robust statistics for high-dimensional data: first attempts have been
made to equip sparse fitting procedures against the effect of outliers and adapt
standard robust statistics to the high-dimensional setup[29, 34, 35] . However,
the notion of outlier is hard to define when data is scarce[187] .

4. to keep on focusing on methods that allow for efficient algorithms. In fact, effi-
ciency should be kept in mind when designing a regularization method, as our
objective as an applied statistician is – of course – to scale real data situations.

Here is some of my ongoing work related to these perspectives:
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Marker assisted selection. The contribution [PP2] on structured regularization for
conditional Gaussian graphical models has been initially motivated by application in
agronomy and genomic selection (or marker assisted selection). In this context, I am co-
supervizing, with Tristan Mary-Huard, David Baker’s Post-doctorate, which intends to
extend our proposal[PP2] to a more involved regularization procedure motivated by
data characteristics which are typical problems in agronomy. An important objective
of the post-doc is to generalize existing regularized multivariate regression approaches
to the context of multi-task learning, where the learning task has to be jointly per-
formed on several inhomogeneous training populations. Indeed, the population struc-
ture is very strong in agronomy because individuals are obtained by multiple crossing
of the same parents, for both plant breeding and animal breeding.

Another aspect of this post-doc is more algorithmic: regularization methods used
by the genetic community often rely on Bayesian formulation, the underlying opti-
mization of which is sometimes close, nay equivalent, to their frequentist counterpart
(think for instance about ridge regression). Hence, we suggest reconsidering the most
widespread Bayesian models in genetics in light of their frequentist, penalized formu-
lations, in order to speed up the whole process.

“Spiny” regression: take advantage of both frequentist and Bayesian interpreta-
tions. In the context of Pierre-Alexandre Mattei’s PhD thesis, supervised by Charles
Bouveyron and Pierre Latouche, I am involved in a Bayesian method for variable se-
lection in high-dimensional linear regression[JP1] . The method builds on a genera-
tive model that uses a spike-and-slab-like prior distribution obtained by multiplying a
deterministic binary vector, which describes the sparsity of the problem, with a ran-
dom Gaussian parameter vector. The originality of the work is to consider inference
through relaxing the model and using a type-II log-likelihood maximization based on
an EM algorithm, thus providing both fine estimation from the Bayesian formulation
and fast frequentist algorithms.

Two-dimensional segmentation with fast Lasso like approaches. With Céline
Lévy-Leduc and Vincent Brault, in the context of Vincent’s Post-Doctorate, we are
working on a novel approach for estimating the location of block boundaries (change-
points) in a random matrix consisting of a block-wise constant matrix observed in
white noise. Our method consists in rephrasing this task as a variable selection is-
sue. We use a penalized least-squares criterion with an‘ 1-type penalty for dealing with
this problem. This problem arises from Hi-C genome-wide interaction data[107] , a
recent technique in genomics allowing the assessment of chromosome conformation
across the entire genome. Hi-C data can be represented by large square matrices of
similarity across all the positions along the genome. These matrices are very sparse
and typically exhibit block-wise structures which are of interest to the biologist. At
the end of the day, we hope to apply our method to Hi-C data with fine resolution, up
to the nucleotide level. A paper is currently under review related to this work[PP1] .
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